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Preface 

The aim of this monograph is quite modest: It attempts to be a systematic exposition of all that 
appeared in the literature and was known to us by the end of the 20th century about the Laplace 
distribution and its numerous generalizations and extensions. We have tried to cover both theoretical 
developments and applications. There were two main reasons for writing this book. The first was our 
conviction that the areas and situations where the Laplace distribution naturally occurs is so extensive 
that tracking the original sources is unfeasible. The second was our observation of the growing demand 
for statistical distributions having properties tangent to those exhibited by the Laplace laws. These 
two "necessary" conditions justified our efforts that led to this book. 

Many details are arranged primarily for reference, such as inclusion of the most commonly used 
terminology and notation. In several cases, we have proposed unification to overcome the ambiguity 
of notions so often present in this area. Personal taste may have done some injustice to the subject 
matter by omitting or emphasizing certain topics due to space limitations. We trust that this feature 
does not constitute a serious drawback-in our literature search we tried to leave no stone unturned 
(we collected over 400 references). 

Because we view this monograph as a textbook, the exposition in the earlier chapters proceeds 
at a rather pedestrian pace and each part of the book presupposes all earlier developments. A slightly 
more advanced approach is taken in the second part of the book, where quite a few of our results 
appear in print for the first time. 

The exercises are supposed to be an integral part of the discussion, but a number of them are 
intended simply to aid in understanding the concepts employed. 

The monograph should be read (and studied!) with the constant reminder that it aims to provide 
an alternative to the dominance of the "normal" law (the eponymous "Gaussian distribution") that 
reigned almost without opposition in statistical theory and applications for almost two centuries. 

We have tried to make sufficiently precise statements while striving to keep the mathematical 
level of the book appealing to the widest possible readership-including users of distribution theory 
in various applied sciences. We hopefully did not overplay the simplicity card so popular among 
expositors of probabilistic and statistical concepts in the last two decades or so. The prerequisites are 
calculus, matrix algebra, and familiarity with the basic concepts of probability theory and statistical 
inference. As always, the most desirable prerequisites for books of this kind are ill-defined quali-



xii Preface 

ties of mathematical sophistication and understanding of the intricate nature of somewhat elusive 
probabilistic reasoning. 

Since so much of this book is a synthesis of other people's work, the text and the extensive bib­
liography (which reflects the rich diversity of sources) must stand as an expression of our intellectual 
gratitude to the pioneers and contributors to the subject matter of the monograph. Special thanks are 
due to librarians at the George Washington University (first and foremost Mrs. Debra Bensazon), 
Indiana University-Purdue University, Indianapolis, the University of California at Santa Barbara, 
and the University of Nevada at Reno, who generously assisted us in digging out sources related to 
Laplace distributions. Modern communication technology has helped us overcome the problem of the 
"academic geography" among the authors located at opposite corners of the United States and at its 
geographical midpoint. We tender our very warm thanks to Ann Kostant and Tom Grasso, our editors 
at Birkhaiiser Boston, for their efficient, expeditious, and meticulous handling of the production of 
this monograph. 

We hope that this work will trigger additional theoretical research and provide tools that will 
generate further fruitful applications of the distributions presented in various branches of life and 
behavioral sciences. It is the applications that provide the special vitality to probabilistic laws that in 
our opinion are of permanent interest on their own from both mathematical and conceptual aspects. 
We wish our readers a pleasant and instructive journey as they travel leisurely or rapidly through 
the text. 

S.K. 
Washington, D.C. 

TJ.K. 
Reno, Nevada 

K.P. 
Indianapolis, Indiana 

July, 2000 
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Notation 

A' the transpose of a matrix A 

IA I the determinant of a square matrix A 

A£(e, JL, a) univariate AL law with mode at e, mean () + JL, and variance JL2 + a 2 

A£(JL, a) univariate AL law with mode at zero, mean JL, and variance JL2 + a 2 

A£(JL) standard univariate AL law with mode at 0, mean JL, and variance JL 2 + 1 

A£*«(), K, a) univariateAL law with mode ate, skewness parameter K, and scale param­
eter a 

A£*(K, a) univariateAL law with mode at 0, skewness parameter K, and scale param­
eter a 

A£* (K) standard univariate AL law with mode at 0, skewness parameter K, and 
scale parameter 1 

A£d (m, 1:) d-dimensional asymmetric Laplace distribution with mean m and variance­
covariance matrix 1: + mm' 

A£M(JL, a, v) asymmetric Laplace motion 

BA£(mt, m2, at, a2, p) bivariate asymmetric Laplace distribution 

Beta(a, fJ) Beta distribution with parameters a and fJ 

BS £ (at, a2, p) bi variate symmetric Laplace distribution 

C£«(), s) classical Laplace distribution with mean () and scale parameter s 

Dn the Kolmogorov statistic 
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D;- the Smimov one-sided statistic 

EX the expected value of a random variable X 

El (x) the exponential integral function, E 1 (x) = Jxoo e~1 dt, x > 0 

ECd(m, 1:, g) elliptically contoured distribution 

G(a, {3) gamma distribution with shape parameter a and scale parameter {3 

G(a) standard gamma distribution with scale parameter 1 

9AC(8, /L, a, r) generalized asymmetric Laplace distribution (Bessel K-function distribu­
tion, variance-gamma distribution) with parameters 8, /L, a, r 

9AC(/L, r) standardgeneralizedasymmetricLaplacedistribution(the9AC(8, /L, a, r) 
distribution with 8 = 0 and a = 1) 

9AC*(8, K, a, r) generalized asymmetric Laplace distribution (Bessel K -function distribu­
tion, variance-gamma distribution) with parameters 8, K, a, r 

9AC*(K, r) standardgeneralizedasymmetricLaplacedistribution(the9AC*(8, K, a, r) 
distribution with 8 = 0 and a = 1) 

9ACd(m, 1:, s) d-dimensional generalized Laplace distribution 

GIG(A, X, 1/1) generalized inverse Gaussian distribution 

GSa(a, {3, /L) geometric stable distribution with index a, scale parameter a, skewness 
parameter {3, and location parameter /L; in particular, GSa(a, 0, 0) = La,a, 
GS2(S, 0, 0) = CC(O, s), GS2(a /../2, {3, /L) = AC(O, /L, a) 

Hd(A, a, {3, 8, /L, 1:) d-dimensional generalized hyperbolic distribution 

Id d-dimensional identity matrix 

I (8) the Fisher information about 8 

1;.,. the Bessel function of the first kind of order A 

K;.. the modified Bessel function of the third kind with index A 

C(8, a) Laplace distribution with mean 8 and variance a 2 

La,a Linnik distribution with index a and scale parameter a 

CM(a, v) symmetric Laplace motion with space-scale parameter a and time-scale 
parameter v 

log natural logarithm 

N the set of natural numbers 

N (/L, a 2) normal distribution with mean /L and variance a 2 

Nd(m,1:) d-dimensional normal distribution with mean vector m and variance-co­
variance matrix 1: 
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o(g(x)) f(x) = o(g(x)) as x -+ xo means that f(x)/g(x) converges to zero as 
x -+ Xo 

0(1) f(x) = 0(1) if the function f converges to zero 

O(g(x)) f(x) = 0 (g(x)) as x -+ Xo means that If(x)/ g(x)1 is bounded for x close 
to xo 

0(1) 

JR 

sit 

sign(x) 

Iltll 

t' 

Var(X) 

X '" C£(e, s) 

[[x]] 

xk:n 

x 

a.s. 
-+ 

p 
-+ 

d 
-+ 

d 

YI 

Y2 

rca) 

f(x) = 0(1) if the function f is bounded 

the set of real numbers 

d-dimensional Eucledean space 

the real part of z 

d-dimensional symmetric Laplace distribution with mean zero and variance­
covariance matrix 1: 

the inner product of the vectors sand t 

unit sphere in JRd: {s E JRd : Ilsll = I} 

1 for x > 0, -1 for x < 0, 0 for x = 0 

(tit) 1/2 _ the Euclidean norm of t E JRd 

the transpose of a column vector t 

uniform distribution on §d 

the variance of a random variable X 

X has the distribution C£(e, s) 

the greatest integer less than or equal to x 

the kth smallest of XI, X2, •.. , Xn 

x if x ::: 0, 0 if x :s 0 

-x if x :s 0,0 ifx ::: 0 

indicator function of the set A 

convergence with probability one 

convergence in probability 

convergence in distribution 

equality of distributions 

the coefficient of skewness 

the coefficient of kurtosis (excess kurtosis) 

the gamma function, rea) = Jooo xa-1e-xdx 
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the nth cumulant of a random variable X 

chi-square distribution 

the nth central moment of a random variable X 

geometric random variable with mean 1/ p 

Kronecker's symbol: 1 if i = j; 0 if i '# j 



Part I 

Univariate Distributions 



1 
Historical Background 

Over 75 years ago in a paper that appeared in the 1923 issue of the Journal of American Statistical 
Association (pp. 841-852) entitled "First and Second Laws of Error," the late professor and head of 
vital statistics at the Harvard School of Public Health, Edwin Bidwell Wilson (1879-1964)1 concurs 
with economics professor W.L. Crum's conclusions expressed in a paper published in the same journal 
in March 1923, entitled "The Use of the Median in Determining Seasonal Variation" (pp. 607-614) 
that "a good many series of data from economic sources probably may be better treated by the median 
than by the mean." These remarks may be viewed as revolutionary at the period of unquestionable 
dominance of the arithmetic mean and normal distribution in statistical theory. E.B. Wilson reminds 
us that the first two laws of error both originated with P.S. Laplace. The first law, presented in 1774, 
states that the frequency of an error could be expressed as an exponential function of the numerical 
magnitude of the error, disregarding sign, or equivalently that the logarithm of the frequency of an 
error (without regard to sign) is a linear function of the error. 

The second law (proposed four years later in 1778) states that the frequency of the error is an 
exponential function of the square of the error, or equivalently that the logarithm of the frequency is 
a quadratic (parabolic) function of the error. See Figure 1.1. 

The second Laplace law is usually called the normal distribution or the Gauss law. Wilson­
among several other scholars - doubts the attribution of that law to Gauss and remarks that Gauss 
"in spite of his well-known precocity had probably not made his discovery before he was two years 
old." He notes that there are excellent mathematical reasons for the far greater attention that has 
been paid to the second law, since it involves the variable x 2 (if x is the error) and this is "subject to 
all the laws of elementary mathematical analysis," while the first law involving the absolute value 
of the error x is not an analytic function and presents considerable mathematical difficulty in its 
manipulation. 

Next, however, E.B. Wilson states that the frequency we actually meet in everyday work 
in economics, biometrics, or vital statistics often fails to conform closely to the so-called normal 

1 Wilson's name is known to many statisticians in view of the so-called Wilson-Hilferty transformation (see Wilson, E.B. 
and Hilferty, M.M., Proc. Nat. Acad. Sci., 17, pp. 684-688)-a device that allows the use of a normal approximation for 
chi-square probabilities. 
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Figure 1.1: On the left, Laplace's first frequency curve F = ~e-klxl. On the right, Laplace's second 

(Gauss's) frequency curve: F = ~ e-x2 j2u 2 • Each curve should be reproduced symmetrically on 
v2rra 

the other side of the central vertical line. The figure is taken from Wilson's 1923 paper. Reprinted 
with permission from the Journal of the American Statistical Association. Copyright 1923 by the 
American Statistical Association. All rights reserved. 

distribution. He points out that the fact that in extraordinarily precise measurements of astronomy 
of position the errors are dispersed about the mean in accordance with the Gauss law and that the 
dispersion of shots in artillery and small arms practice are covered very well by the generalization of 
this law are "no justification for attempting to force the (normal) law with its various generalizations 
upon the data for which it is not fitted." Wilson emphasizes that it is important to examine the actual 
data for the purpose of determining the proper statistical treatment, and "it is by no means safe to 
rush ahead and apply the second law of Laplace or the various extensions of it developed by the 
Scandinavian School on the one hand (Gram, Charlier) or the (British) Biometric School (Pearson, 
Yule) on the other." He analyzes the example provided by Crum (Table 1.1). 

He also notes that for the normal distribution if ei denotes a deviation2 from a mean and S, 
denotes the mean deviation, S2 denotes the mean square deviation, etc., namely, 

the ratios Si ought to satisfy 

S, : S2 : S3 : S4 = 1.000: 1.253 : 1.465 : 1.645. 

Commenting on these ratios, Wilson echoes and modifies Bertrand's famous dictum ("if these 
equalities are not satisfied - someone has retouched and altered the immediate results of experi­
ment") and asserts that "when confronted with data that do not satisfy this continued proportion - it 
is very obvious that the data are not distributed in frequency according to the second law (with some 

2Deviation here means absolute deviation. 
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Deviation Frequency Deviation Frequency Deviation Frequency 
*Over -30 2 -11 6 6 13 

-30 1 -10 3 7 8 
-29 1 -9 5 8 6 
-28 1 -8 11 9 5 
-24 1 -7 6 10 2 
-23 1 -6 23 11 4 
-22 1 -5 10 12 3 
-21 2 -4 l3 13 1 
-20 1 -3 19 14 2 
-19 2 -2 9 15 1 
-18 2 -1 11 16 1 
-17 2 0 28 17 1 
-16 2 1 22 18 2 
-15 1 2 22 23 1 
-14 3 3 l3 24 1 
-13 6 4 19 28 1 
-12 3 5 l3 tOver 30 7 

*-32, -37. t34,35,35,41,41,42,45. 

Table 1.1: Crum's data: Frequencies of deviations from the medians (N = 324 total frequency). 

latitude of departure from the straight proportion must be permitted)." Now for the data supplied by 
Crum, we have approximately 

S1 = 7.0, S2 = 10.3, S3 = l3.8, S4 = 17.0; 

thus the ratios are 
1 : 1.5 : 2.0 : 2.4, 

a far cry from those to be obeyed based on the normal distribution. The spread is just too wide, and 
no reasonable allowance for the behavior of probable errors can produce such great a spread. 

On the other hand, applying the first law of Laplace, where the frequency varies as e-kd (d 
is the numerical value of the deviation), we obtain after some "annoying" calculations involving 
calculus the theoretical values 

S1 : S2 : S3 : S4 = 1.000: 1.414: 1.817 : 2.213. 

Wilson justifiably asserts that the distribution in frequency of the data is much nearer Laplace's first 
law than the second, and it is no longer reasonable to maintain that the differences are within the 
presumptive errors due partly to the scarcity and irregularity of material. 

However there is "a little evidence" that the observations are more dispersed than they would be 
even under the first law. To account for possible asymmetry Wilson suggests the classical graphical 
method representing the frequency law as 

1 
f = -NKe-KX 

2 ' 

where N = 324, the deviation is x and the number n of deviations beyond a given value x is 

100 1 
n = fdx = -Ne-KX • 

x 2 
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Hence, 

10glOn = log10 (~N) - (KJoglOe)x 

plots as a straight line on the so-called arith-Iog paper with x as abscissa and n the ordinate. Since 
for the first law of Laplace K = lie, where e is the mean deviation, it is reasonable to choose 
e = Sl = 7.0. (The values of e calculated from the four S's are 7.0, 7.3, 7.5, and 7.7.) A fair 
representation of the distribution of the data is given by f = 23e-x /7 (recall that we are using 
the absolute value of x - the numerical value of deviation) and the arith-log chart constructed for 
the first Laplacian law like the probability chart for the Gaussian law was also based on the total 
integrated frequency outside a certain limit. Figure 1.2 presents a probability plot - a chart in which 
the ordinates are the percentage of deviations that are less than (left scale) or greater than (right scale) 
a given deviation plotted as an abscissa - under the assumption of the Gaussian law, namely if the 
Gaussian law had been followed the line would have been straight. 

Evidently the Gaussian fit is inadequate. The straight line fitted to the four central points results 
in no deviation in the observations greater than +20 and smaller than -19. For comparison the arith­
log chart constructed for the first Laplacian law is presented in Figure 1.3. On this chart, the points 
(ii, x) are represented for the number of empirical deviations ii beyond x and compared to the graph 
of log10 n = 10glO(N 12) - (K log10 e)x. Examining the chart, Wilson asserts: "This chart shows on 
arith-log paper the number of deviations as ordinates greater than the values given as abscissae. If 
Laplace's first law holds, the points should lie on a straight line. The lowest set of points and the 
lowest line are for the negative deviations (left scale), and for them the law holds as well as could be 
desired. The top line and set of points are for the positive deviations; the fit to the straight dotted line 
is bad (right scale). The middle line and set of points are for positive and negative deviations taken 
together (left scale) without regard to sign, and the fit is fair- better than for the (Gaussian) curve" 
(in Figure 1.2). 

Wilson concludes by stating that these data give internal evidence of following Laplace's first 
law instead of his second law and should be fitted to that law. 

In spite of the prestige of the journal in which the paper appeared and the prominence of 
the author, Wilson's plea remained a call in the wilderness for over five decades and only recently 
attention has been shifted to Laplace's first law, known as the Laplace distribution or occasionally 
double exponential distribution, as a candidate for fitting data in economics and health sciences. 

For many years the Laplace distribution was a popular topic in probability theory due to the 
simplicity of its characteristic function and density, the curious phenomenon that a random variable 
with only slightly different characteristic function loses the simplicity of the density function and 
other numerous attractive probabilistic features enjoyed by this distribution. 

Perhaps one of the earliest sources in which the Laplace distribution is discussed as a law of 
errors in the English language is the 1911 paper by the famous economist and probabilistJ.M. Keynes 
in the Journal of the Royal Statistical Society, 74, New Series, pp. 322-331. 

With his usual lucidity, Keynes discusses the probability of a measurement xq , assuming the 
real (actual) value to be as, as an algebraic function f(xq , as), the same function for all values of 
Xq and as "within the limits of the problem." The task is to find the value of as, namely x, which 
maximizes 

This is equivalent to solving 

m n f(xq,x). 
q=l 

t f'(xq, x) = 0 
q=l f(xq, x) 
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Figure 1.2: Probability plot for Crum's data discussed in Wilson's article. Reprinted with permission 
from the Journal of the American Statistical Association. Copyright 1923 by the American Statistical 
Association. All rights reserved. 

or L f~/fq = 0 for brevity. Now, the law of errors determines the form of f(xq , x) and the form 
of f(xq , x) determines the algebraic relation L f~/fq = 0 between the measurements and the most 
probable value. Keynes analyzes several situations. 

1. If the most probable value of the quantity is equal to the arithmetic mean of measurements 
~ L;=l xq , then L f~/fq = 0 is equivalent to L(x - Xq) = O. Thus, f~/fq can be written 
as <1>" (x )(x - x q ), where <1>" (x) is a nonzero function independent of x q . Integrating, we get 

log fq = <I>'(x)(x - Xq) - <I>(x) + l{I(xq ), 
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Figure 1.3: Arith-Iog chart for the first Laplace law using Crum's data. Reprinted with permission 
from the Journal of the American Statistical Association. Copyright 1923 by the American Statistical 
Association. All rights reserved. 

where III (Xq) is a function independent of x. Thus, 

2 ()2 2 2 
fq = Ae-K X-Xq = Ae-K Yq , 

(where Yq is the absolute magnitude of the error in the measurement Xq) the so-called normal 
law. 

Keynes emphasizes that this is only one "amongst a number of possible solutions" but notes 
that with one additional assumption this is the only law of error leading to the arithmetic mean. 
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The assumption is that negative and positive errors of the same absolute amount are equally 
likely. 

Indeed in that case fq will be of the form Be li ([x-xq ]2), where e([x - Xq]2) is the value of a 
certain real function e evaluated at (x - Xq)2. We have 

or 

and 
d 2 2 

----:O-28([X -Xq ] ) = -K , 
d(x - Xq) 

where K is a constant since <1>" (x) is independent of xq . Thus, 

and 

with A = BC. 

2. Next Keynes discusses in detail the case of the law of error if the geometric mean of the 
measurements leads to the most probable value of the quantity. This yields 

Keynes then compares this with the earlier derivation obtained by D. McAlister in the Pro­
ceedings of the Royal Society, 29 (1879), p. 365: 

the well-known log-norrnallaw. 

He also notes that J.e. Kapteyn in his monograph Skew Frequency Curves, Astronomical 
Laboratory, Groningen (1903), obtained a similar result. 

3. Next he discusses the law of errors implied by the harmonic mean leading to 

2 2/ fq = Ae-K Yq Xq. 

Here positive and negative errors of the same absolute magnitude are not equally likely. 

4. Keynes now poses the question: 

If the most probable value of the quantity is equal to the median of measurements, what is the 
law of error? 

For this purpose he defines the median of observations and notes its property originally proved 
by GT. Fechner (1801-1887),3 who first introduced median into use: "If x is the median of a 

3In his book Kollektivmasslehre, W. Englemann, Leipzig, 1897. 
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number of magnitudes, the sum of the absolute differences (i.e., the difference always reckoned 
positive) between x and each of the magnitudes is a minimum." Now write Ix -Xq I = Yq. Since 

2:~=1 Yq is to be minimum we must have 2:;=1 X~:q = O. Whence proceeding as before, we 
have 

.f _ A J ~ct>"(x)dx+\IJ(xq) 
Jq - e q • 

The simplest case of this is obtained by putting 

whence 

x -Xq 2 
\{I(Xq) = --k xq , 

Yq 

This satisfies the additional condition that positive and negative errors of equal magnitude are 
equally likely. Thus in this important respect the median is as satisfactory as the arithmetic 
mean, and the law of error that leads to it is as simple. It also resembles the normal law in that 
it is a function of the error only, not of the magnitude of the measurement as well. 

Keynes's (1911) analysis of Laplace's contribution to the first law of error is worth reproducing 
verbatim. 

"The median law of error, fq = Ae-k2Yq , where Yq is the absolute amount of the error always 
reckoned positive, is of some historical interest, because it was the earliest law of error to be 
formulated. The first attempt to bring the doctrine of averages into definite relation with the 
theory of probability and with laws of error was published by Laplace in 1774 in a memoir' Sur 
la probabilite des causes par les ew!nements.' 4 This memoir was not subsequently incorporated 
in his Theorie Analytique and does not represent his more mature view. In the Theorie he drops 
altogether the law tentatively adopted in the memoir, and lays down the main lines of the 
investigation for the next hundred years by the introduction of the normal law of error. The 
popularity of the normal law, with the arithmetic mean and the method of least squares as its 
corollaries has been very largely due to its overwhelming advantages, in comparison with all 
other laws of error, for the purposes of mathematical development and manipulation. And in 
addition to these technical advantages, it is probably applicable as a first approximation to 
a larger and more manageable group of phenomena than any other single law.5 So powerful 
a hold indeed did the normal law obtain on the minds of statisticians that until quite recent 
times only a few pioneers have seriously considered the possibility of preferring in certain 
circumstances other means to the arithmetic and other laws of error to the normal. Laplace's 
earlier memoir fell, therefore, out of remembrance. But it remains interesting, if only for the 
fact that a law of error there makes its appearance for the first time." 

Laplace (1794) sets himself the problem in a somewhat simplified form: 

"Determiner Ie milieu que l'on doit prendre entre trois observations donnees d'un meme 
phenomime." He begins by assuming a law Y = ¢(x) for an error, where Y is the probability 
of an error X; and finally by means of a number of somewhat arbitrary assumptions (our 
emphasis), arrives at the result ¢(x) = (m/2)e-mx . If this formula is to follow from his 
arguments, x must denote the absolute error, always taken positive. It is unlikely that Laplace 
was led to this result by considerations other than those by which he attempts to justify it. 

4Memoires presentes a /'Academie des Sciences Paris, vi, pp. 621-656. 
5We would add that the Central Limit Theorem should also be credited for this popularity. 
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"Laplace, however did not notice that his law of error led to the median. For instead of finding 
the most probable value, which would have led him straight to it, he seeks the "mean of 
error" - the value, that is to say, which the true value is as likely to fall short of as to exceed. 
This value is, for the median law, laborious to find and awkward in the result. Laplace works 
it out correct for the case where the observations are no more than three." 

5. Finally Keynes deals with the case where the law of errors leads to a mode without providing 
an explicit solution and concludes with a discussion of the most general form of the law of 
errors when it is assumed that positive and negative errors of the same magnitude are equally 
probable. 

He emphasizes that the most general form leading to the median is 
, ~ 

.f _ A <l> (x) y +111 (xq ) 
Jq - e q , 

where fq is the probability of a measurement Xq given that the true value is x. 

Stigler (1986a) provides a somewhat different assessment of Laplace's 1774 memoir. He 
presents an English translation of the memoir (whose English title is Probability of the Causes 
of Events) and points out that Laplace was just 25 years old when the memoir appeared and that it 
was his first substantial work in mathematical statistics. 

For readers interested in history, it is worthwhile to reproduce Laplace's elegant and ingenious 
derivation of what is now referred to as the Laplace distribution. We reproduce his illustrative Figure 2 
depicting his error distribution (our Figure 1.4). Here V represents the true value of the location 
parameter (in modem terminology). Denoting by ¢(x) the probability density of the deviation x of 
an observation from V, in his attempt to determine this function Laplace argues as follows: 

R 

__ 0- _ 

K V p p' 

Figure 1.4: An illustration (Figure 2) from Laplace's 1774 memoir. 

"But of an infinite number of possible functions, which choice is to be preferred? The following 
considerations can determine a choice. It is true (Figure 1.4) that if we have no reason to suppose the 
point p more probable than the point p', we should take ¢ (x) to be constant, and the curve 0 RM' 
will be a straight line infinitely near the axis Kp. But this supposition must be rejected, because if we 
suppose there existed a very large number of observations of the phenomenon, it is presumed that they 
become rarer the farther they are spread from the truth. We can also easily see that this diminution 
cannot be constant, that it must become less as the observations deviate more from the truth. Thus not 
only the ordinates of the curve RM M', but also the differences of these ordinates must decrease as 
they become further from the point V, which in this Figure we always suppose to be the true instant 
of the phenomenon. Now, as we have no reason to suppose a different law for the ordinates than for 
their differences,6 it follows that we must, subject to the rules of probabilities, suppose the ratio of 

61t is important to note that Laplace is talking here about the difference of the probability density function, not of the 
observations, i.e., this crucial assumption does not impose that the difference of observations should be distributed in the same 
way as observations themselves (which is not true for the Laplace distribution). 
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two infinitely small consecutive differences to be equal to that of the corresponding ordinates. We 
thus will have 

Therefore 

d¢(x + dx) 

d¢(x) 

¢(x + dx) 

¢(x) 

d¢(x) 
-- = -m¢(x), 

dx 

which gives ¢(x) = Ce-mx . Thus, this is the value that we should choose for ¢(x). The constant 
C should be determined from the supposition that the area of the curve 0 RM equals unity which 
represents certainty, which gives C = m/2. Therefore ¢(x) = (m/2)e-mX , e being the number 
whose hyperbolic logarithm is unity. One can object that this law is repugnant in that if x is supposed 
extremely large, ¢(x) will not be zero, but to this I reply that while e-mx indeed has a real value of 
all x, this value is so small for x extremely large that it can be regarded as zero." 

Keynes quite justifiably mentions "a number of somewhat arbitrary assumptions" in Laplace's 
argument. Nevertheless the argument involves several potent ideas. Books by Stigler (1986b) and 
RaId (1995), and also an article by Eisenhart (1983) contain more rigorous derivations as well as 
valuable revealing comments. 

An interesting "applied" genesis of the Laplace distribution was presented in Mantel and Paster­
nack (1966) [see also Rohatgi (1984), Example 4, p. 482]. We present it together with a representation 
of Laplace random variables as the determinant of a random matrix. 

Let X I and X 2 represent the lifetimes of two identical independent components, an original 
and its replacement. Suppose that we require the probability that the replacement outlasts the original 
component. Thus 

P(X2 > Xj} = P(X2 - XI > 0) = 1/2. 

Let us assume that lifetimes are distributed exponentially with common mean A and compute 
the density of Z = X2 - X I. Since Z is a symmetric random variable it is enough to compute the 
density for z > O. For z > 0, the density ofthe difference of X2 and X I is given by 

and thus for Z E IR 

We have a verbal proof of this result. Consider two idealized light bulbs in use simultaneously. 
We are interested in the distribution of the difference in their failure times. Once one bulb fails, the 
remaining bulb, being as good as new, will have a remaining lifetime given by the standard waiting 
time distribution (exponential). With probability 1/2, the first failure will correspond either to the 
first or the second lifetime distribution (exponentials) so that the difference in failure times will 
be positive or negative with equal probabilities and in each case with absolute value following the 
standard waiting time distribution, i.e., the exponential. 

Since a standard exponential random variable multiplied by two has the chi-square distribution 
with two degrees of freedom, the arguments above show that Z is distributed as half of the difference 
of two independent chi-square random variables each with two degrees of freedom. 

On the other hand, if ZI, Z2, Z3, and Z4 are independent standard normal random variables, it is 
easy to see that the distribution of Z is the same as that of Z I Z2 + Z3 Z4. Indeed, U I = (X I + X 2) /2, 
U2 = (XI - X2)/2, U3 = (X3 + X4)/2, U4 = (X3 - X4)/2 are independent normal variables with 
variance 1/2. Thus, 
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which has the same distribution as a difference of two independent X 2 (chi-square) random variables 
each with two degrees of freedom. 

In general, sums or differences of n normal products - each of two factors- will be distributed 
like 1/2 of the differences oftwo independent X 2 each with n degrees of freedom, and if n is even 
this is an n /2-fold convolution of the Laplace distribution. These sums of n products correspond to 
the sample covariance for bivariate normal samples when the correlation is zero. 

To recapitulate, the error distribution, nowadays referred to as the Laplace distribution or the 
double exponential distribution, originated in Laplace's 1774 memoir. Historically, it was the first 
continuous distribution of unbounded support. Although since its introduction the distribution has 
been occasionally recommended as a better fit to certain data, its popularity is unjustifiably by far 
less than that of its four-years-older "sibling" -Laplace's second law of error-better known in 
the English language literature as the Gaussian (normal) law. 

This monograph is devoted to collecting and presenting properties, generalizations, and appli­
cations of the Laplace distribution with a tacit aim of demonstrating that it is a natural and sometimes 
superior alternative to the normal law. We hope to convince readers that this class of distributions 
deserves more attention than it has received until very recently. 



2 
Classical Symmetric Laplace Distribution 

In the course of our study of the Laplace distribution and its generalizations we have noticed that 
quite often in the statistical literature this distribution is used not on its own merits but as a source 
for counterexamples for other (mainly normal) distributions. It would seem that it has been created 
solely to provide examples of curiosity, nonregularity, and pathological behavior. In studies with 
probabilistic content, the distribution serves as a tool for limiting theorems and representations with 
the emphasis on analyzing its differences from the classical theory based on the "sound" foundations 
of normality. One gets the impression that the "sharp needle" at the origin of the Laplace distribution 
where the bulk of the density is concentrated generates a ripple effect that affects the behavior over 
its whole support including the tails'? These observations prompted us to initiate a detailed study of 
the Laplace distribution on its own merits without constant intruding comparisons and analogues. 

In Table 2.1 and Figure 2.1, reproduced from Chew (1968), we present definitions and graphs of 
the six classes of symmetric-about-zero, single-parameter distributions: uniform, triangular, cosine, 
logistic, Laplace, and normal. Values of the distribution functions are given in Table 2.2. The graphs 
of their densities for cases of the unit variance convincingly demonstrate the basic features and, in 
particular, the special position of the Laplace distribution with its towering peak and heavy tails. 

Leptokurtic tendencies (see Section 2.1.3.4 for more details) are frequently found among mea­
surements of superior quality and homogeneity. A leptokurtic Laplace curve presents a visible peak: 
in the vicinity of the center there is a certain excess of (small) elements. As the area under the curve 
is the same as the area under the normal curve, the peak is counterbalanced by a corresponding 
diminution of frequencies in the intermed~ate regions further from the center (tails). Generally, there 
is an overcompensation so that the leptokurtic curve crosses the normal curve four times, first near 
the peak and then again at the tails, and tends toward the x-axis by staying slightly above the normal 
curve. 

7Tails of a random variable X are the probabilities P(X < -x) and P(X > x), x > O. The asymptotic behavior of these 
functions of x is often referred to as the tail behavior of X, or its distribution. 
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NAME DENSITY FUNCTION DISTRIBUTION FUNCTION VARIANCE 

1 x E (-a, a) 
0, x::::: -a 

a2 
UNIFORM 2Q' ~, X E (-a, a) 

0, elsewhere "3 
I, x ~ a 

0, x <-b 

¥f x E [-b,O] (b+t b ' x E [-b,O] b2 b-x 2b ' TRIANGULAR 
hZ' x E (O,b] 

1- (b-Jf/ 0 
0, elsewhere 2b ' 

x E (0, b] 

I, x>b 

l+iOSX 
0, x <-:rr 

COSINE 1C ' x E [-:rr,:rr] 1C+x+sinx x E [-:rr,:rr] 1C2-6 
0, elsewhere 2ii , ----y-

I, :rr :::::x 

LoGISTIC 
sech2(x/d) 1 (1C{!/ 

'ZiJ ~ 

LAPLACE ce-2clxl e2cx /2, x<O 1 
l_e-2cx , x~O k! 

NORMAL 1 e-x2/2 -:n;; fX 1 e-u2 /2du 
-00 -::rz;; 1 . 

Table 2.1: Densities and distribution functions of some symmetrical probability distributions. Re­
produced from Chew (1968). Reprinted with permission from The American Statistician. Copyright 
1968 by the American Statistical Association. All rights reserved. 

2.1 Definition and basic properties 
2.1.1 Density and distribution functions. The classical Laplace distribution (also known as the 
first law of Laplace) is a probability distribution on (-00, (0), given by the density function 

1 
f(x; e, s) = _e-Ix-Ol/s, -00 < x < 00, 

2s 
(2.1.1) 

where e E (-00, (0) and s > 0 are location and scale parameters, respectively [see, e.g., Ord (1983) 
and Johnson et a1. (1995)]. As discussed in some detail in Chapter 1, it was named after Pierre-Simon 
Laplace (1749-1827), who in 1774 obtained (2.1.1) as the distribution whose likelihood is maximized 
when the location parameter is set to the median. As mentioned in Chapter 1 and discussed further 
in Section 2.2, the Laplace distribution is also known as the law of the difference between two 
exponential random variables. Consequently, it is also known as double exponential distribution,8 as 
well as the two-tailed exponential distribution [see, e.g., Greenwood et a1. (1962)] and the bilateral 
exponential law [see, e.g., Feller (1971)]. 

SNote that this name is also used for the extreme value distribution with density exp(-exp(-x»,x > 0, as well as 
for a distribution from the exponential family studied by Efron (1986). The term double exponentialjitness function for the 
probabilities p = exp( - exp(ao + alxl + ... + anxn» is common in biostatistic literature [see, e.g., Manly (1976)]. Johnson 
et al. (1995) recommend calling the extreme value distribution doubly exponential law . 
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d 

Figure 2.1: Graphs of density functions of several symmetrical populations. Reproduced from 
Chew (1968). Reprinted with permission from The American Statistician. Copyright 1968 by the 
American Statistical Association. All rights reserved. 

I x I Normal I Logistic I Laplace I Cosine I Triangular I 
0.0 0.5000 0.5000 0.5000 0.5000 0.5000 
0.2 0.5793 0.5897 0.6238 0.5720 0.5785 
0.4 0.6554 0.6738 0.7160 0.6422 0.6501 
0.6 0.7257 0.7480 0.7860 0.7088 0.7151 
0.8 0.7881 0.8102 0.8387 0.7702 0.7734 
1.0 0.8413 0.8598 0.8784 0.8252 0.8250 
1.2 0.8849 0.8981 0.9084 0.8728 0.8699 
1.4 0.9192 0.9269 0.9310 0.9122 0.9082 
1.6 0.9452 0.9480 0.9480 0.9436 0.9399 
1.8 0.9641 0.9632 0.9608 0.9670 0.9649 
2.0 0.9772 0.9741 0.9704 0.9832 0.9832 
2.2 0.9861 0.9818 0.9777 0.9931 0.9948 
2.4 0.9918 0.9873 0.9832 0.9982 0.9998 
2.6 0.9953 0.9911 0.9873 0.9998 1.0000 
2.8 0.9974 0.9938 0.9906 1.0000 
3.0 0.9987 0.9957 0.9928 
3.2 0.9993 0.9970 0.9946 
3.4 0.9997 0.9979 0.9959 
3.6 0.9998 0.9985 0.9969 
3.8 0.9999 0.9990 0.9977 
4.0 1.0000 0.9993 0.9983 

Table 2.2: Values of distribution functions of selected distributions. The values of x are in multiples 
of standard deviation. 
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It is easy to verify that the variance of (2.1.1) is equal to 2s2. Thus the variance of the standard 
classical Laplace distribution, which has the density 

1 
f(x; 0,1) = _e- Ixl , -00 < x < 00, (2.1.2) 

2 
is equal to 2. For various derivations it would seem convenient to consider a reparametrization of 
Laplace densities 

g(x; e, a) = _1_e -v'2lx- ol/a , 

..tia 
-00 < x < 00 . (2.1.3) 

In this case the standard Laplace distribution is given by setting e = ° and a = 1. Here the variance 
is equal to 1 and the density is of the form 

g(x; 0,1) = ~e-v'2lxl, -00 < x < 00. (2.1.4) 

To distinguish between these two parametrizations we shall refer to the classical Laplace C£(e, s) 
and the standard classical LaplaceC£(O, 1) distributions in the cases given by (2.1.1) and (2.1.2), and 
to Laplace £(e, a) and standard (actually standardized) Laplace £(0, 1) distributions in the cases 
represented by (2.1.3) and (2.1.4), respectively. We shall also retain the difference in notation for the 
scale parameter by reserving s for classical Laplace distributions and a for those given by (2.1.3). 
Therefore, reformulating any result from one parametrization to the other is a matter of replacing s 
by a /..ti or a by ..tis. In Figure 2.2 we present graphs of the standard classical and the standard 
Laplace densities. 

<D 
ci 

C\I 
ci 

standard classical Laplace 

~ 4--------------F~~~------+_------~~~~----------__. 

-10 -5 o 5 10 

Figure 2.2: Standard classical Laplace [equation (2.1.2)] and standard Laplace [equation (2.1.4)] 
density functions. 

The cumulative distribution function (c.d.f.) corresponding to density (2.1.1) is 

{
ie-lx-Oils 

F(x; (), s) = i _ ~e-Ix-Ol/s if x ~ e, 
if x ~ e. (2.1.5) 
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The distribution is symmetric about e, i.e., for any real x we have 

f (e - x; e, s) = f (e + x; e, s) and F (e - x; e, s) = 1 - F (e + x; e, s). (2.1.6) 

Consequently, the mean, median, and mode of this distribution are all equal to e. 

2.1.2 Characteristic and moment generating functions. The characteristic function (ch.f.) cor­
responding to the standard classical Laplace CL(O, 1) random variable (r.v.) X with density (2.1.2) is 

o/x(t) = E[eitX ] = [00 eitx~e-Ixldx = (1 + t 2)-I, -00 < t < 00. -00 2 
(2.1.7) 

For the general classical Laplace r.v. Y with the distribution eL(e, s) we have Y 1:: s X + e. Thus 

(2.1.8) 

It is well known but nevertheless a curious fact that the pair of Fourier transforms (2.1.2) and (2.1.7) 
occur in reverse order for the Cauchy distribution. Namely, the standard Cauchy distribution with 
density 

1 
fc(x) = :rr(1 + x2)' 

has the characteristic function given by 

-oo<x<oo 

¢c(t) = e- 1tl , - 00 < t < 00. 

The moment generating function of standard classical Laplace r. v. X with density (2.1.2) is 

-l<t<1. (2.1.9) 

For the general classical Laplace r. v. Y with density (2.1.1), we have 

ete 
My(t) = ete Mx(st) = 22' 

1 - s t 

1 1 
-- < t < -. 

s s 
(2.1.10) 

Consequently, the cumulant generating functions, log My (t) and log M x (t), corresponding to (2.1.1) 
and (2.1.2), are 

(2.1.11) 

respectively. 

2.1.3 Moments and related parameters. 

2.1.3.1 Cumulants. The nth cumulant of a classical Laplace r.v. X, denoted Kn, is defined as the 
coefficient of t n In! in the Taylor expansion (about t = 0) of the cumulant generating function 
of X. Formulas (2.1.11) for the cumulant generating function generate the cumulants of Laplace 
distributions in a straightforward manner. Indeed, using the Taylor expansion of log(l - z) about 
z = 0, we have 
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Thus, for the standard classical Laplace r. v. X given by (2.1.2), we have 

(X) {O ifn is odd, 
Kn = 2(n - I)! if n is even. (2.1.12) 

Hence, for a general classical Laplace r.v. Y with C£(e, s) distribution, 

{ 
e ifn = 1, 

Kn(Y) = 0 ifn> 1 is odd, 
2sn (n - I)! if n is even, 

(2.1.13) 

since Kn(Y) = Kn(e + sX) = SnKn(X) for n ::: 2. 

2.1.3.2 Moments. By writing the Taylor expansion of the moment generating function (2.1.10) 
with e = 0, 

00 t 2k 
My(t) = {;s2k(2k)! (2k)!' 

we obtain the nth central moment of general classical Laplace r.v. Y with density (2.1.1): 

{ 0 if n is odd, 
J-Ln(Y) = E(Y -e/ = n"f' s n. I n IS even. 

(2.1.14) 

One can obtain the central absolute moment of a classical Laplace distribution by observing 
that it is equal to the central, raw moment of exponential distribution with parameter A = l/s, or, 
more directly, 

In particular, we have 

Mean = e, Variance = 2s2, 

so that for e f= 0, the coefficient of variation of Y is 

JE(Y - EY)2 

IEYI 

V2s 
lei 

(2.1.15) 

(2.1.16) 

(2.1.17) 

Note that the mean and variance involve different parameters (as is the case ofthe normal distribution, 
but unlike the binomial, Poisson and gamma distributions). 

The nth moment about zero ofthe classical Laplace r.v. Y with density (2.1.1) is given by [see, 
e.g., Farison (1965), Kacki (1965a)] 

n 1 + ( -1 )J+n. . [[n/211 en-2i . 
ct (y)=Eyn=n!" eJsn-J=n! '""' S21 

n .L.- 2j! ~ (n - 2i)! ' 
j=o i=O 

(2.1.18) 

where [[x]] denotes the greatest integer less than or equal to x. 

2.1.3.3 Mean deviation. By (2.1.15), the mean deviation of a classical Laplace r.v. Y with density 
(2.1.1) is equal to 

ElY - E[Y]I = ElY - el = s. (2.1.19) 

Furthermore, we have 

Mean deviation s 1 
------ = - = - R:; 0.707. 
Standard deviation V2s V2 (2.1.20) 

Recall that for all normal distributions, the above ratio is given by -J2/Jr R:; 0.798. 
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2.1.3.4 Coefficients of skewness and kurtosis. For a distribution of an r.v. X with a finite third 
moment and standard deviation greater than zero, the coefficient of skewness is a measure of symmetry 
defined by 

E(X - EX)3 
YI = --------~~= (E(X - EX)2)3/2' 

(2.1.21) 

By (2.1.14), the coefficient of skewness of Laplace distribution (2.1.1) is equal to zero (as is the case 
for any symmetric distribution with a finite third moment). 

For an r. v. X with a finite fourth moment, the excess kurtosis9 is defined as 

E(X - EX)4 
Y2 = (Var(X»2 - 3. (2.1.22) 

It is a measure of peakedness and of heaviness of the tails (properly adjusted, so that Y2 = ° for a 
normal distribution) and is independent of the scale. If Y2 > 0, the distribution is said to be leptokurtic; 
it is platykurtic otherwise. In view of (2.1.14), 

(2.1.23) 

Thus the Laplace distribution is a leptokurtic one, indicating a large degree of peakedness compared 
to the normal distributions. See Balanda (1987) and Horn (1983) for more details. 

2.1.3.5 Entropy. Entropy of a classical Laplace variable Y is easy to compute: 

H(y) = E[-logf(Y)] = log(2s) + -- _e-1x-&I/sdx /
00 [ Ix - e I] 1 

-00 s 2s 

= 10g(2s) + VI(Y)/S 

= log(2s) + 1. 

As will be shown in Section 2.4.5, the Laplace distribution maximizes the entropy within the class 
of continuous distributions on lR with a given absolute moment [see Kagan et al. (1973)], as well as 
within the class of conditionally Gaussian distributions [see Levin and Tchernitser (1999) or Levin 
and Albanese (1998)]. These results provide additional arguments for applications of Laplace laws 
to various practical problems [see Part III]. 

2.1.3.6 Quartiles and quantiles. Because of the availability of an explicit form of the cumulative 
distribution function, quantiles ~q of a classical Laplace distribution can be written explicitly as 
follows: 

{ e + s log(2q); 
~q = e - s log[2(l - q)]; 

In particular, the first and the third quartiles are given by 

q E (0, 1/2], 
q E (1/2, 1). 

QI = ~1/4 = e -slog2, Q3 = ~3/4 = e + slog 2. 

Evidently, the second quartile Q2 - the median - is equal to e. 

9Without centering by 3, it is simply called kurtosis. 

(2.1.24) 
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2.2 Representations and characterizations 
In the first part of this section we present various representations of Laplace r. v. 's in terms of other 
well-known random variables. These representations are also listed in Table 2.3. We shall focus on 
the standard classical Laplace r.v. X with density (2.1.2) and ch.f. (2.1.7). As already mentioned, 
for a general Laplace r.v. Y with density (2.1.1) the corresponding representations of Y follow from 

the relation Y ~ () + s X. When writing equalities in a distribution we shall follow the standard 
convention that random variables appearing on the same side of the equation are independent. 

Characterizations of distributions is a popular and well-developed topic of modem probability 
theory. This provides additional insight into the structure of distributions, especially those that are, 
like the Laplace distribution, defined by a simple density and characteristic function. The simplicity 
of a formula does not always convey obvious features and masks surprises that may be built into 
a particular distribution. In the case of the Laplace distribution its characterizations unveil quite 
intriguing properties that one would not suspect from its "modest" density function. 

In the second part of this section we describe some characterizations of Laplace distributions, 
in particular those connected with the geometric summation 

Sp=Xl+···+ Xvp ' (2.2.1) 

where vp is a geometric random variable with mean 1/ p and probability function 

P(Vp = k) = (1 - p)k-l p, k = 1,2,3, ... , (2.2.2) 

while Xi, i ::: 1, are i.i.d. r.v.'s independent of vp. It turns out that under geometric summation 
(2.2.1), the Laplace distribution plays a role analogous to that of Gaussian distribution under ordinary 
summation. As discussed in Kalashnikov (1997), geometric sums (2.2.1) arise naturally in diverse 
fields in applications such as risk theory, modeling financial asset returns, insurance mathematics and 
others, and consequently the Laplace distribution is applicable for stochastic modeling. 

2.2.1 Mixture of normal distributions. Any Laplace r. v. can be thought of as a Gaussian r. v. with 
mean zero and stochastic variance which has an exponential distribution. More formally, a Laplace 
r. v. has the same distribution as the product of a normal and an independent exponentially distributed 
random variable, as sketched in 

Proposition 2.2.1 A standard classical Laplace r.v. X has the representation 

X ~ J2WZ, (2.2.3) 

where the random variables Wand Z have the standard exponential and normal distributions, 
respectively. 

Proof. Let W be a standard exponential r.v. with density iw(w) = e-w , w > 0, and the moment 
generating function Mw(t) = E[etw ] = (1_t)-I,t < 1.LetZbeastandardnormalrandomvariable 
with density fz(z) = ke-z2/2, -00 < z < 00, and the characteristic function cpz(t) = e-t2 /2, 

-00 < t < 00. The ch.f. of the product -J2 W Z coincides with the standard classical Laplace ch.f. 
(2.1.7). Indeed, conditioning on W, we obtain 

E[eitv'2Wz] = E[E[eitvIzWzIW]] = E[cpz(t-J2W)] 

= E[e-t2w ] = Mw(-t2) = (1 + t 2 )-I. 

The proposition is thus proved. o 
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Remark 2.2.1 An alternative proof of Proposition 2.2.1 utilizing the densities of Wand Z is outlined 
in Exercise 2.7.10. Relation (2.2.3) written in terms of the densities becomes 

_e- 1xl = fz -- --fw(w)dw = ---e 1 2w dw. 1 100 (X) 1 100 1 1 _1 (x2 +2W) 
2 0 vTW vTW 0 2 --!JTW 

(2.2.4) 

d Remark 2.2.2 For a general Laplace r.v. Y with density (2.1.1) we have the representation Y = 
e + .J2sWl/2Z. 

Remark 2.2.3 Representation (2.2.3) can be written as 

X~RZ, (2.2.5) 

where Z is as before and the random variable R = J2 W has a Rayleigh distribution with density 
fR(X) = xe-x2 / 2, x > O. 

Remark 2.2.4 Another related representation discussed in Loh (1984) is obtained by denoting T = 
1/.JW. Then 

(2.2.6) 

Here the r.v. T has a brittle fracture distribution with density fT(X) = 2x-3e l/x2 [such T is used to 
model breaking stress or strength; see, e.g., Black et al. (1989) or Johnson et al. (1994), p. 694]. A 
proof of the result is left as an exercise. 

2.2.2 Relation to exponential distribution. The ch.f. (2.1.7) of a standard classical Laplace dis­
tribution can be factored as follows: 

1 

1 + t 2 

1 
(2.2.7) 

1-it1+it 

Note that the first factor is the ch.f. of a standard exponential r. v. W with density fw( w) = e-w , 

w :=:: 0, while the second one is the ch.f. of - W. Since for independent random variables the product 
of ch.f.'s corresponds to their sum, we arrive at a representation of a standard classical Laplace r. v. 
in terms of two independent exponential random variables. The following proposition is thus valid. 

Proposition 2.2.2 A classical standard Laplace r.v. X admits the representation 

(2.2.8) 

where Wl and W2 are i.i.d. standard exponential random variables. 

Remark 2.2.5 For a general Laplace r.v. Y with density (2.1.1), we have 

d 
Y = e + S(Wl - W2). 

Remark 2.2.6 Denoting Hi = 2 Wi, i = 1, 2, we obtain 

d s 
Y = e + 2(Hl - H2), 

where Hl and H2 are i.i.d. with the X 2 distribution with two degrees of freedom (having density 
f(x) = ~e-x/2). 
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Remark 2.2.7 Note that the following relation for an X distributed according to the standard classical 
Laplace law follows immediately from (2.2.8): 

d VI 
X =log-, 

V2 

where VI and V2 are independent random variables distributed uniformly on [0, 1] [see, e.g., Lukacs 
and Laha (1964, p. 61)]. 

The standard classical Laplace ch.f. (2.1.7) can also be decomposed as follows: 

1 1 1 1 1 
------+---
1 + t 2 - 21 - it 21 + it' (2.2.9) 

The right-hand side of (2.2.9) is the ch.f. of the product I W, where the discrete symmetric variable I 
takes on values ± 1 with probabilities 1/2, while W is an independent of I standard exponential (see 
Exercise 2.7.12). Thus the standard classical Laplace distribution is a simple exponential mixture. 
This is stated in the following result. 

Proposition 2.2.3 A standard classical Laplace r.v. X admits the representation 

d 
X=IW, 

where W is standard exponential while I takes on values ±1 with probabilities 1/2. 

Remark 2.2.8 For a general Laplace r. v. Y with density (2.1.1), we have 

d 
Y=()+sIW. 

(2.2.10) 

Remark 2.2.9 It follows directly from (2.2.10) that if X is a standard classical Laplace r.v., then 
IXI is a standard exponential r.v. W. Thus, as already noted by Johnson et a1. (1995, p. 190), if 
XI, X2,"" Xn are i.i.d. standard Laplace r.v.'s, then any statistics depending only on the absolute 
values lXII, IX21, ... , IXnl can be represented in terms of X2 random variables (since as already 
stated, 2 W is a X 2 r. v. with two degrees of freedom). 

2.2.3 Relation to the Pareto distribution. A standard exponential r. v. W is related to a Pareto 
Type I r.v. P with density f(x) = l/x2, x ~ 1, as follows: 

d 
W = log P. (2.2.11) 

Consequently, representation (2.2.8) can be restated in terms of two independent Pareto random 
variables. 

Proposition 2.2.4 A standard classical Laplace r. v. X admits the representation 

d PI 
X = log-, 

P2 
(2.2.12) 

where PI and P2 are i.i.d. Pareto Type I random variables with density l/x2, x ~ 1. 

Proof Note that WI = log PI has standard exponential distribution with density e-x , x ~ O. The 
result now follows directly from Proposition 2.2.2. 0 

Remark 2.2.10 For a general classical Laplace r.v. Y with density (2.1.1) we have 

Hence the log-Laplace random variable e(Y -(})/s has the same distribution as the ratio of two inde­
pendent Pareto Type I random variables. 
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2.2.4 Relation to 2 x 2 unit normal determinants. The following connection between Laplace 
and normal distributions, mentioned in Chapter 1, was established by Nyquist et al. (1954) almost 50 
years ago and was the subject of a number of letters to the editor of the American Statistician during 
the last decades. 

Proposition 2.2.5 A standard classical Laplace r.v. X admits the representation 

(2.2.13) 

where the Uj S are i.i.d. standard normal random variables. 

The proof presented below is based on Proposition 2.2.2 and follows a heuristic derivation due 
to Mantel and Pasternak (1966). For an alternative formal proof using characteristic functions, see 
Exercise 2.7.13. For additional comments on this problem, see Nicholson (1958), Mantel (1973), 
Missiakoulis and Darton (1985), Mantel (1987), and Johnson et al. (1995, p. 191), among others. 

Proof In view of Proposition 2.2.2 and the remark following it, we have X ~ (HI - H2) /2, where HI 

and H2 are i.i.d. with the X2 distribution with two degrees of freedom. Recall that HI ~ (WI + W2), 
where WI and W2 are i.i.d. with the X2 distribution with one degree of freedom. (An analogous 

representation holds for H2.) Furthermore, WI ~ Zr, where ZI is a standard normal variable. 
Consequently, we have 

where the Zj 's are i.i.d. standard normal variables. Equivalently, 

Note that the two normal random variables ZI - Z3 and ZI + Z3 are independent, and so are Z4 - Z2 
d Z + Z Th U - ZI- Z3 U - Z4- Z2 U - Z4+ Z 2 d U - ZI +Z3 .. d t d d an 4 2. us I - .j2' 2 - .j2 , 3 - .j2 ,an 4 - .j2 are 1.1. . S an ar 

normal and (2.2.13) is indeed valid. D 

Attempts to generalize this result to determinants of larger size so far have not been successful 
(see Exercise 2.7.14). All the cited representations are summarized in Table 2.3. 

2.2.5 An orthogonal representation. Younes (2000) shows that a classical Laplace r.v. X admits 
an orthogonal representation of the form 

(2.2.14) 

where {Xn, n 2: I} is a sequence of uncorrelated random variables (the orthogonality here means 
uncorrelation). The convergence in (2.2.14) is in the mean square, i.e., 

(2.2.15) 
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Representation Variables 

v'2W. Z 
Z standard normal r. v. 
W standard exponential r. v. 

R·Z 
R Rayleigh r.v. (p.d.f.- few) = we-w2 / 2) 
Z standard normal r. v. 

v'2Z/T 
T "brittle fracture" r.v. (p.d.f. - f(t) = 2t-3 e 1/ t2 ) 

Z standard normal r. v. 

WI - W2 WI, W2 standard exponential r.v.'s 

(HI - H2)/2 HI, H2 Chi-square r.v.'s with two d.f. 

I· W 
I random sign taking ± with equal probabilities 
W standard exponential r. v. 

log(Pl/ P2) 
PI, P2 Pareto Type I r. v.'s (p.d.f. - f (p) = 1/ p2, 
p> 1) 

log(Ul/ U2) Ul, U2 r.v.'s uniformly distributed on [0, 1]. 

Ul . U4 - U2 . U3 Ul, U2, U3, U4 standard normal r.v.'s 

YIi, Y2i gamma distributed r. v. 's 
Y _ L n y(n) _ y(n) 

- i=1 Ii 2i 
with the density given by (2.4.3); see Proposi-
tion 2.4.1. 

Table 2.3: Summary of the representations of the standard classical Laplace distribution presented in 
this section. All variables in each representation are mutually independent. 

Proposition 2.2.6 A standard classical Laplace Ce(O, 1) r.v. X admits the representation (2.2.14) 
with 

b - ~n 100 -x r (I: -x/2)d n - xe JO ,>ne X 

v'210(~n) 0 
(2.2.16) 

and 

X = v'2 J (I: e-1X1/2) 
n ~n 10(~n) 0 ,>n , 

(2.2.17) 

where 10 and 11 are the Bessel functions of the first kind of order 0 and 1, respectively (see the 
appendix), and ~n is the nth root of 11. 

Proof See Younes (2000) for a derivation. o 

Orthogonal representations play an important role in statistics. For example, they appear in 
factor analysis, where each of the d observable variables is expressed as the sum of p < d uncorrelated 



2.2. Representations and characterizations 27 

common factors and one unique factor. See, e.g., Younes (2000) for further information on orthogonal 
representations and their applications in statistics. 

2.2.6 Stability with respect to geometric summation. Stability, related to infinite divisibility, is 
a well-known property of the normal distribution. A formal definition is: If X, X I, X 2, ... are i.i.d. 
normal, then for every positive integer n, there exist an an > 0 and a bn E JR such that 

(2.2.18) 

In fact, the normal law is the only nondegenerate one with finite variance having this property.lO Under 
geometric summation (2.2.1), the best-known property analogous to (2.2.18) is perhaps the following 
characterization ofthe exponential distribution: If Y, Yl, Y2, ... are positive and nondegenerate i.i.d. 
random variables with finite variance, then 

Vp 

ap L Yi :!: YI for all p E (0, 1) (2.2.19) 
i=1 

if and only if YI has an exponential distribution [see, e.g., Arnold (1973), Kakosyan et al. (1984), 
Milne and Yeo (1989)]. If instead the Yi'S are symmetric, then (2.2.19) characterizes the class of 
Laplace distributions. This is not surprising if one notes that - as already mentioned - the Laplace 
distribution is simply a symmetric extension of the standard exponential distribution. 

We shall start the proof with the following lemma. 

Lemma 2.2.1 Let XI, X2, ... be i.i.d. random variables with ch.f y" and let N be a positive and 
integer-valued random variable with the generating function defined as G(z) = E(zN). Then the 
ch.f. of the r.v. L~=I Xi is G(y,(t)). 

Proof. Conditioning on N, we obtain directly 

00 

Eeit 'L':=1 Xi = L y,n(t)p(N = n) = Ey,N (t). o 
n=1 

Proposition 2.2.7 Let Y, YI, Y2, ... be nondegenerate and symmetric i.i.d. random variables with 
finite variance a 2 > 0, and let vp be a geometric random variable with mean 1/ p, independent of 
the Yi S. Then the following statements are equivalent: 

(i) Y is stable with respect to geometric summation, i.e., there exist constants ap > 0 and bp E JR, 
such that 

Vp 

ap L(Yi + bp ) :!: Y for all p E (0, 1). (2.2.20) 
i=1 

(ii) Y possesses the Laplace distribution with mean zero and variance a 2. 

Moreover, the constants ap and bp must be of the form ap = pl/2, bp = O. 

\0 If the finite variance assumption is dropped, then the distributions satisfying (2.2.18) are called stable (Paretian stable, 
a-stable) laws [see, e.g., Zolotarev (1986), Janicki and Weron (1994), Samorodnitsky and Taqqu (1994), and Nikias and Shao 
(1995)], of which normal distribution is a special case. 
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Proof We shall first establish the form of the normalizing constants in (2.2.20). Taking the expected 
value of both sides of (2.2.20) and exploiting independence, we arrive at 

Since E[vp] = lip f= 0 and ap > 0, in view of the symmetry of Yj, we have bp = -E[Y;] = o. 
Next we equate the variances of both sides of (2.2.20). Denoting by S p the left-hand side of (2.2.20), 
we can write the following well-known decomposition based on conditional variances: 

In this expression the first term is zero, since 

and, as shown earlier, E[Y;] = O. Now E[vp] = lip, and the second term becomes 

However, since the variance on the right-hand side of (2.2.20) is a 2 , we have 

(p~~2) 2 = I, 

soap = pl/2. 

We now turn to the equivalence between (i) and (ii) with a p 

Lemma 2.2.1, in terms of ch.f. 's relation (2.2.20) is expressed as 
pl/2 and bp = O. By 

p1/J(pl/2t) 
-1---(-=-I-'---P"-)-1/J-(-'-p-'-I/;::;-2t-) = 1/J(t) for all p E (0, I) and all t E JR., (2.2.21) 

where 1/J is the ch.f. of Y. [Note that E(zVp ) = pzl(l- (I - p)z).] Relation (2.2.21) will often be 
utilized in what follows. Consequently, we also have for all t E JR., 

p1/J(pl/2t ) 
1 _ (1- p)1/J(pl/2t) -+ 1/J(t), as p -+ O. 

Since 1/J(pl/2t ) -+ 1/J(0) = 1, we obtain 

or, equivalently, 

I _ (1 _ ;)1/J(pl/2t) -+ 1/J(t), as p -+ 0, 

1 
~------:-- -+ 1/J(t), as p -+ 0 
.1[1 - (1 - p)1/J(pl/2t )] 
p 

for all t E R Now, since Y possesses the first two moments, its ch.f. can be written as 

(iu)2 u2 
1/J(u) = 1 + iuE[Y] + __ (E[y2] + 8) = I - _(a2 + 8), 

2 2 

(2.2.22) 

(2.2.23) 

(2.2.24) 

(2.2.25) 
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where 8 = 8 (u) denotes a bounded function of u such that limu~o 8 (u) = 0 [see, e.g., Theorem 8.44 
in Breiman (1993)]. Utilizing (2.2.25), we can write the denominator in (2.2.24) as 

t 2 ptZ 
"2(a 2 + 8) + 1 - T(a Z + 8), (2.2.26) 

which converges to !t2a 2 + 1 as p -+ O. However, u = pl/2t -+ 0 as p -+ O. Consequently, 

1 
1 2 Z 1 = 1/1 (t), 
'it a + 

(2.2.27) 

so Y has Laplace distribution with mean zero and variance (J"2. We have thus established the impli­
cation (i) =} (ii). To verify the reverse implication, all that is needed is to verify that the Laplace ch.f. 
(2.2.27) satisfies (2.2.21). 0 

Proposition 2.2.7 is perhaps the first theorem in this book that requires somewhat delicate 
arguments. The result is due to Kakosyan et al. (1984) but the proof presented here differs from the 
original one. 

Remark 2.2.11 If Yi'S are positive r. v. 's but the assumption of finite variance is dropped, (2.2.19) 
characterizes Mittag-Leffler distributions [see, e.g., Gnedenko (1970), Pillai (1990)]. These are dis­
tributions of positive r. v. 's with the Laplace transform 

E -sX] 1 
[e = 1 + afXsfX' 

where 0 < ex :::: 1, and are reduced to an exponential r. v. for ex = 1 . 

. Remark 2.2.12 If Yi'S are symmetric, but the assumption of finite variance is dropped, (2.2.19) 
characterizes the Linnik distributions [see Lin (1994), Kozubowski (1 994b)]. Linnik distributions 
possess the ch.f. 

where 0 < ex :::: 2, and are reduced to Laplace distributions for ex = 2. We shall study this class in 
Section 4.3 of Chapter 4. 

Remark 2.2.13 If no assumptions on the distribution of the Yi'S are imposed, relation (2.2.19) 
characterizes the so-called strictly geometric stable distributions [see, e.g., Klebanov et al. (1984), 
Jankovit (1992), Kozubowski (1994a)]. Further studies dealing with the stability relation (2.2.19) 
and its generalizations include Janjit (1984), Gnedenko and Janjit (1983), Jankovic (1993ab), Bunge 
(1993), Bunge (1996), Baringhaus and Grubel (1997), and Bouzar (1999). 

Incidentally, relation (2.2.21) is equivalent to the following relation among random variables: 

(2.2.28) 

where Y, YI, Yz, Y3 are i.i.d., while I is an indicator (Bernoulli) random variable, independent of 
Y, YI, Yz, Y3, with P(l = 1) = p and P(l = 0) = 1 - p. 

Another relation among random variables that is also equivalent to (2.2.21) is 

d 1/2 Y=p YI+(I-l)Y2. (2.2.29) 
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The above relation is simply a restatement of representation (2.4.9) for symmetric Laplace r. V.'s with 
mean zero to be discussed later. 

Consequently, we have yet two more characterizations of the Laplace distribution, which can 
be obtained by computing ch.f.'s of the right-hand sides of (2.2.28) and (2.2.29) and comparing them 
with the relation (2.2.21). 

Proposition 2.2.8 Let Y, Y1, Y2, Y3 be nondegenerate, symmetric i.i.d. random variables with finite 
variance a 2 > O. Let I be an indicator random variable with P(l = 1) = p and P(l = 0) = 1- p, 
independent of Y1, Y2, Y3. Then the following statements are equivalent: 

(i) Y satisfies relation (2.2.28) for all p E [0, 1]. 

(ii) Y satisfies relation (2.2.29) for all p E [0, 1]. 

(iii) Y has Laplace distribution with mean zero and variance a 2. 

2.2.7 Distributional limits of geometric sums. An exponential distribution is not only stable 
with respect to geometric summation, but also appears to be the only possible nondegenerate lim­
iting distribution of normalized geometric sums (2.2.1) with i.i.d. positive terms possessing finite 
expectations. If Xi'S are i.i.d. nonnegative r.v.'s with f.L = E[X 11 < 00, then pSp, where Sp is given 
by (2.2.1), converges in distribution (as p -+ 0) to an exponential r.v. with mean f.L. This result is 
due to Renyi (1956) obtained more than 40 years ago. In Kalashnikov's (1997) opinion, Renyi's 
theorem may explain the popularity of exponential distribution among researchers in reliability, risk 
theory, and other fields where geometric sums (2.2.1) frequently arise. The connection between ge­
ometric sums, rarefactions of renewal processes, geometric compounding and damage models was 
emphasized some 20 years later by Galambos and Kotz (1978). 

Similarly, Laplace distribution arises as a limit of Sp when Xi'S are symmetric with finite 
variance. 

Proposition 2.2.9 Let Sp be given by (2.2.1), where Xl, X2, ... are nondegenerate and symmetric 
i.i.d. r.v. s with afinite variance, with vp being a geometric r.v. with the mean 1/ p, independent of the 
Xi'S. Then the class of Laplace distributions with zero mean coincides with the class of non degenerate 
distributional limits ofapSp as p -+ 0, where ap > O. Moreover, ifVar[X11 = a 2 and 

Vp 

ap L Xi .:;. Y as p -+ 0, 
i=l 

(2.2.30) 

there exists y > 0 such that a p = p1/2y + 0(p1/2), and Y has a Laplace distribution with mean 
zero and variance a 2y2. 

Proof Evidently, if Y has a Laplace distribution, then in view of (2.2.20), the convergence (2.2.30) 

holds with Xi !!::. Y and ap = p1/2. It is therefore sufficient to show that if (2.2.30) holds with 
Var[X 1] = a 2, then for some y > 0 the limit must have the Laplace distribution with mean zero and 
variance a 2y2 where a p = p1/2Y(1 + 0(1». 

Assume that (2.2.30) holds; the Xi'S are symmetric with Var[X 1] = a 2 and Y is nondegenerate. 
In terms of ch.f. 's, by Lemma 2.2.1, we have 

p¢(apt) -+ 1/I(t), as p -+ 0, for all t, 
1 - (1 - p)¢(apt) 

(2.2.31) 
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where ¢ and 1/1 are the ch.f.'s of X I and Y, respectively. First, note that for all t we must have the 
convergence 

¢(apt) -+ 1, as p -+ O. (2.2.32) 

Indeed, by continuity of 1/1 and the property 1/1(0) = 1, we must have 1/I(t) f= 0 for all t in an 
interval (-E, E), where E > O. Then for such at, the limit in (2.2.31) is nonzero while the limit of the 
numerator in (2.2.31) is zero. Consequently, the denominator in (2.2.31) ought to converge to zero 
so that (2.2.32) will hold for such at. Now take any t in an interval (-2E, 2E) and use the inequality 

o ~ 1 - Re¢(s) ~ 4(1 - Re¢(s/2» (2.2.33) 

with s = apt to conclude that (2.2.32) holds for such a t. Inequality (2.2.33) follows directly from 
the trigonometric relation 

1 - cos 2tx = 2(1 - cos2 tx) ~ 4(1 - cos tx), 

since Re ¢(s) is the expected value of cos t X. (The last inequality follows directly from 0 ~ (cos tx-
1)2.) This implies that (2.2.32) holds for all t. Next, utilizing (2.2.32), we rewrite (2.2.31) in the form 

1 
~------- -+ 1/I(t), as p -+ 0, i[1 - (1 - p)¢(apt)] 

(2.2.34) 

for all t E R Now, since (2.2.32) holds for all t and ¢ is a ch.f. of a nondegenerate distribution, we 
must have 

a p -+ 0, as p -+ O. (2.2.35) 

Indeed, if (2.2.35) is not valid, we would have had apn -+ c for some sequence Pn -+ 0, where 
0< c ~ 00, so as p -+ 0, we would have had 

(2.2.36) 

for all t. But (2.2.36) implies that the distribution of X I is degenerate, contradicting our assumption. 
Thus (2.2.35) must be valid. 

Now we proceed as in the proof of Proposition 2.2.7 and write the denominator of (2.2.34) in 
the form 

(
a )2 t2 a2t2 

-p- _(a2 + 8) + 1 - _p_(a2 + 8) 
pl/2 2 2' 

(2.2.37) 

where again 8 = 8(u) denotes a bounded function of u such that limu---+o 8(u) = O. Since as p -+ 0 
the expression (2.2.37) converges to a limit, and moreover, in view of (2.2.35), 

(2.2.38) 

the term -i& must converge to some limit y > 0 (if the limit were zero, the expression (2.2.37) 

would converge to 1, implying that 1/1 (t) == 1 and that Y has a degenerate distribution). Consequently, 
we have verified the convergence in (2.2.34), where the limiting ch.f. is of the form 

1 
1fJ(t) = -....,..------

1 + ia2y2t2 

and ap/ pl/2 -+ y, so ap = p1/2y(1 + 0(1». This completes the proof. 

(2.2.39) 

o 
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Remark 2.2.14 If no assumptions on the distribution of the X; 's are imposed, then, as p ---+ 0, the 
weak limits of 

Vp 

ap L(X; + bp ), (2.2.40) 
;=1 

where ap > ° and bp E JR., result in geometric stable (GS) laws [see, e.g., Mittnik and Rachev 
(1991)]. 

2.2.8 Stability with respect to the ordinary summation. We saw in Section 2.2.6 that symmetric 
Laplace distributions are stable with respect to random summation (Proposition 2.2.7). When the 
summation is "deterministic," the Laplace distribution has the stability property (2.2.18) under a 
random normalization. 

Before stating the main result of this subsection, we shall establish some auxiliary properties 
in which we use the following notation for gamma densities with parameters ex and f3: 

A nonrandom sum of the i.i.d. Laplace random variables is no longer a Laplace variable. Instead, 
the sum admits the representation given below, which is a generalization ofthe representation (2.2.3) 
for a single Laplace random variable. 

Proposition 2.2.10 Let YI, Y2, ... be i.i.d. £(0, 1) random variables. Then 

(2.2.41) 

where Gn has a gamma distribution with parameters ex = n, f3 = 1 and Z is a standard normal r.v. 
independent of G n. 

Proof Let the Y; 's have the Laplace distribution £(0, 1), in which case their ch.f. is 

1 
1/I(t) = I· 

1 + -t2 
2 

Thus the ch.f. of the sum of n i.i.d. copies of Y; is 

(2.2.42) 

(2.2.43) 

Note that the ch.f. of the product .;c;. Z of two independent r. v. 's, where Z is standard normal 
and Gn has a gamma distribution, is of the form 

where MCn is the moment generating function of Gn (this relation is evidently true if Gn is replaced 
by an arbitrary random variable independent of Z). To conclude the proof recall that the moment 
generating function of a gamma r. v. is of the form 

Mcn(t) = (_l_)n 
1 - t 

(2.2.44) 

o 
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In what follows, let Bn denote a beta distribution with parameters 1 and n, given by the density 

f(x) = n(1 - xt- I , 0 < x < 1. (2.2.45) 

The following result will be needed. 

Lemma 2.2.2 Let Bn-I and Gn be independent r.v. s having the beta distribution with parameters 
1 and n - 1 and the gamma distribution with parameters nand 1, respectively. Let W be a standard 
exponential variable. Then the representation 

is valid. 

Proof. Let G(a) denote the gamma distribution with density 

If XIX! rv G(al) and X IX2 rv G(a2) are independent, then it is well known that the two random 
variables 

are mutually independent, and their distributions are, respectively, G(al + (2) and a standard beta 
with parameters al and a2 [see also pp. 349-350 in Johnson et al. (1994)]. The independence of 
these two random variables is actually a characterization of the gamma distribution, as established 
by Lukacs (1955). 

Take now al = 1 and a2 = n - 1 and observe that the standard exponential r.v. XIX! can be 
expressed as the product of two independent variables, 

where the first one is a G(n) variable while the second is a beta variable with parameters 1 and 
n - 1. D 

We now state the main result. 

Proposition 2.2.11 Let Y, YI, Y2, ... be i.i.d. random variables with finite variance 0'2 > 0, and 
let Bn be an r.v. independent of the Y; S, with density (2.2.45). Then the following statements are 
equivalent: 

(i) For all integers n greater than 1, 

n 

B~::I L Y; 1: Y. (2.2.46) 
;=1 

(ii) Y has a symmetric Laplace distribution. 
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Proof We shall first deal with the implication (i) => (ii). Taking the expected value on both sides of 
(2.2.46), we have 

E[Y] = E[B~~21](E[Yd + ... + E[Yn]) = nE[JBn-dE[Y]. (2.2.47) 

This implies that E[y] = 0 as nE[J Bn-d =1= 1 (for example, E[.JBi"] = 2/3 since Bl is uniformly 
distributed on [0, 1]). 

Next, write the left-hand side of (2.2.46) in the form .;u;Vn , where 

U B d v: L7=1 Yi 
n = n n-l an n = n 1/ 2 ' (2.2.48) 

and let n ~ 00. Then Un converges in distribution to a random variable W with the standard 
exponential distribution. Indeed P(Un ~ u) = 1 - (1 - u/n)n-l, u E (0, n), which converges to 
1 - e-u , u ~ O. By the Central Limit Theorem, Vn converges to a normal r.v. with mean zero and 
variance 0" 2. Since, by assumption, Un is independent of Vn, the limit of the product .vv;,Vn is the 
product of the limits, so 

(2.2.49) 

This is, however, a representation of a Laplace r.v. with mean zero and variance 0"2 [see Proposi­
tion 2.2.1 and the remarks following it]. To complete the proof ofthe implication (i) => (ii), observe 
that Y must have the same distribution as the limit in (2.2.49), since by (i), (2.2.46) holds for all 
n> 1. 

We now tum to the proof of the implication (ii) => (i). Multiply both sides of (2.2.41) by B~~2l 
(which is independent of the other r. v. 's) to obtain 

1/2 d 1/2 Bn_ 1 (Y1 + ... + Yn) = (GnBn-l) 0" z. (2.2.50) 

By Lemma 2.2.2, the product GnBn-l has the same distribution as a standard exponential r.v. W, so 
the right-hand side of (2.2.50) has the Laplace distribution (with variance 0"2) by the representation 
(2.2.41) with n = 1. The proof is thus completed. 0 

Remark 2.2.15 Relation (2.2.46) characterizes the Laplace distribution even if the assumption of 
finite variance of the Yi'S is dropped. The available proof of this result is highly technical; see Pakes 
(1992ab). 

Remark 2.2.16 Proceeding in the same manner as in the proof of Proposition 2.2.11, one can show 
that within the class of positive r.v.'s the stability relation 

n 

Bn-l L Yi ~ Y, n ~ 2, 
i=l 

characterizes the exponential distributions [see, e.g., Kotz and Steutel (1988), Yeo and Milne (1989), 
Huang and Chen (1989)]. Similarly, for any 0 < ex < 1, the relation 

n 

B l/a ~ y. ~ Y > 2 
n-l L...J I ,n - , (2.2.51) 

i=l 

characterizes Mittag-Leffler distributions, mentioned earlier, which follows from the results ofPakes 
(1992ab) and Alamatsaz (1993). 
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Remark 2.2.17 If the Yi'S are symmetric, then for any 0 < Ci ~ 2, relation (2.2.51) characterizes 
Linnik distributions with index Ci [see Chapter 3, Section 4.3]. If no assumptions on the distribution 
of the Yi'S are imposed, then for any 0 < Ci ~ 2, relation (2.2.51) characterizes strictly geometric 
stable distributions, which follows from the results ofPakes (1992ab) and Alamatsaz (1993). 

2.2.9 Distributional limits of deterministic sums. One of the basic versions of the central limit 
theorem (CLT) states that whenever XI, X2, ... is a sequence of i.i.d. random variables with mean 
/L and variance a 2 < 00, the sequence of the partial sums, 

n 

an L(Xj - /L), 
j ==1 

(2.2.52) 

where an = n-I/2, converges in distribution to a normal r.v. with mean zero and variance a 2 . As 
we saw in Section 2.2.7, the limit may not have a normal distribution if the number of terms in the 
summation is a random variable. Similarly, we may arrive at a nonnormal limit of (2.2.52) if the 
normalizing sequence an is random. The following result shows that under beta-distributed an's we 
obtain in the limit a Laplace distribution. We thus have an additional characterization of this class. 

Proposition 2.2.12 Let XI, X 2, . .. be nondegenerate i. i.d. r. v. s with mean /L and finite variance, 
and for each n > 1, let the r.v. Bn be independent of Xi'S and have a beta distribution with density 

(2.2.45). Then as n -+ 00, the class of non degenerate distributional limits of(2.2.52) with an = B~~21 
coincides with the class of Laplace distributions with zero mean. 

Proof Evidently, if Y has a Laplace distribution, then in view of (2.2.46), Y is the limit of (2.2.52) 

with Xi 1::. Y. Thus it is sufficient to show that the sums (2.2.52) with an = B~~!i converge to a 
Laplace distribution. To this end, we proceed as in the proof of Proposition 2.2.11, writing (2.2.52) 
as Un Vn, where 

(2.2.53) 

and analogously showing that the limit of the product has indeed a Laplace distribution. o 

2.3 Functions of Laplace random variables 
In this section we discuss distributions of certain standard functions of independent Laplace random 
variables, including sum, product, and ratio. 

2.3.1 The distribution of the sum of independent Laplace variates. Let us first consider two 
independent classical Laplace random variables X 1 and X 2 with densities 

fi(x) = _l_e-Ixl/Si, i = 1,2, x E R 
2Si 

Our goal is to find the probability distribution of the sum 

(2.3.1) 

(2.3.2) 

By symmetry, the difference XI - X2 has the same distribution as the sum (2.3.2). Using Proposition 
2.2.2 one can write each X j as the difference of exponential random variables so that the sum of two 
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independent Laplace r. v.'s is a linear combination of four independent standard exponential variables 
denoted below by Zi'S: 

(2.3.3) 

(This lack of closure is in contrast with the normal case, where the sum of independent normal 
variables is normal.) Rearranging the terms, we have 

where 

are independent and identically distributed random variables and 

is a positive constant. 

K = fS2 V;; 

(2.3.4) 

(2.3.5) 

(2.3.6) 

We proceed by first finding the distribution of the Wi'S and then the distribution of their differ­
ence. To accomplish the first step, we use the following result. 

Lemma 2.3.1 Let GI and G2 be i.i.d. random variables with standard gamma distribution given by 
the density 

(2.3.7) 

Let K be a positive constant. Then the probability density of the random variable 

(2.3.8) 

is 

1 (IXI )V-1/2 (1 ) hex) = -J1i e~(IIK-K)X Kv-I/2 -(IlK + K)lxl , 
rev) 7r K + 11K 2 

x ¥= 0, (2.3.9) 

where K).. is the modified Besselfunction of the third kind with the index A, given in the appendix. 

Remark 2.3.1 The distribution with density (2.3.9) is for obvious reasons known as the Bessel 
function distribution [see, e.g., Pearson et al. (1929)]. We shall study this class of distributions in 
Section 4.1 of Chapter 4. 

Proof. First, note that the densities of X I = ~GI and X2 = KG2 are Kg(KX) and ~g(~ ),respectively, 
where g is the density of GI (and G2) given by (2.3.7). Next, by independence, the joint density of 
Xl and X2 is 

f(xI, X2) = g(KX)g (::) = __ 1-2 (Xlx2)V-le-KX1-~X2, XI, X2 > O. 
K [rev)] 

(2.3.10) 
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Consider a one-to-one transformation W = X I - X2, Z = X2. The inverse transformation, X I 
W + Z, X2 = Z, has the Jacobian equal to one, so the joint density of Wand Z is 

pew, z) = few + z, z), z, w + Z > O. (2.3.11) 

The marginal density of W = XI - X2 can be found by integrating the joint density (2.3.11) with 
respect to z: 

hew) = i: few + z, z)dz. (2.3.12) 

Combining (2.3.10) and (2.3.12), for w < 0 we obtain 

(2.3.13) 

Now the application of the integration formula (A.0.14) of Bessel functions (see the appendix) with 
/J.. = v, u = -w, and f3 = K + K- I leads to (2.3.9). 

Similarly, for w > 0, we have 

(2.3.14) 

The change of variable x = w + z results in 

(2.3.15) 

Another application of (A.0.14), this time with u = w, produces (2.3.9). The result follows. o 

To find the density of the Wi'S given by (2.3.5), we apply Lemma 2.3.1 with v = 1. Here, the 
Bessel function with index 1/2 has a closed form given by (A.0.11) in the appendix, and the density 
of WI takes the form 

hex) = Ivn ( Ixl )1/2 ei(I/K-K)X KI/2 (~(l/K + K)lx l) 
r(l) 7r K + I/K 2 

1 Ixll/2 k(I/K-K)x vn -k(1/K+K)lxl 
- e'- e '-
vn (K + I/K)I/2 (K + I/K)I/2Ixll/2 

1 ei(I/K-K)X-i(1/K+K)lxl 
K + I/K ' 

which can be written as 

hex) - 1 
1 I e-K1xl , for x :::: 0, 

- I/K + K e-;clxl, for x < O. 
(2.3.16) 

Remark 2.3.2 For K :P 1 we obtain an asymmetric Laplace distribution to be studied in detail in 
Chapter 3. 

Next, we shall derive the distribution of the difference WI - W2, where the Wi'S are i.i.d. 
variables defined by (2.3.5) with densities given by (2.3.16). 
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Proposition 2.3.1 Let WI and Wz be i.i.d. r.v. s with density (2.3.16). Then the density of V 
WI - Wz is 

for K = 1, 

for K E (0, 1) U (1, 00). 
(2.3.17) 

Proof The density of V = WI - Wz is related to the common density of WI and Wz as follows: 

fv(x) = i: hex + y)h(y)dy. (2.3.18) 

Since the probability density of the difference of two i.i.d. random variables is symmetric, it is 
sufficient to consider x > O. Splitting the region of integration according to positivity and negativity 
of the functions hex + y) and hey), we obtain fv(x) = II + /z + h where 

I -x 10 ('0 
II = -00 hex + y)h(y)dy, /z = -x hex + y)h(y)dy, 13 = Jo hex + y)h(y)dy. (2.3.19) 

We evaluate the above integrals utilizing (2.3.16): 

( 1 ) 2 j -X 1 ( ) 1 (1) z K 1 II = e" x+y e"Ydy = _e-"x, 
11K + K -00 11K + K 2 

(2.3.20) 

/z = ( 1 )2 j O e-K(x+Y)e~Ydy 
11K + K -x 

= ( I )Z!lfLK(e-KX _e~X), forK =1= 1, 
11K + K xe-x , for K = 1, 

(2.3.21) 

I) = ( 1 )Z [00 e-K(X+Y)e-KY dy = ~e-KX. 
11K + K Jo 2K 

(2.3.22) 

Combining (2.3.20)-(2.3.22) and simplifying, we obtain the density (2.3.17) of V. o 

We now return to the representation (2.3.4) of Y. Using Proposition 2.3.1 along with (2.3.6), 
we obtain the following density of the sum X I + X2 (and the difference X I - X2): 

! ks(l+slxl)e-slxl, forsI=s2=S, 
fXI+x2(x)= 1:':£ I ( -s2Ixl_ -sIlxl) forSI...J..s2. 

2 Sl I-(S2!s!l2 sl e s2e , r 
(2.3.23) 

Remark 2.3.3 Note that the distribution of the sum of two independent Laplace r. v. 's with the same 
scale parameters is of a different type and much simpler than the one when the scale parameters are 
different. 

Remark 2.3.4 Weida (1935) obtained the distribution of the difference X I - X 2 by inverting the 
relevant characteristic function. His derivation, however, seems to be not quite correct. 

Next, we consider the case of more than two identically distributed and independent standard 
classical Laplace r.v.'s with a common density given by (2.3.1) with the scale parameter equal to 
1. Recall that the sum of n such variables has a representation in terms of gamma and standard 
normal random variables (Proposition 2.2.10). Now Lemma 2.3.1 can be used for the derivation of 
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the density of the sum T of these i.i.d. random variables (as well as the density of the corresponding 
arithmetic mean). Indeed, since for each i = 1, ... , n we have 

d , 
Xi =Zi -Zi' 

where Zi and Z; are Li.d. standard exponential variables (Proposition 2.2.2), it follows that 

n n n 

T = nXn = LXi 1: L Zi - L z; = G1 - G2, (2.3.24) 
i=l i=l i=l 

where G1 and G2 are Li.d. standardgammar.v.'s with density (2.3.7) with the shape parameter v = n. 
Thus the density of the sum T is given by (2.3.9) with v = nand K = 1. Since the Bessel function 
Kv-1/2 admits the closed form (A.0.1O) for v = n, we obtain the following formula for the density 
ofT: 

e-Ixl n-1 (n _ 1 + j)! Ixln - 1- j 

hex) = (n _ 1)!2n ~ (n _ 1 _ j)!j! 2j , x E JR.. 
1=0 

(2.3.25) 

For the arithmetic mean Xn = Tin, we have the density 

fxn (x) = nh(nx), x E R (2.3.26) 

In the following result we present a useful representation of T derived in Kou (2000) (see Exer­
cise 2.7.18). 

Proposition 2.3.2 Let Xl, ... , Xn be i.i.d. standard classical Laplace variables. Then 

Mn 

T = Xl + ... + Xn 1: J. L Zj, 

j=l 

(2.3.27) 

where the Z j 's are i. i.d. standard exponential variables, / takes on values ± 1 with probabilities 1/2, 
and Mn is an integer-valued r.v. given by the probability function 

. 2 j (2n - j - 1) 
P(Mn =J)=22n- 1 n-l ' j = 1,2, ... , n. (2.3.28) 

[The Zj'S, J, and Mn are mutually independent, and (g) is defined as 1.] 

Table 2.4 below contains the densities of X n for sample sizes n = 1, 2, 3, 4, which were worked 
out in Craig (1932)11 [see also Edwards (1948)]. Weida (1935) in one of the early papers devoted 
to the Laplace distribution obtained an expression for the density of Xn by inverting the relevant 
characteristic function. However, his formula is not as simple as ours and involves the derivative of 
order n - 1 (with respect to t) of the function e-itnx (1 + it)n. 

Remark 2.3.5 As noted by Johnson et al. (1995), many authors considered sums or arithmetic 
means and related statistics under an underlying Laplace model, including Hausdorff (1901), Craig 
(1932), Weida (1935), and Sassa (1968). In particular, Balakrishnan and Kocherlakota (1986) utilized 
the density (2.3.26) in studying the effects of nonnormality on X -charts. They showed that the 
probabilities ex (false alarm) and 1 - f3 (true alarm) remain almost unchanged when the underlying 
normal distribution is replaced by the Laplace distribution, and concluded that no modification to the 
control charts was necessary in this case. 

II In Craig (1932). the coefficient of Ix 12 for n = 4 contains a printing error (98 instead of 96). 



40 2. Classical Symmetric Laplace Distribution 

n Density of X n 

1 f{x) = !e- 1xl , xEIR 

2 f{x) = !(l + 2Ixl)e-2Ixl , xEIR 

3 f{x) = (6{I + 31xl + 3IxI2)e-3Ixl, xEIR 

4 f{x) = ~(I5 + 60lxl + 961xe + 64IxI3)e-4Ixl, xEIR 

Table 2.4: Densities of the sample means X n for samples of selected sizes n from a standard classical 
Laplace distribution with ch.f. 1/I{t) = (I + t 2)-I. 

2.3.2 The distribution of the product of two independent Laplace variates. Consider two in­
dependent classical Laplace random variables X I and X 2 with densities (2.3.I). We shall find the 
probability distribution of the random variable 

(2.3.29) 

Since Xi 1::: si Ii Wi, where for i = 1,2, Wi is the standard exponential while Ii is independent of Wi 
and takes on values ±I with probabilities 1/2 (Proposition 2.2.3), we have 

(2.3.30) 

where I = I I h is independent of the Wi'S and has the same distribution as each of the Ii'S. Con­
sequently, we need to find the distribution of the product of two independent standard exponential 
random variables. For x > 0 we have 

P{WI W2 ~ x) = 1000 
P ( WI ~ i) e-Zdz = 1 - 10 00 

e-(Xci+Z)dz, 

as P{WI < u) = l-e-U • We now utilize the definition (A.O.4) of Bess elf unctions (see the appendix) 
with A = -1 and u = 2Jx (noting that K).. = K_)..) to obtain 

1000 e-(xci+z)dz = 2JxKI (2 . .jX) , 

so the distribution function of WI W2 takes the form 

(2.3.31) 

Next, we take the derivative, using the relations (A.0.8) and (A.O.9) of Bessel functions (see the 
appendix) to obtain an expression for the probabHity density of WI W2: 

(2.3.32) 
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Thus, in view of (2.3.30), the density of Y is 

4 (f]ffXI) fy(x) = -Ko 2 - , 
SIS2 SI S2 

x ER (2.3.33) 

It is interesting to compare (2.3.33) with the density of the product of two independent normal 
variables with means equal to zero and the same variances as those of X I and X 2, 

g(x) = --Ko --1 ( Ixl ) 
2rrSIS2 2SI S2 

(2.3.34) 

[see, e.g., Craig (1936)]. In both cases the density of the product depends on x through the same Bessel 
function Ko, and the argument for the Laplace case is essentially the square root of the argument 
for the normal case (thus in a sense the product retains the original structure of these distributions). 
Graphs of these two densities are presented in Figure 2.3 (top). 

2.3.3 The distribution of the ratio of two independent Laplace variates. Let XI and X2 be 
two independent classical Laplace random variables with densities (2.3.1). We seek the probability 
distribution of the random variable 

(2.3.35) 

Using the representation Xi :!::. si Ii Wi given in Proposition 2.2.3, we have 

(2.3.36) 

where I = I 1/ h takes values ± 1 with equal probabilities and is independent of the standard exponen­
tial r. v. 's Wi. We thus must find the distribution of the ratio of two independent standard exponential 
random variables. 

First, we find the distribution function by conditioning. For x > 0 we have 

P -:s x = P(WI :s xz)e-zdz = 1- e-z(x+l)dz = 1 - --. ( WI ) 100 100 
1 

W2 0 ° 1 +x 

Hence the ratio WI/ W2 has a standard Pareto distribution of the second kind [the so-called Lomax 
distribution; see, e.g., Johnson et al. (1994), p. 575, or Springer (1979), p. 161] with density 

f Wl/ W2(X) = C ~xy, x:::: o. (2.3.37) 

Consequently, the distribution of Y is "double" Pareto with density l2 

( )
2 1 S2 1 

fy(x) = -- , 
2s1 1+(s2/sdlxl 

x ER (2.3.38) 

Note that as in the normal case, where the ratio of two mean zero normal random variables has 
Cauchy distribution, the distribution with density (2.3.38) has infinite mean and variance. (However, 

12It should be noted that our result does not fully agree with Weida (1935). 
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Figure 2.3: Densities of the product (top) and the ratio (bottom) of two i.i.d. standard Laplace random 
variables (dashed lines) vs. two i.i.d. standard Gaussian random variables (solid lines). 

the fractional moments ElY 10" do exist for 0 < ot < 1.) In the i.i.d. case the densities of the ratio of 
two mean-zero Laplace and two mean-zero normal variables are 

1 ( 1)2 1 1 
2 1 + Ix I and -; 1 + x 2 ' 

x E JR, 

respectively. Graphs of these two densities are shown in Figure 2.3 (bottom). 
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Remark 2.3.6 Note that the same distribution arises under an appropriate randomization of the scale 
parameter s of the classical Laplace distribution C.c(O, s) (see Exercise 2.7.48). 

Table 2.5 below summarizes our results on distributions of common functions of independent 
Laplace variables. 

Function Distribution 

_ e-1xl I:n-I (n-I+j)! Ixln- 1- j 
x E lR. 

YI + ... + Yn 
f(x) - (n-I)!2n j=O (n-I-j)!j! -2-j-' 

XI ±X2 f(x) = I 1,JSIs2(l + ,JsJS2Ixj)e-v'SJS2lxl, Sl = S2, 
1~ I (se-s2Ixl_s2e-sllxl) Sl f= S2, 2 SI 1-(sZ/sJl2 I , 

XI ,X2 f(x) - ~K (2{fff) - SP2 0 spz' x E lR. 

XI/X2 x - l~ I ( f f( ) - 2 SI l+(sz/sl)lxl ' X E lR. 

Table 2.5: Densities and distributions of sums and products of independent Laplace random variables. 
Here Yj, i = 1, ... , n, are i.i.d. C.c(O, 1) r.v.'s, while XI and X2 are independent C.c(O, sJ) and 
C£(O, S2) r. v. 'so 

2.3.4 The I-statistic for a double exponential (Laplace) distribution. Let X I, ... , Xn be i.i.d. 
variables with common density f, where f (x) > 0 for all x. Define 

n 

(2.3.39) 

The independence of X nand si; is a unique property of the normal distribution and plays an important 
role in the derivation of the probability distribution of the t -statistic, 

(2.3.40) 

where () and a 2 are the mean and the variance of X I. In this section, we shall follow Sansing (1976) 
and discuss the distribution of Tn defined above when the parent population is classical Laplace (with 
the mean equal to zero). Let 

fx S2(X, y), -00 < x < 00, y > 0, 
n, n 

(2.3.41) 
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be the joint density of Xn and S; based on a sample of size n ::: 2. Sansing and Owen (1974) derived 
a recursive relation for h(n,S~ presented below. 

Lemma 2.3.2 Let XI, X2, ... be i.i.d. variables with common density I, where I(x) > 0lor all x. 
Then lor any n ::: 2, -00 < x < 00, and y > 0, we have 

~+1 II Ix S2 (x, y) = --y w(u)du, 
n+1, n+1 n-I 

where 

w(u) = Ix S2 (x + uy'Y , y(1 - U2)) I (x - uJ n y ) . 
n, n -In(n + 1) n + 1 

Proof Note that 

and 

- n - 1 
Xn+1 = --Xn + --Xn+1 

n+l n+l 

2 2 n - 2 
Sn+1 = Sn + --(Xn - Xn+J) . 

n+l 

Since Xn+1 is independent of Xn and S;, the joint density of X n, S;, and Xn+1 is 

Ix S2(X, y)/(z). 
n, n 

Using the auxiliary variable 

;;;---I-
U = Y ~~(Xn - Xn+j), 

we obtain the relation (2.3.42); see Sansing and Owen (1974) for details. 

For n = 2, we get directly 

fx2 ,si(x, y) = Ifl (x + HJ I (x - H), -00 < x < 00, y > 0, 

while for n = 3 the relation (2.3.42) produces 

I 3 

Ix S2(X, y) = -J31 (1 - u2)-1/2 n I(x + Jyai3(u))du, 
3, 3 I 

- i=1 

where 

(2.3.42) 

(2.3.43) 

(2.3.44) 

(2.3.45) 

(2.3.46) 

(2.3.47) 

o 

(2.3.48) 

(2.3.49) 
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so that 

3 3 

Lai3(u) = 0, Lat3(U) = 1. 
i=1 i=1 

Assume now that f is the density (2.1.1) of the classical Laplace distribution with mean () = 0 and 
scale parameter s > O. Then for the random sample of size n = 2, the joint density of X 2 and Si is 

iflxl:::: Jy/2 
if Ixl < Jy/2. 

(2.3.50) 

[Note that here Si is simply (XI - X2)2/2.] Thus the density of the t-statistic when n = 2 is 
(Exercise 2.7.23) 

For n = 3, we obtain from (2.3.49) 

if It I < 1 
if It I :::: 1. 

f - ( ) - ~ 11 (1 _ 2)-1/2 - '7 Lf=d Jy+ai3 (U)l d X S2 X, Y - 3 u e u, 
3. 3 8S_1 

(2.3.51) 

(2.3.52) 

with the functions ai3 (u) as before. As noted by Sansing (1976), in the region Ix / JYI :::: J2TJ, we 
can express (2.3.52) as follows: 

f- 2(X, y) = ~lr e-3Ixl/s, ~y:::: G,3' 
X3, S3 8s3 Vf V 3' (2.3.53) 

Further, a similar relation holds for other sample sizes as well [see Sansing (1976)], 

Inlr(n-I)/2 ",yn-3 
f ( ) V" Vf -nlxl/s 
X S2 X, Y = () e , 

n. n 2nsnr n-I 
2 

(2.3.54) 

Using (2.3.54), we follow Sansing (1976) to derive the distribution function of the t-statistic (2.3.40) 
for t > n - 1: 

lr(n-I)/2r(n - 1) (n - 1)(n-I)/2 -n+1 
FTn(t) = 1- () - t . 

.,fo2n - 1r 9 n 
(2.3.55) 

Finally, differentiating (2.3.55), we obtain the p.d.f. of Tn: 

lr(n-I)/2r(n) (n - 1)(n-I)/2 -n 
!Tn(t) = ( I) -- It I , It I > n - 1. 

.,fo2n- 1 r n2' n 
(2.3.56) 

Remark 2.3.7 Note that the tails of the density (2.3.56) are heavier than those of the corresponding 
t-distribution with n degrees of freedom (Exercise 2.7.25). 

Remark 2.3.8 As noted by Sansing (1976), the evaluation of the joint density of Xn and S; in the 
region where Ixl/JY < J(n - 1)/n is quite complicated. For this case Sansing (1976) derived 
upper and lower bounds for the joint density, leading to the corresponding bounds for the density fTn 
of the t-statistic in the region It I ::s n - 1, where the exact formula (2.3.56) is not valid. 
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Remark 2.3.9 Gallo (1979) considered an analogue of the t-distribution defined as 

- Un - ne 
Tn=---

Vn 

where 
n n 

i=l i=l 

(2.3.57) 

(2.3.58) 

[and Xl, ... , Xn is a random sample from the ecce, s) distribution]. The joint distribution of Un 
and Vn [derived in Gallo (1979)] consists of a continuous part supported by the region 

1= feu, v) : v ::': 0, ne < u < ne + v} (2.3.59) 

and a singular part concentrated on the boundary of I. The corresponding statistic Tn defined in 
(2.3.57) has support in the interval [-1, 1] (see Exercise 2.7.24). The distribution function of Tn is 

where 

(n) 1 1 
ai = i rei) r(n - i) 

and 

rea, y) = i OO 
ta-le-tdt 

for x < -1, 

for -1 :s x < 1, 

for x ::': 1, 

(2.3.60) 

(2.3.61) 

is the incomplete gamma function. Note that the distribution of Tn is a mixture of point masses at 
±1 (each with probability Ij2n), and a continuous part (occurring with probability 1 - 2j2n) with 
density 

_ 2n r(n) n-l . . 
f, (x) = ---- "" a'(1 - t)'-l(1 + t)n-I-l -1 < t < 1 

n 2n _222n-1 ~ I , 

i=l 

(2.3.62) 

[see Gallo (1979).]13 

2.4 Further properties 
2.4.1 Infinite divisibility. The notion of infinite divisibility plays a fundamental role in the study 
of central limit theorems and Levy processes. A probability distribution with ch.f. 1/1 is infinitely 
divisible if, for any integer n ::': 1, we have 1/1 = CP~, where CPn is another characteristic function. In 
other words, an r.v. Y with ch.f. 1/1 has the representation 

(2.4.1) 

13Note that the c.d.f. and the p.d.f. of Tn derived in Gallo (1979) may contain some typographical errors. 
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for some i.i.d. random variables Xi. The importance of the class of infinitely divisible distributions 
follows from the fact that they are limits of the sums of rows of (Xn,i )nEN,i=I, ... ,n, and the terms in 
each row are i.i.d. (Here, N denotes the set of natural numbers.) Thus, roughly speaking, if we have a 
large number of independent and similar random effects that add together, the resulting distribution 
will be approximately infinitely divisible. 

According to (2.2.7), the ch.f. (2.1.8) of a classical Laplace distribution CC(e, s) can be factored 
as follows 

-:------:-_ei...,..,8t_.,---- = [ei8tln (_1_._) lin (_1_._) IlnJn = <p~(t). 
(1 - ist)(1 + ist) 1 - 1St 1 + 1St 

(2.4.2) 

For each integer n ::: 1, the function <Pn is the ch.f. of e I n + Yin - Y2n, where Yin and Y2n are i.i.d. 
with the ch.f. (l - ist)-lln. The latter is the ch.f. of a gamma distribution with density 

(1/s)lln LI -xis 
---xn ex::: O. 
r(lln) , 

(2.4.3) 

Consequently, Laplace distributions are infinitely divisible,14 and we state the result formally. 

Proposition 2.4.1 Let Y have a Laplace distribution with ch.f (2.1.8). Then the distribution ofY is 
infinitely divisible. Furthermore, for every integer n ::: 1, representation (2.4.1) holds. Each Xi is 
distributed as e In + Yin - Y2n, where Yin and Y2n are i.i.d. with gamma density (2.4.3). 

The ch.f. of every infinitely divisible distribution admits a unique canonical Levy-Khinchine 
representation. Several variations of this representation using different spectral measures are known. 
Here we consider the representation which states that a ch.f. of an infinitely divisible distribution can 
be written uniquely in the form 

1/I(t) = exp (iat - ~b2t2 + i: (eitx - 1 - it sin X)dA(X)) , (2.4.4) 

where -00 < a < 00, b ::: 0, and A is a Levy measure on (-00, (0), characterized by the properties: 
A({O}) = 0 and f~oo min(l, x2)dA(x) < 00. Below, we present the Levy-Khinchine representation 
of a Laplace distribution. [See Takano (1988) for a detailed treatment of the d-dimensional density 
Ce-Ilxll, where IIxll is the length of the vector x, including the one-dimensional case d = 1.] 

Proposition 2.4.2 The ch.f. (2.1.8) of a general classical Laplace distribution CL(e, s) admits the 
Levy-Khinchine representation (2.4.4) with 

a = e, b =0, 
1 

dA(x) = _e-Ixllsdx. 
Ixl 

(2.4.5) 

Proof. It is sufficient to prove the result for the standard classical Laplace distribution. We need to 
show that 

14Dugue (1951) has raised a question of existence of a probability law that is not infinitely divisible but still can be written 
as a sum of two independent random variables with distributions parametrized by a continuous parameter. Mistakenly, the 
Laplace distribution was used as an example. As pointed out by Lukacs (1957), the example is not valid as the Laplace 
distribution is infinitely divisible. Lukacs (1957) also constructs another example that answers positively to the question 
originally raised by Dugue (1951). 
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or, equivalently, 

(2.4.6) 

Since both sides of (2.4.6) have well-defined Taylor series representations about zero, it is 
enough to demonstrate that the coefficients in these representations coincide. 

The left-hand side has the coefficients 

if n is even, 
if n is odd. 

We now compute the coefficients of the right-hand side. Denoting c(t, x) = cos(xt) - 1, we 
have for n 2: 1: 

anc(t,x) = { (-1)n/2xncos(tx) 
atn (_l)(n-1)/2xn sin(tx) 

ifn is even, 
if n is odd. 

Consequently, the nth coefficient of the Taylor representation is zero for odd n while for even n it is 
given by 

This completes the proof. o 

Remark 2.4.1 For comparison, the Levy-Khinchine representation of the normal distribution with 
mean f.L and variance a 2 is simply 

and the Levy measure A is zero in this case. 

2.4.2 Geometric infinite divisibility. An r.v. Y (and its probability distribution) is said to be 
geometric infinitely divisible if for any p E (0, 1) it satisfies the relation 

Vp 

Y g, Ly~i), (2.4.7) 
i=l 

where up is a geometric r.v. with mean 1jp, the random variables y~i) are i.i.d. for each p, and up 

and (y~i» are independent [see, e.g., Klebanov et a1. (1984)]. It can be shown that geometric infinite 
divisible laws are the limits of the sums of rows of (Xvp,i )vp,i=l, ... , V p' where terms in each row are i.i.d. 
conditionally on up, and their number up is random, geometrically distributed, and is independent 
of the Xn,i' Thus if we have a large random geometrically distributed number of independent and 
similar random effects Cbut depending on the number of effects) that add up together, the observed 
distribution will be approximately geometric infinitely divisible. This property justifies the interest 
in and importance of this class of distributions for probabilistic model construction and analysis. 
The following proposition, which is a direct consequence of Proposition 2.2.7, establishes geometric 
infinite divisibility of Laplace distributions. 

Proposition 2.4.3 Let Y possess a classical Laplace distribution CCCO, s). Then Y is geometric 
infinitely divisible and for any p E co, 1) relation (2.4.7) holds with y~i) '" CC(O, s..Jji). 
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2.4.3 Self-decomposability. A random variable Y (and its probability distribution) is self-decom­
posable if for each c E (0, 1) it has the representation 

d 
Y=cY+X, (2.4.8) 

where X and Yare independent (the distribution of X may depend on c). In terms of ch.f.'s this means 
thatthe function 1/1 (t) / 1/1 (ct), where 1/1 is the ch.f. of Y, is a ch.f. for each c E (0, 1). Evidently, normal 
distributions are self-decomposable as the corresponding ratio is the ch.f. of a normal distribution. 
Laplace distributions are also self-decomposable, as was shown by Ramachandran (1997). We shall 
present explicitly the corresponding representation (2.4.8). 

Proposition 2.4.4 Let Y possess a classical Laplace distribution with ch.f (2.1.8). Then Y is self­
decomposable and for any c E (0, 1) we have 

d 
Y = c Y + e (1 - c) + s (01 WI - 02 W2), (2.4.9) 

where 01 and 02 are dependent r.v. s taking on values of either zero or one with the probabilities 

P(OI = 0,02 = 0) = c2, P(OI = 1,02 = 1) = 0, 

1 2 
P(OI = 1,02 = 0) = P(OI = 0,02 = 1) = 2(1 - c ). 

The r.v. s WI and W2 are standard exponential and Y, WI, W2, (01,02) are mutually independent. 

Proof Write Y = e + s X, where X is the standard classical Laplace variable. Note that the ch.f. of 
X given by (2.1.7) can be factored as follows: 

( 1 ) (c2 + ~(1- c2)_I_ + ~(1- C2)_I_) 
(l + i ct) (l - i ct) 2 1 - it 2 1 + it' (2.4.10) 

where the first factor is thech.f. of cX while the second one is the ch.f. of 01 WI -02 W2. Consequently, 
we obtain the representation 

d 
X = cX + 01 WI - 02 W2. (2.4.11) 

To arrive at (2.4.9), combine (2.4.11) with 

Y=f)+sX. o 
We summarize stability properties of the Laplace distribution in Table 2.6. In the second part of 

Section 2.2 and throughout most of Section 2.4, we have studied various distributional relations in­
volving Laplace distributions. In these relations, unlike those presented in the first part of Section 2.2, 
random variables distributed according to Laplace distributions appear on both sides of distributional 
equalities. For this reason, we term them stability properties of Laplace distributions. The variables 
Y and Yj'S are Laplace CL(O, s). All the variables in (each) representation presented in Table 2.6 are 
mutually independent. 

2.4.4 Complete monotonicity. A function f defined on an interval I C R is called completely 
monotone (respectively, absolutely monotone) if it is infinitely differentiable on I and (_I)k f(k) (x) ~ 
o (respectively, f(k)(x) ~ 0) for any x E I and any k = 0, 1,2, .... Since the derivatives of the 
Laplace density are straightforward to calculate, it is easy to see that the p.d.f. of the classical 
Laplace distribution with mean zero is completely monotone on (0, 00) [and absolutely monotone on 
(-00,0)]. As noted by Dreier (1999), every symmetric density on (-00, 00), which is completely 
monotone on (0, 00), is a scale mixture of Laplace distributions. 
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Stability property Variables 

d L:vp 1': L:vp y(i) Y = -JP i=l i = i=l P 

v p - geometric r. v. with parameter p, 

Y?) - i.i.d. CL(O, -JP. s) r.v.'s 

d 
Y = -JPIYl + (1 -l)(Y2 + -JPY3) I - 0-1 r.v. with P(l = 1) = p 

d 
Y = -JPYI + (1 - l)Y2 I - 0-1 r.v. with P(l = 1) = p 

d Bn-l - beta r.v. with parameters n-l 
Y = -jBn-l(Yl + ... + Yn) and 1 

WI, W2 - standard exponential r.v.'s, 
d 

Y = c Y + S(81 WI - 82 W2) 81,82 -0-1 r.v.'s given in Propos i-
tion 2.4.4 

Table 2.6: Summary of stability properties of the classical Laplace distribution. The variables Y and 
Yi'S are CL(O, s). All the variables in each representation are mutually independent. 

Proposition 2.4.5 Let f be a symmetric (about zero) probability density on (-00, (0) which is 
completely monotone on (0, (0). Then there exists a distribution function G on (0, (0) such that 

f(x) = -ye-y1x1dG(y), 1001 

o 2 
x i= 0, (2.4.12) 

while the ch.f corresponding to f is 

(2.4.13) 

Proof The result follows from the fact that every completely monotone density on (0, (0) is a scale 
mixture of exponential densities on (0, (0); see Steutel (1970). 0 

Remark 2.4.2 The converse of Proposition 2.4.5 clearly holds as well: every density of the form 
(2.4.12) with some c.d.f. G on (0, (0) is a symmetric density on (-00, (0) which is completely 
monotone on (0, (0). 

Remark 2.4.3 The central moment 

(2.4.14) 

of the CL(O, s) random variable X is equal to (2m)!s2m [cf. (2. l. 14)]. Consequently, for every 
1 :s I :S r we have 

( IL2l ) iI ( IL2r ) tr 
(21)! = (2r)! ' 

(2.4.15) 

since each side in (2.4.15) is equal to s. Actually, the Laplace distribution is the only symmetric 
distribution on (-00, (0) with completely monotone density on (0, (0) for which the equality in 
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(2.4.15) holds; for all other symmetric random variables X on (-00, (0) with completely monotone 
density on (0, (0) and finite 2mth moment (2.4.14), we have an inequality 

(2.4.16) 

[see Dreier (1999)]. 

2.4.5 Maximum entropy property. One of the basic concepts of information theory is the notion of 
entropy, which is a measure of uncertainty associated with a probability distribution. The maximum 
entropy principle states that, of all distributions that satisfy certain constraints, one should select 
the one with the largest entropy. A maximum entropy distribution is believed not to incorporate 
any extraneous information other than that specified by the relevant constraints. Thus finding the 
maximum entropy distribution could be considered as a general inference procedure, and indeed it 
was proposed initially by Jaynes (1957) in this manner. It has been successfully applied in a great 
variety of fields including statistical mechanics, statistics, stock market analysis, queuing theory, 
image analysis, and reliability estimation [see, e.g., Kapur (1993)]. 

For a one-dimensional r. v. X with density (or probability function) f, the entropy of X is 
defined by 

H(X) = E[-logf(X)]. (2.4.17) 

It is well known that among all continuous r.v.'s with mean zero and given variance, the Gaussian 
(normal) distribution provides the largest entropy [see, e.g., Reza (1961)]. Similarly, the Laplace 
distribution maximizes the entropy among all continuous distributions with given first absolute mo­
ment, as noted by Kagan et al. (1973). Both results easily follow from the following proposition, 
proved in Kagan et al. (1973). 

Proposition 2.4.6 (Kagan, Linnik, and Rao) Let X be a r.v. with density 

p(x) > 0 for x E (a, b) and p(x) = 0 otherwise. (2.4.18) 

Let hI, h2, ... be integrable functions on (a, b) satisfying for given constants gl, g2, ... the condi­
tions 

(2.4.19) 

Then the maximum entropy is attainedfor the distributions with density o/the/orm 

(2.4.20) 

(and only by them) if there exist constants aO, aI, ... such that the above density satisfies the condi­
tions (2.4.18) and (2.4.19). 

How can we deduce the entropy maximization property of the Laplace distribution from the 
above proposition? Consider continuous random variables with density p satisfying (2.4.18) with 
a = -00, b = 00, and such that 

i: Ixlp(x)dx = c > o. (2.4.21) 
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Then according to Proposition 2.4.6, the maximum entropy is attained by the density 

p(x) = eao+allxl, x E (-00,00) (2.4.22) 

for some constants ao and al. Let us find the constants so that the function (2.4.22) integrates to 1 
on (-00,00) and satisfies the condition (2.4.21). First, note that al < 0 to ensure the integrability 
of p. Then write 

so that 

Finally, by (2.4.21), we have 

c = 100 Ixl~e-laIXldx = roo xlalle-1allxdx = _1_, 
-00 2 10 jaIl 

so al = -1/ c and density (2.4.22) takes the form 

1 
p(x) = _e-1xl /c, x E (-00,00). 

2c 

The following result summarizes our discussion. 

(2.4.23) 

(2.4.24) 

(2.4.25) 

(2.4.26) 

Proposition 2.4.7 Consider the class C of all continuous random variables with nonvanishing den­
sities on (-00, 00) such that 

EIXI = c > 0 for X E C. 

Then the maximum entropy is attained for the Laplace r.v. Xc with density (2.4.26), and 

maxH(X) = H(Xc) = log(2c) + 1. 
XEC 

(2.4.27) 

Remark 2.4.4 If mean deviation about some fixed point 0 is prescribed instead of EIXI, then the 
entropy is maximized by the density ice-lx-lIl/c, where c = EIX - 01 (Exercise 2.7.30). 

Remark 2.4.5 If in addition to (2.4.27) we add the condition that EX = CI, where ICJ I < c, then the 
entropy is maximized by the skewed Laplace distribution studied in Chapter 3 (see Proposition 3.4.7). 
On the other hand, if the mean along with the absolute deviation about the mean are prescribed 
(instead of EX and EIXI), then the entropy is maximized by the symmetric Laplace distribution 
(Exercise 3.6.18). 

Recall that the Laplace distribution .c(0, a) (with mean zero and variance a 2 ) can be regarded 
as Gaussian with a stochastic variance V = a 2W, where W has standard exponential distribution 
(see Proposition 2.2.1). As noted recently by Levin and Tchernitser (1999), among all zero-mean 
Gaussian r.v. 's with stochastic variance V (independent of the Gaussian term), for any given value 
of E V, the Laplace distribution maximizes the entropy of V. This follows from the fact that among 
all distributions with given mean and (0, 00) support, the maximum entropy corresponds to the 
exponential distribution [see Gokhale (1975)], which can be established via Proposition 2.4.6. Here 
is the exact formulation of this result. 
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Proposition 2.4.8 Consider the class M of random variables of the form .Jl5 Z, where Z and D 
are independent, Z is standard normal, while D has a continuous distribution on (0, 00) with mean 
a 2. Then the maximum entropy, 

max H(Y) = log(Y'2u) + 1, 
y !!"./Dz EM 

is attainedfor the Laplace r.v. Y !!::. a.JWZ, where W is standard exponential. 

2.5 Order statistics 
In this section we shall discuss order statistics of random variables having a Laplace distribution. 

Let the measurements obtained from a sample of size n be represented by random variables 
XI, ... , Xn . The Xi'S are mutually independent and each one has the same cumulative distribution 
function (and probability density function, if it exists). 

We now introduce n new random variables 

which are the original random variables arranged in ascending order of magnitude so that 

XI:n :::: X2:n :::: ... :::: X n:n . 

The random variables Xr :n , where 1 :::: r :::: n, are called order statistics (as distinguished from rank 
order statistics equal to 1,2,3, ... , n for XI:n, X2:n, X3:n, ... , X n:n , which are occasionally also 
referred to as order statistics). 

In particular, XI:n is the minimum of the Xi'S, and Xn:n is the maximum. Another common 
order statistic is X k+ I :2k+ I, which coincides with the sample median when the sample size is odd 
(n = 2k + 1). For the last 50 years, order statistics have been playing an increasingly important role 
in statistical inference and have appeared in many areas of statistical theory and practice. We shall 
encounter them in later chapters as well. 

2.5.1 Distribution of a single order statistic. Given the parent distribution of X I (or, equivalently, 
anyone of Xi, i = 1, ... , n), it is an elementary exercise in probability theory to find the distribution 
of any order statistic. For instance, if F denotes the c.dJ. of XI, then the c.d.f. of Xn:n is obtained as 
follows: 

Fn:n(x) = P(Xn:n :::: x) = P (all Xi :::: x) = [F(x)t. 

Similarly, for a general order statistic, we have 

Fr:n(x) = P(Xr:n :::: x) = p (t Ii 2: r) , 
,=1 

where Ii'S are i.i.d. indicator r. v.'s defined as 

The sum 2:7=1 Ii is a binomial r.v. with probability of success p = P(Xi :::: x) = F(x) so that 

Fr:n(x) = t C}F(x)]i[1 - F(x)t- i . 

l=r 

(2.5.1) 
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In the continuous case, the corresponding p.d.f. (obtained by differentiation) is 

(2.5.2) 

where f is the density corresponding to F. We shall now assume that Xl, ... , Xn are i.i.d. from 
the classical Laplace distribution CC«(), s). Denote the c.d.f. and p.d.f. of the rth order statistics by 
Fr:n(·; (), s) and fr:n('; (), s), respectively. For the standard distribution CC(O, 1), we shall omit the 
parameters and simply write Fr:nO and fr:nO. Below we shall derive the distributions of order 
statistics connected with the standard classical Laplace distribution. To obtain the corresponding 
distribution in the case of a general Laplace distribution, use the relations 

( X -()) 1 (X -()) 
Fr:n(x;(),S) = Fr:n -s- and fr:n(x;(),s) = -;fr:n -s- . 

The following result is obtained by direct application of formulas (2.5.1)-(2.5.2). 

Proposition 2.5.1 Let Xr:n be the rth order statistic connected with a sample of size n from the 
standard classical Laplace distribution CC(O, 1). Then the c.d.f. and p.d.f. of Xr:n are 

and 

respectively. 

erX (2 _ eX)n-r 
e-(n-r+l)x (2 _ e-xy-l 

ifX :::: 0, 

ifx ~ ° 

ifx :::: 0, 
ifx ~ 0, 

Remark 2.5.1 For the classical Laplace CC«(), s) distribution, we have the density 

r (l)n (n) {er(X-IJ)/s (2 _ e(x-IJ}/S)n-r 
fr:n(x; (), s) = -; 2: r' e(n-r+l)(O-x)/S(2 _ e(O-x)/sy-l 

In particular, we have the following special cases. 

ifx::::(), 
if X ~ (). 

(2.5.3) 

(2.5.4) 

(2.5.5) 

2.5.1.1 The minimum. The first order statistic connected with a sample of size n from the CC«(), s) 
distribution has the following c.d.f. and p.d.f.: 

and 

11 - (1 - !e(x-IJ}/S)n 

Fl:n(X; (),s) = 1- Gf en(lJ-x}/s 
if x :::: (), 

if x ~ () 

n { e(x-IJ)/s(2 _ e(x-IJ)/s)n-l 
fl:n(X; (), s) = 2ns en(lJ-x}/s 

ifx::::(), 
if x ~ (). 

(2.5.6) 

(2.5.7) 
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2.5.1.2 The maximum. The nth order statistic connected with a sample of size n from the C£(a, s) 
distribution has the following c.d.f. and p.d.f.: 

(
l)n { en(x-O)/s 

Fn:n(x; a, s) ="2 (2 _ e(O-x)/S)n 

and 

if x sa, 
if x ::: a 

if x sa, 
ifx ::: a. 

The symmetry in the expressions for f1:n and fn:n results from the relation 

d 
XI:n = 2a - Xn:n . 

(2.5.8) 

(2.5.9) 

2.5.1.3 The median. Let n = 2k + 1, k = 0,1,2, ... , and let Xk+l:n be the sample median X of 
XI, X2,"" X n. Then the p.d.f. of Xk+l:n is 

j." • (x) = -'- - _e-(k+I)lx-li l/s(2 _ e-lx-lil/s)k n' (1)2k+l 1 
Jk+l.n (k!)2 2 s ' (2.5.10) 

and the distribution is symmetric about a. This distribution was derived in Fisher (1934); see also 
Karst and Polowy (1963). 

2.5.2 Joint distributions of order statistics. Proceeding as in Section 2.5.1, we can find the joint 
distributions of two or more order statistics. Consider a random sample X I, ... , Xn from a continuous 
distribution with the c.d.f. F and p.d.f. f. Let 

where 1 S k S n. Then the joint p.d.f. of Xn\:n, X n2:n , ... , X nk:n is nonzero at x = (XI, ... , Xk)' 
only if XI S X2 S ... S Xb in which case it is equal to 

(2.5.11) 

withxo = -00, xk+l = +00, no = 0, and nk+1 = n + 1 [see, e.g., David (1981, p. 10)]. In particular, 
the joint distribution of two order statistics, Xr:n and Xr':n, where 1 S r < r' S n, has density 

fr,r':n(X, y) = C(n, r, r')pr-l(x)f(x)[F(y) - F(x)y'-r-l f(y)[1 - F(y)r-r' (2.5.12) 

for x S y [and fr,r':n(x, y) = ° for x > y], where 

, n! 
C(n, r, r ) = -----,--------,--

(r - 1)!(r' - r - 1)!(n - r')! 
(2.5.l3) 

An application of the above to order statistics associated with the Laplace distribution leads imme­
diately to the following result. 

Proposition 2.5.2 Let X I, ... , X n be a random sample from standard classical Laplace distribution 
C£(O, 1). Then for any 1 S r < r' S n, the joint distribution of Xr:n and Xr';n has density 

fr,r':n(x, y) = (~r C(n, r, r')u(x, y), (2.5.14) 
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where the constant C(n, r, r/) is given by (2.5.13) and 

{ 

erx+Y[eY _ exy'-r-I[2 _ ey]n-r' 
erx -(n-r'+I)Y[2 _ e-Y _ exy'-r-I 

u(x, y) = ~-(x+(n-r'+I)Y)[e-X _ e-yy'-r-I[2 _ e-xy-I 

ifx ::::: y ::::: 0, 
ifx:::::O:::::y, 

if 0 ::::: x ::::: y, 
ifx > y. 

Remark 2.5.2 The joint distribution of the minimum and maximum is thus given by 

if x ::::: y ::::: 0, 
if x ::::: 0::::: y, 
if 0 ::::: x ::::: y, 
if x > y. 

(2.5.15) 

(2.5.16) 

Remark 2.5.3 When the sample is drawn from a general C£(e, s) distribution, the joint density of 
Xr:n and Xr';n is 

1 
fr,r':n(x, y; e, s) = 2. fr,r':n«x - e)/s, (y - e)/s), 

s 

with fr,r':n(x, y) given by (2.5.14) and (2.5.15). 

(2.5.17) 

The joint distributions of order statistics play an important role in statistical applications. Many 
common statistics utilized in statistical inference are functions of order statistics, and we can obtain 
their distributions via (2.5.11) coupled with standard transformation methods. Here we present several 
examples of such derivations for the Laplace distribution. 

2.5.2.1 Range, midrange, sample median. The three commonly used statistics that are functions 
of just two order statistics are 

R = Xn:n - XI:n -the range of Xi'S 

X n'n + XI'n 
M R = . 2 . -the midrange of Xi'S 

Xk:2k + Xk+I:2k . . X = 2 - the sample medlQn when n = 2k IS even. 

In the next proposition, we derive the distribution of R [see, e.g., Edwards (1948)]. 

Proposition 2.5.3 Let X I, ... , Xn, n ~ 1, be a random sample from the standard classical Laplace 
distribution C.c(O, 1). Then the range R has the density function 

z > 0, 

where In(z) = f~Z<2 - e-x- z - eX )n-2dx can be computedfrom thefollowing recurrent relations: 

h = Z, A2 = 1 - e-z , B2 = eZ - 1, 

In = 2In_1 - An-I - e-z Bn-I, 

An = _2_ [(n - 2)(An-1 - e-z In-I) + ~(1 - e-Zt- I] , 
n-l 2 

2 [ 1 -z n-2 Z ] Bn = -- (n - 2)(Bn_1 -In-d - -(1 - e) (1 - e) , 
n-l 2 

where A = fO eX (2 - e-x- z - eX )n-2dx B = fO e-X (2 - e-x- z - eX )n-2dx n -z ,n -z . 
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Proof Let f(x, y) denote the density of (Xl:n, Xn:n) given by (2.5.16). The density of R can be 
written as the following sum of three integrals: 

fR(Z) = l:f(X,Z+X)dx+ l:f(X,X+z)dx + 1000 
f(x,z+x)dx. 

The first and the third integral are equal to each other and equal to 

n-l 
--(1 - e-z )n-2e-z 

2n ' 

while the middle integral is equal to 

n(n - 1) -zI 
--:---e n(Z). 

2n 

Thus it remains to prove the recurrent relations. 
First, note that h (z) = J~z Idx = z, A2(Z) = J~z eX dx = 1 - e-z , and B2 (z) = J~z e-x dx = 

eZ - 1. Next we have 

In+l (z) = 1° (2 - e-x- z - eX)n-1dx 
-z 

= 2In (z) - An(z) - e-ZBn(z), 

A n+l(Z) = 1° eX (2 - e-x- z - eXt-1dx 
-z 

= 2An(z) - e-ZIn(z) -1° e2X (2 - e-X- Z - eX)n-2dx, 
-z 

Bn+l(Z) = 1° e-X(2 - e-X- Z - eXt-1dx 
-z 

= 2Bn (z) - In(z) - e-Z 1° e-2X (2 - e-X- Z - eXt-2dx. 
-z 

Integration by parts of An+l (z) and Bn+l (z) leads to 

An+l (z) = (1 - e-Zt - (n - l)e-Z In (z) 

+ (n - 1) I: e2X (2 - e-X- Z - eXt-2dx, 

Bn+l (z) = -(1 - e-z)n-l (1 - eZ ) - (n - I)In(z) 

+ (n - l)e-Z 1° e-2X (2 - e-X- Z - eX)n-2dx, 
-z 

and after some elementary algebra we arrive at the recurrent relations stated in the theorem. D 

It is interesting to see how the distribution of R differs from the case when the sample is from 
a Gaussian population. Unfortunately, for the latter case, to the best of our knowledge, the exact 
distributions can be computed explicitly only for special cases. McKay and Pearson (1933) studied 
the case n = 3, obtaining the density 
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where ct> is the c.d.f. of the standard normal distribution. Larger values of n would require numerical 
computations of certain integrals. [The elaborated computations for n = 2 to 20 of the cumulative 
distribution functions in the pre-computer era are given in Pearson and Hartley (1942).] The case of 
a Laplace population is thus computationally easier since our recursive formulas allow for explicit 
form of the densities for an arbitrary n. 

The Laplace variable C(O, 1) = CC(O, -Ji/2) has the mean equal to zero and variance equal 
to one, so it is appropriate for comparisons. For this random variable the density of the range for 
sample size equal to three is given by 

The graphs of these two densities are presented ill Figure 2.4. The heavier tails of the Laplace 
distribution are evident. 

It) 

0 

v 
0 

C') 

0 

'" 0 

0 

a 
0 

0 2 3 4 5 6 

Figure 2.4: The comparison of the p.d.f. of the range for sample size n = 3: normal (dotted line) vs. 
Laplace (solid line) cases. 

Consider now another function of the maximal and minimal order statistics - the midrange 
MR. Using a similar technique, we obtain the following result. 

Proposition 2.5.4 Let Xl, ... , X n, n 2: 1, be a random sample from the standard classical Laplace 
distributionCC(O, 1). Then the midrange M R has the density fM R(Z) = 2h(2z), where h, the density 
of X1:n + X n:n, is given by 

h(z) = 1 - --(1 - e-1zl)n-l -- + e-1zl + e- 1zl ] (Izl). e-1zl [ n - 1 (n + 1 )] n(n - 1) 
(1 + e-1zl)2 2n n - 1 2n n 

(2.5.18) 

Here 

z > 0, 
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and it can be computedJrom theJollowing recurrent relations: 

lz = z/2, h = 1 - 2e-z12 + e-z, 

I n = _2_ (~(1 + e-z)(l - e-Zt-3 - 2(n - 3)e-ZJn_2) . 
n -2 2 

(2.5.19) 

Proof Since the distribution of M R is symmetric around zero it is sufficient to compute the density 
JM R(Z) for the positive z. As in the previous proof, let f(x, y) given by (2.5.16) be the joint density of 
X l:n and Xn:n (the minimal and maximal order statistics). Then the density h of the sum X l:n + Xn:n is 

100 n(n - 1) 
h(z) = f(x, z - x)dx = e-z x 

-00 2n 

x [f.: e2x (2 - eX- z - eX)n-2dx + Io Z12 (e-X - e-Z+X)n-2d x ] . 

The first integral can be~omputed directly by substitution and it leads directly to (2.5.18). 
The recursive relation (2.5.19) for computing the second integral can be obtained as follows. 

First, 

t l2 t l2 
I n = Jo e-X(e-X - e-z+x )n-3dx - e-Z 10 eX(e-X - e-z+x )n-3dx. 

For the two integrals in the above equation, denoted as hand h, respectively, we have 

I _IoZ12 -2x( -x -z+x)n-4d -zJ 
1 - e e - e x - e n-2, 

o 
(2.5.20) 

t l2 
h = -e-Z 10 e2x (e-x - e-z+Xt-4dx + I n-2. (2.5.21) 

To compute J~/2 e-2x (e-X - e-z+x)n-4dx and J~/2 e2x (e-X - e-z+x )n-4dx, let us apply the 
integration by parts technique to the integrals on the left-hand side of (2.5.20) and (2.5.21). We get 

Io
Z12 x( -x -z+x)n-3d e e - e x 

o 

Io
z12 _ (1 -z)n-3 X( 3)( -x -z+x)n-4( -x -z+X)d - - - e - e n - e - e -e - e x 

o 

= -(1 -e-z )n-3 + (n - 3) I I n-2 + e-z fo ZI2 e2x (e-x - e-Z+X)n-4d x }. 

Thus 
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and 
-z 2x( -x -z+x)n-4d - e J iZ/ 2 (1 -z)n-3 n - 4 

e e e - e x = - -- n-2. 
o n-2 n-2 

Substituting these integrals into (2.5.20) and (2.5.21) leads to recursive formula (2.5.19). 0 

It is well known [see, e.g., Gumbel (1944)] that the distribution of the midrange converges 
(when appropriately normalized) to the logistic distribution given by the density 

e-1zl 
fez) = (1 + e-1zl)2· 

This limiting density is the first factor in the expression (2.5.18) for the density h of the sum of the two 
extremal order statistics. Clearly, no normalization (scaling) is required for the sum Xl:n + Xn:n to 
converge to this logistic variable as n increases to infinity. Consequently, we see that for the Laplace 
distribution a simple multiplication of the midrange by 2 is required to achieve the limiting standard 
logistic distribution. 

The distribution of X for n = 2k + 1 was given in (2.5.10). In our next result, we present the 
density of X in case of an even sample size, as derived by Asrabadi (1985), omitting the details of 
its technical derivation. 

Proposition 2.5.5 The distribution of the sample median X for n = 2k is given by the density 

k-2 ( l)i (k-l) 
f - (z) = n! ". - i e-(k+l+i)lzl (1 _ e-(k-l-i)lzl) 

X 2k[(k _1)!]2 ~ 2'(k -1 - i) 
1=0 

_ (_I)k Izle-2k1zl + _1_e-2klzl. 
2k-l k2k 

2.5.3 Moments of order statistics. The computation of central moments of order statistics con­
nected with a general classical Laplace distribution is straightforward. Using the explicit density 
(2.5.5) of the rth order statistic Xr:n , we obtain 

k k n!r(k + 1) { k n-r r-l} 
E[(Xr:n - () ] = s x (-1)" aj + "bj , 

(r -1)!(n -r)! ~ ~ 
J=o J=O 

(2.5.22) 

where 

a. = (-I)j (n - r)! T(r+Hl)(r + j)-(k+l) 
J j! (n - r - j)! 

(2.5.23) 

and 

b. = (-I)j (r -I)! T(n-r+2+j)(n _ r + 1 + j)-(k+l). 
J j!(r - 1 - j)! 

(2.5.24) 

In particular, for odd n, the mean of the sample median X (n+1)/2:n is equal to (); the variance of the 
sample median is 

4 2 I (n-l)/2 
E[ X _ () 2] _ s n. " 

«n+l)/2:n ) - [en _ 1)/2]! ~ Cj. 
j=o 

(2.5.25) 
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where 

[ 3]-1 
Cj = (-l)j j! (n; 1 _ j }2J+Cn+ I)/2 (n ~ 1 + j) (2.5.26) 

When the sample size n = 2k is even, the mean of the sample median is still equal to e; the variance 
of the sample median was derived in Asrabadi (1985). Its value for the standard classical Laplace 
distribution is 

(
k-2 ) n! 22-k "'d.+Tk- 3k-4{(_I)k-I+ 1} 

[(k-l)!]2 ~ ) , 
}=o 

(2.5.27) 

where 

(k - 1)' . 3 
d· = . (-2)-J(k -1- .)-I{(k+ 1 + .)-3 - (2k)- }. 

} j!(k-l-j)! ) ) 
(2.5.28) 

Govindarajulu (1966) obtained expressions for the means, variances and covariances of order statis­
tics from the standard classical Laplace distribution in terms of those from the standard exponential 
distribution. His method applies to a general distribution that is symmetric about the origin [see 
also Balakrishnan et al. (1993)]. Let Xl:n, ... , Xn:n denote the order statistics corresponding to a 
random sample of size n from a symmetric distribution with c.d.f. F x, and let YI:n, ... , Yn:n be the 
order statistics obtained from a similar sample from the corresponding folded distribution with c.d.f. 

Fy(y) = 2Fx(y) - 1, y ~ 0 (so that Y !!: IX!). Then we have the relations 

E[X;:n] = 21n I~ C)E[Y:-i:n- i] 

+(_l)k ~ C)E[YLr+l:i] I' 1:::: r :::: n, (2.5.29) 

and for 1 :so r < s :so n, 

s-l ( ) - L ~ E[Yi-r+l:;]E[Ys-i:n-;] 
l=r 

+ ~ C)E[Yi-S+l:iYi-r+l:;] I (2.5.30) 

[see Govindarajulu (1963)]. Recalling that if X is a standard classical Laplace variable, then Y = IXI 
is a standard exponential variable, Govindarajulu (1966) used well-known explicit expressions of the 
means of exponential order statistics in (2.5.29)-(2.5.30) to obtain the following moments of order 
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statistics connected with the CL(O, 1) distribution: 

E[Xr:n] = 2~ {~ (;)51 (r - i, n - i) 

-~ (;)51(i - r + 1, i»), 1 ~ r ~ n, 

E[X;:n] = 21n {~(;)52(r - i, n - i) 

+~(;)51(i-r+l,i»), l~r~n, 
and for 1 ~ r < s ~ n, 

E[Xr:nXs:n] = 21n {I: (;)53(r - i, s - i, n - i) 
1=0 

Here, for 1 ~ r ~ n, 

51(r,n) = 

and for 1 ~ r < s ~ n, 

s-I ( ) 
- ~ ~ 51 (i - r + 1, i)51 (s - i, n - i) 

I=r 

+ ~ (;) 53 (i - s + 1, i - r + 1 , i) ). 

n 
1 L ~, 
I 

i=n-r+1 

~ 1 2 52(r, n) = ~ :z + [51 (r, n)] , 
i=n-r+1 I 

n 
1 

53(r,s,n)= L :z+51(r,n).51(s,n). 
i=n-r+1 I 

(2.5.31) 

(2.5.32) 

(2.5.33) 

(2.5.34) 

(2.5.35) 

Utilizing the relations (2.5.31)-(2.5.33), Govindarajulu (1966) calculated the means, variances, and 
covariances of order statistics connected with the standard classical Laplace distribution for sample 
sizes up to 20. 

Remark 2.5.4 Balakrishnan (1988) extended the relations (2.5.29) and (2.5.30) to the case of a 
single-scale outlier model (when the random sample consists of n - 1 i.i.d. symmetric variables and 
one symmetric scale outlier). Balakrishnan and Ambagaspitiya (1988) used this extension in studying 
robustness of various linear estimators of the location and scale parameters of the classical Laplace 
distribution. The results have also been extended by Balakrishnan (1989) to the case of independent 
but not necessarily identically distributed observations from the Laplace distribution. 

Remark 2.5.5 Akahira and Takeuchi (1990) studied the loss of information associated with the order 
statistics and estimators related to the Laplace distribution. 
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Remark 2.5.6 Lien et al. (1992) derived moments of order statistics and related best linear unbiased 
estimators ofthe location and scale parameters connected with the standard doubly truncated Laplace 
distribution with density 

1 
f(x) = 2(1 _ P _ Q) e- 1xl , log(2Q).::: x .::: -log(2P), (2.5.36) 

where P and Q represent the proportions of truncation on the left and right of the standard classical 
Laplace density. Khan and Khan (1987) obtained recurrence relations for the moments of order 
statistics connected with the doubly truncated Laplace distribution (2.5.36). 

2.5.4 Representation of order statistics via sums of exponentials. In many considerations we 
found it useful to represent order statistics in the form of sums of independent exponential random 
variables [see, for example, Subsection 2.6.1.1]. 

It follows from (2.2.10) that a vector (Xl, ... , Xn) of i.i.d. standard classical Laplace random 
variable has a distributional representation of the form 

(2.5.37) 

where (01, ... , 02) are i.i.d. Rademacher r.v.'s (random signs taking pluses and minuses with equal 
probabilities) and (WI, ... , W n ) are i.i.d. standard exponential variables independent of the Oi'S. 

Let Bn be a Bernoulli random variable counting the number of pluses among the Oi'S. The 
number of minuses is denoted by En = n - Bn. 

Proposition 2.5.6 Let (X 1, ... , Xn) be a vector of i. i.d. ce(o, 1) random variables, and let Bn be 
a Bernoulli random variable with p = 1/2 independent of two independent sequences (W;)~l' 
(Wi )~1 of i.i.d. standard exponential random variables. 

Then the order statistics of (X 1, ... , Xn) have the following distributional representations: 

d - -
(Xl:n ,"" Xn:n) = (-WBn :Bn ,···, -W1:Bn , W1:Bn,···, WBn:Bn) 

Proof It is enough to notice that conditionally on the Oi 's, {Wi, 0i = I} are independent of {Wi, 0i = 

-I}. Thus we can represent {Wi, Oi = I} by {Wi, i = 1, ... , En}, and {Wi, Oi = I} by {Wi, i = 
1, ... , Bn}. The first representation then follows by appropriate ordering of these two sequences. 

The second representation follows from the well-known representation of the exponential order 
statistics: 

( 
i )n n d WI 

(Wi:n)i=l = L n - 1+ 1 
1=1 i=l 

(2.5.38) 

[See, e.g., Balakrishnan and Cohen (1991), p. 34.] o 
Remark 2.5.7 Consider n = 2k + 1. Let Kn = max(Bn , En) and On = sign(Bn - k - 1/2), where 
Bn is as in the above representation. We then have the following representations for the median: 

Kn-k K 
d" WI d ~WI 

Xk+1:n=On ~ K -1+1 =on ~ -1-' 
1=1 n l=k+1 

Here Kn and On are dependent but jointly independent of the Wi'S. 
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2.6 Statistical inference 
In this rather lengthy section we discuss basic statistical theory and methodology for the Laplace 
distribution. We warn readers that some of the proofs presented herein may be tough going but in our 
opinion quite a rewarding experience. When collecting material for this section we were pleasantly 
surprised by the abundance of available results scattered in the literature. Before proceeding with 
results on estimation and testing, let us make some remarks concerning the classical Laplace location­
scale family of distributions with the density 

1 (x-e) f(x; e, s) = -; f -s- , -00 < e < 00, 0 < s < 00, -00 < x < 00, (2.6.1) 

where f is the standard classical Laplace density (2.1.2). We start with an observation that our class 
is not a member of the exponential family of distributions, i.e., the density (2.6.1) cannot be written as 

aCe, s)b(x)eLf=! c;(O,s)d;(x), -00 < e < 00, 0 < s < 00, -00 < x < 00, (2.6.2) 

where aCe, s) and cj(8, s), 1 ~ i ~ k, are some functions of the vector parameter (e, s) and b(x) 
and dj (x), 1 ~ i ~ k, are some functions of x. Consequently, many standard results that are valid 
for exponential families of distributions are not available for the Laplace distribution. 

Let X I, ... , Xn be i.i.d. each with density (2.6.1). If the density was of the form (2.6.2), then 
the data could be reduced to the set of k sufficient statistics (TI, ... , n), where 

n 

Tj = 1i(XI, .. ·, Xn) = Ldj(Xj). 
j=1 

(2.6.3) 

Since we are not dealing with exponential family, this is not the case. Clearly, the set of all order 
statistics 

T = (XI:n, ... , Xn:n) (2.6.4) 

is sufficient, as it is for any i.i.d. observations. Moreover, greater reduction of the data is not possible 
here, since the statistic T is also minimal sufficient [see, e.g., Lehmann and Casella (1998)]. 

Proposition 2.6.1 Let P be the family of densities (2.6.1), and let the variables X I, ... , Xn be i.i.d. 
each with density f(·; e, s) E P. Then the statistic T given by (2.6.4) is minimal sufficientfor P. 

The proof of Proposition 2.6.1 hinges on the following lemma, presented in Lehmann and 
Casella (1998). 

Lemma 2.6.1 IfP is afamily of distributions with common support and Po c p, and ifT is minimal 
sufficient for Po and sufficient for p, it is minimal sufficient for P. 

Proof To establish Proposition 2.6.1, note that the statistic T is sufficient for P by the Factorization 
Criterion [see, e.g., Lehmann and Casella (1998), Theorem 6.5]. It remains to show that T is also 
minimal sufficient. Let Po be the subset of P of these densities (2.6.1) where s = 1. In view of 
Lemma 2.6.1, it is enough to show that T is minimal sufficient for Po. Consider a subset PI of Po 
consisting of densities with a rational value of e. Since the family PI is countable, the set of statistics 
of the form 

S'(X X ) _ n?=1 f(Xj;8j,s) 
] I, ... , n - n'! f(X-' 0 )' 

1=1 I" s 
(2.6.5) 
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where ej is the jth rational number different from zero (since there are countably many rational 
numbers, they can be enumerated), is minimal sufficient for PI [see Lehmann and Casella (1998), 
Theorem 6.12]. Since for the Laplace distribution 

(2.6.6) 

it is clear that the set of statistics (2.6.6) is equivalent to the set of order statistics, that is, 

(2.6.7) 

if and only if (X I, ... Xn) and (YI, ... , Yn) have the same order statistics. Thus the set of order 
statistics T is minimal sufficient for PI, and also for Po via another application of Lemma 2.6.1. D 

We now tum to a study of the amount of Fisher information contained in a random sample from 
the distribution with density (2.6.1). For the location-scale family with density (2.6.1), the entries of 
the Fisher information matrix, 

[ Ill 
I(e,s)= J 

21 
(2.6.8) 

are given by 

1 f (fl(y»)2 
III = s2 fey) f(y)dy, (2.6.9) 

1 f (yfl(y) )2 
h2 = s2 fey) + 1 f(y)dy, (2.6.10) 

and 

1 f (fl(y»)2 h2 = hI = 2" Y -- f(y)dy 
s fey) 

(2.6.11) 

[see, e.g., Lehmann and Casella (1998)]. After routine calculations (see Exercise 2.7.31), we obtain 

I(e,s) = [1/0s2 0 ] 
l/s2 . (2.6.12) 

It is worth noting that J[f'(y)/f(y)]2 f(y)dy is 1 for both Laplace and normal densities but has a 
different value for other symmetric distributions such as logistic and Cauchy. 

Remark 2.6.1 Note that the Laplace density does not satisfy the standard differentiability assump­
tions required for the computation of the Fisher information matrix, since f is not differentiable at 
zero. However, the relations (2.6.9)-(2.6.11) are valid under a weaker assumption that f is absolutely 
continuous, which is the case for the Laplace density [see, e.g., Huber (1981), Section 4.4]. 

2.6.1 Point estimation. We start with the problem of estimating the parameters of the Laplace 
distribution. Since the theory of estimation for the classical Laplace distribution is well developed, 
we shall stick to the c.c(e, s) parametrization. We shall assume that X I, ... ,Xn are n mutually 
independent random variables with probability density function (2.1.1), while XI, ... ,Xn are their 
particular realizations. 
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2.6.1.1 Maximum likelihood estimation. The likelihood function based on a sample of size n from 
the classical Laplace distribution with scale s and location () is 

(2.6.l3) 

Let us consider three cases, two where one of the parameters is known and one where both parameters 
are unknown. 

Case 1: The value of s is known. Clearly, to find the maximum value of fn with respect to (), is 
the same as to minimize the expression 

1 n 
- Llxi -()I 
n 

(2.6.14) 
i=1 

with respect to (). Note that (2.6.14) is the expected value Elf - ()I, where f is a discrete random 
variable taking each of the values XI, ... , Xn with probability lin. Consequently, the value of () 
that minimizes (2.6.14) is the median of f, which here coincides with the sample median of the 
observations XI, ... , Xn [see Hombas (1986)]. Norton (1984) established this result by using calculus 
(see Exercise 2.7.34). 

Thus for n odd, the maximum likelihood estimator (MLE) of (), denoted en, is uniquely defined 
as the middle observation X(n+I)/2:n. For n even, en can be chosen as any value between the two 
middle observations. For convenience, in this case the canonical median, which is the arithmetic 
mean of the two middle values, is usually used in practice. 

Proposition 2.6.2 Let X I, ... , Xn be i.i.d. with the eC((), s) distribution (2.1.1), where s is known 
and () E IR is unknown. Then the MLE of(), 

()
A _ { Xk+l:n, for n = 2k + 1, 
n- I 

2: {Xk:n + Xk+l:n}, for n = 2k, 
(2.6.15) 

where Xr:n denotes the rth order statistic, is 

(i) unbiased; 

(ii) consistent; 

(iii) asymptotically normal; i.e., In(en -() converges in distribution to a normal distribution with 
mean zero and variance s2. 

Proof The result can be established by using the explicit form of the density and moments of sample 
median, derived in Section 2.5. 

(i) Using the formulas for the moments of order statistics (see Section 2.5), we find that the 
mean of the sample median defined by (2.6.15) is equal to (). 

(ii) The consistency of en follows from part (i) and the fact the variance of en converges to zero 
as n -+ 00 (Exercise 2.7.39). 

(iii) The standard regularity conditions usually stated in theorems on asymptotic normality of 
MLE's do not hold for Laplace distribution. To establish the asymptotic normality, use Theorem 3.2, 
Chapter 5 of Lehman (1983), which asserts that the sequence In(en - () converges to the normal 
distribution with mean zero and variance 1 1[4 f2(0)], where f is the p.d.f. of X I. 0 
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Remark 2.6.2 The median may not be the best estimator to use for the CC(O, s) distribution, since 
there are other unbiased estimators of e with smaller variances. For example, Rosenberger and Gasko 
(1983) found that the variances of both the midmeanl5 and the broadened median 1 6 are less than that 
of the median. However, the median has a desirable property of robustness (as do most other trimmed 
means) as it performs well (in terms of efficiency) if the assumed model departs from the Laplace 
distribution; Rosenberger and Gasko (1983) recommend the median as an estimator oflocation based 
on samples of size n ::: 6 from a symmetric, possibly heavy tailed distribution. 

Keynes (1911) conjectured that the property that the sample median is a MLE of the location 
parameter is a characterization of the Laplace distribution. This indeed is the case, as shown in 
Kagan et al. (1973) for the case of n = 4 and under the assumption that the density function of 
the considered distribution is lower semicontinuous. Recall that normal distribution admits a similar 
characterization, where the MLE of the shift parameter is the sample mean for sample sizes n = 2, 3 
[see, Teicher (1961)]. It is interesting to note that the result for Laplace fails for sample sizes n = 2, 3 
[see Rao and Ghosh (1971) and Exercise 2.7.35]. 

This characterization problem of the Laplace distribution has been thoroughly studied in Find­
eisen (1982), who showed that the following conditions imply that f is a Laplace density (with the 
mode at zero), where Xl, ... , Xn are i.i.d. with density f(x - e), -00 < x, e < 00. 

(i) For all n, every median of the random sample of size n is the MLE of O. 

(ii) There is at least one even n, such that every median of the random sample of size n is the MLE 
ofO. 

(iii) There are infinitely many n's such that for every random sample of size n at least one median 
is the MLE of O. 

(iv) For sufficiently large n, the canonical median given by (2.6.15) is always a MLE of e. 

In addition, Findeisen (1982) demonstrated that conditions (v) and (vi) given below are not sufficient 
to conclude that f is a Laplace density (see Exercises 2.7.36 and 2.7.37). 

(v) There exists at least one n such that every median of a random sample of size n is the MLE 
of e. 

(vi) There exists an even n such thatthe two particular medians, Xn/2:n and X n/2+1:n, are theMLE's 
of e. 

Buczolich and Szekely (1989) improved these results by showing that the characterization of the 
Laplace distribution of Kagan et al. (1973) holds for an arbitrary even sample size n 2: 4 and without 
any regularity conditions on the density, and by replacing "every median" with "some median" in 
condition (ii) of Findeisen (1982) given above. Thus we have the following characterization of the 
Laplace distribution. 

Proposition 2.6.3 Let {F (x - 0), e E IR} be a family of absolutely continuous distribution junctions 
on IR depending on a shift parameter e. If the canonical sample median given by (2.6.15) is the MLE 

15The midmean is the average of the central half of the order statistics (the 25% trimmed mean). 
16For n odd. the broadened median is the average of the three middle order statistics for 5 ~ n ~ 12 and the five middle 

order statistics for n 2: 13. For n even. it is a weighted average of the four middle order statistics for 1 ~ n ~ 12 with weights 
1/6. 1/3. 1/3. and 1/6. while for n 2: 13 it is a weighted average of six middle order statistics with weights 1/l0. 1/5. 1/5. 
1/5. 1/5. and 1/l0 [see. e.g .• Rosenberger and Gasko (1983)]. 
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of() for some even sample size n ::: 4, then F must be a Laplace distribution function so that 

F'(x) = f(x) = ~e-alxl, x 1= o. 
2a 

We refer the reader to Buczolich and Szekely (1989) for a fairly advanced proof of the result. 

Remark 2.6.3 More generally, if for some i E {I, 2, ... , n - I} a linear combination of two con­
secutive order statistics of the form 

is the MLE of (), where n ::: 3 and 

then F must be a skewed Laplace distribution function corresponding to the density 

if x :s 0, 
if x ::: 0, 

(2.6.16) 

(2.6.17) 

(2.6.18) 

where bi is some positive constant, b2 = n~i bI, and c is chosen so that the density (2.6.18) integrates 
to 1 [Buczolich and Szekely (1989)]. In particular, Proposition 2.6.3 still holds if the canonical sample 
median is replaced by an arbitrary median [of the form (2.6.16) with i = n/2]. 

Remark 2.6.4 We see that the MLE of the location parameter when sampling from a Laplace distri­
bution is the sample median (the empirical D.S-quantile). A question arises as to whether there are any 
distributions for which the MLE's of the location parameters are given by other empirical quantiles. 
It turns out that this is generally true for skewed Laplace distributions (2.6.18) (see Section 3.5 of 
Chapter 3). One family of skewed Laplace distributions is given by the p.d.f. 

f(x) = a(I - a) e -alx-lil ' { 
-(1-allx-1i1 

e , 
for x < (), 
for x ::: (), 

(2.6.19) 

where () E (-00, 00) and a E (0, 1) [see Poiraud-Casanova and Thomas-Agnan (2000)]. Here, given 
i.i.d. observations from the density (2.6.19) (with a given value of a), the MLE of () is the empirical 
a-quantile (see Exercise 2.7.38). For a = 1/2, the density (2.6.19) reduces to a symmetric Laplace 
density and the MLE of () is the empirical D.S-quantile (the median). 

The two-tailed power distribution with the c.d.f. 

{ 
xn/()n-I 

F(x) = 1 _ (1 _ x)n /(1 _ ()n-I 

and density 

{ 
nxn-I/()n-l 

f(x) = n(I _ x)n-l /(1 _ ()n-I 

for ° :s x :s () 
for () :s x :s 1 

for ° :s x :s () 
for () :s x :s 1 

has a similar property: the MLE of the parameter () (which is not actually a location parameter as 
described in (2.6.1» is given by an order statistic. (This distribution serves as an alternative to beta 
distributions. For n = 2, we have the triangular distribution.) 
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Remark 2.6.5 Marshall and Olkin (1993) extended the above maximum likelihood characterization 
of Laplace distribution to the multivariate case. They showed that if XI , X2, X3, X4 is a random sample 
of size n = 4 from a location family {F(x - e), e E JRd} of distributions in JRd, where f = F' is 
lower semi continuous at x = 0, and the vector of sample medians is a MLE of e, then f must be the 
product of univariate Laplace densities. 

Case 2: The value of e is known. Here the likelihood function is maximized by the sample first 
absolute moment. 

Proposition 2.6.4 Let XI, ... , Xn be i.i.d. with the eC(e, s) distribution (2.1.1), where e is known 
and s > 0 is unknown. Then the MLE ofs, 

is 

(i) unbiased; 

(ii) strongly consistent; 

1 n 

sn = - LIXi -el, 
n 

i=1 

(2.6.20) 

(iii) asymptotically normal; i.e., ../fi(sn - s) converges in distribution to a normal distribution with 
mean zero and variance s2; 

(iv) efficient. 

Proof. To establish (2.6.20), write the log-likelihood, 

1 n 

log fn(XI, ... , Xn; e, s) = -n log2 - n logs - - L IXi - ej, 
s 

i=1 

and note that its derivative with respect to s, 

is decreasing for s < sn and increasing for s > sn. 
(i) The unbiasedness of sn follows from the representation 

d IXi -el =sW, 

where W is standard exponential with mean and variance equal to one. 

(2.6.21) 

(2.6.22) 

(ii) The strong consistency of sn follows from the Strong Law of Large Numbers, since the 
random variables (2.6.22) are i.i.d. with mean s. 

(iii) The asymptotic normality follows from the classical version of the Central Limit Theorem, 
as the random variables (2.6.22) are i.i.d. with mean and standard deviation both equal to s. 

(iv) The efficiency of sn follows from the fact that the variance of sn coincides with the Cramer­
Rao lower bound (for the variance of any unbiased estimator of s). Indeed, the Cramer-Rao lower 
bound is [nI (s)rl, where 

I(s) = -E (::210gf(X; e, S») (2.6.23) 
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is the Fisher information in one observation from f(x; fJ, s). The second derivative oflog f(x; fJ, s) 
with respect to s is 

a2 121x-fJl 
as2 log f(x; fJ, s) = s2 - s3 (2.6.24) 

so I (s) = I/s2 and the Cramer-Rao lower bound is s2 In. D 

Note that since sn is unbiased and efficient, it is a uniformly minimum variance unbiased 
estimator (UMVU) of s. 

We have shown that for a scale parameter family of Laplace distributions, a MLE of the scale 
parameter is the first absolute moment given by (2.6.20). Is the converse true? Recall that for the 
corresponding scale parameter family of normal distributions, a MLE of the scale parameter is 

J ~ L:?=1 Xt, which actually is a characterization of a normal distribution [see Teicher (1961)]. For 
the Laplace distribution, such characterization holds as well. 

Proposition 2.6.5 Let {F (x Is), s > O} be a family of absolutely continuous distributions on JR, 
depending on a scale parameter s. Suppose that the density f (x) = F' (x) satisfies the following 
conditions: 

(i) f is continuous on (-00,00); 

(ii) 

. f(AY) 
hm -- = 1 for all A > O. 
y--+o f(y) 

(2.6.25) 

Ifforallsamplesizes n, aMLEofs is given by ~ I:?=1 lXii, then F is Laplace and f(x) = ie-Ixl. 

Proof Suppose that sn = ~ L:?=1 IXi I is a MLE of s for all sample sizes n. Then sn maximizes the 
likelihood function, so we have the inequality 

(2.6.26) 

for all s > 0 and Xi E JR, i = 1, ... ,n. Let Yi = xilsn and A = snls. Then we can write (2.6.26) as 

n n n f (y;) ~ An n f (AYi) , (2.6.27) 
i=1 i=1 

where A > 0 and Y1 , ... , Yn satisfy the condition 

n 

LIYiI =n. (2.6.28) 
i=1 

Consider the function f for x > O. With positive Yi'S satisfying (2.6.28) and arbitrary A > 0, the 
condition (2.6.26) leads to an exponential function, 

f(x) = qe-X , x> 0 (2.6.29) 
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[see Teicher (1961, Theorem 2)]. Similarly, for x > 0, denote g(x) = I( -x) and write (2.6.27) as 

n n 

(2.6.30) 
i=l i=l 

where A > 0, and Yi > 0 satisfy I:7=1 Yi = n. Proceeding as above, we arrive at the conclusion that 

I(x) = g(-x) = C2ex , x < O. (2.6.31) 

Since I is a probability density on ( -00, 00), we must have Cl + C2 = 1. To conclude the proof, note 
that only the choice CJ = C2 = ~ leads to a MLE given by the sample first absolute moment. D 

Remark 2.6.6 Cifarelli and Regazzini (1976) considered the problem of characterization of prob­
ability distributions for which the mean absolute deviation (2.6.20) is an unbiased and efficient 
estimator of the scale parameter. Suppose that Xl, ... , Xn are i.i.d. with density 

(2.6.32) 

where I is positive for all real x and s > 0, continuous at x = 0, and satisfies some technical 
conditions. Cifarelli and Regazzini (1976) showed that if the statistic (2.6.20) (with e = 0) is 
unbiased and efficient for the scale parameter s of (2.6.32), then I is the standard classical Laplace 
distribution. Cifarelli and Regazzini (1976) also obtained a generalization, showing that if for some 
y > 0 the statistic 

h 1 ~ y 
Sn,y = -;; ~ I Xii 

i=l 

(2.6.33) 

is an unbiased and efficient estimator for the parameter sy [under the model (2.6.32)], then g must 
be the exponential power density 

which we shall (briefly) consider in Section 4.4.2 of Chapter 4. 

Case 3: Both sand e are unknown. Similarly as above, here the MLE of e is the sample median 
en given by (2.6.15), while the MLE of the scale parameter s is equal to the mean absolute deviation 

(2.6.34) 

We shall demonstrate that these estimators are consistent and asymptotically normal. To prove these 
results one could use the general theory of maximum likelihood estimation and its asymptotics. 
Instead we have decided to give more explicit derivations using the specific structure of maximum 
likelihood estimators for Laplace distributions. We restrict ourselves to the case of an odd sample 
size, i.e., n = 2k + 1. The case of an even sample size can be derived in an analogous way with some 
minor adjustments for the different form of the median. Thus we shall assume that n = 2k + 1. 
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Let us start with an interesting representation of the median and the mean absolute deviation 
for Laplace distributions. First, note the following general relations for the mean absolute deviation: 

1 n 1 n 

- L IXi - Xk+1:n I = - L IXi:n - Xk+l:n I 
n i=1 n i=1 

1 [ k n ] =;; L(Xk+l:n - Xi:n) + L (Xi:n - Xk+I:n) 
i=1 i=k+2 

1 [ n k] =;; L Xi:n - LXi:n . 
i=k+2 i=1 

(2.6.35) 

Now let us consider Xi'S being i.i.d. from the standard classical Laplace distribution. We use 
the representation of their order statistics given in Proposition 2.5.6 to obtain the following result. 

Proposition 2.6.6 Let (XI, ... , Xn) be a vector of i.i.d. C.c(O, 1) random variables, n = 2k + 1, 
and let Bn be a Bernoulli random variable with p = 1/2 independent of two independent sequences 
(W;)~I' (Wi)~1 of i.i.d. standard exponential random variables. Define En = n - Bn, Kn = 
max(Bn, En), Kn = n - Kn, and 8n = sign(Bn - k - 1/2). 

Then we have the following three joint representations of On and sn: 

Here and below, if the upper limit of summation is smaller than the lower limit, then the sum is 
assumed to be zero. 

Proof. The representation for the median was explained in Remark 2.5.7. For the mean absolute 
deviation, let us consider two cases. 

First, let Bn 2: k + 1, i.e., Kn = Bn. We have 

n Bn 

L Xi:n 1: L Wi:Bn 
i=k+2 i=Bn-k+1 
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and 
k En Bn-k-I 

L Xi:n ~ - L W i:En + L Wi:Bn · 

i=1 i=1 i=1 

Thus in this case the first representation for sn follows from the relation (2.6.35). 
The second case of Bn :S k, i.e., Kn = Bn , can be treated similarly. We obtain 

The first representation of sn follows from the fact that Bn is independent of the Wi'S and Wi'S, which 
allows for the replacement of Wi'S by W; 's (and vice versa) in the last equation. 

To prove the second representation, we apply the representation of order statistics of exponential 
random variables given in (2.5.38). Let us consider only the case of Bn 2: k + 1, the other case being 
symmetric. Since the representation for the median was discussed in Remark 2.5.7, here we consider 
the mean absolute deviation. 

We have (for Bn 2: k + 1) 

(2.6.36) 

By representation (2.5.38), the distribution ofthe first term in the above equation is the same as that of 

i~B~+l C~ B. ~+ 1 +1~Btl B. ~+ 1) 
Bn-k W Bn Bn W 

-k" I + "" I ~ Bn - l + 1 L..- ~ Bn - l + 1 
1=1 I=Bn-k+1 1=1 

Bn-k W Bn 

= k " I + " WI. ~ Bn -I + 1 L..-
1=1 I=Bn-k+1 

The second and the third terms in (2.6.36) can be written as follows: 

Bn-k - I ; W Bn-k- I Bn-k - I 

L L B -: + 1 = L L -=-Bn-~---::;-+-1 
;=1 1=1 n 1=1 ;=1 

Bn-k - I B - k - I "n W 
{;;( Bn -l+l I, 
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Combining these three distributional relations results in the second representation of the mean abso­
lute deviation. 

Finally, the third representation is obtained by replacing the sequence (WI, ... , W Bn) by 
(WBn,···, WI) and (WI, ... , WB) by (WBn , ... , WI). D 

Now we prove the main theorem about consistency and asymptotic efficiency of en and sn as 
estimators of () and s. The proof is rather involved. We hope that our readers will communicate to us a 
simplified proof. Note, however, that consistency, asymptotic normality, and efficiency ofMLE's for 
various distributions is a challenging problem, and a number of prominent mathematical statisticians 
struggled with it over the last 30 years. 

Theorem 2.6.1 Let (Xi)~1 be a sequence ofi.i.d. random variables having C£«(), s) distribution. 

Then the pair of maximum likelihood estimators (en, S n) of «(), s) is consistent, asymptotically normal 
and efficient. The asymptotic covariance matrix has the form 

(See also Fisher s information matrix at the beginning of this section.) 

Proof. It is sufficient to assume that () = 0 and s = 1 and show that 

converges in distribution to the standard bivariate normal distribution while ,JTiE(en) and ,JTi[E(sn) 
-1] converge to zero. 

We shall use the representation of the estimators given in Proposition 2.6.6. By the Central 
Limit Theorem and Skorohod's representation theorem we can assume that 

(Bn - n/2)/Jn/4 

converges almost surely to a standard normal random variable Z which is independent of the Wi'S 

and Wi'S. 
Let us first consider the median en. By Proposition 2.6.6, we need to find the limiting distribution 

of the variable An equal to the middle expression in the following inequalities multiplied by On: 

(2.6.37) 

Consider the right-hand side expression, say Rn, and take its characteristic function with respect 
to the conditional distribution given Bn: 

<PRn (tIBn) = E (exp (itvti; On t WI) IBn) 
n l=k+1 

1 
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Note that i8n-J'fi1 Kn converges in the absolute value to zero, and 8n-J'fi(Kn - k)1 Kn converges 
by the assumption to Z a.e. Consequently, the considered characteristic function converges (a.e. 
with respect to Kn) to eit z. Thus the conditional distribution of the right-hand side of (2.6.37), Rn, 
converges to a degenerated distribution at Z. Thus the convergence is in probability. Exactly the same 
arguments can be repeated for the left-hand side of (2.6.37). This implies that An, conditionally on 
Bn, converges in probability to Z. To obtain the unconditional limiting distribution of An, note that 

Since ¢An(tIBn) is bounded and convergent almost everywhere, it follows from the Dominated 

Convergence Theorem that ¢An (t) converges to E(eitZ ) = e-t2j2 . 

Now we consider the mean absolute deviation. We again consider the distribution of sn condi­
tionally on Bn. Set 

and note the representation 

Note that the four terms in the above representation are mutually independent. Also, the first two 
terms are independent of the median. It follows from the Central Limit Theorem that each of the first 
two terms is convergent in distribution to the standard normal distribution multiplied by .fi12 (we 
need also to invoke the Law of Large Numbers to show that Knln converges almost surely to 112). 
Thus their sum is convergent to the standard normal distribution. Clearly, 

converges to zero. 
It remains to consider the distributional limit of the last term, 

Note the following inequalities (E(WI) = 1): 

and 

Kn (1 1 ) Kn ( 1 1 ) Kn (1 1 ) 
-J'fi L WI --- s-J'fi L --- WIS-J'fi L WI ---- . 

K n I n k+2 n 
l=k+2 n l=k+2 l=k+2 
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Since Knln converges in probability to 1/2, and (Kn - k - 1/2)IJn converges almost surely to 
IZ1/2, we conclude that 

In(Kn - k - 2) (_1 _~) and In(Kn - k _ 2) (_1 __ ~) 
Kn n k + 2 n 

converge in probability to IZI/2 (conditionally on Bn). Observe that 

In I: WI (_1 - ~) and In I: WI (_1_ - ~) 
l=k+2 Kn n l=k+2 k + 2 n 

have the same limit (conditionally on Bn) since 

llKn- 1ln 
I/(k + 2) - lin 

converges in probability to one. In addition, 

Kn (1 1) k Kn WI 
In L WI - - - = - L -. 

1=k+2 k + 2 n k + 2 1=k+2 In 

The characteristic function (conditionally on Bn) of L~k+2 WL/ In is convergent to eitlzl/2. This 
shows that, in probability (conditionally on Bn), 

Kn (1 1) IZI IZI 
lim .;n" - - - (WI - E(WI)) = - - _. = O. 

n .... HXl ~ I n 2 2 
l=k+2 

Consequently, sn converges to the standard normal distribution and asymptotically is independent of 
en (the only terms in the representation of sn that are dependent on en are convergent in probability 
to zero). 

To conclude the proof, we need to show that 

lim .In[E(sn) - 1] = O. 
n ..... oo 

We have 

E(sn) = --+-+--+E L-A E(Kn) k 1 k (Kn 1) 
n n n k + 1 1=k+2 I n 

= ~ 1 ~_k_ E (~ ~) _ nl2 - k - 1. 
2+2+llk+nk+l+ ~k I n 

1= +2 

We see that all but the first two terms converge to zero at the rate o(n .... 1/ 2) and the first two terms 
converge to one at the same rate. This concludes the proof. D 

Remark 2.6.7 Harter et al. (1979) discuss adaptive MLE's of the location and scale parameters «() 
and s, respectively) of a symmetric population, where a sample is first classified as having come from 
uniform, normal, or Laplace distribution, and then the MLE's of () and s, appropriate for the chosen 
population, are computed. See Harter et al. (1979) and references therein for further information, 
including the classification criteria. 
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2.6.1.2 Maximum likelihood estimation under censoring. Let Xl, ... , Xn be an i.i.d. sample from 
the classical Laplace distribution with density f(·; e, s) given by (2.1.1) and distribution function 
F (.; e, s) given by (2.1.5). When the smallest r and the largest r observations are censored we obtain 
a Type II (symmetrically) censored sample: 

Xr+l:n :::: ... :::: X n- r:n . (2.6.38) 

If Xr+l:n :::: ... :::: Xn- r:n is a particular realization of (2.6.38), then the likelihood function is 

n-r 
n! r n L(e, s) = (r!)2 {F(Xr+l:n ; e, s)[l - F(xn- r:n; e, s)]} f(Xi:n; e, s). 

Utilizing (2.1.1) and (2.1.5) we obtain 

n! 

i=r+l 

(2.6.39) 

L(e s) = (2 6 40) , 2n(r!)2s2n-2 .. I e-(xn-r:n -8)/s (2_e-(Xr+l:n-8)/S) 
""n r , e < Xr+l:n, 

exp{L..;=r+1 (x;:n-O)/sj 

x exp { ~r (xn- r:n - Xr+l:n) - L:7':;+1 IX;:ns- O I}, e E [Xr+l:n, Xn- r:n], 
e(xr+ I:n -8)/s (2_e(xn -r:n -8)/s) 

I:n r, e > X n- r :n · 
exp( ;=r+1 (O-x;:n)/sj 

We now fix s > 0 and maximize the function L with respect to e. The likelihood function is mono­
tonically increasing in eon (-00, Xr+l:n) clearly and monotonically decreasing in () on (xn- r:n , (0), 
so that the maximum values of L must occur for some e in [Xr+l:n , x n- r:n]; see Exercise 2.7.44. But 
on the latter interval, the function L is maximized if the sum 

is minimal, so the MLE of e is sample median of the censored sample (which is the same as that of 
the original sample). Substituting the sample median On given by (2.6.15) into the likelihood function 
(2.6.40) results in the following function of s to be maximized, 

where 
n-r 

C = r(xn- r:n - Xr+l:n) + L IXi:n - Onl > O. 
i=r+l 

(2.6.41) 

(2.6.42) 

Since the function g is maximized at s = C I (n - 2r) (Exercise 2.7.44), we obtain the following 
MLE of s [see Balakrishnan and Cutler (1994)]: 

1 I n-r [[n/2]] I 
sn = n _ 2r L Xi:n - L Xi:n + r(xn- r:n - Xr+l:n) . 

i=[[(n+l)/21l+1 i=r+l 

(2.6.43) 

Remark 2.6.8 Balakrishnan and Cutler (1994) derived the bias and efficiencies of the above esti­
mators (compared to the BLUE's discussed below); see also Childs and Balakrishnan (1997a) for 
the derivation of the mean square error ofthese estimators. Balakrishnan and Cutler (1994) obtained 
similar explicit estimators of e and s under Type II right-censoring, while Childs and Balakrishnan 
(l997b) extended the results to a general Type II censored samples. 
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2.6.1.3 Maximum likelihood estimation of monotone location parameters. Let for each j = 
1,2, ... ,k, f(x; 8i) be the density (2.1.1) of the classical Laplace C.c(8i, s) distribution with the 
location parameter 8i and the scale parameter s = 1. Assume that ni items, 

XiI, Xi2,···, Xini' (2.6.44) 

are chosen from the distribution with density f (x; 8i), and that the resulting k samples are indepen­
dent. Our goal is to find estimates 81,82, ... ,Ok of 81,82, ... , 8k such that 

(2.6.45) 

Brunk (1955) considered problems of this type when f(x; 8) is a member of an exponential 
family of distributions (that includes the normal distribution with either unknown mean or unknown 
standard deviation but does not include the Laplace distribution), while Robertson and Waltman 
(1968) developed a procedure for finding restricted estimates (2.6.45) for a class of distributions 
containing the classical Laplace law. More information on the early history of such problems is given 
in Brunk (1965). 

A procedure for obtaining restricted maximum likelihood estimates developed by Robertson 
and Waltman (1968) assumes that the family of functions {f(x; 8), 8 E e}, where e is a connected 
set of real numbers, satisfies the following four conditions: 

(AI) f(x; 8) has support S which is the same for all 8 E e. 
(A2) For each XES the function f(x; 8) is continuous in 8. 
(A3) If XI, ... ,Xn E S, then the likelihood function 

n 

L(8; XI, ... , xn) = n f(Xi; 8) 
i=1 

is unimodal with mode M (not necessary unique). 

(2.6.46) 

(A4) If XI, ... ,Xn E Sand YI, ... ,Ym E S, and Mx , My are the modes of the likelihood 
functions L(8; XI, ... ,xn) and L(8; YI, ... , Ym), respectively, then Mxy is between Mx and My, 
where Mxy is the mode of L(8; XI, ... , Xn, YI, ... , Ym). 

Conditions A3 and A4 do not assume that the mode is unique [similar earlier results by van 
Eeden (1957) did assume the uniqueness of the mode], although condition A4 requires the existence 
of a certain rule by which the mode is to be selected. 

In this setting, let Mi be the mode of the likelihood function ofthe ith sample (2.6.44), and for 
1 :::: R :::: S :::: k, let M (R, S) denote the mode of the likelihood function 

S ni n n f(xij; 8) (2.6.47) 
i=Rj=1 

of the combined observations of the Rth through Sth samples. The objective is to find a point 
81,82, ... , Ok in the set 

(2.6.48) 

for which the likelihood function 

k ni 

L(cq, ... ,Cik) = n n f(xij; Cii) (2.6.49) 
i=lj=1 



2.6. Statistical inference 79 

is maximized. The main result of Robertson and Waltman (1968) asserts that under conditions AI­
A4 there exists a point in Sk maximizing the likelihood function (2.6.49) and that it admits the 
representation 

ej = min max M(R, S) = max min M(R, S). 
I::sR::Sj R:s.S:s.k j:s.S::sk I::sR::sS 

In addition, if 01 ~ 02 ~ ... ~ Ok and if 

then with probability one 

k 

lim "IMi - Oil = 0, 
m-"'oo~ 

i=1 

k 

lim" lei - Oil = 0, 
m--+oo~ 

i=l 

where m = min(nl, ... , nk) [see Robertson and Waltman (1968)]. 

(2.6.50) 

(2.6.51) 

(2.6.52) 

Evidently, the family of Laplace densities with location 0 E e = (-00, 00) and a given scale 
parameter s (for convenience assumed to be one) satisfies conditions AI-A3 above. Here the mode 
of the likelihood function (the MLE of 0) is the sample median. Further, if in case of an even sample 
size the median is chosen as in (2.6.15) to be the average of the two middle values, then condition A4 
is satisfied as well (see Exercise 2.7.40). Consequently, we have the following result [see Robertson 
and Waltman (1968)]. 

Proposition 2.6.7 Assume that we have k independent random samples, where the i th sample, given 
in (2.6.44), is from the classical Laplace distribution with the location parameter Oi and the scale 
parameters = 1. Thenel ~ 02 ~ ... ~ ek, where OJ is given by (2.6.50), is theMLEofOl, 02, ... , Ok 
subject to the condition (2.6.45). 

Further, as noted by Robertson and Waltman (1968), the sample median of the ith sample, Mi, 
converges almost surely to Oi by the Glivenk~antelli Theorem, so by (2.6.51) we have the almost 
sure convergence (2.6.52) of the restricted MLE's. 

2.6.1.4 The method of moments. Let XI, ... , Xn be a random sample from the classical Laplace 
distribution with density (2.1.1). As in the case ofMLE's, we shall consider three cases, two when 
one of the parameters is known, and one when both are unknown. 

Case 1: The value ofs is known. Since the mean of the C£(O, s) random variable is equal to 0, 
the method of moments estimator (MME) of 0 is the sample mean 

_ 1 n 

On = - LXi. 
n i=1 

(2.6.53) 

Clearly, the estimator (2.6.53) is unbiased for o. Further, by the Strong Law of Large Numbers and 
the Central Limit Theorem, it is consistent and asymptotically normal. 

Proposition 2.6.8 Let Xl, ... , Xn be i.Ld. with the C£(O, s) distribution (2.1.1), where s is known 
and 0 E IR is unknown. Then the MME of 0 given by (2.6.53) is 

(i) unbiased; 

(ii) strongly consistent; 
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(iii) asymptotically normal; i. e., In (en - e) converges in distribution to a normal distribution with 
mean zero and variance 2s2. 

Note that the asymptotic variance of the MME of e is twice as large as that of the MLE of e, 
so that for the Laplace distribution the asymptotic relative efficiency (ARE) of the sample median en 
relative to the sample mean en is 

For any finite sample size n, the variance of the MME is 

(2.6.54) 

while the variance of the MLE (the canonical median) is given in Section 2.5 [see also the relations 
(2.7.24)-(2.7.25), Exercise 2.7.39]. Table 2.7 contains the variances of en and en for sample sizes 
n = 1(1)7. We see that 

(2.6.55) 

when the sample size n is between 3 and 7, the difference being rather substantial. Chu and Hotelling 
(1955) established the relation 

B 1 - -- < 2k+l < 151B 1 -( 1 )3/2 Var(e) (1 )3/2 
k 2k + 2 - 1/ (2k + 1) -' k + 2k ' 

k ?:. 1, (2.6.56) 

where 

B = (2k + I)! (~)2k+l J 271: 
k (k!)2 2 2k + 1 ' 

(2.6.57) 

and concluded that if n = 2k + 1 ?:. 7, then the relation (2.6.55) holds as well (Exercise 2.7.42). 

n 1 2 3 4 5 6 7 
Var(en ) 2 1 0.667 0.500 0.400 0.333 0.286 
Var(en ) 2 1 0.639 0.406 0.351 0.261 0.236 

Table 2.7: The variances of On (the sample mean) and en (the sample median) for samples of size n 
from the standard classical Laplace distribution. 

Case 2: The value ofe is known. Since the r.v. Xi - e has the CC(O, s) distribution, without 
loss of generality we shall assume that e = O. By the moment relation (2.1.14), we have E X1 = 2s2, 
so the MME of s is 

1 n 
_" X2. 
2n L I 

i=l 

The following result summarizes the asymptotic properties of sn. 

(2.6.58) 
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Proposition 2.6.9 Let X I, ... , Xn be i.i.d. with the CL(O, s) distribution. Then the MME of s given 
by (2.6.58) is 

(i) strongly consistent; 

(ii) asymptotically normal; i.e., JnCsn - s) converges in distribution to a normal distribution with 
mean zero and variance 1.2Ss2. 

Proof. To establish (i), note that by the Strong Law of Large Numbers, 

1 n 

- L:X?~' E[X?] = 2s2. 
n 

i=1 

(2.6.59) 

Thus 

- 1 2 a.s. 2 
( 

n ) sn = g ;; L: Xi --+ g(2s ) = s, 
.=1 

(2.6.60) 

where 

g(x) = JX/2. (2.6.61) 

Similarly, part (ii) can be established via the Central Limit Theorem. Since X?, i = 1, 2, ... are i.i.d. 
with 

[see the moment formula (2.1.14)], the sequence 

n l / 2 (~ t X? - 2s2) 
.=1 

(2.6.62) 

converges in distribution to a normal distribution with mean zero and variance 20s4. Thus by standard 
arguments ofthe large sample theory [see, e.g., Rao (1965)], the sequence 

(2.6.63) 

converges in distribution to a normal distribution with mean zero and variance 

(2.6.64) 

o 
Remark 2.6.9 Note that the asymptotic variance of the sn is larger than that of the MLE sn. The 
relation between the variances for a finite sample size n is investigated in Exercise 2.7.43. 

Case 3: Both sand () are unknown. Let 

~ lL:n ~ lL:n 2 mIn = - Xi and m2n = - X· 
n n' 

i=1 i=1 

(2.6.65) 
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be the first and second sample moments for the random sample Xl, ... , Xn from the ecce, s) 
distribution. Since the first two moments of X 1 are 

E[Xd = e, (2.6.66) 

[see (2.1.18)], solving equations (2.6.66) fore ands in terms of the first two moments and substituting 
the sample moments (2.6.65), we arrive at the following MME's of e and s: 

= 
1 n 

- "(X, - X )2 2n L..- In· 
i=1 

(2.6.67) 

As before, the consistency and asymptotic normality of the estimators (2.6.67) follow from standard 
arguments of the large sample theory [see, e.g., Rao (1965)]. 

Proposition 2.6.10 Let Xl, ... , Xn be i.i.d.from the ecce, s) distribution, where e E R. and s > O. 
Let 

(2.6.68) 

where en and sn are given by (2.6.67), be the MME of the vector parameter 

(2.6.69) 

Then the estimator ~n is 

(i) strongly consistent; 

(ii) asymptotically normal; i.e., the sequence In(~n - ~) converges in distribution to a bivariate 
normal distribution with the (vector) mean zero and the covariance matrix 

[ 
2s2 

T.MME = 0 

Proof Consider an auxiliary sequence of i.i.d. bivariate random vectors 

Yi = [ ~~ J, i = 1,2, .... 

The vector mean and the covariance matrix of Yi are as follows: 

(2.6.70) 

(2.6.71) 

(2.6.72) 

[We have used the moment formulas (2.1.18).] Clearly, the Strong Law of Large Numbers and Central 
Limit Theorem apply to the sequence (Yi), so 

1 n 
1· LY a.s. 1m - i = my 

n->OO n 
;=1 

(2.6.73) 
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and 

lim .jii (~ ~Y; - my) ~ N2(0, 1:y). 
n-+oo n ~ 

;=1 

(2.6.74) 

(The notation Nd(m, 1:) denotes the d-dimensional normal distribution with mean vector m and the 
covariance matrix 1:.) Observe that the estimator (2.6.68) can be expressed in terms of the Y; 's as 

_ (1 n ) ~n = g -;; ~ Yi , 
1=1 

(2.6.75) 

where 

(2.6.76) 

To prove the strong consistency, use (2.6.73) together with the continuity of g to conclude that 

lim g (~ ~Yi) = lim ~n a~. g(my) =~. 
n-+oo n ~ n-+oo 

i=1 

(2.6.77) 

Similarly, we establish the asymptotic normality of ~n by standard result from the large sample 
theory [see, e.g., Rao (1965)]. Since the function g has a nonsingular matrix of partial derivatives at 
the point my, 

D- - --[ agi I ] 1 [ 
- aXj x=my - S 

the convergence (2.6.74) produces 

or 

since 

S 

-()/s 

g(my) =~, and D1:yD' = 1:MME. 

Remark 2.6.10 For 0 < p < 1, the function 

f(x) = p_l_e-IX-Oll/S1 + (1- p)_1_e-lx-li2l/s2, 
2S1 2S2 

-00 < x < 00, 

(2.6.78) 

(2.6.79) 

(2.6.80) 

o 

(2.6.81) 

is the density of the mixture of two Laplace distributions CC«()I, s}) and CC«(h, S2). Such distribu­
tions may no longer be unimodal [see Exercise 2.7.46]. The method of moments estimation of the 
parameters of (2.6.81) is considered in Kacki (1965b), Krysicki (1966ab), and Kacki and Krysicki 
(1967). 
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2.6.1.5 Linear estimation. In this section we consider the so-called L-estimators of the parameters 
e and s of the classical Laplace distribution, which are linear combinations of order statistics. 

Best linear unbiased estimation. Let XI, ... , Xn be a random sample from the C£(e, s) distri­
bution, and let 

Xk+l:n :::: ... :::: X n- m:n (2.6.82) 

be the corresponding Type II censored sample. For i = 1, ... , n, let 

[
Xi:n- e] 

JLi = E , 
s 

[
Xion- e] 

aii = Var 0 s ' [
Xi:n - e Xj:n - e] 

aij = Cov , --'---
s s 

(2.6.83) 

be the means, variances, and covariances of the order statistics from the standard classical Laplace 
distribution, with values given in (2.5.31), (2.5.32), and (2.5.33), respectively. Then the best linear 
unbiased estimators (BLUE's-unbiased estimators of minimum variance in the class of linear 
unbiased estimators) of e and s based on (2.6.82) are [see, e.g., Sarhan (1954, 1955), Govindarajulu 
(1966), David (1981), Balakrishnan and Cohen (1991)] 

and 

where 

x = (Xk+l:n, ... , X n- m:n )' 

m = (JLk+l, ... , JLn-m)' 

1 = (l, ... , 1)' 

are n - k - m-dimensional vectors and 

l: = [aij]i,j=k+l...n-m 

n-m 

L biXi:n, 

i=k+1 

(2.6.84) 

(2.6.85) 

(2.6.86) 

(2.6.87) 

is an n - k - m x n - k - m covariance matrix. The variances and co variances of the estimators 
(2.6.84) and (2.6.85) are 

m':1:- lm 
VarW") - s2 ---:----...,.-----,--­

n - (m'l:-lm)(1':1:-11) _ (m'l:-11)2' 

1':1:-11 
Var(s*) = s2 ----,-----:------:--

n (m'l:-lm)(1':1:-11) _ (m'l:-11)2' 

m':1:-11 Cov(e*, s*) = _s2 __ --,-___ -;-____ -;---:::-
n n (m':1:-1m)(1':1:-11) _ (m'l:-11)2· 

(2.6.88) 

(2.6.89) 

(2.6.90) 

Note that under symmetric censoring (k = m) the covariance (2.6.90) is equal to 0 (since in this case 
m'l:-ll = 0), the coefficients of Xi:n and Xn-i+l:n in e; in (2.6.84) are equal and in s; in (2.6.85) 
are equal in absolute value and opposite in sign. 
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The coefficients ai and hi in (2.6.84) and (2.6.85) were tabulated by Sarhan (1954, 1955) for 
sample sizes up to 5 and by Govindarajulu (1966) for sample sizes up to 20 (and all choices of 
symmetric censoring). Balakrishnan, Chandramouleeswaran, and Ambagaspitiya (1994) give tables 
of ai and hi for the case of Type II right censored samples of sizes up to 20 [with k = 0 and 
m = O(I)(n - 2)]. In Table 2.8 one can find the coefficients ai and hi of(}; and s~ based on complete 
samples for sample sizes n = 2(1)10 [calculated by Govindarajulu (1966)]. 

II n I I X n'n I Xn-I'n I X n-2'n I X n -3-n I X n-4'n I Variances II 
2 ()* 

n 0.5000 1.000 
s* n 0.6667 0.7778 

3 ()* n 0.1481 0.7037 0.5895 
s* n 0.4444 0.0000 0.4321 

4 ()* n 0.0473 0.4527 0.4155 
s* n 0.3077 0.2145 0.2986 

5 ()* n 0.0166 0.2213 0.5241 0.3169 
s* n 0.2331 0.2264 0.0000 0.2290 

6 ()* n 0.0063 0.1006 0.3931 0.2548 
s* n 0.1876 0.1943 0.1132 0.1858 

7 ()* n 0.0025 0.0455 0.2386 0.4267 0.2122 
s* n 0.1572 0.1631 0.1439 0.0000 0.1565 

8 ()* n 0.0010 0.0208 0.1316 0.3465 0.1814 
s* n 0.1355 0.1391 0.1391 0.0718 0.1351 

9 ()* n 0.0004 0.0097 0.0698 0.2374 0.3654 0.1581 
s* n 0.1191 0.1211 0.1251 0.1013 0.0000 0.1190 

10 ()* n 0.0002 0.0046 0.0364 0.1478 0.3110 0.1399 
s* n 0.1063 0.1074 0.1110 0.1061 0.0504 0.1062 

Table 2.8: Coefficients of the BLUE's of the parameters () and s of the classical Laplace distribution. 
The last column gives the values ofVar«(};)/s2 and Var(s~)/s2. 

By definition, the variance of the BLUE of () is smaller than that of MLE (the sample median) 
and MME (the mean) as these are also linear combinations of order statistics and unbiased for (). 
Sarhan (1954) compared the efficiencies17 of the latter two estimators, as well as of the midrange 
(X I:n + Xn:n )/2 (which is also unbiased), relative to the BLUE of(}. The efficiencies are presented in 
Table 2.9, and also graphically in Figure 2.5 [taken from Sarhan (1954)]. As noted by Sarhan (1954), 
the MLE (the median) is more efficient than the MME (the mean) and the midrange (and less efficient 
than the BLUE). 

Remark 2.6.11 Chan and Chan (1969) derived the BLUE's of () and s based on k selected order 
statistics (k-optimum BLUE's) connected with a random sample of size n from the classical Laplace 
distribution eC«(}, s). In Chan and Chan (1969), the authors provided tables containing the optimum 
ranks, the coefficients, biases, variances, and efficiencies (relative to the corresponding BLUE's 
based on all order statistics for complete samples) of the k-optimum BLUE's for k = 1,2, 3, 4 and 
n = k(l)20. 

17Tbe efficiency of an estimator 01 relative to another estimator ~ is the ratio Var(02)/VarCOj} expressed as a percentage. 
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II Sa~ple Size n I 
Estimator 

5 2 3 4 

II 
Mean 100.00 88.43 82.80 79.21 
Midrange 100.00 67.90 49.65 38.29 
Median 100.00 92.27 98.90 90.23 

Table 2.9: Efficiencies of various estimators of the location parameter () of the classical Laplace 
distribution, relative to the BLUE of (). 
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Figure 2.5: Percentage efficiencies of the three estimators of the location parameter (): the sample 
mean, the midrange, and the median, relative to the BLUE of (), in different populations [Republished 
with permission of Institute of Mathematical Statistics, from A.E. Sarhan, Annals of Mathematical 
Statistics, 25, copyright 1954. 

Remark 2.6.12 Rao et a1. (1991) derived an optimum linear (in absolute values of order statistics) 
unbiased estimator of the scale parameter s in complete and censored samples. The estimator reduces 
to the sample mean absolute deviation (the MLE of s when () is known) for complete samples and is 
generally more efficient than the BLUE of s. 

Remark 2.6.13 Ahsanullah and Rahim (1973) noted some practical situations where a number of 
observations somewhere in the middle of an ordered sample may be missing [see, e.g., Sarhan and 
Greenberg (1967)]. For a given sample size n, 1 :::: RJ < R2 :::: n, and k = kJ + k2, where kJ < RJ 
and k2 < n - (R2 - 1), Ahsanullah and Rahim (1973) determined the optimum ranks 

and derived the BLUE's of () and s based on the order statistics 

Xno· n , Xno·n , ... , Xno ·n' Xno ·n'···' Xno ·n' 
I· 2· kl· kl+l· kl+k2· 

observing that the efficiency of their estimates (relative to the BLUE's based on a complete sample) 
was quite high. 



2.6. Statistical inference 87 

Remark 2.6.14 Let X I:n, ... , Xn:n be the order statistics corresponding to a random sample of size 
n = 2k + 1 from the classical Laplace distribution with an unknown e and the scale parameter s = 1. 
Akahira (1986) showed that variance of the linear estimator 

~ 1 
eAK = 2(Xk+l-r~:n + Xk+I+r~:n) (2.6.91) 

with the optimal choice of r = 0.48 is asymptotically smaller than that of the MLE of e (the sample 
median en): 

~ 1 { 1.13 (I)} Var(en ) =;; 1 + v'k + 0 ;; (2.6.92) 

while 

(2.6.93) 

Generalizing, Sugiura and Naing (1989) showed that an appropriate linear estimator of e of the form 

m 

eSN,m = L ai[Xk+l_rj~:n + Xk+l+rj~:n] + bXk+l:n, 
i=1 

(2.6.94) 

where 0 < rm < ... < r2 < rl (and with riv'k assumed to be an integer), has smaller asymptotic 
variance than the estimator 8AK defined in (2.6.91), as the constant 0.90 in (2.6.93) is reduced to 
J2/rr ~ 0.80 [see also Akahira (1987, 1990) and Akahira and Takeuchi (1993)]. Sugiura and Naing 
(1989) observed that the variance of their estimator admits the same asymptotic expansion [given 
by (2.6.93) with 0.90 replaced by .J2/rr] as Bayes risk with respect to a prior having finite interval 
support (and satisfying some technical conditions) derived by Joshi (1984). 

Remark 2.6.15 Let 

X l:n :S ... :s Xn - s :n (2.6.95) 

be a Type II right-censored sample associated with a random sample of size n from the ecce, s) 
distribution. Balakrishnan and Chandramouleeswaran (l994b) utilized the pivotal variables 

Xn-s+l:n - X n- s Xn:n - X n- s 
QI = and Q2 = ----

s~ s~ 
(2.6.96) 

in predicting Xn-s+l:n and Xn:n (the percentage points of Ql and Q2 were determined by Monte­
Carlo simulations). The quantity s~ in (2.6.96) denotes the BLUE of the scale parameter s based 
on the censored sample (2.6.95). In addition, these authors derived prediction intervals for extreme 
order statistics YI:m and Y m:m connected with afuture sample of size m from the Laplace distribution. 
The prediction intervals utilize the (simulated) percentage points of the pivotal quantities 

YI:m - e~ d Q _ Ym:m - e~ 
Q3 = an 4 - * ' 

s~ sn 
(2.6.97) 

where e~ and s~ are the BLUE's of e and s, respectively, based on the censored sample (2.6.95). 
Ling (1977) and Ling and Lim (1978) approached these prediction problems from the Bayesian 
perspective. 



88 2. Classical Symmetric Laplace Distribution 

Simplified linear estimation. Let 

Wi = X n-i+l:n - Xi:n (2.6.98) 

and 

1 
Vi = 2 (Xn-i+l:n + Xi:n) (2.6.99) 

be the ith quasi-range and the ith quasi-midrange, respectively, connected with the random sample 
Xl, ... , Xn from the classical Laplace distribution C.c(O, s). Raghunandanan and Srinivasan (1971) 
considered simplified linear estimators of 0 and s based on Vi and linear combinations of Wi'S for 
complete as well as symmetrically censored samples. Similar estimators for the parameters of a 
normal distribution were obtained in Dixon (1957, 1960). 

When k largest and k smallest observations are censored, where k 2: 0, the simplified estimator 
of 0 is that Vi (with i 2: k+ 1) that has the smallest variance. Under the same censoring, the simplified 
estimator of s, denoted by Sk,n, is the estimator with minimum variance among estimators of the form 

[[n/2JJ 

C L C;Wi, (2.6.100) 
i=k+l 

where the Wi'S are given by (2.6.98), the Ci'S take the values of 0 or 1, and C is a normalizing 
constant that makes the estimator (2.6.100) unbiased. Table 2.10 contains the values of the index i 
corresponding to the simplified estimator of 0, Vi, based on complete samples with n = 3 (1 )20. The 
relative efficiency of this estimator relative to the BLUE of 0 is also included in Table 2.10 (note that 
when n = 3 and 5 the estimator coincides with the MLE of 0, the sample median). 

Table 2.11 contains the values of the simplified estimator Sk,n of the form (2.6.100), along with 
its efficiency relative to the BLUE s~ of s, defined as 

More extensive tables can be found in Raghunandanan and Srinivasan (1971). 

Remark 2.6.16 Iliescu and Vodli (1973) considered asymptotically unbiased estimators of s of the 
form 

[[n/2JJ 

a(n) L Wi, 

i=1 

which have the same structure as the simplified estimator (2.6.100) of the scale parameter. 

(2.6.101) 

Asymptotic best linear unbiased estimation. Cheng (1978) remarked that for a large sample size 
n, the BLUE's of 0 and s are too tedious to calculate. Consequently, using the theory of asymptotically 
best linear unbiased estimates (ABLUE) developed by Ogawa (1951), he derived a method for an 
optimal selection of the order statistics from complete as well as singly or doubly censored large 
samples to estimate parameters of the Laplace distribution. The method utilizes the sample quantiles 

(2.6.102) 

where the real numbers 

o = Ao < Al < ... < Ak < Ak+l = 1 (2.6.103) 
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II n I Var(Vi)/s2 I Eff(Vj) II 
3 2 0.638890 92.3 
4 2 0.420135 98.9 
5 3 0.351180 90.2 
6 3 0.260905 97.7 
7 3 0.225805 94.0 
8 4 0.187310 96.8 
9 4 0.164795 95.9 

10 5 0.145225 96.3 
11 5 0.129605 96.7 
12 6 0.118125 96.0 
13 6 0.106670 97.0 
14 7 0.099285 95.9 
15 7 0.090540 97.2 
16 7 0.085190 96.0 
17 8 0.078575 97.2 
18 8 0.074175 96.7 
19 9 0.069350 97.3 
20 9 0.065670 97.0 

Table 2.10: Simplified linear estimator of e, Vj, its variance, and its (percent) efficiency relative to 
the BLUE of e, based on a complete random sample of size n from the classical Laplace distribution 
c.c(e, s). 

n I k I Sk n 

4 0 0.289157(W1 + W2) 0.300624 99.3 
5 0 0.231325(WI + W2) 0.229000 100.0 
6 0 0.183486(W\ + W2 + W3) 0.186515 99.6 
6 1 0.666667W2 0.304009 98.5 
7 0 0.157274(W\ + W2 + W3) 0.156500 100.0 
7 1 0.390721(W2 + W3) 0.234731 97.5 
8 0 0.134254(W\ + W2 + W3 + W4) 0.135438 99.7 
8 1 0.324571(W2 + W3) 0.188570 98.4 
8 2 0.967133W3 0.303726 99.4 
9 0 0.1l9337(W\ + W2 + W3 + W4) 0.119000 100.0 
9 1 0.282882(W2 + W3) 0.158812 98.3 
9 2 0.790855W3 0.233068 98.5 

10 0 0.108696(W\ + W2 + W3 + W4) 0.106392 99.8 
10 1 0.238741(W2 + W3 + Ws) 0.137784 98.0 
10 2 0.681084W3 0.190810 97.3 
10 3 1.267536W4 0.305295 99.7 

Table 2.11: Simplified linear estimator of s, Sk,n, its variance, and its (percent) efficiency relative to 
the BLUE of s, based on a random sample of size n from the classical Laplace distribution c.c(e, s), 
where k observations are censored from each end. 
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are called the spacings and the Ui 's defined by 

Ai = lUi f(x)dx = F(Ui) 
-00 

(2.6.104) 

are the population quantiles of the standard classical Laplace distribution with density f and distri­
bution function F. Under this, the ABLUE of e (when s is known) is 

the ABLUE of s (when 0 is known) is 

k 

** '" K3 sn = L.." bi X[[n)..;]]+I:n - K O 
i=1 2 

and their asymptotic variances are 

where 

and 

2 
** s VarASy(sn ) = -K ' 

n 2 

K - "k+l ([;-[;_1)2 
1 - L.';=1 )..i )..i-I 

K - "k+l ([;Ui- li_I Ui_d2 
2 - L...i=1 )..i-)..i-I 

K - "k+l ([;-[;-I)([;Ui- [;-Iui-d 
3 - L...i=1 )..i-)..i-I 

a. - [; ~[;-[;_I _ li±I-[;) 
I - KI )..i-)..i-I )..itl-)..i' 

b. - Ii liUi- Ii-lUi-I _ [;±IUitl-[;Ui) 
I - K2 )..i-)..i-I )..itl-)..i' 

/; = f(Ui), i = 1,2, ... ,k, fo = fk+l = fouo = fk+1Uk+l = o. 

(2.6.105) 

(2.6.106) 

(2.6.107) 

(2.6.108) 

(2.6.109) 

The asymptotic efficiencies (ARE) of 0:* and s:* relative to the Cramer-Rao lower bound are 

(2.6.110) 

The estimates based on the optimal spacings (2.6.103) are those that maximize the ARE's (2.6.110) 
and are referred to as the {Ai }-ABLUE [see Chan (1970)]. 

As shown in Cheng (1978) the coefficients ai in (2.6.105) for the {Ai }-ABLUE of 0 are zero 
except for the coefficient of 1 corresponding to a single-point spacing {I/2}. 

Proposition 2.6.11 Let XI, ... , Xn be a random sample of size n from the classical Laplace dis­
tribution C£(e, s) with known value of s. The optimum spacing for the {Ai }-ABLUE of 0, 0:*, is 
a single-point spacing {I/2}, which is independent of the number of order statistics k. The ARE of 
0:* is 1. 

Thus in large samples, we can uniquely estimate the location parameter 0 of the C£(O, s) 
distribution (with known value of s) by e:*, from either a full sample or a censored one, as long as 
the middle observation is not missing. 
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The estimation of the parameter s is more complicated. Here, maximizing K2 (the ARE of s~*) 
with respect to the spacings (2.6.103) leads to a system of equations [see Cheng (1978)]: 

Cheng (1978) noted that in this case the optimal spacings may not be unique, and they may be 
symmetric about the point 1/2 only when the number k is even. We refer the reader to Cheng (1978) 
for further information and an extensive set of tables containing the optimal spacings P.i} and the 
corresponding coefficients hi for the {Ai }-ABLUE of s given by (2.6.106), as well as the asymptotic 
efficiencies of s~* relative to the Cramer-Rao lower bound. 

Ali et al. (1981) derived estimators for the ~-quantiles, x~, of the classical Laplace CC(e, s) 
distribution. Their estimators are 

where the ranks I, m and the coefficients at, am are chosen so that x~ is asymptotically best (minimum 
variance) linear unbiased estimator (ABLUE) of x~. The procedure does not involve estimation of 
the location and scale parameters and does not require the use of tables, since the estimator admits 
the following explicit form: 

0.255X[[O.30506~nll+l:n + 0.745X[[1.50134~nll+l:n 
for 0.0352 ::::; ~ ::::; 0.3330 

-1.5i362 X[[O.10159nll+l:n + (1 + 1.5~~362) X[[n/21l+1:n 

for ~ < 0.0352 and 0.3330 < ~ < 0.5 

X[[n/2ll+1:n 

for ~ = 0.5 

(1- 1.5i362) X[[n/2ll+1:n + 1.5i362 X[[O.89841nll+l:n 

for 0.5 < ~ < 0.6670 and ~ > 0.9648 

O. 745X[[(1.50!34~ -O.50!34)nll+!:n + 0.255X [[(O.30536~+O.69494)nll+ l:n 

for 0.6670 ::::; ~ ::::; 0.9648, 

(2.6.111) 

where z~ is the ~ -quantile of the standard classical Laplace distribution. They compared the asymptotic 
variance of their estimator with that of the standard quantile estimator X [[n~ll+ l:n, concluding that xl 
performs much better. Table 2.12 contains the asymptotic relative efficiencies (ARE) of xl relative 
to X[[n~ll+!:n, computed by Ali et al. (1981). See Saleh et al. (1983) forfurther discussion on quantile 
estimation for double exponential distribution, and Umbach et al. (1984) for applications of ABLUE's 
based on optimal spacings in testing hypothesis. 

2.6.2 Interval estimation. We shall now discuss confidence intervals for parameters of the classical 
Laplace distribution. Let X!, ... , Xn be a random sample from the CC(e, s) distribution. If the scale 
parameter s is known, then a confidence interval for e may be constructed utilizing the distribution 
of the sample median given in (2.5.10) and Proposition 2.5.5. If the location parameter e is known, 
then since the r.v.'s IXj - ells are i.i.d. standard exponential (see Proposition 2.2.3), the MLE of 
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Table 2.12: Asymptotic relative (percent) efficiencies (ARE) for x; relative to X[[n~ll+l:n for the 
Laplace distribution. 

s given by (2.6.20) is distributed as (2n)-lsV, where V has a X2 distribution with 2n degrees of 
freedom. Consequently, the 100(1 - a)% confidence interval for s is given by 

( 
~ IX) -01 ~ IX} -01) 
2~ 2 ,2~ 2 ' 

}=l X2n,l-a/2 }=l X2n,a/2 
(2.6.112) 

where Xin,p denotes the pth quantile of the X2 distribution with 2n degrees of freedom. If both e and 
s are unknown, confidence intervals for e and s can be obtained via the distributions of the pivotal 
quantities 

1 ~ A en - e 
Vn = - ~ IX} - Onl and Wn = n A , 

S }=l L}=l IX} - Onl 
(2.6.113) 

where On is the MLE of 0 given by (2.6.15), as Vn and Wn are distributed independently of the 
parameters [see Bain and Engelhardt (1973)]. The distributions of Vn and Wn can be derived exactly 
for small values of n, but calculations become quite tedious as the value of n increases [cf. Bain and 
Engelhardt (1973)]. For n = 3, we have 

d d Y2:3 
V3 = Y3:3 - Y1:3 and W3 = ----

Y3:3 - Y1:3' 
(2.6.114) 

where Y1:3 ~ Y2:3 ~ Y3:3 are the order statistics connected with a random sample of size three from 
the standard classical Laplace distribution. Since V3 coincides with the range, its p.d.f. follows from 
Proposition 2.5.3 in Section 2.5, 

(2.6.115) 

The p.d.f. of W3 can be derived from the joint p.d.f. of the order statistics given in (2.5.11), 

I ~lxl(1 - 9IxI2)-2 
fW3 (x) = 3 (8 3 1) 

"8 (1+lxl)3 - (1+lxI)2 - (1+3IxI)2 

if Ixl > 1 
(2.6.116) 

otherwise 

[see Bain and Engelhardt (1973)]. For n ~ 3 one can use either asymptotic distributions of Vn and 
Wn [see, e.g., Bain and Engelhardt (1973)] or Monte-Carlo approximations to derive the confidence 
intervals. Using the latter approach, one would first approximate the value Wa/2 such that 

(2.6.117) 

from the empirical distribution of Wn obtained by Monte-Carlo simulations. Then an approximate 
(1 - a) 100% confidence interval for 0 is 

("0 - W./2 ~ IX, - "01. "0 + W./2 ~ IX, - 801) . (2.6.118) 
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Similarly, an approximate (1 - a)I00% confidence interval for s would be 

(2.6.119) 

where v f3 denotes an estimate of the ,Bth quantile obtained by Monte-Carlo simulations. More details 
can be found in Bain and Engelhardt (1973). 

Remark 2.6.17 Balakrishnan, Chandramouleeswaran, and Ambagaspitiya (1994) studied the infer­
ence on e when s is assumed either known or unknown, and on s when e is unknown, for complete 
as well as Type II censored samples, through the three pivotal quantities 

e~ - e e~ - e 
sv'Vl' s~v'Vl' 

s~/s - 1 

v'V2 ' 
(2.6.120) 

where e: and s: are the BLUE's of e and sand s2 VI and s2 V2 are the variances of e: and s:. 
See Balakrishnan, Chandramouleeswaran, and Ambagaspitiya (1994) for the percentage points of 
the pivotal quantities (2.6.120) and also Balakrishnan, Chandramouleeswaran, and Govindarajulu 
(1994) for further results on the approximations of the distributions of (2.6.120) and their accuracy. 

2.6.2.1 Confidence bands for the Laplace distribution function. Let F (.; e, s) be the c.d.f. of the 
classical Laplace distribution given by (2.1.5). Srinivasan and Wharton (1982) constructed one-sided 
and two-sided confidence bands on F(·; e, s) using the Kolmogorov-Smimov-type statistics 

and 

Ln = sup IF(x; e, s) - F(x; e;, s;)1 
-oo<x<oo 

L1; = sup{F(x; e, s) - F{x; e:, s;)}, 
x?;o 

(2.6.121) 

(2.6.122) 

where e: and s: are the BLUE's of e and s. For any 0 < a < 1, let the ath quantile of Ln be la (so 
that P(Ln :::: la) = a). Then a two-sided al00% confidence band for F(·; e, s) is given by 

(2.6.123) 

with a similar one-sided confidence band based on L"j;. Tables 2.13 and 2.14 below present simulated 
percentage points of Ln and L"j; for n up to 20, derived by Srinivasan and Wharton (1982). For larger 
values on n, Srinivasan and Wharton (1982) recommended certain large-sample approximations for 
the percentage points of Ln and L"j;. For example, the quantiles of Ln may be approximated through 
the limiting distribution of .,fnLn, which is the same as that of the random variable sup IXo(y)l, 
where Xo(y) is a Gaussian process with the representation 

1 
Xo{y) = -e-1yl(U + Vy), -00 < y < 00. 

2 
(2.6.124) 

In (2.6.124), the variables U and V are Li.d. standard normal. We refer the reader to Srinivasan and 
Wharton (1982) for more technical details regarding this problem. 
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I n \ot I 0.80 I 0.85 I 0.90 I 0.95 I 0.99 I 
5 0.31 0.35 0.39 0.45 0.56 
6 0.29 0.32 0.35 0.41 0.52 
7 0.26 0.29 0.33 0.38 0.48 
8 0.25 0.27 0.31 0.36 0.46 
9 0.23 0.26 0.29 0.34 0.44 

10 0.22 0.24 0.27 0.32 0.41 
11 0.21 0.23 0.26 0.31 0.39 
12 0.20 0.22 0.25 0.30 0.38 
13 0.19 0.22 0.24 0.28 0.36 
14 0.18 0.21 0.23 0.27 0.34 
15 0.18 0.20 0.22 0.26 0.33 
16 0.17 0.19 0.22 0.25 0.32 
17 0.16 0.18 0.21 0.24 0.31 
18 0.16 0.18 0.20 0.24 0.31 
19 0.16 0.18 0.20 0.23 0.31 
20 0.15 0.17 0.19 0.23 0.29 

Table 2.13: Simulated percentage points la of the statistic Ln. 

I n \ot I 0.80 I 0.85 I 0.90 I 0.95 I 0.99 I 
5 0.23 0.27 0.31 0.38 0.51 
6 0.21 0.24 0.29 0.35 0.47 
7 0.19 0.22 0.26 0.32 0.44 
8 0.18 0.21 0.25 0.31 0.42 
9 0.16 0.19 0.23 0.38 0.39 

10 0.16 0.18 0.22 0.27 0.38 
11 0.15 0.17 0.21 0.26 0.36 
12 0.14 0.17 0.20 0.25 0.34 
13 0.13 0.16 0.19 0.24 0.34 
14 0.13 0.15 0.18 0.23 0.32 
15 0.12 0.14 0.18 0.22 0.30 
16 0.12 0.14 0.17 0.21 0.29 
17 0.12 0.14 0.17 0.21 0.28 
18 0.12 0.14 0.17 0.21 0.28 
19 0.11 0.13 0.16 0.20 0.27 
20 0.11 0.13 0.15 0.19 0.26 

Table 2.14: Simulated percentage points I: of the statistic L1;. 

2.6.2.2 Conditional inference. The confidence intervals discussed in Section 2.6.2 are based on 
the MLE's en and sn of the parameters f) and s of the classical Laplace distribution CC(f), s). As 
noted by Kappenman (1975), these estimators are not sufficient statistics so that inference about f) 
and s based on these statistics leads to some loss of information contained in the random sample. It is 
generally accepted that the lost information may be recovered (on the average) by conditioning on the 
ancillary statistics, which was first suggested by Fisher (1934) [see also remarks by Edwards (1974)]. 
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Kappenman (1975) followed the conditional approach and obtained conditional confidence intervals 
for the Laplace parameters, based on the conditional distributions of the pivotal quantities (2.6.113) 
given the ancillary statistics. Here we shall first examine the loss of information associated with the 
median and related estimators in the Laplace case, and then discuss the conditional inference. 

Loss of information. The loss of information associated with the median when estimating the 
location parameter of the classical Laplace distribution was discussed by Fisher (1922, 1925, 1934). 
We consider the location family given by the density 

1 
f(x; B) = f(x - B) = 2e-lx-lil, -00 < x, B < 00, (2.6.125) 

where f is the standard classical Laplace density. Let XI, ... , Xn be a random sample of size 
n = 2k + 1 from the distribution given by the density (2.6.125). Then by (2.6.12), the Fisher 
information supplied by the sample is n = 2k + 1. On the other hand, when we use the MLE for 
estimating the location parameter B, which by Proposition 2.6.2 is the sample median en = Xk+l:n, 
we are replacing n = 2k + 1 observations from the distribution (2.6.125) by a single observation 
from the distribution with the density fk+l:n(X) of the median given by (2.5.10). Since the latter 
distribution is also a location family, 

fk+l:n(X) = g(x - B), -00 < x, B < 00, (2.6.126) 

where 

(x) = . - e-(k+I)lx l(2 _ e-1xl)k (2k + 1)' (1 )2k+1 
g (k!)2 2 ' 

-00 < x < 00, (2.6.127) 

is an absolutely continuous density function, the Fisher information contained in the median is 

I(B) = 100 (g/(y»)2 g(y)dy, 
-00 g(y) 

(2.6.128) 

with g given by (2.6.127) [see Huber (1981), Lehmann and Casella (1998), and also Exercise 2.7.31]. 
After a lengthy calculation we obtain (Exercise 2.7.32) 

I 12[log 2 - 0.5] 

I (B) = (k+I)(2k+l) (1 _ (2k)! (!)2k-l) 
k-I (k!)2 2 

if k = 1 

if k > 1 
(2.6.129) 

[see Fisher (1934)]. As noted by Fisher (1934), although the median is asymptotically efficient (the 
ratio of 2k + 1 to I (B) given by (2.6.129) tends to 1 as k --+ (0), the amount lost, 

2(2k+ 1) ( (2k)' (1)2k I 2k+l-/(B)= (k+1)--2' - -1, 
k - 1 (k!) 2 

k> 1, (2.6.130) 

increases to infinity. As k --+ 00, we obtain an asymptotic approximation of the loss, 

2k + 1 - I (0) ~ 4(Jk/lf - 4), k --+ 00, (2.6.131) 

using Stirling's Formula (Exercise 2.7.32). Fisher (1934) noted that with the sample size n = 2k+ 1 = 
629, this loss is about 36. 

More generally, we can calculate the loss of information associated with the statistic 

(2.6.132) 
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which is the set of the central 21 + 1 order statistics obtained from a sample of size n = 2k + 1 from 
the Laplace distribution (2.6.125). It is well known [see, e.g., Fisher (1925), Rao (1961)] that the 
loss of information associated with an arbitrary statistic T obtained from a sample of size n from the 
population with density f(·; fJ) is 

Eo {varo (~ aafJ log f(Xj; fJ)IT) } , (2.6.133) 

where Varo(·IT) is the conditional variance given T and Eo is an unconditional expectation. In case 
of the Laplace distribution (2.6.125), we have 

a . 
afJ log f(Xj; fJ) = slgn(Xj - fJ), 

and the conditional variance takes the form 

where 

and 

(
2k+l ) 

Var {; sign(Xj - fJ)11I = (k -l)(V1 + V2), 

VI = { 
o 
(2u - I)lu2 

V2 = { 
o 
(2v - I)lv2 

u = F(Xk-I+I:n), 

for Xk-I+I:n :::; fJ 
for Xk-I+I:n > fJ, 

for Xk+I+I:n ::: fJ 
for Xk+l+l:n < fJ, 

v = 1 - F(Xk+l+l:n), 

(2.6.134) 

(2.6.135) 

(2.6.136) 

(2.6.137) 

(2.6.138) 

with F being the distribution function of the standard classical Laplace distribution [see Akahira and 
Takeuchi (1990) for details]. Hence the loss of information associated with 11 is 

LI = (k -/)(E(VI) + E(V2» 

2(2k + I)! /1 2u - 1 k-I k+ld = --u (I-u) u, 
(k -I - I)!(k + I)! 1/2 u2 

(2.6.139) 

since both VI and V2 have support on [1/2, 1] (F(x) > 1/2 if x > fJ) and 

E(VI) = E(V2) = . __ uk-I(I - u)k+ldu. (2k + 1)' /1 2u - 1 
(k -/)!(k + I)! 1/2 u2 

(2.6.140) 

Relating the integral in (2.6.139) to an incomplete beta function, Akahira and Takeuchi (1990) 
obtained the following result for the loss of information. 

Proposition 2.6.12 For each integer 0 :::; I :::; k - 2, the loss of information LI associated with the 
statistic 11 given by (2.6.132) is 

22kLI (2k)! (/+I)22k I 2(/-j+I) (2k)! 

2(2k + 1) = (k!)2 - k -I - 1 + ~ k -I - 1 (k -/)!(k + I)!" 
J=O 

(2.6.141) 
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Note that for [ = 0, in which case Tt is the median Xk+1:n, the relation (2.6.141) reduces to 
(2.6.130). Asymptotically, for fixed [ and large k, the loss of information (2.6.141) is given by 

4k ( [2 ) L/ = .J]T(1 + 0(1» - 4(1 + 1) + 0 -Jk (2.6.142) 

and coincides with (2.6.131) fori = ° [see Akahira and Takeuchi (1990)]. We refer interested readers 
to Akahira (1987, 1990), Akahira and Takeuchi (1990, 1993), and Takeuchi and Akahira (1976) for 
more information on loss of information and second-order asymptotic results for order statistics and 
related estimators of the location parameter in the case of the Laplace distribution. 

Conditional confidence intervals. Let Xl, ... , Xn be i.i.d. random variables with the common 
classical Laplace distribution with density (2.1.1), and let Xl:n :s ... :s Xn:n be the corresponding 
order statistics. Define the statistic 

(2.6.143) 

where 

i = 1, ... , n, (2.6.144) 

and en and in are the MLE's of the location and scale parameters given by (2.6.15) and (2.6.34), 
respectively. Note that for n = 2m + 1 we have am+l = 0, while for n = 2m we have am = -am+l. 

In addition, 

n 

~)ail = 0, (2.6.145) 
i=1 

so that only n - 2 of the components of a are independent. Further, since the pi votal quantities 

(2.6.146) 

have distributions that do not depend on the parameters e and s [see Antle and Bain (1969)], it 
follows that a is an ancillary statistic for e and s [cf. Kappenman (1975)]. The joint conditional 
density function of en and in, given the value of the ancillary statistics a, is proportional to 

1 ~ n-2 I ~ n 1& - e II 
s2 C; ) exp - s; f; n in + ai . (2.6.147) 

Note that the Jacobian of (in, en) as a function of Un and Vn is s2 Vn so the conditional joint 
density of Un and Vn, given the value of the ancillary statistic a, is equal to 

PUn, Vn (u, via) = K vn - 1 e-v 2.:7=1 lu+ai I. (2.6.148) 

The normalizing constant in (2.6.148) is equal to 

1 ~ n-l 
K = [Bn(a)c(en )] , 

2r(n - 1) 
(2.6.149) 
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where 

C(I) ~ ~ la, - II ~ { 
and Bn(a) is equal to 

if n is odd and to 

:L7=1 ai - nt 

(2i - n)t + :LJ=i+l aj - L~=l aj 

nt - :L7=1 ai 

for t :::; al 

forai :::; t :::; ai+l 

for t 2: an 

[ 
n [c(en)lc(ai)]n-l }-l/(n-l) 

{; (2i - n)(n + 2 - 2i) 

(2.6.150) 

(2.6.151) 

(2.6.152) 

if n is even [see Kappenmann (1975) and Uthoff (1973)]. Utilizing (2.6.148), one can now derive 
the marginal conditional density of Un, 

PUn (ula) = Kr(n) [~IU + ail} -n , 

and use it to produce the conditional 100(1 - cx)% confidence interval for B, 

(en - U2Sn, en - UlSn), 

where the constants Ul and U2 satisfy the conditions 

P(Un :::; ulla) = P(Un 2: u2la) = cx/2. 

(2.6.153) 

(2.6.154) 

(2.6.155) 

Similarly, we can derive the marginal conditional density of Vn and consequently obtain the expres­
sion 

for the probability 

K [y(n - 1; v2c(aj)) - yen - 1; vlc(aj)) 
n(c(al))n-l 

n-l 
" yen - 1; v2c(ai)) - yen - 1; vlc(ai)) 

+ ~ (2i - n)(c(ai))n-l 

n-l 
_ " yen - 1; v2c~ai+l)) - yen - 1; vlc(ai+l)) 

~ (21 - n)(c(ai+l))n-l 

+ yen -1; v2c(an)) - yen -1; V1c(an))} 
n(c(an))n-l 

(2.6.156) 

(2.6.157) 
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where 

(2.6.158) 

is the incomplete gamma function; see Kappenman (1975). Thus the conditional 100(1 - a)% 
confidence interval for s is 

(2.6.159) 

where the constants Vl and V2 are chosen so that the conditional probability (2.6.157) given by 
(2.6.156) is equal to 1 - a. 

Grice et al. (1978) compared the conditional confidence intervals for e given by (2.6.154) 
with the unconditional ones given by (2.6.118) in terms of their expected lengths. Using Monte­
Carlo techniques they concluded that the conditional approach yields slightly narrower intervals on 
average, and that the two methods are essentially in agreement for large sample sizes. Table 2.15, 
taken from Grice et al. (1978), contains the expected lengths of the conditional and unconditional 
confidence intervals for selected sample sizes. 

I-a 0.90 0.90 0.95 0.95 0.98 0.98 
n Condo Uncond. Condo Uncond. Condo Uncond. 
3 3.352 3.641 4.740 4.975 7.495 7.649 
5 2.113 2.273 2.575 2.912 3.542 3.787 
9 1.375 1.498 1.698 1.949 2.119 2.316 
15 0.997 1.061 1.214 1.326 1.484 1.525 
33 0.631 0.682 0.761 0.830 0.917 0.942 

Table 2.15: Expected lengths of conditional and unconditional 100(1 - a)% confidence intervals for 
e based on random samples with selected size n from the e.c(e, 1) distribution. 

Remark 2.6.18 Conditional inference for the Laplace distribution under Type II right-censoring is 
discussed in Childs and Balakrishnan (1996). 

2.6.3 Tolerance intervals. Let Xl, ... , Xn be a random sample of size n from a distribution with 
density f, and let 

be two statistics such that 

p ([00 f(x)dx ~ f3) = y (2.6.160) 

and 

p (i: f(x)dx ~ f3) = y. (2.6.161) 

Then Land U are said to be lower and upper (f3, y) tolerance limits, while the intervals (L, 00) 
and (-00, U) are, respectively, lower and upper y probability tolerance intervals for proportion fJ 
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(,8-content tolerance intervals at level y). Similarly, for L < U, the interval (L, U) is a two-sided y 
probability tolerance interval for proportion ,8 (f:l-content tolerance interval at level y) if 

p ([U f(x)dx ::: ,8) = y. (2.6.162) 

We shall discuss tolerance intervals when the random sample is from the two-parameter classical 
Laplace distribution with density (2.1.1). Let us first consider the lower tolerance interval of the form 

(L, (0) = (en - bin, (0), (2.6.163) 

where en and in are the MLE's of the parameters () and s given by (2.6.15) and (2.6.34), respectively. 
Thus the problem is to determine the tolerance factor bin (2.6.163). Upon substituting the Laplace 
density (2.1.1) and L given by (2.6.163) into (2.6.160) and changing the variable u = (x - ()/s, we 
obtain the following equation for b: 

(2.6.164) 

Restricting ,8 to,8 ::: 1/2 (in practice, the proportion ,8 is close to one) we can write equivalently 

(2.6.165) 

where 

kfJ = log[2(1 - ,8)] :s o. (2.6.166) 

Bain and Engelhardt (1973) expressed (2.6.165) as 

(2.6.167) 

where 

(2.6.168) 

and used the approximation 

p (Un (~) :s k ) :::::; <I> (y'n(kfJ - b») 
n fJ v'f+b2 (2.6.169) 

to obtain an approximate value of the tolerance factor: 

(2.6.170) 

[<I> and Zy are the standard normal c.d.f. and yth quantile, respectively.] Note that by symmetry, the 
interval 

(-00, U) = (-00, en + bin), (2.6.171) 
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with b as in (2.6.170), is an approximate upper y probability tolerance interval. 
Kappenman (1977) derived conditional tolerance intervals following the conditional approach 

presented in Section 2.6.2.2. Here the interval of the form (2.6.163) is a lower y probability conditional 
tolerance interval for proportion f3 if 

P (~OO . f(x; (), s)dx 2: f3la ) = y, 
JOn-bsn 

(2.6.172) 

where f(x; (), s) is the Laplace p.d.f. (2.1.1) and ais the vector of ancillary statistics given by (2.6.143) 
and (2.6.144) in Section 2.6.2.2. (The upper and the two-sided conditional tolerance intervals are 
defined similarly.) Using the conditional joint distribution of (On - () / sand sn / s, Kappenman (1977) 
obtained the following value for the tolerance factor b: 

c(ah) 1 
b=-ah---+-­

n-2h n-2h 

x {ekfl(n-2h) [(c(ah))l-n + ;~(: ~hi)] } -l/(n-l) , (2.6.173) 

where kf3 is given by (2.6.166), a is a s before, c(t) is given by (2.6.150), K is the normalizing 
constant (2.6.149), h is the largest integer (h 2: 2) such that 

{
I h-l 1 

Q(h) = Kr(n - 1) « ))n-l + L --2. n cal n - I 
i=l 

x[ 1 _ 1 ]}::::;I- y , 
(c(ai+l))n-l (c(aj)n-l 

(2.6.174) 

and p = 1 - y - Q(h). To actually calculate b, one must first find h, usually by setting h = 2, 3, ... 
in (2.6.174). 

By symmetry, the upper y probability conditional tolerance interval for proportion f3 is 

(2.6.175) 

where b is obtained from (2.6.173) and (2.6.174) with kf3 replaced by -kf3 and with p equal to 
y - Q(h), where h now is the largest integer (h 2: 2) such that Q(h) < y. 

Shyu and Owen (1986a) remarked that the approximate tolerance intervals (2.6.163), which are 
based on the approximation (2.6.170), can miss the exact values significantly in some applications, 
while the conditional tolerance factors (2.6.173) are not easy to compute even for small sample sizes. 
They proposed a method based on Monte-Carlo simulations sketched below, leading to useful tables 
for the tolerance factor b. Denoting 

(2.6.176) 

we see that the relation (2.6.165) is equivalent to 

P(Wn ::::; b) = y. (2.6.177) 

Since the distribution of (On - () / sand sn / s is independent of the parameters () and s [see Antle and 
Bain (1969)], the same property is shared by the statistic Wn defined in (2.6.176). Consequently, the 
tolerance factor b can be determined from the relation (2.6.177) for any given values of f3, y, and n. 
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For n = 2, the p.d.f. of W2 takes the following form for x i= 0: 

where 

I { 2kfJ 2kfJ 2kfJ } i u(x)ex=T + [1 - u(x)] em + 7 for x > 1, 

g(x) = i exp {[I - u(x)] e~ + fxe 2kp } for -1 < x ::s 1, 

1 1 e2kp for x _< -1, 4X2 

1 2kf3 
u(x)=-+­

x 2 x 

(see Exercise 2.7.41). 

(2.6.178) 

Thus the exact value of b can be obtained by solving (2.6.177) (numerically, since the relevant 
distribution function does not admit a closed form). Shyu and Owen (1986a) provide a table for the 
resulting values of b for n = 2 and 

fJ = 0.750,0.900,0.950,0.990,0.995,0.999, 

Y = 0.500,0.750,0.900,0.950,0.975,0.990,0.995. 

They also note that when n > 2 the exact distribution of Wn is difficult to obtain and hence they 
derive approximations based on simulations. The values of the tolerance factor b for sample sizes 
n = 3(1)11,50, 100 and the same values of fJ and y as those for n = 2 can be found in Shyu and 
Owen (1986a). 

Similarly, Shyu and Owen (1986b) developed analogous procedures for obtaining the two-sided 
tolerance intervals of the form 

(2.6.179) 

where On and sn are as before, and they presented useful tables for the tolerance factor b, for the same 
values of n, fJ, and y as those used in Shyu and Owen (1986a) for the one-sided tolerance limits. 

In Shyu and Owen (1987), the authors consider fJ-expectation tolerance intervals of the form 
(2.6.179) defined by the condition 

E [[U f(x; e, S)dXJ = fJ, (2.6.180) 

where fe e, s) is the double exponential density (2.1.1). Shyu and Owen (1987) note that (2.6.180) 
is equivalent to 

P(-b < Yn < b) = fJ, (2.6.181) 

where 

(2.6.182) 

the variable X has a standard classical Laplace distribution, and On and sn are as before, and are 
independent from X. Subsequently, by simulations, they developed useful tables for the tolerance 
factor b, with the same values of n, fJ, and y as those used in Shyu and Owen (l986ab). 
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Remark 2.6.19 Balakrishnan and Chandramouleeswaran (1994a) developed upper and lower toler­
ance intervals based on Type II censored samples from the Laplace distribution. Their intervals are 
of the form 

(-00, U) = (-00, e: + bs~) and (L, (0) = (e: - bs~, (0), 

where e~ and s~ are the BLUE's of e and s. They developed tables of the tolerance factor b for 
sample size n = 5(1)10,12,15,20, right-censoring level s = 0(1)[[n/2]], and 

f3 = 0.500(0.025)0.975, 

y = 0.750, 0.850, 0.900.0.950, 0.980, 0.990, 0.995. 

In addition, Balakrishnan and Chandramouleeswaran (1994a) proposed an estimator of the reliability 

Rx(t) = P(X > t) = 1 - F(t; e, s) 

of the CLce, s) r.v. X at time t ofthe form 

for t :s e~ 
for t ::: e~, 

(2.6.183) 

(2.6.184) 

and they described how to use their tables of the tolerance factor b to obtain confidence intervals for 
the reliability (2.6.183). 

2.6.4 Testing hypothesis. 

2.6.4.1 Testing the normal versus the Laplace. Let X I, ... , Xn be i.i.d. with the common density 

1 (x -e) -f -, 
U U 

(2.6.185) 

where the function f is symmetric about zero, and consider the problem of testing 

Ho : f = fo against HI: f = II, C2.6.186) 

where fo and II are the standard normal and the standard Laplace densities, respectively. Let us 
derive the likelihood ratio test for this problem. 

Writing the density (2.6.185) in the form 

ca b"lx-el" fCx;e,u,a)=-e " 
U 

and choosing the parameter space to be 

n = {ce, u, a) : e E R 0 < U, a = 1, 2} = no u n1, 

we are testing whether the vector parameter belongs to 

no = {C e, u, a) : e E R 0 < u, a = 2} 

Cthe normal distribution) or to 

nl = {ce, u, a) : e E R 0 < U, a = I} 

(2.6.187) 

(2.6.188) 
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(the Laplace distribution). The likelihood ratio criterion rejects Ho if the ratio 

sUP(II,a,a)eflo fl?=1 f(x;; e, (J, a) 

sUP(II,a,a)efl fl?=1 f(x;; e, (J, a) 
(2.6.189) 

is less than some constant c. Clearly, on Qo the supremum is attained by the MLE's of the mean and 
the standard deviation under the normal model: 

~N 1 ~ -
en = - LX; =xn, 

n ;=1 
(2.6.190) 

(2.6.191) 

Similarly, the supremum of the joint density over the set Ql is attained when the parameters are the 
MLE's under the Laplace model: 

~L -
en = Xn (the sample median), (2.6.192) 

(2.6.193) 

Thus the likelihood ratio (2.6.189) becomes 

fln f(·· e~N ~ N 2 
i=1 X" n ,an' ) (2.6.194) 

The substitution of the density (2.6.187) (where C2 = 1/.Jiii, b2 = 1/2 for the normal and Cl = 
1/-J2, bl = -J2 for the Laplace) and the statistics (2.6.190), (2.6.191), (2.6.192), and (2.6.193) into 
(2.6.194) results in the following expression for the likelihood ratio: 

( max 11, (:rrn JL(X; - :n)2) })-1 
2e L Ix; - xnl 

Thus the likelihood ratio test rejects Ho if 

1 L Ix' - i I v: - n I n < e, 
n - J n~1 L(X; - i n)2 

where e is chosen to produce the required size of the test. 

Remark 2.6.20 A similar test when testing for normality, based on the ratio 

L Ix; - inl 

JL(X; - xn)2' 

(2.6.195) 

(2.6.196) 

(2.6.197) 

was proposed by Geary (1935) and investigated by Pearson (1935). Note that here we use the sample 
mean when calculating the mean deviation. 
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The test (2.6.196) is not a uniformly most powerful (UMP) test [unless n = 1; see Rohatgi 
(1984)]. However, as shown by Uthoff (1973), there exists a most powerful scale and location 
invariant test for (2.6.185), which is asymptotically equivalent to but different from the likelihood 
ratio test (2.6.196). This test rejects Ho if 

Bn Vn < k, 

where Vn is given in (2.6.196) and Bn is a certain function of the order statistics [see Uthoff (1973) 
for details]. On the other hand, in case 8 is known (for convenience set to zero) the likelihood ratio 
and the most powerful scale and location invariant test are both equivalent to rejecting Ho when 

(2.6.198) 

[see Hogg (1972)]. 
The approximate critical region of the test (2.6.196) may be based on the asymptotic distribution 

of the test statistic in (2.6.196). It was shown in Uthoff (1973) that if the underlying probability 
distribution is symmetric and absolutely continuous with a finite fourth moment and with a density f 
continuous in the neighborhood of the median, then the statistic Vn (as well as Bn Vn) is asymptotically 
normal with the mean VI v;I/2 and the variance 

1 -2 -1 2 -1 -2 -[1 - vI V3v2 + 4 vI v2 (V4V2 - 1)], (2.6.199) 
n 

where Vi = EIX - mli and m is the median of f. Thus under Ho, where the distribution is normal, 
the distribution of Vn is approximately normal with the mean of 0.798 and the variance of 0.045/ n 
[Uthoff (1973)]. 

2.6.4.2 Goodness-of-fit tests. In this section we follow Yen and Moore (1988) and discuss two 
nonparametric goodness-of-fit tests for the Laplace distribution. The tests are used to determine 
whether for a given random sample XI, ... , X n, the underlying probability distribution is a C C( (), s) 
distribution (with some unknown values of the parameters). 

Anderson-Darling test. The test statistic for the (modified) Anderson-Darling (AD) test is 

1 n 

A~ = -n - - L(2} - 1)[log F(Xj:n; 8, s) + log F(Xn-j+l:n; (), s)], 
n 

j=I 

(2.6.200) 

where F (.; (), s) is the classical Laplace distribution function (2.1.5) and X j:n is the} th order statistic 
connected with the given random sample [see Yen and Moore (1988)]. The values ofthe parameters () 
and s are usually not known and must be estimated before the test statistic (2.6.200) can be computed. 
Yen and Moore (1988) obtained the critical values for the test by Monte-Carlo simulations. For each 
n = 5(5)50, a random sample of size n was generated from Laplace distribution and the MLE's 
(2.6.15) and (2.6.34) of the parameters were substituted into (2.6.200) to obtain a value of the 
test statistic. The procedure was repeated 5000 times producing an empirical distribution of the 
test statistic (2.6.200), from which sample quantiles approximating the critical values were obtained. 
Table 2.16, taken from Yen and Moore (1988), contains the critical values of the test statistic (2.6.200) 
for selected sample sizes and significance levels ex. 

The Cramer-von Mises test. The test statistic for the (modified) Cramer-von Mises (CvM) test 
is 

2 1 n [ . 2} - 1 J2 
Wn = - + L F(Xj:n, 8,s) - -- , 

12n 2n 
j=l 

(2.6.201) 
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n\a 0.20 0.15 0.10 0.05 0.01 
5 0.607 0.682 0.789 0.948 1.256 
10 0.558 0.618 0.707 0.854 1.224 
15 0.611 0.686 0.801 0.989 1.409 
20 0.592 0.658 0.758 0.919 1.264 
25 0.622 0.691 0.793 0.999 1.435 
30 0.599 0.667 0.773 0.949 1.416 
35 0.628 0.698 0.800 0.975 1.457 
40 0.639 0.706 0.817 1.012 1.461 
45 0.619 0.692 0.807 0.980 1.441 
50 0.607 0.673 0.783 0.967 1.393 

Table 2.16: Critical values for the modified Anderson-Darling test for the Laplace distribution, for 
selected values of the sample size n and significance level a. 

where F(·; e, s) and X j:n are as before [see Yen and Moore (1988)]. As in the former test, the values 
of the parameters e and s must be estimated before the test statistic (2.6.201) can be computed. Yen 
and Moore (1988) obtained the critical values for the test by Monte-Carlo simulations similar to 
those for the AD test. Table 2.17, taken from Yen and Moore (1988), contains the critical values of 
the test statistic (2.6.201) for selected sample sizes and significance levels a. 

n\a 0.20 0.15 0.10 0.05 0.01 
5 0.080 0.090 0.105 0.131 0.193 
10 0.076 0.084 0.096 0.116 0.172 
15 0.085 0.096 0.112 0.142 0.205 
20 0.082 0.092 0.104 0.128 0.186 
25 0.088 0.100 0.114 0.145 0.220 
30 0.084 0.095 0.109 0.137 0.207 
35 0.089 0.101 0.116 0.146 0.213 
40 0.092 0.104 0.121 0.148 0.222 
45 0.088 0.099 0.116 0.145 0.215 
50 0.085 0.096 0.113 0.142 0.212 

Table 2.17: Critical values for the modified Cramer-von Mises test for the Laplace distribution, for 
selected values of the sample size n and significance level a. 

Yen and Moore (1988) tabulated the power of the two (level a = 0.01 and a = 0.05) tests 
discussed above under six different alternative hypotheses with normal, Weibull, uniform, Cauchy, 
gamma, and exponential distributions. The power function of the AD test was higher than that for the 
CvM test under the uniform, Cauchy, gamma, and exponential alternatives across all sample sizes 
and significance levels considered. Under the normal and Weibull alternatives, the power functions 
were comparable. 

2.6.4.3 Neyman-Pearson testfor location. In this section we shall consider two simple hypotheses 
about the location of the Laplace distribution when the scale is known. Namely, let X I, ... , Xn be 
an i.i.d. sample from the Laplace distribution C£(e, s). We want to test 
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g(x) 

x 

Figure 2.6: Function g(x) used in the Neyman-Pearson test. 

where 81 and 82 are some known prescribed numbers. 
It follows from the Neyman-Pearson Lemma that the optimal test (i.e., the most powerful test) 

of the significance level ot rejects Ho if 

0?=lf(Xj;81,S) k 
On < a, 

j=1 f(Xj; 82, s) 

where ka satisfies the equation 

p(0?=lf(Xj;81,S) k 11l-1l)-
n < a !7 -!71 - ot, 

OJ=1 f(Xj; 82, s) 
(2.6.202) 

where f(x; 8, s) is the density function of C.c(8, s). 
We shall consider the case 82 > 81, since otherwise we would rewrite the sample as ( - X I, ... , 

-Xn) replacing 81 and 82 by -81 and -82, respectively. Substituting the density f(x; 8, s) into 
(2.6.202) it is easy to observe that the above testing procedure is equivalent to rejecting Ho provided 
that 

n 

Lg(Xj) > ta, 
j=1 

where 

The graph of the function g is sketched in Figure 2.6. 

for x < 81, 
for 8,::':0 x ::':0 82, 
for x > 82. 

To determine the value of ta, we are required to solve the equation 

(2.6.203) 

This requires knowledge of the distribution of the test statistic 2::7=, g(Xj) under the Ho hypothesis. 
This distribution is given in Marks et al. (1978). We now present this result and its proof. 
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Theorem 2.6.2 Let X" ... , Xn bea random samplefrom theCC(O, s) distribution. Then under the 
null hypothesis 0 = 0" the distribution of 

n 

Tn = Lg(Xi), 

i=' 
where g(x) is defined in 2.6.203 and 02 > 0" is given by the following c.d.f: 

F~O)(x) = ;n I~~t G)e ~k)(_ly(:)e-(r+l)(~-81)/S 
x [1 - e-v (x)/2 • ek-' (V(X)j2)] u (v(x» 

+ j; (:)e-m(~-8d/su (x + (n - 2m)(02 - O!)jS)} , 

where v(x) = x + (n - 21 - 2r)(02 - O!)js, ed·) is the incomplete exponential function, i.e., 

and 
u(x) = {01 for z < 0 

for Z 2: O. 

The expected value and the variance of Tn under Ho are 

and 
" (O)(T.) (3 2 -(~-8d/s -2(~-8d/s 4(02 - O!) -(~-81)/S) var n = n - e - e - e . 

s 

lfO = 02 (H, hypothesis), the distribution of Tn is given by the c.d.f 

F~l)(x) = 1 - F~O)(-x), 

and in this case the expected value and the variance are given by 

The statistic Tn is asymptotically normal, i.e., 

lim Tn - E[Tnl ~ N(O, 1). 
n--+oo JVar[Tnl 

Proof Consider first the distribution of Tn under Ho. Since g(Xj) is a truncated Laplace random 
variable, its distribution is given by 

{ 
0 for x < -(02 - Odjs, 

F(x) = Fl (x; (0, - (2)js, 2) for -(02 - O!)js ::: x::: (02 - O,)js, 
for x > (02 - O,)js, 
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where F(x; 0, s) is the c.d.f. of the C.c(O, s) distribution. 
Straightforward calculations yield the following characteristic function for this truncated dis­

tribution 

_ ~-91 { [( 1 .) £h - 01 ] sinh [(~ - it)«(h - (h)/s] } 
t/J(t) = e 2S" cosh - - It -- + . 

2 s 1 - 2it 

Consequently, the characteristic function of Tn, t/J(O)(t) becomes 

-n ~ -91 { [ ( 1 .) 02 - 01 ] sinh [ (~ - it)( £h - (1) / s ] } n 
e 2S" cosh - - It --- + ---=--------=-

2 s 1 - 2it 

Expressing the hyperbolic sine and cosine in terms of complex exponentials, and using the bino­
mial expansion of the nth power of the sum, we obtain (after rather tedious but straightforward 
simplifications) 

Note that 

and 

t/J(O)(t) = ;n {~~~G)(n~k)(-I)rG) 
e-it(n-2r-21)(~-81)/S 

e-(r+l)(~-81)/S . _____ -,-__ 

(1 - 2it)k 

+ E (:)e-m(~-81)/Se-it(n-2m)(~-81)/S } . 

e-it(n-2r-21)(~-81)/S 

1/11 (t) = --(1---2,-· t)-;-k--

1/I2(t) = e-it(n-2m)(~-8t>/s 

are, respectively, the characteristic functions of the X2 r.v. with 2k degrees of freedom (shifted by 
(2r + 21 - n) (£h - (1) / s to the right) and the constant random variable equal to (2m - n) (02 - (1) / s. 
The final formula for the c.d.f. F~O) follows from the forms of the c.d.f. 's for these two distributions. 
The formulas for the expected value and variance can be obtained easily by integration of the truncated 
Laplace random variable g(X). 

The corresponding formulas under HI follow from the symmetry of Laplace distribution. First, 
note the relation 

Thus 

P(Tn ::::: x 10 = (2) = P (~g(-(Xi -~) + OJ) :::: -xio = (2) 

= P (tg(Xi):::: -xlo = (1) 
1=1 

= 1- P(Tn ::::: -xlo = OJ). 
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The second-to-Iast equality above follows from the fact that if X has the CL(02, s) distribution, then 
Y = -(X - 02) + 0) has the CC(O) , s) distribution. 

The asymptotic normality is a direct consequence of the Central Limit Theorem. D 

The importance of the explicit formula for the test statistic in the above problem is due to the 
fact that the asymptotic Gaussian approximation is not usually very accurate for small and moderate 
sample sizes. For example, it was shown in Dadi and Marks (1987) that for samples size in the 
range from 5 to 50 the Gaussian approximation can be quite conservative, some yielding the ta-value 
substantially larger than its exact value (see the Dadi and Marks paper for numerical results). 

2.6.4.4 Asymptotic optimality of the Kolmogorov-Smirnov test. The asymptotic optimality of the 
Kolmogorov goodness-of-fit test for the location Laplace family was studied in Nikitin (1995), who 
derived the following characterization of the Laplace distribution: The Kolmogorov goodness-of­
fit test is locally asymptotic optimal in the Bahadur sense if and only if the underlying family of 
distributions are symmetric Laplace laws. To state this result more precisely, let us recall some basic 
notions from the theory of asymptotic efficiency for statistical tests. 

Let us consider a location family given by the densities fe, 0 E JR, and let F(x; 0) be 
the corresponding cumulative distribution functions. Let K (0,00) be the information number, i.e., 
K (0,00) = Eoo log(fo / foo)' The Smimov one-sided statistics are defined as 

and the Kolmogorov statistic is 

D; = sup ±[Fn(x) - F(x; 0)], 
xelR 

Dn = sup IFn(x) - F(x; 0)1· 
xelR 

The statistics D;- (or Dn) are locally optimal in the Bahadur sense if and only if 

lim ~ log PO,n = -K(O, 0), 
n-'>OO n 

where PO,n is the observed P-value based on D;- (or Dn) under the assumption that the sample is 
obtained from the distribution given by fo. 

Let 9 be the class of absolutely continuous densities on the real line such that for g E 9, we 
have 

0< lim {0-2 flog (g(X + 0») g(x + O)dX} = ~ f [g,(x)]2 dx < 00. 
0-,>0 g(x) 2 g(x) 

The following theorem was proved in Nikitin (1995, Theorem 6.3.1). 

Theorem 2.6.3 Consider a location testing problem with fo = g(x + 0). Then the sequences of 
statistics Dn and D;; are locally asymptotically optimal in the Bahadur sense within the class 9 only 
for the Laplace distribution, i.e., for g(x) = 1/2e-1xl . The sequence of statistics D;; is never optimal 
in the Bahadur sense in the class 9. 

2.6.4.5 Comparison of non parametric tests of location. Ramsey (1971) examines eight nonpara­
metric tests of location in a small sample setting and investigates power functions for samples drawn 
from Laplace distribution. His main conclusion is that the Mood median test, which is the asymptot­
ically most powerful (AMP) rank test, performs poorly for the alternatives that are not close to the 
null hypothesis. 

Consider a rank sum statistic. Let X), X 2, ... , X m and let Y), ... , Yn be independent random 
samples from populations F(x) and G(y), respectively. We test Ho : G(x) == F(x) versus the 
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location shift alternative HA : G(x) = F(x - e) for some e > O. Let 0; (i = 1,2, ... , N = m + n) 

be a zer%ne random variable indicating whether the ith smallest value in the combined sample 
is a Y. 

A rank sum statistic is a linear combination 

N 

TN = ~aN '0' ~ ,I" 

i=1 

where the aN,; (i = 1, ... , N) are the so-called ith "scores." 
When F(x) is known to belong to a family (for example normal) that admits a UMP test, the 

choice of a test is clear and unique. When nothing is known about F (.) except for the information 
provided by the samples, one should select a nonparametric procedure with good efficiency in a wide 
class of distributional families. 

For an intermediate situation when partial knowledge about F(x) is available, Ramsey (1971) 
proposes using the Laplace distribution for the null hypothesis. It is not quite clear why this is an 
appropriate assumption - presumably the idea is that the data is long tailed - however, the behavior 
of eight standard nonparametric tests of location under the assumption that the null distribution is 
Laplace is, of course, of interest on its own. 

The eight nonparametric tests for the Laplace distribution investigated in Ramsey (1971) and 
in Conover et al. (1978) (a follow-up to the first paper) are as follows: 

1. The locally most powerful (LMP) rank test. Under the Laplace distribution the LMP scores are 

aN,; = 2P(ZN :s i-I) - 1, 

where ZN is binomial variable with the parameters Nand p = 1/2. 

2. The Mood median test (M), where 

aN.; = sign(2i - N - 1) 

and the statistic is an AMP rank test [see, e.g., Hajek (1969)]. 

3. The normal scores (F) test, where aN'; is the expected value of the ith order statistic in a 
random sample of N observations from the standard normal distribution. 

4. The Wilcoxon test (W) [see Wilcoxon (1945)], where aN,i = i, the rank itself. Note that 
indicators of Y -ranks (rather than X -ranks) form the test statistic, so the alternative hypothesis 
is favored by the large values of the test statistic. 

5. The van der Waerden (V) test [see van der Waerden (1952)] uses quantiles of the standard 
normal distribution as scores. 

6. The Tukey quick test (T) counts the number of Y's exceeding the largest X and the number 
of X's that are less than the smallest Y. (If in the combined sample the largest and smallest 
observations come from the same sample, then T = 0.) 

7. The Neave-Tukey quick test (N) statistic, which maximizes the Tukey statistic over subsamples 
in which one observation is omitted. 

8. The Kolmogorov-Smirnov test (K): If Fm and Gn are the sample c.d.f.'s of X's and Y's, 
respectively, then 

KS = suPlFm(x) - Gn(x)l. 
x 
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Ramsey chooses sample sizes n = m = 5 and calculates the power functions of each test as a function 
of the location shift e. The power functions are of the form 

1 5 . i . 

pee) = 1 + - L e- tfJ La j,i eJ . 
aoo i=1 j=O 

The results are presented in Figure 2.7. Here the power of the LMP test (p LM P ) is used as a standard 
and thus the LMP test is represented by the zero line. For other tests, the diagrams show the differences 

p.(e) - PLMP(e), 

where p. (e) is the power function of another test. 
It is quite surprising that the Mood median test (which is AMP) performs poorly except for a 

small local region in which it is an approximation to the LMP test. Note also that the F, W, and V 
tests behave almost as well as the LMP tests. 

This example with Laplace distribution shows that sometimes with an unfamiliar distributional 
family the cost of deriving the LMP test may not be justified and serves a warning to those who 
"purchase a shred of optimality (i.e., the use of asymptotically most powerful test) at the expense of 
a large sample assumption" [Ramsey (1971)]. 

2.7 Exercises 
In this section we present some 60 exercises of various degrees of difficulty related to the material 
discussed in Chapter 2. We urge our readers to at least skim this section since it contains information 
that will enhance their understanding of the properties of the classical symmetric Laplace distribution. 

Exercise 2.7.1 Show that the nth moment about zero of the classical Laplace r.v. Y with density 
(2.1.1) is given by (2.1.18). Compare with the corresponding result for a normal r. v. with mean e and 
variance (J 2 . 

Exercise 2.7.2 Show that the density function f(x; e, s) given by (2.1.1) has derivatives of any 
order, except at x = e, where there is a cusp. Demonstrate the following explicit form of these 
derivatives: 

d I (_l)nl Ie-lx-Oils . 2:;n:;:r 
d n f(x, e, s) = 1 I -Ix-Oils 

x 2:;n:;:re 

if x > e, 
if x < e. (2.7.1) 

Exercise 2.7.3 The Gini mean difference for the distribution of a r.v. X is defined as 

y(X) = EIXI - X21, 

where XI, X2 are i.i.d. copies of X. Show that if X'" eC(e, s), then y(X) = is 
Exercise 2.7.4 Let X be a classical Laplace r.v. with density f(x) = f(x; e, s) as in (2.1.1). 

(a) Show that for e < 0 the geometric mean of X, defined as 

)... = exp [LX> logxf(x)dx ] ' 

is 

)... = exp {-~(y -lOgS)eOls } , 
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Figure 2.7: Power functions of eight nonparametric tests oflocation in the Laplace family for various 
values of significance level CL (0.1 - top left, middle right; 0.05 - top right, bottom left; 0.025-
middle left, bottom right) and sample sizes m = 5 and n = 5 (first three graphs) and n = 4 (last 
three graphs). Reproduced from Conover et al. (1978). Reprinted with permission from the Journal 
o/the American Statistical Association. Copyright 1978 by the American Statistical Association. All 
rights reserved. 
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where 

Y = - 1000 e-Y log y dy ~ 0.5772156 ... 

is Euler's constant [Christensen (2000)]. What is the value of A. when e > O? 
(b) Calculate the harmonic mean of X, defined as 

[1 00 1 J-1 
11 = -00 ~ f(x)dx , 

where the integral is understood in the Cauchy's principal value sense. 

Exercise 2.7.5 Let Y have a classical Laplace C£(O, s) distribution with density f(x) = f(x; 0, s) 

given by (2.1.1). 
(a) Verify that 

100 log f(x) 
--=:"":""":"2::-d X = - 00 

-00 1 + x 
(2.7.2) 

and 

-xf' (x)/ f(x) is increasing without bound as x ~ 00. (2.7.3) 

Recall that for a real r.v. Y whose c.d.f. is absolutely continuous with density f the conditions (2.7.2) 
(the so-called Krein condition) and (2.7.3) (the so-called Lin condition) are sufficient for the moments 

CXn = E[yn] = L: xn f(x)dx (2.7.4) 

to determine the distribution of Y uniquely [see Krein (1944) and Stoyanov (2000)]. Thus the C£(O, s) 

distribution is uniquely determined by the sequence {cxn} of its moments. 
(b) Another sufficient condition for the moments (2.7.4) to determine the distribution uniquely 

is the so-called Carleman condition: 

00 1 

Lcx~2n = 00 (2.7.5) 
n=1 

[see, e.g., Harris (1966)]. Does the Laplace distribution C£(O, s) satisfy the Carleman condition? 
(c) Is the general classical Laplace distribution C£(e, s) determined uniquely by the sequence 

{cxn} of its moments? 

Exercise 2.7.6 Let X be a random variable with coefficients of skewness and kurtosis YI and Y2, 
respectively. The quantities 

_ E[(X - EX)5] _ 10 
Y3 - [E(X _ EX)]5/3 YI 

and 

= E[(X - EX)6] _ 15 _ 10 2 _ 15 
Y4 [E(X _ EX)]3 Y2 YI 

may be viewed as generalizations of YI and Y2. Compute these quantities for the standard Laplace 
and the standard normal distributions. 
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Exercise 2.7.7 In this exercise you will study the effect of rounding on the mean and the variance 
of the Laplace distribution. If the values of a continuous r.v. X are rounded into intervals of width w, 
where the center of the interval containing zero is aw, then the values of the resulting discrete r. v. X 
are 

aw, aw ± w,aw ± 2w, .... 

Moreover, 

X=aw+nw, n=O,±I, ... 

whenever 

aw + nw - w/2 ::s x < aw + nw + w/2. 

(a) Let X have the CL(O, s) distribution, so that E[X] = 0 and Var[X] = a 2 = 2s2. Show that 
the probability function of the r.v. X admits the following explicit form: 

for n ::s -I, 
for n = 0, 
for n ::: 1. 

(2.7.6) 

(b) Derive closed form expressions for the mean and the variance of the r.v. X given by (2.7.6). 
Discuss the effects of rounding on the mean and variance. You may want to follow Tricker (1984), 
writing w = ra and considering the behavior of the bias 

and the ratio 

for various values of a and r. 

E[X] - E[X] 

w 

Var[X] v=-­
Var[X] 

(c) Repeat the above for the normal distribution with mean zero and variance a 2 . Does the 
probability function of X admit an explicit form in this case? What about E[X] and Var[X]? In 
which case is the effect of rounding more severe? 

Exercise 2.7.8 Let F and G be the d.f.'s of two continuous distributions symmetric about BF and 
Be, respectively. We say that F is lighter tailed than G, denoted by 

F <s G, 

if the function G- 1[F(x)] is convex for x> BF [see vanZwet (1964)]. 
(a) Show that the s-ordering defined above is location and scale invariant. 
(b) Assume that B F = Be = 0 and show that if F <s G, then G (x) ::s F (x) for x > O. Thus G 

has more probability in the tail than F does [Hettmansperger and Keenan (1975)]. 
(c) Show that 

uniform <s normal <s logistic <s Laplace. 

(d)* Further, show that although we have Logistic <s Cauchy, the Laplace and the Cauchy 
distributions are not comparable with respect to the <s ordering [see Latta (1979) and Balanda 
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(1987)]. In practice, the uniform is usually referred to as light tailed, the normal and logistic as 
medium tailed, while the Laplace and the Cauchy as heavy tailed, so in a sense, the s-ordering 
corresponds to a common perception of tail heaviness. See, e.g., Hettmansperger and Keenan (1975) 
for more information on ordering of distributions by tail heaviness. 

Exercise 2.7.9 Let X have the standard classical Laplace distribution with density p(x) = ~e-ixi 
(-00 < x < 00). Show that the ordinate p(X), considered as a random variable [the so-called 
vertical density function; see Troutt (1991)] has uniform distribution on (0, 1/2). Note that the same 
is true for the ordinate p(X) when X has the standard exponential density p(x) = e-x (x > 0) (in 
which case we obtain the standard uniform distribution). Investigate the corresponding case of the 
standard normal distribution: derive the density ofthe ordinate p(X) when X is standard normal with 
p.d.f. p(x) = be-x2/2 (-00 < x < 00), which is not uniform! 

Exercise 2.7.10 Let W be a standard exponential r.v. with the density fw(w) = e-w , w ~ 0, and 
let Z be a standard normal random variable, independent of W, with density 

-00 < x < 00. 

Show that the density of the product X = -./2 W Z is given by the right-hand side of relation (2.2.4). 
Hint: Consider the transformation YI = W, Y2 = -./2 W Z and derive the joint density of YI 

and Y2. Then integrate the joint density with respect to YI to obtain the marginal density of Y2. 

Exercise 2.7.11 Let W have a standard exponential distribution with density fw (w) = e-w , w ~ o. 
Show that the random variable T = 1/.JW has the density JT(x) = 2x-3el / x2 , x > o. 

Exercise 2.7.12 Let W have a standard exponential distribution with density fw(w) = e-w , w ~ o. 
Let I be r.v. taking on values ±1 with probabilities 1/2 and independent of W. Show that the ch.f. 
of I W is given by the right-hand side of (2.2.9). 

Exercise 2.7.13 Let UI, U2, U3, U4 be i.i.d. standard normal random variables. By computing rel­
evant characteristic functions, show that the r.v. X = UI U4 - U2U3 has the standard Laplace 
distribution. 

Hint: First, show that the ch.f. of X is (E[e itUI U4])2 and compute this expectation by condi­
tioning on U4. 

Exercise 2.7.14 Explain why a three-dimensional extension of (2.2.13) given by a 3 x 3 matrix does 
not result in a Laplace distribution or its modifications. Investigate an n-dimensional extension. 

Exercise 2.7.15 Let 81 and 82 be r.vo's taking values of either zero or one with probabilities given 
in Proposition 2.4.4. Let WI, W2 be i.i.d. standard exponential r.v.'s, independent of (81,82). Let X 
have a standard Laplace distribution with ch.f. (2.1.7). 

(a) Show that the ch.f. of eX, where e E (0, 1), is given by the first factor of (2.4.10). 
(b) Show that the ch.f. of 81 WI - 82 W2 is given by the second factor of (2.4.10). 
(c) Show that the product (2.4.10) is equal to the ch.f. of X. 

Exercise 2.7.16 Show that if XI and X2 are i.i.d. C.c(O, s) random variables, then Y = IXI! X21 has 
F -distribution with VI = 2 and V2 = 2 degrees of freedom. 
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Exercise 2.7.17 Show that if Zi, i = 1,2, ... ,6, are i.i.d. standard normal r.v.'s, then 

has the standard classical Laplace distribution. 

Exercise 2.7.18 Let X I, ... , Xn be i.i.d. standard classical Laplace r.v.'s. Show that the sum T = 
.E'j =1 X j admits the random sum representation (2.3.27) of Proposition 2.3.2. 

Hint: Write the ch.f. cp(t) of the right-hand side of (2.3.27) by conditioning on I and Mn to 
obtain 

~(t) ~ ~t [C ~J + C~,J] 22:~1 en;:!; 1)- (2.7.7) 

Then show that (2.7.7) coincides with [1 + t 2]-n, which is the ch.f. of T. 

Exercise 2.7.19 Let X I and X2 be i.i.d. random variables with density f(x) = px p - I , P > 0, 
x E (0, 1) [the standard power function distribution with parameter p; see, e.g., Johnson et al. (1994, 
p. 607)]. Show that the r.v. 

XI 
Y = plog­

X2 

has the standard classical Laplace distribution. 
Hint: Relate XI to the standard Pareto Type I r.v. with p.d.f. l/x2, x > 1, and use Proposi­

tion 2.2.4. 

Exercise 2.7.20 Recall that the standard classical Laplace r.v. X has the same distribution as the 
difference of two i.i.d. standard exponential variables (see Proposition 2.2.2). Investigate whether 
there are any other i.i.d. r. v.'s VI and V2 such that 

d 
X = VI - V2. (2.7.8) 

Proceed by writing the relation (2.7.8) in terms of ch.f. 's, 

1 
1 + t2 = 1/fV1 (t)1/fV1 (-t), (2.7.9) 

where 1/fV1 is the ch.f. of VI, and note that the ch.f. 

1/fV1 (t) = (l - it)-"(1 + it),,-I, 0::::: ex ::::: 1, 

is a solution of (2.7.9). What is the corresponding r.v. VI? Are there any other solutions to (2.7.9)? 
[See Problem 64-13, SIAM Review, 8(1), (1966), pp. 108-110]. 

Exercise 2.7.21 Let X I, X2, ... be i.i.d. random variables with finite mean fL, and let N be a positive 
and integer-valued random variable with finite mean E[N]. Show that if N and Xi'S are independent, 
then the mean of the random sum .E;:'I Xi is equal to the product fLE[N]. 

Exercise 2.7.22 Define fn(t) = [cpC-JtWln for t > ° and n = 1,2, ... , where cp is a real-valued 
characteristic function. If the function fn is completely monotone on (0,00) for each n (that is, 
(-ll f~k)(t) :::: ° for t > 0, k = 0, 1, ... ), then the ch.f. cp is infinitely divisible [Kelker (1971)]. 
Apply the above result to the ch.f. of the standard classical Laplace distribution to establish its infinite 
divisibility. 
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Exercise 2.7.23 Suppose that XI and X2 are i.i.d. classical Laplace r.v.'s with p.d.f. (2.1.1), where 
() = 0 and s > O. Let 

- 1 2 -2 -2 
X2 = 2(Xl + X2) and S2 = (XI - X2) + (X2 - X2) . 

Show that the p.d.f. of the t-statistic (2.3.40) with n = 2 is given by (2.3.51). 

Exercise 2.7.24 Let X I, ... , Xn be a random sample from the classical Laplace distribution C£«(}, s). 
(a) Show that the distribution ofthe t-type statistic Tn given by (2.3.57) is concentrated on the 

interval [ -1, 1] and does not depend on the parameters () and s. 
(b) Show that the distribution function of the statistic Tn is given by (2.3.60). 
(c) Investigate the distribution of another analog of the t -distribution, the statistic 

L:7=1 (Xi - ()) 

L:7=IIXi - enl' 
where en is the sample median of the Xi'S. 

Exercise 2.7.25 Let 

r (~) ( t2)-<n+I)/2 
gn(t) = y'nJrr G) 1 + -;; , -00 < t < 00, 

be the density of the t-distribution with n degrees of freedom, and let frn be the density (2.3.56) of 
the t-statistic (2.3.40) based on a random sample of size n from the classical Laplace distribution 
with density (2.1.1) with () = O. Investigate the behavior of the ratio 

Yn(t) = gn(t)/frn(t) 

as t ~ 00. Specifically, show that Yn(t) is monotonically increasing to infinity for t E (to, 00) for 
some to > O. Conclude that the tails of density frn are heavier than those of the student t-density gn' 
What are the implications when one uses the critical points of the t -distribution when calculating the 
Type I error probabilities, the power function, or the confidence levels connected with samples from 
the Laplace distribution? 

Exercise 2.7.26 Compare products and ratios of two independent Laplace random variables with 
products and ratios of two independent normal random variables. 

Exercise 2.7.27 Let Xl, X2, X3, X4 be independent standard classical Laplace random variables. 
Find the p.d.f.'s of their following functions: 

J (X? + X~)/2' 
Exercise 2.7.28 If X I has density 

!J(x)= 2a' {
I. 

0; 

if X2 has density 

-a < x < a, 
otherwise, 
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and XI and X2 are independent, then Y = XIX2 has density 

1 ( y2 ) h(y) = EI -- , 
2../2iiaa 2a2a 2 

-00 < y < 00, 

where 

EI(x) = ~dt, 100 -t 

x t 
x> 0, 

is the exponential integral. What is the corresponding result when X2 is replaced by a Laplace r.v. 
with mean zero and scale parameter a? 

Exercise 2.7.29 Let Bn have beta distribution with parameters 1 and n, with density given by (2.2.45). 
Show that as n ~ 00, the sequence n Bn-I converges in distribution to a standard exponential random 
variable. 

Exercise 2.7.30 Show that if in Proposition 2.4.7 the condition (2.4.27) is replaced by 

EIX - 0 I = c > 0 for X E C, 

then the maximum entropy is attained by the classical Laplace distribution with density f (x) = 
1ce-lx-81/c [Kapur (1993)]. 

Exercise 2.7.31 (a) Consider a location family with density 

f(x - 0), -00 < x, (J < 00, (2.7.10) 

where f is the standard classical Laplace density f(x) = ~e-Ixl. Show that the Fisher information 
/ (0), given by 

/(0) = 100 [f'(y)f dy, 
-00 f(y) 

(2.7.11) 

is equal to one. Compare it with the corresponding values of / «(J) when f is the standard normal, 
standard logistic, and standard Cauchy density. 

(b) Now consider a location-scale family with density (2.6.1). Using the relations (2.6.9)­
(2.6.11), show that the Fisher information matrix is given by (2.6.12). 

(c) Show that for a location-scale family of £(0, a) distributions given by the density (2.1.3), 
the Fisher information matrix is 

[ 2/0a2 0 ] 
1/a2 . 

(d) What is the corresponding Fisher information matrix when f in (2.6.1) is the standard 
normal density f(x) = ~e-x2/2? 

V 211' 

Exercise 2.7.32 Let X I, ... , Xn be a random sample of size n = 2k + 1 from the classical Laplace 
location family with density (2.6.125), and let On = Xk+J:n be the sample median with the density 
given by (2.6.126)-(2.6.127). 

(a) Following (2.6.128), show that the Fisher information about 0 contained in On is given by 
(2.6.129). 

(b) Show that the amount of Fisher information lost when using On is given by (2.6.130). 
(c) Show that the loss (2.6.130) converges to infinity as k ~ 00. 

(d) Establish the asymptotic relation (2.6.131). 



120 2. Classical Symmetric Laplace Distribution 

Exercise 2.7.33 Given a random sample Xl, ... , Xn (from a continuous distribution with density f 
and distribution function F) and a score function leu), 0 < u < 1, (corresponding to a one-sample 
linear rank test of symmetry), the R-estimator of the location parameter e is defined as the solution 
of 

(2.7.12) 

where 

l+(u) = l(I/2+u/2) 

and R(w) is the rank of w [see, e.g., Hall and Joiner (1983)]. Under some regularity conditions, the 
efficient score function, corresponding to the asymptotically most powerful rank test [see, e.g., Hajek 
(1969)] is 

-f'eF-leu»~ 
leu) = f'(F-l(u» . (2.7.13) 

(a) Show that if the sample is from the eC(e, 1) distribution, then the efficient score function 
(2.7.13) is 

leu) = sign(u - 1/2) (2.7.14) 

(so that the corresponding asymptotically most powerful rank test is the sign test). 
(b) Show that ifthe score function is given by (2.7.14), then the R-estimator oflocation given 

by (2.7.12) is the sample median. 
(c) What is the most efficient score function (and the corresponding asymptotically most pow­

erful rank test) if the underlying distribution is normal? 
(d) What is the most efficient score function (and the corresponding asymptotically most pow­

erful rank test) under the underlying logistic distribution? 

Exercise 2.7.34 Let Xl, ... , Xn be a random sample from the density 

1 
f(x; e) = 2e-lx-lIl, -00 < x < 00, -00 < e < 00. (2.7.15) 

Use calculus to show that the MLE of e is the sample median. Proceed by writing the log-likelihood as 

n 

lj!(e) = -nlog2- L{(Xi _e)2}1/2, (2.7.16) 
i=l 

and then by taking the derivative with respect to e to find the intervals where lj! is increasing and 
decreasing. 

Exercise 2.7.35 The following example was derived in Rao and Ghosh (1971). Consider the location 
family {f(x - e), e E JR.}, where 

(2.7.17) 

where, for continuity, we have (a2 - al)cl + kl = k2, and 

o < al < a2 < 2al. (2.7.18) 
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The constants kI, k2, aI, a2, and C} are such that f is a valid probability density on (-00, (0). 
(a) Show that if g is convex and symmetric function on JR., then for any Xl, X2 E JR., the function 

h(e) = g(XI - e) + g(X2 - e) (2.7.19) 

is minimized for e* = XI tX2 • 

(b) Let Xl, X2 be a random sample of size n = 2 from density f(x - e). Apply part (a) to the 
function 

g(X) = -log f(x) (2.7.20) 

to show that the likelihood function is maximized when e is set to the sample median. 
(c) Let YI < YO < Y2 be a random sample of size n = 3 form f(x - ()). Assuming that YO = 0, 

write the negative log-likelihood function and show that it is convex. Further, show that for () near 
zero the negative of the log-likelihood function is minimized by e = 0 (sample median). Argue that 
the global minimum exists, and is also attained at e = O. Thus we have a non-Laplace distribution, 
such that the MLE of the location parameter for sample sizes n = 2, 3 is sample median. 

Exercise 2.7.36 Let f be the skewed Laplace density given by (2.6.18). 
(a) Show that the function f is a probability density on (-00, (0) if c = (1/bI + l/b2)-I. 
(b) Let n be odd, and let X I, ... , Xn be a random sample of size n from the distribution with 

density f(x - ()), where f is the density (2.6.18) with the constants bI and b2 such that 

n-l n-l 
bI-- < b2 and b2-- < bI· 

n+l- n+l-
(2.7.21) 

Show that every median of X I, ... , X n is the MLE of (). 
(c) Let n be odd and let bI > 0 and b2 = n~2bI. Show that the above bI and b2 satisfy the 

conditions (2.7.21). 
(d) In view of the above results, show that the condition (v) preceding Proposition 2.6.3 (see 

Section 2.6.1.1) is not enough to conclude that the population is Laplace [Findeisen (1982)]. 

Exercise 2.7.37 Consider the function 

(2.7.22) 

(a) Argue that f with an appropriate c > 0 is a probability density function on (-00, (0). 
(b) Show that for every - 00 < x, y, e < 00 we have 

log fCx - e) + log fey - e) ~ log f(O) + log fCy - x). (2.7.23) 

(c) Using part (b), show that if Xl and X2 are i.i.d. with density f(x - ()), where f is given by 
(2.7.22), then both Xl and X2 are theMLE's ofe. 

Cd) In view of the above results, show that the condition (vi) preceding Proposition 2.6.3 (see 
Section 2.6.1.1) is not sufficient to conclude that the population is Laplace [Findeisen (1982)]. 

Exercise 2.7.38 Let X I, ... , Xn be a random sample from the density (2.6.19) with a given value 
of a and an unknown value of e. Show that the MLE of e is the empirical a-quantile of the sample 
(defined to be a number ~a such that at least a x 100% ofthe observations are less than or equal to 
~a, and at least (1 - a) x 100% ofthe observations are greater or equal to ~a). 
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Exercise 2.7.39 Let XI:n, ... , Xn:n denote order statistics from a standard classical Laplace distri­
bution C£(O, 1). Then the variance of the sample median (2.6.15) is given by 

I
n! 21- k "k k! (2)-i(k 1 ')-3 fi 2k 1 2 (k!)2 L-i=O i!(k-i)! - + + 1 , or n = +, 

Un = n! 22-k ("k-2 (. k) + 3(_I)k-l+ l ) for n = 2k 
[(k-I)!]2 L-i=O a I, 2k+3k4' 

(in case n = 2 the sum Li~o should be set to zero), where 

a(i, k) =. (k - I)!. (-2)-i(k _ 1 _ i)-I{(k + 1 + i)-3 - (2k)-3}. 
d(k - 1 - I)! 

Show that u; --+ 0 as n --+ 00. 

(2.7.24) 

(2.7.25) 

Exercise 2.7.40 Let Mx and My be the sample medians (2.6.15) of XI, ... , Xn and YI, ... , Ym, 
respectively, and let Mxy be the sample median of XI, ... , X n, YI, ... , Ym' Show that Mxy is between 
Mx and My. 

Exercise 2.7.41 Let X I, ... , Xn be a random sample from the standard classical Laplace distribution, 
and let 

en -log[2(1 - ,8)] 
Wn = A , 

Sn 

where 0.5 < ,8 < 1 and the statistics en and sn are, respectively, the (canonical) sample median 
(2.6.15) and the sample mean absolute deviation (2.6.34) (the MLE's of the Laplace parameters). 
Show that if n = 2, then the p.d.f. of W2 is given by (2.6.178) with kf3 = log[2(l - ,8)] [Shyu and 
Owen (1986a)]. 

Exercise 2.7.42 Let XI, ... , Xn be Li.d. from the C£(e, s) distribution, and let en and en be the 
MLE and MME of e given by (2.6.15) and (2.6.53), respectively. 

(a) Show that if s = 1 and n = 2k + 1, then for any integer k ::: 3 the right-hand side of (2.6.56) 
satisfies the relation 

(2k + I)! (1)2k+1 ~7T ( 1 )3/2 (1.51) - -- 1+- <2. 
(k!)2 2 2k + 1 2k -

(2.7.26) 

Conclude that for n = 2k + 1 ~ 7 the variance of en is less than the variance of en (which is 2/ n). 
(b) Investigate the corresponding case when the sample size is even. 

Exercise 2.7.43 Let XI, ... , Xn be i.i.d. from the C£(O, s) distribution, and let sn and sn be the 
MLE and MME of s given by (2.6.20) and (2.6.58), respectively. 

(a) We saw in Proposition 2.6.4 that sn is unbiased for s. Investigate whether this property is 
shared by sn. 

(b) Asymptotically, the variance of sn is smaller than that of sn. For n ::: 1, derive the variances 
of sn and sn and examine which one is larger. 

Exercise 2.7.44 Consider a Type II censored sample (2.6.38) from the classical Laplace distribution 
and the corresponding likelihood function (2.6.40). 

(a) Show that the likelihood function is continuous in e for any fixed s > O. 
(b) Show that for any fixed s > 0 the likelihood function is monotonically increasing in e for 

e E (-00, Xr+l:n) and monotonically decreasing in e for e E (xn- r:n , 00). 
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(c) Show that for 0 E [Xr+l:n, xn- r :n ] and for any fixed s > 0 the likelihood function is 
maximized by sample median of Xr+l:n, .•. , Xn- r :n . 

(d) Show that the MLE of 0 is the sample median. 
(e) Show that when we substitute the sample median On into the likelihood function (2.6.40) 

we obtain the function g given by (2.6.41)-(2.6.42). 
(t) Show that the function g is maximized by s = C / (n - 2r) and deduce that the MLE of s is 

given by (2.6.43). 
(g) Investigate the case of Type II right censored samples and general Type II censored samples. 

Exercise 2.7.45 Let XI, ... , Xn be i.i.d. with the C.c(O, s) distribution. 
(a) Show that 

1 n 

81 = - '"' X? 2n~ I 

i=1 

is an unbiased and consistent but not efficient estimator of the parameter s2. 
(b) Show that under the loss function of the form 

L(8, s2) = /(s2)(8 _ s2)2, 

where / is an arbitrary positive function, the risk of the estimators of the form 

is minimized for 

n 
a,", 2 

8a = - ~Xi 
n i=1 

n a* = __ --
2(5 + n) 

(2.7.27) 

(2.7.28) 

(2.7.29) 

(2.7.30) 

[Jakuszenkow (1978)). Is the resulting estimator consistent for s2? Compare the variances of 81 
and 8a •. 

Exercise 2.7.46 Consider the mixture of two Laplace distributions with density (2.6.81). Show the 
following. 

(a) If 01 = 02 = 0, then for any 0 < p < 1, the distribution is unimodal with the mode at o. 
(b) If 01 < 02 and 

S2 s2 
---=-_-=--,-1 ___ < P < 1 
st + sie(Ii:l-I/t)/S2 st + Sie(OI-Ii:l)/SI ' 

then the distribution is bimodal with the modes at 01 and 02. 
(c) If 01 < 02 and 

S2 
O<p< 1 , 

s2 + s2eCIi:l-OJ}/S2 
1 2 

then the distribution is unimodal with the mode at 02. 
(d) If 01 < 02 and 

S2 
1 < P < 1, 

st + Sie(OI-Ii:l)/SI 

then the distribution is unimodal with the mode at 01 [Kacki and Krysicki (1967)]. 
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Exercise 2.7.47 Let Y have a classical Laplace distribution with density (2.1.1) so that 

d Y=()+sX, (2.7.31) 

where X has the C£(O, 1) distribution. Then the mixture on () of the distribution of Y is the type I 
compound Laplace distribution with parameters f..L, a , and s, if () in (2.7.31) has the normal distribution 
with mean f..L and variance a 2 [see, e.g., Johnson et al. (1995)]. Show that the p.d.f. of this distribu­
tion is 

f(x) = C { <I> (x : f..L _ ;.) e-(x-tt)/s + <I> ( _ x : f..L _ ;.) e(x-tt)/s } , 

where <I> is the c.d.f. of the standard normal distribution, 

1 1 (u)2 
C = -e~ s 

2s ' 

and -00 < x < 00, -00 < f..L < 00, a > 0, and s > 0. 

Exercise 2.7.48 Let Y have a classical Laplace distribution with density (2.1.1) and representation 
(2.7.31). The mixture on lis of the distribution of Y is the type II compound Laplace distribution 
with parameters (), a, and f3 if lis in (2.7.31) has the r(a, f3) distribution with density 

x a - 1e-x //3 
fa,/3(x) = f3a r(a) , a > 0, f3 > 0, x > 0, 

[see, e.g., Johnson et al. (1995)]. 

and 

(a) Show that the p.d.f. and the c.d.f. of this distribution are 

f(x) = ~af3[l + Ix - ()1f3]-(a+1), a> 0, f3 > 0, -00 < x < 00, 

F(x) = { ![1 i Ix - ()1f3]-a, 
1 - ~[1 + Ix - ()1f3]-a, 

for x < (), 
for x :::: (), 

(2.7.32) 

respectively. Note that for () = 0, a = 1, and f3 = s2/s1, the density (2.7.32) coincides with that of 
the ratio of two independent, mean zero, classical Laplace r.v.'s with scale parameters Sl > ° and 
S2 > 0, respectively (see Section 2.3.3). 

(b) Further, show that as a ~ 00 and f3 ~ ° with af3 = s > 0, then f(x) in (2.7.32) 
converges to the classical Laplace density (2.1.1). The relation between Laplace distributions and 
distributions with densities given by (2.7.32) is analogous to that between normal and Pearson 
Type VII distributions [see, e.g., Johnson et al. (1995)]. 

Exercise 2.7.49 Let Y have the type II compound Laplace distribution with density (2.7.32). 
(a) Show that for a > 1 the mean of Y is equal to (), and for a > 2 the variance of Y is 

2f32 
a 2 - 2 - (a - l)(a _ 2) , a > . 

Note that the distribution is symmetric about(), so that (fora> 1) we have median = mean = mode. 
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(b) More generally, show that the moments of order ex or greater do not exist, and for 0 < r < Ol 

we have 

for r even, 
for r odd. 

(c) Show that the mean deviation is fJ/(ex - 1) (for Ol > 1). Derive an expression for the 
Mean deviation/Standard deviation and compare this with the corresponding value for the Laplace 
distribution. 

(d) Show that the coefficient of kurtosis, defined in (2.1.22), is given by 

6(ex - 1)(0l - 2) n = - 3, ex > 4. 
(ex - 3)(ex - 4) 

What is the range of n? How does n above compare with the corresponding value for the Laplace 
distribution? Is the type II compound Laplace distribution leptokurtic (n > 0) or platykurtic (n < 
O)? 

Exercise 2.7.50 Let Yl, ... , Yn be Li.d. normal variables with mean IL and variance (1'2. Assume 
that the variance is a constant, and the mean is a random variable with the Laplace C(e, TO prior 
distribution (so that IL has the mean and variance equal to e and '12, respectively). Let Y be the 
corresponding sample mean and let I be the marginal density of Y. 

(a) Show that 

where 

I(x) = ~e(u/rt>2/n {F(z) + F(-z)}, 
'1 

.;n z = -(y - e), 
(1' 

F(z) = eb*ZcI>(-Z - h*), b* = ~ f!., '1'1-;; 
and cI> is the c.d.f. of the standard normal distribution. 

(2.7.33) 

(b) Determine the posterior p.d.f. of IL given Y = y. Show that the posterior mean and variance 
are 

E(ILIY = y) = w(z)(y + 5nb*) + (1 - w(z» (y - 5nb*) 
and 

(1'2 4(1'4 
Var(ILIY = y) = - - 22,H(z), 

n n '1 

respectively, where 

F(z) 
w(z) = F(z) + F(-z)' 

[F(z) + F(-z)]g(z) - 2F(z)F(-z) 
H(z) = [F(z) + F(-z)]2 ' 

and 

g(z) = e-b*z¢(_z - b*). 
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(The function ¢ above denotes the standard normal p.d.f.) 
(c) Investigate the dependence of the posterior mean and variance on y. How do they change 

as y varies from -00 to oo? Does the posterior variance attain a minimum value for some y? Is 
the posterior distribution symmetric or a skewed one? What happens to the posterior distribution as 
y ~ oo? [Mitchell (1994)]. 

Exercise 2.7.51 Let X have a normal distribution with variance equal to 1 and with a random mean 
f.-t having the Laplace distribution CL(O, TJ) (the Laplace prior). 

(a) Using the previous exercise, show that 

where 

E(f.-tIX) = X - h(X)TJ, 

1 - e 2cx 1/f(x) 
hex) - ---;:--­

- 1 + e 2cx 1/f(x) , 

<l>(-x - c) 
1/f(x) = <l>(x - c) , 

and <l> is the standard normal distribution function. 
(b) Show that h is a monotonically increasing and odd function from (-00, 00) onto (-1, 1) 

with h(O) = O. 
(c) A prior for f.-t is said to be neutral if the median of f.-t is 0 and the median of f.-t 2 is 1. Show 

that the above Laplace prior is neutral for TJ = log 2. 
(d) Show that the risk of (L(X), defined as 

is a bounded function of f.-t. 
Magnus (2000) refers to (L(X) = X - heX) log 2 as the neutral Laplace estimator of the mean 

f.-t. Further properties of fleX) can be found in the above paper. 

Exercise 2.7.52 Let X I , X 2, X 3 be i.i.d. logistic random variables with the distribution function 

F(x) = (1 + e-x)-I, -00 < x < 00, 

and let Y be a standard classical Laplace variable with p.d.f. (2.1.2). 
(a) Show that 

d 
X2:3 + Y = XI, 

(2.7.34) 

(2.7.35) 

where X2:3 is the second order statistic (the sample median) of the Xi'S. The above result involving 
the Laplace distribution is actually a characterization of the logistic distribution [see George and 
Mudholkar (1981)]. If Y ~ CL(O, 1) and the relation (2.7.35) holds, then under some technical 
conditions on the distribution of X I, the c.d.f. of X I is given by (2.7.34). George and Mudholkar 
(1981) provide an interesting interpretation of (2.7.35) utilizing the decomposition of the Laplace 
r.v. into a difference of two i.i.d. exponential variables WI and W2: if adding and subtracting WI 
and W2 to and from the median X 2:3 produces the distribution of X I, then X I must have a logistic 
distribution. 

(b) Under the above conditions, establish the relation 

Xl:3 + X3:3 d 
2 +Y=XI· (2.7.36) 
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Deduce from (2.7.35) and (2.7.36) that for a random sample of size n = 3 from the standard logistic 
distribution the sample median has the same distribution as the midrange [George and Rousseau 
(1987)]. Investigate whether this property is actually a characterization of the logistic distribution. 

(c) Generalize part (a) by showing that if X I, X2, ... are i.i.d. with c.d.f. (2.7.34) and YI, Y2, ... 

are i.i.d. Laplace CC(O, 1) random variables, then 

[George and Rousseau (1987)]. 
(d) Generalize part (b) by showing that under the conditions of part (c) we have 

k 
XI:2k+1 + X2k+1:2k+1 + '" ~ ~ X k 

2 L...-2·-1 I, 2:1. 
j=1 } 

(2.7.37) 

(2.7.38) 

Further, show that when the midrange is based on an even number of i.i.d. logistic random variables, 
then 

k-I 
XI:2k + X2k:2k ~ '" Yj !!... XI + X2 

2 +2L...- . - 2 ' 
j=1 ) 

(2.7.39) 

[George and Rousseau (1987)). 

Exercise 2.7.53 Let X I and X 2 be i.i.d. standard normal random variables, and let W be an expo­
nential random variable with mean two and independent of XI and X2. Then by Proposition 2.2.1, 
the r.v. Y = ../WX2 has the standard classical Laplace distribution CC(O, 1). 

(a) Show that for any positive constants a and 11, the density of the r.v. 

(2.7.40) 

(which is the sum of zero mean and independent normal and Laplace variables) is given by 

_1 a2/(2TJ2) [1 -X/TJ (I1X-a 2 ) 1 X/TJ ( I1x+a 2 )] g(x) - -e -e <t> + -e <t> - , 
11 2 l1a 2 l1a 

where <t> is the distribution function of X I [Kou (2000)). 
(b) Show that if (2.7.40) is divided by Ja 2 + 112 W, then the resulting r.v., 

a XI + I1"/wX2 
UI= , 

Ja 2 + 112W 

has the standard normal distribution. Further, show that this result remains valid for an arbitrary 
positive r.v. W [Sarabia (1993)]. 

(c) Generalize by showing that if XI, X2, and X3 are i.i.d. standard normal r.v.'s and V is an 
arbitrary r.v., then the r.v. 

is standard normal [Sarabia (1993)]. Investigate an extension with more than three normal variables. 
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Exercise 2.7.54 Extend parts (b) and (c) of Exercise 2.7.53 by showing that if XI, X2, and X3 are 
i.i.d. symmetric stable r.v.'s with ch.f. ¢(t) = e- 1tl", where 0 < a :::: 2, then the r.v.'s 

and 

UI _ _ X_I_+_V_X.,...2,­
,a - (1 + va)l/a 

XI + VX2 + vaX3 
U2a = 2' 

, (l+va+va)l/a 

where V is an arbitrary nonnegative r. v. independent of the Xi'S, have the same distribution as X I 

[Sarabia (1994)]. Investigate an extension where the number of Xi'S is more than three. 

Exercise 2.7.55 Let YI, Y2, ... be an i.i.d. sequence of ce(o, 1) random variables. 
(a) Show that the r.v. 

has the standard logistic distribution with c.d.f. (2.7.34) and ch.f. 

q;x(t) = trrcosechrrt 

[see Pakes (1997) for further discussion and generalizations]. 
(b) Using the above representation deduce that the logistic distribution is infinitely divisible. 
Hint: Note the following infinite product representation of the hyperbolic cosecant function: 

00 2-1 

cosech(z) = ~ n (1 + .~ 2) 
Z j=1 } rr 

[see, e.g., Abramowitz and Stegun (1965)]. 
(c) Using parts (a) and (d) of Exercise 2.7.52, deduce the limiting distribution of the logistic 

midrange (XI:2k + X2k:2k)/2 as k -+ 00. 

Exercise 2.7.56 Let X I:n :::: ... :::: Xn:n be the order statistics connected with a random sample from 
a uniform distribution on the interval (-1, 1). 

(a) Derive the joint distribution of the statistics 

U - Xn:n - XI:n and v: _ Xn:n + XI:n 
n- 2 n- 2 

(b) Show that the marginal p.d.f. of Vn is 

gn(X) = ~(1 - Ixl)n-l, Ixl:::: 1, (2.7.41) 

and that the variance of Vn is 

a 2 = 2 
n (n + 1)(n + 2) 

(2.7.42) 

[see Neyman and Pearson (1928); Carlton (1946)]. 
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(c) Show that as n ~ 00, the p.d.f. of the standardized variable Wn = Vn/an , which is given 
by 

1 (x) -g -
Sn n Sn 

with 

Sn = ~ = J (n + l)(n + 2) , 
an 2 

converges to the standard Laplace density (2.1.4). 
(d) Note that in part (c), the limit 

Sn 
lim -

n-H)() n 

(2.7.43) 

(2.7.44) 

(2.7.45) 

is equal to S = 1/.../2. Generalize part (c) by showing that if for a positive sequence {sn} the limit 
(2.7.45) is equal to s, where 0 < S < 00, then the p.d.f.'s (2.7.43) converge to the Laplace distribution 
with mean zero and scale parameter S with density (2.1.1) [Dreier (1999)]. What happens if the limit 
(2.7.45) is equal to zero? What if it is equal to oo? 

(e) Now let the sample be from the uniform distribution on the interval (0, a) with some a > O. 
By considering an appropriate linear transformation, derive the p.d.f. of Vn, show that Vn is unbiased 
for the population mean a /2, and find the variance of Vn . Further, show that the standardized random 
variable 

still converges in distribution to the standard Laplace distribution with density (2.1.4). 
(f) Under the conditions of part (e), show that standardized sample mean, 

Zn = Xn - E(Xn) , 

JVar(X n ) 

converges in distribution to the standard normal distribution. In view of these results, discuss the use 
of Wn and Xn as estimates of the mean of the uniform distribution on the interval (0, a) with some 
a > 0 [Biswas and Sehgal (1991)]. 

Exercise 2.7.57 Let gn be the density (2.7.41). Show that for every x > 0 there exists an no E N, 
such that 

\ ~ye-YX _ ~gn (XY)\ :::: _1 
2 n n 2nx 

for all n ::: no and all y ::: o. Conclude that the convergence to the Laplace density, 

I. y (XY) _ Y -ylxl 1m -gn - - -e , 
n-H)() n n 2 

-00 < x < 00, 

is uniform in Y for every x :/= 0 [Dreier (1999)]. 
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Exercise 2.7.58 Navarro and Ruiz (2000) define a discrete Laplace distribution by the probability 
function 

f(k) = c(s)elk-Ol/s, k = 0, ±1, ±2, ... , (2.7.46) 

where () is an integer, s is a positive real number, and c(s) is a norming constant (the authors also 
mention a possible extension where () is a real number and the support of the distribution is a countable 
set of real numbers). 

(a) Show that in order for the function (2.7.46) to be a genuine probability function we must 
have 

1 - e- I / s 

c(s) = 1/ . 1 + e- S 

(b) Show that a r.v. Y with the probability function (2.7.46) admits the representation 

d 
Y=()+XI- X2, 

where X I and X 2 are i.i.d. geometric variables given by the probability function 

P(XI = k) = (1 - p)k p, k = 0,1,2, ... 

with 

(2.7.47) 

(2.7.48) 

(2.7.49) 

(2.7.50) 

(c) Show that if a geometric distribution (2.7.49) with p as in (2.7.50) is extended symmetrically 
to the set of negative integers, then we obtain the distribution (2.7.46) with () = O. Thus, analogous 
to the Laplace case, we might call this distribution a double geometric distribution. 

Exercise 2.7.59 If F is a distribution function with the corresponding cumulants Ki, then the Edge­
worth expansion of F is given by 

K3 2 K4 3 
F(x) = <flex) - 6(x - 1)¢(x) - 24 (x - 3x)¢(x) 

2 
K3 5 3 - 72 (x - 10x + 15x)¢(x) + ... , 

where <l> and ¢ are the c.d.f. and the p.d.f. of the standard normal distribution [see, e.g., Kotz and 
Johnson (1982)]. 

(a) LetX!, ... , Xn be i.i.d. from theC,C((), s) distribution, and consider the standardized sample 
mean 

1 n 
Tn = M L(X} - (). 

v2sn }=! 

Show that the jth cumulant of Tn is given by 

n l - }/2C.J2s)-} K}, 

where the K} is the jth cumulant of X! - (). 
(b) Using the expression (2.1.13) for the cumulants of the Laplace distribution, derive the 

following (Edgeworth) approximation of the c.d.f. of Tn: 

[Pace and Salvan (1997)]. 

1 
Fn(x) = <l>(x) - -¢(x)(x 3 - 3x) + O(n-2 ) 

8n 
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Exercise 2.7.60 Let X!, X2, ... be i.i.d. standard Laplace £(0, 1) random variables. Then the se­
quence {Xn , n 2: I} obeys the law of the iterated logarithm, 

I:Z-l Xk lim sup - = 1 a.s., 
n-HXl J2n log (log n) 

(2.7.51) 

since (2.7.51) holds for any i.i.d. sequence of standardized random variables [see, e.g., Breiman 
(1993), Theorem 13.25]. Generalize (2.7.51) by showing that for any a 2: ° the sequence {Xn, n 2: I} 
satisfies 

I:n kaX 
lim sup k=! k = ----,,-== 
n-+oo na J2n log (log n) .j2a + 1 

a.s. (2.7.52) 

[Tomkins (1972)]. 
Hint: Denote Cn = n-1/ 4 and show that for large n the double inequality 

et2 (1-cnl t l)/(2n) ::; E[etXk/,;n] :::: et2 (1+cnl t l/2)/(2n) (2.7.53) 

holds for each positive integer k ::; n and any t such that It I ::; l/cn. Then use the fact that the 
condition (2.7.53) is sufficient for (2.7.52) [Tomkins (1972)]. 

Exercise 2.7.61 A random variable X on [0,00) with the Laplace transform ryes) = Ee-sx is called 
a generalized gamma convolution (GGC) if 

ryes) = exp {-as - fooo log (1 + ~) dU(W)} , a 2: 0, Re(s) 2: 0, 

where U is a nonnegative measure on (0, 00) such that 

fol I log wldU(w) < 00 and 100 ~ dU(w) < 00 

[see, e.g., Bondesson (1992)]. 

(2.7.54) 

(a) Show that the standard exponential distribution belongs to the class of GGC laws and the 
measure U is a unit mass at u = 1. Consequently, symmetric Laplace distributions, as well as their 
asymmetric and multivariate generalizations studied in this book, are mean-variance mixtures of 
normal laws by generalized gamma convolutions. 

(b) Similarly, show that every gamma distributions is a GGC. What is the measure U in this 
case? 



3 
Asymmetric Laplace Distributions 

Chapter 3 is devoted to asymmetric Laplace distributions - a skewed family of distributions that in 
our opinion is the most appropriate skewed generalization of the classical Laplace law. In the last 
several decades, various forms of skewed Laplace distributions have sporadically appeared in the 
literature. One of the earliest is due to McGill (1962), who considers distributions with p.d.f. 

while Holla and Bhattacharya (1968) study the distribution with p.d.f. 

x ::; e, 
e < x, 

(3.0.1) 

(3.0.2) 

where 0 < p < 1. Lingappaiah (1988) derived some properties of (3.0.1), terming the distribution 
two-piece double exponential. Poiraud-Casanova and Thomas-Agnan (2000) exploited a skewed 
Laplace distribution with p.d.f. 

f(x) = a(1 - a) e -alx-Ol ' { 
-(1-a)lx-OI 

e , 
for x < e, 
for x ::: e, 

where () E (-00,00) and a E (0,1), to show the equivalence of certain quantile estimators. 

(3.0.3) 

Azzalini (1985) noted that if X and Y are symmetric (about zero) and independent r.v.'s with 
densities fx, fy and distribution functions Fx, Fy, respectively, then for any).., 

1 100 - = P(X -)"Y < 0) = fy(y)FxCAy)dy. 
2 -00 

(3.0.4) 

Consequently, the function 

g(y) = 2fy(y)Fx()..y) (3.0.5) 
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is a p.d.f. for any).... If we take X and Y to be i.i.d. standard normal variables, then (3.0.5) gives the 
density of the skew-normal distribution, extensively studied since its introduction in O'Hagan and 
Leonhard (1976) mainly by Azzalini and associates [see Azzalini (1985,1986), Henze (1986), Liseo 
(1990), Azzalini and Dalla Valle (1996), Azzalini and Capitanio (1999)]. Similarly, if X and Yare 
i.i.d. standard Laplace r.v.'s, utilizing (3.0.5) with)... > 0, we obtain a skewed Laplace distribution 
with density 

{ 
le(1+A)x 

g(x) = 2_x l' -(iH)x 
e - ze , 

-00 < x :s 0, 
0< x < 00, 

studied by Balakrishnan and Ambagaspitiya (1994) in an unpublished technical report. 

(3.0.6) 

Another manner of introducing skewness into a symmetric distribution has been proposed by 
Fernandez and Steel (1998) [see also Fernandez et al. (1995)]. Here the idea is to convert a symmetric 
p.d.f. into a skewed one by postulating inverse scale factors in the positive and negative orthants. 
Thus a symmetric density f generates the following class of skewed distributions, indexed by K > 0, 

x ~ 0, 
x < o. (3.0.7) 

When f is the standard classical Laplace density (2.1.2), then (3.0.7), with the addition of a location 
and scale parameters, leads to a three-parameter family with density 

1 K I exp(-~(x-e)), 
P(x)=-;;I+K2 eXP(';K(X-e)), 

for x ~ e, 
(3.0.8) 

for x < e, 

introduced by Hinkley and Revankar (1977). These distributions, termed asymmetric Laplace (AL) 
laws by Kozubowski and Podg6rski (2000), show promise in financial modeling (see Part III of the 
monograph devoted to applications and references therein). It is our opinion that members of this 
particular class deserve to be called the asymmetric Laplace (AL) distributions. There are at least 
three reasons why these laws warrant special treatment. 

First, these distributions arise naturally as limiting distributions in a random summation 
scheme. Recall that symmetric Laplace laws are the only possible limiting distributions for (nor­
malized) sums of i.i.d. symmetric random variables with a finite variance, when the number of terms 
in the summation has a geometric distribution with the mean converging to infinity (see Proposi­
tion 2.2.9). Similarly, if the assumption of symmetry of the summands is omitted, we obtain AL laws 
as the limiting distributions (see Proposition 3.4.4). 

Second, theAL laws extend naturally all the basic properties of symmetric Laplace distributions . 

• Mixtures of normal distributions. A classical symmetric Laplace r.v. may be viewed as a 
normal r.v. with mean zero and a stochastic variance (see Proposition 2.2.1). Analogously, 
an AL r. v. has a similar interpretation, where the mean of the normal distribution is now 
stochastic (see Proposition 3.2.1). This fact is of particular importance for application in finance 
where stochastic variance models are being used [see, e.g., Madan, et al. (1998), Levin and 
Tchernitser (1999)]. 

• Stability with respect to geometric summation. A symmetric Laplace r. v. Y has the same dis­
tribution as a (appropriately scaled) sum of a geometric number of i.i.d. copies of Y (see 
Proposition 2.2.7). More generally, we obtain a similar characterization of an AL r.v., when 
the equality of distributions is replaced by the weak convergence (see Proposition 3.4.5) . 

• Distributions with maximal entropy. As we saw in Proposition 2.4.7, among all continuous 
distributions on (-00, 00) with a given first absolute moment, the one with a maximal entropy 
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is provided by a symmetric Laplace distribution. As we shall show in the present chapter, under 
an additional restriction on the value of the mean, the entropy is maximized by an AL law. 

• Convolution of exponential distributions. A classical Laplace r. v. can be represented as a differ­
ence of two i.i.d. exponential random variables (see Proposition 2.2.2). If the two exponential 
r. v. 's are independent but no longer identically distributed, their difference has an AL law (see 
Proposition 3.2.2). 

Finally, it is the properties and features of AL distributions that are similar in nature to these 
features of the normal distribution that make them particularly attractive in applications. 

• Infinite divisibility. Variables appearing in many applications in various sciences can often be 
represented as sums of a large number of tiny variables, often independent and identically 
distributed. This is a practical interpretation of the notion of infinite divisibility Thus, when 
dealing with such a phenomenon, a "proper" model ought to be infinitely divisible. It is well 
known that all normal distributions are infinitely divisible, and so are the AL laws. 

• Limiting laws. The normal distribution arises as a limit of a deterministic sum of i.i.d. random 
variables with a finite variance, where the number of terms in the summation tends to infinity. 
Consequently, if a variable of interest can be viewed as a result of a large number of independent 
increments (with a finite variance), then its distribution may be approximated by the normal 
law. Similarly, a random sum of i.i.d. random variables with finite variance converges to an AL 
r.v. when the average number of terms in the summation tends to infinity. Thus in practice we 
could use an AL approximation for a variable resulting from a random number (a geometric 
variable with a large mean) of independent innovations (with a finite variance). 

• Maximum entropy property. The principle of maximum entropy, which states that out of all the 
distributions satisfying a given set of constraints one should choose the one with the largest 
entropy, is considered as general inference procedure and has been applied successfully in a 
wide variety of fields, including statistical mechanics, statistics, economics, queuing theory, 
and image analysis [see, e.g., Kapur (1993)]. Thus distributions maximizing the entropy under 
suitable constraints provide useful models in applications. It is well known that among all 
continuous distributions on (-00, 00) with a given mean and variance, the Gaussian (normal) 
distribution provides the largest entropy. Analogously, the entropy is maximized by the AL 
distribution, when the mean and the first absolute moment are specified (Proposition 3.4.7). 

• Finiteness of moments. It is often argued that most variables appearing in applications should 
have finite moments of all orders (or at least the mean and the variance). This holds for the 
normal as well as for the AL laws. 

• Symmetry. Probability distributions of variables arising in the real-world are often symmetric. 
The normal distribution is symmetric, and as such, it is often used as a model in practice. 
An AL distribution can also be symmetric (in which case it reduces to the classical Laplace 
distribution), but the AL model actually provides more flexibility, allowing for asymmetry. 

• Simplicity. The distributions applied in practice ought to be handled easily. It is highly advan­
tageous if their densities, distribution functions, and other characteristics allow for straightfor­
ward calculations, and estimation procedures should also be preferably implemented with ease. 
Ideally, the c.d.f. and the p.d.f. should have closed form expressions, which would substantially 
facilitate the derivation and implementation of estimation and simulation procedures. This is 
indeed the case with the normal distribution, although the distribution function here lacks an 
explicit form and requires a numerical approximation. We shall see that the corresponding 
formulas and procedures for the AL laws are at least as simple if not simpler than their normal 
counterparts. 
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• Extensions. An appropriate model should allow for various extensions, particularly to the 
multivariate setting. This is the case with both the normal and the AL laws. The multivariate 
extensions of a univariate AL law is quite natural (and are discussed in Part II of this text). 

3.1 Definition and basic properties 
A formal definition of the class of asymmetric Laplace distributions is as follows. 

Definition 3.1.1 A random variable Y is said to have an asymmetric Laplace (AL) distribution if 
there exist parameters () E R f-L E JR and a ~ 0 such that the characteristic function of Y has the 
form 

eiOt 
1/I(t) = 1 . 

1 + 2O'2t2 - if-Lt 
(3.1.1) 

We denote the distribution ofY by A.c«() , f-L, a) and write Y '" A.c«() , f-L, a). 

Remark 3.1.1 Asymmetric Laplace laws with () = 0 constitute a subclass of as distributions defined 
in Subsection 4.4.4. Namely, 

A.c(0, f-L, 0") = GS2(O'/../2, {3, /L), {3 = sign(/L), (3.1.2) 

where GSa (a, {3, /L) denotes the distribution given by ch.f. (4.4.7) (see Exercise 3.6.15). 

3.1.1 An alternative parametrization and special cases. While the distribution is properly de­
fined for every () E JR, /L E JR, and a ~ 0, we note specifically the following special cases: 

• If () = /L = a = 0, then 1/I(t) = 1 for every t E JR and the distribution is degenerate at O. 

• For () = a = 0 and /L =1= 0, we have an exponential r.v. with mean /L [concentrated on (0, 00) 
for /L > 0 and on (-00,0) for f-L < 0]. 

• For /L = 0 and a =1= 0, we have a symmetric Laplace distribution with mean () and variance 
0'2. 

The ch.f. (3.1.1) with a > 0 can be expressed in the following manner: 

iOt ( 1 ) ( 1) eiOt 
1/I(t) = e UK U = () , 

1 + i ...[2t 1 - i .../2K t 1 + !O'2t 2 - i:i2 ~ - K t 
(3.1.3) 

where the additional parameter K > 0 is related to f-L and a is as follows: 

(3.1.4) 

while 

(3.1.5) 

Note that for each fixed a > O,expression (3.1.4), considered as a function of /L and writtenK = K(/L), 
is decreasing on (-00,00) with K(O) = 1 and 

lim K(/L) = 00, 
fL-+-OO 

lim K(/L) = O. 
fL-+ OO 

(3.1.6) 
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We use the abbreviation AL to denote all distributions with ch.f. given either by (3.1.1) or by (3.1.3), 
including those with /L = 0 (symmetric ones) and (J = O. 

We find it convenient to express certain properties of the asymmetric Laplace distributions in 
the (e, K, (J) parametrization, using the notation A.c*(e, K, (J) for the distribution given by (3.1.3). 
The parameter K is scale invariant, so the random variables Y and c Y have the same K parameter 
whenever Y is A.c* (e, (J, K) distributed and c > O. Note also that in the (e, (J, K) parametrization, (J 
is a bona fide scale parameter. 

The following relations are often used in what follows: 

.Ji/L 
- -K = --, 
K a 

1 M/L2 -+K= 4+-2 , 
K (J 

The result below follows easily from the form of the AL characteristic function. 

Proposition 3.1.1 Let X '" A.c*(e, K, (J) and let c be a nonzero real constant. Then 

(i) c + X'" A.c*(c + e, K, (J). 

(ii) cX '" A.c*(ce, Kc, Icl(J), where Kc = Ksign(c). 

Remark 3.1.2 Note that in particular, if X'" A.c*(e, K, (J), then -X '" A.c*(-e, 11K, (J). 

(3.1.7) 

3.1.2 Standardization. Since e is simply a location parameter, we shall often assume e = O. To 
simplify the notation in this case, we write A.c(/L, (J) and A.c* (K, (J) for the distributions A.c(O, /L, (J) 

and A.c* (0, K, (J), respectively. Further, for e = 0 and a = 1 we say that the distribution is standard, 
and write A.c(/L) and A.c*(K), respectively [for the distributions A.c(O, /L, 1) and A.c*(O, K, 1)]. 

Tables 3.1 and 3.2 below contain summary of our notation and the special cases in the two 
parametrizations. 

3.1.3 Densities and their properties. Using the factorization (3.1.3), we can represent an asym­
metric Laplace r.v. Y as follows: 

d 
Y = e + YI - h (3.1.8) 

where the two variables on the right-hand side are independent and exponentially distributed with 
means a I (.JiK) and a K 1.Ji, respectively. Equivalently, we have 

(3.1.9) 

where WI and W2 are two i.i.d. standard exponential random variables. This representation leads to 
explicit formulas for the corresponding density and distribution function [cf. formula (2.3.16) and 
the computations preceding it]. 

Proposition 3.1.2 Let fe,/(,a and Fe,/(,a denote the p.d.! and c.d.f of an A.c*(e, K, a) distribution, 
respectively. Then 

and 

if x ?:. e 
if x < e, 

(3.1.10) 
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Case Name Notation Char. funet. 

()ElR 
a 2: 0 Asymm. Laplace A.c«() , JL, a) ei91 

JLElR 
1+!a2t2-i/Lt 

()=O 
a 2: 0 Asymm. Laplace A.c(O, JL, a), A.c(JL, a) I 

JLElR 
l+ia2t2-i/Lt 

() E lR 
a 2: 0 Symm. Laplace A.c«(), 0, a), .c«(), a) ei8t 

JL = 0 
I+Ja2t2 

()=O 
a=1 StandardAL A.c(O, JL, 1), A£(JL) I 

JLElR 
I+Jt2-i/LI 

()=O 
a=O Exponential A.c(O, JL, 0), E(JL) I 

l-ilLt 
JL "1= 0 

fJ E lR 
a=O Degenerated eiOI 

JL=O 

Table 3.1: Special cases and notation for an asymmetric Laplace distribution in the A.c«(), JL, a) 
parametrization. 

11 - IL2 exp (- \;K Ix - ()Ij' ifx 2: () 
FO,K,a(X) = K2 (v'2 

.,..------,.. exp --Ix - fJl ifx < fJ. 
l+K< aK ' 

(3.1.11) 

Figure 3.1 shows AL densities for various values of the parameters. 

Remark 3.1.3 Note that for K = 1 we obtain the p.d.f. and the c.d.f. of the symmetric Laplace 
distribution. 

Remark 3.1.4 To obtain expressions of the AL p.d.f. and c.d.f. in the A.c«(), JL, a) parametrization, 
substitute in (3.1.10)-(3.1.11) the expression for K given by (3.1.4). 

Remark 3.1.5 If Y is an AL random variable given by (3.1.10)-(3.1.11), then 

(3.1.12) 

and 

1 
P(Y > fJ) = 1 - Fo K a(fJ) = --2 = PK' " I+K 

(3.1.13) 
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Case Name Notation Char. funet. 

8ElR 
a 2: 0 Asymm. Laplace AL *e8, K, a) e i6c 

1+ia2t2-i ~ (I_K)t 
K>O ,J2 K 

8=0 A£*(O, K, a), 
a 2: 0 Asymm. Laplace 1 

A£*eK, a) 1+~a2t2-i ~ (l_K)t 
K>O ,J2 K 

8ElR A£*e8, 1, a), e iOt 
a 2: 0 Symm. Laplace 

£e8,a) 1+~a2t2 
K = 1 

8=0 
A£*(O, K, 1), 

a = 1 StandardAL 1 

A£*(K) 1+~t2_i-L(1_K)t 
K>O ,J2 K 

8ElR 
a =0 Degenerated e i8t 

K = 1 

Table 3.2: Special cases and notation for an asymmetric Laplace distribution in the A£*(8, K, a) 
parametrization. 

-10 -5 o 5 10 

x 

Figure 3.1: Asymmetric Laplace densities with a = v'2 and J.t = 0,0.8, 1.5,2,3,4,6,8, lO that 
correspond to K ~ 1.0,0.68,0.50,0.41,0.30,0.24,0.16,0.12,0.1. 



140 3. Asymmetric Laplace Distributions 

Consequently, the parameter" controls the probability assigned to each side of e. Clearly, for" = 1, 
the two probabilities are equal and the distribution is symmetric about e. 

Remark 3.1.6 Our skewed Laplace distribution with density (3.1.10), defined by its characteristic 
function, may be obtained formally by following a general procedure of obtaining a skewed distri­
bution from a symmetric one, proposed by Fernandez and Steel (1998). Let f be any p.d.f. which is 
unimodal (say about zero) and symmetric. The method of transforming the symmetric distribution 
given by f into a skewed one consists of introducing inverse scale factors for the positive and neg­
ative parts of the distribution, leading to density (3.0.7) discussed in the introduction. The Laplace 
distribution demonstrates that such distributions may appear quite naturally. 

Remark 3.1.7 Every AL density can be written as a mixture of two exponential densities with means 
/-Ll = a/("../2) and /-L2 = -a,,/../2, 

1 1 
fo.K.U(X) = PK _e-lx-OIlJLl ll[o.oo) (x) + qK -I -I e(x-O)/ IJL21 11(_oo.O) (x), 

/-Ll /-L2 
(3.1.14) 

with qK and PK defined by (3.1.12) and (3.1.13), respectively (llA(x) is the indicator function equal 
to 1 if x belongs to the set A and equal to zero otherwise). 

Remark 3.1.8 Since the AL density is increasing on (-00, e) and decreasing on (e. 00), the distri­
bution is unimodal with the mode equal to e. The value of the density at the mode is 

../2 " 
fO.K.U (e) = --;;- 1 + ,,2 

in the A£*(e, ", a) parametrization and 

1 
fo.JL.u(e) = J 2 2 

/-L + 2a 

in the A£(e, /-L, a) parametrization. This value can be located anywhere in the interval (0,00). 
Further, we have 

. 1 
hm fo.JL.u (e) = r;; , 

JL ...... O ",2a 

. 1 
hm fo.JL.u(e) = -, 

U-+O+ I/-LI 
lim fo.JL.u (0) = 00. 

JL.u ...... O 
(3.1.15) 

Further properties of AL densities are discussed in the exercises. 

3.1.4 Moment and cumulant generating functions. We can obtain the moment generating func­
tion of an AL distribution either by a straightforward integration utilizing the AL density (3.1.10) or 
from the representation (3.1.9). 

Proposition 3.1.3 If Y ......, A£* (e, ", a). then the moment generating function of Y is 

../2 ../2" -- <t< --. (3.1.16) 
a" a 

Proof By the representation (3.1.9) we have 
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where WI and W2 are i.i.d. standard exponential variables with moment generating function 

Thus we have 

where we must have 

sW 1 
Mw;(s) = E[e ,] = -1-' s < 1. 

-s 

e(}t 

Me.K,a(t) = a I a' 
(1 - - -t)(1 + -Kt) ,JiK ,Ji 

ta taK 
-J2K < 1 and - -Ii < 1. 

Now (3.1.17) and (3.1.18) produce (3.1.16), concluding the proof. 

Remark 3.1.9 In the A£(e, J-L, a) parametrization the moment generating function is 

eru 2 2 
Me,/L,a(t) = 1 1 2 2 / 2 < t < -/~=:<==:;;:--

- "2 a t - J-Lt y 2a + J-L2 - f.-L y 2a2 + J-L2 + J-L 

(3.1.17) 

(3.1.18) 

D 

(3.1.19) 

In case J-L = 0 we obtain the moment generating function (2.1.10) of the classical Laplace distribution 
eC(e, s) with s = a / -J2 (the £(e, a) distribution). 

By Proposition 3.1.3 we can now write the cumulant generating function, log Me,K,a (t), cor­
responding to the A£*(e, K, a) distribution: 

log Me,K,a(t) = et -log (1 - ~~t) -log (1 + ~Kt), -J2 -J2K 
-- <t < --. 

aK a 
(3.1.20) 

Note that in the symmetric case (K = 1) we obtain the cumulant generating function (2.1.11) of the 
classical Laplace distribution C£(e, s) with s = a /-J2. 

3.1.5 Moments and related parameters. 

3.1.5.1 Cumulants. The cumulants of a general A£*(e, K, a) r.v. Yare the coefficients of t n In! 
in the Taylor series (about t = 0) of the corresponding cumulant generating function (3.1.20). Thus 
the nth cumulant Kn is equal to the nth derivative of the cumulant generating function at t = O. The 
calculation of the derivatives is straightforward. For n = 1 we have 

d a 1 11K K 1 -log Me,K,a(t) = e + M a I - a ' 
dt y2 I---t 1+ MKt ,Ji K '12 

(3.1.21) 

while for n > 1 we obtain 

d
n
n log Me,K,a(t) = (n _ I)! ( :)n I ( 1/: I )n + ( -~ )n I. 

dt y2 1 - --t 1 + MKt ,Ji K '12 

(3.1.22) 

Now substituting t = 0 into (3.1.21) and (3.1.22), we obtain the following expressions for the 
cumulants of an A£*(e, K, a) r.v. Y: 

Kn(Y) = (n - I)! (;zf (K-n - Kn) if n > 1 is odd, (3.1.23) { 
e + ;Z(K- I - K) ifn = 1, 

(n - 1)' (S!-)n (K-n + Kn) if n is even. ',Ji 
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Note that in the symmetric case (K = 1) the cumulants of odd order greater than one vanish, and we 
obtain cumulants (2.1.13) of the classical Laplace distribution eC(e, s) with s = a /../2. Observe also 
that the mean and variance of Y, which coincide with the first and second cumulants, respectively, 
are 

E[Y] = e + ~ (~ - K ) = e + JL, (3.1.24) 

3.1.5.2 Moments. Let Y "" A'c'(e, K, a). For any integer n > 0, the nth moment of Y about e, 
E(Y - e)n, is 

18 ../2 K../i 1000 ../2 K ../iK ( (y _ e)n ___ eCiK(y-9)dy + (y _ e)n_--etT 9-Y)dy. 
-00 a 1 + K2 9 (1' 1 + K2 

The substitution of x = e - y in the first integral and x = y - e in the second integral leads to 

(-I)nK2 1000 n../2 -..tixd 1 1000 n../2K -..tiKxd x -e UK x + -- x --e U x. 
1 + K2 0 a K 1 + K2 0 a 

Thus 

(3.1.25) 

since for any u > 0 and a > -1 we have 

In the symmetric case (K = 1) we obtain the moments (2.1.14) of the classical Laplace distribution 
with s = a /../2. 
3.1.5.3 Absolute moments. To obtain absolute moments of an AL distribution, we follow essentially 
the calculation leading to the moment formula (3.1.25), obtaining 

(
a )a 1 + K2(a+1) 

E[IY _ela ] = ../2K r(a + 1) 1 +K2 ' a>-1. (3.1.26) 

3.1.5.4 Mean deviation. Let Y have an AC*(e, K, a) distribution with density !9,K,U given by 
(3.1.10). Then by (3.1.24), the mean deviation of Y is 

100 a 
ElY - E[Y]I = Iy - e - ../2(I/K - K)I!8 K u(y)dy. 

2 ' , 
-00 

After a straightforward but tedious integration, we obtain 

ElY - E[Y]I = 2a e(K2-l), 
K(1 + K2) 

(3.1.27) 

which equals a/../2 for the symmetric case with JL = 0; cf. (2.1.19). Further, since the standard 
deviation of Y is 



we have 
mean deviation 

standard deviation 
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For the symmetric Laplace distribution (K = 1), the above ratio is equal to 1 1../2, as previously 
derived in (2.1.20). 

3.1.5.5 Coefficient of Variation. For an r. v. X with the mean not equal to zero, the coefficient of 
variation is defined as 

.jVar(X) 

IEXI 
For Y ~ A.c(O, J-L, a) with 0 i= -J-L, the mean of Y is nonzero and the coefficient of variation is 
equal to 

(3.1.28) 

For 0 = 0 and J-L i= 0, we obtain 

(3.1.29) 

Note that in this case the absolute value of the mean is less than or equal to the standard deviation, 
and thus the coefficient of variation is always greater than or equal to one. 

3.1.5.6 Coefficients of skewness and kurtosis. The coefficient of skewness, defined in (2.1.21), is 
a measure of symmetry that is independent of scale. For the symmetric Laplace distribution its value 
is zero, as it is for any symmetric distribution with finite third moment and standard deviation greater 
than zero. For an A.c*(O, K, a) distribution, the coefficient of skewness is nonzero, unless K = 1 
(J-L = 0). In terms of K, its value is 

l/K 3 - K3 

Yl = 2 (lIK2 + K2)3/2 . 
(3.1.30) 

It follows from (3.1.30) that the absolute value of Yl is bounded by two, and as K increases within 
the interval (0,00), then the corresponding value of Yl decreases monotonically from to 2 to -2. 

Let us now study the peakedness of AL distributions. We saw in Section 2.1 that a symmetric 
Laplace distribution is leptokurtic, as its coefficient of kurtosis (adjusted), defined in (2.1.22), is equal 
to three. For an A.c*(8, K, a) distribution, we have 

12 
Y2 = 6 - (1/K2 + K2)2' 

(3.1.31) 

Thus the distribution is leptokurtic and Y2 varies from 3 [the least value for the symmetric Laplace 
distribution with K = 1, see (2.1.23)] to 6 (the greatest value attained for the limiting exponential 
distribution when K ~ 0). 

3.1.5.7 Quantiles. Since the distribution function of an asymmetric Laplace distribution is given 
in closed form, calculation of quantiles, including the median, is quite straightforward. Let /;q be the 
qth quantile of an AL r.v. with distribution function given by (3.1.11). Then we have 

;: K2 
lor q E (0, J+K2 ], 

;: K2 
lor q E (J+K 2 ' 1). 

(3.1.32) 
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Note that for K = 1 we obtain the quantiles (2.1.24) of the symmetric Laplace distribution. Setting 
q = 1/2, we obtain the median m: 

for K S 1, 

for K > 1. 
(3.1.33) 

By setting q = 1/4 and q = 3/4 we obtain the first and third quartiles, Ql and Q3, as well as the 
interquartile range, equal to 

In particular, we have 

and 

ulog3 
../2K 
U I {4} UK I { 1+K2 } ../2K og 1+K2 -../2 og 4J(2 

uKlog3 
../2 

for K S 1/../3, 

for 1/../3 < K < ../3, 

for K > ../3 . 

Ql = () and Q3 = e + a If log 3 for K = ~ 

Ql = () - a f[ log 3 and Q3 = () for K = ../3. 

(3.1.34) 

Remark 3.1.10 If K = 1 (J-L = 0), the relation (3.1.33) yields m = e, which is the median of a 
symmetric Laplace distribution. Similarly, for a = e = 0, we get m = J-L log 2, which is the median 
of an exponential distribution with mean J-L (to which the asymmetric Laplace law is simplified in 
this case). 

Remark 3.1.11 One can show that for K :F 1, the mode, median, and mean of an AL distribution 
satisfy the following inequalities: 

If K < 1 then Mode < Median < Mean, 
If K > 1 then Mode> Median> Mean. 

(3.1.35) 

All three measures of location are equal to e when K = 1 (J-L = 0), in which case we obtain the 
symmetric Laplace distribution. 

In Table 3.3 below we summarize the moments and related parameters of AL r.v.'s. 

3.2 Representations 
In this section we present the representations and characterizations of AL distributions that are 
generalizations of the corresponding properties of the symmetric Laplace distributions, as presented 
in Section 2.2. 

3.2.1 Mixture of normal distributions. A symmetric Laplace r.v. can be regarded (informally) as 
a normal r.v. with mean zero and variance that is an exponentially distributed random variable (see 
Proposition 2.2.1). AL r.v.'s admit a similar interpretation, where the mean is a random variable as 
well. We state it more formally in the following result. 
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Parameter Definition Value 

Absolute ( ~ r rea + 1) 1+K2(a+l) 
moment EIYla,a> -1 .j2K I+K2 

nth moment Eyn n' -
( a )n 1+(_I)n K2(n+l) 

·.j2K 1+K2 

nth cumulant dn I dtn log MO,K,a(t) t=O (n - I)! (v0J n (l + (_1)nK2n) 

Mean EY ...£...(.!.-K)=J-t .j2K 

Variance E(Y - EY)2 J-t2 +a2 

Mean .j2ae(K2-1) 

deviation ElY - EYI K(1+K i ) 

Coefficient of v'Vaf(Y5 1fJ'+l- .JI/K2+K2 
Variation [EYI IJ - I/K-K 

Coeffcient of _ E(Y-EY)3 I/K3 _K 3 

Skewness Yl - (E(Y _EY)i)3/i 2 (l/K 2+K i )3/2 

Kurtosis E(Y-EY)4 6 12 
(adjusted) Y2 = (Var(Y)2 - 3 - (l/KZ+K2)2 

1 
_~ log I+K2 K :s 1 

Median m = Fo-; a(I/2) .j2K 2' 
aK log I+K2 K > 1 .j2 2K2 , 

Table 3.3: Moments and related parameters of Y '" A.c*(e, K, a) with e = o. 

Proposition 3.2.1 An A.c(e, J-t, a) random variable Y with ch.f. (3.1.1) admits the representation 

y :!::. e + J-tW + a.JWZ, (3.2.1) 

where Z is standard normal and W is standard exponential. 

Proof. Let W have an exponential distribution with p.d.f. e-w . Conditioning on W, we can express 
the ch.f. of the right-hand side of (3.2.1) as follows: 

E[eit(O+fLW+aVWZ)] = 1000 eitO+itfLw E[eita0VZ]e-wdw. 

Note that 
. =z 12 2 E[eltayW ] = <pz(ta.j'W) = e-2t a w, 

where <Pz(s) = e-s2 / 2 is the ch.f. of a standard normal T.v. Z. Thus 

E[eit(O+fLW+aVWZ)] = 1000 eitO e-w(1+~t2a2-ifLt)dw, 



146 3. Asymmetric Laplace Distributions 

which produces the ch.f. (3.1.1) and the result follows. o 

Note that in the symmetric case (Ii- = 0) we obtain the representation of the classical Laplace 
r. v. discussed in Proposition 2.2.1 and the remarks following it. 

3.2.2 Convolution of exponential distributions. We now formally state representation (3.1.9) in 
the following result. 

Proposition 3.2.2 An A.c*(e,K,a) random variable Y with ch.f (3.1.3) admits representation 
(3.1.9), where WI and W2 are i.i.d. standard exponential random variables. 

Note that for K = 1 we obtain the representation of the classical Laplace distribution discussed 
in Proposition 2.2.2 and the remarks following it. 

Remark 3.2.1 Denoting Hi = 2 Wi, i = 1, 2, we have 

y=e+-- -HI-KH2 , d a (1 ) 
2../2 K 

(3.2.2) 

where HI and H2 are i.i.d. chi-square r. v. 's with two degrees of freedom. 

Remark 3.2.2 Since a standard exponential r.v. W has the same distribution as -log(V), where V 
is standard uniform variable, we have the following representation of Y in terms of two i.i.d. standard 
uniform variables VI and V2: 

(3.2.3) 

It generalizes a similar representation of the classical Laplace distribution with K = 1. 

Remark 3.2.3 Similarly, we can express an AL r. v. in terms of two i.i.d. Pareto Type I r. v. 's, PI and 
P2, with density f(x) = llx2, x 2: 1. Indeed, as already mentioned in Section 2.2.3, a standard 
exponential r.v. W has the same distribution as 10g(Pj), so that by (3.1.9) we have 

(3.2.4) 

A similar representation of the classical Laplace distribution was obtained in Proposition 2.2.4. 

Remark 3.2.4 The representation of Proposition 3.2.2 may be expressed alternatively as follows: 

(3.2.5) 

where the r. v. 's I and W are independent, W is a standard exponential variable, and I takes on the 
values -K and 11K with probabilities K2/(1 + K2) and 1/(1 + K2), respectively. In the symmetric 
case with K = 1 (Ii- = 0), the random variable I takes on the values =fl with probabilities 1/2, and 
(3.2.5) reduces to the representation (2.2.10) of the symmetric Laplace r. v. with the scale parameter 
s = al../2. 
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3.2.3 Self-decomposability. We saw in Section 2.4.3 that all symmetric Laplace random variables 
Yare self-decomposable, that is for every c E (0, 1) we have 

d 
Y=cY+X, 

where X and Yare independent variables. Ramachandran (1997) shows that all AL distributions are 
self-decomposable as well. In fact, we have the following explicit representation. 

Proposition 3.2.3 Let Y ~ A.c*(e, K, a). Then Y is self-decomposable andfor any c E [0, 1] we 
have 

d a (1 ) Y = cY + (1 - c)e + .j2 ;~l WI - K02 W2 , (3.2.6) 

where ~l, ~2 are dependent Bernoulli T.v. S taking on values of either zero or one with the probabilities 

( I-C) P(~l = 1, ~2 = 0) = (1- c) c + --2 ' I+K 

( (1 - C)K2 ) 
P(~l = 0, ~2 = 1) = (1 - c) c + 2' I+K 

WI and W2 are standard exponential variables, and Y, WI, W2, and (~l, 02) are mutually independent. 

Proof Representation (3.2.6) follows directly from the following equality for ch.f.'s: 

(l+i~cKt)(1-i~CK-It) (I-C) 1 
----'-=------'::--,.-- = c2 + (1 - c) C + --

(1 + i ~Kt)(1 - i ~clt) 1 + K2 1 - i ~K-It 

( 
(I-C)K2) 1 

+ (1 - c) c + 1 + K2 1 + i 2-Kt . 0 
.j2 

Remark 3.2.5 Note that in the symmetric case K = 1, representation (3.2.6) reduces to that of a 
symmetric Laplace distribution with s = a /.j2 (see Proposition 2.4.4). 

Remark 3.2.6 Note the following version of the representation 

d (~l) a Y = cY + (1 - c)e + --; - ~2K .j2 W, 

where lh's are as before, W has the standard exponential distribution, and Y, W, (~l, ~2) are inde­
pendent. 

By taking c = ° in (3.2.6) we obtain the representation of an AL r.v. Y as a mixture of 
exponentially distributed random variables: 

(3.2.7) 

where the zero-one variables ~l and ~2, ~l + ~2 = 1, assume one with probabilities 1/(1 + K2) and 
K 2/(I + K2), respectively, and are independent of i.i.d. exponential variables WI and W2. This is 
essentially the representation from Proposition 3.2.2. 
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3.2.4 Relation to 2 x 2 normal determinants. We have the following extension of Proposi­
tion 2.2.5 to the case of an AL random variable. 

Proposition 3.2.4 Let Y '" A£*(e, K, a) with e = 0 and a = 1, and let (Xl, X2) and (X3, X4) be 
i.i.d. bivariate normal r.v. s with vector mean zero and variance-covariance matrix 

(3.2.8) 

Then 

(3.2.9) 

Note that if Y is symmetric Laplace (K = 1), then 1: is an identity matrix, so all four variables 
Xl, X2, X3, X4 are i.i.d. standard normal (see Proposition 2.2.5). For this case the representation 
(3.2.9) was derived in Mantel and Pasternack (1966) by an appropriate representation in terms of 
chi-square random variables [see also Farebrother (1986)], and in Mantel (1973) by calculating the 
appropriate characteristic functions [see also comments in Mantel (1987) and Missiakoulis and Darton 
(1985)]. Here we prove our generalization for asymmetric Laplace distribution using appropriate 
representations in terms of random variables. 

Proof. Let Zl, Z2, Z3, Z4 be i.i.d. standard normal r.v.'s. Note that Xi'S have the representation 

d (Zl - KZ3 Zl + KZ3) 
(XI,X2)= v'2K' v'2K ' 

2K 2K 
(3.2.10) 

d (Z2 - KZ4 Z2 + KZ4) 
(X3, X4) = v'2K' v'2K . 

2K 2K 
(3.2.11) 

Indeed, to see (3.2.10), note that the linear combinations of Zi'S are normal with 

( Zl - KZ3) (Zl + KZ3) 1 2 Var ~ = Var ~ = - (1 + K ) 
y2K y2K 2K 

(3.2.12) 

and 

( ZI- KZ3 ZI+KZ3) 1 2 
Cov ~' ~ = -(1 - K ), 

y2K y2K 2K 
(3.2.13) 

which correspond to the entries of 1: given by (3.2.8). Similar arguments apply to (3.2.11). Next, 
write 

(3.2.14) 

where 

HI = Zr + Z~ and H2 = Z~ + Z~ (3.2.15) 

are two i.i.d. X 2 r. v. 's with two degrees of freedom. Finally, note that Hi ~ 2 Wi, i = 1, 2, where Wi'S 
are i.i.d. standard exponential variables, so (3.2.14) reduces to (3.1.9) and the result follows. 0 

Table 3.4 summarizes the representations studied in this section. 
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Representation Variables 

jLW +.JWZ 
Z - standard normal r. v. 
W - exponentially distributed r. v. 

.l(1 W, - "W2) ../2K 
W" W2 -standard exponential r.v.'s 

2!.n(~H, - "H2) H" H2 - X 2 r. v.'s with two degrees of freedom 

/ takes on values -I( and ~ with probabilities ,::2 
.l/W and '~K2 ../2 

W - standard exponential r. v. 

.llog(P'/K / PK) 

../2 ' 2 
P" P2 - Pareto r.v.'s with p.d.f. f(p) = 1/ p2, p > 1 

.llog(UK / U'/K) 

../2 '2 
U" U2 -r.v. 's uniformly distributed on [0, 1] 

X,X2 + X3X4 
(X" X2) and (X3, X4) are bivariate normal with mean ° and covariance given by (3.2.8) 

WI, W2 -standard exponential r.v.'s 

.l( 18, W, - ,,82 W2) (8,,82) assumes values (1,0) and (0, 1) with proba-

../2K bT' , d K2 
1 Itles l+K2 an l+K2 

Table 3.4: Summary of the representations of the standard A.c(O, jL, 1) [or A.c*(O, ", 1)] random 
variables. All random variables (or vectors) in each representation are mutually independent. 

3.3 Simulation 
Random variate generation from an AL distribution is straightforward. Since the AL distribution 
function has closed form and so does its inverse, the inversion method can be applied [see, e.g., 
Devroye (1986)]. Alternatively, we can use any of the representations discussed in Section 3.2. 
Representation (3.2.3) in terms oftwo i.i.d. uniform variables seems to be most suitable for simulation, 
as these can be obtained directly. Here is an AL generator based on this representation. 

A.c*(O, ", a) generator 

• Generate a uniform [0,1] random variate U,. 

• Generate a uniform [0, 1] random variate U2, independent of U,. 

• Set y+-o + ~ log ~~K' 
,,2 U2 

• RETURN Y. 

Remark 3.3.1 To generate an A.c(8, jL, a) variate, first compute the parameter" using relation 
(3.1.4), and then apply the above algorithm. 
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3.4 Characterizations and further properties 
3.4.1 Infinite divisibility. In Section 2.4.1 of Chapter 2 we discussed a fundamental concept of 
infinite divisibility and showed that all symmetric Laplace laws are infinitely divisible. Similarly, all 
AL distributions are infinitely divisible as well, as their ch.f. 1/1 given by (3.1.3) can be factored as 

I ( )I/n( )I/n}n 1/I(t) = ei8t /n 1 1 = [1/1 (t)r 
I - i...!!..-t 1 + i aK t n 

../'iK ../'i 

for each integer n :::: 1. The ch.f. 1/In corresponds to the random variable 

~ + ~ (.!.GI - KG2) , 
n ..Ji K 

where GI and G2 are i.i.d. gamma r(I/n, 1) random variables with density 

1 f(x) = ___ xl/n-1e-x x > O. 
r(l/n) , 

(3.4.1) 

(3.4.2) 

(3.4.3) 

Generalizations of Laplace distribution such as (3.4.2), whose characteristic functions are powers of 
the AL ch.f., are known as Bessel function distributions and are subject of Section 4.1 of Chapter 4. 

The following result summarizes our discussion. 

Proposition 3.4.1 Let Y ~ AC* (e, K, a). Then Y is infinitely divisible, admitting for each integer 
n :::: 1 the representation 

n 

Y ~ L:Xni' (3.4.4) 
i=1 

where the Xni S are i.i.d. variables given by (3.4.2). 

The next result reveals the Levy-Khinchine representation of an AL characteristic function, 
which was derived in Takano (1989, 1990). 

Proposition 3.4.2 The ch.f 1/1 ofY '" A.C*(e, K, a) r.v. admits the Uvy-Khinchine representation 

1/I(t) = exp (ire + 1 (e itu - l»),,(U)dU) , (3.4.5) 

where 

I ..tiKI I 1 e-(j""" u, foru > 0 
)..(u) = - ..ti 

lui eKciU, for u < O. 
(3.4.6) 

Proof Recall that the Levy measure of exponential distribution with parameter f3 > 0 has density 
e-/3u /u, u > 0, i.e., 

--. - = exp (e 'tu - 1)-e-/3udu , 1 (10 00
. 1 ) 

l-lt/f3 0 u 
f3 > 0, t E R 

Consequently, 

t E R (3.4.7) 
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and 

1 (1 00
. I../iK) -----:=- = exp 0 (e lIU - 1)-u e--uUdu , 

1 - i....l!..-t 
..[iK 

t E R (3.4.8) 

Replacing in (3.4.7) t with -t and substituting y = -u we obtain 

__ 1---:. U=K- = exp (fO (e ilu - 1)~e- t! 1U1dU) , 
1 + I ..[it -00 lui 

t E R (3.4.9) 

The multiplication of the corresponding sides of (3.4.8) and (3.4.9), coupled with (3.1.3), produces 
(3.4.5)-(3.4.6). D 

In Figure 3.2, we see graphs of the Levy densities for various specifications of the parameter 
Ii- (a = Vi). 

<Xl 
c::i 

<0 
c::i 

C\I 
c::i 

0 
c::i 
1 

-5 0 5 10 15 20 

Figure 3.2: Densities of the Levy measures for asymmetric Laplace distributions with a = Vi and 
Ii- = 0,0.8, 1.5,2,3,4,6,8, 10 that correspond to K ;:::; 1.0,0.68,0.50,0.41,0.30,0.24,0.16,0.12, 
0.1. (The densities of these distributions are illustrated in Figure 3.1.) 

3.4.2 Geometric infinite divisibility. In Section 2.4.2 of Chapter 2 we discussed the class of 
geometric infinitely divisible laws, and showed that all symmetric Laplace distributions with mean 
zero belong to this group. More generally, all AL laws with mode equal to zero are geometrically 
infinitely divisible as well, as shown by the following result. 

Proposition 3.4.3 If Y "-' A£(O, Ii-, a), then Y is geometrically infinitely divisible and for all p E 

(0, 1) we have 

Vp 

Y ~ Ly~i), (3.4.10) 
i=! 
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where vp is a geometric r.v. with mean lip, the r.v. 's y;i) are i.i.d. AL:(O, P{t, foa)foreach p, and 

vp and (y;i») are independent. 

Proof Let fp be the ch.f. of y;i). Conditioning on vp, we find the ch.f. of the right-hand side of 
(3.4.10) to be 

(3.4.11) 

When we now substitute 

which is the ch.f. of the AL:(O, P{t, foa) distribution, into (3.4.11), we obtain the ch.f. of Y given 
by (3.1.1) with (} = O. 0 

Remark 3.4.1 If Y '" AL:*(O, K, a), then (3.4.10) holds with y;i) having the AL:*(O, Kp, foa) 
distribution, where 

J p(I/K - K)2 + 4 - fo(l/K - K) 
Kp = 

2 
(3.4.12) 

(see Exercise 3.6.17). 

3.4.3 Distributionallimits of geometric sums. We saw in Section 2.2.7 of Chapter 2 that the class 
of symmetric Laplace distributions with zero mean coincides with the class of distributional limits 
as p -+ 0 of (appropriately normalized) geometric sums 

where Xl, X2, ... are nondegenerate and symmetric i.i.d. r.v.'s with finite variance and vp is a 
geometric r. v. with mean 1 I p, independent of the Xi'S. It turns out that if we omit the assumption of 
symmetry, then the limiting class coincides with the family of AL distributions. 

Proposition 3.4.4 The class of AL distributions with mode equal to zero coincides with the class of 
nondegenerate distributional limits of 

Vp 

Sp = ap L(Xi + bp) 
i=l 

(3.4.13) 

as p -+ 0, where Xl, X2, ... are nondegenerate i.i.d. r.v. s with finite variance, and vp is a geometric 
r.v. with mean II p, independent of the Xi S. Moreover, if E Xi = {t and Var(Xi) = (J2, then the 
normalizing sequences in (3.4.13) may be taken as 

a - pl/2 p- , 

in which case Sp converges in distribution to the AL:(O, {t, (J) random variable. 

(3.4.14) 



3.4. Characterizations and further properties 153 

Proof First, we shall show that if Y ~ AL(O, /-t, a), then Y is the distributional limit of Sp, where 
Xi's are i.i.d. r.v.'s with EXi = /-t and Var(Xi) = a 2, while the normalizing sequences are given by 
(3.4.14). Thus we need to show the convergence 

Vp 

pl/2 L(X} - /-t + pl/2/-t) ~ Y, (3.4.15) 
}=l 

where Y is an AL r.v. with ch.f. 1/1 given by (3.1.1) with e = O. Writing (3.4.15) in terms of ch.f.'s, 
we obtain 

(3.4.16) 

where </> is the ch.f. of X} - /-t. Taking reciprocals, we can express (3.4.16) as 

(3.4.17) 

Note that the factor </>(pl/2t) tends to one as p converges to zero, so we can write equivalently 
(splitting the numerator) 

e- iPJLt - 1 1 - (1 - p)</>(pl/2t ) 1 2 2 . 
---- + = I + II -+ 1 + -a t -11.Lt. 

P P 2 
(3.4.18) 

First, we show that I -+ -i/-tt. Indeed, we have 

e- iPlLt - 1 . sin(p/-tt) cos(pp,t) - 1 . 
---- = -I/-tt + pJ-Lt -+ -IJ-Lt + O. 

p pJ-Lt pp,t 

To establish the convergence 

1 - (1 - p)</>(pl/2 t ) 1 2 2 
I 1= -+ 1 + -a t 

p 2 
(3.4.19) 

use Theorem 8.44 from Breiman (1993). Since W} = X j - J-L has finite first two moments, the ch.f. 
of W} can be written as 

(iU)2 2 
</>(u) = 1 + iuEW} + -2-(EX} + 8(u)), 

where 8 denotes a bounded function of u such that limu-+o 8(u) = O. Since EW} = E[X} - J-L] = 0 
and EWJ = E(X j - J-L)2 = a 2, we apply the above with u = pl/2t to the left-hand side of (3.4.19) 
to obtain 

which converges to 1 + t 2a 2 /2 as p -+ O. Thus we have shown the first part of the proposition. 
Let us now assume that the variables (3.4.13) converge in distribution to an r. v. Y with ch.f. 1/1. 

Our goal is to show that the r. v. Y has an AL distribution. First, note that being a limit of geometric 
compounds (3.4.13), the r.v. Y is geometrically infinitely divisible, and thus also infinitely divisible 
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[see, e.g., Mohan et a1. (1993)]. Thus its ch.f.1/t does not vanish. Expressing the convergence in terms 
of ch.f. 's, we have 

pIpet) ./, t" lTll 

1- (1- p)[p(t) -+ 'I'() lor t E m.., (3.4.20) 

where 

and ¢ is the ch.f. of the X j 'so Since the fraction in (3.4.20) converges to a nonzero limit while its 
numerator converges to zero (since [p is bounded), we must have 

[pet) -+ 1 for t E R 

We now rewrite (3.4.20) equivalently as 

so 

In view of (3.4.21), we have 

1 
1 1(_1 __ 1) -+ 1/t(t) for t E ~, 
+ p fp(t) 

1 (1 ) 1 P [pet) - 1 -+ 1/t(t) - 1 for t E ~. 

1 1 
-(f (t) - 1) -+ 1 - - for t E R 
p p 1/t(t) 

We now let p = lin and denote an = al/n, bn = bl/n, so (3.4.24) takes the form 

n(f(a t)eitanbn - 1) -+ 1 - _1_ for t E ~ 
n 1/t(t)' 

(3.4.21) 

(3.4.22) 

(3.4.23) 

(3.4.24) 

(3.4.25) 

where the limit is a continuous function. Thus by Feller (1971, XVII, Theorem 1) we conclude that 

([(a t)eitanbn)n -+ exp (1 - _1_) for t E R 
n 1/t(t) 

But the left-hand side of (3.4.26) is the ch.f. of 

n 

an L(Xi + bn), 
i=1 

(3.4.26) 

(3.4.27) 

where the Xi'S are i.i.d. with finite variance, and consequently the limit in (3.4.26) must be a normal 
characteristic function, 

exp (1 - 1/t~t)) = exp (iJLt - ~a2t2) , (3.4.28) 

where JL E ~ and a > o are some constants. Solving (3.4.28) for 1/t(t), we obtain theALch.f. (3.1.1) 
with f) = O. The result has been proved. D 

Remark 3.4.2 If the Xi'S are.A£(JL, a), then they have mean JL and variance JL2+a2. Consequently, 
we have the convergence to the A£(JL, J JL2 + a 2) law under the normalization (3.4.14). 
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3.4.4 Stability with respect to geometric summation. As we saw in Section 2.2.6 of Chapter 2, 
an AL LV. Y with Jl- = 0 (symmetric Laplace) is the only symmetric r.v. with a finite second moment 
satisfying the relation 

Vp 

Y :f::. ap L(Yi + bp ), (3.4.29) 
i=1 

where vp is geometrically distributed with mean 1/ p, Yi'S are i.i.d. copies of Y, and vp and Yi'S are 
independent. More generally, all AL r.v.'s satisfy a similar relation when equality in distribution is 
replaced by convergence in distribution. The following result, which we include here without proof, 
follows from a more general characterization of geometric stable distributions [see Kozubowski 
(1994b, Theorem 3.1)]. 

Proposition 3.4.5 Let Y be a random variable with finite variance, and let YI, Y2, ... be i. i.d. copies 
ofY. Then the following statements are equivalent: 

(i) Y '" A.c(O, Jl-, a) with Jl-2 + a 2 > O. 

(ii) There exist ap > 0 and bp E lR such that 

Vp 

ap L(Yi + bp ) ~ Y, (3.4.30) 
i=1 

where vp is a geometric r.v. with mean 1/ p, independent of the Yi s. 
Moreover, the normalizing sequences must have the form 

(3.4.31) 

where 

(3.4.32) 

and the sequences 8(p) and 11(P) converge to zero as p -+ o. 

3.4.5 Maximum entropy property. In this section we characterize AL laws in terms of their 
entropy, defined in Section 2.4.5. Let us derive the entropy of X having an AL distribution with 
density (3.1.10). 

Proposition 3.4.6 Let X have an A.c*(e, K, a) distribution with density f given by (3.1.10). Then 
the entropy of X is given by 

H(X) = E[ -log f(X)] = 1 + log a + log (~ + K) - ~ log2. (3.4.33) 

Proof The calculation is straightforward. Since the value of entropy is not affected by translation, 
we can assume that e = O. By definition, the entropy of X is equal to 

! 0 .Ji.j'i x 10 00 .JiK .j'iK - (logC + -x)Ce Kii dx - (logC - --x)Ce---u-xdx, 
-00 Ka 0 a 

(3.4.34) 
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where 

,J2 K 
C---­

- a 1 + K 2 · 

Recalling that for any a > 0 we have 

we obtain the following expression after integration in (3.4.34) 

a a a a 
H(X) = -C-KlogC+C-K -C--IogC+C--. 

,J2 ,J2,J2K ,J2K 

The substitution of (3.4.35) into (3.4.37) produces (3.4.33). 

(3.4.35) 

(3.4.36) 

(3.4.37) 

o 

Remark 3.4.3 Note that for K = 1, for which the AL distribution becomes a symmetric Laplace 
distribution, formula (3.4.33) simplifies to 

1 
H(X) = 1 + logO' + 2: log 2, (3.4.38) 

which was derived for symmetric Laplace distribution in Section 2.1.3 of Chapter 2. 

We saw in Section 2.4.5 that the classical Laplace distribution maximizes the entropy among 
all distributions with a given first absolute moment and (-00, 00) support. It turns out that under the 
additional stipulation that the mean be also given, the distribution that maximizes the entropy is AL, 
as shown by Kotz et al. (2000a). 

Proposition 3.4.7 Consider the class C of all continuous random variables with nonvanishing den­
sities on (-00,00) such that 

EX = C! E lR and EIXI = C2 > 0 for X E C, (3.4.39) 

where 

(3.4.40) 

Then the maximum entropy is attained for the AL r. v. X* with density (3.1.10), where () = 0, 

_ (C2 - cI )1/4 
K- , 

c2 + C! 
(3.4.41) 

and 

(3.4.42) 

Moreover, the maximum entropy is 

max H(X) = H(X*) = 2 log {,Jc2 + CI + ,JC2 - CI } + 1. 
XEC ,J2 

(3.4.43) 
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Proof Applying Proposition 2.4.6 with a = -00, b = 00, hI (x) = x, and h2(x) = lxi, we find that 
the maximum entropy is attained by density 

if x :::: 0 
if x < 0 ' 

(3.4.44) 

provided that the function (3.4.44) integrates to one on ( -00, 00) and satisfies the constraints (3.4.39). 
Thus it is enough to find the constants ao, al and a2 for which the constraints are satisfied. To this 
end, first note that the integrability of p implies the following restrictions on al and a2: 

implying that a2 < O. Write 

al = _1_ (.!. _ K) E 1ft and a2 = __ 1_ (.!. + K) E (-00,0) 
..jia K ..jia K 

for some a > 0 and K > 0 so that the density (3.4.44) takes the form 

{ 
e-1K x, if x :::: 0 

p(x) = eao 1 

eJiKCT x , if x < O. 

Comparing (3.4.47) with (3.1.10), we conclude that p must be an AL density, so that 

a ..ji K 
eO - ---­

- a 1 +K2 ' 

(3.4.45) 

(3.4.46) 

(3.4.47) 

(3.4.48) 

Next, using the formulas for the mean and the first absolute moment of the AL distribution with 
density (3.1.10) with e = 0, we write the conditions (3.4.39) as 

and 

a 1- K4 
EX = ----- = CI 

..jiK 1 + K2 

a 1 + K4 

EIXI = ..jiK 1 + K2 = C2· 

Divide the sides of (3.4.50) into the corresponding sides of (3.4.49) to obtain 

(3.4.49) 

(3.4.50) 

(3.4.51) 

Solving the above equation for K produces (3.4.41). Finally, the substitution of K given by (3.4.41) 
into (3.4.50) and solving for a produces (3.4.42). We thus conclude that the entropy is maximized 
by the AL law with e = 0 and K and a as specified by (3.4.41)-(3.4.42). The actual value of the 
maximal entropy follows from Proposition 3.4.6. 0 

Remark 3.4.4 Note that if the mean is zero, then K = 1 and a = ..jic2 so that the entropy is 
maximized by the classical Laplace r.v. with density 2~2 e-lxl/C2. In this case the maximal entropy 
(3.4.43) reduces to (3.4.38). 

Remark 3.4.5 If in Proposition 3.4.7 the absolute deviation about the mean is prescribed instead of 
EIXI, then the entropy is maximized by the symmetric Laplace distribution (Exercise 3.6.18). 
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3.5 Estimation 
In this section we study the problem of estimating the parameters of an AL distribution. Note that 
our distributions are essentially convolutions of exponential random variables of different signs, 
and common estimation procedures for mixtures of positive exponential distributions [see, e.g., 
Mendenhall and Hader (1958), Rider (1961)] are not applicable in this case. We shall focus on the 
method of maximum likelihood, leaving the discussion of other methods of estimation (i.e., the 
method of moments) to exercises. 

Let us start with the derivation of the Fisher information matrix, I (e, /C, a), corresponding to 
an AC*(e, /C, a) distribution. We have 

l(e, /C, a) = [ E {a~i log !O,K,a(X) . a~j log !O,K,a(X)} ):,i=I' 

where X has an AC*(e, /C, a) distribution with the vector-parameter 

y = (e,/C,a) 

and density !O,K,a. Routine calculations (Exercise 3.6.23) produce the matrix 

[ 

2 
ur 

/(e /C a) = _"f2 2 , , a I+K2 

o 
(3.5.1) 

3.5.1 Maximum likelihood estimation. Let X I, ... , Xn be an i.i.d. random sample from an 
AC*(e, /C, a) distribution with the density !O,a,K given by (3.1.10), and let XI, ... , Xn be their par­
ticular realization. Then the likelihood function takes the form 

where 

and 

(Xi - e)+ = { ~i - e 

{ e -Xi 
(Xi -e)- = 0 

if Xi ~ e 
if Xi ~ e 

if Xi ~ e 
if Xi ~ e. 

Thus the log-likelihood function is 

n /C v'2 
10gL(e, /C,a) = -log2 - nloga +n log --2 - -D, 

2 1+/C a 

where 

We follow our approach to the symmetric case and consider several cases. 

(3.5.2) 

(3.5.3) 

(3.5.4) 

(3.5.5) 

(3.5.6) 
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3.5.1.1 Case 1: The values of K and a are known. Here the likelihood function will be maximized 
by the value of () that minimizes the function 

n 1 n 

Q(() = K ~)x; - ()+ + - L(x; - ()-. 
;=1 K ;=1 

(3.5.7) 

Let X I:n :S ... :S Xn:n be the order statistics connected with a random sample of size n from the 
A£*((), K, a) distribution, and let XI:n :S .. , :S Xn:n be their particular realization. Consider the set 
of n + 1 intervals {lo, ... , In}, where 

10 = (-00, XI:n], In = [xn:n, (0), (3.5.8) 

and 

Ij = [Xj:n, Xj+l:n], j = 1,2, ... n - 1. (3.5.9) 

It can be shown that the function Q is continuous on lR. and linear on each of the intervals Ij, 

j = 0, 1, ... , n (Exercise 3.6.19). Further, the function Q is decreasing on 10, increasing on In, 

while on any Ij with 1 :S j :S n - 1 it is 

{
decreasing 

constant 

increasing 

Thus, if the parameter K is such that 

2 j 
K = -- for some j = 1,2, ... , n - 1, 

n-j 

(3.5.10) 

(3.5.11) 

then the function Q is minimized by any value of () within the interval [Xj:n, Xj+l:n]. Consequently, 
any statistic of the form 

pXj:n + (1 - P)Xj+l:n, P E [0, 1], (3.5.12) 

may be taken as an MLE of the parameter () in this case. If the condition (3.5.11) does not hold, the 
function Q attains its global minimum value at the unique 8n given by 

if K2 < .-i....., 
n-J' 

·f j-I 2 j 
I -(-'-1) < K < -., n- )- n-} 

if K2 > n - 1. 

j = 2, 3, ... , n - 1, (3.5.13) 

We see that, as in the case of symmetric Laplace distribution, the problem of estimating the location 
parameter () of the A£*((), K, a) distribution admits an explicit solution. 

Observe that for large values of n we will have 

j - 1 2 j 
-~--:--- < K < -- for some j = 2,3, ... , n - 1, 
n - (j - 1) - n - j 

(3.5.14) 

so that consistently with the relations (3.5.12)-(3.5.13) the statistic Xj:n may be taken as the MLE 
of (). Solving the inequalities (3.5.14) for j we obtain the relation 

(3.5.15) 
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which is satisfied uniquely by 

j = j (n) = [[nK2/(1 + K2)]] + 1 (3.5.16) 

(the bracketed [[x]] denotes the integral part ofx). The resulting MLE ofe, given by the order statistic 

(3.5.17) 

is consistent and asymptotically normal. 

Proposition 3.5.1 Let Xl, ... , Xn be i.i.d. from the AC*(e, K, a) distribution with an unknown 
value ofe. Then the MLE ofe given by (3.5.17) is 

(i) consistent; 

(ii) asymptotically normal, i.e., 

(3.5.18) 

(iii) asymptotically efficient. 

Proof It is well known [see, e.g., David (1981)] that for a continuous distribution with density f 
the sample quantile 

~A,n = X[[Anll+I:n, 0 < )... < 1, 

converges to the corresponding population quantile ~A and the asymptotic distribution of 

is normal with mean zero and variance 

)...(1 - )...) 

(f(h»2 . 
(3.5.19) 

In our case the MLE is a sample quantile with)... = I ~:2 , the corresponding population quantile h 
is equal to e (since the above)... coincides with the probability that the relevant asymmetric Laplace 
variable is less than e), and 

(3.5.20) 

Thus the consistency and asymptotic normality (3.5.18) follow. To establish asymptotic efficiency 
note that the asymptotic variance coincides with the inverse of the Fisher information I (e) = 2/a 2 

[cf. (3.5.1)]. 0 

The specific form of the MLE for the location parameter provides a characterization of our 
class of asymmetric Laplace laws. Buczolich and Szekely (1989), already mentioned in a remark 
following Proposition 2.6.3, considered the question of when the statistic .E7=I ai Xi:n, where ai :::: 0 
and .E7=I ai = 1, can be the MLE of the location parameter e for a sample X I, ... , Xn from a 
distribution given by a density f(x). A proof of the following result may be found in Buczolich and 
Szekely (1989). 
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Theorem 3.5.1 The weighted sum L:?=1 aj Xj:n, where n :::: 3, aj :::: 0, and L:7=1 aj = 1, can be the 
MLE for the location parameter () if and only if one of the following cases holds: 

(i) aj = Iinfor all i = 1, ... , n. 

(ii) al = P and an = 1 - pforsome p E (0,1). 

(iii) aj = pandaj+1 = 1- pforsome p E (0, 1) and some j = 1, ... ,n-1. 

(iv) aj = 1 for some j = 1, ... , n. 

In the first case the distribution is necessarily Gaussian centered at zero (and the estimator is 
a sample mean). 

In the second case, the distribution is uniform on the interval [-c(1 - p), cp] for some c > ° 
(and the estimator is the midrange). 

In the third case, the distribution is necessarily asymmetric Laplace with the skewness param­
eter K2 = j I(n - j). 

In the fourth case, there is no parametric class to which the density f belongs for the case 
when n is jUed. However, if the hypothesis holds for infinitely many sample sizes n = nr and for 
j = jr such that jr I nr converges to a, then the distribution is necessarily asymmetric Laplace with 
the skewness parameter K2 = al(1 - a). 

3.5.1.2 Case 2: The values of () and K are known. Here the log-likelihood (3.5.5) leads to the 
following function of u to be maximized: 

.j2 
Q(u) = C - nlogu - -D, 

u 
(3.5.21) 

where the quantities C = ; log 2 + n log I:K2 and D given by (3.5.6) do not depend of u. By 
differentiating, we find that Q attains its maximum value at the unique point 

(3.5.22) 

which is the MLE of u. Note that the distribution of an coincides with that of the sample mean 

1 n 
an = - LYj , 

n )=1 
(3.5.23) 

where the Yj'S are i.i.d. exponential variables with mean a and variance u 2 . This follows from the 
fact that if X'" A£*«(), K, u), then the variable Y = g(X), where 

I .fiK(X - () ifx 2:: () 
g(x) = .Ji 

-i«x - () for x < (), 
(3.5.24) 

is exponentially distributed with the above mean and variance (Exercise 3.6.20). 
The representation (3.5.23) immediately leads to the strong consistency and asymptotic nor­

mality of Un, as the variables Yj have finite variance. Since the asymptotic variance coincides with 
the reciprocal of the Fisher information l(a) = l/u2 [cf. (3.5.1)], the MLE is also asymptotically 
efficient. 



162 3. Asymmetric Laplace Distributions 

Proposition 3.5.2 Let Xl, ... , Xn be i.i.d. r.v. 'sfrom the A£*(e, K, a) distribution, where the value 
of a is unknown. Then the MLE of a is given by (3.5.22) and is 

(i) unbiased; 

(ii) strongly consistent; 

(iii) asymptotically normal, where 

(3.5.25) 

(iv) asymptotically efficient. 

3.5.1.3 Case 3: The values ofe and a are known. Here, by (3.5.5), we need to maximize the 
function 

g(y, a, (3) = log y -log(l + i) - ay - !!.. 
y 

with respect to y E (0, (0), where 

.J21 n 
a = a(e) = -- 2:(Xj - e)+, 

a n 
j=l 

For any fixed a, f3 > 0, the derivative of g with respect to y is 

a 1 2y f3 
hey, a, fJ) = -g(y, a, (3) = - - --2 + 7: - a. 

ay y 1 + y y 

To find the MLE of K, we shall study the solutions of the equation 

hey, a, (3) = o. 

The relevant properties of the function h are presented in the following lemma. 

(3.5.26) 

(3.5.27) 

(3.5.28) 

(3.5.29) 

Lemma 3.5.1 For any fixed a, f3 > 0 the function h defined in (3.5.28) is strictly decreasing on 
(0, (0) with 

lim hey, a, (3) = 00 and lim hey, a, (3) = -a < 0, 
y_o+ y_oo 

so that there exists a unique solution YO E (0, (0) of the equation (3.5.29). Moreover, we have 

Proof Fix a, f3 > 0 and write 

where 

,Jf3/a S YO S 1 
1 S YO S .JfJ/a 

in case f3 sa, 
in case f3 2: a 

hey, a, (3) = hl (y) + h2(Y), 

hl (y) = .!.. -~ and h2(y) = f32 - a. 
y 1 + y2 Y 

(3.5.30) 

(3.5.31) 

(3.5.32) 
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Since 

(3.5.33) 

it is easy to see that the function hI is decreasing on the interval (0, Y*) and increasing on the interval 
(Y* , 00), where 

(3.5.34) 

In addition, 

lim hI(Y) = 00, hI(1) = 0, hI(Y*) < 0, lim hI(Y) = O. 
y-+o+ y-+oo 

(3.5.35) 

On the other hand, the function h2 is decreasing on (0, 00) and 

lim h2(Y) = 00, h2(J (3lex) = 0, h2(1) = (3 - ex, lim h2(Y) = -ex < O. 
y-+o+ y-+oo 

(3.5.36) 

Assume firstthat ex = (3. Then h(1) = 0 and 

hey) = hI (y) + h2(Y) > 0 (3.5.37) 

for Y E (0, 1), while 

hey) = hI (y) + h2(Y) < 0 (3.5.38) 

for Y E (1,00). Consequently, YO = 1 is the unique solution of equation (3.5.29) satisfying (3.5.30). 
Next, assume that (3 < ex. By the above properties of hI and h2, we deduce that there must 

exist a unique 

YO E (j (3 lex , 1) (3.5.39) 

such that relations (3.5.37)-(3.5.38) hold for Y E (0, YO) and Y E (Yo, 00), respectively. This YO must 
be a unique solution of the equation (3.5.29) satisfying (3.5.30). 

Finally, if (3 > ex, then the result follows from the relation 

hey, ex, (3) = h(1ly, (3, ex) (3.5.40) 

and the application of the previous case. o 

Remark 3.5.1 It is easy to see that the conclusions of Lemma 3.5.1 remain valid if either ex or (3 is 
equal to zero (which occurs when all the observations are located on one side of (}). It is interesting 
that in this case we still get the MLE's and the corresponding two-tailed AL distribution. On the other 
hand, we shall see in Case 5 (when (} is known) that under this condition the maximum likelihood 
approach would produce an exponential distribution (a one-tailed AL law). 

In view of Lemma 3.5.1, we conclude that the likelihood function (3.5.26) is maximized at a 
unique value of Y (the MLE of K), which can be obtained by solving equation (3.5.29). The solution 
does not admit a closed form and must be found numerically. The properties of the MLE are presented 
in the following result. 
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Proposition 3.5.3 Let Xl, ... , Xn be i.i.d. r.v. 'sfrom an A£*(B, K, a) distribution where the values 
ofB and a are known. Then the MLE OfK is the unique solution Kn of the equation (3.5.29), where 
the function h is defined in (3.5.28) and a, f3 are given in (3.5.27). The MLE Kn is 

(i) consistent; 

(ii) asymptotically normal and efficient: 

where the asymptotic variance 

coincides with the reciprocal of the Fisher information I (K). 

Moreover, for any integer n ~ 1 we have 

.Jf3/a ::s Kn ::s 1 
1 ::s K n ::s ,J7Jfa 

Proof. Consider auxiliary random vectors 

in case f3 ::s a, 
in case f3 ~ a. 

z(i) = [Z~i), Zii)]" i = 1,2, ... , n, 

Xi - B = [1, -l]Z(i). 

The above Z(i)'s admit the representation 

z(i) ~ [ Ol,i El,i ], 
02,i E2,i 

(3.5.41) 

(3.5.42) 

(3.5.43) 

(3.5.44) 

(3.5.45) 

where the E 1 ,i 's are i.i.d. distributed as :/z ~ W, and the E2,i 's are i.i.d. distributed as :/zK W, where 

W is a standard exponential variable and the 01i, 02i are the 0-1 random variables that appear in 
representation (3.2.7). The random vectors Z(i) are i.i.d. with the mean 

mz = [ (3.5.46) 

and the covariance matrix 

(3.5.47) 

Clearly, the sequence {Z(i)} obeys the Law of Large Numbers and the Central Limit Theorem so that 

lim Zen) a~. mz (3.5.48) 
n ..... oo 
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and 

lim .jii(i}n) - mz) 4: N(O, l:z), (3.5.49) 
n--+oo 

where 

n [n n]' Zen) = .!. L Z(i) = .!. L Zii), .!. L Zii) 
n i=l n i=l n i=l 

(3.5.50) 

Notice that the quantities O! and {3 are related to the Z(i),s as follows: 

_ v'i.!. ~Z(i) _ v'iZ-(n) 
O!- ~ I - l' 

a n i=1 a 
(3.5.51) 

(3.5.52) 

Since the MLE, Kn , is a unique solution of equation (3.5.29), it can be written as 

Kn = H(O!, {3), (3.5.53) 

where H (', .) is a continuous and differentiable function satisfying the equation 

h(H (O!, {3), O!, {3) = o. (3.5.54) 

In view of (3.5.51) and (3.5.52), we have 

A _ H (v'iz-(n) v'iz-(n») 
Kn - I' 2 . a a 

(3.5.55) 

To establish the consistency of the MLE given in (3.5.55), note that by (3.5.46), (3.5.47), (3.5.48), 
and the continuity of H, we have 

A d (v'i v'i ) Kn -+ H -ml Z, -m2Z . a . a . (3.5.56) 

Substituting 

v'i 1 1 v'2 K3 
O! = -ml Z = --- and -m2Z =--

a . K 1 + K2 a' 1 + K2 
(3.5.57) 

into (3.5.29) and solving for y we obtain K, as can be readily verified. 
The asymptotic normality (3.5.41) of Kn can be establish similarly. In view of (3.5.49), by 

the standard large sample theory results [see, e.g., Serfting (1980)] it follows that as n -+ 00, the 
variables 

(3.5.58) 
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converge in distribution to a N (0, 2Dl:zD' /a 2) variable, where D is the vector of partial derivatives 
of H: 

D_[8H 8H] 
- 8a' 8{3 [a,fl]=.J2mz/a· 

(3.5.59) 

A straightforward but laborious calculation of the derivatives produces 

(3.5.60) 

and we obtain (3.5.41) and (3.5.42). The asymptotic efficiency is obtained by noting that a; given 
in (3.5.42) is the reciprocal of the Fisher information I (K) given by the middle entry in the Fisher 
information matrix (3.5.1). 0 

3.5.1.4 Case 4: The value OfK is known. By (3.5.5), we need to maximize the function 

.J2 
Q(e,a) = -nloga - -D(e,K), 

a 
(3.5.61) 

where D(e, K) is given by (3.5.6). We have already established in Case 2 that for any fixed value of 
D = D(8, K) the function (3.5.61) is maximized by the following value of a: 

.J2 
a(8) = -D(8, K). 

n 

The corresponding maximum value of Q is 

Q(8, a(e» = -n log { ~ D(e, K) } - n. 

(3.5.62) 

(3.5.63) 

Since the quantity (3.5.63) is decreasing in D(8, K), we need to find the value of e that minimizes 
the latter. Such value was already obtained in Case 1. Thus the MLE of e, denoted en, is given by 
(3.5.12) or (3.5.13), and for large n it can be taken as the order statistic Xj(n):n with j(n) given by 
(3.5.16). The MLE of a is then given by (3.5.62) with en in place on e, that is, 

(3.5.64) 

We observe that both estimators are linear combinations of order statistics, as was the case with the 
corresponding MLE's of the parameters of a symmetric Laplace distribution. Proceeding as in the 
classical Laplace case, one can show that the MLE (en, an) is consistent, asymptotically normal, and 
efficient, with the asymptotic covariance matrix 

(3.5.65) 

cf. (3.5.1). We omit a highly technical derivation of this result, which can be found in Kotz et 
a1. (2000c). 
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3.5.1.5 Case 5: The value ofe is known. Here we need to maximize the function 

Q(K, a) = 10gK -log(l + K2) -log(a) - [K, l/K]Z(n) /(a/h), 

where the vector z(n) was defined previously in (3.5.50). We shall proceed by considering three 
cases: 

2. () ~ X n:n , 

3. XI:n < e < Xn:n. 

In case 1, all sample values are greater than or equal to e, so 

(Xi -e)+ =Xi -() and (Xi -())- =0 foralli = 1,2, ... ,n. 

Thus the two components of the vector z(n) are 

- (n) 1 ~ (i) 1 ~ +_ 
ZI = - L...,ZI = - L...,(Xi -()) =Xn -e, 

n n 
i=1 i=1 

so the function Q takes the form 

Vi_ 
Q(K, a) = 10gK -log(l + K2) -log(a) - -K(Xn - e). 

a 

Fix K > 0 and differentiate (3.5.69) with respect to a to obtain 

JQ(K, a) 1 Vi _ 
----=.....:.Ja-....:. = -~ + -a-2 K(Xn - ()). 

It is clear that the derivative is positive for a < a(K) and negative for a > a(K), where 

(3.5.66) 

(3.5.67) 

(3.5.68) 

(3.5.69) 

(3.5.70) 

(3.5.71) 

Consequently, for any fixed K > 0, the function Q in (3.5.69) is maximized by a (K). Thus, for all 
a, K > 0, we have 

Q(K, a) :s Q(K, a(K)) = -log(l + K2) -log h - log(xn - e) - 1. (3.5.72) 

This function of K is strictly decreasing on (0, 00) with the least upper bound of 

lim Q(K, a(K» = -log h -log(xn - ()) - 1, 
K-->O+ 

(3.5.73) 

corresponding to the values K = 0 and a = O. Since these values are not admissible, formally the 
MLE's of K and a do not exist in this case. However, as 

(3.5.74) 
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then the A.C*(8, te, a(te)) distribution converges weakly to the exponential distribution with density 

{ 
le-(y-8)//L 

g(y) = /L o 
fory~8 

otherwise, 
(3.5.75) 

where J-L = in - 8 (Exercise 3.6.24). This is actually the A£(8, J-L, 0) distribution. Intuitively, it is 
certainly plausible to conclude that the underlying distribution is exponential if all sample values 
happen to be located on one side of the location parameter 8. 

Similar considerations lead to the conclusion that in the second case (8 ~ xn:n ), where we have 

(3.5.76) 

and 

-(n) 1 ~ (;) 1 ~ _ _ 
Z2 = - ~ Z2 = - ~(x; - 8) = 8 - X n , 

n ;=1 n ;=1 

(3.5.77) 

we can choose 

(3.5.78) 

to ensure that for all a, te > 0 we have 

te 2 
Q(te, a) ::: Q(K, a(te)) = log 1 + te 2 - 10g../2 - log(8 - in) - 1. (3.5.79) 

This function of te is strictly increasing on (0, 00) with the limit at infinity 

lim Q(K, a (te» = -log.J2 -log(8 - in) - 1. 
K-+OO 

(3.5.80) 

As in the previous case, the maximum likelihood formally does not yield a solution (since the values 
te = 00 and a = 0 are not admissible). Not surprisingly, these limiting values of the parameters do 
correspond to a distribution, as in the previous case, which this time is given by density 

for y ~ 8 
for y ::: 8, 

(3.5.81) 

where J-L = 8 - in. This is so since the A£*(8, te, a(te)) density converges to the density (3.5.81) as 
te ---+ 00 (Exercise 3.6.24). Again, we see that when all sample values happen to be on the left side of 
the location parameter 8, then the maximum likelihood approach leads to an exponential distribution. 

We now move to the third case, assuming that the value of 8 is strictly between Xl:n and Xn:n ' 

in which case both components of the vector z(n) are nonzero. 
Note that the likelihood function converges to zero on the boundary of its domain, so the 

existence and uniqueness of the MLE's is guaranteed if the following equations for the derivatives 
of Q have a unique solution within the domain: 

(3.5.82) 
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These equations are equivalent to 

[_K2, I/K2]Z(n) = 0, 

.J2[K, I/K]z(n) = a, 

and lead to the following unique and explicit solution for K and a: 

[1, o]~(n)] Z(n). 
[O,l]z(n) 

Remark 3.5.2 The corresponding MLE of the parameter f..L of the A£(O, f..L, a) parametrization is 
the sample mean 

n 
...... -(n) 1" 
f..Ln = [1, -1]Z = - ~Xi' 

n i=l 

The above estimators can be written more explicitly as follows: 

4 * E?=l (Xi - 0)-
1 "n +' Ii L...,i=l (Xi - 0) 

(3.5.83) 

1 n 1 n 
an =.J2 4 - L(Xi _0)+4 - ~)Xi -0)-

n i=1 n i=l 

(
In 

x - L(Xi -0)+ + 
n i=l 

1 n 
- L(Xi -0)-
n i=1 

(3.5.84) 

The MLE [Kn, an]' is consistent, asymptotically normal, and efficient for the vector-parameter [K, a]' 
[see, e.g., Hartley and Revankar (1974), Kozubowski and Podgorski (2000)]. 

Theorem 3.5.2 Let Xl, ... Xn be i.i.d. with the A£*(O, K, a) distribution where the value of 0 is 
known. Then the MLE Of[K, a], [Kn, an]', given by (3.5.83) and (3.5.84) is 

(i) strongly consistent; 

(ii) asymptotically bivariate normal with the asymptotic covariance matrix 

2 [1 a 2 2 U! 
T.MLE = 8(1 + K ) -L 1-K2 

KG' I+K2 

(3.5.85) 

(iii) asymptotically efficient, namely, this asymptotic covariance matrix coincides with the inverse 
of the Fisher information matrix. 

Proof The result follows from the large sample theory [see, e.g., Serfting (1980)]. Write 

(3.5.86) 
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where 

(3.5.87) 

and 

(3.5.88) 

(i) To establish the consistency of the MLE given in (3.5.86) use the continuity of G together 
with (3.5.48) to conclude that 

lim [,en, an] = G( lim Zen)) = G(mz), (3.5.89) 
n->oo n->oo 

and then verify by substitution that 

G(mz) = [K, u]. (3.5.90) 

(ii) Similarly, we establish the asymptotic normality of the MLE with the asymptotic variance 
of the form D1:zD', where 

D ~ [ :~; i" .. ",.mzL, (3.5.91) 

is the matrix of partial derivatives of the vector valued function G. We skip laborious calculations 
leading to the asymptotic variance (3.5.85). 

(iii) To prove asymptotic efficiency we need to demonstrate that 1: M LE is equal to the inverse 
of the Fisher information matrix I (K, u). By (3.5.1), the Fisher information matrix is 

(J'l/K-K ] 
-I( l/K+K • 

1 
(3.5.92) 

Taking the inverse of this matrix, we obtain (3.5.85). o 
3.5.1.6 Case 6: The value of u is known. If the value of u is given, then maximizing the log­
likelihood function (3.5.5) is equivalent to maximizing the function 

Q(8, K) = log K -log(l + K2) - {Ka(8) + ~fJ(8)} , (3.5.93) 

where a(8) and f3(8) are as defined previously in (3.5.27). We shall proceed by maximizing (3.5.93) 
with respect to (€I, K) on the sets 

lR XlI, lR x }z, ... , lR x l n , (3.5.94) 

where 

11 = (0,_1 ], 
n-l 

ln = [n - 1,00), (3.5.95) 

and 

li= ,-- , [ i-I i] 
n - (i - 1) n - i 

j = 2, 3, ... , n - 1. (3.5.96) 
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The procedure described below will result in the set of n pairs 

(81,KJ), ... ,(en ,Kn), (3.5.97) 

where the ith pair maximizes the function (3.5.93) on the set IR x Ji, i = 1,2, ... , n. By substituting 
(3.5.97) into (3.5.93) and comparing the resulting values we would obtain the required M LE's of e 
andK. 

The process of obtaining each of the pairs in (3.5.97) consists of two steps. First, note that by 
the results on estimating e (see Case 1), the inequality 

Q(e, K) ~ Q(Xi:n, K) = 10gK -log(l + K2) - {Kex(Xi:n) + ~{3(Xi:n)} (3.5.98) 

holds for all (e, K) E IR X Ji. We can now maximize the right-hand side of (3.5.98) with respect to 
K E Jj using the results obtained under Case 3 (where the only unknown parameter is K). Namely, 
we conclude that the right-hand side of (3.5.98) is increasing on the interval (0, KP) and decreasing 
on the interval (KP, (0), where KP is the unique solution of the equation (3.5.29) [with ex = ex(Xi:n) 
and f3 = {3(Xi:n)). Now the value Ki that would maximize the right-hand side of (3.5.98) would be 
either KP (if KP E Ji) or one of the endpoints of Ji (the left endpoint if it is greater than KP, or the 
right endpoint if it is less than KP). The algorithm below summarizes the process of obtaining the 
MLE's of 8 and K for this problem. 

Computation of the MLE's ofe and K when a is known 

• Fori = 1,2, ... ,n,set 

.J2 1 n 
ex = -- L(Xj:n -Xi:n), 

an .. 
J=' 

• For i = 1, 2, ... , n, solve the equation 

1 2K {3 - - -- + - -ex =0, 
K 1 + K2 K2 

obtaining the unique solution KP, which lies between 1 and -Jf3/ex. 

• Set 

KI = { 

For i = 2, 3, ... , n - 1, K; ~ { 

Kn = { 

if K? ~ 1/(n - 1), 
otherwise. 

i-I 
n-(i-I) 
KO 
• i 

n-i 

'f ° i-I 
1 Ki < n-(i-I)' 

if~ <KO < _i_. 
n-(.-I) -. n-. ' 

if KO > _i_. 
I - n-l' 

if K~ 2: n - 1, 
otherwise . 

(3.5.99) 

(3.5.100) 

(3.5.101) 

(3.5.102) 

(3.5.103) 

• For i = 1,2, ... , n, substitute the two values ei = Xi:n and Ki given by (3.5.101)-(3.5.103) 
into (3.5.93) and choose the pair that results in the maximum value. 

The method for estimating e and K is more complex compared with other cases considered so 
far and may be time consuming for large problems. The consistency as well as asymptotic normality 
and efficiency of the estimators may be obtained similarly as in the case of estimating all three 
parameters. 
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3.5.1.7 Case 7: The values of all three parameters are unknown. Let us start by noting that the 
maximum likelihood estimators and their asymptotic distributions for this case were derived in 
Hartley and Revankar (1974) and Hinkley and Revankar (1977), although these authors worked in 
the context of the log-Laplace model and under another parametrization. 

We need to maximize the log-likelihood function (3.5.5) with respect to all three parameters, 
which is equivalent to maximizing the function 

K -J2{ I} Q(e, K, a) = -loga + log --2 - - Ka(e) + -{J(e) , 
1 +K a K 

(3.5.104) 

where this time 

(3.5.105) 

We proceed by first fixing the value of e and then applying the results obtained under Case 5 (when 
the value of e is known). 

When e ::: Xl:n, then by the relation (3.5.72) (see Case 5) we conclude that for any K, a > 0 

Q(e, K, a) ::: -log(1 + K2) -log.J2 -log(in - e) - 1. (3.5.106) 

Similarly, when e :::: X n:n , then by (3.5.79), we have 

K2 
Q(e, K, a) ::: log 1 + K2 -log.J2 -log(e - in) - 1. (3.5.107) 

If Xl:n < e < Xn:n, then both quantities aCe) and {J(e) given in (3.5.105) are positive. Thus, using 
the results of Case 5, we have 

Q(e, K, a) ::: Q(e, K, a), (3.5.108) 

where the quantities K and a are the MLE's of K and a (derived under the case when the value of e is 
known) given by (3.5.83) and (3.5.84). Substituting these values into the right-hand side of(3.5.108), 
we obtain after some algebra 

Q(e, K, a) ::: gee), (3.5.109) 

where 

gee) = -log.J2 - 210g(Ja(e) +.j {J(e)) - .ja(e)J {J(e). (3.5.110) 

Note that for e E (Xl:n, X2:n) we have 

1 n 1 
aCe) = - ~)Xj:n - e) and {J(e) = -(e - Xl:n), 

n n 
j=2 

(3.5.111) 

so 

lim aCe) = in - Xl:n and 
IJ->xt. 

lim {J(e) = o. 
IJ->xt. 

(3.5.112) 
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Thus 

lim g(9) = -log v'2 - log (in - Xl:n)' 
8--+xtn 

(3.5.113) 

The limit in (3.5.113) is larger than the value Q(9, K, a) at any 9 ::5 Xl:n, 0 < K,O < a. Indeed, in 
view of (3.5.106), for 9 ::5 Xl:n we have 

Q(9,K,a)::5 -logv'2 -log(in -Xl:n) -1, (3.5.114) 

since here the function Q attains its least upper bound for K = a = 0 and () = Xl:n. In view of the 
above, we can restrict attention to the values 9 > Xl:n when maximizing the function Q(9, K, a) 
over 9 E ~, 0 < K, 0 < a. 

Similar arguments show that 

lim g(9) = -log v'2 -log(xn:n - in), 
8--+x;'n 

(3.5.115) 

which is 1 larger than the supremum of the function Q (9, K, a) over the values 9 ::: Xn:n ' 0 < K, 0 < a 
(the supremum is obtained by taking K -+ 00 and 9 = Xn:n in the right-hand side of (3.5.107». 
Consequently, we can rule out the values 9 ::: Xn:n from further consideration. 

This leaves us with the problem of maximizing the function Q(9, K, a) given by (3.5.104) 
under the conditions 

Xl:n < 9 < Xn:n' 0 < K < 00, 0 < a < 00, (3.5.116) 

or equivalently, maximizing the function g(9) in (3.5.110) on the set 

A = {9 : Xl:n < 9 < xn:n }. (3.5.117) 

Clearly, this is equivalent to the minimization of the function 

h(9) = 2 log (.ja (9) + .j~(9» + .ja(9).j~(9) (3.5.118) 

with respect to the same values of 9. It turns out that the infimum of the function h on the set A is 
given by one of the values 

h(Xj:n), j = 1,2, ... , n. (3.5.119) 

This follows from the following lemma (see Exercise 3.6.25). 

Lemma 3.5.2 Thefunction h defined in (3.5.118) is continuous on the closed interval [Xl:n, xn:n] 
and concave down on each of the subintervals (x j:n, X j+l:n), j = 1,2, ... ,n - 1. 

Consequently, to find the MLE's of 9, K, and a we should proceed as follows. 

Step 1: Evaluate the n values (3.5.119) and choose a positive integer r ::5 n such that 

h(xr:n) ::5 h(xj:n) j = 1,2, ... , n. (3.5.120) 

Step 2: Set 9 = Xr:n and find the MLE's of K and a (derived previously under Case 5). 
There are three scenarios in Step 2: 

• If r = 1 (9 = Xl:n), then as in Case 5 the MLE's do not exist (as the likelihood is maximized 
by K = a = 0), but the likelihood approach leads to (positive) exponential distribution with 
density (3.5.75) with J-L = in - Xl:n· 
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• If r = n (e = xn:n ), then again formally the MLE's do not exist, but the likelihood approach 
does lead to the (negative) exponential distribution with density (3.5.81) with 11- = Xn:n - in. 

• If 1 < r < n, then the MLE's are 

Kn = j P(8n)/ja(8n), (3.5.121) 

an = hj a(8n)j peen) ( j a(en) + j P(en») , 

where 

(3.5.122) 

Thus the problem of estimating all three parameters of the A£* (e, K, a) distribution admits a 
solution that can be determined with ease. The resulting MLE's are consistent, asymptotically normal, 
and asymptotically efficient with the asymptotic covariance matrix equal to the inverse of the Fisher 
information matrix (3.5.1). We refer the reader to Hartley and Revankar (1974) and Hinkley and 
Revankar (1977) for technical details regarding the asymptotic results on the MLE's. 

3.6 Exercises 
The readers may find the 26 exercises below somewhat challenging. Again we recommend that 
special attention will be paid to these exercises. A number of them deal with the most recent results 
on asymmetric Laplace distributions. 

Exercise 3.6.1 Let X have an asymmetric Laplace distribution with p.d.f. (3.0.1). Derive the mean, 
median, mode, and variance of X. 

Exercise 3.6.2 Let X have the skewed Laplace distribution with p.d.f. (3.0.3). 
(a) Find the mean and the variance of X. 
(b) Show that the mode of X and the a-quantile of X are both equal to e. 
(c) Show that the characteristic function of X is 

({J(t) = a(1 _ a)e iO( ( 1 . + _. _1_) . 
l-a+1f If-a 

What is the moment generating function of X? 

Exercise 3.6.3 Consider a hyperbolic distribution with density 

-00 < x < 00, 

where 

a > 0, 0::::: IPI < a, -00 < e < 00, 8 > 0 

and K 1 (.) is the modified Bessel function of the third kind with index 1 (see the appendix). 

(3.6.1) 
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(a) Show that as 

(, ---+ 00, 
(, 

-r::::;;::::::==:<= -+ a 2 > 0, f3 -+ 0, 
Jct2 - f32 

density (3.6.1) converges (pointwise) to the density of the normal distribution with mean e and 
variance a 2 . 

(b) Show that as (, ---+ 0, density (3.6.1) converges (pointwise) to an asymmetric Laplace density 

{ 
e-(a-,B)lx-OI 

g(x) = C e-(a+,B)lx-OI 

What is the normalizing constant C in (3.6.2)? 

for x ~ e, 
for x < e. 

(c) Show that the density (3.6.2) corresponds to the A£*(e, K, a) distribution, where 

~ 18-f3 
a = 2 2' and K = --. 

ct -f3 ct+f3 

(3.6.2) 

Thus the latter distribution arises as a limit of hyperbolic distributions [Barndorff-Nielsen (1977)]. 

Exercise 3.6.4 For a < 0 < band n E N consider a r.v. Xn with p.d.f. 

for a ::: x ::: 0 

for 0 ::: x ::: b. 

(a) Show that the function fn is a genuine probability density function. 

(3.6.3) 

(b) Let a = -nA and b = nB, where A, B > O. Show that as n ---+ 00, then for every x E JR. 
the density fn (x) converges to 

1 {e-IXI/A 
f(x) = A + B e-lxllB 

for x ::: 0 
for x ~ o. 

(c) Show that the function (3.6.4) is the p.d.f. of the AC*(a, K) distribution with 

a = .JAB and K = J AI B 

(cf. Exercise 2.7.56). 

(3.6.4) 

Exercise 3.6.5 Establish the relations (3.1.4) and (3.1.5). Further, show that for every a > 0 the 
functions of f.L and K, given by (3.l.4) and (3.1.5). respectively, are strictly decreasing on their 
domains, and prove the relations given in (3.1.6). 

Exercise 3.6.6 Let fO,K,a (x) be the density (3.1.10) of an AL distribution. 
(a) Show that for any x E JR we have 

fO,K,a(-X) = f-O,I/K,a(X). 

What is the interpretation of (3.6.5) in terms of random variables? 
(b) Show that for 0 < K < 1 and x > 0 we have 

fO,K,a(e + x) > fO,K,a(e - x). 

What happens for K > I? For K = I? 

(3.6.5) 

(3.6.6) 

(c) Clearly, when x ---+ 00, then densities on both sides of (3.6.6) converge to zero. Investigate 
whether they converge with the same rate, or one of them converges to zero faster than the other one. 

(d) Repeat parts (a)-(c) using the AL(e, f.L, a) parametrization. 
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Exercise 3.6.7 In this problem we investigate the derivatives of an AL density. 
(a) Show that the AL densities (3.1.10) have derivatives of any order (except at x = e), which 

are expressed by the following formulas: 

if x > e, 
(3.6.7) 

if x < e. 

(b) Find the limits 

(3.6.8) 

check for what values of n or the parameters, if any, the two limits in (3.6.8) are equal, and give an 
interpretation of the equality. 

(c) Show that if 0 < K ~ 1 and x ~ an/viz, where n is a positive integer, then 

(3.6.9) 

What happens if K > I? If x ~ an/viz? 

Exercise 3.6.8 Show that the AL density f given by (3.1.10) is completely monotone on (e, 00) and 
absolutely monotone on (-00, e) (that is, for any k = 0, 1,2, ... , we have (_I)k f(k) (x) ~ 0 for 
x > e and f(k) (x) ~ 0 for x < e). 

Exercise 3.6.9 Establish formulas (3.1.16) and (3.1.19) for the m.g.f. of an AL distribution. 

Exercise 3.6.10 Let Y ~ A£*(B, K, a). 
(a) Show that the ath absolute moment of Y - e is finite for any a > -1, and is given by 

(3.1.26). 
(b) Show that the mean absolute deviation of Y is given by (3.1.27). 

Exercise 3.6.11 Calculate the nth moment about zero of the A£(e, K, a) distribution. 

Exercise 3.6.12 Let Y ~ A£*(B, K, a). 
(a) Show that the coefficients of skewness and kurtosis of Y, defined by (2.1.21) and (2.1.22), 

are given by (3.1.30) and (3.1.31), respectively. 
(b) Show that the coefficient of skewness is bounded by 2 in absolute value and decreases 

monotonically from 2 to -2 as K increases from zero to infinity. 
(c) Show that the coefficient of kurtosis varies from three to six. 

Exercise 3.6.13 The K-criterion is a preliminary selection test useful in reducing the number of 
plausible models for a given set of data [see, e.g., Elderton (1938), Hirschberg et al. (1989)]. The 
K-criterion is defined as 

fh (fh + 3)2 
K= , 

4(4.82 - 3.8j)(2.82 - 3.81 - 6) 
(3.6.10) 

where.81 is the square of the coefficient of skewness YI and.82 is the (un-adjusted) kurtosis Y2 + 3 [cf. 
(2.1.21)-(2.1.22), Chapter 2] of the underlying probability distribution. It is clear that the K-criterion 
is zero for the symmetric Laplace distribution (as it is for any symmetric distribution with a finite 
fourth moment since in this case.81 = 0). Derive the K-criterion for the A£(/L, a) distribution (not 
to be confused with the parameter K of the distribution). What is the range of the K-criterion in 
this case? 
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Exercise 3.6.14 Let Y ~ A.c*(e, K, a). Establish the mode-median-mean inequalities (3.1.35). 

Exercise 3.6.15 A common measure of skewness of a probability distribution with distribution func­
tion F is given by the limit 

. I-F(x)-F(-x) 
hm . 
x~oo 1 - F(x) + F(-x) 

This limit is equal to zero if the distribution is symmetric about zero. Show that for an AL distribution 
with distribution function (3.1.11), the limit is equal to 1 if K < 1 (J1- > 0), is equal to -1 if K > 1 
(J1- < 0) and is equal to 

-Jio _ -Jio 
e" - e (7 

for K = 1. Note that for an A.c(O, J1-, a) distribution, which is a special case of a geometric stable 
distribution GSC/.(a /..ti, (3, J1-) with a = 2 [see (4.4.7)], the above limit is equal to sign(J1-). Since for 
geometric stable distributions this limit is equal to {3 [see, e.g., Kozubowski (1994a)], for consistency, 
we set (3 = sign(J1-) for a GS law with a = 2. 

Exercise 3.6.16 Show that an A.c*(e, K, a) r.v. Y admits the representation (3.2.5). 

Exercise 3.6.17 Let Y ~ A.c*(O, K, a), let y~i), i 2: 1, bei.i.d. variables having the A.c* (0, K p , .jPa) 
distribution, where kp is given by (3.4.12), and let vp be a geometric random variable with P(vp = 
n) = (1 - p)n-I p, n 2: 1, which is independent of the y~i),s. Show that for each p E (0,1), 
representation (3.4.10) is valid. 

Exercise 3.6.18 Show that if in Proposition 3.4.7 the mean and mean deviation about the mean are 
prescribed, that is, if the condition (3.4.39) is replaced by 

EX = CI E ~ and EIX - cII = C2 > 0 for X E C, 

then the maximum entropy is attained by the classical symmetric Laplace distribution with density 
f(x) = ..l..e-lx-cJi/C2 [Kapur (1993)]. 2C2 

Exercise 3.6.19 LetX I:n :::: ... :::: Xn:n be the order statistics connected to a random sample of size 
n from the Laplace A.c*(e, K, a) distribution where K and a are known, while €I is to be estimated 
by the method of maximum likelihood. 

(a) Show that the likelihood function is maximized by any €I that minimizes the function Q 
given by (3.5.7). 

(b) Show that the function Q is continuous on ~ and linear on the intervals 10, h, ... In given 
by (3.5.8) and (3.5.9). 

(c) Show that the function Q is decreasing on 1o, increasing on In, and on Ij (1 :::: j :::: n - 1) 
the behavior of Q is given by (3.5.10). 

(d) Conclude that if condition (3.5.11) holds, then any statistic of the form (3.5.12) is an MLE 
of €I, and if it does not, then the MLE of €I is given by (3.5.13). 

(e) Derive the mean and variance of the MLE. Check whether the estimator is efficient (i.e., its 
variance attains the Cramer-Rao lower bound). 

Exercise 3.6.20 Show that if X ~ A.c*(e, K, a), then Y = g(X), where the function g is given by 
(3.5.24), has an exponential distribution with mean a and variance a 2 . This is a generalization of the 
fact that the r.v. IXI is exponential whenever X is a symmetric Laplace variable (with mean 0). 
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Exercise 3.6.21 Let XI, ... , Xn be a random sample from the A£(e, J-t, a) distribution. Derive the 
method of moments estimators of each of the parameters assuming that the values of the other two 
are known. Investigate consistency and asymptotic normality of the estimators. Compare with the 
corresponding results for the MLE's. 

Exercise 3.6.22 Let XI, ... , Xn be a random sample from the A£(e, J-t, a) distribution. 
(a) Assuming that the value of e is known (and for convenience set to zero), show that the 

method of moments estimators (MME's) of J-t and a are given by 

_ 1 n 

/Ln = Xn = - LXi, 
n i=1 

(3.6.11) 

Further, show that the estimator (/Ln, an)' is strongly consistent and its asymptotic distribution is 
normal with (vector) mean zero and the covariance matrix 

(3.6.12) 

[Kozubowski and Podgorski (2000)]. 
Hint: Consider an auxiliary sequence of bivariate i.i.d. random vectors Vi = (Xi, Xt)'. Show 

that the vector mean and covariance matrix of Vi are 

Then use the fact that the Law of Large Numbers and the Central Limit Theorem are valid for the 
sequence {Vd. 

(b) Derive the MME's for the remaining pairs of the parameters (assuming that the value of the 
remaining parameter is known) and study their consistency and asymptotic normality. 

(c) Investigate the method of moments estimation of all three parameters. 

Exercise 3.6.23 Show that the Fisher information matrix corresponding to the A£*(e, K, a) distri­
bution is given by (3.5.1). 

Exercise 3.6.24 Let X have an A£*(e, K, a) distribution. 
(a) Suppose that a = a (K) = v'2K J-t for some J-t > O. Show that when K ---+ 0, then the 

corresponding AL density (3.1.10) converges to the exponential density (3.5.75). 
(b) Suppose that a = a(K) = v'2K-1 J-t for some J-t > O. Show that when K ---+ 0, then the 

corresponding AL density (3.1.10) converges to the exponential density (3.5.81). 

Exercise 3.6.25 Prove Lemma 3.5.2. 
Hint: To establish the concavity show that hI! (e) < 0 for all e E (XI:n, x n:n), j = 1,2, ... n. 

Exercise 3.6.26 Let X 1:3 < X2:3 < X3:3 be particular realizations of the order statistics corresponding 
to a random sample of size n = 3 from the A£*(e, K, a) distribution. Derive the MLE's of all three 
parameters. Under what conditions on x j:3 's the MLE of e is 83 = X2:3? When does the maximum 
likelihood approach lead to an exponential distribution? 



4 
Related Distributions 

Symmetric Laplace distributions can be extended in various ways. As we discussed in Chapter 3, 
skewness may be introduced, leading to asymmetric Laplace laws. Next, one can consider a more 
general class of distributions whose ch.f.'s are positive powers of Laplace ch.f. 's. These are marginal 
distributions of the Levy process {Yet), t ~ O} with independent increments, for which Y(I) has 
symmetric or asymmetric Laplace distribution. We term such a process the Laplace motion. Finally, 
one obtains a wider class of limiting distributions consisting of geometric stable laws, by allowing 
for infinite variance of the components in the geometric compounds (2.2.1). More generally, if the 
random number of components in the summation (2.2.1) is distributed according to a discrete law 
v on positive integers, a wider class of v-stable laws is obtained as the limiting distributions. This 
chapter is devoted to a discussion of all such related distributions and random variables. 

Barndorff-Nielsen (1977) introduced a general class of hyperbolic distributions [see also Eber­
lein and Keller (1995) for applications in finance]. The Bessel function distributions discussed in 
this chapter could be studied through the theory of this class. However, hyperbolic distributions do 
not constitute a direct generalization of Laplace laws. Thus we decided not to present the following 
material through this alternative approach as it would take us "too far" from the classical Laplace 
distribution. 

4.1 Bessel function distribution 
If Xl, ... , Xn are i.i.d. Laplace r.v.'s with mean zero and variance a 2 , then their sum Sn has the ch.f. 

(4.1.1) 

By infinite divisibility ofthe Laplace distribution, the function (4.1.1) is a legitimate ch.f. even when 
n is not an integer (but is still positive). More generally, taking in (4.1.1) the ch.f. of an asymmetric 
Laplace distribution with the mode at zero (which is still infinitely divisible) we conclude that the 
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function 

-00 < t < 00, (4.1.2) 

is a characteristic function for any f.J, E JR and a, T ::: O. The function (4.1.2) yields an AL ch.f. 
for T = 1 and symmetric Laplace ch.f. for T = 1 and f.J, = 0 (and gamma ch.f. for a = 0). Not 
surprisingly, it is known in the literature as a generalized (asymmetric) Laplace distribution [see, e.g., 
Mathai (1993), Kozubowski and Podg6rski (1999c)]. Since the corresponding density function can 
be written in terms of the Bessel function of the third kind (defined in the appendix), Besselfunction 
distribution is another name for this class [see, e.g., McKay (1932)]. The formula for the density 
appeared in Pearson et a1. (1929) in connection with the distribution of sample covariance for a random 
sample drawn from a bivariate normal population [see also Pearson et a1. (1932) and Bhattacharyya 
(1942)]. This distribution arises as a mixture of normal distributions with stochastic variance having 
gamma distribution, so it is also called variance gamma model [see, e.g., Madan and Seneta (1990)]. 
Such mixtures (with mean zero) were introduced in Teichroew (1957), who commented that in some 
practical problems the variable of interest may be normal with variance varying with time. Rowland 
and Sichel (1960) applied the generalized Laplace model to logarithms of the ratios of duplicate 
check-sampling values (of gold ore) in South African gold mines, reporting an excellent fit. Sichel 
(1973) applied this distribution for modeling the size of diamonds mined in southwest Africa. More 
recently, the variance gamma model became popular among some financial modelers, due to its 
simplicity, flexibility, and an excellent fit to empirical data [see, e.g., Madan and Seneta (1990), 
Madan et a1. (1998), Levin and Tchernitser (1999), Kozubowski and Podg6rski (1999ac)]. 

4.1.1 Definition and parametrizations. We start with a definition, terminology, and some nota­
tion. We define a general four-parameter family of distributions, although in what follows we often 
consider a three-parameter model with the location parameter fixed at zero. 

Definition 4.1.1 A random variable Y is said to have a generalized asymmetric Laplace (GAL) 
distribution if its ch.f is given by 

(4.1.3) 

where e, f.J, E JR and a, T ::: o. We denote such distribution by gA.c(e, f.J" a, T) and write Y "­
gA.c(e, f.J" a, T). 

Remark 4.1.1 The terminology for this family of distributions is not well-established and various 
names can be equally justified. First, in McKay (1932) and Johnson et a1. (1994) we have two types 
of Bessel function distributions: Bessel I-function distribution (not considered here) and Bessel 
K-function distribution (which is an alternative name for generalized Laplace distributions). The 
name Bessel K-function distribution is then historically well justified. On the other hand, in various 
contexts a more compact name is handier: we prefer Laplace motion instead of Bessel K-function 
motion. In this book we use the terms Bessel/unction distribution and variance-gamma distribution 
interchangeably with the name generalized Laplace distribution used in Definition 4.1.1. 

While the distribution is well-defined for every e, f.J, E JR and a, T ::: 0, we have the following 
special cases. If e = f.J, = a = 0, then 1{!(t) = 1 for every t E JR, and the distribution is degenerate 
at O. For e = a = 0 and f.J, > 0, we have a gamma r. v. with the scale parameter f.J, and the shape 
parameter T (which reduces to an exponential variable for T = 1). For T = 1, we obtain an AL 
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distribution, which for fL = 0 and a > 0 yields a symmetric Laplace distribution with mean e and 
variance a 2 . 

The GAL ch.f. (4.1.3) with a > 0 can be factored similarly as an AL ch.f., 

1/f(t)=ei(}t( 1 )'( 1 )', 
1 + i faKt 1 - i ;{!at 

(4.1.4) 

where the additional parameter K > 0 is related to fL and a as before, 

a (1) .J2a J2a 2 + fL2 - fL 
fL =.J2 -;: - K and K = fL + J2a2 + fL2 = .J2a . 

(4.1.5) 

It will be convenient to express certain properties of the GAL distributions in the (e, K, a, r)­
parametrization, using the notation QA.c*(e, K, a, r) for the distribution given by (4.1.4). Analo­
gous to the AL case, the parameter K is scale invariant, while a is a genuine scale parameter [in the 
(e, K, a, r)-parametrization). 

The following result extends an analogous property of AL laws (Proposition 3.1.1). 

Proposition 4.1.1 Let X'" QA.c*(e, K, a, r) and let c be a nonzero real constant. Then 

(i) c + X'" QA.c*(c + e, K, a, r); 

(ii) cX '" QA.c*(ce, Kc, Icla, r), where Kc = Ksign(c). 

Remark 4.1.2 Note that in particular, if X'" QA.c*(e, K, a, r), then -X", QA.c*( -e, 11K, a, r). 

Since e is a location parameter, we shall often assume that e = 0 and denote the corresponding 
distribution as either QA.c(fL, a, r) or QA.c*(K, a, r), depending on the parametrization. For e = 0 
and a = 1 we shall refer to the GAL distribution as standard and write QA.c(fL, r) and QA.c*(K, r), 
respectively, for the distributions QA.c(O, /-t, 1, r) and QA.c* (0, K, 1, r). Table 4.1 below contains a 
summary of the notation and special cases. 

4.1.2 Representations. A Bessel function random variable admits certain representations analo­
gous to those corresponding to AL random variables. First, we shall consider a mixture representation 
in terms of normal distribution with a stochastic mean and variance. Then we shall discuss a rep­
resentation as a convolution of two gamma distributions, analogous to the previously considered 
representations of (symmetric and asymmetric) Laplace r.v.'s in terms of exponential r.v. 's. Finally, 
we shall discuss the relation between the Bessel function distribution and a sample covariance for 
bivariate normal random samples. 

4.1.2.1 Mixture of normal distributions. Let Z be a standard normal random variable. Then for any 
/-t E JR and a > 0, the r.v. 

fL +aZ ( 4.1.6) 

has normal distribution with mean fL and variance a 2 . The ch.f. of the latter r.v. is 

. 1 2 2 
¢JL,a(t) = e l }J.t-'1a t, t E JR. (4.1.7) 

Now suppose that the mean and variance of this normal r.v. are multiplied by an independent and 
positive random variable Wand let us write the resulting new random variable Y as the following 
function of Z and W: 

(4.1.8) 
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Case Distribution Notation Density 

e=o 9A£(0, /L, 0, 1) 
r = 1 Exponential A£(/L,O) Ie-x//L (x> 0) 
a=O (with mean /L) 9A£(/L,0, 1) /L 

/L>O G(I, /L), E(/L) 

e=o Gamma 9A£(0, /L, 0, r) 
a =0 with parameters 9A£(/L, 0, r) 

xT-1e-x /", 
(x> 0) /L T r(r) 

/L>O a=r,{3=/L G(r, /L) 

r = 1 Lee, a), 
a>O Symmetric A£(e, 0, a) _1_e-.J2lx - OI/a (x E JR) 

/L = 0 Laplace gALee, 0, a, 1) 
.J2a 

r = 1 
A£(e, /L, a), ./iK (O-x) x?:e a>O Asymmetric 

.J2K I e u , 

/L:;60 Laplace gALee, /L, a, 1) a(1+K2) ./i (x-O) x < e, e aK , 

e=o 
a =0 Degenerate 
/L=O at 0 
r=O 

Table 4.1: Special cases and notation for the Bessel function distribution in the gALee, /L, a, r) 
parametrization. 

Thus conditionally on W = w, the random variable Y has a normal distribution with mean /LW 
and variance wa2 . To find the marginal distribution of Y, we may find its density by integrating the 
product of the conditional density of Y I W = wand the marginal density f (w) of W. Alternatively, 
we may find the ch.f. of Y by conditioning on W. This is exactly how we have found mixture 
representations of this type for the classical as well as asymmetric Laplace distributions. We shall 
follow this approach to show that Y given by (4.1.8) has the Bessel function distribution when W is 
gamma distributed. Indeed, let W have a gamma distribution G(a = r, (3 = 1) with density 

(4.1.9) 

Conditioning on W, we obtain 

1/fy(t) = EeitY = E[E(eitYIW)] = 1000 Eeit(/Lw+av'WZ)g(w)dw. 

When we put the gamma density (4.1.9) and the normal ch.f. (4.1.7) into this relation, we get 

1/fy(t) = ¢ r:;;(t)g(w)dw = __ w r- 1e-w(I+2 a t -i/Lt)dw. 1000 1 1000 1 22 

o /LW,a"w r(r) 0 
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The latter integral can be related to the standard gamma function to produce 

( )r ( )r 111 
1/Iy(t) = -reT) = , 

reT) 1 + !a2t 2 - ifl.t 1 + !a2t2 - ifl.t 

which we recognize as the 9A£(fl., a, T) characteristic function. We summarize our findings in the 
following result, where we consider a more general four-parameter model. 

Proposition 4.1.2 A 9A£(O, fl., a, T) random variable Y with ch.f (4.1.3) admits the representation 

Y ~ 0 + fl.W + a.JWZ, (4.1.10) 

where Z is standard normal and W is gamma with density (4.1.9). 

Remark 4.1.3 Note that in the case T = 1, where W has the standard exponential distribution, for 
fl. = 0 (and a = ,,;2,0 = 0) we obtain the representation (2.2.3) of the standard classical Laplace 
distribution, while for fl. =1= 0, we get the representation (3.2.1) obtained previously for asymmetric 
Laplace laws. 

This representation produces the following result, showing that as the parameter T converges 
to infinity, the corresponding Bessel random variable converges in distribution to a normal variable. 

Theorem 4.1.1 Let Yr '" 9A£(fl.r, ar, T), where 

1· d l' 2 2 1m fl.rT = fl.O an 1m a r T = ao' 
r~oo r-+oo 

Then Yr converges in distribution to the Gaussian T.v. with mean fl.O and variance aJ. 

Proof Let Wr be a gamma G(a = T, f3 = 1) random variable. It follows from the form of the 
relevant characteristic functions that the random variables fl.r Wr and a;Wr converge in probability 
to fl.O and aJ, respectively. Thus the result follows from the representation given in Proposition 4.1.2 
by invoking the independence of Wand Z. 0 

4.1.2.2 Relation to gamma distribution. We now study the relation between the Bessel function and 
gamma distributions. Let Y have the Bessel function distribution with the ch.f. 1/1 given by (4.1.3). 
Note that in the factorization of 1/1 given by (4.1.4), the third factor corresponds to the r. v. ~ ~ G I, 

while the second factor corresponds to the LV. - ~KG2' where GI, G2 are i.i.d. G(a = T, f3 = 1) 

random variables. Thus we obtain the following result derived by Press (1967). 

Proposition 4.1.3 A 9A£*(O, K, a, T) random variable Y withch.f (4.1.4) admits the representation 

(4.1.11) 

where Gl and Gz are i.i.d. gamma random variables with density (4.1.9). 

As before, for the special case T = 1, the representation (4.1.11) reduces to that of an AL r.v., 
in which case GI and G2 are standard exponential variables (see Proposition 3.2.2). 
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Remark 4.1.4 Writing Gi 
p.d.f. 

-log(Vi), where Vi'S have log-gamma distribution on (0,1) with 

1 
feu) = --(-log u)T-1, u E (0,1), 

r(r) 

[see, e.g., Johnson et a1. (1994)], we obtain the representation 

Y ~ e + ~ log (~~K ) . (4.1.12) 

For K = 1 the Vi'S are standard uniform and we obtain the representation (3.2.3) of AL random 
variables. 

Remark 4.1.5 Similarly, writing Gi = log Pi, we obtain the representation 

(4.1.13) 

Here the i.i.d. variables Pi have density 

1 1 
feu) = r(r) u2 (logu)T-1, u E (1,00). 

For K = 1 the Pi'S have Pareto Type I distribution and (4.1.13) reduces to the representation (3.2.4) 
of AL r.v.'s. 

Remark 4.1.6 Recall that if G has a gamma distribution with density (4.1.9), then the r.v. H = 
2G has a chi-square distribution with v = 2r degrees of freedom, denoted by X;. Consequently, 
Y ~ QA£*(e, K, a, r) has the following representation in terms of two i.i.d. XiT-distributed r.v.'s 
HI and H2: 

d .J2a (1 ) Y=e+-4- -;;HI- KH2. (4.1.14) 

4.1.3 Self-decomposability. As shown in Proposition 3.2.3, every A£*(e, K, a) r.v. Y is self­
decomposable, that is, for every c E (0, 1) it admits the representation 

d 
Y = cY + (1 - cW + V, (4.1.15) 

where the r. v. V can be expressed as 

(4.1.16) 

Here 81,82 are r. v.'s taking values of either zero or one with probabilities 

P(81 = 1,82 = 1) = 0, 

( I-C) P(81 = 1,82 = 0) = (l - c) c + --2 ' 
I+K 

( (I-C)K2) 
P(81 = 0, 82 = 1) = (1 - c) c + 2' 

I+K 
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WI and W2 are standard exponential variables, and Y, WI, W2, and (81, 82) are mutually independent. 
Now consider a QAL*(e, K, a, r) r.v. X, where r = n is a positive integer. Then 

n 

X ~e+ LYj, (4.1.17) 
j=1 

where the Yj'S are i.i.d. AL* (0, K, a) random variables. Consequently, since each Yj admits the 
representation (4.1.15) with e = 0, 

(4.1.18) 

where Vj'S are Li.d. copies of V given by (4.1.16), we obtain 

n n n n n 

X ~e+ LYi ~e+cLYi+ LVi =c(e+ L Yi)+(I- cW+ LVi. (4.1.19) 
i=1 i=1 i=1 i=1 

Thus we conclude that X is self-decomposable as well. The following result summarizes our findings. 

Proposition 4.1.4 Let X '"" QAL*(e, K, a, n), where n ~ 1 is a positive integer. Then X is self­
decomposable and for any c E [0, 1] we have 

n 

X~cx+(1-c)e+ LVi, (4.1.20) 
i=1 

where the Vi S are i.i.d. variables with the representation (4.1.16). 

Remark 4.1.7 The fact that a GAL r.v. with the parameters e = 0, K = 1, a > 0 and r = n E N has 
the same distribution as the sum of n i.i.d. symmetric Laplace variables shows that this distribution is 
stable with respect to a random summation where the number of terms vp,n has the Pascal distribution 

( k - 1) n k-n P(vp,n = k) = p (1 - p) , 
n - 1 

k = n, n + 1, ... , 0 < p < 1. (4.1.21) 

More precisely, if Xi'S are i.i.d. with the QAL*(O, 1, a, n) distribution and vp,n is an independent of 
the Xi'S Pascal r.v., then the relation 

Vp,n 

pl/2 L Xi ~ XI, (4.1.22) 
i=1 

holds for all p E (0, 1). Moreover, under the symmetry and finite variance of the Xi's, the stability 
property (4.1.22) characterizes this class of distributions (recall that with the geometric number of 
terms, which corresponds to n = 1, we obtain the characterization of symmetric Laplace laws). In 
addition, the class of QAL* (0, 1, a, n) distributions consists of all distributional limits as p -+ 0 of 
Pascal compounds 

tJp,n 

ap L(Yi - bp ) (4.1.23) 
i=1 

with bp = 0, where the Yj'S are symmetric and i.i.d. variables with finite variance, independent of 
the Pascal number of terms vp,n' If the restrictions on symmetry or finite variance are relaxed, we 
obtain a larger class of Pascal-stable distributions, introduced in Jankovic (l993b) as the class of 
distributional limits of (4.1.23). 
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4.1.3.1 Relation to sample covariance. Pearson et al. (1929) showed analytically, that if (Xi, Yi), 
i = 1, ... n, are i.i.d. from a bivariate normal distribution with means f.-L x and f.-L y, variances a~ and 
a¥, and correlation coefficient p, then the product-moment coefficient 

1~ - -
Pll = - L)Xi - X)(Yi - Y) 

n i=1 
(4.1.24) 

has the Bessel function distribution. We provide an alternative derivation, utilizing appropriate repre­
sentations ofrandom variables along with convolution representation (4.1.11) ofthe Bessel function 
distribution. Without loss of generality we assume that a random sample comes from the standard 
normal distribution with mean zero, variances equal to one, and correlation (covariance) p. The 
following result shows that the statistic 

Tn = n ~(Xi - X)(Yi - f) = n ~XiYi - (~Xi) (~Xi) (4.1.25) 

has a Bessel function distribution with appropriate parameters (and consequently so does the statistic 
Pll defined above). 

Proposition 4.1.5 Let Xi and Yi, i = 1, ... n, be i.i.d. bivariate normal with zero mean, unit vari­
ances, and covariance p. Thenforany n > 1, the statistic Tn given by (4.1.25) has the Besselfunction 
distribution 9A£*(K, a, T) with 

~ K=J 1l+- PP' a = v'2ny 1 - p2, 
n-l 

T= -2-. 

Before proving Proposition 4.1.5 we establish the following lemma. 

(4.1.26) 

Lemma 4.1.1 Let XI, ... , Xn and YI, ... , Yn be two sets of real numbers, and let x and y be their 
arithmetic means. Thenfor any integer n 2: 1, we have 

n 

n L(Xi -:xi = L (Xi - Xj)2 (4.1.27) 
i=1 I~i<j~n 

n 

n L(Xi - X)(Yi - y) = L (Xi - Xj)(Yi - Yj)· (4.1.28) 
i=1 

Proof Since (4.1.27) follows from (4.1.28), we only prove the latter relation. We have the following 
chain of equalities: 

n n n n 

n L(Xi - X)(Yi - y) = n LXiYi - LXi LYj 
i=1 i=1 i=1 j=1 

n n 

= n LXiYi - LXiYi - 2 L XiYj 
i=1 i=1 I~i<j~n 

n 

= (n - 1) LXiYi - L 2XiYj 
i=1 I~i<j~n 

= L (Xi - Xj)(Yi - Yj)· 
I~i<j~n 

We now tum to the proof of Proposition 4.1.5. 

o 
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Proof In view ofthe representation (4.1.11). our goal is to show that 

Tn ~ nJl- p2 [~Gl -KG2]. 

By Lemma 4.1.1 we have 

where 

so that 

Tn = L ai,j. 
l:::;i<j:::;n 

1 + 2 - 2 ai}·=-{[b .. ] -[b .. ]}, , 4 I,} I,} 

Tn = - [b . . ] - [b .. ]. 1 {L + 2 L -2} 4 I,} I,} 

l:::;i<j:::;n l:::;i<j:::;n 

(4.1.29) 

Next. note that for all 1 .::: i < j .::: nand 1 .::: k < I :s n. the variables btj and bk,l are independent. 
Indeed. they are normally distributed and their covariance is equal to zero: 

Cov(btj' bk,l) = COV{(Yi - Yj) + (Xi - Xj). (Yk - Yl) - (Xk - Xl)} 

= COV(Yi. Yk) - COV(Yi. Yl) - Cov(Yi • Xk) + Cov(Yi • Xl) 

- Cov(Yj. Yk) + Cov(Yj. Yl) + Cov(Yj. Xk) - Cov(Yj. Xl) 

+ COV(Xi. Yk) - COV(Xi, Yl) - COV(Xi, Xk) + COV(Xi, Xl) 

- Cov(Xj, Yk) + Cov(Xj, Yl) + Cov(Xj. Xk) - Cov(Xj, Xl) 

= lhk - Oil - POik + POil - Ojk + Ojl + POjk - POjl 

+ POik - POil - Oik + Oil - POjk + POjl + Ojk - Ojl = 0, 

since oij is equal to one if i = j and zero otherwise. Next, write 

where 

w+= '" [b7"·f and W- = ~ I,} 
'" [b:-.]2 ~ I,} 

are independent random variables. Further, we have 

btj = (Yi ± Xi) - (Yj ± Xj) = zt - zt, 
where 
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Note that the Zi's are i.i.d. normal with mean zero and variance 2(1 + p), since 

Similarly, the Zi's are i.i.d. normal with mean zero and variance 2(1 - p). We now express Tn in 
terms of the zt's as 

and apply Lemma 4.1.1 to conclude that 

n n 

W+ = n ~)zi - Z+]2 and W- = n ~)Zi - Z-]2, 
i=1 i=1 

where Z+ and Z- denote the arithmetic means of Zi's and Zi's, respectively. Since the Zi's are 
i.i.d. normal with mean zero and variance at = 2(1 + p), we conclude that the statistic 

1 W+ L~ [Z:t- - z+f HI = ___ = =/:...=..,:1_:...1 __ _ 

nat 2(1+p) 

has a chi-square distribution with n - 1 degrees of freedom. Similarly, the same distribution has the 
statistic 

H2 = ~ _W_- = c;:::L::..:?_=..:..1 [_Z..:..i_-_Z_-_]_2 , 
n a 2 2(I-p) 

which is independent of WI. Finally, we can write 

1 n 
Tn = 4 {2n(1 + p)HI - 2n(1 - p)H2} = 2' {(l + p)HI - (1 - p)H2}, 

which is equivalent to (4.1.29) by the relation between chi-square and gamma distributions. The 
result has been proved. D 

Remark 4.1.8 For the special case n = 3 we obtain T = 1 so that the statistic T3 has an asymmetric 
Laplace distribution A.c*(K, a) with parameters as in (4.1.26). Equivalently, an A.c*(K, 1) r.v. Y 
admits a representation 

where p and K are related as in (4.1.26) and (Xi, Yi), i = 1,2,3, are i.i.d. bivariate normal variables 
with vector mean zero, unit variances, and correlation p. 

4.1.4 Densities. To derive the p.d.f. of a GAL random variable we can either apply the inversion 
formula to the GAL ch.f. (4.1.2) or exploit the representations (4.1.10) and (4.1.11). Actually, we have 
already done the latter (for the case a = 1) in Lemma 2.3.1, where we were dealing with functions 
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of Laplace random variables. Thus the density of a 9 A.c* (B, K, a, -r) r. v. has the following form for 
x =1= B: 

-J2ef}(I/K-K)(X-O) (-J2lx_ OI)T-i (-J2(I) ) 
hex) = r.;;- +1/2 KT-I/2 - - + K Ix - 01 , 

vrraT r(-r) K + 11K 2a K 
(4.1.30) 

where K). is the modified Bessel function of the third kind with the index A, given in the appendix. 
A standard GAL density is obtained for 0 = 0 and a = 1. This density, derived by a variety of 
methods and under various parametrizations, has appeared in several papers, including Pearson et 
al. (1929), McKay (1932), Madan et al. (1998), Levin and Tchernitser (1999), Kozubowski and 
Podg6rski (1999a). In Figure 4.1, we present a variety of standard GAL densities. Note the behavior 
of the densities at zero, which is the subject of Theorem 4.1.2. 
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Figure 4.1: Densities of the standard generalized Laplace distributions with -r = 1/4, 1/2,3/4, 1, 
5/4,3/2,2,5/2, and 3. Left: K = I-the symmetric case. Right: K = 2-an asymmetric case. 

Let us note several special cases. 

4.1.4.1 Asymmetric Laplace laws. Consider a standard density GAL density with -r = 1. Here the 
Bessel function has index 1/2, so it admits a closed form given by (A.0.11) in the appendix. Thus 
the density (4.1.30) takes the form 

hex) = -J2 (-J2lxl) 1/2 e4(I/K-K)X KI 2 (-J2 (~ + K) IXI) 
r(I).fii K + 11K / 2 K 

-J2 Ixll/2 e4(1!K-K)X .fii e-4(1/K+K)lxl 
.fii (K + l/K)I/2 (K + l/K)I/2Ixll/2 

-J2 e4(I/K-K)x-4(I/K+K)lxl, 
K + 11K 

(4.1.31) 

which we recognize as the density of the standard A.c* (0, K, 1) distribution. Further, in the symmetric 
case K = 1, (4.1.31) reduces to the density ofthe standard Laplace distribution. 

4.1.4.2 Symmetric case. When K = 1 and 0 = 0, the distribution is symmetric (about zero) since 
the corresponding characteristic function is real. In this case, the density is given by the following 
even function of x: 
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,.fi ( Ixl )r-l/2 
h(x) = a r +1/ 2r(r).J]r,.fi Kr-l/2(-v'2lxl/a), x ;6 o. (4.1.32) 

This particular distribution arises as a mixture of normal distributions with mean zero and (stochastic) 
variance a 2 W, where W has the gamma distribution with density (4.1.9) [see e.g., Teichroev (1957), 
Madan and Seneta (1990), McLeish (1982)]. 

In our next result we summarize some properties of the densities of the symmetric generalized 
Laplace distributions. In particular, we show that they are all unimodal for r :::: 1, and study their 
behavior at the mode. 

Theorem 4.1.2 Let h (x; r) be the density ofa symmetric generalized Laplace distribution QA.c* (0, 1, 
1, r). Then h(x; r) has the following asymptotic behavior as x ~ 0+: 

{ 

_1_ r(1/2-r) x2r-1 + 0(x2r-l) 
2<.jTf r(r) 

h(x; r) = - v'2 logx + o(logx) 
...L 't(r-l/2) + (1) 
211" r(r) 0 

Moreover, for x > 0, we have 

for 

for 
for 

r E (0, 1/2), 

r = 1/2, 
r> 1/2. 

a 1 ~ 
ax h(x; r) = - r _ 1 Th(x; r - 1), r > 1, 

and 

2T-1 r(1/2-T) x2T-2 + 0(x2T-2) 
2<.,.fir reT) for r E (0, 1/2), 

- v'2 x-I + o(x- I) for r = 1/2, 
11" I 2T-2 2r-2 for r E (1/2, 1), - sm(1I"(T-I/2»r(2T-f) x + o(x ) 

a -1 + 0(1) for r = 1, 
-h(x; r) = t-I/2 2T-2 (2T-2) for r E (1,3/2), ax - sin(1I"(T-I/2»r(2T) x + 0 x 

;fJ x log(,.fix) + o(x log( ~x» for r = 3/2, .ffr r(r-I/2) ( ) for r E (n - 1/2, n + 1/2), - if (T-3/2)r(T) x + 0 x 
- v'2(n-2)(2n)! x + o(x) for r = n + 1/2, 1I"n! 

where in the last two relations n E N + 1. 

Proof. Let H(x; r) = x T- I/2KT_l/2(X). We have the following relation, which follows from the 
form of the density (4.1.32): 

21- T 

h(x; r) =.J]r H(.Jix; r), x > 0. 
rrr(r) 

The result follows from Properties 6, 9, and 10 of the functions H (x; r) and K). given in the 
appendix. The behavior of the density at zero follows from Property 6 (and also Property 10 for 
r < 1/2). The recurrent relation follows from Property 9. The behavior of the derivative of h(x; r) 
follows from all three properties. 0 

A direct consequence of Theorem 4.1.2 is the following. 

Corollary 4.1.1 The density of a symmetric QA£*(O, 1, a, r) distribution with r > 1 is unimodal 
with the mode at zero. 
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Proof The recurrent relation of Theorem 4.1.2 implies that the derivative of the density is negative 
for positive arguments. Thus the density is a decreasing function that does not have any maximum, 
except possibly at zero. D 

The graphs of the densities in the symmetric case illustrating their behavior at zero, which is 
studied in this theorem, are presented in Figure 4.1 (the left-hand side picture). The influence of the 
parameters on the shape of the densities is perhaps better illustrated by Figure 4.2. 
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Figure 4.2: Comparison of the standardized generalized Laplace densities and normal standard den­
sity. Both pictures contain densities with T = 1/4, 1/2,3/4, 1, 5/4,3/2,2,5/2, and 3. Left: The 
symmetric case, K = 1. Right: An asymmetric case, K = 2. All densities have the mean equal to zero 
and variance equal to one. 

4.1.4.3 An integer value of T. We already know that when T = n is a nonnegative integer, then the 
corresponding GAL r.v. is a sum of n i.i.d. AL random variables with the same parameters a and /L 
(or K). In this case the Bessel function Kn-l/2 admits a closed form (see (A.O.IO) in the appendix), 
and so does the corresponding standard GAL density with the parameter T = n ~ 1: 

1 n-l (n _ 1 + j)! 2(n- j )/2Ixl n- 1- j I e-../2K lxl, 
hex) = . I 

(n - I)! L (n - 1 - j)!j! (K + l/K)n+J e-../2Klx l 
J=o ' 

for x ~ 0, 

for x < 0 
(4.1.33) 

[see, e.g., Press (1967), Levin and Tchernitser (1999), Kozubowski and Podgorski (1999a)]. Note that 
in the symmetric case (K = 1), this density simplifies to (2.3.25) considered previously in connection 
with the distribution of the sum of n i.i.d. Laplace r.v.'s [see also Teichroev (1957), McLeish (1982)]. 
Also observe that (4.1.33) coincides with (4.1.31) if T = 1, which is the AL case. Further, here the 
density (4.1.33) is a mixture of n densities on (-00, 00). For j = 0, ... , n - 1, the jth density has 
the form 

(4.1.34) 

where ga,{J stands for the gamma G(a, (3) density, and 

(4.1.35) 
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with p = 1/(1 + K2) and q = K2/(1 + K2). Under this notation, the QA£*(O, K, 1, n) density is 

n-l 
'" (n + j - I)! (·)/2 . . 

h(x) = ~ 'I( _ 1)1 2 n-J (pnqJ + pJqn)fn,j(x), (4.1.36) 
. 0 J. n . 

J= 

This result, taken from Kozubowski and Podg6rski (1999a), is a generalization of the exponential 
mixture representation discussed previously for the AL random variables. 

4.1.5 Moments. Exploiting representations of the K -Bessel function random variables it is easy 
to find their moments. This is done in the following result. 

Proposition 4.1.6 The moments of a QA£(/L, a, -r) random variable Yare given by the relations 

1 [[n/211 
E(yn) = .j7i L (n )a2k p.,n-2k2kr(I/2 + k)r(-r + n - k). 

:7r r ("r) k=O 2k 

In particular, if /L = 0 (symmetric case), then 

m-l 

E(y2m) = a2m n [(-r + i)(2i + 1)]. 
;=0 

Proof We exploit representation (4.1.8) and the following formulas for the moments of a gamma 
variable W with parameter ex. = -r and a standard normal random variable Z: 

E(WS) = r(-r + s) 
re-r) , 

r(I/2 + k) k-l 
E(Z2k) = 2k = n(2i + 1). 

r(1/2) ;=0 

Since odd moments of the standard normal random variable vanish, we obtain 

E(yn) = t G)a l /Ln-I E(Z/)E(Wn- I/2) 

1=0 
[[n/2ll 

L (;k)a 2k p.,n-2k E(Z2k)E(Wn- k), 

k=O 

and the formula follows from a direct application of the expressions for the moments of Wand Z. 
In the symmetric case all terms except the last one in this sum vanish and the conclusion follows 

from the identity 
k-l 

r(-r + k) = r(-r) n (-r + i), kEN. o 
;=0 

Corollary 4.1.2 The mean ofa QA£(p." a, -r) random variable Y is equal to 

E(Y) = -rp." 

and the variance is 
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4.2 Laplace motion 
In this section we study Laplace motion - a stochastic process that plays the same role in the 
Laplacian domain as the Brownian motion does among Gaussian processes. The Laplace motions 
have several interesting properties that distinguish them from their famous Gaussian counterpart. We 
study here only the most fundamental ones, leaving more extensive investigation for future work on 
processes generated by the Laplace distribution. 

Laplace motions are special cases of Levy processes. The latter are defined through the class 
of infinitely divisible distributions to which Laplace distributions belong. Although Laplace motions 
share some common properties with Brownian motions, including the finite second (or any order) 
moments, independence and stationarity of increments, their observed features are essentially differ­
ent. First, their trajectories (paths) are discontinuous at any point and, in fact, they are purely jump 
functions. In general, they can be asymmetric, including properties of their paths. The space scale 
is not exchangeable with the time scale which, even in the symmetric case, requires two different 
parameters for these scales. 

Laplace motions have several representations that relate them to other processes. First, they 
can be written as Brownian motion evaluated at random time, the latter being the gamma process. 
In other words they are Brownian motions subordinated to the gamma process. Alternatively, the 
Laplace motion can be obtained as a difference of two independent gamma processes. Finally, using 
a general representation of Levy processes, we can write them as compound Poisson processes with 
independent and random jumps having a special form of the distribution (given by so-called Levy 
density). The last characterization gives an insight into the structure of the trajectories and sizes of 
jumps, the latter completely characterizing trajectories of pure jumps processes. 

The finiteness of their moments and their convenient characterizations make Laplace motion 
an interesting object for future investigation and for developing the theory of Laplacian processes 
more or less in the same spirit as the theory of Gaussian processes is developed based on Brownian 
motion. 

4.2.1 Symmetric Laplace motion. As we already know, Laplace distributions are infinitely divis­
ible (see, for example, Subsection 2.4.1 in Chapter 2). Thus it is a direct consequence of the general 
theory of infinitely divisible distributions and processes that we can define the following subclass of 
Levy processes [cf. Ferguson and Klass (1972)]. 

Definition 4.2.1 A stochastic process L(t) is called a symmetric Laplace motion with the space scale 
parameter a and the time scale parameter v (in short, .eM(a, v) process) if 

1. it starts at the origin, i.e., 
L(O) = 0; 

2. it has independent and stationary (homogeneous) increments; 

3. the increments by the time scale unit have a symmetric Laplace distribution with the para­
meter a, i.e., 

L(t + v) - L(t) :f::. £(a). 

The symmetric Laplace motion .eM (1, 1) is called the standard Laplace motion or simply the 
Laplace motion. 

A symmetric Laplace motion Y(t) with drift m is a .eM (a, v) process L(t) shifted by a linear 
function mt, i.e., 

Y(t) = mt + L(t). 
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Remark 4.2.1 This definition, along with the properties of infinitely divisible distributions, imply 
the following characteristic function for the increment L(s + t) - L(s) of £M(a, v): 

1 
(Pt(u) = (1 + a2u2/2)t/v' 

i.e., the increment has the generalized symmetric Laplace distribution (the symmetric K -Bessel 
function distribution) with the parameters a and T = t Iv, which is denoted by QA£(O, 0, a, T). 

Remark 4.2.2 Recall that standard Brownian motion {B(t), t > O} is self-similar with index H = 
1/2, that is, 

{B(at), t > O} g, {a H B(t), t > O} for all a > O. (4.2.1) 

In contrast with Brownian motion, for Laplace motion, the time scale and the space scale are no 
longer exchangeable, and the process is not self-similar. Indeed, for any a > 0 and H > 0, we have 

aH L(t) g, QA£(O, 0, a H a, t Iv) 

and 
d 

L(at) = QA£(O, 0, a, atlv), 

so the self-similarity property (4.2.1) cannot hold for the Laplace motion L(t). 

Remark 4.2.3 As expected, a general Laplace motion with a drift can be defined through the standard 
Laplace motion L by the expression 

mt + a L(tlv). 

Let us start a more detailed discussion of the properties of Laplace motion with the derivation 
of their moments. 

Proposition 4.2.1 Let L(t) be a £M(a, v) Laplace motion with drift m. Then 

E[L(t)] = mt, Var[L(t)] = ta2 Iv. 

Proof The result follows from Remark 4.2.1 and Corollary 4.1.2. D 

It follows immediately that fixing the variance and the mean is not enough to define a Laplace 
motion completely. Therefore, there are infinitely many Laplace motions £M(a, v) each with a 2 Iv 
= 1, having the same covariance structure as standard Brownian motion characterized by unit variance 
at the time equal to one. In Figure 4.3, we present trajectories of the processes with the same covariance 
structure. We see that sample properties differ significantly for these processes. 

4.2.2 Representations. There are several important representations of Laplace motion. Most of 
the results presented here were discussed and partially proved in Madan and Seneta (1990). 

The first representation relates Laplace motion to Brownian motion evaluated at an independent 
random time distributed according to a gamma process. Recall that a stochastic process rt is called a 
gamma process if it starts at zero, has independent and homogeneous increments, and the distribution 
of the increment rt+s - rt is given by the standard gamma distribution with the shape parameter 
s I v. If v = 1, we refer to such a process as the standard gamma process. 

Theorem 4.2.1 Let B(t) be a Brownian motion with the scale parameter a and let r t be a gamma 
process with parameter v independent of Bt. Then the process 

L(t) = B(rt ), t > 0, 

is £M(a, v). 
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Figure 4.3: Trajectories of Laplace motions and Brownian motion (three paths for each process). 
All processes have the same covariance structure characterized by unit variance at time t = l. 
This requirement for the Laplace motion £M(a, v) is satisfied by setting a = .,fV. Top: Standard 
Brownian motion vs. standard Laplace motion (v = 1). Middle: £M(a = .../2, v = 2) and £M(a = 
.../2/2, v = 1/2). Bottom: £M(a = .y'5, v = 5) and £M(a = 1/2, v = 1/4). 

Proof. That the process L(t) starts at the origin is obvious. The distribution of L(t) can be obtained 
from the characteristic function 

¢L(t)(~) = EeiL(t)~ = E(E(eiB(rt)~lfd) 

-r ah2j2 1 = Ee" = -----,::"-;:---;-
(1 + a2~2/2yjv' 

which corresponds to the 9A£(0, 0, a 2 , t /v) distribution. The proof then follows from the general 
property stating that the composition of two independent processes with independent and homogenous 
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increments (in this case Brownian motion and gamma process) is again a process with independent 
and homogenous increments [see Bertoin (1996»). D 

Another simple representation of Laplace motion is given in the following theorem. 

Theorem 4.2.2 Let r t and f" be two independent gamma processes with the same parameter v. 
Then the process defined by 

./2 -
L(t) = Ta(rt - r,), t > 0, 

is CM(a, v). 

Proof The process obviously starts at zero and has independent and homogeneous increments since 
r t and f\ are such processes. Thus the thesis follows from Proposition 4.1.3 applied to GI = r t and 
G2 = f't for K = 1. D 

The last representation we want to discuss here follows from an application of the general result 
of Ferguson and Klass (1972). It is sometimes described as a Poisson approximation of independent 
increments processes. 

Recall first the Levy-Khinchine representation of a symmetric process X (t) with independent 
and homogeneous increments with no Gaussian component (Laplace motions are examples of such 
processes): 

¢x(t)(u) = exp [[:[COS(UZ) - l]dAt(Z)] ' 

where At = t A and A is the Levy measure of X (1). 
Consider the standard Laplace motion L(t), i.e., with v = 1 and a = 1. By the Levy-Khinchine 

representation derived in Proposition 2.4.2, the above representation holds with A defined through 

c ~ 100 1 x A([ -u, u] ) = 2EI CV 2u) = 2 -e- dx . 
.j2u x 

Here EI stands for the exponential integral function [see, e.g., Abramowitz and Stegun (1965»). In 
the following series representation we restrict ourselves to a standard Laplace motion and to time 
interval [0, 1]. 

Theorem 4.2.3 Let L(t) be a standard Laplace motion. Assume that (Oi) is a Rademacher sequence 
(i. i.d. symmetric signs), (Ui) is an i. i.d. sequence of random variables distributed uniformly on [0, 1], 
(ri) are arrival times in a standard Poisson process. We assume that all three sequences, (Oi), (Ui), 
and (ri), are independent. Then thefollowing representation holds for L(t): 

00 

L(t);;' Lo;ljlI[O,t)(U;), 
i=1 

where the series is absolutely convergent with probability one, Ji = JzEJ I (ri), and lI[o,t) (Uj) is 

the indicator function of the interval [0, t) evaluated at Uj. 

Proof The proof is a direct consequence of the theorem of Ferguson and Klass (1972, p. 1640). The 

absolute convergence follows from the fact that fd zdA(z) is finite. Consequently, no centering of 
the terms of the series is needed. By adding random signs to the representation, we obtain symmetry 
of the process. 0 
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Remark 4.2.4 From this representation, one can derive properties of trajectories of Laplace motions. 
First of all, sample paths are pure jump functions (a function is a jump function if its value is equal 
the sum of the jumps, or in other words, if it is increasing only at the jumps). The absolute values of 
the jumps are given by 1i 's, and are ordered. The largest jump is represented by h = JzEJI (rl), 

and its distribution is given by 

Since EI (x) converges to infinity when x approaches zero, the distribution of the first jump is 
continuous on [0, (0) and has density 

ill (x) = e-Elh/-2x)e-./2x Ix. 

Using the probability structure of the arrivals of a Poisson process one can easily derive the conditional 
distribution of the next jump given the previous ones. Namely, the distribution of in given that 
11 = XI, ... , 1n-1 = Xn-I has the c.d.f. 

F(xlxl, ... ,Xn-l) = e-EI h/2xHEdv'2xn_I> , x > Xn-l > ... > Xl. 

4.2.3 Asymmetric Laplace motion. The definition and properties of Laplace motion extend natu­
rally to the asymmetric case. The fact that the asymmetric Laplace distribution AC(JL, a) is infinitely 
divisible justifies the following definition. 

Definition 4.2.2 A stochastic process L (t) is called an asymmetric Laplace motion with the space 
scale parameter a, the time scale parameter v, and centered at JL (and denoted by ACM(JL, a, v)) if 

1. it starts at the origin, i.e., 
L(O) = 0; 

2. it has independent and stationary (homogeneous) increments; 

3. the increments by the time scale unit have an asymmetric Laplace distribution with the param-
eters JL and a, i.e., 

d 
L(t + v) - L(t) = AC(JL, a). 

An asymmetric Laplace motion with drift m is an ACM(JL, a, v) process L(t) shifted by a linear 
function mt, i.e., 

Y(t) = mf + L(t). 

Remark 4.2.5 This definition and the properties of infinitely divisible distributions lead to the fol­
lowing characteristic function of the increment L(s + t) - L(s) of the ACM(JL, a, v) process: 

1 
4>L(t)(U) = (1- ifLu + a 2u 2 j2)t/v' 

i.e., the increment has the generalized asymmetric Laplace distribution (the asymmetric Bessel func­
tion distribution) with the parameters fL, a, and r = t jv, denoted QAC(fL, a, r). 

Proposition 4.2.2 Let L(f) be an ACM(fL, a, v) Laplace motion with a drift m. Then 

E[L(t)] = mf + fLf lv, 

Proof The result follows from Remark 4.2.5 and Corollary 4.1.2. o 
In Figure 4.4, we present trajectories of asymmetric Laplace motions with the same covariance 

structure as the symmetric processes of Figure 4.3. 
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Figure 4.4: Trajectories of asymmetric Laplace motions with centering drifts (three paths for each 
process). All processes are asymmetric, but have the same covariance structure characterized by unit 
variance at time t = 1 and the mean zero, i.e., the same as for the symmetric processes of Figure 4.3. 
This requirement for asymmetric Laplace motion A.cM(JL, a, v) with a drift m is satisfied by setting 
m = -JL/v and a = Jv - JL2, where JL2 < v. Top: Laplace motions with v = 1 and JL = 0.4 (left) 
/-L = 0.8 (right). Bottom: Laplace motions with v = 4 and /-L = 1 (left) /-L = 1.5 (right). 

Below we list representations of the A£M (/-L, a, v) process, which are direct extensions of the 
ones obtained for the symmetric Laplace motions. 

4.2.3.1 Subordinated Brownian motion. Assume that B(t) is a Brownian motion with scale a and 
with drift JL, and that r t is a gamma process with the parameter v independent of B(t). Then the 
following representation for the A£M(/-L, a, v) process L(t) holds: 

L(t) ~ B(r t ), t > O. (4.2.2) 

4.2.3.2 Difference of gamma processes. Let r t and f't be two independent gamma processes with 
parameter v. Let K = ./ia /(/-L + J2a 2 + /-L2). Then we have the following representation of the 
A.cM(JL, a, v) process L(t): 

L(t) 1::. -; a (~rt -Kf't) , t > O. (4.2.3) 

4.2.3.3 Compound Poisson approximation. The series representation of an A.cM (/-L, a, v) process 
is a direct generalization of the symmetric case, and involves a series that is absolutely convergent 
almost surely. Let us recall that the Levy measure A of the asymmetric Laplace distribution A.c(/-L, a) 
is given by 

A(u,oo) = El(J2xu/a), A( -00, -u) = El (..Jiu/(aK», u > O. 
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Let us now define A_(x) = EI (.Jix/(aK» and A+(x) = EI (.JiXK/a) , x > 0. 
Let L(t) be an asymmetric Laplace motion ACM(/L, a, 1). Assume that (0;) is a Rademacher 

sequence of i.i.d. symmetric signs, (U;) is an i.i.d. sequence of random variables distributed uniformly 
on [0, 1], and (1;) is a sequence of the arrival times in a standard Poisson process. We assume that 
all three sequences, (0;), (U;), and (1;), are independent. Then the following representation in 
distribution holds for L(t): 

00 

Lt 1:: Lo;JdI[o,t)(U;), (4.2.4) 
;=1 

where the series is absolutely convergent with probability one and J; = Ai;I(l;). 

4.3 Linnik distribution 
The univariate symmetric Linnik distribution with index a E (0, 2] and scale parameter a > ° is 
given by the characteristic function 

(4.3.1) 

and is named after Ju.v. Linnik, who showed that the function (4.3.1) is a bona fide ch.f. for any a E 

(0, 2] [see Linnik (1953)]. Since for a = 2 we obtain symmetric Laplace distribution, the distribution 
is also known as a-Laplace [see, e.g., Pillai (1985)]. We write La,a to denote the distribution given 
by (4.3.1). 

Linnik laws are special cases of strictly geometric stable distributions, introduced in Klebanov 
et al. (1984). A random variable Y (and its probability distribution) is called strictly geometric stable, 
if for any p E (0, 1) there is an a p > ° such that 

Vp 

ap L Y; 1:: YI, 
;=1 

(4.3.2) 

where vp is a geometric r.v. with mean 1/ p, while the Y; 's are i.i.d. copies of Y, independent of vp. 
Strictly geometric stable laws are a special case of geometric stable laws discussed in Subsection 4.4.4; 
they have ch.f. (4.4.7) with either /L = ° and a i= 1 or f3 = ° and a = 1. Thus strictly geometric 
stable laws form a three-parameter family, and their ch.f. can be written as 

1 
1/Ia,a,r(t) = 1 alia (. . ()/2)' t E JR, + a t exp -lJraTSlgn t 

(4.3.3) 

where a and a are as before, and r is such that ITI :s min (1 , 2ja - 1). Since for T = ° we obtain the 
symmetric Linnik distribution (4.3.1), some authors refer to (4.3.3) as a nonsymmetric Linnik distri­
bution [see, e.g., Erdogan and Ostrovskii (1997)]. As we shall see in this section, Linnik distributions 
share some, but not all the properties of the symmetric Laplace distribution. Like symmetric Laplace 
distributions, Linnik laws are stable with respect to geometric summation and appear as limit laws 
of geometric compounds when the summands are symmetric and have an infinite variance. We shall 
discuss their various characterizations in Section 4.3.1. In Section 4.3.2, while discussing represen­
tations of Linnik laws, we shall show that they are mixtures of stable laws as well as exponential 
mixtures and scale mixtures of normal distributions. These representations lead directly to integral 
representations of the Linnik densities, which are discussed in Section 4.3.3, devoted to Linnik den­
sities and distribution functions. Although a closed-form expression for the Linnik density seems to 
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be unavailable, as it is the case for stable laws, asymptotic results have been investigated by Kotz 
et al. (1995). In Section 4.3.4, we shall study moments and the tail behavior of the Linnik laws. We 
shall show that their tail probabilities are no longer exponential, and the moments are governed by 
the parameter a. Unlike Laplace laws, although analogous to stable distributions, the Linnik laws 
have an infinite variance, while the mean is finite only for 1 < a < 2. In Section 4.3.5, we shall list 
properties of the Linnik laws, which include unimodality, geometric and classical infinite divisibility, 
and self-decomposability. Sections 4.3.6 and 4.3.7 are devoted to the problems of simulation and 
estimation, respectively. For the Linnik laws, the standard methods (which are based on explicit 
forms of the relevant distribution functions and densities) are not practical. We shall show that the 
problem of simulation is easily handled by the mixture representations of Linnik laws and discuss 
some recent advances in the estimation problem. Section 4.3.8 is devoted to the extension of the 
Linnik distribution. 

4.3.1 Characterizations. In this section we present characterizations ofLinnik laws related mostly 
to geometric summation. Many results are consequences of the fact that Linnik laws are special cases 
of strictly geometric stable distributions. 

4.3.1.1 Stability with respect to geometric summation. We saw in Section 2.2.6 that within the class 
of symmetric r.v.'s with a finite variance, the classical Laplace r.v. is characterized by the stability 
property (4.3.2). Anderson (1992) observed that the Linnik distribution is closed under geometric 
compounding as well, so that (4.3.2) holds with La,a distributed Yi'S and ap = pi/a. In the case 
a = 1 this result is due to Arnold (1973) and it serves as a foundation for the development of 
Anderson's (1992) multivariate Linnik distribution. In the subsequent result we show that stability 
property (4.3.2) actually characterizes symmetric Linnik distributions within the class of symmetric 
r.v.'s (not necessarily with finite variance). 

Proposition 4.3.1 Let Y, YI, Y2, ... be symmetric, i.i.d. random variables and let vp be a geomet­
ric random variable with mean 1/ p, independent of the Yi S. Then the following statements are 
equivalent: 

(i) Y is stable with respect to geometric summation, 

Vp 

ap L(Yi + bp ) :!::. Y for all p E (0, 1), 
i=1 

where a = ap > 0 and b = bp E R 

(ii) Y has a symmetric Linnik distribution. 

Moreover, the constants ap and bp are necessarily of the form: ap = pi/a, bp = O. 

(4.3.4) 

Proof First, we show that the Linnik r.v. with ch.f. (4.3.1) satisfies the relation (4.3.4) with ap and 
bp given above. Using the typical conditional argument we write the ch.f. of the variable on the 
left-hand side of (4.3.4) in the form 

p 1 

1 + paalW 1 - (1 - p)(1 + paaltla)-I' 
(4.3.5) 

and note that it simplifies to (4.3.1), which is the ch.f. of the right-hand side of (4.3.4). To prove 
the converse, use the corresponding characterization of strictly geometric stable laws [see, e.g., 
Kozubowski (1994b), Theorem 3.2] and conclude that if an r.v. YI satisfies (4.3.4), it then must be a 
strictly geometric stable r.v. with ch.f. (4.3.3) and the normalizing constants must be as specified in 
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the statement of the proposition. Since YI is assumed to be symmetric, its ch.f. must be real, implying 
that the parameter r in (4.3.3) equals zero, leading to the Linnik ch.f. (4.3.1). This concludes the 
proof. 0 

What happens if relation (4.3.4) holds only for one particular value of p? Then the solution of 
(4.3.4) consists of a larger class than the class of strictly geometric stable laws; see Lin (1994) for 
details. However, under certain additional tail conditions, relation (4.3.4) with one particular value 
of p characterizes symmetric Linnik distributions as well. Specifically, assuming that 1{1 satisfies the 
condition 

lim(1 -1{I(t))/!t!a = y for some y > 0 and 0 < a :s 2, 
1-+0 

(4.3.6) 

we have the following result. 

Proposition 4.3.2 Let Y, YI, Y2, ... be i.i.d. r.v. 's whose chI 1{1 satisfies condition (4.3.6). Let p E 
(0, 1) and let vp be a geometric r.v. with mean 1/ p, independent of the sequence (Yi). Then 

Vp 

ap LYi g, Y (4.3.7) 
i=1 

for some a p > 0 if and only if a p = pi /a and Y has a symmetric Linnik distribution. 

See Lin (1994) for a proof and also for a similar characterization of Mittag-Leffler distributions. 
The result also appeared in Kakosyan et al. (1984) under the additional assumptions that ap = pi/a 
and the distribution of Y is nondegenerate and symmetric. 

The following characterization of the Linnik distribution is also proved in Lin (1994) [as well as 
in Kakosyan et al. (1984) under the additional assumptions that ap = (p/q)l/a and the distribution 
of Y is nondegenerate and symmetric]. 

Proposition 4.3.3 Let YI, Y2, ... be i.i.d. r.v. s whose ch.f 1{1 satisfies condition (4.3.6). Let p, q E 

(0, 1), where p i= q, and let vp and Vq be geometric r.v. 's with means 1/ p and I/q, respectively, 
independent of (Yi). Then 

Vp Vq 

apLyi:f:: LYi (4.3.8) 
i=1 i=1 

with some a p i= 0 if and only if !a p ! a = p / q and Y has a symmetric Linnik distribution. 

We conclude this section by noting that relation (4.3.7) remains valid under the randomization of 
parameter p. More precisely, let Y, YI, Y2, ... be i.i.d. symmetric andnondegenerater.v.'s whosech.f. 
1{1 satisfies condition (4.3.6). Let vp be a geometric LV. with mean 1/ p, independent of the sequence 
(Yj), where p E (0, 1). Further, assume that the parameter p is itself an r.v. with a probability 
distribution on (0, 1). Then relation (4.3.7) holds with ap = pi/a if and only if Y has symmetric 
Linnik distribution. In addition, if (4.3.7) holds with nonnegative r.v.'s and a p = p, then Y must 
have an exponential distribution; see Kakosyan et al. (1984) for proofs and further details. 
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4.3.1.2 Distributional limits of geometric sums. We saw in Section 2.2.7 that the classical Laplace 
distribution arises as the only possible limit of a geometric sum with symmetric i.i.d. components 
with finite variance. If the condition of finite variance is omitted, we then obtain a characterization 
of symmetric Linnik distributions. 

Proposition 4.3.4 The class of symmetric Linnik distributions coincides with the class of distribu­
tionallimits of 

vp 

Sp =CPLXi 
i=1 

(4.3.9) 

as p -+ 0, where cp > 0, the Xi'S are symmetric i.i.d. random variables, and vp is a geometric 
random variable with mean 1/ p, independent of the Xi S. 

Proof First, note that by Proposition 4.3.1, a symmetric Linnik r.v. X is equal in distribution to the 
r.v. Sp given by (4.3.9), where ap = pl/a and Xi'S are i.i.d. copies of X. So it is a distributional 
limit of Sp as well. Thus it remains to show that if geometric compounds (4.3.9) with i.i.d. and 
symmetric Xi'S converge in distribution to an r.v. Y, then the latter must have a symmetric Linnik 
distribution. Our proof consists of showing that the r. v. Y is symmetric and stable with respect to 
geometric summation (i.e., (4.3.2) holds), and thus it must have a symmetric Linnik distribution by 
Proposition 4.3.1. First, note that as the r.v.'s Xi are symmetric, their ch.f. is real, so the ch.f. of 
Sp must be real, implying that the ch.f. of the limiting r.v. Y is real as well. Consequently, Y has a 
symmetric distribution. If Y is degenerate at zero, it is (a degenerate) Linnik (with a = 0) and the 
result is valid. Assume now that the distribution of Y is not concentrated at zero. It then follows that 
Y cannot have a degenerate distribution (concentrated at some constant not equal to zero), since its 
ch.f. would not be real. 

Next, fix an arbitrary pi E (0, 1) and for any p E (0, pi) define pI! = P / p'. Then the geometric 
r.v. vp admits the representation 

(4.3.10) 

where v~,~ 's are i.i.d. geometric r. v.'s with mean 1/ pI! while vp ' is a geometric r. v. with mean 1/ pi, 

independent of the v~:, 's (Exercise 4.5.15). This allows us to express Spin the following manner: 

(4.3.11) 

C) V " where the W pI" 's are i.i.d. r. v.'s equal in distribution to S p" = C p" Li:1 Xi. Now as p -+ 0, we note 
that pI! = P / pi also converges to zero (pi being fixed !), so by assumption we have 

i = 1,2, ... , (4.3.12) 

where the Yi 's are independent copies of Y. Thus we have the convergence 

Up' Up' 

LW~~1 ~ LYi (4.3.13) 
i=1 i=1 
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(see Exercise 4.5.16). Since by the assumption Sp ~ Y, where Y is nondegenerate, in view of 
(4.3.11) and (4.3.13) we conclude that the sequence cp/cp" must converge to a limit (which may 
depend on p') denoted by a p', and we must have 

V p ' 

ap' LYi 1: Y. (4.3.14) 
i=1 

Consequently, by Proposition 4.3.1, Y must have symmetric Linnik distribution, as p' is an arbitrary 
real number in (0, 1). The result has been proved. 0 

4.3.1.3 Stability with respect to deterministic summation. We saw in Section 2.2.8 that within the 
class of symmetric distributions with finite variance, the classical Laplace distribution can be charac­
terized by means of the stability property under deterministic summation and random normalization. 
Omitting the condition of finite variance leads to a characterization of symmetric Linnik laws. 

Proposition 4.3.5 Let the variables Bn, where n > 0, have a Beta(l, n) distribution given by 
(2.2.45). Let 0 < a :':S 2, and let {Yi} be a sequence of symmetric i.i.d. random variables. Then 
the following statements are equivalent: 

(i) For all n 2: 2, YI 1: B~~al (YI + ... + Yn). 

(ii) YI has a symmetric Linnik distribution. 

Proof The proof is very similar to that of Proposition 2.2.11 for the symmetric Laplace case. Write 
the right-hand side ofthe representation in (i) in the form Un Vn , where 

I/a 2:7=1 Yi 
Un = (nBn-d and Vn = n l / a ' (4.3.15) 

and let n --+ 00. Then Un converges in distribution to a random variable Wi/a, where the variable 
W has a standard exponential distribution. Further, since the product Un Vn as well as the sequence 
Un are convergent, while Vn has a symmetric distribution, we conclude that the sequence Vn must be 
convergent as well. Moreover, if X is the limit of Vn , then it must have a symmetric stable distribution 
with ch.f. (4.3.20). Since by the assumption Un is independent of Vn, the limit of the product Un Vn 
is the product of the limits, so 

(4.3.16) 

But this is representation (4.3.19) of Linnik random variables discussed in the next section. The 
implication (i) => (ii) follows, since Yj must have the same distribution as the limit in (4.3.16). 

We now turn to the proof of the implication (ii) => (i). Multiply both sides of (4.3.21) from 
Proposition 4.3.8 by B~~~ (which is independent of all other r.v.'s) to obtain 

(4.3.17) 

(with X as above). By Lemma 2.2.2, the product GnBn-1 has the same distribution as a standard 
exponential r. v. W, so the right-hand side of (4.3.17) has a Linnik distribution by the representation 
(4.3.19). The proof is thus complete. 0 

We conclude our discussion on stability with another characterization of symmetric Linnik 
laws, derived in Pillai (1985) for a larger class of semi-a-Laplace distributions, a class that includes 
all strictly geometric stable laws. 
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Proposition 4.3.6 Let Y, YI, Y2, and Y3 be i.i.d. symmetric Linnik variables La,a. Let p E (0, 1), 
and let I be an indicator random variable, independent of Y, YI, Y2, Y3, with P(l = 1) = p and 
P(l = 0) = 1 - p. Then the following equality in distribution is validfor any p E (0, 1): 

(4.3.18) 

Proof The result follows by writing the ch.f. of the right-hand side in (4.3.18) conditioning on the 
distribution of the r. v. I. D 

4.3.2 Representations. Representations of Linnik random variables were studied by Devroye 
(1990), Anderson (1992), Anderson and Arnold (1993), Kotz and Ostrovskii (1996), and Kozubowski 
(1998). Devroye (1990) derived the following fundamental representation of a Linnik r.v. in terms 
of independent exponential and symmetric stable random variables, which is analogous to the repre­
sentation (2.2.3) of the Laplace distribution. 

Proposition 4.3.7 A Linnik T.v. Y with the ch.f (4.3.1) admits the representation 

Y:!:. wI/ax, (4.3.19) 

where X is symmetric stable variable with ch.f 

(4.3.20) 

and W is a standard exponential T.v., independent of X. 

This representation is a special case with n = 1 of the next result, which describes the distribu­
tion of the sum of n i.i.d. Linnik random variables. It generalizes similar representation for the case 
of symmetric Laplace random variables; see Proposition 2.2.10. 

Proposition 4.3.8 Let YI, Y2, ... be i.i.d. Linnik T.v. s with ch.f (4.3.1). Then 

d l/a 
YI+···+Yn=Gn X, 

where X is symmetric stable with ch.f (4.3.20) and Gn has gamma G(n, 1) distribution. 

(4.3.21) 

Proof The result follows by computing the ch.f.'s on both sides of (4.3.21). By conditioning on Gn, 
we calculate the ch.f. of G~/a X as follows: 

where r/> is the symmetric stable ch.f. (4.3.20). Since 

r/>(tzl/a)e-z = e-z(a"lt l"+l), 

a straightforward integration results in the Linnik ch.f. (4.3.1). D 

Representation (4.3.19) allows for obtaining properties of Linnik distributions from those of 
stable laws. However, its value for certain applications may be limited. For instance, this represen­
tation is not very convenient for simulating Linnik random variates, since stable distributions do not 
admit densities or distribution functions in closed form and require mixture representations them­
selves for simulation. Kotz and Ostrovskii (1996) and Kozubowski (1998) have studied alternative 
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mixture representations of the Linnik distribution which allow efficient generation of the correspond­
ing random variates. Kotz and Ostrovskii (1996) observe that for any 0 < a < a' :s 2, the ch.f.'s of 
the Linnik distributions La, I and LOll, I satisfy the equation 

1jJa,1 (t) = 1000 
1jJa' ,1 (t/s)g(s; a, a')ds, (4.3.22) 

where 

a' na sa-I 
g(s; a, a') = - sin - --,,---,.-----,=-:::-

n a' 1 + s2a + 2sa cos :~ 
(4.3.23) 

is the density of a nonnegative r.v. Va,a" Kozubowski (1998) notes the representation 

1jJa,1 (t) = 1000 
1jJa' ,1 (ts)g(s; a, a')ds, (4.3.24) 

using this notation. Representations (4.3.22)-(4.3.24) lead to the conclusion that the corresponding 
Linnik r.v.'s Ya,1 and Ya',1 obey the representations 

Kozubowski (1998) modifies representations (4.3.25) by introducing an r.v. Wp 
p = a/a' < 1, with a folded Cauchy density gp on (0, (0) given by 

sin(n p) 
gp(x) = np[x2 + 2x cos(np) + 1]' 

(4.3.25) 

Vol I, where a,a 

(4.3.26) 

Note that the definition of Wp can be extended to the cases p = 0 and p = 1 as well by taking weak 
limits as p -+ 0+ and p -+ 1-, thus arriving at the density go(x) = (l + x)-2 for Wo and WI = 1 
(see Exercise 4.5.19). The following result is a restatement of (4.3.25) in terms of the r.v. Wp [see 
Kozubowski (1998)]. 

Proposition 4.3.9 Let 0 < a < a' :s 2 and p = a/a' < 1. Let Wp be a nonnegative r.v. with density 
(4.3.26), and let Ya',a be a Linnik Lal,a r.v., independent of Wp. Then an r.v. Ya,a with the Linnik 
La,a distribution admits the representations 

Y ~ Y WI/a ~ y /W I/a 
a,a - a',a' p - a',a p' (4.3.27) 

The fact that the representations involve both division and multiplication follows from the 
reciprocal property of the r.v. Wp (see Exercises 4.5.20 and 4.5.21). 

Taking a' = 2, we arrive at the classical Laplace r.v. and the representation provides a direct 
method of simulating Linnik random variates discussed in section 4.3.6. Thus a Linnik La,a r.v. can 
be thought of as a Laplace variable with a stochastic variance and also as a normal variable with 
a stochastic variance (since a Laplace distribution is a scale mixture of normal distributions). In 
addition, the Laplace r. v. corresponding to a' = 2 has the representation a [W in accordance with 
Proposition 2.2.3. Consequently, we obtain the following exponential mixture representation of the 
Linnik r.v. La,a' 

Proposition 4.3.10 Let Ya,a be a Linnik La,a r.v. with any 0 < a :s 2, and let Wp be a nonnegative 
r.v. with density (4.3.26) for p = a/2 :s l. Then 

Ya a 1=. a· [. W· Wl/a 1=. a·[· W/W I/a 
, p p , (4.3.28) 

where [ is an indicator r.v. taking values ±1 with probabilities 1/2, W is standard exponential 
variable, and all the variables are independent. 
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Taking a = 2, this representation reduces to representation (2.2.10) of the Laplace distribution, 
as WI = 1. 

Remark 4.3.1 Choosing a = 1 and a' = 2 and noting that in this case the r.v. Wlj2 has a folded 
standard Cauchy distribution, we arrive at the representation 

Yl,l ~ exponential· Cauchy ~ I Cauchy I . Laplace, (4.3.29) 

which is essentially a restatement of the well-known result that the density of Cauchy variable is of 
the same form as the characteristic function of the Laplace while the characteristic function of the 
Cauchy variable is of the same functional form as the density of the Laplace. 

Remark 4.3.2 Nonsymmetric Linnik distributions with ch.f. (4.3.3) and more general geometric 
stable r. v. 's admit similar mixture representations [see Erdogan and Ostrovskii (1998a), Kozubowski 
(2000a), and Belinskiy and Kozubowski (2000) for further details]. 

4.3.3 Densities and distribution functions. Here we study Linnik distribution functions and den­
sities. There are no closed-form expressions for Linnik distribution functions and densities, except 
for a = 2, which corresponds to the Laplace distribution. However, the mixture representations of 
Section 4.3.2 lead to integral as well as asymptotic and convergent series representations of Linnik 
densities and distribution functions, which we present here. 

4.3.3.1 Integral representations. Representation (4.3.19) leads to the representations of Linnik 
densities and distribution functions through their stable counterparts. Let Pa,a and Fa,a denote the 
density and distribution function of the Linnik La,a distribution given by ch.f. (4.3.1). Similarly, let 
ga,a and G a,a denote the density and distribution function of the corresponding stable law specified 
in Proposition 4.3.7. 

Proposition 4.3.11 Every Linnik distribution with 0 < a :s 2 is absolutely continuous and 

Fa,a(x) = 1000 
Ga,a C~a ) e-zdz, 

Pa,a(x) = 1000 
z-ljaga,a (z~a) e-zdz. 

(4.3.30) 

(4.3.31) 

These representations, which are dealt with in Exercise 4.5 .22, appeared in Kozubowski (1994a) 
and Lin (1994). Note that in case a = 2, equations (4.3.30) and (4.3.31) produce the distribution 
function and density of a symmetric Laplace distribution. 

Now we express the exponential mixture representation (4.3.28) in terms ofthe corresponding 
densities and distribution functions (see Exercise 4.5.23). 

Proposition 4.3.12 The distribution function and density of the Linnik La, I distribution with 0 < 
a < 2 admit the following representations for x > 0: 

and 

Fa leX) = 1 ___ 2_ 
sin 1ra 100 va- l exp( -vx)dv 

, 7T 0 1 + v2a + 2va cos 1f2a 

sin 1fa 100 va exp(-vlxl)dv 
Pa,l (x) = __ 2_ 

7T 0 1 + V 2a + 2va cos 1f2a . 

For x < 0, use Fa, I (x) = 1 - Fa,l (-x) and Pa,l (x) = Pa,l (-x). 

(4.3.32) 

(4.3.33) 
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This representation appears in Erdogan (1995) and, for the case 1 < a < 2, in Klebanov et 
al. (1996). Note that the density (4.3.33) can be written equivalently in the form 

sin IT2a 100 va exp(-vlxl)dv 
Pa,l(X) = -- ., 

1r 0 11 + va exp(l1ra/2)12 
x =1= 0, (4.3.34) 

in which it was originally first derived (by the inversion formula and the Cauchy theorem for complex 
variables) in Linnik (1953). Indeed, sinceforrealx wehaveexp(ix) = cos x+i sin x, the denominator 
under the integral in (4.3.34) is equal to 

I 1ra 1ra12 ( 1ra)2 ( 1ra)2 1 + va cos 2 + i va sin 2 = 1 + va cos 2 + va sin 2 

and coincides with that in (4.3.33). 

Remark 4.3.3 Hayfavi (1998) derived another representation of the Linnik density Pa,l by a contour 
integral: for any 8 E (0,1) and a E [8,2 - 8], we have 

1 i 1 ezlogxdz 
Pa,l(X) = -- . , 

x 4a L(8) r(z) sm :z cos ~z 
x> 0, 

where L(8) is the boundary of the region 

{z : Izl > 8/2, larg zl < 1r /4}. 

Note that 

lim Pa,l (x) = __ 2_ ---------;:-
sin ITa 100 vadv 

X-40+ 1r 0 11+va exp(i1ra/2)1 2 ' 
(4.3.35) 

The integral is divergent for 0 < a :s 1 and it is convergent for 1 < a < 2. In the latter case 

(4.3.36) 

Thus the limit of Pa, 1 (x) as x -+ 0+ is finite for 1 < a < 2 and infinite for 0 < a :s 1, in which 
case the densities have an infinite peak at x = O. On the interval (0,00), the function Pa,l (x) is 
decreasing and its kth derivative satisfies the relations 

lim (-llp(k)I(X) =00, k= 1,2, ... 
X-40+ a, 

and 

The latter property implies complete monotonicity of the Linnik density on (0, 00) [see, e.g., Kotz 
et al. (1995)]. Since the characteristic function is real for all t E R the density Pa,1 (x) is an even 
function of x. Finally, since the integral on the right-hand side of (4.3.34) is a continuous function 
of a for any fixed x, the density Pa,1 (x) is a continuous function of a E (0,2). Figure 4.5 presents 
graphs of several selected Linnik densities. 
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Figure 4.5: Densities of Linnik distributions with a = 1 and a's equal to 0.5, 0.75, 1.00, 1.25, 1.50, 
1.75,2.00. 

4.3.3.2 Series expansions. We briefly discuss asymptotic and convergent series representations of 
Linnik distribution functions and densities. We start with the asymptotic expansions at infinity, due 
to Kozubowski (1994a), Erdogan (1995), and Kotz et al. (1995). Let Pa = Pa,l be the density and 
let Fa = Fa,l be the distribution function corresponding to the Linnik characteristic function (4.3.1) 
with a = 1. Consider the densities first. The following asymptotic relation is valid as x -+ 00: 

(4.3.37) 

This asymptotic relation can be written alternatively as follows. 

Proposition 4.3.13 The density Pa ofa Linnik La,l distribution has thefollowing representationfor 
x> 0: 

where 

"In> 0 

Ck = (_I)k+l r(ka + 1) sin(kna/2), 

IRn(x)1 < ar(a(n + 1) + 1) x-a(n+l)-l. 
- nl sin(na/2)1 

(4.3.38) 

See Kozubowski (1994a) for the proof of Proposition 4.3.13 and Belinskiy and Kozubowski 
(2000) for its extension to geometric stable laws. 

The approximation of Pa(x) with the finite sum (4.3.38) should be used for large values of x, 
since for fixed n the remainder IRn(x)1 converges to zero as x -+ 00 (with the rate of O(x(n+~)"+l». 
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In particular, for n = 1, we have the following asymptotic expansion: 

1 
Pa(±x) ~ -r(l + a) sin(na/2)x- 1- a , x -+ 00, 

n 
with the absolute value of the remainder Rl (x) bounded by 

ar(2a + 1) -20'-1 
bl(x,a) = . ]fax . 

n sm""2 

(4.3.39) 

(4.3.40) 

As an illustration of asymptotic expansion (4.3.39), in Table 4.2 we present the values of the approx­
imation, along with the corresponding values of the bound (4.3.40) and the percent error (equal to 
the ratio of bound (4.3.40) to approximate value (4.3.39) multiplied by 100%). 

x a appro of Po' (x) bl(x,a) percent error 
10 1/2 6.307831E-3 2.25079IE-3 36% 
10 3/2 9.461747E-4 4.051423E-4 42% 
20 1/2 2.230155E-3 5.626977E-4 25% 
20 3/2 1.672616E-4 2.532140E-5 15% 
50 1/2 5.641896E-4 9.003163E-5 16% 
50 3/2 1.692569E-5 6.482277E-7 3.83% 
100 1/2 1.994711E-4 2.25079IE-5 11% 
100 3/2 2.992067E-6 4.051423E-8 1.35% 
1000 1/2 6.307831E-6 2.25079IE-7 3.57% 
1000 3/2 9.461747E-9 4.051423E-12 0.04% 

Table 4.2: The values of the one-term asymptotic expansion of Pa(x), along with the values of the 
error bound bl (x, a) and the corresponding maximal percent error, for selected values of a and X. 

Next, we turn to distribution functions. Their asymptotic expansions are obtained by integration 
of the corresponding series for the densities. We have the following asymptotic relation as x -+ 00: 

1 00 

1 - Fa(x) ~ - L(-ll+1r(ka)sin(kna/2)x-ka . 
n 

k=1 

Similarly, we get the behavior of the Linnik c.d.f. at -00: 

1 00 

Fa(-x) ~ - L(-1)k+1r(ka)sin(kna/2)x-ka , x -+ 00. 
:rr 

k=1 

More precisely, we have the following result: 

(4.3.41) 

(4.3.42) 

Proposition 4.3.14 The distribution function Fa of a Linnik distribution La,1 admits the following 
representation for x > 0: 

(4.3.43) 

where 

bk = (-l)k+ 1r(ka)sin(kna/2), 

IR*(x)1 < ar(a(n + 1» x-a(n+l). 
n - n I sin(na/2)1 
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See Kozubowski (1994a) for the proof of Proposition 4.3.14. 
We now turn our attention to series expansions and asymptotics at zero for Linnik densities, 

which were theoretically thoroughly studied by Kotz et al. (1995). We add here some numerical 
results. The structure of such series representations depends on the arithmetic nature of the parameter 
ex. Three cases ought to be investigated: 

(i) l/ex is an integer. 

(ii) l/ex is a noninteger rational number. 

(iii) ex is an irrational number. 

In case (i) we have the following representation. 

Proposition 4.3.15 Let Pa be the density of a Linnik distribution La,l, where 0 < ex = * < 2 and 
n is a positive integer. Then 

1 00 (_I)k+l x k/n-1 
Pa(±x) = 2 L 

k=l,k/nelQ!\N r(k/n) cos ~~ 
(4.3.44) 

(_I)n+1 1 1. 
+ cos x . log - + - sm x 

7r x 2 

(_l)n+1 00 r' (2k + 1) 
+ "'( l)k x 2k x > 0 

7r ~ - r (2k + 1)' . 
k=O 

See Erdogan (1995) and Kotz et al. (1995) for the proofs. The series representation leads to the 
asymptotic formula for each n ~ 2 

1 n-I (_I)k+l xk/n-1 (_I)n+1 1 y 
Pa(±X)=-L k + 10g-+(-I)n-

2 k=1 r(k/n) cos 2~ 7r x 7r 

(_l)n+l nx l/n 
+ 2r(l/n) sin;" + O(lxI2/n), x -+ 0, (4.3.45) 

where y is the Euler constant. Let us note the following two special cases. For ex = 1, which 
corresponds to ch.f. 1/11,1 (t) = [1 + Itl1- l , we obtain the representation 

1 1 1 1 ~ k r'(2k + 1) 2k 
PI(±x)=-cosx.log-+-sinx+-~(-I) x , 

7r X 2 7r k=O r(2k + 1) 
x> 0, (4.3.46) 

and the corresponding asymptotic formula 

11 y 1121 2 
PI(±X) = -log- - - + -x - -x log- + O(x), x -+ O. 

7r X 7r 2 27r X 
(4.3.47) 

For ex = 1/2, we obtain 

1 ~ (-I)[[~lllxlk cosx 1 
PI/2(X) = ../2X 6 r(k + ~) - --;- . log 8 

sin Ixl 1 ~ k r'(2k + 1) 2k 
+ -2- - -; ~(-1) r(2k + 1) Ixl , 

k=O 

(4.3.48) 

corresponding to rPl/2,1 (t) = [1 + Itll/2]-I. 
In case (ii), things are getting a little more complicated, as the expansion includes several series. 
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Proposition 4.3.16 Let Pa be the density of a Linnik distribution La,l, where ° < a = ~ < 2 and 
m and n are relatively prime integers greater than one. Then 

LOO (_l)k+1 sin(bra/2) ka-I 
Pa(±x) = x 

f(ka) sin(kJra) 
k=l,k/nE!Q\N 

1 1 00 (_l)(m+n)t 
+ -log -" f sin(tJl'na/2)xmt - 1 

Jl' x ~ (mt) 
t=1 

1 00 (_l)(m+n)t-1 
+ - L cos(trrnex/2)xmt - 1 

2 t=1 f(mt) 

1 Loo (-l)j-1 sin(jJl'/2) j_1 
+- x 

a f(j) sin(jJl'/a) 
j=l,j/mE!Q\N 

1 00 f'(mt) + - "(_l)(m+n)t_2-- sin(tJl'nex/2)xmt - l , x> 0. 
Jl' ~ f (mt) 

t=1 

(4.3.49) 

See Erdogan (1995) and Katz et al. (1995) for proofs. Rather remarkably, under the additional 
assumption that the number m is even, the series expansion for Pm/n simplifies to 

1 00 (_l)k+l x ka-1 1 00 (_1)k x 2k 
Pa(±x) = - L + - L . , x > 0, (4.3.50) 

2 k=1 f(kex) cos(kJl'a/2) a k=O f(2k + 1) sm(Jl'(2k + 1)/a) 

where the series on the right-hand side is absolutely convergent. We note here that the expansion 
for a = l/n given in Proposition 4.3.15 follows from the one with ex = min by setting m = 1 in 
(4.3.49) (see Exercise 4.5.24). 

To obtain asymptotic formulas for x ~ ° describing the behavior up to O(lxI N ), it is necessary 
to select from the right-hand side of (4.3.49) the terms involving powers of Ix I that are less than N 
and to add the term containing log(1/lxl), if available. For example, for a = 3/2, we have m = 3, 
n =2,and 

4 ~ 1/2 1 2 1 f'(3) 2 7/2 P3/2(±X) = - - -. Ixl + -x log - + --x + O(lxl ) 
3v'3 Jl' 2rr x 4Jl' 

(4.3.51) 

as x ~ 0. Another remarkable result is that under case (iii), where ex is irrational, the representation 
of Pa is similar to (4.3.50) rather than to (4.3.49)! Indeed, if a E (0,2) is not rational of the form 
a = min with an odd m, we have the representation 

1 . {I s (_I)k+llxlka 1 (_1)klxI2k+1 I 
P (x) - - hm - + -

a - X s->oo 2 L f(ka) cos ~ a L f(2k + 1) sin ~ , 
k=1 2 kEAs a 

(4.3.52) 

where As denotes the set of positive integers k satisfying the relation 1 :::: 2k + 1 < ex(s + 1/2). In 
addition, the limit on the right-hand side is uniform with respect to x on any compact subset of R 
Moreover, for almost all (but not all) irrational values of a, representation (4.3.50) remains valid and 
the series converges absolutely and uniformly on any compact set. More precisely, the "lucky" set 
of irrational a's is the set (0, 2) \ L, where L is the set of the so-called Liouville numbers - namely, 
numbers f3 such that for any r = 2, 3,4, ... there exists a pair of integers p, q 2: 2 such that 

° < 1f3 - p/ql < q-r. 
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It is well known that these numbers are transcendental and the set of all Liouville numbers has 
Lebesgue measure zero. We thus have the following proposition [see Kotz et a1. (1995)]. 

Proposition 4.3.17 The density Pa of a Linnik distribution La,l, where 0 < a < 2 is irrational 
and not Liouville, admits representation (4.3.50). Moreover, both series converge absolutely and 
uniformly on any compact set. 

To construct an a for which both series in (4.3.50) are divergent, we have to construct a sequence 
of very rapidly growing integers by the recurrence relation 

and set 

qs+1 = (qs!)2qs, s = 1,2, ... , 

00 1 
a = L:-. 

k=1 qk 

Evidently, since qs > 2s for s ~ 2 and a E (1/2, 1), it is not difficult to show that these a's are 
Liouville numbers and the terms of the form 

(_l)k+1 x ka - I 

r(ak) cos(1rak/2) 

with index k = qs diverge to 00 as s -+ 00. 

4.3.4 Moments and tail behavior. The asymptotic representation (4.3.43) shows that Linnik dis­
tributions have regularly varying tails with index a. More precisely, if the r.v. Ya have the Linnik 
distribution La, I , then we have 

rea) sin 1fa 

lim xa P(Ya > x) = 2 (4.3.53) 
x-+oo 1r 

Consequently, as noticed by Lin (1994), the absolute moments of positive order p, e(p) = EIYaIP, 
are finite for p < a and infinite for p ~ a. The following computational formula for e(p) is 
useful for estimating the parameters of Linnik distribution [see Kozubowski and Panorska (1996), 
Proposition 5.3]. 

Proposition 4.3.18 Let Y ~ La,a with 0 < a :s: 2. Then for every 0 < p < a, we have 

p(1 - p)a P1r 
e(p) = EIYI P = . 1f 1f' 

ar(2 - p) sm : cos { 
(4.3.54) 

In case p = 1, we need to set (1 - p)/ cos 1f{ to its limiting value when p -+ 1, which is 
equal to 2/1r. Note that for a = 2, we obtain a familiar expression for the moments of the symmetric 
Laplace distribution, EIYIP = apr(p + 1) (see Exercise 4.5.25). In particular, the first absolute 
moment (p = 1) is equal to (J for the Laplace distribution, and 

2a 

a sin ~ 
(4.3.55) 

for the Linnik La,a distribution. We list a few selected values of ElY I for the latter distribution with 
a = 1 in Table 4.3 (the corresponding value of the standard classical Laplace distribution is equal to 
1). We can clearly see the increase in EIYI as the parameter a approaches 1. In fact, for each given 
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1.05 1.10 
12.78 6.45 

Table 4.3: Selected values of ElY I, where Y has the Linnik distribution with a = 1 and various a's. 

a > 0, the function of a given by (4.3.55) is strictly decreasing on (1,2] and converges to infinity 
as a -+ 1 +. For a = 1, the first absolute moment of Linnik distribution is infinite, while for a = 2 
it coincides with its counterpart of the standard classical Laplace distribution. 

Since Linnik distribution La,O" has the tails P (Ya,O" > x) asymptotically equivalent to the power 
function x-a, it is in the domain of attraction of stable distribution with index a. Indeed, for a given 
sequence Xl, X2, ... of i.i.d. Linnik La,l random variables, as n -+ 00, the sum 

n 

Sn = n- I / a LXi 
i=1 

converges in distribution to the stable law with characteristic function ¢ (t) = exp( -It la): 

lim E[eitSn ] = lim (1 + Itl a /n)-n = exp(-Itla ). 
n---+OO n---+OO 

We conclude this section with the result on the asymptotic behavior of absolute fractional 
moments ofLinnik distribution, which follows from the tail behavior of geometric stable distributions 
[see Kozubowski and Panorska (1996)]. 

Proposition 4.3.19 Let Y ~ La,O" with ° < a :s 2. Then 

2ar(a)aa sin lfa 
lim (a - r)EIYl r = 2 (4.3.56) 
r~a n 

4.3.5 Properties. In this section, we collect (somewhat fragmented) further results on symmetric 
Linnik distributions. 

4.3.5.1 Self-decomposability. In Section 2.4.3 we discussed the class L of self-decomposable dis­
tributions and showed that symmetric Laplace distributions belong to this class. It was shown in Lin 
(1994) that this property is shared by Linnik distributions as well. 

Proposition 4.3.20 All symmetric Linnik distributions are in class L, that is, for all c E (0, 1) the 
Linnik characteristic function 1/Ia,0" given by (4.3.1) can be written as 

(4.3.57) 

where ¢c is a characteristic function. 

Proof Lukacs (1970) has shown that if p > 1 and g is a ch.f., then the function (p - 1)/(p - get»~ 

is also a characteristic function. Since 

1/Ia,O" (t) 

1/Ia,O" (ct) 

p-1 
p -1/Ia,0"(ct) = ¢c(t), 

where p = (1 - ca)-I > 1, we conclude that ¢c is a characteristic function. o 
Remark 4.3.4 We note also that strictly geometric stable laws are self-decomposable as well [see, 
e.g" Kozubowski (l994a)], while geometric stable r.v.'s with ° < a < 2 and It f= 0, in general, are 
not [see Ramachandran (1997)]. 
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As shown by Yamazato (1978), self-decomposability implies unimodality, so Linnik distribu­
tions are unimodal (with the mode at zero). The unimodality of Linnik distributions was also proved 
in Laha (1961). In conclusion, we note that although general geometric stable laws may not be­
long to class L, they are all unimodal (with the mode at zero), as recently shown by Belinskiy and 
Kozubowski (2000). 

4.3.5.2 Infinite diviSibility. We saw in Section 2.4.1 that symmetric Laplace distribution is infinitely 
divisible, and its characteristic function admits a Levy-Khinchine representation with an explicit 
expression for the Levy measure. Linnik distributions are infinitely divisible as well, although the 
Levy measure can be no longer written explicitly. Their Levy-Khinchine representation follows from 
Lemma 7, VI.2 of Bertoin (1996) and the fact that a Linnik random variable f a.1 can be written as 
f = SeW), where W is standard exponential variable and Set) is a stable process with independent 
increments, independent of W, and S(1) has the stable law with the characteristic function 

(4.3.58) 

Proposition 4.3.21 The chj. (4.3.1) of the Linnik distribution La.a admits the representation 

1/I(t) = exp (L (e itu - l)dA(U») , (4.3.59) 

where 

dA(u) _ ~Eexp(_I~la) _ 2. ()() g (_U_) ~dw 
du - 21ul a X - a 10 a awl/a w1+1/a ' 

where X has the stable distribution (4.3.58) and ga is the density of X. 

Remark 4.3.5 See Kozubowski et al. (1998) for a more detailed discussion on the Linnik and the 
more general geometric stable Levy measure and their asymptotics at zero. 

Remark 4.3.6 If Ci = 2, the Linnik distribution L a .a reduces to the classical Laplace distribution 
Ce(O, a) with mean zero and variance 2a2 . In this case the stable random variable X has ch.f. e- t2 , 

which corresponds to the normal distribution with mean zero and variance equal to two. Consequently, 
the density of the Levy measure is 

dA (u) = ~ E exp (_I ~ 12) = ~ [00 e -~ _1_e-l x2 dx. 
du 21ul aX lull-oo 2,,[ir 

(4.3.60) 

Noting that the integral in (4.3.60) is an even function of x, we obtain after some algebra 

dA(u) = _1_~ [00 t1/2-1e-(t+~-Jr)dt. 
du v0Tlu110 

(4.3.61) 

Relating the integral in (4.3.61) to the modified Bessel function K-1/2, defined in (A.0.4) (see the 
appendix), we obtain 

dA 1 1 (lUI) lu1 1/ 2 -1 2 
du (u) = v0Tiul K- 1/2 -;;- ·2· -Ji a /. 

Finally, the application of Properties 5 and 10 of the function K).. results in 

dA 1 
-(u) = _e-1ul /a , 
du lui 

(4.3.62) 

(4.3.63) 

which is the density obtained previously for the classical Laplace distribution (see Proposition 2.4.2). 
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4.3.6 Simulation. Devroye's representation (4.3.19) allows us to generate Linnik distributions 
from independent stable and exponential variates. However, the generation of stable distributions 
requires nonstandard methods, as their distribution functions are not given explicitly [see, e.g., Weron 
(1996)]. An alternative computer simulation ofLinnik random variables is obtained through represen­
tation (4.3.27) with a' = 2. Here the r. v.'s that appear in the representation have explicit distribution 
functions and thus can conveniently be generated by the inversion method. Indeed, the Laplace 
distribution function is given in Section 2.1.1, while the distribution function of the r.v. Wp has 
the form 

Fp(x) = _1_ [arctan (_._x_ + cotnp ) - ::.] + 1. 
np smrrp 2 

(4.3.64) 

Since the inverse function of Fp has an explicit form, 

F;I (x) = sin(np) cot (rrp(l - x» - cos(np), (4.3.65) 

the r. v. W p can be generated by the inversion method. Here is a generator of a symmetric Linnik La,rr 
distribution given by the ch.f. (4.3.1). 

Linnik La,a generator 

• Generate random variate Z from the L2, I distribution (standard Laplace with location 0 and 
scale 1). 

• Generate uniform [0,1] variate U, independent of Z. 

• Set p *- a12. 

• Set W *- sin(np) cot (npU) - cos(np). 

• Set Y *- azwl/a. 

• RETURN Y. 

More details on generation variates from the Linnik laws and the more general geometric stable 
laws can be found in Kozubowski (2000b). 

4.3.7 Estimation. This section is devoted to the problem of estimating the parameters a and a 
of the Linnik distribution La,a' Since densities and distribution functions of Linnik laws cannot in 
general be written in closed form, most estimation methods for Linnik laws suggested in the literature 
are based on the characteristic function and its empirical counterpart. Recall that if XI, X 2 , ... , Xn 
are i.i.d. random variables with characteristic function 1jI, then the empirical characteristic function 
(sample ch.f.) is defined as 

(4.3.66) 

This function is the characteristic function of the empirical distribution of the data, which assigns 
probability lin to each observation. By definition and the strong LLN, it follows that 

E[q/n(t)] = 1jI(t) and :(f;n(t)~' 1jI(t) as n -+ 00. (4.3.67) 

Consequently, estimators based on the sample characteristic function are usually strongly consistent. 
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Below we present several estimation procedures for Linnik parameters, based on the random 
sample X 1, X2, ... , Xn from the Linnik Lcx,a distribution given by the ch.f. 1/1 = 1/Icx,a as specified 
by (4.3.1). Here the characteristic function is real and the distribution is symmetric about zero. Thus 
the real part of the empirical characteristic function, 

(4.3.68) 

can be used in estimation. 

4.3.7.1 Method o/moments type estimators. The first method is a special case of the estimation 
procedure for geometric stable parameters suggested by Anderson (1992) and Kozubowski (1993). 
The method is based on the sample characteristic function (4.3.68) for the symmetric case and 
produces computationally simple, consistent, and asymptotically normal estimators. For convenience, 
we set)." = a lX to be consistent with the notation used in Kozubowski (1993). Since 

1/1/I(t) = 1 +)." I t Icx , 

we have 

v(tj) = )."ltil CX , i = 1,2, (4.3.69) 

where v(t) = 11/1/I(t) - 1] and t1 :f:. t2, are both greater than O. Solving equations (4.3.69) for ex and 
)." we obtain 

log[ V(t1) /V(t2)] 
ex= ~~--------

log[t1 / t2] 
{ log I t1 Ilog[v(t2)] -log I t2 Ilog[v(t1)] } 

A=e~ . 
log[t1/ t2] 

Substituting the sample ch.f. 7Jn(t) for 1/I(t) into (4.3.70) we get estimators of ex and).,,: 

log[vn (t1 ) (un (t2)] a= -------------
log[t1l t2] 

~ {lOg I t1 I log[vn (t2)] - log I t2 I log[vn (t1)] } 
).,,=~p , 

log[t1 / t2] 

(4.3.70) 

wherevn(t) = 11I7Jn(t)-11 is the sample counterpartofv(t). Since7Jn(t) ~. 1/1 (t), alsovn(t) ~. v(t), 

and the estimators are consistent. 

Remark 4.3.7 See Jacques et al. (1999) for an extension of the method to the case of generalized 
Linnik laws given by the ch.f. 

4.3.7.2 Least-squares estimators. Another estimation procedure based on the sample ch.f. is the 
regression-type estimation of Koutrouvelis (1980) adapted to the Linnik case, which was discussed 
in Kozubowski (1993) in the more general setting of geometric stable laws. Again, set)." = acx. 
Taking the logarithms of both sides in the relation 

I 1/1/I(t) - 1 1= )." I t Icx (4.3.71) 
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results in 

log 1 I/1fr(t) - 1 1= log.le + a log 1 t 1 . (4.3.72) 

We can now estimate .Ie and a using the regression of y = log 1 l/Tin (t) - lion x = log 1 t 1 via the 
model 

(4.3.73) 

where {ti}, i = 1, ... , K, is a suitable sequence of real numbers, 8 = log.le, and €i is an error term. 
Denote these estimators by a and I. 

Like the method of moments procedure, the regression-type estimation presented here produces 
consistent estimators and is computationally straightforward. However, optimality properties for 
estimators are lacking, and the methods may not be robust with respect to the choice of the required 
constants. 

4.3.7.3 Minimal distance method. Anderson and Arnold (1993) discuss another estimation method 
for Linnik parameters, based on empirical characteristic function (4.3.66). They consider estimation 
of the parameter a of the Linnik distribution with a = I, although the procedure can be generalized 
to include the scale parameter as well. The method is based on minimization of the objective function 

100 2 

h(a) = -00 1V7(t) - (l + Itl a )-112e- t dt, (4.3.74) 

where V7 is the empirical characteristic function (4.3.66) based on the random sample XI, X2, ... , Xn 
from the Linnik La,1 distribution. Again, since the distribution is symmetric, the real part of :(jI given 
by (4.3.68) can be used, in which case the objective function becomes 

100 2 

h(a) = -00 ITi(t) - (1 + Itla )-11 2e- t dt. (4.3.75) 

The weights e- t2 are incorporated mainly for mathematical convenience, as integrals of the form 

100 2 

-00 f(t)e- t dt 

can be well approximated by the sum 
m 

L W;!(Zi) + Rm 
i=1 

(via so-called Hermite integration). Here the weights are 

2m-Im!,Jrn 
Wi = ?' 

(mHm-I(Zi»-

(4.3.76) 

(4.3.77) 

(4.3.78) 

and Zi is the ith zero of the mth degree Hermite polynomial Hm (z). The values of Zi, wi, and Wiezr 
are presented in Abramowitz and Stegun (1965, p. 924). They reproduce tables of zeroes and weight 
factors of the first 20 Hermite polynomials from Salzer et al. (1952). 

The objective function in the symmetric case can be well approximated by 
m 

IL(a) = LWi(TJ(Zi) - (1 + IZila)-1)2. (4.3.79) 
i=1 

The values of ch that minimize 1L (a) are strongly consistent estimators of a. Anderson and Arnold 
(1993) carried out extensive simulations that indicate that this approach provides reasonable estima­
tors. 



218 4. Related Distributions 

4.3.7.4 Fractional moment estimation. Here we present the approach to estimation based on frac­
tional moments of Section 4.3.4, which was considered in Kozubowski (1999). The basis for the 
method is formula (4.3.54), which expresses the fractional moment EI YIP in terms ofthe parameters 
ot and o'. We can substitute sample fractional moments and solve the resulting equations for the pa­
rameters. As noted in Kozubowski (1999), the method is computationally simple, requires minimal 
implementation effort, and provides accurate estimates even for small sample sizes. 

Consider 0 < p < ot :s 2, and let e(p) = EIYIIP denote the pth absolute moment of La,(J" 
Next, choose two values of p, say PI and P2, replace e(pd in the fractional moment formula (4.3.54) 
with its sample counterpart e(Pk) = * L I Y;lPk, k = 1,2, and solve the resulting equations for ot 

andO'. 
As an illustration, assume 1 < ot :s 2 and take PI = 1/2 and P2 = 1 so that by (4.3.54), we 

have 

(4.3.80) 

and 

AI" 20' 
e(l) = - L.,..I Yj I = -'-]f • 

n ot sm a 
(4.3.81) 

Next, eliminate 0' from (4.3.80) and (4.3.81) by squaring both sides of (4.3.80) and dividing the two 
sides of the resulting equation into the corresponding sides of equation (4.3.81). This results in the 
equation for ot, 

e(l) 40t sin2 .!!.... 2a 
1'{ sin ~ . 

(4.3.82) 

As remarked by Kozubowski (1999), finding a numerical solution of (4.3 .82) is straightforward, since 
the right-hand side of (4.3.82) is strictly decreasing in ot. Now we can substitute & into either (4.3.80) 
or (4.3.81) and solve the resulting equations for 0-1 and 0-2 , obtaining 

A 2 A2 2 1'{ A 2 
0'1 = -ot sin -;;-[e(1/2)] , 

1'{ 20t 

A 1 A . 1'{ A( 1) 
0'2 = -ot sm -;;-e . 

2 ot 

(4.3.83) 

(4.3.84) 

One can compute the average 0- = (al + a2)/2 to estimate 0'. As reported in Kozubowski (1999), 
these estimators perform well on simulated data. The results are most accurate when ot is close to 
2, and generally improve as n increases. The procedure provides quite satisfactory results even for 
sample sizes as small as 100, and can easily be adapted to the general strictly geometric stable case 
as well. 

4.3.8 Extensions. We have already seen that symmetric Linnik distributions form a subclass of 
strictly geometric stable laws given by ch.f. (4.3.3). Distributions from this three-parameter fam­
ily share many properties of the Linnik laws [see, for example, Kozubowski (1994ab), Erdogan 
(1995)]. In turn, strictly geometric stable laws form a subclass of geometric stable laws, defined in 
Section 4.4.4. The latter is a four-parameter family of distributions that are limiting laws for (nor­
malized) geometric sums with i.i.d. components. More information on geometric stable laws can be 
found in Kozubowski and Rachev (1999ab). 

Since the Linnik distribution is infinitely divisible, any positive power of the Linnik ch.f. (4.3.1) 
is a well-defined ch.f. corresponding to real-valued (and symmetric) random variable. The resulting 
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distributions are called generalized Linnik laws [see, e.g., Devroye (1993), Pakes (1998), Erdogan 
and Ostrovskii (1998b), and Jacques et al. (1999) for more details]. 

Nonnegative r.v.'s with Laplace-Stieltjes transform 

1 
fa,c(s) = 1 + csa ' s ~ 0, ex E (0, 1], c > 0, (4.3.85) 

are the Mittag-Leffler distributions, introduced by Pillai (1990). Pakes (1995) considered a more 
general class of distributions with Laplace-Stieltjes transform 

(4.3.86) 

and referred to them as the positive Linnik laws. Note that the functions (4.3.85) and (4.3.86) ought 
to be restricted to the case ex E (0, 1], since otherwise they are not completely monotone, and hence 
cannot serve as Laplace-Stieltjes transforms. 

Replacing sin (4.3.86) by 1 - z, we obtain the function 

ga,c,/3(Z) = (1 + C(~ _ z)a )/3, Izl ~ 1, ex E (0,1], c > 0, f3 > 0, (4.3.87) 

which is a probability-generating function of a nonnegative integer-valued r. v. with the discrete Linnik 
distribution, studied by Devroye (1990) for c = 1 and Pakes (1995) for c > O. For f3 = 1, we obtain 
here the discrete Mittag-Leffler distribution [see Pillai (1990) and Jayakumar and Pillai (1995)]. 
Letting f3 ---+ 00, we arrive in the limit at the probability-generating function 

ha,c(z) = e-c(l-z)", Izl:s 1, ex E (0, 1], c > 0, (4.3.88) 

which represents a discrete stable distributed r. v. [see Steutel and van Hom (1979) and Christoph and 
Schreiber (1998a)]. We refer the interested reader to Christoph and Schreiber (1998abc) for more 
information on and further references for these discrete distributions. 

4.4 Other cases 
4.4.1 Log-Laplace distribution. By analogy with the lognormal, Su, and SB systems of distribu­
tions [see, e.g., Johnson et al. (1994), Chapters 12 and 14], Johnson (1954) considered the system 

(S~ system), 
(S~ system), 

(S~ system), 
(4.4.1) 

where Y has the standard classical Laplace distribution. The S~ system of distributions is known as 
the log-Laplace distributions (in analogy with the log-normal distributions) [see Uppuluri (1981), 
Chipman (1985), Kotz et al. (1985), and Johnson et al. (1994) for further discussion on log-Laplace 
distributions] . 

4.4.2 Generalized Laplace distribution. The following generalization of the Laplace distribution 
was proposed by Subbotin (1923): 

(4.4.2) 
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whereJL = E(X) is the location parameter, O"p = [E(!X-JL!p)]l/Pisthescaleparameter,andp > 0 
is the shape parameter. The distributions with these densities form a family called exponential power 
function distributions, and they are also called generalized Laplace distributions, as for p = 1 they 
reduce to the standard Laplace laws. The estimation of the parameters was treated in a number of 
papers, for example the MLE's and their properties were derived in Agro (1995) [see also Zeckhauser 
and Thompson (1970)]. The distribution is widely used in Bayesian inference [see, e.g., Box and 
Tiao (1962), Tiao and Lund (1970)]. Other related papers include Jakuszenkow (1979), Sharma 
(1984), and Taylor (1992). 

4.4.3 Sargan distribution. Consider a symmetric Bessel function distribution 9 A.c (0, 0", '['), where 
'[' = n + 1 is an integer. Here the Bessel function Kr:-l/2 = Kn+l/2 admits a closed form (A.0.1O) 
given in the appendix, and density (4.1.32) becomes 

where 

1 n . 
f(x) = _e-1xl '"' Yj!X!1, 

2 ~ 
1=0 

(2n - j)!2j - 2n 
Y' = -:-:--'-----:--

) n!j!(n - j)! 

(4.4.3) 

(4.4.4) 

[cf. equation (4.1.33)]. This distribution corresponds to the sum of n + 1 i.i.d. standard Laplace r.v.'s 
(for n = 0 we obtain the standard Laplace density (2.1.2». 

More generally, if Yl, ... Yn+ 1 are i.i.d. with general Laplace distribution (2.1.1), then the 
sample mean, Y, has density 

(4.4.5) 

where K = 1, Yj are as above, and ot = (n + 1)/0" [see, e.g., Weida (1935)]. 
The function (4.4.5) is a special case of Sargan densities of order n, which for e = 0 are given 

by (4.4.5) with 

Yj ~ 0, Yo = 1, ot > 0, K = (tYjj!)-l 
}=o 

(4.4.6) 

Sargan densities have been suggested as an alternative to normal distributions in some econo­
metric models, where it is desirable that the relevant distribution function be similar to normal but 
computable in closed form [see, e.g., Goldfeld and Quandt (1981), Missiakoulis (1983) (who ob­
serves that the density of the arithmetic mean of n + 1 independent Laplace variables is an nth order 
Sargan density), Kafaei and Schmidt (1985), and Tse (1987)]. 

4.4.4 Geometric stable laws. If the random variables in (2.2.1) have infinite variance, then the 
geometric compounds no longer converge to an AL law given by (3.1.10) with e = O. Instead, the 
limiting distributions form a broader class of geometric stable (GS) laws. It is a four-parameter family 
denoted by GSa (0", f3, JL) and conveniently described in terms of the characteristic function 

(4.4.7) 



where 

( ) _ { 1 - ij3sign(x) tan(na/2), 
W a ,{3 x-I + ij3~sign(x) log lxi, 

if a =1= 1, 
if a = 1. 
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(4.4.8) 

The parameter a E (0,2] is the index that determines the tail of the distribution P(Y > y) '" 
Cy-a (as y -+ 00) for 0 < a < 2. For a = 2 the tail is exponential and the distribution reduces 
to an AL law, since W2,{3 == 1. The parameter j3 E [-1, 1] is the skewness parameter, while f-L E lR 
and a 2: 0 control, as usual, the location and scale, respectively. We provide a few comments on 
basic features of GS laws, referring an interested reader to Kozubowski and Rachev (1999ab) for 
up-to-date information and numerous references on GS laws and their particular cases. 

Remark 4.4.1 Special cases of GS laws include Linnik distribution [discussed in Chapter 4, Sec­
tion 4.3, where j3 = 0 and f-L = 0; see Linnik (1953)], and Mittag-Leffler distributions, which are 
GS with j3 = 1 and either a = 1 and a = 0 (exponential distribution) or 0 < a < 1 and f-L = O. The 
latter are the only nonnegative GS r.v.'s [see, e.g., Pillai (1990), Fuita (1993), Jayakumar and Pillai 
(1993)]. For applications of Mittag-Leffler laws, see, e.g., Weron and Kotulski (1996). 

Remark 4.4.2 GS laws share many, but not all, properties of the so-called Paretian stable distribu­
tions. In fact, Paretian stable and GS laws are related via their characteristic functions, cp and 1/1", as 
shown in Mittnik and Rachev (1991): 

1/1"(t) = y(-logcp(t», (4.4.9) 

where y (x) = 1/( 1 + x) is the Laplace transform of the standard exponential distribution. Relation 
(4.4.9) produces representation (4.4.7), as well as the mixture representation of a GS random variable 
Y in terms of independent standardized Pareto stable and exponential r. v. 's X and W: 

Y ~ { f-LW + wl/aa X, 
- f-LW + WaX +aWj3(2/n)log(Wa), 

a =1= I, 
a=1. 

(4.4.10) 

Note that this representation reduces to (2.2.3) in the case a = 2 and f-L = 0, as then X has the normal 
distribution with mean zero and variance 2. 

Remark 4.4.3 The asymmetric Laplace distribution, which is GS with a = 2, plays, among GS 
laws, a role analogous to that of the normal distribution among Paretian stable laws. Namely, AL 
are the only laws in this class with a finite variance. Also they are limits in the random summation 
scheme with a geometrically distributed number of terms as the normal laws are limits in the ordinary 
summation scheme. In contrast to normal distribution, c.d.f.'s of AL laws have explicit expressions, 
which makes them far easier to handle in applications. 

Remark 4.4.4 Similar to Paretian stable laws, the GS laws lack explicit expressions for densities 
and distribution functions, which handicap their practical implementation. Moreover, they are "fat­
tailed," have stability properties (with respect to random summation), and generalize the central limit 
theorem (being the only limiting laws for geometric compounds). However, they are different from 
the stable (and normal) laws in that their densities are more "peaked"; consequently, they are similar 
to the Laplace type distributions, being heavy-tailed. Unlike Paretian stable densities, GS densities 
"blow-up" at zero if a < 1. Since many financial data are "peaked" and "fat-tailed," they are often 
consistent with a GS model [see, e.g., Kozubowski and Rachev (1994)]. 
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4.4.5 v-stable laws. Suppose that the random number of terms in the summation (2.2.1) is any 
integer-valued random variable, and, as p converges to zero, vp approaches infinity (in probability) 
while pVp converges in distribution to a r.v. v with Laplace transform y. Then the normalized 
compounds (2.2.1) converge in distribution to a v-stable r.v., whose characteristic function is (4.4.9) 
[see, e.g., Gnedenko and Korolev (1996), Klebanov and Rachev (1996), Kozubowski and Panorska 
(1996)]. The class of v-stable laws contains OS and generalized AL laws as special cases: if vp is 
geometric with mean 1/ p, then pVp converges to the standard exponential and (4.4.9) leads to (4.4.7). 
The tail behavior of v-stable laws is essentially the same as that of stable and OS laws. 

4.5 Exercises 
Exercise 4.5.1 For any given a 2 > 0, let the r.v. X be log-normal with the p.d.f. 

for x> 0, 

otherwise, 

so that given a 2 , the r.v. log X is N(O, ( 2). Show that ifthe quantity a 2 is a random variable with 
the standard exponential distribution, then X has the log-Laplace distribution with the p.d.f. 

1 I x.J1-1 
g(x) =.j2 x- I -.J1 

so that the r.v. log X is standard Laplace .c(0, 1). 

forO < x < 1, 

for x:::: 1, 

Exercise 4.5.2 Using the results on symmetric generalized Laplace densities, demonstrate that asym­
metric generalized Laplace densities are unimodal. Is the mode for those distributions always at zero? 

Exercise 4.5.3 Recall that if X has the standard symmetric Bessel function distribution QA.c*(O, 1, 
.j2, n) with ch.f. is (1 + t 2)-n, then X has the same distribution as the sum of n i.i.d. standard 
classical Laplace random variables. Thus the variable X admits the random sum representation 
discussed in Proposition 2.3.2. Investigate whether a skewed Bessel r.v. QA.c*(O, /C, a, n) admits a 
similar representation. 

Exercise 4.5.4 Using Theorem 4.1.1, show that under the conditions of this theorem, the correspond­
ing generalized Laplace densities converge to a normal density. 

Exercise 4.5.5 Derive the coefficient of skewness and kurtosis for the K -Bessel function distribution, 
and compare them with the corresponding values for the Laplace and AL laws. 

Exercise 4.5.6 Derive estimators of the K -Bessel function distribution parameters by the method of 
moments, and study their asymptotic properties. You may want to consider several cases as to which 
of the four parameters are unknown. 

Exercise 4.5.7 Consider a sequence of stochastic processes {Ln(t)} and a process B(t). We say that 
{Ln (t)} has finite dimensional distributions convergent to the finite dimensional distributions of B(t), 
if for each N E Nand tI, ... , tN, the sequence of the random vectors (Ln(tJ), ... , Ln(tN)) con­
verges in distribution to (B(tJ), ... , B(tN)). Let Ln(t) be .cM(1/ Fn" l/rn), where rn converges to 
infinity, and let B(t) be a standard Brownian motion. Show that the convergence of finite dimensional 
distributions holds in this case. 
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Exercise 4.5.8 Let XI, ... , Xn be i.i.d. with the exponential power function density 

g(x) = k e-(Ixl/d 
2sr(1/k) , 

-00 < x < 00, s,k > 0, 

where k is assumed to be known (for k = 1 we obtain the Laplace distribution). 
(a) Show that the method of moments estimator of the parameter s2 is 

8 - r(l/k) ~ X2 
1 - r(3/k) ~ i 

1=1 

(4.5.1) 

(4.5.2) 

[lakuszenkow (1979)]. Derive the mean and the variance of 81. Show that 81 is unbiased and consistent 
for s2. Is 81 an efficient estimator for s2, i.e., does the variance of 81 coincide with the Cramer-Rao 
lower bound? 

(b) Show that the MLE of the parameter sk is 

(4.5.3) 

[lakuszenkow (1979)]. Show that 82 is unbiased and consistent for sk. Is 82 an efficient estimator 
for sk? 

(c) Show that among all estimators of the form 

n 

8 = a L Xf, a > 0, (4.5.4) 
i=1 

the one that minimizes the expected value of the loss function 

(4.5.5) 

where f is an arbitrary positive function, corresponds to 

* r(3/ k)f(I/ k) 
a = -------------------=----r(5/k)f(1/k) + (n - l)r2(3/k) 

(4.5.6) 

[lakuszenkow (1979)]. Is the resulting estimator unbiased for s2? 

(d) Note that the estimator considered in part (c) is not a function of the complete and sufficient 
statistic T = L:?=IIXdk. To improve the estimator, consider the class of estimators of the form 
aT21 k ,a > 0, and show that the best estimator (with respect to the loss function (4.5.5» is obtained for 

* r«n+2)/k) 
a = 

r«n+4)/k) 
(4.5.7) 

[Sharma (1984)]. 

Exercise 4.5.9 Extend Theorem 4.2.3 to an arbitrary symmetric Laplace motion .cM(O", v) defined 
over the interval [0, T]. 

Exercise 4.5.10 It is well-known that there exist essentially different stochastic processes having 
the same distribution at any fixed time point. Consider the following two processes: 

it = ..jr;0" Bt + rtJL + mt 
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and 

Lt = /f,a Bt + f't/-L + mt, 
where r t is a gamma process independent of a Brownian motion Bt, while f't is a gamma white 
noise, i.e., for each n E Nand tl, ... ,tn E lR the variables f't), ... , f'tn are independent gamma 
distributed with the shape parameters tllv, ... , tnlv, respectively. 

Let Lt be ACM(/-L, a, v) with a drift m. Show that for each fixed t 

Are it and it Laplace motions? Why? 

d - d ;­
Lt = Lt = Lt. 

Hint: Use the representation given in Proposition 4.1.2 to show the first part. 

Exercise 4.5.11 Prove the representation 4.2.2 of ACM(/-L, a, v). 

Exercise 4.5.12 Prove the representation 4.2.3 of ACM (/-L , a, v). 

Exercise 4.5.13 Prove the representation 4.2.4 of ACM(/-L, a, v). 

Exercise 4.5.14 Show that the function (4.3.1) is a genuine characteristicfunctionf oranyO < ex < 1. 
Hint: Proceed by showing the following: 

(i) 1/Ia,u (t) = 1/Ia,u (-t), t > O. 

(ii) 1/1 a,u (0) = 1. 

(iii) limHOO 1/Ia,u(t) = O. 

(iv) 1/I~,u(t) > 0 for t > 0 so that 1/Ia,u is convex on (0, (0). 

Thus 1/Ia,u is a Polya-type ch.f. [see, e.g., Lukacs (1970)]. 

Exercise 4.5.15 For any p E (0, I), let vp denote a geometric r.v. with mean lip and probability 
function 

P(vp = k) = p(1 - p)k-I, k = 1,2, .... 

Let p, q E (0, I), and consider a sequence (v g» of Li.d. geometric random variables with mean lip 

and another geometric r. v. Vq independent of the sequence. Show that the geometric sum L~!'I v g) 
has the same probability distribution as Vpq (a geometric r.v. with mean I/(pq». 

Hint: Write the ch.f. of the geometric sum conditioning on the vq . 

Exercise 4.5.16 For each n ::: I, let Z~I), Z~2), ... be a sequence of i.i.d. r. v. 'So Assume that for 

each i we have the convergence Z~i) ~ Z(i) as n ~ 00, where the Z(i) 's are independent and 
identically distributed variables. Let v be any integer-valued r.v. independent of all the other r.v.'s 
involved. Show that, as n ~ 00, the random sum L~=I Z~i) converges in distribution to the random 
sum L~=I Z(i). 

Exercise 4.5.17 Prove Proposition 4.3.6. 
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Exercise 4.5.18 For any 0 < p < 1, let fp be the Cauchy density on (-00,00), defined as 

sin(rr p) 
fp(x) = . 2 ,x E R 

rr[(x + cos(rrp»2 + sm (rrp)] 
(4.5.8) 

Show that Jooo fp(x)dx = p, so that gp(x) = ~ fp(x) is a density on (0, 00). 

Exercise 4.5.19 For any 0 < p < 1, let Wp be a positive r.v. with the density gp defined in 
Exercise 4.5.18. Show that as p -+ 0+, the distribution of Wp converges weakly to the distribution 
given by the density go(x) = (1 +x)-2, while as p -+ 1+, the distribution of Wp converges weakly 
to a distribution of a unit mass at 1, namely, Wi == 1. 

Exercise 4.5.20 For any 0 < p < 1, let Wp be a positive r.v. with the density gp defined in 

Exercise 4.5.18. Show that Wp has the reciprocal property Wp !!: IjWp. 

Exercise 4.5.21 Show that if X is the Pareto Type I random variable with the p.d.f. 

1 1 
f(x) = - , 0 < a < x < b, 

x 10gb -loga 

then Y = 1 j X has a distribution of the same type. 

Exercise 4.5.22 Prove Proposition 4.3.11. 

Exercise 4.5.23 Prove Proposition 4.3.12 

Exercise 4.5.24 Show that setting m = 1 in (4.3.49) produces (4.3.44). 

Exercise 4.5.25 Using the well-known identity for noninteger values of z, 

rr 
y(z)r(l- z) = -.-, 

smrrz 

show that for a = 2, the fractional absolute moments of the Linnik distribution given by (4.3.54) 
coincide with aar(p + 1), which are the moments ofthe symmetric Laplace distribution. 

Exercise 4.5.26 Show that the Sargan density (4.4.5) with restrictions (4.4.6) is a bona fide proba­
bility density function on (-00, 00). 



Part II 

Multivariate Distributions 



Introduction 

In this part we discuss current results on multivariate Laplace distributions and their generalizations. 
The field is relatively unexplored, and the subject matter is quite fresh and somewhat fragmented; 
thus our account is intentionally concise. In our opinion, some period of digestion is required to 
put these results in a proper perspective. Hopefully, a separate monograph will be available on this 
burgeoning area of statistical distributions in the not-too-distant future. 

Multivariate generalizations of the Laplace laws have been considered on various occasions 
by various authors. The term multivariate Laplace law is still somewhat ambiguous, but at present 
it applies most often to the class of symmetric, elliptically contoured distributions for which the 
characteristic function is of the form 

1 
<I> (t) = --;---

1 + 1t'1:t· 
(ILl) 

Recall that an r.v. in lRd has an elliptically contoured distribution if its ch.f. has the form 

<I>(t) = eit'm</J(t'Et) (11.2) 

for some function </J, where m is a d x 1 vector in IRd and E is a d x d nonnegative definite matrix 
[see, e.g., Fang et al. (1990)]. 

Probably the simplest multivariate generalization of Laplace distribution is the distribution of 
a vector of independent Laplace random variables [see, e.g., Osiewalski and Steel (1993), Marshall 
and Olkin (1993)]. However not many properties of univariate laws can be extended to this class 
of distributions. Moreover, it is not invariant on rotations (see, for example, the graph of bivariate 
density in Figure 8.7). 

Transforming a bivariate normal distribution, Ulrich and Chen (1987) obtained another bivari­
ate distribution with Laplace marginals, noting that there were no "naturally occurring" bivariate 
Laplace distributions. Much earlier, McGraw and Wagner (1968) in their seminal paper provided 
a number of examples of bivariate elliptically contoured distributions, including the multivariate 
Laplace distribution (ILl) and their generalizations [see also Johnson and Kotz (1972), Table 3, 
p. 297 and equation (69), p. 301, and Johnson (1987)). This multivariate Laplace law also appears 
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in Anderson (1992) as a special case of the multivariate Linnik distribution [also known as the 
semi-a-Laplace distribution; see Pillai (1985)]. 

Ernst (1998) introduced yet another multivariate extension of symmetric Laplace distributions 
again via an elliptic contouring. In the one-dimensional case his class reduces to the univariate 
symmetric Laplace laws. 

Barndorff-Nielsen (1977) introduced the class of so-called hyperbolic distributions, which was 
later extended to the multivariate case in Blaesid (1981). With an appropriate passage to the limit 
of their parameters, one can obtain a multivariate and asymmetric extension of the Laplace laws. 
This class is studied here on its own, independently of the theory of hyperbolic and inverse Gaussian 
distributions. 

This part of the monograph is organized so that special cases - bivariate and symmetric 
distributions-are discussed (albeit rather briefly) prior to the more general cases of multivari­
ate and asymmetric distributions. We believe that this exposition, despite the fact that formally most 
of the properties follow from the results derived for the general case, allows for a faster reference to 
the special important cases without the need to absorb the more cumbersome notation and description 
of the general multivariate asymmetric Laplace distributions. Thus the symmetric (elliptically con­
toured) multivariate distributions are discussed before the general asymmetric ones and the bivariate 
cases precede the general multivariate ones. On the other hand, we present proofs for the general 
setting, omitting explicit proofs in particular cases unless they provide a better insight. 

While discussing the multivariate Laplace distributions we always consider them to be centered 
at zero. One can add the location parameter in a natural manner and thus consider, as we did in 
the previous chapters, a more general class of asymmetric Laplace distributions. However, this 
complicates the already cumbersome notation in the multivariate case without adding substantially 
to deeper understanding. 



5 
Symmetric Multivariate Laplace Distribution 

In this chapter we discuss a natural extension of the univariate symmetric Laplace distribution to the 
multivariate setting. The material discussed here has not - to the best of our knowledge - appeared 
before in book literature. A comparison with the commonly used multivariate normal distribution 
would be most instructive. 

5.1 Bivariate case 
5.1.1 Definition. As in the univariate case, the most direct and simple way to introduce the bi­
variate symmetric Laplace distributions is through their characteristic functions. Thus the bivariate 
symmetric Laplace distributions constitute a three-parameter family of two-dimensional distributions 
with the characteristic functions given by 

where the three parameters (T\, (T2, and P satisfy 

(T\ :::: 0, (T2 :::: 0, P E [0, 1]. 

We shall use BS£((T\, (T2, p) instead ofthe lengthy expression to describe membership in this family. 
Note that in this definition, as well as in all others in this part of the book, we do not take 

into account the location of the distribution, always centering it at zero. The word "symmetric" in 
our terminology represents the fact that our distribution is actually obtained from a one-dimensional 
distribution spread uniformly along an ellipsoid in the two dimensions. Formally, this means that 
the characteristic function depends on its argument t = (t\, t2)' through 1'1:t, where 1: is a certain 
nonnegative definite matrix, in this case 

1:=[ 
(T\(T2P ] 

(T} . 
(5.1.1) 
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In general, for this type of distribution the name elliptically contoured is used, and more appropriately 
the distribution under consideration should be called the elliptically contoured Laplace distribution. 

The following property follows immediately from the definition. 

Proposition 5.1.1 A linear combination a, Y, + a2 Y2 of the coordinates of a BS£( a, , a2, p) random 
vector Y = (Y" Y2)' has a one-dimensional symmetric Laplace distribution £(0, a), where 

a = Jara? + 2paW2a,a2 + aia~). 
In particular, the marginal distributions of a BS£ distribution are symmetric Laplace distribu­

tions. 
The case when a, = a2 = 1 and p = 0 will be distinguished, and the corresponding distribution 

will be referred to as the standard bivariate Laplace distribution. 

5.1.2 Moments. The moments of the Laplace distribution are easily obtained by differentiating 
its characteristic function. In particular, we have the following formulas for the mean vector and 
variance-covariance matrix of a BS £ (a, , a2, p) random vector Y: 

EY =0; Cov(Y) = E(YY') = [ ar 
a,a2P 

Note that if Y is uncorrelated (p = 0), Y, and Y2 are not independent (unlike the situation in 
the case of bivariate normal distribution). 

Remark 5.1.1 One can consider a vector of two independent Laplace random variables and its 
distribution. By the above property, such a vector does not belong to the multivariate Laplace family. 
An example of the density for such a random vector can be seen in Figure 8.7. 

5.1.3 Densities. The formula for densities is taken from the general case, considered in Section 6.5 
of Chapter 6, equation (6.5.3). Namely, assuming that the distribution is nonsingular, we have 

1 ( 2(x2/ar- 2pxy/(a,a2) + y2/ai» 
g(x, y) = r.--:? . Ko 2 ' 

Jra,a2y'1 - p2 1 - p 

where Ko is the Bessel function of the third kind given by (A.0.4) or (A.0.5) in the appendix. 
In particular, the standard bivariate Laplace distribution is given by 

(5.1.2) 

To compare the Gaussian and Laplace distributions we present in Figures 5.1 and 5.2 bivariate 
AL and Gaussian densities. Figure 5.1 deals with uncorrelated distributions with the two covariance 
matrices 1: given by 

[b ~ ] and [b 0~5 l (5.1.3) 

The graphs present contour lines at the levels in the interval (0, 0.5). The densities were cut off 
above the level of 0.5 (the Laplace densities are unbounded around zero). To illustrate the tails and 
behavior around zero, the contour levels were chosen differently in two different subintervals. From 
the subinterval (0, 0.005) we chose 10 equally spaced levels to show contours representing tails of 
a distribution and from the subinterval (0.005,0.5) we selected 50 equally spaced levels to present 
contours of a distribution at its center. 
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LAPLACE 

1: = Cov(Y) 

Cov(Y) = [~ ~] 
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Cov(Y) = [01 0] 0.5 

Figure 5.1: Laplace and Gaussian bivariate densities corresponding to the uncorrelated distributions. 

The first two drawings represent Gaussian densities of the distributions with the covariance 
matrices specified by the values of 1:. The third and fourth drawings represent densities of the Laplace 
random variables - symmetric and having the same covariance matrices. The bivariate parameters 
of these two distributions are given by 1: = Cov(Y). The one on the left-hand side corresponds to 
the bivariate standard Laplace random variable with the density (5.1.2) for which 1: is the identity 
matrix. 

In Figure 5.2, we present the correlated version ofthe graphs in Figure 5.1. Namely, we consider 
the covariance matrices 1: given by 

[ 1 01.5] 
0.5 

and 0.5 ] 
0.5 . (5.1.4) 

In the the top drawings, the Gaussian distributions are presented with covariance matrices given by 
(5.1.4). In the bottom drawings, the corresponding Laplace densities are provided. 

5.1.4 Simulation of bivariate Laplace variates. The general algorithm for simulation of asym­
metric multivariate Laplace variables is derived in Section 6.4 of the next chapter. We present here 
its version for the bivariate symmetric case. 
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Cov(Y) = [ 0~5 0.5 ] 
0.5 

GAUSSIAN 

LAPLACE 

1: = Cov(Y) 

Figure 5.2: Laplace and Gaussian bivariate densities corresponding to the correlated distributions. 

13SC(Ul, u2, p) generator 

Generate a bivariate normal variable X with mean zero and covariance matrix 1: given 
by (5.1.1). 

• Generate a standard exponential variable W. 

• Set Y +-- ..;w . X. 

• RETURNY. 

In Figures 5.3 and 5.4 below we have used this method implemented in the S-Plus package 
to simulate samples from the distributions that are given by the densities presented on Figures 5.1 
and 5.2. 

5.2 General symmetric multivariate case 
5.2.1 Definition. A multivariate symmetric Laplace distribution is a direct generalization of the 
bivariate case. As before, the word "symmetric" refers to elliptically contoured or elliptically sym-
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Cov (Y) = [~ ~] Cov(Y) = [01 0] 0.5 

GAUSSIAN 

-4 -2 -4 -2 

LAPLACE 

1: = Cov(Y) 

-4 -2 -4 -2 

Figure 5.3: Uncorrelated Laplace and Gaussian random samples. Monte-Carlo simulation is based 
on the described algorithm. (The sample size equals 2000.) 

metric distributions and means that the distributions possess the characteristic function that depends 
on its variables only through a quadratic form. 

Let 1: be an d x d nonnegative definite symmetric matrix. We shall say that ad-dimensional 
distribution is multivariate symmetric Laplace with the parameter 1:, denoted SLd (1:) if its charac­
teristic function is of the form 

IJI (t) = 1 + It'1:t' 
2 

(5.2.1) 

5.2.2 Moments and densities. It follows directly from the definition that the SLd(1:) distribution 
is centered at zero (the mean is zero) and its covariance matrix is given by 1:. 

From the representation of the density for the general multivariate asymmetric case, we have 
that the SLd(1:) density function (for a nonsingular distribution) is of the form 

(5.2.2) 
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[ 1 0.5 ] 
Cov(Y) = 0.5 0.5 

GAUSSIAN 

,. 
')' ')' : . 
.., .., 

..... -2 ..... -2 

• .. " . . .. 
": " . • t. . . 

... 
LAPLACE 

: . 
1: = COV(Y) : 

')' .~;, 
')' .. :~:. . . 

.., .., 

..... -2 ..... -2 

Figure 5.4: Correlated Laplace and Gaussian random samples. Monte-Carlo simulation is based on 
the described algorithm. (The sample size equals 2000.) 

where v = (2 - d)/2 and KvO is the modified Bessel function of the third kind given by (A.0.4) or 
(A.0.5) in the appendix. This density was derived in George and Pillai (1988) for the case 1: = 2Id 
and in Anderson (1992) as a special case of multivariate Linnik density (note that density (8) of 
Anderson (1992) contains an extra factor of -J2Q). Additional properties of SCd(1:) are provided 
in the exercises below. They should be viewed as an integral part of this chapter. 

5.3 Exercises 
Exercise 5.3.1 Let X = (Xl, X2)' have a standard bivariate Laplace distribution BSC(l, 1,0). 
Show that the two random variables X I and X2 are uncorrelated but not independent. 

Exercise 5.3.2 Let X = (XI, X2)' have a standard bivariate Laplace distribution BSC(l, 1,0). 
Convert to polar coordinates by setting X I = R cos (), X 2 = R sin () (R > 0, 0 < () < 2rr). 

(a) Derive the marginal density function of R. 
(b) Derive the marginal density function of (). 
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(c) Are Rand e independent? 
(d) Repeat parts (a)-(c) under the assumption that X I and X2 are i.i.d. with the standard Laplace 

.c(0, 1) distribution. 
(e) Repeat parts (a)-(c) under the assumption that XI and X2 are i.i.d. with the standard normal 

distribution. 

Exercise 5.3.3 Let X = (XI, X2)' '"'-' BS.c(al, a2, p). 
(a) Derive the marginal p.d.f.'s of XI and X2. 
(b) Derive the conditional p.d.f. of X 2 given X I = XI. 

Exercise 5.3.4* LetX = (X I, ... , Xd)' have a symmetric multivariate Laplace distribution S.cd(1:), 
and let \11 be the ch.f. of X. 

(a) Verify that the mean vector of X is 0 and the covariance matrix of X is 1:. 
(b) Using the following expression for the kth moment of X, 

1 ak \l1(t) I 
mk(X) = -:r atat' ' 

I ... t=O 

show that every moment of X of odd order vanishes. 
(c)* Using the following expression for the kth cumulant of X, 

1 ak log \11 (t) I 
q(X) = -:r atat' ' 

I ... t=O 

show that CI (X) = 0, C2(X) = 1:, C)(X) = 0 and 

(5.3.1) 

(5.3.2) 

(5.3.3) 

[Kollo (2000)], where vec A is the vec operator of matrix A, A ® B is the Kronecker product of 
matrices A and B, and ~d is the vec-permutation matrix [see, e.g., Harville (1997) or Magnus and 
Neudecker (1999) for the matrix notation]. What are the corresponding results for the multivariate 
normal vector X with vector mean zero and covariance matrix 1:? [You may wish to consult Kotz et 
al. (2000).] 

Exercise 5.3.5* Recall that if X is a univariate standard classical Laplace variable with density 
p(x) = !e- 1xl (-00 < x < 00), then the ordinate p(X) has uniform distribution on (0, 1/2), while 

the ordinate p(Z) fails to be uniform for standard normal variable Z with density p(x) = ~e-x2/2 
v27r 

(-00 < x < 00) (see Exercise 2.7.9). However, show that if the variables XI and X2 have bivariate 
normal distribution with p.d.f. 

then the ordinate P(XI, X2) is uniform on (0,2n) [Troutt (1991)]. Investigate the corresponding 
case of standard bivariate Laplace distribution with p.d.f. 

We suggest that you consult Troutt (1991), Kotz and Troutt (1996), or Kotz et al. (1997). 
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Exercise 5.3.6 Generalize the results of Exercises 2.7.9 and 5.3.5 by showing that if X is a random 
vector in IRd , d ~ 1, with probability density function 

f(x) = Cde-<x'x)d/2 , 

then the random variable U = f(X) has uniform distribution on (0, Cd). What is the value of Cd? 

Exercise 5.3.7 Let Y = (Yl, ... , Yd)' have a multivariate A£d(O, Id) distribution in IRd . Show that 
the random vector 

has a multivariate Cauchy distribution with density 

( 
d_l)-d/2 

r(d/2)7r-d/ 2 1 + {; 

and is independent of IIYII = (E1=1 Yl)1/2. This result is actually a characterization of spherically 
symmetric distributions [see George and Pillai (1988)]. 
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Asymmetric Multivariate Laplace Distribution 

In this chapter we present the theory of a class of multivariate laws that we term asymmetric Laplace 
(AL) distributions [see Kozubowski and Podgorski (1999bc), Kotz et al. (2000b)]. The class is an 
extension of both the symmetric multivariate Laplace distributions and the univariate AL distribu­
tions that were discussed in previous chapters. This extension retains the natural, asymmetric, and 
multivariate features of the properties characterizing these two important subclasses. In particular, the 
AL distributions arise as the limiting laws in a random summation scheme with i.i.d. terms having a 
finite second moment, where the number of terms in the summation is geometrically distributed inde­
pendently of the terms themselves. This class can be viewed as a subclass of hyperbolic distributions 
and some of its properties are inherited from them. However, to demonstrate an elegant theoretical 
structure of the multivariate AL laws and also for the sake of simplicity we prefer direct derivations of 
the results. Thus we provide explicit formulas for the probability density and the density of the Levy 
measure. The results presented also include characterizations, mixture representations, formulas for 
moments, a simulation algorithm, and a brief discussion of linear regression models with AL errors. 

The multivariate laws discussed, unlike the laws of Ernst (1998) already mentioned, have 
multivariate (and univariate) Laplace marginal distributions, allow for asymmetry, and in general 
are not elliptically contoured. Asymmetric Laplace laws can be defined in various equivalent ways, 
which we express in the form of their characterizations and representations. Their significance comes 
from the fact that they are the only distributional limits for (appropriately normalized) random sums 
of i.i.d. random vectors (r.v.'s) with finite second moments 

(6.0.1) 

where vp has a geometric distribution with the mean 1/ p (independent of XU) 's): 

P(Vp = k) = p(1 - p)k-l, k = 1,2, ... , (6.0.2) 

and p converges to zero [see, e.g., Mittnik and Rachev (1991)). Thus these multivariate laws arise 
rather naturally. Since the sums such as (6.0.1) frequently appear in many applied problems in biology, 
economics, insurance mathematics, reliability, and other fields [see examples in Kalashnikov (1997) 
and references therein], AL distributions should have a wide variety of applications. In particular, 
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this class seems to be suitable for modeling heavy-tailed asymmetric multivariate data for which one 
is reluctant to sacrifice the property of finiteness of moments. (Multivariate stable distributions are 
an alternative where this concession has to be made.) 

From the standpoint of classical distribution theory, theAL laws form a subclass of the geometric 
stable distributions [see, e.g., Rachev and SenGupta (1992)]. The geometric stable laws approximate 
geometric compounds (6.0.1) with arbitrary components, including those with infinite means [see 
Kozubowski and Rachev (1999b) for references on multi variate geometric stable laws]. The geometric 
stable distributions, similar to stable laws, have the tail behavior governed by the index of stability 
Ot E (0,2]. The AL distributions correspond to the geometric stable subclass with Ot = 2. Thus they 
play an analogous role among geometric stable laws as Gaussian distributions do among stable laws. 
Like Gaussian distributions, they have finite moments of all orders, and their theory is equally elegant 
and straightforward. However, in spite of finiteness of moments, their tails are substantially longer 
than those for Gaussian laws; this coupled with the fact that they allow for asymmetry makes them 
more flexible and attractive for modeling heavy-tailed asymmetric data. 

Incidentally, the multivariate AL laws can be obtained as a limiting case of the generalized 
hyperbolic distributions, introduced by Barndorff-Nielsen (1977). Consequently, certain properties of 
AL laws can be deduced from the corresponding properties of the generalized hyperbolic distributions 
and passing to the limit. However, direct proofs for AL laws are often simpler than their "hyperbolic" 
counterparts and in addition provide better insight into this class, and we have included them in our 
work. Moreover, many properties are quite specific to AL laws, such as their convolution properties 
in relation to the random summation model. From the latter point of view, which coincides with our 
main interest and motivation, the relation to the generalized hyperbolic laws, although an important 
one, is not crucial. 

6.1 Bivariate case: Definition and basic properties 
6.1.1 Definition. The bivariate asymmetric Laplace distributions constitute a five parameter family 
of two-dimensional distributions given by the characteristic function 

where the five parameters ml, m2, aI, a2, and p satisfy 

ml E~, m2 E JR, al ~ 0, a2 ~ 0, p E [0, 1]. 

In what follows, the notation .l3AC(m I, m2, aI, a2, p) stands for the asymmetric bivariate Laplace 
distribution with the given parameters. 

The distribution is no longer elliptically contoured (unless ml = m2 = 0), which justifies 
using the term "asymmetric distributions." The following property follows immediately from the 
definition. 

Proposition 6.1.1 A linear combination al YI +a2 Y2 of the coordinates of a .l3A.C(m I, m2, aI, a2, p) 
random vector Y = (YI, Y2)' has a one-dimensional AL distribution AC(/L, a), where 

As in the symmetric case, the marginal distributions of a .l3AC distribution are univariate 
asymmetric Laplace distributions. 
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6.1.2 Moments. The moments of the SAL distribution are easily obtained by differentiating their 
characteristic function. In particular, we have the following formulas for the means and the elements 
of the variance-covariance matrix of a SAL(ml, m2, 0'1,0'2, p) random vector Y = (YI, Y2)': 

EYI =ml, EY2=m2; VarYI =ar+mr, VarY2=ai+m~, 
COV(Yl, Y2) = ata2P + mlm2· 

Note that as in the symmetric case, even if the components of Yare uncorrelated (i.e., 0'1 a2P + 
mlm2 = 0), they are not independent. Moreover, the matrix 1: given by (5.1.1) is no longer the 
variance-covariance matrix of Y (unless m = (m 1, m2)' = 0). 

6.1.3 Densities. The expression for densities is obtained from the general case considered in the 
next section [equation (6.5.3)]. For a nonsingular distribution, we have 

where 

exp [«mta2/al - m2P)x + (m2al/a2 - mlP) Y) /(ata2(l - p2))] 
g(x,Y) = --~----------------~====~--------------~ 

JT ata2Ji=P2 

. Ko (c(m1' m2, 0'1,0'2, P)J x2a2/al - 2pxy + y2al/a2) , 

2ata2(l - p2) + mra2/a l - 2mlm2P + m~atla2 
ala2(l - p2) 

In Figure 6.1, we present four different asymmetric bivariate Laplace densities for which the 
covariance matrix is exactly the same as for the symmetric cases of Gaussian and Laplace distributions 
presented in Figure 5.1. These densities are still uncorrelated but the matrix 1: is no longer diagonal. 

The four graphs deal with various cases when m 1 i= 0 and m2 i= 0, and thus the distributions 
are no longer elliptically contoured (symmetric). The values of the five parameters are as follows. 
The two cases in the top row of Figure 6.1 correspond to m I = m 2 = 1/2 and 0'1 = 0'2 = --13/2, 
P = -1/3 (left graph) and 0'1 = --13/2,0'2 = 1/2, P = ---13/3 (right graph). The two cases in 
the bottom row of Figure 6.1 correspond to ml = 1/2, m2 = 1/4 and 0'1 = --13/2,0'2 = .JI5/4, 
P = -.J5/15 (left graph) and 0'1 = --13/2,0'2 = ./7/4, P = -ffi/21 (right graph). For the 
meaning of the presented contour lines, see Section 5.1. 

The graphs indicate that even in the uncorrelated case, the Laplace distributions exhibit a large 
variety of asymmetric features, this property not shared by Gaussian distributions (compare with 
Figure 5.1). 

Similar graphs are obtained for the correlated densities corresponding to the covariance matrices 
gi ven in Section 5.1. Figure 6.2 should be compared with the symmetric case provided in Figure 5.2. In 
both cases, we have the same correlation structure. These graphs present densities of four asymmetric 
Laplace distributions with parameters specified as follows: 

1:=[ 0.75 0.25 l m = (0.5, 0.5)'; 
0.25 0.75 

1:=[ 0.75 0.25 l m = (0.5, 0.5)'; 
0.25 0.25 

1:=[ 0.75 0.375 l m = (0.5,0.25)'; 
0.375 0.9375 

1:=[ 0.75 0.375 ] , m = (0.5,0.25)'. 
0.375 0.4375 

Asymmetry of the distributions is clearly noticeable. 



242 6. Asymmetric Multivariate Laplace Distribution 

LAPLACE 

m = (0.5,0.5)' 
1: =1= Cov(Y) 

LAPLACE 

m = (0.5,0.25)' 
1: =1= Cov(Y) 

Cov(Y) = [~ ~] Cov(Y) = [01 0] 0.5 

-3 -2 - 1 

Figure 6.1: Asymmetric bivariate Laplace densities corresponding to the uncorrelated distributions. 
The covariances are the same as in the symmetric case in Figure 5.1. 

6.1.4 Simulation of bivariate asymmetric Laplace variates. The general algorithm for simulat­
ing asymmetric multivariate Laplace variables is derived in Section 6.4 of the next chapter. In the 
bivariate case it takes the following form: 

BA.c(m1, m2, 0"1,0"2, p) generator 

• Generate a bivariate normal variable X with mean zero and covariance matrix 1: given 
by (5.1.1). 

• Generate a standard exponential variable W . 

• Set Y +-- v"W. X + mW, where m = (m1, m2)'. 

• RETURNY. 

Note that compared with the corresponding algorithm for the symmetric case (see Section 5.1), 
here we have an extra variable m W, which combined with v"WX leads to an AL variable. 
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LAPLACE 

m = (0.5,0.5)' 
l: i= Cov(Y) 

LAPLACE 

m = (0.5,0.25)' 
l: i= Cov(Y) 

Cov(Y) = [0\ 0.5 ] Cov(Y) = [ 0\ 0.5 ] 
0.5 

... 
~ 

Figure 6.2: Laplace asymmetric bivariate densities corresponding to correlated distributions. The 
same covariances as in the symmetric case in Figure 5.2 are used. 

In Figures 6.3 and 6.4, we present graphs of the same densities (based on Monte-Carlo simu­
lation) as those presented in the graphs of the densities in Figures 6.1 and 6.2. 

6.2 General multivariate asymmetric case 
6.2.1 Definition. First, we provide a definition of multivariate AL laws. 

Definition 6.2.1 A random vector Y in IRd is said to have a multivariate asymmetric Laplace distri­
bution (AL) if its characteristic function is given by 

1 
lJ1(t) = 1 ' 

1 + 2t'1:t - im't 
(6.2.1) 

where m E IRd and 1: is a d x d nonnegative definite symmetric matrix. 

We use the notation A£d(m, 1:) to denote the distribution ofY, and write Y ~ A£d(m, 1:). If 
the matrix 1: is positive-definite, the distribution is truly d-dimensional and has a probability density 
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Cov(Y) = [~ ~] Cov(Y) = [01 0] 0.5 

.. . .. . . 
. . . .. .. -.. 

LAPLACE 
m = (0.5,0.5)' : 
l: i= Cov(Y) 

'l' .. 'l' 

1 1 

-4 -2 -4 -2 

, 
... .. 

. .. .. 
.", .. 

LAPLACE 
. ~ 

~. 

m = (0.5,0.25)' 0 . . 
l: i= Cov(Y) 

'l' 'l' 

1 1 

-4 -2 -4 -2 

Figure 6.3: Uncorrelated asymmetric Laplace random samples. Monte-Carlo simulation based on the 
algorithm described in the text. (The sample size equals 2000.) 

function. Otherwise, it is degenerate and the probability mass of the distribution is concentrated in a 
linear proper subspace of the d-dimensional space. 

For m = 0 the distribution ALd(O, 1:) reduces to the symmetric multivariate Laplace law 
Ld(1:) discussed in Section 5.2 of Chapter 5 (although more appropriately it should perhaps be 
called an elliptically contoured Laplace law). 

Remark 6.2.1 The parameter m = (mJ, ... , md)' appearing in (6.2.1) is not a shift parameter: if 
Y '" ALd(m, 1:) it does not follow that Y + n '" ALd(m + n, 1:). In fact, the distribution ofY + n 
is not even AL (unless n = 0). However, the mean of Y exists and equals m. 

Remark 6.2.2 The class of AL laws is not closed under summation of independent r. v. 's: if X and 
Yare independent AL r. v. 's, then in general X + Y does not possess an AL law. 

6.2.2 Special cases. In the following remarks we discuss some special cases of AL laws. 



LAPLACE 

m = (0.5,0.5)' 
1: i= Cov(Y) 

LAPLACE 

m = (0.5,0.25)' 0 

1: i= Cov(Y) 

-4 

Cov(Y) = [0\ 0.5 ] 

-2 
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.. 

-2 
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-4 

-4 

Cov(Y) = [0~5 ~:~ ] 

-2 

-2 

.- ..... 
" .-.:-:­. ~ 

.' . ... . 

Figure 6.4: Correlated asymmetric Laplace random samples. Monte-Carlo simulation based on the 
algorithm described in the text. (The sample size equals 2000.) 

Remark 6.2.3 For d = 1 we obtain a univariate A£(tt, a) distribution with mean tt and variance 
a 2 + tt2 . 

Remark 6.2.4 For d = 2 the distribution A£2(m, 1:) with m = (m), m2)' and 1: given by (5.1.1) 
reduces to BA£(m), m2, a), a2, p) distribution (and to the BS£(a), a2, p) distribution for m = 0). 

Remark 6.2.5 Here is an example of a degenerate AL law in ]Rd. If Y has a univariate A£(1, 1) law 
and mE ]Rd, then the r.v. Y = mY has the ch.f. 

lJiy(t) = Eeit'y = 1/Iy(t'm) = ---;-------
1 + ~t'(mm')t - im't· 

Thus Y '"" A£d(m, 1:) with 1: = mm'. 
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Remark 6.2.6 Consider an r.v. Y ~ A£d(m, 0), with the ch.f. 

I 
\{Iy(t) = 1 . 't' -1m 

(6.2.2) 

Then Y admits the representation Y ~ mZ, where Z is the standard exponential variable. Indeed, 
we have 

\{Iy(t) = Eeit'y = l{!z(t'm) = __ I __ 
1- im't 

This distribution is related to the Marshall-Olkin exponential distribution of the r. v. 

given by its survival function 

P(W1 > Xl, .,. , Wd > Xd) = e-max(Xl, ... ,Xd), Xi ~ 0, i = 1,2, ... , d. 

Since the ch.f. of W is 

\{Iw(t) = (1 - i(t1 + ... + td))-l, 

we have Y ~ D(m) . W, where D(m) is a diagonal matrix with the elements of the vector m on its 
main diagonal. 

6.3 Representations 
6.3.1 Basic representation. The following result follows directly from the representation of geo­
metric stable laws discussed in Kozubowski and Panorska (1999). 

Theorem 6.3.1 Let Y "-- A£d(m, 1:) and let X "-- Nd(O, 1:). Let W be an exponentially distributed 
r.v. with mean 1, independent ofX. Then 

(6.3.1) 

Remark 6.3.1 More general mixtures of normal distributions, where W has a generalized inverse 
Gaussian distribution, were considered by Barndorff-Nielsen (1977). A generalized inverse Gaussian 
distribution with parameters (A, X, l{!), denoted G I G(A, X, l{!), has the p.d.f. 

( ) _ (1{I/X)I./2 1.-1 -i(xx-1+Vtx) 0 
px - r;;-::r;X e ,x> , 

2KI.(v xl{!) 
(6.3.2) 

where KI. is the modified Bessel function of the third kind (see the appendix). The range of para me­
ters is 

x ~ 0, l{! > 0, A > 0; X > 0, l{! > 0, A = 0; X > 0, l{! ~ 0, A < O. 

Barndorff-Nielsen (1977) considered mixtures of the form 

Y~JL+mW+W1/2X, (6.3.3) 

where X is as before, m = 1:{3 with some d-dimensional vector {3, and W "-- G I G(A, X, l{!). With 
the notation X = 82, l{! = ~2, and a 2 = ~2 + f3'1:f3, Y has a d-dimensional generalized hyperbolic 
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distribution with index A, denoted by Hd(A, Of., (3, 8, IL, 1:) [a hyperbolic distribution is obtained for 
A = 1; see, e.g., Blaesild (1981)]. Taking the limiting case GIG(1, 0, 2) as a mixing distribution 
(which is a standard exponential) and setting 1:f3 = m and IL = 0 so that 82 = 0, ~2 = 2, and 

Of. = J2 + m'1:-1m, we obtain the mixture Wm + Wlj2X, where X is Nd(O, 1:), independent of 
W, which has a multivariate AL distribution. 

Remark 6.3.2 By Theorem 6.3.1, each component Yi of an AL r.v. Y admits the representation 

Yi :!::. mi W + W1/2aiiXi, (6.3.4) 

where Xi is standard normal variable. This is the representation 3.2.1 obtained previously for uni­
variate AL laws. 

6.3.2 Polar representation. Note that AL laws with m = 0 are elliptically contoured (EC), as 
their ch.f. depends on t only through the quadratic form t'1:t. The class of elliptically symmetric 
distributions consists of EC laws with nonsingular 1: and density 

(6.3.5) 

where g is a one-dimensional real-valued function (independent of d) and kd is a proportionality con­
stant [see, e.g., Fang etal. (1990)]. We shall denote the laws with the density (6.3.5) by ECd(m, 1:, g). 
It is well known that every r.v. Y "V ECd(O, 1:, g) admits the polar representation 

Y:!::. RHU(d), (6.3.6) 

where H is a d x d matrix such that HH' = 1:, R is a positive r. v. independent of U(d) (having the 
distribution of v'Y'1:- 1 V), and U(d) is a r.v. uniformly distributed on the sphere §d. Thus HU(d) is 
uniformly distributed on the surface of the hyperellipsoid 

Our next basic result identifies the distribution of R in the class of AL distributed variables Y 
[see Kotz et al. (2000b)]. 

Proposition 6.3.1 Let Y "V ACd(O, 1:), where 11:1 > O. Then Y admits the polar representation 
(6.3.6), where H is a d x d matrix such that HH' = 1:, U(d) is an T.V. uniformly distributed on the 
sphere §d, and R is a positive T.V. independent ofU(d) with density 

2Xd/2 Kd/2-1 cJ2x) 
fR(X) = (v'2)d/2-1 r(dj2) , x> 0, 

where Kv is the modified Besselfunction of the third kind defined by (A.0.4) in the appendix. 

(6.3.7) 

Proof By Theorem 6.3.1, Y has the representation (6.3.1) with m = O. Write 1: = HH', where His 
a d x d nonsingular lower triangular matrix [see, e.g., Devroye (1986), p. 566, for a recipe for such 
a matrix for a given nonsingular 1:]. Then the r.v. X "V Nd(O, 1:) in (6.3.1) has the representation 
X = HN, where N "V Nd(O, Id). Further, the r.v. N, which is EC, has the well-known representation 

N :!::. RNU(d), where RN and U(d) are independent, U(d) is uniformly distributed on §d, while RN is 
positive with density 

x> O. (6.3.8) 
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(It is distributed as the square root of a chi-square r.v. with d degrees of freedom.) Therefore, it 
is sufficient to show that WI/2 RN has density (6.3.7). To this end, apply standard transformation 
theorem to write the density of WI/2 RN as 

(6.3.9) 

Let h.,x,>/! be the GIG density (6.3.2) with 1{1 = 1, X = 2y2, and A = d/2 - 1. Then relation (6.3.9) 
becomes 

(6.3.10) 

which yields (6.3.7) since the function h.,x,>/! integrates to one. o 

Remark 6.3.3 In cased = 1, where theAL law has ch.f.1{I(t) = (l +a"t2 /2)-1, the r.v. U(1) takes 
on values ±1 with probabilities 1/2, while the Bessel function simplifies to 

(see formula (A.O.l1) in the appendix). Thus R !!: (1/V2)W, where W is a standard exponential 
variable. Consequently, the right-hand side of (6.3.6) becomes -Ja" /2· WU(I), and we obtain the 
representation of symmetric Laplace r. v. 's already discussed in Section 2.2 of Chapter 2. 

6.3.3 Subordinated Brownian motion. All AL r. v. 's can be interpreted as values of a subordinated 
Gaussian process. More precisely, if Y '" ALd(m, 1:), then 

Y !!: X(W), 

where X is a d-dimensional Gaussian process with independent increments, X(O) = 0, and X(l) '" 
Nd(m, 1:). This follows immediately from evaluating the characteristic function on the right-hand 
side through conditioning on the exponential random variable W. Consequently, AL distributions 
may be studied via the theory of (stopped) Levy processes [see Bertoin (1996)]. 

6.4 Simulation algorithm 
The problem of random number generation for symmetric Laplace laws was posed in Devroye (1986) 
and reiterated in Johnson (1987): "Variate generation has not been explicitly worked out for (the 
bivariate Laplace and generalized Laplace distributions) in the literature." However, simulation of 
generalized hyperbolic random variables was studied earlier by Atkinson (1982). The algorithms were 
based on the normal mixture representations of the distributions under consideration. In this sense, 
in principle the problem of simulations for multivariate AL distributions was resolved. However, 
the solution cannot be considered to be an explicit one, since the fact that AL distributions can be 
obtained as the limiting case of hyperbolic distributions is not commonly known. 

To state simulation algorithm for the general multivariate AL distributions, we use represen­
tation (6.3.1). The approach is quite straightforward [see Kozubowski and Podg6rski (l999b)], as 
both exponential and multivariate normal variates are relatively easy to generate and appropriate 
procedures are by now implemented in all standard statistical packages. 
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A£d(m, 1:) generator 

• Generate a standard exponential variate W. 

• Independently of W, generate multivariate normal Nd(O, 1:) variate N . 

• Set Y +- m· W + ~ . N. 

• RETURNY. 

This algorithm and pseudorandom samples of normal and exponential random variables ob­
tained from the S-Plus package were used to produce the graphs of bivariate Laplace distributions in 
Figures 5.3, 5.4, 6.3, and 6.4. 

6.5 Moments and densities 
6.5.1 Mean vector and covariance matrix. The relation between the mean vector EY, the co­
variance matrix Cov(Y) and the parameters m and 1: can easily be obtained from the representation 
(6.3.4). We have EYi = mi, so 

E(Y) = m. 

Furthermore, the variance-covariance matrix of Y is 

Cov(Y) = 1: + mm'. 

Indeed, since E(XiXj) = ail and EW2 = 2, we have 

Thus 

E(YiYj) = E[(mi W + W 1/ 2Xi)(mj + W 1/2Xj)] = mimjEW2 + E(W)E(XiXj) 

= 2mimj + ail. 

6.5.2 Densities in the general case. In this section we study AL densities (assuming that the 
distribution is nonsingular). The representation given in Theorem 6.3.1, coupled with conditioning 
on the exponential variable W, produces a relation between the distribution functions and the densities 
of AL and multivariate normal random vectors. Let GO and F(·) be the c.d.f.'s of A£d(m, 1:) and 
Nd(O, 1:) r.v.'s, respectively, and let g(.) and fO he the corresponding densities. 

Corollary 6.5.1 Let Y "- .ALd (m, 1:). The distribution function and the density (if it exists) of Y 
can be expressed as follows: 

G(y) = 1000 F(Z-I/2 y - zl/2m )e-Zdz 

g(y) = 1000 f(z-I/2 y _ zl/2m)z-d/2e-zdz. (6.5.1) 

We can express an AL density in terms of the modified Bessel function of the third kind (see 
the definition in the appendix). By (6.5.1), the density ofY "- A£d(m, 1:) becomes 

() (2 )-d/21T-I-l/2!ooo (y-zm)'1:-1(y-zm) ) -d/2d g Y = IT,L, exp - - Z Z z. 
o 2z 

(6.5.2) 
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For y = 0, we arrive at 

so the density blows up at zero unless d = 1. For y =1= 0, we can simplify the exponential part of the 
integrand and substitute w = z(1 + m'1:- I m/2) in (6.5.2) to obtain 

where a = J (2 + m'1:- I m)(y'1:- I y). Taking into account the integral representation (A.O.4) of the 
corresponding Bessel functions (see the appendix), we finally obtain the following basic result. 

Theorem 6.5.1 The density o/Y '" ACd(m, 1:) can be expressed as 

(6.5.3) 

where v = (2 - d)/2 and Kv(u) is the modified Besselfunction o/the third kind given by (AO.4) or 
(AO.5) in the appendix. 

Remark 6.5.1 This density is a limiting case of a generalized hyperbolic density 

~A exp(p'(x - JL»Kd/2-A(aJ82 + (x - JL)'1:-1 (x - JL» 

(21T)d/211:II/28AKA(8~)[J82 + (x - JL)'1:- I (x - JL)/a]d/2-A 
(6.5.4) 

with A = 1, ~2 = 2, 82 = 0, JL = 0, p = 1:-Im, and a = J2 + m'1:- I m (see the remarks 
following Theorem 6.3.1). Note that in case 8 = 0 we use the asymptotic relation (AO.12) given in 
the appendix. 

6.5.3 Densities in the symmetric case. In the symmetric case (m = 0), we obtain the density 
(5.2.2) of the SCd(1:) distribution 

6.5.4 Densities in the one-dimensional case. If d = 1, we have 1: = all = a and the ch.f. 
corresponds to a univariate AC(IL, a) distribution with a 2 = 1: and f.1, = m. In this case we have 
v = 1/2, and the Bessel function is simplified as in (AO.l1). Consequently, the density becomes 

() 1 -:!:f(Y-/Losign(y» 
g y = -e (T , 

Y 

where y = J f.1,2 + 2a2, and coincides with the density of a univariate AL distribution given by 
(3.1.10) with e = O. In the symmetric case (IL = 0), we obtain the density of a univariate Laplace 
distribution with mean zero and variance a 2. 
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6.5.5 Densities in the case of odd dimension. If d is odd, the density can be written in a closed 
form. Indeed, suppose d = 2r + 3, where r = 0, 1,2, ... , so v = (2 - d)/2 = -r - 1/2. Since 
Kv(u) = K_v(u) and the Bessel function Kv with v = r + 1/2 has an explicit form (A.0.1O) given 
in the appendix, the AL density (6.5.3) becomes 

C r ey'l:-lm-C,Jy'l:-ly r (r + k)! / 
g(y) = L (2C"Y'1:-1y)-k, y;fO, 

(21l)y'1:-1yy+II1:11/2 k=O (r - k)!k! 

where v = (2 - d)/2 and C = -/2 + m'1:-1m. 
The density has a particularly simple form in three-dimensional space (d = 3), where we have 

r = 0 and 

6.6 Unimodality 
6.6.1 Unimodality. We already know that all univariate AL distributions are unimodal with the 
mode at zero. There are many nonequivalent notions of unimodality for probability distributions in 
IRd [see, e.g., Dharmadhikari and Joag-Dev (1988)]. A natural extension of univariate unimodality 
is star unimodality in IRd , which for a distribution with continuous density f requires that f be 
nonincreasing along rays emanating from zero. Here is an exact criterion for star unimodality due to 
Dharmadhikari and Joag-Dev (1988). 

Criterion 1 A distribution P with continuous density f on IRd is star unimodal about zero if and 
only if whenever 

o < t < u < 00 and x ;f 0, 

then 

f(ux) ::: f(tx). 

It is clear from its statement that the criterion remains valid for densities discontinuous at zero 
as well. We show that all truly d-dimensional AL laws are star unimodal about zero. 

Proposition 6.6.1 Let Y ~ A£d (m, 1:) with II: I > O. Then the distribution ofY is star unimodal 
about O. 

Proof Assume that d > 1 and let x ;f O. For t > 0 define h(t) = log.l;'(tx), where g is the density 
of Y given by (6.5.3). Write 

where v = 1 - d/2 and the constants Cl, C2, and C3 are given by 

2(x'I:-1x)v/2 
Cl = 1 > 0, 

(2JT)d/21I:ll/2(2 + m'I:- m)v/2 

C2 = m'I:-1x E IR, 

C3 = J2 + m'I:-1mJx'I:-1x > O. 
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Showing that h is an nonincreasing function of t is required. The derivative of h with respect to t is 

d V K' (C3t) 
-h(t) = C2 + - + v C3. 
dt t Kv(C3t) 

(6.6.1) 

Use properties (A.0.8)-(A.0.9) of Bessel function Kv (listed in the appendix) to write (6.6.1) as 

d Kv-I (C3t) 
-h(t) = C2 - C3· 
dt Kv(C3t) 

(6.6.2) 

If C2 < 0, then (6.6.2) implies that h'(t) :s 0 since the Bessel function Kv is always positive and 
C3 > O. Otherwise, writeI:-1 = Q'Q and use the Cauchy-Schwarz inequality to conclude that 

Thus the conclusion h'(t) :s 0 follows if we show that the ratio KE(~~i;) is greater or equal to one. 
Since, for any v, Kv(x) = K-v(x), this is equivalent to showing that 

K- v(C3t) :s K-v+1 (C3 t ). 

This is indeed true since -v :::: 0 (as d > 1) and by using Property 3 of Bessel functions listed in the 
appendix, we obtain the desired inequality. 0 

Remark 6.6.1 Any AL r. v. Y is linear unimodal about 0 in the sense that every linear combination 
e'Y is univariate unimodal about zero [see Definition 2.3 of Dharmadhikari and Joag-Dev (1988)]. 
This follows from part (iii) of Corollary 6.8.1 since all univariate AL laws are unimodal about zero. 

6.6.2 A related representation. A univariate r. v. Y is unimodal about zero if and only if it has the 

representation Y ~ U X, where U and X are independent and U is uniformly distributed on (0, 1) 
[see, e.g., Shepp (1962)]. Similarly, every star unimodal (about 0) r.v. in ffi.d has the representation 

Y ~ UI/dX, where U is as before and is independent from X [see Dharmadhikari and Joag-Dev 
(1988), Theorem 2.1]. Below we identify the distribution of X in case of a symmetric AL r.v. Y. 
Let Y "-' A.L:d (0, I:) with I I: I > O. From the proof of Proposition 6.3.1 we have the representation 

Y ~ W I/2RNHU(d), where H is a matrix satisfying I: = HH', U(d) is uniform on the unit sphere 
§d, W is standard exponential, RN has the density (6.3.8), and all variables are independent. Note 

that RN ~ V I / d , where V has density 

exp( _x2/d /2) 

fv(x) = 2d/2r(d/2 + 1)' x> O. 

The density of V is unimodal; hence by Shepp (1962) it has the representation V ~ US for some 
S (where U is standard uniform and independent of S). It can be shown by routine calculations that 
the density of S is 

X2/d exp( _x2/d /2) 

fs(x) = d2d/2r(d/2 + 1) , x> O. 

Thus we have Y ~ U I/d (WI/2 SI/dHU(d». The density of WI/2 SI/d is readily obtained also as 

2xd/ 2+! Kd/2(-J2X) 
fW 1j2S1jd(X) = d/2 ' x > O . 

...ti r(d/2 + 1) 
(6.6.3) 

The following statement summarizes this discussion. 
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Theorem 6.6.1 Let Y ~ ACd(O, 1:), where 11: 1 > 0 and 1: = HH'. Then Y admits the representa­
tion 

Y 1: UljdX, 

where U and X are independent, U is uniform on (0, 1) while X is elliptically symmetric with the 

representation X 1: RxHU(d), where U(d) is uniform on §d while Rx has density (6.6.3). 

6.7 Conditional distributions 
6.7.1 Conditional distributions. We obtain conditional distributions of Y ~ A£d(m, 1:) with a 
nonsingular 1:. The derivation is similar to that for the case of multivariate generalized hyperbolic 
distribution [see Blaesild (1981)]. It turns out that the conditional laws are not AL, but generalized 
hyperbolic ones. However, the conditional distributions can be AL if Y has multivariate K -Bessel 
function distribution (6.9.1), discussed in Section 6.9. The conditional distributions of a multivariate 
AL laws are given in the following result [Kotz et al. (2000b)]. 

Theorem 6.7.1 Let Y ~ gACd(m, 1:, s) have chI (6.9.1) (see Section 6.9) with nonsingular 1:. 
Let Y' = (Y~, Y 2') be a partition ofY into r x 1 and k x I-dimensional subvectors, respectively. 
Let (m~ , m;) and 

be the corresponding partitions ofm and 1:, where 1:11 is an r x r matrix. 

(i) If s = 1 (so that Y is AL), then the conditional distribution of Y 2 given Y I = YI is the 
generalized k-dimensional hyperbolic distribution Hk(J..., a, p, 8, fL, A) having density 

~J.. exp(p' (Y2 - fL»Kkj2-J.. (aJ 82 + (n - fL)' A -I (n - fL») 

p(Y2Iyt} = kj2-J.. ' (6.7.1) 

(2n)kj2IAllj28J..KJ..(8~) [J82 + (n - fL)'A-tcn - fL)/aJ 

where J... = 1- r/2, a = J~2+P'AP, p = A- I (m2 -1:211:01ml), 8 

fL = 1:211:j/YI, A = 1:22 -1:211:j/1:12, and~ = J2+m~1:j/ml. 
(ii) Ifml = 0, then the conditional distribution ofY2 given YI = 0 is gACk(m2.1, 1:2.1, S2.1), 

where 

s2·1 =s-r/2, 1:2·1 =1:22-1:211: 0 11:12, m2·1 =m2· 

Proof We shall sketch the proof of part (i); the proof for part (ii) is similar. By part (i) of Corol­
lary 6.8.1 with n = r, the T.v. YI is ACr(ml, 1:11). Write the densities of Y and YI according 
to (6.5.3) and simplify the ratio of the densities utilizing the familiar relations from the classical 
multivariate analysis: 

Y'1:- lm = Y;1:jllml + (m2 -1:211:j/md A- I (Y2 -1:211:j/YI), 

Y'1:- ly = Y; 1:j/ Y I + (Y2 - 1:211:j/ Y d A -I (n - 1:211:j/YI), 

m'1:- lm = m; 1:jllml + (m2 - 1:21 1: jll md A-I (m2 - 1:211:j/mt), 

11:1 = 11:22 -1:211: jll1:12I·I1:11I. 

Finally, verify that a 2 = p' AP + ~2. D 
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Remark 6.7.1 Note that in view of part (i) of the theorem, the parameter A cannot equal one. Hence, 
in case of a multivariate AL distribution no conditional law can be AL. However, in part (ii) we might 
have s - r /2 = 1, in which case we do obtain a conditional AL law for a multivariate generalized 
AL distribution. 

6.7.2 Conditional mean and covariance matrix. Since the conditional distributions of an AL r. v. 
are generalized hyperbolic distributions, we can derive expressions for the conditional mean vector 
and the covariance matrix via the theory of hyperbolic distributions. 

Proposition 6.7.1 Let Y have a GALlaw (6.9.1) with a nonsingular F.. LetY, m, andF. bepartitioned 
as in Theorem 6.7.1. Then 

and 

Proof Our outline of the proof follows Kotz et al. (2OOOb). Apply Theorem 6.7.1 and utilize 
the representation (6.3.3) of the generalized hyperbolic distribution to conclude that E(Y 21Y 1 = 
Yl) = JL + AfiE(W) and Cov(Y21Yl = Yl) = Afi(Afi)'Var(W) + AE(W), where W has the 
GIG(s, /;2, ~2) distribution (6.3.2) and JL, fi, A, 8, and ~ are as given in Theorem 6.7.1. Then ap­
ply the well-known formulas for the moments of W, E(W') = (8/~)' Ks+,(8~)/ Ks(8~) [see, e.g., 
Barndorff-Nielsen and Blaesild (1981)]. 0 

Remark 6.7.2 Ifm; F.,/ F.12 = md, then by Theorem 6.7.1, the conditional distribution of Yd given 

(Yl, ... , Yd-l) is generalized hyperbolic and symmetric about JL = F.21 F.JjlYI (since f3 = 0 in this 
case), which must be the mean of the conditional distribution. This provides an alternative way for 
proving the result on linear regression to be discussed in the next section. 

6.8 Linear transformations 
6.8.1 Linear combinations. In this section we discuss the distribution of AL vectors under the lin­
ear transformations. The next proposition shows that ifY '" A.cd (m, F.), then all linear combinations 
of components of Yare jointly AL. 

Proposition 6.8.1 Let Y = (Yl, ... , Yd)' '" A.cd(m, F.). Let A be an I x d real matrix. Then the 
random vector AY is A.ct(mA, 1:A), where mA = Am and F.A = AF.A'. 

Proof The assertion follows from the general relation 

\{IAy(t) = Eei(AY)'t = EeiY'A't = \{Iy(A't) 

and the fact that the matrix AF.A' is nonnegative definite whenever F. is. o 
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Remark 6.8.1 Note that the proof is quite general, and applies to any multivariate distribution whose 
ch.f. depends on t only through the quadratic form t1:t' and linear function m't. Thus it applies to 
all elliptically contoured distributions with ch.f. (11.2) as well as to the v-stable laws with ch.f.'s of 
the form gel + t1:t' - im't), where g is a Laplace transform of a positive random variable [see, e.g., 
Kozubowski and Panorska (1998)]. 

It follows that all univariate and multivariate marginals, as well as linear combinations of the 
components of a multivariate AL vector, are AL. 

Corollary6.8.1 LetY = (YI: ... , Yd)' ~ A.cd(m, 1:), where 1: = (aij)1.J=I' 

(i) For all n ::: d, (YI, ... , Yn ) ~ A.cn (m, t), where m = (ml, ... , mn )' and t is a n x n 
matrix with aij = aij for i, j = I, ... , n. 

(ii) For any b = (bl,'" bd)' E JR.d, the r.v. Yb = Lt=1 bkYk is univariate A.c(/L, a) with 
a = .Jb'1:b and /L = m'b. Further, ifY is symmetric AL, then so is Yb. 

(iii) For all k ::: d, Yk ~ AC(/L, a) with a = y'akk and /L = mk. 

Proof Here is an outline of the proof. For part (i), apply Proposition 6.8.1 withn xd matrix A = (aij) 
such that aii = 1 and aij = 0 for i =1= j. For part (ii), apply Proposition 6.8.1 with I = 1 and compare 
the resulting ch.f. with the characteristic function of the univariate asymmetric Laplace distribution. 
For part (iii), apply part (ii) to the standard base vectors in JR.d. D 

Remark 6.8.2 Corollary 6.8.1 part (ii) implies that the sum 2:-%=1 Yk has an AL distribution if all 
Yk'S are components of a multivariate AL r.v. (and thus all Yk'S are univariate AL r.v.'s). This is in 
contrast with a sum of i.i.d. AL r.v.'s, which generally does not have an AL distribution. 

Remark 6.8.3 Note that if Y has a nonsingular AL law (that is 1: is positive definite) and the matrix 
A is such that AA' is positive-definite, then the vector AY has a nonsingular AL law as well. In 
particular, this holds if A is a nonsingular square matrix. 

We have shown in Corollary 6.8.1, part (ii), that if Y is an AL r. v. in JR.d, then all linear 
combinations of its components are univariate AL r. v. 'so A natural question is whether the converse is 
true. As of now, we do not have a complete answer to this question. The following result provides a 
partial answer for the case where all linear combinations are univariate A.c(/L, a) with either /L = 0 
(symmetric Laplace distribution) or a = 0 (exponential distribution). 

Theorem 6.8.1 Let Y = (YI, ... , Yd)' be an r.v. in JR.d. If all linear combinations 2:-t=1 Ck Yk have 
either symmetric Laplace or exponential distribution, then Y has an ACd(m, 1:) distribution with 
either 1: = 0 or m = O. 

Proof The prooffoIIows from the corresponding result for GS laws [see Kozubowski (1997), Theo­
rem 3.3] and the fact that ACd(m, 1:) distributions with either 1: = 0 or m = 0 are strictly geometric 
stable. D 

6.8.2 Linear regression. Interestingly enough the conditions for linearity of the regression of Yd 
on YI, ... , Yd-t, where Y = (Yt, ... , Yd)' is AL, coincide with those for multivariate normal laws. 

Proposition 6.8.2 Let Y = (Yt, ... , Yd)' ~ A.cd(m, 1:). Let 

ml = (ml,.··, md-I)' 
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and let 

1:12 ) 
1:22 

be a partition of 1: such that 1: 11 is a d - 1 x d - 1 matrix. Then 

E(Yd IYI, ... , Yd-t> = al YI + ... + ad-l Yd-I (a.s.) 

if and only if 

1:11a = 1:12 and m;a = md. 

Moreover, in case 11: I > 0, condition (6.8.2) is equivalent to 

m; 1:1/ 1:12 = md and a = (ai, ... , ad-d = 1: 1111:12. 

(6.8.1) 

(6.8.2) 

Proof It is well known that for an r. v. Y with a finite mean, the condition (6.8.1) holds if and only if 

aw(t) I = al aw(t) I + ... + ad-l aW(t) I ' 
atd td=O atl td=O atd-l td=O 

where '11 is the ch.f. of Y [see, e.g., Miller (1978)]. Substitution of the AL ch.f. (6.2.1) into this 
equation followed by differentiation results in (6.8.2). In case 11:1 > 0, the solution of the first 
equation in (6.8.2) is a = 1:JjI1: 12, which solves the second equation in (6.8.2) if and only if 

m; 1:1/1:12 = md. D 

Remark 6.8.4 The regression is always linear for m = O. 

6.9 Infinite divisibility properties 
6.9.1 Infinite divisibility. The following result establishes infinite divisibility of multivariate AL 
laws and identifies their Levy measure. 

Theorem 6.9.1 Let Y have a nondegenerate d-dimensional A£d(m, 1:) law. Then the chI ofY is 
of the form 

\lI (t) = exp (In (e it .X - 1) A (dx) ) 

with 
dA 2 exp(m'1:- l x) ( Q(x) ) -d/2 
dx (x) = (2rr)d/211: 11/2 C(1:, m) Kd/2(Q(X)C(1:, m», 

where 

Q(x) = Jx'1:- l x and C(1:, m) = 12 + m'1:- l m. 

Proof Apply Proposition 4.1 from Kozubowski and Rachev (1999b), which identifies the density of 
geometric stable Levy measure to obtain 

dA (x) = roo f(Z-I/2x _ zl/2m)z-d/2-le-zdz, 
dx 10 

where fO is the density of the multivariate normal Nd(O, 1:) distribution with respect to the d­
dimensional Lebesgue measure. Next, proceed similarly to the computation of AL densities described 
in Section 6.5. Alternatively, use the representation of Y through subordinated Brownian motion and 
Lemma 7, VI.2 of Bertoin (1996) or use the fact that multivariate AL laws are mixtures of normal 
distributions by generalized gamma convolutions (cf. Exercise 2.7.61) and the corresponding results 
for the latter laws derived in Takano (1989). D 
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Remark 6.9.1 Note that for any d the density of an AL Levy measure is unbounded at x = o. 
Remark 6.9.2 In the one-dimensional case (d = 1), writing a2 = I:, fL = m, and K = ../2a j(fL + 
J fL2 + 2a 2 ), we have 

dA 1 (../2x ±I) -(±x) = - exp ---K , 
dx x a 

x> 0, 

which is the density (3.4.6) of the Levy measure of univariate AL laws (see Section 3.4 of Chapter 3). 

6.9.2 Asymmetric Laplace motion. Since multivariate AL laws are infinitely divisible, similar to 
the one-dimensional case, one can define a Levy process on [0, (0) with independent increments­
the Laplace motion {Yes), s 2: O} -so that YeO) = 0, Y(l) is given by (6.2.1), while for s > 0 the 
ch.f. ofY(s) is 

\{I(t) = ( 1 )S, 
1 + !t'I:t - im't 

s>O (6.9.1) 

[see, e.g., Teichroew (1957)]. Distributions on]Rd given by (6.9.1) will be called generalized asym­
metric Laplace (GAL) and denoted as QA£d(m, I:, s). For d = 1 we obtain the Bessel function 
distribution studied in Section 4.1 of Chapter 4. A GAL r.v. admits mixture representation (6.3.1) 
where W has a gamma distribution with density 

s-I 
x -x 

g(x) = --e . res) (6.9.2) 

The density corresponding to (6.9.1) can be expressed in terms of Bessel function as follows: 

2exp(m'I:- 1x) ( Q(x) )S-d/2 
p(x) = (2JT)d/2r(s)II:II/2 C(I:, m) Ks -d/2(Q(X)C(I:, m», (6.9.3) 

where 

In the one-dimensional case, Sichel (1973) utilized (6.9.1) for modeling size distributions of diamonds 
excavated from marine deposits in southwest Africa. In financial applications, this process is known 
as the variance gamma process (see Part III for more details on these and other applications). 

Remark 6.9.3 If 1: = Id and m = 0 we obtain the symmetric multivariate Bessel density 

(6.9.4) 

where f3 = ../2, a = s - dj2 > -dj2 and Cd is a normalizing constant independent of x [see Fang 
et al. (1990), p. 92]. In the special case a = 0 and f3 = a j../2, Fang et al. (1990) call the distribution 
corresponding to (6.9.4) a multivariate Laplace distribution. Note that this distribution belongs to 
our class of Laplace distributions only in the bivariate case (d = 2) (Exercise 6.12.14). 

Remark 6.9.4 If I: = Id and s = dtl, the density (6.9.3) simplifies to 

e-.J2+llmI1 2+m'x 
p(x) = , 

(2JT)(d-l)/2r(dt l )./2 + IIml12 
(6.9.5) 
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which is a direct generalization of the one-dimensional AL density [see Takano (1989, 1990), and 
Exercise 6.12.12]. Takano (1989) derived the Levy measure corresponding to density (6.9.5) and 
showed that for d :::: 2 these distributions are self-decomposable if and only if m = 0 (in contrast 
with the case d = 1 since all one-dimensional AL laws are self-decomposable; cf. Proposition 3.2.3). 

6.9.3 Geometric infinite divisibility. Like their one-dimensional counterparts, all multivariate AL 
laws are geometric infinitely divisible [see, e.g., Kotz et a1. (2000b)]. 

Proposition 6.9.1 Let Y ~ ACd(m, 1:). Then Y is geometric infinitely divisible and the relation 

Vp 

Y ~ Lyg) (6.9.6) 
i=l 

holds for all p E (0,1), where the yg) s are i.i.d. with the ACd(mp, p1:) distribution, vp is geo­

metrically distributed with mean 1/ p, and vp and (y~i») are independent. 

Proof Write (6.9.6) in terms of ch.f.'s. and follow the proof for the one-dimensional case (see 
Proposition 3.4.3). 0 

6.10 Stability properties 
In this section we collect various characterizations of the multivariate AL laws that exhibit their 
stability properties under appropriate summation schemes. The results presented here, unlike the ma­
jority of the previous ones, cannot be derived from the theory of generalized hyperbolic distributions 
because the latter do not possess any general convolution properties except in some special cases 
(such as the normal inverse Gaussian case or the normal variance gamma models). 

6.10.1 Limits of random sums. Analogous to the one-dimensional case, the multivariate AL laws 
are the only possible limits of geometric sums (6.0.1) of i.i.d. r.v.'s with finite second moments. 
Actually, the following result can serve as an alternative definition of this class of distributions. 

Proposition 6.10.1 Let vp be a geometrically distributed r.v. with mean 1/ p, where p E (0, 1). A 
random vector Y has an AL distribution in]Rd if and only if there exists an independent of v p sequence 
{XCi)} ofi.i.d. random vectors in]Rd with finite covariance matrix, and ap > 0, b p E ]Rd, such that 

Vp 

ap L(X(J) + b p ) ~ Y as p --+ 0. (6.10.1) 
j=l 

Proof The result follows from the so-called transfer theorem for random summation [see, e.g., 
Rosinski (1976)] and its converse [see Szasz (1972)], together with the Central Limit Theorem for 
i.i.d. r. v. 's with a finite covariance matrix. 0 

Our next result determines the type of normalization that produces convergence in (6.10.1). 

Theorem 6.10.1 Let X(j) be i. i.d. random vectors in ]Rd with mean vector m and covariance matrix 
1:. For p E (0, 1), let vp be a geometric r.v. with mean 1/ p and independent of the sequence (X(j)). 
Then as p --+ 0, 

Vp 

a p L(X(j) + b p ) ~ Y ~ ACd(m, 1:), 
j=l 

where ap = pl/2 and b p = m(pl/2 - 1). 

(6.10.2) 
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Proof By the Cramer-Wald device [see, e.g., Billingsley (1968)], the convergence (6.10.2) is equiv­
alent to 

Vn 

e'ap L(X(J) + bp ) ~ e'y 
}=I 

for all vectors e in ]Rd. Writing W} = e'X(J), /-L = e'm, bp = (p1/2 - l)/-L, and Y = e'Y, we have 

Vp 

ap L(W) + bp ) ~ Y ,....., AC(/-L, (1") as p ---+ O. 
}=I 

(6.lO.3) 

Here the W}'S are i.i.d. variables with mean /-L and variance (1"2 = c'1:e, and Y is a univariate AL 
variable with ch.f. 

The convergence (6.lO.3) now follows from Proposition 3.4.4 for the univariate AL case (cf. equa­
tion (3.4.15». 0 

Next, we study stability properties of AL random vectors. 

6.10.2 Stability under random summation. The following stability property is a well-known 
characterization of a-stable random vectors: X is a-stable if and only if for any n ::: 2 we have the 
following equality in distribution: 

(6.lO.4) 

where the X(i) 's are i.i.d. copies of X and dn is some vector in ]Rd [see, e.g., Samorodnitsky and 
Taqqu (1994)]. 

We have an analogous characterization of AL random vectors with respect to geometric sum­
mation [see Kotz et al. (2oo0b)]. 

Theorem 6.10.2 Let Y, y(l), y(2), ... be i.i.d. r.v. sin jRd with finite second moments, and let vp 

be a geometrically distributed random variable independent of the sequence {y(i), i ::: 1}. For each 
p E (0, 1), the r.v. Y has the stability property 

Vp 

,,(i) d ap L..(y + b p ) = Y, (6.10.5) 
i=1 

withap > Oandbp E]Rd ifandonlyifYisACd(m, 1:) with either 1: = Oorm = O. Thenormalizing 
constants are necessarily of the form 

a - pl/2 p- , bp = O. 

This result follows from the characterization of strictly geometric stable laws given in Theo­
rem 3.1 of Kozubowski (1997) and the fact that the only strictly geometric stable laws with finite 
second moments are ACd(m, 1:) laws with either 1: = 0 or m = O. 
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Remark 6.10.1 Since in general multivariate AL r.v.'s do not satisfy relation (6.10.5), as is the case 
in the univariate case, the question arises as to whether 

Vp 

S(p) = a p L(y(i) + b p ) ~ y, as p --+ 0, (6.10.6) 
i=1 

where y(i) are i.i.d. copies of y, vp is independent of {y(i), i 2: I} geometrically distributed, and 
ap > 0 and b p E ]Rd. Note that the convergence (6.10.6) holds for all univariate AL laws (see 
Proposition 3.4.5), as well as for general geometric stable laws with index CL less than two [see 
Kozubowski (1997)]. It is quite surprising that for d > 1, as noted by Kozubowski (1997), in general 
AL r.v.'s do not satisfy (6.10.6) unless m = 0 or 1: = O. Indeed, if either 1: = 0 or m = 0, then 
(6.10.5) is satisfied and so is (6.10.6). Assume 1: =1= 0 and suppose that Y '" ACd(m, 1:) satisfies 
(6.10.6). Then for any e E ]Rd, we have 

Vp 

e'S(p) = a p L [ely(i) + e'bp ] ~ Yc = e'Y as p --+ O. 
i=1 

(6.10.7) 

By Corollary 6.8.1, part (ii), the r.v. Yc = e'y is univariate AL with a = (e' 1:e)1/2 and f.L = e'm. 
After the application of Proposition 3.4.5, we find that (6.10.7) holds with 

ap = Cpl/2(1 + 0(1», where C = [a 2 f(f.L2 + a2)] 1/2. (6.10.8) 

Since the normalizing constant a(p) in (6.10.7) should be independent of e, (6.10.8) implies that 
f.L = e'm = 0 for every e, and thus m = o. In the latter case C = 1 and (6.10.7) holds with a p = pi /2 
and bp = O. 

6.10.3 Stability of deterministic sums. In the next result, taken from Kotz et al. (2000b), we show 
that a deterministic sum of i.i.d. AL r.v.'s, scaled by an appropriate random variable, has the same 
distribution as each component of the sum. It is a generalization of a similar characterization of the 
univariate Laplace distributions; see Proposition 2.2.11 in Chapter 2. 

Theorem 6.10.3 Let Bm , where m > 0, have a Beta(1, m) distribution. Let {XCi)} be a sequence of 
i.i.d. random vectors with finite second moment. Then the following statements are equivalent: 

(i) For all n 2: 2, X(I) :!: B~:?-l (X(1) + ... + x(n). 

(ii) X(I) is ACd (m, 1:) with either 1: = 0 or m = O. 

Proof This result follows from the corresponding result for GS laws [see Kozubowski and Rachev 
(1999b)] and the fact that ACd(m, 1:) distributions with either 1: = 0 or m = 0 are strictly GS. The 
result for GS laws follows from the results of Pakes (1992ab). D 

We conclude our discussion with yet another stability property of AL laws, that for the one­
dimensional case was given in (2.2.28) [and noted by Pillai (1985)]. 

Proposition 6.10.2 Let y, y(1), y(2), and y(3) be ACd (m, 1:) r.v. 's with either 1: = 0 or m = O. Let 
p E (0, 1), and let I be an indicator random variable, independent of the y(i) 's, with P(l = 1) = p, 
and P(l = 0) = 1 - p. Then thefollowing equality in distribution is validforany p E (0, 1): 

(6.10.9) 
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Proof Let e E ]Rd. Since e'Y, c'y(l), c'y(2), and e'y(3) are univariate A.c(fL, a) with either fL = 0 
or a = 0 (see Corollary 6.8.1), the result in the one-dimensional case [see equation (2.2.28) and 
Pillai (1985)] produces 

or equivalently, 

The last relation implies (6.10.9). o 

6.11 Linear regression with Laplace errors 
In this final section we study a regression model with Laplace distributed error term. Consider the 
multiple linear regression model 

y = Xb+e, (6.11.1) 

where Y is a d x 1 random vector of observations, X is a d x k nonstochastic matrix of rank k, b is 
a k x 1 vector of regression parameters with unknown values, and e is a d x 1 random error term. 
Assume that e ~ A.cd(O, a2Id), where Id is a d x d identity matrix (so that the mean vector and 
covariance matrix of e are, respectively, 0 and a2Id). Although the elements of e are uncorrelated, 
they are not independent. According to Theorem 6.3.1, e has the representation 

(6.11.2) 

where N ~ Nd(O, a2Id) (multivariate normal with mean 0 and covariance matrix a2Id), while W is 
a standard exponential variable (independent of N). 

6.11.1 Least-squares estimation. The least-squares estimator (LSE) I> of b satisfies the normal 
equations 

(X'X)I>=X'Y. 

If X has full rank, the inverse of X'X exists and I> can be expressed as 

(6.11.3) 

which is the same as in the normal case. 
Next, we consider the joint distribution of I> and the vector of residuals e = Y - xl>. In view 

of (6.11.1) and (6.11.3), we have 

[~J-[~J 
is a linear function of e, its distribution is AL according to Proposition 6.8.1. 
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Proposition 6.11.1 Under the model (6.11.1), the least-squares estimator I} and the vector of resid­
uals e = Y - Xl} have the following joint distribution: 

(6.11.4) 

Remark 6.11.1 As in the normal case, it follows that E(I}) = b (so that I) is unbiased), E(e) = 0, 
Cov(b) = a 2(X'X)-1, and Cov(e) = a 2(Id - X(X'X)-lX') . However, I} andeare uncorrelated 
but not independent. 

Remark 6.11.2 Note that since Yl, ... Yd are uncorrelated, Var(Yi) = a 2, and I} is unbiased for b, 
the conditions of the Gauss-Markov theorem are fulfilled. Thus for any e E jRd, the estimator e'l} of 
e'b has the smallest possible variance among all linear estimators of the form e'Y which are unbiased 
for e'b. In particular, for j = 1, ... d, bj will have the smallest variance among all linear unbiased 
estimators of b j . 

6.11.2 Estimation of a 2• As in the normal case, the estimatore'e/(d - k) is unbiased for a 2, 

which follows from the following result. 

Proposition 6.11.2 Under the model (6.11.1), the statistice'eis distributed as 

a 2WV, 

where Wand V are independent, W is standard exponential, and V has a chi-square distribution 
with d - k degrees offreedom. Moreover, the r.v. e'e/a2 has the following density function: 

( ) (d-k)/2-1 (d - k) 
p(x) = JX/2 K(d-k)/2-1c·/2x)/r -2- , x> 0. (6.11.5) 

Proof First, writee = (Id - X(X'X)-lX')(Xb + e), note that the matrix Id - X(X'X)-lX' is 
indepotent, and utilize the representation (6.11.2) to obtain 

e'e= ZN'(Id - X(X'X)-lX')N, 

where N has a multivariate normal distribution with mean zero and covariance matrix a2Id. Now the 
first part of the proposition follows, since N' (Id - X(X'X)-l X')N/a2 has a chi-square distribution 
with d - k degrees of freedom (a standard fact for the regression model (6.11.1) with normally 
distributed error term). 

Next, apply the standard transformation theorem for random variables to obtain the density of 
W V in the form 

p(x) = yl-(d-k)/2-1 e-'1(x/y+2Y)dy. 
X(d-k)/2-1 1000 1 

2(d-k)/2r (d2k) 0 

Finally, utilize the fact that the generalized inverse Gaussian density (6.3.2) with X = x, 1/1 = 2, and 
A = 1 - (d - k)/2 integrates to one on (0, 00) so that 

(DO 1-(d-k)/2-1 e -i(x/y+2Y)d _ 2K(d-k)/2-1(..;2X) 
10 y y - (2/x)1/2-(d-k)/4 ' 

which produces (6.11.5). o 
Remark 6.11.3 This result may be used to obtain confidence intervals for a. 
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Next, we derive the minimal mean squared error estimator for a 2 . Consider the class of es­
timators for a 2 of the form c5c = ee'e. We know from Proposition 6.11.2 that for c = l/(d - k) 
we obtain an unbiased estimator. However, this estimator does not minimize the mean squared error 
(MSE) defined as 

M SE = E(c5c - a 2)2 = Varc5c + (Ec5c - a 2 )2. 

To find c that minimizes the MSE, write 

(6.11.6) 

and compute the mean and variance ofe'e/a2 that appear in (6.11.6) utilizing Proposition 6.11.2. 
Namely, we have 

Ece'e/a 2) = E(WV) = E(W)E(V) = 1 . n 

and 

where n = d - k, so that 

Consequently, (6.11.6) produces 

MSE = a 4 [c2(2n2 + 4n) - 2cn + 1]. 

The minimum value is easily found to be c* = 1/(2(n + 2». We summarize our discussion below. 

Proposition 6.11.3 Consider the model (6.11.1) and the class of estimators of a 2 of the form ce'e; 
where c E 1ft Then the estimator 

2(d - k + 2) 

minimizes the MSE. 

6.11.3 The distributions of standard t and F statistics. When studying the regression model 
(6.11.1) with multivariate student-t errorterm e, Zellner (1976) noticed that tests and intervals based 
on the usual t and F statistics remain valid. He also remarked that his argument with condition­
ing holds for models (6.11.1) whenever the error term is a normal mixture (6.11.2) with a proper 
distribution of W, establishing the validity of the usual t and F statistics. 

Proposition 6.11.4 Consider the regression model (6.11.1), where e ~ ACd(O, a2Id) and X is of 
full rank. Let Ii" = (bl, ... bd' be the least-squares estimator of b = (bl, ... h)', and let s2 = 
e'e/(d - k). Then 

(i) the statistic 

b- - b T. __ ' __ I ,- , 
sF; 

(6.11.7) 

where Cu is the ith diagonal element in (X'X)-I, has a t-distribution with d - k degrees of 
freedom; 
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(ii) ifb = 0, then the statistic 

(b'X'Y - dy2)/(k - 1) 
F = --'---------=,...,--:;::--,-----::-----::--

e'e/(d - k) 

has an F -distribution with k - 1 and d - k degrees of freedom; 

(iii) the statistic 

(b - b)'X'X(b - b)/ k 

e'e/(d - k) 

(6.11.8) 

(6.11.9) 

which is used in deriving confidence ellipsoids for b, has an F -distribution with k and d - k 
degrees offreedom. Moreover, a 100(1 - a)% confidence regionfor b is given by 

..-.. I , ..-. e'e 
(b - b) X X(b - b) :::: k d _ k Fk,n-k(a), (6.11.10) 

where Fk,n-k(a) is the upper (l00a)thpercentile of an F -distribution with k and d -k degrees 
offreedom. 

Remark 6.11.4 Improved confidence ellipsoids were derived in Hwang and Chen (1986). 

6.11.4 Inference from the estimated regression function. After fitting, a regression model can 
be used for predictions. Let Xo be a k x 1 vector of predictor variables. Then Xo coupled with bean 
be used to estimate the regression function x~b as well as the value of the response Yo at Xo. It turns 
out that the confidence intervals for these predictions coincide with those for the normal case. 

6.11.4.1 Estimating the regression function at Xo. Note that since x~b is a linear function of b, 
the Gauss-Markov theorem implies that x~b is BLUE for x~b, with variance of x~(X'X)-lxoa2. 
Moreover, as in the normal case, the statistic 

x'b - x'b o 0 (6.11.11) 

where s2 = e'e/(d - k), has a t-distribution with d - k degrees of freedom. 

6.11.4.2 Forecasting a new observation at xo. As in the normal model, a new observation Yo has 
an unbiased predictor x~b. According to model (6.11.1), we now have 

where [e' eo]' "" ACd+l (0, a2Id+l)' Note that the forecast error, Yo - x~b, can be expressed as 

Yo - x~b = [-x~(X'X)-lX' 1] [ e: ] 
so that it has a univariate AL distribution with mean zero and variance a 2(1 + x~(X'X)-lxO) (see 
Corollary 6.8.1). It follows thatthe statistic 

sJl + x~(X'X)-lXO 

has t -distribution with d - k degrees of freedom. 
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6.11.5 Maximum likelihood estimation. By (6.5.3) and (6.11.1), the likelihood function for the 
regression model has the form 

Kd/2-1 (.J2lly - Xbll/a) 
p(Ylb, a) = 2d/4-1/2Jrd/2a1+d/21IY _ Xblld / 2- 1 ' 

(6.11.12) 

where K).. denotes the modified Bessel function of the third kind. Note that for any fixed value of a , 
the functions Kd/2-1 (.J2IIY - Xbll/a) and Ily - XbI1 1- d/ 2 are both decreasing in Ily - Xbll (for 
d = 2, which is the smallest value for d, the latter function is constant). Thus the maximum occurs 
whenever Ily - Xbll is minimized. Consequently, the maximum likelihood estimator (MLE) for b 
coincides with the least-squares estimator (LSE) for b. To find the MLE for a, we need to maximize 
the function 

Kd/2-1(a/a) 
L(a) = Jrd/2a 1+d/2ad/2-1 

with respect to a E (0,00), where a = .J2lly - Xbll and b is the LSE (and MLE) for b. The 
logarithmic derivative of L equals 

d 1 + d/2 a K~/2_1 (a/a) 
-logL(a) = - - - . 
da a a 2 Kd/2-1 (a/a) 

Using Property 4 of Bessel functions from the appendix, we have 

d 1 a 
-log L(a) = -- [Rd/2-1(a/a) - d/(a/a)], 
da aa 

(6.11.13) 

where the function R).. is defined by (A.0.15) in the appendix. In view of (6.11.13), Lemma 6.11.1 
below implies the existence of a unique number a E (0, 00) such that the function log L (a) is strictly 
increasing on (0, a) and strictly decreasing on (a, 00). This number, which is the MLE of a, is a 
unique solution of the equation 

Rd/2-1(a/a) = d/(a/a). (6.11.14) 

Lemma 6.11.1 Let d be an integer greater than or equal to two. 

(i) If d = 2, then the function hd(X) = XRd/2-1 (x) is strictly increasing for x E (0,00) with 
limx--+oo hd(x) = 00 and limx--+o+ hd(X) = O. 

(ii) If d > 2, then the function hd(X) = Rd/2-1 (x) - d/x is strictly increasing for x E (0,00) 
with limx--+oo hd(X) = 1 and limx--+o+ hd(X) = -00. 

Proof First, consider the case d = 2. By Property 13 of Bessel functions (see the appendix), 
we have ixxRo(x) = x(R5(x) - 1). By Property 11 (see the appendix), Ro(x) > 1 so that 
lx x Ro(x) > 0, showing that the function x Ro (x) is strictly increasing. The same property also 
produces limx--+ oo hd(X) = 00. Finally, the limit limx--+o+ hd(x) = 0 follows from the asymptotic 
behavior of the Bessel function (Property 6 in the appendix). 

Next, consider d > 2. Apply Property 12 (see the appendix) with A = d/2 - 1 to obtain the 
following expression for the derivative of hd: 

d d 
-hd(X) = - (-2/x + I/R(d-2)/2-1(X»). 
dx dx 

(6.11.15) 

Note that for d > 3 the function R(d-2)/2-1 (x) is decreasing (Property 11 in the appendix), while for 
d = 3 we have R-l/2(X) = 1 (by Property 4 in the appendix). In either case, the derivative (6.11.15) 
is positive (as the expression in parenthesis is a strictly increasing function), so that the function hd 
is strictly increasing. The rest of (ii) follows from Properties 6 and 11 (see the appendix). 0 
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Note that since Rd/2-1 (a/a) > 1 (see the appendix, Property 11), we must have dj(ara) > 1, 
so that the MLE of a satisfies the inequality 

a> aid = .J2lly - Xbll/d. 

Remark 6.11.5 Recall that the MLE for a under normally distributed error term is given by a = 
Ily -Xbll/.Jd. Consequently, incased = 2, the MLE of a under model (6.11.1) with AL distributed 
error term is greater than the one under the model with normally distributed error term. 

Remark 6.11.6 The solution to (6.11.14) must be obtained numerically, except for a few special 
cases described below . 

• Special cased = 3. Here the Bessel function has a closed form (see Property 5 in the appendix), 
and we have 

Rd/2-1(X) = R1/2(X) = 1 + Ijx. 

Consequently, equation (6.11.14) yields the solution 

a = a/2 = Ily - Xbll/.J2, 

which is greater than a . 
• Special case d = 5. Here we use the iterative property (A.0.16) of RJ.. to write equation 

(6.11.14) as 

I/R1/2(a/a) = 2/(a/a). 

Since R1/2(X) = 1 + l/x, we obtain the following quadratic equation fora: 

2a2 + 2aa - a2 = 0, 

whose positive solution is a = ~-1 a. Again, we see that a ~ 0.366a is greater than 

a = a/v'IO ~ 0.316a. 

• Special case d = 7. Here we use the iterative property (A.O.16) of RJ.. twice to write equation 
(6.11.14) as 

3a/a + I/R1/2(aja) = a/(2a). 

Since R1/2(X) = 1 + l/x, we obtain the following cubic equation for y = a/a: 

i + l + y/6 - 1/6 = 0, 

whose real solution is 

Consequently, the MLE of a is 

a = ~ (2 + )31/8)1/3 + (2 - )31/8)1/3 _ 1) ~ _a_. 
3 2.47 

Again, we see that a is greater than a = a /,J14 ~ a /3.74. 
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6.11.6 Bayesian estimation. Here we analyze the regression model (6.11.1) with an AL error 
term and likelihood function (6.11.12) from the Bayesian point of view. We assume a diffuse prior 
distribution for the parameters band a 2, 

pCb, a 2) ()( l/a2, b E ]Rk, a < a 2 < 00. 

This standard improper distribution assumes that b and log a 2 are uniformly and independently 
distributed. Taking into account the likelihood function (6.11.12), we obtain the posterior joint dis­
tribution of band a 2, 

(6.11.16) 

To obtain the marginal posterior p.d.f. of b, we integrate (6.11.16) with respect to u = a 2 : 

(bl) II - Xbll l - d/2 t XJ Kd/2-1(J2lly - XbII J.Jii) d 
p y ()( Y 10 (u)3/2+d/4 u. (6.11.17) 

The change of variable z = II y - Xb II / .fii in (6.11.17) leads to 

(6.11.18) 

as the integral in (6.11.18) is a constant independent of b (the finiteness ofthe integral follows from 
relation (A.a. 13); see the appendix). Since 

Ily - Xbl12 = s2(d - k) + (b - b)'X'X(b - 1», (6.11.19) 

where 

S2 =e'e/(d - k) = (Y - Xb/(Y - Xb)/(d - k), 

we recognize (6.11.18) as a k-dimensional Student-t p.d.f. with v = d - k degrees of freedom [see, 
e.g., Zellner (1976), Johnson and Kotz (1972)]. The posterior density ofb has the form 

r«v + k)/2)(1 + v-I (b - b)'R- I (b - "bWv+k)/2 
p(bly) = (1Tv)k/2r(v/2)IRI'/2 ' 

(6.11.20) 

where R = (X'X)-I s2 is a positive-definite matrix. Note that the same posterior distribution results 
under the model (6.11.1) with multivariate normal and Student-t error terms [see Zellner (1976) for 
the latter]. We also see that whenever v = d - k > 1, the mean of the posterior distribution of b 
exists and equals b. Consequently, the Bayesian estimator of b (under the squared error loss function 
and diffuse prior distribution) coincides with MLE and LSE for b. 

Next, we derive the marginal posterior p.d.f. of a 2 by integrating (6.11.16) with respect to b. 
Setting u = a 2, a2 = s2(d - k)/u, A = 1 - (d - k)/2, and using (6.11.19), we obtain after some 
algebra 

J21- d / 2 i Kk/2_;..(J2.,)a2 + (b - b)'(X'X/u)(b - b))d 
p(uly) ()( b. 

ud/ 2+1 ]Rk (Ja2 + (b - b)'(X'X/u)(b - b')/v'2)k/2-;" 
(6.11.21) 

We now recognize the integrand in (6.11.21) as the main factor of a k-dimensional generalized 
hyperbolic density (6.5.4) with parameters A, a, ~ = ex = .j2, /L = b, fJ = 0, and 1: = (X'X)-I u. 
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Since the latter density integrates to one over ]Rk, we evaluate the integral in (6.11.21) and obtain the 
following expression after some algebraic manipulations: 

(1) (d-k)/4+3/2 
p(u Iy) ex ~ K(d-k)/2-1 (J2s2(d - k)/u). (6.11.22) 

Taking into consideration the integration formula (A.0.13), we finally obtain an exact expression for 
the posterior density of u = a 2: 

(/s2(d - k»(d-k)/2+1 K(d-k)/2-1 (/2s2(d - k)/u) 

p(uly) = (.J2)(d-k)/2-1(,Jit)(d-k)/2+3r((d _ k)/2) . 
(6.11.23) 

It can be shown that the r.v. with this density has the same distribution as s2(d - k)/ X, where X is 
an r. v. with density (6.11.5). The mean of this posterior distribution generally does not exist. 

6.12 Exercises 
Exercise 6.12.1 Let X "-' ACd(m, 1:). 

(a) Show that if m = 0 (so that X is actually symmetric Laplace), then anyone-dimensional 
marginal distribution of X is symmetric Laplace. 

(b) Show that if everyone-dimensional marginal distribution of X is symmetric Laplace, then 
X is symmetric Laplace, X "-' .cd(1:). 

Thus for multivariate AL laws, the symmetry is a componentwise property, which is in contrast 
with geometric stable laws with index less than 2. 

Exercise 6.12.2* Let X = (XI,"" Xd)' have a multivariate asymmetric Laplace distribution 
ACd (m, 1:), and let \II be the ch.f. of X. Using the cumulant formula (5.3.2), show that CI (X) = m, 
C2(X) = 1: + mm', and 

C3(X) = 1: ® m + m ® 1: + vec 1:m' + 2m02m' (6.12.1) 

[Kollo (2000)]. 

Exercise 6.12.3 Let X = (XI, X2)' "-' SAC(ml, m2, aI, a2, p). 
(a) Assuming that ml = m2 = m, al = a2 = a, and p = 0, find the p.d.f.'s of XI, XI + X2, 

X 1-X2, and X2 given X I = XI. What are the conditional mean and variance of the latter distribution? 
(b) Repeat part (a) for a general BAL r.v. X. 

Exercise 6.12.4 By considering the appropriate characteristic functions, prove the "if" part of The­
orem 6.10.2. Namely, show that ifX(i) are i.i.d. with the Cd(1:) distribution and vp is an independent 
geometric variable with mean 1/ p, then the equality in distribution 

Vp 

pl/C1 LX(i) !!::X(1) (6.12.2) 
1=1 

holds with (){ = 2. 

Exercise 6.12.5 Establish the implication (ii) -+ (i) of Theorem 6.10.3. 
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Exercise 6.12.6 Show that if X '" Nd(O, 1:) and W is an independent standard exponential variable, 
then the r. v. 

Y=mW+v'WX, 

where mE IRd, has the ACd(m, 1:) distribution. 
Hint: Use the characteristic functions. 

Exercise 6.12.7 Consider the regression model (6.11.1) from the Bayesian point of view. Assuming 
the diffuse prior distribution for the parameters band 0- 2, derive the posterior density (6.11.16) of 
the parameters and show that the posterior marginal densities of band 0- 2 are given by (6.11.20) and 
(6.11.23), respectively. 

Exercise 6.12.8 Let X be an r. v. in IRd with the ch.f. 

cI>(t) = Eit'x = u(t) + iv(t) = r(t)e i8(t). 

Then the function 

B(t) = tan-l {v(t)/u(t)}, It I :s Irol, 

where ro is the zero of u(t) closest to the origin, is called the characteristic symmetric function of 
X [see Heathcote et al. (1995)]. For an (elliptically) symmetric distribution about the point m, the 
above function is linear in t and has been used in testing multivariate symmetry [see Heathcote et 
al. (1995)]. 

Derive the characteristic symmetric function for a r.v. X with the ACd(m, 1:) distribution. 
Under what conditions on m and 1: is the distribution of X symmetric? What is B(t) in this case? 

Exercise 6.12.9 Let X = (Xl, ... , Xd)' be a random vector in IRd. The variables Xl, ... , Xd (the 
components of X) are said to be associated if the inequality 

Cov[f(X), g(X)] 2: 0 

holds for all measurable functions f and g that are nondecreasing in each coordinate (whenever the 
covariance is finite). It is well known that if X '" Nd(O, 1:), then the components of X are associated 
if and only if they are positively correlated (1: 2: 0) [Pitt (1982)]. Let X have an ACd(m, 1:) 
distribution. 

(a) Show that if the components of X are associated, then they must be positively correlated, 
that is, 

1: + mm' 2: O. (6.12.3) 

(b)** Investigate whether the condition (6.12.3) is also sufficient for the association of the 
components of X. 

Exercise 6.12.10 Let X have a multivariate normal Nd(m, 1:) distribution, where 1: is a nonnegative 
definite covariance matrix of rank r S d. 

(a) Using the well-known decomposition 1: = CC', where C is a d x r matrix of rank r, show 
that the random vector 

CZ+m, (6.12.4) 
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where 

(6.12.5) 

is a random vector with the standard normal and independent components, have the same distribution 
as the vector X. 

(b) Now let the components of the r.v. (6.12.5) be i.i.d. standard Laplace variables. Show 
that the distribution of the r.v. (6.12.4), referred to by Kalashnikov (1997) as multivariate Laplace 
distribution, does not belong to the class of AL laws. In particular, show that in general the univariate 
marginal distributions of the resulting random vector will not be Laplace. Discuss the similarities 
and the differences of the resulting distributions with the AL laws. 

Exercise 6.12.11 Let m E ]Rd and let 1: be a d x d positive-definite matrix. Consider an elliptically 
symmetric distribution in]Rd with density (6.3.5), where 

_XA/ 2 
g(x) = e . (6.12.6) 

This distribution is known as the multivariate exponential power distribution [see, e.g., Fernandez et 
al. (1995)] as well as the multivariate generalized Laplace distribution [Ernst (1998)]. Haro-Lopez 
and Smith (1999) refer to the special case with A = 1 as the elliptical Laplace distribution in 
their robustness studies and show that it can be obtained as a scale mixture of multivariate normal 
distributions. For d = 1 we obtain the generalized Laplace distribution (the exponential power 
distribution) with density 

A {Ix - JL IA} f(x) = 2sr(I/A) exp - -s - . (6.12.7) 

(a) Determine the proportionality constant kd [see (6.3.5)] in this case. 
(b) Set A = 1 [in which case (6.12.7) produces the classical symmetric Laplace distribution] 

and check whether the marginal distributions corresponding to (6.3.5) are Laplace. 

Exercise 6.12.12 Let X have a general multivariate Bessel distribution with the ch.f. (6.9.1) and the 
density (6.9.3). 

(a) Show that in case 1: = Id and s = d!l, we obtain the density (6.9.5), which leads to 

e-v1zllxll 
(6.12.8) 

if m = O. Compare the latter density with that of the multivariate exponential power distributions 
discussed in Exercise 6.12.11. 

(b) Show that the densities (6.9.5) and (6.12.8) lead to the AL and Laplace densities if d = 1. 
What are the parameters in this case? 

Exercise 6.12.13 Generalizing elliptically symmetric distributions, Fernandez et al. (1995) intro­
duced a class of v-spherical distributions given by the density 

p(x; m, 'l") = 'l"d g[v{'l"(x - m)}], (6.12.9) 

where v(·) is a scalar function such that 

• v(·) > 0 (with a possible exception on a set of Lebesgue measure zero), 

• v(ka) = kv(a) for all k 2: 0 and a E lR,d, 
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g is a nonnegative function, and m E ]Rd and <-I > ° are the location and scale parameters, 
respectively. [The functions v(·) and g(.) must be chosen such that (6.12.9) is a genuine probability 
density function.] Note that by choosing 

v(a) = a'1;-l a 

we obtain the elliptically symmetric distributions, which with g given by (6.12.6) are the exponential 
power distributions [cf. Exercise 6.12.11]. Fernandez et al. (1995) introduced a skewed multivariate 
generalization of the Laplace distribution as a special case with q = 1 of the skewed multivariate 
exponential power distribution that has density (6.12.9) with 

(6.12.10) 

and 

(6.12.11) 

[As before, x+ = max(x, 0) and x- = max(O, -x).] 
(a) Show that if X = (XI, ... , Xd)', where the Xi'S are i.i.d. variables with the skewed expo­

nential power distribution with the density 

where y, q > ° and 

{ 
e-(x/y)q /2 for x ~ ° 

f(x) = c e-(-yx)q/2 for x :s 0, 

c- I = 21/ q r(1 + l/q)(y + l/y), 

(6.12.12) 

(6.12.13) 

then ther.v. X has v-spherical density (6.12.9) with v given by (6.12.10) andg given by (6.12.11) [Fer­
nandez et al. (1995)]. In particular, we see that the d -dimensional skewed Laplace r. v. of Fernandez 
et al. (1995) is generated as an i.i.d. sample of size d from a univariate AL distribution. 

(b) Derive the mean, the variance, the moments EXk , and the coefficients of skewness and 
kurtosis for a random variable X with density (6.12.12). 

Exercise 6.12.14 Let X have a symmetric multivariate Bessel distribution with density given by 
(6.9.4). In the special case a = 0, Fang et al. (1990) call it a multivariate Laplace distribution. Here 
the density of X is proportional to 

f(x) ex Ko(llxll/,B), (6.12.14) 

where Ko is the modified Bessel function of the third kind and order 0. 
(a) Show that the distribution in]Rd with the density as in (6.12.14) is A£(m, 1;) only if d = 2. 

What are m and 1; in this case? 
(b) Show that if X ~ RU(d) is the polar representation of a symmetric multivariate Bessel r. v. 

in]Rd with density (6.9.4), then the density of the r.v. R is 

gR(r) = crra+d- I Ka(r/,B) , (6.12.15) 

where 

(6.12.16) 

What is this representation if X has density (6.12.14)? How does it compare with that of a symmetric 
Laplace £(Id) distribution? 
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Exercise 6.12.15 Ad-dimensional r.v. with the ch.f. 

(6.12.17) 

where 0 < ex ~ 2 and 1: is a nonnegative definite matrix, is said to have a multivariate Linnik 
distribution [see, e.g., Anderson (1992), Pakes (1992a), Ostrovskii (1995)]. For ex = 2 it reduces to 
the symmetric multivariate Laplace distribution. 

(a) Show that all components of a multivariate Linnik r.v. have univariate Linnik distributions. 
(b) Show that all linear combinations c'X, where X has a multivariate Linnik distribution and 

c E IRd, are univariate Linnik. 

Exercise 6.12.16 By considering the appropriate characteristic functions, show that ifX(i)'s are i.i.d. 
with multivariate Linnik distribution (6.12.17) and v p is an independent geometric variable with mean 
1/ p, then the relation (6.12.2) holds. Thus multivariate Linnik variables are stable with respect to 
geometric summation, as are univariate (symmetric) Linnik and Laplace as well as multivariate 
symmetric Laplace variables. 



Part III 

Applications 



Introduction 

Laplace distributions found and continue to find applications in a variety of disciplines that range 
from image and speech recognition (input distributions) and ocean engineering (distributions of 
navigation errors) to finance (distributions of log-returns of a commodity). Now they are rapidly 
becoming distributions of first choice whenever "something" with heavier than Gaussian tails is 
observed in the data. Consequently, a large number of papers in diverse journals and monographs 
mention Laplace laws as the "right" distribution, and it is a daunting task to find and report them all. 

The asymmetric Laplace distribution as described in this book is quite a recent invention. It was 
motivated by similar probabilistic considerations as was the asymmetric (skewed) normal distribution 
developed by Azzalini (1985, 1986). It is our belief that natural applications will inevitably arise. In 
fact an application in modeling of foreign currency exchange has recently been suggested. Several 
other applications are described in subsequent chapters. Similar comments apply to the multivariate 
generalizations of Laplace distributions. 

In this part of the book, we attempt to present those applications that we consider in our 
subjective judgment the most interesting and promising. In our choice we were also restricted by the 
fact that our book is addressed to a wide range of potential "clients" of the Laplace distributions. 
Our personal taste may have played an unavoidable but hopefully not a damaging role. To make the 
material readable for our intended audience we present some of the more specialized and narrowly 
focused applications in essay form. Readers interested in further details are directed to the literature 
cited in the references. 



7 
Engineering Sciences 

This is the first chapter in the third part of the book that deals with applications of various versions of 
Laplace distributions in the sciences, business, and various branches of engineering. We start with an 
application in communication theory, in particular signal processing, which seems to have dominated 
earlier results in the 1960s and 1970s. Next, we mention applications in fracture problems discovered 
in the late 1940s before the appearance of the Weibull distribution which dominated this field in the 
second half of the 20th century. Applications in navigation problems conclude the chapter. 

7.1 Detection in the presence of Laplace noise 
Detection of a known constant signal that is distorted by the presence of a random noise was discussed 
in communication theory on various occasions [see Marks et al. (1978), Dadi and Marks (1987), and 
the references therein]. 

Using statistical terms, the goal is to test for the presence or absence of a positive constant 
signal s in additive random noise. The hypothesis-testing problem in this context is formulated as 

Ho : Xi = ni, i = 1,2, ... , N; 

HI : xi = s + ni, s > 0, 

where based on the observations {Xi, i = 1,2, ... , N} we are to decide whether the signal s is absent 
or present. The quantity ex is the probability of the first type error (incorrectly accepting HI); it is 
also called the significance level. Similarly, {3, the detection probability or the power function of the 
test, is the probability of correctly accepting HI. 

In statistical terminology, we are dealing here with a test for location in the case of a simple 
hypothesis Ho vs. a simple alternative HI. However, in communication theory, the problem receives 
a different formulation, which uses the notion of a detector. This is best represented by the scheme 
presented in Figure 7.1. The detector represented in this figure is defined through the form of g, which 
is called in this context a zero-memory nonlinearity. Also the distribution of the noise ni influences 
the value of the threshold T for the test statistic t = L~I g(x;), since the latter has a distribution 
that depends on the distribution of the noise. 
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Input N onlineari ty Test statistic 

g(.) t> T? 
Xi g(Xi) t = L~l g(xi) 

No: HO 

Figure 7.1: General scheme of a detector. 

Various forms of detectors can be proposed by means of an appropriate definition of g. The well­
known Neyman-Pearson optimal detector is defined if the density of the input is known. Its form (as 
well as its name) follows from the classical Neyman-Pearson lemma [Neyman and Pearson (1933)] 
which maximizes the power of the test. It is easy to observe that in general optimal nonlinearity 
should be of the form 

In(x - s) 
gopt(x) = log , 

In (X) 

where In is the distribution of ni (which are assumed to be i.i.d. random variables) [see, e.g., Miller 
and Thomas (1972)]. 

In the analysis of detector performance, the noise is commonly assumed to be Gaussian. The 
assumption is often justified (for example for uitra-high-frequency signals- UHF) and results in 
a mathematically tractable analysis. However in many instances, as pointed out by Miller and 
Thomas (1972), a non-Gaussian noise assumption is necessary (for example for extremely low 
frequency - ELH). 

One form of frequently encountered non-Gaussian noise is so-called impulsive noise. Such 
noise typically possesses much heavier tail behavior than Gaussian noise. Because of this, Laplace 
noise has been suggested as a model for some types of impulsive noise. 

Indeed, models of noise based on Laplace distributions appear in various engineering studies 
in the last 40 years. Bernstein et al. (1974) comment on the non-Gaussian nature of ELF atmospheric 
noise, and they give a plot of a typical experimentally determined probability density function asso­
ciated with such a noise which is very similar to a Laplace density. Mertz (1961) proposed a density 
for the amplitude of impulsive noise that in the limiting case results in the density of Laplace law. 
Kanefsky and Thomas (1965) considered a class of generalized Gaussian noises, obtained by gener­
alizing the Gaussian density to arrive at a variable rate of exponential decay. The Laplace distribution 
is within this class of generalized Gaussian distributions. Also, Duttweiler and Messerschmitt (1976) 
refer to the Laplace distribution as a model for the distribution of speech. 

For the case of Laplace noise given by the density 

n E JR, y > 0, 

the Neyman-Pearson optimal detector found in Miller and Thomas (1972) is of the form 

See also Figure 7.2. 

I ys, 
gopt(x) = 2yx - ys, 

-ys, 

x> s, 
O:sx:ss, 
x < o. 
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gopt (x) 

ys 

s x 

-ys 

Figure 7.2: Nonlinearity in optimal detector for Laplace noise. 

To solve the detection problem completely, it remains to find the distribution of the statistic 

N 

t = L gopt(xd. 

i=! 

This problem was solved in Marks et al. (1978) and results in the c.d.f. 

F~°>Cx) = 2~ t (~) ic-nrC) ~ (N ~ k) 
k=! r=O 1=0 

[ 
( /) x+Nys (X+(N-2(I+r))ys)] 

. e- r+ ys - e---Z- ek-I 2 u (x + CN - 21 - 2r)ys) 

+ 2~ t (~)e-mYSU(X + (N - 2m)ys), 
m=O 

where ekO is the incomplete exponential function 

and 

k . 
Zl 

ek(Z) = L 7f 
I. 

i=O 

u(x) = { ~ for Z < 0, 
for Z::::: 0. 

For the proof of this result and further discussion of testing a hypothesis about the location 
parameters for the Laplace laws, see Part I, Chapter 2.6, Subsection 2.6.4.3. Note that in the above 
formulation, we use slightly different notation to be consistent with the original paper. 

Since we are dealing here with the classical Laplace law which is symmetric, the distribution 
of the statistic to under the alternative HI is given by 

The mean and variance of the test statistic are 
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Eot = -Elt = N (1 - e-Ys - ys), 

Varot = Varlt = N (3 - 2e-Ys - e-2ys - 4y se-YS ) 

(cf. Theorem 2.6.2 in Part I, Chapter 2.6). 
In communication theory other detectors beside the optimal one are also considered. For exam­

ple, the linear detector is given by glin (x) = x and the sign detector is given by gsign (x) = sign x. We 
refer to Dadi and Marks (1987) and Marks et al. (1978) for a detailed discussion of the performance of 
these detectors under the Laplace noise and their limiting behavior when the sample size N increases 
without bound. 

7.2 Encoding and decoding of analog signals 
Another standard problem in communication theory is encoding and decoding of analog signals. 
The distribution of such signals depends on their nature. Among the most important ones are speech 
signals. It has been found that the Laplace distribution accurately models speech signals. Although it 
was also discovered that true speech signals are strongly correlated when measured in time, in many 
theoretical studies, in order to avoid complications it is often assumed that samples are independent. 
Theoretical findings have been compared to corresponding empirical properties observed in real 
speech samples. In one such a study, Duttweiler and Messerschmitt (1976) considered a reduced bit­
rate wave form encoding of analog signals. A concise account of their findings is presented here (we 
emphasize that portion in which the Laplace distribution has played a prominent role). For additional 
details we refer the reader to the original paper. 

The method considered in Duttweiler and Messerschmitt (1976) is called nearly instantaneous 
companding (NIC). NIC is distinguished among most other bit-rate reduction techniques by a per­
formance that is largely insensitive to the statistic of the input signal. The analysis of this robustness 
was carried out in the paper by examining the method for sinusoidal signals, Gaussian independent 
samples, Laplace independent samples, and real speech samples (believed to be dependent Laplace 
samples). The method involves grouping of some standard encoding, in the study of the so-called 
f..L255 (PCM) encoding (assuming n-bit quantization),18 into groups consisting of N samples. Then 
it reencodes the groups, exploiting in a certain manner the information about the samples with the 
largest magnitude to reduce the bit size to n - 2. Next, the encoded signal is decoded in a comple­
mentary NIC decoder to obtain back the n-sized bit codes. Finally, in order to reobtain an analog 
signal, decoding through an appropriate decoder (f..L255 PCM) is performed. 

To verify the insensitivity of the technique to the initial distribution in the signal, the NIC signal­
to-quantization noise ratio (SNR) with n = 8 and three sets of signal statistics (sinusoidal, Laplace, 
Gaussian) were discussed. In Figure 7.3, we present performance for Gaussian and Laplacian inputs 
(we should remember that Laplace inputs are believed to approximate better the true distribution of 
the speech data). The comparison to SNR is made with respect to the initial encoding (in our case 
f..L255 PCM). 

The performance of the decoder depends on the block size N. At N = 8 the degradation is 
about 7dB l9 with a Laplacian distribution and 6dB with a Gaussian. The Laplacian distribution is 

18In a PCM encoding of analog-to-digital converter, each bit represents a fixed voltage level. So if the least significant 
bit corresponds to a level V volts, then the nth bit corresponds to a level 2n V volts. To achieve recognizable voice quality 
sampling at rates of 8000 samples per second over a 13-bit range must often be used. To reduce the range requirement a 
logarithmic /L255 data compander can be used to compress speech into an 8-bit word according to the formula y(x) = 
V log(l + /Lx/V)/log(1 + /L) with the value /L = 255 most often used in telephone applications. 

19 A decibel is a dimensionless, logarithmic unit equal to one-tenth of the common logarithm of a number expressing a ratio 
of two powers. In the usual case for input and output quantities in telecommunications, the decibel is a very convenient unit 
to express signal-to-noise ratio. 
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Figure 7.3: SNR vs. amplitude with independent Laplace (left) and Gaussian (right) samples. SNR 
of Laplacian samples vs. bits/sample (bottom). Graphs are reproduced from Duttweiler and Messer­
schmitt (1976) with permission of the IEEE (©1976 IEEE). 

characteristic of speech, but speech samples are strongly correlated. For the simulated NIC with an 
actual speech input the degradation for N = 8 was 3.5dB. 

Another interesting way of presenting SNR data consists of graphing the SNR vs. the average 
number of bits per sample as the block size N varies. Two of these plots appear in Figure 7.3 (right). 
One assumes independent Laplacian samples while the other is based on actual speech. The maximum 
advantage of NIC is 3dB with independent Laplacian samples and 6dB with actual speech. In both 
cases the maximum advantage occurs at about N = 10. 

7.3 Optimal quantizer in image and speech compression 
The Laplace distribution is commonly encountered in image and speech compression applications. 
One of the fundamental problems in this context consists of finding the so-called optimal quantizer 
design. Let us first explain the general idea of such a design. 

Consider an analog signal that should be converted to a digital one. A quantizer is a method of 
analog-to-digital conversion. Specifically, a scalar quantizer maps each input (a continuous random 
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variable) to its output approximation. The issue is to optimize the quantizer performance subject to 
some criteria. One criterion is to minimize the information rate of the quantizer as measured by its 
output entropy. In another approach, the mean square error of quantization is considered as a measure 
of performance. 

Since Laplace distributions are commonly encountered in practical quantization problems, 
considerable attention was given to the problem of finding an optimal quantizer for Laplacian input 
sources. Here we shall discuss mostly the results of Sullivan (1996), but the works by Nitadori (1965), 
Lanfer (1978), Noll and Zielinski (1979), and Adams and Giesler (1978) are recommended to readers 
interested in the history of the problem. 

Let an input variable, which will be subject to quantization, be modeled by a random variable X 
having a smooth p.d.f. f(x). For convenience and without loss of generality, let us assume that f(x) 

is zero for x < O. An n-Ievel scalar quantizer, where n is the number of possible values {Yi(n)}7=1 in 
the quantized output, is defined as 

n-l 

Q(n)(X) = Lyin)lI(tX:!I,t?)](X), 
i=O 

where lI(a,b] is an indicator function of an interval (a, b] and {ti(n) }7=o are the n + 1 decision thresholds 
for the quantizer given by 

n-l 

t?)=Laj, i=O, ... ,n-1, t~n)=O. 
j=i 

The quantities {ad7,:-d are positive steps (ao = 00) and the output values are defined through a set 

of n nonnegative reconstruction offsets {87,:-J} by 

(n) (n) < 
Yi = ti+l + Vi· 

The distortion measure d(l:!.) is any function of l:!. that increases monotonically and smoothly 
(although not necessarily symmetrically) as its argument deviates from zero (for example the mean 
square error d (l:!.) = 1 l:!. 12 is a distortion measure). The expected quantizer distortion is then defined by 

Dj) = E[d(X - Q(n)(x))] 

n-l t(n) 

= L (I d(x -In))f(x)dx, 
1t(n) 

i=O ;+1 

and the probability of each output Yi(n) is 

t(n) 
(n) f I Pi = f(x)dx. 

t (n) 
i+1 

The output probabilities determine the output entropy of the quantizer, a lower bound on the 
expected bit rate required to encode the output, given by 

n-i 

Ht) = - L pin) log2 pin) [bits per sample]. 
i=O 
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We are interested in a quantizer that minimizes the objective function 

for some A :::: O. Such a quantizer is optimal in the sense that no other scalar quantizer can have lower 
distortion with equal or lower entropy. 

In Sullivan (1996), the optimal quantizer as well a as fast algorithm for its computation for 
an exponentially distributed input were presented. In the case of mean squared-error distortion, the 
solution has an explicit form expressed by the Lambert function W, i.e., the inverse function to 
f (W) = We W , which can be approximated by 

1 2 11 3 43 4 
W(z)=-1+q-3 q +nq - 540 Q + ... , 

where Q = ,.J2(ez + 1) [see Corless et a1. (1996)]. This optimal solution ext is given by 

where 

The results on exponential source are then used to derive the optimal quantizer for a Laplace 
distribution. It is interesting to see how the exponential quantizer can be utilized in this case. 

First, let us consider the quantizer that has an output value E associated with the input value 
of x = O. The boundaries of the step are defined by two nonnegative thresholds t/ and t r , where 
tl + tr > 0, so if the input is between -tl and tr , then the output value is equal to E. The quantizer 
has the distortion 

and the entropy 

where 

T(p, q) = B(p) + (1- p)B(qj(l- p», 

B(p) = -plog2P - (1- p)log2(1- p). 

The number of output levels on the right oftr is nr and on the left oft/ is n/. Thus n = nr+nl + 1. 
Now we define the quantizer as the composition of three subquantizers. First, we have the one defined 
above for values around zero. Then for a Laplace random variable X, X - tr given that X > tr has 
exponential distribution and so does -(X - t/) given that X < tl. Consequently, we can write 

Jt) = 'fI(tI, tr, E) + AT (~e-t[, ~e-tr) 

+ ~(e-t[ J(n[) + e-tr J(nr ) 
2 e e' 

where J t) stands for the objective function for the Laplace source, J1nr ) is the objective function for 

the exponential source, and J1ntl is the objective function of an nl-Ievel quantizer for an exponential 
source with distortion measure d(/)') = d( -/).). Using the results on the exponential source it is 
enough to find the minimizer for 'fI(tI, tr , E). 
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The method of computing these quantizers presented in Sullivan (1996) is noniterative, which 
is an improvement over some previous iterative refinement techniques. In addition, it is extremely 
fast and optimal for a general difference-based distortion measure, as well as for a restricted and 
unrestricted (asymptotic) number of quantization levels. 

7.4 Fracture problems 
In Epstein (1947,1948), a potential application of the Laplace distribution is discussed in relation 
to the fracturing of materials under applied forces. The considered statistical models assume that 
the difference between the ideal model and observed values is due to randomly distributed flaws in 
the body that will weaken it. The simplest theory is based on the weakest link concept. It assumes 
that the strength of a given specimen is determined by the weakest point or, in other words, by the 
smallest values found in a sample of n, where n is the number of flaws in the considered material. This 
relates the problem to extreme value theory. For applications, the term strength can be interpreted 
in different ways: mechanical strength, electrical strength, resistance of painted specimens to the 
corrosive effects of the atmosphere, ability to stop the passage of light rays, or the life span of a 
device that ceases to function when any of a number of vital parts breaks down. 

There is a dispute as to which distributions of the strength of a flaw are correct ones. Based 
on experimental data the following characteristics of the distribution should be accounted for: some 
experimenters have observed that the mode of the strength decreases as a function of the logarithm 
of the size of specimen; the distribution of strengths of specimens all of the same size appears to 
be negatively skewed; in the breakdown of capacitors the sizes of conducting particles (flaws) are 
distributed according to an exponential law. In the last example, it can be easily shown that the most 
probable value of the breakdown voltage depends linearly on the logarithm of the area. 

Epstein (1947, 1948) considers several common distributions of the strength of a flaw given by 
a density f(x) including Laplacian, Gaussian, and Weibull densities. Several issues are of interest 
in this context. First, one would like to know the asymptotic distribution of the smallest value in a 
sample of size n. Then it is important how specimen size (represented by n) affects the distribution of 
strengths. In particular, one would like to know how the mode, the mean, and variance of the smallest 
value depend on the size n. Rather standard arguments led Epstein to the results summarized in 
Table 7.1. 

Distribution 
Smallest value 
distr. (large n) Modey Mean Variance 

Laplace 
tL - A log W{ tL - ).. log(nj2) y - 0.577).. ;.hr2 

...!.. -Ix-J-tl/). -6-
2), e 

Gaussian tL- a (.j210gn 
tL -a(J210gn 1 _ (X_~)2 _log log n+lo~ 4rr y _ O.577rr rr2rr2 

2,J2 log n _log log n+log 4rr ) 12logn .j2iirr e 2u 

-~) 2..J2logn 
,J2logn 

..J2 log n 

Wei bull (tl- l y/tl r(~) r( o/)-r2( ~) a{3xtl-1 e-ax~ C~)l/tl 
omtl (na)l/~ (na)277i 

Table 7.1: Summary of the results from Epstein (1948) on the distribution of strength in the weakest 
link model depending on the distribution of the strength of a flaw (w stands for a standard exponential 
random variable). 
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From this summary we see that the assumption on the form of distribution affects in a significant 
way properties of the strength of a specimen. Moreover there are physical data available that follow 
each of the patterns exhibited by the distributions listed in the table. For example, breakdown voltages 
of capacitors have a distribution of the Laplace type. The derived properties when put in a physical 
context give information how the size depends on the distribution of strengths in the vicinity of flaws. 
Specifically, the specimens become weaker as the size increases. In the case of Laplace distribution 
it decreases linearly with log n, for Gaussian distribution the dependence is through Jlog n, and for 
Weibull distributions the dependence is through negative powers of n. The spread of the distribution 
remains unchanged in the Laplace case, and in two other cases it decreases with the specimen size. 

Epstein's works carried out over 50 years ago generated vast literature on this subject related 
to extreme value distributions. For our purposes it is sufficient to note that the Laplace distribution 
appears on an equal footing with the more popular distributions at that period such as Gaussian and 
Weibull. 

7.5 Wind shear data 
Barndorff-Nielsen (1979) proposed the hyperbolic distributions for modeling turbuience20 encoun­
tered by an aircraft. The model is quite complicated and difficult to handle when parameter estimation 
is considered. Kanji (1985), noticing that the Laplace and Gaussian distributions are limiting cases 
of the hyperbolic distributions, proposed the mixture of these two as a model for wind shear data.21 

Wind shears are encountered by an aircraft during the approach to landing and their distribution is 
critical for assessing the effectiveness and safety of aircraft and for training pilots to react correctly 
when they encounter a wind shear. 

Kanji (1985) had worked with 24 sets of data on wind shear collected during the last two 
minutes of landing of a passenger aircraft. The measurement represents the gradient of airspeed 
change against its duration. The basic assumption is that a wind shear forms an individual gust that 
has a strictly defined form specified by its duration and the magnitude of change of the air velocity. 
The 120 seconds in flight before touchdown was split into four bands, the first two of 40 seconds 
length and the last two of 20 seconds length. The histograms of the data suggested that for the early 
stage (first 40 seconds) of landing the Laplace distribution seems to fit the data well, while for the 
last 20 seconds less peaky Gaussian distribution appears to be appropriate. Considering this, Kanji 
proposed the mixture model 

(7.5.1) 

a mixture of Laplace and Gaussian distributions having the same mean and variance. The proposed 
estimation procedure starts with the estimation of the mean and the variance for both components in 
the model and then employs the chi-square goodness-of-fit procedure to fit the mixing constant a. 
The inference led to the following approximate values of a in the four time bands: 0.9, 0.6, 0.5, 0.3, 
respectively, confirming that wind shear data lose their Laplacian character in the earlier stages to 
the Gaussian at the end of landing. The fit was significant in all but nine out of 24 cases. 

In Jones and McLachlan (1990), a mixture of Laplace and Gauss distributions was studied in 
the same context. This time, however, the authors did not assume equal variance in the components 
and demonstrated an appropriately modified estimation procedure leading to even better fits than 

20 Random changes in wind velocity with insufficient duration to significantly affect an aircraft's flight path. 
21 A change in wind velocity of sufficient magnitude and duration to significantly affect an aircraft's flight path and require 

corrective action by the pilot or autopilot. 
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those obtained by Kanji (1985). Further discussion on justification and parameter estimation of the 
mixture model (7.5.1) can be found in Kapoor and Kanji (1990) and Scallan (1992), respectively. 

7.6 Error distributions in navigation 
In Anderson and Ellis (1971), we find an interesting discussion of error distributions reported in ocean 
engineering. The authors analyze 54 distributions and conclude that most of them have exponential 
or even heavier tails and only a few seem to follow Gaussian law. In heuristic fashion, they argue 
that only for equipment made of identical items do the collected data follow the Gaussian law. For 
example, it was observed that the frequency distributions of a single pilot operating the same set of 
facilities and under similar navigational environments appear to be well modeled by Gaussian laws. 
If the data are collected by instruments that, although nominally the same, are much more diverse and 
far from identical, then the data exhibit longer tails. This is due to variability of variance for different 
instruments. In the aircraft navigation data it was repeatedly observed that if data are collected from a 
fairly complex navigation system, there is a strong tendency to exhibit exponential tail behavior. The 
question is then how to rationalize the applicability of two so different distributions. The answer given 
in Anderson and Ellis (1971) suggests considering Gaussian distributions with random variances. 

As an example, consider two gauges, one new and one older and worn out. The variance of 
the second one will lead to data far from their true value, and the distribution can be closer to 
a Laplace distribution than to a Gaussian one. The authors suggest the use of distributions with 
exponential or even heavier tails for navigation data. They derive such distributions by combining 
observations from a number of Gaussian distributions that cover a range of standard deviations. 
Of course, various distributions (or patterns, as the authors describe them) of standard deviations 
will lead to different distributions of the errors (we know that one such possibility is the Laplace 
distribution if the distribution of the standard deviation is Rayleigh; see 2.2.5). They note: "In the 
past, navigation statistics have tended to be a conglomeration of single observations from various 
origins and there has been no need to examine the range of standard deviations from each origin. 
Therefore, we do not know the pattern which these standard deviations are likely to follow." 

Lack of information about the distribution of the standard deviation prevents the authors from 
making any strong recommendation on the type of error distribution, except that they strongly favor 
in some situations "log-tail" (in our terminology exponential-tail) distributions: 

"The navigator will remember that the Gaussian distribution can arise if one observer (without 
blunders) operates one equipment (without integrators) under one set of stable conditions! If his 
information is based on a number of diverse sources (or even if it is based on one source and the 
navigator has a healthy pessimism) the log-tail distribution will be preferable within the limits in 
which he is likely to be interested." 

In conclusion, after studying the difference in quantiles between the Gaussian distribution 
and an alternative distribution that is Gaussian with random variance (they do not consider Laplace 
distribution) they say: "If the Gaussian distribution is assumed for errors, and if the standard deviation 
is deduced from observations based on a large number of equipments and operators, there will in fact 
be considerably more extreme results than predicted by the assumption." 

The argument they provide in favor of the models based on Gaussian mixtures with stochastic 
variance can be easily extended to other areas of applied research. For this reason Laplace distributions 
can serve as valuable models in situations heuristically described above. 

In Hsu (1979), the model with Laplace distribution was investigated and compared with the 
real-life data on navigation errors for aircraft position. The data were collected by the U.S. Federal 
Aviation Administration over the Central East Pacific Track System. The position errors in the lateral 
direction (along the tracks) were recorded for the traffic heading to Oakland (3435 data points) 
and Los Angeles (4147 data points). The following five models were fitted to the data: Gaussian, 
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Laplace, t-distribution, a mixture of two Laplace, and a mixture of two t-distributions. The best 
fit, particularly in the tail region, was obtained by a mixture of two Laplace distributions. On the 
other hand, the Gaussian distribution performed rather poorly. It is worth emphasizing that a model 
adequately describing the tail behavior is of paramount importance in this application. The simplicity 
of the models based on Laplace distributions and their empirical adequacy adds much to its practical 
applicability, as illustrated by Hsu (1979) in the application of the proposed Laplace model for the 
calculation of aircraft midair collision risk. This risk is based on the probability of track overlap by 
two aircraft that take adjacent parallel tracks with some nominal lateral separation in nautical miles. 
The computation of this distribution (which is the convolution of the navigation error distributions 
for the considered two tracks) is possible for all models and it was found that the models other than 
the mixture of Laplace distributions tend to underestimate the overlap for most of the range of the 
nominal separation considered. 



8 
Financial Data 

An area where the Laplace and related distributions can find most interesting and successful applica­
tions is modeling of financial data. This is due to the fact that traditional models based on Gaussian 
distribution are very often not supported by real-life data because of long tails and asymmetry present 
in these data. Since Laplace distributions can account for leptokurtic and skewed data they are natural 
candidates to replace Gaussian models and processes. In fact, some activity involving the Laplace 
distribution can already be observed in this area. Laplace motion and models based on multivariate 
Laplace laws have appeared in works on modeling stock market returns, currency exchange rates, 
and interest rates. In this chapter, we present several such applications. 

It is important to mention that interesting materials exist on applications of hyperbolic and nor­
mal inverse Gaussian distributions to financial data [see, e.g., Eberlein and Keller (1995), Barndorff­
Nielsen (1997)]. Since generalized Laplace distributions can be viewed as special cases of hyperbolic 
distributions, the mentioned work also supports their application to stochastic volatility modeling. In 
particular, the estimation based on German stock market data in Eberlein and Keller (1995) confirms 
most of claims in Section 8.4. We do not report these results as not directly related to the Laplace 
laws but we recommend the cited work to those interested in financial modeling. 

8.1 Underreported data 
Consider a Pareto random variable Y* with p.d.f. 

for y* ~ m, (8.1.1) 
for 0 < y* < m. 

The Pareto distribution has been found useful for modeling a variety of phenomena, including distri­
butions of incomes, property values, firm or city values, word frequencies, migration, etc. However, 
as remarked by Hartley and Revankar (1974), in many applications (particularly those dealing with 
income or property values) one may reasonably expect that the reported values underestimate the 
true values of a given variable of interest. To account for this, Hartley and Revankar (1974) consider 
Y* with density (8.1.1) as an unobservable (true) variable, which is related to an observable variable 
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Y via the equation 

y = y* - U, (8.1.2) 

where the variable U (0 SUS Y*) is a positive underreporting error. The goal here is to make 
inference about the distribution of Y* (that is, to estimate the parameters y and m) based on a random 
sample from Y. To accomplish this, one needs to relate the p.d.f. of Y to the parameters y and m of 
Y*. Hartley and Revankar (1974) postulate that the proportion of Y* that is underreported, denoted by 

(8.1.3) 

is distributed independently of Y* with the p.d.f. 

P2(W*) = ).,(1 - w*/,-I, 0 S w* S 1, )., > O. (8.1.4) 

Then the observable r.v. Y given by (8.1.2) has the p.d.f. 

y )., 1 (~)Y+I, for y 2: m, 
g(y) = --- Y 

m )., + y (my),,-I , ., 0 lor < y < m. 
(8.1.5) 

We now recognize (8.1.5) as the p.d.f. of a log-Laplace distribution. Indeed, writing X = log Y and 
denoting 

a=/l;, K=if, ()=logm, 

we find that the p.d.f. of X is 

hex) = 2.--;-1_1 
a K- 1 + K 

-Klx-Ol/a e , 
llx-Ol/a e K , 

for x 2: (), 

for x < (), 

(8.1.6) 

(8.1.7) 

which is a three-parameter A£*((), K, a) density [see also Hinkley and Revankar (1977)]. Thus AL 
laws have found applications in economics in connection with modeling (underreported) income and 
similar variables. 

8.2 Interest rate data 
In this section we present an application of AL distributions in modeling interest rates on 30-year 
Treasury bonds. Klein (1993) studied yield rates on average daily 30-year Treasury bonds from 1977 
to 1990, finding that the empirical distribution is too "peaky" and "fat-tailed" to have been from 
a normal distribution. He rejected the traditional log-normal hypothesis and proposed the Paretian 
stable hypothesis, which would "account for the observed peaked middle and fat tails." The paper 
was followed by several discussions, where some researchers objected to the stable hypothesis and 
offered alternative models. 

Kozubowski and Podgorski (1999a) suggested an AL model for interest rates, arguing that this 
relatively simple model is capable of capturing the peakedness, fat-tailedness, skewness, and high 
kurtosis observed in the data. These authors considered a data set consisting of interest rates on 30-
year Treasury bonds on the last working day of the month [published in Huber's discussion of Klein's 
paper, p. 156]. The data cover the period of February 1977 through December 1993. Converting the 
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Figure 8.1: Top left: Histogram of interest rates on 30-year Treasury bonds. Top right: Nonparametric 
estimator of the density (thin solid line) vs. the theoretical ones (normal-- dashed line; AL-- thick 
solid line). Bottom left: Empirical c.d.f. vs. normal c.d.f. Bottom right: Empirical c.d.f. vs. AL c.d.f. 
(From Kozubowski and Podgorski (1999a).) 

data to the logarithmic changes, Yt = log(ir/it-d, where it is the is the interest rate on 30-year 
Treasury bonds on the last working day of the month t, the authors assume that the resulting 202 
values of the logarithmic changes Yi are i.i.d. observations from an AL distribution. 

The histogram ofthe data set appears in Figure 8.1 (top left). The typical shape of an AL density 
is apparent: the distribution has high peak near zero and appears to have tails thicker than that of the 
normal distribution. Comparisons of the empirical c.d.f. with the normal c.d.f. (Figure 8.1, bottom 
left) and the empirical density with the normal density (Figure 8.1, top right) confirm these findings. 
We observe a disparity around the center of the distribution due to a high peak in the data. To fit an 
AL model, one needs to estimate the parameters JL and a. Kozubowski and Podgorski (1999a) used 
the maximum likelihood estimators, obtaining 

Ii = -0.007178218 and a = 0.294043202, 

and then calculated the parameter K and other related parameters. The resulting values are presented 
in Table 8.1, along with corresponding empirical counterparts: 

1. Sample Mean: * L Yi· 

2. Sample Variance: * L(Yi _ y)2. 

3. Sample Mean Deviation: * L IYi - YI. 



292 8. Financial Data 

II Parameter Theoretical value Empirical value 

Mean -0.001018163 -0.001018163 
Variance 0.001733809 001372467 
Mean deviation 0.02944785 0.02945773 
Mean dev.! Std. dev. 0.7072175 0.7582487 
Coefficient of Skewness -0.07334177 -0.2274964 
Kurtosis (adjusted) 3.003586 3.599207 

Table 8.1: Theoretical vs. empirical moments and related parameters of Y ~ A.c(/:L, a). 

4. Sample Coefficient of Skewness: Yi = * L(Y; - Y)3/(* L(Y; _ y)2)3/2. 

5. Sample Kurtosis (adjusted): Y2 = * L(Y; - Y)4/(* L(Y; - y)2)2 - 3. 

Except for a slight discrepancy in skewness, the match between empirical and theoretical values 
is remarkable. In Figure 8.1 the theoretical AL c.d.f. is compared with the empirical c.dJ. (bottom 
right) and the density kernel estimator based on the data is compared with the theoretical densities 
of normal and AL distributions with the estimated parameters. We observe a better agreement with 
the AL distribution than with the normal one. 

8.3 Currency exchange rates 
We present an application of AL distributions in modeling foreign currency exchange rates taken 
from Kozubowski and Podgorski (2000). Following the ideas of Mittnik and Rachev (1993), we may 
view an exchange rate change as a sum of a large number of small changes, where the sum is taken 
up to a random time vp (that has a geometric distribution): 

Vp 

exchange rate change = L (small changes). 
;=1 

The random nature of time reflects the volatility and unpredictability of the factors that contribute 
to the establishment of a current exchange rate. Therefore, the AL laws (provided the small changes 
have finite variance) are very likely to approximate the distribution of the exchange rate change. We 
may think of vp as the moment when the probabilistic structure governing the exchange rates breaks 
down. This can be new information, political, economical, or other events that affect the fundamentals 
of the exchange market. 

Kozubowski and Podgorski (2000) fitted AL laws to a bivariate data set on two currency 
commodities: the German Deutschmark vs. the U.S. Dollar (DMUS) and the Japanese Yen vs. the 
U.S. Dollar (YUS). The observations were daily exchange rates from 111180 to 12/7/90 (2853 data 
points). (The standard change in the log(rate) from day t to day t + 1 was used.) 

The histograms of the data appear in Figure 8.2, where we observe a shape typical of AL density. 
The distributions have high peaks near zero and appear to have tails thicker than that of the normal 
distribution. The normal quantile plots (QQ plots) in Figure 8.3 (top) confirm these findings. Observe 
that the normal plots deviate from a straight line rather substantially. To fit an AL model, we need to 
estimate the parameters I-t and a. The maximum likelihood estimators produced 

/:L = 0.0007558 and a = 0.00521968 

for the German Deutschmark data and 

/:L = 0.0007272 and a = 0.0049445 
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Figure 8.2: Japanese Yen (left) and German Deutschmark (right) daily exchange rates, 1/1/80 to 
1217190. 
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Figure 8.3: Top: Normal quantile plots of Japanese Yen (left) and German Deutschmark (right) 
exchange rate data. Bottom: Quantile plots of Japanese Yen (left) and German Deutschmark (right) 
exchange rate data vs. fitted AL distributions. 

for the Japanese Yen data. The quantile plots of the two data sets with theoretical AL distributions 
are presented in Figure 8.3 (bottom). We see only a slight departures from the straight line. It is 
evident even to the naked eye that AL distributions model these data more appropriately than normal 
distributions. We refer the reader to Kozubowski and Podg6rski (1999c) for a more in-depth study 
of modeling the distribution of currency exchange rates with AL laws. 
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8.4 Share market return models 
8.4.1 Introduction. The application of Laplace motion as defined in Section 4.2, Chapter 4, to 
modeling share market returns has been investigated in many recent papers, starting with Clark (1973) 
(although indirectly) and during the last decade in Madan and Seneta (1990), Madan and Milne (1991), 
Longstaff (1994), Eberlein and Keller (1995), Barndorff-Nielsen (1996, 1997) (through more general 
models based on hyperbolic distributions), Madan et al. (1998), and Geman et al. (2000ab). 

It is empirically evident that stock price changes do not follow normal distribution. In particular, 
sample excess kurtosis for many available financial data is significantly greater than zero (zero 
corresponds to normal distribution). This deviation from normality implies that the assumptions 
of the Central Limit Theorem may not be valid for individual random effects making up a price 
change. One solution, as postulated by Mandelbrot (1963), is to consider individual effects not 
having finite variance. The resulting distribution should then belong to the class of stable distributions 
(a.k.a. Paretian stable laws). An alternative solution, as suggested in Clark (1973), is to consider a 
subordinated Gaussian process. Considering cotton futures, he argues that their prices evolve at 
different rates during identical time intervals. This is presumably due to the fact that the number of 
individual effects that add together to give the price change during a fixed time unit, say a day, is 
random. Thus a version of the Central Limit Theorem with a random number of elements should be 
used to obtain an approximate distribution of a daily stock price. Clark (1973) describes the rationale 
behind these assumptions: "The different evolution of price series on different days is due to the 
fact that information is available to traders at a varying rate. On days when no new information 
is available, trading is slow, and the price process evolves slowly. On days when new information 
violates old expectations, trading is brisk, and the price process evolves much faster." 

In economic literature, this argument is described through the assumption that the business (or 
economic) time runs randomly relative to physical time [see Madan and Seneta (1990), Geman et 
al. (2000ab)]. This sort of argument leads to the subordinated model of stock prices S(t) = X(T(t)), 
where X (t) and T (t) are two independent stochastic processes: X (t) is the stock price in business 
time t, and T (t) is business time at real time t. 

Ifwe assume that B(t) = log X (t) is a Brownian motion and that T(t) is a gamma process, then 
the process L(t) = log S(t) is a Laplace motion. In the work of Madan et al. (1998) and some other 
works oriented toward applications in finance, this process is named the variance gamma process. 
This new model for security prices enjoys several major advantages when compared with other models 
discussed in the literature on the subject. In particular, it incorporates asymmetry, heavy-tailedness, 
continuous time specification, finite moments of all orders, and an elliptically contoured multivariate 
counterpart, and it provides adequate empirical fit. Additional features include approximation by 
a compound Poisson process and representation as a Brownian motion evaluated at random time 
governed by a gamma process. The last representation is interpreted as a mathematical interpretation 
of an economic clock ticking in a random fashion. All these features are direct consequences of the 
properties of the Laplace motion studied in Section 4.2, Chapter 4. 

The following is a brief description of the model and its basic properties. 

8.4.2 Stock market returns. We consider a particular commodity with stock price St at time t. 
We assume that {Sf }t::o:o is a random process and the return over the time unit is given by 

R = Sf+1. 
Sf 

Then the log-return is defined as 

L = log R. (8.4.1) 



S.4. Share market return models 295 

In most models, it is assumed that the distribution of R does not depend on t, so the dependence of 
R on t is not exhibited in the notation. 

More generally, the stochastic process 

Set) = S(O) exp(Lt ) 

usually represents the stock price Set) at time t, where the process L t has homogeneous increments, 

i.e., Lt+s - L t !!::. Ls. Note that (by (8.4.1)) we have L !!::. LI. 
The literature on market returns includes a number of models for L t : Brownian motion, symmet­

ric stable processes, normally distributed jumps at Poisson jump times, models based on t -distribution, 
and generalized beta distributions. A model based on the Laplace motion (the variance gamma pro­
cess) can be introduced by assuming that L t has homogeneous and independent increments and that 
Ll has a shifted generalized Laplace distribution. Thus 

d 
LI = gALea, /1-, a, v), (8.4.2) 

where the parameters of the generalized Laplace distribution (a, /1-, a, and v), and the interest rate r 
are related through 

a = r + ~ log (1 _ /1- _ ~2) . 
The additional shift 10g(1 - /1- - a 2 /2)/v is a result of the drift 

and is added in order to have E exp(S(t)) = ert . 

Asymmetric generalized Laplace distribution (skewed Bessel K -function distribution) was 
probably, in this context, first considered in Longstaff (1994). He assumes that L t is a conditional 
Brownian motion with the gamma stochastic variance and a shift in the mean proportional to this 
stochastic variance (without any substantiation of the gamma distribution for the variance). The 
stochastic process is not specified except for one-dimensional distributions, which allows for other 
than Laplace motion models for L t (see Exercise 4.5.10 in Chapter 4). 

Madan and Seneta (1990) considered the symmetric Laplace motion, showing that in this case 
(/1- = 0) the agreement of the Laplace model with real data is very good. Madan and Seneta (1990) 
compared the (symmetric) Laplace motion model with the normal, the stable, and the Press compound 
events model (ncp), using a chi-square goodness-of-fit test statistic on the data on 19 stocks quoted 
on the Sydney Stock Exchange. For 12 of the studied stocks, the minimum chi-square was attained 
by the Laplace motion model. The remaining seven cases were best characterized by the ncp for five 
cases and the stable for two cases (and none for the normal distribution). Thus the Laplace motion 
appears to be a good contender as a model of daily stock returns. The studies of Madan et al. (1998) 
confirm this opinion to an even greater extent for the asymmetric Laplace motion. 

Madan et al. (1998) studied the empirical prices for the S&P 500 Index futures traded at the 
Chicago Mecantile Exchange (CME) obtained from the Financial Futures Institute in Washington, 
DC for the period from January 1992 to September 1994. Using the maximum likelihood approach, 
the authors fitted these data with the following models: Brownian motion (the popular Black-Sholes 
model), symmetric Laplace motion, and asymmetric Laplace motion. The three models were con­
sidered both for the statistical process of the stock price and for the risk neutral process that was 
obtained using the data on the three-month Treasury Bill rate obtained from the Federal Reserve 
Board in Washington, DC. 
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For the statistical process of the log-price, it was found that the log-normal process is strongly 
rejected in favor of the symmetric Laplace motion while the asymmetric Laplace motion makes no 
significant improvement in fit over the symmetric one. 

The situation is essentially different for the risk neutral process where an enhancement of 
skewness is observed as a result of risk aversion in equilibrium. For example, the log-normal model 
is rejected in favor of the symmetric Laplace motion in 30.8% of the tests, while the analogous rate 
for asymmetric Laplace motion is 91.6%. 

8.5 Option pricing 
Once the model for the price change of a commodity is decided on, it is important to find an effective 
and operational formula for the price of an option. Probably the most important advantage of the 
Laplace model given by (8.4.2) is that it allows for a closed form of the price of a European option 
on the stock using the Black-Sholes formula for the Brownian motion model of price change. The 
results are shown in Longstaff (1994) and Madan et al. (1998). 

The price of a European call option C(So, K, t) for a strike of K and maturity t with the initial 
value of the stock S (0) = S is given by 

C(S, K, t) = e-rt E[max(S(t) - K, 0)], (8.5.1) 

where the expectation is taken with respect to the risk-neutral density. Evaluation of the option price 
(8.5.1) is based on the representation given in Theorem 4.2.1. Conditionally on the value of the 
random time, we have a standard Brownian motion model and the Black-Sholes formula can be 
applied. The European option price is then obtained by integrating out the gamma process. 

Theorem 8.5.1 The European call option price on a stock, when the stock price is given by the 
Laplace motion through the condition (8.4.2), is given by 

C(S, K, t) = S· III d - - , s(s + 1)1 ( 
1 (a+s)2 1 

v 2 v 
(a + s)2 ~) 

2 ' v 

rt ((1--;;2 2 (1--;;2 t) 
- K· e- . III dy ~ - 2' S sly ~ - 2' ~ , 

where 1 [S t 2 - v(a + s)2 ] 
d = ~ log K + rt + ~ . log 2 _ va2 

and IJ1 is the complementary Besselfunction given by the following integral involving the standard 
normal distribution function <l>: 

100 (a ) uy-1e-u 
lJ1(a,b,y) = <l> r;;+b,JU duo 

o yU fey) 

The proof of this theorem can be found in Madan et al. (1998). This formula is similar to 
the one based on the Black-Sholes model. The only difference is that the Bessel function is used 
instead of the normal distribution. Computationally, the formula is more complex than the traditional 
Black-Sholes formula since it involves a double integral of elementary functions. It is nevertheless 
practical as used by Madan et al. (1998) in their numerical computations on the data discussed in the 
previous section. 
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Here for each fit to the three models the option price was computed for 143 weeks. Then the 
pricing error was computed. For a correct model the pricing errors should not exhibit any consistent 
pattern and they should not be predictable (orthogonality tests were used to determine whether the 
prices resulting from a given model were biased or not). From these studies it follows that the 
asymmetric Laplace motion provides acceptable pricing that removes the so-called volatility smile 
so often reported in the financial literature for the Black-Sholes prices. For a detailed description of 
the statistical analysis we refer readers to Madan et al. (1998). 

8.6 Stochastic variance Value-at-Risk models 
Research very closely related to modeling of stock market returns was presented in Levin and AI­
bansese (1998) and Levin and Tchernitser (1999), where value-at-risk (VaR) models with multifactor 
gamma stochastic variance were recommended and supported by theoretical results and real-life data. 

Let X be a random risk factor. Assume first that it is modeled by a one-dimensional random 
variable. An investment strategy is represented by a portfolio, say fleX), which depends on this 
factor and denotes the return of investment over some fixed period of time (e.g., one day or 10 days). 
The VaR at the level p E (0, 1) is then defined as the p-quantile of the distribution of fl (X): 

P(fl(X) ::: VaR) = p. 

If the portfolio is a linear function of X, the distribution of the risk factor X determines the value 
of VaR. Usually, the assumption of a normality of X is not supported by real-life data. Figure 8.4 
shows that the data are not well modeled by normal density. Assuming Gaussian distribution may 
lead to misleading values of VaR (they would be too small in absolute value when compared to the 
actual VaR's). The real data exhibit more peakedness, heavier tails, and often skewness. None of 
these features can be modeled accurately by a Gaussian density. (See also Figures 8.5 and 8.6.) For 
example, the returns of three-month FIBOR presented in Figure 8.4 show 

• skewness equal to -0.98 and kurtosis equal to 49.0 for daily returns; 

• skewness equal to -0.46 and kurtosis equal to 5.6 for 1O-day returns. 

In Figure 8.5, we see that the symmetric Laplace distribution fits currency exchange data by 
far better than does the Gaussian distribution. 

It is not uncommon in financial research to consider a modification of the normality assumption 
by allowing for random variance in the normal model (see also Section 8.4). In addition, in the work 
discussed therein, the maximum entropy principle was evoked to determine the distribution of such 
a random variance of the risk factor. More precisely, consider the following assumptions on the 
distribution of the risk factor X. 

Assumption 8.6.1 Conditionally on V, the distribution of the riskfactor X is normal with the mean 
e and variance V, i.e., 

X = Hz +e, 
where Z is a standard normal variable independent of a positive random variable V having the mean 
Va = aJ. 
Assumption 8.6.2 The distribution of the variance V > 0 has to satisfy the maximum entropy 
principle under the constraint 

E(V) = Va. 

As we already know (see Section 2.4.5) these assumptions lead to the model with variance V 
distributed according to exponential law and thus by representation 2.2.3 the unconditional distribu­
tion of risk factor is given by the Laplace law £(e, aa). Of course, this allows for explicit computation 
of the VaR values via the formulas for the quantiles of the Laplace distribution. 
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Daily Returns of 3·Month FIBOR 
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Figure 8.4: Comparing histograms of risk factors with Gaussian model: Daily and lO-day returns of 
three-month FIBOR. (Courtesy of Alexander Levin.) 

Remark 8.6.1 In finance, the notion of volatility is commonly used to describe the square root of 
variance (the standard deviation). Note that if V is exponential, then the volatility .jV is distributed 
according to the Rayleigh distribution. 

It may be reasonable to replace Assumption 8.6.1 by the following one. 

Assumption 8.6.3 Conditionally on V, the distribution of the riskfactor X is normal with the mean 
e - y V and variance V, i.e., 

X=.JVz-yv+e, 
where Z is a standard normal variable independent of a positive random variable V having the mean 
Vo = aJ. The parameter y controls the correlation between the risk factor X and the stochastic 
variance V. 

Then the distribution ofthe risk factor becomes asymmetric Laplace AC(8, -aJy, ao). Again 
the VaR can be explicitly computed as the quantiles of asymmetric Laplace laws are readily available. 
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Figure 8.5: Comparison of historical data and their fit by Gaussian and Laplace densities. (Courtesy 
of Alexander Levin.) 
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Figure 8.6: Comparing histograms of risk factors with Gaussian and Laplace models. Left: Daily 
returns of the S&P 500 Index showing that the asymmetric Laplace distribution fits the data quite 
well. Right: lO-day returns ofthe S&P 500 Index are fitted well by a generalized Laplace distribution 
(stochastic variance gamma model). (Courtesy of Alexander Levin.) 

We see in Figure 8.6 that the data on returns of the S&P 500 Index are clearly skewed to the right. 
The fit of asymmetric Laplace on the left graph is far better than the Gaussian providing a sound 
empirical justification of the above model for risk factor distributions. 

So far we have considered a fixed period within which we are modeling the return of our 
portfolio. A natural extension is to consider a stochastic variance model that depends on time. Our 
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previous considerations, which lead to exponential distribution for stochastic variance over a fixed 
period, should naturally introduce a time factor into the model by considering a gamma process. 

Assumption 8.6.4 The total stochastic variance V (t) follows a gamma process. 

As a consequence of this assumption, the stochastic variance over an arbitrary time interval is 
distributed according to the gamma law and the stochastic volatility is distributed according to the 
Nakagami distribution [the distribution of the square root of a gamma distributed variable; see, e.g., 
Nakagami (1964)]. We know from Chapter 4 that this leads to risk factors distributed according to 
generalized Laplace distributions (Bessel function distributions). In this case, the VaR is no longer 
expressed in terms of elementary functions as the Bessel function distributions involve a modified 
Bessel function that needs to be inverted to obtain VaR defined as a quantile for this distribution. 
Numerical procedures have to be used for the computational purposes. 

The available financial data seem to confirm such a model. From Figure 8.6, we observe that the 
distribution over a longer period of time (lO-day vs. daily) has a relatively smaller peak in the center, 
which agrees with the model having gamma distributed stochastic variance. The same observation 
can be made for the data presented in Figure 8.4. 

The above model poses a challenging inferential problem how to estimate the parameters of 
distributions based on generalized Laplace model by exploiting the time scale. For example, the 
question arises as to which period of time would lead to an asymmetric (but not generalized) Laplace 
distribution of the risk factor. This problem was partially addressed in Levin and Tchernitser (1999) 
where an interesting calibration procedure was proposed allowing for computing the parameters of 
the model by matching appropriate moments of the distributions for variance and for the risk factor. 
As a first step, the method of moments could be used to estimate the parameters. 

The next challenge is to extend these models to the case of a multivariate portfolio. Let X be a 
vector of risk factors and let n (X) be a portfolio depending on these factors. To compute VaR, one 
needs to identify multidimensional distribution of X. Following the successful fit of the univariate 
models, we are looking for distributions which in the one-dimensional case are reduced to asym­
metric Laplace or generalized Laplace distributions. For bivariate currency exchange data, studied 
in Levin and Tchernitser (1999), three models were examined: the Gaussian, a linear combination of 
Laplace variables, and bivariate Laplace (the elliptically contoured Laplace distribution). The two­
dimensional data on exchange rates of German Mark and Japanese Yen vs. U.S. Dollar were used to 
verify the proposed models. As seen in Figure 8.7, the most convincing fit is provided by the ellipti­
cally contoured Bessel function distribution, which suggests that multivariate Laplace distributions 
can be very useful for multivariate modeling in finance. 

8.7 A jump diffusion model for asset pricing with Laplace 
distributed jump-sizes 

Another model that is an alternative to the Gaussian for the price of an asset (a stock or a stock index) 
was proposed in Kou (2000). As opposed to the variance gamma models discussed in Sections 8.5 
and 8.6, which are purely jump processes, it contains both a continuous part modeled by a geometric 
Brownian motion and a jump part with the logarithm of the jump sizes having a Laplace distribution 
and the jump times corresponding to the arrival times of a Poisson process. The asset price Set) is 
given by the stochastic differential equation 

dS(t) (N(t») 
--sf = f-Ldt + adW(t) + d L(V; - 1) , 

( ) ;=1 



8.7. Ajump diffusion model for asset pricing with Laplace distributed jump-sizes 301 

SImulated Blv3rlale Normal Oenslly 

iD()' looo .VJD.2aD D2IXJO.3OJO c~ .~ 
a&lXl«llD .1IlIXJ.7!XXl II 7!1JD.8DJO .8DOO1IOOO .QOOO. ~ 

Simulated Eliplical Bessel K-Funalon OBlsily 

Slmul3ted Density for alin83f Combination fiche 
1.0 Bessel K.F unction Oisaribuced Variables 

~lIng OEIUJSD . J>Y,uso FIC Rate DBlsIy 

.,0· 1000 . 1DOG2000 D2000·3OJO c3JOO<IOal . <Q)().eooo 

.,6OOD·ecDD . 1IOOO7!XXl 117CDO·8OlD . eooogooo . QOOO.\ 

Figure 8.7: Bivariate distribution based on DEMIUSD and JPY/USD data. Top left: Gaussian model. 
Top right: Model based on independent Laplace variables. Bottom left: Multivariate Laplace model. 
Bottom right: Historical distribution. (Courtesy of Alexander Levin.) 

where W (t) is a standard Wiener process, N (t) is a Poisson process with rate A, and {Vi} is a sequence 
of independent identically distributed nonnegative random variables such that X = log V has the 
Laplace distribution C.cCB, ry). All the variables are assumed to be independent. The solution to the 
equation has the form 
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It is shown in Kou (2000) that this model has important features observed in the financial data 
(and nonexistent in the standard diffusion models), such as high peak and heavy tails, asymmetry, and 
volatility smile. Moreover, a closed formula for option pricing is available, although it is somewhat 
complicated and involves some special functions (the H h function). We refer interested readers to 
the original work. 

8.8 Price changes modeled by Laplace-Weibull mixtures 
As we have mentioned, the ability to model heavy-tails as well as the center peak are important 
advantages of Laplace modeling in finance. Rachev and SenGupta (1993) propose contaminated 
Laplace distribution to accommodate the possibility of outliers. Namely, the following mixture model 
is discussed: 

p(x; 7T,).., JL, y) = 7T!I (x;)..) + (1 - 7T)h(x; JL, y), 

where !I is the CC(O, II)..) density, 

!I (x; )..) = ()../2) exp(-)..Ixl), 

and h is the density of a symmetric Weibull distribution given by 

where y > 1, JL > 0,0:::: 7T :::: l. 
Obtaining maximum likelihood estimators for this multi parameter family of distributions is 

troublesome, mostly because of the presence of the Weibull component. However, the general E-M 
algorithm can be used for this purpose, and was successfully applied in Rachev and SenGupta (1993). 

In the proposed model, the leading term is Laplace density with Weibull density being a possible 
contaminant. Therefore, it is of interest to test for the no mixture hypothesis: 7T = l. Various cases, 
depending on which parameters are known, are discussed in Rachev and SenGupta (1993). 

The model was then applied to price changes for real estate data from Paris. Mixture distri­
butions are considered for such data because of a possibility of small changes in the corresponding 
buyers/investors population due to immigration or emigration. The data consisted of the average 
prices for one-bedroom apartments in Paris for 61 consecutive months. The data were transformed 
to Xi = log(~i+l/~i) and then the E-M algorithm yielded the following estimates: fr = 0.852, 
"9 = 5.070, ~ = 7.97, and {l = 45.39. An initial Monte-Carlo study suggests rather good agreement 
of the estimated model with the observed data. 



9 
Inventory Management and Quality Control 

Somewhat surprisingly, there are only a few and isolated applications of the Laplace distributions 
related to inventory management problems and quality control. The dominance of the gamma and 
exponential distributions in this field is still overwhelming. We have collected here a few results 
which hopefully will be elaborated by the researchers and practitioners in the not-too-distant future. 

9.1 Demand during lead time 
Distribution of demand during lead time in inventory control is essential for determining inventory 
decision variables such as expected back order, lost sales, protection level, and stock out risk. 

Bagchi et al. (1983) show that based on theoretical considerations this distribution ought to be 
the Hermite distribution [see Johnson et al. (1992)] given by 

peW = 0) = Po = e-a- b 

[[wJ2ll a w- 2jM 
peW = w) = Pw = PO L ( _ 2.)' .,' w = 1,2,3, ... , 

j=O W J.J. 

where a and b are the parameters of the distribution such that E (W) = a + 2b and Yare W) = a + 4b. 
Indeed, this is the exact distribution of demand during lead time when unit demand is Poisson 
and lead time is normally distributed. However, in the applied literature [see, e.g., Peterson and 
Silver (1979)], the Laplace distributions are also recommended for this purpose, especially for slow­
moving items or the universal normal approximation. We are thus interested in comparing normal and 
Laplace distributions as approximations to the (skewed) Hermite distribution. These approximations 
are based on the method of moments and the parameters are chosen by equating the means and 
variances. Bagchi et al. (1983) provide a table comparing 

00 

Q R = 1 - PR = L Pw 
w=R+! 

- the tails of Hermite distribution with mean 7 and variance 13 (corresponding to Poisson demand 
with mean equal to one and the normal lead with mean 7 and variance 6 - the relation being E (W) = 
Af-t and Var(W) = Af-t + A 2u 2, where A = 1 is the mean of the Poisson demand and f-t and u 2 are 
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the parameters of the normal lead time) with their normal and Laplace approximations. The results 
are summarized in Table 9.1. 

Q R approx. (Q~) 

I (reorder 
p_oints) 

Hermite Laplace Normal 

7 .4163 .4110 .4449 
8 .3098 .2776 .3387 
9 .2335 .1875 .2440 
10 .1620 .1267 .1660 
11 .1140 .0856 .1060 
12 .0741 .0578 .0636 
13 .0484 .0391 .0358 
14 .0300 .0264 .0188 
15 .0186 .0178 .0092 
16 .0108 .0120 .0043 
17 .0064 .0081 .0018 

Percentage error 
100·(QR - Q~)/QR 

Laplace Normal 

1.27 -6.87 
10.39 -9.33 
12.70 -4.50 
21.79 -2.47 
24.91 7.08 
21.98 14.17 
19.21 26.03 
12.00 37.33 
4.30 50.54 

-11.11 60.19 
-26.56 71.88 

Table 9.1: Approximations to the tail of Hermite demand during lead time (mean = 7, variance = 13). 
(Source: Bagchi et al. (1983).) 

For the normal approximation, the maximum error decreases as the mean increases and increases 
as the variance increases. For the Laplace approximation, the maximum error seems to increase as 
the mean increases but decreases as the variance increases. The table indicates that the Laplace may 
approximate the Hermite well in the high percentage points of the right tail. The normal distribution 
yields better approximations in the middle percentage points. The percentage errors seem to move in 
opposite directions, with the normal distribution providing a better fit for moderate reorder points, 
and the Laplace is substantially dominating at high points. Further and more detailed investigations 
may be appropriate. 

9.2 Acceptance sampling for Laplace distributed quality 
characteristics 

In the theory of one-sided acceptance sampling we consider a measured quality characteristic, say X, 
which is compared to an upper specification limit, say U, to determine whether an item is classified 
as defective. The quality of all the items is then defined as the theoretical proportion p of its defective 
items; i.e., p = P(X > U). If we have a sample of items from the lot for which quality is expressed 
in terms of (X 1, ... , Xn) and the estimated defective proportion is given by p, then the decision rule 
to accept or reject the whole lot is given by 

if P ~ p*, then accept the lot, 

if p > p*, then reject the lot, 

where p* is a specified acceptance constant. 
The theory is well developed if the distribution of X is normal. Sahli et al. (1997) pointed 

out that using the procedures based on the normality assumption when it is not valid could be quite 
misleading. The authors report that the procedure for which the sample size is n = 45 and under which 
the Gaussian assumption ensures an acceptance probability of 0.95 gives an acceptance probability 
of only 0.453 if we replace the Gaussian distribution by the Laplace distribution. 
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This demonstrates the importance of developing a theory for other than normal cases. Sahli et 
al. (1997) present an acceptance procedure for the symmetric Laplace distribution both in the case 
when only the center parameter is unknown and in the case when the center and scale parameters are 
unknown. The following is a summary of their findings. 

In general, we assume that the distribution of X depends on a parameter 8 and we define the 
lot acceptance probability based on our decision rule by 

The quality of the lot p is a function of 8. In the cases when all 8 that give the same p also produce the 
same value of Pa, Pa can be treated as a function of p and the graph of Pa as a function of p is called 
an operating characteristic (OC) curve. The standard acceptance sampling plan design problem is to 
give a decision rule with corresponding OC curve passing through two given points (Pt, Pal) and 
(p2, Pa2 )· The problem is solved under the normal assumption by the following acceptance rules: 

X .::: U - a Z p* if the standard deviation a is known, 

X .::: U - SZp* if a is unknown and S2 is the sample variance. 

Practical ways to choose the sample size nand P* such that the OC curve passes through the two points 
(Pt, Pal) and (p2, Pa2 ) are provided by the International Organization for Standardization (1989). 

For the Laplace distribution eC(8, ¢), we have the following relations between the parameters 
and the proportion P of the defective items: 

8 = U +¢log(2p). 

The case of ¢ known. Let us take the decision rule using the median e (which is the MLE of 8): 

if e .::: Xu, then accept the lot, 

if e > Xu, then reject the lot. 

The issue is to determine the acceptance constant Xu and the sample size n such that the OC curve 
passes through two given points. Note that the function Pa (p) is equal to the cumulative distribution 
function of the median, which in principle can be explicitely computed even though numerical 
algorithms have to be used. For example, if ¢ = 1 and U = 3, then to ensure Pa (0.OO68) = 0.95 
and Pa(0.0106) = .1, we obtain n = 51 and Xu = -1.0360. 

The case of ¢ unknown. A reasonable acceptance rule would be 

if p .::: p*, then accept the lot, 

if p > p*, then reject the lot, 

where 

¢ is the sample mean absolute deviation (the MLE of ¢), and P* is to be determined. This is 
equivalent to 

if e .::: U - k¢, then accept the lot, 

if e > U - k¢, then reject the lot, 

where k has to be determined. In order to determine the OC curve in this case one can either consider 
the exact distribution of the statistics ¢ and e or apply some asymptotic results (see also Section 2.6). 
The complexity of the problem was partially analyzed in Sahli et al. (1997). 
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9.3 Steam generator inspection 
The exponential distribution is found in applications in a variety of fields. Easterling (1978) notices 
that for heavy-tailed data the model consisting of the sum of an exponential variable and a Laplace­
distributed independent measurement error can be utilized. In this paper the model is applied to 
measurements of tube degradation in a steam generator. 

The steam generators in pressurized water reactors contain thousands of tubes through which 
heated water from the reactor flows to be converted into steam. The tubes can erode over time and, 
if the generator is not inspected and maintained properly, it can lead to leaks that require the plant 
to be shut down. To develop an appropriate inspection plan, an adequate statistical model for the 
degradation of the tubes has to be developed. In Easterling (1978), the actual degradation (extent 
of thinning) of a tube, D, expressed as a percentage of the initial tube wall thickness, is a random 
variable having an exponential distribution with mean (): 

h(d) = ~e-d/O. 
() 

The degradation is measured by a device called an eddy current tester and it is clear from the 
available experimental data that the measurements are made with heavy-tailed and biased errors E. 
A Laplace distribution with density 

1 
gee) = _e- 1e- JL1 /</> 

2¢ 

seems to be well fitted for these data. The measured degradation is then modeled as 

M=D+E, 

where E and D are independent and distributed according to these densities. Then the cumulative 
distribution function of M is given by 

{ 
_</>_e(m-JL)!<I> if m :s ", P 2(</>+0)' ,.., 

(M :s m) = 1 _ 02 e-(m-JL)/O + 0 e-(m-JL)!<I> 'f 
OL</>2 2(0-</» ,1 m > /-to 

From this explicit formula one can derive conditional moments of M and D [see Easterling (1978)]. 
The goodness-of-fit analysis of the above model was performed on some experimental data. The 

model appears to provide an adequate fit. However, as pointed out by Easterling (1978), correctly 
estimating the variances represented by () and ¢ is a problem. Both represent variability in the 
model, and it is hard to discern if the variability comes from variance of the error or the variance of 
degradation. 

9.4 Adjustment of statistical process control 
The majority of applications of the Laplace distributions are due to inadequacy of Gaussian model­
ing. Along these lines, Gonzales et al. (1999) present a rather surprising application of the Laplace 
distribution by finding an approximate solution to a Gaussian model (considered accurate) through 
exact solutions available for a corresponding Laplace model. Namely, an analytical solution to the 
average adjustment interval and the mean squared deviation from the target ofthe "bounded adjust­
ment" schemes are found under the assumption that the disturbances are generated from a Laplace 
distribution. Then robustness of the solution on the distributional assumptions is demonstrated and 
used to derive the approximate results for the Gaussian case. 
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Feedback control schemes used in the parts and hybrid industries must often account for the cost 
of being off target, and the costs of adjustment and/or the sampling process. In such a case, feedback 
adjustment may be implemented by using bounded (dead band) adjustment schemes. In these schemes 
the disturbances are represented by an integrated moving average (IMA) time series model 

Zt+l - Zt = at+l - Bat, 

where zo = ao = 0, the innovations at are independent and identically distributed (i.i.d.) normal 
random variables with mean zero and standard deviation aa, and 0 < A = 1-B S 1. The adjustments 
are given by Xt = X t - Xt-l and their effect is realized at time t + 1. The possibility of sampling and 
adjusting the process occurs only at times tm, mEN. The corresponding disturbances are given by 

Zmt+m - Zmt = Umt+m - Bmumt, 

where Utm are i.i.d. normal random variables with mean zero and standard deviation am, and Bm, 
am, and Am = 1 - Bm satisfy A~a~ = mA2a} and Bma~ = Ba}. Optimal bounded adjustment 
schemes require that an action X tm needed to bring the process back to target is taken every time 
the minimum mean squared error of forecasted deviation from target exceeds some threshold values 
±L. Important parameters for these schemes are the sampling interval m, the action limits ±L, and 
the amount of adjustment required (which depends on the overcompensation s to be produced). Once 
these parameters are chosen, the average adjustment interval (AAI) and mean squared deviation 
(MSD) may be computed by solving certain integral equations. Under the disturbances described, 
the equations have the form 

AAI (x) = mho(x), 

MSD(x) = a~ + A~a~{(1- m)/(2m) + g2(X)}, 

where x = s/(Amam), g2(X) = h2(X)/ ho(x). The functions hk(X) for k = 0 and 2 are the solutions 
of the Fredholm integral equation 

hk(X) = xk + am i: hk(w)¢{am(w - x)}dw, (9.4.1) 

where A = L/P.mam) and ¢O is the density function of the innovations Utm. See Gonzales et 
al. (1999) and the references therein. 

When innovations are Gaussian there is no analytic solution to (9.4.1). However, as shown in 
Gonzales et al. (1999), analytical solution can be written explicitly if the innovations follow Laplace 
distribution. Namely, in the Laplacian case the solutions are 

ho(x) = I 
h2(X) = I 

A2+A./2+I-X2, IxlsA, 
1 + A./2e-v'z(lx l-A), Ixl > A, 

11.4 /6 + 11.3./2/3 - x 4 /6 + x 2 , Ixl SA, 
x 2 + 11. 3 f e-v'z(lxl-A), Ix I > A. 

These solutions can be used to obtain exact values of the AAI and MSD. The Fredholm equation 
can also be solved for the convolutions of Laplace distributions. Then the solutions can be used to 
approximate solutions for normal innovations by the Central Limit Theorem. However, as shown 
in Gonzales et al. (1999), the limiting distribution can be approximated quite accurately by simply 
extrapolating the solution in the cases of the Laplace distribution and the twofold convolution of the 
Laplace distribution. For the corresponding results, we refer readers to the original paper. 
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9.5 Duplicate check-sampling of the metallic content 
An application of generalized Laplace (Bessel function) distributions was obtained some 40 years ago 
by Rowland and Sichel (1960) in modeling duplicate measurements of the metallic content in the gold 
mines of South Africa (but to the best of our knowledge no more recent results are available at least 
in the probabilistic and statistical literature). Because such duplicate check-sampling is a common 
practice in industrial analysis this approach could be valuable for quality controllers working in other 
areas as well. In our presentation, we restrict ourselves to a description of the model, referring readers 
interested in quality control to the original paper. 

The check measuring is based on duplicate measurements of a specimen in order to gauge the 
accuracy of qualitative determinations. The two measurements, called the original sample and the 
check sample, can be used to assess the quality of measurements. In standard applications, it is often 
reasonable to assume that the difference of measurements is normally distributed. However, in cases 
when the variance of the error is dependent on the level of specimen in a measurement, the use of 
the normal distribution is not appropriate. 

This seems to be the case in duplicate measurements of the gold content in gold mines. Namely, 
the higher the level of the gold content in samples taken in a groove the larger the variance of the 
measured content. It was verified in various studies that for the double check sampling in the gold 
mines the ratios of two measurements have stabilized standard deviations and thus they should be 
used for statistical purposes instead of the differences. 

Let X and Y represent the original and check sample. From the data collected from mines in 
South Africa, it was inferred that the distributions of X and Yare identical and thus the ratio R = X / Y 
has a distribution that is asymmetric around one. As it is more convenient to use symmetric distri­
butions in deriving control chart limits, the logarithm of the ratio, L = log R, which is distributed 
symmetrically around zero, is a more suitable variable. The log-normal distribution has a prominent 
position in mine valuation, and is often used to model the distribution of R if all samples are taken in 
a small reef area (so the variance can be assumed constant). If variances of all such small reef areas 
were constant, all the ratios obtained in check sampling could be pooled together and would conform 
to the log-normal law. Unfortunately, the observed data reject such a model. It was observed that the 
logarithms of the observed ratios, which under the log-normal model should be normally distributed, 
reveal strongly leptokurtic features. According to Rowland and Sichel (1960) leptokurtosis is due to 
the "instability" of the logarithmic variances that is observed even for samples taken in two neigh­
boring reef areas. Since standard statistical densities used for symmetric leptokurtic distributions, 
such as Pearson Type VII distribution (a I-distribution with not necessarily integer-valued degrees of 
freedom), were rejected by the x2-test, the authors resorted to a model which in the terminology of 
this book is represented by generalized symmetric Laplace (symmetric Bessel function) distributions. 

The basis for the model follows the same scheme that was presented earlier in this book: the 
variable L is normally distributed with a stochastic variance (corresponding to the random choice of 
the location). The standard deviation is assumed to have a gamma distribution, and L is a product 
of the random standard deviation and a normal random variable, assumed to be independent. As a 
result of these assumptions we obtain the following density of L: 

y(l) = 1/~ (5alll)v K v(5aIII), 
2V - rev + 1/2) 

where a and v are some positive parameters. This distribution corresponds to the density given by 
equation (4.1.32), if we take a = 1/0'2 and v = r - 1/2. One should notice that the above density 
is also well defined for v E (-1/2,0] although this case was not discussed in the original paper. 

The derived model has fitted the data from various gold mines quite well. The formal derivation 
of the quality control charts based on this model and a discussion of their implementation in the mining 
practice can be found in Rowland and Sichel (1960). 



10 
Astronomy and the Biological and 
Environmental Sciences 

In this short chapter, miscellaneous applications of Laplace distributions are briefly surveyed. In the 
first section we report that Laplace distribution may in certain instances provide a better fit than the 
more complicated hyperbolic distribution. The central part of this chapter is devoted to an important 
application to the area of dose response curves studied by Uppuluri (1981), which unfortunately has 
not been investigated further due to the untimely death of the author. 

10.1 Sizes of sand particles, diamonds, and beans 
Laplace distributions and, more generally, hyperbolic distributions were considered for modeling 
sizes of sand particles, diamonds, and beans. 

Barndorff-Nielsen (1977) studied the distribution of the logarithm of particle size of wind­
blown sands. The distribution for which the logarithm of the density function is a hyperbola (or, in 
higher dimensions, a hyperboloid) is proposed as a model. It was the first time when the class of 
hyperbolic distributions was introduced. It was also noted that the Laplace distribution is a limiting 
distribution with an appropriate passage to the limit of the corresponding parameters. For the Laplace 
distribution, the log-probability function is not a hyperbola but rather two straight half-lines attached 
at a single point. 

The standard distribution in size statistics is the log-normal distribution. However, quite often 
mixtures of log-normal distribution seem to account better for long tails of observed data. Log­
hyperbolic distributions (and in particular log-Laplace distributions) are mixtures of log-normal 
distributions, and both of them have asymptotically linear tails. These two features makes them 
particularly suitable for modeling size data. 

The class of one-dimensional hyperbolic distributions introduced in Barndorff-Nielsen (1977) 
can be described in terms of the density 

1 
f(x; 4>, y, fL, 8) = (4)-1 + y-I)8-J</iYKI(8-J</iY) 

. exp (-~(4> + y)J82 + (x - fL)2 + ~(4) - y)(x - fL)). 
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In the limiting case (8 -7 0) we obtain an asymmetric Laplace distribution, while a Gaussian 
distribution is obtained when 8 -7 00 and 8/ -J?iY -7 a 2 (cf. Exercise 3.6.3). 

Hyperbolic distributions provided an excellent fit to the data on sand particles from the studies 
by Bagnold (1954) as well as on samples of sand from the Danish west coast. It was also suggested 
that this class of distribution can be applied to other contexts when size data are considered. As an 
example, size distribution of diamonds from a large mining area in southwest Africa were discussed 
in Sichel (1973). He noticed that "diamond sizes in the marine deposit of southwest Africa are 
well represented by a two-parameter log-normal distribution provided the stones originate from a 
small compact mining block, on one and the same beach horizon." However, for larger mining areas 
deviations from the log-normal distributions are observed. Sichel (1973) introduced the mixture of 
log-normal distributions that in our terminology would be called generalized asymmetric log-Laplace 
distributions. 

In Blaesild (1981), the bivariate hyperbolic distributions are proposed to fit W. Johannsen's 
bivariate data on the length and breadth of beans. These now classical sets of two-dimensional data 
showing nonnormal variations were fit by a bivariate hyperbolic distribution providing a reasonable 
agreement with the data. As the bivariate Laplace distributions constitute a subclass of hyperbolic 
distributions, it would be of interest to compare the Laplace fit to the more general but also more 
complicated hyperbolic fit. This was actually done in FieBer (1993), who studied the distribution of 
sizes of sand particles in relation to archaeological research. FieBer (1993) reported that "attempts to fit 
the log-hyperbolic models of Barndorff-Nielsen (1977) proved computationally impossible. Instead, 
a simpler version, based on the log skew Laplace distribution, proved computationally tractable and 
most satisfyingly answered the questions quite conclusively." 

Similar comments apply to many other investigations of fitting the hyperbolic distribution to 
empirical data. Barndorff-Nielsen and Blaesild (1982) apply the hyperbolic model to the following 
six data sets: 

1. grain sizes, acolian sand deposits; 

2. grain sizes, river bed sediment; 

3. differences between logarithms of duplicate determinations of content of gold per ore; 

4. differences of stream wise velocity components in a turbulent atmospheric field oflargeReynold 
numbers; 

5. the lengths of beans whose breadths lie in a fixed interval; 

6. personal incomes in Australia 1962-1963. 

In four of these cases (data sets 1, 2, 4, and 6) the resulting distribution is close to the Laplace 
distribution (in the logarithmic scale we observe almost two straight half-lines instead of a hyperbola), 
while in two other cases the data seem to be "more" Gaussian (parabolic log-probability function). 

10.2 Pulses in long bright gamma-ray bursts 
A somewhat unusual application of an asymmetric Laplace distribution was found in the modeling 
of the shapes of long bright gamma-ray bursts discussed by Norris et at. (1996). The paper examines 
the temporal profiles of bursts detected by the burst and transient source experiment at the Compton 
Gamma Ray Observatory. The most frequently observed pulses are intermediate between asymmetric 
Laplace and asymmetric Gaussian. The general functional form of the pulse intensity is given by 

for t < tmax, 
for t > tmax, 
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where tmax is the time of the pulse's maximum intensity A, a r and ad are the rise (t < tmax ) and 
decay (t > tmax ) time constants, respectively, and v is a measure of peakedness. For v = 1 we 
obtain an asymmetric Laplace shape, and for v = 2 the corresponding shape can be described by an 
asymmetric Gaussian distribution. 

The paper focuses on deconvoluting the above shapes from the temporal data of the observed 
gamma ray bursts. The interactive numerical routine is used to fit pulses in bursts. The most frequently 
occurring peakedness lies approximately halfway between Gaussian and Laplacian distributions. 

10.3 Random fluctuations of response rate 
In many behavioral systems, one can observe pulse-like responses that recur regularly in time with 
a very low variation. The constant beating of the heart and the responses of the optic nerve of the 
horseshoe crab, limulus (which is famous for the long trains of action potentials produced when its 
visual receptor is subject to a steady light), are just two of many examples observed in nature. These 
responses, although random, are quite periodic, and their fluctuations are not modeled well by a 
Poisson process. 

McGill (1962) proposes a stochastic model for such responses, which accommodates both 
periodic and random components. This model involves a mechanism that generates regularly spaced 
excitations that can initiate a response after a random delay. The excitations are not observed but 
their periodicity is indirectly seen in a regular pattern of responses. 

The general model is rather simple. Suppose that excitations occur in equal nonrandom time 
intervals of length r. At excitation kr, k = 1, 2, ... , we have a positive random variable Sk that 
represents a random delay between an excitation at kr and the response that occurs at kr + Sk. We 
assume that the Sk'S are i.i.d. random variables having exponential distribution with parameter A. 
The goal is to find the distribution of the time between responses. In McGill (1962), this distribution 
is shown to have the form I ~ sinh At < r 

f(t) = I-v - , 
l+vAe-M t> r 
2v ' -, 

where v is a constant given by v = e-Ar . This distribution is skewed and has the mode at t 

r. Moreover, as A r increases without a bound, v converges to zero and the distribution becomes 
asymptotically 

A 
f(t - r) = _e-Alt-rl, 

2 

which is the symmetric Laplace distribution. This asymptotic distribution applies to the case when 
the random component ("noise") is small relatively to the periodic component represented by r. 

The fact that the Laplace distribution arises as the limiting distribution is not surprising. By 
independence, we see that for large r, r + r = r + S2 - 51, where 5\ = r - SI and the latter 
is approximately exponentially distributed for large r. Now the limiting distribution follows from 
the representation of Laplace distribution as a difference of two exponential random variables. As 
noted by McGill (1962): 'This simple point (that Laplace is a difference of exponentials) is ignored 
in most texts on statistics because, perhaps, no one imagines why anyone else would be interested. 
Our argument establishes a very good reason for being interested. The difference, and hence the 
Laplace distribution, provides a characterization of the error in a timing device that is under periodic 
excitation. " 

The model is then tested on two sets of real-life data: responses of a single fiber of the optic 
nerve of the horseshoe crab and interresponse times produced by a bar-pressing rat after a long 
conditioning period. The data are more leptokurtic than normal distribution and Laplace distribution 
fit the data quite well. 
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10.4 Modeling low dose responses 
If a random variable Y has the Laplace distribution, then eY has the log-Laplace distribution. This 
distribution was considered in Uppuluri (1981) as a model in the study of the behavior of dose response 
curves at low doses. One of the problems in this context is linearity vs. nonlinearity of dose response 
for radiation carcinogenesis. Since animal experiments can only be performed at reasonably high 
doses, the problem of extrapolation to low doses becomes viable only under a suitable mathematical 
model. The following axiomatic approach leads to the model given by log-Laplace distribution. 

Axiom 1 At small doses, the percent increase in the cumulative proportion of deaths is proportional 
to the percent increase in the dose. 

Axiom 2 At larger doses, the percent increase in the cumulative proportion of survivors is propor­
tional to the percent decrease in the dose. 

Axiom 3 At zero dose, no deaths, and when the dose is infinite, no survivors, and the cumulative 
proportion of deaths F (x) is a monotonic, nondecreasing function of the dose x. 

Under these axioms we obtain that the cumulative distribution function of the dose response 
has the form 

F(x) = F(1)xi-t, 0:::: x:::: 1, 1 - F(x) = (1 - F(1))lx A , x::: 1, 

for some positive J-L and A. 
The log-Laplace distribution corresponding to the classical Laplace distribution is obtained if 

we additionally assume that A = J-L and F(1) = 1/2. Of course, the log-Laplace distribution for 
asymmetric Laplace distributions is also included in the above model. 

10.5 Multivariate elliptically contoured distributions for repeated 
measurements 

Lindsey (1999) discusses the need for other than normal multivariate distributions in the analysis 
of repeated measurements. The main deficiency of normal distributions is their inability to model 
heavier tails. As an alternative Lindsey (1999) proposes multivariate exponential power distributions 
given by the density 

f( · 1: (3) - nr(nI2) -i[(y-p.n:;-l(y-p.)]Il 
y, p" ,- () e , 

rr n / 2 JTYTr 1 + {',8 21+n /(2,8) 

also known as the Kotz-type multivariate distribution [cf. Exercise 6.12.11 and Fang et al. (1990)]. 
For f3 = 1/2, this represents a certain generalization of the Laplace distribution. However, it 

is not a multivariate Laplace distribution as discussed in this book. 
As an example, Lindsey (1999) considers blood sugar level for two treatments of rabbits in­

volving two neutral protamine Hagedorn insulin mixtures. The estimate of f3 (around 0.40) strongly 
suggests nonnormality. The main reason is heavy tails exhibited by the data. 

This example illustrates the ability of multivariate exponential power distribution to fit heavy­
tailed data. However, as pointed out by Lindsey (1999), it has several unpleasant properties: 

• The marginal and conditional distributions are more complex elliptically contoured distribu­
tions, not of the exponential power type. 

• It seems to be difficult to introduce independence between observations. 
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In view of this, it would be interesting to compare the exponential power distributions with 
multivariate Laplace distributions as discussed in this book. To quote the author of the discussed 
paper: "The fact that the multivariate normal distribution is rejected in favor of a more heavily tailed 
distribution for these data does not imply that this (multivariate exponential power) is the most 
appropriate distribution for them." 

1 0.6 ARM A models with Laplace noise in the environmental time 
senes 

AnARMAmodel with Laplace noise was used to fit the data on sulphate concentration in Damsleth and 
El-Shaarawi (1989). The data consisted of 147 weekly measurements of the sulphate concentration 
in the Turkey Lakes Watershed in Ontario, Canada, from early March 1982 to the end of 1984. 
The data exhibit some extreme values and thus there is a reasonable doubt about normality of the 
underlying time series. A standard time series analysis of the data suggests that an AR( 1) model may 
be appropriate. Thus the model considered is 

X t = ¢Xt-l + at. 

where at is a random noise. In the classical time series theory the model with at being Gaussian 
is typically being considered. The Laplace distribution is an alternative, which is distinct from the 
normal distribution. Computationally, the Laplace case is still straightforward, though sometimes 
cumbersome. The probability density function of X t is given by 

f(x) = ~ f>~il4>l-ie-lxl/I¢li 
j=O 

where 
00 

(Xi = (_I)i n[¢2t /(1 - ¢2i)]/ fl(1 _ ¢2t). 

t=1 t=1 

The shape of this distribution exhibits "Laplacian features" (peak and heavy tails) for ¢ close to zero, 
and "Gaussian features" for ¢ close to unity. It is interesting that this density has all derivatives at 
zero, provided ¢ =1= O. In Damsleth and El-Shaarawi (1989), bivariate distribution of (Xt, Xt-I) is 
also computed in an explicit form. 

Using the maximum likelihood method, the fit of both models (Gaussian and Laplacian) was 
made. The Laplace model fits the data better than the Gaussian one, both before and after logarithmic 
transformation of the data. Details are presented in the cited paper. 



Appendix 
Bessel Functions 

The Bessel function of the first kind of order')... is given by the convergent series 

In particular, 

and 

). 00 ( _1)k Z2k 

h(z) = z L 22kHk!r(')... + k + 1)· 
k=O 

00 (_I)kz2k 1 !orr 
Jo(z) = L 2k 2 = - cos(z cos 8)d8 

2 (k!) 7r 0 
k=O 

00 (_I)k Z2k+1 1 !orr 
1] (z) = L 2k+1 = - cos(z sin 8 - 8)d8 

k=O 2 k!(k + I)! 7r 0 

[see, e.g., Abramowitz and Stegun (1965)]. 

(AO.l) 

(AO.2) 

(AO.3) 

We collect some results for the modified Bessel function of the third kind with index ')... E JR., 
denoted K).O. We refer the reader to Abramowitz and Stegun (1965), Olver (1974), and Watson 
(1962) for definitions and further properties of these and related special functions. 

There are many integral representations of K). (u) in the literature. The following representations 
are relevant to our work. The first can be found in Watson (1962, p. 183), the second appears in 
Abramowitz and Stegun (1965, p. 376), while the third is given in Olver (1974). 

K).(u) = ~ (~)). 100 t-).-I exp (-t - ::) dt, u > 0, (AO.4) 

K (u) = (u/2»).r(I/2) [00 e-ut (t2 _ 1)'--lj2dt 
). r(')... + 1/2) 11 ' ')... ~ -1/2, (AO.5) 

K).(u) = 100 
e-ucosht cosh(At)dt, ')... E JR.. (AO.6) 

Property 1 The Bessel function K). (u) is continuous and positive function of ')... ~ 0 and u > O. 
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10r-~--~--~~--~--~~--~--. 

9 

2 

1 

OL-~ __ ~ __ ~~ __ ~~~~~~~ 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Figure A.l: Graphs of Bessel functions. Left: 10 (starting at the origin) and 11 (starting at one). 
Right: Ko (the lowest), Kl/2, and Kl (the highest). 

Property 2 If).. 2: 0 is fixed, then throughout the u interval (0, (0), the function K).. (u) is positive 
and decreasing. 

Property 3 Ifu > 0 isfixed, then throughout the).. interval (0, (0), the function K)..(u) is positive 
and increasing. 

Property 4 For any).. 2: 0 and u > 0, the Bessel function K).. satisfies the relations 

K)..(u) = K)..(-u), 

2)" 
K)"+I(U) = -K)..(u) + K)..-I(U), 

u 

K)..-l (u) + K)"+l (u) = -2K~ (u). 

(A.0.7) 

(A.0.8) 

(A.0.9) 

Property 5 For)" = r + 1/2, where r is a nonnegative integer, the Bessel function K).. has the 
closedform 

{'ir u ~ (r + k)! k 
Kr+I/2(U) = V 2z;e- ~ (r _ k)!k! (2u)- . 

k=O 

(A.0.1O) 

In particular, for r = 0, we obtain 

(A.0.1l) 

Property 6 If).. is fixed, then 

asx -+ 0+, K)..(x) '" r()")2)"-lx-)" ().. > 0), Ko(x) '" log(1/x). (A. 0.1 2) 

Property 7 For any a > 0 and fJ" ).. such that fJ, + 1 ± ).. > 0, we have 

1000 
xil K)..(ax)dx = ~::: r (1 + ~ +).. ) r (1 + ~ -).. ) (A.0.13) 

[see Gradshteyn and Ryzhik (1980).] 
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Property 8 For any J1 > 0 and f3u > 0, we have 

1 100 fL-l( )fL-1 -fJxd r(J1) (U)fL-! _fJuK (f3u ) x x-u e X=-- - e T 1-
u ..fiT f3 fL-! 2 

(A.0.14) 

[see Gradshteyn and Ryzhik (1980).] 

Property 9 For any v > 0, we have 

[XV Kv(x)]' = _xv- 1 Kv-l (x) 

[see Olver (1974), (8.05), p. 251, and (10.05), p. 60.] 

Property 10 For any v > 0, we have 

[see Olver (1974), (8.05), p. 251.] 

Consider the function 

R;...(x) = KHI (x) . 
K;...(x) 

(A.0.15) 

The function R;... has a number of important properties. 

Property 11 For A:::: 0 the function R;...(x) is strictly decreasing in x with limx---+ oo R;...(x) = 1 and 
limx---+o+ R;...(x) = 00. 

Property 12 Property 4 of Bessel functions produces the recursive relation 

2A 1 
R;...(x) = - + . 

x R;"'_l(X) 
(A.0.16) 

Property 13 Property 4 of Bessel functions produces the following expression for the derivative 
ofR;...: 

d 2 2A + 1 
-R;...(x) = R;...(x) - --R;...(x) - 1. 
dx x 

(A.0.I7) 

See Jorgensen (1982) for these and other properties of the function R;... (and Bessel function). 
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206,225,238,321,323 
censored sample, 77,84-90,93,99,103,122, 

123,319,321,323,324,335,339 
chi-square distribution, 13, 23-26, 92, 109, 

146, 148, 184, 188, 248, 262, 285, 
341 

class L, 213, 214, 341 
code modulation, 280 
coefficient of skewness, 21, 143, 176,222 
coefficient of variation, 20, 143 
communication theory, 277, 280 
complementary Bessel function, 296 
completely monotone density, 50 
compound Laplace distribution, 124, 125 
compound Poisson process, 193,294 
confidence ellipsoid, 264 
contaminated Laplace, 302 
control chart, 39, 308 
convolution of exponential distributions, 135, 

146 
cosine distribution, 15-17 

Cramer-Rao lower bound, 69, 70, 90, 91,177, 
223 

Cramer-von Mises test, 105, 106 
Cramer-Wald device, 259 
currency exchange, 275, 289, 292, 293, 300 

decibel, 280 
demand during lead time, 303, 304 
detector, 277-280 
diffuse prior, 267 
discrete Laplace distribution, 130 
discrete Linnik distribution, 219, 323 
discrete Mittag-Leffler distribution, 219, 329 
discrete stable distribution, 219, 323 
distortion measure, 282, 283 
domain of attraction, 213 
dose response for radiation carcinogenesis, 312 
double exponential distribution, 6, 13, 16 
double geometric distribution, 130 
double Pareto distribution, 41 
doubly exponential law, 16 
duplicate check-sampling, 308 

E-M algorithm, 302 
economic clock, 294 
Edgeworth expansion, 130 
efficiency of an estimator, 85 
efficient score function, 120 
elliptically contoured K -Bessel distribution, 

300 
elliptically contoured distribution, 229, 312, 

333 
elliptically contoured Laplace distribution, 232, 

270,300 
elliptically symmetric distribution, 234, 270, 

271,335 
empirical characteristic function, 216, 217 
empirical distribution, 215, 290 
encoding of analog signals, 280 
entropy, 21, 51,119,134,135,155-157,177, 

282,283,327,330,331 
environmental sciences, 309 
European option, 296 
exponential family, 16,64,78 
exponential integral, 119, 196 
exponential mixture, 192, 199,205,206,322, 

332 
exponential power distribution, 71, 220, 223, 

270,271,319 



multivariate, see multivariate exponen­
tial power distribution 

F -distribution, 116,264 
feedback adjustment, 307 
financial data, 134, 221, 289, 294, 300, 302, 

332,333,335 
first law of error, 3 
first law of Laplace, 5, 6 
Fisher information, 65, 70, 95, 119, 158, 160, 

161, 164, 166, 169, 170, 174, 178 
folded Cauchy density, 205 
fractional moments, 42, 213, 218, 332 
fracturing of materials, 284 
Fredholm integral equation, 307 
functions of order statistics, 56 

gamma distribution, 20, 32, 33,47,124,131, 
180, 183, 184, 188, 190, 194,257, 
295,308,334 

characterization of, 33 
gamma process, 193, 194, 196, 198,224,294, 

296,300 
gamma white noise, 224 
gamma-ray bursts, 310 
Gauss-Markov theorem, 262, 264 
generalized asymmetric Laplace distribution, 

180,222,257 
generalized beta distribution, 295 
generalized gamma convolution, 131,256,322, 

340 
generalized Gaussian distribution, 278 
generalized hyperbolic distribution, 240, 246, 

253,254,258 
generalized inverse Gaussian distribution, 246, 

320,329 
generalized Laplace distribution, 180, 189, 190, 

219, 220, 222, 248, 270, 289, 295, 
299,300,325,329,335,339 

generalized Linnik law, 216, 219, 337 
generating function, 27, 219 
geometric infinitely divisible, 48, 151, 153, 

258 
geometric mean, 9, 112, 335 
geometric random variable, 22 
geometric stable distribution, 32, 177, 179, 

199, 200, 206, 208, 213-216, 218, 
220,240,246,256,259,260,268, 
322,331-333,337,338 

Index 345 

characterization of, 155 
geometric summation, 22, 27, 30, 134, 155, 

200,202,259,272 
Gini mean difference, 112 
goodness-of-fit test, 105, 110,295, 341 

harmonic mean, 9,114 
Hermite distribution, 303, 320 
Hermite polynomial, 217 
homogeneous increments, 295 
hyperbolic distribution, 174, 175, 179, 230, 

239,240,247,248,253,254,285, 
289,294,309,310,322,325 

generalized, see generalized hyperbolic 
distribution 

image and speech compression, 281 
impulsive noise, 278 
incomplete exponential function, 108 
incomplete gamma function, 46, 99 
indicator function, 140, 196 
infinite divisibility, 27, 46, 47,117, 128, 135, 

150,256,258,330,339 
integrated moving average, 307 
interest rates, 289-291, 331 
inventory control, 303 
inverse Gaussian distribution, 230, 246, 289, 

321 
generalized, see generalized inverse Gaus­

sian distribution 

jump diffusion model, 300 
jump function, 197 

K-criterion, 176 
Kolmogorov goodness-of-fit test, 110 
Kolmogorov statistic, 110 
Kolmogorov-Smimov test, 110, 111 
Kotz-type multivariate distribution, 312 
Krein condition, 114,340 
Kronecker product, 237 
kurtosis, 114, 125, 143, 176, 222, 271, 290, 

294,297,321,328 

Lambert function, 283 
Laplace distribution, 15 

central absolute moments, 20 
central moments, 20, 50 
characteristic function, 19 
classical, 22-26, 35, 38-41,43 
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coefficient of skewness, 21 
coefficient of variation, 20 
conditional inference, 95-99 
confidence intervals, 91, 92, 99 

·cumulant generating function, 19 
cumulative distribution function, 18 
density, 16, 18 
discrete, see discrete Laplace distribution 
entropy, 21, 52 
Fisher information matrix, 65, 74 
generalized, see generalized Laplace dis-

tribution 
genesis of, 12 
goodness-of-fit tests, 105, 110 
joint distribution of order statistics, 55 
kurtosis, 21 
likelihood function, 66 
linear estimation, 88 
maximum likelihood estimation, see also 

maximum likelihood estimation, 71, 
74, 77 

mean, 19,20 
mean deviation, 20 
mean of the sample median, 60, 66 
median, 21 
midrange, 56, 58 
minimal sufficient statistic, 64 
moment generating function, 19,20 
moments of order statistics, 60, 61, 63 
multivariate, see multivariate Laplace dis-

tribution 
orthogonal representation, 25 
parameters, 16 
quantile estimation, 91 
quantiles,21 
sample median, 60 
standard, 18 
standard classical, 18-20,22,26,47,49, 

54,55,61-63 
test for location, 106 
variance, 15, 18 
variance of the sample median, 60, 61, 

66 
Laplace motion, 179, 193-199,223,224,257, 

289,294-297 
asymmetric, 193,197-199 
compound Poisson approximation, 193 
covariance structure, 194, 195, 198 
Uvy-Khinchine representation, 196 

self-similarity property, 194 
series representation, 196, 198 
space scale parameter, 193, 197 
standard, 194-196 
symmetric, 193-197 
time scale parameter, 193, 197 
trajectories, 193, 194, 197, 198 
with drift, 193, 194, 197 

Laplace noise, 277-279, 313, 324, 335 
Laplace-Weibull mixture, 302, 337 
law of the iterated logarithm, 131, 340 
least-squares estimator, 216, 261-263, 265 
leptokurtic, 15,21, 125, 143,289,308,311, 

332 
L-estimator, 84 
Levy measure, 47,48, 150, 151, 196, 198,214, 

239,256-258,332 
Levy process, 46, 179, 193,248,257,322,326 
Levy-Khinchine representation, 47, 48, 150, 

196,214,340 
likelihood ratio test, 103-105 
limits of geometric sums, 30, 152, 202, 258 
linear combinations of order statistics, 166 
linear unimodal, 252 
Linnik distribution, 35, 199-206, 215, 221, 

225,272,320,324,325,328,331, 
332,336 

absolute moments, 213 
characteristic function, 199,207,208,213 
densities, 199,205-208,210-212 
discrete, see discrete Linnik distribution 
distribution function, 204, 206, 208, 209 
estimation, 215-218 
exponential mixture representation, 192, 

205,206 
generalized, see generalized Linnik law 
infinite divisibility, 200 
Levy-Khinchine representation, 214 
mixture representations, 204, 205 
multivariate, see multivariate Linnik dis-

tribution 
nonsymmetric, 199 
positive, see positive Linnik law 
scale parameter, 199,217 
series expansions, 210 
simulations, 200, 204, 215 
tail index, 212 

Liouville number, 211, 212 
locally most powerful, 111 



log-gamma distribution, 184 
log-Laplace distribution, 24, 172, 219, 222, 

290,309,310,312,331,341 
log-normal distribution, 9, 222, 290, 308-310 
log-return, 294 
logistic distribution, 15-17, 60, 65, 115, 116, 

119,120,126-128,326 
characterization of, 126, 326 

Lomax distribution, 41 
loss of information, 62, 94-97, 319 

Marshall-Olkin exponential distribution, 246 
maximum entropy principle, 51, 135, 155,297 
maximum likelihood, 66, 69, 71, 74, 78, 121, 

123, 158, 163, 168, 172, 177, 178, 
265,291,292,295,302,313,319, 
322,323,328,331,335,336,339-
341 

maximum likelihood estimation, 66-76 
of location parameters, 78 
under censoring, 77 

mean deviation, 4, 6, 20, 52, 71, 72, 142 
mean squared deviation, 4, 307 
mean squared error, 263 
median law of error, 10, 11 
median test, 110-112 
method of moments, 79, 83, 158, 178,216, 

217,222,223,300,303,333,338 
midmean,67 
midrange, 56, 58, 60, 85, 86, 88, 127, 128, 

161,326,327 
Mittag-Leffler distribution, 29, 34, 201, 219, 

221,332,337 
discrete, see discrete Mittag-Leffler dis­

tribution 
mixture of exponentially distributed random 

variables, 147,338 
mixture of Laplace and Gaussian distributions, 

285,339 
mixture of log-normal distributions, 309 
mixture of normal distributions, 22,131,134, 

180, 181, 190, 199,205,246,256, 
330,340 

mixture of stable laws, 199, 337 
mixture of two Laplace distributions, 83, 123, 

287,333 
mixture of two Student t distributions, 287 
mode-median-mean inequalities, 177 
modified Bessel function, 174, 315 

Index 347 

multivariate asymmetric Laplace distribution, 
239-268 

characteristic function, 241, 248 
conditional distributions, 253, 254 
covariance, 249, 254 
definition, 240, 243, 258 
densities, 249, 251 
geometric infinite divisibility, 258 
infinite divisibility, 256 
Levy measure, 239, 256, 257 
linear combination of, 240, 252, 254, 255 
linear regression, 254, 255 
marginals, 255 
mean, 249, 254 
simulation, 239, 243, 244 
unimodality, 251 

multivariate Bessel distribution, 257,270,271 
multivariate Cauchy distribution, 238 
multivariate exponential power distribution, 

270,271,312 
multivariate Laplace distribution, 229-268, 270-

272,312,331,332 
covariance, 232, 233, 235 
density, 229, 232, 233 
mean vector, 232 
polar representation, 247 
simulation, see simulation, multivariate 

asymmetric Laplace distribution 
symmetric, see multivariate symmetric 

Laplace distribution 
multi variate Linnik distribution, 230, 236, 272, 

320,336 
multivariate symmetric Laplace distribution, 

231-236 

Nakagami distribution, 300 
navigation, 275, 277, 286, 287, 320, 328 
nearly instantaneous companding, 280 
Neave-Tukey quick test, III 
neutral Laplace estimator, 126 
Neyman-Pearson lemma, 278 
Neyman-Pearson optimal detector, 278 
non-Gaussian noise, 278, 335 
nonparametric tests of location, 110, Ill, 113 
normal characteristic function, 154 
normal distribution, 3 

characterization of, 70 
v-stable law, 222, 255, 332 

ocean engineering, 275, 286 
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operating characteristic curve, 305 
optimal quantizer, 281, 283 
option pricing, 296, 297, 332, 334 
order statistics, 53-63, 122, 159,319-321,323, 

324,327,331,333,338,339 
joint distribution of two, see joint dis­

tribution of order statistics, Laplace 
distribution 

orthogonal representation, 25 

Paretian stable distribution, 27,221, 289, 290, 
294 

Pareto distribution, 24, 26, 41,117,146,149, 
184,225,327,328 

Pascal distribution, 185 
Pascal-stable distribution, 185 
Pearson Type VII distribution, 124, 308 
platykurtic, 21, 125 
Poisson approximation, 196, 198 
Poisson process, 196, 197, 199,300,311 
Polya-type characteristic function, 224 
positive Linnik law, 219, 323 
power function distribution, 117 
prediction interval, 87 
prior, 269 
product of two independent Laplace variates, 

40 
product of two independent normal variables, 

41 
product-moment coefficient, 186,337 
pure jumps process, 193 

quality control, 303, 338 

Rademacher sequence, 196, 199 
random fluctuations of response rate, 311, 335 
random summation, 134,239,240,258,259, 

327 
range, 56, 58 
rank sum statistic, II 0, 111 
rank test, 120 
ratio of two independent Laplace variates, 41 
Rayleigh distribution, 23, 298 
real estate data, 302 
reciprocal property, 205, 225 
regression, 239, 254-256, 261-265,267,325, 

332,337,342 
repeated measurements, 312 
R-estimator, 120,327 

restricted maximum likelihood, 78 
risk neutral process, 295, 296 

sample coefficient of skewness, 292 
sample kurtosis, 292 
sample mean deviation, 291 
sample median, 3, 9-11, 53, 55, 56, 60, 61, 

118-123,126,127,323,326 
sample quantile, 88 
S&P 500 Index, 295, 299 
Sargan distribution, 220, 225, 330 
scale and location invariant test, 105, 341 
second law of error, 3 
self-decomposability, 49, 147, 184, 185,200, 

213,214,258,339 
share market returns, 294 
sign test, 120 
signal-to-quantization noise ratio, 280 
simplified linear estimator, 88 
size data, 309 
skew-normal distribution, 134, 320, 328, 334 
skewed exponential power distribution, 271 
skewed Laplace distribution, 52, 68,121,133, 

134,140,321 
slow-moving item, 303 
Smirnov one-sided statistic, 110 
s-ordering, 115 
spacings, 90, 91 
speech recognition, 275 
speech signals, 280 
spherically symmetric distribution, 238 
stability, 27, 134, 155, 185, 200, 203, 221, 

258-260,339 
stable distribution, 27, 128, 204, 221, 240, 

272,294,295,341 
discrete, see discrete stable distribution 

stable process, 295, 329, 338 
standard bivariate Laplace distribution, 232, 

236,237 
standard exponential distribution, 23 
standard gamma distribution, 36 
star unimodality, 251 
statistical process control, 306 
steam generator inspection, 306, 324 
stochastic variance, 22, 52,134,180,181,190, 

205,286,297-300,308,333 
stock price, 294-296 



strictly geometric stable distribution, 29, 35, 
199-201,203,213,218,255,259 

subordinated Brownian motion, 198,248,256 
subordinated Gaussian process, 294 
subordinated model of stock prices, 294 
sufficient statistic, 64, 94, 223 
sum of two independent Laplace r.v.'s, 38 

tails, 15,200,212 
t-distribution, 118,263,264,287,295,308 
testing multivariate symmetry, 269, 328 
time series, 307, 313, 324 
tolerance factor, 100-103 
tolerance interval, 99-103,330,339 
tolerance limit, 99, 102 
transfer theorem, 258 
Treasury Bill, 295 
Treasury bonds, 290, 291 
triangular distribution, 15-17,68 
t-statistic, 43, 45, 118, 339 
Tukey quick test, 111 
two-piece double exponential, 133,334 
two-tailed exponential distribution, 16 
two-tailed power distribution, 68 

Index 349 

underground sampling, 338 
underreported data, 289, 327, 328 
uniform distribution, 16 
uniformly minimum variance unbiased esti­

mator,70 
uniformly most powerful, 105 

Value-at-Risk, 297,333 
van der Waerden test, 111 
variance gamma distribution, 180 
variance gamma process, 180,257,258,294, 

295,299,334 
v-distribution, 325 
vee operator, 237 
vee-permutation matrix, 237 
vertical density function, 116,331 
volatility, 289, 292, 298, 300, 321, 334 
volatility smile, 297, 302, 332 
v-spherical distribution, 270 

weakest link, 284 
Weibull distribution, 106,277,285,302,338 
Wilcoxon test, 111 
wind shear, 285, 329, 330 
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