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Preface

In the 17th century, Sir Isaac Newton formulated his now famous laws of mechanics.
These remarkably simple laws served to describe and predict the motions of observable
objects in the universe, including those of the planets of our solar system.

Early in the 20th century it was discovered that various theoretical conclusions de-
rived from Newton’s laws were not in accord with certain conclusions deduced from theories
of electromagnetism and atomic phenomena which were equally well founded experimentally.
These discrepancies led to Einstein’s relativistic mechanics which revolutionized the con-
cepts of space and time, and to quantum mechanics. For objects which move with speeds
much less than that of light and which have dimensions large compared with those of atoms
and molecules Newtonian mechanics, also called classical mechanics, is nevertheless quite
satisfactory. For this reason it has maintained its fundamental importance in science and
engineering.

It is the purpose of this book to present an account of Newtonian mechanics and its
applications. The book is designed for use either as a supplement to all current standard
textbooks or as a textbook for a formal course in mechanics. It should also prove useful to
students taking courses in physics, engineering, mathematics, astronomy, celestial me-
chanics, aerodynamics and in general any field which needs in its formulation the basic
principles of mechanics.

Each chapter begins with a clear statement of pertinent definitions, principles and
theorems together with illustrative and other descriptive material. This is followed by
graded sets of solved and supplementary problems. The solved problems serve to illustrate
and amplify the theory, bring into sharp focus those fine points without which the student
continually feels himself on unsafe ground, and provide the repetition of basic principles
8o vital to effective learning. Numerous proofs of theorems and derivations of basic re-
sults are included in the solved problems. The large number of supplementary problems
with answers serve as a complete review of the material of each chapter.

Topics covered include the dynamics and statics of a particle, systems of particles and
rigid bodies. Vector methods, which lend themselves so readily to concise notation and to
geometric and physical interpretations, are introduced early and used throughout the book.
An account of vectors is provided in the first chapter and may either be studied at the be-
ginning or referred to as the need arises. Added features are the chapters on Lagrange’s
equations and Hamiltonian theory which provide other equivalent formulations of
Newtonian mechanics and which are of great practical and theoretical value.

Considerably more material has been included here than can be covered in most courses.
This has been done to make the book more flexible, to provide a more useful book of
reference and to stimulate further interest in the topics.

I wish to take this opportunity to thank the staff of the Schaum Publishing Company
for their splendid cooperation.

M. R. SPIEGEL

Rensselaer Polytechnic Institute
February, 1967
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Chapter 1

MECHANICS, KINEMATICS, DYNAMICS AND STATICS

Mechanics is a branch of physics concerned with motion or change in position of
physical objects. It is sometimes further subdivided into:

1. Kinematics, which is concerned with the geometry of the motion,
2. Dynamics, which is concerned with the physical causes of the motion,

3. Statics, which is concerned with conditions under which no motion is apparent.

AXIOMATIC FOUNDATIONS OF MECHANICS

An axiomatic development of mechanics, as for any science, should contain the following
basic ingredients:

1. Undefined terms or concepts. This is clearly necessary since ultimately any
definition must be based on something which remains undeﬁned.

2. Unproved assertions. These are fundamental statements, usually in mathematical
form, which it is hoped will lead to valid descriptions of phenomena under study.
In general these statements, called axioms or postulates, are based on experimental
observations or abstracted from them. In such case they are often called laws.

8. Defined terms or concepts. These definitions are given by using the undefined
terms or concepts.

4. Proved assertions. These are often called theorems and are proved from the
definitions and axioms.

An example of the “axiomatic way of thinking” is provided by Euclidean geometry in
which point and line are undefined concepts.

MATHEMATICAL MODELS

A mathematical description of physical phenomena is often simplified by replacing
actual physical objects by suitable mathematical models. For example in describing the
rotation of the earth about the sun we can for many practical purposes treat the earth
and sun as points.

SPACE, TIME AND MATTER

From everyday experience, we all have some idea as to the meaning of each of the
following terms or concepts. However, we would certainly find it difficult to formulate
completely satisfactory definitions. We take them as undefined concepts.
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1. Space. This is closely related to the concepts of point, position, direction and
displacement. Measurement in space involves the concepts of length or distance,
with which we assume familiarity. Units of length are feet, meters, miles, etec.
In this book we assume that space is Fuclidean, i.e. the space of Euclid’s geometry.

2. Time. This concept is derived from our experience of having one event taking
place after, before or simultaneous with another event. Measurement of time is
achieved, for example, by use of clocks. Units of time are seconds, hours, years, ete.

3. Matter. Physical objects are composed of ‘“small bits of matter” such as atoms
and molecules. From this we arrive at the concept of a material object called a
particle which can be considered as occupying a point in space and perhaps moving
as time goes by. A measure of the “quantity of matter” associated with a particle
is called its mass. Units of mass are grams, kilograms, ete. Unless otherwise
stated we shall assume that the mass of a particle does not change with time.

Length, mass and time are often called dimensions from which other physical quantities
are constructed. For a discussion of units and dimensions see Appendix A, Page 339.

SCALARS AND VECTORS

Various quantities of physics, such as length, mass and time, require for their specifica-
tion a single real number (apart from units of measurement which are decided upon in
advance). Such quantities are called scalars and the real number is called the magnitude
of the quantity. A scalar is represented analytically by a letter such as ¢, m, ete.

Other quantities of physics, such as displacement, require for their specification a
direction as well as magnitude. Such quantities are called vectors. A vector is repre-
sented analytically by a bold faced letter such as A in Fig. 1-1. Geometrically it is
represented by an arrow PQ where P is called the initial point and Q is called the terminal
point. The magnitude or length of the vector is then denoted by [A| or A.

Fig.1-1 Fig.1-2 Fig.1-3

VECTOR ALGEBRA

The operations of addition, subtraction and multiplication familiar in the algebra of
real numbers are with suitable definition capable of extension to an algebra of vectors.
The following definitions are fundamental.

1. Two vectors A and B are equal if they have the same magnitude and direction
regardless of their initial points. Thus A=B in Fig. 1-2 above.

2. A vector having direction opposite to that of vector A but with the same length is
denoted by —A as in Fig. 1-3 above.

3. The sum or resultant of vectors A and B of Fig. 1-4(a) below is a vector C formed
by placing the initial point of B on the terminal point of A and joining the initial
point of A to the terminal point of B [see Fig. 1-4(b) below]. We write C = A+B.
This definition is equivalent to the parallelogram low for vector addition as indicated
in Fig. 1-4(c) below.
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C=A+B

/
(@) )

Fig.1-4

Extensions to sums of more than two vectors are immediate. For example,
Fig. 1-5 below shows how to obtain the sum or resultant E of the vectors A,B,C
and D.

Fig.1-5

4. The difference of vectors A and B, represented by A —B, is that vector C which
when added to B gives A. Equivalently, A—B may be defined as A+ (—B). If
A =B, then A —B is defined as the null or zero vector represented by 0. This has
a magnitude of zero but its direction is not defined.

5. The product of a vector A by a scalar p is a vector pA or Ap with magnitude
|p| times the magnitude of A and direction the same as or opposite to that of A
according as p is positive or negative. If p =0, pA =0, the null vector.

LAWS OF‘YECTOR ALGEBRA
If A,B and C are vectors_{ and p and ¢ are scalars, then

1. A+B=B+A Commutative Law for Addition

2. A+(B+C) = (A+B)+C Associative Law for Addition

3. p(qA) = (pg)A = q(pA) Associative Law for Multiplication
4. (p+9A = pA+qA Distributive Law

5. p(A+B) = pA +pB Distributive Law

Note that in these laws only multiplication of a vector by one or more scalars is
defined. On pages 4 and 5 we define products of vectors.

UNIT VECTORS

Vectors having unit length are called unit vectors. If A is a vector with length 4 > 0,
then A/A =a is a unit vector having the same direction as A and A= Aa.

RECTANGULAR UNIT VECTORS

The rectangular unit vectors i, j and k are mutually perpendicular unit vectors having
directions of the positive 2, ¥y and z axes respectively of a rectangular coordinate system
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[see Fig. 1-6]. We use right-handed rectangular coordinate
systems unless otherwise specified. Such systems derive
their name from the fact that a right threaded screw ro-
tated through 90° from Ox to Oy will advance in the posi-
tive z direction. In general three vectors A, B and C which
have coincident initial points and are not coplanar are said
to form a right-handed system or dextral system if a right
threaded screw rotated through an angle less than 180° from
A to B will advance in the direction C [see Fig. 1-7 below].

Fig.1-7 k Fig.1-8

COMPONENTS OF A VECTOR

Any vector A in 8 dimensions can be represented with initial point at the origin O of
a rectangular coordinate system [see Fig. 1-8 above]. Let (A1, A2, As) be the rectangular
coordinates of the terminal point of vector A with initial point at O. The vectors A,
Asj and Ak are called the rectangular component vectors, or simply component vectors,
of A in the z, y and z directions respectively. A, A2 and As are called the rectangular
components, or simply components, of A in the z, y and z directions respectively.

The sum or resultant of Aii, A:j and Ask is the vector A, so that we can write

A = Aii+ Asj+ Ask @
The magnitude of A is A = |A] = VA2 + AL+ A] (?)

In particular, the position vector or radius vector r from O to the point (x,y,2) is

written
r=2zi+yj+zk 3

and has magnitude r = |r| = Va2 + 92 +22.

DOT OR SCALAR PRODUCT

The dot or scalar product of two vectors A and B, denoted by A:B (read A dot B)
is defined as the product of the magnitudes of A and B and the cosine of the angle
between them. In symbols,

A

A‘B = ABcosé, 0=0=nr (4)

Note that A*B is a scalar and not a vector.
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The following laws are valid:

1. A‘B = B‘A Commutative Law for Dot Products
2. A-B+C) = A‘B+A-C Distributive Law
3. p(A-B) = (pA)'B = A-(pB) = (A-B)p, where p is a scalar.
4. i‘i=jj=k'k=1, i‘j=3k=ki=0
5, If A= A;i+Aj+Ask and B = Bii+ B;j+ B3k, then
A‘B = ABi+ A:B; + A3B;
A-A = A? = A+ Al + A}
BB = B? = B2+ B+ B}
6. If A-B =0 and A and B are not null vectors, then A and B are perpendicular.

CROSS OR VECTOR PRODUCT

The cross or vector product of A and B is a vector C = AXB (read A cross B). The
magnitude of A X B is defined as the product of the magnitudes of A and B and the sine
of the angle between them. The direction of the vector C = A X B is perpendicular to the
plane of A and B and such that A, B and C form a right-handed system. In symbols,

AXB = ABsinfu, 0=0=n (5)
where u is a unit vector indicating the direction of AxXB. If A=B or if A is parallel
to B, then sind =0 and we define AXB = 0.

The following laws are valid:

1. AXB = -BxA (Commutative Law for Cross Products Fails)
2. AX(B+C) = AxB+AXxC Distributive Law
3. p(AXB) = (pA)XB = AX(pB) = (AXB)p, where p is a scalar.
4. iXi=jxj=kxk=0, iXj=k, jxk=1 kXi=]
5. If A= Aii+Azj+Ask and B = Bii+ B:j+ Bsk, then

i j k

AXB = A, Ay A
B, B; Bs

6. |A X B| = the area of a parallelogram with sides A and B.
7. If AXB =0 and A and B are not null vectors, then A and B are parallel.

TRIPLE PRODUCTS

The scalar triple product is defined as
Ay A As

A-(BXC) = |Bi B: Bs 6)
C: C: Cs

where A = Aii+A:j+Ask, B = Biji+ Bsj+ Bk, C = Cii+Csj+Csk. It represents the
volume of a parallelepiped having A, B, C as edges, or the negative of this volume according
as A, B, C do or do not form a right handed system. We have A:(BXC) = B-(CXA) =
C- (A XB).

The vector triple product is defined as
AXx(BXxC) = (A-C)B - (A*B)C (7
Since (AXB)XC = (A-C)B— (B-C)A, it is clear that AX(BXC) = (AXB)xC.
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DERIVATIVES OF VECTORS

If to each value assumed by a scalar variable » there corresponds a vector A(u), or
briefly A, then A(u) is called a (vector) function of u. The derivative of A(u) is defined as

%% _ }Er_ﬁ, A(u+AZ?¢_ A(u) (8)
provided this limit exists. If A(uw) = Ai(u)i+ As(u)j+ As(u)k, then
£ - Lt 0
Similarly we can define higher derivatives. For example the second derivative of A(u)
if it exists is given by PA | @A, A, . P4,
@ - aelt el t Gak (20)

Example., If A = (2u2—8u)i+ b5cosuj— 3sinuk, then
% = ([4u—38)i — bsinuj — 3cosuk, fT‘: = 4i —5cosuj + 3sinuk
The usual rules of differentiation familiar in the calculus can be extended to vectors,
although order of factors in products may be important. For example if ¢(u) is a scalar
function while A(u) and B(u) are vector functions, then

d dA

a _ ,.dB , dA

(AB) = Ao+ B (12)
;_u(AxB) = Ax‘z—g+%%><3 (29)

INTEGRALS OF VECTORS

Let A(u) = A:(w)i+ Az(u)j + As(w)k be a vector function of u. We define the indefinite
integral of A(u) as

f AWdu = i f Awydu + j f Asw)du + k f As(u) du (14)
If there exists a vector function B(«) such that A(u) = %{B(u)}, then
f Awdu = f L Bu)de = B@ + ¢ (15)

where ¢ is an arbitrary constant vector independent of u. The definite integral between
limits # =« and u =g is in such case, as in elementary calculus, given by

fﬂ Aw)du = fﬁ%{B(u)} du = B(u) + ci = B(B) — Bl(o) (16)

The definite integral can also be defined as a limit of a sum analogous to that of elementary
calculus.

VELOCITY

Suppose that a particle moves along a path or curve C [Fig. 1-9 below]. Let the position
vector of point P at time ¢ be r =r(t) while the position vector of point @ at time ¢+ At is
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r+ Ar = r(t + At). Then the velocity (also called the instantaneous velocity) of the particle

at P is given by
_ dr _ .. Ar :
v= g = IIm5
= lim r(t + At) — x(f) (17)
At—+0 At

and is a vector tangent to C at P.

If r=1r() = z@)i+y@t)i+z()k = zi+yj+zk,
we can write

_ dr _ de, dy. , dz h .
v = g T g gl t gk (18) Fig.1-9

The magnitude of the velocity is called the speed and is given by

vo=m o= (B = (@) (@) (%) =2 w

where s is the arc length along C measured from some initial point to P.

ACCELERATION

If v = dr/dt is the velocity of the particle, we define the acceleration (also called the
instantaneous acceleration) of the particle at P as

_ dv . v(t+At) — v(t)
i = Im At (20)
In terms of r = zi+yj+ 2k the acceleration is
dr d*x . d2y . d?z
a = G& = gnlt gt gk (21)
and its magnitude is
=l = A(ZE) (T ()
@ = ll = \/(dt’) +ae) t dt2> (22)

RELATIVE VELOCITY AND ACCELERATION

If two particles P; and P; are moving with respective velocities vi and v; and accelera-
tions a; and a;, the vectors

Vpypy = V2— Vi and  apyr, = 82— & (23)

are respectively called the relative velocity and relative acceleration of P; with respect to P.

TANGENTIAL AND
NORMAL ACCELERATION

Suppose that particle P with position vee-
tor r = r(t) moves along curve C [Fig. 1-10].
We can consider a rectangular coordinate
system moving with the particle and defined
by the unit tangent vector T, the unit princi-
pal normal N and the unit binormal B to
curve C where , Fig.1-10
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_ dr dT

T = as’ N = R— ds’

8 being the arc length from some initial point to P and R the radius of curvature of C at P.
The reciprocal of the radius of curvature is called the curvature and is given by «= 1/R.

B = TxXN (24)

We can show [see Problem 1.35, page 20] that the acceleration along C is given by

_ dv
= mT + RN (25)
The first and second terms on the right are called the tangential acceleration and normal

or centripetal acceleration respectively.

CIRCULAR MOTION Y

Suppose particle P moves on a circle C of radius - \
R. If s is the arc length measured along C from P
A to P and ¢ is the corresponding angle subtended R P
at the center O, then s = R9. Thus the magnitudes 0
of the tangential velocity and acceleration are given 0 A z
respectively by

_ds _ ,do _
’U—'Jt-—R%—Rw (26)
dv ds d29

and A o-dE" RW = Ra (27) Fig.1-11

We call o = df/dt and « = d26/dt? the angular speed and angular acceleration respectively.
The normal acceleration as seen from (25) is given by v*/R = o’R.

NOTATION FOR TIME DERIVATIVES

We shall sometimes find it convenient to use dots placed over a symbol to denote
derivatives with respect to time t, one dot for a first derivative, two dots for a second

derivative, etc. Thus for example r = dr/dt, ¥ = d?/dt?>, v =dv/dt, etc.

GRADIENT, DIVERGENCE AND CURL

If to each point (z, ¥, 2) of a rectangular coordinate system there corresponds a vector A,
we say that A = A(x,y,2) is a vector function of x,y,z. We also call A(z,¥,7?) a vector
field. Similarly we call the (scalar) function ¢(x,¥,2) a scalar field.

It is convenient to consider a vector differential operator called del given by

T I )
vV = lax+]ay+kaz (28)
Using this we define the following important quantities.
, _ [s9 .0 9 _ a¢ . 0 a¢.
1. Gradient Vé = <'aa: + ]ay + k8z> ¢ = + ]ay + k (29)

This is a vector called the gradient of ¢ and is also ertten grad ¢.

2. Divergence V'A = ( = ]a_ + k- > (Ad + Asj + Ask)
Y (30)
oA aA2 aAs
= + 22y 08
o oz

This is a scalar called the dwergence of A and is also written div A.
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3. Curl VXA = <1% + j;% + k:—z>x (Asi + Agj + Ask)
i 7 k
2 % =z (81)
A, A: As
L (o, (oA (o4 oh,
oy 0z 02 ox ox Y
This is a vector called the curl of A and is also written curl A.
Two important identities are
diveurlA = V- (VXA =0 (32)
curlgrad¢ = VX(V¢) =0 (33)

LINE INTEGRALS

Let r(t) = z(f)i+y(t)j +2(t)k, where r(t) is the position vector of (z,y,2), define a
curve C joining points P; and P: corresponding to t=¢, and t=1; respectively. Let
A = A(x,y,2) = Asii+ Azxj+ Ask be a vector function of position (vector field). The
integral of the tangential component of A along C from P; to P;, written as

) " Acdr fA @ = [ Az + Asdy + Avde (24)
1 c

is an example of a line integral.

If C is a closed curve (which we shall suppose is a simple closed curve, i.e. a curve
which does not intersect itself anywhere) then the integral is often denoted by

§ Avdr = fA,dx + Asdy + Asdz (35)
[+ (o]

In general, a line integral has a value which depends on the path. For methods of
evaluation see Problems 1.39 and 1.40.

INDEPENDENCE OF THE PATH

The line integral (34) will be independent of the path joining P; and P if and only if
A =V¢, or equivalently V¥ XA = 0. In such case its value is given by

Tacde = [Tap = wP) - HP) = #@ve) - ez (50)

assuming that the coordinates of P, and P, are (,,¥,,2,) and (%, ¥,, 2,) respectively while
#(z,,2) has continuous partial derivatives. The integral (35) in this case is zero.

FREE, SLIDING AND BOUND VECTORS

Up to now we have dealt with vectors which are specified by magnitude and direction
only. Such vectors are called free vectors. Any two free vectors are equal as long as
they have the same magnitude and direction [see Fig. 1-12(a) below].
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»

() Equal free vectors (b) Equal sliding vectors (¢) Bound vector
Fig.1-12
Sometimes in practice the particular line of action of a vector is important. In such

case two vectors are equal if and only if they have the same magnitude, direction and line
of action. Such vectors are often called sliding vectors [see Fig. 1-12(b)].

Sometimes it is important to specify the point of action of a vector. Such a vector
[see Fig. 1-12(c)] is called a bound vector. In this case two vectors will be equal if and
only if they are identical.

Most cases with which we shall deal involve free vectors. Cases where sliding vectors
or bound vectors need to be employed will in general be clear from the context.

Solved Problems

VECTOR ALGEBRA

11. Show that addition of vectors is commutative, ie. A+B = B+ A. See Fig. 1-13
below.
OoP +PQ = 0Q or A+B =C

and OR+RQ = 0Q or B+ A =C
Then A+ B = B+ A,

]

Fig.1-13 Fig.1-14 -

1.2. Show that the addition of vectors is associative, i.e. A+ (B+C) = (A+B)+C. See
Fig. 1-14 above.

OP+PQ = 0Q = (A+B) and PQ+QR = PR = (B+C)
Since OP+PR = OR =D, ie A+ (B+C) =D

0Q+QR = OR =D, ie (A+B)+C =D
wehave A+ (B+C) = (A+B)+C.

Extensions of the results of Problems 1.1 and 1.2 show that the order of addition of any
number of vectors is immaterial.
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1.3. Given vectors A, B and C [Fig. 1-15(a)] construct (a) A—B+2C, (b) 3C—}(2A—B).

14.

1 .50

Fig.1-15

Prove that the magnitude A of the vector A =
Aj+Azj+ Ak is A = \/A§1 + A2+ AZ. See
Fig. 1-16.

By the Pythagorean theorem,

(OP)2 = (0Q)% + (QP)?

where OP denotes the magnitude of vector OP, etc.
Similarly, (0Q)2 = (OR)2 + (RQ)>.

Then (OP)2 = (OR)? + (RQ)? + (QP)* or

A2 = AT+ A3+ 4], ie A = VAZ+AZ+AD Fig.1-16

Determine the vector having the initial point
P(x1,91,21) and the terminal point Q(x2,¥s,22)
and find its magnitude. See Fig. 1-17.
The position vector of P is r; = ;i + i+ 2.k.
The position vector of @ is ry, = x,i + 5§ + 25k.
n+PQ =r, or
PQ =1,—1 (2l + yf + 29K) — (%31 + 94 + 2k)
= (eg— )i+ (Yo —y)i + (22— 2k

Magnitude of PQ = PQ
= V(da— )2+ (Ya—¥1)? + (22— 2,)?
Note that this is the distance between points P and Q. Fig.1-17
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1.6. Find (a) graphically and (b) analytically the sum or resultant of the following
displacements:

A, 10 ft northwest; B, 20 ft 830° north of east; C, 85 ft due south. See Fig. 1-18.

Graphically.

At the terminal point of A place the initial point N B
of B. At the terminal point of B place the initial
point of C.
The resultant D is formed by joining the initial P 80°
point of A to the terminal point of C, iie. D =
A+B+C. A c
The resultant is measured to have magnitude of w \ E
4.1 units = 20.5 ft and direction 60° south of east. o 60°

Q

Analytically.

From Fig. 1-18, if i and j are unit vectors in the S D
E and N directions, we have Unit = 51t

A = —10cos45°i + 10sin45°j
B = 20cos30°i + 20 sin30° j S S
C = -85 Fig. 1-18

i

Then the resultant is
D = A+B+C = (—10cos45° + 20 cos30°)i + (10 sin 45° 4 20 sin 30° — 35)j
(-5V2 + 10V3)i + (5V/2 + 10 — 35)j = 10.25i — 17.93j

Thus the magnitude of D is V(10.25)2 + (17.98)2 = 20.65 ft and the direction is
tan—117.93/10.26 = tan—11.749 = 60°45’ south of east

Note that although the graphical and analytical results agree fairly well, the analytical result is
of course more accurate,

THE DOT OR SCALAR PRODUCT

1.7. Prove that the projection of A on B is equal to A . b,
where b is a unit vector in the direction of B. E |
Through the initial and terminal points of A pass :

planes perpendicular to B at G and H respectively as in the i
adjacent Fig. 1-19; then : G

Projectionof AonB = GH = EF = Acosg = A*b Fig.1-19

18. Prove A-(B+C) = A-B+A-C.

Let a be a unit vector in the direction of A; then [see

Fig. 1-20]
Projection of (B+ C) on A = projection of Bon A {
+ projection of C on A |
B+C)ra = B+ra+ C-a ' }
B+ ! | (B+c)
Multiplying by A, [ | |
(B+C)-Aa = B-+Aa + C-Aa ! } {
and (B+C)*A = B-A + C-A || } }
Then by the commutative law for dot products, __Ej“ FI' é = >

A-(B+C) = A*B+ A-C
and the distributive law is valid. Fig.1-20
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1.9. Evaluate each of the following.

(@) i*i =
) i‘k =
(0 kej =

(@) j-@2i—3j+k)

|i} i} eos 0°

(k| [3]

= 1Ay =1
li| k| cos 90° = (1}(1)(0) = 0
cos90° = (11)(0) = 0

= 2j+i—8j*j+j*k =0—-3+0 = -3

(¢) Ri—j)Bi+k) = 2i-@i+k)—j-(Bi+k) = 6i*i+2i‘k—38j-i—j°k

= 6+0—-0—0 =6

1.10. If A = A;i+Asj+Ask and B = Bii+ Bsj+ Bsk, prove that A‘B = A:B;+ A:B:+

AsBs.
3Bs A

*B

(Ayi+ Agj + Agk) « (Byi+ Byj + Bsk)
A,i* (Byi+ Boj + Bgk) + Agj (Byi+ Baj + Bgk) + Agk+ (Byi + Byj + Bgk)
ABji+i+ AByi+j+ ABgi+k + AsBjei+ AsByj-j + AsBsj -k
+ AgBik i+ AgBk+j + AgBsk  k
AB; + A,B, + A3B,

since i*i = j*j = k<k = 1 and all other dot products are zero.

1L1l. If A = Aii+Asj+Ask, show that A = VA-A = VAT + A2 + A2,

A-A =

Also,

by Problem

A-A

1.10,

(A)(A) cos0° = A2, Then A =VA-A,

= (A[i+ A5+ Agk) (4,0 + A,j+ Agk)
= (A))(A) + (A)(Ay) + (Ag)(Ag) = AT+ AL+ A}
taking B = A.

Then A = VA*A = /A2 + A2 + A2 is the magnitude of A. Sometimes A+ A is written A2

1.12. Find the acute angle between the diagonals of a
quadrilateral having vertices at (0, 0, 0), (3,2, 0),
(4,6,0), (1,3,0) [Fig. 1-21].

We have OA = 38i+2j, OB = 4i+6j, OC =i+ 38j

B (4,6,0)

from which

CA = 0A-0C = 2i—]j A(8,2,0)
Then OB:-CA = [OB||CA|cos ¢
ie.

di+6j)+@2i—j) = V@2Z+(62V(@2+ (—1)2cos 6
from which cos ¢ = 2/(V52 V5) = .1240 and ¢ = 82°53'.

THE CROSS OR VECTOR PRODUCT
1.13. Prove AXB = —-BXA.

(a) (®)
Fig.1-22

A XB = C has magnitude AB sin¢ and direction such that A, B and C form a right-handed
system [Fig. 1-22(a) above].
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BX A =D has magnitude BA sin¢ and direction such that B, A and D form a right-handed
system [Fig. 1-22(b) above).

Then D has the same magnitude as C but is opposite in direction, i.e. C=~D or AXB = —B X A,
The commutative law for cross products is not valid.

114. Prove that
AXB+C) = AXB+AXC

for the case where A is perpendicular
to B and also to C.

Since A is perpendicular to B, AXBis a’
vector perpendicular to the plane of A and B
and having magnitude AB sin90° = AB or
magnitude of AB. This is equivalent to mul-
tiplying vector B by A and rotating the
resultant vector through 90° to the position
shown in Fig. 1-28,

Similarly, A X C is the vector obtained by
multiplying C by A and rotating the resultant
vector through 90° to the position shown.

In like manner, A X (B + C) is the vector
obtained by multiplying B + C by A and rotat-
ing the resultant vector through 90° to the
position shown.

Since A X (B+ C) is the diagonal of the
parallelogram with A X B and A X C as sides,
we have AX(B4+C) = AXB+ AXC. Fig.1-23

1.15. Prove that AX(B+C) = AXB+ AXC
in the general case where A, B and C are
non-coplanar. See Fig. 1-24.

Resolve B into two component vectors, one
perpendicular to A and the other parallel to A,
and denote them by B, and B respectively.
Then B = B_L +B”.

If 6 is the angle between A and B, then
B, = B sin¢. Thus the magnitude of AX B is

AB sin g, the same as the magnitude of A X B.
Also, the direction of AXB | is the same as the

direction of AXB. Hence AXB | =AXB,

Similarly if C is resolved into two component
vectors C); and C,, parallel and perpendicular

respectively to A, then AXC, =AXC, Fig.1-24
Also,since B+C = B, +B;+C, +C; = (B, +C ) + (B;;+C)) it follows that
AX(B, +C)) = AX(B+C)
Now B, and C, are vectors perpendicular to A and so by Problem 1.14,
AX(B, +C;) = AXB, +AXC,
Then AX(B+C = AXB+AXC

and the distributive law holds. Multiplying by —1, using Problem 1.13, this becomes (B+C) X A =
B X A + CXA. Note that the order of factors in cross products is important. The usual laws of
algebra apply only if proper order is maintained.

i i k
1.16. If A=A+ As;j+ Ak and B = Bii+ B:j+ Bk, prove that AXB =| A1 A: As |
By B: Bs
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AXB = (A4i+ A+ Agk) X (Byi + Byj + Bsk)
= A.i X (Byi+ Byj + Bgk) + Agj X (Byi+ Byi + Bsk) + Agk X (Byi + Byj + Bgk)
= ABixi+ ABgiXj+ ABgi Xk + AyB1j X i+ AyByj X j + AyBsj X k
+ A3BkXi+ AgBk X j+ AgBk X k Pk
= (A3B;— A;3By)i + (A3B1— A1By)j + (A1By— AsByk = | A, A, A,
B, B, Bj

117. If A=38i—j+2k and B=2i+3j—k, find AXB.

AxE ! ’1 k N I A
= — = 1 —_—
8 2 38 —1 2 -1 2 3
2 3 -1
= —bi + T + 11k

1.18. Prove that the area of a parallelogram with
sides A and B is |A X B|.

Area of parallelogram = Fk|B|
= |A| sin¢ |B|
= |AXB| N
Note that the area of the triangle with sides A and B o
Bis }JAXB]|. Fig.1-25

1.19. Find the area of the triangle with vertices at P(2,3,5), Q4,2,-1), R(3,6,4).
PQ = 4-2)i+2—-8)j+(—1—-58k = 2i—j— 6k
PR = 83—-2)i+(6—-38)j+4—-b6k = i+3i—k

Area of triangle = }[PQXPR| = }|(2i—j—6k) X (i+3j—k)]
i j k
= 3|2 -1 —6|l = %[19i—4j+ k|
1 8 -1

VAR (AP + (2 = §V426

TRIPLE PRODUCTS

1.20. Show that A« (B X C) is in absolute value equal
to the volume of a parallelepiped with sides
A, BandC. :

Let n be a unit normal to parallelogram I, having
the direction of B X C, and let % be the height of the :
terminal point of A above the parallelogram I. Fig. 1-26

Volume of parallelepiped = (height k)(area of parallelogram I)
(A+*n)(|B X C|) '
= A{IBXC|n} = A-(BXC)
If A, B and C do not form a right-handed system, A°n < 0 and the volume = |A+* (BXC)|.

121. (a) If A = Aji+Asj+Ask, B = Bii+Bsj+Bsk, C = Cii+C:j+Csk show that
A, A A;
A-BXC) = |B:. B B
Ci C: Cs
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(b) Give a geometric significance of the case where A:(BxC) = 0.

i j k
(@ A-(BXC) = A+|B, B, B,
C; C, Cg
= (A4i+ Ayj+ Agk) « [(ByCs — BgCy)i + (B3Cy — BCy)j + (BCy— ByC))k]
Ay Ay Ag
= A(B;C3— ByCy) + Ax(B3C1— B,Cy) + Ag(B,C;—ByCy) = | By By, By
C, C G

(b) By Problem 1.20 if A+(BXC) =0 then A, B and C are coplanar, i.e. are in the same plane,
and conversely if A, B, C are coplanar then A« (BXC) = 0.

1.22, Find the volume of a parallelepiped with sides A=8i—j B=3j+2k, C=1i+5j+4k.

8 -1 0
By Problems 1.20 and 1.21, volume of parallelepiped = |A*(BXC)| = || 0 1 2 ||
1 5 4

|-20] = 2o0.

123, If A=i+j B=2i—8j+k C = 4j—3k, find (a) (AXB)XC, (b) Ax (BxC).

i j k i j k
(@) AXB=|1 1 0| =i—j—b5k. Then (AXB)XC =|1 -1 -b | = 28i+ 8j+4k.
2 -3 1| 0 4 -3
i i k ik
b BXC=|2 -8 1 | = bi+ 6j+ 8k. Then AXBXC)=|1 1 0 [=8i—8j+k.
0 4 -3 b 6 8

It follows that, in general, (AXB)X C % AX (BX C).

DERIVATIVES AND INTEGRALS OF VECTORS

124, If r= (#8+2t)i—Be~*j+2sin5tk, find (a) g—:, (b) at t=0.

dr d2r d?r
@l © ge @) |zm

d Cd . .
(@) %‘tl = %(ts+2t)i+a?(—3e“2‘)1+m(2 sinbfk = (3¢2+2)i + 6e=2j + 10 cos btk
At t=0, dr/dt = 2i+6j+10k.

(b) From (a), |dr/dt] = V(2)Z+ (6)2+ (10)2 = V140 = 2/35 at ¢=0.

© -g—z’-z- =4 (%) = £ (82 +2)i + 6072 + 10 cosBtk} = 6ti — 126~ — 50 sin 5tk

At t=0, d2%e/dt2 = —12j.

(d) From (c), |d2r/dt?| = 12 at t=0.

1.25. Prove that %(A-B) = A-%%+%%'B, where A and B are differentiable func-

tions of u. ~
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Method 1. -(A-B) = lim (ATAN(BIAB) - A'D
U Au=0 Au
.. A*AB + AA°B + AA-AB
= lim
Au=0 Au
B AIJTo(A'Au"'XJ'B"" A AB) = Agy B
Method 2. Let A = Aji+ A+ Agk, B = Bii+ By + Bk Then
d d
. (A°B) = a(AlBl+A232+A333)
dBl dBy dBg dA, dA, dAg
- (Al du A2 du + A3 du + ('%‘Bl + ‘%‘Bz + WBS
— JdA |
- du du

2
1.26. If ¢(x,y,2) = 2®yz and A = 3x%yi+y2% —x2k, find 52%;(¢A) at the point (1, -2, —-1).
¢A = (x2y2)(3x2yi + y22 —x2k) = Swiy2ei + #2y22%j — x%y2%k

;%‘**A) = %(3x4y2zi + x2y223] — x3y2%k) = 3atyli + 3x2y22%j — 2xyzk

——(pA) = — (39041/21 + 32222 — 2u3yzk) = 6xtyi + 6a2y2?j — 2232k
ay az

If =1, y=—2, z=—1, this becomes —12i — 12j + 2k.

2
1.27. Evaluate f A(w)du if A(w) = (8u2—1)i + (2u—3)j + (6u* — 4u)k.
u=1
The given integral equals
f ? (Bu—1)i + Cu—8)j + (612 — 4wk} du

=1 2
(w3 —w)i + (u2— 3u)j + (2ud — 2ud)k
u=

It

{(8—2)i+ (4—6)j+ (16—8k} — {1—-Di+(1-3)+ (2 —2)k}
= 6i + 8k

VELOCITY-AND ACCELERATION

1.28. A particle moves along a curve whose parametric equations are z = 3e~2%, y = 4 8in 3¢,
2z = 5 cos 8t where t is the time.
(@) Find its velocity and acceleration at any time.

(b) Find the magnitudes of the velocity and acceleration at t=0.

(¢) The position vector r of the particle is

r = zi+yj+ 2k = 8e 2 + 4s8in8tj + 5cos3tk
Then the velocity is
v = dr/dt = —6e—2ti + 12cos3tj — 16sin3tk
and the acceleration is
a = dv/dt = der/dt2 = 12e2ti — 36sin3tj — 4b cos8tk

() At t=0, v = dr/dt = —6i+12j and a = d?r/dt? = 12i—45k. Then

magnitude of velocity at ¢ =0 is V(—6)2 + (122 = 6V6
magnitude of acceleration at t =0 is V(12)2 + (—46)2 = 3v241
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1.29. A particle travels so that its acceleration is given by

a = 2e% + 5costj — 3sintk ,
If the particle is located at (1,—8,2) at time t=0 and is moving with a velocity

given by 4i—3j + 2k, find (a) the velocity and (b) the displacement of the particle
at any time ¢> 0.

(a) a = %—;: = %’t— = 2e¢7 % + Bcostj — 3sgintk
Integrating, v = f (2¢~ti + 5 costj— 3 sintk)dt

= —2¢7t + bsintj + 8costk + ¢
Since v = 4i—38j+2k at t=0, we have
4i—-3+2k = —2i+8k+¢ or ¢ = 6i—3j—k
Then v = —2e¢7t + bsintj + 8costk + 6i — 3j — k
(6—2¢ i + (5sint —3)j + (3cost— 1)k @
(b) Replacing v by dr/dt in (I) and integrating, we have
r o= f [(6—2e=9i + (5sint — 8)j + (8 cost — 1)k] dt
= (6t+2e¢7%i — (5cost+ 3t)j + (3sint — )k + ¢,
Since the particle is located at (1,—3,2) at t=0, we have r = i—38j+2k at t=0, so that
i—8i+2k = 2i—-5j+¢ or ¢ = —i+2+2k

Thus r = (6t+2e t—1)i + (2—5cost—38t)j + (3sint—t+ 2)k 2)

RELATIVE VELOCITY AND ACCELERATION
1.30. An airplane moves in a northwesterly

direction at 125 mi/hr relative to the N
ground, due to the fact that there is a L W
westerly wind [i.e. from the west] of
50 mi/hr relative to the ground. Deter-
mine (a) graphically and (b) analyti-
cally how fast and in what direction
the plane would have traveled if there
were no wind.

(a) Graphically.
Let W = wind velocity w

M
Unit = 25mi/hr

V., = velocity of plane
with wind

V, = velocity of plane
without wind. Fig.1-27

Then [see Fig. 1-27] Vo = Vp+W or V, =V, —W = V,+ (—W).
V, has magnitude 6.5 units = 163 mi/hr and direction 33° north of west.
(b) Analytically.

Letting i and j be unit vectors in directions E and N respectively, we see from Fig. 1-27

that .
Vo = —126cos4b°i + 125s8in46°j and W = bOi

Then V, = V,— W = (—125 cos45° — b0)i + 126 sin45° j = —138.89i + 88.39j.

Thus the magnitude of V, is 1/(—138.39)2 + (88.39)2 = 164.2 mi/hr and the direction is
tan—188.39/138.89 = tan—1.6387 = 32°34' north of west.
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1.31. Two particles have position vectors given by = = 2ti—#j+(3t*—4t)k and
rs = (5t2—12t+4)i+ 3 —8tk. Find (a) the relative velocity and (b) the relative
acceleration of the second particle with respect to the first at the instant where ¢t =2.

(¢) The velocities of the particles at ¢t =2 are respectively

vi = 15 = 2i—2tj+ (6t—4)k = 2i—4j+8k

t=2

= 8i+12j—38k
t=2

v, = F, = (10t—12)i + 3¢2% — 3k

Relative velocity of particle 2 with respect to particle 1
= vy —v; = (8i+12j—8k) — (2i—4j+8k) = 6i + 16j — 11k

(b) The.accelerations of the particles at ¢t =2 are respectively

= —2j+ 6k

a = vy = .r.l - —‘2i+6k r=2

a, = vy = ¥, = 10i + 6tj = 10i + 12j

t=2
Relative acceleration of particle 2 with respect to particle 1

= a; —a; = (10i+12§) — (—2j+ 6k) = 10i + 14j — 6k

TANGENTIAL AND NORMAL ACCELERATION
1.32. Given a space curve C with position vector
r = 3cos2ti + 8sin2tj + (8t—4)k
(a) Find a unit tangent vector T to the curve. ‘
(b) If r is the position vector of a particle moving on C at time f, verify in this
case that v=7T.

(a) A tangent vector to C is
dr/dt = —6sin2ti + 6cos2tj + 8k

The magnitude of this vector is
|de/dt] = ds/dt = V(—6sin2t)2 + (6 cos 2t)2 + (8)2 = 10

Then a unit tangent vector to C is
dr/dt _ dr/dt _ dr _ —6s8in2ti + 6cos2tj + 8k
dr/dt ds/dt ~ ds — 10
= —§sin2ti+ $cos2tj + gk

(b) This follows at once from (a) since
v = dr/dt = —6sin2ti+ 6cos2tj + 8k
(10)(— g sin2ti + §cos2tj + k) = T

Note that in this case the speed of the particle along the curve is constant.

1.33. If T is a unit tangent vector to a space curve C, show that dT/ds is normal to T.

Since T is a unit vector,"we have T*T = 1. Then differentiating with respect to s, we obtain
drl , dT _ dT _ or _
T s + ds T = 2T a8 - 0 or T ds 0

which states that dT/ds is normal, i.e. perpendicular, to T.
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If N is a unit vector in the direction of dT/ds, we have
dT/ds = kN

and we call N the unit principal normal to C. The scalar x = |dT/ds| is called the curvature,
while R = 1/k is called the radius of curvature.

1.34. Find the (a) curvature, (b) radius of curvature and (c) unit principal normal N to
any point of the space curve of Problem 1.32.

() From Problem 1.32, T = —8sin2ti + § cos 2t j + $k. Then
dT _ dT/dt _  (—6/5) cos2ti — (6/5) sin 2t j
ds ~ ds/dt 10
= —:—scOSZti—%sinZtJ‘
Thus the curvature is x = %—": = \/ (—35 cos 2t + (—gpsin2)2 = &

(b) Radius of curvature = R = 1/x = 25/8
(¢) From (a), (b) and Problem 1.33,

l1d RdT = —cos2ti — sin2tj

N=nds_—cE

1.35. Show that the acceleration a of a particle which travels along a space curve with

velocity v is given by _ - o
T dtT " R
where T is the unit tangent vector to the space curve, N is its unit principal normal

and R is the radius of curvature.

N

Velocity v = magnitude of v multiplied by unit tangent vector T, or

v = 2T
Differentiating, z—: = %(vT) %T + vf(%‘
dl _ dT ds _ ds _ _ N
But Gt T ds dE = «N rril N = R
_ oNY _ dvg w2
Then a = TtT+v<R> = dtT+RN

This shows that the component of the acceleration is dv/dt in a direction tangent to the path and
v2/R in the direction of the principal normal to the path. The latter acceleration is often called
the centripetal acceleration or briefly normal acceleration.

CIRCULAR MOTION

1.36. A particle moves so that its position vector is given by r = coset i + sin ot j where
o is a constant. Show that (a) the velocity v of the particle is perpendicular to r,
(b) the acceleration a is directed toward the origin and has magnitude proportional
to the distance from the origin, (¢) r X v = a constant vector.

(@) v = g—% = —wsinewti+ wcoswtj. Then
r'v = [coswti+t sinetj]*[—wsineti+ ocoswtj]
= (coswt)(—w sin wt) + (sin wf)(w coswt) = 0

and r and v are perpendicular.
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d2r dv
® e = %
Then the acceleration is opposite to the direction of r, i.e. it is directed toward the origin.

Its magnitude is proportional to |r| which is the distance from the origin.

= —w2coswti—w2sinetj = —e?[coswti+t sinetj] = —’r

(¢) rXv = [coswti+ sinwtj] X [~ sineti+ o coswt j]
i j k
= cos wt sinet 0 = w(cos?wt + sin2wt)k = «k, a constant vector.

—w Sinet wcoswt 0

Physically, the motion is that of a particle moving on the circumference of a circle with
constant angular speed w. The acceleration, directed toward the center of the circle, is the
centripetal acceleration.

GRADIENT, DIVERGENCE AND CURL
1.37. If ¢ = 2%2® and A = zzi— 9% +22%k, find (a) V¢, () V-A, (¢) VXA, (d) div
($4), (e) curl (3A).

s (03, = 08, 0. 0
(@) Vo = (ax'+ay’+azk>¢ = 351 + ayl + azk
9 . 9 . 9 . .
%(wz'yza)l + a—z;(xzyza)] + E(x%zs)k = 2xyz3i + x228j + 3x2yz%k
® VoA = (Zit+lj+ k). (wai — 92 + 20%K)
dx oy oz
3 i} 9
= a3 ) + @) = 2—2y
© VXA = (Zi+2j+2k)x (wzi—y2 + 20k)
ox ay] 0z v Y
i j k
= | 8/ox d/oy 8/dz
xz —y? 2%
= (L 2 )i D (o) -2 )i Dy
= (e - 2w )i+ (L - gemn)i+ (Hew -5 )k
= 2% + (x—4xy)j
(d) div(pA) = Ve(pA) = V- (a3yzti — x2y323) + 2xty?2%k)

- 9 LA 9
= («%yz*) + ay( w2yS23) + '37(295“1/223)
= 3x2yzt — 3u2y223 + 6xiy2:2

(e) curl (pA) V X (pA) = V X (x3yzti — 22y%28j + 2x4y223k)
i i k
a/ox a/dy 3/oz
aSyzt —ax2yS8  2axty2:8

(4xtyz3 + 3x2y322)i + (dadyz3 — 8x%y223)j — (2wy®2® + x82%)k

1l

1.38. (a) If A = (2xy+2%)i+ (22 +2y)j+ (3222 —2)k, show that V xA = 0.
(b) Find a scalar function ¢ such that A = V¢.
i i k
(@) VXA = d/ax a/oy 8/0z =0
22y + 28 22+ 2y 8x22-—2
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(b) Method 1. If A = Vg = g—zi+g—;j+ﬁ‘2k then we must have

0z
3_¢ — 3 ﬁ'ﬁ — 2 a_¢ — 2
(1) o 2xy + # 2) o %2 + 2y %) 9 = 3xz 2
Integrating, we find
) ¢ = a%y + 223+ Fy(y,2) (5) ¢ = x% + Y2+ Fy(x,2)

(6) ¢ = wed — 2z + Fy(x,y)

Comparing these we must have Fi(y,7) = y2—22, Fy(x,2) = 228—22, Fyz,y) = 22y +y2
and so ¢ = a2y + w28 + y2 — 2z.

Method 2. We have if A = Vg,
PR £ YSNE " YONE Y S
A+dr = (ax""ay""azk) (dri+dyj+ dzk)
= 9% 9¢ e, _
= axdx + aydy + azdz = dg¢
an exact differential. For this case,

d¢ = Acdr = Quy+28)de + (224 2y)dy + (8222 —2)dz
[(2xy + 28) dox + 22 dy + 3w22dz] + 2ydy — 2dz
d(x2y + 228) + d(y2) + d(—2z2)

=  d(x2y + 228 + y2 —22)

Then ¢ = 22y + 223+ y2—22. Note that an arbitrary constant can also be added to ¢.

LINE INTEGRALS AND INDEPENDENCE OF THE PATH
139. If A = (822—6y2)i + (2y + 3x2)j + (1 — dxyz?)k, evaluate f A-.dr from (0,0,0) to
(4]

(1,1,1) along the following paths C:
(@) z=t, y=1t2, z=1t8.

(b) the straight lines from (0,0,0) to (0,0,1), then to (0,1,1), and then to (1,1,1).

(c) the straight line joining (0,0,0) and (1,1,1).

J; Asdr = L {(8x2 —6y2)i + (2y+ 8x22)j + (1 —day22)k}+(dei+ dyj + dzk)

= f (Bx2—6yz)dx + (2y+8x2)dy + (1 — 4ayz?)dz
c

(a) If #=t, y =12, z =18, points (0,0,0) and (1,1,1) correspond to t =0 and t =1 respectively. Then

f A-+dr
c

fl {882 —6(22) (1)} dt + {262+ 3(1)(3)} d(t2) + {1 — 4(E)(t3)(t%)2} d(t9)
t=0

Il

1
f (8t2—6t5)dt + (4t3+6t5)dt + (32— 12t1)dt = 2
t=0

Another method.

Along C, A = (3t2—6t5)i + (2624 8t4)j + (1 — 4tk and r = wxi+yj+2k = i+ 2§+ 9k,
dr = (i+2tj + 3t%k) dt. Then
1
f Acdr = f (82— 6t5) dt + (43 +6t5)dt + (Bt2—12t1)dt = 2
c [

(b) Along the straight line from (0,0, 0) to (0,0,1), x=0, ¥y =0, dx =0, dy =0 while 2z varies from

0 to 1. Then the integral over this part of the path is
1

1
f {3(0)2 - 6(0)(2)}0 + {2(0) 4+ 3(0)(2)}0 + {1—4(0)(0)(22)}dz = f dz = 1
z=0 2=0
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Along the straight line from (0,0,1) to (0,1,1), =0, 2=1, dx=0, dz2=0 while y varies
from 0 to 1. Then the integral over this part of the path is

1 7 1
[ @or-swune + @ursoma + Q-owon0 = [ ww = 1
y=0 y=0

Along the straight line from (0,1,1) to (1,1,1), y=1,2=1,dy=0, dz=0 while z varies

from 0 to 1. Then the integral over this part of the path is
1

fl {3z2 — 6(1)(1)} da + {2(1) + 3=(1)}0 + {1 —4x(1)(1)2}0 = f . (8x2—6)dxe = -5
z=0 r=
Adding, LA-dr =141—5 = —3.

(¢) Along the straight line joining (0,0,0) and (1,1,1) we have x=¢, y=t¢, z=¢ Then since
de = dy = dz = dt,

f A-dr
c

il

f (3x2—6yz)dx + (2y+3z2)dy + (1—4dayz?)dz
c

Il

1
f Bt2—612)dt + (2t+38t2)dt + (1—4th)dt
t=0

1
- f @t+1—4t)dt = 6/5
t=0

Note that in this case the value of the integral depends on the particular path.

140. If A = (2xy +2%i + (22 +2y)j + (8222 —2)k show that (a) fc A-dr is independent

of the path C joining the points (1,-1,1) and (2,1,2) and (b) find its value.
By Problem 1.38, VXA =0 or A+dr = d¢ = d(x?y+ x2%+y2 — 22). Then the integral is
independent of the path and its value is

(2,1,2) 2,1,2)
f Asdr = f d(x2y + 223 + y2 — 22)
(4,11 a4, —1,1)

= o2+ x2B+y?— 22

2.1,2)
18

1,-11

MISCELLANEOUS PROBLEMS
1.41. Prove that if a and b are non-collinear, then za+yb = 0 implies x =y = 0.

Suppose £ 0. Then za+yb = 0 implies xa = —yb or a=—(y/x)b, i.e. a and b must be parallel
to the same line (collinear), contrary to hypothesis. Thus & =0; then yb=0, from which y=0.

1.42. Prove that the diagonals of a parallelogram bi-
sect each other.

Let ABCD be the given parallelogram with diagonals
intersecting at P as shown in Fig. 1-28.

Since BD+a =b, BD =b—a. Then BP = x(b —a).
Since AC=a-+b, AP =y(a+b).

But AB = AP+ PB = AP —BP,
ie. a = yla+b)—2(b—a) = (x+y)a+ (y—x)b.

Since a and b are non-collinear we have by Problem
141, z+y=1 and y~2=0, ie. x=y=% and P
is the midpoint of both diagonals.
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1.43. Prove that for any vector A, v
(@) A (ADi+(A§j+(A-kk
() A = A(cosai+cosBj+ cosyk)

where ¢, 8,y are the angles which A makes with i, j, k respectively and cosa, cos g,
cos y are called the direction cosines of A.

(@) Wehave A = A;i+A,j+Agk. Then
A'i = (A1i+A2j+A3k)‘i

!
B

A-j = (Aji+Aj+Ak)j = A,
Ak = (A1i+A2j+A3k)'k = A.3
Thus A= (Adi+A)i+(Akk
(d) A+i = |A|lijcosa = Acose
A+j = |Al|jlcosB = A cosp
A'k = |A||k|cosy = A cosy

Then from part (a),
= (Avi)i+ (A§)j+ (A*k)k = A(cosai+ cospBj+ cosvyk)

1.44. Prove that V¢ is a vector perpendicular to the surface ¢(x,¥,2) = ¢, where ¢ is a
constant.
Let r = xi+ yj+ 2k be the position vector to any point P(x,y,z) on the surface.
Then dr = dxi+ dyj+ dzk lies in the plane tangent to the surface at P. But

_ % 0. 3. 6.\ 0« g B
dgp = dx+ dy+ dz =0 or (axi+ay’+azk> (dxi+dyj+dzk) =
ie. Vgedr = 0 S0 that V¢ is perpendicular to dr and therefore to the surface.

145. Find a unit normal to the surface 2x2+4yz—522 = —10 at the point P(3 -1,2).

By Problem 1.44, a vector normal to the surface is

V(222 +4yz —bz2) = 4doi + 42§ + (dy—102)k = 12i + 8j — 24k at (3,—1,2)
Then a unit normal to the surface at P is 121 + 8j — 24k = 81+ 2j — 6k .
V(12)2 + (8)2 + (—24)2 7
i+ 2j— 6k
Another unit normal to the surface at P is — El-i_,;——

1.46. A ladder AB of length o rests against a vertical wall OA [Fig. 1-29]. The foot B
of the ladder is pulled away with constant speed vo. (a) Show that the midpoint
of the ladder describes the arc of a circle of radius a/2 with center at O. (b) Find
the velocity and speed of the midpoint of the ladder at the instant where B is distant
b<a from the wall.

Yy
(a) Let r be the position vector of midpoint M of AB.

If angle OBA = ¢, we have

OB = acoséi, OA = asingj “A

AB = OB—0A = acos¢i—asingj
Then M
r = 0OA+ AM = OA+%AB
= asin0j+-§(a,cosoi—asinoj) 4 s
= Ja(cos ¢ i+ sino j) o> 4 B ©

Thus |r| = e, which is a circle of radius a/2
with center at O. Fig.1-29
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(b) The velocity of the midpoint M is

dr

& = %{.}a(coso i+singj)} = Ja(—sine éi+ cos o 6j) @

where 6 = dé/dt.

The velocity of the foot B of the ladder is

vl = -‘%(OB) = %(acosai) = —asingdi or asings = —v 2)

At the instant where B is distant b from the wall we have from (2),

Vv a2 — b2 . Vo -V

ging = —, 6 = =

@ a sing Va2 — b2

Thus from (1) the required velocity of M at this instant is
dr

&= m(-F=)

and its speed is avy/2Va2— b2.

1.47. Let (r,0) represent the polar coordinates describing the position of a particle. If
r: is a unit vector in the direction of the position vector r and 6, is a unit vector
perpendicular to r and in the direction of increasing ¢ [see Fig. 1-30], show that

(@) r1 = cosfi+singdj, 6, = —sindi+ cosdj

(b) i = cosfr;—sind @, j = sinfr: + cosd 4,

(a) If r is the position vector of the particle at any

time ¢, then dr/dr is a vector tangent to the y
curve 6 = constant, i.e. a vector in the direc-
tion of r (increasing 7). A unit vector in this
direction is thus given by L1 'y
1
ar ar
1 ar/ |or ()
Since r
. 3 0 3 r Sin '
r=uzxi+yj = rcosoi+rsingj (2 i‘
as seen from Fig. 1-830, we have [
> x
or _ .. |a_r I _ 0 i
ar cosd i+ sine j, arl = 1 ‘ ” cos 8
so that

ry = cosgi+singj (€)) Fig.1-30

Similarly, or/d¢ is a vector tangent to the curve » = constant. A unit vector in this
direction is thus given by

_ g
o = aa/ |60 X
Now from (2), O o ,ginei + rcosé j s
3% = ’ a0
so that (4) yields
0 = —sin6i+ cossj @

(b) These results follow by solving the simultaneous equations (8) and (5) for i and j.



26

VECTORS, VELOCITY AND ACCELERATION [CHAP. 1

148. Prove that (a) r1=001 (b) 61= —fr,.

(a) From (38) of Problem 1.47 we have

. dr, ory dr  Or1 dg
T G T wrdt b6 dt
= (0)r) + (—sinei+cosej)e) = 60,
(b) From (5) of Problem 1.47 we have
o, = M _ Mudr | ide
dt or dt | 96 dt
= (0)(r) + (—cosoi—sine )8 = —br

149. Prove that in polar coordinates (@) the velocity is given by

v = ’;‘r1 + Téo 1
and (b) the acceleration is given by
a = (F—rf)r; + (ri +276)8,

(@) We have r =rr; so that
dr dr dry

V@ T antw
by Problem 1.48(a).

= ';'rl + 1‘{'1 = ""l'l + "’501

(b) From part (a) and Problem 1.48 we have
dv

d L .
@ = EE("I + 160 ,)

a
= .7'.1'1 + ﬁl + ”.'b'l + ”'.0“1 + ‘ré;l

7r'r1 + ’;'(6'1) + ":;01 + 1"0.01 + (75)(—51'1)

(¥ = rédr; + (r6 + 2r9) 0,

Supplementary Problems

VECTOR ALGEBRA

1.50.

1.51.

1.52.

1.53.

1.54.

1.55.

Given any two vectors A and B, illustrate geometrically the equality 4A+3(B—A) = A+3B.
Given vectors A, B and C, construct the vectors (z) 2A—3B+4C, (b) C—}A+1B.

If A and B are any two non-zero vectors which do not have the same direction, prove that pA+ ¢B
is a vector lying in the plane determined by A and B.

(a) Determine the vector having initial point (2,—1,3) and terminal point (8,2,—4). (b) Find the
distance between the two points in (a). Ans. (a) i+ 3j— Tk, (b) V59

A triangle has vertices at the points A(2,1,-1), B(—1,3,2), C(1,—2,1). Find the length of the
median to the side AB. Ans. %\/&

A man travels 25 miles northeast, 15 miles due east and 10 miles due south. By using an
appropriate scale determine (e¢) graphically and (b) analytically how far and in what direction
he is from his starting position. Ans. 33.6 miles, 13.2° north of east.
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1.56.

Find a unit vector in the direction of the resultant of vectors A' =2i—j+k, B = i+j+2k,
C = 3i—2j+4k. Ans. = (6i—2j+ 7k)/V89

THE DOT OR SCALAR PRODUCT

1.57.
1.58.
1.59.

1.60.

1.61.

1.62.

Evaluate [(A+B)*(A—B)| if A =2i—3j+56k and B = 3i+j—2k. Ang. 24
Find a so that 2i—3j+ 6k and 3i+ aj—2k are perpendicular. Ang. a = —4/8

If A=2i+j+k, B=i—-2j+2k and C = 8i—4j+ 2k, find the projection of A+ C in the

. direction of B. Ans. 17/3

A triangle has vertices at A(2,3,1), B(—1,1,2), C(1,—2,8). Find the acute angle which the
median to side AC makes with side BC. Ans. cos~1V91/14

Prove the law of cosines for triangle ABC, i.e. ¢2 = a2+ b2 —2ab cos C.
[Hint. Take the sides as A,B,C where C = A—B. Then use C+C = (A—B)+*(A—B).]

Prove that the diagonals of a rhombus are perpendicular to each other.

THE CROSS OR VECTOR PRODUCT

1.63.

1.64.

1.65.

1.66.

1.67.

If A=2i—j+k and B = i+2j—3k, find |(2A+B) X (A—2B)|. Ans. 25V/3

Find a unit vector perpendicular to the plane of the vectors A = 8i—2j+4k and B =i+ j—2k.
Ans. = (2ji+ k)5

Find the area of the triangle with vertices (2,-3,1), (1,-1,2), (-1,2,3). Ans. -;-\/g
Find the shortest distance from the point (3,2,1) to the plane determined by (1,1,0), (3,—1,1),

(-1,0,2). Ans. 2

Prove the law of sines for triangle ABC, i.e. su;A = SHII)B = su;C

[Hint. Consider the sides to be A,B,C where A+B+C = 0 and take the cross product of both
sides with A and B respectively.]

TRIPLE PRODUCTS

1.68.

1.69.

1.70.

171,

1.72.

1.73.

If A=2i+j—8k, B=i—2j+k and C = —i+j—4k, find (¢) A+ (BXC), (b)) C*(AXB),
(c) AX(BXC), (d (AXB)XC. Ans. (a) 20, (b) 20, (c) 8i—19j—k, (d) 2bi—15j—10k

Prove that A*(BXC) = (AXB)*C, i.e. the dot and the cross can be interchanged.

Find the volume of a parallelepiped whose edges are given by A = 2i+3j—k, B = i—2j+ 2k,
C = 8i—j—2k. Ans. 81

Find the volume of the tetrahedron with vertices at (2,1,1), (1,-1,2), (0,1,-1), (1,—2,1).
Ans. 4/3

Provethat (a¢) A*(BXC) = B*(CXA) = C-(AXB),
(b)) AX(BXC) = B(A*C)— C(A*B).

(a) Let ry, x5, r3 be position vectors to three points Py, P,, P3 respectively. Prove that the equation
(r—ry) * [(r—xy) X (r—rg)] = 0, where r = xi+yj+ 2k, represents an equation for the plane
determined by P;, P, and P;. (b) Find an equation for the plane passing through (2,—1,-2),
(-1,2,-3), (4,1,0). Ans. (b) 2¢+y—32 = 9

DERIVATIVES AND INTEGRALS OF VECTORS

1.74.

1.75.

Let A = 3ti— (£2+¢)j + (t*—2t»)k. Find («) dA/dt and (b) d2A/dt2 at t=1.
Ans. (a) 8i—3j—k, (b) —2j+2k

If r = acoswt+ b sinwet, where a and b are any constant non-collinear vectors and « is a constant
scalar, prove that (a) rXdr/dt = w(aXb), (b) d2r/dt2+ o?r = 0.
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1.76.

1.77.

1.78.

1.79.

1.80.

1.81.

1.82.

VECTORS, VELOCITY AND ACCELERATION [CHAP. 1
If A=ti—sintk and B = costi+ sintj+ k, find %(Ad}). Ans. —tsint
d dB | dA . .
Prove that %(AX B) = AX a—u--i-%- X B where A and B are differentiable functions of u.

3 2
If A(w) = 4(uw—1)i— (2u+8)j + 6uZk, evaluate (a) f A(u) du, (b) f (ui — 2K) * A(u) du.
Ans. (a) 6i—8j+ 38k, (b) —28 2 !

Find the vector B(u) such that d?B/du? = 6ui— 48u2j+ 12k where B = 2i—3k and dB/du =
i+5j for u=0. Ans. (ud+ u+2)i + (5u — 4ut)j + (6u2—3)k

Prove that f A X %dt = A X(ili_l:+ ¢ where ¢ is a constant vector.
. . 2R 2R
If R = x2yi— 2y2zj + xy22%k, find Fyy X Tyz at the point (2,1, —2). Ans. 16\/5
32

If A=2a%i—yj+azk and B = yi+ xj—xyzk, find
Ans. —4i+ 8j

%3y (AXB) at the point (1,—1,2).

VELOCITY AND ACCELERATION

1.83.

1.84.

1.85.

A particle moves along the space curve r = (2+8)i+ (8t—2)j+ (28 —4t)k. Find the
(@) veloeity, (b) acceleration, (c) speed or magnitude of velocity and (d) magnitude of accelera-
tion at time t=2. Ans. (a) Bi+ 3j+ 8k, (b) 2i+ 16k, (c) V2, (d) 2V65

A particle moves along the space curve defined by x = e~tcost, y = e~tsint, z = e—t. Find
the magnitude of the (a) velocity and (b) acceleration at any time ¢.

Ans. (a) V3et, (b) VBe—t

The position vector of a particle is given at any time ¢t by r = acoswti+ b sin wt § + ct2k.
(a) Show that although the speed of the particle increases with time the magnitude of the
acceleration is always constant. (b) Describe the motion of the particle geometrically.

RELATIVE VELOCITY AND ACCELERATION

1.86.

1.87.

1.88.

The position vectors of two particles are given respectively by r; = ti—t2j+ (2t + 8k and
r, = (2t —3t2)i+ 4tj— k. Find (a) the relative velocity and (b) the relative acceleration of the
second particle with respect to the first at ¢=1. Ans. (@) —bi+6j—bk, (b) —6i+2j—6k

An automobile driver traveling northeast at 26 mi/hr notices that the wind appears to be coming
from the northwest. When he drives southeast at 30 mi/hr the wind appears to be coming from
60° south of west. Find the velocity of the wind relative to the ground.

Ans. 52 mi/hr in a direction from 30° south of west

A man in a boat on one side of a river wishes to reach a point directly opposite him on the other
side of the river. Assuming that the width of the river is D and that the speeds of the boat and
current are V and v < V respectively, show that (a) he should start his boat upstream at an angle

of sin—1(v/V) with the shore and (b) the time to cross the river is D/\V2— 2.

TANGENTIAL AND NORMAL ACCELERATION

1.89.

1.90.

Show that the tangential and normal acceleration of a particle moving on a space curve are given
by d2s/dt? and «(ds/df)2 where s is the arc length of the curve measured from some initial point
and « is the curvature.

Find the () unit tangent T, (b) principal normal N, (c) radius of curvature B and (d) curvature
x to the space curve x=t%, y=1%/2, 2=1¢.

Ans. (@) G+ +RNVETE, () (—t+2i— W/NVZETE, (o) (B+2¥2VE, (@) VZ/(2+2)P/2
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191. A particle moves in such a way that its position vector at any time ¢ is r = ti+ 4% + thk.
Find (a) the velocity, (b) the speed, (c) the acceleration, (d) the magnitude of the acceleration,
(e¢) the magnitude of the tangential acceleration, (f) the magnitude of the normal acceleration.

Ans. (a) i+ti+k, (b)) VETZ, ()i, (&) 1, (¢) t/WVE+2, () VZINEF2

1.92. Find the (a) tangential acceleration and (b) normal acceleration of a particle which moves on
the ellipse r = acoswti+ b sinowtj.

w?(a? — b2) sin vt cos wt ® wab
Va2 sin2 ot + b2 cos? wt ) Va? sin2 ot + b2 cos? wt

Ans.

CIRCULAR MOTION

1.93. A particle moves in a circle of radius 20 em. If its tangential speed is 40 cm/sec, find (a) its
angular speed, (b) its angular acceleration, (c¢) its normal acceleration.

Ans. (a) 2 radians/sec, (b) 0 radians/sec?, (c) 80 cm/sec?

1.94. A particle moving on a circle of radius B has a constant angular acceleration «. If the particle
starts from rest, show that after time ¢ (a) its angular velocity is w=at, (b) the arc length
covered is s = JRwt2

1.95. A particle moves on a circle of radius B with constant angular speed w,. At time t=0 it starts
to slow down so that its angular acceleration is —a (or deceleration o). Show that (a) it comes to
rest after a time wy/a and (b) has travelled a distance Rw§/2a.

1.96. If the particle in Problem 1.95 is travelling at 3600 revolutions per minute in a circle of radius
100 cm and develops a constant deceleration of 5 radians/sec?, (a) how long will it be before it
comes to rest and (b) what distance will it have travelled? Ans. (a) 75.4 sec, (b) 1.42 X 108 ecm

GRADIENT, DIVERGENCE AND CURL

197, If A = xzi+ (222 —y)j—y2?k and ¢ = Ba2y+y2%3, find (a) Vg, (b)) VA and (¢) VXA
at the point (1,—1,1). Ans. (a) —6i+j+3k, (b) 2, (¢) —i+j+4k

198. If ¢ = wy+yz+z2r and A = x2%yi+y22j+ 222k, find (a) A< Vg, (b) V<A and (¢) (Vg) XA
at the point (3,1, 2). Ans. (a) 25, (b) 2, (c) 56i— 305+ 47k

1.99. Prove that if U,V,A,B have continuous partial derivatives, then (a) V(U+V) = VU+ VYV,
() V.(A+B) = V-A+ V+B, (¢) VX(A+B) = VXA+VXB.

1.100. Show that V X (r2r) = 0 where r = xi+yj+2k and r=|r|.
1.101. Prove that (a) divcurl A =0 and (b) curl grad ¢ = 0 under suitable conditions on A and ¢.

1102, If A = (2u2—y2)i+ (y2—222)j+ 22285k and ¢ = 2x2y— 3x22+ 2xyz, show directly that
diveurl A = 0 and curlgrad¢ = 0.

1103, If A = 3x2%i—yzj+ (¢ + 22)k, find curl curl A. Ans. —6zi+ (62— 1)k

1.104. (a) Prove that V X(V X A) = —V2A 4+ V(V +A). (b) Verify the result in (a) if A is as given in
Problem 1.103.

1.105. Prove: (a) VX (UA) = (VU)XA+U(V XA). (b)) V:(AXB) = B+(VXA)—A+(V XB).

LINE INTEGRALS AND INDEPENDENCE OF THE PATH

1.106. If F = (3x — 2y)i + (y + 22)j — 22k, evaluate f F+dr from (0,0,0) to (1,1,1), where C is a path
4

consisting of: (a) the curve x =¢, y =12, 2=13; (b) a straight line joining these points; (c) the
straight lines from (0,0,0) to (0,1,0), then to (0,1,1) and then to (1,1,1); (d) the curve x =22,
2=y Ans. (a) 23/15, (b) 5/3, (c) 0, (d) 13/30
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1.107.

1.108.

1.109.

1.110.

1.111.

VECTORS, VELOCITY AND ACCELERATION [CHAP. 1

Evaluate j; A-+dr where A = 3x%i - (2xz—y)j+ 2k along (a) the straight line from (0,0,0)
to (2,1,3), (b) the space curve x =2t2, y=t, 2 = 4t2—1t from t=0 to t=1, (c) the curve defined
by x2=4y, 323 =8z from =0 to x=2. Ans. (a) 16, (b) 14.2, (c) 16

Find £ Fedr where F = (x—38y)i+(y—2x)j] and C is the closed curve in the xy plane,

x=2cost, y=38sint, 2=0 from t=0 to t=27. Ans. 67

(@) If A = (4oy — 34222)i + (4y + 222)j + (1 — 2x32)k, prove that f A-dr is independent of the
c
curve C joining two given points. (b) Evaluate the integral in (a) if C is the curve from the
points (1,—1,1) to (2,—2, —1). Ans. (b) —19
Determine whether f A «dr is independent of the path C joining any two points if (a) A = 2xy2i +
c

x2zj + x2yk, (b) 2xzi+ (x2—y)j+ (22 —22)k. In the case where it is independent of the path,
determine ¢ such that A = V.

Ans. (a) Independent of path, ¢ = x2yz+c¢; (b) dependent on path

Evaluate § E+dr where E =rr. Ans. 0
c

MISCELLANEOUS PROBLEMS

1.112.

1.113.

1.114.

1.115.
1.116.

1.117.

1.118.
1.119.

1.120.

1.121.
1.122.
1.123.
1.124.

1.125.
1.126.

If AXB=28i—-14j+k and A+B = 5i+3j+2k, find A and B.
Ans. A = 2i+j—2k, B = 3i+2j+4k

Let 1y, my, ny and Iy, my, ny be direction cosines of two vectors. Show that the angle ¢ between them
is such that cos¢ = [l + mymy+ nyn,.

Prove that the line joining the midpoints of two sides of a triangle is parallel to the third side
and has half its length.

Prove that (AXB)2+ (A-B)2 = A?2B2,

If A, B and C are non-coplanar vectors [vectors which do not all lie in the same plane] and
2A+yB+2,C = x,A+y,B+2,C, prove that necessarily x,=x;, ¥;=¥; 23 =722

Let ABCD be any quadrilateral ‘and points P, Q, R and S the midpoints of successive sides. Prove
that (a) PQRS is a parallelogram, (b) the perimeter of PQRS is equal to the sum of the lengths
of the diagonals of ABCD.

Prove that an angle inscribed in a semicircle is a right angle.

Find a unit normal to the surface x2y — 2xz+ 2y%* = 10 at the point (2,1, —1).
Ans. = (3i+ 4j — 6k)/y/61

dA _ ,dA
o = A

Prove that A~
If A(u) is a differentiable function of % and |A(x)| =1, prove that dA/du is perpendicular to A.
Prove V:*(gA) = (Vg)*A+¢(V-A).

If AXB = AXC, does B=C necessarily? Explain.

A ship is traveling northeast at 15 miles per hour. A man on this ship observes that another ship
located 5 miles west seems to be traveling south at 5 miles per hour. (¢) What is the actual
velocity of this ship? (b) At what distance will the two ships be closest together?

Prove that (AXB)+(CXD)+ (BXC)+(AXD)+ (CXA)+BXD) = 0.

Solve the equation d2r/dt? = —gk where g is a constant, given that r=0, dr/dt= vk at t=0.
Ans. r = (vt — 4989k
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1.127.

1.128.

1.129.

1.130.

1.131.

1.132.

1.133.

1.134.

1.185.

1.136.

1.137.

1.138.

1.139,

1.140.

1.141.

1.142,

If ¢ = (x2+y2+22)~1/2, show that V2¢ = V+(Vg) = 0 at all points except (0,0,0).

The muzzle velocity of a gun is 60 mi/hr. How long does it take for a bullet to travel through the
gun barrel which is 2.2 ft long, assuming that the bullet is uniformly accelerated? Ans. .05 sec

A 25 foot ladder AB rests against a vertical wall OA as in Fig. 1-29, page 24. If the foot of the
ladder B is pulled away from the wall at 12 ft/sec, find (a) the velocity and (b) the acceleration
of the top of the ladder A at the instant where B is 15 ft from the wall.

Ans. (a) 9 ft/sec downward, (b) 11.25 ft/sec2 downward

Prove that (a) |[A+ B} = |A]+|B|, (b) [A+B+C| = |A|+|B|+|C|. Give a possible geometric
interpretation.

A train starts from rest with uniform acceleration. After 10 seconds it has a speed of 20 mi/hr.
(a) How far has it traveled from its starting point after 15 seconds and (b) what will be its speed
in mi/hr? Ans. (a) 330 ft, (b) 30 mi/hr

Prove that the magnitude of the acceleration of a particle moving on a space curve is

V(dv/dt)2 + v¥/R?

where v is the tangential speed and R is the radius of curvature.

If T is the unit tangent vector to a curve C and A is a vector field, prove that

f Asdr = f A-Tds
[ (4

where s is the arc length parameter.

If A = 2v—y+4)i+ (5y+8x—6)j, evaluate f A+dr around a triangle with vertices at
(0,0,0), (3,0,0), (3,2,0). Ans. 12

An automobile driver starts at point A of a highway and stops at point B after traveling the
distance D in time T. During the course of the trip he travels at a maximum speed V. Assuming
that the acceleration is constant both at the beginning and end of the trip, show that the time
during which he travels at the maximum speed is given by 2D/V — T.

Prove that the medians of a triangle (a) can form a triangle, (b) meet in a point which divides the
length of each median in the ratio two to one.

If a particle has velocity v and acceleration a along a space curve, prove that the radius of
curvature of its path is given numerically by

/v3
|v X al

Prove that the area of a triangle formed by vectors A, B and C is }|AXB+BXC+ CXA ].

(a) Prove that the equation A XX = B can be solved for X if and only if A*B =0 and A+#0.
(b) Show that one solution is X = B X A/A2. (c) Can you find the general solution?

Ans. (¢) X = BXA/A2+ A\A where \ is any scalar.

Find all vectors X such that A X = p.
Ans. X = pA/A2 + VX A where V is an arbitrary vector.

Through any point inside a triangle three lines are constructed parallel respectively to each of
the three sides of the triangle and terminating in the other two sides. Prove that the sum of the
ratios of the lengths of these lines to the corresponding sides is 2.

If T, Nand B = TXN are the unit tangent vector, unit principal normal and unit binormal to
a space curve r = r(«), assumed differentiable, prove that

ar _ B _ _ g N_ g

—d';—xN, i 7N, a8 = B —«T

These are called the Frenet-Serret formulas. In these formulas « is called the curvature, = is the
torsion and their reciprocals R=1/k, 0 =1/r are called the radius of curvature and radius of

torsion.
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1.143. In Fig. 1-31, AB is a piston rod of length I. If A moves along horizontal line CD while B moves
with constant angular speed » around the circle of radius a with center at O, find (a) the velocity
and (b) the acceleration of A.

]

<

b
*\

~N

2] N

Fig.1-31 Fig.1-32

1.144. A boat leaves point P [see Fig. 1-32] on one side of a river bank and travels with constant velocity
V in a direction toward point @ on the other side of the river directly opposite P and distance D
from it. If r is the instantaneous distance from @ to the boat, ¢ is the angle between r and PQ,
and the river travels with speed v, prove that the path of the boat is given by

D sec ¢

r e s
(sec 8 + tan 6)?/V

1.145. If v=V in Problem 1.144, prove that the path is an arc of a parabola.

1.146. (¢) Prove that in cylindrical coordinates (o, ¢,7) [see Fig. 1-33] the position vector is
r = peosgi+ psingj + zk

(b) Express the velocity in cylindrical coordinates.
(¢) Express the acceleration in cylindrical coordinates.

Ans. (b) v = ppy+pdsy + 2k
© a = (5—pp?p1+ (03 + 258)¢; + £k

Cylindrical coordinates Spherical coordinates
Fig.1-33 Fig.1-34

1.147. (a) Prove that in spherical coordinates (r,9,¢) [see Fig. 1-34] the position vector is
r = rsingcos¢i + rsingsingj + rcosok
(b) Express the velocity in spherical coordinates.
(¢) Express the acceleration in spherical coordinates.
Ans. (b)) v = 7r; + rde, + rd sing ¢y
(¢) a = (¥— ré2— rg2sin20)r, + (276 + 76 — r¢? sin 6 cos 6) 8
+ (2ré¢ + 274 sin s + 7¢ sin O)¢

1.148. Show that if a particle moves in the xy plane the results of Problems 1.146 and 1.147 reduce to
those of Problem 1.49.



Chapter 2

NEWTON’S LAWS

The following three laws of motion given by Sir Isaac Newton are considered the
axioms of mechanics:

1. Every particle persists in a state of rest or of uniform motion in a straight line
(i.e. with constant velocity) unless acted upon by a force.

2. If F is the (external) force acting on a particle of mass m which as a consequence is
moving with velocity v, then

_ 4 _ dp
F = qzmvy) = o (2)
where p=mv is called the momentum. If m is independent of time ¢ this becomes
F = m% = ma \ 2)

where a is the acceleration of the particle.

8. If particle 1 acts on particle 2 with a force Fy; in a direction along the line joining
the particles, while particle 2 acts on particle 1 with a force Fai, then Foi=—F2. In
other words, to every action there is an equal and opposite reaction.

DEFINITIONS OF FORCE AND MASS

The concepts of force and mass used in the above axioms are as yet undefined, although
intuitively we have some idea of mass as a measure of the “quantity of matter in an object”
and force as a measure of the “push or pull on an object”. We can however use the above
axioms to develop definitions [see Problem 2.28, page 49].

UNITS OF FORCE AND MASS

Standard units of mass are the gram (gm) in the cgs (centimeter-gram-second) system,
kilogram (kg) in the mks (meter-kilogram-second) system and pound (Ib) in the fps (foot-
pound-second) system. Standard units of force in these systems are the dyne, newton (nt)
and poundal (pdl) respectively. A dymne is that force which will give a 1 gm mass an accelera-
tion of 1 cm/sec®. A mewton is that force which will give a 1 kg mass an acceleration of
1 m/sec:.. A poundal is that force which will give a 11b mass an acceleration of 1 ft/sec?.
For relationships among these units see Appendix A, page 341.

INERTIAL FRAMES OF REFERENCE. ABSOLUTE MOTION

It must be emphasized that Newton’s laws are postulated under the assumption that
all measurements or observations are taken with respect to a coordinate system or frame

33
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of reference which is fixed in space, i.e. is absolutely at rest. This is the so-called assump-
tion that space or motion is absolute. It is quite clear, however, that a particle can be
at rest or in uniform motion in a straight line with respect to one frame of reference and
be traveling in a curve and accelerating with respect to another frame of reference.

We can show that if Newton’s laws hold in one frame of reference they also hold in
any other frame. of reference which is moving at constant velocity relative to it [see
Problem 2.8). All such frames of reference are called inertial frames of reference or
Newtonian frames of reference. To all observers in such inertial systems the force
acting on a particle will be the same, i.e. it will be invariant. This is sometimes called
the classical principle of relativity.

The earth is not exactly an inertial system, but for many practical purposes can be
considered as one so long as motion takes place with speeds which are not too large. For
non-inertial systems we use the methods of Chapter 6. For speeds comparable with the
speed of light (186,000 mi/sec), Newton’s laws of mechanics must be replaced by Einstein’s
laws of relativity or relativistic mechanics.

WORK

If a force F acting on a particle gives it a
displacement dr, then the work done by the
force on the particle is defined as

dW = F-dr 8)

since only the component of F in the direction
of dr is effective in producing the motion.

The total work done by a force field (vector
field) F in moving the particle from point P,
to point P: along the curve C of Fig. 2-1 is
given by the line integral [see Chap. 1, page 9]. Fig. 2-1

Py

Py ) )
w = IF'dr = Fede = f F.dr (4)
C T

where r; and r: are the position vectors of P; and P; respectively.

POWER

The time rate of doing work on a particle is often called the instantaneous power, or
briefly the power, applied to the particle. Using the symbols W and ? for work and
power respectively we have AW

P = G A ®)

If F is the force acting on a particle and v is the velocity of the particle, then we have
P = F-v (6)

KINETIC ENERGY

Suppose that the above particle has constant mass and that at times ¢, and £ it is
located at P, and P; [Fig. 2-1] and moving with velocities v, = dri/dt and vz = drs/dit
respectively. Then we can prove the following [see Problem 2.8].
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- Theorem 2.1. The total work done in moving the particle along C from P: to P: is
given: by

W = f Fedr = m(u2—0?) )
c
If we call the quantity T = {mv? 8)
the kinetic energy of the particle, then Theorem 2.1 is equivalent to the statement

Total Work done from P; to P; along C
= Kinetic energy at P» — Kinetic energy at P,

or, in symbols, W ="T—T: ' (10

where T =3imv:, Te= {movi. \

9)

CONSERVATIVE FORCE FIELDS

Suppose there exists a scalar function V such that F=—vV. Then we can prove the
following [see Problem 2.15].

Theorem 2.2. The total work done in moving the particle along C from P; to P, is
Py
w = Fedr = V(Py) — V(Py) (11)

P,

In such case the work done is independent of the path C joining points P; and P,. If the
work done by a force field in moving a particle from one point to another point is
independent of the path joining the points, then the force field is said to be conservative.

The following theorems are valid.

Theorem 2.3. A force field F is conservative if and only if there exists a continuously
differentiable scalar field V such that F=—vyV or, equivalently, if and only if

VXF = curlF = 0 identically (12)

Theorem 24. A continuously differentiable force field F is conservative if and only
if for any closed non-intersecting curve C (simple closed curve)

§;F'dr =0 (13)

i.e. the total work done in moving a particle around any closed path is zero.

POTENTIAL ENERGY OR POTENTIAL

The scalar V such that F=—vyV is called the potential energy, also called the scalar
potential or briefly the potential, of the particle in the conservative force field F. In such
case equation (11) of Theorem 2.2 can be written

Total Work done from P; to P; along C 14
= DPotential energy at P, — Potential energy at P» (14)
or, in symbols, W=Vi-7V, ' (15)

where Vi=V(P1), V.= V(Py).
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It should be noted that the potentia]l is defined within an arbitrary additive constant.
We can express the potential as

vV = —f F-dr (16)

where we suppose that V =0 when r = 70.

CONSERVATION OF ENERGY
For a conservative force field we haye from equations (10) and (15),

T:—Ty =V:i—=Ve or Ti+Vi=T+V, 17
which can also be written mvi + Ve = Imo+ Vs (18)

The quantity E = T+ V, which is the sum of the kinetic energy and potential energy, is
called the total energy. From (18) we see that the total energy at P, is the same as the
total energy at P;. We can state our results in the following

Theorem 2.5. In a conservative force field the total energy [i.e. the sum of kinetic
energy and potential energy| is a constant. In symbols, T+ V = constant = F.

This theorem is often called the principle of conservation of energy.

IMPULSE |
Suppose that in Fig. 2-1 the particle is located at P; and P; at times ¢; and f. where it
has velocities vi and v: respectively. Th}e time integral of the force F given by
ty

) Fadt (19)
i tl
is called the impulse of the force F. The following theorem can be proved [see Problem 2.18].

Theorem 2.6. The impulse is equal to the change in momentum; or, in symbols,

ty ;
Fdt = mv, — mv, = p, — p, (20)

t1
The theorem is true even when the mass|is variable and the force is non-conservative.

TORQUE AND ANGULAR MOMENTUM

If a particle with position vector r moves in a
force field F [Fig. 2-2], we define

A =rXxF - (21)

as the torque or moment of the force F about O.
The magnitude of A is a measure of the f‘turning
effect” produced on the particle by the fdrce. We
can prove the following [see Problem 2.20]

Theorem 2.7. ;
rxF = %{m(rx‘;)} (29
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The quantit,
a Y 2 = mEXv) =rXp (23)

is called the angular momentum or moment of momentum about O. In words the theorem
states that the torque acting on a particle equals the time rate of change in its angular

momentum, i.e., o

This theorem is true even if the mass m is variable or the force non-conservative.

CONSERVATION OF MOMENTUM
If we let F=0 in Newton’s second law, we find

g—t(mv) =0 or mv = constant (25)

This leads to the following

Theorem 2.8. If the net external force acting on a particle is zero, its momentum
will remain unchanged.

This theorem is often called the principle of conservation of momentum. For the case
of constant mass it is equivalent to Newton’s first law.

CONSERVATION OF ANGULAR MOMENTUM
If we let A =0 in (24), we find

%{m(rXV)} =0 or m(rxXv) = constant (26)
This leads to the following

Theorem 29. If the net external torque acting on a particle is zero, the angular
momentum will remain unchanged.

This theorem is often called the principle of conservation of angular momentum.

NON-CONSERVATIVE FORCES

If there is no scalar function V such that F = —yV [or, equivalently, if Vv XF » 0],
then F is called a non-conservative force field. The results (?), (20) and (24) above hold
for all types of force fields, conservative or not. However, (11) and (17) or (18) hold only
for conservative force fields.

STATICS OR EQUILIBRIUM OF A PARTICLE

An important special case of motion of a particle occurs when the particle is, or appears
to be, at rest or in equilibrium with respect to an inertial coordinate system or frame of
reference. A necessary and sufficient condition for this is, from Newton’s second law, that

F=0 (27)

i.e. the net (external) force acting on the particle be zero.
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If the force field is conservative with potential V, then a necessary and sufficient
condition for a particle to be in equilibrium at a point is that
vV _ 9V _ oV

vV =0, 1.e.%—ay—5;=0

at the point.

STABILITY OF EQUILIBRIUM

If a particle which is displaced slightly from an equilibrium point P tends to return
to P, then we call P a point of stability or stable point and the equilibrium is said to be
stable. Otherwise we say that the point is one of instability and the equilibrium is
unstable. The following theorem is fundamental.

Theorem 2.10. A necessary and sufficient condition that an equilibrium point be one
of stability is that the potential V at the point be a minimum.

Solved Problems

NEWTON’S LAWS

2.1. Due to a force field, a particle of mass 5 units moves along a space curve whose
position vector is given as a function of time ¢ by

r = (28 +18)i+ (3t — 2+ 8)j — 12t%k

Find (a) the velocity, (b) the momentum, (c) the acceleration and (d) the force
field at any time ¢.

(@) Velocity = v = % = (862+ 1)i + (1265 — 2¢)j — 24tk
(b) Momentum = p = mv = bv = (80t2+ 5)i + (603 — 10t)j — 120tk
S 'R SN
(¢) Acceleration = a = qE =~ aE — 12ti + (86¢2 — 2)j — 24k
_ _dp _ dv . .
(d) Force = F = @G- Mg = 60ti -+ (180¢2 — 10)j — 120k

2.2. A particle of mass m moves in the 2y plane so that its position vector is
r = acosoti + bsinetj

where a, b and o are positive constants and ¢ >b. (a) Show that the particle moves
in an ellipse. (b) Show that the force acting on the particle is always directed
toward the origin.
(a) The position vector is

r = 2it+yj = acoswti+ bsinwtj

and so * =acoswt, ¥ = b sinwt which are
the parametric equations of an ellipse having

i
semi-major and semi-minor axes of lengths a a z
and b respectively [see Fig. 2-3]. K—/
Since
(x/a)2 + (y/b)2 = cos?wt + sin2wt = 1
the ellipse is also given by x2/a2+- y2/b2 = 1. Fig. 2-3
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(b) Assuming the particle has constant mass m, the force acting on it is

dv _ d2r

F=mg= "%

= m[—w?a cos ot i — «?b sin wt j]

= —mw?[a coswt i+ b sinwt j}

which shows that the force is always directed toward the origin.

Two observers O and O, fixed relative to
two coordinate systems Oxyz and O’x’y’?’
respectively, observe the motion of a par-
ticle P in space [see Fig. 2-4]. Show that
to both observers the particle appears to
have the same force acting on it if and
only if the coordinate systems are moving
at constant velocity relative to each other.

Let the position vectors of the particle in the
Oxyz and O'x'y’z’ coordinate systems be r and r’

respectively and let the position vector of O’
with respect to O be R=r—r’.

respectively by

m‘—;%[(a cos wt)i + (b sin wt)j]

x

T
T

F = m%%, F =
The difference in observed forces is
F-F = m%(r—r’) =
and this will be zero if and only if
7R _ 0 or -
de2 dt

—me?r

2R

"—

dt?

constant

Fig. 2-4
Relative to observers O and O’ the forces acting on P according to Newton’s laws are given

39

i.e. the coordinate systems are moving at constant velocity relative to each other. Such coordinate

systems are called inertial coordinate systems.

The result is sometimes called the classical principle of relativity.

A particle of mass 2 moves in a force field depending on time t given by

F = 24t% + (36t—16)j — 12tk

Agsuming that at t=0 the particle is located at ro
vo = 6i+15j — 8k, find (a) the velocity and (b) the position at any time t.

() By Newton’s second law,

2dv/dt = 2412 + (36t—16)j — 12tk

or

dv/dt = 12t% + (18t —8)j — 6tk

Integrating with respect to ¢ and calling ¢; the constant of integration, we have

v = 4% + (92 —88)j — 8t%k + ¢,

Since v = v, = 6i+15j—8k at t=0, we have ¢, = 6i+15j—8k and so

v = (43+6)i + (92—-8t+15)j — (3t2+8)k

3i—j+4k and has velocity
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2.5.

2.6.
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(b) Since v = dr/dt, we have by part (a)

% = (483+6)i + (9t2—8t+15)j — (3t2+ 8)k

Integrating with respect to ¢ and calling ¢, the constant of integration,
r = (t4+68)i + (33— 42+ 15¢8)j — (83+8t)k + ¢,

Since r = ry = 8i—j+4k at t=0, we have ¢, = 3i—j+4k and so

r = (t#+6t+3)i + (3t3—4t2+15t—1)j + (4 —t3—8t)k

A constant force F acting on a particle of mass m changes the velocity from v, to v:
in time -.

(a) Prove that F = m(vs— vi)/r.
(b) Does the result in (a) hold if the force is variable? Explain.

’,
() By Newton’s second law, v dv _ F

’m% =F at = m )
Then if F and m are constants we have on integrating,
v = (F/m)t + ¢,
At t=0, v=v, so that ¢; = v, ie.
v = (F/m)t + v, @)
At t=7, v=v, so that vo = (F/m)r + v,
i.e. F = m(vy—vy/r ®

Another method.
Write (1) as mdv =Fdt. Then since v=v, at t=0 and v=v, at t=r, we have

Vo T

mdv = f Fdt or wm(vy—v,) = Fr
Vi 0
which yields the required result.

(b). No, the result does not hold in general if F is not a constant, since in such case we would not
obtain the result of integration achieved in (a).

Find the constant force in the (a) cgs system and (b) mks system needed to
accelerate a mass of 10,000 gm moving along a straight line from a speed of
54 km/hr to 108 km/hr in 5 minutes.

Assume the motion to be in the direction of the positive x axis. Then if v, and v, are the
velocities, we have from the given data v, = 54i km/hr, v, = 108i km/hr, m = 10,000 gm,
t = § min.

(a) In the cgs system

m = 10t gm, v; = b4i km/hr = 1.5 X 10% cm/sec, v, = 3.0 X 10% cm/sec, ¢ = 300 sec

1.5 X 108i cm/sec>

Th F <v2 — V‘> (104 gm) (
= a = m|——— =
en " gm 3 X 102 sec

t
= 0.5 X 10% gm cm/sec? = b5 X 10% dynes

Thus the magnitude of the force is 50,000 dynes in the direction of the positive x axis.

(b) In the mks system
m = 10kg, v, = 54ikm/hr = 15i m/sec, v, = 30im/sec, ¢t = 300 sec
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2.7.

Vg — Vi 15i m/sec
Then F = ma = m (———) = (10kg)| ——
t 300 sec

= 0.5i kg m/sec2 = 0.5i newtons
Thus the magnitude is 0.5 newtons in the positive x direction. This result could also have been
obtained from part (a) on noting that 1 newton = 105 dynes or 1 dyne = 105 newtons.

In this simple problem the unit vector i is sometimes omitted, it being understood that the
force F will have the direction of the positive « axis. However, it is good nractice to work this
and similar problems with the unit vector present so as to emphasize the vector character of force,
velocity, ete. This is especially important in cases where velocities may change their directions.
See, for example, Problem 2.46, page 56.

What constant force is needed to pring a 2000 Ib mass moving at a speed of 60 mi/hr
to rest in 4 seconds?

We shall assume that the motion takes place in a straight line which we choose as the positive
direction of the z axis. Then using the English absolute system of units, we have :

m = 20001b, v, = 60imi/hr = 88i ft/sec, v, = Oift/sec, t = 4sec

Vg — Vq —88i ft/sec
ma = Mm (————' = (2000 lb) <-——————
t 4 sec

—4.4 X 104 ft Ib/sec2 = —4.4 X 104 poundals

Then F

Thus the force has magnitude 4.4 X 10¢ poundals in the negative z direction, ie. in a direction
opposite to the motion. This is of course to be expected.

WORK, POWER, AND KINETIC ENERGY

28.

2.9.

A particle of constant mass m moves in space under the influence of a force field F.
Assuming that at times £, and ¢ the velocity is vi and v: respectively, prove that
the work done is the change in kinetic energy, ie.,

ty

— 2
. F-dr = imvi — imv}
ts dr ta
Work done = f F-a—dt = Fevdt
ty t t
ty ty
= f mjv-vdt = mf vedv
ty ¢ t

ta

'%m'v2

tg
m : d(vev) = jmv? — Jmv?
1

2%

Find the work done in moving an object along a
vector r=3i+2j—5k if the applied force is
F = 2i —j—k. Refer to Fig. 2-5.

Work done = (magnitude of force in direction 0
of motion)(distance moved)

(F cos6)(r) = Fer
(2i —j— k) * (8i + 2j — 5k) r
=6—2+5 =29 Fig. 2-5

<

e ———
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2.10. Referring to Problem 2.2, () find the kinetic energy of the particle at points A
and B, (b) find the work done by the force field in moving the particle from A to B,
(c) illustrate the result of Problem 2.8 in this case and (d) show that the total work
done by the field in moving the particle once around the ellipse is zero.

(@) Velocity = v = dr/dt = — wa sinweti+ wb coswt j.
Kinetic energy = imv2 = im(w?e? sin2 wt + «2b2 cos? wt).
Kinetic energy at A [where coswt =1, sinwt =0] = Amwb?
Kinetic energy at B [where coswt =0, sinwt =1] = Ame?a?
(b) Method 1. From part (b) of Problem 2.2,
B B B
Work done = f Fedr = f (—me?r)cdr = —mwzf redr
A A A
B B
= —,}maﬂj direr) = —}lmo?
A A
=  jme?a? — fmo?? = fme2(a? - b?)

Method 2. We can assume that at A and B, t=0 and t = /20 respectively. Then:

B
Work done = f Fedr
A

T/20
f [—mw3(a cos wt i + b sin wt j)] * [—wa sin wt i + wb cos wt j] dt
0

.

T/20
f mw3(a2 — b2) sin wt cos wt di
0

/2
Ame?(a? — b?) sin? wt - 3me?(a? — b2)
0

(¢) From parts (a) and (b),
Work done = imw*(a2—52) = Ima?a? — Lmw2b?

= kinetic energy at A — Kkinetic energy at B

(d) Using Method 2 of part (b) we have, since t goes from 0 to ¢t = 2r/w for a complete circuit
around the ellipse,

27/w
Work done = f mw3(a2 — b2) sin wt cos wt dt
0
2r/w
= Imuw*a®— b?) sin2 wt =0
0

Method 1 can also be used to show the same result.

2.11. Prove that if F is the force acting on a particle and v is the (instantaneous) velocity
of the particle, then the (instantaneous) power applied to the particle is given by

P = F-v
By definition the work done by a force F in giving a particle a displacement dr is
dW = F+dr
Then the (instantaneous) power is given by
_ AW _ podr _ o
P=Zg = F g =Fv

as required.
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2.12. Find the (instantaneous) power applied to the particle in Problem 2.1 by the force
field.

By Problem 2.1, the velocity and force are given respectively by
v = (6824 1)i + (12¢8 — 2¢)j — 24tk
F = 60ti + (180¢2 — 10)j — 120k
Then the power [by Problem 2.11] is given by
P = Fov = (60£)(6t2+ 1) + (180£2 — 10)(12£3 — 2¢) + (120)(24¢)
= 2160t5 — 12023 + 2960t

2.13. Find the work done by the force in (a) Problem 2.6, (b) Problem 2.7.

(a) In the cgs system: v; = |v,| = 1.5 X 103 em/seec, v, = |vy| = 8.0 X 103 cm/sec, m = 10% gm.
Then by Problem 2.8,

Work done

change in kinetic energy

= ym;—})

— 4 6 — gy cm2
= 4(10% gm)(9.0 X 10 2.25 X 108) Sec?

- pogmem? e cm)
= 8.38%10 soc? 3.38 X 10 sec? (cm)
= 8.38X101®dynecm = 3.38X1010 ergs
In the mks system we have similarly:
m2
Work done = 1(10 kg)(900 — 225) sec?
kgm
= " 3.38 X103 sec? (m) = 8.38 X 103 newton meters

(b) As in part (a),
‘Work done

ft2
2 — 02) ——
3(2000 1b)(882 — 02) e

7.74 X 108(ft) (1-:%.:—:) =  7.74 X 108 ft pdl

CONSERVATIVE FORCE FIELDS, POTENTIAL ENERGY, AND
CONSERVATION OF ENERGY

2:14. Show that the force field F defined by
F = (y%°—6x2%)i + 2xyz%j + (3xy’:®— 6x2%2)k
is a conservative force field.
Method 1. The force field F is conservative if and only if curl F = VXF = 0. Now
i j k
3/éx a/dy d/9z
Y228 — 6222 20y  3xy?? — 6x22

V XF

= il 2,2 — Gx2z) — O 3 ]
= i I:ay (82y222 — 6x22) % (2xy23)
+ 5| 2228 — 622 — L (3wy2e? — 6a2e)
2z ox
+ k|2 @oyed) - i(yzza—sxzz)]
ox oy '

Then the force field is conservative.
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Method 2.

The force field F is conservative if and only if there exists a scalar function or potential
V(x,y,2) such that F = —grad V = —VV  Then

v . v

9 ! dy 0z
= (y223 —6x22)i + 2xy23j + (3wy222 — 6x22)k

F = —-VV =

Hence if F is conservative we must be able to find V such that
0V/dx = 6x22 — y223, oV/dy = —2xyz3, 9V/9z = 6a2z — Suye? 1)
Integrate the first equation with respect to z keeping y and z constant. Then
V= 8x222 — xy2:3 + g,(y,2) (2)
where g,(y, z) is a function of y and z.

Similarly integrating the second equation with respect to y (keeping x and z constant) and the
third equation with respect to z (keeping z and y constant), we have

V = —xy223 + gy(x,2) 3
V = 32222 — xy223 + g4(x,y) 4)
Equations (2), (3) and (4) yield a common V if we choose
91,2) = ¢, gax,2) = a2+, gyla,y) = ¢ ®
where ¢ is any arbitrary constant, and it follows that

V = 3022 — xy228 + ¢
is the required potential.

Method 3. p
T x,9,2)
VvV = —f Fedr = — (y223 — 6x22)dx + 2xyz3dy + (3xy222 — 6x22)dz
T (9, Ygs2p)
(x,9,2)
= - d(xy23 — 3x222) = Bu22 —ay23 + ¢
} (Zg,Yg, %)
where ¢ = woyjzd — 3a222.

2.15. Prove Theorem 2.2, page 35: If the force acting on a particle is given by F=—-vV,
then the total work done in moving the particle along a curve C from P; to P; is

Py ‘
W= Fedr = V(P) — V(P
P
We have '
P, Py Py Py
w o= Fedr = —VVedr = —dV = V| = v(@) — V(P
fpl r fpl f,, 1 . ) s

2.16. Find the work done by the force field F of Problem 2.14 in moving a particle from
the point A(-2,1,3) to B(1,—-2,—-1).

B B
Work done = f Fedr = f —VV-.dr
A A
1,-2,-1 a,-2,-1)
= f —dV = —V(z,y,2)
(—2,1,8) (-2.13
1,-2,-1)
= —32222 4+ xy28 — ¢ = 1556
(—2,1,3)
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2.17. (a) Show that the force field of Problem 2.2 is conservative.
(b) Find the potential energy at points A and B of Fig. 2-3.

(¢) Find the work done by the force in moving the particle from A to B and compare
with Problem 2.10(b).

(d) Find the total energy of the particle and show that it is constant, i.e. demonstrate
the principle of conservation of energy.

(@) From Problem 2(b), F = —mw?r = —me?(xi+ yj). Then
i j k
VXF = a/ox a/dy a/az
—mwx —mwy 0

_ 1[58;(0) _ :—z(_m‘wzy)] + j [Ea;(—m@%) - %(0)]

. + k [%(—moﬂu) - %(-—-m«:zx)]

Hence the field is conservative.

(b) Since the field is conservative there exists a potential V such that

14 v v
. 2.3 . .
F = —mo%i — mo2yj = —-VV ——axl——ay] ~

Then V/ex = me2x, dV/dy = mwy, d8V/ez = 0
from which, omitting the constant, we have
V = jmee? + ime2y? = dmed(2?+y?) = dmedr?

which is the required potential.

k

(c) Potential at point 4 of Fig. 2-3 [wherer=a] = }mala
Potential at point B of Fig. 2-8 [where r =b] = }imw?b2. Then
Work done from A to B = Potential at A — Potential at B
= jmea? — Ime?b? =  me?(a? - b?)

agreeing with Problem 2.10(b). .

(d) By Problems 2.10(¢) and part (b),
Kinetic energy at any point = T

dmv? = jmi2

Am(w?a? sin2 wt + w2b% cos? wi)

Potential energy at any point = V = 3mw?r?
= imw?(a? cos? wt + b2 sin? wt)
Thus at any point we have on adding and using sinZet + cos?2et = 1,

T+V = jme?(a®+ b2)
which is a constant.

IMPULSE, TORQUE, ANGULAR MOMENTUM, AND
CONSERVATION OF MOMENTUM

2.18. Prove Theorem 2.6, page 36: The impulse of a force is equal to the change in
momentum.
By definition of impulse [see (19), page 36] and Newton’s second law, we have

173 tg d ty ty
f Fdt = -d—i(mv) dt = d(mv) mv = mvy, — mvy
t ty ty ty

[
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2.19.

2.20.

2.21.
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A mass of 5000 kg moves on a straight line from a speed of 540 km/hr to 720 km/hr
in 2 minutes. What is the impulse developed in this time?
Method 1.
Assume that the mass travels in the direction of the positive x axis. In the mks system,
. km 540i X 1000 m m
= b0i-— = ————— = 15X10%i—
V1 Thr 3600 sec 10%1 Sec
. km 720i X 1000 m m
= 7207 = ——— = 2.0X102i—
V2 Thr 3600 sec "sec
Then from Problem 2.18,
Impulse = m(vo—v;) = (5000 kg)(0.5 X 102i m/sec)
= 25X10% kg m/sec = 2.5X 105i newton sec
since 1 newton = 1kg m/sec2 or 1 newtonsec = 1kg m/sec.
Thus the impulse has magnitude 2.5 X 105 newton sec in the positive x direction.
Method 2.

Using the cgs system, v, = 540i km/hr = 1.5X 10%icm/sec and v, = 720i km/hr =
2.0 X 10%i cm/sec. Then

Impulse = mvyo—vy) = (5000 X 103 gm)(0.5 X 104i cm/sec)
= 2.50 X 101%f gm em/sec = 2.50 X 1010j dyne sec
since 1dyne = 1 gmem/sec2 or 1 dynesec = 1 gm cm/sec

Note that in finding the impulse we did not have to use the time 2 minutes as given in the
statement of the problem.

Prove Theorem 2.7, page 36: The moment of force or torque about the origin O of
a coordinate system is equal to the time rate of change of angular momentum.

The moment of force or torque about the origin O is
_ - 4a
A = rXF = rX a7 (mv)

The angular momentum or moment of momentum about O is

2 = mEXv) = rX(mv)
dae _ d - dr d
Now we have @G Et—(erv) = th(mv) + rxdt(mv)
= vX(mv)+r><d-%-(mv) = 0+ rXF = A

which gives the required result.

Determine (a) the torque and (b) the angular momentum about the origin for the
particle of Problem 2.4 at any time {.

(@) TorqueA = rXF
= [(t4+6t+ 8)i + (33 — 422 + 15t — 1)j + (4 — t3 — 8t)k] X [242% + (36t — 16)j — 12¢k]

i i k
= |#+6t+8 33 —42+165t—1 4—1t3—8t
2412 36t — 16 —12¢

(82¢3 + 108¢2 — 260t + 64)i — (12t5 4 192¢3 — 168¢2 — 361)j
— (365 — 80tt 4 3603 — 24012 — 12¢ + 48)k
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(b) Angular momentum & = rX(mv) = mrXv)
2[(t4 + 6t + 3)i + (3t3 — 4¢2 + 16¢ — 1)j + (4 — t3 — 8t)k]
X [(4t3 + 6)i + (9t2 — 8t + 16)j — (32 + 8)k]

i j k
= 2|tt+6t+3 3t3—42+15t—1 4— 35— 8¢
4t + 6 92 — 8t + 15 —3t2 —8

(8¢4 + 36t3 — 130¢2 + 64t — 104)i — (28 + 48t4 — 5613 — 18¢2 — 96)j
— (6t8 — 16¢5 4 90t4 — 80t3 — 6¢2 + 48t — 102)k

Note that the torque is the derivative with respect to ¢ of the angular momentum, illustrating
the theorem of Problem 2.20.

2.22. A particle moves in a force field given by F = r2r where r is the position vector of
the particle. Prove that the angular momentum of the particle is conserved.

The torque acting on the particle is
A =1rXF =rX(@%) = r(rXr) = 0

Then by Theorem 2.9, page 37, the angular momentum is constant, i.e. the angular momentum is
conserved.

NON-CONSERVATIVE FORCES .
2.23. Show that the force field given by F = 22yzi — xzyz’k is non-conservative.

We have i j k
VXF = d/ox  8/dy 9/0z = —x22%i + (22y + y22)j — 22k
x2yz 0 —xy22

Then since V X F # 0, the field is non-conservative.

STATICS OF A PARTICLE

2.24. A particle P is acted upon by the forces Fy, F;, Fs,Fs, F5s and Fs shown in Fig. 2-6.
Represent geometrically the force needed to prevent P from moving.

Fig. 2-6 ‘ Fig. 2-7

The resultant R of the forces F,,F,,F3,F,,F5 and Fg can be found by vector addition as
indicated in Fig. 2-7. We have R = F;+F,+F3+F,+Fs+Fg. The force needed to prevent
P from moving is —R which is a vector equal in magnitude to R but opposite in direction and
sometimes called the equilibrant.
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2.25. A particle is acted upon by the forces F, = 5i —10j+ 15k, F. = 10i + 25§ — 20k and
Fs = 15i—20j+ 10k. Find the force needed to keep the particle in equilibrium.

The resultant of the forces is
R = F, +F,+ F; = (bi—10j+ 15k) + (10i + 25j — 20k) + (15i — 20j + 10k)
= 80i — 5j + bk
Then the force needed to keep the particle in equilibrium is —R = —30i + 5j — 5k.

2.26. The coplanar forces as indicated in Fig. 2-8 act on a particle P. Find the resultant
of these forces (@) analytically and (b) graphically. What force is needed to keep
the particle in equilibrium?

] v e
Unit = 201b
&
Y %o
/'3’“ < s0o]"N2
& < s/ 5] 80°
X ‘3’
N 100 s
30° % 45° ]® -
x K
) 4 ,//
S
s R
” 30 45°
Ly x
Fig.2-8 Fig. 2-9

(a) Analytically. From Fig. 2-8 we have,
F, = 160(cos45° i + sin45° §), F, = 100(— cos 30° i + sin 80° j),
F3 = 120(— cos 60° i — sin 60° j)
Then the resultant R is
R=F+F,+F;
(160 cos 45° — 100 cos 30° — 120 cos 60°)i + (160 sin 45° + 100 sin 30° — 120 sin 60°)j
—33.46i1 + 59.21j

i

Writing R = Rcosai+ Rsinaj where a is the angle with the positive ¢ axis measured
counterclockwise, we see that

R cosa = —388.46, R sina = 59.21

Thus the magnitude of R is R = V/(—83.46)2 + (59.21)2 = 68.0 Ib, and the direction a with
the positive x axis is given by tana = 59.21/(—83.46) = —1.770 or a = 119°28’.

(b) Graphically. Choosing a unit of 20 1b as shown in Fig. 2-9, we find that the resultant has
magnitude of about 68 Ib and direction making an angle of about 61° with the negative
x axis [using a protractor] so that the angle with the positive « axis is about 119°.

A force —R, i.e. opposite in direction to R but with equal magnitude, is needed to keep P
in equilibrium.

STABILITY OF EQUILIBRIUM

2.27. A particle moves along the « axis in a force field having potential V = 4«a?, «>0.
(o) Determine the points of equilibrium and (b) investigate the stability.

(a) Equilibrium points occur where VV =0 or in this case
dV/ide = «x = 0 or 2z = 0

Thus there is only one equilibrium point, at x =0.
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(b) Method 1.
Since d2V/dx? =« > 0, it follows that at # =0, V is a minimum. Thus by Theorem 2.10,
page 38, x =0 is a point of stability. This is also seen from Problem 2.36 where it is shown
that the particle oscillates about « =0.

V()

Method 2.

We have F = —VV = —‘%i = —xxi. Then
-when x>0 the particle undergoes a force to
the left, and when z <0 the particle under-
goes a force to the right. Thus #=0 is a
point of stability. -

x
Method 3. z=0isa
minimum

The fact that x = 0 is a minimum point can point

be seen from a graph of V(x) vs x [Fig. 2-10]. Fig. 2-10

MISCELLANEOUS PROBLEMS

2.28.

2.29.

Show how Newton’s laws can be used to develop definitions of force and mass.

Let us first consider some given particle P, assuming for the present that its mass mp is not
defined but is simply some constant scalar quantity associated with P. Axiom 1 states that if P
moves with constant velocity (which may be zero) then the force acting on it is zero. Axiom 2
states that if the velocity is not constant then there is a force acting on P given by mpap where
ap is the acceleration of P. Thus force is defined by axioms 1 and 2 [although axiom 1 is unnecessary
since it can in fact be deduced from axiom 2 by letting F=0]. It should be noted that force is a
vector and thus has all the properties of vectors, in particular the parallelogram law for vector
addition.

To define the mass mp of particle P, let us now allow it to interact with some particular
particle which we shall consider to be a standard particle and which we take to have unit mass.
If ap and ag are the accelerations of particle P and the standard particle respectively, it follows
from axioms 2 and 3 that mpap = —ag. Thus the mass mp can be defined as —ags/ap.

Find the work done in moving a particle once around a circle C in the zy plane, if
the circle has center at the origin and radius 8 and if the force field is given by

F = (r—y+2)i+ (x+y—29j + Br—2y+42)k

In the plane 2=0, F = Qex—y)i+ (x+y)j+ (82—2y)k and dr = dei+dyj so that the

work done is
f Fedr
c

il

f [@x— )i + (@ +1)j + 3z — 2y)k] * [dzi + dy j]
(o}

f @Cx—y)dx + (x+y)dy
c

Choose the parametric equations of the circle as x = 3 cost,
y =8 sint where ¢t varies from 0 to 2z [see Fig. 2-11]. Then the
line integral equals

2w
f [2(3 cos t) — 3 sin ¢][~3 sin t] dt + [3 cost + 3 sin £](3 cos ¢] d¢ t
t=0

2w 9 27
= f 9 —9sintcost)dt = 9t — —sin2t¢ = 18z
0 2 0

In traversing C we have chosen the counterclockwise direction indi-
cated in Fig. 2-11. We call this the positive direction, or say that C r xi + yj

has been traversed in the positive sense. If C were traversed in the 3costi+ 3sintj
clockwise (negative) direction the value of the integral would be —18x. Fig. 2-11
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230. (a) If F=-VV, where V is single-valued and has continuous partial derivatives,
show that the work done in moving a particle from one point P; = (21,Y1,21) in
this field to another point P = (%, ¥s, 22) is independent of the path joining the
two points.

(b) Conversely, if j; F-dr is independent of the path C joining any two points,
show that there exists a function V such that F=—yV.
Py
(¢) Work done = Fedr = —f VV edr
Pa 14
= —j < +¥k>-(dxi+dyj+dzk)
P,
- f AN d + g,
= —f ’dV = V(Pl) - V(Pz) = V(xlsyp zl) - V(x2: y2722)

(b)

Then the integral depends only on points P; and P, and not on the path joining them.
This is true of course only if V(x,y,2) is single-valued at all points P; and P,.

Let F = F,i+ Fyj+ Fgk. By hypothesis, f F-+dr is independent of the path C joining any
c
two points, which we take as (x;,¥4,2;) and (,¥,2) respectively. Then

(z,9,2) (x,y,2)
Viz,y,2) = — Fedr = — (Fydx + Fody + Fgdz)

(x1,91,21) (x1,95521)

is mdependent of the path joining («,,;,2,) and (x,y,z). Thus
Vix,y,2) = —J; [Fi(®,y,2) de + Fy(x,y,2) dy + F3(2,y,2) de]
where C is a path joining (z;,¥%,,2;) and (x,y,2). Let us choose as a particular path the

straight line segments from (xy, ¥y, 2;) to (x,¥y,2;) to (x,¥,2() to (x,¥,%2) and call V(x,y,2) the
work done along this particular path. Then

x Y 2
Vaus = - Fewwd - | Benad - | Feyad
Ty Y1 2
It follows that
v o_
2% = “Failzw2)
2 2
w o _ g - B TR
W Fa(z,v,2) " (x,9,2)dz = —Fy(x,¥,2) . (x,y,2) dz
2
= —Fy(x,9,2,) — Fa(x,v,2)
2
= "Fz(x,y»’h) - F2(xry:z) + FZ(xry’zl) = —F2(xry’z)
Y 2
v o_ _from _ "ok
o F1 (@, Y1, 21) o (%, 9,20 dy . (x,y,2) dz

, Y aF, )
= —F,(2,¥4, —f —(x,y,2) d —f —(x,y,2)dz
1(2, 91, 29) " ay( Y21 dy >

4
— Fy(2,9,2)

(21

v
= _FI(”’ylyzl) - Fl(x’yrzl)
Y1

—Fl (wy 20 zl) - Fl (.’b, Yy, zl) + F(x’ Y z[) - Fl (x: Y, Z) + F(x» Y zi) = _Fl (w) Y, z)
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2.31.

2.32.

2.33.

— . R _ V. 9V, 3V, _ _
Then F = Fii + Foj + Fgk = oz | ay’ : azk = —-VV

Thus a necessary and sufficient condition that a field F be conservative is that curl F = V XF = 0.

(¢) Show that F = (2ay +2%)i + 2% + 322’k is a conservative force field. (b) Find
the potential. (c) Find the work done in moving an object in this field from (1, -2,1)
to (3,1,4).

(a) A necessary and sufficient condition that a force will be conservative is that curl F=V XF =0.
i j k
Now VXF = 3/dx 3oy d9loz | = 0. Thus F is a conservative force field.
2xy + 23 22 8x22

(b) As in Problem 2.14, Methods 2 or 3, we find V = —(x2y + 22%).

(3,1,4)
= —202.

(¢) Work done = —(x2y + x2%)
’ a,-2,1

Py
Prove that if F-dr is independent of the path joining any two points P; and P:

Py
in a given region, then f F-dr = 0 for all closed paths in the region and conversely.

Let PyAP,BP, [see Fig. 2-12] be a closed curve. Then

B
§F-dr = f Fedr = f Fedr + f Fedr P
2

P,AP,BP, P,AP, P,BP;

= f Fedr — f Fedr = 0

PJAP, P,BP,
since the integral from P; to P, along a path through 4 is P
the same as that along a path through B, by hypothesis. ! A
Conversely if f Fedr = 0, then Fig. 2-12
Fedr = f Fedr + f Fedr = f Fedr — f Fedr = 0
PLAP,BP, P,AP, P,BP; P,AP, P,BP,

so that, f Fedr = f F e« dr.

PLAP, P,BP,

(@) Show that a necessary and sufficient condition that Fidx + Fady + Fsdz be an
exact differential is that ¥V XF = 0 where F = Fii+ F.j+ Fik.

(b) Show that (¥22° cosx — 4x%2) dx + 22%y sinx dy + (8y*2* sinx — 2*)dz is an exact
differential of a function ¢ and find ¢.

(a) Suppose F,dx + Fydy + Fydz = d¢p = g—;? dx + -g—%dy + %i:-dz, an exact differential. Then

since x,y and z are independent variables,
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and so F=F1i+F2j+F3k=g%i+‘;—;i+‘;—‘zk=V¢. Thus VXF = VX Vg = 0.

Conversely if VXF = 0, then F=Vg and so Fedr = Vgedr = dg, ie. Fidx+
Fody + Fzdz = d¢, an exact differential.

®) F = (y228 cosx — 42%2) i + 228y sinx j + (8y222sinec — a2k and V XF is computed to be
zero, so that by part (a) the required result follows.

2.34. Referring to Problem 2.4 find (a) the kinetic energy of the particle at t=1 and
t=2, (b) the work done by the field in moving the particle from the point where
t=1 to the point where t=2, (c) the momentum of the particle at t=1 and t=2
and (d) the impulse in moving the particle from ¢=1 to {=2.

(a) From part (a) of Problem 2.4,
v = (4834 6)i + (9¢2— 8t + 15)j — (8t2+ 8)k
"Then the velocities at t=1 and t=2 are
v, = 10i + 16j — 11k, v, = 38i + 35j — 20k
and the kinetic energies at t=1 and t=2 are
T, = jmv? = 3@)[(10)2+ (16)2+ (—11)2] = 477, T, = jmv; = 3069

2

Fedr
t=1

(b) Work done

il

2
f [24£21 + (36¢ — 16)j — 12¢k] - [(463 + 6)i + (9¢2 — 8¢t + 15)j — (3¢2 + 8)k]dt
t=1

L)

f [(24¢2)(4¢3 + 6) + (36t — 16)(9t2 — 8t + 1B) + (12¢)(3t2 + 8)]dt = 2592
t

Note that by part (a) this is the same as the difference or change in kinetic energies
3069 — 477 = 2592, illustrating Theorem 2.1, page 85, that Work done = change in kinetic
energy.

(¢) By part (a) the momentum at any time ¢ is
p = mv = 2v = (83+12)i + (18:2—16¢t+ 30)j — (612 + 16)k

Then the momenta at t =1 and ¢t =2 are
p; = 20i + 32j — 22k, p; = T6i + 70j — 40k

2
(@) Impulse = f Fdt
t=1
2
f (24621 + (36t — 16)j — 12tk]dt = 56 + 38j — 18k
=1

Note that by part (b) this is the same as the difference or change in momentum, ie.
p.— p; = (76i+ 70§ —40k) — (20i + 32j — 22k) = b56i + 38j — 18k, illustrating Theorem 2.6,
page 36, that Impulse = change in momentum.

2.35. A particle of mass m moves along the x axis under the influence of a cpnservatiVe
force field having potential V(x). If the particle is located at positions x: and z» at
respective times ¢; and t;, prove that if E is the total energy,

ts — t; = @lﬁ\/l@%
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2.36.

2.37.

By the conservation of energy,
Kinetic energy + Potential energy = FE
im(dz/dt)? + V(x) = FE
Then (dz/dt)2 = (2/m){E — V(x)} (1)

from which we obtain on considering the positive square root,
dt = Vym/2(dx/VE — V(z))

Hence by integration,
ty

_ _ m (7 __dr
. at = 8 — ¢ = \/—2-_& VE — V(@) (@)

(a) If the particle of Problem 2.35 has potential V = 4«22 and starts from rest at
Z=a, prove that * = acosy/x/mt and (b) describe the motion.

(a) From (1) of Problem 2.35, (dv/dt)? = (2/m)(E — §x?). Since dx/dt =0 where x=a, we
find E = ixa® so that

(dx/dt)2 = (k/m)(a2—22) or dx/Va2—ax2 = =Vk/mdt

Integration yields sin—1(xz/a) = *=Vk/mt+ ¢,. Since x=a at t=0, ¢; =7/2. Then
sin—1(x/a) = =Ve/mt + z/2 or & = asin(@/2xVe/mt) = acosVr/mt

(b) The particle oscillates back and forth along the x axis from # =a to x =—a. The time for
one complete vibration or oscillation from x =a back to # =« again is called the period of the

oscillation and is given by P = 2z Vm/«.

A particle of mass 3 units moves in the xy plane under the influence of a force field
having potential V = 12x(8y —4x). The particle starts at time t=0 from rest at
the point with position vector 10i —10j. (a) Set up the differential equations and
conditions describing the motion. (b) Solve the equations in (a). (c¢) Find the
position at any time. (d) Find the velocity at any time.

(@) Since V = 12x(3y —4x) = 36xy — 48x2, the force field is
V., v, 14

F = -VV = L vl Ek = (—36y+96x)i — 36xj
Then by Newton’s second law, »
dzr . .
p7 (—86y + 96x)i — 36xj
or in component form, using r = xi+ yj,
P2x/dt2 = —12y + 322, d2y/dt2 = —12z 1)

where 2=10, =0, y=-10, y=0 at t=0 ) (2)

using the fact that the particle starts at r = 10i — 10j with velocity v=1¥ =0,

(b) From the second equation of (1), x = —15 @?y/dt?. Substitution into the first equation of (z)
yields
diy/dtt — 32d2y/dt2 — 144y = 0 (C)]

If « is constant then y = et is a solution of (8) provided that
at — 3242 — 144 = 0, ie. (a®2+4)(a2—386) = 0 or a= *2i, a = %6
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Thus solutions are e2it, e—2it, ¢8, ¢=6¢ or cos 2t, sin 2¢, €8¢, e~6t [in terms of real functions]

and the general solution is

¥y = ¢y cos2t + ¢y sin2t + cgebt + ¢ e 6t
Thus from x = —, d%/dt* we find, using (4),
x = }cgeo82t + Jep8in2t — 3ogedt — 3eue Ot

Using the conditions (2) in (4) and (5), we obtain
3061 — 8¢g — 8¢y = 10, gcp — 18¢c5 + 18¢, = 0,
¢;t+ezgt+ey = —10, 2¢y + 6cg—6cy = 0
Solving simultaneously, ¢, =—6, ¢c3=0, ¢g=—2, ¢,=—2 80 that

x = —6 cos2t — 28t — 2¢~8, y = —2 cos2t + 6¢Bt  Ge— 8¢

The position at any time is

r = xi +yj = (—6 cos2t — 2e8t — 2¢~6t)i + (—2 cos 2t + 6¢8t + Ge—8t)j

(d) The velocity at any time is

v=1r=ai+yj = (12 sin2t — 12¢8t + 12¢~8t)i + (4 sin 2t + 36¢8 — 36¢~0%)j
In terms of the hyperbolic functions
sinhat = 4(e**—e~2), coshat = (et + e~ )

we can also write
(—6 cos 2t — 4 cosh 6t)i + (—2 cos 2¢ + 12 cosh 6t)j

(12 sin 2t — 24 sinh 6¢)i + (4 sin 2t + 72 sinh 62)j

-
Il

<
I
e
I

2.38. Prove that in polar coordinates (, 8),

v 14V

vV = '5;1‘1 + ;-5501

Let VV = Gr, + He,

4)

)

@)

where G and H are to be determined. Since dr = dxi+ dyj we have on using x =17 cosg,
y =rsine and Problem 1.47(b), page 25,

dr = (cos9dr — r sin8)(cos 61y — sin 6 8,) + (sin o dr + r cos 6 do)(singr, + cos 0 0,)

or dr = drr, +rdse,
14 14
Now VVedr = dV = 'E;d’r + -a—o-da
Using (1) and (2) this becomes v
) ']
(Gr, + Hoy+(drr, + rdeey) = Gdr + Hrde = Sodr + %da

' _ v _ 1V
so that G_ar’ H_rao

_ v 1V
Then (1) becomes Vo= oyt e

2.39. According to the theory of relativity, the mass m of a particle is given by

mo Mo

V1= TVI-P

where v is the speed, mo the rest mass, ¢ the speed of light and g = v/ec.

@
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Show that the time rate of doing work is given by
moc2 d ( B2) 1/2

Deduce from (a) that the kinetic energy is
= (m—mo)c? = moec?{(1—p%) 12 -1}

If » is much less than ¢, show that 7T = imv? approximately.
By Newton’s second law, r - d ) = d mev )
dt at\\i—p2

Then if W is the work done,

aw d MoV d B d 1
—_— = Fe = —_— = 2R [ ————— = 2
dt v i\ T _ﬂg) Mo ﬁdt( T —pﬂ) LT ( o —132)

as proved by direct differentiation.

Since Work done = change in kinetic energy, we have
Time rate of doing work = time rate of change in kinetic energy
dw dT d 1
or by part (a), — = Sy = mye; <__
dt dt dt \/1___—52
mgye?
Integrating, : T = —/——+ ¢
V1 — g2

To determine ¢; note that, by definition, T=0 when v=0 or g= 0, so that ¢, = —mye2.
Hence we have, as required,

mge?
T = ——— — mye2 = (m—my)c?
V1 -— g2
For 8 <1 we have by the binomial theorem,
1 _ — B2 —1/2 = 1, 183, 1856,
Ny A L T G T oY L
A 102 , 1 .
Then T = my?|1 + §- -05 o | = mpe2 = Emvz approximately

& Supplementary Problems

NEWTON’S LAWS

2.40.

2.41.

2.42.

A particle of mass 2 units moves along the space curve defined by r = (4t2 — t3)i — 5tj + (¢4 — 2)k.
Find (a) the momentum and (b) the force acting on it at t=1.

Ans. (a) 10i —10j+ 8k, (b) 4i-+ 24k

A particle moving in a force field F has its momentum given at any time ¢ by

p = 38eti —2costj— 3sintk

Find F. Ans. —3e~ti+ 2sintj—3costk

Under the influence of a force field a particle of mass m moves along the ellipse

r = acoswti+ bsinotj

If p is the momentum, prove that (a) r X p = mabuk, (8) rep = Jm(b%— a?) sin 2ut.
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2.43.

2.4.

2.45.

2.46.

2.47.

2.48.

2.49.

NEWTON’S LAWS OF MOTION. WORK, ENERGY AND MOMENTUM  [CHAP.2

If F is the force acting on the particle of Problem 2.42, prove that r XF = 0. Explain what this
means physically.

A force of 100 dynes in the direction of the positive «# axis acts on a particle of mass 2 gm for
10 minutes. What velocity does the particle acquire assuming that it starts from rest?

Ans. 8 X 10% cm/sec
Work Problem 2.44 if the force is 20 newtons and the mass is 10 kg. Ans. 1200 m/sec

() Find the constant force needed to accelerate a mass of 40 kg from the velocity 4i—5j+ 3k
m/sec to 8i+ 3j —bk m/sec in 20 seconds. (b) What is the magnitude of the force in (a)?

Ans. (a) 8i+16)— 16k newtons or (8i-+ 16j— 16k) X 105 dynes
(b) 24 newtons or 24X 105 dynes

An elevator moves from the top floor of a tall building to the ground floor without stopping.
(a) Explain why a blindfolded person in the elevator may believe that the elevator is not moving
at all. (b) Can the person tell when the motion begins or stops? Explain.

A particle of unit mass moves in a force field given in terms of time ¢ by

F = (6t—8)i — 603j + (2083 + 36t2)k
Its initial position and velocity are given respectively by r, = 2i —8k and vq = 56i+4j. Find the
(a) position and (b) velocity of the particle at ¢t =2.
Ans. (a) 4i —88j + 77k, (b) i—236j+ 176k
The force acting on a particle of mass m is given in terms of time ¢ by

F = acoswti+ bsinotj

If the particle is initially at rest at the origin, find its (a) position and (b) velocity at any later time.

Ans. (@) 21— coswt) § + #(wt —sinaj, () “Lsinoti+ %(1 — cos ot) j

WORK, POWER AND KINETIC ENERGY

2.50.

2.51.

2.52.

2.53.

2.54.

2.55.

2.56.

2.57.

A particle is moved by a force F = 20i — 30j + 15k along a straight line from point A to point B
with position vectors 2i+7j— 8k and b5i—8j— 6k respectively. Find the work done.

Ans. 315

Find the kinetic energy of a particle of mass 20 moving with velocity 3i— bj + 4k. Ans. 500
Due to a force field F, a particle of mass 4 moves along the space curve r = (82— 2¢)i + #3j — t*k.
Find the work done by the field in moving the particle from the point where t=1 to the point
where t=2. Ans. 2454

At one particular instant of time a particle of mass 10 is traveling along a space curve with velocity
given by 4i+ 16k. At a later instant of time its velocity is 8i —20j. Find the work done on the
particle between the two instants of time. Ans. 192

Verify Theorem 2.1, page 85 for the particle of Problem 2.52.

A particle of mass m moves under the influence of the force field given by F = a(sinwt i + cos wt ).
If the particle is initially at rest at the origin, prove that the work done on the particle up to time ¢
is given by (a2/mw?)(1 — cos wt).

Prove that the instantaneous power applied to the particle in Problem 2.55 is (a2/mw) sin ot.

A particle moves with velocity 5i— 3j+ 6k under the influence of a constant force F = 20i+
10j 4+ 15k. What is the instantaneous power applied to the particle? Ans. 160
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CONSERVATIVE FORCE FIELDS, POTENTIAL ENERGY AND
CONSERVATION OF ENERGY

2.58.

2.59.

2.60.

2.61.

2.62.

2.63.

2.64.

2.65.

2.66.

(a) Prove that the force field F = (y2 — 2xy23)i + (3 + 2xy — x223)j + (623 — 3x2y22)k is conservative.
(b) Find the potential V associated with the force field in (a).

Ans. (b) xy? — x2y2z® + 3y +§ 24

A particle moves in the force field of Problem 2.58 from the point (2, -1,2) to (—1,8,—2). Find the
work done. Ans. 55

(a) Find constants a,b,c so that the force field defined by

F = (x+2y+a2)i + (bx — 3y —2)j + (4= + cy + 22)k
is conservative.

(b) What is the potential associated with the force field in (a)?
Ans. (a) a=4, b=2, ¢c=-—1 () V = —1a? +3y2 — 22 — 20y — daz + y2

Find the work done in moving a particle from the point (1,—1,2) to (2,8,—1) in a force field with
potential V = 23 — 3+ 22y — 92 + 4x. Ans. 15

Determine whether the force field F = (x2y — 28)i + (8xyz + x22)j + (222yz + yz4)k is conservative.
Ans. Not conservative

Find the work done in moving a particle in the force field F = 3822 + (2xz—y)j + zk along
(a) the straight line from (0,0, 0) to (2,1, 8), (b) the space curve x = 22,y =,z = 42— ¢ from ¢t = 0
to t=1. Is the work independent of the path? Explain. Ans. (a) 16, (b) 14.2

(a) Evaluate § Fedr where F = (x—3y)i + (y —22)j and C is the closed curve in the xy plane
c

x=2cost,y=3sint from t=0 to t =27. (b) Give a physical interpretation to the result in (a).
Ans. (a) 67 if C is traversed in the positive (counterclockwise) direction.

(a) Show that the force field F = —«»r3r is conservative.
(b) Write the potential energy of a particle moving in the force field of (a).

(¢) If a particle at mass m moves with velocity v = dr/dt in this field, show that if F is the constant
total energy then }m(dr/dt)2+ xr5 = E. What important physical principle does this illustrate?

A particle of mass 4 moves in the force field defined by F = —200r/r3. (a) Show that the field is
conservative and find the potential energy. (b) If a particle starts at » =1 with speed 20, what will

be its speed at r =27 Ans. (o) V = 200/r, (b) 152

IMPULSE, TORQUE AND ANGULAR MOMENTUM.
CONSERVATION OF MOMENTUM

2.67.

2.68.

2.69.

2.70

2.71.

A particle of unit mass moves in a force field given by F = (3t2 —4¢t)i + (12t — 6)j + (6t — 12£2)k
where ¢ is the time. (a) Find the change in momentum of the particle from time t=1 to t=2.
(b) If the velocity at t =1 is 4i — 5j + 10k, what is the velocity at ¢ =27

Ans. (a) i+ 12j — 19k, (b) 5i + 7j — 9k

A particle of mass m moves along a space curve defined by r = acos oti+ bsinwtj. Find
(a) the torque and (b) the angular momentum about the origin. Ans. (a) 0, (b) 2mabek

A particle moves in a force field given by F = ¢(r)r. Prove that the angular momentum of the
particle about the origin is constant.

Find (a) the torque and (b) the angular momentum about the origin at the time =2 for the
particle of Problem 2.67, assuming that at ¢ =0 it is located at the origin.

Ans. (a) — (361 + 128§ + 60k), (b) — 44i + 52 + 16k

Find the impulse developed by a force given by F = 4ti + (62— 2)j + 12k from t=0 to t=2.
Ans. 8i + 12j + 24tk
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2.72.  What is the magnitude of the impulse developed by a mass of 200 gm which changes its velocity from
5i — 3j+ Tk m/sec to 2i-+ 3j+k m/sec? Ans. 1.8 X105 dyne sec or 1.8 newton sec

STATICS OF A PARTICLE

273. A particle is acted upon by the forces F; = 2i+ aj— 3k, Fy=5i+cj+ bk, F;=0bi—5j+1k,
F, = ¢i—6j+ ak. Find the values of the constants a, b, ¢ in order that the particle will be in
equilibrium. Ans, a=T7,b=11,¢c=4

2.74. Find (a) graphically and (b) analytically the result-
ant force acting on the mass m of Fig. 2-13 where
all forces are in a plane.

Ans. (b) 19.5 dynes in a direction making an angle
85022’ with the negative x axis

2.75. The potential of a particle moving in the xy plane is
given by V = 242 —bxy + 3y2+6x— Ty. (a) Prove
that there will be one and only one point at which a
particle will remain in equilibrium and (b) find the
coordinates of this point. Ans. (b) (1, 2)

2.76. Prove that a particle which moves in a force field
of potential
V = 22+ 4y + 22 — 4wy — 4yz + 202 — 4o + 8y — 4z
can remain in equilibrium at infinitely many points
and locate these points.
Amns. All points on the plane x —2y +2=2

Fig. 2-13

STABILITY OF EQUILIBRIUM
277. A particle moves on the % axis in a force field having potential V = 22(6 — ).
(¢) Find the points at equilibrium and (b) investigate their stability.
Ans. #=0 is a point of stable equilibrium; x =4 is a point of unstable equilibrium

2.78. Work Problem 2.77 if (a) V = x* — 848 — 622 + 24, (b) V = ot
Ans. (@) * = 1,2 are points of stable equilibrium; « = —1 is a point of unstable equilibrium.
(b) x = 0 is a point of stable equilibrium

2.79. Work Problem 2.77 if V = sin 27z.
Ans. If n = 0,%1,+2,+3,... then x = §+mn are points of stable equilibrium, while 2 = }+n
are points of unstable equilibrium.

2.80. A particle moves in a force field with potential V = x2+ Y2+ 22— 8x + 16y — 4z. Find the points
of stable equilibrium. Ans. (4,—8,2)

MISCELLANEOUS PROBLEMS
281. (a) Prove that F = (y2cosx + 2%)i + (2y sinx — 4)j + (3x22 + 2)k

is a conservative force field. (b) Find the potential corresponding ®

to F. (¢) Find the work done in moving a particle in this field from o

0,1,-1) to (#/2,—1,2). o’

Ans. (@) V = y2smx+xz3—-4y+22+c, (b) 15 + 47 P —
2.82. A particle P is acted upon by 3 coplanar forces as indicated in 1001b

Fig. 2-14. Find the force needed to prevent P from moving.
Ans. 323 1b in a direction opposite to 150 Ib force

2.83. (a) Prove that F = »5r is conservative and (b) find the correspond- Fig. 2-14
ing potential. Ans. (b) V= —}rt+ec
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2.84.

2.85.

2.86.

2.87.

2.88.

2.89.

2.90.

2.91.

2.92.

2.93.

2.94,

2.95.

2.96.

2.97.

2.98.

Explain the following paradox: According to Newton’s third law a trailer pulls back on an auto-
mobile to which it is attached with as much force as the auto pulls forward on the trailer. Therefore
the auto cannot move.

Find the potential of a particle placed in a force field given by F = —xr—nr where « and n are
constants. Treat all cases.

A waterfall 500 ft high has 440,000 ft3 of water flowing over it per second. Assuming that the
density of water is 62.5 Ib/ft3 and that 1 horsepower is 550 ft lb/sec, find the horsepower of the
waterfall. Ans. 25 X108 hp

The power applied to a particle by a force field is given as a function of time ¢t by P(t) = 32— 4t + 2.
Find the work done in moving the particle from the point where ¢ =2 to the point where ¢t = 4.

Ans. 36
Can the torque on a particle be zero without the force being zero? Explain.
Can the force on a particle be zero without the angular momentum being zero? Explain.

Under the influence of a force field F a particle of mass 2 moves along the space curve
r = 6t'i — 3t2j + (4¢3 —5)k. Find (a) the work done in moving the particle from the point where
t =0 to the point where t =1, (b) the power applied to the particle at any time.

Ans. (a) 756 (b) T2t(48t4 + 8t + 1)

A force field moves a particle of mass m along the space curve r = acos wti-+ bsinwtj. (@) What
power is required? (b) Discuss physically the case a = b. Ans. (a) m(a2 — b2)w3 sin ot cos ot

The angular momentum of a particle is given as a function of time ¢ by
Q = 626 — (2t+1)j + (1283 — 82)k
Find the torque at the time ¢t =1. Ans. 12i —2j + 20k

Find the constant force needed to give an object of mass 36,000 Ib a speed of 10 mi/hr in 5 minutes
starting from rest. Ans. 1760 poundals

A constant force of 100 newtons is applied for 2 minutes to a 20 kg mass which is initially at rest.
(a) What is the speed achieved? (b) What is the distance traveled?

Ans. (a) 600 m/sec, (b) 36,000 m

A particle of mass m moves on the x axis under the influence of a force of attraction toward origin O

given by F = —(x/«2)i. If the particle starts from rest at = a, prove that it will arrive at O in a
time given by lrayma/2«.

Work Problem 2.95 if F = —(x/23)i.

A particle of mass 2 units moves in the force field F = ¢%i — 3¢j + (t+ 2)k where ¢ is the time.
(a) How far does the particle move from t=0 to ¢=38 if it is initially at rest at the origin?
(b) Find the kinetic energy at times ¢=1 and ¢=3. (¢) What is the work done on the particle by
the field from t =1 to ¢ =8? (d) What is the power applied to the particle at t =1? (e) What is the
impulse supplied to the particle at t=17

At t=0 a particle of unit mass is at rest at the origin. If it is acted upon by a force F =100te—2,
find (a) the change in momentum of the particle in going from time t=1 to t =2, (b) the velocity
after a long time has elapsed. Ans. (a) 25¢—2(8 — 5e—2)i, (b) 25
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2.99.

2.100.

2.101,

2.102.

2.103.

2.104.

2.105.

2.106.

2.107.

2.108.

2.109.

2.110.

NEWTON’S LAWS OF MOTION. WORK, ENERGY AND MOMENTUM [CHAP. 2

A particle of mass 3 units moves in the xy plane under the influence of a force field having potential
V = 623 4 12y3 + 862y — 4822, Investigate the motion of the particle if it is displaced slightly
from its equilibrium position.

[Hint. Near =0,y =0 the potential is very nearly 36xy — 4822 since 6x2 and 12y3 are negligible.)

A particle of unit mass moves on the x axis under the influence of a force field having potential
V = 6z(x—2). (¢) Show that ¥ =1 is a position of stable equilibrium. (b) Prove that if the mass
is displaced slightly from its position of equilibrium it will oscillate about it with period equal to

41r\/§.

[Hint. Let « = 1+ u and neglect terms in u of degree higher than one.]

A particle of mass m moves in a force field F = —«zi. (¢) How much work is done in moving the
particle from 2 =, to & =x,? (b) If a unit particle starts at « = »,, with speed v;, what is its speed

on reaching 2 =x,? Ans. (a) de(@? —=2), (b) Vi + (/m)(=? — @)

A particle of mass 2 moves in the zy plane under the influence of a force field having potential
V =22+ y2. The particle starts at time ¢ =0 from rest at the point (2,1). (a) Set up the differential
equations and conditions describing the motion. (b) Find the position at any time t. (¢) Find the
velocity at any time ¢. )

Work Problem 2.102 if V = 8xy.

Does Theorem 2.7, page 36, hold relative to a non-inertial frame of reference or coordinate system?
Prove your answer.

(@) Prove that if a particle moves in the #y plane under the influence of a force field having potential
V = 12x(3y —4x), then =0, y=0 is a point of stable equilibrium. (b) Discuss the relationship
of the result in (a) to Problem 2.37, page 53.

(a) Prove that a sufficient condition for the point (@, b) to be a minimum point of the function
V(x,y) is that at (a, b)
)4 14 92V \/ a2V 92V \2 2V
) — = — = ii = (e )= —— — >
@) 9% 3y 0, (i) a < 72 >< 8y2> ( F ay> > 0 and Fye 0

(b) Use (a) to investigate the points of stability of a particle moving in a force field having potential
V = 28493 —8x—12y. Ans. (b) The point (1,2) is a point of stability

Suppose that a particle of unit mass moves in the force field of Problem 2.106. Find its speed
at any time.

A particle moves once around the cirele ¥ = a(cosg i+ sing j) in a force field
F = (zi—yj)/(#®+y?)

(a) Find the work done. (b) Is the force field conservative? (¢) Do your answers to (a) and (b)
contradict Theorem 2.4, page 357 Explain.

It is sometimes stated that classical or Newtonian mechanics makes the assumption that space and
time are both absolute. Discuss what is meant by this statement.

ty
Fdt
The quantity F,, = tt‘ is called the average force acting on a particle from time t; to t5.
2~ U
Does the result () of Problem 2.5, page 40, hold if F is replaced by Fy,? Explain.
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2.111. A particle of mass 2 gm moves in the force field F = 8xyi + (422 — 82)j — 8yk dynes. If it has
a speed of 4 cm/sec at the point (—1,2, —1), what is its speed at (1,—1,1)? Ans. 6 cm/sec

2,112, (e) Find positions of stable equilibrium of a particle moving in a force field of potential
V = 18r2¢—2r,
(b) If the particle is released at » =1, find the speed when it reaches the equilibrium position.
(¢) Find the period for small oscillations about the equilibrium position.

2.113. According to Einstein’s special theory of relativity the mass m of a particle moving with speed
v relative to an observer is given by m = my/V1—v2/c2 where ¢ is the speed of light [186,000
mi/sec] and m, is the rest mass. What is the percent increase in rest mass of (a) an airplane moving
at 700 mi/hr, (b) a planet moving at 25,000 mi/hr, (¢) an electron moving at half the speed of light?
What conclusions do you draw from these results?

2.114. Prove that in cylindrical coordinates,
_ 19V 14
Vv = apep+;£e¢+ e,

where e, e;, €, are unit vectors in the direction of increasing p, ¢ and z respectively.

2.115. Prove that in spherical coordinates,

4 14V 4
o= ety aoe°+'rsinoa¢e¢

where e, e,, €, are unit vectors in the direction of increasing 7, 6, ¢ respectively.



Chapter 3

UNIFORM FORCE FIELDS

A force field which has constant magni-
tude and direction is called a uniform or con-
stant force field. If the direction of this field
is taken as the negative z direction as indi-
cated in Fig. 3-1 and the magnitude is the
constant Fy > 0, then the force field is given by

F = —Fok (2) Fig. 3-1

UNIFORMLY ACCELERATED MOTION

If a particle of constant mass m moves in a uniform force field, then its acceleration
is uniform or constant. The motion is then described as uniformly accelerated motion.
Using F = ma in (1), the acceleration of a particle of mass m moving in the uniform force
field (Z) is given by F

0
a = — ' (2)

WEIGHT AND ACCELERATION DUE TO GRAVITY

It is found experimentally that near the earth’s
surface objects fall with a vertical acceleration
which is constant provided that air resistance is
negligible. This acceleration is denoted by g and
is called the acceleration due to gravity or the
gravitational acceleration. The approximate mag-
nitude of g is 980 cm/sec?, 9.80 m/sec? or 32 ft/sec?
according as the cgs, mks or fps system of units
is used. This value varies at different parts of the
earth’s surface, increasing slightly as one goes
from the equator to the poles.

Assuming the surface of the earth is repre-

sented by the 2y plane of Fig. 3-2, the force acting
on a particle of mass m is given by

W = —mgk (€)) i
This force, which is called the weight of the par-
ticle, has magnitude W = mg. Fig. 3-2

62
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GRAVITATIONAL SYSTEM OF UNITS

Because W = myg, it follows that m = W/g. This fact has led many scientists and engi-
neers, who deal to a large extent with mechanics on the earth’s surface, to rewrite the
equations of motion with the fundamental mass quantity m replaced by the weight quantity
W. Thus, for example, Newton’s second law is rewritten as

F = %a 4)

In this equation W and g can both vary while m = W/g is constant. One system of
units used in (4) is the gravitational or English engineering system where the unit of F or
W is the pound weight (b wt) while length is in feet and time is in seconds. In this case
the unit of m is the slug and the system is often called the foot-slug-second (fss) system.
Other systems are also possible. For example, we can take F or W in kilograms weight
(kg wt) with length in meters and time in seconds.

ASSUMPTION OF A FLAT EARTH

Equation (8) indicates that the force acting on mass m has constant magnitude mg and
is at each point directed perpendicular to the earth’s surface represented by the xy plane.
In reality this assumption, called the assumption of the flat earth, is not correct first because
the earth is not flat and second because the force acting on mass m actually varies with the
distance from the center of the earth, as shown in Chapter 5.

In practice the assumption of a flat earth is quite accurate for describing motions of
objects at or near the earth’s surface and will be used throughout this chapter. However,
for describing the motion of objects far from the earth’s surface the methods of Chapter 5
must be employed.

FREELY FALLING BODIES

If an object moves so that the only force acting upon it is its weight, or force due to
gravity, then the object is often called a freely falling body. 1If r is the position vector and
m is the mass of the body, then using Newton’s second law the differential equation of
motion is seen from equation (3) to be

d? d’r
mzt—lz' = —mgk or B = —gk (5)

Since this equation does not involve the mass m, the motion of a freely falling body is
independent of its mass.

PROJECTILES

An object fired from a gun or dropped from a moving airplane is often called a projectile.
If air resistance is negligible, a projectile can be considered as a freely falling body so that
its motion can be found from equation (5) together with appropriate initial conditions. If air
resistance is negligible the path of a projectile is an arc of a parabola (or a straight line
which can be considered a degenerate parabola). See Problem 3.6.
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POTENTIAL AND POTENTIAL ENERGY
IN A UNIFORM FORCE FIELD

The potential of the uniform force field, or potential energy of a particle in this force
field, is given by
V = Fo(z—20) (6)

where 7 is an arbitrary constant such that when z=2,, V=0. We call 2=2, the reference
level.

In particular for a constant gravitational field, F'o=mg and the potential energy of the
particle is
V = mg(z— 2o) )
This leads to

Theorem 3.1. The potential energy of a particle in a constant gravitational field is
found by multiplying the magnitude of its weight by the height above some prescribed
reference level. Note that the potential energy is the work done by the weight in moving
through the distance z — zo.

MOTION IN A RESISTING MEDIUM

In practice an object is acted upon not only by its weight but by other forces as well.
An important class of forces are those which tend to oppose the motion of an object. Such
forces, which generally arise because of motion in some medium such as air or water, are
often called resisting, damping or dissipative forces and the corresponding medium is said’
to be a resisting, damping or dissipative medium.

It is found experimentally that for low speeds the resisting force is in magnitude propor-
tional to the speed. In other cases it may be proportional to the square [or some other power]
of the speed. If the resisting force is R, then the motion of a particle of mass m in an
otherwise uniform (gravitational) force field is given by

dr

If R =0 this reduces to (5).

ISOLATING THE SYSTEM

In dealing with the dynamics or statics of a particle [or a system of particles, as we shall
see later] it is extremely important to take into account all those forces which act on the
particle [or on the system of particles]. This process is often called isolating the system.

CONSTRAINED MOTION

In some cases a particle P must move along some specified curve or surface as, for
example, the inclined plane of Fig. 3-3 or the inner surface of a hemispherical bowl of
Fig. 3-4 below. Such a curve or surface on which the particle must move is called a
constraint and the resulting motion is called constrained motion.

Just as the particle exerts a force on the constraint, there will by Newton’s third law
be a reaction force of the constraint on the particle. This reaction force is often described
by giving its components N and f, normal to and parallel to the direction of motion
respectively. In most cases which arise in practice, f is the force due to friction and is
taken in a direction opposing the motion.
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Fig.3-3

Fig. 3-4

Problems involving constrained motion can be solved by using Newton’s second law
to arrive at differential equations for the motion and then solving these equations subject to

initial conditions.

FRICTION

In the constrained motion of particles, one of the
most important forces resisting motion is that due to
friction. Referring to Fig.3-5, let N be the magnitude
of the normal component of the reaction of the con-
straint on the particle m. Then it is found experi-
mentally that the magnitude of the force f due to
friction is given by

f=uN 9]

Fig. 3-5

where . is called the coefficient of friction. The direction of f is always opposite to the
direction of motion. The coefficient of friction, which depends on the material of both
the particle and constraint, is taken as a constant in practice.

'STATICS IN A UNIFORM GRAVITATIONAL FIELD
As indicated in Chapter 2, a particle is in equilibrium under the influence of a system of

forces if and only if the net force acting on it is F = 0.

Solved Problems

UNIFORM FORCE FIELDS AND UNIFORMLY ACCELERATED MOTION

31 A partiéle of mass m moves along a
straight line under the influence of a con-
stant force of magnitude F. If its initial

speed is ve, find (a) the speed, (b) the
velocity and (¢) the distance traveled
after time ¢.

Fi
_a™
0| i P x
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3.2,

(@)

(b)

(e)

MOTION IN A UNIFORM FIELD. FALLING BODIES AND PROJECTILES [CHAP.3

Assume that the straight line along which the particle P moves is the x axis, as shown in
Fig. 8-6 above. Suppose that at time ¢ the particle is at a distance # from origin 0. If i is a
unit vector in the direction OP and v is the speed at time t, then the velocity is vi. By Newton's
second law we have

d — dv _
dt(mm) = Fi or moar = F (2)
Thus dw =Eat or f dv = f AP
m m
. - F
ie. vo= ot + ¢ @

where ¢, is a constant of integration. To find ¢; we note the initial condition that v =wv, at
t =0 so that from (2), ¢; = v, and

v=£t+vo or 'v='v0+-1?-
m m

t 6))
From (3) the velocity at time ¢ is
vi = voi+§:—ti or Vv = vg+ Et

m
where v = vi, vy = v;i and F = Fi,

Since v = dx/dt we have from (8),

dat
Then on integrating, assuming ¢, to be the constant of integration, we have

®x = vot+<2£'"—‘>t2+cz

Since * =0 at t =0, we find ¢, =0. Thus

z = wot + <§F7n->t2 4)

de 'vo+%t or dx = <vo+%t>dt

Referring to Problem 3.1, show that the speed of the particle at any position z is
given by v = Vv + (2F/m)x.

Method 1.

From (3) of Problem 3.1, we have t = m(v—wv)/F. Substituting into (4) and simplifying,

we find z = (m/2F’)(v2—v(2,). Solving for v we obtain the required result.

Method 2.
From (1) of Problem 3.1, we have

d _ F o Wds _F
dt m’ T dx dt m

or since v = dx/dt,

vd—v = E, ie. vdv = E—dw
dx m m
. v2 F
Integrating, T = ;n—x + ¢3

Since v = v, when z =0, we find ¢3 = v§/2 and hence v = \/vg + (2F /m)w.

Method 3.

Change in kinetic energy from t = 0 to any time ¢
= Work done in moving particle from # = 0 to any position «

or jmov?—imel = Flz— 0). Then v = v 2+ (2F/m)zx.
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LINEAR MOTION OF FREELY
FALLING BODIES

3.3. An object of mass m is thrown vertically up-
ward from the earth’s surface with speed vo.
Find (@) the position at any time, (b) the time
taken to reach the highest point and (c) the
maximum height reached.

(a) Let the position vector of m at any time ¢ be
r =zi+yj+2k. Assume that the object starts
at r =0 when ¢ =0. Since the force acting on
the object is —mgk, we have by Newton’s law,

m-:l;t% = m%‘-’t- = —mgk or %% = —gk (1)
where v is the velocity at time t. Integrating (1) once yields

v = —gtk + ¢ @)
Since the velocity at ¢ = 0 [i.e. the initial velocity] is vk, we have from (2), ¢; = vok so that
v = —gtk + vk = (vo—gt)k €))
or % = (vo— gtk 4)
Integrating (4) yields r = (vt — 39tk + ¢ (5)

Then since r=0 when t=0, ¢;=0. Thus the position vector is
r = (vot— gtk (6)
or, equivalently, =0, y=0, z = vt — §gt *

(b) The highest point is reached when v = (vo—gt)k = 0, i.e. at time ¢ = vy/g.
(c) At time t=wy/g the maximum height reached is, from (?), z=’v§/2g.

Another method.

If we assume, as is physically evident, that the object must always be on the z axis, we may
avoid vectors by writing Newton’s law equivalently as [see equation (I) above and place r = 2Kk]

d2z/dt2 = —g
from which, using 2 =0, dz/dt=v, at t=0, we find
z = vot — gt
as above. The answers to (b) and (c¢) are then obtained as before.

3.4. Find the speed of the particle of Problem 3.3 in terms of its distance from origin O.
Method 1. From Problem 3.3, equations (3) and (?), we have
v = vy—gt, 2z = vt — 3gt?

Solving for ¢t in the first equation and substituting into the second equation, we find

_ vg— v vo—v\2 _ vi—? _
z = 'v0< 7 )—%y( 7 > = % or v2—'ug—2yz
Method 2. From equation (1) of Problem 8.3 we have, since v =vk and v = dz/dt,
d _ _ o, Mvds_ o dv
at - % e Gat - ¢ daz = 7

Then on integrating, v2/2 = —gz+c¢s. Since v=v;, at 2=0, cs=v(2,/2 and thus 2 = v%—zaz.

Method 3. See Problem 3.9 for a method using the principle of conservation of energy.
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MOTION OF PROJECTILES

3.5.

3.6.

A projectile is launched with initial speed
v at an angle a with the horizontal. Find
(a) the position vector at any time, (b) the
time to reach the highest point, (c¢) the
maximum height reached, (d) the time of
flight back to earth and (e) the range.

(a)

(b

(e)

(@)

(e)

Let r be the position vector of the projec-
tile and v the velocity at any time ¢. Then
by Newton’s law

d2r

m W = —mgk (1) Fig. 3-8
. dir _ dv _
ie., e = gk or 7 —gk (2)
Integrati ield
gration yields v = —gtk + ¢ @

Assume the initial velocity of the projectile is in the yz plane so that the initial velocity is
vg = wpeosaj + vgsinak 4)

Since v=v, at t=0, we find from (3),

v = wgcosaj + (vosina — gk (5)

Replacing v by dr/dt in (5) and integrating, we obtain
r = (vgcosa)ti + {(vgsina)t — 39t3)k (6)
or, equivalently, £=0, y=(vycosa)t, z = (vysina)t — 1gt? ?)

It follows that the projectile remains in the yz plane.

At the highest point of the path the component of velocity v in the k direction is zero. Thus

v sin a
vgsina—gt = 0 and t = —/— (8)
is the required time. g
Using the value of ¢ obtained in (b), we find from (?) that
. v, sin a vosine\2  v)sinZa
Maximum height reached = (v sina) P - 19 7 = ——20—— )

The time of flight back to earth is the time when 2z = 0, ie. when
(vg sin )t — 3gt2 = t[(vo sina) —4gt] = 0

or since t+# 0, 9. sin
0 a

g

(10

Note that this is twice the time in (b).

The range is the value of y at the time given by (10), ie.,
2v, sin e 22 sin a cos @ 'vf, sin 2«
Range = (vgcos a)<————g = — = —_g

Show that the path of the projectile in Problem 3.5 is a parabola.

From the second equation of (?) in Problem 3.5, we have t = y/(vycosa). Substituting this

into the third equation of (?) in Problem 3.5, we find

z = (v, sin a)(y/vy cosa) — $0(y/v, cos )2 or z = ytana— (9/202)y? sec?e

which is a parabola in the yz plane.
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3.7. Prove that the range of the projectile of Problem 3.5 is a maximum when the launch-
ing angle a = 45°.

By Problem 3.5(¢) the range is (v2 sin 2a)/g. This is a maximum when sin2a« =1, ie. 2a = 90°
or a = 45°,

POTENTIAL AND POTENTIAL ENERGY
IN A UNIFORM FORCE FIELD

3.8. (a) Prove that a uniform force field is conservative, (b) find the potential correspond-
ing to this field and (c) deduce the potential energy of a particle of mass m in a
uniform gravitational force field.

(a) If the force field is as indicated in Fig. 8-1, then F = —Fyk. We have

i j k
VXF = d/ox d/oy o/dz = 0
0 o0 -—F,
Thus the force field is conservative.
_ gy AV, V. v W _ o W _ AV _ :
) F = —Fgk = —VV = e ayl 2 k. Then 9 0, 3y - 0, 2 =F, from which
V =Fgz+ec. If V=0 at z=2;, then ¢ = —~Fy2, and so V = F(z—z).
(¢) For a uniform gravitational force field, F = —mgk [see Fig. 3-2, page 62] and corresponds

to F,=mg. Then by part (b) the potential or potential energy is V = mg(z — z().

3.9. Work Problem 3.4 using the principle of conservation of energy.

According to the principle of conservation of energy, we have
P.E.atz=0 + KE.at2=0 = P.E.atz + K.E.atz

0 + Fmvd = mgz  +  Jmo?

Then 22 = 'vg — 2g=.

MOTION IN A RESISTING MEDIUM

3.10. At time t=0 a parachutist [Fig. 3-9] having
weight of magnitude mg is located at z=0 and k
is traveling vertically downward with speed vo.
If the force or air resistance acting on the
parachute is proportional to the instantaneous
speed, find the (a) speed, (b) distance traveled
and (c) acceleration at any time ¢>0.

(a) Assume the parachutist (considered as a particle
of mass m) is located at distance z from origin O.
If k is a unit vector in the vertically downward

direction, then the weight is mgk while the force —Avk
of air resistance is —Bvk so that the net force m
is (mg — Bv)k.
Thus by Newton’s law, mgk
mPk = (mg - pv)k @) Fig. 3-9

dt
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3.11.

3.12.

‘MOTION IN A UNIFORM FIELD. FALLING BODIES AND PROJECTILES

ie. mz—': = mg—pBv or mm_% = dt
Integrating, v —%’— In(mg—p8v) = t+e¢
Since v=wv, at t=0, ¢; = —%— In (mg — Bvy). Then from (2),

t = "—g-ln (mg — Bvy) — %ln (mg —Bv) = %ln <%>
Thus %—}% = eft/m  or v = Znﬂ‘—g-F < 0—%) e—Bt/m

(b) From (3), dz/dt = mg/B + (vy— mg/B)e—Bt/m, Then by integration,

mgt m n,
z = —Bg —-g(’l}o——l}g>e_3”m+¢,’2

Since 2=0 at t=0, ¢; = (m/B)(vo—mg/B) and thus

— mgt  m ._"_”'1> — o—Bt/m
B B(‘”o B (1 e )

(¢) From (8), the acceleration is given by
Vv
a = Z—: = _£<v0—%> e‘Bt/m = <g _B_"y‘q)e.—'ﬂt/’m

[CHAP. 3

@

®

(¢9]

®)

Show that the parachutist of Problem 3.10 approaches a limiting speed given by mg/g.

Method 1.

From equation (8) of Problem 8.10, v = mg/B + (vo— mg/B)e—Bt/m, Then as t increases,
v approaches mg/B8 so that after a short time the parachutist is traveling with speed which is

practically constant.

Method 2.

If the parachutist is to approach a limiting speed, the limiting acceleration must be zero.

Thus from equation (7) of Problem 3.10 we have mg—Bvy, =0 or vy, = mg/B.

A particle of mass m is traveling along the x axis such that at t =0 it is located at t =0
and has speed vo. The particle is acted upon by a force which opposes the motion
and has magnitude proportional to the square of the instantaneous speed. Find the

(@) speed, (b) position and (c) acceleration of the particle at any time ¢ > 0.

(a) Suppose particle P is at a distance x from O at

t =0 and has speed v [see Fig. 8-10]. Then the F = —pBv2%i
force F = —Bv%i where B8 >0 is a constant of |
proportionality. By Newton’s law, x —
P
dv, dv B o
&Y. — Bl & _ _B
m i Bvii  or > mdt 1) O_i,
Integrating, —1/v = —Bt/m +¢;. Since v =1,
when ¢t =0, we have ¢; = —1/v5. Thus Fig. 3-10
1 ot 1 o, = M
v m v, ° T Bugt +m

which is the speed.

do _ ™Y f Y S N Mf dt
(b) From (2), dt = Fogtim Then de = ﬁvot+mdt = B

=" m
x = Bln<t+ﬂvo>+cz

@

t + m/Bv,
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3.13.

3.14.

Since x =0 at t=0, ¢; = —%ln <ﬁﬂ%> Thus
- m\_m, [(m) _ m 81’0_‘.)
® = <t+B”o> 8 <ﬁvo> g" (H ™ @
(¢) From (a), .
_dv _ d [ M™MYy ) _ __ Bmv @)
¢ = @ " Bogt+m) T (Bugt+m)

Note that although the speed of the particle continually decreases, it never comes to rest.

Determine the (a) speed and (b) acceleration of the particle of Problem 8.12 as a
function of the distance x from O.

Method 1. From parts () and (b) of Problem 3.12,

_m, (Buttm .. SRR L .
r=73" m ’ a = Bogt+m m T e
Yo
Then 2= 2ln or v = yge Br/m
B )
and the acceleration is given in magnitude by
% = —-&e—ﬂx/ ‘:l‘: = —ﬁv—%e—%x/m
m m

which can also be obtained from equation (4) of Problem 3.12.

Method 2. From equation (I) of Problem 3.12 we have

m .d_” = md_v ﬂ = mv i?_ = _sz
dt de dt — dx
. dv _ dv _ B . _ : —
or since v # 0, mgs = —Bv and - = TmE Integrating, Inv = —82/m + ¢3. Since v =17,
when 2 =0, ¢3=1Inv, Thus In(v/vy) = —Bx/m or v = vee Bz/m,

Suppose that in Problem 3.5 we assume that the projectile has acting upon it a force
due to air resistance equal to —8v where g is a positive constant and v is the instan-
taneous velocity. Find (@) the velocity and (b) the position vector at any time.

(@) The equation of motion in this case is

m%% = —mgk — Bv  or m%+ pBv = —mgk (1)
/m dt
Dividing by m and multiplying by the integrating factor eI Armds _ eBt/m  the equation can
be written as d
-a—t{eﬂt/mv} = —geﬁt/mk
Integration yield prmy = —T8 pmy 4
gration yields e v = B e ' (2)
The initial velocity or velocity at £ =0 |is
_ Vo = wgcosaj + vpsinek 8
Using this in (2) we find m
¢ = wycosaj + vosinak+—gk

B
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Thus (2) becomes on dividing by eBt/m,

v = (vycosaj+ v, sinak)e—Bt/m 1’;1(1 — e—Bt/m)k %)

(b) Replacing v by dr/dt in (4) and integrating, we find

r = —%(vo cosa j + vy sin a k)e—8t/m — _’%Z(t + %e*ﬂt/m)k + ¢ (%)
Since r=0 at t=0, .
Cy %n(vo cosa j+ vgsina k) + %}k 6)
Using (6) in (5), we find
r = %(cos,a i + sina k)(1 — e—Bt/m) — ng t + me—ﬁt/m - ﬂ) k )
B B B B

3.15. Prove that the projectile of Problem 3.14 attains a limiting velocity and find its value.

Method 1.

Refer to equation (4) of Problem 3.14. As t increases, e~8t/m approaches zero. Thus the
velocity approaches a limiting value equal to vy, = —(mg/8)k.
Method 2.

If the projectile is to approach a limiting velocity its limiting acceleration must be zero. Thus

from equation (1) of Problem 3.14, —mgk — vy, = 0 or vy, = —(mg/B)k.

CONSTRAINED MOTION

3.16. A particle P of mass m slides without rolling
down a frictionless inclined plane AB of angle «

[Fig. 3-11]. If it starts from rest at the top 4
of the incline, find (@) the acceleration, (b) the
velocity and (c) the distance traveled after
time {.

(a) Since there is no friction the only forces acting

(®

A/\

on P are the weight W = —mgk and the re-
action force of the incline which is given by the
normal force N,

Let e; and e; be unit vectors parallel and

perpendicular to the incline respectively. If we —Mmg coSa &
denote by s the magnitude of the displacement 0 B
from the top A of the inclined plane, we have
by Newton’s second law Fig. 3-11
m%(sel) = W+ N = mgsinae )

since the resultant equal to W+ N is mg sin « e;, as indicated in Fig. 3-11. From (I) we have
d2s/dt? = gsina (2)

Thus the acceleration down the incline at any time ¢ is a constant equal to g sina.

Since v = ds/dt is the speed, (2) can be written

dv/dt = gsine or v = (gsina)t+ ¢
on integrating. Using the initial condition » =0 at ¢=0, we have ¢; =0 so that the
speed at any time ¢ is v = (g sina)t @)

The velocity is ve, = (g sine)te; which has magnitude (g9 sine)t in the direction e; down
the incline.
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3.17.

MOTION INVOLVING FRICTION

3.18.

3.19.

(¢) Since v =ds/dt, (3) can be written
ds/dt = (gsine)t or s = Lgsinat2+e,

on integrating. Using the initial condition s=10 at t=0, we find ¢, =0 so that the
required distance traveled is
s = (g sina)t? *

If the length AB of the incline in Problem 3.16 is [, find (a) the time - taken for the
particle to reach the bottom B of the incline and (b) the speed at B.

(a) Since 8 =1 at B, the time 7 to reach the bottom is from equation (4) of Problem 3.16 given by

I = 4(g sin )2 or = V2l/(g sina).

(b) The speed at B is given from (3) of Problem 3.16 by v = (g sinae)r = V2¢lsina.

Work Problem 8.16 if the inclined plane has
a constant coefficient of friction p.

(@) In this case there is, in addition to the forces W
and N acting on P, a frictional force f [see Fig.
3-12] directed up the incline [in a direction oppo-
site to the motion] and with magnitude

N = pmg cosa (1) —mg cosa &
ie. f = —umg cosa € (2)
Then equation (1) of Problem 3.16 is replaced by Fig.3-12
d2(8e1) .
m—gg W+ N+ f = mgsina; e, — uymg cosa e, ®
or d2s/dt2 = g(sina — p cosa) 4)

Thus the acceleration down the incline has the constant magnitude g(sin a — 4 cos a) provided
sina > pcosa or tana > pu [otherwise the frictional force is so great that the particle will
not move at all].

(b) Replacing d2s/dt2 by dv/dt in (4) and integrating gs in part (b) of Problem 8.16, we find the

speed at any time t to be
» = g(sina — pcosa)t 5)

(¢) Replacing v by ds/dt in (5) and integrating as in part (c) of Problem 3.16, we find
8 = }9(sina — pcosa)t? (6)

An object slides on a surface of ice along the horizontal straight line OA [Fig. 3-13].
At a certain point in its path the speed is vo and the object then comes to rest after
traveling a distance xo. Prove that the coefficient of friction is v%/2g..

Let x be the instantaneous distance of the

object of mass m from O and suppose that at
time t=0, 2 =0 and dx/dt = v, i

Three forces act on the object, namely (1) the 0
weight W = mg, (2) the normal force N of the
jce surface on the object, and (3) the frictional
force f. Fig.3-13

By Newton’s second law we have, if v is the instantaneous speed,

x

dv. _
mgt-n—W+N+f )
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But since N = —W and the magnitude of f is f = uN = ymg so that f= —umgi, (1) becomes

o, d _

mgpi = —wmgi  or dt = M (2)
Method 1. Write (2) as

dv do _ dv _

dz W = —ug or v% = —ug (3)
Then vdv = —ugdx

Integrating, using the fact that v =v, at =10, we find
vY2 = —pgx + v/2 4)
Then since » =0 when % =z, (4) becomes

—ugxo +v2/2 = 0 or u = v}/29x, (5)

Method 2. From (2) we have, on integrating and using the fact that v = vy at t=0,
v = vy—pugt or dx/dt = vy— ugt (6)
Integrating again, using the fact that « = 0 at ¢t =0, we find
z = vot — Lugt? ()
From (?) we see that the object comes to rest (i.e., v =0) when
Vo—pgt = 0 or t = wylug

Substituting this into (?) and noting that x = x,, we obtain the required result.

STATICS IN A UNIFORM GRAVITATIONAL FIELD

3.20. A particle of mass m is suspended in equilibrium by two inelastic strings of lengths
a and b from pegs A and B which are distant ¢ apart. Find the tension in each string.

L C
AL B
S_——
T]_ T2
a C b
\n/ \/
w
Fig. 3-14 Fig. 3-15

Let W denote the weight of the particle and T; and T, the respective tensions in the strings
of lengths @ and b as indicated in Fig. 3-14. These forces are also indicated in Fig. 3-15 and are
assumed to lie in the plane of unit vectors j and k. By resolving T; and T, into horizontal and
vertical components it is clear that

Ty = T;sinak — Tycosaj, T, = Tysingk + Tycos87j

where T, and T, are the magnitudes of T; and T, respectively and where « and 8 are the respective

angles at A and B. Also we have
W = —mgk

Since the particle is in equilibrium if and only if the net force acting on it is zero, we have
F T, + T, + W

T,sinak ~ Tycosaj + Tysingk + TycosBj — mgk

(Tycos 8 — Ty cosa)j + (Tysina + Ty 8in B — mg)k

= 0
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From this we must have

TycosB— Tycosa = 0, Tysina+ TosinB—mg = 0

Solving simultaneously, we find

T = myg cos 8 T, = mg cos a
1™ sin(a+8)’ 7 sin(a+p)

The angles « and B8 can be determined from the law of cosines as

2 4 o2 — b2 /bt — a2
a = cos™1! <a—2ac—>, B = cos 1<—m——

From these the tensions can be expressed in terms of a, b, c.

MISCELLANEOUS PROBLEMS z

3.21. An inclined plane [Fig. 3-16] makes an
angle « with the horizontal. A projectile is
launched from the bottom A of the incline
with speed vo in a direction making an
angle 8 with the horizontal.

(a) Prove that the range R up the incline is

given by
203 sin (B — «) cos B
g cos?a Fig. 3-16

(b) 'Prove that the maximum range up the incline is given by

(@)

,v2
Rupox = — %
g(1 + sina)
and is achieved when B = /4 + /2.

As in Problem 3.5, equation (6), the position vector of the projectile at any time ¢ is
r = (vpcos f)ti + {(vy sin B)t — }ot}k @
or ¥y = (vg cos B)t, z = (vgsinB)t — Jgt? (2)
The equation of the incline [which is a line in the yz plane] is
z = ytana (3)

Using equations (2) in (3) we see that the projectile’s path and the incline intersect for those
values of ¢ where
(v sint B)t — Lgt2 = [(v, cos B)t] tana
2vy(sin B cos o — cos B8 sin a) _ 2vysin(B —a)
g cosa T gcosa

ie. t =0 and t =

The value t=0 gives the intersection point A. The second value of t yields point B
which is the required point. Using this second value of ¢ in the first equation of (2), we find
that the required range R up the incline is

2v, sin (B8 — a)} 21)% sin (8 —a) cos B
————— seca =

R = yseca = (v
Y seca (ocosﬂ){ g cosa g cos?a

(b) Method 1. The range R can be written by using the trigonometric identity

sinA cos B = J{sin (4 + B) + sin (A — B)}

v

g cos?

as R = {sin (28 —a) — sin a}
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This is a maximum when sin(28—a) =1, ie. 2—a=7/2 or B =a/2+ /4, and the
value of this maximum is

% v v
R = ——(1—si — (1 —gi S —
g cos? a( sin o) g(1 — sin2a) (1 = sina) g(1 + sin a)

Method 2.

The required result can also be obtained by the methods of differential calculus for
finding maxima and minima.

Two particles of masses m: and m. respectively are
connected by an inextensible string of negligible mass
which passes over a fixed frictionless pulley of negli-
gible mass as shown in Fig. 3-17. Describe the motion
by finding (a) the acceleration of the particles and
(D) the tension in the string.

Let us first isolate mass m,. There are two forces acting
on it: (1) its weight m;g = m,gk, and (2) the force due to
the string which is the tension T = —Tk. If we call a = ok
the acceleration, then by Newton’s law

myak = mugk — Tk 1)

Next we isolate mass m;. There are two forces acting
on it: (1) its weight m,g = mygk, and (2) the tension
T = —Tk [the tension is the same throughout the string mg z
since the mass of the string is assumed negligible and in-
extensible]. Since the string is inextensible, the acceleration
of my, is —a = —ak. Then by Newton’s law Fig. 3-17 *

_"nzak - m2gk — Tk (2)

From (1) and (2) we have

ma = mg — T, —moa = Mmyg — T

Solving simultaneously, we find

. my —my _ 2mymy
T mrm? m1+m2'q

Thus the particles move with constant acceleration, one particle rising and the other falling.
In this pulley system, sometimes called Atwood’s machine, the pulley can rotate. However,
since it is frictionless and has no mass [or negligible mass] the effect is the same as if the string
passed over a smooth or frictionless peg instead of a pulley. In case the mass of the pulley
is not negligible, rotational effects must be taken into account and are considered in Chapter 9.

A particle P of mass m rests at the top A of a
frictionless fixed sphere of radius b. The par-
ticle is displaced slightly so that it slides (with-
out rolling) down the sphere. (a) At what posi-
tion will it leave the sphere and (b) what will
its speed be at this position?

The particle will slide down a ecircle of radius o
which we choose to be in the xzy plane as indicated in
Fig. 3-18. The forces acting on the particle are:
(1) its weight W = —mgj, and (2) the reaction force
N of the sphere on the particle normal to the sphere.

Method 1.

(@) Let the position of the particle on the circle be
measured by angle 6 and let r, and 6, be unit
vectors. Resolving W into components in direc-
tions r; and 6,, we have as in Problem 1.43,
page 24, ’

Fig. 3-18
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w (Werpr; + (We0)8,

(—mgjer)r, + (—mgj+0,)8, = —mg siné r; — myg cosd 0,

Also, N = Nr,
Using Newton’s second law and the result of Problem 1.49, page 26, we have
F = ma = m[(;:— ré2)r; + (re + 2;-5)01]
W+ N = (N — mg sin8)r; — mg cos 6 6, (1)

Thus m(r — ré?) = N — mg sine, m(re + 21.'5) = —mg cos @ 2

While the particle is on the circle (or sphere), we have r =b. Substituting this into (2),

—mbe2 = N — mg sine, b8 = —gcose (€3]
Multiplying the second equation by 5, we see that it can be written
b%(azi) = —g%(sin 9)
Integrating, b%/2 = —g sine + ¢;. Now when 6 =1x/2, =0 so that ¢;,=g and
be2 = 2g(1 — sin ) 4)
Substituting (4) into the first equation of (3), we find
N = mg(3sine — 2) (%)

Now as long as N > 0 the particle stays on the sphere; but when N =0 the particle will

‘be just about to leave the sphere. Thus the required angle is given by 3sine —2 =0, ie.,

sing = 2/3 or 6 = sin—12/3 : 6)

Putting sing = 4 into (4), we find
62 = 2g/3b )
Then if v is the speed, we have v =bé so that (?) yields v2 = 3bg or v =V3bg.

Method 2. By the conservation of energy, using the x axis as reference level, we have

P.E.atA + KE.atA = P.E. atP + KE atP
mgb -+ 0 = mgbsine +  }mo?
or v2 = 2¢gb(l — siné) (8)

Using the result of Problem 1.35, page 20, together with Newton’s second law, we have, since
the radius .of curvature is b,

v? dv
F = ma = <-b—r1—--é;0,> = W+ N

(N — mg sin 8)r;, — mg cosé 0,

Using only the r; component, we have
v2/b = N — mg sine 9)

From (8) and (9) we ind N = mg(3 sino — 2) which yields the required angle sin—! (%) as in
Method 1. The speed is then found from (8).
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Supplementary Problems

UNIFORM FORCE FIELDS AND LINEAR MOTION OF
FREELY FALLING BODIES

3.24.

3.25.

3.26.

3.27.

3.28.

3.29.
3.30.

3.31.

3.32.

3.33.

An object of mass m is dropped from a height H above the ground. Prove that if air resistance
is negligible, then it will reach the ground (a) in a time V2H/g and (b) with speed V/2gH.

Work Problem 3.24 if the object is thrown vertically downward with an initial velocity of magni-

tude  v,. Ans. (a) (Vv + 29H — vg)/g, (b) Vw3 + 29H

Prove that the object of Problem 3.3, page 67, returns to the earth’s surface (a) with the same
speed as the initial speed and (b) in a time which is twice that taken to reach the maximum height.

A ball which is thrown upward reaches its maximum height of 100 ft and then returns to the
starting point. (a) With what speed was it thrown? (b) How long does it take to return?

Ans. (a) 80 ft/sec, (b) b sec

A ball which is thrown vertically upward reaches a particular height H after a time 7, on the
way up and a time 7, on the way down. Prove that (a) the initial velocity with which the ball was
thrown has magnitude }g(r; + 7o) and (b) the height H = }grirp.

In Problem 38.28, what is the maximum height reached? Ans. }g(ry + 79)?

Two objects are dropped from the top of a cliff of height H. The second is dropped when the first
has traveled a distance D. Prove that at the instant when the first object has reached the bottom,

the second object is at a distance above it given by 2y DH — D.

An elevator starts from rest and attains a speed of 16 ft/sec in 2 sec. Find the weight of a
160 b man in the elevator if the elevator is (a¢) moving up (b) moving down.

Ans. (a) 200 1b, (b) 1201b

A particle of mass 3 kg moving in a straight line decelerates uniformly from a speed of 40 m/sec
to 20 m/sec in a distance of 300 m. (a) Find the magnitude of the deceleration. (b) How much
further does it travel before it comes to rest and how much longer will this take?

Ans. (¢) 2 m/sec2, (b) 100 m; 10 sec

In Problem 3.32, what is the total work done in bringing the particle to rest from the speed
of 40 m/sec? Ans. 2400 newton meters (or joules)

MOTION OF PROJECTILES

3.34.

3.35.

3.36

3.37.

3.38.

A projectile is launched with a muzzle velocity of 1800 mi/hr at an angle of 60° with a
horizontal and lands on the same plane. Find (a) the maximum height reached, (b) the time
to reach the maximum height, (¢) the total time of flight, (d) the range, (¢) the speed after
1 minute of flight, (f) the speed at a height of 32,000 ft.

Ans. (o) 15.5mi, (b) 71.4 sec, (¢) 142.8 sec, (d) 85.7 mi, (¢) 934 mi/hr, (f) 1558 mi/hr

(¢) What is the maximum range possible for a projectile fired from a cannon having muzzle
velocity 1 mi/sec and (b) what is the height reached in this case?

Ansg. (a) 165 mi, (b) 41.25 mi

A cannon has its maximum range given by E,,,. Prove that (a) the height reached in such case
is 1Rpmax and (b) the time of flight is VRp,,/29.

It is desired to launch a projectile from the ground so as to hit a given point on the ground
which is at a distance less than the maximum range, Prove that there are two possible angles
for the launching, one which is less than 45° by a certain amount and the other greater than

45° by the same amount.

A projectile having horizontal range R reaches a maximum height H. Prove that it must have
been launched with (a) an initial speed equal to Vg(R2 + 16H2)/8H and (b) at an angle with

the horizontal given by sin—1(4H/VR2+ 16H2).
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3.39. A projectile is launched at an angle o from a
cliff of height H above sea level. If it falls into
the sea at a distance D from the base of the
cliff, prove that its maximum height above sea
level is D2 tan2 o

4(H + D tana) Fig. 3-19

H +

MOTION IN A RESISTING MEDIUM

3.40. An object of weight W is thrown vertically upward with speed v,. Assuming that air resistance
is proportional to the instantaneous velocity and that the constant of proportionality is «, prove
that (@) the object will reach a maximum height of

Wiov 2 v
Wevo _ W2 m(1+=2
ng n2y w

and that (b) the time taken to reach this maximum height is

w kVo

341. A man on a parachute falls from rest and acquires a limiting speed of 15 mi/hr. Assuming
that air resistance is proportional to the instantaneous speed, determine how long it takes to reach
the speed of 14 mi/hr. Ans. 1.86 sec

3.42. A mass m moves along a straight line under the influence of a constant force F. Assuming
that there is a resisting force numerically equal to xv2 where v is the instantaneous speed and «
F — x‘U%)

F — ko2

is a constant, prove that the distance traveled in going from speed v; to v is %h’l(
2

3.43. A particle of mass m moves in a straight line acted upon by a constant resisting force of magni-
tude F. If it starts with a speed of v, (a¢) how long will it take before coming to rest and
(b) what distance will it travel in this time? Ans. (a) mvo/F, (b) mv§/2F

3.44. Can Problem 3.48 be worked by energy considerations? Explain.

345. A locomotive of mass m travels with constant speed v, along a horizontal track. (a) How long
will it take for the locomotive to come to rest after the ignition is turned off, if the resistance
to the motion is given by « + Bv2 where v is the instantaneous speed and « and 8 are constants?
(b) What is the distance traveled? Ans. (a) Vm/g tan—1 (veV B/a), (b) (m/28) In (1 + Bvi/a)

3.46. A particle moves along the x axis acted upon only by a resisting force which is proportional
to the cube of the instantaneous speed. If the initial speed is v, and after a time r the speed is
4o, prove that the speed will be {v, in time 5r.

3.47. Find the total distance traveled by the particle of Problem 3.46 in reaching the speeds (a) 4vo,
(b) 1vo. Ans. (a) gvor, (B) vor

3.48. Prove that for the projectile of Problem 3.14, page 71,

. . N ) Bvg sina
(a) the time to reach the highest point is r In (1 + TR
mv, sin a 2 Vo 8in
(b) the maximum height is —"ﬂ—- - <1 - B—"mg—ﬁ>.

CONSTRAINED MOTION AND FRICTION

3.49. A weight of 100 lb slides from rest down a 60° incline of length 200 ft starting from the top.
Neglecting friction, (z) how long will it take to reach the bottom of the incline and (b) what is
the speed with which it reaches the bottom? Ans. (a) 3.80 sec, (b) 105.3 ft/sec
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3.50.
3.51.

3.52.

3.53.

3.54.

3.55.

3.56.

MOTION IN A UNIFORM FIELD. FALLING BODIES AND PROJECTILES [CHAP.3

Work Problem 3.49 if the coefficient of friction is 0.3. Ans. (a) 4.18 sec, (b) 95.7 ft/sec

(e) With what speed should an object be thrown up a smooth incline of angle « and length I,
starting from the bottom, so as to just reach the top and (b) what is the time taken?

Ans. (a) V2glsine, (b) V2U/(g sina)

If it takes a time r for an object starting from speed v, on an icy surface to come to rest, prove
that the coefficient of friction is vy/gr.

What force is needed to move a 10 ton truck with uniform speed up an incline of 80° if the
coefficient of friction is 0.1? Ans. 5.87 tons

A mass m rests on a horizontal piece of wood. The wood is tilted upward until the mass m just
begins to slide. If the angle which the wood makes with the horizontal at that instant is «,
prove that the coefficient of friction is u = tana.

A 400 kg mass on a 80° inclined plane is acted upon by a force of 4800 newtons at angle 30°
with the incline, as shown in Fig. 3-20. Find the acceleration of the mass if the incline (a) is
frictionless, (b) has coefficient of friction 0.2, Ans. (a) 5.5 m/sec2, (b) 5.0 m/sec?

Fig. 3-20 Fig. 3-21

Work Problem 38.556 if the force of 4800 newtons acts as shown in Fig. 3-21.
Ans. (a) 5.5 m/sec?, (b) 2.6 m/sec?

STATICS IN A UNIFORM GRAVITATIONAL FIELD

3.57.

3.58.

3.59.

A 100 kg weight is suspended vertically from the center of a rope as shown in Fig. 38-22.
Determine the tension T in the rope. Ans. T = 100 kg wt = 980 nt

100 kg

Fig. 3-22 Fig. 3-23 Fig. 3-24

In Fig. 3-23, AB and AC are ropes attached to the ceiling CD and wall BD at C and B respe?tively.
A weight W is suspended from A. If the ropes AB and AC make angles ¢, and 6, with the
wall and ceiling respectively, find the tensions T; and T, in the ropes.

W cos 6, W sin ¢,

Ans. Ty = o= 6y’ 12T Cos(6;— 09

Find the magnitude of the force F needed to keep mass m in equilibrium on the inclined plane
of Fig. 3-24 if (a) the plane is smooth, (b) the plane has coefficient of friction .
mg sin « b F = mg(sina — u cos a)

cosg ’ ®) cos B

Ans. (a) F =
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3.60.

3.61.

3.62.

How much force is needed to pull a train weighing 320 tons from rest to a speed of 15 mi/hr
in 20 seconds if the coefficient of friction is 0.02 and (a) the track is horizontal, (b) the track is
inclined at an angle of 10° with the horizontal and the train is going upward? [Use sin10° = .1737,
cos 10° = .9848.] Ans. (a) 174 tons, (b) 129.6 tons

Work Problem 3.60(b) if the train is going down the incline. Ans. 3.6 tons
A train of mass m is coasting down an inclined plane of angle « and coefficient of friction u

with constant speed w,. Prove that the force needed to stop the train in a time 7 is given by
mg(sina — g cosa) + mwy/T.

MISCELLANEOUS PROBLEMS

3.63.

3.64.

3.65.

3.66.

3.67.

3.68.

3.69.

3.70.

3.71.

3.72.

3.73.

A stone is dropped down a well and the sound of the splash is heard after time r. Assuming the
speed of sound is e, prove that the depth of the water level in the well is (V2 + 2ger — ¢)?/2g.

A projectile is launched downward from the top of an inclined plane of angle « in a direction

making an angle y with the incline. Assuming that the projectile hits the incline, prove that

2v§ siny cos (y — a)
g cosZa

(a) the range is given by R = and that (b) the maximum range down the

2
o qa s _ 0
incline is R,y = 70 —sna)
A cannon is located on a hill which has the shape of an inclined plane of angle « with the horizontal.
A projectile is fired from this cannon in a direction up the hill and making an angle g with it. Prove
2 sin 2
that in order for the projectile to hit the hill horizontally we must have g = tan~! <m> .
Suppose that two projectiles are launched at angles a« and B with the horizontal from the
same place at the same time in the same vertical plane and with the same initial speed. Prove
that during the course of the motion, the line joining the projectiles makes a constant angle
with the vertical given by 4(« + B).

Is it possible to solve equation (1), page 33, by the method of separation of variables? Explain.

When launched at angle ¢, with the horizontal a projectile falls a distance D, short of its target,
while at angle 6, it falls a distance D, beyond the target. Find the angle at which the projectile
should be launched so as to hit the target.

An object was thrown vertically downward. During the tenth second of travel it fell twice as far
as during the fifth second. With what speed was it thrown? Ans. 16 ft/sec

A gun of muzzle speed v, is situated at height h above a horizontal plane. Prove that the angle
at which it must be fired so as to achieve the greatest range on the plane is given by
6 = }cos~! gh/(v + gh).

In Fig. 8-25, AB is a smooth table and masses m,
and m, are connected by a string over the smooth
peg at B. Find (a) the acceleration of mass m,
and (b) the tension in the string.

my — M.

1
— me>m
m, + ngn 2 1

mymey
my + my

Ans. (a)

() Fig. 3-25

Work Problem 3.71 if the table AB has coefficient of friction p.

The maximum range of a projectile when fired down an inclined plane is twice the maximum
range when fired up the inclined plane. Find the angle which the incline makes with the horizontal.

Ans. sin—11/8
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3.74.

3.75.

3.76.

3.71.

3.78.

3.79.

3.80.

3.81.

3.82.

3.83.

3.84.

MOTION IN A UNIFORM FIELD. FALLING BODIES AND PROJECTILES [CHAP. 3

Masses m; and m, are located on smooth inclined planes
of angles a; and a, respectively and are connected by
an inextensible string of negligible mass which passes
over a smooth peg at A [Fig. 3-26]. Find the accelera-
tions of the masses.

“Ans. The accelerations are in magnitude equal to

my sin a; — My Sin ay
my + my

Fig. 3-26

Work Problem 3.74 if the coefficient of friction between the masses and the incline is .

m, 8in @y — My sin ag — pMm; cos a; — pMy COS ay

Anmns,
my + my

Prove that the least horizontal force F needed to pull
a cylinder of radius @ and weight W over an obstacle
of height b [see Fig. 38-27] is given in magnitude by

WVb(2a —b)/(a — b).

Explain mathematically why a projectile fired from
cannon A at the top of a cliff at height H above the
ground can reach a cannon B located on the ground,
while a projectile fired from cannon B with the same
muzzle velocity will not be able to reach cannon A.

In Fig. 8-28 the mass m hangs from an inextensible string OA.
It is pulled aside by a horizontal string AB so that OA makes
an angle o« with the vertical. Find the tension in each string.

Ans. Tension in AB = mg tana; in OA = mg seca

A particle moving along the z axis is acted upon by a resisting
force which is such that the time ¢ for it to travel a distance «
is given by t = Ax2+ Bx+ C where A, B and C are constants.
Prove that the magnitude of the resisting force is proportional

to the cube of the instantaneous speed.

A projectile is to be launched so as to go from A to B
[which are respectively at the bases of a double inclined
plane having angles « and 8 as shown in Fig. 8-29] and
just barely miss a pole of height H. If the distance
between A and B is D, find the angle with the horizontal
at which the projectile should be launched.

A particle of mass m moves on a frictionless inclined
plane of angle a and length I. If the particle starts
from rest at the top of the incline, what will be its
speed at the bottom assuming that air resistance is equal
to xv where v is the instantaneous speed and x is con-
stant?

Fig. 3-29

Suppose that in Problem 8.28 the particle P is given an initial speed v, at the top of the circle
(or sphere). (a) Prove that if v, = Vgb, the angle ¢ at which the particle leaves the circle is given

by sin—1(3 + v§/3gb). (b) Discuss what happens if v, > Vgb.

A cannon is situated at the top of a vertical cliff overlooking the sea at height H above sea level.
What should be the least muzzle velocity of the cannon in order that a projectile fired from it

will reach a ship at distance D from the foot of the cliff?

In Problem 3.83, (o) how long would it take the projectilé to reach the ship and (b) what is the

velocity on reaching the ship?
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3.85.

3.86.

3.87.

3.88.

3.89.

3.90.

3.91.

3.92.

3.93.

3.94.

3.95.

3.96.

A uniform chain of total length ¢ has a portion
0 < b < e hanging over the edge of a smooth table A B
AB [see Fig. 3-30]. Prove that the time taken for
the chain to slide off the table if it starts from rest

is Va/g In (@ + Va2 —b2)/b. Fig. 3-30

If the table in Problem 3.85 has coefficient of friction p, prove that the time taken is
a_ . [¢ + Va2 — [b(1 +p) — a,,]z}
T+wg b+ ) — an

A weight W, hangs on one side of a smooth fixed pulley of neg-
ligible mass [see Fig. 3-31]. A man of weight W, pulls himself
up so that his acceleration relative to the fixed pulley is a.
Prove that the weight W, moves upward with acceleration given by
[o(Wo— W) — W,a]/W,.

Two monkeys of equal weight are hanging from opposite ends of a
rope which passes over a smooth fixed pulley of negligible mass.
The first monkey starts to climb the rope at a speed of 1 ft/sec
while the other remains at rest relative to the rope. Describe the
motion of the second monkey.

Ans. The second monkey moves up at the rate of 1 ft/sec.

Fig. 3-31

Prove that the particle of Problem 3.23 will land at a distance from the base of the sphere
given by (4290 + 19V/5)b/81. :

Prove that if friction is negligible the time taken for a particle to slide down any chord of a
vertical circle starting from rest at the top of the circle is the same regardless of the chord.

Given line AB of Fig. 3-32 and point P where AB and iy
P are in the same vertical plane. Find a point @ on

AB such that a particle starting from point P will

reach @ in the shortest possible time.

(Hint. Use Problem 3.90.] B
Show how to work Problem 3.91 if line AB is re- Q

placed by a plane curve. Can it be done for a space A

curve? Explain. Fig. 3-32

Find the work done in moving the mass from the top of the incline of Problem 3.18 to the bottom.
Ans. mgl(sina — p cos @)

The force on a particle having electrical charge ¢ and which is moving in a magnetic field of intensity
or strength B is given by F = q(vXB) where v is the instantaneous velocity. Prove that if the
particle is given an initial speed vy in a plane perpendicular to a magnetic field B of constant
strength, then it (a) will travel with constant speed vy, and (b) will travel in a circular path
of radius mvy/gB. Assume that gravitational forces are negligible.

Prove that the period, i.e. the time for one complete vibration, of the particle of Problem 3.94
is independent of the speed of the particle and find its value. Ans. 27m/qB

Work Problem 3.94 if B is constant and the particle is given an initial speed v, in a plane which
is not necessarily perpendicular to the magnetic field. Can we define a period in this case? Explain.
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3.97.

3.98.

3.99.

3.100.

MOTION IN A UNIFORM FIELD. FALLING BODIES AND PROJECTILES [CHAP.3

If a particle of electrical charge ¢ and mass m moves with velocity v in an electromagnetic field
having electric intensity E and magnetic intensity B the force acting on it, called the Lorentz force,

is given by F = gE+vxB)

Suppose that B and E are constant and in the directions of the negative y and positive z axes
respectively. Prove that if the particle starts from rest at the origin, then it will describe a
cycloid in the yz plane whose equation is

y = b(e — sine), z = b(1 — cos o)
where ¢ = gBt/m, b = mE/qB? and t is the time.

(@) An astronaut of 80 kg wt on the earth takes off vertically in a space ship which achieves
a speed of 2000 km/hr in 2 minutes. Assuming the acceleration to be constant, what is his apparent
weight during this time? (b) Work part (a) if the astronaut has 180 1b wt on the earth and the
space ship achieves a speed of 1280 mi/hr in 2 minutes. Ans. (a) 117 kg wt, (b) 268 1b wt

In Problem 3.82, how far from the base of the sphere will the particle land?

In Fig. 3-33 weight W, is on top of weight W, which is in turn on a horizontal plane. The
coefficient of friction between Wy and W; is y; while that between W, and the plane is uy. Suppose
that a force F inclined at angle o to the horizontal is applied to weight W,. Prove that if
cota = py > pp, then a necessary and sufficient condition that W, move relative to the plane

~ while W; not move relative to W, is that

3.101.
3.102.

3.103.

3.104.

3.105.

3.106.

3.107.

w(Wi+ W w
2\ W1 .2) < F = #q 1.
cosa — py Sina cosa — uy Silna

Fig. 3-33

Discuss the results in Problem 3.100 if any of the conditions are not satisfied.
Give a generalization of Problem 3.100.

Describe the motion of the particle of Problem 3.97 if E and B are constants, and have the same
direction.

A bead of mass m is located on a parabolic wire with its axis

vertical and vertex directed downward as in Fig. 3-34 and

whose equation is ¢z = «2. If the coefficient of friction is m
i, find the highest distance above the z axis at which the

particle will be in equilibrium, Ans. }i%c

x
Work Problem 8.104 if the parabola is replaced by a vertical !
circle of radius b which is tangent to the z axis. Fig.3-34

A weight W is suspended from 3 equal strings of length ! which are attached to the 3 vertices
of a horizontal equilateral triangle of side s. Find the tensions in the strings.

Ans. WI/VII2 — 3s2

Work Problem 3.106 if there are n equal strings attached to the n vertices of a regular polygon
having n sides.
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3.108.

3.109.

3.110.

3.111.

3.112.

A rope passes over a fixed pulley A of Fig. 3-835. At one end Z
of this rope a mass M, is attached. At the other end of the
rope there is a pulley of mass M, over which passes another
rope with masses m; and m, attached. Prove that the accel-
eration of the mass m, is given by

3m2M2 - mlMl — m1M2 - szl b 4m1m2
(my + mo)(My + M) + 4mmy

An automobile of weight W with an engine having constant
instantaneous power %P, travels up an incline of angle a.
Assuming that resistance forces are r per unit weight, prove
that the maximum speed which can be maintained up the

P .
incline is Wir ¥ sina) ig. 3-35

An automobile of weight W moves up an incline of angle @, powered by an engine having
constant instantaneous power . Assuming that the resistance to motion is equal to xv per unit
weight where v is the instantaneous speed and « is a constant, prove that the maximum speed

which is possible on the incline is (VW2 sin2a + 4«WP — W sin a)/2cW.

A chain hangs over a smooth peg with length a on one side and length b, where 0 < b < a, on the

[at3 Ve + Vb
other side. Prove that the time taken for the chain to slide off is given by a 2+ b 1 <

o \Va-vb)’

Prove that a bead P which is placed anywhere on a-vertical frictionless wire [see Fig. 3-36] in the

form of a cycloid
x = b(e +sing), y = b(l—cose)

will reach the bottom in the same time regardless of the starting point and find this time.

Ans. 7Vblg

Fig. 3-36
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THE SIMPLE HARMONIC OSCILLATOR

In Fig. 4-1(a) the mass m lies on a friction-
less horizontal table indicated by the z axis.
It is attached to one end of a spring of negligible
mass and unstretched length ! whose other end
is fixed at E.

If m is given a displacement along the z axis
[see Fig. 4-1(b)] and released, it will vibrate or
oscillate back and forth about the equilibrium
position O. ——— I+2

To determine the equation of motion, note l x
that at any instant when the spring has length
I+ [Fig. 4-1(b)] there is a force tending tore- E 000\
store m to its equilibrium position. According o)
to Hooke’s law this force, called the restoring ®)
force, is proportional to the stretch x and is
given by A Fig. 4-1

F R = —xii (1)
where the subscript R stands for “restoring force” and where « is the constant of propor-
tionality often called the spring constant, elastic constant, stiffness factor or modulus of
elasticity and i is the unit vector in the positive z direction. By Newton’s second law we have

"
m& d(:;l) = —kxi or mI¥+xx = 0 2

This vibrating system is called a simple harmonic oscillator or linear harmonic oscillator.
This type of motion is often called simple harmonic motion.

AMPLITUDE, PERIOD AND FREQUENCY
OF SIMPLE HARMONIC MOTION

If we solve the differential equation (2) subject to the initial conditions = A and
dx/dt =0 at t=0, we find that

x = A cosot where o = V«/m 3
For the case where A =20, m =2 and « =8, see Problem 4.1.
Since cos of varies between —1 and +1, the mass oscillates between x = —A4 and z = A.

A graph of z vs. ¢t appears in Fig. 4-2.

86
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le— Period = — ——{

N/
VARV

Fig. 4-2

]

€4

The amplitude of the motion is the distance A and is the greatest distance from the
equilibrium position.

The period of the motion is the time for one complete oscillation or vibration [some-
times called a cycle] such as, for example, from x=A to 2z=-A and then back to
z=A again. If P denotes the period, then

P = 2x/o = 27r\/7n/x (4)

The frequency of the motion, denoted by p, is the number of complete oscillations or
cycles per unit time. We have

_ 1 o 1 [«
fF =P~ % = 22\m ®)
In the general case, the solution of (2) is
x = Acosot + Bsinot where o = Vk/m (6)

where A and B are determined from initial conditions. As seen in Problem 4.2, we can
write (6) in the form

= Ccos(ut—¢) where o = V«/m (7)
and where C = VA2+B?> and ¢ =tan"!(B/A) (8)

The amplitude in this case is C while the period and frequency remain the same as in
(4) and (5), i.e. they are unaffected by change of initial conditions. The angle ¢ is called
the phase angle or epoch chosen so that 0=¢ ==~ If ¢ =0, (?) reduces to (3).

ENERGY OF A SIMPLE HARMONIC OSCILLATOR

If T is the kinetic energy, V the potential energy and E = T+ V the total energy of a
simple harmonic oscillator, then we have

T = dmv?, V = L«x? 9
and E = imv? + «a? (210)
See Problem 4.17.

THE DAMPED HARMONIC OSCILLATOR

In practice various forces may act on a harmonic oscillator, tending to reduce the
magnitude of successive oscillations about the equilibrium position. Such forces are some-
times called damping forces. A useful approximate damping force is one which is propor-
tional to the velocity and is given by

F, = —fv = —vi = —B%i (11)
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where the subseript D stands for ‘“damping force” and where g is a positive constant
called the damping coefficient. Note that F, and v are in opposite directions.

If in addition to the restoring force we assume the damping force (11), the equation
of motion of the harmonic oscillator, now called a damped harmonic oscillator, is given by

d2x dx d*z dz
mW = —xX — BW or mgt-z- + ﬁm +xx = 0 (12)
on applying Newton’s second law. Dividing by m and calling
B/m = 2y, k/m = o (13)
this equation can be written
T+2y% + o = 0 (24)

where the dots denote, as usual, differentiation with respect to ¢.

OVER-DAMPED, CRITICALLY DAMPED AND
UNDER-DAMPED MOTION

Three cases arise in obtaining solutions to the differential equation (14).

Case 1, Over-damped motion, y*> > %, ie. B2> 4m
In this case (74) has the general solution
x = e "(Ae** + Be=*)  where o = V77— o? (25)
and where the arbitrary constants A and B can be found from the initial conditions.

Case 2, Critically damped motion, * =% ie. B2=4wm
In this case (14) has the general solution
x = e (A + Bt) (16)
where A and B are found from initial conditions.

Case 3, Under-damped or damped oscillatory motion, > < «? i.e. B2 < 4wm
In this case (Z4) has the general solution
x = e (A sinAl + B cos At)
= Ce " cos (At — ¢) where A = Vof— 2 (17)

and where C =V/A?+ B?, called the amplitude and ¢, called the phase angle or epoch,
are determined from the initial conditions.

In Cases 1 and 2 damping is so large that no x
oscillation takes place and the mass m simply
returns gradually to the equilibrium position
2 = 0. This is indicated in Fig. 4-3 where we
have assumed the initial conditions x = x,,
dz/dt = 0. Note that in the critically damped
case, mass m returns to the equilibrium position
faster than in the over-damped case. \/ ~— ¢

In Case 3, damping has been reduced to such
an extent that oscillations about the equilibrium
position do take place, although the magnitude Under-damped motion, y? < «?
of these oscillations tend to decrease with time
as indicated in Fig. 4-3. The difference in times Fig. 4-3

Critically damped motion, y2 = «?

Over-damped motion, y2 > 2
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between two successive maxima [or minima)] in the under-damped [or damped oscillatory]
motion of Fig. 4-3 is called the period of the motion and is given by

P:&: 2 4=m

77' —
X T VE-g  VEm-p

and the frequency, which is the reciprocal of the period, is given by

1 A Vi =y _ Vam—p (19)

f - P = % = 2 47m
Note that if 8§=0, (18) and (19) reduce to (4) and (5) respectively. The period and
frequency corresponding to 8 =0 are sometimes called the natural period and natural
frequency respectively.

(18)

The period P given by (18) is also equal to two successive values of ¢ for which
cos (At —¢) =1 [or cos(At—¢) = —1] as given in equation (17). Suppose that the values
of 2 corresponding to the two successive values t, and tn.+1 = t.+ P are &, and x.+1 respec-

tively. Then
Tn/Tns1 = e Vife VTP — evP (20)

The quantity » 8 = In (a/%n+1) = yP (21)

which is a constant, is called the logarithmic decrement.

FORCED VIBRATIONS

Suppose that in addition to the restoring force —«zi and damping force —Bvi we impress
on the mass m a force F(t)i where

F(t) = Focosat (22)
Then the differential equation of motion is
d*x dz
Moy = k& — B+ Fo cos at (23)
or I+ 2y + o2 = f,cosat (24)
where y=B/2m, iE=«/m, f,=F/m (25)

The general solution of (24) is found by adding the general solution of
T+2yc+o’x = 0 (26)

[which has already been found and is given by (15), (16) or (17)] to any particular solution of
(24). A particular solution of (24) is given by [see Problem 4.18]

fs

x = cos (af — 27
T Y (27)
where tan¢ = ;% O0=¢=nr (28)

Now, as we have seen, the general solution of (26) approaches zero within a short time
and we thus call this solution the transient solution. After this time has elapsed, the motion
of the mass m is essentially given by (27) which is often called the steady-state solution.
The vibrations or oscillations which take place, often called forced vibrations or forced
oscillations, have a frequency which is equal to the frequency of the impressed force but
lag behind by the phase angle ¢.
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RESONANCE

The amplitude of the steady-state oscillation (27) is given by

f
= S (29)
V(e? — 0?)? + 4y%?
assuming y # 0, i.e. B+ 0, so that damping is assumed to be present. The maximum value
of ¢4 in this case occurs where the frequency o/2~ of the impressed force is such that

@ = ol = o — 22 (30)

assuming that y? < §*® [see Problem 4.19]. Near this frequency very large oscillations may
occur, sometimes causing damage to the system. The phenomenon is called resonance and
the frequency «,/2« is called the frequency of resomance or resomant frequency.

The value of the maximum amplitude at the resonant frequency is

cAmax = _f(,_ (31)

2‘)/ \/ (1)2 - YZ
The amplitude (29) can be written in terms of «, as
f
A = 2 (32)
Vie? —a2)? + 4% — %)

A graph of ¢4 vs. «® is shown in Fig. 4-4. Note that the graph is symmetric around the
resonant frequency and that the resonant frequency, frequency with damping and natural
frequency (without damping) are all different. In case there is no damping, i.e. y=0 or
B =0, all of these frequencies are identical. In such case resonance occurs where the
frequency of the impressed force equals the natural frequency of oscillation. The general
solution for this case is

t
x = Acosot + Bsinot + %sinmt (33)

From the last term in (33) it is seen that the oscillations build up with time until finally
the spring breaks. See Problem 4.20. :

Resonant frequency

A

Frequency with damping

Natural frequency
(without damping)

a2

|
1
|
|
|
I
|
|
|
|
I
|
I
|
|
/ w?—y? W?

ong = w2—2‘/2

Fig.4-4 Fig. 4-5

THE SIMPLE PENDULUM

A simple pendulum consists of a mass m [Fig. 4-5] at the end of a massless string or rod
of length I [which always remains straight, i.e. rigid]. If the mass m, sometimes called the
pendulum bobd, is pulled aside and released, the resulting motion will be oscillatory.

Calling ¢ the instantaneous angle which the string makes with the vertical, the
differential equation of motion is [see Problem 4.23]
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dz9 g . '
—_ = — = 3
s 7 8in 6 (84)

assuming no damping forces or other external forces are present.

For small angles [e.g. less than 5° with the vertical], sin 6 is very nearly equal to 4, where
¢ is in radians, and equation (34) becomes, to a high degree of approximation,

age _ 9
aE = 1 9 (85)
This equation has the general solution
6 = AcosVg/lt + Bsinyg/lt (36)
where A and B are determined from initial conditions. For example, if 6 = 6, §=0 at
t =0, then
= focos Vg/lt (37)
In such case, the motion of the pendulum bob is that of simple harmonic motion. The period
is given by
P = 2x/l/g (38)
and the frequency is given by
1 _ 1
f = PO 2‘;\/9” | (39)

If the angles are not necessarily small, we can show [see Problems 4.29 and 4.30]
that the period is equal to

Fo= (f l—lc”sm“’
27,\/‘{1 +(3) e+ (53) w4 (o) he } (40)

where k = sin(6/2). For small angles this reduces to (38).

For cases where damping and other external forces are considered, see Problems 4.25
and 4.114.

f

THE TWO AND THREE DIMENSIONAL HARMONIC OSCILLATOR
Suppose a particle of mass m moves in the zy plane

Y
under the influence of a force field F given by
F = —xlxi - sz]. (41) F; = =yl m
where «, and «, are positive constants.
In this case the equations of motion of m are A Fa = —rat
given by P i
(7 d2 .
mam = Tt mgg =y (9) T g
and have solutions Fig. 4-6

x = A cosVk/mt + B sinVk/mt, y = A,cosVr/mt + B,sinVx/mt (43)

where A;, By, Az, B2 are constants to be determined from the initial conditions. The mass m
subjected to the force field (41) is often called a two-dimensional harmonic oscillator. The
various curves which m describes in its motion are often called Lissajous curves or figures.

These ideas are easily extended to a three dimensional harmonic oscillator of mass m
which is subject to a force field given by

F = —lei - szj — Kszk (44)
where «,, x,, k; are positive constants.
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Solved Problems

SIMPLE HARMONIC MOTION AND THE
SIMPLE HARMONIC OSCILLATOR

4.1.

4.2.

A particle P of mass 2 moves along the x axis attracted toward origin O by a force
whose magnitude is numerically equal to 8x [see Fig. 4-7]. If it is initially at rest

at

=20, find (a) the differential equation and initial conditions describing the

motion, (b) the position of the particle at any time,

(c) the speed and velocity of the particle at any time,

and (d) the amplitude, period and frequency of the <Be
vibration. \ zi >
I 5. x
(@) Let r =i 2be the position vector of P. The acceleration O: P
of P is s (wi) = f—;i. The net force acting on P is !
—8xi. Then by Newton’s second law, Fig. 4-7
d2x . d’x _
2@1 = —8uxi or -d—t2+ 4 = 0 (1)
which is the required differential equation of motion. The initial conditions are
x=20, de/dt =0 at t=0 (€5]
(b) The general solution of (1) is
x = Acos2t + Bsin2t (€))

()

(d)

When t =0, x =20 sothat A =20. Thus

x = 20cos2t + Bsin2¢ (4)

Then dx/dt = —40 sin2t + 2B cos 2t (5)
30 that on putting t =10, dx/dt =0 we find B =0. Thus (3) becomes

x = 20 cos2t 6)

which gives the position at any time.

From (6) dx/dt = —40 sin2¢t which gives the speed at any time. The velocity is given by

de. _ 0 .
il 40 sin 2¢ i

Amplitude = 20. Period = 27/2 = =. Frequency = 1/period = 1/r.

(@) Show that the function A cosot+ Bsineot can be written as C cos(of—¢)
where C =1A2+B? and ¢ =tan"!(B/A). (b) Find the amplitude, period and
frequency of the function in (a).

(@)

A cos wt + B sin ot cos wt +

o A B .
A2 + B2 e —— —————— SIn mt)
VA2 + B2 VA2 4+ B? '
VA2 + B2 (cos ¢ cos ot + sin ¢ sin wt)
VA2 + B2 cos(wt—¢) = C cos(wt—¢)
where cos¢ = A/VA2+ B2 and sing = B/VA2+ B2, ie. tang =B/A or ¢= tan—1B/A,
and C =VAZ+ B2 We generally choose that value of ¢ which lies between 0° and 180°,

ie. 0=¢=m

(b) Amplitude = maximum value = C = VA2 + B2, Period = 2r/w. Frequency = o/27.
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4.3.

4.4.

Work Problem 4.1 if P is initially at « = 20 but is moving (a) to the right with speed
30, (b) to the left with speed 80. Find the amplitude, period and frequency in
each case.

(¢) The only difference here is that the condition dw/dt =0 at t =0 of Problem 4.1 is replaced
by dx/dt =80 at t=10. Then from (5) of Problem 4.1 we find B =15 and (3) of

Problem 4.1 becomes
x = 20cos2t + 15sin2¢ (1)

which gives the position of P at any time. This may be written [see Problem 4.2] as

@ = V202 + (152 {——20—— cos2t + ——L0in Zt}
V(20)2 4 (15)2 V(20)2 + (15)2
= 25{f4cos2t+ Zsin2t} = 25cos(2t—g¢)
where cosp = %, sing = & (2)
The angle ¢ which can be found from (2) is often called the phase angle or epoch.

Since the cosine varies between —1 and +1, the amplitude = 25. The period and fre-
quency are the same as before, i.e. period = 27/2 =# and frequency = 2/2r = 1/r.

(b) In this case the condition dw/dt =0 at t =0 of Problem 4.1 is replaced by dx/dt = —30
at t =0. Then B = —15 and the position is given by

x = 20cos2t — 15 sin2t
which as in part (a) can be written
x = 25{%cos2t— £ sin2t}
= 25{cosy cos2t + siny sin2t} = 25 cos(2t—y)
where cosy = 4, siny = —§.

The amplitude, period and frequency are the same as in part (a). The only difference
is in the phase angle. The relationship between y and ¢ is y = ¢+7. We often describe
this by saying that the two motions are 180° out of phase with each other.

A spring of negligible mass, suspended vertically from one end, is stretched a
distance of 20 cm when a 5 gm mass is attached to the other end. The spring and
mass are placed on a horizontal frictionless table as in Fig. 4-1(a), page 86, with the
suspension point fixed at E. The mass is pulled away a distance 20 cm beyond the
equilibrium position O and released. Find (a) the differential equation and initial
conditions describing the motion, (b) the position at any time ¢, and (¢) the amplitude,
period and frequency of the vibrations.

(a) The gravitational force on a 5 gm mass [i.e. the weight of a 5 gm mass] is 59 = 5(980) dynes =
4900 dynes. Then since 4900 dynes stretches the spring 20 em, the spring constant is
x = 4900/20 = 245 dynes/cm. Thus when the spring is stretched a distance x# cm beyond the
equilibrium position, the restoring force is —245xi. Then by Newton’s second law we have,
if r =i is the position vector of the mass,

d2(xi) _ . &2 _
rronl —245xi  or a2 + 492 = 0 (1)
The initial conditions are x=20, de/dt =0 at t=0 (2)

(b) The general solution of (1) is x = AcosTt + BsinTt (€3]
" Using the conditions (2) we find A =20, B =0 sothat x = 20 cosTt.

(¢) From x =20 cosTt we see that: amplitude = 20 cm; period = 27/7 sec; frequency = 7/27
vib/sec or 7/27 cycles/sec.
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4.5.

4.6.
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A particle of mass m moves along the x axis, attracted toward a fixed point O
on it by a force proportional to the distance from O. Initially the particle is at
distance x, from O and is given a velocity v, away from O. Determine (a) the
position at any time, (b) the velocity at any time, and (¢) the amplitude, period,
frequency, and maximum speed.

(@) The force of attraction toward O is —«xi where « is a 4
positive constant of proportionality. Then by Newton’s
second law, _ .
Bag o we LR
mgsl = —xxi or x+%— 0 (1) )
Solving (1), we find “ = .
x = AcosVe/mt + BsinVe/mt (2) 0 m
We also have the initial conditions Fig. 4-8
x =2y de/dt=v, at t=0 (%)
From # =z, at ¢t =0 we find, using (2), that A = x5 Thus
x = wmgcosVe/mt + BsinVe/mt (4)
so that da/dt = —xyVr/msin Ve/mt + BVr/mcos Ve/mt (5)
From dx/dt=wv, at t=0 we find, using (5), that B = vyVm/k. Thus (4) becomes
x = xgcos Ve/mt -+ vy Vm/k sin V/mt 6)
Using Problem 4.2, this can be written
x = \/xg + mvg/x cos (Ve/mt — ¢) 7)
where ¢ = tan—1 (vo/xg) Vm/ (8)
(b) The velocity is, using (6) or (?),
de, _ . .
= EZ* = (—xoVk/m sin Ve/mt + vy cos Ve/mt) i
= —Vi/m \/xg + mvg/x sin (Vk/mt— ¢) i
= —\/vg + nx‘g/m sin (Vk/mt — ¢) i 9)

(¢) The amplitude is given from (?) by \/acg + mvg/x.
From (?), the period is P = 2rVx/m. The frequency is f =1/P = 2V m/k.
From (9), the speed is a maximum when sin (Vk/mt — ¢) = £1; this speed is \/vg+ nxg/m.

An object of mass 20 kg moves with simple harmonic motion on the 2 axis. Initially
(t =0) it is located at the distance 4 meters away from the origin x = 0, and has
velocity 15 m/sec and acceleration 100 m/sec? directed toward z=0. Find (a) the
position at any time, (b) the amplitude, period and frequency of the oscillations, and
(¢) the force on the object when t= =/10 sec.

(a) If x denotes the position of the object at time ¢, then the initial conditions are

x =4, de/dt = —15, d2x/dt2 = —100 at t=10 (1)

Now for simple harmonic motion,
x = Acoswt + Bsinet 2)
Differentiating, we find de/dt = —Aw sinet + Bo coswt €]

d2x/dt2 = —Aw?coswt — Bw? sinwt 4)
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4.7.

4.8.

4.9.

Using conditions (1) in (2), (8) and (4), we find 4 =A, —15 = Bw, —100 = —Au2. Solving
simultaneously, we find A =4, « =5, B=-—8 so that

x = 4cosbt — 3sinbt 5)
which can be written

2 = b cos(bt—¢) where cos¢ = £, sing = —§ (6)
(b) From (6) we see that: amplitude =5 m, period = 2#/5 sec, frequency = 5/2» vib/sec.

(¢) Magnitude of acceleration = d2x/dt2 = —100 cos 5¢ + 75 sin 5¢ = 75 m/sec2 at ¢ = #/10.
Force on object = (mass)(acceleration) = (20 kg)(75 m/sec?) = 1500 newtons.

A 20 Ib wt object suspended from the end of a ver-
tical spring of negligible mass stretches it 6 inches.
(a) Determine the position of the object at any time
if initially it is pulled down 2 inches and then re-
leased. (b) Find the amplitude, period and fre-
quency of the motion.

(@) Let D and E [Fig. 4-9] represent the position of the
end of the spring before and after the object is put on
the spring. Position E is the equilibrium position of
the object.

Choose a coordinate system as shown in Fig. 4-9
so that the positive 2z axis is downward with origin at
the equilibrium position.

By Hooke’s law, since 20 1b wt stretches the spring

4 ft, 40 Ibwt stretches it 1 ft; then 40(.5+ z) lbwt F————:— o ﬂ,_ Y
stretches it (.5+2z) ft. Thus when the object is at L—__Jd

position F' there is an upward force acting on it of
magnitude 40(.5 + z) and a downward force due to its

Fig. 4-
weight of magnitude 20. By Newton’s second law we 'g-4-

thus have

20 d2z, _ d2z _

33 Wk = 20k —40(.5+2)k or a8 + 642 = 0
Solving, z = Acos8 + BsinS8t (1)
Now at ¢ =0, 2=} and dz/dt=0; thus A=1% B=0 and

z = % cos8t 2)

(b) From (2): amplitude = % ft, period = 27/8 = #/4 sec, frequency = 4/= vib/sec.

Work Problem 4.7 if initially the object is pulled down 8 inches (instead of 2 inches)
and then given an initial velocity of 2 ft/sec downward.

In this case the solution (Z) of Problem 4.7 still holds but the initial conditions are: at ¢t =0,
z=1 and dz/dt =2. From these we find 4 = 4 and B =1, so that

4

z = }cos8 + }sin8t = V2/4 cos (8t — =/4)

Thus amplitude = 1/2/4 ft, period = 27/8 = #/4 sec, frequency = 4/7 vib/sec. Note that the period
and frequency are unaffected by changing the initial conditions.

A particle travels with uniform angular speed » around a circle of radius b. Prove
that its projection on a diameter oscillates with simple harmonic motion of period
27/w about the center.

Choose the circle in the xy plane with center at the origin O as in Fig. 4-10 below. Let Q be
the projection of particle P on diameter AB chosen along the x axis.
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If the particle is initially at B, then in time t we will
have /BOP = ¢ = ot. Then the position of P at time ¢ is

r = beoswti + bsinwt] (1)
The projection Q of P on the x axis is at distance
ri = x = becoswt 2)

from O at any time . From (2) we see that the projection @
oscillates with simple harmoniec motion of period 27/w about
the center O.

THE DAMPED HARMONIC OSCILLATOR

4.10.

4.11.

[CHAP. 4
Yy
'P
]
J A
4 o] i b £ e
Fig. 4-10

Suppose that in Problem 4.1 the particle P has also a damping force whose magnitude
is numerically equal to 8 times the instantaneous speed. Find (a) the position and
(b) the velocity of the particle at any time. (c) Illustrate graphically the position of

the particle as a function of time £.

(@) In this case the net force acting on P is [see

y

. dz .
—8xi — 8 dtl

Fig. 4-11] —8xi — S%i. Then by Newton’s sec-
ond law,
Pz, _ . odo,
2 d_t2 1 = 8xi SE-E 1
d2x dx _
oY W + 4% + 4x 0

This has the solution [see Appendix, page 352, Problem C.14]

® = e—2A + Bt

Fig. 4-11

When t=0, x =20 and dx/dt =0; thus A =20, B =40, and « = 20e—2t(1+2t) gives

the position at any time t.

(b) The velocity is given by

_ do,
T odt

—80te—2ti

(¢) The graph of z vs. ¢t is shown in Fig. 4-12. It is

seen that the motion is non-oscillatory. The par-

x

ticle approaches O slowly but never reaches it.
This is an example where the motion is critically
damped.

Fig. 4-12

A particle of mass 5 gm moves along the x axis under the influence of two forces:
(i) a force of attraction to origin O which in dynes is numerically equal to 40 times
the instantaneous distance from O, and (ii) a damping force proportional to the
instantaneous speed such that when the speed is 10 cm/sec the damping force is
200 dynes. Assuming that the particle starts from rest at a distance 20 cm from O,
(a) set up the differential equation and conditions describing the motion, (b) find
the position of the particle at any time, (c) determine the amplitude, period and
frequency of the damped oscillations, and (d) graph the motion.

(a) Let the position vector of the particle P be denoted by
r = xi as indicated in Fig. 4-13. Then the force of attrac-
tion (directed toward O) is

—40xi @

The magnitude of the damping force f is proportional to
the speed, so that f = B8 dx/dt where 8 is constant. Then
since f =200 when dx/dt =10, we have B8 =20 and
f =20 dx/dt. To get f, note that when dx/dt>0 and
x > 0 the particle is on the positive « axis and moving to

K}

PR
—20(dx/dt)i

e
—40xi

2 o

P

Fig. 4-13



CHAP. 4]

(b)

(¢)

(d)
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the right. Thus the resistance force must be directed toward the left. This can only be accom-
plished if de
—20 ’d—t‘l (2)
This same form for f is easily shown to be correct if = >0, dx/dt <0, # <0, dw/dt>0,
x <0, de/dt <0 [see Problem 4.45].

Hence by Newton’s second law we have

f =

S%i —20 %i — 40xi (€3]
or %+4%€-+8x=0 4
Since the particle starts from rest at 20 cm from O, we have
x = 20, dx/dt =0 at t=0 5)
where we have assumed that the particle starts on the positive side of the x axis [we could
just as well assume that the particle starts on the negative side, in which case z = —20].
x = e2t is a solution of (4) if
+4a+8 =0 or a= L—4=V16—32) = —2=2
Then the general solution is
x = e 2(A cos2t + B sin 2¢) (6)
Since x =20 at t=0, we find from (6) that A = 20, i.e,
x = e 2420 cos 2t + B sin 2¢) ”
Thus by differentiation,
dx/dt = (e—2t)(—40 sin 2t + 2B cos 2t) + (—2e~2t)(20 cos 2¢ + B sin 2t) 8)
Since dx/dt =0 at t =0, we have from (8), B =20. Thus from (7?) we obtain
x = 20e—2t(cos 2t + sin2t) = 20V2e~2 cos (2t — 7/4) 9

using Problem 4.2.

From (9): amplitude = 20V/2 e 2tcm, period = 27/2 = 7 sec, frequency = 1/ vib/sec.

The graph is shown in Fig. 4-14. Note that the amplitudes of the oscillation decrease toward
zero as t increases.

T

20\/§ cm

@

I
VY

| e— t
~

N

Fig. 4-14

4.12. VFind the logarithmic decrement in Problem 4-11.

Method 1. The maxima (or minima) of « occur where dx/dt = 0. From (9) of Problem 4.11,
dx/dt = —80e~2¢tgin2t = 0
when ¢ =0,7/2,7,8%/2,2%,67/2,.... The maxima oceur when t=0,7,27,...; the minima

oceur when

t =n/2,82/2,bn/2,.... The ratio of two successive maxima is e—2(0)/g—2(m) or

e~ 2(m/e—2(2m) ete., i.e. €27. Then the logarithmic decrement is § = In (e27) = 27.
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Method 2.

From (9) of Problem 4.11, the difference between two successive values of ¢, denoted by ¢,
and t,,q, for which cos (2t—#7/4) =1 (or —1) is 7, which is the period. Then

T, 20\/56"2%
= ——————— = 27 and § = In(x,/x = 2
Tor 2073 6 2tars (®n/%p 1 1) T

Method 3. From (13), (18) and (21), pages 88 and 89, we have

SZYP:<—'B—>< dzm zﬂ.__
(Vo —p) ~ Vim P

Then since m =5, B =20, « =40 [Problem 4.11, equation (3)], § = 2~.

4.13. Determine the natural period and frequency of the particle of Problem 4.11.

The natural period is the period when there is no damping. In such case the motion is
given by removing the term involving dx/dt in equation (3) or (4) of Problem 4.11. Thus

Aw/diz +8 = 0 or « = Acos2V2t + Bsin2/2¢

Then: natural period = 27/2V/2 sec = #/V2 sec; natural frequency = V2/7 vib/sec.

4.14. For what range of values of the damping constant in Problem 4.11 will the motion
be (a) overdamped, (b) underdamped or damped oscillatory, (c) critically damped?
Denoting the damping constant by 8, equation (3) of Problem 4.11 is replaced by

L PN SR Pz | B do -
5dt21 = Bdtl 40xi  or pr + 5dt+8x = 0

Then the motion is:

(a) Overdamped if (8/5)% > 32, ie. B > 20V2.

(b) Underdamped if (8/5)2 < 82, ie. B < 20V2.
[Note that this is the case for Problem 4.11 where g = 20.]

(¢) Critically damped if (8/5)2 = 82, ie. g8 = 20V2.

4.15. Solve Problem 4.7 taking into account an external damping force given numerically
in 1b wt by Bv where v is the instantaneous speed in ft/sec and (¢) g =38, (b) 8 =10,

(c) B = 12.5.
The equation of motion is
20 d2z _ dz d?z | 88 dz _
:?-Ed_tfk = 20k——40(.5+z)k-—,3ak or dt2+ 5 dt+ 64z = 0

(@) If B =28, then d2z/dt2+ 12.8dz/dt+ 64z =0. The solution is
2 = e 64YA cos 4.8t + B sin 4.8t)
Using the conditions z = 1/6, dz/dt =0 at t=0, we find A =1/6, B= 2/9 so that

2 = 118-e—6-4t(3 cos 4.8t + 4 sin 4.8t) = %e”“t cos (4.8t — 53°8)

The motion is damped oscillatory with period 27/4.8 = b57/12 sec.

(b)) If g =10, then d2z/dt>+ 16dz/dt + 64z = 0. The solution is
z = e (A + Bt)

Solving subject to the initial conditions gives A =%, B =%; then z= e (1+41).
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The motion is eritically damped since any decrease in g would produce oscillatory motion.

(¢) If B =125 then d2z/dt? + 20dz/dt + 64z = 0. The solution is
z = Ae 4 + Be~18t
Solving subject to initial conditions gives A = 1/6, B = —1/24; then z = -%—6_‘“—21—46_16".

The motion is overdamped.

ENERGY OF A SIMPLE HARMONIC OSCILLATOR

| 4.16. (a) Prove that the force F = —«xi acting on a simple harmonic oscillator is con-
servative. (b) Find the potential energy of a simple harmonic oscillator.

i j k
(a) We have VXF = 9/dx d8lay d9léz | = 0 so that F is conservative.
—KX 0 0

(b) The potential or potential energy is given by V where F = —VV or
—kxi = — <—1 + =i+t —k>

Then oV/ox = «kx, V/dy =0, 8V/3z =0 from which V = L«a?+ec. Assuming V=0 cor-
responding to x =0, we find ¢ =0 so that V = f«a2

4.17. Express in symbols the principle of conservation of energy for a simple harmonic
oscillator.

By Problem 4.16(b), we have
Kinetic energy + Potential energy =  Total energy
or Amo? + Lrac? = E
which can also be written, since v = dx/dt, as Jm(dw/dt)?+ 4ex? = E.
Another method. The differential equation for the motion of a simple harmonic oscillator is
md2x/dt2 = —kx

Since dx/dt = v, this can also be written as

dv _ dv dx . dv _
mop = UKEOr Ml —p = Tk, ile. Mmvs— = —kx

Integration yields mv?+ dxx2 = E.

FORCED VIBRATIONS AND RESONANCE

4.18. Derive the steady-state solution (27) corresponding to the differential equation (24)
on page 89.

The differential equation is o .
q x + 2yx + w22 = fycosat 1)

Consider a particular solution having the form

£ = ¢ycosat + ¢ sinat @)
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4.20.

THE SIMPLE HARMONIC OSCILLATOR AND THE SIMPLE PENDULUM [CHAP. 4

where ¢; and ¢, are to be determined. “Substituting (2) into (1), we find

(—a%e; + 2yacy + w?¢;) cosat + (—aley — 2yac; + w2¢y) sinat = f, cosat
from which —a®e; + 2yacy + w2e; = f;, —acy — 2yac; + w2ey = 0 3
or (@2 —wde; — 2yacy = —f;,, 2vac; + (@®—wey, = 0 4

Solving these simultaneously, we find

_ fo(o® — o) _ 2fo ye
9T @R F 2’ 2T @2+ 422 (%)

Thus (2) becomes

_ fo[(0® — a?) cos at + 2ya sin af]
r o= @ =P F 4722 (6)

Now by Problem 4.2, page 92,

(w?—a?) cosat + 2yasinat = V(w2 —a2)?2 + 4y2a2 cos (at — ¢) )
where tang = 2ya/(e2—w?), 0 = ¢ =7 Using (?) in (6), we find as required
f
x = 2 cos (at — ¢)

V2 — 022 + 4y22

Prove (a) that the amplitude in Problem 4.18 is a maximum where the resonant fre-
quency is determined from « = V/w®>—2y? and (b) that the value of this maximum
amplitude is f/(2yVo® — ¥?).
Method 1. The amplitude in Problem 4.18 is

Ffo/ V(e — 022 + 4y242 1)
It is a maximum when the denominator [or the square of the denominator] is a minimum. To
find this minimum, write

(02 — w2)2 + 4y2a2 = ot — 2(0? —272)a2 + ot

ot — 2(c? — 272)a2 + (02 — 2y2)2 + ot — (o2 — 2y2)2
= [a2 — (2 — 2y2)]2 + 472(u2 — ¥2)

This is a minimum where the first term on the last line is zero, i.e. when a2 = 2 —2y2, and the
value is then 4y2(w2—y2). Thus the value of the maximum amplitude is given from (I) by

fo/@yVe? —¥?).
Method 2. The function U = (a2 — 022 4+ 4¥2¢2 has a minimum or maximum when
% = 2(a2—w?2a + 8y2%2a = 0 or a(a® —wZ2+2y2) = 0

ie. =0, a=Ve2—2y?2 where y?* < 10 Now

2U/de? = 1242 — 4® + 872
For a=0, d2U/de® = —4(u2—2y2)<0. For a=Ve®2—2y2, d2U/da2® = 8(w2—2y2) > 0. Thus
a = Vw2 —2y2 gives the minimum value.

(a) Obtain the solution (33), page 90, for the case where there is no damping and the
impressed frequency is equal to the natural frequency of the oscillation. (b) Give a
physical interpretation.

(a) The case to be considered is obtained by putting y =0 or 8 =0 and a =« in equations
(23) or (24), page 89. We thus must solve the equation

%+ w2x = f,coswt 1)
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4.21.

To find the general solution of this equation we add the general solution of
Z+o2e =0 (2)
to a particular solution of (1).
Now the general solution of (2) is
2z = A coswt+ Bsinoet 3)
To find a particular solution of (1) it would do no good to assume a particular solution of the form
x = ¢ coset + ¢ sinwt (4)

since when we substitute (4) [which is identical in form to (3)] into the left side of (1), we would
get zero. We must therefore modify the form of the assumed particular solution (4). As seen
in Appendix C, the assumed particular solution has the form

x = t(eg cos ot + ¢y sin wt) (5)
To see that this yields the required particular solution, let us differentiate (5) to obtain
x = t(—we, sinwt + wey coswt) + (¢ coswt + ¢y sin wt) 6)
% = t(— w2¢; coswt — wly sin wt) + 2(— weq sin wl 4 wey cos i) @
Substituting (5), (6) and (?) into (1), we find after simplifying
— 2we; sinwt + 20wcy coswt = fo coswt

from which ¢; =0 and ¢, = fo/20. Thus the re- x -
quired particular solution (5) is # = (f¢/20)¢ sin wt. -~
The general solution of (I) is therefore -

¢ = Acosot + Bsinot + (fo/20)t sinwt (8) P

(b) The constants A and B in (8) are determined
from the initial conditions. TUnlike the case with - \j t
~
~

damping, the terms involving A and B do not become
small with time. However, the last term involving ¢ ~
increases with time to such an extent that the spring -

will finally break. A graph of the last term shown A

in Fig. 4-15 indicates how the oscillations build up ~
in magnitude. Fig. 4-15

A vertical spring has a stiffness factor equal to 3 lbwtper ft. At ¢= 0 a force
given in Ibwt by F(t) = 12sin4t, ¢t =0 is applied to a 61b weight which hangs in
equilibrium at the end of the spring. Neglecting damping, find the position of the
weight at any later time f.

Using the method of Problem 4.7, we have by Newton’s second law,

6 d2z _ .
3% aE 3z + 12 sin 4t
d2z _ .
or ‘d—t2'+ 16z = 64 sin 4t (1)
Solving,
oving z = A cosd4t + B sin4t — 8t cos4t

When t=0, 2=0 and dz/dt=0; then A =0, B=2 and
z = 2sin4t — 8tcos4t (2)

As t gets larger the term —8t cos4t increases numerically without bound, and physically the
spring will ultimately break. The example illustrates the phenomenon of resonance. Note that
the natural frequency of the spring (4/2r = 2/7) equals the frequency of the impressed force.
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4.23.
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Work Problem 4.21 if F(t) = 80cos6t, t= 0.

In this case the equation (Z) of Problem 4.21 becomes

d?z/dt?2 + 162 = 160 cos 5t (1)

and the initial conditions are
z2=20, dz/dt =0 at t=0 (2)

The general solution of (1) is
z = A cosdt + B sin4t — 8 cos 6t 3

Using conditions (2) in (8), we ind A =8, B=0 and
z = B8(cos4t —cos6t) = 8{cos(6t—1t) —cos(5t+¢t)} = 16 sint sinbt

The graph of z vs. t is shown by the heavy curve of Fig. 4-16. The dashed curves are the curves

+16 sin ¢t obtained by placing sinb5t = x1. If we consider that 16 sint is the amplitude of
sin 5t we see that the amplitude varies sinusoidally. The phenomenon is known as amplitude
modulation and is of practical importance in communications and electronics.

s Vaallas ]
\/UVU\/UU

Fig. 4-16

2

SIMPLE PENDULUM

Determine the motion of a simple pendulum of length ! and mass m assuming small
vibrations and no resisting forces.

Let the position of m at any time be determined by s,
the arclength measured from the equilibrium position O
[see Fig. 4-17]. Let 6 be the angle made by the pendulum
string with the vertical.

If T is a unit tangent vector to the circular path of
the pendulum bob m, then by Newton’s second law

/
2,
Z t: = —mgsing T (2)
or, since 8 = lg, ~ AL __
Zz—tz = - % sin ¢ (2 T~

For small vibrations we can replace sin ¢ by 6 so that
to a high degree of accuracy equation (2) can be replaced by

2
fu‘;+l = 0 ®)

—mg sing T

which has solution Fig. 4-17

6 = AcosVg/lt + BsinVyg/lt

Taking as initial conditions 6 = 6y, do/dt =0 at t=0, we find A =06y B=0 and so
6 = 6gcosVy/lt

From this we see that the period of the pendulum is 2=V1/g.
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4.24.

4.25.

Show how to obtain the equation (2) for the pendulum of Problem 4.23 by using
the principle of conservation of energy.

We see from Fig. 4-17 that OA = OC— AC =1—1cos 9 = l(1 —cosg). Then by the conserva-
tion of energy [taking the reference level for the potential energy as a horizontal plane through
the lowest point O] we have

Potential energy at B + Kinetic energy at B = Totalenergy = E = constant
mgl(l — cos ) + im(ds/dt)}2 = E 1)

Since s = lg, this becomes
mgl(l — cos6) + Imi%(de/dt)>? = E @)

Differentiating both sides of (2) with respect to ¢, we find
mglsing g + ml268 = 0 or 6+ (g/h)sing = 0

in agreement with equation (2) of Problem 4.23.

Work Problem 4.23 if a damping force proportional to the instantaneous velocity is
taken into account.

In this case the equation of motion (7) of Problem 4.23 is replaced by

d%s, . ds d2s . B8 ds
mwl‘ = ——mgsmoT—,BET or PE - —g siné “mdt

Using s =1l¢ and replacing sing by 6 for small vibrations, this becomes

d2
sy Ldo, g,

wtmat?? =0

Three cases arise:

Case 1. B2/4m2? < g/l
6 = e Bt/2m(A coswt + B sin wt) where w = Vg/l — p2/4m2

This is the case of damped oscillations or underdamped motion.
C. 2. 2/4m?2 = g/l
ase 2. pH/4m> =g/ 6 = e—Bt/2m(4 + Bt)

This is the case of critically damped motion.

Case 8. B2/4m2 > g/l
6 = e Bt/Zm(Aeht + Be—M) where \ = VB2/4m2 — g/l

This is the case of overdamped motion.

In each case the constants A and B can be determined from the initial conditions. In Case 1
there are continually decreasing oscillations. In Cases 2 and 3 the pendulum bob gradually returns
to the equilibrium position without oscillation.

THE TWO AND THREE DIMENSIONAL HARMONIC OSCILLATOR

4.26.

Find the potential energy for (a) the two dimensional and (b) the three dimensional
harmonic oscillator.

(a) In this case the force is given by
F = —xxi — xoyj

Since V X F =0, the force field is conservative. Thus a potential does exist, i.e. there exists
a function V such that F = —VV. We thus have
i e - . _v.
F = i Koy = vv = 30 ay] azk
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from which 8V/éx = kyx, dV/0y = xoyy, 8V/32 =0 or
V = %K1x2 + -%Kgyz

choosing the arbitrary additive constant to be zero. This is the required potential energy.

(b) In this case we have F = —x;xi— xoyj —x2k which is also conservative since V XF = 0.
We then find as in part (@), aV/dx = «y, dV/dy = xoy, 9V /dz = x3z from which the required
potential energy is

V = %Klwz + —%Kgyz + -%Kszz

A particle moves in the xy plane in a force field given by F = —«xi —«yj. Prove that
in general it will move in an elliptical path.

If the particle has mass m, its equation of motion is
d2r

maE = F = —«kxi — «xyj 1)
2 2
or, since r = xi+ yj, m(:l—t;gi + m%j = —xkxi — kyj
d2x Py _
Then Moy = T, My = Ky @)

These equations have solutions given respectively by
x = AjcosVe/mt + A,sinVe/mit, ¥y = BjcosVe/mt + BysinVe/mt 3

Let us suppose that at ¢ =0 the particle is located at the point whose position vector is
r = ai+bj and moving with velocity dr/dt = vyi+ vyj. Using these conditions, we find A4, = a,

B, =b, Ay, =vVm/k, By =wvyYm/xk and so
* = acoswt + ¢ sinwt, Yy = beoswt + dsinwt 4)
where ¢ = v;Vm/k, d =vyym/k. Solving for sinwt and coswt in (4) we find, if ad # be,

_ dex—cy . _ ay—bx
cos wt = ad —be’ sinwt = ad —Tbeo

Squaring and adding, using the fact that cos2wt+ sin2e0t =1, we find
(dx —cy)? + (ay — bx)2 = (ad — bc)2
or (b2 + d2)x2 — 2(ed + ab)ey + (a® + c2)y2 = (ad — bc)? 5)

Now the equation
Ax?2 4+ Bxy + Cy2 = D where A >0,C>0,D >0

is an ellipse if B2—4A4C < 0, a parabola if B2—4AC =0, and a hyperbola if B2—4AC > 0.
To determine what (5) is, we see that A = b2+ d2?, B = —2(cd+ ab), C = a2+ c2 so that

B2 — 4AC = 4(cd+ ab)?2 — 4(b2+ d2)(a2+¢2) = —4(ad—bec)2 < 0

provided ad # be. Thus in general the path is an ellipse, and if A = C it is a circle. If ad = be
the ellipse reduces to the straight line ay = bx.

MISCELLANEOUS PROBLEMS

4.28,

A cylinder having axis vertical floats in a liquid of density o. It is pushed down
slightly and released. Find the period of the oscillation if the cylinder has weight W
and cross sectional area A.
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4.29.

Let RS, the equilibrium position of the cylinder, be distant
z from the liquid surface PQ at any time t. By Archimedes’
principle, the buoyant force on the cylinder is (Az)o. Then by
Newton’s second law,

Wdz _
7 W = Aza
d2z gAoe _
or Pz + WE = 0
Solving,
2 = e cosVgAo/Wt + c,sin VgAa/Wt
and the period of the oscillation is 27V W/gAs. Fig. 4-18

Show that if the assumption of small vibrations is not made, then the period of a
simple pendulum is

w/2 d
4 f 14 j‘ % where k = sin (9:/2)
gJo 1-—Iksin2¢
The equation of motion for a simple pendulum if small vibrations are not assumed is
[equation (34), page 91] \
2 _ _g

w —7 sin @ (1)
Let de¢/dt = u. Then
Po _ du _ dude _ du
dtz2 — dt ~ dedt " ds
and (I) becomes i
u % = — % sin ¢ 2)
Integrating (2) we obtain
w2 _ g
5 = jcose + ¢ ()

Now when ¢ =46;,, «u=0 so that ¢ = —(g/l) cosg,. Thus (3) can be written

u2 = (2g/l)(cos & — cos 6;) or de/dt = *=V(2g/l)(cos 6 — cos 60) 4)

If we restrict ourselves to that part of the motion where the bob goes from ¢ = 6y to =0,
which represents a time equal to one fourth of the period, then we must use the minus sign in (4)
so that it becomes

de/dt = —+/(29/1)(cos 6 — cos ;)

Separating the variables and integrating, we have

. 1 J‘ do
t = — \f 3 ) —
9 J Vfcos o — cos 6,
Since t=0 at 6 =6y and t=P/4 at 6 =0, where P is the period,

de

[ (™
29 Jy Vfcos6 — cos 6,

Making use of the trigonometric identity cosé = 2 sin2(6/2) —1, with a similar one replacing

8 by 6y, (5) can be written
0,
P = 2 1’1 N de (6)
9 Jo V/sin%(6,/2) — sin2(6/2)

Now let sin (6/2) = sin (64/2) sin ¢ 0s)

®)
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4.31.
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Then taking the differential of both sides,

3 cos(8/2)de = sin (6o/2) cos ¢ do

or calling k = sin (64/2),
2 sin (6¢/2) cos ¢ d¢

de =
V1 — k2 gin2 ¢
Also from (?) we see that when ¢ =0, ¢ = 0; and when ¢ = ¢;,, ¢ = /2. Hence (6) becomes,
as required,
/2
P = 4 ,f N (8)
97y V1—FKk2sin2¢

Note that if we have small vibrations, i.e. if k is equal to zero very nearly, then the period (8)

becomes
1 /2 1
P = 44/= d¢ = 274/ — 9)
9J, g

The integral in (8) is called an elliptic integral and cannot be evaluated exactly in terms of
elementary functions. The equation of motion of the pendulum can be solved for ¢ in terms
of elliptic functions which are generalizations of the trigonometric functions.

as we have already seen.

Show that period given in Problem 4.29 can be written as
1-3 1-3-5

P et () e+ (55 e+ (5R)

The binomial theorem states that if |x] <1, then

+
—

A+ap = 1+ po+ 22-Dge g e P T
If p= —91, this can be written
1 13 1:3+5
—1/2 = -2 292 29793
1+ 1 2x+2.4x 246" +

Letting x = —k2? sin2¢ and integrating from 0 to /2, we find

Il

F»

/2 do
4 l/gj; V1 —k2sin2¢

/2 1 1.3
4W/yf {1 + §k2 sin2¢ + mk4 sintg + "‘}dq)
0

1\2 1-3\2 1-3-5)\2
= - ° 4 6
217\/l/y{1+<2> k2+<2_4> k +<2-4-6> k¢ +
where we have made use of the integration formula
/2 1485 2n—1) =
in2 — T
fo sinftg de = —Hg . (@n) o

The term by term integration is possible since [k| < 1.

A bead of mass m is constrained to move on a frictionless wire in the shape of a
cycloid [Fig. 4-19 below] whose parametric equations are
x = a(¢ —sing), ¥y = a(l —cos¢) (2)

which lies in a vertical plane. If the bead starts from rest at point O, (a) find the
speed at the bottom of the path and (b) show that the bead performs oscillations
with period equivalent to that of a simple pendulum of length 4a.
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4.32. A particle of mass m is placed on the inside

(a) Let P be the position of the bead at any time ¢ 0o
and let s be the arclength along the cycloid meas-
ured from point O. s

By the conservation of energy, measuring P
potential energy relative to line AB through the m
minimum point of the cycloid, we have A-

PE.atP + KE.atP = P.E.at0O + K.E. at O
mg(2e —y) + im(ds/dt)2 = mg(2a)+0 (2) Fig. 4-19

Thus v2 = (ds/dt)2 = 2gy or v = ds/dt = V2gy %)

At the lowest point y = 2a the speed is v = V/2¢(2a) = 2V/ga.

(b) From part (a), (ds/dt)2 = 29y. But
(ds/d)? = (da/dt)? + (dy/dt)2 = a?(1 — cos ¢)2¢2 + @ sinZ¢ ¢2 = 2a2(1 — cos ¢)¢2
Then 2a2(1 — cos ¢)¢2 = 2ga(l —cos¢) or ¢2=gl/a. Thus

de/dt = Vgla and ¢ = Vglat+ e 4)
When ¢ =0, {t=0; when ¢ =27, ¢t =P/2 where P is the period. Hence from the second
equation of (4)
4 ’ P = 4zValg = 2zV4alg

and the period is the same as that of a simple pendulum of length ! = 4a.
For some interesting applications see Problems 4.86-4.88.

of a smooth paraboloid of revolution having
equation cz = 2?2+ y? at a point P which is at
height H above the horizontal [assumed as the
2y plane]. Assuming that the particle starts
from rest, (a) find the speed with which it
reaches the vertex O, (b) find the time r taken,
and (c) find the period for small vibrations.

It is convenient to choose the point P in the yz
plane so that « =0 and ¢z = y2. By the principle

of conservation of energy we have if @ is any point
on the path PQO, Fig. 4-20

PE.atP + KE.atP PE. atQ + K.E.atQ
mgH + Am(0)2 mgz  + Ym(ds/dt)?

where g is the arclength along OPQ measured from O. Thus

(ds/dt)2 = 2g(H —2) (1)
or ds/dt = —/2g(H —2z) (2

using the negative sign since s is decreasing with ¢.
(a) Putting 2z =0, we see that the speed is V2gH at the vertex.
(b) We have, sincex =0 and ¢z = 32,

ds\? dz\? | [dy\?* ., [dz\® @)2 42 (dy\* _ 4_y_2_)(dy)2
(az) (37) "'(% +(a> a) Y e\a) T Mtel\w

Thus (Z) can be written (1 + 4y2/c2)(dy/dt)2 = 2g(H — y%/¢). Then

TR biili Vigear = oW,
== = —V29e——— or —V2gc = ———dy
dt Ve + 42 Vel — 32
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Integrating, using the fact that z = H and thus y = VeH at ¢t =0 whileat t=1r, ¥y =0,

we have
T 0 5
c2 + 4y? 2 2
f Ve dt = f Vet e . o= L f\/—H Ve + 4y i@
0 Ve VeH — o2 29¢J,  VecH — y?

Letting y = VcH cos 9, the integral can be written

1 /2 1 /2
;= V& ¥ doH cos? 6 do = f V& F 4oH — 4cH sin?o do
2g¢ J, V2ge v,

and this can be written o (™2
P-— »\’024 f V1 — k2 sin2¢ de 6))
g 0

where k = 4H/(c+4H) < 1 4)

The integral in (8) is an elliptic integral and cannot be evaluated in terms of elementary
functions. It can, however, be evaluated in terms of series [see Problem 4.119).

(¢) The particle oscillates back and forth on the inside of the paraboloid with period given by

/2
P = 4r = 4\fﬁLHf V1 — k2 sin? 6 do (5)
29 0

For small vibrations the value of k given by (4) can be assumed so small so as to be zero
for practical purposes. Hence (5) becomes

P = 2:V(c+4H)/29

The length of the equivalent simple pendulum is [ = %(c+ 4H).

Supplementary Problems

SIMPLE HARMONIC MOTION AND THE SIMPLE HARMONIC OSCILLATOR

4.33.

4.34.

4.35.

4.36.

431,

A particle of mass 12 gm moves along the » axis attracted toward the point O on it by a force
in dynes which is numerically equal to 60 times its instantaneous distance  cm from O. If the
particle starts from rest at « = 10, find the (a) amplitude, (b) period and (c) frequency of
the motion. Ans. (a) 10 em, (b) 27/\/3 sec, (¢) \/5—/27 vib/sec

(a) If the particle of Problem 4.33 starts at » = 10 with a speed toward O of 20 cm/sec, determine
its amplitude, period and frequency. (b) Determine when the particle reaches O for the first time.

Ans. (@) Amplitude = 6\/5_ cm, period = 22/V/5 see, frequency = \/3/217 vib/sec; (b) 0.33 sec

A particle moves on the « axis attracted toward the origin O on it with a force proportional
to its instantaneous distance from O. If it starts from rest at « = 5 ecm and reaches z = 2.5 cm
for the first time after 2 sec, find (a) the position at any time t after it starts, (b) the speed
at 2 =0, (c) the amplitude, period and frequency of the vibration, (d) the maximum acceleration,
(e) the maximum speed.

Ans. (@) x = b cos(rt/6); (b) Bw/6 cm/sec; (¢) 5ecm, 12 sec, 1/12 vib/sec; (d) 572/36 cm/sec?;
(e) 57/6 cm/sec

If a particle moves with simple harmonic motion along the x axis, prove that (a) the acceleration
is numerically greatest at the ends of the path, (b) the velocity is numerically greatest in the
middle of the path, (c) the acceleration is zero in the middle of the path, (d) the velocity is zero
at the ends of the path.

A particle moves with simple harmonic motion in a straight line. Its maximum speed is 20 ft/sec
and its maximum acceleration is 80 ft/sec?. Find the period and frequency of the motion.

Amns. /2 sec, 2/x vib/sec
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4.38.

4.39.

4.40.

441.

4.42.

4.43.

A particle moves with simple harmonic motion. If its acceleration at distance D from the
equilibrium position is 4, prove that the period of the motion is 2-V/D/A.

A particle moving with simple harmonic motion has speeds of 8 cm/sec and 4 ecm/sec at distances
8 cm and 6 em respectively from the equilibrium position. Find the period of the motion.

Ans. 4r sec

An 8 kg weight placed on a vertical spring stretches it 20 cm. The weight is then pulled down
a distance of 40 cm and released. (a) Find the amplitude, period and frequency of the oscillations.
(b) What is the position and speed at any time?
Ans. (a) 40 em, 27/7 sec, /2« vib/sec

(b) « = 40 cos 7t cm, v = —280 sin Tt cm/sec

A mass of 200 gm placed at the lower end of a vertical spring stretches it 20 em. When it is in
equilibrium, the mass is hit and due to this goes up a distance of 8 cm before coming down again.
Find (@) the magnitude of the velocity imparted to the mass when it is hit and (b) the period of
the motion. Ans. (@) 56 ecm/sec, (b) 27/7 sec

A 5 kg mass at the end of a spring moves with simple harmonic motion along a horizontal straight
line with period 3 sec and amplitude 2 meters. (az) Determine the spring constant. (b) What is the
maximum force exerted on the spring?
Ans. (a) 1140 dynes/ecm or 1.14 newtons/meter

(b) 2.28 X 105 dynes or 2.28 newtons

When a mass M hanging from the lower end of a vertical spring is set into motion, it oscillates
with period P. Prove that the period when mass m is added is PV1+m/M.

THE DAMPED HARMONIC OSCILLATOR

4.4.

4.45.

4.46.

4.47.

4.48.

4.49.

4.50.

4.51.

4.52,

(@) Solve the equation d2x/dt? + 2dwx/dt + 52 = 0 subject to the conditions = 5, dx/dt = —3
at t =0 and (b) give a physical interpretation of the results.

Ans. (@) x = Je~t(10 cos 2t — 5 sin 2t)

Verify that the damping force given by equation (2) of Problem 4.11 is correct regardless of the
position and velocity of the particle.

A 601b weight hung on a vertical spring stretches it 2 ft. The weight is then pulled down 3 ft
and released. (a¢) Find the position of the weight at any time if a damping force numerically
equal to 15 times the instantaneous speed is acting. (b) Is the motion oscillatory damped, over-
damped or critically damped? Ans. (a) = = 3e 444t +1), (b) critically damped

Work Problem 4.46 if the damping force is numerically 18.75 times the instantaneous speed.
Ans. (a) x = 4e2t —¢—8¢ (b) overdamped

In Problem 4.46, suppose that the damping force is numerically 7.5 times the instantaneous speed.
(a) Prove that the motion is damped oscillatory. (b) Find the amplitude, period and frequency of
the oscillations. (¢) Find the logarithmic decrement.

Anms. (b) Amplitude = 2V/3e—2t ft, period = #//3 sec, frequency = V/3/x vib/sec; (¢) 27/V/3

Prove that the logarithmic decrement is the time required for the maximum amplitude during
an oscillation to reduce to 1/e of this value.

The natural frequency of a mass vibrating on a spring is 20 vib/sec, while its frequency with
damping is 16 vib/sec. Find the logarithmic decrement. Ans. 8/4

Prove that the difference in times corresponding to the successive maximum displacements of a
damped harmonic oscillator with equation given by (72) of page 88 is constant and equal to

4am/V/ dem — B2.

Is the difference in times between successive minimum displacements of a damped harmonic
oscillator the same as in Problem 4.51? Justify your answer.
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FORCED VIBRATIONS AND RESONANCE

4.53.

4.54.

4.55.

4.56.

457,

4.58.

The position of a particle moving along the x axis is determined by the equation d2x/dt2 + 4dw/dt +
8x = 20 cos 2¢t. If the particle starts from rest at « =0, find (a) x as a function of £, (b) the
amplitude, period and frequency of the oscillation after a long time has elapsed.

Ans. (a) « = cos2t-+ 2 sin 2t — e—2¢(cos 2t + 8 sin 2t)

(b) Amplitude = /5, period = 7, frequency = 1/

(a) Give a physical interpretation to Problem 4.53 involving a mass at the end of a vertical spring.
(b) What is the natural frequency of such a vibrating spring? (c) What is the frequency of the
impressed force? Ans. (b) V2/z, (¢) 1/r

The weight on a vertical spring undergoes forced vibrations according to the equation
d?x/dt2 + 4 = 8 sin vt where x is the displacement from the equilibrium position and « > 0 is a
constant. If at ¢=0, « =0 and dx/dt =0, find (a) » as a function of ¢, (b) the period of
the external force for which resonance occurs. ‘
Ans. (@) 2 = (8 sin wt — 4w sin 2t)/(4 —w?) if 0 #2;  =sin2t—2¢tcos2t if =2

(b) w=2 or period ==

A vertical spring having constant 17 lbwt per ft has a 32 1b weight suspended from it. An
external force given as a function of time ¢ by F(t) = 65sin4t, ¢ =0 is applied. A damping
force given numerically in 1b wt by 2v, where v is the instantaneous speed of the weight in ft/sec,
is assumed to act. Initially the weight is at rest at the equilibrium position. (a) Determine the
position of the weight at any time. (b) Indicate the transient and steady-state solutions, giving
physical interpretations of each. (¢) Find the amplitude, period and frequency of the steady-state
solution. [Use g = 32 ft/sec2.]

Ans. (a) x = 4de~t cos4t+ sin 4t —4 cos 4¢

(b) Transient, 4e—t cos 4¢; steady-state, sin 4¢ — 4 cos 4¢

(¢) Amplitude = /17 ft, period = #/2 sec, frequency = 2/» vib/sec

A spring is stretched 5 cm by a force of 50 dynes. A mass of 10 gm is placed on the lower end
of the spring. After equilibrium has been reached, the upper end of the spring is moved
up and down so that the external force acting on the mass is given by F(t) =20 coswt, t=0.
(@) Find the position of the mass at any time, measured from its equilibrium position. (b) Find the
value of » for which resonance occurs.

Ans. (a) = (20 cos wt)/(1—w2) —20 cost, (b) w=1

A periodic external force acts on a 6 kg mass suspended from the lower end of a vertical spring
having constant 150 newtons/meter. The damping force is proportional to the instantaneous speed
of the mass and is 80 newtons when the speed is 2 meters/sec. Find the frequency at which
resonance occurs. Ans. 5/6r vib/sec

THE SIMPLE PENDULUM

4.59.

4.60.

4.61.

Find the length of a simple pendulum whose period is 1 second. Such a pendulum which registers
seconds is called a seconds pendulum. Ans. 99.3 cm or 3.26 ft

Will a pendulum which registers seconds at one location lose or gain time when it is moved to
another location where the acceleration due to gravity is greater? Explain.

Ans. Gain time

A simple pendulum whose length is 2 meters has its bob drawn to one side until the string makes
an angle of 30° with the vertical. The bob is then released. (a) What is the speed of the bob as
it passes through its lowest point? (b) What is the angular speed at the lowest point? (c) What
is the maximum acceleration and where does it occur?

Ans. (a) 2.93 m/sec, (b) 1.46 rad/sec, (c) 2 m/sec?
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4.62.

4.63.

4.64.

4.65.

4.66.

Prove that the tension in the string of a vertical simple pendulum of length ! and mass m is given
by mg cos§ where ¢ is the instantaneous angle made by the string with the vertical.

A seconds pendulum which gives correct time at a certain location is taken to another location
where it is found to lose T seconds per day. Determine the gravitational acceleration at the second
location. Ans. g(1— T/86,400)2 where g is the gravitational acceleration at the first location

What is the length of a seconds pendulum on the surface of the moon where the acceleration due
to gravity is approximately 1/6 that on the earth? Ans. 16.5 cm

A simple pendulum of length ! and mass m hangs vertically from a fixed point 0. The bob is given
an initial horizontal velocity of magnitude v,. Prove that the arc through which the bob swings
in one period has a length given by 4l cos—1(1 —v%/2g])

Find the minimum value of v, in Problem 4.65 in order that the bob will make a complete
vertical circle with center at O. Ans. 2V/gl

THE TWO AND THREE DIMENSIONAL HARMONIC OSCILLATOR

4.67.

4.68.

4.69.

4.70.

4.71.

4.72.

A particle of mass 2 moves in the xy plane attracted to the origin with a force given by
F = —18xi—50yj. At t=0 the particle is placed at the point (3,4) and given a velocity
of magnitude 10 in a direction perpendicular to the x axis. (a) Find the position and velocity of
the particle at any time. (b) What curve does the particle describe?

Ams. (@) r = 3 cos 3t i+ [4 cosbt+ 2 sinbt]j, v = —9 sin3¢ i+ [10 cos 5t — 20 sin 5¢]j
Find the total energy of the particle of Problem 4.67. Ans. 581

A two dimensional harmonic oscillator of mass 2 has potential energy given by V = 8(x2 + 4y2).
If the position vector and velocity of the oscillator at time ¢ =0 are given respectively by
rg=2i—j and v, =4i-+8j, (a) find its position and velocity at any time ¢ > 0 and (b) deter-
mine the period of the motion.
Ans. (@) r = (2 cos 4t +sin 4¢t)i + (sin 8t — cos 8t)j, v = (4 cos 4t — 8 sin 4£)i + (8 cos 8t + 8 sin 8t)j

(b) #/8

Work Problem 4.69 if V = 8(x2+2y2). Is there a period defined for the motion in this case?
Explain.

A particle of mass m moves in a 3 dimensional force fleld whose potential is given by
V = 4ix(2? + 4y2 + 1622). (a) Prove that if the particle is placed at an arbitrary point in space
other than the origin, then it will return to the point after some period of time. Determine this
time. (b) Is the velocity on returning to the starting point the same as the initial velocity? Explain.

Suppose that in Problem 4.71 the potential is V = Ax(22 + 2y2 + 522). Will the particle return
to the starting point? Explain.

MISCELLANEOUS PROBLEMS

4.73.

4.74.

4.75

A vertical spring of constant x having natural length [ is supported at a fixed point A. A mass m
is placed at the lower end of the spring, lifted to a height k below A and dropped. Prove that

the lowest point reached will be at a distance below A given by [+ mg/x+ Vm292/k® + 2mgh/c.
Work Problem 4.73 if damping proportional to the instantaneous velocity is taken into account.

Given the equation m% + B +xx =0 for damped oscillations of a harmonic oscillator. Prove that
if F= %ma}2+-§xw2, then E = —px2. Thus show that if there is damping the total energy E
decreases with time. What happens to the energy lost? Explain.
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4.76.

4.77.

4.78.

4.79.

4.80.

4.81.

4.82.

4.83.

4.84.

4.85.

4.86.

THE SIMPLE HARMONIC OSCILLATOR AND THE SIMPLE PENDULUM [CHAP.4

(a) Prove that A, cos (wt—¢;) + Ajycos(wt—gg) = A cos (0t — ¢)

Al sin @1 + Ag sin P2
A cos¢y + Aycosey/’

where A = \/Af+A§+2A1A2 cos (py — ¢2), & = tan—1<

(b) Use (a) to demonstrate that the sum of two simple harmonic motions of the same frequency
and in the same straight line is simple harmonic of the same frequency.

Give a vector interpretation to the results of Problem 4.76.

Discuss Problem 4.76 in case the frequencies of the two simple harmonic motions are not equal.
Is the resultant motion simple harmonic? Justify your answer.

A particle oscillates in a plane so that its distances o and y from two mutually perpendicular
axes are given as functions of time ¢ by
x = A cos (ot + ¢y), ¥y = B cos (et + ¢5)

(a) Prove that the particle moves in an ellipse inscribed in the rectangle defined by =z = *A,
y = =B. (b) Prove that the period of the particle in the elliptical path is 27/w.

Suppose that the particle of Problem 4.79 moves so that
x = A cos(et+ ¢y), ¥y = B cos(ot+ et + ¢)

where ¢ is assumed to be a positive constant which is assumed to be much smaller than «. Prove
that the particle oscillates in slowly rotating ellipses inseribed in the rectangle z = *A, y = *=B.

Tllustrate Problem 4.80 by graphing the motion of a particle which moves in the path
x = 8 cos(2t+x/4), y = 4 cos(2.4¢)

In Fig. 4-21 a mass m which is on a frictionless
table is connected to fixed points A and B by
two springs of equal natural length, of negli-
gible mass and spring constants «; and ky re-
spectively. The mass m is displaced horizontally
and then released. Prove that the period of

oscillation is given by P = 2zVm/(x; =+ «3).

A spring having constant « and negligible mass has
one end fixed at point A on an inclined plane of
angle « and a mass m at the other end, as indicated
in Fig. 4-22. If the mass m is pulled down a distance
%, below the equilibrium position and released, find
the displacement from the equilibrium position at any
time if (a) the incline is frictionless, (b) the incline
has coefficient of friction u. Fig. 4-22

A particle moves with simple harmonic motion along the x axis. At times t, 2t and 3%, it is
. e drty
located at « = a, b and ¢ respectively. Prove that the period of oscillation is m.

A seconds pendulum giving the correct time at one location is taken to another location where
it loses 5 minutes per day. By how much must the pendulum rod be lengthened or shortened in
order to give the correct time?

A vertical pendulum having a bob of mass m is sus- 0

pended from the fixed point 0. As it oscillates, the

string winds up on the constraint curves ODA [or OC) D

as indicated in Fig. 4-23. Prove that if curve ABC is a

cycloid, then the period of oscillation will be the same A c
regardless of the amplitude of the oscillations. The pen-

dulum in this case is called a cycloidal pendulum. The B

curves ODA and OC are constructed to be evolutes of

the cycloid. [Hint. Use Problem 4.31.] Fig. 4-23
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4.87.

4.88.

4.89.

4.90.

4.91.

4.92.

4.93.

4.94,

4.95.

4.96.

4.97.

4.98.

4.99.

4.100.

4.101.

4.102.

A bead slides down a frictionless wire located in a vertical plane. It is desired to find the
shape of the wire so that regardless of where the bead is placed on the wire it will slide under
the influence of gravity to the bottom of the wire in the same time. This is often called the
tautochrone problem. Prove that the wire must have the shape of a cycloid.

[Hint. Use Problem 4.31.]

Prove that the curves ODA and OC of Problem 4.86 are cycloids having the same shape as the
cycloid ABC.

A simple pendulum of length [ has its point of support moving back and forth on a horizontal line
so that its distance from a fixed point on the line is A sinot, t = 0. Find the position of the
pendulum bob at any time ¢ assuming that it is at rest at the equilibrium position at ¢ = 0.

Work Problem 4.89 if the point of support moves vertically instead of horizontally and if at
t =0 the rod of the pendulum makes an angle ¢, with the vertical.

A particle of mass m moves in a plane under the influence of forces of attraction toward fixed
points which are directly proportional to its instantaneous distance from these points. Prove
that in general the particle will describe an ellipse.

A vertical elastic spring of negligible weight and having its upper end fixed, carries a weight
W at its lower end. The weight is lifted so that the tension in the spring is zero, and then it is
released. Prove that the tension in the spring will not exceed 2W.

A vertical spring having constant « has a pan on top of it with
a weight W on it [see Fig. 4-24]. Determine the largest fre-
quency with which the spring can vibrate so that the weight
will remain in the pan.

A spring has a natural length of 50 cm and a force of 100 dynes
is required to stretch it 25 cm. Find the work done in stretching
the spring from 75 cm to 100 cm, assuming that the elastic limit
is not exceeded so that the spring characteristics do not change.

Amns. 3750 ergs

A particle moves in the xy plane so that its position is given by
x = A coswt, y = B cos2wt. Prove that it describes an arc of a
parabola. Fig. 4-24

A particle moves in the xy plane so that its position is given by x = A cos (01t + ¢4),
y = B cos (ot + ¢5). Prove that the particle describes a closed curve or not, according as wy/wgy is
rational or not. In which cases is the motion periodic?

The position of a particle moving in the xy plane is described by the equations d2z/dtz2 = —4y,
d’y/dt? = —4x. At time t =0 the particle is at rest at the point (6, 3). Find (a) its position
and (b) its velocity at any later time t.

Find the period of a simple pendulum of length 1 meter if the maximum angle which the rod
makes with the vertical is (a) 30°, (b) 60°, (c) 90°.

A simple pendulum of length 3 ft is suspended vertically from a fixed point. At ¢ =0 the bob is
given a horizontal velocity of 8 ft/sec. Find (a) the maximum angle which the pendulum rod
makes with the vertical, (b) the period of the oscillations.

Ans. (a) cos—12/3 = 41°48’, (b) 1.92 sec

Prove that the time averages over a period of the potential energy and kinetic energy of a
simple harmonic oscillator are equal to 27242/P? where A is the amplitude and P is the period
of the motion.

A cylinder of radius 10 ft with its axis vertical oscillates vertically in water of density 62.5 1b/ft3
with a period of 5 seconds. How much does it weigh? Ans. 38.98 X 105 1b wt

A particle moves in the xy plane in a force field whose potential is given by V = 22+ xy + y2.
If the particle is initially at the point (3,4) and is given a velocity of magnitude 10 in a direction
parallel to the positive x axis, (a) find the position at any time and (b) determine the period of
the motion if one exists.
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4.103.

4.104.

4.105.

4.106.

4.107.

4.108.

4.109.

4.110.

4.111.

4.112.

4.113.

4.114.

THE SIMPLE HARMONIC OSCILLATOR AND THE SIMPLE PENDULUM [CHAP.4

In Problem 4.96 suppose that w,/w, is irrational and that at ¢ =0 the particle is at the
particular point (2, y,) inside the rectangle defined by « = =4, y = =B. Prove that the point
(29, ¥o) Will never be reached again but that in the course of its motion the particle will come
arbitrarily close to the point.

A particle oscillates on a vertical frictionless cycloid with its vertex downward. Prove that the
projection of the particle on a vertical axis oscillates with simple harmonic motion.

A mass of 5 kg at the lower end of a vertical spring which has an elastic constant equal to
20 newtons/meter oscillates with a period of 10 seconds. Find (#) the damping constant, (b) the
natural period and (¢) the logarithmic decrement. Ans. (a) 19 ntsec/m, (b) 3.14 sec

A mass of 100 gm is supported in equilibrium by two identical
springs of negligible mass having elastic constant equal to
50 dynes/cm. In the equilibrium position shown in Fig. 4-25
the springs make an angle of 30° with the horizontal and are
100 cm in length. If the mass is pulled down a distance of
2 em and released, find the period of the resulting oscillation.

A thin hollow circular cylinder of inner radius 10 cm is fixed
so that its axis is horizontal. A particle is placed on the inner
frictionless surface of the cylinder so that its vertical distance

above the lowest point of the inner surface is 2 em. Find 100 gm
(¢) the time for the particle to reach the lowest point and
(b) the period of the oscillations which take place. Fig. 4-25

A cubical box of side a and weight W vibrates vertically in water of density o. Prove that the
period of vibration is (27/a)Veg/W.

A spring vibrates so that its equation of motion is
md2x/dt2 + kx = F(t)
If =0, de/dt =0 at t=0, find x as a function of time t.

1 t
. = —_—= F in V —u) d
Ans x j; (u) sin Ve/m (t —u) du

mg

Work Problem 4.109 if damping proportional to dx/dt is taken into account.

A spring vibrates so that its equation of motion is
mde/dt2 + kx = b5 coswet + 2 cos3ut

If =0, xa=v, at t=0, (o) find x at any time ¢ and (b) determine for what values of «
resonance will occur.

A vertical spring having elastic constant « carries a mass m at its lower end. At t =0 the
spring is in equilibrium and its upper end is suddenly made to move vertically so that its distance
from the original point of support is given by A4 sinet, ¢ Z 0. Find (@) the position of the mass m
at any time and (b) the values of » for which resonance occurs.

(a) Solve d2x/dt2 + x = tsint + cost where x= 0, de/dt =0 at ¢=0, and (b) give a physical
interpretation.

Discuss the motion of a simple pendulum for the case where damping and external forces are
present.
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4.115.

4.116.

4.117.

4.118.

4.119.

Find the period of small vertical oscillations of a cylinder of radius o and height k floating
with its axis horizontal in water of density o.

A vertical spring having elastic constant 2 newtons per meter has a 50 gm weight suspended
from it. A force in newtons which is given as a function of time ¢ by F(t) =6 costt, t=0
is applied. Assuming that the weight, initially at the equilibrium position, is given an upward
velocity of 4 m/sec and that damping is negligible, determine the (a) position and {b) velocity
of the weight at any time.

In Problem 4.55, can the answer for & =2 be deduced from the answer for « 7 2 by taking
the limit as © —> 27 Justify your answer.

An oscillator has a restoring force acting on it whose magnitude is —x& — ex2 where ¢ is small
compared with x. Prove that the displacement of the oscillator [in this case often called an
anharmonic oscillator] from the equilibrium position is given approximately by

2
‘:; {cos 2(wt — ¢) — 8}

K
where A and ¢ are determined from the initial conditions.

z = A cos(wt—g) +

Prove that if the oscillations in Problem 4.32 are not necessarily small, then the period is given by

_ c+4H [ /1\? 1-3\?kt _ /1:8:8\%k8
Po= 2”‘\/ 29 {1 <2>"2_<2'4>‘:§‘ <2-4o6>5f




Chapter 5

CENTRAL FORCES
Suppose that a force acting on a particle of
mass m is such that [see Fig. 5-1]:
(@) it is always directed from m toward or
away from a fixed point O,
(b) its magnitude depends only on the distance
r from O.

Then we call the force a central force or central
force field with O as the center of force. In sym-
bols F is a central force if and only if

F = f(ryr, = f(ryx/r (1) Fig.5-1
where r; = r/r is a unit vector in the direction of r.

The central force is one of attraction toward O or repulsion from O according as
f(r) <0 or f(r) > 0 respectively.

SOME IMPORTANT PROPERTIES OF CENTRAL FORCE FIELDS
If a particle moves in a central force field, then the following properties are valid.

1. The path or orbit of the particle must be a plane curve, i.e. the particle moves in
a plane. This plane is often taken to be the zy plane. See Problem 5.1.

2. The angular momentum of the particle is conserved, i.e. is constant. See Problem 5.2.

8. The particle moves in such a way that the position vector or radius vector drawn
from O to the particle sweeps out equal areas in equal times. In other words, the
time rate of change in area is constant. This is sometimes called the law of areas.
See Problem 5.6.

EQUATIONS OF MOTION FOR A PARTICLE
IN A CENTRAL FIELD

By Property 1, the motion of a particle in a cen-
tral force field takes place in a plane. Choosing this
plane as the zy plane and the coordinates of the par- r
ticle as polar coordinates (r, 4), the equations of mo-
tion are found to be [see Problem 5.3]

m(¥ — 78 = f(r) @)
mré + 2rf) = 0 (3)
where dots denote differentiations with respect to Fig. 5-2

time t.

116
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From equation (3) we find .
7?0 = constant = h (4)

This is related to Properties 2 and 8 above.

IMPORTANT EQUATIONS DEDUCED FROM
THE EQUATIONS OF MOTION

The following equations deduced from the fundamental equations (2) and (3) often
prove to be useful.

v h?
1. r — F = % (5)
d*u 1
where u = 1/7.
dr  2/dr\* _ ()
3. dg? r<%> .y )

POTENTIAL ENERGY OF A PARTICLE IN A CENTRAL FIELD

A central force field is a conservative field, hence it can be derived from a potential.
This potential which depends only on r is, apart from an arbitrary additive constant,

given by
vy = - foyar ()

This is also the potential energy of a particle in the central force field. The arbitrary
additive constant can be obtained by assuming, for example, V=0 at r=0 or V-0
as r- o,

CONSERVATION OF ENERGY

By using (8) and the fact that in polar coordinates the kinetic energy of a particle is
{;m(f"2+1'202), the equation for conservation of energy can be written

Im(r2+712%6°) + V(r) = E 9
or miz+r0) - [ fryar = E (20)
where E is the total energy and is constant. Using (4), equation (10) can also be written as
mh2 [/ dr\2
v (@) +2] - frmar = B (12)
m . h2
and also as i(rz + F) - f f(rydr = E (12)
In terms of u =1/r, we can also write equation (9) as
du\2 2(E-V
%) + o (mhz ) (13)

DETERMINATION OF THE ORBIT FROM THE CENTRAL FORCE

If the central force field is prescribed, i.e. if f(r) is given, it is possible to determine
the orbit or path of the particle. This orbit can be obtained in the form

r = r(6) (24)
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i.e. r as a function of 4, or in the form
r =), 6= 6t (15)
which are parametric equations in terms of the time parameter ¢.

To determine the orbit in the form (14) it is convenient to employ equations (6), ¥4)
or (11). To obtain equations in the form (15), it is sometimes convenient to use (12) together
with (4) or to use equations (4) and (5).

DETERMINATION OF THE CENTRAL FORCE FROM THE ORBIT

Conversely if we know the orbit or path of the particle, then we can find the correspond-
ing central force. If the orbit is given by 7 =r(6) or u = u(d) where u = 1/r, the central
force can be found from

o = G- E) ) had
or flu) = —mhzuz{%+u} (F¥4]

which are obtained from equations (6) and (7) on page 117. The law of force can also be
obtained from other equations, as for example equations (9)-(13).

It is important to note that given an orbit there may be infinitely many force fields for
which the orbit is possible. However, if a central force field exists it is unique, i.e. it is
the only one.

CONIC SECTIONS, ELLIPSE, PARABOLA AND HYPERBOLA

Consider a fixed point O and a fixed line AB distant D from O, as shown in Fig. 5-3.
Suppose that a point P in the plane of O and AB moves so that the ratio of its distance
from point O to its distance from line AB is always equal to the positive constant e.

Then the curve described by P is given in ~~e Y A
polar coordinates (r,6) by S~
» SN \Q ,— Directrix
T T T¥eccosd (28) AN
€ P P d M
See Problem 5.16. /N
Focus e \
The point O is called a focus, the line AB is 0 .7 5 ©
called a directriz and the ratio ¢ is called the /
eccentricity. The curve is often called a conic 7
section since it can be obtained by ingersecting e
a plane and a cone at different angles. Three ///F— D —
possible types of curves exist, depending on the ,/’/ B
value of the eccentricity. - Fig. 5-3

1. Ellipse: <1 [See Fig. 5-4 below.]
If C is the center of the ellipse and CV = CU = a is the length of the semi-major
axis, then the equation of the ellipse can be written as '

a(l—é)
1+ ecosf (29)

Note that the major axis is the line joining the vertices V and U of the ellipse and has
length 2a.
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w ¥ A
If b is the length of the semi-minor axis e }
[CW or CS in Fig. 5-4] and ¢ is the distance b | DP :
CO from center to focus, then we have the a 0 [ .
important result v\ o c o /V |E
|
c = Vat—-b = qe (20) I
A circle can be considered as a special case s"'/ (B
of an ellipse with eccentricity equal to zero. Fig.5-4 -
Y
2. Parabola: <=1 [See Fig. 5-5.] N
The equation of the parabola is
P P
_ 4 T
" T T¥coss (21) o -
0 v
We can consider a parabola to be a
limiting case of the ellipse (19) where - 1,
which means that a - « [i.e. the major
axis becomes infinite] in such a way that /
a(l—é&) =p. Fig.5-5
3. Hyperbola: ¢>1 [See Fig. 5-6.] y
The hyperbola consists of two branches \\\
as indicated in Fig. 5-6. The branch on the NS
left is the important one for our purposes. \\\
The hyperbola is asymptotic to the dashed AN
lines of Fig. 5-6 which are called its asymp- P PN
T N

totes. The intersection C of the asymptotes
is called the center. The distance CV =aq
from the center C to vertex V is called the
semi-major axis [the major axis being the
distance between vertices V and U by anal-
ogy with the ellipse]. The equation of the
hyperbola can be written as

a(e2 - 1)

ro= 1+ eccosd (22)

Fig.5-6

Various other alternative definitions for conic sections may be given. For example, an
ellipse can be defined as the locus or path of all points the sum of whose distances from two
fixed points is a constant. Similarly, a hyperbola can be defined as the locus of all points
the difference of whose distances from two fixed points is a constant. In both these cases
the two fixed points are the foci and the constant is equal in magnitude to the length of
the major axis.

SOME DEFINITIONS IN ASTRONOMY

A solar system is composed of a star [such as our sun] and objects called planets which
revolve around it. The star is an object which emits its own light, while the planets do
not emit light but can reflect it. In addition there may be objects revolving about the
planets. These are called satellites.

In our solar system, for example, the moon is a satellite of the earth which in turn is a
planet revolving about our sun. In addition there are artificial or man-made satellites
which can revolve about the planets or their moons.
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The path of a planet or satellite is called its orbit. The largest and smallest distances
of a planet from the sun about which it revolves are called the aphelion and perihelion
respectively. The largest and smallest distances of a satellite around a planet about which
it revolves are called the apogee and perigee respectively.

The time for one complete revolution of a body in an orbit is called its period. This is
sometimes called a sidereal period to distinguish it from other periods such as the period
of earth’s motion about its axis, etc.

KEPLER’S LAWS OF PLANETARY MOTION

Before Newton had enunciated his famous laws Planet
of motion, Kepler, using voluminous data accumu- r
lated by Tycho Brahe formulated his three laws
concerning the motion of planets around the sun
[see Fig. 5-7]. '

1. Every planet moves in an orbit which is an
ellipse with the sun at one focus. Fig.5-7

2. The radius vector drawn from the sun to any planet sweeps out equal areas in
equal times (the law of areas, as on page 116).

8. The squares of the periods of revolution of the planets are proportional to the cubes
of the semi-major axes of their orbits.

NEWTON’S UNIVERSAL LAW OF GRAVITATION

By using Kepler’s first law and equations (16) or (17), Newton was able to deduce his
famous law of gravitation between the sun and planets, which he postulated as valid for any
objects in the universe [see Problem 5.21).

Newton’s Law of Gravitation. Any two particles of mass m: and m: respectively and
distance r apart are attracted toward each other with a force
_ Gm;mz ” (23)

7
where G is a universal constant called the gravitational constant.

By using Newton’s law of gravitation we can, conversely, deduce Kepler’s laws [see
Problems 5.13 and 5.23]. The value of G is shown in the table on page 342.

F =

ATTRACTION OF SPHERES AND OTHER OBJECTS

By using Newton’s law of gravitation, the forces of attraction between large objects
such as spheres can be determined. To do this, we use the fact that each large object is
composed of particles. We then apply the law of gravitation to find the forces between
particles and sum over these forces, usually by methods of integration, to find the resultant
force of attraction. An important application of this is given in the following

Theorem 5.1. Two solid or hollow uniform spheres of masses m: and m. respectively
which do not intersect are attracted to each other as if they were particles of the same
mass situated at their respective geometric centers.

Since the potential corresponding to

Gmims
-0

F = r (24)
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is vV = —Cm—r‘m—z (25)

it is also possible to find the attraction between objects by first finding the potential and
then using F = —yV. See Problems 5.26-5.33.

MOTION IN AN INVERSE SQUARE FORCE FIELD

As we have seen, the planets revolve in elliptical orbits about the sun which is at one
focus of the ellipse. In a similar manner, satellites (natural or man-made) may revolve around
planets in elliptical orbits. However, the motion of an object in an inverse square field of
attraction need not always be elliptical but may be parabolic or hyperbolic. In such cases
" the object, such as a comet or meteorite, would enter the solar system and then leave but
never return again.

The following simple condition in terms of the total energy E determines the path of
an object.

(i) if E <0 the path is an ellipse
(ii) if E =0 the path is a parabola
(iii) if E' > 0 the path is a hyperbola
Other conditions in terms of the speed of the object are also available. See Problem 5.37.

In this chapter we assume the sun to be fixed and the planets do not affect each other.
Similarly in the motion of satellites around a planet such as the earth, for example, we
assume the planet fixed and that the sun and all other planets have no effect.

Although such assumption is correct as a first approximation, the influence of other
planets may have to be taken into account for more accurate purposes. The problems of
dealing with the motions of two, three, etc., objects under their mutual attractions are often
called the two body problem, three body problem, ete.

Solved Problems

CENTRAL FORCES AND IMPORTANT PROPERTIES

5.1. Prove that if a particle moves in a central force field, then its path must be a plane
curve.

Let F = f(r)r; be the central force field. Then
rXF = fr)rXr, = 0 (2)

since r; is a unit vector in the direction of the position vector r. Since F = mdv/dt, this can be
written

rXdv/dt = 0 (2)
i(rx Yy =0 3
or 7i v) = (3)
Integrating, we find rXv =h (4)

where h is a constant vector. Multiplying both sides of (4) by r*,
rh =0 G)]
using the fact that re<(rXv) =(rXr)*v=0. Thus r is perpendicular to the constant vector h,

and so the motion takes place in a plane. We shall assume that this plane is taken to be the
xy plane whose origin is at the center of force.
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Prove that for a particle moving in a central force field the angular momentum is
conserved.

From equation (4) of Problem 5.1, we have
rXv = h
where h is a constant vector. Then multiplying by mass m,
m(r X v) = mh )

Since the left side of () is the angular momentum, it follows that the angular momentum is
conserved, i.e. is always constant in magnitude and direction.

EQUATIONS OF MOTION FOR A PARTICLE IN A CENTRAL FIELD

5.3.

5.4.

5.5.

Write the equations of motion for a particle in a central field.

By Problem 5.1 the motion of the particle takes place in a plane. Choose this plane to be
the xy plane and the coordinates describing the position of the particle at any time ¢ to be
polar coordinates (r,6). Using Problem 1.49, page 27, we have

(mass)(acceleration) = net force »
m{(¥ — réd)ry + (r6 + 2r0),} =  f(r)r, @)
Thus the required equations of motion are given by
m(¥ — 762 = f(r) (2
m(ré + 278) = 0 )

Show that 720 = h, a constant.

Method 1. Equation (3) of Problem 5.3 can be written

Ciom = Mo = ™D 00 =
m(r e + 2rg) = r(r 8 + 2rre) = Tdt(ro) 0
d .
Thus % (129) = .
us T (r29) 0 and so 25 = h (2)

where h is a constant.

Method 2. By Problem 1.49, page 27, the velocity in polar coordinates is

v = ';'l'l + 7'501

Then from equation (4) of Problem 5.1

h = rXv = #rXr)+ ré(eXxe,) = r26k @)
since rXr; =0 and rX@; = rk where k is the unit vector in a direction perpendicular to the

plane of motion [the xy plane], ie. in the direction r X v. Using h=hk in (2), we see that
r2§ = h.

Prove that 72 = 24 where A is the time rate
at which area is swept out by the position
vector r. v

Suppose that in time At the particle moves from
M to N [see Fig. 5-8)]. The area AA swept out by the
position vector in this time is approximately half the

area of a parallelogram with sides » and Ar or [see
Problem 1.18, page 15]

A4 = L|r X Ar]

Dividing by At and letting At -0,
. AA . 1 Ar

1 == = lim Z|r X =

Atu—?o At Atl-»o 2 VY

= T xvl Fig. 5-8
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ie, A= e Xv| = %r%’
using the result in Problem 5.4. Thus 724 = 2;1, as required. The vector quantity
A = Ak = Lrxv) = }r2ok

is often called the areal velocity.

5.6. Prove that for a particle moving in a central force field the areal velocity is constant.
By Problem 5.4, r26¢ = h = a constant. Then the areal velocity is
A= %rzék = }hk = }h, a constant vector
The result is often stated as follows: If a particle moves in a central force field with O as

center, then the radius vector drawn from O to the particle sweeps out equal areas in equal
times. This result is sometimes called the law of areas.

5.7. Show by means of the substitution » =1/« that the differential equation for the
path of the particle in a central field is

d*u 1/u
7z T U = —f( /2 l
do mh2u
From Problem 5.4 or equation (3) of Problem 5.3, we have
2 = h or 6 = h/r2 = hu? )

Substituting into equation (2) of Problem 5.3, we find

m(7 — h/r3) = f(r) 2)
Now if r = 1/u, we have
;g = % _ drde _ hdr __,du 3
T odt T dedt ~ r2ds de
wo_dr oA pdu _ df du\ds _ g ,du
TTodt dt< hd0> - d0< hd0>dt = TR e “
From this we see that (2) can be written
m(—h2u? d2u/de? — h2u3) = f(1/u) (5)
. 2y _ _fa/
or, as required, 7D +u = p T (6)

POTENTIAL ENERGY AND CONSERVATION OF ENERGY
FOR CENTRAL FORCE FIELDS

5.8. (a) Prove that a central force field is conservative and (b) find the corresponding
potential energy of a particle in this field.

Method 1.

If we can find the potential or potential energy, then we will have also incidentally proved
that the field is conservative. Now if the potential V exists, it must be such that

Fedr = —dV )
where F = f(r)r, is the central force. We have
Fedr = f(r)r, s dr = f(r)%-dr = fr)dr
since r e+ dr = rdr.

Since we can determine V such that
—dV = f(r)dr
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5.9.

5.10.

5.11.
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for example, V = - f f(r) dr 2)
it follows that the field is conservative and that (2) represents the potential or potential energy.

Method 2.
We can show that V XF =0 directly, but this method is tedious although straightforward.

Write the conservation of energy for a particle of mass m in a central force field.
Method 1. The velocity of a particle expressed in polar coordinates is [Problem 1.49, page 27]
v = rr; + e, so that v2 = vev = 72+ 922
Then the principle of conservation of energy can be expressed as
m?2 +V = E or -21m(;'2+'r26.’2) - f fr)ydr = E

where E is a constant.

Method 2. The equations of motion for a particle in a central field are, by Problem 5.3,

m(¥ — r6?) = f(r) &)
mre +2r8) = 0 @)
Multiply equation (1) by #, equation (2) by 7§ and add to obtain
m@Er + 1268 + rré2) = feryr @
This can be written im %(';'2 + r282) = % f f(r) dr 4)

Then integrating both sides, we obtain
G2+ 0% — [ e = B ®)

Show that the differential equation describing the motion of a particle in a central

field can be written as
2 2
S (@) +r] - J1mar = 8

From Problem 5.9 we have by the conservation of energy,

Im(r2 + r262) — f foydr = E @
o dr _ drde _ dr,
We also have "= g S dedr - sl @)

Substituting (2) into (1), we find

) 2
3m [<Z_:> +,.2:| 52 — f frydr = E  or 1;—:;2[<%> +'r2] - f frydr = E

since 8 = h/r%.

(a) If w=1/r, prove that v* = 72 + 126> = h*{(du/d6)> +u?}.
(b) Use (a) to prove that the conservation of energy equation becomes
(du/de)? + u?* = 2(E — V)/mh?
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(@) From equations (Z) and (3) of Problem 5.7 we have ¢ = hu2, r = —hdu/de. Thus
= 724 122 = h2(du/de)® + (1/u2)(hu2)2 = h2{(du/ds)? + u2}

(b) From the conservation of energy {Problem 5.9] and part (a),
dm? = Im(241r82) = E—V or (du/de)2 + u2 = 2(E — V)/mh2

DETERMINATION OF ORBIT FROM CENTRAL FORCE,
OR CENTRAL FORCE FROM ORBIT

5.12. Show that the position of the particle as a function of time # can be determined
from the equations

t = { (6o var, ¢ = %f 2 do

where Gr) = — + —f f(rydr — %

Placing é = h/r? in the equation for conservation of energy of Problem 5.9,
Im(r2 + h2/r?) — f fdr = E

or r2=—+—ff()dr——=G<r)

Then assuming the positive square root, we have

dr/dt = VG(r)

and so separating the variables and integrating, we find
t = f [Gr)]~V2 dr

The second equation follows by writing 6 = h/r2 as dt = »2de/h and integrating.

5.13. Show that if the law of central force is defined by
f(ry = —K/r?, K>0
i.e. an inverse square law of attraction, then the path of the particle is a conic.

Method 1.

In this case f(1/u) = —Ku2?. Substituting into the differential equation of motion in Problem 5.7,
we find
d2u/de2 + uw = K/mh2 (1)

This equation has the general solution

#u = Acosé + Bsine + K/mh? (2)
or using Problem 4.2, page 92,
u = K/mh? + C cos(6—¢) (€3]
i ! 7
1€, r K/mh2 + C cos (6 — ¢)

It is always possible to choose the axes so that ¢ = 0, in which case we have

1

r K/mh® + C cosé )
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This has the general form of the conic [see Problem 5.16]

- P - 1
T = T ¥eccose  1/p + (e/p) coso (6)
Then comparing (5) and (6) we see that
1/p = K/mh2, e/lp = C (7)
or p = mh?/K, e = mh2C/K 3)

Method 2. Since f(r) = —K/r2, we have

v = —f fdr = —Kir+ e )
where ¢, is a constant. If we assume that V>0 as r— «, then ¢; =0 and so
V = —K/r (10)
Using Problem 5.10, page 124, we find
mh2 [ [dr\* | ] _ K
2rt [<d0> +T:\ = B+Y (1)
. dr _ 2Er2 | 2Kr _
from which b - *r pon + hE 1 (12)

By separating variables and integrating [see Problem 5.66] we find the solution (5) where C is
expressed in terms of the energy E.

(a) Obtain the constant C of Problem 5.13 in terms of the total energy E and (D) thus
show that the conic is an ellipse, parabola or hyperbola according as E <0, E =0,
E > 0 respectively.

Method 1.

(@)

(b)

The potential energy is
v = —frwar = [ @ma = -k = -Ku »

where we use % = 1/ and choose the constant of integration so that lim V = 0. Now from
equation (5) of Problem 5.13, T
u = lr = K/mh? + Ccosé (2)

Thus from Problem 5.11(b) together with (1), we Have
. K ®  2E 2K / K
(Csm0)2+<W+Ccoso> = W+W<W+Ccoso>
2 2 E
K 2F C K 2 @)

2 = il — _am
or ¢ m2hd T k2 or weid T mh2
assuming C > 0.

Using the value of C in part (a), the equation of the conic becomes

_ 1 _ K 2Emh?
u = :I‘_ = m {1 + 1+ 2 cos 0}
Comparing this with (4) of Problem 5.16, we see that the eccentricity is
2
. = 1+ 2Em~ )

K2

From this we see that the conic is an ellipse if E < 0 [but greater than —K2/2mh?}, a parabola
if E=0 and a hyperbola if E >0, since in such cases ¢<1, ¢=1 and e¢>1 respectively.

Method 2. The value of C can also be obtained as in the second method of Problem 5.13.
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5.15. Under the influence of a central force at point O, a particle moves in a circular orbit

which passes through O. Find the law of force.

Method 1.

In polar coordinates the equation of a circle of radius a
passing through O is [see Fig. 5-9]

r = 2acosg

Then since # = 1/r = (sec 8)/2a, we have

du _ secdtans
de 2a
d?u __ (sec6)(sec? ) + (sec 6 tan 8)(tan 0)
de2 2a
_ sec3d + seco tan2¢
- 2q

Thus by Problem 5.7,

Fig.5-9

_ u _

f/u) = —mh2u2 (Tﬂ + u> = —mh2u2 < %

mh2y2 mh2u2
= - 3 2 —_-
% {sec3 9 + seco (tan2¢ + 1)} o
= —8mh2a2u’
8mh2a2
or f(r) - m,.s

sec3 § + sec 6 tan? 6 + sec o>

* 2 secd o

Thus the force is one of attraction varying inversely as the fifth power of the distance from O.

Method 2. Using 7 = 2a cos# in equation (16), page 118, we have

mh?2

flr)y = o —2a cos§ — %0 cos @
_ 4amh®  _ 8a’mh?
T rtcose 75

CONIC SECTIONS. ELLIPSE, PARABOLA AND HYPERBOLA

5.16. Derive equation (18), page 118, for a conic section.

(—2a sin 6)2 — 2a cos 0}

Referring to Fig. 5-3, page 118, by definition of a conic section we have for any point P on it,

rld = e or d = r/e

Corresponding to the particular point @, we have

p/D = ¢ or p =
But D = d+4 rcosse = §+rcosa =

Then from (2) and (3), we have on eliminating D,

p = r(1 + ecoso) or r =

(1)

@)

2(1 + € cos ) ©®
P

1+ ecose “4)

The equation is a circle if ¢ =0, an ellipse if 0 <e¢<1, a parabola if ¢=1 and a hyperbola

if e> 1.

5.17. Derive equation (19), page 118, for an ellipse.

Referring to Fig. 5-4, page 119, we see that when
r = OU. Thus using equation (4) of Problem 5.16,

6=0,

r =0V and when ¢ =g,
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OV = p/(1+e), OU = pl(1—e) @)

But since 2a¢ is the length of the major axis,
oV +0U = 2a or p/(1+e¢) +p/Q1—¢ = 20 2)
from which p = a(l—¢€?) 3)

Thus the equation of the ellipse is
_ al—é)
" T T¥ecoss “)

5.18. Prove that in Fig. 5-4, page 119, (¢) OV =a(l1—¢), (b) OU =a(l+¢).

(¢) From Problem 5.17, equation (3) and the first equation of (1),

— &2
ov = ;2 = 429 = w9 @

(b) From Problem 5.17, equation (3) and the second equation of (1),

_ P _ al=&) _
o = 7, = —[—. = a(l+¢) (2)

5.19. Prove that ¢ = ac where ¢ is the distance from the center to the focus of the ellipse.
a is the length of the semi-major axis and e is the eccentricity.

From Fig. 5-4, page 119, we have ¢ = CO = CV—-0V = a—a(l—¢ = ae
An analogous result holds for the hyperbola [see Problem 5.73(c), page 139].

5.20. If a and ¢ are as in Problem 5.19 and b is the length of the semi-minor axis, prove

that (a) ¢=V@—0% (b)) b=ayI-&

(a) From Fig. 5-4, page 119, and the definition of an ellipse, we have

_o0V _CV—-CO _a—c or VE = 2—¢ )

- VE ~ VE VE €

€

Also since the eccentricity is the distance from O to W divided by the distance from W
to the directrix AB [which is equal to CE], we have

OW/CE = ¢
or, using (1) and the result of Problem 5.19,

OW = ¢CE = {(CV+VE) = ela+(a—c)e] = c@at+a—c = a

Then (OW)2 = (OC)2+ (CW)? or a? = b2+¢2, ie. ¢ =Va2—b2%

(5) From Problem 5.19 and part (a), a® = b2+ a22 or b=ayl—e.

KEPLER’S LAWS OF PLANETARY MOTION AND

NEWTON’S UNIVERSAL LAW OF GRAVITATION

5.21. Prove that if a planet is to revolve around the sun in an elliptical path with the sun
at a focus [Kepler’s first law], then the central force necessary varies inversely as
the square of the distance of the planet from the sun.

If the path is an ellipse with the sun at a focus, then calling r the distance from the sun,
we have by Problem 5.16,
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5.22,

5.23.

5.24.

5.25.

_ P -1 _1_ ¢
T = [T .coss or u - 2o-i-pcose 2)

where ¢ < 1. Then the central force is given as in Problem 5.7 by
f(l/u) = —mh2u2(d?u/de? +u) = —mh2u2/p 2)
on substituting the value of « in (7). From (2) we have on replacing u by 1/r,

f(r) = —mh2/pr2 = —K/r2 3)

Discuss the connection of Newton’s universal law of gravitation with Problem 5.21.

Historically, Newton arrived at the inverse square law of force for planets by using Kepler’s
first law and the method of Problem 5.21. He was then led to the idea that perhaps all objects
of the universe were attracted to each other with a force which was inversely proportional to the
square of the distance » between them and directly proportional to the product of their masses.
This led to the fundamental postulate

GMm

F = — -—1'2 ry (1)

where G is the universal gravitational constant. Equivalently, the law of force (8) of Problem 5.21
is the same as (I) where

K = GMm (2)

Prove Kepler’s third law: The squares of the periods of the various planets are
proportional to the cubes of their corresponding semi-major axes.

If ¢« and b are the lengths of the semi-major and semi-minor axes, then the area of the
ellipse is zab. Since the areal velocity has magnitude h/2 [Problem 5.6], the time taken to sweep
over area rab, i.e. the period, is
zab _  2rab

P w2 = h @)
Now by Problem 5.17 equation (3), Problém 5.20(b), and Problem 5.13 equation (8), we have
b =a/1—& p = al—e) = mh¥K @
Then from (Z) and (2) we find
P = 27m1/2q3/2{K1/2 or P2 = 472me?/K

Thus the squares of the periods are proportional to the cubes of the semi-major axes.

Prove that GM = gR2.

On the earth’s surface, i.e. » = R where R is the radius, the force of attraction of the earth
on an object of mass m is equal to the weight mg of the object. Thus if M is the mass of the

earth,
GMm/R2 = mg or GM = gR?

Calculate the mass of the earth.

From Problem 5.24, GM = gR2 or M = gR2?/G. Taking the radius of the earth as
6.38 X108 cm, g — 980 cm/sec2 and G = 6.67 X 108 cgsunits, we find M =5.98 X 1027 gm =
1.32 X 1025 lb.

ATTRACTION OF OBJECTS

5.26.

Find the force of attraction of a thin uniform rod of length 2a on a particle of
mass m placed at a distance b from its midpoint.
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Choose the x axis along the rod and the y axis
perpendicular to the rod and passing through its
center O, as shown in Fig, 5-10. Let o be the mass
per unit length of the rod. The force of attraction
dF between an element of mass o dx of the rod and
m is, by Newton’s universal law of gravitation,

_ Gmodx , ., . .
dF = m(Slnﬁl—COSOJ)
_ Gmoexdx . Gmebdr .
@+ 0232 ' T (p24p2)e2 ) Fig. 5-10

since from Fig. 5-10, siné = x/vx2+ b2, cosd = b/\/x2+ b2. Then the total force of attraction is

. (° Gmox dx . (° Gmab dx
F o= i . (@ProemEe (a2 + b2)372
r=-—a z=—ga
. . ((* Gmaebdx _ Y dux
= 0-2 j(; (@2 + b2)372 —2Gmab j J; (a2 + b2)3/2

Let x =btans in this integral. Then when x =0, ¢ =0; and when x =aqa, ¢ =tan—! (a/b).
Thus the integral becomes

Fo= _2Gmab],f“’“—1(“/b) bsec2g do _ _ _2Gmoa ;
A (b2 sec? 6)3/2 bm
Since the mass of the rod is M = 2a0, this can also be written as
GMm

—]
bva2+ b2

Thus we see that the force of attraction is directed from m to the center of the rod
and of magnitude 2Gmoa/bV a2 + b2 or GMm/b\/ a2 + b2.

F = —

A mass m lies on the perpendicular through the center of a uniform thin circular
plate of radius ¢ and at distance b from the center. Find the force of attraction
between the plate and the mass m.

Method 1.

Let n be a unit vector drawn from point P where m
is located to the center O of the plate. Subdivide the
circular plate into circular rings [such as ABC in
Fig. 5-11] of radius r and thickness d». If ¢ is the mass
per unit area, then the mass of the ring is o(2rrdr).
Since all points of the ring are at the same distance
V7?2 + b2 from P, the force of attraction of the ring on
m will be

Py m

dF = Gao2xr dr)m cos g n
r2 4 b2

_ Go2grdrmb

EGEL @
where we have used the fact that due to symmetry the
resultant force of attraction is in the direction n. By
integrating over all rings from =0 to r=a, we
find that the total attraction is Fig.5-11

a
F = 27:-Gambnf ﬁ_—cllg)w (2)
0

To evaluate the integral, let 724 b2 = u2 so that rdr = udu. Then since wu=b when =20
and u = Va2+ b2 when r = a, the result is
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5.28.

5.29.

‘I 2+b2 b
F = 21rGambnf TV ude 27rG<r'mn<1————~>
b w Va24‘b2

If we let a be the value of ¢ when » = a, this can be written
F = 27Gomn (1 — cos a) (3)
Thus the force is directed from m to the center O of the plate and has magnitude 27Gom(1 — cos a).

Method 2.

The method of double integration can also be used. In such case the element of area at A is
rdrde where ¢ is the angle measured from a line [taken as the x axis] in the plane of the
circular plate and passing through the center O. Then we have as in equation (1),

Go(r dr dg)mb

dF (r2 + b2)372

and by integrating over the circular plate

2T a

_rdrde 27r dr _

F = Gomb nf f L Pt oE = Gomb nf RrbE 27Gomn (1 — cos a)
r=0 0= r=0

A uniform plate has its boundary con-
sisting of two concentric half circles of
inner and outer radii ¢ and b respec-
tively, as shown in Fig. 5-12. Find the
force of attraction of the plate on a
mass m located at the center O.

It is convenient to use polar coordinates
(r,8). The element of area of the plate [shaded D
in Fig. 5-12] is dA = rdrds, and the mass is
ardrde. Then the force of attraction between
dA and O is Fig.5-12

dF Glor (i;' de)m

(cos o i+ sin g j)

Thus the total force of attraction is

T b
F = f g(ﬁd;d—e)m(cosoi—&-sinaj)
8=0 r=a r
T
= Gamln<2> f (cosoi+sinejde = 2GomIn <2>1
a 0=0 a
Since M = o(47b?— 4ra?), we have o =2M/7(b2—a?) and the force can be written
_ 4GMm b\ .
F = (b2 — a?) In <a> s

The method of single integration can also be used by dividing the region between r = a and
r = b into circular rings as in Problem 5.27.

Find the force of attraction of a thin spherical shell of radius a on a particle P of
mass m at a distance r > a from its center.

Let O be the center of the sphere. Subdivide the surface of the sphere into circular elements
such as ABCDA of Fig. 5-13 below by using parallel planes perpendicular to OP.

The area of the surface element ABCDA as seen from Fig. 5-13 is
27(a sin 6)(a d6) = 27a2 sin g de

since the radius is a siné [so that the perimeter is 2r(a sin¢)] and the thickness is ads. Then
if o is the mass per unit area, the mass of ABCDA is 27a2¢ sin ¢ d¢.
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Since all points of ABCDA are at the same dis-
tance w = AP from P, the force of attraction of
the element ABCDA on m is

G(27a%0 sin 6 de)m

dF = pwe cos ¢ N (1)

where we have used the fact that from symmetry the
net force will be in the direction of the unit vector n

from P toward O. Now from Fig. 5-13, ads
cos b = PE _PO—EO _ r—acosé @)
¢ = ap - T 4P ~ w
Using (2) in (I) together with the fact that by the
cosine law
w2 = a2+ r2 — 2ar cos 6 3
we find
IF = G(27a%0 sin 6 dé)m(r — a cos 6)
- (a2 + r2 — 2ar cos 6)3/2
Fig.5-13
Then the total force is
K .
_ (r — a cosé) sin g
= 2
F 2rGalomn f (a2 + 72 — 2ar cos 6)3/2 do @)

0=0

We can evaluate the integral by using the variable w given by (8) in place of §. When
6=0 w2=a2—2ar+r2=(r—a)?2 so that w=r—a if r>a. Also when ¢=7, w2=
a2+ 2ar+ 12 = (r+ a)?2 so that w = r+a. In addition, we have

2wdw = Z2arsing de
a?+r2 — w? w2 — a2 + 12
r—acosé = r—a =
2ar 2r
Then (4) becomes
“ F = 7Gaom n f”a 1+ 2 — a2>dw _ 47Ga’gmn
- r2 w? 72

Work Problem 5.29 if r < a.

In this case the force is also given by (4) of Problem 5.29. However, in evaluating the
integral we note that on making the substitution (3) of Problem 5.29 that ¢ = 0 yields w? = (a —7)?
or w=a—7r if r < a. Then the result (4) of Problem 5.29 becomes

a+r 2 __ 42
F = ——”G‘;‘;m“f <1—aw2'r>dw =0

a—r

Thus there will be no force of attraction of a spherical shell on any mass placed inside. This
means that in such case a particle will be in equilibrium inside of the shell.

Prove that the force of attraction in Problem 5.29 is the same as if all the mass of
the spherical shell were concentrated at its center.

The mass of the shell is M = 4za%. Thus the force is F = (GMm/r2)n, which proves the
required result.

(¢) Find the force of attraction of a solid uniform sphere on a mass m placed outside
of it and (b) prove that the force is the same as if all the mass were concentrated

at its center.
(¢) We can subdivide the solid sphere into thin concentric spherical shells. If p is the distance

of any of these shells from the center and dp is the thickness, then by Problem 5.29 the
force of attraction of this shell on the mass m is
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Go(dmp2d
o ‘rrpz o)m n )

where ¢ is the mass per unit volume. Then the total force obtained by integrating from
r=0 to r=a is

dF

a G((7a3)omn
F = 4vGaan'p2dp 3

7-2 A - r2 (2 )

(b) Since the mass of the sphere is M = $zads, (2) can be written as F = (GMm/r*)n, which
shows that the force of attraction is the same as if all the mass were concentrated at
the center.

We can also use triple integration to obtain this result [see Problem 5.130].

5.33. Derive the result of Problems 5.29 and 5.30 by first finding the potential due to the
mass distribution.

The potential dV due to the element ABCDA is
v o= — G(27a20 sin 6 do)m - G(27a2e sin 6 do)m

w Va2 + 72 — 2ar cos 6

Then the total potential is

V = —2:Gatem fﬂ sin 6 do
o Va2+ 72— 2arcosé

- __27,-G:am V@t~ Va—)

2,
If r>a this yields vV = _4_’1.‘?.;2’1 - _Gf‘fm

If r<a it yields V = —4rGaom

Then if r > a the force is ]

F - vV = -v (_GMm> _ _Gllf.;mrl
r 7
and if r < a the force is
F = —-VV = —V(—4rGaom) = 0

in agreement with Problems 5.29 and 5.30.

MISCELLANEOUS PROBLEMS

5.34. An object is projected vertically upward from the earth’s surface with initial
speed vo. Neglecting air resistance, (a) find the speed at a distance H above the

earth’s surface and (b) the smallest velocity of projection needed in order that the
object never return.

(a) Let r denote the radial distance of the object at time ¢
from the center of the earth, which we assume is fixed
[see Fig. 5-14]. If M is the mass of the earth and R is
its radius, then by Newton’s universal law of gravitation
and Problem 5.29, the force between m and M is
__GMm

F = r2 ry (1)

where r; is a unit vector directed radially outward from
the earth’s center in the direction of motion of the object.

If v is the speed at time ¢, we have by Newton’s sec-
ond law, Fig.5-14
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dv. _ _ GMm dv _ GM
moarr = _Trl or P 7R (2)
This can be written as
dvdr _ GM dv _ _GM
ra- "2 T VT e @
Then by integrating, we find v2/2 = GM/r + ¢, 4)

Since the object starts from the earth’s surface with speed vy, we have v =v, when r =R
so that ¢; = v3/2— GM/R. Then (4) becomes

1 1
v = 2GM <;_E> + ) ®
Thus when the object is at height H above the earth’s surface, iie. r= R+ H,
s 11 — .2 . _2GMH
v 2GM<R+H E) TN T % REt B
. _ .,  2GMH
ie., v = % T RE+H)
Using Problem 5.24, this can be written
RH
v o= g% 1?]+ H ()
(b) As H — », the limiting speed (6) becomes
\/'v(z) — 2GM/R or \/'vg — 29R (7)
. . H _ - s .
since ggnw ®¥E 1. The minimum initial speed occurs where (?) is zero or where
vy = V2GM/R = V/2gR 8)

This minimum speed is called the escape speed and the corresponding velocity is called the
escape velocity from the earth’s surface.

Show that the magnitude of the escape velocity of an object from the earth’s surface
is about 7 mi/sec.

From equation (8) of Problem 5.34, v, = V2gR. Taking g = 32 ft/sec® and R = 4000 mi,
we find v, = 6.96 mi/sec.

Prove, by using vector methods primarily, that the path of a planet around the sun
is an ellipse with the sun at one focus.

Since the force F between the planet and sun is

dv GMm
F=m% = ""pn @
dv = _GM
we have @& - T an 2

Also, by Problem 5.1, equation (4), we have
rXxv =nh 3

dr
dr _ r—=t +%r1. Thus from (3),

dt = dt d
drl dr _ 2 drl
T @) T Xy “)

Now since r =rr;, v =

h = rXv = frr1><<
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From (2),

dv _ GM

dry
—=—rXh = —GMr; X (rl X -(ﬁ>

dr, dry
-GM <"1 * 'ﬁ)rl = (ry*ry) al =

using equation (4) above and equation (7), page 5.

Il

But since h is a constant vector, j‘cll_‘; Xh = —‘%(v X h) so that
d - ar
r7 (vxh) = GM at

Integrating, vXh = GMr; +¢

from which

r(vxh) = GMrery + r¢c = GMr + rryrc =

GMr + re cos 6

dl'l

GM ——

dt
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where ¢ is an arbitrary constant vector having magnitude ¢, and ¢ is the angle between ¢ and r,.

Since re(vXh)=(rXv)*h=h-+h=~hA% [see Problem 1.72(a), page 27],

h2 = GMr + rccosé
g h2 _ h2/GM
and so r GM + ¢ cos 6 1+ (c/GM) cos 6

which is the equation of a conic. Since the only conic which is a closed curve is an ellipse, the

required result is proved.

Prove that the speed v of a particle moving in an elliptical path in an inverse square

field is given by

» - K21
o r a
where a is the semi-major axis.

By (8) of Problem 5.13, (4) of Problem 5.14 and (3) of Problem 5.17, we have

mh? 2Emh2?
p =g T oal-d) = “<" 7€ )
from which E = —K/2a
Thus by the conservation of energy we have, using V = —K/r,
K
imv? = E — vV = —% + >
, _ K (2 1>

or 2 = =(===
m\r a

We can similarly show that for a hyperbola,

o = £<z+;)
m r a

while for a parabola [which corresponds to letting @ = « in either (3) or (4)],

v2 = 2K/mr

@

@

8

(4)

An artificial (man-made) satellite revolves about the earth at height H above the
surface. Determine the (a) orbital speed and (b) orbital period so that a man in the

satellite will be in a state of weightlessness.

() Assume that the earth is spherical and has radius R. Weightlessness will result when the
centrifugal force [equal and opposite to the centripetal force, i.e. the force due to the cen-
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5.40.
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tripetal acceleration] acting on the man due to rotation of the satellite just balances his
attraction to the earth. Then if v, is the orbital speed,

2
my  GMm _ gRm R
R+H -~ R+H2 - ®+EE o v =grgVE+Hyg

If H is small compared with R, this is V/Rg approximately.

distance traveled in one revolution

(®) Orbital speed time for one revolution, or period
Thus v w

Then from part (a)

p - 2(R+H) _ <R+H> R+ H
= =E=12 = 2, ,f
Vo R g

If H is small compared with R, this is 27V R/g approximately.

Calculate the (a) orbital speed and (b) period in Problem 5.38 assuming that the
height H above the earth’s surface is small compared with the earth’s radius. |

Taking the earth’s radius as 4000 miles and g = 32 ft/sec?, we find (a) vy = VRg =
4.92 mi/sec and (b) P = 27V/R/g = 1.42 hr = 85 minutes, approximately.

Find the force of attraction of a solid sphere of radius ¢ on a particle of mass m at
a distance b < a from its center.
By Problem 5.30 the force of attraction of any spherical

shell containing m in its interior [such as the spherical shell
shown dashed in Fig. 5-15] is zero.

Thus the force of attraction on m is the force due to a
sphere of radius b < a with center at O. If o is the mass
per unit volume, the force of attraction is

G(irb3om/b2 = ($rGom)b

Thus the force varies as the distance b from the mass to the
center, Fig. 5-15

Supplementary Problems

CENTRAL FORCES AND EQUATIONS OF MOTION

5.41.

5.42.

5.43.

Indicate which of the following central force fields are attractive toward origin O and which
are repulsive from O. (a) F=—4r%r; (b) F=Kr/Vr, K>0; (¢} F=rr—1r/(r2+1);
(d) F = singrr,.

Ans. (a) attractive; (b) repulsive; (¢) attractive if 0 <r <1, repulsive if » > 1; (d) repulsive for
2n <r <2n-+1, attractive for 2n+1<7r<2n+2 where n=10,1,2,3....

Prove that in rectangular coordinates the magnitude of the areal velocity is %(xz}—ya‘c).

Give an example of a force field directed toward a fixed point which is not a central force field.
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5.44.  Derive equation (?), page 117.

5.45. If a particle moves in a circular orbit under the influence of a central force at its center, prove that
its speed around the orbit must be constant.

5.46. A particle of mass m moves in a force field defined by F = —Kr/r3. If it starts on the positive
x axis at distance @ away from the origin and moves with speed vy in direction making angle
« with the positive # axis, prove that the differential equation for the radial position » of the
particle at any time ¢ is 2 (K — mazvﬁ sin? a)

dae mr3

5.47.  (a) Show that the differential equation for the orbit in Problem 5.46 is given in terms of u = 1/r by

d2u — - K
7 + 1=y = 0 where vy = ma%g .

(b) Solve the differential equation in (a) and interpret physically.

5.48. A particle is to move under the influence of a central force field so that its orbital speed is
always constant and equal to vo. Determine all possible orbits.

POTENTIAL ENERGY AND CONSERVATION OF ENERGY

549. Find the potential energy or potential corresponding to the central force fields defined by
(@) F=—Kry/r3, (b) F = (a/r2+B/r3r;, (¢) F=Krr;,, (d) F=r/V7, (¢) F =singr ;.
Ans. (@) —K/2r2, (b) ofr + B/2r%, (c) K72, (d) 2V7, (e) (coswr)/x

5.50. (a) Find the potential energy for a particle which moves in the force field F = —Kr,/r2. (b) How
much work is done by the force field in () in moving the particle from a point on the circle
r=a > 0 to another point on the circle » = b > 0? Does the work depend on the path? Explain.

Ans. (@) —K/r, (b) K(a — b)/ab
5.51. Work Problem 5.50 for the force field F = —Kr,/r. Ans. () —KInr, (b) —K In (a/b)

5.52. A particle of mass m moves in a central force field defined by F = —Kr,/r3. (a) Write an equation
for the conservation of energy. (b) Prove that if E is the total energy supplied to the particle,

then its speed is given by v = VK/mr2+ 2E/m.

5.53. A particle moves in a central force field defined by F = —Kr?r;. It starts from rest at a point
on the circle r = a. (a) Prove that when it reaches the circle r = b its speed will be

V2K(a® — b%)/3m and that (b) the speed will be independent of the path.

554. A particle of mass m moves in a central force field F = Kr;/r® where K and n are constants.
It starts from rest at » =« and arrives at » = 0 with finite speed vg. (a) Prove that we must

have » <1 and K >0. (b) Prove that v, = V2Kal-"/m(n—1). (¢) Discuss the physical sig-
nificance of the results in (a).

5.55. By differentiating both sides of equation (13), page 117, obtain equation (6).

DETERMINATION OF ORBIT FROM CENTRAL FORCE OR
CENTRAL FORCE FROM ORBIT

5.56. A particle of mass m moves in a central force field given in magnitude by f(r) = —Kr where
K is a positive constant. If the particle starts at r =a, § =0 with a speed vy in a direction
perpendicular to the x axis, determine its orbit. What type of curve is described?

5.57. (a) Work Problem 5.56 if the speed is v, in a direction making angle « with the positive x axis.
(b) Discuss the cases a=0, a=7 and give the physical significance.
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5.61.

5.62.

5.63.

5.64.

5.65.

5.66.

5.67.

5.68.
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A particle moving in a central force field located at » = 0 describes the spiral r = e~¢. Prove
that the magnitude of the force is inversely proportional to 3.

Find the central force necessary to make a particle
describe the lemniscate 72 = a2 cos 26 [see Fig. 5-16]. v

Ans. A force proportional to 7. 72 = a? cos 20

Obtain the orbit for the particle of Problem 5.46 and
describe physically.

Prove that the orbits » = e¢~¢ and r = 1/¢ are both
possible for the case of an inverse cube field of force.
Explain physically how this is possible. Fig. 5-16

(a) Show that if the law of force is given by .
Ar, Br,

F = 7 cos 6 or F =

72 cos3 ¢
then a particle can move in the circular orbit » = 2a coss. (b) What can you conclude about

the uniqueness of forces when the orbit is specified? (¢) Answer part (b) when the forces are
central forces.

(a) What central force at the origin O is needed to make a particle move around O with a speed
which is inversely proportional to the distance from O. (b) What types of orbits are possible in
such case? Ans. (a) Inverse cube force.

Discuss the motion of a particle moving in a central force field given by F = (a/r2+ g/r3)r;.
Prove that there is no central force which will enable a particle to move in a straight line.

Complete the integration of equation (12) of Problem 5.13, page 125 and thus arrive at equation
(5) of the same problem. [Hint. Let r = 1/u.]

Suppose that the orbit of a particle moving in a central force field is given by 6 = é(r). Prove
mh2[20’ + ro’’ + r2(6")3]
r5(6")3

that the law of force is where primes denote differentiations with

respect to .

(a) Use Problem 5.67 to show that if & = 1/, the central force is one of attraction and varies
inversely as 3. (b) Graph the orbit in (a) and explain physically.

CONIC SECTIONS. ELLIPSE, PARABOLA AND HYPERBOLA

5.69.

5.70.

5.71.

5.72.

12

3+ cose’
(c¢) the length of the major axis, (d) the length of the minor axis, (e¢) the distance from the center

to the directrix.

The equation of a conic is r = Graph the conic, finding (a) the foci, (b) the vertices,

24

Work Problem 5.69 for the conic r = -—————.
3+ 5cose

Show that the equation of a parabola can be written as r = p sec2(6/2).

Find an equation for an ellipse which has one focus at the origin, its center at the point (—4,0),
and its major axis of length 10. Ans. r = 9/(56 + 4 cos6)
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5.73.

5.74.

5.75.

5.76.

5.77.

In Fig. 5-17, SR or TN is called the minor axis of

the hyperbola and its length is generally denoted

by 2b. The length of the major axis VU is 2a,

while the distance between the foci O and O’ is 2¢

[i.e. the distance from the center C to a focus O

or 0’ is CJ.

(a) Prove that ¢2 = a2+ b2,

(b) Prove that b = aye2—1 where ¢ is the eccen-
tricity.

(¢) Prove that ¢ = ae. Compare with results for
the ellipse. Fig.5-17

Derive equation (22), page 119, for a hyperbola.

In rectangular coordinates the equations for an ellipse and hyperbola in standard form are given by
a2 | oy &2 g2
gty =1 md 5oy

respectively, where a and b are the lengths of the semi-major and semi-minor axes. Graph these

equations, locating vertices, foci and directrices, and explain the relation of these equations to

equations (19), page 118, and (22), page 119.

=1

Using the alternative definitions for an ellipse and hyperbola given on pages 118-119, obtain the
equations (19) and (22).

Prove that the angle between the asymptotes of a hyperbola is 2 cos—1(1/e).

KEPLER’S LAWS AND NEWTON’S LAW OF GRAVITATION

5.78.

5.79.

5.80.

5.81.

5.82.

5.83.

5.84.

Assuming that the planet Mars has a period about the sun equal to 687 earth days approximately,
find the mean distance of Mars from the sun. Take the distance of the earth from the sun as
93 million miles. Ans. 140 million miles

Work Problem 5.78 for (a) Jupiter and (b) Venus which have periods of 4333 earth days and
225 earth days respectively. Ans. (a) 484 million miles, (b) 67 million miles

Suppose that a small spherical planet has a radius of 10 km and a mean density of 5 gm/cm3.

() What would be the acceleration due to gravity at its surface? (b) What would a man weigh
on this planet if he weighed 80 kg wt on earth?

If the acceleration due to gravity on the surface of a spherically shaped planet P is gp while its
mean density and radius are given by op and Rp respectively, prove that gp = $7GRpop where G
is the universal gravitational constant.

If L,M, T represent the dimensions of length, mass and time, find the dimensions of the universal
gravitational constant. Ans. L3BM—1T—2

Calculate the mass of the sun using the fact that the earth is approximately 150 X 106 kilometers
from it and makes one complete revolution about it in approximately 365 days. Ans. 2 X 1030 kg

Calculate the force between the sun and the earth if the distance between the earth and the sun is
taken as 150 X 106 kilometers and the masses of the earth and sun are 6 X 102¢ kg and 2 X 1030 kg
respectively. Ans. 1,16 X 1024 newtons

ATTRACTION OF OBJECTS

5.85.

5.86.

Find the force of attraction of a thin uniform rod of length a¢ on a mass m outside the rod but on
the same line as the rod and distance b from an end. Ans. GMm/b(a + b)

In Problem 5.85 determine where the mass of the rod should be concentrated so as to give the
same force of attraction. Ans. At a point in the rod a distance Vb(a + b) — b from the end
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5.87.

5.88.

5.89.

5.90.

5.91.

5.92.

5.93.

5.94.

5.95.

5.96.

5.97.
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Find the force of attraction of an infinitely long thin uniform rod on a mass m at distance b
from it. Ans. Magnitude is 2Gma/b

A uniform wire is in the form of an arc of a circle of radius b and central angle y. Prove that
the force of attraction of the wire on a mass m placed at the center of the circle is given in

magnitude by
2GMm sin (y/2) or 2Goem sin (¢/2)

b2y b
where M is the mass of the wire and ¢ is the mass per unit length. Discuss the cases y = w2
and ¢y = 7.

In Fig. 5-18, AB is a thin rod of length 2a and m
is a mass located at point C a distance b from the
rod. Prove that the force of attraction of the rod
on m has magnitude
GMm
ab

sin 3(a+ B)

in a direction making an angle with the rod

given by
tan—1 cos B + cosa
sinB —sina

Discuss the case « = 8 and compare with Prob-
lem 5.26. Fig.5-18

By comparing Problem 5.89 with Problem 5.88, prove that the rod of Problem 5.89 can be
replaced by a wire in the form of circular arc DEG [shown dashed in Fig. 5-18] which has its
center at C and is tangent to the rod at E. Prove that the direction of the attraction is toward
the midpoint of this are.

A hemisphere of mass M and radius ¢ has a particle of mass m located at its center. Find the
force of attraction if (a) the hemisphere is a thin shell, (b) the hemisphere is solid.

Ans. (a) GMm/2a2, (b) 36 Mm/2a2
Work Problem 5.91 if the hemisphere is a shell having outer radius a and inner radius b.

Deduce from Kepler’s laws that if the force of attraction between sun and planets is given in
magnitude by ym/r2, then y must be independent of the particular planet.

A cone has height H and radius . Prove that the force of attraction on a particle of mass m
o)
a2+ H2 '

Find the force of attraction between two non-intersecting spheres.

placed at its vertex has magnitude 6Ggm <1 —

A particle of mass m is placed outside of a uniform solid hemisphere of radius a at a distance a
on a line perpendicular to the base through its center. Prove that the force of attraction is

given in magnitude by GMm(V/2 — 1)/a>.

Work (a) Problem 5.26, (b) Problem 5.27, and (c¢) Problem 5.94 by first finding the potential.

MISCELLANEOUS PROBLEMS

5.98.

A particle is projected vertically upward from the earth’s surface with initial speed v,.
(@) Prove that the maximum height H reached above the earth’s surface is H = vZR/(2gR — v}).

(b) Discuss the significance of the case where v3 = 2gR.
(¢) Prove that if H is small, then it is equal to v3/2g very mnearly.
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5.99.

5.100.

5.101.

5.102.

5.103.

5.104.

5.105.

5.106.

5.107.

5.108.

5.109.

5.110.

5.111,

5.112.

(a) Prove that the time taken to reach the maximum height of Problem 5.98 is

R+H| [H R+H _, R—H>
29 R 2R % \R+H

(b) Prove that if H is very small compa:red with R, then the time in (a) is very nearly y2H/g.

(a) Prove that if an object is dropped to the earth’s surface from a height H, then if air
resistance is negligible it will hit the earth with a speed v = V29RH/(R+ H) where R is
the radius of the earth.

(b) Calculate the speed in part (a) for the cases where H = 100 miles and H = 10,000 miles
respectively. Take the radius of the earth as 4000 miles.

Find the time taken for the object of Problem 5.100 to reach the earth’s surface in each of
the two cases.

What must be the law "of force if the speed of a particle in a central force field is to be
proportional to r—» where n is a constant?

What velocity must a space ship have in order to keep it in an orbit around the earth at a
distance of (a) 200 miles, (b) 2000 miles above the earth’s surface?

An object is thrown upward from the earth’s surface with velocity vy. Assuming that it returns
to earth and that air resistance is negligible, find its velocity on returning.

() What is the work done by a space ship of mass m in moving from a distance a above the
earth’s surface to a distance b?

(b) Does the work depend on the path? Explain. Ans. (a) GmM(a — b)/ab

(a) Prove that it is possible for a particle to move in a circle of radius @ in any central force
field whose law of force is f(r).

(b) Suppose the particle of part (a) is displaced slightly from its circular orbit. Prove that
it will return to the orbit, i.e. the motion is stable, if

af'(a) + 8f(a) > 0
but is unstable otherwise.

(¢) Ilustrate the result in (b) by considering f(r) = 1/r® and deciding for which values of =
stability can occur. Ans. (¢) For n <3 there is stability.

If the moon were suddenly stopped in its orbit, how long would it take to fall to the earth
assuming that the earth remained at rest? Amns. About 4 days 18 hours

If the earth were suddenly stopped in its orbit, how long would it take for it to fall into the sun?
Ans. About 65 days

Work Problem 5.34, page 138, by using energy methods.

Find the velocity of escape for an object on the surface of the moon. Use the fact that the
acceleration due to gravity on the moon’s surface is approximately 1/6 that on the earth and
that the radius of the moon is approximately 1/4 of the earth’s radius. Amns. 1.5 mi/sec

An object is dropped through a hole bored through the center of the earth. Assuming that the
resistance to motion is negligible, show that the speed of the particle as it passes through the
center of the earth is slightly less than 5 mi/sec.

[Hint. Use Problem 5.40, page 136.]

In Problem 5.111 show that the time taken for the object to return is about 85 minutes.
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5.113.

5.114.

5.115.

5.116.

5.117.

5.118.

5.119.

5.120.

5.121.

5.122.

5.123.

5.124.

5.125.

5.126.

5.127.

5.128.

5.129.

5.130.

5.131.

5.132.

5.133.

CENTRAL FORCES AND PLANETARY MOTION [CHAP. 5
Work Problems 5.111 and 5.112 if the hole is straight but does not pass through the center of
the earth.
Discuss the relationship between the results of Problems 5.111 and 5.112 and that of Problem 5.39.
How would you explain the fact that the earth has an atmosphere while the moon has none?
Prove Theorem 5.1, page 120.
Discuss Theorem 5.1 if the spheres intersect.

Explain how you could use the result of Problem 5.27 to find the force of attraction of a solid
sphere on a particle.

Find the force of attraction between a uniform circular ring of outer radius o and inner radius b
and a mass m located on its axis at a distance b from its center.

Two spuace ships move about the earth on the same elliptical path of eccentricity e. If they are
separated by a small distance D at perigee, prove that at apogee they will be separated by the
distance D(1 —€)/(1 + ).

(@) Explain how you could calculate the velocity of escape from a planet. (b) Use your method to
calculate the velocity of escape from Mars. Ans. (b) 5 km/sec, or about 3 mi/sec

Work Problem 5.121 for (a) Jupiter, (b) Venus. Ans. (a) about 38 mi/sec, (b) about 6.3 mi/sec
Three infinitely long thin uniform rods having the same mass per unit length lie in the same plane

and form a triangle. Prove that force of attraction on a particle will be zero if and only if the
particle is located at the intersection of the medians of the triangle.

Find the force of attraction between a uniform rod of length a and a sphere of radius b if they
do not intersect and the line of the rod passes through the center.

Work Problem 5.124 if the rod is situated so that a line drawn from the center perpendicular to the
line of the rod bisects the rod. :

A satellite of radius a revolves in a circular orbit about a planet of radius b with period P.
If the shortest distance between their surfaces is ¢, prove that the mass of the planet is
472(a + b + ¢)3/GP2.

Given that the moon is approximately 240,000 miles from the earth and makes one complete
revolution about the earth in 27} days approximately, find the mass of the earth.

Ans. 6 X 102¢ kg

Discuss the relationship of Problem 5.126 with Kepler’s third law.

Prove that the only central force field F whose divergence is zero is an inverse square force field.
Work Problem 5.32, page 132, by using triple integration.

A uniform solid right circular cylinder has radius @ and height H. A particle of mass m is placed

on the extended axis of the cylinder so that it is at a distance D from one end. Prove that the
force of attraction is directed along the axis and given in magnitude by

2%{[’” (H+Va?+D2— Va2 + (D+H?)

Suppose that the cylinder of Problem 5.131 has a given volume. Prove that the force of attraction
when the particle is at the center of one end of the cylinder is a maximum when a/H = §(9 — V17).

Work (a) Problem 5.26 and (b) Problem 5.27 assuming an inverse cube law of attraction.
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5.134.

5.135.

5.136.

5.137.

5.138.

5.139.

5.140.

5.141.

5.142.

5.143.

5.144.

5.145.

5.146.

Do the results of Problems 5.29 and 5.30 apply if there is an inverse cube law of attraction?
Explain.

What would be the velocity of escape from the small planet of Problem 5.80?

A spherical shell of inner radius @ and outer radius b has constant density o. Prove that the
gravitational potential V(r) at distance » from the center is given by

[ 2ra(b2 — a2) r<a
V(r) = 270(b%—1r?) — 4roa3/3r a <r<b
lew(b3 —a’)/3r r>b

If Einstein’s theory of relativity is taken into account, the differential equation for the orbit
of a planet becomes & K
Yru = S 4 yu?

de? mh2

where y = 8K/me?, ¢ being the speed of light. (a) Prove that if axes are suitably chosen, then
the position r of the planet can be determined approximately from

mh2/K

—_— = 1— yK/mh2
1 + €cos ag where  a vK/m

r =
(b) Use (a) to show that a planet actually moves in an elliptical path but that this ellipse slowly
rotates in space, the rate of angular rotation being 27yK/mh2. (c) Show that in the case of
Mercury this rotation amounts to 43 seconds of arc per century. This was actually observed, thus
offering experimental proof of the validity of the theory of relativity.

Find the position of a planet in its orbit around the sun as a function of time ¢ measured from
where it is furthest from the sun.

At apogee of 200 miles from the earth’s surface, two space ships in the same elliptical path are
500 feet apart. How far apart will they be at perigee 150 miles assuming that they drift without
altering their path in any way?

A particle of mass m is located on a perpendicular line through the center of a rectangular plate
of sides 2a and 2b at a distance D from this center. Prove that the force of attraction of the plate
on the particle is given in magnitude by

GMm . < ab )
5 sin
ab Va2 + D42 + D2)

Find the force of attraction of a uniform infinite plate of negligible thickness and density o
on a particle at distance D from it. Ans. 2reGm

Points where 7 =0 are called apsides [singular, apsis]. (a) Prove that apsides for a central
force field with potential V(r) and total energy E are roots of the equation V(r)+ h2/2¢2 = E.
(b) Find the apsides corresponding to an inverse square field of force, showing that there are
two, one or none according as the orbit is an ellipse, hyperbola or parabola.

A particle moving in a central force field travels in a path which is the cycloid r = a(l — cos ).
Find the law of force. Ans. Inverse fourth power of r.

Set up equations for the motion of a particle in a central force field if it takes place in a medium
where the resistance is proportional to the instantaneous» speed of the particle.

A satellite has its largest and smallest orbital speeds given by vax and v, respectively. Prove
v — U

that the eccentricity of the orbit in which the satellite moves is equal to —T1&x _ min,

max + VUmin

Prove that if the satellite of Problem 5.145 has a period equal to 7, then it moves in an elliptical
path having major axis whose length is Z+V/v_,, Vpain -
T



Chapter 6

NON-INERTIAL COORDINATE SYSTEMS

In preceding chapters the coordinate systems used to describe the motions of particles
were assumed to be inertial [see page 33]. In many instances of practical importance,
however, this assumption is not warranted. For example, a coordinate system fixed in
the earth is not an inertial system since the earth itself is rotating in space. Consequently
if we use this coordinate system to describe the motion of a particle relative to the earth
we obtain results which may be in error. We are led therefore to consider the motion of

particles relative to moving coordinate systems.

ROTATING COORDINATE SYSTEMS

In Fig. 6-1 let XYZ denote an inertial coordinate
system with origin O which we shall consider fixed
in space. Let the coordinate system xyz having the
same origin O be rotating with respect to the XYZ
system.

Consider a vector A which is changing with
time. To an observer fixed relative to the xyz system
the time rate of change of A = A;i+ Aqj+ Ask is
found to be

dA|  _ dAy | dAs, | dAy
G = @it @itgr 0
where subscript M indicates the derivative in the
moving (xyz) system.

However, the time rate of change of A relative
to the fixed XY Z system symbolized by the subscript

F is found to be [see Problem 6.1] Fig. 6-1
dA| _ dA
Al = del T XA ®

where o is called the angular velocity of the zyz system with respect to the XYZ system.

DERIVATIVE OPERATORS

Let D, and D, represent time derivative operators in the fixed and moving systems.
Then we can write the operator equivalence

D, = DM+“’>< €))]

F

This result is useful in relating higher order time derivatives in the fixed and moving
systems. See Problem 6.6.

144
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VELOCITY IN A MOVING SYSTEM

If, in particular, vector A is the position vector r of a particle, then (2) gives

% F = % M + oxXr (4)
or Dr = Dyx + oXr 5)
Let us write
Vo = dr/dt|, = D.r = velocity of particle P relative to fixed system

Vou = dr/dt], = D,r = velocity of particle P relative to moving system
Vyp = @XT = velocity of moving system relative to fixed system.

Then (4) or (5) can be written
“) (%) Veir = Ve T Vagr (6)

ACCELERATION IN A MOVING SYSTEM

If D} = d¥d#*|, and D] = d?/dt?|, are second derivative operators with respect to ¢
in the fixed and moving systems, then application of (3) yields [see Problem 6.6]

Dx = DIr + (Dyo)Xr + 20X D,xr + o X (o Xr) ()
Let us write

a,, = dr/dt®|r = DXxr = acceleration of particle P relative to fixed system
a,, = dr/dt*|,, = D2r = acceleration of particle P relative to moving system

ayr = (Dye)Xr + 20 XDyr + o X (o Xr)

= acceleration of moving system relative to fixed system

Then (7) can be written
aPIF = aPIM + aMIF (8)

CORIOLIS AND CENTRIPETAL ACCELERATION

The last two terms on the right of (7) are called the Coriolis acceleration and centripetal
acceleration respectively, i.e.,

Coriolis acceleration = 20X Dyr = 20 Xv, 9)

Centripetal acceleration = o X (0 X 1) (20)

dt M> xr (21)

and D, is called the angular acceleration. For many cases of practical importance [e.g. in
the rotation of the earth] o is constant and D, = 0.

The quantity —e X (e X r) is often called the centrifugal acceleration.

The second term on the right of (7) is sometimes called the linear acceleration, i.e.,
Linear acceleration = (D,e) Xr = <@

MOTION OF A PARTICLE RELATIVE TO THE EARTH

Newton’s second law is strictly applicable only to inertial systems. However, by using
(7) we obtain a result valid for non-inertial systems. This has the form

mell‘ = F — m(DM@) Xr — 2mfe X DM].‘) — Mo X (o X r) (12)

where F is the resultant of all forces acting on the particle as seen by the observer in the
fixed or inertial system.
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In practice we are interested in expressing the equations of motion in terms of quantities
as determined by an observer fixed on the earth [or other moving system]. In such case
we may omit the subscript M and write (12) as .

.o

dt?

For the case of the earth rotating with constant angular  about its axis, =0 and
(13) becomes &r

™ ae

= F — m(eXr) — 2m(e Xv) — Mo X (o Xr)] (1%)

= F — 2m(¢o><V) — m[wX(er)] (14)

CORIOLIS AND CENTRIPETAL FORCE
Referring to equations (13) or (14) we often use the following terminology

Coriolis force = 2m(o X1) = 2m(0 X V)
Centripetal force = Mo X (0 X 1)]

Centrifugal force = —m[o X (0 X )]

MOVING COORDINATE SYSTEMS IN GENERAL

In the above results we assumed that the coordi-
nate systems zyz and XYZ [see Fig. 6-1] have com-
mon origin 0. In case they do not have a common
origin, results are easily obtained from those already
considered.

Suppose that R is the position vector of origin €
relative to origin O [see Fig. 6-2]. Then if R and
R denote the velocity and acceleration of Q relative
to O, equations (5) and (?) are replaced respectively
by

DFl‘ = R + DMr + oXr
. dr
= R + % + o XFr (15)
Fig. 6-2

and D = R+ Dir + (Dyo)Xr + 20X Dyr + X (0 X1)
' LXd 2

= R+—3Tl;+¢;)><l‘+2m><v+m><(m><r) (16)
Similarly equation (14) is replaced by

2 X
m‘;_tg = F — 2m(exv) — mex (axr)] — mi @)

THE FOUCAULT PENDULUM

Consider a simple pendulum consisting of a long string and heavy bob suspended
vertically from a frictionless support. Suppose that the bob is displaced from its equilibrium
position and is free to rotate in any vertical plane. Then due to the rotation of the earth,
the plane in which the pendulum swings will gradually precess about a vertical axis. In the
northern hemisphere this precession is in the clockwise direction if we look down at the
earth’s surface. In the southern hemisphere the precession would be in the counterclock-
wise direction.

Such a pendulum used for detecting the earth’s rotation was first employed by Foucault
in 1851 and is called Foucault’s pendulum.
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Solved Problems

ROTATING COORDINATE SYSTEMS

6.1.

An observer stationed at a point which is fixed relative to an xyz coordinate system
with origin O [see Fig. 6-1, page 144] observes a vector A = A;i+ A;j+Ask and

calculates its time derivative to be d—Al + d;tz + d;;zk Later, he finds that he

and his coordinate system are actually rotatlng with respect to an XYZ coordinate
system taken as fixed in space and having origin also at O. He asks, “What would
be the time derivative of A for an observer who is fixed relative to the XYZ coordi-
nate system ?”’

If dt I %IM denote respectively the time derivatives of A relative to the
fixed and moving systems, show that there exists a vector quantity e such that
dA
dtlr = dtlw T eXA

To the fixed observer the unit vectors i,j,k actually change with time. Hence such an
observer would compute the time derivative as

dA _ dAy = dA,, dAg dj dk

G = @it gt gkt A‘dt + A+ Ay @)
. dA _ dA dj
Le., dtlr = dtlm T Aldt tAeg A"‘dt ®

Since i is a unit vector, di/dt is perpendicular to i and must therefore lie in the plane
of j and k. Then

di/dt = agj + ak 8)
Similarly, dj/dt = agk + a4i 4)
dk/dt = agi + agj ¥)

. e . e . di . .. di di
From i-j=0, differentiation yields i- d +a~ j=0. But i qar = from (4) and at j=aoy

from (3). Thus a4y = —a;.

Similarly from i*k =0, i- dk + ﬂ-k =0 and a5 = —ay; from j*k =0, j--d£+ ﬂ-k =0
dt dt =~ dt
and g = —az. Then
di/dt = ayj + agk, djfdt = agk — ayi, dk/dt = —azi — a3j

It follows that

dj . .
Al 4+ Azdt + As = (—ayAg —agAg)i + (014, — azAg)j + (apd; + azAr)k 6)
which can be written as
i j k
ag  Tay
Ay Ay A4,

Then if we choose a3 = w;, —ag = ws, @3 = wz this determinant becomes

i i k
@ Wy w3 = oXA
Ay Ay A

where o = o;i + wof + wgk,
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From (2) and (6) we find, as required,

dA

qt + o X A

_ 1&‘
F dt |y

The vector quantity e is the angular velocity of the moving system relative to the fixed system.

6.2. Let D, and D,, be symbolic time derivative operators in the fixed and moving systems
respectively. Demonstrate the operator equivalence

DF = DM—I—wX

By definition DrA = tfl—? = derivative in fixed system
F
dA e ea :
DyA = at = derivative in moving system
M
Then from Problem 6.1,
DpA = DyA + o XA = (Dy+ eX)A

which shows the equivalence of the operators Dp = Dy + o X.

6.3. Prove that the angular acceleration is the same in both XYZ and zyz coordinate

systems. 1
Let A = o in Problem 6.1. Then
do do do
_ — —_ X = —_
dat |p dtl, T eXe dat |y

Since de/dt is the angular acceleration, the required statement is proved.

VELOCITY AND ACCELERATION IN MOVING SYSTEMS

6.4. Determine the velocity of a moving particle as seen by the two observers in

Problem 6.1.
Replacing A by the position vector r of the particle, we have
dr __dr
E-t_ - = dt M + o Xr (1)

If r is expressed in terms of the unit vectors i,j,k of the moving coordinate system, then the
velocity of the particle relative to this system is, on dropping the subscript M,

e _ dw. dy . dz
& — art Tad T gk @
and the velocity of the particle relative to the fixed system is from (1)
dr _ dr
'(% - == dt + o Xr (3)

The velocity (3) is sometimes called the true velocity, while (2) is the apparent velocity.

6.5. An zyz coordinate system is rotating with respect to an XYZ coordinate system
having the same origin and assumed to be fixed in space [i.e. it is an inertial system].
The angular velocity of the xyz system relative to the XYZ system is given by
o = 2ti — £3j + (2t + 4)k where ¢ is the time. The position vector of a particle at
time t as observed in the zyz system is given by r = (t2+1)i — 6¢j + 4°%k. Find
(¢) the apparent velocity and (b) the true velocity at time ¢=1.
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6.6.

6.7.

(a) The apparent velocity at any time ¢ is
dr/dt = 2ti — 6j + 12¢2%k
At time ¢t =1 thisis 2i — 6j + 12k.

(b) The true velocity at any time ¢ is
dr/dt + wXr = (2ti—6j+ 1262k) + [2ti — t2j + (2t + 4)k] X [(£2 + 1)i — 6tj + 4£3K]
At time t =1 thisis

i § k
2 —6j 4+ 12k + |2 —1 6| = 34i — 2j + 2k
2 —6 4

Determine the acceleration of a moving particle as seen by the two observers in
Problem 6.1.

The acceleration of the particle as seen by the observer in the fixed XYZ system is
Dpr = Dp(Dpr). Using the operator equivalence established in Problem 6.2, we have

Dp(Dpr) = Dp(Dyr + o X71)
= Dy +oX )Dyr+ oXr)
= Dy(Dyr+ eXr) + o X (Dyr + © Xr)
= Dir + DyleX1) + o X Dyr + @ X (o X 1)
or since Dy(e Xr) = (Dye)Xr + o X (Dyr),
DX = D2r + (Dye) Xt + 26X (Dyr) + X (@ X 1) (1)

If r is the position vector expressed in terms of i,j, k of the moving coordinate system, then
the acceleration of the particle relative to this system is, on dropping the subscript M,

dr  d%. d%y . d2z
ar = apt T ol T oapk @
The acceleration of the particle relative to the fixed system is given from (1) as
d2r _ d | de dr
ey dt2.+ﬁxr+2mx<dt>+mX(er) 3

The acceleration (3) is sometimes called the true acceleration, while (2) is the apparent acceleration.

Find (a) the apparent acceleration and (b) the true acceleration of the particle in
Problem 6.5.

(a) The apparent acceleration at any time ¢ is

ez dt\dt
At time ¢t =1 thisis 2i + 24k.

2
?r i(‘i') = ;—t(2ti—6j+12t2k) = 2 + 24tk

(b) The true acceleration at any time t is

d’r dr do
d—t2+2u><%+ %Xr-!- o X (0 Xr)

At time t =1 this equals
2i + 24k + (4i—2j+12k) X (2i — 6j + 12k)
+ (2i—2j + 2k) X (2i — 6j + 4k)
+ (21— j+ 6k) X {(2i — j + 6k) X (2i — 6] + 4K)}
= 2i + 24k + (481 —24j —20k) + (4i—4j—8k) + (—14i+ 212j + 40k)
= 40i + 184 + 36k
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CORIOLIS AND CENTRIPETAL ACCELERATION

6.8. Referring to Problem 6.5, find (a) the Coriolis acceleration, (b) the centripetal
acceleration and (c) their magnitudes at time ¢=1.
(¢) From Problem 6.5 we have,

Coriolis acceleration = 20 X dr/dt = (4i—2j+ 12k) X (2i — 6j + 12k)
48i — 24j — 20k

(b) From Problem 6.5 we have,

Centripetal acceleration = o X (o Xr) = (2i —j+ 6k) X (32i + 4j — 10k)
—14i + 212j + 40k

(¢) From parts (@) and (b) we have

V(482 F (—24) + (—20)2 = 4V/205
Magnitude of centripetal acceleration = V(—14)2 + (212)2 + (40)2 = 21/11,685

Magnitude of Coriolis acceleration

MOTION OF A PARTICLE RELATIVE TO THE EARTH

6.9. (a) Express Newton’s second law for the motion of a particle relative to an XYZ
coordinate system fixed in space (inertial system). () Use (a) to find an equation of
motion for the particle relative to an zyz system having the same origin as the XYZ
system but rotating with respect to it.

(@) If m is the mass of the particle (assumed constant), d2r/dt? | its acceleration in the fixed
system and F the resultant of all forces acting on the particle as viewed in the fixed system,
then Newton’s second law states that

m—dﬁ
dt2

)

F

(b) Using subscript M to denote quantities as viewed in the moving system, we have from
Problem 6.6,

P

de2

d?r

F - ae

. dl'
M+er+2mX%~M+wX(aXr) (2)

Substituting this into (), we find the required equation

2
m%T;iM = F—’m(;Xr)—Zm(uX%lM)_m[“x(“xr)] @)

We can drop the subscript M provided it is clear that all quantities except F are as
determined by an observer in the moving system. The quantity F, it must be emphasized, is the
resultant force as observed in the fixed or inertial system. If we do remove the subscript M
and write dr/dt = v, then (3) can be written

d2r

mog = F — m(oX1) — 2m(e X v) — m[e X (o X 1)] “)

6.10. Calculate the angular speed of the earth about its axis.

Since the earth makes one revolution [27 radians] about its axis in approximately 24 hours =
86,400 sec, the angular speed is
27

86,400
The actual time for one revolution is closer to 86,164 sec and the angular speed 7.29 X 10-5 rad/sec.

W =

= 7.27 X 10~3 rad/sec
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MOVING COORDINATE SYSTEMS IN GENERAL

6.11.

6.12.

6.13.

6.14.

Work Problem 6.4 if the origins of the XYZ
and xyz systems do not coincide.

Let R be the position vector of origin @ of the
xyz system relative to origin O of the fixed (or inertial)
XYZ system [see Fig. 6-8]. The velocity of the par-
ticle P relative to the moving system is, as before,

dr . dr _ de.  dy.  dz
Gty — @& - ait@itgk @

Now the position vector of P relative to O is
p = R+r and thus the velocity of P as viewed in the
XYZ system is

o _ 4 — dR dr
dt dt(R+r)F - th+dtL*
D R
= R dt+m><l‘ (2)

using equation (3) of Problem 6.4. Note that R is the
velocity of @ with respect to O. If R =0 this re-
duces to the result of Problem 6.4. Fig. 6-3

Work Problem 6.6 if the origins of the XYZ and xyz systems do not coincide.

Referring to Fig. 6-3, the acceleration of the particle P relative to the moving system is,
as before, &2 >z > » 2
ar = e _ &, oy . atz

ar = g T oael Tt gl togek )

Since the position vector of P relative to O is p = R+ r, the acceleration of P as viewed in the
XYZ system is

@
de2 |F

o
F dt?

&R
F dt?
iy d2r dae

dr
= R+E§+%Xr+2mx—ﬁ

d2
W(R +r)

F
+ oX(oXr) (2)

using equation (3) of Problem 6.6. Note that R is the acceleration of Q with respect to 0. If
R =0 this reduces to the result of Problem 6.6.

Work Problem 6.9 if the origins of the XYZ and xyz systems do not coincide.

(a) The position vector of the particle relative to the fixed (XYZ) system is p. Then the
required equation of motion is

mg—i—g’F = F 1)

(b) Using the result (2) of Problem 6.12 in (Z), we obtain

d2r

mam = F—mﬁ—m(&Xr)—2m(o><v)—m[u><(o><r)] 2)

where F is the force acting on m as viewed in the inertial system and where v = r.

Find the equation of motion of a particle relative to an observer on the earth’s
surface.
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We assume the earth to be a sphere with center
at O [Fig. 6-4] rotating about the Z axis with
angular velocity © = oK. We also use the fact that
the effect of the earth’s rotation around the sun is
negligible, so that the XYZ system can be taken as
an inertial system.

Then we can use equation (2) of Problem 6.12.
For the case of the earth, we have

o =0 1)
R = oX(aXR) (2)
r = -9, @)

the first equation arising from the fact that the ro-
tation of the earth about its axis proceeds with con-
stant angular velocity, the second arising from the
fact that the acceleration of origin Q relative to O
is the centripetal acceleration, and the third arising
from Newton’s law of gravitation. Using these in

(2) of Problem 6.12 yields the required equation, Fig. 6-4
M
—3—1;- = —(i—ap—mX(uXR)—2(«XV)—«X(QX1') 4)

assuming that other forces acting on m [such as air resistance, etc.] are neglected.

We can define

g = -, _ x(exR) ®)
- p

as the acceleration due to gravity, so that (4) becomes

d?r

‘(ﬁ = g—2(u><v)—w><(«><r) (6)
Near the earth’s surface the last term in (6) can be neglected, so that to a high degree of
approximation,
P g — 2(e X V) 4]
dt2

In practice we choose g as constant in magnitude although it varies slightly over the earth’s
surface. If other external forces act, we must add them to the right side of equations (6) or (7).

6.15. Show that if the particle of Problem 6.14 moves near the earth’s surface, then the
equations of motion are given by

% = 20cosAy

¥ = —2(wcosA2Z + osina z)

¥ = —~g + 20sinry

where the angle ) is the colatitude [see Fig. 6-4] and 90° — is the latitude.
From Fig. 6-4 we have

K

(K-i)i + (K+j)j + (K-kk
(—sinA) + 0j + (cosA)k = —sinii + cosrk

and so o = oK = —esinAi + ocosrk
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6.16.

Then aXv = oX(@i+yjt+zk)
k

i i
—ws8inA 0 wcosA

x ] 2z
= (~wecosAP)i + (weosh 2+ wsini 2)j — (osinr Pk

Thus from equation (7) of Problem 6.14 we have

d?r

e g — 2(eXvV)

= —gk + 20cosAyi— 2(wcosA %+ wsink 2)j + 2osinAyk

Equating corresponding coefficients of i,j,k on both sides of this equation, we find, as required,

r = 2wcos\y (1)
¥ = —2(wcosA &+ wsink 2) 2)
zZ = —g + 2esinry €))

An object of mass m initially at rest is dropped to the earth’s surface from a height
which is small compared with the earth’s radius. Assuming that the angular speed
of the earth about its axis is a constant o, prove that after time ¢t the object is
deflected east of the vertical by the amount }.gt3 sina.

Method 1.

We assume that the object is located on the z axisat # =0, y =0, z = h [see Fig. 6-4]. From
equations (7) and (2) of Problem 6.15 we have on integrating,

x = 2wcoshy + ¢, g = —2wcoshx+ wsiniz) + ¢,

Sinceat t=0, 2 =0, y=0, =0, y=0, 2z=h wehave ¢; =0, ¢, = 20 sinA h. Thus

2 = 2wcos\y, ¥y = —2wcosAx+ esinkz) + 20sinAh 1)

Then (3) of Problem 6.15 becomes

? = —g + 20sinhy = —g — 4e?sinAfcosA z + sinA (z—h)]
But since the terms on the right involving w2 are very small compared with —g we can neglect them
and write Z = —g. Integration yields z = —gt+c¢;. Since 2=0 at t=0, we have ¢3 =0 or

z = —gt 2

Using equation (2) and the first equation of (1) in equation (2) of Problem 6.15 we find
¥ = (—20cosA)(2ew cosy) + (—20 sin M) (—gt)
= —402cos2\y + 20 sin) gt

Then neglecting the first term, we have y = 20 sin A gt. Integrating,

¥y = wgsiniit?+ ¢
Since y =0 at ¢t =0, we have ¢, =0 and § = wg sin A {2 Integrating again,

y = Jegsin\t® + ¢
Then since ¥y =0 at ¢t =0, ¢5 = 0 so that, as required,

y = 3egsinit €]
Method 2.
Integrating equations (1), (2) and (8) of Problem 6.15, we have

2wcosry + ¢

B
|

= —2(wcosAx+ wsiniz) + ¢,

Se

= —gt + 20sinxy + ¢c3

nNe
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6.18.
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Using the fact that at ¢ =20, x=y=z2=0 and 2=0; y=0, z=~h, we have ¢, =0,
¢y = 2wh sinA, ¢3 = 0. Thus

= 2wcos\y

= —2(wecosAx + wsinA2) + 2wk sinA

= —gt + 20sinAy

Ne R Ko

Integrating these we find, using the above conditions,

. t
x = 2wcos>\f ydu 4)
0 ; .
y = 2whtsin>\—2wcos>\f xdu~2wsin)\f zdu 5)
0 0
t
z = h——21gt2+2wsin>\f ydu (6)
0

Since the unknowns are under the integral sign, these equations are called integral equations.
We shall use a method called the method of successive approximations or method of iteration to
obtain a solution to any desired accuracy. The method consists of using a first guess for =,y,2
under the integral signs in (4), (5) and (6) to obtain a better guess. As a first guess we can try
=0, y=0, z=0 under the integral signs. Then we find as a second guess

x = 0, Yy = 2wht sin A, z = h-—%yt2
Substituting these in (4), (5) and (6) and neglecting terms involving 2, we find the third guess
x = 0, y = 20htsin\ — 20 sinNht—}gt3) = Logtd siny, z = h— 498
Using these in (4), (5) and (6) and again neglecting terms involving «?, we find the fourth guess
x = 0, y = %wgt3 sin A, z = h— Lgt?
Since this fourth guess is identical with the third guess, these results are accurate up to terms

involving «2, and no further guesses need be taken. It is thus seen that the deflection is
y = Lwgtd sin ), as required.

Referring to Problem 6.16, show that an object dropped from height & above the
earth’s surface hits the earth at a point east of the vertical at a distance

%20h sin A \/2h/g.

From (2) of Problem 6.16 we have on integrating, z = —1gt>+c. Since z=h at t = 0, c=h
and z=h—lgt2. Then at z=0, h=1gt? or t=YV 2h/g. Substituting this value of t into (3)
of Problem 6.16, we find the required distance.

FOUCAULT PENDULUM

Derive an equation of motion for a simple
pendulum, taking into account the earth’s
rotation about its axis. .

Choose the xyz coordinate system of Fig. 6-5.
Suppose that the origin O is the equilibrium position
of the bob B, A is the point of suspension and the
length of string AB is I. If the tension in the string
is T, then we have

T = (T+ii+ (T-§j + (T*kk

= Tecosai+ TcosBj+ Tcosyk

I EAPEEN Y AF l—=z
T<l> T<l>J+T< ; >k ‘(1)
Since the net force acting on B is T + mg, the equa-

tion of motion of B is given by [see Problem 6.14]

&?r
mae

Il

= T 4+ mg — 2m(e X v) — me X (e X1) (2) Fig. 6-5
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6.19.

6.20.

If we neglect the last term in (2), put g = —gk and use (1), then (2) can be written in component
form as

mz = —T(x/l) + 2mwy cos A ®
my = —T(y/l) — 2me(x cos A + 2 sin A) (4)
m% = T(—2)/l — mg + 2mey sin %

By assuming that the bob of the simple pendulum in Problem 6.18 undergoes small
oscillations about the equilibrium position so that its motion can be assumed to take
place in a horizontal plane, simplify the equations of motion.

Making the assumption that the motion of the bob takes place in a horizontal plane amounts

to assuming that z and z are zero. For small vibrations (I—2)/l is very nearly equal to one.
Then equation (5) of Problem 6.18 yields

0 = T — mg + 2mey sinA
or T = mg — 2mey sin A (2)
Substituting (1) into equations (8) and (4) of Problem 6.18 and simplifying, we obtain
¥ o= — llag + 2wxyls1n)\ + 20 cosA @
¥ o= —% + ___Zwyylsmx — 20 cos A 3)

These differential equations are non-linear because of the presence of the terms involving Y
and yJ. However, these terms are negligible compared with the others since o, and y are
small. Upon neglecting them we obtain the linear differential equations

% = —gux/l + 20y cosA 4)
—gyll — 20% cos A 5)

@
Il

Solve the equations of motion of the pendulum obtained in Problem 6.19, assuming
suitable initial conditions.

Suppose that initially the bob is in the yz plane and is given a displacement from the z axis
of magnitude A > 0, after which it is released. Then the initial conditions are

£=0, x=0 y=A4, y=0 at t=0 @)

To find the solution of equations (4) and (5) of Problem 6.19, it is convenient to place

K2 = g/l, a = wcoshX (2)
8o that they become ¥ = —K2x + 2ay ®
¥ = —K% — 2% ()

It is also convenient to use complex numbers. Multiplying equation (4) by ¢ and adding to (3),
we find
¥+ iy = —Ke+iy) + 2y—ix) = —KAz+iy) — 2ia(x+ i)

Then calling # = x+ 1y, this can be written

% = —K2u — 2ia  or -+ 2ieu+ Ku = 0 (%)
If u = Ce¥®* where C and y are constants, this becomes

y2 + 2iay + K2 = 0
so that y = (—2a *V—4a2—4K2)/2 = —ia = Va2 + K2 (6)

Now since o2 = w2 cos2A is small compared to K2 = g/l, we can write

y = —ia = iK @)
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Then solutions of the equation are (allowing for complex coefficients)
(Cy+iCy)e~ia—K)®Xt  and  (Cg+ iCyeiatKt
and the general solution is
w = (Cy+iCye— @Kt 4 (Cy+iC4)eila+Kt (8)

where C;, Cs, Cy, C, are assumed real. Using Euler’s formulas

€e® = cos@ + ising, e~ ¥ = cosd — ising 9)
and the fact that « = x4+ 1y, (8) can be written
x + iy = (C;+iCy{cos (a— K)t — i sin(a — K)t} + (C3+ iCy){cos (a + K)t — i sin (a + K)t}
Equating real and imaginary parts, we find
x = Cjcosla—K)t + Cysin(a—K)t + Cjcos(a+ K)t + C,sin(a+ K)t (10)
y = —C;sin(a—K)t + Cycos(a—K)t — C3sin(a+ K)t + C4cos(a+ K)t (11)

Using the initial condition x=0 at t=0, we find from (10) that C;+ C3=0 or

C; = —C,. Similarly, using £=0 at t=0, we find from (10) that
c c <K—a> c <\/g/l—«.ocos>\>
* *\K +a 2 Vg/l + o cosh

Now since o cosA is small compared with \/E/—l, we have, to a high degree of approximation,
C4 = Cz.

Thus equations (10) and (11) become
C, cos (a — K)t + C, sin (e — K)t — Cj cos (a + K)t + Cysin(a+ K)t (12)

Il

x

—-Ci sin (e — K)t + Cy cos (a — K)t + C, sin(a+ K)t + Cj; cos (« + K)t (13)

Y

Using the initial condition g =0, (18) yields C, =0. Similarly using y=A at t=0, we
find Cp, = }A. Thus (12) and (13) become

x = 3Asin(a—K)t + LA sin (a+ K)t
y = 3Acos(a— K}t + $A cos (a + K)t
or x = A cosKt sinat
24
y = A cosKt cosat
ie., x = A cosVg/lt sin(wcosh t) a5
15
y = A cosVg/lt cos(wcosht)

Give a physical interpretation to the solution (15) of Problem 6.20.

In vector form, (15) can be written
r = i +yj = Acothn
where n = isin(wcosA)t + jcos (o cos)t
is a unit vector.

The period of cos Vg/lt [namely, 27V 1/g] is very small compared with the period of n [namely,
27/(w cos2)]. It follows that n is a very slowly turning vector. Thus physically the pendulum
oscillates in a plane through the z axis which is slowly rotating (or precessing) about the z axis.

Now at £t =0, n=3j and the bob is at y = A. After a time t = 2x/(4w cos\), for example,
n=1 2i+%\/§ j so that the rotation of the plane is proceeding in the clockwise direction as
viewed from above the earth’s surface in the northern hemisphere [where cosA > 0]. In the
southern hemisphere the rotation of the plane is counterclockwise.

The rotation of the plane was observed by Foucault in 1851 and served to provide laboratory
evidence of the rotation of the earth about its axis.
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MISCELLANEOUS PROBLEMS

6.22. The vertical rod AB of Fig. 6-6 is rotating with
constant angular velocity . A light inextensible
string of length ! has one end attached at point O
of the rod while the other end P of the string has a
mass m attached. Find (a) the tension in the string
and (D) the angle which string OP makes with the
vertical when equilibrium conditions prevail.

Choose unit vectors i and k perpendicular and parallel
respectively to the rod and rotating with it. The unit vector
j can be chosen perpendicular to the plane of i and k. Let

r = lsingi — lcosok
be the position vector of m with respect to O.

Three forces act on particle m

(i) The weight, mg = —mgk

Fig. 6-6

(ii) The centrifugal force,
—m{e X (o X 1)}

—m{[wk] X ([wk] X [l sing i— 1 coss k])}

= —m{[uk] X (Il sine j)} = mwlsingi
(iii) The tension, T = —Tsinei + T coso k
When the particle is in equilibrium, the resultant of all these forces is zero. Then
—mgk + me?lsingi — Tsinei+ Tcosoek = 0
ie., (mw2l sing — T sin6)i + (T coso —mg)k = 0
or me?lsing — Tsine = 0 (1)
Tcoso —mg = 0 2)

Solving (1) and (2) simultaneously, we find (a) T = mw2l, (b) 6 = cos—1 (g/w2l).

Since the string OP with mass m at P describe the surface of a cone the system is sometimes
called a conical pendulum.

6.23. A rod AOB [Fig. 6-7] rotates in a vertical plane [the yz plane] about a horizontal
axis through O perpendicular to this plane [the x axis] with constant angular
velocity o. Assuming no frictional forces, determine the motion of a particle P of
mass m which is constrained to move along the rod. An equivalent problem exists
when the rod AOB is replaced by a thin hollow tube inside which the particle can move.

z
B
N01 ry
P
r \ 8 mgk
k 0 A\
9 Yy
i
A

Fig. 6-7

At time ¢ let r be the position vector of the particle and ¢ the angle made by the rod with
the y axis. Choose unit vectors j and k in the y and z directions respectively and unit vector
i=jXk. Let r; be a unit vector in the direction r and #; a unit vector in the direction of
increasing 6.
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There are three forces acting on P:
(i) The weight, mg = —mgk = —mg sing r;, —mg cos 6 6,

(ii) The centrifugal force,
—m[e X (e X1)] = —mel X (oi X r14)]

il

—m[wi(ei * 7r;) — 7ry(0i * 0i)]

—m[0 ~ w2rr;] = wme?rry

(iii) The reaction force N = N8; of the rod which is perpendicular to the rod since there are
no frictional or resistance forces.

Then by Newton’s second law,

d2r 2
moas = —mgk + mo?rr; + N6,
d2r _ . N
or mEr = —mgsingr, — mgcoss 0, + mo2rr; + NO;

= (me?r — mg sin 6)r, + (N —mg cos 6)0,

It follows that N = mg cos¢ and
2r/dt2 = o2r — gsing (1)

Since 6 = @, a constant, we have 6 = wt if we assume 6 =0 at t=20. Then (Z) becomes

d2r/dt2 — o2r = —g sinowt (@)

If we assume that at ¢t =0, r =7y, dr/dt =, we find

— T_(l _'20_ _— 9 t .Q —_ _’KQ _;g_ —t _g._ i
r = <2 + o 4w2> et + (550 +a)e€ + 2,2 Sin wt )
or in terms of hyperbolic functions,
= Yo _ 9 Vg 9
r = rgcoshwt + < - 2w2> sinh t + 5% sin ot 4)

(a) Show that under suitable conditions the particle of Problem 6.23 can oscillate
along the rod with simple harmonic motion and find these conditions. (b) What
happens to the particle if the conditions of (a) are not satisfied?

(@) The particle will oscillate with simple harmonic motion along the rod if and only if »,=20
and v, = g/20. In this case, r = (¢/2?) sinwt. Thus the amplitude and period of the simple
harmonic motion in such case are given by 9/2w? and 2r/w respectively.

(b) I wy = (9/20) —wry then r =ree~9t + (9/20?) sinwt and the motion is approximately simple
harmonic after some time. Otherwise the mass will ultimately fly off the rod if it is finite.

A projectile located at colatitude A is fired with velocity vo in a southward direction
at an angle o with the horizontal. (a) Find the position of the projectile after time ¢.
(b) Prove that after time ¢ the projectile is deflected toward the east of the original
vertical plane of motion by the amount

tog Sin A 3 — oVocos (a— A) t2

(¢) We use the equations of Problem 6.15. Assuming the projectile starts at the origin, we have

x=0, y=0,2=0 at t=0 (1)

Also, the initial velocity is v, = vycosai + vysinak so that

% =vycose, ¥ =0, z = vy sina at t=0 @)
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Integrating equations (7), (2) and (3) of Problem 6.15, we obtain on using conditions (2),

€ = 2wcosAy + Yy COS a 3)
¥ —2(w cos A x + w sin A 2) 4)
2 = —gt+ 20sin\y + vysina (5)

Instead of attempting to solve these equations directly we shall use the method of iteration
or successive approximations as in Method 2 of Problem 6.16. Thus by integrating and using
conditions (1), we find

t
r = 20 coskf ydu + (v, cosa)t (6)
0
t t
y = —2wcos)\f xdu——2wsin)\f zdu (7)
0
0 t
z = (vgsina)t — Lgt2 + 20 sin)\f y du (8)
0

As a first guess we use x =0, ¥y =0, z =0 under the integral signs. Then (6), (?) and (8)
become, neglecting terms involving 2,

x = (vgcosa)t (9)
y = 0 (10)
z = (vysina)t — gt ! (11)

To obtain a better guess we now use (9), (10) and (11) under the integral signs in (6), (?) and
(8), thus arriving at

x = (vgcosa)t (12)
¥y = —wvgcos(a—A) 2 + Logtd sin (13)
z = (vpsina)t — 1gt? (14)

where we have again neglected terms involving 2. Further guesses again produce equations
(12), (18) and (14), so that these equations are accurate up to terms involving w2

From equation (73) we see that the projectile is deflected toward the east of the xzz plane
by the amount }wgt®sin\ — wvycos(e—2) t2. If vy =0 this agrees with Problem 6.16.

6.26. Prove that when the projectile of Problem 6.25 returns to the horizontal, it will be at
the distance

o} sin? e

347 (B cosacosi + sina sina)

to the west of that point where it would have landed assuming no axial rotation
of the earth.

The projectile will return to the horizontal when 2z =0, i.e.,

(vosina)t — Lgt2 = 0 or t = (2v, sin a)/g

Using this value of t in equation (13) of Problem 6.25, we find the required result.
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Supplementary Problems

ROTATING COORDINATE SYSTEMS. VELOCITY AND ACCELERATION

6.27.

6.28.

6.29.

6.30.

6.31.

6.32.

6.33.

An zyz coordinate system moves with angular velocity o = 2i—38j+ 5k relative to a fixed or
inertial XYZ coordinate system having the same origin. If a vector relative to the wyz system
is given as a function of time ¢ by A = sinti — costj + e~ tk, find (a) dA/dt relative to
the fixed system, (b) dA/dt relative to the moving system.
Ans. (a) (6cost—3e~t)i + (6sint —2e~%)j + (3sint — 2 cost —e %k

(b) costi + sintj — etk

Find d2A/d¢2 for the vector A of Problem 6.27 relative to (a) the fixed system and (b) the moving
system.
Ans. (a) (6 cost — 45 sint + 16e~t)i + (40 cost — 6 sint — 1le~Y)j
+ (10 sint — 28 cost + 16e~ Yk
() —sinti 4 costj + etk

An zyz coordinate system is rotating with angular velocity = 5i —4j— 10k relative to a fixed
XYZ coordinate system having the same origin. Find the velocity of a particle fixed in the wxyz
system at the point (3, 1, —2) as seen by an observer fixed in the XYZ system.

Ans. 18i—20j+ 17k

Discuss the physical interpretation of replacing © by —e in (a) Problem 6.4, page 148, and
(b) Problem 6.6, page 149.

Explain from a physical point of view why you would expect the result of Problem 6.3, page 148,
to be correct.

An xyz coordinate system rotates with angular velocity o = costi+ sintj+ k with respect to a
fixed XYZ coordinate system having the same origin. If the position vector of a particle is given
by r = sinti—costj+ tk, find (a) the apparent velocity and (b) the true velocity at any
time ¢. Ans. (a) costi + sintj + k (b) (tsint + 2cost)i + (2sint — ¢ cosi)j

Determine (a) the apparent acceleration and (b) the true acceleration of the particle of
Problem 6.32.
Ans. (@) —sinti+ cost] (b) (2tcost — 3sint)i + (Bcost + 2tsint)j + (1 — Dk

CORIOLIS AND CENTRIPETAL ACCELERATIONS AND FORCES

6.34.

6.35.
6.36.

6.37.

6.38.

6.39.

6.40.

6.41.

A ball is thrown horizontally in the northern hemisphere. (a) Would the path of the ball,
if the Coriolis force is taken into account, be to the right or to the left of the path when it is not
taken into account as viewed by the person throwing the ball? (b) What would be your answer
to (@) if the ball were thrown in the southern hemisphere? Ans. (a) to the right, (b) to the left

What would be your answer to Problem 6.34 if the ball were thrown at the north or south poles?

Explain why water running out of a vertical drain will swirl counterclockwise in the northern
hemisphere and clockwise in the southern hemisphere. What happens at the equator?

Prove that the centrifugal force acting on a particle of mass m on the earth’s surface is a
vector (a) directed away from the earth and perpendicular to the angular velocity vector o and
(b) of magnitude mw2R sin A where A is the colatitude.
In Problem 6.37, where would the centrifugal force be (¢) a maximum, (b) 2 minimum?
Ans. (a) at the equator, (b) at the north and south poles.
Find the centrifugal force acting on a train of mass 100,000 kg at (a) the equator (b) colatitude 30°.
Ans. (a) 35.0 kgwt, (b) 17.5 kgwt
(@) A river of width D flows northward with a speed v, at colatitude A. Prove that the left bank

of the river will be higher than the right bank by an amount equal to

(2Dwvq cos M) (g2 + 4w?v2 cos2\)~1/2

where « is the angular speed of the earth about its axis.

(b) Prove that the result in part (a) is for all practical purposes equal to (2Dww, cos A)/g-

If the river of Problem 6.40 is 2 km wide and flows at a speed of 5 km/hr at colatitude 45°,
how much higher will the left bank be than the right bank? Ans. 29 em
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6.42.

6.43.

An automobile rounds a curve whose radius of curvature is p. If the coefficient of friction is g,
prove that the greatest speed with which it can travel so as not to slip on the road is Vupg.

Determine whether the automobile of Problem 6.42 will slip if the speed is 60 mi/hr, x = .05 and
(a) p = 500 ft, (b) p = 50 ft. Discuss the results physically.

MOTION OF A PARTICLE RELATIVE TO THE EARTH

6.44.

6.45.

6.46.

6.47.

6.48.

6.49.

6.50.

6.51.

6.52.

An object is dropped at the equator from a height of 400 meters. If air resistance is neglected,
how far will the point where it hits the earth’s surface be from the point vertically below the
initial position? Ans. 17.6 cm toward the east

Work Problem 6.44 if the object is dropped (a) at colatitude 60° and (b) at the north pole.
Ans. (a) 15.2 cm toward the east

An object is thrown vertically upward at colatitude A with speed v, Prove that when it
returns it will be at a distance westward from its starting point equal to (4wv) sinA)/3g2.

An object at the equator is thrown vertically upward with a speed of 60 mi/hr., How far from
its initial position will it land? Amns. .78 inches

With what speed must the object of Problem 6.47 be thrown in order that it return to a point
on the earth which is 20 ft from its original position? Ans. 406 mi/hr

An object is thrown downward with initial speed v, Prove that after time t the object is
deflected east of the vertical by the amount

wvg sin XA 2 + log sin A 3

Prove that if the object of Problem 6.49 is thrown downward from height 2 above the earth’s
surface, then it will hit the earth at a point east of the vertical at a distance

02X (VaT+ 2ok — w2 (Vo + 20k + 209

Suppose that the mass m of a conical pendulum of length I moves in a horizontal circle of
radius a. Prove that (a) the speed is a\/E/\/4 2—q2 and (b) the tension in the string is

mgly/ 12 — a2.

If an object is dropped to the earth’s surface prove that its path is a semicubical parabola.

THE FOUCAULT PENDULUM

6.53.

6.54.

6.55.

Explain physically why the plane of oscillation of a Foucault pendulum should rotate clockwise
when viewed from above the earth’s surface in the northern hemisphere but counterclockwise in
the southern hemisphere.

How long would it take the plane of oscillation of a Foucault pendulum to make one complete
revolution if the pendulum is located at (a) the north pole, (d) colatitude 45°, (c¢) colatitude 85°?

Ans. (a) 23.94 hr, (b) 33.86 hr, (c) 92.50 hr

Explain physically why a Foucault pendulum situated at the equator would not detect the
rotation of the earth about its axis. Is this physical result supported mathematically? Explain.

MOVING COORDINATE SYSTEMS IN GENERAL

6.56.

6.57.

6.58.

An xyz coordinate system rotates about the z axis with angular velocity o = costi+ sintj
relative to a fixed XYZ coordinate system where ¢ is the time. The origin of the zyz system
has position vector R = ti—j+ t2k with respect to the XYZ system. If the position vector of
a particle is given by r = (3t + 1)i — 2¢j + 5k relative to the moving system, find the (a) apparent
velocity and (b) true velocity at any time.

Determine (a) the apparent acceleration and (b) the true acceleration of the particle in
Problem 6.56.

Work (a) Problem 6.5, page 148, and (b) Problem 6.7, page 149, if the position vector of the
xyz system relative to the origin of the fixed XYZ system is R = #2i — 2¢j + 5k.
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MISCELLANEOUS PROBLEMS

6.59.

6.60.

6.61.

6.62.

6.63.

6.64.

6.65.

6.66.

6.67.

6.68.

6.69.

6.70.

6.71.

6.72.

6.73.

Prove that due to the rotation of the earth about its axis the apparent weight of an object of
mass m at colatitude A is mV(g — w2R sin2 )2 + (2R sin A cos \)2 where R is the radius of
the earth.

Prove that the angle g which the apparent vertical at colatitude A makes with the true vertical
L 2R sin A cos A
b = LE SRR COS A
is given by tan B g — 2R sin?x
Explain physically why the true vertical and apparent vertical would coincide at the equator
and also the north and south poles.

A stone is twirled in a vertical circle by a string of length 10 ft. Prove that it must have a
speed of at least 20 ft/sec at the bottom of its path in order to complete the circle.

A car C [Fig. 6-8] is to go completely around the vertical
circular loop of radius e without leaving the track.
Assuming the track is frietionless, determine the height -
H at which it must start.

A particle of mass m is constrained to move on a friction- H a
less vertical circle of radius @ which rotates about a fixed
diameter with constant angular speed w. Prove that the
particle will make small oscillations about its equilibrium

position with a frequency given by 27aw/Va2wt — g2, 1

Discuss what happens in Problem 6.64 if » = Vg/a. Fig. 6-8

A hollow cylindrical tube AOB of length 2¢ [Fig. 6-9]
rotates with constant angular speed » about a vertical
axis through the center O. A particle is initially at rest
in the tube at a distance b from O. Assuming no fric-
tional forces, find (@) the position and (b) the speed of
the particle at any time.

(¢) How long will it take the particle of Problem 6.66 to
come out of the tube and (b) what will be its speed as

it leaves? Ans. (a) %ln (@ + Va2 —b2) Fig. 6-9
Find the force on the particle of Problem 6.66 at any position in the tube.

A mass, attached to a string which is suspended from a fixed point, moves in a horizontal circle
having center vertically below the fixed point with a speed of 20 revolutions per minute,
Find the distance of the center of the circle below the fixed point. Ans. 2.23 meters

A particle on a frictionless horizontal plane at colatitude A is given an initial speed vy, in a
northward direction. Prove that it describes a circle of radius v¢/(2w cos \) with period #/(w cos?).

The pendulum bob of a conical pendulum describes a horizontal circle of radius a. If the length
of the pendulum is I, prove that the period is given by 472V I2 — a2/g.

A particle constrained to move on a circular wire of radius a and coefficient x is given an initial
velocity v,. Assuming no other forces act, how long will it take for the particle to come to rest?

(@) Prove that if the earth were to rotate at an angular speed given by V2g/R where R is its
radius and g the acceleration due to gravity, then the weight of a particle of mass m would be
the same at all latitudes. (b) What is the numerical value of this angular speed?

Ans. (b) 1.74 X 10—3 rad/sec
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6.74.

6.75.

6.76.

6.77.

6.78.

6.79.

6.80.

6.81.

6.82.

6.83.

6.84.

6.85.

6.86.

6.87.

A cylindrical tank containing water rotates about its axis with constant angular speed o
so that no water spills out. Prove that the shape of the water surface is a paraboloid of revolution.

Work (a) Problem 6.16 and (b) Problem 6.17, accurate to terms involving «2.

Prove that due to the earth’s rotation about its axis, winds in the northern hemisphere traveling
from a high pressure area to a low pressure area are rotated in a counterclockwise sense when
viewed above the earth’s surface. What happens to winds in the southern hemisphere?

(a) Prove that in the northern hemisphere winds from the north,
east, south and west are deflected respectively toward the west,
north, east and south as indicated in Fig. 6-10. (b) Use this to
explain the origin of cyclones.

Find the condition on the angular speed so that a particle will
describe a horizontal circle inside of a frictionless vertical cone
of angle a.

Work Problem 6.78 for a hemisphere. Fig. 6-10

The period of a simple pendulum is given by P. Prove that its period when it is suspended from
the ceiling of a train moving with speed vy around a circular track of radius p is given by

4
PVog /Vv§+ o>
Work Problem 6.25 accurate to terms involving «2.

A thin hollow cylindrical tube OA inclined at angle a with the
horizontal rotates about the vertical with constant angular speed
o [see Fig. 6-11]. If a particle constrained to move in this tube
is initially at rest at a distance a from the intersection O of the
tube and the vertical axis of rotation, prove that its distance r
from O at any time ¢ is r = a cosh (vt cos a).

Work Problem 6.82 if the rod has coefficient of friction p.

Prove that the particle of Problem 6.82 is in stable equilibrium
between the distances from O given by

gsma<1—~,¢tana) and ysma<1+ptana>

w? tan a + w2 tana —qu

assuming tanae < 1/u. Fig. 6-11

A train having a maximum speed equal to v, is to round a curve with radius of curvature o. Prove
that if there is to be no lateral thrust on the outer track, then this track should be at a

height above the inner track given by av}/ \/'v‘(*,+ p2g2 where a is the distance between tracks.

A projectile is fired at colatitude A with velocity v, directed toward the west and at angle a with
the horizontal. Prove that if terms involving 2 are neglected, then the time taken to reach

the maximum height is .
g sin « 20V sin A sina cos

9 g2

Compare with the case where « = 0, i.e. that the earth does not rotate about its axis.

In Problem 6.86, prove that the maximum height reached is
visin2a  20v] sin) sinZa cos a

29 g%
Compare with the case where o = 0.
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6.88.

6.89.

6.90.

6.91.

6.92.

6.93.

6.94.

6.95.

MOVING COORDINATE SYSTEMS [CHAP. 6

Prove that the range of the projectile of Problem 6.86 is

vZ sin 2a wv} sin o sin A (8 sin? ¢ — 6)
+ 2
g 39

Thus show that if terms involving «2 and higher are neglected, the range will be larger, smaller
or the same as the case where o = 0, according as a > 60°, a < 60° or « = 60° respectively.

If a projectile is fired with initial velocity wvi + v,j + vsk from the origin of a coordinate system
fixed relative to the earth’s surface at colatitude A, prove that its position at any later time ¢
will be given by

x = vt + wvat? cos A
Y = wot — ot} (vycosA + vgsind) + Logtd sin
z = vzt — 1912 + wuyt? sin

neglecting terms involving «2.
Work Problem 6.89 so as to include terms involving w2 but exclude terms involving 3.

An object of mass m initially at rest is dropped from height h to the earth’s surface at colatitude A.
Assuming that air resistance proportional to the instantaneous speed of the object is taken into
account as well as the rotation of the earth about its axis, prove that after time ¢ the object is
deflected east of the vertical by the amount

Eﬁ%ﬂ [(g — 2hB2)(1 — e~Bt) + pohte—Ft — Bgt + Lgp2t2]

neglecting terms of order 2 and higher.
Work Problem 6.91, obtaining accuracy up to and including terms of order «2.

A frictionless inclined plane of length ! and angle « located at colatitude A is so situated that
a particle placed on it would slide under the influence of gravity from north to south. If the
particle starts from rest at the top, prove that it will reach the bottom in a time given by

21 2wl sin \ cos a
g sina 39

and that its speed at the bottom is

V2glsinag — %ol sin« cos a sin A

neglecting terms of order 2.

(a) Prove that by the time the particle of Problem 6.93 reaches the bottom it will have undergone
a deflection of magnitude

21w 21

3 Vygsine
to the east or west respectively according as cos(a-+2A) is greater than or less than zero.
(b) Discuss the case where cos(a+A) =0. (¢) Use the result of (a) to arrive at the result
of Problem 6.17.

cos (a+ )

Work Problems 6.93 and 6.94 if the inclined plane has coefficient of friction u.



Chapter 7

DISCRETE AND CONTINUOUS SYSTEMS

Up to now we have dealt mainly with the motion of an object which could be considered
as a particle or point mass. In many practical cases the objects with which we are concerned
can more realistically be considered as collections or systems of particles. Such systems
are called discrete or continuous according as the particles can be considered as separated
from each other or not.

For many practical purposes a discrete system having a very large but finite number
of particles can be considered as a continuous system. Conversely a continuous system can
be considered as a discrete system consisting of a large but finite number of particles.

DENSITY

For continuous systems of particles occupying a region of space it is often convenient to
define a mass per unit volume which is called the volume density or briefly density.
Mathematically, if AM is the total mass of a volume Ar of particles, then the density can
be defined as

o = lim — (1)

The density is a function of position and can vary from point to point. When the density
is a constant, the system is said to be of uniform density or simply uniform.

When the continuous system of particles occupy a surface, we can similarly define a
surface density or mass per unit area. Similarly when the particles occupy a line [or curve]
we can define a mass per unit length or linear density.

RIGID AND ELASTIC BODIES

In practice, forces applied to systems of particles will change the distances between
individual particles. Such systems are often called deformable or elastic bodies. In some
cases, however, deformations may be so slight that they may for most practical purposes
be considered non-existent. It is thus convenient to define a mathematical model in which
the distance between any two specified particles of a system remains the same regardless
of applied forces. Such a system is called a rigid body. The mechanics of rigid bodies is
considered in Chapters 9 and 10.

DEGREES OF FREEDOM

The number of coordinates required to specify the position of a system of one or more
particles is called the number of degrees of freedom of the system.

Example 1.

A particle moving freely in space requires 3 coordinates, e.z. (%,¥,%), to specify its position. Thus
the number of degrees of freedom is 3.

165
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Example 2.
A system consisting of N particles moving freely in space requires 3N coordinates to specify its
position. Thus the number of degrees of freedom is 3N.

A rigid body which can move freely in space has 6 degrees of freedom, i.e. 6 coordinates
are required to specify the position. See Problem 7.2.

CENTER OF MASS

Let ryrs,...,rv be the position vectors of a system of N particles of masses
M1, Me, ..., my respectively [see Fig. 7-1].

The center of mass or centroid of the system of particles is defined as that point C
having position vector

- Mmirs + More + + -+ + Mnry 1 X
— = = Mur, 2
r my+me+ - + my M:§1 vE (@)

N
where M = 3 m, is the total mass of the system. We sometimes use > or simply X
=1 v

N
in place of Y .
v=1

Fig.7-1 Fig. 7-2

For continuous systems of particles occupying a region R of space in which the
volume density is o, the center of mass can be written

j;{al‘d'r

P= = (€]
{ odr
R
where the integral is taken over the entire region R [see Fig. 7-2]. If we write
i:ji+ﬂj+ék, rV:xvi+yvj+zuk
then (3) can equivalently be written as

|

_ Sme . Smy . Sma ]
T=E""M 0 YE Ty oo FE Ty “
f cxdr f crydT ‘I;{ ozdr
T jg = YR 7 = = 5
and T U a0 ? i %)
where the total mass is given by either
M = Zm )

or M = j:Ra-df ()
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The integrals in (3), (5) or (7) can be single, double or triple integrals, depending on
which may be preferable.

In practice it is fairly simple to go from discrete to continuous systems by merely
replacing summations by integrations. Consequently we will present all theorems for
discrete systems.

CENTER OF GRAVITY

If a system of particles is in a uniform gravitational field, the center of mass is some-
times called the center of gravity.

MOMENTUM OF A SYSTEM OF PARTICLES
If v, =dr/dt =+, is the velocity of m,, the total momentum of the system is defined as

N N
p = 2 My Vy = 2 my i'u (8)
v=1 v=1
We can show [see Problem 7.3] that
- di s

where ¥ = di/dt is the velocity of the center of mass.

This is expressed in the following

Theorem 7.I. The total momentum of a system of particles can be found by multiplying
the total mass M of the system by the velocity v of the center of mass.

MOTION OF THE CENTER OF MASS

Suppose that the internal forces between any two particles of the system obey Newton’s
third law. Then if F is the resultant external force acting on the system, we have [see
Problem 7.4) i &2 P

_ o _ ar av
F =% = Mage Mg (20)
This is expressed in

Theorem 7.2. The center of mass of a system of particles moves as if the total mass
and resultant external force were applied at this point.

CONSERVATION OF MOMENTUM
Putting F =0 in (10), we find that

N
p = X mv, = constant (17)
v=1
Thus we have

Theorem 7.3. If the resultant external force acting on a system of particles is zero,
then the total momentum remains constant, i.e. is conserved. In such case the center of mass
is either at rest or in motion with constant velocity.

This theorem is often called the principle of conservation of momentum. It is a generaliza-
tion of Theorem 2-8, page 37.
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ANGULAR MOMENTUM OF A SYSTEM OF PARTICLES

The quantity N
2 = 3 m(rxw) (12)

v=1
is called the total angular momentum [or moment of momentum)] of the system of particles
about origin O.

THE TOTAL EXTERNAL TORQUE ACTING ON A SYSTEM

If F, is the external force acting on particle v, then r, X F, is called the moment of the
force F, or torque about O. The sum

N
A = YrXxF (29
v=1

is called the total external torque about the origin.

RELATION BETWEEN ANGULAR MOMENTUM AND
TOTAL EXTERNAL TORQUE

If we assume that the internal forces between any two particles are always directed
along the line joining the particles [i.e. they are central forces], then we can show as in
Problem 7.12 that

A = & (14)
dt
Thus we have

Theorem 74. The total external torque on a system of particles is equal to the time
rate of change of the angular momentum of the system, provided the internal forces
between particles are central forces.

CONSERVATION OF ANGULAR MOMENTUM
Putting A =0 in (14), we find that

N
0 = Y m(r,Xv,) = -constant (15)
v=1

Thus we have

Theorem 7.5. If the resultant external torque acting on a system of particles is zero,
then the total angular momentum remains constant, i.e. is conserved.

This theorem is often called the principle of conservation of angular momentum. It is the
generalization of Theorem 2.9, page 37.

KINETIC ENERGY OF A SYSTEM OF PARTICLES
The total kinetic energy of a system of particles is defined as

T = 1i’mv2 = l%miz (16)
= 2v=1 v Vy = 2,,:1 v Ly

WORK

If ¥, is the force (external and internal) acting on particle v, then the total work done
in moving the system of particles from one state [symbolized by 1] to another [symbolized

by 2] is N .
W12 = 2 f Tv * drv (1 7)
v=1 1
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As in the case of a single particle, we can prove the following

Theorem 7.6. The total work done in moving a system of particles from one state
where the kinetic energy is T: to another where the kinetic energy is T, is

Wi =TT (18)

POTENTIAL ENERGY. CONSERVATION OF ENERGY

When all forces, external and internal, are conservative, we can define a total potential
energy V of the system. In such case we can prove the following

Theorem 7.7. If T and V are respectively the total kinetic energy and total potential
energy of a system of particles, then

T +V = constant (19)

This is the principle of conservation of energy for systems of particles.

MOTION RELATIVE TO THE CENTER OF MASS

It is often useful to describe the motion of a system of particles about [or relative to]
the center of mass. The following theorems are of fundamental importance. In all cases
primes denote quantities relative to the center of mass.

Theorem 7.8. The total linear momentum of a system of particles about the center
of mass is zero. In symbols,

N
2 myv, = XImi, = 0 (20)

Theorem 7.9. The total angular momentum of a system of particles about any point O
equals the angular momentum of the total mass assumed to be located at the center of mass
plus the angular momentum about the center of mass. In symbols,

N
Q = FXMV + 3 m(r,XV) (21)
v=1

Theorem 7.10. The total kinetic energy of a system of particles about any point O
equals the kinetic energy of translation of the center of mass [assuming the total mass
located there] plus the kinetic energy of motion about the center of mass. In symbols,

| 1 ,2
T = M« + 53X mv, (22)
2 2,5

Theorem 7.11. The total external torque about the center of mass equals the time rate
of change in angular momentum about the center of mass, i.e. equation (14) holds not
only for inertial coordinate systems but also for coordinate systems moving with the
center of mass. In symbols, P

A = ar (23)

If motion is described relative to points other than the center of mass, the results
in the above theorems become more complicated.

IMPULSE
If F is the total external force acting on a system of particles, then
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ft " pat (24)

1

is called the total linear impulse or briefly total impulse. As in the case of one particle,
we can prove

Theorem 7.12. The total linear impulse is equal to the change in linear momentum.

Similarly if A is the total external torque applied to a system of particles about origin O,
then

[2)

Adt ~ , (25)

ty

is called the total angular impulse. We can then prove

Theorem 7.13. The total angular impulse is equal‘ to the change in angular momentum.

CONSTRAINTS. HOLONOMIC AND NON-HOLONOMIC CONSTRAINTS

Often in practice the motion of a particle or system of particles is restricted in some
way. For example, in rigid bodies [considered in Chapters 9 and 10] the motion must be such
that the distance between any two particular particles of the rigid body is always the same.
As another example, the motion of particles may be restricted to curves or surfaces.

The limitations on the motion are often called constraints. If the constraint condition
can be expressed as an equation

(j)(l‘], rs, ..., IN, t) =0 (26)

connecting the position vectors of the particles and the time, then the constraint is called
holonomic. If it cannot be so expressed it is called non-holonomic.

VIRTUAL DISPLACEMENTS

Consider two possible configurations of a system of particles at a particular instant
which are consistent with the forces and constraints. To go from one configuration to
the other, we need only give the vth particle a displacement 8r, from the old to the new
position. We call sr, a virtual displacement to distinguish it from a true displacement
[denoted by dr,] which occurs in a time interval where forces and constraints could be
changing. The symbol § has the usual properties of the differential d; for example,
3(sin §) = cos g 84.

STATICS OF A SYSTEM OF PARTICLES.
PRINCIPLE OF VIRTUAL WORK

In order for a system of particles to be in equilibrium, the resultant force acting on each
particle must be zero, i.e. F, =0. It thus follows that F,-8r, =0 where F,-8r, is called
the virtual work. By adding these we then have

N
;FV-SL, = 0 (27)

If constraints are present, then we can write
F, = F® + F© (28)
where F¥ and F'© are respectively the actual force and constraint force acting on the vth

particle. By assuming that the virtual work of the constraint forces is zero {which is true
for rigid bodies and for motion on curves and surfaces without friction], we arrive at
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Theorem 7.14. A system of particles is in equilibrium if and only if the total virtual
work of the actual forces is zero, i.e. if

N
SF®-r, = 0 (29)
v=1

This is often called the principle of virtual work.

EQUILIBRIUM IN CONSERVATIVE FIELDS.
STABILITY OF EQUILIBRIUM

The results for equilibrium of a particle in a conservative force field [see page 38]
can be generalized to systems of particles. The following theorems summarize the basic
results.

Theorem 7.15. If V is the total potential of a system of particles depending on

coordinates ¢,,q,, ..., then the system will be in equilibrium if
14 oV
— = =—=0, ... 31
qul O 8q2 ( )
Since the virtual work done on the system is
1% 14
8V = a—ql8ql +a—q28q2 + e

(31) is equivalent to the principle of virtual work.

Theorem 7.16. A system of particles will be in stable equilibrium if the potential V
is a minimum.

In case V depends on only one coordinate, say q,, sufficient conditions are
14 2V
-— =0, Fye)
aq, g

Other cases of equilibrium where the potential is not a minimum are called unstable.

>0

D’ALEMBERT’S PRINCIPLE

Although Theorem 7.14 as stated applies to the statics of a system of particles, it can be
restated so as to give an analogous theorem for dynamics. To do this we note that according
to Newton’s second law of motion,

Fu B l‘)p or Fv - f’v =0 (30)

where p, is the momentum of the vth particle. The second equation amounts to saying
that a moving system of particles can be considered to be in equilibrium under a force
F,—p,, i.e. the actual force together with the added force —p, which is often called the
reversed effective force on particle v. By using the principle of virtual work we can then
arrive at

Theorem 7.17. A system of particles moves in such a way that the total virtual work
N

2 (F” —p)-sr, = 0 (32)

v=1

With this theorem, which is often called D’Alembert’s principle, we can consider dynamics
as a special case of statics.
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Solved Problems
DEGREES OF FREEDOM

7.1. Determine the number of degrees of freedom in each of the following cases:
(@) a particle moving on a given space curve; (b) five particles moving freely in a
plane; (c¢) five particles moving freely in space; (d) two particles connected by a
rigid rod moving freely in a plane.

(@) The curve can be described by the parametric equations = = x(s), ¥ = y(s), 2z = z(s) where

s is the parameter. Then the position of a particle on the curve is determined by specifying
one coordinate, and hence there is one degree of freedom.

(b) Each particle requires two coordinates to specify its position in the plane. Thus 5.2 =10
coordinates are needed to specify the positions of all 5 particles, i.e. the system has 10 degrees
of freedom.

(¢) Since each particle requires three coordinates to specify its position, the system has 53 = 15
degrees of freedom.
(d) Method 1.

The coordinates of the two particles can be expressed by (xy,y;) and (%3, ¥s), i.e. a total
of 4 coordinates. However, since the distance between these points is a constant a [the length
of the rigid rod], we have (x;— %)% + (y; —¥2)2 = @¢® so that one of the coordinates can be
expressed in terms of the others. Thus there are 4 —1 =3 degrees of freedom.

Method 2.

The motion is completely specified if we give the two coordinates of the center of mass
and the angle made by the rod with some specified direction. Thus there are 2+1 =38 degrees
of freedom.

7.2. Find the number of degrees of freedom for a rigid body which (a) can move freely
in three dimensional space, (b) has one point fixed but can move in space about
this point.

(a) Method 1.

If 3 non-collinear points of a rigid body are fixed in space, then the rigid body is also fixed
in space. Let these points have coordinates (2, ¥y, 21), (%2, ¥, %2), (%3, U3, #3) respectively, a total
of 9. Since the body is rigid we must have the relations

() — 22)2 + (yy — Y)2 + (21 — 22)2 = constant, (% — a3)2 + (¥ — y3)? + (23— 23)> = constant,
(x3—21)2 + (y3—y1)? + (23— 21)% = constant

hence 8 coordinates can be expressed in terms of the remaining 6. Thus 6 independent

coordinates are needed to describe the motion, i.e. there are 6 degrees of freedom.

Method 2.

To fix one point of the rigid body requires 3 coordinates. An axis through this point
is fixed if we specify 2 ratios of the direction cosines of this axis. A rotation about the axis
can then be described by 1 angular coordinate. The total number of coordinates required,
i.e. the number of degrees of freedom, is 3+2+1 =6.

(b) The motion is completely specified if we know the coordinates of two points, say (%1, Y15 21)
and (&, ¥, 25), Where the fixed point is taken at the origin of a coordinate system. But since
the body is rigid we must have '

x3+ 9% + 2% = constant, x2+y2+ zg = constant, (x; — x5)2+ (¥; — ¥2)2 + (24 — 25)® = constant
from which 3 coordinates can be found in terms of the remaining 8. Thus there are 3 degrees
of freedom.

CENTER OF MASS AND MOMENTUM OF A SYSTEM OF PARTICLES

7.3. Prove Theorem 7.1, page 167: The total momentum of a system of particles can be
found by multiplying the total mass M of the system by the velocity v of the center
of mass.
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74.

7.5.

7.6.

7.7.

. . 2 myr,
The center of mass is by definition, ¥ = 3

Then the total momentum is p = X m,v, = X m,t, = Mdi/dt = M¥V.

Prove Theorem 7.2, page 167: The center of mass of a system of particles moves
as if the total mass and resultant external force were applied at this point.
Let F, be the resultant external force acting on particle » while f,, is the internal force on

particle » due to particle \. We shall assume that f,, =0, i.. particle » does not exert any
force on itself.

By Newton’s second law the total force on particle » is

dp, 42
Fu + % fv)\ = W = W(mv ru) (1)
where the second term on the left represents the resultant internal force on particle » due to all
other particles.

Summing over » in equation (1), we find

a2
EFV+EEfV)\ = T Emlzrv (2)
v v A dt v
Now according to Newton’s third law of action and reaction, f,, = —f,, so that the double
summation on the left of (2) is zero. If we then write
F = 3SF ad r = =Smr, (8)
v M v
d2F
(2) becomes F = M T (4)

Since F is the total external force on all particles applied at the center of mass ¥, the required
result is proved.

A system of particles consists of a 3 gram mass located at (1,0,—1), a 5 gram mass
at (—2,1,3) and a 2 gram mass at (3, —1,1). Find the coordinates of the center of mass.

The position vectors of the particles are given respectively by
ry = i—Kk, r, = —2i+j+ 3k, rs = 3i—j+k
Then the center of mass is given by
7

o BG-k)+5(~2itj+3k) +2@i—j+k) _ 1. 3. 7
r= 34542 = 10t tipd Tk

Thus the coordinates of the center of mass are (=% 250 &)

Prove that if the total momentum of a system is constant, i.e. is conserved, then the
center of mass is either at rest or in motion with constant velocity.

The total momentum of the system is given by

. d d [Zmy,r dF

Then if p is constant, so also is di/dt, the velocity of the center of mass.

Explain why the ejection of gases at high velocity from the rear of a rocket will move
the rocket forward.

Since the gas particles move backward with high velocity and since the center of mass does
not move, the rocket must move forward. For applications involving rocket motion, see Chapter 8.
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7.8.

7.9.
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Find the centroid of a solid region R as in Fig. 7-3.

Consider the volume element A7, of the solid. The
mass of this volume element is
AM, = o,Ar, = o0,0%,4Y,Az,
where o, is the density [mass per unit volume] and
Ax,, Ay, Az, are the dimensions of the volume element.
Then the centroid is given approximately by
Sr,AM, S r,0,47, 3 r, 0, Az, Ay, Az,

SaM, = 3So,arn, S o0, A%, Ay, Az,
where the summation is taken over all volume elements
of the solid.

Taking the limit as the number of volume elements becomes infinite in such a way that
Ar, = 0 or Ax, -0, Ay, = 0, Az, = 0, we obtain for the centroid of the solid:

f rdM f rodr fff rodx dydz
R R _ R

Fig.7-3

F = —

f dM f adr J‘ff adx dy dz
R R : A

where the integration is to be performed over R, as indicated.

Writing r = xi +yj+ 2k, F= &i+ 7j+ 2k, this can also be written in component form as

fff xodedydz fff yodedydz fff zodxdydz

= = , 7= —] , &= =
fff odx dy dz fff adx dy dz fff odx dy dz

R R R

&

Find the centroid of the region bounded by the plane z+y+2z=a and the planes
=0, y=0, 2=0.

The region, which is a tetrahedron, is indicated in Fig. 7-4. To find the centroid, we use
the results of Problem 7.8.

In forming the sum over all volume elements of the region, it is advisable to proceed in an
orderly fashion. One possibility is to add first all terms corresponding to volume elements
contained in a column such as PQ in the figure. This amounts to keeping », and y, fixed and
adding over all z,. Next keep «, fixed but sum over all y,. This amounts to adding all columns,
such as PQ, contained in a slab RS, and consequently amounts to summing over all cubes contained
in such a slab. Finally, vary x,. This amounts to addition of all slabs such as RS.

In performing the integration over R, we use these z
same ideas. Thus keeping 2 and y constant, integrate
from z =0 [base of column PQ]to z=a—x—y [top
of column PQ]. Next keep x constant and integrate
with respect to y. This amounts to addition of columns
having bases in the xy plane [z = 0] located anywhere
from R [where y = 0] to S [where x+y =a or y =
a — %], and the integration is from y =0 toy =a—u.
Finally, we add all slabs parallel to the yz plane, which
amounts to integration from =0 to xz=a. We
thus obtain

a a—x a—x—Y
f f f o (xi+ yj + 2k) dz dy dx
_ =0 Yy=0 2=0

a 4 —x—y
f f’ f" odz dy dz Fig. 7-4
=0 Yy=0 =0

Since o is constant in this case, it may be cancelled. The denominator without o is evaluated
to be a3/6, and the numerator without o is (a#/24)(i+j+k). Thus the center of mass is
F=(a/4)(it+tj+k) or #=ald, §=al4, z2=ald

P
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7.10.

7011.

Find the centroid of a semi-circular region of radius a.

Method 1. Using rectangular coordinates.

Choose the region as in Fig. 7-5. The equation of the circle C is «2 + y2=a2 or y =+Va2— x2
since y = 0.

If o is the mass per unit area, assumed constant, then the coordinates of the centroid
are given by

a VaZ—z2
f xodA ffxdydx f f x dy dx
R _ R _ r=—a Yy=0 _ 0‘
= = 7
f cdA ffdydx f" f %y da
R R x=-—a y=0
f ff a V=2
yodA ydydx f f ydy dx
_ R _ R _ = —a y=0 _ 2013/3 — ilg
- - - — - 2/2 8
R AT
R R z=—a Yy=0

Note that we can write £ =0 immediately, since by symmetry the centroid is on the y axis.
The denominator for 7 can be evaluated without integrating by noting that it represents the
semi-circular area which is ira2.

y
C e
do Ay
odA=
8 ordrde
—-a
Fig.7-5 Fig. 7-6

Method 2. Using polar coordinates.

The equation of the circle is » = a [see Fig. 7-6]. As before, we see by symmetry that the
centroid must lie on the y axis, so that % = 0. Since y=rsing and dA =rdrde in polar
coordinates, we can write

T a
f yodA f f (r sin 6) r dr de
R _ Ye=0 Yy=¢ — 2033 _ da

= - T a - 2/9 ~ 3.
f o dA f f rdr do ma?/ "
R o=0 ¥ r=0

Find the center of mass of a uniform solid hemisphere of radius a.

By symmetry the center of mass lies on the
z axis [see Fig. 7-7]. Subdivide the hemisphere
into solid circular plates of radius r, such as
ABCDEA. If the center G of such a ring is at
distance z from the center O of the hemisphere,
r2+22 = a2 Then if dz is the thickness of the
plate, the volume of each ring is

7r2dz = 7(a2—22)dz
and the mass is 7o(a?—22)dz. Thus we have

a
f woz(a? — 22) dz

3 = z2=0 —

a
a
f wo(a? — 22) dz Fig. 7-7

z=0

0]
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7.12. Prove Theorem 7.4, page 168: The total external torque on a system of particles is
equal to the time rate of change of angular momentum of the system, provided that

the internal forces between particles are central forces.

As in equation (Z) of Problem 7.4, we have

ap, d
F, + % fa = dt = %(mv vy)
Multiplying both sides of (I) by r, X, we have
r, XF, + ErVvah = 1, X %(mvvv)

x

Since r Xﬁl-( v,) = —d—{m(r Xv,)}
v dt mV 12 dt v\t Y 14

(2) becomes r,XF, + 3r,Xf, = Eld—t {m,(r, X v,)}

X

Summing over » in (4), we find

S xF, + 33n,xf = Z{Smr,xv)
v v A dt |5

Now the double sum in (5) is composed of terms such as

r, X f,, + rXf,

which becomes on writing f,, = —f,, according to Newton’s third law,

r, Xf,, — nX £ = (rp,—rn)X fin

t))

@

®

4

®)

(6)

@

Then since we suppose that the forces are central, i.e. f,, has the same direction as r, —r,, it follows

that (7) is zero and also that the double sum in (5) is zero. Thus equation (5) becomes

Sr,XF, = -;—t {2 m,(r, X vv)} or A =

where A = Sr,XF,, Q@ = Jmy(r, Xv,).
14 v

WORK, KINETIC ENERGY AND POTENTIAL ENERGY

7.13. Prove Theorem 7.6, page 169: The total work done in moving a system of particles
from one state to another with kinetic energies T: and T: respectively is To—T1.

The equation of motion of the »th particle in the system is

Fo o= B+ 3ta = gmi)
Taking the dot product of both sides with r,, we have
Foh, = Fob + Stach, = £ Foub)

Since heLomi) = LomGeR) = b3
(2) can be written d

Foor, = Foof + % fach, = %a;
Summing over » in equation (3), we find

SFeh = SReh + 33tk = 3

(m, v})

d 2
dt(?‘ m””">

@)

@

%

4
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Integrating both sides of (4) with respect to ¢t from ¢t =1¢;, to t =1, we find

ty R ty . ty .
W12 = Ef Tv'rvdt = Ef Fv'rvdt + Ezf fux'rvdt
v t v t v A t

1 td
— 2§£132(m,,v§)dt

Using the fact that r,dt = dr, and the symbols 1 and 2 for the states at times ¢, and %,
respectively, this can be written

2 2 2
W12 = 2 f Tv * dl',, = 2 f Fv M drv + 2 2 f fv)\ * drv = T2 - Tl (5)
v Jy v 1 v Ay
where T, and T, are the total kinetic energies at t; and t, respectively. Since

2
W12 = E f Tv'dru (6)
Vo

is the total work done (by external and internal forces) in moving the system from one state to
another, the required result follows.

It should be noted that the double sum in (5) indicating work done by the internal forces,
cannot be reduced to zero either by using Newton’s third law or the assumption of central forces.
This is in contradistinction to the double sums in Problems 7.4 and 7.12 which can be reduced to zero.

7.14. Suppose that the internal forces of a system of particles are conservative and are
derived from a potential

Vw (’rxv) = Vi (TV)\)

where 7, = ra = V(@ — )2 + (h— %) + (;r—2,)2 is the distance between par-
ticles A and v of the system.

(a) Prove that X > f,+dr, = —% > ; dVx» where f\, is the internal force on
vooA v
particle v due to particle x.

(b) Evaluate the double sum 3 3 f *fu,-dr, of Problem 7.13.
v A 1

(@) The force acting on particle » is
WV | WV, . vy,

b = mgg, 1T 5y, 7, B = Terad, V= -V, @
The force acting on particle A is
W, V. aV,,
f)\u = - ax)\ e ayx 1= azx k - _grad)\ V)\" - B V)‘ VM' B e (2)

The work done by these forces in producing the displacements dr, and dr, of particles » and A
respectively is

fv)\ * dl',, + f)\v * dl‘)\ =

{WAV aVy, aVy,

dx
dx, + oy, dyy + 9z,

= —dVy

aV)w aVMl aVAv
d
dz, + Py dz, + 3 dy, + PN z}‘}

Then the total work done by the internal forces is
1
? % fyodr, = -— 2 VE ? avy, %)

the factor 4 on the right being introduced because otherwise the terms in the summation
would enter twice. :
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(b) By integrating (38) of part (a), we have
2 1 2 . .
2 2 f f}m' dl’,, — _ 1 2 2 J\ dVM, = V;mt) . émt) (4)
v oA 1 2 v A 1
where V{"" and V™ denote the total internal potentials

;337 (®)
v oA

at times t; and f, respectively.

7.15. Prove that if both the external and internal forces for a system of particles are
conservative, then the principle of conservation of energy is valid.

If the external forces are conservative, then we have

F, = -Vv, (1)

2 2
from which § f F,ede, = -— zfl av, = Vv — e @)
1

v

where V{™® and V™" denote the total external potential
3V,
14

at times ¢; and ¢, respectively.

Using (2) and equation (4) of Problem 7.14(b) in equation (5) of Problem 7.13, we find

T2 . T1 — V;ext) _ Véext) + Vgint) _ V;int) — Vl ___ V2 (8)

where Vl — V;ext) + Viint) and Vz — Véext) + V2(lnt) (4)

are the respective total potential energies [external and internal] at times ¢; and t,. We thus find
from (3),

T, +Vy = Ty + V, or T + V = constant 5)

which is the principle of conservation of energy.

MOTION RELATIVE TO THE CENTER OF MASS

7.16. Let r, and v, be respectively the position vector and velocity of particle v relative to
the center of mass. Prove that (a) X m,r, = 0, (b) X m,v, = 0.

(a) Let r, be the position vector of particle » relative to O
and F the position vector of the center of mass C relative
to 0. Then from the definition of the center of mass,

1
rF = M_ ? m,r, (1)

where M = ¥ m,. From Fig. 7-8 we have
14
r, = r, +F @)

Then substituting (2) into (1), we find
1
£ = ﬁg,m,,(r;-l-r) = M?m,,ry + i
from which Emrx, = 0 €3}
14

(b) Differentiating both sides of (8) with respect to t, we have ; m, v,', = 0.
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7.17.

7.18.

Prove Theorem 7.9, page 169: The total angular momentum of a system of particles
about any point O equals the angular momentum of the total mass assumed to be
located at the center of mass plus the angular momentum about the center of mass.

Let r, be the position vector of particle » relative to O, ¥ the position vector of the center of
mass C relative to O and r; the position vector of particle » relative to C. Then

r, = r,',+ P )
Differentiating with respect to £, we find
v, =T, = I, +F = v,+¥ )

where ¥ is the velocity of the center of mass relative to O, v, is the velocity of particle » relative to
0, and v, is the velocity of particle » relative to C.

The total angular momentum of the system about O is

\ Q = Imr,xv,) = Imi,+5)xX(v,+7)}

Smyr,xv) + Sm xV) + ZTmy(EXV) + ?m,,(i'XV) ®

Now by Problem 7.16,

2m,(r,XV) = {Em,,r;}xv = 0
v v
?m,,(in,’,) = ¥X {; m,,v:} = 0
SmEXV) = {Emy} (EXV) = MEXV)
v 14
Then (8) becomes, as required,
0 = Im xv) + MEXY)

v

Prove Theorem 7.10, page 169: The total kinetic energy of a system of particles
about any point O equals the kinetic energy of the center of mass [assuming the
total mass located there] plus the kinetic energy of motion about the center of mass.

The kinetic energy relative to O [see Fig. 7-8] is
_ 1 2 _ 1 : e
T - —Em,,'v,, - —2””"‘(1’1/.1‘») (1)
2 < 2 <
Using equation (2) of Problem 7.16 we find

Thus (I) can be written

T =

1o |
<M
i
<|
+
P
<L
o
.
<
+
<
&
L
=

DO | =

DO |t

<§mv>‘72 + v {Em,,v;} + %%mﬂ,;}z

1l
DO =
3
+
DN
<M
&
<

since 3 m, v, = 0 by Problem 7.16.
v
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IMPULSE
7.19. Prove Theorem 7.12: The total linear impulse is equal to the change in linear

momentum.
The total external force by equation (4) of Problem 7.4 is

_ a2 _ av
F = MGp = Mg
Then the total linear impulse is
ty t2
Fdt = f M%dt = Mv, — MV, = p, — P

ty ty
where p; = MV, and p, = MV, represent the total momenta at times ¢, and t, respectively.

CONSTRAINTS. HOLONOMIC AND NON-HOLONOMIC CONSTRAINTS

7.20.

In each of the following cases state whether the constraint is holonomic or non-
holonomic and give a reason for your answer: (a) a bead moving on a circular wire;
(b) a particle sliding down an inclined plane under the influence of gravity; (c) a
particle sliding down a sphere from a point near the top under the influence of gravity.

(a) The constraint is holonomic since the bead, which can be considered a particle, is constrained
to move on the circular wire.

(b) The constraint is holonomic since the particle is constrained to move along a surface which is
in this case a plane.

(¢) The constraint is non-holonomic since the particle after reaching a certain location on the
sphere will leave the sphere.

Another way of seeing this is to note that if r is the position vector of the particle
relative to the center of the sphere as origin and a is the radius of the sphere, then the
particle moves so that ¥2 = a2 This is a non-holonomic constraint since it is not of the
form (26), page 170. An example of a holonomic constraint would be r2 = a2

STATICS. PRINCIPLE OF VIRTUAL WORK. STABILITY

7.21.

7.22.

Prove the principle of virtual work, Theorem 7.14, page 171.

For equilibrium, the net resultant force F, on each particle must be zero, so that

SF,-ér, = 0 )

But since F, = F*+F' where F{* and F{* are the actual and constraint forces acting on the

»th particle, (1) can be written

SF@esr, + SFO8r, = 0 @
k%

v
If we assume that the virtual work of the constraint forces is zero, the second sum on the left of
(2) is zero, so that we have
SF®sr, = 0 (8)
v

which is the principle of virtual work.

Two particles of masses m, and m. are located on a frictionless double incline and
connected by an inextensible massless string passing over a smooth peg [see Fig. 7-9
below]. Use the principle of virtual work to show that for equilibrium we must have

SIn a o ome

sin a, M1
where «, and «, are the angles of the incline.

-
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7.23.

Method 1.

Let r; and ry be the respective position vectors
of masses m; and m, relative to O.

The actual forces (due to gravity) acting on
m; and my are respectively

F¥ = mg, F® = myg @)
According to the principle of virtual work,
SF®esr, = 0
or F®eor; + F¥ 8r, = 0 (2) Fig. 7-9
where 8r; and 8ry are the virtual displacements of m; and m, down the incline. Using (1) in (2),
migedr; + mygedr, = 0 3
or myg 87y sina; + myg 87y sinay = 0 4)
Then since the string is inextensible, i.e. 87+ 8r, =0 or &ry= —38ry, (4) becomes
(my9 sin a; — myg sinay)ér; = 0
But since §r; is arbitrary, we must have m,g sina; — myg sinay = 0, ie.,
sin ay mey
s = m (%)
n ags my

Method 2.

When it is not clear which forces are constraint forces doing no work, we can take into account
all forces and then apply the principle of virtual work. Thus, for example, taking into account
the reaction forces R; and R, due to the inclines on the particles and the tension forces T, and T,,
the principle of virtual work becomes

(mlg + Tl + Rl) *dry + (ng + T2 + Rz) *drp, = 0 (6)

Now since the inclines are assumed smooth [so that
the reaction forces are perpendicular to the in-
clines] we have

Rl'Srl =0, R2'8r2 =0 (7)

Also, since there is no friction at the peg, the ten-
sions T, and T, have the same magnitude. Thus
we have, using the fact that ér; and 8r; are directed
down the corresponding inclines and the fact that
87y = =381y,
Tl . Srl + Tz . 81'2 = —Tl 87’1 e T2 8"'2

= (T,—Tyéry = 0 (8)

since Ty = T,. Then using (7) and (8), (6) becomes

myge8r; + mogrdry, = 0
as obtained in (3). Fig. 7-10

Use Theorem 7.15, page 171, to solve Problem 7.22.

Let the string have length ! and suppose that the lengths of string OA and OB on the inclines
[Fig. 7-9] are x and !—x respectively. The total potential energy using a horizontal plane
through O as reference level is

V = —mgzsina; — myg(l— =) sin ey
Then for equilibrium we must have

)% sina m.
= myg sin a; + myg sin = 0 or L 2

o — ay = ’ = —

ox ! 1 2 sin a, my

It should be noted that V is not a minimum in this case so that the equilibrium is not stable,
as is also evident physically.
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D’ALEMBERT’S PRINCIPLE

[CHAP. 7

7.24. Use D’Alembert’s principle to describe the motion of the masses in Problem 7.22.

We introduce the reversed effective forces m,¥; and m,¥r, in equation () of Problem 7.22 to

obtain

(myg — my¥y)+ 81y + (mag — MyTp) o 8r; = 0 ()

This can be written

('mlg sin ay ml.fl)b‘rl + (mzy sin ag — mz.fz)srz = 0 (2)

Now since the string is. inextensible so that r,+ r, = constant, we have

81"1 + 8"'2 = 0,

F1+7 =0

or &ry = —8r;, 7, =—r;. Thus (2) becomes, after dividing by &r, # 0,

. . . e
mig siney — my¥, — Mg sinay — mpr; = 0
w | mygsine; — myg sinay
or ry =
my + my

Thus particle 1 goes down or up the incline with constant acceleration according as
m,g sina, > Moy sinay Or myg siney < My sinay respectively. Particle 2 in these cases goes
up or down respectively with the same constant acceleration.

We can also use a method analogous to the second method of Problem 7.22.

MISCELLANEOUS PROBLEMS

7.25. Two particles having masses m: and mz move ™ C
so that their relative velocity is v and the veloc- my
ity of their center of mass isv. If M = m.+m»
is the total mass and w = mima/(m1 + m2) is the 1
reduced mass of the system, prove that the total T2
kinetic energy is $Mv% + duv%
Let r;, r, and ¥ be the position vectors with re-
spect to O of mass m;, mass my and the center of (0]
mass C respectively. Fig. 7-11
From the definition of the center of mass, we have
myry + Moky . mli'l + ’)'nzi'z
F = ——/———— and = ——
my + mo my + My
orusing v, =%, Vo =1y V=1,
myvy + mgvy = (my+mg)V @
If the velocity of m, relative to ms is v, then
d . .
v = ;ﬁ(h—l’z) I~ =V Vy
so that Vi—Vy = V (2)
Solving (1) and (2) simultaneously, we find
o, M oMy
iVt amy T VT mtm
Then the total kinetic energy is
1
T = %’ml"% + §m2"§
1 (s ™V, 1 (V___"‘L"__>2
= —2—'m1 v+ my ¥ my 2m2 my F ey
= 1 2 l_"_”lm_zz=lMgz+l,,z
= 2(m1+m2)'0 +2m1+m2'v 2 21"
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7.26.

7.27.

7.28.

Find the centroid of a uniform semicircular ‘ vy
wire of radius a.
By symmetry [see Fig. 7-12] the centroid of
the wire must be on the y axis, so that € = 0. If ¢
is the mass per unit length of the wire, then if ds C
represents an element of arc, we have ds = adg ade
so that a .
i de
f yads f (a sin 8)(a d6)
- C 0
g = = = [
f ods f ade z
c 0
2
= 282 _ 2 Fig. 7-12
e T

Suppose that n systems of particles be given having centroids at #, &, .. .,Fn and
total masses M1, M, ..., M, respectively. Prove that the centroid of all the systems

is at _ . _
Mi¥ + Moz + - - - 4+ MaFn
Mi+Me+ --- + M,
Let system 1 be composed of masses myy, m,,, ... located at ryy, g, ... respectively. Similarly
let system 2 be composed of masses my;, My, ... located at roy, s, ... . Then by definition,
s = Muruntmpret e myry ot mr, + -
T my + Mg+ --- M,
f = Mafa t Mgalpg + *++ mgyryy + Mggryy + v ot
2 Moy + Mgy + -+ . M,
l': My Tpy + Mpglpg + <= - S Mgy + Moty + -+
" Myy + My + ++ - M,

But the centroid for all systems is located at 7
(Mygryg + myorig+ - <) + (mggrag + Mggrgy + =+ +) + -+ (Myyrpy + Mgty + -+ 0)
(mig+myg+ v e} + (Mg Fmgg+ o) + <o+ Mgy + Mpg+ )
MF, + MyFy + -+ + M,F,
M, +My+ - +M,

¥ =

Find the centroid of a solid of constant density
consisting of a cylinder of radius a and height H
surmounted by a hemisphere of radius a [see
Fig. 7-13].

Let 7 be the distance of the centroid of the solid from the
base. The centroid of the hemisphere of radius a is at dis-
tance $a + H from the base of the solid, and its mass is
M, = %7a3¢ [see Problem 7.11].

The centroid of the cylinder of radius ¢ and height H
is at distance JH from the base of the solid and its mass
is My = 7a?Hoe.

Then by Problem 7.27,

(3wado)(§a + H) + (va?Ho)(1H)
27630 + ra?Ho
3a? + 8aH + 6H?2
8a + 12H

7 =

Base of solid

Fig. 7-13
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7.29.

7.30.

SYSTEMS OF PARTICLES [CHAP. 7

A circular hole of radius a/2 is cut out of a circular region of radius a, as shown
in Fig. 7-14. Find the centroid of the shaded region thus obtained.

Y Yy
a0 N T 1rate
za %a x
Fig. 7-14 Fig. 7-15

By symmetry the centroid is located on the x axis, so that # = 0.

We can replace the circular region of radius ¢ by the mass M; = ra%s concentrated at its
centroid «, =a [Fig. 7-15]. Similarly, we can replace the circular hole of radius a/2 by the
negative mass My = —}wac concentrated at its centroid =z, = $a. Then the centroid is located
on the x axis at

lel + M2x2 _ (7@20)(01) + (—%77'0/20')(%’@) _ b
M, + M, - rale — ira’e 6"

A uniform rod PQ [see Fig. 7-16) of mass m and length L has its end P resting
against a smooth vertical wall AB while its other end @ is attached by means of an
inextensible string OQ of length I to the fixed point O on the wall. Assuming that
the plane of P, Q and O is vertical and perpendicular to the wall, show that

equilibrium occurs if
VA4L? — I? . 412 — 2
Y-, sing = F¥———
h/3 JAVEY
A

There is only one actual force, i.e. the weight mg of the
rod. Other forces acting are the force of the wall on the
rod and the tension in the string. However, these are con-
straint forces and can do no work. This can be seen since
if P were to slide down the wall no work would be done,
because the wall is frictionless and thus the force due to
the wall on the rod is perpendicular to the wall. Also if @
were to drop, it could only move perpendicular to the
string at Q.

Let r be the position vector of the center of mass C
[in this case also the center of gravity] relative to 0. Also
let i and j be unit vectors in the horizontal and vertical
directions respectively so that r = «i+ yj.

From Fig. 7-16,

Sina ==

oQ OP + PQ (1)

0@ = OC + €Q @

Then from (1), on taking the dot product with i,
0Q+i = OP-i + PQ-i

Since OP+i = 0, this reduces to
oQ:i = PQ-i

or lsina = Lsing (€7)]
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7.31.

Similarly on taking the dot product of both sides of (2) with j,
0Q:j = 0OC-j + €Q-j
or lcosa = y + §Lcosp

Now a virtual displacement of the center of mass C is given by

r = &xi + Syj

Since mg is the only actual force, the principle of virtual work becomes

mgedr = 0
Using (5), this becomes mgdy = 0 or Sy =

Now from (8) and (4), we have
lecosada = LcosBép

—lginada = 8y — 4L sinp 8B

185

4)

®)

(6)
@

since ! and L are constants and since § has the same properties as the differential operator d.

Since 8y =0 from (?), these equations become

lecosada = Lcospsp

lsina8a = 4L sing 88

From (8) and (9), we have on division,

sina _ 1sing
cose  2cospB
Now from (3), sing = (I/L)sina
so that cos B = V1 — (I2/L?) sin2«a

Thus equation (10) can be written
sin a

Dividing by sin« and squaring both sides, we find

V4L2 — 2

sina =

and from (11) sing =

as required.

A uniform solid consists of a cylinder of radius.a
and height H on a hemisphere of radius a, as indi-
cated in Fig. 7-17. Prove that the solid is in stable
equilibrium on a horizontal plane if and only if
a/H > /2.

By Problem 7.28 the centroid C is at a distance CB
from the center B of the hemisphere given by

" - 302 + 8aH + 6H2 _  6H? — 3a?
8a + 12H T 8a+ 12H
Then the distance of the centroid C above the plane is
CP = CD + DP = CBcos¢ + BQ
2 — 8¢2
6H: 3a cosé + a

8a + 12H

lsina

1
V1 — sin2a 2 VL2 — B2 sin2¢e

& 3
Fig. 7-17

)
)

(20)

(11)

(12)

(3)

(14)

(15)
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7.32.
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so that the potential energy (or potential) is

_ 6H2 — 3a2
V.= Mg<8a+12H cos 6
e vV _ 3a2 — 6H?2
Equilibrium occurs where 29 = 0 or My <8a T 12H

Then the equilibrium will be stable if

a2V o (30— 6H? ,
362 g=0 9\ Ba+ 12H )

32— 6H2 >0 or a/H > /2.

=0

ie.

A uniform chain has its ends suspended
from two fixed points at the same hori-
zontal level. Find an equation for the
curve in which it hangs.

Let A and B [Fig. 7-18] be the fixed points.
An element of the chain of length As is in equilib-
rium under the tensions of magnitude T and
T + AT due to the rest of the chain and also
the weight og As of the element of chain. Now
from Fig. 7-18 if the directions of the vectors

[CHAP. 7

+a)

>sin0 =0, ie. 6 =0.

8a + 12H

2 _ GH2
Mg<3a 6H> > 0

corresponding to T and T + AT make angles
of § and ¢ + Ae with the x axis respectively,
we have as the condition for equilibrium [neg-
lecting terms of order (A4)2 and higher],

(T + AT) cos (6 + A8)i + (T + AT) sin (6 + 26)§] — (T cos

or (T + AT) cos (6 + A6) T

(T'+ AT) sin(6+4¢) — T sing

Fig. 7-18
6i+ Tsingj) — ogias = 0
cos 6 @
= ogAs 2)

Equation (1) shows that the horizontal component T cos ¢ must be a constant, which we shall take
as T, which corresponds to the tension at the lowest point of the chain, where ¢ = 0. Thus

Tcosoe = T, (3)
From (2) we find on dividing by Ae,
(T+AT)sin(¢+A2¢) — Tsing _ As
Y] = a9 Ad (4)
Taking the limit of both sides of (4) as Aé —» 0, we find
d
%(T sin 6) agﬁ% (%)
Using (3) to eliminate T, (5) becomes
d ds
75 Totane) = og (C)]
or % = a—osec20 = b sec26 )
d .
where b = Ty/og. Now % = cosé, d—z = sing ®
Thus from (?) and (8),
‘fl—”; = '—‘%% = (cosg)(bsec2s) = Dbsecd 9
.fi_lﬂ = Z—yg—: = (sing)(bsec29) = bsecotand (20
) s
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Integrating (9) and (10) with respect to ¢, we find
x = bln(seco + tang) + ¢ (11)
y = bseco + ¢, (12)

Let us assume that at the lowest point of the chain, ie. at 6 =0, 2 =0 and y =b. Then
from (11) and (12) we find ¢; =0, ¢, =0. Thus

x = bln(secs + tany) 19)

y = bsecs (14)
From (18) we have secé + tang = e*/b (15)
But sec29 — tan26¢ = (secd + tanég)(secd —tang) = 1 (16)
Then dividing (16) by (15), we find

secd — tang = e~/b ()

Adding (15) to (17) and using (14), we find
y = %(ex/b+e*1/b) = bcosh% 18

This curve is called a catenary [from the Latin, meaning chain].

Supplementary Problems

DEGREES OF FREEDOM

7.33.

7.34.

7.35.

Determine the number of degrees of freedom in each of the following cases: (a) a particle moving
on a plane curve; (b) two particles moving on a space curve and having constant distance between
them; (¢) three particles moving in space so that the distance between any two of them is
always constant. Ans. (@) 1, (b) 1, (¢) 6

Find the number of degrees of freedom for a rigid body which (a) moves parallel to a fixed
plane, (b) has two points fixed but can otherwise move freely. Ans, (a) 8, (b) 1

Find the number of degrees of freedom for a system consisting of a thin rigid rod which can
move freely in space and a particle which is constrained to move on the rod. Ans. 4

CENTER OF MASS AND MOMENTUM OF A SYSTEM OF PARTICLES

7.36.

7.37.

7.38.

7.39.

A quadrilateral ABCD has masses 1, 2, 3 and 4 units located at its vertices A(—1,—2,2),
B(3,2,-1), C(1,~2,4) and D(8,1,2). Find the coordinates of the center of mass. Ans. (2,0,2)

A system consists of two particles of masses m, and m,. Prove that the center of mass of the
system divides the line joining m, to m, into two segments whose lengths are in the ratio my to m,.

A bomb dropped from an airplane explodes in midair. Prove that if air resistance is neglected,
then the center of mass describes a parabola.

Three particles of masses 2,1, 8 respectively have position vectors r; = b5ti — 22§ + (3t — 2)k,
rg = (2t—38)i+ (12—52)j+ (4 +6t—38t3)k, 13 = (26— 1)i+ (2+2)j — t5%k where ¢ is the time.
Find (a) the velocity of the center of mass at time £=1 and (b) the total linear momentum
of the system at ¢t =1. Ans. (a) 8i—2j—k, (b) 18i—12j—6k
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7.40.

7.41.

7.42.

7.43.

7.44.

7.45.

7.46.

7.47.

SYSTEMS OF PARTICLES [CHAP. 7

Three equal masses are located at the vertices of a triangle. Prove that the center of mass is
located at the intersection of the medians of the triangle.

A uniform plate has the shape of the region bounded by the parabola
y = 22 and the line y = H in the xy plane. Find the center of mass.
Ans. £ =0, y = 2H

Find the center of mass of a uniform right circular cone of radius a
and height H.

Ans. That point on the axis at distance §H from the vertex.

The shaded region of Fig. 7-19 is a solid spherical cap of height H
cut off from a uniform solid sphere of radius a. (a) Prove that the
centroid of the cap is located at a distance £(2a — H)?/(3a — H) from
the base AB. (b) Discuss the cases H =0, H =a and H = 2a. Fig. 7-19

Find the center of mass of a uniform plate bounded by
y = sinx and the x axis. Ans. & =7/2, § = /8

Find the center of mass of a rod of length ! whose den-
sity is proportional to the distance from one end O.

Ans. 2l from end O

Find the centroid of a uniform solid bounded by the
planes 4x+2y+2=8, =0, y =0, z=0.
Ans. ¥ = Lea(i+ 2j+ 4k)

A uniform solid is bounded by the paraboloid of revolu-
tion %24 %2 = ¢z and the plane z = H [see Fig. 7-20].
Find the centroid. Ans. £=0,9 =0, 2= 2H Fig. 7-20

ANGULAR MOMENTUM AND TORQUE

7.48.

7.49.

7.50.

7.51.

7.52.

7.53.

7.54.

Three particles of masses 2,3 and 5 move under the influence of a force field so that their
position vectors relative to a fixed coordinate system are given respectively by r; = 2ti— 3j + t2k,
r, = (¢+1)i+8tj—4k and ry = #i—tj+ (2t —1)k where t is the time. Find (a) the total
angular momentum of the system and (b) the total external torque applied to the system, taken
with respect to the origin.
Ans. (a) (31 —12t)i + (6¢2— 10t —12)j + (21 + 5t2)k

(b) —12i + (12¢ — 10)j + 10tk

Work Problem 7.48 if the total angular momentum and torque are taken with respect to the
center of mass.

Verify that in (a) Problem 7.48 and (b) Problem 7.49 the total external torque is equal to the
time rate of change in angular momentum.

In Problem 7.48 find (a) the total angular momentum and (b) the total external torque taken
about a point whose position vector is given by r = ti—2tj+ 8k. Does the total external torque
equal the time rate of change in angular momentum in this case? Explain.

Verify Theorem 7.9, page 169, for the system of particles of Problem 7.48.

State and prove a theorem analogous to that of Theorem 7.9, page 169, for the total external
torque applied to a system.

Is the angular momentum conserved in Problem 7.387 Explain.
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WORK, ENERGY AND IMPULSE

7.55.

7.56.

7.57.

7.58.

7.59.

7.60.

7.61.

Find the total work done by the force field of Problem 7.48 in moving the particles from their
positions at time ¢ =1 to their positions at time ¢=2. Ans. 42

Is the work of Problem 7.55 the same as that done on the center of mass assuming all mass
to be concentrated there? Explain.

Find the total kinetic energy of the particles in Problem 7.48 at times (a) t=1 and (b) t =2.
Discuss the connection between your results and the result of Problem 7.55.

Ans. (a) 725, (b) 30.5

Find the total linear momentum of the system of particles in Problem 7.48 at times (¢) ¢t =1 and
b) t=2. Ans. (o) 1Ti+4j+ 14k, (b) 27i+4j+ 18k

Find the total impulse applied to the system of Problem 7.48 from ¢t =1 to ¢t=2 and discuss
the connection of your result with Problem 7.58. Ans. 10i+ 4k

Prove Theorem 7.13, page 170.

Verify Theorem 7.13, page 170, for the system of particles in Problem 7.48.

CONSTRAINTS, STATICS, VIRTUAL WORK, STABILITY AND D’ALEMBERT’S PRINCIPLE

7.62.

7.63.

7.64.

7.65.

7.66.

7.67.

7.68.

In each case state whether the constraint is holonomic or non-holonomic and give a reason for
your answer: (a) a particle constrained to move under gravity on the inside of a vertical paraboloid
of revolution whose vertex is downward; (b) a particle sliding on an ellipsoid under the influence
of gravity; (c¢) a sphere rolling and possibly sliding down an inclined plane; (d) a sphere rolling
down an inclined plane parallel to a fixed vertical plane; (e) a particle sliding under gravity on
the outside of an inverted vertical cone.

Ans. (a) holonomic, (b) non-holonomic, (¢) non-holonomic, (d) holonomic, (e) holonomic

A lever ABC [Fig. 7-21] has weights W, and W,
at distances a; and a, from the fixed support B.
Using the principle of virtual work, prove that a
necessary and sufficient condition for equilibrium is
W1 a; = W2 Ag.

Work Problem 7.63 if one or more additional weights
are placed on the lever.

An inextensible string of negligible mass hanging
over a smooth peg at B [see Fig. 7-22] connects one mass
m, on a frictionless inclined plane of angle « to another
mass Mmy. Using D’Alembert’s principle, prove that
the masses will be in equilibrium if my, = m; sina.

Work Problem 7.65 if the incline has coefficient of fric-
tion 4. Ans. my = my(sina — u cos a) Fig. 7-22

A ladder AB of mass m has its ends on a smooth wall and floor
[see Fig. 7-23]. The foot of the ladder is tied by an inextensible
rope of negligible mass to the base C of the wall so that the
ladder makes an angle o with the floor. Using the principle
of virtual work, find the magnitude of the tension in the rope.

Ans. Img cota

Work (a) Problem 7.63 and (b) Problem 7.65 by using the po- B
tential energy method. Prove that the equilibrium in each case
is unstable,. Fig. 7-23
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7.69.

7.70.

7.1,

1.72.
7.73.

7.74.

SYSTEMS OF PARTICLES [CHAP. 7

A thin uniform rod of length ! has its two ends constrained to move on
the circumference of a smooth vertical circle of radius a [see Fig. 7-24).
Determine conditions for equilibrium.

Is the equilibrium of the rod of Problem 7.69 stable or not? Explain.

A solid hemisphere of radius o is located on a perfectly rough inclined
plane of angle «.

(¢) Prove that it is in stable equilibrium if « < sin—1(3/8).

(b) Are there any other values of a for which equilibrium can occur?
Which of these, if any, yield stable equilibrium? Fig.7-24

Use D’Alembert’s principle to obtain the equations of motion of masses m; and m; of Problem 7.65.
Work Atwood’s machine problem [see Problem 7.22, page 180] by using D’Alembert’s principle.

Use D’Alembert’s principle to determine the equations of