
Groundwater Flow Modeling



Introduction
• A mathematical groundwater model is used to simulate and describe real-world

groundwater flow.

• The mathematical model is developed by translating a conceptual model in the form of

governing equations, with associated boundary and initial conditions.

• This model can then be solved using a numerical model, which is developed through

the implementation of computer programs (codes).

• A groundwater simulation model is a non-unique model due to different sets of

assumptions used for simplifying the mathematical description of groundwater flow.

 assumptions such as homogeneity, isotropy, direction of flow, geometry of the

aquifer, mechanisms of contaminant transport and its reaction.



Introduction

• Models can also simulate more complicated problems with higher accuracy, utilizing

more inputs, system parameters, and boundary conditions.

• A successful model can result from a complete site investigation and field data.

• The model selection is a trade-off between the computational burdens including

boundary conditions, grid discretization, time steps, the model accuracy, and ways to

avoid truncation errors.

• The performance and efficiency of a model depends upon how accurate the

mathematical equations approximate the physical system being modeled.



Introduction
• However, it should be noted that the developed model is an approximation and not

an exact simulation of real-world groundwater flow.

• The first step in groundwater system modeling is the conceptualization of the

model, which includes

 a set of assumptions for the system’s components,

 the media properties, and

 the transport processes in the system.



Process of Modeling

The process of aquifer modeling consists of the following activities:

• The parameters characterizing the physical framework of the aquifer and the system

condition are identified.

• The hydrogeological parameters are estimated using field data in specific points.

• The spatial distribution of parameters is estimated utilizing

interpolation/extrapolation methods.

• The entire estimated parameters and field data are utilized to make the conceptual

model structure.



Process of Modeling

• A mathematical model is developed to describe the conceptual model by expressing

the system condition using the groundwater flow equations.

• The mathematical model is transformed to a numerical model to find the aquifer

response including hydraulic head or pollutants concentrations.

• The generated model is solved by numerical methods of solution.

• The model is calibrated for predicting the behavior of a considered system by

simulating the available field data.

• The model is verified to eliminate errors resulting from the numerical

approximations.



Process of Modeling

• The sensitivity analysis is done to select the estimates of model coefficients, which

need to be estimated more accurately, and also to decipher the error bounds.

• The management strategies are suggested for aquifer restoration and optimal

utilization of the groundwater resources.

• The model accuracy depends upon

 the level of conceptualization and understanding of the groundwater system

 the assumptions embedded in the derivation of the mathematical equations.



Mathematical Modeling
• Groundwater simulation models have been widely used in groundwater system analysis

and management.

• These models generally require the solution of partial differential equation.

• Prediction of subsurface flow, water table level, solute transport, and simulation of

natural or human-induced stresses are necessary for groundwater management.

• Mathematical models may be deterministic, stochastic (statistical), or a combination

of both.

• In stochastic models, a range of predictions, based on probabilities of occurrence, is

provided.



Mathematical Modeling
• Such predictions can be used in planning and decision-making processes for the

groundwater resource.

• Stochastic models can also help to evaluate the uncertainties of a system.

• Deterministic models widely used for solving regional groundwater problems are based

on cause-and-effect relationship of known systems and processes.

• Deterministic models can be further classified as analytical and numerical.

• Another class of mathematical models in solving groundwater flow is analytical

modeling, which is an easy method to evaluate the physical characteristics of an

aquifer.



Mathematical Modeling

• This method of solution provides a rapid preliminary analysis of groundwater system

utilizing a number of simplifying assumptions.

• These models cannot be used for solving the problems with the irregularity of the

domain’s shape, the heterogeneity of the domain, and complex boundary conditions.

• The numerical models’ implementation is then carried out using computer programs for

addressing more complicated problems.

• The exact solutions for some simple or idealized problems can be found by numerical models.

• These models can yield approximate solutions by discretization of time and space.

• Numerical models can be further classified as finite difference method (FDM), finite element

method (FEM), and finite volume method (FVM)



Mathematical Modeling
• In FDM, the first derivative in partial

differential equations.

• It is approximated by the difference

between values of independent variables

at adjacent nodes considering the

distance between the nodes, and

considering the duration of time step

increment at two successive time levels.



Mathematical Modeling

Seepage through a dam:

A classical problem of unconfined flow systems

is locating the top boundary of the saturated

zone in an earthen dam. In the cross section

shown in figure, the reservoir lake has an

elevation of 4 m and the plung pool has an

elevation of 3 m.

The bottom of the dam at y= 0 rests on impermeable bedrock. In this section, we solve the

one-dimensional version of this problem using the Dupit approximation that flow is

horizontal through the dam and that the upper saturated boundary intersects the reservoir

and plunge pool levels at the two ends of the dam.



Mathematical Modeling
• The exact formulation of this seepage problem requires that the top surface be a no-

flow boundary and that the head at each point on the boundary be equal to its

elevation. In one dimension, the governing equation for this problem is

with R = 0. The boundary conditions are that h=4 m at x= 0 and that h= 3 m at x = 6 m.

The analytical solution can be derived by integration of

Leading to the general solution h2 = a1x + a2, where a1 and a2 are constants determined by

substitution of the boundary conditions.

The final analytical solution for the boundary conditions used in this problem is



Mathematical Modeling

• We now present a finite difference solution.

• The boundaries at the top and bottom of figure

shown are no-flow boundaries to force flow to

be one-dimensional in the x-direction.

• Remember that use of the Dupit assumptions

means that head does not vary vertically.

• The y-dimension of the grid is arbitrary in

length, but we have chosen it to be 6 m simply

for the sake of keeping the spacing between

nodes such that ∆x = ∆x = 2 m.

Plan view of the finite difference grid used in the seepage

through a dam problem. The two no-flow boundaries

parallel to the x-axis keep the flow one-dimensional in the

x-direction.
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In the finite difference approximation, derivatives are replaced by differences taken

between nodal points. A central approximation to

is obtained by approximating the first derivative at

and then obtaining the second derivative by taking a difference between the first derivatives

at those points. That is

which simplifies to







Mathematical Modeling
• The solution is shown in Figure. The heads in each

column of the solution are identical to the others,

as they should be, since the top and bottom no-

flow boundary conditions constrain flow to be one-

dimensional. The values computed from the

numerical solution for the height of the water

table are h = 3.70 m at x = 2 m and h= 3.37 m at x =

4 m.

• Although each approach has some advantages and disadvantages, the FDMs are generally

easier to program because of their conceptual and mathematical simplicity.



Analytical Modeling

• An analytical model provides a solution for a mathematical description of a physical

process.

• In this order, groundwater flow equations require several simplifying assumptions

including the domain’s shape, the boundary and initial conditions.

• Because of the simplifications inherent with analytical models,

• it is not possible to account for field conditions that change with time or space

(Mandle, 2002).

• Thus, the system under study may vary from actual conditions.



Analytical Modeling

• Analytical models have mostly been in use for particular sets of conditions and involve

manually solving equations, such as

 Darcy’s law, the Theis equation,

 generating solutions utilizing curve-matching techniques,

 inverse solutions for interpretation of flow tests and

 verification of numerical models.

• In most of the analytical methods for solution of two-dimensional (2D) groundwater

problems, a suitable function is first determined to transform the problem from a

geometrical domain into a domain with a more straightforward solution algorithm

(Karamouz et al., 2003).



Numerical Modeling
In groundwater hydrology, numerical modeling can be used for several purposes:

• For the aquifer considered, investigating groundwater system dynamics and understanding the

flow patterns.

• As an assessment and planning tool for evaluating recharge, discharge, aquifer storage

processes, transport of contaminants, and quantifying sustainable yield.

• As a predictive tool for simulating future scenarios and to recreate the impacts of various

activities.

• For planning and designing practical solutions for different development and management

scenarios.

• As a groundwater management tool for assessing alternative policies and regulatory guidelines.

• As visualization tools for communicating key messages to the public and decision makers.



Numerical Modeling
• For the groundwater simulation, in the last few decades, a variety of numerical methods

such as finite difference method (FDM), finite volume method (FVM), finite element

method (FEM), method of characteristics (MOC), boundary element method (BEM),

analytic element method (AEM), meshless method, etc. have been developed by

engineers and scientists.

• Depending on the groundwater problem to be solved, each of these methods has its own

advantages and disadvantages and the choice depends on the complexity of the problem, data

available, computational facilities, and investigator’s familiarity with the method.

• Out of the many available numerical methods for groundwater simulation, FDM, FEM, and AEM

are the most popular numerical modeling techniques among engineers and scientists.



Numerical Modeling
The main features of the various numerical models are:

1. The models are solved only at specified points in the space and time domains defined

for the problem (discrete values).

2. The PDEs that describe the groundwater flow are transformed by a set of

mathematical equations in certain points as discrete values of the state variables.

3. The solution is for a specified set of numerical values of the various model coefficients

rather than a general relationship in terms of these coefficients.

4. A computer program is employed to solve the large number of equations that must be

solved simultaneously.



Finite  Difference Method
• Then the governing equation is approximated using a suitable scheme of difference at

each node and a system of equations is formed.

• This system can be solved using direct or iterative solution techniques, after the

appropriate application of the boundary conditions, to get the unknown groundwater

head or concentration.

• Considering homogeneous isotropic confined aquifer in two dimensions, flow equation

can written as

where S is the storage coefficient, T the transmissivity, and R the recharge or pumping rate.



Finite  Difference Method
Corresponding FDM form in explicit form (refer to Figure below), the above flow Equation

can be written as (Wang and Anderson, 1982)

Figure. A typical finite difference grid

A



Finite  Difference Method

Figure. A typical finite difference grid

The corresponding FDM form in implicit form can be written as (Wang and Anderson, 1982)

Here n + 1 is the current time step and n the

previous time step. In Equation A, as there is

only one unknown, we can explicitly get the

unknown head. In Equation B, as there are more

unknowns, the equations are to be formed for

all grids and simultaneously solved for all

unknowns.

B



Finite Difference Method
• The continuous media is expressed in Equation 1.

• It is replaced by a finite set of discrete points in space, and also time is discretized:

• The partial derivatives are replaced by terms calculated from the differences in head

values at each node.

• Simultaneous linear algebraic difference equations are achieved through the

derivatives of variables.

• Their solutions lead to the head values at nodes and time by solving the linear algebraic

equations.

(1)



Finite Difference Method
• The solutions obtained by this method are just approximations.

• Figure 1 shows a three-dimensional (3D) discretized aquifer. In this aquifer, terms of (i, j,

k) address the location of each node in the mesh, where i, j, and k represent rows,

columns, and layers, respectively.

Figure 1. Illustration of discretization of continuous media into finite difference cells.



Finite Difference Method
• The head in each node is a function of both space and time and it is required to discretize

the continuous media into discrete nodes and time.

• The calculation is solved for the nodes that are located within each cell.

• There are many schemes for locating nodes in cells such as a mesh-centered node or

block-centered node as shown in Figure 2.

Figure 2. Illustration of 2D space

discretization methods: (a) mesh-centered

and (b) block-centered.



Finite Difference Method
• Finite-difference approximations for the first- and second-order derivatives of the

groundwater flow and mass transport equations can be developed directly from the

Taylor series approximations of the temporal and spatial derivatives.

• In the discrete groundwater model, the head or mass concentration at the nodal points x

+ Δx or x − Δx is expressed in terms of the state variables and all the derivatives are

evaluated at an adjacent nodal point, x,

(2)

By rearranging Equation 2,



Finite Difference Method

• The forward and backward first differences are obtained as

(3)

respectively.

(4)

(5)



Finite Difference Method
• Differencing Equations 2 and 3 and isolating the first-order derivative gives a central

difference approximation to the first derivative:

(6)

• The error, Ē, is on the order of Δx, which means a positive constant δ exists, which is

independent ofΔx, and |Ē| ≤ δ|Δx| for all sufficiently smallΔxs.

• The errors of these approximations are called truncation errors.

• The truncation error of the central difference approximation is

(7)



Finite Difference Method
• It is decreased by decreasing the values of Δx and Δt. 

• An approximation to the second derivative can be obtained by Equation 2:

(8)

• The truncation error of the second-order approximation is

(9)

• Higher-order derivative approximations can be developed using linear difference

operators.



Finite Difference Method

• Similar discretization could be used for time intervals.

• Therefore, the approximations of ∂h/∂t using forward and backward differences are as

follows:

(11)(10)

respectively.

• Figure 3 shows time and space discretization at node (i, j) in a 2D finite difference grid,

and illustrates the application of some simple finite-difference methods for solving

groundwater flow equation.



Finite Difference Method

Forward Difference Equation

• The head at point (i, j) at time step (n + 1) can be obtained utilizing the value of h at

time step n and forward difference time derivative.

• Therefore, there is a finite difference equation for each node at time step n + 1 with

only one unknown variable.

• As shown in Figure 6.3a, all values of head h are known at all spatial nodes at time n.

• This method is called forward difference or explicit method.



Finite Difference Method



Finite Difference Method

Figure 3 (a) The forward difference, (b) backward difference, and (c) Crank–Nicholson method in a 2D finite-
difference grid.



Finite Difference Method
• In a 2D groundwater flow equation for a heterogeneous, anisotropic aquifer, Equation 

(1) can be written as

12

• In this equation, only hij
n+1 is unknown. Equation (12) can be solved explicitly at each grid for

the head at the new time level.

• Since the solution is dependent only upon known values of heads in the adjacent grids at the

beginning of the time periods, the computation for hij
n+1 in any grid can be made in any order

without regard to values of hij
n+1 for any other grid (Karamouz et al., 2003).



Finite Difference Method
For example, in a one-dimensional (1D) groundwater flow equation for a heterogeneous,

isotropic, and confined aquifer, Equation (12) can be written as

13

or

14

• Explicit finite-difference equations are simple to solve but when time increments are

too large, small numerical errors can propagate into larger errors in the next

computational stages.

• A stable solution is ensured in 1D heterogeneous case if



Finite Difference Method
• A stable solution is ensured in 1D heterogeneous case if

15

• Consequently, the time increment cannot be selected independently of the space

increment.



Finite Difference Method

Solution

To satisfy the stability requirement of

Equation (15), the maximum time stepΔt is

computed as

Example :

Consider a non-steady, 1D flow in a confined aquifer shown in Figure below. Let Δx = 3 m,

b = 3 m, h1 = 5 m, h5 = 1 m for t > 0, K = 0.5 m/day, S = 0.03. The initial conditions are h1 = h2

= h3 = h4 = h5 = 5 m. Determine the spatial variation of piezometric head.



Finite Difference Method



Finite Difference Method

The calculated head in grid (4) as a function of time is shown in Figure. The computed values

fluctuate with each time step for ∆t = 0.12, giving completely erroneous results. Also, the

amplitude of the fluctuation increases with increasing time.

The above process is repeated until the head

at each grid is calculated at the desired time.

To illustrate the stability problem, a set of

calculations was made in which ∆t = 0.12,

was selected to be 0.12 days so that the

expression for stability results in



Finite Difference Method

This system of equations can be solved simultaneously considering the boundary conditions. This

method is called forward difference or implicit method. The implicit finite differential form of 2D

groundwater equation, (Equation a) can be expressed as follows:

Backward Difference Equation

Figure shows the time derivative as a backward difference from the

heads at time level, n − 1, which are the known heads. Therefore,

the difference equation of each node will have five unknown

variables. For a grid, which has N nodes, there is a system of N

equations containing N unknown variables.

a



Finite Difference Method

For example, in a 1D groundwater flow equation for a heterogeneous, isotropic, and confined

aquifer, Equation (b) can be written as

b

C

Rearranging Equation (c) so that all of the known values are on the right-hand side of the equal sign

results in d



Finite Difference Method
The head in grid (i) depends upon the value of head at time n in the adjacent grids, (i + 1) and (i − 1). Thus,

Equation (d) represents a set of algebraic equations that must be solved simultaneously.

Example : Solve the previous example using the backward difference equation.

Consider a non-steady, 1D flow in a confined aquifer shown in Figure below. Let Δx = 3 m, b = 3 m, h1 = 5 m,

h5 = 1 m for t > 0, K = 0.5 m/day, S = 0.03. The initial conditions are h1 = h2 = h3 = h4 = h5 = 5 m. Determine the

spatial variation of piezometric head.

Solution

Equation (d) is used for determining the three interior grids (2),

(3), and (4). Grids (1) and (5) are boundary grids and values of

head at these grids are specified as 5 and 1 m, respectively. With

assumption of h1 = h2 = h3 = h4 = h5 = 5 m, and h1
0.08 = h2

0.08 =

h3
0.08 = h4

0.08 =1 = m, for the second time step Δt = 0.08 days, the

following equations for grids (2), (3), (4) are obtained:



Finite Difference Method

Rearranging the above equations so that all known values are placed on the right-hand side and summing

them up, we get
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Data Requirement for a Groundwater Flow
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