Space Physics

An Introduction

to Plasmas and Particles
in the Heliosphere

and Magnetospheres




Advanced Texts in Physics

This program of advanced texts covers a broad spectrum of topics which are of
current and emerging interest in physics. Each book provides a comprehensive and
yet accessible introduction to a field at the forefront of modern research. As such,
these texts are intended for senior undergraduate and graduate students at the MS
and PhD level; however, research scientists seeking an introduction to particular
areas of physics will also benefit from the titles in this collection.

Springer
Berlin
Heidelberg
New York
Hong Kong
London L
fll?n hysics and Astronomy
aris -
Tokyo springeronline.com

ONLINE LIBRAR\I




May-Britt Kallenrode

P . Y T
Space Physics
An Introduction

to Plasmas and Particles

in the Heliosphere
and Magnetospheres

Third, Enlarged Edition

With 211 Figures, 12 Tables,
Numerous Exercises and Problems

Springer




Professor Dr. May-Britt Kallenrode

Universitit Osnabriick
Fachbereich Physik
Barbarastrafle 7

49069 Osnabriick
Germany

E-mail: mkallenr@uos.de

ISSN 1439-2674

ISBN 3-540-20617-5 3rd Edition Springer-Verlag Berlin Heidelberg New York
ISBN 3-540-41249-2 2nd Edition Springer-Verlag Berlin Heidelberg New York

Library of Congress Cataloging-in-Publication Data

Kallenrode, May-Britt, 1962-

Space physics : an introduction to plasmas and particles in the heliosphere and magnetospheres /
May-Britt Kallenrode.- 3rd, enl. ed.

p. cm. - (Advanced texts in physics, ISSN 1439-2674)

ISBN 3-540-20617-5 (acid-free paper)

1. Plasma (Ionized gases) 2. Space plasmas. 3. Heliosphere (Astrophysics) 4. Magnetosphere.

5. Cosmic physics. L. Title. II. Series.

QC718.K28 2004 523.01-dc22 2003064770

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of
this publication or parts thereof is permitted only under the provisions of the German Copyright Law
of September 9, 1965, in its current version, and permission for use must always be obtained from
Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

Springer-Verlag is a part of Springer Science+Business Media.
springercnline.com

© Springer-Verlag Berlin Heidelberg 1998, 2001, 2004
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant pro-
tective laws and regulations and therefore free for general use.

Typesetting: Data prepared by the author using a Springer TgX macro package
Final processing: Frank Herweg, Leutershausen
Cover design: design & production GmbH, Heidelberg

Printed on acid-free paper  SPIN 10973561 s57/3141/di 543210



Preface to the Third Edition

This book is a revised and expanded version of the second edition of Space
Physics. The first part introduces basic concepts and formalisms which are
used in almost all branches of space physics. The second part is concerned
with the application of these concepts to plasmas in space and in the helio-
sphere. More specialized concepts, such as collisionless shocks and particle
acceleration, are also introduced. The third part deals with methodological
considerations. It consists of an expanded chapter on space measurement
methods and a new chapter on general methodological problems. This last
chapter is relevant in that it points out the differences between laboratory
physics and physics in a complex natural environment, in particular the prob-
lems of limited knowledge — or as Pollack {415] puts it, “Uncertain Science

.. Uncertain World”. In Part II, in most chapters a section “What I Did Not
Tell You” has been added — it should help the reader to understand some
crucial assumptions underlying the basic ideas introduced in the text and
might help you to appreciate the limitations of our knowledge and our mod-
els. These sections also give illustrative examples that help to understand the
last chapter.

This edition has also been expanded by numerous examples, in particu-
lar in Part I. They illustrate basic concepts and aid the reader in the ap-
plication of these concepts to real problems. In addition, new results from
recent space missions, such as ACE, TRACE, and Wind, have been added.
In the appendix, a list of Internet resources has been added. This list can
also be found (in a “clickable” version) at www.physik.uni-osnabrueck.
de/sotere/spacebook/intro.html. On that page, supplementary material
to this course can be found, too.

The idea of the book is an introduction to many aspects of space plasmas.

Obviously. this annroach has the disadvantace that a snecialist in anv of the
ra.vuul , UUUUU yl}luw\_‘l‘. AACAAT Lilinv UUiluoduvua VLIJLLULDB\_; viicvy v UF\J\J“-"‘-‘-UU Fo NS ull‘)' AL ULLAN,

subfields will be disappointed that his or her field is dealt with in only a brief
and very elementary way. That is, without doubt, true. My idea, however,
is to introduce the basic concepts to the novice not already specialized in
any field and to help the specialist to easily grasp some ideas in other fields.
Therefore the focus is on concepts rather than on detailed mathematical
analysis. References should help both the novice who is looking for a deeper
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formal treatment and the specialist who wants to find reviews giving more
details.

There are also a few good books on plasma physics and /or space physics
which can be recommended to the reader. A very accessible, unmatched in its
style and consciencious approach, book on plasma physics is Plasma Physics
and Controlled Fusion by F.F. Chen [97]; a well-written and up-to-date ac-
count of the phenomena in space plasmas is given in Introduction to Space
Physics, edited by M.G. Kivelson and C.T. Russell [290]. These two books
cannot be matched by the present one and can serve as valuable supplements.
More formal introductions to plasma physics are Plasma Dynamics by R.O.
Dendy [128] and Plasma Physics by R.J. Goldston and P.H. Rutherford [192].
Very good introductions to plasma physics of the kind required by a space sci-
entist are given in Physics of Space Plasmas by G.K. Parks [397], Physics of
Solar System Plasmas by T.E. Cravens [113|, and Basic Space Plasma Physics
by W. Baumjohann and R.A. Treumann [36] and its sequel Advanced Space
Plasma Physics [520]. A useful collection of plasma formulas can be found at
wwwppd.nrl.navy.mil/nrlformulary/nrlformulary.html.

As in the earlier editions, symbols in the margin help to guide you through
the text. The symbols are

e This section contains an example from space plasmas to illustrate a physical
concept. Such a section might be skipped by a reader who is interested
primarily in the concepts and less in space science.

This section is more formal, but is not vital for an understanding of basic

observations and ideas. It might be skipped by a reader who is mainly

interested in an introduction to space physics.

e An apparently confused reader, “Whatnow”, marks supplementary sec-
tions: although the ideas presented here are important in space physics, the
theoretical background is complicated and only briefly sketched. In partic-
ular, the beginner in space physics should feel free to skip these sections
on first reading and return to them later after becoming more acquainted
with the topic.

e This text points to hotly debated topics and fundamental open problems.

[ am grateful to the following persons, who all contributed to the devel-
opment of this book: Andre Balogh, R.A. Cairns, Stanley H. Cowley, Ulrich
Fischer, Roman Hatzky, Bernd Heber, Eberhard Moebius, Reinhold Miiller-
Mellin, Constantinos Paizes, Wilfried Schroder, Glinter Virkus, C.L. Waters,
Gerd Wibberenz, and even an anonymous reader who sent hints about errors
without being traceable. I am grateful to the helpful team at Springer, in
particular Claus Ascheron, Adelheid Duhm, Gertrud Dimler, Ian Mulvany,
and Frank Holzwarth. And - last but not least — a big thank-you to Klaus

Osnabriick, December 2003 May-Britt Kallenrode
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Part I

Plasmas: The Basics






1 Introduction

We shall not cease from exploration.
And the end of all our exploring

will be to arrive where we started
and know the place for the first time.
T.S. Eliot, Little Gidding

1.1 Neutral Gases and Plasmas

Matter, in our daily experience, can be divided into solids, liquids, and gases.
Manipulation of matter has shaped our scientific world view as well as our
intuitive understanding of its different states and their behavior. But mov-
ing upwards from the surface of the Earth, our environment changes and
no longer fits into this picture: starting at a height of about 80 km, the
atmosphere contains an ionized particle component, the ionosphere. With in-
creasing height, the relative importance of the neutral component decreases
and ionized matter becomes dominant. Farther out in the magnetosphere and
in interplanetary space almost all gas is ionized: the hard electromagnetic ra-
diation from the Sun immediately ionizes almost all matter. Space therefore
is dominated by a plasma, the “fourth state of matter”.

A plasma differs from a neutral gas in so far as it (also) contains charged
particles. The number of charged particles is large enough to allow for elec-
tromagnetic interactions. In addition, the number of positive and negative
charges is nearly equal, a property which is called quasi-neutrality: viewed
from the outside the plasma appears to be electrically neutral. The reason for
this quasi-neutrality can be understood from the electrostatic forces between
charged particles. For instance, in a gas discharge a typical length scale is
L = 0.01 m and a typical number density number density of the electron gas
is ne = 102° m~3. The electric field on the surface of a sphere with r = L
containing only the electron gas but no ions is then £ =~ 10 V/m. Such
a strong field will immediately cause a rearrangement of charges and quasi-
neutrality will be restored. In the rarefied plasmas in space, number densities
are smaller by many orders of magnitude (see Fig. 1.1); however, since the
spatial scales are measured in kilometers or even thousands of kilometers,
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the same argument can be applied: on the relevant spatial scales the plasma
is quasi-neutral even in the rarefied plasmas in space, although this is not

necessarily the case on the centimeter scale.
Because a plasma (nartly) consists of free f‘hﬂrges, it is a conductor. Mov-
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ing electric charges are currents. These currents induce magnetic fields which
in turn influence the motion of the very particles forming the field-generating
currents. Thus the particle motion in a plasma is not only controlled by ex-
ternal electric and magnetic fields, but also creates fields which add to the
external ones and modify the motion of the particles: a plasma can interact
with itself. Consequently, dynamics in a plasma are more complex than in a
neutral gas. This is most obvious in the large number of different types of
plasma waves (Chap. 4).

In apparently simple situations, a plasma can behave counter-intuitively.
Pouring milk into our coffee, we expect the milk to heat up and mix with the
coffee. A sunspot is a sharply bordered volume of cool gas embedded in the
hot solar photosphere; but it stays stable for several months prevented by
strong magnetic fields from warming or mixing with its environment. A cold
and dense volume of gas or liquid in a hot environment sinks. A solar filament
is cold and dense compared with the ambient corona but it is held in position
daily experience and the behavior of ionized gases clearly show that plasmas
do not form a significant part of our environment. Why then do we study
such exotic phenomena? Are there applications for plasmas?

First, plasmas are not exotic but quite common. The interplanetary and
interstellar medium and the stars are made of ionized gases. Thus about
99% of matter in the universe is plasma. Nearest regions dominated by plas-
mas are the magnetosphere with its radiation belts, the ionosphere, lightning
bolts in the atmosphere, and, in a wider sense, the Earth’s core; thus even
in the system Earth plasmas are not uncommon. Plasma physics, therefore,
contributes to the understanding of our environment. In turn, the natural
plasma laboratories, i.e. the ionosphere, the magnetosphere, and interplane-
tary space, help to test the concepts of plasma physics on spatial scales and
at densities unattainable in a laboratory.

Even some everyday materials can be described as plasmas because they
show similarities to the free-electron plasma described above: the conduction
electrons in metals and electron—hole pairs in semiconductors are charges
which can move quasi-freely and lead to a behavior of the matter which can
be described in the same way as for a plasma. The free-electron gas in metals
is therefore also included as example of a plasma in Fig. 1.1.

Second, plasmas can be used for quite worldly applications. One of the
most ambitious projects is nuclear fusion: to merge hydrogen atoms to helium,
imitating the processes inside the Sun (Sect. 6.1) and the stars, in order to
create a clean and long-lasting power source. The main aspects of this project
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are the production of a plasma with suitable properties (density, temperature,
losses) and its confinement inside a magnetic field.

There are also less spectacular applications of plasma physics. Chemistry

utilizes the different chemical reactions in plasmas and neutral gases: for

instance, cyan gas can be synthesized by burnlng coal dust in a nitrogen
electric arc plasma. Plasma beams are used for ion implantation in microchip
production. Plasma burners and pistols are used to cut, weld, or clean metals.
Other technical applications of plasmas are as diverse as lasers, capacitors,
oscillators, and particle accelerators [323].

1.2 Characterization of a Plasma

The main characteristics of a plasma are its electron temperature T, and the
electron number density n.. The first gives a measure of the thermal energy or
more correctly the average kinetic energy of the particles (see Sect. 5.1): Ey, =
mugn /2 = 3kpTe/2, where ki is Boltzmann’s constant. The temperature is
often given in the units of particle energy, electronvolts (eV), where Te[eV] =
3E¢n/3[eV]. The temperature and number density are given for the electron
component: whereas ions, owing to their larger mass, are rather immobile
and on many occasions can be regarded as a fixed background of positive
charges, the electrons are the mobile part of a plasma.

The second parameter, the electron number density n., is an indicator of
the particle motion. In a low density plasma, particle motion is determined
by the electric and magnetic fields only, while for high densities the inter-
actions between the particles dominate. Thus the two parameters T, and n,
combined classify a plasma with respect to (a) interactions between plasma
constituents, (b) the relative importance of electromagnetic fields for the par-
ticle motion, and (c) the range over which particles can propagate freely.

Figure 1.1 shows such an n./T, diagram. Some typical plasmas are in-
dicated. Note that both parameters extend over many orders of magnitude.
Astrophysical plasmas can be found anywhere in this diagram: the rarefied
ionospheric plasma has a rather low temperature, while the rarefied plasmas
in the magnetosphere and in the solar wind have much higher temperatures.
All three have densities far below those in terrestrial plasmas such as gas
discharges and lightning. Other astrophysical objects, such as the interior of
the Sun, have higher densities and temperatures. The only terrestrial plasmas
with comparable or higher temperatures are fusion plasmas.

The dotted and dashed lines in Fig. 1.1 indicate two additional plasma pa-
rameters: the Debye length Ap and the number Np of particles inside a sphere
of radius Ap. The Debye length gives the spatial scale over which particles
in a plasma exert electrostatic forces on each other (Sect. 3.7). Ap increases
with decreasing density because in a dense plasma charges of opposite sign
screen each other, and it increases with increasing temperature because, ow-



6 1 Introduction

5> P RTIPE
° oF PO RS2
g o L 15

~ \E_
g R Npzh
o« PR -
= - s -
& - - - =\
= y e N
5} ‘ - -
t ‘ _ oLighming .- -
<] -
o3 - O
an White Dwarfs
3 ] 1 ] ]

26 31

6 11 16 21
Log Electron Number Density (1/m?3)

36

o 12F

8 gk relativistic plasmas

% Elh= Ercl _ﬂ‘}’—\
= 4 . 0o
o ideal plasmas E=h-
g Ep= Epo - Z4
fro — = .> =]
g oL - = g8
4] - N D2
0 neutral gases non-ideal: ideal{ =™
5 ) | L--"" | | degenerate: degeferate

6 11 16 21 26 31 36

Log Electron Number Density (1/m?)

Fig. 1.1. Characteristics of a plasma. (Zop) Electron temperature 7,, electron
number density n., Debye length Ap, and number Np of particles inside a sphere
of radius Ap, for different plasmas. (Bottom) Definition of different plasmas using
the characteristic energies

ing to the increased thermal motion of the particles, quasi-neutrality can be
violated on a larger spatial scale.

An n. /T, diagram can also be used for a general classification of plasmas
as shown in the lower panel of Fig. 1.1. Five characteristic energies provide the
reference frame for classification: the thermal energy Ey;, the non-relativistic
Fermi energy EF, the electrostatic energy FEe|, the energy of the ground state
Egg, and the relativistic electron energy E.. Since these energies depend
on the particle species under study, we shall not discuss the characteristic
energies in general but shall do so only for the example of hydrogen (Z = 1).
This is also the most common element in space plasmas.

The first characteristic energy is given by a thermal energy equal to that
of the ground state, that is, the ionization energy: Ei, = FEpo. This charac-
teristic energy is marked by the lower horizontal line in the lower panel of
Fig. 1.1: above this line the plasma is (fully) ionized, below it is (almost)
neutral. This characteristic energy therefore divides neutral gases from ideal
plasmas. Note that this is a very simple description for two reasons. (a) Cer-
tainly, there will be no sharp boundary between neutral and fully ionized, and
even for a given temperature there will be stochastic variations in the degree
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of ionization. (b) The ionization also depends on the density, as described by
the Saha equation:

X2 (2rme)*? (ksT)*? [ Eg)

e A I
where x is the degree of ionization, m. is the electron mass, pg,s is the total
gas pressure, and A is Planck’s constant. A high degree of ionization might be
obtained even if the temperature was only 1/10 of the ionization temperature.
Nonetheless, since we are mainly concerned with rarefied plasmas at rather
high temperatures, the above distinction is sufficient for the purpose of this
book.

If we increase the temperature further, we obtain a characteristic energy
where the thermal energy equals the electron’s relativistic energy: F, = Eyq.
This is indicated by the upper horizontal line in Fig. 1.1. The plasma above
this line is said to be relativistic. Here the scattering of photons from electrons
has to be described as Compton scattering, and the equilibrium radiation field
has enough energy to allow pair production.

With increasing density, the plasma degenerates: the energy distribution
is no longer Maxwellian but is described by a distribution in which all phase
space cells up to the Fermi energy Er are filled, while at higher energies the
population density decreases rapidly. This characteristic energy is indicated
by a solid inclined line and separates degenerate and non-degenerate plasmas.

The last characteristic energy relates the thermal energy to the electro-
static energy: Ei, = E.. Plasmas to the left of the corresponding charac-
teristic line are ideal: here the kinetic energy of a particle is larger than its
potential energy. In the non-ideal plasmas to the right of the characteristic
line the electrostatic interaction is predominant.

1 1)
\L.1)

1.3 Plasmas in Space

This book focuses on natural plasmas in space. Depending on their location,
these plasmas exhibit different properties as characterized by the plasma
parameters (see Fig. 1.1); all space plasmas, except for stellar interiors, can be
characterized as ideal plasmas. Stellar interiors consist of hot and extremely
dense plasmas with the highest densities inside white dwarfs; these plasmas
are ideal but degenerate. Plasma density and temperature decrease in the
stellar coronae which are still hot enough to be blown away as stellar winds.
The combined action of the stellar wind and the magnetic field slows down
the star’s rotation and winds up the magnetic field lines. This “starsphere”
is a void in space, filled by plasma and magnetic flux from the star. The
interstellar medium, which fills the space between the starspheres, is most
likely an even more attenuated plasma than stellar winds are.

The spatially closest example for such a starsphere is the heliosphere
(Chap. 6), see Fig. 1.2: a void in the interstellar medium structured by the
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solar wind and the frozen-in solar magnetic field. It is separated from the
interstellar medium by the heliopause. The heliosphere has an extent of at
least about 100 AU!. Voids in the heliosphere exist too: the interaction be-

tween the solar wind and a planetary magnetic field forms a magnetosphere:
a cavity in the solar wind, dominated by the planet’s magnetic field.

The topology of the magnetosphere (Chap. 8), is even more complex;
however, the physical processes, although on smaller spatial scales, are the
same. A magnetosphere is defined as a spatial region where the motion of
particles is governed by the planet’s magnetic field.? This brief definition
contains a lot of information. We learn the obvious: the very existence of the
magnetosphere requires a magnetic field. Particles in the magnetosphere are
at least partly charged: the motion of neutrals would not be influenced by the
magnetic field. Their density is low: in a dense medium, collisions between the
particles would determine their motion, and the influence of the magnetic field
would be negligible. In addition, the energy density of the charged particles
is small compared with the energy density of the field: otherwise the particle
motion would distort the field instead of the field guiding the particles.

The inner boundary of the magnetosphere is determined by the density:
getting closer to the planet, the density increases. Brownian motion becomes
dominant and the magnetic field no longer guides the particles. In the Earth’s
magnetosphere this transition happens at a height of a few hundred kilome-
ters. The upper ionosphere, extending to a height of about 1000 km, lies
well inside the magnetosphere. The outer boundary of the magnetosphere is
the magnetopause. It separates the planetary and the interplanetary mag-

! AU is short for astronomical unit which is the average distance between the Sun
and the Earth: 1 AU = 149.6 - 10° km.

2 With substituting “planet’s” by “Sun’s” or “star’s” we could use this statement
as a definition for the heliosphere or a starsphere, too.
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Fig. 1.3. Height scales in the near-Earth environment

netic fields and prevents most of the solar wind plasma from entering the
Earth’s magnetosphere and atmosphere. Moving towards the Sun, we would
detect this boundary at a distance of about 10 Earth’s radii. In the opposite
direction, the magnetosphere extends far beyond the orbit of the moon.

Three different height regimes are summarized in Fig. 1.3. Regimes can
be distinguished according to charge or “mixedness”. Below about 80 km,
the atmosphere is completely neutral. In the ionosphere, the relative number
of ionized particles increases with height. Below 100 km, in the homosphere,
particles collide frequently. Thus the different atmospheric constituents are
mixed thoroughly. In the heterosphere, above 100 km, particle motion is still
dominated by collisions but different constituents start to separate, the degree
of ionization increases, and neutrals are atomic rather than molecular. Above
500 km, in the magnetosphere, collisions are infrequent, particles are charged,
and particle motion is determined by the magnetic field.

The main components of a magnetosphere are summarized in Fig. 1.4.
The magnetosphere is formed by the interaction between the solar wind and
the geomagnetic field. A boundary sheet, the magnetopause, forms where
the pressure of the solar wind equals the magnetic field pressure. The solar
wind streams around the magnetopause but it does not penetrate into the
magnetosphere. Where the supersonic solar wind is slowed down to subsonic
speed, the bow shock develops. At high latitudes, polar cusps form, separat-
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lines pulled away to the magnetotail by the solar wind. At these cusps, par-
ticles and plasmas can penetrate into the magnetosphere and subsequently
precipitate down into the atmosphere.

The basic ingredient of the magnetosphere, the geomagnetic field, origi-
nates in a magnetohydrodynamic (MHD) dynamo in the ionized fluid inside
the Earth’s core. A similar process can be found inside other planets; solar
and stellar magnetic fields originate in dynamo processes too. In the solar
system all planets except for our two neighbors, Mars and Venus, house a
sufficiently strong MHD dynamo to build a planetary magnetic field and to
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form a magnetosphere. But even planets without magnetospheres and comets
are shielded against the solar wind: when the supersonic solar wind hits their
atmospheres, it is slowed down and deflected around the obstacle, forming a
bow shock in front of it.

Magnetospheres are not stationary but change as the basic ingredients, the
planetary magnetic field and the solar wind, vary in time. Disturbances in the
solar wind, caused either by temporal and spatial variations or by transient
phenomena, shake the magnetosphere and lead to geomagnetic storms and
aurorae. When the terrestrial magnetic field varies in strength, the spatial
extent of the magnetosphere changes too. And when the dipole axis drifts,
the structure of the magnetosphere is modified. All these different modes of
magnetospheres can be observed in the solar system (Chap. 9).

Space physics is not only concerned with plasmas and fields but also with
energetic particles (Chap. 7). Their energy by far exceeds the kinetic energy
of plasma particles although, owing to its larger density, the energy den-
sity of the plasma exceeds that of the energetic particles. An understanding
of the acceleration and propagation of these particles also is an important
topic. For instance, fluctuations in plasma motions on the Sun, interactions
of different plasma streams, and plasma clouds ejected from the Sun excite
different kinds of waves. Some of these waves steepen during their propa-
gation, forming shock waves. Energetic particles of solar and galactic origin
interact with these waves: this results in spatial scattering as well as scat-
tering in momentum space. These wave—particle interactions are of foremost
interest in understanding space plasmas; however, they are also formally dif-
ficult because they delve deeply into non-linear processes.
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Plasmas and particles also influence the terrestrial environment. For
instance, geomagnetic disturbances related to the arrival of large plasma
clouds ejected from the Sun (coronal mass ejections) disrupt power and com-

puter lines: energetic nnr‘hr‘lpq from a solar flare can ionize the atmosnhere
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and reduce the ozone concentration. Such questions are addressed in solar-
terrestrial relationships (Chap. 10), also called “space weather” for short.

1.4 A Brief History of Space Research

In situ observations of plasmas and particles in the magnetosphere and in in-
terplanetary space became possible with the advance of satellite technology
in the late 1950s and early 1960s. Many of these observations are discussed
within the broad topic of solar-terrestrial relationships. Solar—terrestrial re-
lationships is an old field of science; it dates back to the first correlations
between sunspots and aurora in ancient China a few thousand years ago.
Aurorae are the prime example of solar—terrestrial relationships: they can
be detected easily, even with the naked eye; they are closely correlated with
solar activity; and they also have an aesthetic and even mythological quality.
Nonetheless, the big steps in understanding solar—terrestrial relationships re-
quired observations made on board rockets and satellites: measurements of
plasmas and particles in the ionosphere, the magnetosphere, and interplan-
etary space, and the measurement of the Sun’s electromagnetic radiation in
frequency ranges not observable from the ground.

The solar wind and the magnetosphere act as coupling devices in solar—
terrestrial relationships. Both have been studied, though only indirectly, long
before the space age. Magnetism was detected more than 2000 years ago
when the ancient Greeks found stones that attracted iron. The first reliable
description of a compass dates back to the eleventh century when Shon-Kau
(1030-1093) wrote in a Chinese encyclopedia: “fortune-tellers rub the point of
a needle with the stone of the magnet in order to make it properly indicate
the south”. The first written account of a compass in FEurope dates back
to Alexander Neekam (1157-1217), a monk at St. Albans. He describes the
compass and its application in navigation as common. Neekam’s compass is a
second generation instrument and quite similar to the ones used today: while
in the first compass a small piece of magnetic stone floated in water on a
piece of wood or cork, in Neekam’s compass a needle is placed on a pivot,
allowing it to rotate freely and align itself along the north—south direction. In
the fourteenth century the compass was common on ships. The declination,
the difference between magnetic and geographic north, was well known by
the early fifteenth century [94]; its temporal variation was reported in 1634
by Henry Gellibrand (1597-1636). Magnetic inclination was discovered in
the second half of the sixteenth century independently by Georg Hartmann
(1489-1564) and Robert Norman.
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The reason for the north-south-directivity of the compass needle was less
well understood. Philosophers of the early thirteenth century suggested some

connection by virtue between the loadstone used to rub the compass needle
and the nn]m‘ star — the latter being a qnpmnl star since, unlike other stars
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it is fixed. Later that century, the 1dea of polar loadstone mountains was
proposed. Again, the polar star was believed to give his virtue to the loadstone
mountains which in turn imparted it to the compass needle leading it to point
towards the polar star. This idea was questioned by Petrus Peregrinus (Peter
the Wayfarer, ca. 1240-7): loadstone deposits can be found in many parts of
the world. Why should the polar ones be the only ones that attract a compass
needle? Peregrinus attacked this question in a manner which can be termed
scientific by present day standards: he performed experiments with loadstone,
reported in his Epistola de Magnete. In particular, he introduced the concept
of polarity, discovered magnetic meridians, and described different methods
to determine the positions of the poles of a spherical loadstone.

But only in 1600, the basic ingredient of the magnetosphere, the geomag-
netic field, was detected: in his treatise De Magnete [185], William Gilbert
(1544-1604) suggested that the north—south alignment of the compass results
from the magnetic field of the Earth. In the middle of the nineteenth century,
scientists began to understand the terrestrial magnetic fieid. A giobal net-
work of observatories started continuous registrations of the magnetic field
and its fluctuations. From these data, Carl Friedrich Gauss (1777-1855) pro-
posed that the Earth’s magnetic field consists of two components, one from
its interior and a second one generated in the atmosphere [182]. To first order,
the internal geomagnetic field can be described as that of a homogeneously
magnetized sphere. Hans Christian @rstaed (1777-1851) and Andre Ampére
(1775-1836) suggested ring currents inside the Earth as source of the internal
field. This dipole-field approach survived up to the early 1960s when satellite
and rocket observations in the upper atmosphere gave a more detailed picture
of the true field and suggested modifications to the model.

Gauss and Wilhelm Eduard Weber (1804-1891) initiated very precise
measurements of the Earth’s magnetic field with relative accuracies of at
least 10~5 [553,554]. Small fluctuations could be detected, showing systematic
variations in time and location as well as superimposed stochastic changes.
These latter strongly indicated that the Earth is not an isolated object in
space but that strong forces from outside act on spaceship Earth.

In its heyday in the second half of the nineteenth century, solar—terrestrial
relationships were an illustrative example of the development of science from
correlations and apparently uncorrelated, sometimes even seemingly contra-
dictory observations into a consistent picture of a complex environment. The
converging developments included, for example, the discovery of the 11-year
sunspot cycle by Heinrich Samuel Schwabe (1789-1875) in 1844 [470,471]
and the correlation between sunspot numbers and the frequency of geomag-
netic disturbances by Edward Sabine (1788-1883) in 1852. In the same year,
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Rudolf Wolf (1816-1893) found a correlation between sunspots and geomag-
netic disturbances. A relationship between individual aurorae and accompa-

nying geomagnetic disturbances had already been noticed by Anders Celsius
(1701-1744) and Olof Peter Hiorter (1696-1750) in 1747 [88,223] and by
Alexander von Humboldt (1769-1859) in 1806 [243]. The spatial distribution
of aurorae suggested an involvement of the geomagnetic field, too. Aurorae
always were known as a high-latitude phenomenon. But in the 1840s the ill-
fated Arctic explorer John Franklin (1786-1847) noticed that the frequency
of aurorae does not increase all the way towards the pole [169]. In 1860, Elias
Loomis (1811-1889) showed that the highest incidence of aurora is seen inside
an oval of 20°-25° around the magnetic pole [328]. In 1881 Hermann Fritz
(1830-1883) [173] published similar results with his famous map of isochasms
(see Fig. 8.43).

During some ten years, out of these observations and statistical correla-
tions a closed picture of solar-terrestrial relationships emerged with the Sun
as a source of geomagnetic activity as well as aurorae. In the late 1870s, Henri
Becquerel (1852-1908) offered the first physical explanation: the sunspots are
assumed to be a source of fast protons [45]. On hitting the Earth’s magnetic
field, these particles are guided towards the auroral oval by the magnetic
field. Despite its simpilicity, the model contains a revolutionary aspect: the
Sun is not only a source of electromagnetic radiation but its blemishes, the
sunspots, are also a source of energetic particles which could affect the terres-
trial environment. In the early twentieth century, a similar idea led Kristian
Birkeland (1867-1917) to build the terrella, a model of the Earth which allows
simulations of the aurora in the laboratory: a cathode-ray tube substitutes
for the Sun as a source of energetic particles and a magnetic dipole inside a
sphere covered by a fluorescent material simulates the Earth’s magnetic field
surrounded by its atmosphere. With these ingredients, Birkeland showed that
the geomagnetic field was responsible for the formation of the aurora ovals.
From the correlation between aurorae and the number of active regions on
the Sun, Birkeland suggested that sunspots might be the source of a con-
tinuous stream of particles [50]. This idea was an early introduction of the
concept of a plasma flow from the Sun, which later evolved into the concept
of the solar wind.

In the 1930s, Sydney Chapman and Victor Ferraro developed an idea
about solar-terrestrial relationships which comes closer to our current under-
standing: sunspots are indicators of solar activity [95]. Solar activity manifests
itself in violent eruptions, called solar flares. Chapman and Ferraro suggested
that flares not only emit electromagnetic radiation but also fling out clouds
of ionized matter which in size dwarf the Earth. After a travel time of 1
to 3 days, such a cloud might hit the magnetosphere and compress it, lead-
ing to geomagnetic disturbances. Some of the cloud matter might penetrate
the magnetosphere close to the poles, causing the aurora. The existence of
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these proposed clouds, today called coronal mass ejections (CMEs), was first
confirmed in the early 1970s by Skylab.

While their basic idea is accepted even today, Chapman and Ferraro’s
ansatz still assumes that the geomagnetic field is a dipole. ﬂn]y the first in
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situ measurements in the magnetosphere and in interplanetary space revealed
the complexity of the magnetic field surrounding the Earth. But again, in-
direct evidence had been found long before. In the 1920s, the existence of
a region of charged particles in the atmosphere, the ionosphere, had been
discovered because of its effect on radio waves: they propagate far beyond
the horizon due to reflection off the conducting ionosphere. Motions and
variations in charge density also can be used to explain the atmospheric con-
tribution to the Earth’s magnetic field which had been proposed 70 years
earlier by Gauss. Thus, early researchers in magnetospheric physics knew of
a conductive layer at a height of some tens of kilometers. In the early 1950s,
in Arctica and Antarctica, van Allen and colleagues launched rockets to a
height of about 110 km. Their instruments confirmed the existence of en-
ergetic electrons in this region, either directly or by observing the electron
bremsstrahlung: the existence of the ionosphere had been confirmed by in
situ measurements. In 1958, a Geiger counter on board the first US satellite,
Explorer 1, detected the Earth’s radiation belts, later named van Allen beits
to honor their discoverer. In the same year, the Soviet lunar probe made the
first measurements in interplanetary space, confirming the existence of the
long-proposed solar wind. The first detailed studies of the solar wind were
made by Mariner 2 in 1962. The boundary between interplanetary space and
the Earth system, the magnetopause, was first studied by Explorer 10 in
1961; the bow shock in front of it was detected by Explorer 12 in 1962 and
studied in detail by OGO (Orbiting Geophysical Observatory) in 1964. These
and subsequent observations led to the identification of the main components
of the magnetosphere, as discussed above.

Exercises and Problems

1.1. Define a plasma. Discuss the importance of the density. Is there a limit
for the relative or the absolute size of the neutral component?

1.2. What parameters are used to characterize a plasma? Briefly discuss their
physical meaning.

1.3. What energies/temperatures can be used to classify a plasma?

1.4. What do you need to explain a magnetosphere? What determines its
spatial extent?

1.5. Describe the basic features of a magnetosphere. How do these properties
change if the axis of the magnetic field changes with respect to the solar wind
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direction; if the terrestrial magnetic field decreases; if solar wind pressure and
speed increase?

1.6. Why is space dominated by plasmas?

1.7. Where in the near-Earth environment do plasmas exist? Would we miss
them if they were neutral matter instead?






2 Charged Particles in Electromagnetic Fields

I’ve gotten a rock, I've gotten a reel,
I’ve gotten a wee bit spinning-wheel;
An’ by the whirling rim I've found
how the weary, weary warl goes round.
S. Blamire, I've gotten a rock

In space physics the motion of charged particles in electric and magnetic
fields often is described by a test particle approach: the particles are guided
by the field but their motion does not affect the field. This approach is valid
if the energy density of the magnetic field exceeds that of the particles. In
the test particle approach the motion can be separated into two parts: the
motion of a guiding center of the particle orbit and a gyration around it.
The guiding center motion can be interpreted as the effective motion of the
particle, averaged over many gyrations. This concept is applied to drifts in
stationary electromagnetic fields. The adiabatic invariants allow simple esti-
mates of the particle motion in slowly varying fields; they are applied to the
motion of particles in the Earth’s radiation belts. This chapter starts with a
brief recapitulation of the basics of electromagnetic field theory.

2.1 Electromagnetic Fields

Particle densities in interplanetary space and in the magnetosphere are low.
Thus a description of the electromagnetic field in a vacuum is sufficient. Then
the permeability 4 and the permittivity £ both equal 1: the medium can be
neither magnetized nor polarized. In principle, we can assign a permittivity
to a plasma, but this is just another description of the existence of charged
particles. A plasma can also be magnetized: for instance, an axial-symmetric
ring current of charged particles in a dipole field leads to a reduction of the
magnetic moment, which is a diamagnetic effect. An equivalent description
is the magnetic induction B in a vacuum, consisting of both the dipole field
and the field disturbance, and the current arising from the particle motion.
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2.1.1 Maxwell’s Equations in Vacuum

In 1873 Maxwell (1831-1879) introduced a unified theory of the electromag-
netic field giving for the first time the set of four partial differential equations
that today bear his name [338]. The sources of the electric and magnetic fields
are charges, magnetized bodies, and currents, which can be either discrete or
continuous and either stationary or time-dependent.

The electric field E generated by a charge density g, is described by
Poisson’s equation:!

V'EZQC/60 . (2.1)

Since the electric field is non-rotational, it can be expressed by the gradient of
the scalar Coulomb potential ¢p: E = —V. Integrating (2.1) over a volume
V and using Gauss’s theorem (A.33), Poisson’s equation can be rewritten as
Gauss’s law for the electric field:

f Eds:/%m%. (2.2)
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Gauss’s law states: the electric flux through a surface S enclosing a volume
V' is determined by the total charge inside V. If there are no net charges
enclosed in V, the flux through S is zero. But V is not necessarily field-free,
e.g. if V is placed inside a dipole field either enclosing none of the charges or
both of them. Using a spherical test volume V with radius r, Coulomb’s law
can be derived from Gauss’s law.

Gauss’s law for a magnetic field is formally analogous, V- B = 0, or

fB-dS———O. (2.3)
oiv)

It states that there are no magnetic monopoles.
Faraday’s law describes the electric field (or electro-motoric force EMF)
generated by a changing magnetic field:

OB
E=—-— .
V x = (2.4)

The magnetic flux @ through a surface S in the magnetic field is defined as

! Equations are given in SI units throughout. However, since the cgs system still is
widely used in geophysics and space physics, equations which are frequently used
to determine parameters also are given in ¢gs units in App. A.2. The cgs system is
advantageous in so far as the absolute permittivity and the absolute permeability
both equal 1 compared with ¢ = (47 -9-10°)"! F/m = 8.854 - 1072 F/m and
po = 4x - 1077 H/m = 1.256 - 107 H/m in the SI system. In the cgs system,
on the other hand, occasionally a factor ¢ = 1/,/gofio appears. If quantities in
SI units are inserted into equations given in the cgs system, or vice versa, the
analysis of units automatically leads to the correct consideration of &5 and uo.
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:/B-dS. (2.5)

Graphically, the magnetic flux can be interpreted as the number of field lines

going through S. Using this definition and Stokes’s theorem ( A.39), Faraday’s
law can be rewritten as

fE di = —-—/B ds——f??i (2.6)

It states that a change in the magnetic flux through a surface creates an
EMF in its circumference. The minus sign indicates that a current generated
by the EMF causes a magnetic field anti-parallel to the original one (Lenz’s
rule). Faraday’s law has two consequences: a stationary magnetic field does
not produce an electric field. And if the electric field is zero, the magnetic
field is stationary.

Ampére’s law describes magnetic field generated by a time-dependent
electric field F and a current density j:

oFE
ot
The last term on the right-hand side is the displacement current. It is related
to the equation of continuity: by taking the divergence of (2.7) we get

V x B = poj +cofto—— (2.7)

oF 0
= 1oV - (gcv) + po (2.8)

Oc
ot ot
Since the divergence of a rotational field (left-hand side) vanishes (A.25), this
gives the equation of continuity for charges (see Sect. 3.1.3):

doc doc
ot dt

Using Stokes’ theorem, (2.7) can be written as

f B. dl—po/] dS+u080/— ds . (2.10)

V- (VxB) =uV-3j+ pocoV -

+V-(ov)=0 or +o.V-v=0. (2.9)

Ampére’s law states that a changing electric field and /or a current creates a
rotational magnetic field.

Maxwell’s equations for the electric and magnetic field are symmetric,
except for the fact that there are neither magnetic charges (there are no
magnetic monopoles) nor magnetic currents.

2.1.2 Transformation of Field Equations

In space physics, fields and plasmas move with respect to the observer: the
solar wind is swept across a spacecraft in interplanetary space, another space-
craft crosses through the radiation belts of a planet. The fields E, B and
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E’, B’ in two reference frames C and C’, with C' moving with velocity v
with respect to C, are related by the relativistic transformations

]?', J— _1_ I-I_T' 1 2{::-_ 1?\ 1 __Al\ | ae v D-l an
¥/, _'YI.UT'U2\U )l ”—rU/\uJ alna
1 v 1
B’=§ B+,U—2('UB)(1"*")()—§'UXE , (211)

with v = y/1 — v2/c?. In the non-relativistic case, all terms in v2/c? can be
ignored (v — 1), reducing the equations to

1
E'=E+vxB and B'=B-5vxE. (2.12)

Equation (2.12) implies that field components parallel to the direction of
motion remain unchanged.

Within the framework of this book, the second set of transformations will
be sufficient, considering effects of order v/c (e.g. the Doppler effect) but
ignoring effects of order v?/c? (e.g. the Lorentz contraction).

We shall frequently encounter one consequence of the field transformations
for space plasmas, namely the v x B electric induction field (the second
term on the right-hand side of the first equation in (2.12)): the convection
of a magnetic field B with a plasma moving at speed v leads to an electric
induction field v x B. Applications include the electric field in the front of
non-parallel shocks (Sect. 7.5.1) and the electric field in interplanetary space
leading to the corotation of energetic particles (Sect. 6.3).

2.1.3 Generalized Ohm’s Law

Ohm’s law connects the current density 7 and the electric field E by a con-
stant, the conductivity o:
j=0cFE. (2.13)

Note that often, e.g. in the ionosphere, the conductivity is anisotropic and
should be described by a tensor rather than a scalar (Sect. 8.3.2).

Equation (2.13) is valid in the plasma rest frame only. If an observer is
moving with velocity v with respect to the plasma frame, a generalized form
of Ohm'’s law is required. It can be obtained by applying (2.12). The plasma
has a high conductivity, that is all electric fields except induction fields vanish
immediately, and thus the current on the left-hand side of (2.13) transforms
under consideration of (2.7) as j = j’. The generalized form of Ohm’s law

then reads
j=c(E+vxB). (2.14)

The second term on the right-hand side describes the electric induction field
which gives rise to the Hall current.
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2.1.4 Energy Equation of the Electromagnetic Field

From Faraday’s law we can derive an energy equation for the electromagnetic
field. Multiplication of Faraday’s law (2.4) by B and integration over a volume
V gives

fB —d3r— fB-(VxE)d%-. (2.15)
1%

The divergence of a vector product can be written as (see (A.29))
V(ExB)=B.(VxE)-E-(VxB). (2.16)

The second term on the right-hand side can be rewritten using Ampére’s law
(2.7). Solving for the first term on the right-hand side we get

BE

1
B- (VxE)=V-(ExB)+uFE- 3+ 5 E - 5 (2.17)
Inserting into (2.15) gives the the energy equation
f“ di”r—— V. bxﬂd"f.m—r E.jdr
j Bt j ( ) j pokE - 3
1%
/E —d3 (2.18)

With Gauss’s theorem (A.33), the volume integral in the first term on the
right-hand side can be changed into a surface integral. The first term on the
left-hand side and the last terms on the right-hand side contain the product
of a vector and its temporal derivative. This is equal to half the temporal
derivative of the squared vector as can be seen by differentiating the middle
term in
da 13(a-a) 10a?
ot T2 e 2o
The energy equation then reads

(2.19)

o [ /B2 EnEz\ n

#f (Gt ) oo f B e [pave e

OV}
Here B%/2ug and £9E?/2 are the energy densities of the magnetic and the
electric fields. Equation (2.20) can be interpreted as an equation for the
continuity of the electromagnetic field: the change in the energy density of the
electromagnetic field inside a volume V is given by the energy flux (Poynting
vector Sp),

E
Sp=2XB (2.21)
Mo
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through the surface of the volume and ohmic losses E - 5 inside V; positive
values of E - 7 indicate losses, while negative ones describe a generator.

If we consider electromagnetic fields in matter, the field exerts a force on
the particles, described by the 7 x B term in the equation of motion (3.28).

Thus, the energy equation has to be supplemented by a term descrlblng the
work done by the field:

G, B2 E?2 B
— Z 4 d%:—fEx dS—/E-jd?’r
ot 210 2 Ho

|74 Vv

o(v)

—/u- ( x B)d3r . (2.22)

14

A comparison of the energy densities of the field and the plasma shows
whether the particle motion will be governed by the electromagnetic fields or
by the gas laws: if the plasma’s energy density is high and the conductivity is
infinite, the field is frozen-in (Sect. 3.4.1) and carried away by the plasma (e.g.
the interplanetary magnetic field frozen-into the solar wind). If the energy
den51ty of the field is high, the field determines the motion of the particles

S N 3T A.'L.A R 4 — b

\l:: g. c:ucusc:uu par rticles in 1uhc1p1d.uct,cuy Spact Of i1 uiic radiation
latter case is discussed in this chapter.

A4
lbb) J_ lllb

2.2 Particle Motion in Electromagnetic Fields

Let us now turn to the motion of individual charged particles in a prescribed
electromagnetic field. Particle densities are assumed to be small: there are no
collisions between particles, the particle motion is determined by the fields
only. The energy density of the particles is small too; thus their motion does
not modify the external field.

Although these limitations are strong, the resulting motion and their for-
mal description are basic and instructive. Table 2.1 places them into the
general framework of particle motion in electromagnetic fields. Fields can ei-
ther be smooth or turbulent. For smooth fields, two cases of particle motion
can be distinguished: (a) The field varies only weakly on the temporal and
spatial scales of the gyration and the particle motion can be described by the
concepts of guiding center motion and adiabatic invariants (Sect. 2.4). These
concepts can be applied to particles in the radiation belts (Sect. 8.7.1). (b)
The field changes significantly during one gyration of the particle. The above
concepts are no longer valid and the equation of motion has to be integrated.
One example are the St@rmer orbits of galactic cosmic rays in the magneto-
sphere (Sect. 8.7.2). Turbulent fields require an entirely different approach.
The particle motion is determined not only by the average magnetic field
but also by scattering at field fluctuations, a stochastic process. Formally, we
have to consider particle ensembles instead of single particles and transport
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Table 2.1. Particle motion in different types of magnetic fields. The characteristic
length scale L for changes in the magnetic field is defined as 1/L = (1/|B|) 8B/dx

Field
smooth field turbulent, irregular
analytical description possible fast fluctuations
Scales small variations in large variations weak turbulence
space and time b<|<B>|
rp, < L B =< B> +b, strong turbulence:
r, 2 L b~ I < B> I
Formalism adiabatic invariants; integration of the transport equations
guiding center equation of motion pitch-angle scattering
motion; drifts resonance interaction
Occurrence periodic motion in  Stgrmer orbits particle propagation
radiation belts, in interplanetary
magnetic mirrors space

and bottles

equations instead of equations of motion. Propagation then can be under-
stood as a diffusive process (Chap. 7.3); applications are the interplanetary
transport (Sect. 7.4) or particle scattering into the loss cone in the radiation
belts (Sect. 8.7.1).

2.2.1 Lorentz Force and Gyration

The general equation of motion is Newton’s second law F = dp/dt. The

+ of Aif, + ntag itati
net force on a partmlc can consist of different Componenvs, ¢.g. gravivavioll,

electromagnetic forces, and a pressure gradient. In a pure electromagnetic
field only the Lorentz force acts on a particle

dv

Fy, =m—

L=

First Integral of Motion. In a pure magnetic field the electric field is zero.
According to Faraday’s law (2.4), the field then is stationary. The equation

of motion reduces to

=g (E+vxB). (2.23)

dv
My = v X B. (2.24)
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Multiplication by the particle speed v and consideration of (2.19) gives the
first integral of motion:

o r N » A% FaY foy oamy
=qu-{vXB)=0 (2.25)

1 do®  dWi
T

because the cross-product v x B is perpendicular to v and thus its scalar
product with v vanishes. The first integral of motion (2.25) states that in a
pure magnetic field the kinetic energy Wi, of a particle is constant. Wyin is
given in electronvolts (eV) where 1 eV = 1.602- 10719 J is the energy gained
by an electron after traversing a potential difference of 1 V.

Gyration. Let us now assume a homogeneous magnetic field along the z
axis: B = Be,. The equation of motion for the components then reads

mv, = qBuy muy = —qBu; , and mv, =0. (2.26)

Integration of the last equation gives v = v, = const: the particle moves
parallel to the field line with constant speed v,. The other two equations
are coupled ordinary differential equations (ODEs) of first order. They can

be combined into two separate ODEs of second order by first differentiating

them with respect to ¢ and then inserting the other ODE:

2 2
) gB . gB . qB . qB

These second order ODEs can be solved with an ansatz v; = v, €“*. They
describe a harmonic oscillator with a cyclotron frequency w,

_ldlB

o (2.28)

C

The solution of the equation of motion is a circular orbit around the magnetic
field lines in the zy plane. The components of the trajectory are

z(t) = rpsinwet  and  y(t) = rpcoswet , (2.29)
and +ha rnrmranando ~F 4ha randkinla sralanidsr ana
alitl Ll1ic bUl.l.llJU 1ICLILD ULl L1IT lJa.rl. Lvivig VClUblb_y alLc
Uz(t) = rowe coswet  and vy (t) = —rpwe sinwct . (2.30)

The particle speed v, perpendicular to the magnetic field then is

v =vi 4 US = riw? (2.31)

and the radius of the particle orbit, the Larmor radius rr, is

v muv
= = . 2.32
We iq| B ( )

T, =
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The direction of motion depends on the particle’s charge and has to obey
Lenz’s rule: the ring current associated with the particle motion creates a

magnetic field opposite to the external one. An electron obeys the right-hand
rule (.qee Table 22) if the thumb is directed along the magnetic field line

[e UL B ¢ 1V 5 L) LG LIIRAL22R) 22 WIALICLLEAl AVLlEy LALD A2l ey AR 4aTARD 2225,

the tips of the curved fingers give the direction of the electron motion. If the
initial velocity has a component parallel to the magnetic field, the particle
follows a helical path around the line of force.

Exzample 1. A hot plasma with T = 1 keV is confined in a homogeneous
magnetic field B = 1 T. The thermal speeds are given by v = /2Wyy,/m.
Thus we obtain ve = 18.7x 106 km/s for the electrons and v, = 4.37x10% m/s
for the protons. The Gyro-radii then are determined from (2.32) to be ro =
0.1 mm and rp, = 4.6 mm. From (2.28), we get obtain w¢e = 1.8 x 10! 7!
and wep, = 10® s7! for the cyclotron frequencies. Note that both w. and
ry, scale with B; thus in a much weaker field, such as the interplanetary
medium, which is of the order of a few n'T, the gyro radii would increase by
many orders of magnitude while the cyclotron frequencies would decrease by
orders of magnitude. O

2.2.2 Useful Definitions

The magnetic rigidity P [V] describes the resistance of a particle to change
its direction of motion under the influence of a magnetic field. It is defined
as the ratio of the momentum p,; perpendicular to B and the charge ¢:

P= % . (2.33)

The Larmor radius (2.32) then is the ratio between the magnetic rigidity and
the magnetic field strength r;, = P/B.

The gyration of the particle is determined by its speed v, perpendicular
to the magnetic field while the particle itself is characterized by its energy or
velocity. The relative sizes of the velocity components parallel and perpen-
dicular to the magnetic field can be described by the pitch angle a with

tana = -= . (2.34)
Ll

The velocity components perpendicular and parallel to the field therefore are
vy =wv sina and v = v cos o

A particle with charge ¢ moving in a circular orbit with radius 1, and
gyration time T gives rise to a ring current I = ¢/T. = qw./(27). The
magnetic moment g is defined as the product of the ring current and the
enclosed area A = 7rg:
mv]  Wiin,

p=A= T B

(2.35)
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The orientation of the magnetic moment is determined by the direction of
the ring current:

1 mv] B B Wi, ,

T —

B = EQT‘L XVl = — 2 B2 —Wkin, B B L3¢5 (2.36)

where tg = B/B is the tangential unit vector to the magnetic field. The
magnetic moment does not depend on the charge of the particle; its direction
is opposite to that of the external field. A plasma, therefore, is diamagnetic.

In a highly conductive plasma, no electric field exists and the particle en-
ergy is conserved (see (2.25)). Then v) is constant. Therefore v is constant,
too. If the magnetic field is constant, the magnetic moment will also be con-
stant. Even in the case of a slowly (adiabatically) varying field u is constant.
It is therefore called an adiabatic invariant (Sect. 2.4.1).

Excursion 1. Relativistic Quantities. The highly energetic particles acceler-
ated in solar flares or coming from the galactic cosmic radiation have speeds
close to the speed of light. Thus these particles have to be described in terms
of relativistic quantities. The mass of a particle with rest mass mg increases
with increasing speed v, as described by the relativistic mass equation

mo

m(v) = ———= =vmo . (2.37)
%
The relativistic energy is then
E =mc?, (2.38)
the relativistic momentum is
p=m)v =vymev, and p°= kin — mpc? . (2.39)

2

Consequently, the relativistic force can be written as

F = T (ymov) . (2.40)

The cyclotron frequency of a relativistic particle then is simply

B B
We, rel = Iq1 = Iql R (241)
Mye) Ymo
and the Larmor radius is
vl DL
r == = . 2.42
L,rel wc,rel lql B ( )
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Example 2. So far, the highest proton energies observed in the galactic cosmic
radiation are 10?° eV. These protons gyrate in an interstellar magnetic field of
about B = 3x1071° T. Since for such high energies the kinetic energy Wiy is
approximately equal to the total energy Ei,a1, the second term on the right-
hand side of the second equation in (2.39) can be ignored and the particle
momentum is p = Wiin/c. With (2.42), we obtain a maximum Larmor radius

of W
o= B = Zkin g2t (2.43)
eB  ceB ‘ ’
This is approximately the size of the Milky Way. 0
Excursion 2. Local Gyration Radius. The example above points to a general
problem, already mentioned in connection with Table 2.2: for a partlcle with'

pitch angle o = 90°, a closed gyro-orbit with a constant 71 results only if the
magnetic field is homogeneous across the particle orbit. This is certainly not
true for the Milky Way, and it is also not true for the path of cosmic rays in
the magnetosphere. In these cases, a different approach is required. Again,
the particle motion is decomposed into motions parallel and perpendicular
to the field, and the equation of motion is separated into two parts,

%=0 and d;—;'z—% (v x B) . (2.44)
We assume a stationary magnetic field, dB/dt = 0; the direction parallel
to the field lines is given by the tangential vector tg = B/B. Instead of a
gyration radius for the entire orbit, we now can determine a “local gyration
radius” which gives the local curvature of the particle path; see Fig. 2.1.
The equation of motion gives us a closed gyro-orbit for B = const over the
entire orbit. For B = B(r,t) it gives us the local Lorentz-force from which
we obtain the local gyro-radius. Locally, its magnitude is the same as for a
constant field with the local value of B. We can derive this also graphically:
During a time interval 6t the radius of curvature r; changes in accordance

Fig. 2.1. Particle orbit in a stationary but non-
homogeneous magnetic field
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with dr. = v 0t, while the perpendicular speed changes in accordance with
dvy = (g/m) (v x B) ét. Since the triangles in Fig. 2.1 are similar, we
obtain dr¢/r. = vy /v . Solving for r. gives the curvature radius or local

Larmor radius

muv
lg| B

or, in vector form, where £, = v/v is the tangent vector to the velocity,

L = (245)

—= (&, x i) . (2.46)

The equation gives essentially the same result as (2.32). The only difference
is that now 7y, depends on position: 7y, = r,(7) because B = B(r). Thus
ri, and 7, both vary along the particle orbit, while in (2.32) rp, is constant
along the particle path. O

2.3 Drifts of Particles in Electromagnetic Fields

Particle drifts in electromagnetic fields result from changes in the Larmor
radius during one gyration, either due to changes in particle speed (as in
E x B and in the gravitational drift) or in the magnetic field (as in the gra-
dient drift). For particles with pitch angle 0° the drifts vanish, except for the
curvature drift, because the latter arises from the field-parallel motion.

2.3.1 The Concept of the Guiding Center

The concept of the guiding center, introduced in the 1940s by H. Alfven,
separates the motion v of a particle into motions v, parallel and v, perpen-
dicular to the field. The latter can consist of a drift vp and a gyration w:

V=0 +vL = V) + VD +w = v+ W (2.47)

with vg. being the motion of the guiding center. Thus the motions vg. of the
guiding center and the gyration w. around the magnetic field are decoupled.
If we follow the particle for a long time, the gyration is of minor importance.
In some sense it is averaged out, and the particle motion is described by the
motion vgc of the guiding center, consisting of a field-parallel motion and a

drift. The particle always is within a gyro-radius of this position.

2.3.2 Crossed Magnetic and Electric Fields: F X B Drift

Assume an electric field E perpendicular to the magnetic field B, both ho-
mogeneous and constant in time. The magnetic field forces the particle into
a gyration around the field line. During half of its orbit, the particle motion
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Table 2.2. Drift in various types of fields

B upward Charge eq.
through the paper positive negative

*E‘MLE -
05T

B homogeneous

E homogeneous

<L
Gravitation
. . (2.57)
|7 7
<2 P
Inhomogeneous B
~ N N (2.58)
Tgrad | B| T SZ SZ T S! EZ
'D'

has a component parallel to the electric field, during the other half it is anti-
parallel. Therefore the particle alternately is accelerated and decelerated.
Let us now look at this motion in detail. The second row of Table 2.2
gives the motion of particles in a magnetic field pointing upwards through the
paper and an electric field pointing downwards. An electron (right column)
starts in the upper right corner and is forced into a downward motion by the
magnetic field. Since this motion is parallel to the electric field, the electron
decelerates and its gyro-radius decreases. At the lowest point of its orbit
the electron therefore is shifted towards the left with respect to its starting
point. In the upward part of its gyro-orbit the electron moves anti-parallel
to the field. Thus it is accelerated and its Larmor radius increases, shifting
the electron farther to the left. This E x B drift results from a continuous
change of the particle’s gyro-radius and is perpendicular to both the electric
and magnetic fields. Therefore, in spite of the presence of an electric field
the particle does not gain energy. For a particle with positive charge, the
direction of the drift is the same: its gyro-motion is opposite to that of an
electron, as are the parts of its orbit with the smallest and largest gyro-radii.
Since electrons and protons drift into the same direction, no current results.
To derive a quantitative description of the E x B-drift we substitute

FEF x B
B2

v=w+ (2.48)



30 2 Charged Particles in Electromagnetic Fields

This corresponds to the transformation into a frame of reference moving with
velocity E x B/B?. It is © = w because both the electric and magnetic fields
are constant. The equation of motion therefore reads

mtb:miJ:qE+qwa+-Bg—2(ExB)xB. (2.49)

Because FE is perpendicular to B, the double cross-product in the last term
can be written as — EB? (A.20). Therefore, the first and last terms on the
right-hand side cancel and the equation of motion reduces to

mw = qw X B. (2.50)

Now w fulfills (2.24). In the new reference system the particle motion there-
fore is a gyration and the motion of this system gives the drift velocity:

ExB
VExB = Bz (2.51)

The direction and size of the drift depend on the fields alone: particle prop-
erties such as mass, charge or velocity do not enter into the drift.

of a general force F' perpendicular to the magnetic field by substituting the
electric field E by the general force F'/q in (2.48) and (2.49):

FxB 1 (F B F
vp = B ——w——c(ax—g)—% x ip . (2.52)

In the above example F' = ¢ FE has been used.

Ezample 3. Wien filter. A magnetic field B = 5 x 107 T is perpendicular to
an electric field E = 1000 V/m. This configuration provides a simple example
of E x B drift. Since the two fields are perpendicular, we obtain from (2.51)
a drift velocity vexp = (EB)/B? = E/B = 2 x 10° m/s. The drift velocity
is perpendicular to both the electric and the magnetic field. An electron
approaches perpendicular to both fields. On hitting the field combination,
the electron will start to gyrate around the magnetic field and drift along
its original direction of motion. The size of the gyro-orbit depends on the
electron speed v.. For ve = vEx g the electron moves along a straight line.
This can be understood as follows: if the electron moves along a straight line
at constant speed, no force acts on the electron. Thus the forces exerted by
the electric and the magnetic field must be equal: eF = eveB or v, = E/B,
which is the drift velocity derived above. O

2.3.3 Magnetic and Gravitational Fields

Now consider a gravitational field perpendicular to a homogeneous magnetic
field (third row in Table 2.2). As in the previous case, the Larmor radius
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changes continuously. But here the external force does not depend on the
charge sign, and the points of the largest and smallest gyro-radii are the

same for both positive and negative particles. Because particles with different
r-hnrcm sions have onnosite directions of gyration, they drift into opposite

charge signs have opposite directions of gyration they drift into
dlrectlons. The direction of drift therefore depends on the charge ¢, and its
size depends on the particle mass m, because the external force ' = mg

depends on the particle mass. Equation (2.52) yields for the drift velocity

mgx B
q B

vy = (2.53)

A gravitational field perpendicular to a magnetic field therefore allows the
separation of particles with positive and negative charges. This drift leads to
a current. In addition, the magnetic field prevents the particles from “falling
down”. There is no net acceleration along g and the potential and kinetic
energies averaged over a gyration both are constant.

Example 4. A proton with a kinetic energy of 1 keV (and also a 10 keV
electron) gyrates in the equatorial plane of the terrestrial magnetic field at a
radial distance of five Earth radii from the center of the Earth. All its kinetic

energy is in the gyrnf19n The nqnnfnmn] ms\gnﬂf1ﬁ field at the surface of the

Earth is 3.11 x 10~% T; it falls off with radial distance as r=3. Thus the
local field at the proton orbit is B = 2.5 x 107 T. The proton speed is vp =
v/ 2Wign /m = 4.4x 10° m/s (and the electron speed is v, = 5.9x 107 m/s); its
gyro-radius according to (2.32) is rp,, = 1.8 X 10* m (71, = 1.4 x 10° m/s),
which is still small compared with the scales of the system; for instance,
the drift path around the Earth has a length of lgys = 27r = 507rg =
2 x 10® m. The gravitational acceleration scales with r%, and thus at the
particles position it is only ¢/25, g being the gravitational acceleration at the
surface of Earth. Since at and above the equator the magnetic field is parallel
to the surface, the gravitational field is perpendicular to the magnetic field.
The drift speed from (2.53) is then v, = 1.6 cm/s perpendicular to both
fields: the particle drifts along a circle in the equatorial plane. Since the
geomagnetic field has its south pole close to the geographic north, the field
in the equatorial plane is directed northward. Thus a proton drifts to the
west while an electron drifts eastward. The g x B drift thus would give the
particle such a small speed that it would take 1.25 x 109 s or about 400 years
to drift around the entire Earth. Note that the drift speed depends only on
the particle mass. Thus all protons drift with the same speed, independent
of their energy. To be more precise, almost all protons: if the energy becomes
too large, the gyration radius of the particle may become so large that it
either hits the atmosphere and is absorbed during an interaction or suddenly
finds itself in interplanetary space and escapes. The same argument holds
also for all other particle species; only their drift speeds must be scaled by
the ratio of their mass to the proton mass. The drift speed of an electron is
therefore smaller by a factor of 1836 than that of the proton. O
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2.3.4 Inhomogeneous Magnetic Fields

In an inhomogeneous magnetic field (bottom row in Table 2.2) particles with

positive and negative charges also drift in opposite directions. In contrast
to the previous example, here the particle speed stays constant during the
gyration but the gyro-radius increases/decreases with decreasing/increasing
field strength. This change in gyro-radius is independent of the charge sign,
leading to drifts of electrons and protons in opposite directions. The resulting
gradient drift is

VITL
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vvgzq—%z—BxVB::t B x VB; (2.54)
the =+ sign reflects the charge dependence of the drift direction. In contrast
to the gravitational drift discussed above, here the drift speed depends on
the particles kinetic energy and thus on both speed and mass.

A very efficient drift develops in the configuration of two opposing mag-
netic fields. Imagine the guiding center of the particle orbit on the neutral
line between the fields. The particle starts its gyration in the upper half of the
field, but after crossing the neutral line, the direction of gyration is reversed.
Therefore, instead of a closed circular orbit two semicircles result, leading to
displacement by 4 Larmor radii during one gyration (see Fig. 2.2). In inter-
planetary space such a drift takes place along the heliospheric current sheet
and contributes to the modulation of galactic cosmic rays (Sect. 7.7).

In the magnetosphere this drift leads to the ring current and the motion
of particles trapped in the radiation belts (Sect. 8.7.1).

Ezample 5. Let us briefly return to example 4, where we saw that the g x B
drift is extremely slow. Since the magnetic field decreases as r—3, during
its gyration the particle scans regions of different magnetic field strength,
and thus a gradient drift results. The gradient of the magnetic field has the
same direction as the gravitational acceleration, and thus the gradient drift
is in the same direction as the g x B drift. Although the magnetic field is
roughly a dipole field, in this special case it can be treated as spherically
symmetric since the particle gyrates in the equatorial plane and therefore
is not influenced by the latitudinal variation of B. From (A.43) we obtain
the gradient of the magnetic field B(r) = Bq (ro/r)* as VB = (=B/r,0,0).
The cross product in (2.54) then gives |B x VB| = B?/r and the drift speed

= Tl = ool
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becomes vp = rpvy /(2r) = 220 kmn/s for the proton. For the 10 keV electron
we get a drift speed of 259 km/s. Thus drift frequencies are of the order of
mHz (see also Fig. 8.47). O

2.3.5 Curvature Drift

Imagine a homogeneous magnetic field with the lines of force are curved with
a radius .. In a vacuum such a field would obey Maxwell’s equations only
if combined with a magnetic field gradient. The net drift therefore would be
the sum of the curvature drift and the gradient drift. To derive the curvature
drift alone, let us start from a simplified configuration without a magnetic
field gradient. The drift arises from the centrifugal force F'¢¢ and thus is
determined by v and not by v, as in the previous examples. Inserting the
centrifugal force F = mvﬁer [Te = mvﬁrC /r? into (2.52) yields

2
mv r, x B
¢B* g

UR (2.55)

The curvature drift depends on the charge, mass, and speed of the particle.

In a real field, a field gradient exists in addition to the curvature. Ampére’s
law (2.7) in a vacuum without electric current gives V x B = 0. In cylindrical
coordinates (see Sect. A.3.2 and Fig. 2.3), B has only one component in 6,
VB only one in r, and V x B only one in z, given as

_ 13(rBy)

(VxB), = ~Z2 =0, (2.56)

This is zero because By is proportional to 1/r. Then |B] is proportional to
1/rc and it is V|B|/|B| = —r./r%. The gradient drift (2.54) then reads

m o r.x B
VvyB = "éa’l)_]_r—g‘Bz— . (257)

Combined with (2.55), the drift in a curved magnetic field is

1,\  vf+3vd VB
-V = en X .
9+ We ]

(2.58)

D>

Fig. 2.3. Curved magnetic field and coordinate system
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This equation has an important implication: if particles are trapped inside a
magnetic field torus, the best and finest adjustments in temperature and

field cannot prevent the particles from drifting across the field lines and
out of the torus sooner or later. This is one of the fundamental prnh]pms

in fusion research. Instead of a simple torus, extremely complex field con-
figurations are required, as for instance in the stellerator Wendelstein 7-X
(see e.g. www.ipp-garching.mpg.de/eng/pr/publikationen/broschuere.
engl .pdf or www.ipp-garching.mpg.de/eng/pr/exptypen/stellarator/
pr_exp_ste.html),

Ezxample 6. A proton plasma with a temperature of 10 MeV (corresponding
to a speed of v = \/2Wyin/m = 4.3 x 107 m/s) is confined by a homogeneous
magnetic field inside a torus of diameter 1 m. The dimensions of the torus also
give the diameter of the gyro-orbit. Thus a magnetic field B = muv, /(qry) =
0.9 T is required to keep the proton inside the torus. According to (2.55),
the curvature drift is then v, = mv?r/(¢B) = 0.24 m/s tangential to the
particle path. a

2.3.6 Drifts Combined with Changes in Particle Energy

The drifts discussed so far have been associated with acceleration in the
sense of a change in the direction of motion but not in average speed. Cer-
tain combinations of fields, however, can lead to changes in average speed
and therefore also in particle energy. Figure 2.4 shows the drift of a particle
in a crossed electric {pointing upward in the drawing plane) and magnetic
(pointing upward out of the drawing plane) field with a gradient perpendic-
ular to both the magnetic and electric fields. The motion under the influence
of two combined fields has been discussed above and is indicated by thin
lines: for a particle with positive charge the E x B drift leads to a horizontal
motion towards the right while the grad B drift leads to an upward motion. A
combination of both motions gives the EgradB drift oblique to the fields and
to the magnetic field gradient. Owing to this drift, the particle moves from
one potential to another, gaining energy. Note that the use of a gravitational
field instead of the electric field would yield similar results.
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2.3.7 Drift Currents in Plasmas

Some of the drifts discussed above lead to the separation of positive and
negative charges, giving rise to a drift current. In a plasma, instead of single
particles we have to consider k different particle species with number densities

AAAAA

2
. neLY
jove =Y kL (B xVB) . (2.60)
k

This current results from the inhomogeneity of the field and leads to a charge
separation. An example of a natural drift current is the ring current in the
magnetosphere (Sect. 8.3.3).

Example 7. In example 5, we calculated the drift speeds of 1 keV protons
and 10 keV electrons. In the radiation belts, both have a number density]
n = 107" m~3. With the drift speeds from example 5, we can determine the
ring current densities by using (2.60) and j = 7.7 x 1077 A/m?2. W

2.4 Adiabatic Invariants

So far we have only considered static and homogeneous fields. In weakly and
slowly varying fields, the concept of adiabatic invariants provides a powerful
tool to describe the periodic motions of particles. A simple analogy is the
mathematical pendulum: if its length increases only weakly during one swing,
the ratio of the pendulum’s energy and frequency is a constant of the motion,
called an adiabatic invariant. For charged particles in a magnetic field, three
types of motion can be identified:

1. The field changes only slowly during one gyration:

1 0B We

- — — . 2.61

B ot < 2m (2:61)

2. The field varies only weakly on a scale comparable with the distance trav-
eled along the field by the particle during one gyration (bounce motion,
longitudinal oscillation):

VB We

5 < oy (2.62)
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3. The field varies only weakly in the area encircled by the particle during
the gyration or drift motion:

(9 A2
\&.09)

If the particle motion is described by a pair of variables (p;, g;) which are
generalized momentums and coordinates, for each periodic coordinate g; the
action integral

Ji = fpiin ) (2-64)

integrated over a complete cycle of motion, is approximately an invariant
or constant of the motion, provided changes in the variables occur slowly
compared with the relevant periods of the system and the rate of change is
almost constant (for a proof of this statement, see, for example, [192,303,307,
382,508)). Thus a system can change from one state of motion into another
and still have the same action integral.

2.4.1 First Adiabatic Invariant: The Magnetic Moment

The first adiabatic invariant states that in a slowly varying magnetic field
the magnetic moment u = W, /B is almost constant. It finds applications in
magnetic mirrors and bottles. We can derive it by inserting the generalized
momentum p = mv, and the generalized coordinate ¢ = rp3» (with ¢ being
the azimuthal angle along the gyro-orbit) into the action integral (2.64)

Jy = fpl dq; = fmvlrL dy = 2rmrpv, . (2.65)

With (2.32) and (2.35) this yields

Jy = 47rg—|u = const (2.66)
under the tacit assumption that w/w; <« 1 with w characterizing the change
in B. Thus (2.66) states: as long as m/|g| is constant, the magnetic moment
is constant, too.

A less formal but more illustrative proof, without using the action in-
tegral, starts from the motion of a particle in a magnetic field that varies
slowly in space or time. Let us choose the latter attempt, i.e. 9B/0t # 0.
Then, according to Faraday’s law (2.4), a rotational electric field arises with
a component parallel to the orbit of a gyrating particle (or completely par-
allel to the motion of a gyrating particle if the latter has pitch angle zero).
If we further assume v to be zero, the particle speed is v = v, = dl/dt
with dI being a small element of the particle path. Multiplying the equation
of motion (2.23) by the particle speed v, we derive the temporal change in
kinetic energy:
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d [ mv? dl
— | —— ) =qF  -v=qFE- 2.67
dt ( ) ) A AT (2.67)
Integration over a gyro-orbit gives the energy change during a gyration
2w fw
dl
dWkin = qgF (_:1—1; de . (268)

0

According to our assumptions, the field changes only weakly during one gy-
ration. Therefore, the particle orbit still is nearly circular and the integration
in time can be substituted by a line integral along the particle path:

§Wiin = j[ gE - dl . (2.69)

With Stokes’ theorem (A.39) and Faraday’s law (2.4) we obtain

§Wicin = q/(V x E)-dS = —q/—— -dS, (2.70)

with S being the surface enclosed by the Larmor orbit, its direction given by
the right-hand rule. The integral is positive for negatively charged particles
and negative for positively charged ones. It then can be written as

OWikin = %f mri . (2.71)

With the Larmor radius expressed in terms of the cyclotron frequency this is

OBv: m _ Wiin 2m0B/0t
ot we +qB B We .

(SWk;n = :I:ﬂ'q (2.72)
The first part of the right-hand side gives the magnetic moment, the second
part the variation § B of the magnetic field during one gyration: Wy;, = udB.
Inserting the definition of the magnetic moment (2.35) into the left-hand side,
we get §(uB) = udB + Bdu = uéB, which implies

Béu=20. (2.73)
Because B # 0, this equation gives the first adiabatic invariant: in a slowly
varying magnetic field the magnetic moment is constant.

Changes in the magnetic field result in variations in the Larmor radius.
Thus the question arises: does the magnetic flux through a Larmor orbit
change in a slowly varying field? With the definition of the magnetic flux
(2.5) and the area S enclosed by the gyro-orbit we can write

’U2
_ /B.do = 7Bt (2.74)
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Inserting (2.28) yields

Voo o o s o

Thus as long as i is an invariant of the motior
a gyro-orbit is constant.

2.4.2 Magnetic Mirrors and Bottles

Magnetic mirrors and bottles are applications of the first adiabatic invariant.
In its top left panel Fig. 2.5 shows the configuration of a magnetic mirror
together with the path of a particle. The panel below shows the dependence
of v|, v1, and «a on the particle’s location. The panel on the right illustrates
the restoring force at the mirror point.

Let us start with a particle on the left-hand border of the graph with
initial speeds vy ; and vy 1 parallel and perpendicular to the magnetic field
and initial pitch angle a;. The particle gyrates around the field line, and its
guiding center moves to the right. Since the electric field is zero, the particle’s
kinetic energy is constant:

mv? = %m(vﬁ +v?) = const . (2.76)

wol—

The kinetic energy perpendicular to the magnetic field can be expressed by
the magnetic moment p (2.35):

%mvz = %mvﬁ +uB . (2.77)

LTy &3 Tin

i
:

Fig. 2.5. Magnetic mirror: configuration (top left), variations in particle speed
parallel and perpendicular to the magnetic field and pitch angle o with position
(bottom left), and restoring force at the mirror point (right)
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The first term on the right-hand side can be interpreted as the drift energy
or the kinetic energy of the guiding center, while the second term uB is the
gyration energy. Since y is invariant, an increase in B has to be compensated
for by a decrease in the drift energy until v becomes zero. At this mirror

point the energy conservation ylelds
fBmp = 3mv? = Jmud ., (2.78)

Thus, at the mirror point the drift energy entirely is transformed into gyration
energy, which therefore is the particle’s total kinetic energy. The guiding
center has come to a standstill and eventually will be reflected back towards
the diverging field. The right panel in Fig. 2.5 illustrates the origin of the
restoring force: at the mirror point the magnetic field is inhomogeneous. Thus,
the plane of gyration is not perpendicular to the field and B has a component
B in this plane, leading to the restoring force

F.=quxB=qu B e,. (2.79)

The particle is pushed back into regions of decreasing field strength and its
pitch angle decreases as gyration energy is transferred back into drift energy.
Note uhab \a 7:1} also can be written as F' = B V B which describes the force
an inhomogeneous magnetic field exerts on a dipole magnetic moment.

The location of the mirror point By,, depends on the initial pitch angle
a; of the particle. If o is zero, the magnetic moment is zero too, and the
particle’s total kinetic energy is drift energy. An increase in the magnetic
field strength does not transform drift energy into gyration energy and the
particle traverses the magnetic mirror. If, on the other hand, «; is 90°, all the
particle’s energy is contained in the gyration and the guiding center already is
at a standstill. For values of «¢; in between these two extremes either reflection
occurs at a point Zmp(ai) or the particle is transmitted if the increase in the
magnetic field strength is not sufficient to convert all the drift energy into
gyration energy. Let us now determine whether a particle will be reflected or
transmitted. The constancy of the magnetic moment implies that the ratio
of the energy of gyration and the magnetic field strength is constant. Thus
for any two points in the magnetic field we have

mnl2 mﬂ‘z
f't/U_Ll f".'U_Lz
H=%B, ~ 2B, (2.80)

or, taking the pitch angle into consideration,

visinoy  visin’a, (2.81)
Bl —-— B2 . .
The kinetic energy is constant; thus it is v; = vy and the quantity
2 sin? o sin® a
£o= L - 2 (2.82)

mu? B] Bg
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becomes an invariant of the motion. At the mirror point, the particle’s pitch
angle auyp is 90°. Thus reflection at the position By, requires an initial pitch

angle at B; of

angle at

B 1 | B / 1
s 2 r 1 r . 1 .
sin” oy — = ——  or @y — arcsin = arcsin . (2.83

Here Ry, is the mirror ratio. Particles with an initial pitch angle o are
reflected exactly at By,,; particles with larger «; are reflected earlier and
particles with smaller ; pass through the mirror point. Thus (2.83) defines
the boundary of a region in velocity space in the shape of a cone, called the
loss cone (see Fig. 2.6): particles inside this cone are not confined by the
magnetic mirror. This loss cone is an important concept to describe the dy-
namics of radiation belt particle populations. Note that the loss cone depends
on pitch angle only, and does not depend on other particle parameters, such
as mass, speed or charge.

Ezxample 8. Assume an isotropic distribution (that is, the pitch angles are
distributed uniformly)} of 10 keV electrons injected on a field line at the
equator, and Lo = 5 Earth radii from the Earth’s center. The magnetic field

varies as
_ Bg V1+3sin’®

a Lg cos® @ !

where @ is the geomagnetic latitude and Bg = 3.11 x 1072 T is the equato-
rial magnetic field strength at the surface. The equation of the magnetic
field line is L = Lycos?®. From the conservation of the magnetic mo-
ment, we can determine the number of particles reflected at geomagnetic
latitudes of 30° and 60°. We need only the ratio between the magnetic field
strengths at the injection site and at the reflection point. From (2.84) we
obtain Brea/Beq = V1 + sin? G en / cos® @ren, which gives a magnetic field
ratio of 2.65 for & = 30° and 84.7 for & = 60°. From (2.83) we then find
that all particles with a pitch angle larger than 38° and 6.3° are deflected at
geomagnetic latitudes below 30° and 60°, respectively (that is, 48% and 83%,
respectively, of the initial population}. From the equation of the field line,
we find that it intersects the surface of the Earth (L = 1) at a geomagnetic
latitude of 63°. O

B(Lo,?) (2.84)

Ezxample 9. Magnetic pumping is a process in which an adiabatic invariant
is used to accelerate particles. To illustrate the idea, let us start from an

Ul

loss cone Fig. 2.6. Definition of the loss cone
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isotropic plasma gyrating in a homogeneous magnetic field. The plasma tem-
peratures and thus the particle energies parallel and perpendicular to the field

are the same: Wiy |0 = Wkin, 1,0 = Wp. Let us now increase the magnetic
field .anw]y by a factor of two, such that the concept of adiabatic invariants

can be applied but fast enough to prevent an exchange between parallel and
perpendicular energy. The energy parallel to the field remains unchanged, but
since the magnetic moment is conserved, the perpendicular kinetic energy in-
creases as B increases: Wi, 1 ~ B. If we wait for a sufficiently long time to
allow temperature exchange between the parallel and perpendicular motions,
we again have an isotropic plasma, now with Wi, .1 = Wikin,1,1 = 1.5 Wy
and thus Wi, )1 = 1L.9Wyin |0 and Wiin 1.1 = 1.5Win, 1 0. We can now allow
the magnetic field to relax to its original value with the same speed as before.
Again, the parallel kinetic energy remains constant while that of the motion
perpendicular to the field is reduced by a factor of two: Wiy, .1 = 0.75Wiga |10
and Wiin, 1,1 = 1.5Wkin,1,0. The total energy is then W = 1.25W)p, that is
the plasma has gained energy during this process, which can be repeated for
further energy gain. O

2.4.3 Second Adiabatic Invariant: Longitudinal Invariant

Two magnetic mirrors combined give a magnetic bottle (see Fig. 2.7): par-
ticles are confined due to repeated reflection between the mirrors. This is a
simple configuration in so far as the field is stationary, rotation-free and has
a rotational symmetry around the field line. The second adiabatic invariant
is related to the drift motion inside the bottle and the distance between the
mirrors. The longitudinal invariant can be derived from (2.64) with the mo-
mentum pz = mv) and the distance s along the field as the spatial coordinate:

82
Jo = /mv” ds = const, . (2.85)

1

With (2.77) this can be written as

\ / Fig. 2.7. Magnetic bottle
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The second adiabatic invariant leads to an efficient mechanism for particle
acceleration: for the acceleration of galactic cosmic rays, Fermi proposed a

configuration of two converging magnetic mirrors (first-order Fermi effect
['I 50,151}). In terms of energy, the reflection of a particle at a fixed magnetic

Ly 2l e 223 VRIS L kAl LIAC Il il vl & ALLVILIC &b &4 LIALDAL 1Lla 12000

mirror is equivalent to a ball bouncing off a wall. Thus in a magnetic bottle
with two fixed mirrors the particle oscillates between these mirrors without
changes in total energy. The interaction with a moving magnetic mirror,
however, is equivalent to the reflection off a moving wall. Depending on the
relative speeds between particle and mirror, an energy gain or loss results:
head-on collisions lead to an energy gain; if the particle and mirror move in
the same direction, an energy loss results. According to (2.85) in each pair of
collisions the total energy gain is determined by the shortening of the distance
between the mirrors, independent of whether the particle meets both mirrors
head-on or only one of them. A familiar equivalent is the warming of a gas
during compression, e.g. inside a tire pump.

The application of the second adiabatic invariant in the Earth’s magne-
tosphere is not concerned with acceleration but with the asymmetry of the
field. The dipole field in the inner magnetosphere forms magnetic bottles:
particles moving from the equatorial regions towards the poles “see” a con-
verging magnetic field, they move into a magnetic mirror (see Sect. 8.7.1). If
their pitch angle is sufficiently large to prevent them from entering the loss
cone, they eventually are reflected back, cross the equator and travel towards
the other pole. This bouncing motion, however, is not exactly the same as in
Fig. 2.7: the field lines are curved to follow the Earth’s dipole field and the
particle therefore faces a stronger magnetic field during that part of the Lar-
mor orbit closest to Earth than in the other half of the orbit. The resulting
gradient drift leads to a guiding center motion around the Earth: electrons
drift from west to east, protons from east to west, forming a ring current.

In a symmetric magnetic field, the particles should return to a certain
field line after each drift period. But, as we shall see in Chap. 8, the Earth’s
magnetosphere is neither symmetric nor constant in time. Why then should
a particle return to a certain field line after one drift period? The particle’s
energy is conserved during the motion. The first adiabatic invariant then re-
quires that at the mirror point |B| is constant. If a particle has drifted back
to a certain longitude, in principle it can be on a field line in an altitude
different from its initial one. This is ruled out by the second adiabatic invari-
ant, which determines the length of the field line between the mirror points.
Combination of both invariants requires finding field lines with the same |B|
at the reflection point and the same length. But at a fixed longitude this is
fulfilled by one field line only. Thus even in an asymmetric field the particle
returns to its original field line after each drift period.



2.5 Summary 43
2.4.4 Third Adiabatic Invariant: Flux Invariant

The third adiabatic invariant, the flux invariant, is also related to the guiding
center drift. It states that the magnetic flux enclosed by the drift orbit is
constant. The particle moves on a surface which adjusts itself to variations
in B so that the flux enclosed by this surface stays constant. Formally, the
third adiabatic invariant can be derived from the action integral (2.64) by
using the drift motion to define the generalized momentum p = mvp and ¢
as the azimuthal angle of the particles orbit with radius r:

J3 = fmv[)rdw . (2.87)
Similar to (2.65) we then obtain
dmm
J3 = Ta M = const , (2.88)
q

with M being the magnetic moment of the axisymmetric field.
The third adiabatic invariant is also used in the Tokamak geometry of a
i r [252’5:9 EEG]
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2.5 Summary

This chapter has introduced the motion of individual charged particles in
electromagnetic fields. The particles are considered as test particles: they
do not interact with other particles and their motion does not influence the
fields. The main results are: (i) The elementary motion of a charged particle
in a homogeneous magnetic field is the gyration around the field line, char-
acterized by the Larmor radius (2.32) and the cyclotron frequency (2.28).
If the particle has a velocity component parallel to the field, a helical orbit
results. (ii) The pitch angle o describes the relation between the particle’s
motion parallel and perpendicular to the field. (iii) The motion of a charged
particle can be separated into the motion of its guiding center and the gy-
ration around the guiding center. The guiding center motion can consist of
a field parallel motion and drifts. (iv) In slowly and weakly varying fields,
three adiabatic invariants can be defined, each associated with a typical mode
of motion: the first adiabatic invariant (constancy of the magnetic moment)
is associated with the gyration, the second (longitudinal invariant) with the
field parallel motion of the guiding center, and the third (flux invariant) with
the drift of the guiding center. The adiabatic invariants can be applied to the
motion of particles in the radiation belts.
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Exercises and Problems

2.1. Describe the concept of the guiding center. What is the reason for drifts?
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2.3. Derive (2.52) and discuss the conditions under which it can be applied.

2.4. Derive an expression for the gyro-radius and frequency of a relativistic
particle. The relativistic momentum is p = ymgv, where v = 4/1 — v? /¢? and
mg is the rest mass. What is the expression for the magnetic moment of a
relativistic particle? Show that the relativistic magnetic moment is conserved.

2.5. How is the magnetic moment defined? Give examples of magnetic mo-
ments. Why is the magnetic moment an important physical quantity?

2.6. Show that j' = j in the derivation of Ohm’s generalized law (2.14).
2.7. Derive Coulomb’s law from (2.2).
2.8. Why does (2.43) give a maximum Larmor radius?

2.9. Solve the equation of motion (2.27).

2.10, Develon a simnle (numerical) model the de letion

........... p a simple (numerical) model for the 0

belt. Start with the information from examples 5 and 8, and assume losses
to occur at a height of 1.05 Earth radii from the center of the Earth (about
300 km height in the atmosphere) and that during each bounce period an
amount 1, with n being 50% of the number of particles lost, of the remaining
particles are scattered into the loss cone.

2.11. Determine the gyro-radii and frequencies for electrons and protons
moving with thermal speeds (see Sect. 5.1.2) in the following fields: (a) the
Earth’s magnetosphere, with n, = n, = 104 em™3, T, = T, = 10% K,
B = 1072 G; (b) the core of the Sun with n, = n, = 10% cm3,
T, =T, = 10"? K, B = 10° G; (c) the solar corona with ne = n, = 10% cm™3,
T. =T, = 10% K, B =1 G; (d) the solar wind with n, = n, = 10 cm™3,
T, =T, =10° K, B=10"° G.

@
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2.12. A particle gyrates in a homogeneous magnetic field. (a) Determine the
size of a volume V which contains an amount of magnetic energy equal to

the particle’s kinetic energy. (b) Determine the height of a cylinder with this
volume and a base given by the Larmor orbit. (c¢) Discuss this result.

2.13. In the equatorial plane, the Earth’s magnetic field can be described as
B = Bg(Rg/r)?® with By = 0.3 G, Rg being the Earth’s radius, and r being
the geocentric distance. Determine the time a particle with pitch angle 90°
needs to drift around the Earth in the equatorial plane. What is the meaning
of this time? Determine the period for electrons and protons with an energy
of 1 keV drifting in a height of 5rg above the center of the Earth. Compare
with the drift due to the gravitational field and the period of an uncharged
particle (e.g. a satellite) in the same orbit.
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2.14. A proton of cosmic radiation is trapped between two magnetic mirrors
with R,, = 5. Initially, it has an energy of 1 keV and vy = v in the merid-

ional plane between the two mirrors. Each mirror moves with v, = 10 km/s
towards the other. Draw a sketch of the configuration. Determine the acceler-
ation of the proton. (a) Does the acceleration continue until the mirrors are in
contact with each other or does the particle escape? Determine the maximum
energy acquired by the particle. Determine the maximum energy for other
pitch angles, too. (b) How long does the particle need to acquire maximum
energy? (Hint: assume the mirrors to be planes moving with speed v, and
show that the energy gain in each interaction is 2v,,,. How many interactions

are required for the particle to acquire maximum speed?)

2.15. The magnetic field of a magnetic mirror varies as B, = Bg(l + az?)
along the axis. (a) At z = 0 an electron has a speed of v2 = SUﬁ = 1.5v%.
Where does reflection occur? (b) Determine the motion of the guiding cen-
ter. (c) Show that the motion is sinusoidal. Determine the frequency. (d)
Determine the longitudinal invariant belonging to this motion.

2.16. A particle of mass m and charge ¢ is at rest in a uniform magnetic field
B. At time £ = 0, a uniform electric field perpendicular to B is switched on.
Show that the maximum energy gain is 2m(E/B)2.

2.17. A solar proton with energy 1 MeV starts with an initial pitch angle
of 85° at 2.5 solar radii. The interplanetary magnetic field decreases as 2.
Determine the proton’s pitch angle at the Earth’s orbit (213 solar radii) from

the conservation of the magnetic moment.

2.18. A 10 keV a-particle is trapped inside the radiation belt at a height of
108 km above the surface of the Earth in a magnetic field of about 10~6 T.
Determine the drift speeds for the curvature and the gradient drift. Compare
these speeds with the drift caused by the gravitational field.

2.19. One model for particle acceleration in solar flares uses the second adi-
abatic invariant. A shock propagates outward through a magnetic field loop
of sinusoidal form. Particles gyrate on this loop and bounce back and forth
from the shock front. Develop a model for particle acceleration.
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‘Glorious stirring sight!” murmured 1oad, never offering
to move. ‘T'he poetry of motion! The real way to travel!
The only way to travel!’

Here today-in next week tomorrow! Villages skipped,
towns and cities jumped — always somebody else’s
horizon! O bliss! O poop-poop! Oh my! OGh my!

K. Grahame, The Wind in the Willows

In the previous chapter we have discussed the motion of individual charged
particles in prescribed F- and B-fields. Magnetohydrodynamics is different
for two reasons: (a) it considers an ensemble of particles instead of just a single
particle and (b) the E- and B-fields are not prescribed but determined by
the positions and motions of these particles. Thus the field equations and the
equation of motion have to be solved simultaneously and self-consistently: we
are looking for a set of particle trajectories and field patterns such that the
particles generate the field patterns as they move along their orbits and the
field patterns force the particles to move in exactly these orbits. And all this
has to be done in a time-varying situation.

While magnetohydrodynamics describes many useful and important con-
cepts, it is only a simplistic approach to plasma physics: it describes the
plasma as a fluid with all particles having the same speed, the bulk speed.
The thermal motion of particles is neglected. Kinetic theory (Chap. §) also
considers the velocity distribution of the particles.

This chapter consists of four parts. It starts with a brief recapitulation
of hydrodynamics and an introduction to the basic equations. Subsequently,
magnetohydrostatics will be concerned with the energetics of the field and
the particles without allowing for the collective motion of a plasma. Concepts
such as magnetic pressure and magnetic tension are introduced. In magne-
tohydrokinematics we shall discuss the reaction of the field to a fluid with a
given velocity field. Basic concepts such as frozen-in fields and the dissipa-
tion of fields are introduced. An application of these concepts is the merging
of magnetic field lines, also called reconnection. In magnetohydrodynamics
fields and particles can interact freely. In this chapter, the magnetohydrody-
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namic dynamo will be discussed; magnetohydrodynamic waves will be treated
in the next chapter together with other types of plasma waves.

3.1 From Hydrodynamics to Magnetohydrodynamics

In a gas or fluid, the motion of each individual particle is described by an
equation of motion. If only electromagnetic forces act on a single particle, the
equation of motion is given by (2.23). In a plasma, the equation of motion
might be even more complex because the interaction between the particles
has to be considered: there are not only external forces acting on the particle
ensemble but also internal ones. In a plasma we would have to solve the
equations of motion simultaneously for all particles, which might be billions
inside a volume as small as 1 mm3. Such a task is impossible to complete.
Instead, we can treat the plasma as a fluid: we are no longer interested in
the motion of individual particles but only in the motion of a fluid element
or the fluid as a whole. So, to understand magnetohydrodynamics, a sound
knowledge of hydrodynamics is helpful.

This section recapitulates the basics of hydrodynamics: partial and con-
vective derivatives, the pressure-gradient force, and the momentum balance
in different forms, such as Euler’s equation or the Navier-Stokes equation.
The equations of continuity and state are also recapitulated.

3.1.1 Partial and Convective Derivatives

The equation of motion for a particle, F' = dp/dt, contains a total derivative
of the momentum and the external forces acting on the particle. In a fluid, in
principle, we can use the same approach: single out a volume element, follow
its path, and calculate the local forces acting on the moving volume. This
corresponds to Lagrange’s description of particle motion. Here we simply
would have to multiply the transport equation by the number density n of
the particles and obtain

d
nm—g =ng(E+ux B) , (3.1)

with u = (v) being the bulk velocity or average velocity of the particles.!

! The bulk velocity gives the velocity with which the fluid element moves. If the
thermal motion is ignored, all particles move with the bulk velocity. If the thermal
motion is considered, each individual particle moves with the sum of its thermal
velocity vy and the bulk velocity : v, = vin + u. Averaged over all particles in
the fluid element, the individual particle velocities give the bulk velocity (v,) = u
because (v¢n) = 0.
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For practical purposes, we normally consider a volume fixed in space and
measure the properties of the fluid streaming through the volume. A prop-

erty € of the fluid then is given as ¢ = &(z,y, z,t) with the spatial coor-
dinates and the time being independent variables. This corresponds to Eu-
ler’s description of a fluid. In contrast, in Lagrange’s description, the spa-
tial coordinate depends on time too, and a property € of the fluid is given
as € = e(x(t),y(t), z(t),t). In the atmosphere, Euler’s description could be
applied to a stationary thermometer while Lagrange’s description could be
applied to a thermometer on a radio-sonde carried by the prevailing winds.
If we are interested in changes in £, we have to calculate its derivative.
In Euler’s description, the total derivative de/d¢ and the partial derivative
Je /At are equal because all temporal derivatives of the spatial coordinates

vanish. In Lagrange’s description, the chain rule has to be applied:

de dzxde dyde dzde Oc Oe

& " dtos "oy Tdigs Tar ™ Vet g (32)

The change of a property € in a moving fluid element therefore consists of
two parts: (a) a change in ¢ at a fixed position in space (second term on the
right-hand side); and (b) the relative motion between the observer and the
medium (first term). Or, more formally: the total temporal derivative consists
of a local temporal derivative and advection; it is also called the convective
derivative. Note that the product (u - V) is a scalar differential operator.
Occasionally, the total derivative is written as D/D¢ instead of d/dt.

To understand the difference between a convective and a local temporal
derivative let us take a look at the property of water as, for example, salinity
or temperature. Let us first consider a closed volume, e.g. a fish-pond. The
temperature then might change due to absorbed solar radiation, and the
salinity might change due to evaporation. These changes are local temporal
changes. Now think of this volume of water as a segment of a river. The local
changes are still the same but there are also changes due to the advection
of water from other sites: warmer water might be advected into the volume
from a power station upstream or the salinity might increase as the incoming
tide carries water with higher salinity into the volume.

3.1.2 Equation of Motion or Momentum Balance

The motion of a fluid element in hydrodynamics can be described by Eu-
ler’s equation or the Navier-Stokes equation. All these different equations of
motion have one basic ingredient, the pressure-gradient force. In single-body
motions, only external forces act on the body. In a fluid, on the other hand,
regions of different pressure, for instance related to temperature differences,
can exist, exerting forces on fluid elements. Thus, before inserting the ex-
ternal forces into the equation of motion, let us have a look at this internal
force, the pressure-gradient force.
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Az Fig. 3.1. Normal forces p and shear stresses T acting
D on a cubic volume

Pressure-Gradient Force. Regions of different pressure in a gas exert
forces: particles move from the high pressure towards the low one. This force is
proportional to the pressure gradient —Vp and is called the pressure-gradient
force. Here we give its derivation, closely following Chen [97].

Pressure is related to the thermal motion of particles. The pressure-
gradient force leads to a transport in momentum resulting from the motion
of particles in and out of a fluid element V|,, = AzAyAz at position zo (see
Fig. 3.1). If the random thermal motion is limited to the z-axis, particles en-
ter and leave the volume through surfaces A and B only. The fluid particles
are characterized by their mass m, their speed v and their number density
n. During a time interval

An = An, v AyAz (3.3)

particles with speed v, pass through surface A with area A = AyAz into the
positive x-direction. Here

An, = Av, /]f(vm,vy, v,) dvy du, (3.4)

is the number density of particles with speed v,,, with f being the distribution
function (Chap. 5).

Each particle carries a momentum muv,. The total momentum PZ trans-
ported through A into the positive z-direction then is

Pf =" An,muiAyAz = AyAz [gm{viin] (3.5)

— A
ar

Here the sum over An, is expressed by the average (v2) of the distribution
times the particle number density. The factor 1/2 indicates that only half
of the particles in the adjacent volume element V|,,—a. at zop — Az have a
speed in the positive z-direction and transport momentum through A into
Vleo- But particles inside V|, also have a momentum in the positive z-
direction which is carried out of the volume through the surface B. Their
number is given as

Pi = AyAz [—%m(vg)n]x (3.6)

o}
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Therefore, the net gain of the positive z-momentum in V|, is

On{v>
Py —-Pf = AyAz%m(—Aac)%x—) : (3.7)
T
Particles moving into the negative z-direction double the momentum gain
in (3.7) because the negative z-momentum is transported into the negative

z-direction:

i(nmvm)A:cAyAz = —mi(n(vg))A:cAyAz . (3.8)
ot Ox

The particle speed v, = u; + v, consists of two parts, the bulk speed u,
of the fluid element with u, = (v.) and the superimposed thermal speed
Vg, With (vy,, )} = 0. The latter is described by a one-dimensional Maxwell
distribution (Sect. 5.1.2). The relationship between average thermal speed
and temperature is:

im{vi )= 1kgT. (3.9)
With (3.8) we obtain
%(nmum) = —m-;—x [n((ug) + 2{uz vy, ) + <U:%u.>)] . (3.10)

The last term on the right-hand side can be substituted by (3.9). The term
in the middle is zero because u, is constant and thus (uzvs,, ) = 6y (V) =0
(see Sect. 4.1.3):

o _ 0 5  nkgT
a(nmux) =M (nu:C + - ) . (3.11)
The partial differentiation on the right-hand side with nu2 = nu, u, gives
Oty on O(nu,) Ou, O(nkT)
mn py + mumé? = —MuUg . mni, P . (3.12)

The second term on the left-hand side and the first term on the right-hand
side cancel (see the equation of continuity (3.34)). With the pressure p defined
as p = nkgT rearrangement leads to

Oug Ou, ) duy Op
Generalization to three dimensions gives the pressure-gradient force density
ou du
mn (E +u(V- u)) =mn_- = —Vp. (3.14)

Since n is a number density (unit m~3), the product nm gives the density
¢ and we can write alternatively for the acceleration due to the pressure
gradient force

du 1
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Equation of Motion: Euler and Navier—Stokes. The simplest equation
of motion for a fluid considers the acceleration due to the pressure-gradient

force and gravitation
du  1_ o 1o
'a-t-——EVp-i‘-g. (a.10)
This equation is known as Euler’s equation and often is used for simple es-
timates in atmospheric or oceanic motion. Euler’s equation can be applied
to ideal fluids only. In a real fluid, viscous forces have to be considered too.

Here the Navier-Stokes equation is useful:

du 1

— = —=Vp+vV?u 3.17
" 5 VP (3.17)
with v being the kinematic viscosity. Often, other forces, depending on the
situation under study, are added to this equation. Some of these forces will be

discussed below where we also shall have a closer look at the viscous forces.

Stress Tensor and Viscosity. In the generalization of (3.13) we tacitly
assumed that x;-momentum is transported in x;-direction only and that the
fluid is isotropic. This is true in an ideal gas or fluid but not in a viscous one,
where momentum can be transported in directions perpendicular to the par-
ticle motion, and momentum transport is not necessarily isotropic. Then the
scalar property p has to be replaced by a tensor P, and the pressure-gradient
force Vp has to be replaced by VP. P not only considers the pressure, which is
orthogonal to the surface of a volume element, but also shear stresses, which
are forces parallel to the element’s surface (see Fig. 3.1). The stress tensor P
has the dimensions of a pressure or an energy density. It is symmetric with
six independent components F;; for each point: P;; = mnv;v;; ¢ being the
direction of the momentum transport and j5 the component of the momentum
involved. A more compact method to write the stress tensor is

P = mn{vinvsn) - (3.18)

Here v,y is not a shorthand for a scalar product but the tensor product
(dyad) of two vectors: such tensor products ab of two vectors are tensors T,
where

Oy by azby agby a.b,
T=ab=| ay by | = | aybe ayby ayb. | . (3.19)
a, b, ab, a,b, a.b,

In the simplest case, the particle distribution is an isotropic Maxwellian
and the stress tensor P can be written as

p 0 0
P=(0 p 0] =pE, (3.20)
0 0 p
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where E is the unit tensor. Here VP equals Vp. In the presence of a magnetic
field, a plasma can have two different temperatures 7)) and 7| parallel and

perpendicular to the magnetic field, leading to different pressures p| = nkgT),
and p; = = nkpT,. In a coordinate system oriented with its z-axis parallel to

[« BAV ] . In a coordinate SLCLILL OQLICIILELL LAl AL LmAals PRl ALl

B, the stress tensor can be written as

pt 0 O
P=[0 p. 0]. (3.21)
0 0 p“

This tensor is diagonal and it is isotropic in a plane perpendicular to B.
The off-diagonal elements of the stress tensor in an ordinary fluid are as-
sociated with viscosity. Viscosity results from collisions between particles and
tends to make the flow more uniform. Quantitatively, the effect of viscosity
is described by a kinematic viscosity coefficient v = v A where vy, is the
thermal speed and A the mean free path between collisions. Alternatively, a
viscosity coefficient = v can be used. In a fluid, friction is described by

1
Feriet = 1V u + 31V (V xu). (3.22)
In an incompressible fluid, the second term on the right-hand side vanishes:

Fiict = V2u = voV3u . (3.23)

This can be interpreted as the collisional part of VP — Vp. Note that the
inclusion of viscosity into the momentum balance has two consequences: (a)
in agreement with the irreversible character of the transport process, the
transport equation is no longer time-reversible: if u(r,t) is a solution of the
transport equation, then u(r, —t) is not. (b) Viscosity increases the order of
the partial differential equation. Therefore, to determine solutions we need
more boundary conditions than in the case of a non-viscous fluid.

In a plasma, off-diagonal elements can arise without collisions: gyration
brings particles into different parts of the plasma, a process which tends to
equalize the fluid speeds. The scale of this “collisionless viscosity” is given by
the Larmor radius rather than by the particle mean free path.

Fictitious Forces in Rotating Systems. The forces discussed so far are
sufficient to give the equation of motion for a plasma in the laboratory setting.
In large-scale natural plasmas, such as the ionosphere or stellar atmospheres,
additional forces act: the Coriolis force and the centrifugal force.

Consider two frames of reference C and C’, with C rotating with an an-
gular velocity §2 with respect to C’. A vector 7 fixed in C, in C’ moves with
a speed §2 x r. The temporal derivative of r in C’ s

(%)

:(-d—r) +82xr or v=v+2xr. (3.24)
. dt / o
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The temporal derivative gives the acceleration in the rotating frame:

dv’) d'v' do dv
/ — J——— = - = — g —_ 2” n . .
a (dt N & 1 +82xv dt+ xv+82x(2x7r). (3.25)

N AR

Thus the density of the fictitious forces in a rotating frame of reference is
Froo=—022 xv—p02x(2%x7) (3.26)

with the first term on the right-hand side describing the Coriolis force and
the second term the centrifugal force.

In the near-Earth environment the Coriolis force has to be considered in
the atmospheric motion and in the ionospheric and magnetospheric current
systems; it is of vital importance in the dynamo process inside the Sun and
the planets. The influence of the Coriolis force can be illustrated by its effect
on the atmospheric motion. In the northern hemisphere, wind is deflected
towards the right. On a global scale, this deflection leads to the break-up
of the Hadley cell driven by the temperature gradient between the equator
and the pole into three separate cells, which determine the global atmospheric
circulation and govern the energy transport from equator to pole. The Coriolis
force, and therefore the size of the deflection, depends on the wind speed:
with increasing speed, the distance travelled by a volume of air during a
time interval increases. A longer trajectory also means a larger displacement.
The Coriolis force becomes effective only if the scales of the system are large
enough. Contrary to popular belief, the eddy at the outflow of a bath-tub is
not due to the Coriolis force: its direction depends on residual motions in the
water or the motion induced by pulling the plug.

Electromagnetic Forces. A charged particle in an electromagnetic field
experiences the Lorentz force (2.23). With n being the number density, the
force on a volume element can then be written as

d 0
mna%:mn[—é%nt(u-V)u]:qn(E+u><B). (3.27)

The dimension of n is m~3, thus (3.27) can also be written as a force density

du ou .
Jelmag = S [E + (u - V)u] =o.E+3xB, (3.28)

with ¢ = mn being the density, o. = gn the charge density, and 7 = nqu the
current density. Equation (3.28) gives the force density of the electromagnetic
field. For infinite conductivity, the charges immediately rearrange and cancel
out the electric field. The force density then reduces to

felmag =jxB. (3.29)
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Putting it all Together. Adding these forces gives the equation of motion
or momentum balance:

dt \ot )
=—VP+oE+jxB+0g—2082 xu—p§2x(§2xr).(3.30)

If we neglect the electric field and the fictitious forces and split the stress
tensor into the pressure-gradient force and friction, (3.30) can be written as
d'u, 8'u 2 .
il a-i—(u-V)u =—-Vp+ovVu+j3x B+ og. (3.31)

This equation is the Navier—Stokes equation used in hydrodynamics comple-
mented by the forces exerted by the electromagnetic field.

The momentum balance (3.30) still is relatively simple: (a) it does not
consider sources and sinks, e.g. due to ionization or recombination, which
might involve a net gain or loss of momentum; (b) it does not consider mo-
mentum transport due to Coulomb collisions between charged particles; and
(c) it does not consider momentum transport arising from the forces exerted
by a particle component of opposite charge inside the plasma. The latter will
be discussed briefly in the two-fluid description of a plasma (see Sect. 3.2.1).

3.1.3 Equation of Continuity

An equation of continuity is concerned with the conservation of a property &,
such as mass or charge. A change in ¢ inside a volume V' can result from the
convergence of a flux C(¢g) into or out of the volume or sources and sinks S(g)
inside the volume. The general form of an equation of continuity therefore is

% +VC(e) = S(e) . (3.32)

The most common application is the conservation of mass:

0 :
:,)—? = —V(ou) = -Vj, (3.33)

where ¢ is the density and 7 = pu is the mass current density. Using (3.2)
the conservation of mass can be rewritten as

do 9o

—=—+uVp=—pVu. 3.34

& "o TvvVes e (3:34)
It states that a change of mass inside a volume is a consequence of the flow of
matter into or out of the volume. Local sources and sinks are not considered
because, except for elementary particle physics, there are none. With Gauss’s
theorem (A.33) the integral form of the equation of continuity is
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%, :
g odV = —fj-do. (3.35)

v o(V)
The equation of continuity for the electric charge is formally analogous, with
o replacing g in (3.33):

doc
ot

+ V(ug:) =0. (3.36)

3.1.4 Equation of State

Finally, we need a relationship connecting the scalar pressure p and the den-
sity 0: p = p(o,T). The equation of state describes how the temperature
changes during the motion or compression of a gas. In case of an isothermal
ideal gas, the equation of state can be written as

p=C{T)e, (3.37)

where C is a constant proportional to temperature. If the compression is

c]n“y nnmr\arnd unfh +]'\nrma] r‘r\nr]nnfw\n (1cn+hnrmn] ﬁnmnrc\cc1nn\ the nres-
FLiL 1.’ FY AUALL vViiuvliiidul wueri MUSULIV L ALAR W tJ }, VAR IJ Al )

sure increase results from the density increase but not from the temperature
increase. In a plasma particles can freely flow along B. Thus conduction
parallel to B provides the possibility for a plasma to remain isothermal,
especially if the compression is periodic or wave-like along B.

A fast moving gas might not be able to exchange energy with its environ-
ment. The equation of state for such an adiabatic compression is

p=Co™, (3.38)

where v, = ¢p/cv is the specific heat ratio or adiabatic exponent. For an ideal
gas, v, equals (N + 2)/N, with N being the number of degrees of freedom.
For a three-dimensional ideal gas consisting of atoms, v, is 5/3. Both cases,
isothermal as well as adiabatic compression, are of importance in different
types of plasma waves,

A third important case arises if adiabatic compression is fast compared

writh haat csandietinn and alaen i anigntranie Nn“r the deonr rees af freedom
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parallel and perpendicular to the field are separated, and Tjj (N = 1,v, = 3)
can be heated more efficiently than T, (N = 2,v, = 2). The adiabatic
invariants can be used to derive generalizations of this relationship.

The perpendicular pressure p; can be expressed by the average magnetic
moment p: p; = zo(vl) = n{u)B. If the compression is fast compared
with the heat conduction but slow compared with the gyration period, the
magnetic moment is conserved, leading to the adiabatic relation

(;lt (pl ) = const . (3.39)
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Pure perpendicular compression in general is equivalent to an increase in the
magnetic field strength. For each area A, the conservation of particles implies

nA = const while conservation of the magnetic flux yields BA = const. Thus
n/B is constant, too, and (3.39) reduces to p = Cp™ with 7, being 2 as
expected for two-dimensional adiabatic compression.

The pressure p) = Q(’Uﬁ) parallel to the magnetic field is related to the
second adiabatic invariant Jy ~ v L = const, with L being the scale length
along the magnetic field. If the compression is slow compared with the par-
ticle’s oscillation along the field line, then Js is conserved. Now length L,
area A and volume V = AL change. The conservation of particles and the
magnetic flux yield nV = const and BA = const. ThUS/L can be expressed

as L =V/A ~ B/n and we finally get

d /pB?
E( '7'13 ):o. (3.40)

Pure parallel compression with B = const then leads to p = C" with v, = 3
as expected for one-dimensional compression.
The two adiabatic relations (3.39) and (3.40) are called the “double adi-

abatic” equations of state.

3.2 Basic Equations of MHD

We shall start with the one-fluid description of a plasma, i.e. the fluid consists
of one particle species only. This is entirely sufficient to introduce the basic
concepts (see Sects. 3.3-4.2). In a real plasma, quasi-neutrality suggests the
existence of two fluids with positive and negative charges, respectively. For
certain phenomena, such as ion waves, a description in the framework of a
two-fluid theory will be required, and this is briefly sketched in Sect. 3.2.1.

In magnetohydrodynamics some assumptions about the properties of the
system are made: (a) The medium can be neither polarized nor magnetized:
€ = ;1 = 0. (b) Flow speeds and speeds of changes in field properties are small
compared with the speed of light: u/c <« 1 and vpn/c < 1. As a consequence,
electromagnetic waves cannot be treated in the framework of MHD theory.
(c) Conductivity is high, thus strong electric fields are immediately cancelled
out: E/B « 1. As a consequence, the displacement current OE/8t can be
ignored compared with the induction current. MHD is a theory linear in u/c,
vph/c, and E/B and ignores all terms of higher order in these quantities.
MHD considers the conservation laws of fluid mechanics which are concerned
with mass, momentum, energy, and magnetic flux. The formal description is
then based on the following set of equations:

¢ Maxwell’s equations (Sect. 2.1.1):

V-E = 90/50 y (341)
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V- -B=0, (3.42)
0B
E=—-— 3.4
V x 57 (3.43)
V x B = uj; (3.44)
e Ohm’s law (Sect. 2.1.3)
j=c(E+uxB); (3.45)

equation of continuity (Sect. 3.1.3)

00
ot

+ V(uge) =0; (3.46)

equation of motion (momentum balance, Sect. 3.1.2)

0 :
Qa—;" +o(u-V)u=-Vp+jx B+ o9+ ovViu; (3.47)
e equation of state (Sect. 3.1.4)
d(p
Sl =0. 3.4
dt (@“’a) (3.48)

This set of partial non-linear differential equations can be solved for given
boundary conditions. For certain applications only a part of the equations is
required, or some equations can be used in a simplified form: in magnetohy-
drostatics (Sect. 3.3) the left-hand side of the momentum balance vanishes
while in magnetohydrokinematics (Sect. 3.4) an external velocity field is pre-
scribed and therefore the momentum balance can be ignored completely.

The momentum balance gives us hints on the kind of motion: in certain
slow motions the inertial term pt: can be ignored while in weak magnetic
fields the Lorentz force can be ignored. The relative strength of these two
forces is determined by the ratio

_ B?*/2py _ magneticfield energy density

S = (3.49)

ou2/2 kinetic energy density

For S > 1 the magnetic field determines the motion of the particles and the
single-particle approach can be used. For S <« 1, the magnetic field is swept
away by the plasma motion, in accordance with the concept of the frozen-
in field described in Sect. 3.4.1. S is another expression for the plasma-3,
giving the ratio between the gas dynamic pressure and the magnetic pressure:
B = 2uop/ B2

It should be noted that these two definitions are useful only for an isotropic
plasma. If the plasma is anisotropic, frequently a parallel and a perpendicular
plasma-3 are defined as
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and 4, = 2‘;;? . (3.50)

In a low-3 plasma (8 <« 1), the energy density in the thermal motion is
much larger that in the magnetic field, while in a high-3 plasma (8 > 1) the

3.2.1 Two-Fluid Description s

So far, we have treated the plasma as a fluid consisting of one kind of @
charged particles only. A real plasma, however, contains electrons, ions, and

pnqm]’\]v alen nentral narticles Fach nnriﬂn]a comnonent hag iteg own eneed

jwiw) g VY Ui/ LIT UL Gk PR DaALAGDe AJGAL Ol UILAT VAV PUIITARLU LITWD 1uD VY AL DAL,

temperature, and partial pressure.

Since a plasma is expected to be quasi-neutral, the number of positive and
negative charges has to be equal. The charge density is g, = nigi + Mege =
0; + 0e with n; and n. being the number densities of ions and electrons with
charges ¢; and g.. The current density is J = niqit; + NeGeUe = Ji + Je- If
we limit ourselves to a two-fluid plasma, we have to deal with an electron
and an ion component; the neutral component is ignored. In addition to the
assumptions made in the one-fluid description we assume: (a) the fluid is in
thermal equilibrium (7} = T;), and (b) the plasma is quasi-neutral (g; = g.).
The basic equations in two-fluid MHD are

e Maxwell’s equations

V- E = (g + /o ; (3.51)
V-B=0, (3.52)
OB
VxB=-—, (3.53)
oOF
VX B = polJi+Je) +eooo- (3.54)
e Ohm’s law
me 07 J X B Vpe J
=~ = F B — 3.55
ezn It + u X o en o 3 ( )
e equation of continuity
J
s oG nguy) =0, j—ie: (3.56)

ot

momentum balance (equation of motion)

du; .
mJnJ dt - anj (E+uj X B) _vpj iﬁ(ul _ue) y J = L€, (357)

equation of state
Py :pj(Qj’Tj) , J=lhe. (3‘58)
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Compared with the equations in one-fluid MHD we find the following differ-
ences: (a) The equations of state, motion and continuity are given for each

component separately. (b) The equation of motion contains an additional
term coupling the two components to consider momentum transfer arising
from Coulomb collisions. The force between the two components depends on
their relative speed, therefore f; = — f. = S(ui —u.). (c) Gauss’s law for the
electric field contains both charge densities as Ampére’s law contains both
current densities. (d) Ohm’s law has become unrecognizable. A derivation
of Ohm’s law from the equation of motion can be found in {285]; here only
the terms will be explained. The left-hand side gives the current accelera-
tion. The first, second and last terms on the right-hand side are expressions
already known from Ohm’s law in one-fluid MHD. The 5 x B term is called
the Hall term and describes the Hall effect: in a magnetic field the current
created by the moving charges is deflected by the Lorentz force, resulting
in an additional electric field perpendicular to both 7 and B. The fourth
term on the right-hand side gives the pressure diffusion: in the presence of
a pressure gradient, both particle species diffuse with respect to each other,
creating a current along Vp.

3.3 Magnetohydrostatics

Magnetohydrostatics deals with the energetics of particles and fields. It does
not require the entire set of MHD equations; instead, the field equations and
the equation of motion (with vanishing inertial term) are sufficient. Important
concepts are magnetic pressure and magnetic tension.

3.3.1 Magnetic Pressure

Let us now take a closer look at a magnetic field such as shown in Fig. 3.2.
The lines of force are parallel to the z2-axis with the field strength varying
along the z-axis: B = (0,0, B(z)). The force density exerted by the field is
f =7 x B. With j expressed by Ampére’s law (3.44) we obtain:

123
I3

.
-

T Z

Fig. 3.2. Magnetic pressure: field gradient perpendicular to the field (left) and the
resulting spatial distribution of the field strength (right), with arrows indicating
the direction of the magnetic pressure
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f=3xB=(VxB)xB/ug. (3.59)

For a general derivation of the magnetic pressure and tension, we can use
(A.20) and (2.19) and obtain

1
jxB=-LBx(VxB)=—> V(BB)+~ B(V-B)

,tlLo . Ho Ho
= -~ V(BB)+ —VB?. (3.60)
o 2p0

The first term on the right-hand side gives the force density arising from the
magnetic stress tensor BB which describes magnetic tension and torsion. The
second term is formally equivalent to the pressure-gradient force, but instead
of gas pressure p a magnetic pressure B2 /(2p0) is used. Both the magnetic
pressure and the magnetic tension can also be derived more graphically from
(3.59) if we use simplified geometries.

For the field defined above, (3.59) yields

1 0B
=~ (-B=—,0,0 (3.61)
Ko Ox
Thus, the force density only has a component along the z-axis (or, more
generally, perpendicular to B and parallel to the field gradient)

1 0B 0 B?
fz= MoBaiﬂ = T (3.62)
Therefore, an inhomogeneity in the magnetic field gives rise to a force den-
sity pushing field lines back from regions of high density into low density
areas. Such behavior is well known from an isothermal gas where a restoring
force f ~ Vp tries to cancel out pressure gradients. Therefore, (3.62) can be
interpreted as the magnetic pressure:

BZ

=—. 3.63
Sin (3.63)

Pm
Graphically, this magnetic pressure can be described as the tendency of
neighboring field lines to repulse each other. Note that, in contrast to the
gas-dynamic pressure, the magnetic pressure is not isotropic but is always
perpendicular to the field.

The analogy with gas-dynamic pressure can be pushed even further if
we invoke the concept of frozen-in magnetic fields (Sect. 3.4.1). Imagine a
magnetic field frozen-into a plasma: each plasma parcel contains a certain
amount of magnetic flux which is tied to this plasma element and follows its
Path as the plasma parcels are shuffled around. Thus a field gradient always
has to be combined with a gradient in gas-dynamic pressure. As the plasma.
attempts to reduce the pressure gradient, the field will be homogenized, too.

Formally, the magnetic pressure also could be inferred from Maxwell’s
stress tensor, as is shown in [36].
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B, =0 B
9B, /0z=0
Fig. 3.3. Model of a sunspot: the gas-dynamic
+ pressure from the outside is balanced by the mag-
2 netic pressure inside the sunspot

Ezample 10. A homogeneous magnetic field of 5 T, according to (3.63), exerts
a magnetic pressure p = B2/2ug = 9.95 x 10% N/m? = 995 hPa x 100, which
is a hundred times the atmospheric pressure at sea level. O

Example 11. Sunspots are a prime example of the apparently paradoxical
behavior of plasmas as well as a good illustration of the concept of magnetic
pressure. Sunspots (Sect. 6.6, Fig. 6.26) are cool and dark patches on the
visible solar disk. Temperatures in sunspots are 1000 K to 2000 K below the
temperature of the ambient photosphere (5700 K). Despite this temperature
gradient, the sunspot does not mix with the ambient plasma. Instead, it is
very stable and can survive for many solar rotations. This longevity results
from the magnetic pressure: inside the sunspot the magnetic field is about
3000 gauss compared to a few gauss at the outside. The boundaries of a
sunspot are sharp in both magnetic field strength and temperature.

E‘ 11T MO Q 1‘\/\‘17(‘ (21 01 mf\l’ll‘\] f\F (21 ﬂ"‘“ﬂ“/\+ rl-‘L\ v\rl‘nr\n {; ﬁ"\f] “I\” 'll‘\‘pf\'l
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to plasma and field properties inside and outside of the sunspot, respectively.
To prevent hot photospheric material from streaming into the sunspot, the
gas-dynamic pressure p, of the photospheric plasma has to be balanced by the
combined magnetic and gas-dynamic pressure inside the spot: p;+B2/(210) =
Po- Here we have assumed that the magnetic field pressure outside the sunspot
is negligible and that 9B /0z is zero, as is suggested by observations. The
variation of pressure with height is described by the hydrostatic equation:
Op/0z = ggsun- Since B is independent of height, this yields 8p;/0z = 0p, /0%
and g; = 0o. On the other hand, the universal gas law yields for the pressure
p = pkpT/m. Because the densities inside and outside the sunspot are equal,
the gas law requires 7; to be smaller than T, to fulfill p; < p,. Thus, in
agreement with the observations, we find: for longevity, the higher magnetic
field inside the sunspot has to be combined with a lower temperature and,
consequently, less electromagnetic emission. 0
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3.3.2 Magnetic Tension

Let us now have a closer look at a simple interpretation of the first term in
(3.60) which is concerned with magnetic tension. The upper panel of Fig. 3.4
shows a homogeneous magnetic field parallel to the z-axis: Bg = (B,y,0,0,).
The field is assumed to be frozen-into a plasma. The plasma motion u =
(0,0, u,(z)) (middle panel) leads to the deformation of the field shown in the
lower panel. The distorted field can be described as the superposition of the
undisturbed field By and a disturbance § B (see (3.94) in Sect. 3.4.2):
0B
B = B, + -5--dt =Bg+ V x (ux B)dt. (3.64)
With (3.59) and the field described above we find a force density parallel to
the disturbing velocity field
1 0%u,
= —— 2Bt . 3.65
fz LLO awz t ( 6 )
The force, called the magnetic tension, always is a restoring force: if the field
lines have a convex curvature into the upward direction, 8%u, / Ox? is less than

vy laadin farrn Aivartad dAawnwrar Ac TF+ha frirvats aita +ha
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force also is in the opposite direction. The magnetic tension can also be
interpreted graphically: magnetic field lines have a tendency to shorten.

Example 12. Again, consider a 5 T magnetic field. It is disturbed by a si-
nusoidal velocity field v = wg sinkxz, where vp = 1 m/s and kK = 5 m~ L,
acting for 0t = 1 us. To determine the force density, we need the second
derivative of the velocity: v = —uvgk? sin kz. With (3.65), we then obtain
f = 20 N/m? sin((5/m) z) and thus for ¢ = 0 m, f = 0 m, because here
the magnetic field is not displaced from its original position and no restoring
force acts on it; for z = 2.5 m we obtain 14 N/m?, and for z = 5 m (maximum
displacement), f = 20 N/m2. |

s Y

27 Y

= v Fig. 3.4. Magnetic tension: the lines of
force in a homogeneous magnetic field (upper

B panel) are distorted by a velocity field (mid-
N dle panel), giving rise to a restoring force in-
21 dicated by the arrows (lower panel)
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Frample 13. Solar Filaments: Another example of the unusual behavior of a
plasma are solar filaments or protuberances which are cold and dense mat-
ter suspended from magnetic arcades high above the photosphere. Such a
structure is called a filament as long as it is seen as a dark (because cold)
stripe in front of the photosphere. As the Sun rotates, this structure becomes
visible as a bright (because dense) arc extending high above the photosphere:
a protuberance. The spatial structure clearly becomes visible: the filament
extends vertically above the photosphere, covering angular distances of some
10 degrees. Filaments are stable and can last for a few solar rotations. Un-
der certain conditions they become unstable and are blown out violently as
coronal mass ejections (Sect. 6.6). Typical temperatures are about 7000 K
(ambient corona: 10® K). The density is about 100 times larger than the am-
bient density; the typical vertical extension is up to 30 Mm, that is about
100 times the scale height in the corona.

The first theoretical description of a filament goes back to Kippenhahn
and Schliiter [286]. Here we shall limit ourselves to a much shorter, more
general discussion. Filaments are roughly aligned along the neutral line be-
tween regions of opposing magnetic fields (Sect. 6.7). Thus the magnetic field
seems to play an important role in the existence as well as stability of the
filament. Figure 3.5 sketches the situation: the filament (thick vertical line)
is supported by magnetic arcades connecting opposite polarities in the pho-
tosphere. The magnetic field lines do not form perfect arcades, instead they
are ditched-in at the position of the filament: gravity pulls down the filament
which in turn pulls down the frozen-in magnetic field. The deformation of the
magnetic field causes magnetic tension in the opposite direction. Thus the
filament is held at a certain height by an equilibrium between gravity and
magnetic tension.

We can obtain a more quantitative statement from the basic MHD equa-
tions. Here we need the equation of motion in the stationary case,

1
VP:M_(VXB) x B+ og, (3.66)
0

and the equation of state p = nkgT, with T being spatially constant.

Following [285] let us define a coordinate system with the zy-plane tan-
gential to the surface of the photosphere and the y-direction extending along
the filament into the drawing plane. The z-direction points upward; thus
Fig. 3.5 is a cut through the filament in the zz-plane. All quantities are as-
sumed to be independent of y, thus 8/0y is zero. The magnetic field is given
as B = (B;,0,B,) and g is (0,0,-g). The double cross product in the equation
of motion then can be written as

(OB, OB,
(Vx B)x B = ( 5~ 5 ) (B.,0,B,;) . (3.67)

Combination of the equation of motion and the equation of state gives
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on 1 0B, 0B,
kBT??—x— = I—'LEBZ ( 5 Oa ) (3.68)
arld Y - VAR & ) O Ty AN
on i 8B, OB,
kT %2 m B, (a—z ~ 3, ) mng . (3.69)

Differentiation of (3.68) to z and of (3.69) to z and subtraction of these

equations yields
0= + —
Oz Oz 0z ox

d?B o?B, Op
B = — —g . 3.70
T (azax Gy ) T Ho5,9 (3.70)
Gauss’s law for a magnetic field in the two-dimensional case gives
0B, 0?B, 8B, 0%B,
= — d = — 3.71
drdz 0Oz o 8rdz 072 (3.71)

With H, = kT'/mg being the scale height in the barometric height formula
p = poexp{— [ dz/H,} and substitution of dn/dz according to (3.68), (3.70)

can be written as

1 0B, 0B,
B,V?’B, — B,V®B, + 7 B ( = o ) =0. (3.72)
Iy

From this equation the details of the magnetic field as well as the density
inside the filament can be determined and compared with observations. These
results confirm the sharp bend in the magnetic field: inside the filament the
lines of force are bent according to tanh. Thus there is still a steady field and
not a discontinuity. In addition, the model predicts a decrease in density with
increasing height, as is evident from the observations. This decrease leads to
a flattening of the ditch in the field lines with increasing height, which also
is indicated in Fig. 3.5.

Formally, the fine structure inside the filament, which is also a crucial
factor for its stability, can be derived by simplifying (3.72). Since we are

\ Fig. 3.5. Model of a solar filament

(thick wvertical line) suspended from
Photosphere magnetic arcades
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interested only in the details inside the filament, we are concerned with a
height range small compared with the total extension of the structure. In
this case we can assume 3/9z = 0. From Gauss’s law, V - B = 0 for the
magnetic field, we obtain B, = const and B, = Bz(g') In this case, (3 72\

8B, B, 8B,

x =0 3.73
0r? Hp, Oz (3.73)
or, with « = 1/(H,B;) = const,
9*B, 0B,
B =0. 3.74
az2 7" o (3.74)
Integration gives
0B, o _,
p +3 BZ = const . (3.75)
A solution of this differential equation is
o0 Boo
B, = B tanhé, where = 3H, B, (3.76)

and BJ° = const is the value of B, for z — oo. Inside the filament, the field
lines therefore do not exhibit a sharp kink but the smooth evolution of a tanh
function. O

3.4 Magnetohydrokinematics

Magnetohydrokinematics deals with the reaction of the electromagnetic field
to a prescribed velocity field such that the electromagnetic field does not
influence the velocity field. Thus, we do not have to solve the equation of
motion. Such a situation corresponds to a large plasma-3 or a small value of
S in (3.49). The basic equations to derive concepts such as frozen-in fields
and the dissipation of fields are Maxwell’s equations and Ohm’s law.

3.4.1 Frozen-in Magnetic Fields

What happens to an electromagnetic field embedded in a moving medium
with high conductivity? Let us assume a magnetic field B(r,#,) at a time o
and a prescribed velocity field u(r,t}. The magnetic flux through a surface
S enclosed by a curve C then is & = [ B dS. Let us follow the motion of C
(see Fig. 3.6): as C moves, the magnetic flux through S changes because (a)
the magnetic field varies in time and (b) the field lines move into or out of
S. As C moves, it creates a cylinder with a mantle surface M. All changes
in flux through S due to the field lines entering or leaving C is associated
with a flux of the very same magnetic field lines through M. Thus the total
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Fig. 3.6. Moving fluid line C to derive the concept of
the frozen-in magnetic field

change in magnetic flux through S can be described by

dd = &, — &, :dt/—dSI+/BdSM (3.77)

A surface element Sj; on M is given as dS s = u x dldt with dl being the
path along C and wdt being the path along the direction of motion of C.
Equation (3.77) therefore yields

&
%:/—dsI /B uxdl . (3.78)

With Stokes’ theorem the last term can be written as

r r r
/B-uxdh:—/uxB-dh:u/Vx(uxB)dSl. (3.79)

Inserting into (3.78) gives

do OB
51
The u x B term can be expressed by Ohm’s law (3.45) while the B/0t term
can be expressed by Faraday’s law (3.43), and we obtain
] 1 1,
d_:_/vm_dsl=—f—y-dll. (3.81)
dt o o
S1 Ch

The change in magnetic flux through a moving surface therefore is pro-
portional to 1/0. If ¢ converges towards infinity, d #/dt converges towards
zero: in a medium with infinite conductivity o, the magnetic field is frozen-
into the plasma and carried away by the matter as if glued to it (left side in
Fig. 3.7). A prime example of the application of this concept is the interplan-
etary magnetic field frozen-into the solar wind (Sect. 6.3). A reversal of the
concept, the frozen-out field, exists too. In the right panel of Fig. 3.7 a field-
free plasma bubble moves towards a region filled with a magnetic field and
pushes the field away until its kinetic energy is transferred to additional field
energy as evidenced by an increase in magnetic pressure as well as magnetic
tension. The field cannot enter into the bubble because then the magnetic
flux inside the bubble would change. An example is the solar wind frozen-out
of the Earth’s magnetic field (Sect. 8.2).
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Fig. 3.7. Frozen-in (left)
and frozen-out (right)
magnetic fields

3.4.2 Deformation and Dissipation of Fields

Frozen-in magnetic fields always are connected with an infinite conductivity.
But what happens to a magnetic field embedded in a flow with finite conduc-
tivity? For simplicity let us assume ¢ to be spatially and temporally constant.

The combination of Faraday’s law (3.43) and Ohm’s law (3.45) yields

OB 1 .
W—VX(’U,XB)———;VX]. (3.82)

The current density can be expressed by Ampére’s law (3.44), leading to

0B 1 VxB 1
—é?—Vx(uxB)_m&—Vx o ——NOUVX(VXB). (3.83)

The double cross product can be simplified with (A.26):

0B 1

—— —Vx B)=—V’B. 84
5 V x (u x B) NOUV (3.84)
This equation allows us to determine how a given velocity field u© deforms a
magnetic field B.

Deformation of the Field in a Plasma Flow. If we assume both magnetic
field and plasma flow to be independent of time, a stationary solution exists
with )
—-Vx (ux B)=—V*B. (3.85)
Moo
With a characteristic time scale 7 and a characteristic length scale L, the
flow speed u, perpendicular to the field can be estimated:
L 1

Uy = — = .
T  uooclL

(3.86)
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The physical interpretation is simple: if a plasma flows perpendicular to the
magnetic field, it deforms the lines of force until their characteristic scale
length is small enough to fulfill (3.86). Then the plasma starts to flow across
the lines of force.

Excursion 3. Dimensionless Variables and Dimensional Stability. To deter- [EE_
mine the deformation of a line of force quantitatively, we shall use the tech-
nique of dimensionless variables. This technique is quite common in fluid
dynamics (see e.g. [149]). It is helpful to determine not only one solution of

the differential equation but an entire manifold of solutions which can be
scaled to the situation under study. This is particularly helpful in hydrody-
namics when the solution for a certain size of syringe or nozzle is known and

we are looking for a dynamically similar flow on a different scale.

The idea is quite simple: all equations representing scientific laws can be
expressed such that both sides are dimensionless. In its simplest case, just
divide one side of the equation by the other: the result, one, is dimensionless.
To take advantage of dimensionless variables, first identify the physical vari-
ables relevant to the problem and combine them into dimensionless groups
A, B, C.... These groups have to be independent of one another. If the groups
are dimensionless, combinations of groups such as AB or A/B? are dimen-
sionless, too. But they are not independent of either A or B, though any one
of them might be included instead of A or B if this seems advantageous. If
the groups are chosen in such a way that the quantity of interest occurs in
only one of them, it can be expressed by the function A = f(B,C,...). The
nature of this unknown function can be determined analytically (as demon-
strated below) or by computational methods. In an analytical solution, the
advantage of the use of dimensionless variables is small; it only shows which
parameters are important in scaling. If the solution has to be obtained by
numerical simulations, the advantage of this method is more obvious: the
procedure to determine a solution for one particular set of parameters can
be quite time consuming. Each other set of parameters would require a new
run. If dimensionless variables are used instead, the nature of the solution
becomes obvious and it can be scaled to suit different sets of parameters. [

Let us now follow this principle and introduce new variables as suggested
in [285]:

r
s

B=bB, r=ri, t=1t, u=Ua, U= (3.87)

T

The quantities with a tilde are dimensionless. With the abbreviation
1

n=—, 3.88
e (3.88)

which can be interpreted as a magnetic viscosity, (3.84) yields

bOB Ubs . =  fbeoy=
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Here a tilde above the differential operator indicates that the operator refers
to a dimensionless variable.

In ordinary hydrodynamics, the Reynolds number is a measure of the
ratio between inertial and viscous forces. If the Reynolds number exceeds

a critical value, the flow becomes turbulent. In its deﬁmtlon, the Reynolds
number contains typical scales which have to be adjusted to the problem
under study. Here we shall use a magnetic Reynolds number:

Ry = vL = pooUL . (3.90)
U

It differs from the ordinary Reynolds number in so far as the viscous forces
described by 1 do not depend on forces between particles but on the conduc-
tivity of the medium (see (3.88)). The magnetic Reynolds number can also
be interpreted as the ratio of the time scale of ohmic diffusion

2
Tdiff = 4:;5; (3.91)
to the advective time scale
Tadv = = (3.92)
equal to
Raf = taig  4mvl 4w V x (v x B) (3.93)

Tadv  CM) chan(VxB)'

The latter is the ratio of the induction term to the dissipation term of the
induction equation (3.84).
Now we can rewrite (3.89) as

— -Vx(axB)=—=—V’B . (3.94)

This dimensionless form has an advantage: it shows directly that a three-fold
set of solutions exits. What does this mean? Assume we know a solution
B(#,1) in dimensionless variables for a fixed Reynolds number Ry and a
velocity field @. In this case, bB(LF, 7t) also is a solution of the same Reynolds

mha e —
number and the ve}GCJty field Uu as lﬂﬂg as the conditions LTL/'I'I’ B and

L/7 = U are fulfilled. For instance, a free choice of U and L for a given Ry
determines the values 7 and 7 of the solution. But we still have a free choice
for . Thus one solution of (3.94) contains a three-fold infinite manifold of
solutions, characterized, for instance, by U, 7, and b.

Let us now determine the solution of (3.94) for a stationary parallel flow
perpendicular to a homogeneous magnetic field. Since the flow is stationary,
(3.94) reduces to

~Vx(@ax B)=—=—V*B. (3.95)



3.4 Magnetohydrokinematics 71

Let us orientate the z-axis of a Cartesian coordinate system along the flow:
@ = (@z(2),0,0). The magnetic field B = (B,(2),0, B,(z)) has one com-
ponent parallel and another perpendicular to the flow. Note that the flow
varies along the perpendicular component. From V x B = (0 we find that J%’~

is constant. Equation (3.95) is a second-order linear inhomogeneous partial
differential equation for B, as a function of z:

9B, . O
= _Bz 3.96
Dz2 B Oz (3.96)
Integrating twice we get
B, = —B,Ru (f e dz +CZ+ D) : (3.97)

with C' and D to be determined to fulfill the boundary conditions. Let us
now assume the flow to have a cosine profile around z = 0, that is @, = cos z
for |z] < w/2 and i, = 0 for |Z] > 7/2. Equation (3.97) then reads

B, = —B,Ry(sinZ +Cz+ D). (3.98)

The tangential component of B should be steady at the boundary of the
flow to avoid currents; thus one boundary condition is B;(Z = 7/2) = 0. In
addition, the flow is assumed to be symmetric around Z = 0; thus the second
boundary condition is B,(0) = 0. The integration constants therefore are
D =0and C = —n/2 and (3.98) can be written as

- - 1
B, = —B,Ry (Sini’ — ;2) . (3.99)

We can now define a magnetic stream function

O _ 4 ¥ _ &

— = —B, — =5,. 3.100

% and 5z = e (3-100)
Then V?,Z x V B is zero and lines with 1) = const are the field lines. Integration
of the second part of (3.100) combined with (3.99) gives the line of force as

- z2 -
i = B,Rym (cosé + z?) - B.7. (3.101)

Let us now determine the maximum displacement of a line of force (see
Fig. 3.8). Because 1 is constant along a field line, it is 1/(AZ,0) = (0, 7/2).
Therefore the maximal displacement is given as

Az =(1- —) Ru . (3.102)
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Fig. 3.8. Deformation of a magnetic field line by
a plasma flow. The maximal displacement Az is
—7/4  determined by the Reynolds number Rm

Thus the deformation of the magnetic field line increases with increasing
Reynolds number. This is not surprising because the Reynolds number de-
pends linearly on the conductivity (see (3.90)): if the conductivity and there-
fore the Reynolds number is infinite, the magnetic field is frozen into the fluid
and deformation of the field lines becomes maximal.

Note that, in contrast to the frozen-in case, for finite conductivity matter
starts to flow across the field after it is curved according to (3.101). The
flow across the field is largest for small dimensions because on small scales
the condition for frozen-in fields can be violated more easily. Thus we can
confirm the suggestion made in connection with {3.86): at each point the flow
curves the field such that the radius of curvature becomes small enough to
allow for a flow of matter across the field. The physical reason is a reduction
of the dissipation time with decreasing spatial scales as will be described
below.

Dissipation of Fields. Let us now have a look at a vanishing external
velocity field. Then the second term on the left-hand side of (3.84) vanishes
and we get

1
OB _ 1 g (3.103)
ot peo
Formally, this equation is equivalent to the heat conduction equation
ar
— =x VT, 3.104
T ¢ (3.104)

where y is the thermal conductivity, and to the vorticity equation

%‘;—’ =vViw, (3.105)
where w = V x u is vorticity that describes the rotational state of the fluid.
Note that the coefficients (pgo)™!, &, and v all have the same dimensions
(m?/s).

While Parks [397] gives a formal description of the consequences of
(3.103), we shall use a more graphical approach. Let us align the z-axis
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of our coordinate system parallel to the magnetic field direction: B =
(Bz(y,1),0,0). Equation (3.103) then can be simplified to

OB, 1 8B,

= . 3.106
ot oo Oy? ( )
Formally, this is equivalent to the one-dimensional heat conduction equation
or 8T
= X (3.107)
ot Oy*

where T'(y) is the one-dimensional distribution of temperature and yx is the
thermal conductivity. Equation (3.107) gives the temporal change in tem-

perature as the heat is transported away by conduction. Therefore, (3.106)
gives the temporal change in magnetic field strength as the magnetic field is
transported by a process which depends on conductivity: the field dissolves.
Assume that B is particularly strong at a certain position, say y = 0. This is
analogous to a very hot spot on a metal rod; here we would expect the hot
spot to cool down while the other parts of the rod warm up as heat is trans-
ported towards them. The same thing happens with the magnetic field: it
dissolves to larger values of |y|. Note that, while the magnetic flux inside the
yz-plane stays constant during this process, the magnetic energy decreases
because the field-generating currents are associated with ohmic losses.

If 7 is a characteristic time scale for magnetic field changes (e.g. the
dissipation time during which the field strength decreases to 1/e) and L is
the characteristic scale length, the change in B can be estimated from (3.106):

B 1 B
—_— . 3.108
T oo L2 ( )
Thus the dissipation time is
T pol? =L%/Dy , (3.109)

where Dy = 1/p00 = 1 can be interpreted as a magnetic diffusion coefficient.
T depends on the square of the characteristic scale length of the field: smaller
fields dissipate faster than larger ones. That is the reason why with reduced
spatial scales plasma starts to flow across the field. In addition, the dissipa-
tion time increases with increasing conductivity: for infinite conductivity, the
dissipation time becomes infinite too, leading to the frozen-in field.

The Sun, for instance, has a linear dimension of about 7 x 10°® m and
an average conductivity of 2.6 A/Vm. This gives a dissipation time of about
1.2 x 1010 years, nearly three times the age of the Sun. Thus if during its
creation the Sun had received a magnetic field, this still would be present
today as first suggested in [302]. On the other hand, the solar magnetic field
is highly variable on time scales of months to years (Sect. 6.6), making the
presence of a fossil field very unlikely. Instead, a MHD dynamo (Sect. 3.6)
seems to be responsible for the solar magnetic field.
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Fig. 3.9. The dissipation time of the
magnetic field decreases as the spatial

scales decrease

According to (3.109) the dissipation time depends on the scale of the
field. Thus, if the field on the left-hand side of Fig. 3.9 is divided into smaller
patches of length L/n instead of L, it dissipates n? times faster than the
original field. Such a redistribution of field lines smearing out the boundaries
between regions of opposite polarity and leading to structures on smaller
scales can result from turbulent plasma motions. For instance, the stochastic
motions in the photospheric and chromospheric network on the Sun might
contribute to the dissipation of magnetic fields, in particular in the declining
phase of the solar cycle.

Ezample 14. A sunspot with a radius of about 20 000 km has, from (3.109),
with the conductivity given above, a lifetime of about 1000 years. If we look
more closely at the sunspot, in particular the granules around the spot, we
find a spatial scale of about 1000 km, that is, 1/20 of the scale of the sunspot.
Since the dissipation time depends on the square of the length scale, in the
granules it is only 1/400 of the value for the whole sunspot, that is 2.5 years
— which comes closer to the observed lifetime of a sunspot. 0

A vortex in the plasma flow might even create a field-free region inside
an otherwise relatively undisturbed field [556].

3.5 Reconnection

The dissipation of magnetic field lines is important, e.g. in reconnection,
which is assumed to take place in many locations in the solar system, such as
solar flares, the tails of magnetospheres, and in the exchange of solar wind and
magnetospheric plasma at the day-side magnetopause (flux-transfer events).
Reconnection not only plays an important role in the rearrangement of mag-
netic fields but also in the formation of shock waves and the acceleration of
energetic particles.

The concept of reconnection goes back to Petschek {405]. It is widely used
in magnetospheric and solar physics, although the physics behind the process
still is under debate; sometimes it is even questioned whether reconnection re-
ally exists. The basics of reconnection are outlined in Fig. 3.10. Reconnection
requires a topology where two magnetic flux tubes of opposite polarity meet
(a). According to Ampére’s law, in the neutral line between these flux tubes
a current flows perpendicular to the drawing plane with a current density

_1AB

— 3.110
I=0 ( )
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Fig. 3.10. Reconnection: merging of magnetic field lines leads to a rearrangement
of fields. In addition, magnetic field energy is released, heating the plasma, creating
a shock wave, and accelerating particles

The flux tubes are frozen into a plasma with infinite conductivity. As a plasma
flow u pushes the flux tubes towards the neutral line, an X-point configuration
arises where anti-parallel field lines meet (b). As the distance between the
flux tubes decreases, the current density (3.110) increases and may surpass
the current density the plasma can carry. Then the current becomes unstable,
leading to a finite conductivity. Now the frozen-in approximation breaks down
and magnetic field diffusion starts. At the X-point, magnetic field lines merge.
Magnetic tension leads to a shortening of the merged field lines, pulling them
away from the former X-point (c). The energy of the terminated neutral line
current is converted to high-speed tangential flows, indicated by va. The
speed of this plasma flow might exceed the local Alfvén speed, forming two
shock waves propagating away from the reconnection site. The shocks, in
turn, might lead to particle acceleration (Sect. 7.5).

The properties of the current sheet are determined by (3.84). For an in-
finitesimally thin current sheet and a uniform resistivity, a self-similar solu-
tion for the magnetic field component B perpendicular to the current sheet
and parallel to the flow can be determined [14,110,113]:

Hoo

B, = Bperf(¢), with &= —t_ll , (3.111)

where [ is the spatial coordinate along B, and erf the error function

¢
2 [ .
f=-—" [¢&t ) 3.112
er ﬁ/e d¢ ( )
0

Since the parameter £ depends also on the time ¢, there is a temporal variation
in the width d of the current sheet. The latter can be determined by setting

£E=1:
[ 4t

The current density associated with this magnetic field profile is a Gaussian
centered around the middle of the current sheet and spreading with time t.



76 3 Magnetohydrodynamics

According to [113], the magnetic field energy available for a slice of the
current sheet is Wg = [wgdl, = [ B?/(2up) dly; the rate of energy conver-
sion can be determined from (3.84) and Ampére’s law (3.44) as

aW
LA /E jdiy . (3.114)

If the onset of reconnection does not modify the general field and plasma
configuration, stationary reconnection results, as an equilibrium between in-
flowing mass and magnetic flux, magnetic diffusion, and out-flowing mass
and magnetic flux. This is also called steady-state reconnection. In Sweet—
Parker reconnection [392,513], a diffusion region of width d and length L is
assumed with L > d, similar to the configuration in Fig. 3.10. The rate of
reconnection and the properties of the outflow can be determined from the
conservation of mass, momentum, energy, and magnetic flux.

Solving Ohm’s law (3.45) for the electric field and expressing the current
density 7 by Ampére’s law (3.44), we obtain the following for the electric field
sheet:

E=) _uxB=Y*B
a Moo

—u X B =wugy x By = const . (3.115)

Since we assume steady-state conditions, Faraday’s law (3.43) gives E =
const = Fy. Outside the current sheet the conductivity is high and the mag-
netic field is frozen into the plasma flow. Here all electric fields vanish im-
mediately, except for the electric induction field u x B. Therefore we have
Ey = u x B = ug X By outside the current sheet. Inside the current sheet
the situation is different: here the conductivity is finite, the frozen-in condi-
tion breaks down, and the plasma speed vanishes. Thus the induction field
vanishes too, and according to (3.115) the electric field is

_VxB

too

(3.116)

The diffusion region is characterized by Ry < 1. Taking the width (3.113) of

the diffusion layer as the characteristic length scale and assuming Ry — 1,
we obtain the “rlrlfh of the laver as

SR/ UCREIL UEAT YV AR VEL UL VIAT avy ok

1
d =~ oot (3.117)
00U

For a current sheet of infinite length L, as indicated in the left-hand panel
in Fig. 3.11, the converging plasma streams would lead to a pileup of plasma
density and magnetic field inside the current sheet. This is incompatible with
the assumption of a steady state. Instead, an outflow of mass and magnetic
field out of the diffusion region is required, as sketched earlier in the right-
hand panel in Fig. 3.10. This outflow is possible only for a finite extent of
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Fig. 3.11. Fields and currents in reconnection for a current sheet of infinitesimal
length (left), and a current sheet of finite length L larger than the width d (right)

the diffusion region, as already mentioned above. The right-hand panel of
Fig. 3.11 allows a closer look into the diffusion region. To reach a steady
state, the outflow of plasma and magnetic field must equal its inflow, i.e.

u X B =up x By =ug x By, (3.118)
or in scalar form (because all velocities are perpendicular to the fields),
uB = upaBa = ugByg , (3.119)
and from the equation of continuity,
upad = ugL . (3.120)
With (3.117), we therefore obtain

uAd 2 L Ua
uO:—:uA

L Olows /R’

where RO = opgualL is the magnetic Reynold’s number in the outflow
region. The magnetic field in the outflow region can be determined from
(3.119) as

(3.121)

Ba=By _pl. (3.122)
UA L

Since we start from d < L, we also obtain By <« Bp and ug < ua. The
outflow speed can be determined from the energy balance: the inflow of kinetic
and magnetic energy must be balanced by its outflow or, formally,

1 Bo 1 BA
2L —oud 4+ — | = — . .
Ug (29u0 + 2#0) 2dup <2guA + 2#0) (3.123)

With (3.120), this gives



78 3 Magnetohydrodynamics

B B
oud + == oui + ZA (3.124)
Ho Ho
Solving for us gives
ud = ud +vi (1 - 1‘-20—) : (3.125)
Ua

where vaA = Byp//Itop is the Alfvén speed (4.38) of the incoming flow. The
equation has two solutions, us = ug (for d = L) and upa = va. The outflow
speed of the plasma is equal to the Alfvén speed vy iy in the incoming plasma
flow, and the rate of reconnection Rgp equals the Mach number of the incident

flow:
Rsp = = (3.126)
5P Lova intto '

Thus the reconnection process depends on the conductivity. For space plas-
mas, where the conductivity is high, a low rate of reconnection results. The
Sweet—Parker reconnection therefore is a slow process in which about half
of the incoming magnetic energy is converted into kinetic energy of the out-
flowing plasma. This acceleration leads to the two high-speed plasma flows

Petschek reconnection occurs in more localized regions; the process is
faster because the length scale L is smaller; or more correctly: the length
scale of the diffusion region equals the length scale of the system. In Petschek
reconnection about three-fifth of the inflowing magnetic energy are converted
into kinetic energy behind the shock waves, the remaining two-fifths is used
to heat the plasma. The reconnection rate Rp is given as

™ 1
Rp = —1In _ . 3.127
P™3 (\/ Lova intto ) ( )

Petschek reconnection varies less with conductivity and therefore is much
more efficient in mixing plasmas and fields. And, with a more efficient recon-
nection, the resulting acceleration becomes more violent, too.

Sweet-Parker reconnection appears to play an important role at the mag-
netopause where the high-speed flows streaming away from the reconnection
side can be detected in situ. Petschek reconnection probably does not play a
role in magnetospheric plasmas but might be important in solar flares. Note
that the geometries sketched in Figs. 3.10 and 3.11 probably best are realized
in the current sheet of the magnetotail. Geometries in flares and on the day
side of the magnetosphere are less symmetric.

Magnetic reconnection is not only a theoretical concept applied to various
space plasmas; see e.g. [463]. There exist also some laboratory experiments,
as summarized in [61].
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3.6 The Magnetohydrodynamic Dynamo

Magnetic fields can be found almost everywhere in space. The magnetosphere
could not exist without the magnetic field of the Earth, interplanetary space
is structured by the solar magnetic field frozen-into the solar wind, and the
Sun itself would be a boring star were it not for the magnetic field. But these
fields are not permanent: the Sun reverses polarity in an 11-year cycle and
polarity reversals of the Earth’s magnetic field are known too. Thus these
fields cannot be remnants of a fossil field left from the time of the big bang.
Instead, a mechanism is required that generates these fields and also allows
for the (quasi-cyclic) variations. In such a magnetohydrodynamic (MHD)
dynamo a residual seed field is amplified. The energy required for this process
is drawn from the rotational energy of the star or the planet. Thus the motion
of the plasma drives a dynamo, which amplifies a seed field and preserves it
against losses. If we use the solar radius as the scale length and a conductivity
of 2.6 A/V m in (3.86), a velocity of the order of 10~° m/s results: thus very
small flow speeds are sufficient to compensate for the dissipation of magnetic
energy. Our current understanding of MHD dynamos is summarized in [425].

3.6.1 The Idea

In principle, a dynamo consists of a permanent magnet and a rotating circuit
loop in which the current is induced. In the hot interior of the Sun and the
planets, permanent magnets cannot exist. Thus the static magnetic field must
be created by a current, too. Part of the current induced into the circuit loop
than is fed back into the system to support the static field. Without such a
feedback, the MHD dynamo would not work.

In the core of the Sun or the planets such well-defined parts as coils
or rotating wires do not exist. Instead, we find a homogeneous and highly
conductive fluid, rotating with the star or planet. Thus the dynamo also is
called a homogeneous dynamo. Since the matter inside the core is liquid, the
question of how to create a magnetic field can be reduced to a simpler form:
What is the nature of the plasma flow that allows to support the required
currents?

Since we want to apply the dynamo to planets and stars, the model has
to explain the most important features of their magnetic fields, such as: (a)
the magnetic flux density increases with increasing rotation speed, (b) to
first-order, the field is dipole like, (¢) the dipole axis and the axis of ro-
tation are nearly parallel, (d) the dynamo should allow for fluctuations in
the magnetic field direction and flux density, and (e) polarity reversals with
quasi-periodic but nonetheless stochastic character should be allowed. This
latter point means that the reversal period can be identified (for instance
11 years for the Sun and about 500 000 years for the Earth), but that the
individual cycle lengths are distributed stochastically around this average.
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Since the fields are axial-symmetric, a configuration as the uni-polar in-
ductor in tempting. There a metal cylinder rotates parallel to a homoge-

and the mantle of the cylinder. But in the uni-polar inductor the field can-
not be amplified. For astrophysical plasmas this is expressed by Cowling’s
theorem [111], dating back to 1934: there is no finite velocity field that can
maintain a stationary axial-symmetric magnetic field. The proof of this the-
orem is based on the induction equation {3.84) which, under the conditions
cited in Cowling’s theorem, would allow for decaying magnetic fields only.

3.6.2 The Statistical Dynamo

The situation is different in a statistical magnetic field: on the Sun, for in-
stance, the turbulent motion in the convection zone modifies the field. The
average field By = (B) still is axial-symmetric but it is modified by fluc-
tuations B, with (B;) = 0. Thus the magnetic field is B = By + By and
the velocity field is u = ug + u1.2 The cross product of the speed and the
magnetic field reads

(u x B) = ug x Bog+ (u; x By) . (3.128)

The products (u; x By) and {ug x B)) vanish because the quantities with
index ‘o’ are constant and the average of the other quantity equals zero.
The product {uy x Bj), which is the correlation function, does not vanish
because the fluctuations are not independent: because the matter has a high
conductivity, the magnetic field is frozen-into the plasma, and a change in
the velocity field leads to a corresponding change in the magnetic field. To
first order, the correlation function can be approximated as

(uy x By) =aBg— 8V x By . (3.129)

Excursion 4. As suggested by Parker {390], (3.129) can be derived as follows.
The magnetic field equations (3.41)—(3.44) are linear in E, B, g¢, and j. The
quantities can be split into average and fluctuating quantities and we have
two formally identical sets of equations, one for the average field and one for
the fluctuating field (see Sect. 4.1.4). Ohm’s law (3.45) has to be handled
differently because it contains a product of fluctuating quantities u x B.
Splitting Ohm’s law into an average current j, and a fluctuating current )
yields

J=Jo+5
=0 (Ey+ E, +ug x By +up x By +u; x By +u; x By) (3.130)

2 A brief introduction to the mathematical basics of instantaneous quantities, av-
erages, and fluctuations is given in Sect. 4.1.3.
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Taking the average gives
jgza(E0+u0><B0+'u,1 XB]) . (3131)

Thus Ohm’s law for the average quantities contains an additional term, the
correlation function between the fluctuating velocity field and the fluctuating
magnetic field. The expression (3.129) for this term is derived under the
assumption that the average velocity uy vanishes and that the fluctuating
velocity field is homogeneous and isotropic: neither are there points in space
with extremely high or low levels of fluctuations nor are the fluctuations
preferentially in one direction.

The induction equation (3.84) for the instantaneous quantities can be
written

1 _, 9By
— v Ba) — —2
uoffv By + V x (u; x Byp) o
1 OB
- _ILO—UVZBI —V x (u1 x By) + Btl (3.132)

This equation still holds if By and B; are multiplied by the same factor: the
fluctuating part B, thus depends linearly and homogeneously on the average
field By. This is also true for {u; x B}, since averaging does not change the
dependence:

(ul X B]) ~ Cl{BO . (3133)

Let us now assume that, to first order, B, and thus also (u; x B;) at a
certain position P depend only on By and %, in a small neighborhood. Then
{(u1 x B))|p depends only on By|p and (8By/0z;)|p- Thus (u; x B)) must
be proportional to V x By:

(ul X B]) ~ ﬁv X BO . (3134)
Thus, in sum, we obtain (3.129). O

Both « and 8 are determined by the properties of the turbulent veloc-
ity field. The S-term describes the increase in magnetic diffusion due to the
turbulent motion, leading to a faster dissipation of the field. For a mirror-
symmetric velocity field, & would vanish, but not in a rotating system, where
the velocity field is not symmetric. Taking the average of the induction equa-
tion (3.132) and considering the magnetic viscosity (3.88), we get

0B

_EQ — V x (up x By + aBy) = —(n+ B8)V x (V x Byp) . (3.135)
While 8 modifies the viscosity, the a~term contains the basic difference com-
pared with (3.84): it allows for an electro-motoric force parallel to the average
magnetic field; Cowling’s theorem does not apply to this equation.
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3.6.3 The af?2 Dynamo

The basic idea of the MHD dynamo can be applied to different geometries
and to stationary as well as periodically varying magnetic fields. Because
we are interested in axially symmetric fields, it is reasonable to describe the
magnetic field as consisting of a toroidal and a poloidal part:

(B) = (Btor> + (Bp01> =Bes+VxAdes, (3.136)

where eg is the unit vector in the toroidal direction. Thus two scalar quan-
tities, A and B, determine the three field components. With this ansatz, the
induction equation gives two equations: one describing the ohmic dissipation
of B and the generation of B out of A due to the a-effect and the differential
rotation V§2, the other describing the ohmic dissipation of A combined with
the generation of A out of B.

Differential rotation can occur for various reasons. The Sun, for instance,
has a higher angular speed at the equator than at higher latitudes, and thus
the rotation depends on latitude. The differential rotation inside the Earth
is due to the differences in angular speed between the faster inner and the
slower outer core. In both cases, because the field is frozen into the plasma,
a deformation of the field line arises from the differential rotation.

The a-effect, on the other hand, is associated with the turbulent motion
of the plasma, in particular the upward and downward motions associated
with convection. Although this motion is stochastic, its combination with the
Coriolis force leads to a turbulent motion which introduces a systematic twist
into an originally toroidal field, as shown in Fig. 3.12. The resulting magnetic
field coil allows a current parallel to the undisturbed toroidal field.

Inserting (3.129) into (3.131), we obtain

Jjo =0 {Eg+ (up x By) + aBy — B(V x By)} . (3.137)

The third term on the right-hand side gives, depending on the sign of a,
a current parallel or antiparallel to the average magnetic field Bjy. With
Faraday’s law (3.44), we can rewrite the last term on the right, and obtain

Turbulent mass motion

/

Fig. 3.12. A combination of the stochastic

L motion and the Coriolis force leads to tur-

bulent motion (short twisted arrows) of the

’z plasma which twists an originally toroidal

field (lower line) into a coiled field which

allows for a current parallel to the original
Toroidal Field field

Coiled Field
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o dao Ao Fig. 3.13. Magnetohydrodynamic
dynamo: differential rotation de-
N forms a poloidal magnetic field into a

E =t

toroidal one. The a-effect allows cur-

/< a0 tﬂ ® rents parallel to the field, giving rise
to a toroidal magnetic field in the op-

t=0 t="T/4 t=T/2 posite direction
Jj=o1(Eo+uo x Bo+aBy), (3.138)
h
where . )
—=—+0 (3.139)
orT a

is the turbulent conductivity. Since 3 is positive [299], o1 always is smaller
than o: the turbulence described by the (-term reduces the conductivity. In
particular, for & — oo turbulent motion would limit the conductivity to a
finite value. Fields in a turbulent plasma therefore dissipate faster, and the
dissipation time (3.109) becomes a turbulent dissipation time

7 ~ poorL? . (3.140)

Graphically, o1 takes into account the fact that the turbulent motion reduces
the length scales L of the system.

The combination of the effects of o and (2 allows us to describe the MHD
dynamo as sketched in Fig. 3.13. We start with a poloidal field in the Sun
at £ = 0. The differential rotation deforms the magnetic field, leading to a
toroidal field (¢t = T'/4). The a-effect leads to electromagnetic forces parallel
to the field, and thus a toroidal current flows (dashed lines). Although the
magnetic field directions are opposite in the two hemispheres, the asymmetry
of the Coriolis force leads to an asymmetric a-effect and therefore parallel
currents in both hemispheres. This current leads to a magnetic field directed
opposite to the original field (¢ = 7/2). Half a cycle is now finished. This
dynamo is called the af2 dynamo because both the a-effect and the differen-
tial rotation contribute to the dynamo process. The dynamos inside the Sun
and the Earth are based on this principle; their details will be discussed in
Sects. 6.6.2 and 8.1.

If the a-effect was not at work, the differential rotation would still trans-
form the poloidal magnetic field into a toroidal one. However, no polarity
reversal would occur and, in time, the entire field would dissipate. The dif-
ferential rotation, on the other hand, is not essential to the MHD dynamo.
The a-effect can also work with turbulent motions which, for some reason,
have a preferred direction of motion; this is often an upwelling of magnetic
flux combined with a particular direction of rotation of the flux tubes [299].

The MHD dynamo requires an initial magnetic field which is amplified by
a suitable feedback mechanism. Thus at first glance the MHD dynamo vio-
lates Lenz’s rule which states that all fields, currents and forces are directed
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so as to hinder the process that leads to their induction. For instance, an
increase in the magnetic field leads to currents which create a magnetic field

opposite to the original one. Lenz’s rule thus stabilizes the system; it does
not allow for the positive feedback reqnired in the MHD dynn.mni Were we to

build such a dynamo on the basis of one process only, Lenz’s rule would be
violated. But the MHD dynamo has the remarkable feature that although all

individual processes obey Lenz’s rule, their sum allows for positive feedback.

3.7 Debye Shielding

So far, we have described a plasma in the context of one-fluid magnetohydro-
dynamics: the plasma consists of one particle species only and moves with
the bulk speed. The thermal motion of the particles is neglected and thus
there is no motion of particles relative to each other.

We will now, though in a simple formalism, make use of the stochastic,
thermal motion of particles in a two-component plasma consisting of electrons
and protons. A local deviation from quasi-neutrality arises from the random
thermal motion. Quasi-neutrality depends on the size of the volume under
consideration. If the volume is very small, housing only one particle, quasi-
neutrality cannot be obtained. But even if we increase the size of the volume,
the thermal motion might lead to an excess of particles with one charge sign.
Then the shielding of a certain particle with one polarity due to particles of
the opposite polarity becomes important. The typical spatial scale for such
shielding is the Debye length, already mentioned in the introduction.

The region depleted of electrons due to their random thermal motion
is limited in extent because the displaced electrons create an electric field
which acts as a restoring force. Consider a sheath of width D depleted of
all electrons. Because of their larger mass, the ions are less mobile and stay
within this sheath. Within D therefore a positive charge exists while the
electrons can be regarded as a surface charge collected at the boundary of
the sheath. The electric field is different from zero within the sheath; outside
the sheath the field of the positive ions is screened by the surface charge.

The energy in the electric field stems from the kinetic energy of the ther-
mal electron motion. With n. as the electron density in the undisturbed
plasma, the kinetic energy of the electrons in a sheath of thickness D is
nekpT D /2. If all electrons are removed from this sheath, a restoring force
proportional to D acts on them. The energy contained in the electric field
created by the charge separation depends on D?. Thus there is a certain
width Ap at which the energy contained in the field equals the kinetic energy
of the electrons originally present within this region: the kinetic energy of the
thermal motion of the electrons is converted entirely into field energy.?

3 Note that this is different from the discussion of the plasma oscillations in
Sect. 4.3.1 because here the sheath depleted of electrons results from their ther-
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The electric field created by the ions inside the sheath is V- E = eZn;/ey.

Thus the Coulomb potential ¢ can be written as V2p = —eZn;/zp. In the
one-dimensional case, the potential is

82

55('; = —eZn;/ey = const . (3.141)
The general solution of this equation is p(x) = —Zen;z? /29 + Crz + Co,

with the constants determined by the boundary conditions. The coordinate
system is fixed such that the potential vanishes at z = 0 and Cg is zero.
If the field is symmetric around x = 0, then Cj is zero, too. In addition,
the transition between the potential inside and outside the sheath has to be
steady. Thus the potential can be written as

[ —Zen;x?/2ey for |z| < D/2
v= {-—ZeniDQ/Ssg for |x| > D/2 (3.142)
The electric field is
_ | Zeniz /ey for |z| < D/2
E(z) = {0 for |z| > D/2 (3.143)
The energy contained in the electric field can be determined as
T2 2,2 2 TH/? 272,02
eolb e“Z°n; 9 e“Z“n; 3
= L de = —D~. 3.144
/ 2 dz 260 / i 660 ( 1 )
~D/2 —-D/2

We are now looking for the thickness Ap of a sheath where the field energy
equals the kinetic energy of the electrons originally present inside the sheath:

nekpT ' Ap _ ezz%?/\%

3.145
2 660 ( )

Since the above geometry is one-dimensional, only one degree of freedom is
considered in the kinetic energy. Quasi-neutrality requires ne = Zn;, and thus
the Debye length Ap is given as
3€0kBT kBT 1
AD = 2 _ — 3
€. ™M Wpe

(3.146)

where wy,. is the angular frequency of electron plasma oscillations (Sect.
4.3.1).

Though derived for the one-dimensional case, this equation also holds in
the three-dimensional case where the Debye length can be interpreted as the

mal motion. In plasma oscillations, instead, a cold plasma is considered and
the charge separation results from an external force, e.g. a beam of electrons
travelling through the plasma.
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maximal radius of a sphere which, due to thermal motion, might be depleted
of electrons. In spatial regions small compared with the Debye length, quasi-

neutrality is likely to be violated, while on larger scales the plasma is quasi-
neutral. In the latter case the kinetic energy contained in the thermal motion
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is not large enough to disturb the particle distribution over the entire region.
Figure 1.1 shows typical values of the Debye length and numbers of particles
inside a sphere with the Debye radius for different electron densities and
temperatures. Some typical plasmas are indicated.

The Debye length also can be used to assess the influence of an instrument
on measuring plasma parameters. Let us start from an initially cold plasma,
i.e. the motion of the electrons can be ignored. Let us now insert a small
positive charge ¢ into this plasma. Immediately, it will be surrounded by a
cloud of electrons while the ions are repulsed. The electron cloud screens the
additional charge; thus, outside the electron cloud its electric field vanishes.
If we now increase the temperature, the electrons gain thermal velocity. Deep
inside the electron cloud this velocity will be too small to overcome the at-
traction of the positive charge. At the outer edges of the cloud, on the other
hand, the thermal energy might be large enough to exceed the electrostatic
potential of the partly screened charge, allowing an escape from the cloud.
The Debye length then can be interpreted as the spatial scale over which
the potential of the point charge ¢ has decreased by a characteristic value
(see Fig. 3.14): within the Debye length, electrons are influenced by the test
charge, while at larger distances the test charge goes unnoticed.

A more general definition would read: only charged particles within a
distance of Ap exert an electrostatic force on each other. This is different
from bodies which interact gravitationally, like, for example, interacting stars:
gravitation cannot be screened by repulsing forces, it has an indefinite range.

Debye screening also is important in preventing local clusters of charges.
For ep < kT the influence of the electric field on the particle energy is small;
thus the particle motion is determined by the thermal speed. The Debye
shield arises from small differences in the particle motion: some particles with
opposite charge stay close to the test charge slightly longer, while particles
with equal charge move away a little bit faster. Charge inhomogeneities in a
plasma therefore are balanced on the scale of the thermal propagation time.

e
QBTO B

Fig. 3.14. The electric po-
tential of a test charge is
reduced by the surround-
ing plasma,
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3.8 Summary

Magnetohydrostatics is concerned with the energetics of the electromagnetic
finld without allowing for the collective motion of the nlasma. Basic concents
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derived from this approximation are the magnetic pressure and the mag-
netic tension. Magnetic pressure, graphically interpreted as mutual repulsion
of field lines, prevents a magnetic field from being compressed by external
forces. If part of a magnetic line of force is displaced from its original posi-
tion, the magnetic tension creates a restoring force, which graphically can be
interpreted as the tendency of a line of force to shorten itself.

Magnetohydrokinematics assumes the energy density of the plasma to be
much larger than the energy density of the field, which allows us to ignore the
influence of the field on particle motion. The basic concepts are as follows:
(a) If the conductivity of the plasma is infinite, the magnetic field lines are
frozen-into the plasma. Thus the plasma flow carries away the magnetic field.
(b) If the conductivity is finite, the magnetic field is deformed by the plasma
flow until diffusion allows the plasma to flow across the field lines. (c) In
a stationary plasma, the magnetic field dissipates, with the dissipation time
depending on the square of the linear dimensions (small fields dissipate faster)
and linearly on the conductivity (if the latter is infinite, the dissipation time is
infinite, too, and the field is frozen-in). These concepts are important, e.g. in
our understanding of the merging of magnetic field lines, called reconnection,
and in dynamo theory.

Exercises and Problems

3.1. Explain the difference between convective and partial derivatives. Find
examples to illustrate the differences.

3.2. Recall simple hydrodynamics and give other examples of the momentum
balance. Discuss the different forms and compare with the Navier—Stokes
equation.

3.3. Derive the hydrostatic equation from the Navier—Stokes equation. Which
terms do you need?

3.4. Give a quantitative discussion of the stability of a sunspot (all important
numbers are given in Table 6.1).

3.5. Is the filament sketched in Fig. 3.5 realistic? Why does it not dissolve
towards the sides (remember, it is a plasma, not a solid body)?

3.6. What is the meaning of viscosity and Reynolds number? What are
the formal differences between hydrodynamics and magnetohydrodynamics?
What are the differences in substance?
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3.7. Explain the consequences of stationary flows parallel and oblique to the
magnetic field.

3.8. Why has pressure the units of an energy density?
3.9. Show that (3.76) is a solution of (3.75).

3.10. Show that in an ideal, non-relativistic magnetohydrodynamic plasma
the ratio between the electric and the magnetic energies is (v /c)?.

3.11. Determine the dissipation times for a copper block (side length 10 cm,
conductivity 260 A/Vm) and the interstellar medium (linear dimension
102! m, conductivity 2.6 uV/Am). Compare with the age of the universe
(about 10'8 s).

3.12. Determine the Debye length and the number of particles inside a Debye
sphere for electrons and protons moving with thermal speeds (see Sect. 5.1.2)
in the following fields: (a) the Earth’s magnetosphere with n = 10* em™3,
T =10 K, B = 10“2 : (b) the core of the Sun with n = 102 cm~3,

G;
; (¢) the solar corona withn = 108 em™3, T = 10° K,
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Roll on, thou deep and dark blue Ocean — roll!
Ten thousand fleets sweep over thee in vain;
Man marks the earth with ruin — his control

Stops with the shore.
Lord Byron, Childe Harold’s Pilgrimage

In this chapter we shall catch a glimpse on the vast zoo of plasma waves.
The formalism to derive these waves, perturbation theory, briefly will be
introduced. We will not derive all types of waves formally; instead, we shall
limit ourselves to the magnetohydrodynamic waves, which are Alfvén waves
and ion acoustic waves. The derivation of the dispersion relations for other
types of waves follows the same scheme, it only differs in the terms considered
in the equation of motion, in the assumptions made in the equation of state,
and in whether a one-fluid description of the plasma is sufficient or if a two-
fluid description is required. Detailed derivations can be found e.g. in [36,97,
191,192, 298, 397,504, 512, 534]. For the purpose of this book, however, it is
more important to grasp the nature of the waves than to fiddle around with
the mathematical tricks involved in solving the equation of motion.

This chapter is limited to elementary types of waves. First, the geometry
always is simple: in a magnetized plasma the waves either propagate parallel
or perpendicular to the undisturbed magnetic field — oblique waves are not
considered here. Physically more important is the limitation to small distur-
bances, i.e. small amplitude waves: the basic set of magnetohydrodynamic
equations is a set of coupled non-linear partial differential equations. Thus
in principle we can expect non-linear couplings between different fluctuating
quantities of the wave. If we limit our discussion to small amplitude waves,
the equations can be linearized: whenever two oscillating quantities are mul-
tiplied, since both are small, we consider this a higher order term and ignore
it. If we apply these results to a real situation, we always have to take one step
back and justify whether the amplitudes calculated in our real situation are
small enough so that the non-linear terms actually are negligible compared
with the linear ones.

In a plasma, a large variety of waves exists. A simple phenomenological
classification in transversal and longitudinal waves is insufficient. Instead,
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we have to consider the conditions under which certain types of waves can
exist. For instance, in a cold plasma the thermal motion of the particles

and therefore the pressure vanishes. Thus elastic waves cannot exist; they
can form nnly in a warm pln.ﬂmn. where a pressure grndient can build up. In

an isotropic plasma, no magnetic field exists, which allows other modes of
propagation than an anisotropic plasma. As a third criterion, we also have

to consider which particle species is in motion.

4.1 What is a Wave?

For a start, let us briefly repeat the basic descriptions and properties of
waves. A wave is a disturbance propagating through a continuous medium.
It gives rise to a periodic motion of the fluid. Even a complex oscillation, at
least as long as the amplitude of the disturbance is small, can be decomposed
into different sinusoidal waves by the technique of Fourier analysis. Small-
amplitude disturbances lead to plane waves with the direction of propagation
and the amplitude being the same everywhere.

4.1.1 Wave Parameters

A sinusoidal wave is described by its frequency w and its wave vector k:
B(r,t) = Boexp {i(k-r —wt)} . (4.1)

The measurable quantity is the real part of this complex expression. The
exponent in (4.1) is the phase of the disturbance. The temporal derivative
of the phase gives the frequency w, and the spatial derivative gives the wave
vector k that specifies the direction of wave propagation. A surface of constant
phase, also called a wave surface, is displaced by the phase velocity vpp, which
can be determined from d(k - r — wt)/dt as v,y = w/k or, in vector form,

Vph = 7:—)2—’0 . (42)
If w/k is positive, the wave moves to the right; for negative w/k it moves to the
left. For electromagnetic waves the refraction index n is defined as the ratio
between the speed of light and the phase speed of the wave: n = ¢/v,p, = ck/w.
The phase velocity can exceed the speed of light. This is not in contra-
diction to the theory of relativity because an indefinitely long wave train of
constant amplitude does not carry information. Information can be carried
by a modulated wave, on which variations in frequency or amplitude are su-
perimposed. We can regard each bit of information in this modulated signal
as a wave packet which then moves with the group velocity

Ow

—_— % . (4.3)

Vg
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L . . . .
rer Fig. 4.1. Dispersion relation

with a resonance at the fre-
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curve gives the group velocity
vg, as indicated by the dashed
line

The group velocity v, given by the slope of the dispersion relation (see dotted
ine in Fig. 4.1). It is always less than the speed of light and determines
velocity with which the energy of the wave is transported.

The most important tool in the description of waves is the dispersion
relation w = w(k), relating frequency and wave vector. From this relation
the group and phase velocities of a wave can be determined. The dispersion
relation contains the physical parameters of the medium under consideration.
If the plot of the dispersion relation shows an asymptotic behavior towards
a certain frequency wyes, as depicted in Fig. 4.1, there is a resonance at this
frequency: as dw/0k converges towards zero, the wave no longer propagates
and all the wave energy is fed into stationary oscillations.

4.1.2 Linearization of the Equations: Perturbation Theory

A wave is a disturbance of the medium with a certain speed, amplitude, and
frequency. Thus the parameters of the medium, such as pressure, density, and
the electromagnetic field, can be described by an average state, indicated by
the index “0”, and a superimposed disturbance, indexed as “1”:

B =B, + B;, E=FE;+ FE,, u=1ug+u, (44)

j=do+J1, 0=00+01, p=po+p1, (4.5)
with (u;) = (§1) = (E1) = (B1) = {e1) = {p1) = 0. The resulting MHD
equations (3.41)-(3.48) are difficult to solve. If we limit ourselves to small
disturbances, i.e. u; < ug, Bi < Bo, E1 < Ep, j1 < Jo, 01 < oo, and
P1 < pp, we can derive two sets of equations which are more convenient:
the set describing the equilibrium state of the undisturbed medium contains
quantities with index “0” only, and a second set for the fluctuating quantities
contains fluctuating quantities and products of undisturbed and fluctuating
quantities. Products of fluctuating quantities are ignored because they are
small in second order.

4.1.3 Reynolds Axioms

We have decomposed the instantaneous quantities x into an average xy and
a fluctuating part ;. By definition, the average of @ is (&) = x¢ and the
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average of the fluctuations @, vanishes: (;) = 0. All our MHD equations
(3.41)—(3.48) are given for the instantaneous quantities. To derive equations
for average quantities, the instantaneous quantities have to be expressed in
terms of averages and ﬂur*.tua._.ing parts, and the result.ing equation has to be

averaged. In doing this, some general rules must be obeyed, described by the
Reynolds axioms:

1. The average of the sum of two instantaneous quantities equals the sum
of the averages:

(A+ B) = (A) + (B) = Ao + By . (4.6)

2. The average of the product of an average quantity and a fluctuating one
vanishes:

(Ao By) = (Ag) (B1) = A0 =10,
(Ao - By) = (Ag) - (B1) = Ap-0=0,
(AOXBl>=<A0>X<B1>=AQXO=O. (47)

3. The average of the product of two averages is the product of the averages:

((A)(B)) = (4) (B) = AoBo,
((A)(B)) = (A)- (B) = A~ By,
((A) x (B)) = (A) x (B) = A x By . (4.8)

4. The average of the product of two instantaneous quantities equals the
product of the averages plus the average of the product of the fluctuating
quantities:

(AB) = ((Ao + A1) (Bo + B1)) = (AgBg + Ao By + A1 By + A1 By)
= (AgBy) + (AoB1) + (A1Bg) + (A1 By) = Ao By + (A1 B1)
(A-B) = Ay-Bo+ (A1 - By),
(A x B) = Ag x By + (A, x By). (4.9)

The last term contains the average of the product of the fluctuating
quantities. This is called the covariance or the correlation product. Thus
we also have a definition for the correlation product of two quantities x
and y:

(x1y1) = ((z — =1 )(y — ¥1)) — ToYo
{1 -y1)=((xz—z1) - (¥ —¥1)) —To Yo ,
(1 x Y1) = ((x —x1) X (Y —Y1)) —To X Yo - (4.10)

5. The average of the derivative of an instantaneous quantity equals the
derivative of its average:

DA\ _O(A)  9Ag
(%)= =% (4.11)
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6. The average of the integral of an instantaneous quantity is the integral
of the average:

/N [ r
(] Ad)= [ardc= [ Avdc. (4.12)

4.1.4 Linearized MHD Equations

The MHD equations (3.41)—(3.48) for the undisturbed quantities are

V x By = pojo (4.13)
VxEy=0, (4.14)
V'BOZO, (4.15)

'%0 = Ep+ up X By, (4.16)
00 (up - V)ug = —Vpg + jo x Bo, (4.17)

V- (ooug) =0, (4.18)

po = Cog* - (4.19)

Note that in the equation of motion friction and gravity have been ignored.
The equation of state describes the plasma as an ideal gas with all changes
occurring adiabatically.

The undisturbed medium is assumed to be homogeneous in pressure, den-
sity, and magnetic field. Since it is assumed to be at rest (ug = 0), the current
Jo vanishes (4.13) and the undisturbed electric field vanishes too (4.16). Note
that this is just another expression for the high conductivity of the plasma
(0 — 00). The equations for the fluctuations then read

V x By = ugju » (4.20)
0B,

VxFE=-— 4.21
X 1 8t 1 ( )
V-By=0, (4.22)

E1 = —t; X Bg , (423)

8u1 .
Qo-ét—=—vp1+.71 x By , (4.24)

0

==V (oow) - (4.25)
P 01
— =y, — . 4.26
Do K 0o ( )

Now (4.20)-(4.26) is a homogeneous linear system of equations for the fluc-
tuating quantities. Since neither time nor the spatial coordinate are explicit
in one of the equations, the system can be solved by an exponential ansatz.
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4.2 Magnetohydrodynamic Waves

Magnetohydrodynamic (MHD) waves are low-frequency waves related to the
motion of the plasma’s ion component. They can be understood intuitively
from the concepts of magnetic pressure (Sect. 3.3.1) and magnetic tension
(Sect. 3.3.2): in a magneto-sonic wave, compression of the field lines creates
a magnetic pressure pulse which propagates perpendicular to the field in the
same way an ordinary pressure pulse propagates through a gas in a sound
wave. Magneto-sonic waves therefore are longitudinal waves: the disturbance
is parallel to the propagation direction of the wave. The displacement of
part of a field line in an Alfvén wave is similar to plucking a string: magnetic
tension, like the tension in a string, acts as a restoring force and a transversal
wave propagates along the field line.

Despite the simplicity and graphic quality of these concepts, we shall treat
these waves formally in a concept which is useful for small disturbances: the
linearization of the equations. The MHD waves provide just one example for
this concept; it is applied in a more elaborate way also in the quasi-linear
theory (QLT) of wave-particle interaction (Sect. 7.3.4).

4,2.1 Alfvén Waves

Alfvén waves are transversal waves propagating parallel to the magnetic field
(see Fig. 4.2). The magnetic tension acts as the restoring force. The fluctu-
ating quantities are the electromagnetic field and the current density.

To derive the properties of Alfvén waves, we have to solve the equations
for the fluctuating quantities. Let us start with the equation of motion (4.24).
The pressure gradient force vanishes because the Alfvén wave is limited to
fluctuations in the magnetic field but not in the gas-dynamic pressure. If we
express the current 7, by Ampére’s law (4.20), the momentum balance reads

a) T (e) T~ "

- L—v

- ]

b)\ : (f) L:
~ . S N
~ - g SRR

RN . ~~ol Fig. 4.2. Alfvén waves depicted as an oscil-
L S 1 lating string or an elastic rope
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ou : 1
QO—B-ZI—ZJIXBIZEE(VXBl)XBI‘ (427)
Combining Ohm’s law (4.23) with Faraday’s law (4.21) yields
B
Bat‘ =V x (u; x By). (4.28)
The remaining equation is Gauss’s law for the magnetic field (4.22):
V-B; =0. (4.29)

The equation of state (4.25) is not considered here because we are not con-
cerned with fluctuations in pressure and density, only in field.

Equations (4.27)-(4.29) can be solved by means of a Fourier transforma-
tion. If we assume that the solutions are plane waves, temporal and spatial
derivatives can be substituted according to

; 0/0t - —iw, V—=ik, V. —ik, Vx—ikx . (4.30)
Equations (4.27)—(4.29) then read

—iwgou; = —(k x B,) x By, (4.31)
Ho

iwB; =ik x (u; x By), (4.32)

k-B,=0. (4.33)

Alfvén waves propagate along the field, thus k|| Bg. With V - By = 0 the
above equations can be reduced to

1
uy = B,- Bk, 4.34
H MOQO( ¢ 2 ( )
LJB] = (k'ul)Bo, (435)
k-B,=0. (4.36)

Let us now multiply (4.34) by k and (4.35) by Bg. Adding both equations
gives the dispersion relation for the Alfvén wave:
2
Wt D0 g2 (4.37)
Ho Qo
Alfvén waves are non-dispersive waves. Thus group and phase speed are the

same. This Alfvén speed

pa = 0 (4.38)

Vv Ho0o
is an important characteristic of a plasma: it is the maximum speed of a
disturbance propagating along the magnetic field and can be compared with
the speed of sound in a gas: if a disturbance propagates faster than the Alfvén
speed, a shock wave develops (Sect. 6.8). Typical Alfvén speeds are some tens
of kilometers per second in the interplanetary medium and some 100 km/s
in the solar corona.
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Fzample 15. Some average parameters of the solar wind are a number density

of 8 cm ™3

, a magnetic field B = 7 nT and a temperature of about 2 x 10° K.

O MATS Ola A11Nd S then g = N, and Lhe Altven speed

(7 nT)? kg
= 673 -7 —=- =54k .
VA \/47rx10—7(Vs/Am)X8X1 x 10 — m/s

(4.39)
Here we have used the fact that the unit T can be expressed as V s/m? and
that the product of the electrical units volt and ampere gives the watt, which
can easily be expressed as a mechanical unit. Table A.4.3 provides some help
on units expressed in different forms. 0

4.2.2 Magneto-Sonic Waves

A magneto-sonic wave is similar to a sound wave: it is a longitudinal wave
parallel to the magnetic field with alternating regions of compression and
rarefaction in both the plasma and in the magnetic field (see Fig. 4.3).

Since we allow for a compression of the plasma, we also have to consider
the equation of state p, = va0100/00 = v201 (4.26), with

vy = | 2RO (4.40)
Qo

being the (adiabatic) sound speed. To solve the equation of motion (4.24),
we have to express p; and 7; X B; by u;.

Fourier transformation of the equation of continuity gives iwg; = tkgou:
or, combined with the equation of state and (4.40),

02
p = ﬁikQOUl 2 (4.41)

the fluctuating pressure p; in the momentum balance can be expressed by
Uu.

Ohm’s law (4.23) yields the dependence of FE; on u;. Combined with
Faraday’s law (4.21), B; can be expressed as a function of u;:

0B
Vx E;=—-V x(u; x Bg) = — atl (4.42)
S— for
L ¢ Fig. 4.3. Sketch of a magneto-sonic wave:
> undisturbed field (left) and fluctuating field
. (right)
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Transformation yields
ik x (uy X By) = iwB1 . (4.43)

‘This expression for B can be inserted into Ampére’s law (4.20):
. : k
toj1 = —ik x » xu, X By . (4.44)

With (A.26), this can be simplified to

— nwid
o .

:kXTIl-I(‘XBG (445)

}
I

Here we have used k | By and therefore k- By = 0 and k x By = kBgy. The
vector product of (4.45) and By yields

1

Holw

k*B2u, . (4.46)

j1 x By =

Thus the equation of motion (4.24) combined with (4.41) and (4.46) can be
written as

, 5 Coik? BZik?
—iwgouy = —v; u) — u) , (4.47)
W Low

giving the dispersion relation for the magneto-sonic wave. The phase speed
is determined by the squared sound and Alfvén speeds:

+v% . (4.48)

It is independent of frequency or wave number: the wave is dispersion-free. If
the magnetic field vanishes, the Alfvén speed approaches zero and the phase
speed of the magneto-sonic wave converges towards the speed of sound. This
wave is called the slow magneto-sonic wave. If the magnetic field is strong, the
phase speed of the magneto-sonic wave becomes the Alfvén speed. But the
wave still behaves differently because it propagates perpendicular to the field
instead of parallel to it. This latter kind of wave is also called the compressive
Alfvén wave. Since the phase speed of the magneto-sonic wave exceeds the

Alfvén speed, it often is called the fast magneto-sonic wave or just the fast
MHD wave.

Example 16. Let us briefly return to example 15, where we have already de-
termined the Alfvén speed in the solar wind. To determine the speed of the
magneto-sonic wave, we also need the sound speed. From (4.40) we obtain

Vs = /Y,nkgT/(nm,) = +/7.ksT/my = 70 km/s. For the speed of the
magneto-sonic wave, we obtain vms = 88.7 km/s from (4.48). 0
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4.2.3 MHD Waves Oblique to the Field

So far, we have considered two special geometries: a transversal wave propa-
gating parallel to the field and a longitudinal wave propagating perpendicular
to it. But MHD waves can propagate at any angle relative to the field. For
this general case, we have to solve the whole set of equations (4.13)—(4.19) for
the undisturbed and (4.20)-(4.26) for the fluctuating quantities; neither one
of the equations nor a term in one of them can be ignored. Again, a solution
can be obtained by combining the equations into one equation for the desired
quantity, the speed of the fluctuations. The dispersion relation obtained from
this equation yields solutions for the above wave types with phase speeds
depending on the angle # between the wave vector and the undisturbed field.
The speed of the MHD wave is determined by

ut — (v +vdu? +vivicos?f =0. (4.49)

For 6 = 90°, the fast magneto-sonic wave (4.48) results. For # = 0°, two
solutions exist: the Alfvén wave with © = v, and the sound wave with u = ;.

The different solutions can be represented in a hodograph or Friedrichs
diagram (see Fig. 4.4). The hodograph is a polar diagram of velocities with
the polar angle 6 relative to the undisturbed magnetic field direction and
the wave's phase speed as distance from the origin. The wave front then
propagates perpendicular to the velocity vector. Depending on whether the
Alfvén speed is greater or less than the sound speed, two sets of solutions
arise (see Fig. 4.4). For almost any direction we find three different phase
speeds, corresponding to an Alfvén wave and a slow and a fast mode magneto-
sonic wave. For # = 90° or 270° only the fast magneto-sonic wave exists. As
can be seen from the hodographs, the Alfvén speed up = va cosf always

Vms

a) vaA > v, (b) va < vy

Fig. 4.4. Friedrichs diagram (hodograph) representing the different types of MHD
waves for Alfvén speeds greater than the speed of sound (a) or less (b)
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is between the phase speeds of the fast (outer curve) and the slow (inner
curve) magneto-sonic wave. For waves propagating parallel to the field, the

Alfvén speed becomes identical to the fast magneto-sonic speed for va > vs.
This does not contradict (A AR\ because the latter had been derived for waves

propagating perpendlcular to the field, the direction in which the magneto-
sonic speed becomes maximal. The speeds of the Alfvén wave and the slow
mode magneto-acoustic wave, on the other hand, are maximal in the direction
parallel to the field. The Alfvén speed of waves parallel to the field equals
the slow mode speed for va < vs.

4.3 Electrostatic Waves in Non-magnetic Plasmas

Electrostatic waves start from a charge imbalance in an initially quasi-neutral
fluid element. This charge imbalance accelerates the electrons and ions in its
neighborhood, resulting in charges oscillating back and forth. Since these
oscillations only involve the electric field, they are defined as electrostatic
waves. The oscillating magnetic field is zero. Electrostatic waves can occur
in non-magnetic plasmas (this section) or in magnetized plasma (Sect. 4.4).
Fourier transformation of Faraday’s law (4.21) for the fluctuating quantities
of the wave yields ik x F| = iwB; = 0, thus the fluctuating electric field is
parallel to the wave vector k.

4.3.1 Plasma Oscillations

Plasma, oscillations, also called Langmuir oscillations, are a prime example of
a plasma phenomenon that requires consideration of both types of charges.
Nonetheless, this does not automatically imply that plasma oscillations can
be described only in the framework of two-fluid theory. Since the ions are
assumed to be stationary, we do not have to consider their equation of motion.
Thus a one-fluid description of the electrons is sufficient as long as the electric
field created by the ions is considered.

Let us assume that jons and electrons are distributed equally in space.
Thus quasi-neutrality is fulfilled even in rather small volumes. In addition,
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treated as a cold plasma. Such a fluid can be disturbed by the displacement
of part of the electrons, as indicated in Fig. 4.5. This displacement creates an
electric field that pulls the electrons back to their initial rest positions while
the heavier ions stay in their positions. Since the electrons are accelerated
along the field, they gain kinetic energy which in turn drives them behind
their initial position, creating an electric field in the opposite direction. This
field slows down the electrons, eventually driving them back. The period of
the resulting electron oscillation around their rest position is the electron
plasma frequency wep. It can be derived from the equation of motion
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Fig. 4.5. The displacement of electrons in a cold plasma leads to plasma oscillations
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where x is the direction parallel to the electric field. ¥ can be determined

by applying Gauss’s law to a closed surface along the boundary between the

positive and negative charges, and extending at least for the displacement x
of the charges: E = 4nn, e x/ey. The equation of motion then is

0%z B Nee?

—_— = T = —Wpel . 4.51

Ot? £0Me pe (451)
This second order differential equation describes a wave and can be solved
with an ansatz x = zge'“?. It describes a harmonic oscillator with the electron

plasma frequency
[ 1 o2
Ne€
= . 4.52
“pe EpMie ( )

The electrons therefore oscillate with a frequency which neither depends on
the wave-length nor on the amplitude of the disturbance responsible for their
initial displacement.

Plasma oscillations are an important tool in plasma diagnostics because
they allow us to measure the electron density n,.

Example 17. Solar radio bursts (Sect. 6.7.1) are an important tool for the di-
agnosis of coronal disturbances. For the lower corona, we can use a simplified
density model n ~ ngexp(—r/rg) with a scale height of 7o = 0.1rg and a
density ng = 10! m3 at r = 1r; (more correctly, this applies at the base of
the corona 2000 km above the solar surface, but for the numerical exercise
this 2000 km can be ignored). The radio emission observed from the ground
is in the frequency range 10 MHz to about 200 MHz. According to (4.52),
this corresponds to coronal heights between 2rg and 0.8rg above the surface.
The main mechanisms for the generation of solar radio bursts are electron
beams with speeds of about ¢/3 (type III burst) and coronal shock waves
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with speeds of the order of 1000 km/s (type II bursts). The height range
over which these exciters propagate is 1.2ry = 0.12ro = 8.4 x 10* km. The

electrons with speed ¢/3 travel this distance within about 0.3 s, and thus
the type IIT burst shows an PYferP]V fast Frpnnr:-nr'v drift of the order of

750 MHz/s. The shock wave, on the other hand, needs almost 9 s to travel
this distance, corresponding to an average frequency drift of about 20 MHz/s.
Thus both types of bursts can be easily identified by their frequency drift in

radio spectrograms. O

4.3.2 Electron Plasma Waves (Langmuir Waves)

Plasma oscillations have been derived for a cold plasma: the group velocity
equals zero and the disturbance does not propagate. In a warm plasma, the
situation is different. The thermal motion of the electrons carries information
about a disturbance into the undisturbed ambient plasma. The disturbance
then propagates as a wave. Formally, one can derive the dispersion relation
for this wave by adding the pressure gradient force —Vp to the equation of
motion (4.50). If the plasma behaves adiabatically, the dispersion relation for

the plasma wave in the one-dimensional case (v, = 3) reads
w? = wge + %kzvfh , (4.53)

or in the three-dimensional case

w? = wge + 5k21)th , (4.54)
with the thermal velocity vy, = 1/2kpT /M. (see Fig. 4.6). Both equations are
based on the assumption that locally a Maxwell equilibrium is established.
Thus the plasma must allow for frequent collisions. In space plasmas, in

general this is not the case. Here the correct dispersion relation is
w? = wl, + 3kvg, . (4.55)

This equation is called the Bohm—Gross equation [53]. From (4.55) the group
velocity of plasma waves can be determined as

dw 3k ,  3vd (4.56)
Vg = —— = — U = . 4.
g k W th Vph
@
—— \ __-'-—/ .....
Whe . ]
. be kx| Fig. 4.6. Dispersion rela-
-1 1 | tion for electrostatic elec-
tron waves in a warm un-
— o — magnetized plasma (Lang-
muir waves)
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As expected, the group velocity vanishes as the thermal energy of the plasma
approaches zero. The group velocity always is significantly smaller than the
thermal speed and thus also much smaller than the speed of light. For large
wave numbers k, the information propagates with the thermal velocity. For
small wave numbers, the information travels slower than v, because the
density gradient decreases for large wavelengths and therefore the net flux of

momentum into adjacent layers becomes small.

4.3.3 Ion-Acoustic Waves (Ion Waves)

In Langmuir waves, as in plasma oscillations, the ions are assumed to be in-
definitely massive; they stay fixed at their position. Langmuir waves thus are
high-frequency waves. If we allow for ion motion, the properties of the wave
change. The inertia of the ions requires rather slow oscillations. Therefore, ion
waves are low-frequency waves. In ordinary fluids, sound waves are the coun-
terpart of the ion wave. They can be derived from the Navier-Stokes equation
with the pressure gradient force being the only term on the right-hand side.
The dispersion relation than reads vs = w/k = y/7aPo/20 = /7YaksT/m,
with v being the speed of sound.

Sound waves are pressure waves. They transport momentum from one
layer to the next due to collisions between molecules or atoms. Despite its
often low density, in & plasma a similar phenomenon exists. Here the mo-
mentum is transported by Coulomb collisions; thus information is contained
in the charges and the fields. Since we have to consider the motion of both
electrons and ions, the ion wave can be derived in the framework of two-fluid
theory only. In the equation of motion, we have to consider the pressure gra-
dient force and the force exerted by the electromagnetic field. The dispersion
relation than can be derived as

w? _ YekBTe + 7ikBTi o

w” - 57
2 - v (4.57)

Note that v, =~ 1 because the electrons are fast compared with the waves and
an isothermal distribution is established easily. The ions, on the other hand,
experience a one-dimensional compression in the plane wave, and v = 3. The
group velocity of the ion wave is independent of the wave number k.

If the ion population can be considered as cold, 7} — 0, and the wave
length is small, kAp > 1, the ions can oscillate with the ion plasma frequency

2,2
= (4.58)

The dispersion relation for ion waves is shown in Fig. 4.7. The ion plasma
frequency as asymptote for short wavelengths is indicated in the right part
of the figure. There are fundamental differences in the dispersion relation
for electron and ion waves. Electron plasma waves are waves with constant
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frequency (see Fig. 4.6), the thermal motion only adds a small correction.
In contrast, ion waves are waves with a constant speed and require thermal
motion. The phase speed and group speed are identical. The difference be-
tween these two types of waves is due to the behavior of the second particle
component: in the electron plasma wave, the electrons oscillate while the ions
stay fixed. In the ion wave, the ions oscillate but the electrons are in motion
too. In particular, they can be carried along by the ions, screening part of
the electric field resulting from the ion oscillation.

In space plasmas, ion acoustic waves are observed upstream of planetary
bow shocks where they are generated by suprathermal particles streaming
away from the shock front (Sect. 7.6.4).

Ezample 18. The proton density upstream of a shock is n; = 8 cm™2, and for
the proton Z; = 1. Ion acoustic waves (upstream waves) excited by particles

streaming away from the shock then have a ion acoustic frequency wpi =
3.7 x 10° Hz. O

4.4 Electrostatic Waves in Magnetized Plasmas

Let us now consider electrostatic waves in a magnetized plasma. They can
be divided into waves with k parallel or perpendicular to Bgy. The terms
longitudinal or transversal refer to the direction of the wave vector k relative
to the fluctuating electric field E1. Only longitudinal waves are electrostatic
because k x E1 = wB, vanishes. In a transverse wave, B; is finite and the
wave is an electromagnetic one. Waves propagating oblique to the field can
be regarded as superposition of longitudinal and transversal waves.

4.4.1 Electron Oscillations Perpendicular to B
(Upper Hybrid Frequency)

As for electron oscillations in an unmagnetized plasma, in the upper hybrid
oscillations the ions stay fixed in space, creating a positively charged, uniform
background. The plasma is cold; the thermal motion of the electrons can be
ignored. The equation of motion then contains only the forces exerted by the
electric and magnetic fields.
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For longitudinal waves, the dispersion relation reads
wlzlh - wge + wge ’ (459)

with wpe being the frequency of electron plasma oscillations and we. being
the electron cyclotron frequency. Only electrostatic waves perpendicular to
B have this upper hybrid frequency. Disturbances parallel to B oscillate with
the plasma frequency wp,: particles moving parallel to the magnetic field do
not gyrate and therefore wee vanishes.

We can understand these waves as the superposition of two motions. In
the plane wave, the electrons exhibit regions of compression and rarefaction
as in ordinary plasma oscillations. The magnetic field, which is perpendicular
to the direction of electron motion, forces the electrons into elliptical orbits
instead of oscillations along a straight line. As in simple plasma oscillations,
the electric field accelerates the electrons displaced from their rest position.
As the electron speed increases, the Lorentz force exerted by the magnetic
field increases, too, reversing the direction of electron motion. The electrons
therefore move against the electric field, losing energy. Thus two restoring
forces act on the electrons: the electrostatic force resulting from the electron
displacement and the Lorentz force. This additional restoring force leads to a
higher frequency than in simple plasma oscillations. If the magnetic field van-
ishes, the cyclotron frequency vanishes, too, leaving us with ordinary plasma
oscillations. If the plasma density decreases, the plasma frequency decreases,
too. For vanishing plasma density, the remaining motion is a gyration around
the magnetic field line.

4.4.2 Electrostatic Ion Waves Perpendicular to B
(Ion Cyclotron Waves)

The upper hybrid wave is a high-frequency wave with w much larger than
both the plasma and cyclotron frequencies. It results from the motion of
electrons in a magnetized plasma. Electrostatic ion waves, like ion acoustic
waves, are low-frequency waves. Let us now consider an ion acoustic wave
with k nearly perpendicular to B. In the equation of motion only the forces
of the electromagnetic field are considered. The dispersion relation then is

wgi = w2 + k%2, (4.60)
with w¢; being the ion cyclotron frequency. An electrostatic ion wave parallel
to the magnetic field has the same frequency w? = k%*v2 as an ion acoustic
wave because the ions do not gyrate around the field and wc; vanishes.

The physical explanation is the same as in the upper hybrid wave: the
Lorentz force provides an additional restoring force leading to an elliptical

path and a higher frequency, described by the additional term we; in (4.60).
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4.4.3 Lower Hybrid Frequency

In the ion cyclotron wave we have assumed k to be nearly perpendicular
to B. The small remaining component of the wave vector and therefore the
particle motion parallel to B is essential because it allows the electrons to
travel freely along B to obtain thermal equilibrium as was required in the
derivation of the ion acoustic wave. If this cannot be archived, the equation
of motion for the electrons must be solved differently, though that for the
ions still is valid. In this case, the lower hybrid wave results with

Wh = v/Wee Wei - (4.61)

The motion is maintained in the perpendicular direction only. Thus charge
neutrality can be maintained in that direction. From this charge neutrality
we can understand the frequency given in (4.61). The fluctuating electric field
FE; of the wave is perpendicular to Bg. The ions move along F, while the
Lorentz force acting on them is rather small. The ion displacement along E,
is limited because the electric field oscillates; the maximum displacement is
about Az; = eE1/miw3. The electrons gyrate around the magnetic field. In
addition, they experience an F x B drift perpendicular to both fields. Their
displacement parallel to F; is given roughly as Az, = E)/Bowe.. Charge
neutrality requires Az. = Ax; and therefore w = wy,.

Lower hybrid waves are of great importance in the auroral regions where
they may be responsible for ion heating.

~

4.5 Electromagnetic Waves in Non-magnetized Plasmas

Electromagnetic waves consist of both a fluctuating electric and a fluctuating
magnetic field. In this section we shall consider electromagnetic waves in
an unmagnetized plasma; thus the background field By vanishes and then
B = B,. Electromagnetic waves are high-frequency waves. Thus because of
their large inertia the ions do not follow the fluctuating field. Electromagnetic
waves therefore can be treated within the framework of one-fluid theory. In
the equation of motion we have to consider the pressure gradient force and
the forces exerted by the electromagnetic field. The dispersion relation for
electromagnetic waves then reads

w? = wge + k%2, (4.62)

where ¢ = 1/, /Zop0 is the speed of light in vacuum.

The dispersion relation (4.62) is shown in Fig. 4.8. For plasma frequencies
much smaller than the frequency of the waves we get light waves with w = kc.
The index of refraction for these waves is n = c¢/vpy = ck/w or, taking into
consideration the electron plasma frequency,
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/ Fig. 4.8. Dispersion relation for electromag-

Lpe netic waves in a cold unmagnetized plasma.
Wik =c For small wave numbers the group velocity

/ approaches zero and a plasma oscillation re-
/ sults. For large wave numbers both the group
and phase speeds converge towards the speed
K of light

2
n= 1-%%. (4.63)

Waves can propagate through a medium only if n? is larger than zero.
Thus electromagnetic waves can exist only if w > wp.. For transverse electro-
magnetic waves, the ordinary light waves, the cutoff frequency is the electron
plasma frequency, the plasma is opaque at lower frequencies.

For w < wpe an imaginary refraction index results. For a real frequency
an imaginary wave vector k would result. Such a wave would not propagate
but decay. The second solution, —ik, formally could be interpreted as wave
growth. Physically, however, this cannot happen: because we are considering
a cold, stationary plasma, the energy required for wave growth cannot be
drawn from the plasma. The cold plasma only can absorb the energy of a
decaying wave and cannot support wave growth.

Example 19. Electromagnetic waves can be used for plasma diagnostics in
space or in the ionosphere. For instance, the density of a space plasma can be
determined by detecting the radio signal of a satellite from another satellite
or a ground station. As the frequency of the radio signal is varied, absorption
sets in at the plasma frequency of the medium; thus the density can be
determined.

Another application is the measurement of the electron density in the
Earth’s ionosphere. Radio waves of variable frequency are sent from a trans-
mitter A to a receiver B, see Fig. 4.9. As the wave enters the ionosphere, it
is refracted according to Snell’s law. Thus from the travel time of a radio
pulse between transmitter and receiver we can determine the height at which
the ray path is bent down towards Earth again. From the geometry, we also

lonosphere / \

Fig. 4.9. The electron density in the
ionosphere can be determined from the
Ta 7B reflection of electromagnetic waves
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can determine the angle at which the electromagnetic wave enters the iono-
sphere and, from Snell’s law, the refraction index. The latter gives us the
plasma frequency and also the electron density. Ionospheric reflection is used
in short-wave communications because it allows us to send signals around
the Earth. With a maximum ionospheric electron density of about 10'2 m~3,
the critical frequency for reflection is about 10 MHz.

The experiment sketched in Fig. 4.9 can be simplified to a vertical geom-
etry in which the transmitter and receiver are located at the same position.
Total reflection of the pulse then occurs when the emitted frequency equals
the local plasma frequency, i.e. n = 0. The travel time of the signal gives the
height of reflection. Emitting at different frequencies over a broad frequency

) i 0] i ionospher i
In principle, this sounding experiment is very simple because reflection occurs
exactly at the point where the signal frequency is equal to the local plasma
frequency. But a small error remains: the electron density varies continu-
ously with height, leading to changes in the propagation speed of the wave.
Therefore, the estimate of the reflection height from the propagation time
is not exact. In reality, the situation becomes even more complex because
the electromagnetic wave propagates into a magnetized plasma and is split
into ordinary and extraordinary modes, both having different propagation

,,,,, 1. —

Speeds. L

Ezxample 20. The electron density in the quiet ionosphere at 120 km height is
about 2 x 10° cm ™3 (see Fig. 8.18). Reflection occurs for n = 0, that is, when
the local plasma frequency wpe equals the wave frequency. From (4.52) we
find f,e = 2.4 MHz. During a sudden ionospheric disturbance, the electron
density is increased by a factor of 3. Now the critical frequency for reflection
at 120 km height becomes 7 MHz. The 2.4 MHz wave reflected originally at
this height is now reflected at a lower height, and consequently its range of
propagation is reduced and the signal is not received where it was supposed

to be received: communication is inhibited. 0

4.6 Electromagnetic Waves in Magnetized Plasmas

As in the case of electrostatic waves, electromagnetic waves in magnetized
plasmas are characterized by the direction of the wave vector relative to the
background magnetic field By and the fluctuating electric field E.

4.6.1 Electromagnetic Waves Perpendicular to By

Let us start with an electromagnetic wave perpendicular to the undisturbed
magnetic field. The wave is assumed to be transversal, and thus & L FE,.
Two modes are possible: either the fluctuating electric field is parallel to By
(ordinary wave) or it is perpendicular to By (extraordinary wave).

(

N
>
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Ordinary Waves (E1||Bo). For E,||Bg the wave equation takes the same
form as in an unmagnetized plasma, leading to the dispersion relation

w? = wge + ck? . (4.64)

The propagation of ordinary or O-waves therefore is not influenced by the
magnetic field: in an ordinary wave, the fluctuating electric field is parallel to
B, and therefore the magnetic field does not influence the wave dynamics.

Extraordinary Waves (£, L Bg). If the fluctuating electric field is per-
pendicular to By, the electron motion is influenced by the magnetic field and
the dispersion relation has to be modified accordingly. As the wave propagates
perpendicular to By and E; oscillates perpendicular to By, the wave vector
k has components parallel and perpendicular to E;. The wave therefore is a
mixed mode of both a transversal and a longitudinal component. While the
ordinary wave is linearly polarized (E, only along By), the extraordinary
wave is elliptically polarized. The dispersion relation for the extraordinary
wave can be written as

21.2 2 2 .2
c“k _ Wpe W wpe_ 9

=1 P o2 (4.65)
w W W — w*

=
=

The influence of the magnetic field is contained in the upper hybrid frequency
(4.59). The dispersion relation for both ordinary and extraordinary electro-
magnetic waves is shown in Fig. 4.10. The hatched area indicates the stop
band separating two different modes of the extraordinary or X-wave.

A closer look at the refraction index (4.65) helps us to understand these
two modes. The refraction index becomes zero for

x W / w?
w(L,R) = :{:_‘29‘9 + wge + f 3 (4.66)

with ‘R’ and ‘L’ indicating right-hand and left-hand polarized waves.

The frequencies defined by (4.66) are cutoff frequencies: for lower fre-
quencies the refraction index becomes imaginary and the wave vanishes. The
ordinary wave has its cutoff at the electron plasma frequency. The refraction
index also can go towards infinity. This happens for very large wave numbers
(or very small wavelengths). The corresponding frequency can be found by
letting £ go towards infinity. This occurs when w goes towards the upper hy-
brid frequency wyy in the denominator of (4.65). As the extraordinary wave
approaches this resonance, its phase and group velocities approach zero and
the electromagnetic energy is converted into electrostatic oscillations. There-
fore, in Fig. 4.10 between the upper hybrid frequency wyn and the cutoff
frequency wg a stop band results where, because n < 0, the extraordinary
wave cannot propagate.

The existence of a stop band has an interesting application. Magnetized
plasmas are emitters of radio waves. Therefore, all planets emit radio sig-
nals. In the solar system, the largest radio source is Jupiter. While it is easy
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to detect these waves, their interpretation in terms of sources and excitation
mechanisms is difficult. The stop band, however, allows us to exclude one pos-
sible mechanism. The radio waves are excited close to the planet where both
the electron plasma frequency as well as the electron cyclotron frequency are
large. As the waves propagate outward, their frequency decreases. Extraor-
dinary waves excited at a frequency below the upper hybrid frequency will
encounter a stop band where wy, has decreased below the frequency of the
wave. Th ---------------- £ L £+l Plarntarr
radio waves observed at large distances therefore have not been excited as
extraordinary waves below the local upper hybrid frequency.

4.6.2 Waves Parallel to the Magnetic Field:
Whistler (R-Waves) and L-Waves

Let us now consider electromagnetic waves propagating parallel to By. These
waves are of particular importance in the magnetosphere because they can
propagate along B towards the ground. Again, two cases can be distinguished:
the right-hand and the left-hand waves. The dispersion relation becomes

2 1.2,.2
w 2’“ ¢ (1 + %) =1 (4.67)
Wae w
and the refraction index is
2.2 2/ ,2
n? = ek -1-— &/w_ . (4.68)
w? 1 4 Wee /w

In both equations the ‘+’ sign refers to the right-hand or R-wave. The electric
field of an R-wave rotates in the same way as an ordinary screw rotates: if
the thumb of the right-hand points in the direction of k, the curved fingers
point in the rotation direction of the electric field. Thus the R-wave rotates in
the same direction as an electron gyrates. The L-wave rotates in the opposite
direction, following the ion gyration. Thus both waves have a resonance. The
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R-wave has a resonance at w = wce. The electron gyrating around the mag-
netic field then experiences a constant electric field which, depending on the

phase between the electron and the field, either accelerates or decelerates it
cnnhmmnqlv This resonance is called rvr]nfrnn resonance, At this resonance

the phase velocity is zero and the wave does not propagate. The L-wave does
not resonate with the electrons because the wave field rotates in the direction
opposite to the electron gyration. Thus the L-wave has no resonance at high
frequencies, and its resonance is w = wg. The cutoff frequencies for L- and
R-waves are the same as for the extraordinary waves:

ce w2e
wiel — i“’z 1wl + = (4.69)

The dispersion relation for electromagnetic waves propagating parallel to the
magnetic field is shown in Fig. 4.11. Two cases can be distinguished: wpe < wee
(right panel) and wpe > wee (left panel). The main difference between these
cases is the cutoff for the left-hand mode: for wpe < wee the cutoff is below
the electron cyclotron frequency, while in the opposite case it is above. For a

constant cyclotron frequency these waves approach the n? = 1 line for high
frequencies. The R-wave has a stop band between wg and we.. The R-waves

vasla

in the lower frequency range also are called Whistler waves and are important
for propagation studies in the magnetosphere. Whistler waves can be excited
by lightning discharge. Thus the source has a short duration but creates a
wide spectrum of different frequencies. Since the propagation time depends
on the group speed, the first waves arriving at a distant observer have higher
frequencies than those arriving later, rather like a whistle with decreasing
pitch. The rate of frequency change contains information about the change
in plasma density along the propagation path.

(a) Wpe > Wee (b) Wpe < Wee

iny///m
-/

Whistler

o=
[y -

-

Fig. 4.11. Dispersion relation for electromagnetic waves propagating parallel to
the magnetic field in a cold magnetized plasma
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4.7 Summary

Table 4.1 summarizes the waves discussed in this chapter. In electrostatic
waves only the electric field fluctuates while the magnetic field either is static
or zero. In electromagnetic waves, both the electric and magnetic fields oscil-
late. The waves are further divided into electron and ion waves. In electron
waves the electrons oscillate while the ions create a uniform background.
Therefore, electron waves are high-frequency waves. In ion waves, both ions
and electrons oscillate. Because of the large inertia of the ions, ion waves are
low-frequency waves. The propagation of the wave depends on the orientation
of the wave vector k relative to the background magnetic field and relative
to the fluctuating electric field.

We should note that this set of dispersion relations is greatly simplified
in so far as it considers only waves propagating into the principal directions
perpendicular or parallel to the field. Waves propagating oblique to the field
are more difficult; however, often they can be understood as the superposition
of the two modes parallel and perpendicular to the field.

Table 4.1. Different types of plasma waves

Wave Geometry Dispersion relation Equation

Electron Waves (Electrostatic)

Langmuir waves By=0
or k|| Bo w? = whe + 3k%v3, /2 (4.55)
Upper hybrid waves k 1. By Wuh = wf,e + w2 (4.59)

Ion Waves (Electrostatic)

Ion acoustic waves By =20

or k||B w? = k*v? (4.57)
Ion cyclotron waves k 1 By w? = w? + k*0? (4.60)
Lower hybrid waves K 1 By Wi = Wi Wee (4.61)
Electron Waves (Electromagnetic)
Light waves By =0 w? = wge + k2c? (4.62)
O-waves k 1 By,

Ei||Bo w? = 2k® + wie (4.64)
X-waves k 1 By, w? =K%+

E, L By twle (wW? — whe)/(w? — wi) (4.65)
Whistler (R-waves) k| Bo w? =k — W /(1 — (wee/w))] (4.67)
L-waves k|| Bo w? = c?k? + w2 /1 + (wee/w)] (4.67)

Ion Waves (Electromagnetic)
Alfvén waves k| Bo w? = k?v3 (4.37)
Magneto-sonic waves k L Bo  w?® = c?k? (v +v3)/(c* + v3) (4.48)
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Some of these waves can be used for plasma diagnostics, with the sources
of the waves either being natural, such as in Whistler waves to study prop-
agation in the magnetospheric plasma, or artificial, such as radio waves to
probe the ionosphere.

Exercises and Problems

4.1. Explain, in your own words, the important quantities characterizing a
wave. What are group and phase speeds?

4.2. Show that in an electron plasma wave the energy contained in the elec-
tron oscillation exceeds the energy in the ions by the mass ratio m;/(Zim,).

4.3. On re-entry into the Earth’s atmosphere, a spacecraft experiences a radio
blackout due to the shock developing in front of the spacecraft. Determine
the electron density inside the shock if the transmitter works at 300 MHz.

4.4. Show that the maximum phase speed of a Whistler wave is at a frequency
w = Wee/2. Prove that this is below the speed of light.

4.5. Show that if a packet of Whistler waves with a spread in frequency
is generated at a given instant, a distant observer will receive the higher
frequencies earlier than the lower ones.

4.6. Show that if the finite mass of the ions is included, the frequency of
Langmuir waves in a cold plasma is given by w? = w2, + w2,

4.7. How would you use pulse delay as a function of frequency to measure
the average plasma density between the Earth and a distant pulsar?

4.8. Determine the Alfvén speeds and the electron plasma frequencies for the
situations described in Problem 3.12.

4.9. Use Fig. 4.4 to describe the properties of magnetohydrodynamic waves
propagating parallel to Bg for va > vs and va < vs.

4.10. Show that in an Alfvén wave the average kinetic energy equals the
average magnetic energy.

4.11. Discuss an Alfvén wave with k|| By. (a) Determine the dispersion rela-
tion under the assumption of a high but finite conductivity (the displacement
current nevertheless can be ignored). (b) Determine the real and the imagi-
nary parts of the wave vector for a real frequency.
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All animals are equal
but some animals

are more equal

than others.

G. Orwell, Animal Farm

Magnetohydrodynamics has treated the plasma as a fluid with all particles
moving at the same speed, the bulk speed. The thermal motion is ignored.
Space plasmas often are hot plasmas with the thermal speed by far exceeding
the flow speed. Thus thermal motion has to be taken into account and the
plasma has to be described by a distribution function which considers the
positions and velocities of the individual particles. The Boltzmann equation
gives the equation of motion for this phase space density.

5.1 The Distribution Function

Kinetic theory starts from the physics of individual particles (the microscopic
approach). The macroscopic phenomena then can be described by averaging
over a sufficiently large number of particles, an approach which also is used
in statistical mechanics. This formalism therefore is called the statistical de-
scription of a plasma.

5.1.1 Phase Space and Distribution Function

The mechanical properties of each particle are described completely by its
position and momentum. The phase space is a six-dimensional space defined
by the three spatial coordinates ¢, g2, g3 and the three generalized momenta
D1, P2, p3. Each particle is related unambiguously to one point in phase space:

Q = (91,92,93; P1,P2,P3) = (¢, P) - (5.1)

The speed of the particle in phase space, i.e. the combined change in its
position and momentum in ordinary three-dimensional space, then is
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dQ _ (dq1 dg2 dgs dp, dps dps) _ (dq dp) (5.2)

C=w "\ & a a de’ dt

For a plasma consisting of N particles, in phase space N such points exist. The
phase space density f(q,p,t) gives the number of particles inside a volume
element [(g;,q; + dq;), (s, p; + dp;)]. This density function is also called the
distribution function of the plasma. It is related to the particle density in
ordinary three-dimensional space by

+oc
t) = ] fla,p,t)d°p . (5.3)

The number density is used in the definition of averages which describe the
macroscopic properties of the plasma. If a(q, p, 1) is a function in phase space,
its average is defined as

@(a.0) = = [ ala.p.t) flap ) dp. (5.4

—00

The average or bulk speed of the plasma, for instance, is given as

u(g.t) = (v(q,t)) = n(; 5 /v(p,q,t)f(q,p,t)dg’p- (5.5)

Application of this averaging scheme to the equation of motion yields the
Vlasov equation (5.23) which is the basic equation of statistical plasma
physics and can be used to derive the MHD equations of two-fluid theory.

5.1.2 Maxwell’s Velocity Distribution

The average speed (v) of the particles in a plasma, as defined by (5.5), is
also the plasma flow speed u. The speeds v; of individual particles, however,
can be substantially different; in particular, speeds of individual particles can
exceed the flow speed by orders of magnitude. A plasma contains different
particle species s which all have their own average speed u,. If in an electron—
proton plasma the average speeds u, and u, are different, a current results.

To derive the velocity distribution of the particles, let us first determine
the kinetic energy contained in a volume element of the plasma. The kinetic
energy of the plasma flow is determined by the average speed u, while the
entire kinetic energy is the sum of the kinetic energies of all particles. Since
the latter is larger, there is also kinetic energy contained in the stochastic
motion of the particles, which can be described by

<m (v — u)2> _ Jm(v— uw)?f(r,v,t)dv - (5.6)

2 2 [ f(r,v,t)dv
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This “random” kinetic energy is related to the hydrostatic pressure by

% = % <%('v — us)2> ; (5.7)

where N is the number of degrees of freedom, normally three.
If the system is in thermal equilibrium, which in a hot plasma is not neces-
sarily the case, the velocity distribution is given by the Maxwell distribution:

f(r,v,t) =n (QWZT)3exp{—%LL)—2} (5.8)

where T is the plasma temperature and kp is the Boltzmann constant. Ac-
cording to (5.8), the relative number of particles with large stochastic speeds
|v —u| increases with 7. The distribution’s maximum is at the most probable
thermal speed vty:

2kpT
Ve = 4] o (5.9)
m

In a one-atomic gas in equilibrium, the temperature is related to the
kinetic energy of the stochastic motion by

(3m(v — u)?) = 3NksT . (5.10)

In a plasma, N normally equals 3. Even in a magnetized plasma N equals
3 because the particle speed is described completely by one of the triples
Vx — Ux, Vy — Uy, and v, —u, or vy}, vy —ul, and ¢y, the latter describing the
direction of the perpendicular speed relative to the gyro-center. Note that
the combination of (5.7) and (5.10) yields the ideal gas law p = nkpT'.

Occasionally, we are concerned only with particle speeds and not with the
direction of motion. This might be the case if the plasma is at rest, i.e. u
equals zero. The distribution function (5.8) then is

/j flr,v,t)d, v? dv = (4nf(r, jv|, t)v?) dv = g(r,v) dv (5.11)

where 2 is the solid angle. Equation (5.11) gives the number of particles inside
a volume element with speeds between v and v + dv. The function g(r,v)
gives the number of particles per velocity unit, again with speeds between
v and v + dv. For small speeds, this function increases with the square of v
while for large speeds it decreases exponentially (see upper panel in Fig. 5.1).
If not the speed, but only one component of the velocity is considered, the
distribution is symmetric around zero if the plasma is at rest (middle) or
symmetric around the flow speed in that particular direction if the plasma is
in motion (lower panel).
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0/ Distribution g(v,r) for the particle
speeds in a plasma at rest. (b) Maxwell
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5.1.3 Other Distributions

Not all particle distributions can be described by a Maxwellian. If the plasma
is not in equilibrium, normally no analytical distribution function exists, al-
though often distribution functions are reasonable approximations.

For instance, if a plasma has a marked difference in the speeds parallel and
perpendicular to the magnetic field, the distribution can be approximated by
a bi-Maxwellian, that is the product of two Maxwellians, which take into
account the different speeds and temperatures of the two motions:

[ s \ 3

f(r,v,t) = \/(2:1;13) TLn\/ﬂ

m(v) —u))? | m(vy —uy)?
AN el T _ . (5.12
X exp { 25T exp P (5.12)

The average kinetic energies parallel and perpendicular to the field are
<%m(v;| — u”)2> = %kBJ—hS and (—;—m(vL - ’U,L)2> = k‘BTL . (5.13)

Here the difference in the number of degrees of freedom for the parallel and
perpendicular motions becomes obvious: there is one degree of freedom par-
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Fig. 5.2. Bi-Maxwellian distributions often found in space plasmas

allel to the field while there are two perpendicular to it. Equation (5.13) can
also be used to define the pressure perpendicular and parallel to B.

The bi-Maxwellian (5.12) is a typical anisotropic distribution function
of the form f(vy,v)). This kind of distribution function is the one most
commonly found in space plasmas. It is an essentially two-dimensional and
gyrotropic velocity distribution: it does not depend on the phase angle of the
gyromotion. Figure 5.2 shows contour-plots for different (bi-)Maxwellians:
the isotropic distribution (left) is characterized by circular contours. In the
anisotropic Maxwellian, the contours are deformed into elliptical shapes. In

this example, the deformation is such that it corresponds to 7} > T . During
magnetic pumping (example 9) we have a continuous change from an isotropic
to an anisotropic distribution and back. Special distributions arise if either w
or u, vanishes in (5.12). For instance, a plasma might drift perpendicular to
the magnetic field, such as in the case of crossed electric and magnetic fields.
Then u) vanishes and a drifting Maxwellian results (see Fig. 5.2). If the drift
velocity is large compared with the thermal velocity, such a distribution is
called a streaming distribution. If the distribution drifts along the magnetic
field at speed u|, and u, vanishes, it is a parallel-beam distribution. Such
distributions are frequently encountered in the auroral regions of the mag-
netosphere and in the foreshock regions of planetary bow shocks. The last
sketch in Fig. 5.2 illustrates a loss cone distribution, where particles with
sufficiently small pitch angles are lost from the magnetospheric population.

Occasionally, the particle distribution can be described by a Maxwellian
up to a certain energy. At higher energies the particle distribution can be fit-
ted much better by a power law than by the exponential decay of the Maxwell
distribution. Here the kappa distribution, sometimes also called Lorentzian
distribution,

o s m \° | m(v —u)? —rd 5.14)
o0 =2y () R &

can be used as an approximation. The parameters « and E7 are characteris-
tics of the distribution, with ET being closely associated with the temperature
T and k describing the deviation of the distribution from a Maxwellian. For
energies F/ > kF7, the distribution decays more slowly than a Maxwellian
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and can be approximated by a power law in kinetic energy: f(FE) = fo E~*.
If k converges towards infinity, the distribution is a Maxwellian with temper-
ature kT = E7. Note that for the kappa distribution, as well as for all other

non-Maxwellian distributions, (.5i]_0) cannot be applied.

5.1.4 Distribution Function and Measured Quantities

While the distribution function is important for our theoretical treatment of
(space) plasmas, it is a quantity which cannot be measured directly. Instead,
observations give the differential flux J(E, §2,r,t) of particles within a solid
angle df2 and an energy interval (E, E + dE). Thus the quantity

J(E, 2,7,t)dAdNRdtdE

is the number of particles in the energy band from FE to E 4+ dE coming from
the direction §2 within a solid angle df2, going through a surface dA per-
pendicular to df2 during the time interval d¢. The differential flux therefore
can be measured in units of particles per (m? sr s MeV). Since J depends on
£2, it can also be interpreted as the angular distribution of the particles. On
a rotating spacecraft, often the omnidirectional intensity is measured. The
latter can be obtained by averaging over all directions:

Jomni(F, 7, 1) = 117; fJ(E, 2,r.t)d? . (5.15)

The number density of particles with velocity v in a phase space element
is given as dn = fv?dwvdf2. Multiplication by v gives the differential flux

of particles with velocity v as f(v,p,t)v3dvds2. Comparison with the same
quantity expressed by the differential flux yields

J(E, 2,7, )dEd2 = f(r,p,t)v3 dvde2. (5.16)

Since the energy is related to speed, dE is related to dv by dF = muvdv. The
relation between the differential flux and the distribution function therefore
can be written as

T
i.__l
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5.2 Basic Equations of Kinetic Theory

As mentioned above, the equation of motion in kinetic theory can be de-
rived by applying the averaging scheme (5.4): the Boltzmann equation is the
fundamental equation of motion in kinetic theory; the Vlasov equation can
be applied if the forces are purely electromagnetic; and the Fokker-Planck
equation also considers scattering.
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5.2.1 The Boltzmann Equation

The Boltzmann equation is the fundamental equation of motion in phase
space. It is not limited to plasmas, and the only assumption inherent in the
Boltzmann equation is that only external forces F' act on the particles while
internal forces vanish: there are no collisions between the particles.

The Boltzmann equation is a direct consequences of the equation of con-
tinuity in phase space:
g—{—l—Vg-(fC):O or %%—Vr-(vf)—l-vv-(af):O, (5.18)
where Vg, V,, and V, are the divergence in phase space, in ordinary space,
and in momentum space, respectively, and v and a are velocity and accelera-
tion. In phase space, r and v are independent variables. If we further assume

that the acceleration a, and therefore also the force F', is independent of v,
(5.18) can be simplified:

af af F of
Equation (5.19) is called the collisionless Boltzmann equation. It also can be

written as
df B

dt
which states that the convective derivative of the phase space density is al-
ways zero for a collisionless assembly of particles. Thus for an observer moving
with the flow, the phase space density is constant. Or, in other words: the
substrate of points in phase space behaves like an incompressible fluid. This
is also called Liouville’s theorem.
The general form of the Boltzmann equation can be written as

of F of (of
a5 20

0, (5.20)

where the term on the right-hand side is the rate of change in phase space
density due to collisions (see below).

If changes in f due to collisions are small, e.g. in the case of a thermody-
namic equilibrium, the reduced Boltzmann equation can be written as

of B
(‘5{)4:011 -0 (522)

The solution of this equation is the Maxwell distribution.
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5.2.2 The Vlasov Equation

The Vlasov equation is the application of the Boltzmann equation to a plasma
on which only electromagnetic forces act. These forces are described by the
Lorentz force (2.23). In the derivation of (5.19) we have made the assumption
of a force independent on v. At first glance the Lorentz force violates this
assumption and therefore should not be considered in (5.19). Closer inspec-
tion, however, shows that this is not true. Since the Lorentz force contains the
cross product of speed and magnetic field, the resulting force is perpendicular
to the speed. Thus each individual component of the force does not depend
on the same component of the velocity. Since in (5.18) a scalar product is
considered, the only derivatives of a are of the form da, /v, and therefore
vanish. Thus the Lorentz force can be inserted into (5.19):

of vx B ) of

q
E-J—’U-Vf-l—Tn(E-i' - Fl

0. (5.23)

Equation (5.23) is called the Vlasov equation. Because of it simplicity, this is
the equation most commonly studied in kinetic theory.

The Vlasov equation is derived under the assumption of non-interacting
particles. On the other hand, interactions are the very essence of a plasma.
Thus we have to discuss whether the Vlasov equation can be applied as often
as it is. As we shall see, the Vlasov equation is a valid approach. It does not
consider collisions in the sense of short-range, local interactions, such as col-
lisions between two billiard balls or Coulomb collisions between two charged
particles. Nonetheless, that kind of interaction, which is essential in a plasma,
is considered: each particle moves in the average Coulomb field created by
thousands of other particles. Thus the fields in the Vlasov equation are due
to the rest of the plasma and describe the interaction of the particles. These
fields often are called self-consistent fields. External fields can be included
in (5.23), too. Since the fields ¥ and B are determined by the rest of the
plasma, they depend on the distribution function f.

The Vlasov equation thus is non-linear; analytical solutions in general
are not possible. But Jeans’ theorem identifies some solutions. It states: any
function of the constants of motion is a solution of the Vlasov equation. For
instance, if there are no electric fields, the kinetic energy is a constant of
motion. Thus any function of mv?/2 is a solution of the Vlasov equation. In
particular, the Maxwell distribution (5.8) is a solution.

Jeans' theorem therefore shows the equivalence of kinetic theory and or-
bit theory. Following an approach given by Boyd and Sanderson [58], this
equivalence can be shown easily. The basic equation of orbit theory is New-
ton’s second law F' = md?r/dt. This is a second-order differential equation
in three dimensions and therefore the general solution must contain six con-
stants of integration, 71, ..., ¥s- Thus the solutions of Newton's second law
can be written as r = r(vy1,..., %6, t) and v = v(71,..., 76, t). These six scalar
equations can be solved in principle to give the v;: v = v;(v,r,t). Jeans’
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theorem then states that each function f = f(7v1,...,7s) is a solution of the
fundamental equation of kinetic theory, the Boltzmann equation (5.19). This
can be seen easily by inserting the ~; into the Boltzmann equation:

"O; F oy af dvi
;(Gt Vit ) Za% =0 (5.24)

The result is identically zero because the +; are constants.

5.2.3 The Fokker—Planck Equation

In contrast to the Vlasov equation, the Fokker—Planck equation considers the
short-range, local interactions between particles. Collisions arise from many
small Coulomb interactions between charged particles (see Sect. 5.3.2). The
collision term has its mechanical analogy in the Brownian motion of particles
in a gas; however, both are not equivalent as will be discussed below.

Collisions are not a deterministic but a stochastic process. Thus for a
given particle, although we might know its momentary position and velocity,
we cannot determine its future motion. Only for an assembly of particles
the collective behavior can be determined. This can be done by means of
probabilities. Let (v, Av) be the probability that a particle with velocity v
after many small collisions during a time interval d¢ has changed its velocity
to v + Aw. The phase space density f(r,v,t) also is a probability function.
At a time t it can be written as the product of the phase space density at an
earlier time ¢ — At multiplied by the probability of changes during this time
interval and integrated over all possible velocity changes Aw:

f(r,v,t) = ff(r,v — Av,t — At) ¥(v — Av, Av) d(Av) . (5.25)

Since we only consider scattering by small angles, i.e. |Av| < |v|, Taylor
expansion to second order of the product fv yields

flr,v,t) = / [f(r,v,t — At) (v, Av) — Av - 8(5:/’) d(Av)
vAv 2
I o

Note that the ® in the last term indicates a product between two tensors.!

The resulting matrix is the Hess matrix.
Because some interactions always take place, the probability can be nor-
malized to [ 1d(Av) = 1. Equation (5.26) than can be simplified to

o (dv)) 1 0
ov 2 Jvdv

! The product S@ T of two tensors S and T itself is a tensor and can be obtained
by application of the rules of matrix multiplication.

flr,v,t) = f(r,v,t—-At) — ® (f(AvAv)), (5.27)
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with

(Av) = /1/)Av d(Av) and (AvAv) = /Q/JA’UA’Ud(A’U). (5.28)

By definition, the collision term as written down in (5.21) is

af __f(T,’U,t)—“f(T,'U,t—'-At)
(7)., ol | o
Thus the Fokker-Planck equation can be written as
af d 1 62
— =——- — AvAv)) . 5.30
(3)  At= =g () + o o (f(avav) . (530

The first term on the right basically contains {Av)/A¢, which is an accelera-
tion. Thus the term describes the frictional forces leading to an acceleration
of the slower and a deceleration of the faster particles, which tends to equalize
the speeds. The negative divergence in velocity space describes this narrowing
of the distribution function. The second term, {AvAwv)/At, is a diffusion in
velocity space. This term describes the broadening of a narrow velocity dis-
tribution, e.g. a beam, as a result of the collisions. The two terms therefore
operate in the opposite sense. They are in balance in an equilibrium distri-
bution, e.g. the Maxwell distribution. The physics of the collision processes
is contained in the probability function .

Equation (5.30) also can be written as

of - Y, -
(—67)0011 A==V (B ) (31

with the diffusion tensor D derived from the first- and second-order fluctua-
tions of the particle velocity.

Figure 5.3 shows the evolution of a suprathermal distribution of particles.
At time £y the particle distribution is a parallel beam of uniform speed. Since
the particles are much faster than the plasma, at early times (¢, and 5) pitch
angle scattering dominates, and the distribution spreads towards larger pitch
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\ 2, Fig. 5.3. Evolution of a
—o— suprathermal distribution of

M particles from a monoener-
getic beam at time tp towards
an isotropic ring distribution

at later times t3
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angles, leading finally to an isotropic ring distribution around the origin (¢3).
With increasing time, friction and energy losses become important and the
ring distribution contracts towards the origin. This is an example of a more
general rule of thumb: the faster a particle moves through a plasma, the
smaller is its frictional drag.? This longevity property allows the existence of
suprathermal particles as a distinet population in some cosmic plasmas. For
instance, galactic cosmic rays or solar energetic particles both are long-lived,
distinct particle populations in the solar wind; the radiation belt particles are
a distinct population in the terrestrial plasmasphere. Obviously, these plas-
mas can not be described by a Maxwellian. Instead, the kappa distribution

gives a quite reasonable description.

5.3 Collisions

We have mentioned collisions twice in this chapter. In Sect. 5.1.2 we intro-
duced the Maxwell distribution. The basic requirement for such a distribution
is thermal equilibrium, which requires collisions between the particles. If we
have a distribution with a suprathermal tail, such as the kappa distribution,
in time collisions will transform it into a Maxwellian. This time scale de-
pends, of course, on the time scales of the collisions. We have also mentioned
collisions in connection with the Fokker—Planck equation. We have even men-
tioned that the collisions should lead to small changes in speed only. But we
did not talk explicitly about the nature of these collisions. This section is
supplementary, briefly introducing some of the basics of collisions.

Collisions are also important in the energy transfer between different com-
ponents in a plasma: imagine a plasma which also contains neutral particles.
The charged particles might be accelerated by an electric field. In time, col-
lisions between charged and neutral particles will equalize the two distribu-
tions, leading to an acceleration of the neutrals.

As in a neutral gas, collisions in a plasma change the path of the individual
particle. In a magnetized plasma, collisions between a charged particle and
a neutral can shift the gyro-center of a particle onto another field line (see
Fig. 5.4). Collisions between charged particles can also lead to a shift in the
gyro-center and /or changes in pitch angle.

5.3.1 Collisions Between Neutrals

Collisions between neutral particles give rise to the Brownian motion in a
gas. The individual process is a collision between two hard spheres. The hard

2 Graphically this can be understood from the fact that with increasing particle
speed the time available for interaction between the energetic particle and a
particle of the background plasma decreases; a more formal explanation is given
in Sect. 5.4,
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Fig. 5.4. Collisions in a plasma can shift the
gyro-center of a particle onto another field line,
here llustrated for a collision of a charged par-
ticle with a neutral one

sphere model is a simple and quite useful approximation. The full treatment
of the collisions between neutrals requires a quantum-mechanical approach
considering the attracting van der Waals forces and the repulsing Coulomb
forces of the electron shells of the two atoms. The van der Waals potential
varies roughly with %, the repulsing potential with r~12 [569]. Combination
of both leads to an extremely steep potential surrounded by a very shallow
potential depression in the order of meV compared with the typical eV range
in molecule formation. A hard sphere therefore is a reasonable approach to
describe the collision of neutrals.

The basic equations are the conservation of momentum and the conser-
vation of energy. The changes in momentum and direction depend on the
masses and speeds of the particles and on the angle between their veloci-
ties. The change in momentum is largest in a head-on collision: when mass is
equal, the particle loses twice its initial momentum as its velocity is reversed.
Thus scattering by a large angle up to 180° is possible in collisions between
neutrals.

The relevant parameters to describe the scattering process are the mean
free path and the scattering cross section. The particle mean free path A is
defined as the average distance travelled by a particle between two subsequent
collisions. If we could follow a smoke particle in air, we would detect a path
similar to the one depicted on the left-hand side of Fig. 5.5. The statistical
motion is composed of many straight lines with different length L. The right-
hand side of Fig. 5.5 shows the distribution of these L. This probability
distribution can be described by a function p(L) = a exp(—L/A) with a
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being a constant depending on the total number of collisions and A being the
particle mean free path.

The number of collisions, and therefore the mean free path, depends on the
number density of particles and on their ‘size’ as described by the scattering
cross section. Consider a fast particle with radius r; moving in a gas of slow
particles with radii r2. A collision happens if the distance between the two
particles has decreased below r; + rp. Alternatively, we can assume the fast
particle to be a mass point. Then we have to attribute a radius of r{ + 7, to
the gas molecules. Thus for the fast particle, a gas molecule is equivalent to
a disk with the scattering cross section o = (71 + r2).

Now consider a beam of particles incident on a slab of area A and thick-
ness dz. The number density of molecules in this slab is ng, the total number
of molecules in the slab is ngAdz. The fraction of the slab blocked by atoms
therefore is onsAdz/A = ongdz. Out of N particles incident on the slab,
AN = Nngodz will experience a collision, leading to a reduction in N ac-
cording to dN/N = —ong dz. Integration yields

N(z) = Ny exp(—ongzx) = Ng exp(—z/A), (5.32)

(5.33)

Thus, the mean free path can also be interpreted as the distance over which
the number of particles decreases to 1/e of its initial value. After travelling a
distance X, the particle will have a high probability of colliding. The average
time between two collisions is

r=- = : (5.34)

This also can be written as a collision frequency v.:
Ve = nso{v) . (5.35)

The formalism for interactions between a charged particle and a neutral
is the same as for a collision between two neutral particles.

5.3.2 Collisions Between Charged Particles

Collisions between charged particles do not require a direct contact, instead
the interaction takes place as each particle is deflected in the electric field of
the other one. Since the Coulomb force has a long range such an interaction
leads to a gradual deflection. Nonetheless, one can derive a kind of cross
section for this process. Following the attempt given in Chen [97], we shall
only make an order-of-magnitude estimate.
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Fig. 5.6. Coulomb scatter-
ing: orbit of an electron in the
Coulomb field of an ion

The geometry of a Coulomb collision is shown in Fig. 5.6: an electron
with velocity v approaches an ion with charge e. If no Coulomb force acts,
the electron will pass the ion at a distance rg, the impact parameter. But
the Coulomb force F' = —e?/(4nr?) leads to a deflection of the electron from
its original direction by an angle ¢. The force acts on the electron for a
time T = 7¢/v when it is in the vicinity of the ion. The change in electron
momentum then can be approximated by Ap = |FT| =~ €2/(4nrqv). For
a 90° collision, the change in momentum is of the order of mv. Thus it is
Ap = my = e?/(4rrgv). A deflection by 90° results for an impact parameter
roge = €2 /(dwmu?). The cross section for a deflection of at least 90° therefore
can be written as

4
e
T~900 = WT% = m y (536)
leading to a collision frequency of
4
ne
Vei,>90° = NOV = m . (537)

In a real plasma the situation is more complex. Let us consider the motion
of one particle, a test particle, in the field created by the other particles, the
field particles. The fields of these particles add to a stochastic field that
changes continuously in time and space. Therefore, the test particle will not
move in a hyperbolic orbit as in the interaction between two charged particles,
instead it basically follows its original direction of motion, though not on a
straight line but on a jittery trajectory. Because of the stochastic nature of
the collisions, test particles with nearly identical start conditions will diverge
in space and velocity. Most of these collisions result in small changes in the
particle path only. Occasionally, also large deviations of the original direction
result. These are called large-angle collisions.

To understand the different types of collisions, we have to consider the typ-
ical spatial scales. One characteristic scale is the Debye length Ap (3.146): the
test particle is screened from the electric field of the charges outside the De-
bye sphere. The Debye length can be interpreted as the range of microscopic
electric fields and separates the field particles into two groups: (i) particles
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at distances larger than the Debye length can influence the test particle by
the macroscopic fields only, leading to gyration, drift, and oscillations; and
(ii) particles inside the Debye sphere create a microscopic field leading to the
stochastic motion of the test particle.

The other spatial scale is related to the scattering angle, which in turn
is related to the impact parameter. In the derivation of the Fokker-Planck
equation we have assumed scattering by small angles only. The deflection
angle will be small if the kinetic energy mTv% /2 of the test particle is large
compared with the electrostatic potential ZyZpe? /7o, where 7y is the impact
parameter (see Fig. 5.6). The test particle will be deflected by a small angle
only if the impact parameter ry fulfills the condition rgpe < 19 < Ap, with

— Tgpo being the impact parameter for a deflection by 90° defined as rgpe =
ZyZre?/(mtva). The ratio for deflections by small and large angles can be
determined from the ratio of cross sections for both processes:

2 _ g2 2 9 \2/4 2
AD 5 TQO < AD ~ ( ) (-—ﬂ-n)\%) = A2 . (538)

Tg9p0 - Tgoo ZTZF

The expression inside the second parentheses is the number of particles in-
side a Debye sphere. If we assume this number to be large, (5.38) states

that collisions leading to deflections hv a small angle hv far outnumber the
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collisions with large-angle deflection. A careful calculatlon shows that small-

angle interactions are about two orders of magnitude more efficient in the
deflection of test particles than the few large-angle interactions fd?] Thus,

the Fokker-Planck formalism can be applied to the Coulomb colllslons in a
plasma too. The logarithm of the above quantity, A, = In A, is called the
Coulomb logarithm.

5.4 Collisions Between Charged Particles: Formally

We will now have a closer look at the formal treatment of collisions, following =0
[281].

5.4.1 Coulomb Collisions: Unscreened Potential

Again we assume a test particle (this time not necessarily an electron) with
speed vr, mass mr, and charge gr approaching a stationary background
particle of charge gg and mass mg. The geometry is as in Fig. 5.6, and the
impact parameter is ry. The potential energy of the test particle is W r =
grPc, where & is the undisturbed potential of the background charge. Then
we can also write for the potential energy

qar4s
dmeg

Wer = % , where a= (5.39)
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The angle of deflection ¢ is given by

T o° o
tan £ = —9——, where 7rgge = o

2 r mTvS

(5.40)

is the impact parameter for a deflection by 90°. The minimum distance din
of the particle from the background particle and its speed v, at this position
can be derived from the conservation of angular momentum,

MTUTT0 = MTVmin@min (541)
and the conservation of energy,

2 2
mTQ?JT _ mT;Jmm + WC,T(dmin) ’ (5_42)

to be

o+ /a? + mirgug
mTva '

(5.43)

dmin =

Depending on the charge of the background particle, o can be positive or

negative, and we obtain the following for the minimum distance dy;, in the
case of a deflection by 90°:

dgq"-’ _ (\/§ + 1)7"900 fora >0 . 5 44
mm { (\/§ — 1)7‘900 fora <0 ( )

The corresponding potential energies are

2
W, 90° y _ mTUT/(\/i-l— 1) fora>0 _ '
C,T(dmm) {mTU%/(\/i— 1) for a < 0 (5 45)

If we assume that the potential energy is equal to the thermal energy Wy,
the minimum distance between charged particles in a plasma is

T4B
dmeoWin
In an ideal plasma, this distance is
dmin < 7" Y3 < Ap . (5.47)

The cross section o defines a circle with the impact parameter ry as its
radius. The differential cross section do is related to a deflection by an angle
dy or to a deflection into a solid angle d§2 = 17 sin ¢ dp. With (5.40), we then
obtain the following for the differential cross section for Coulomb scattering:

do 1 2
— =’ . 0.48
a =~ “ <2mTv% sinz(cp/?)) (548)
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Note that the differential cross section does not depend on the sign of the
charges: the cross section is the same if both have the same sign or the
opposite sign. Only the hyperbolic path of the particles is different, not the

deflection angle .
A =} T

For a large impact parameter 7y, the deflection angle diverges as ¢~%. In
addition, the total cross section for interaction tends towards infinity:

OC. unser == —df2 =0c. (5.49)

This infinite cross section is reasonable for a single charge that deflects an-
other one, in a plasma, however, the screening of the Coulomb potential has
to be taken into account.

5.4.2 Decelerating Force Between Particles (Drag)

In addition, the significance of an infinite cross section is not clear: although
even at large impact parameters defiection occurs, this might be of minor
importance, since the defiection angle is small. Thus we have to find a method
to describe the impact of background particles on a beam of test particles.
For a first approximation, we assume only one background particle, with
infinite mass and at rest. The particle beam is described by its number density
nt and the particle parameters of velocity vr, mass mT, and charge gr.
Owing to symmetry, momentum is transported only in the direction of vT.
During elastic scattering at a fixed obstacle, the magnitude of the velocity is
conserved, and we obtain the following for the change in velocity dv:

|dv| = 2ur sin(p/2) . (5.50)
In addition, we have (see Fig. 5.7)
[6ue,)| = 2vt sin(p/2) cos(y/2) , (5.51)
| tan(p/2) 2y
Sy, = —2 2(¢/2) = —2 = 2ur 22 (5.52
Utz vt sin(p/2) VT Cnl2/2) + 1 T (5.52)
(S’Ut r = 2?)1;% COs @ , (553)
’ 7300 + 70
I,y = 204 TOT90°  sing . (5.54)
’ r3os + 75
r
oY :
2y i --@'E' dv,
=
Zen)
v - L Fig. 5.7. Changes in velocity
dv,, during a Coulomb collision
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The number of particles streaming through a ring with area do during
a time interval d¢ is dNt = nyvr dodt. The decelerating force Fr , from
the background particle acting on the test particles can now be obtained by
integrating over all rings do:

dNT
For = Ot , 5.55
t = MT f Uz Godi (5.55)

Using the differential cross section (5.48), this can be rewritten as

k3

mnta’ sin drnra?
lim —_— = —

mr 'U% Pm A(J(p
m

th:"'

y

@ = lim In (sin f-l—n-) .
sin(p/2) MTUE  Pm—0 2
{(5.56)
This quantity is logarithmically divergent for ¢, — 0: the drag force due to
a background particle in an unscreened Coulomb potential diverges towards
infinity.

We have already introduced the Debye length in Sect. 3.7 as a parameter
that basically describes over what distance a certain charge influences other
charges. Using the Debye length, a screened potential or reduced potential
®p can be introduced, which is related to the unscreened Coulomb potential
¢ by

Bp(r) = Po(r)e /0, (5.57)

Although the screened potential decays faster than the Coulomb potential, it
still extends to infinity. To describe the influence of the screened potential we
make the following simplification: for scattering with an impact parameter
o < AD, the potential is assumed to be @¢, while for ro > Ap, the potential
vanishes. In this case, the smallest deflection angle yn, is given by

¥©m T90e
tan — = . 5.58
an £% = (5.58)

In an ideal plasma, we therefore have

m
1n(sin—""2—m)_—1n’\" L4760 /0D o 1 AD L 4L (5.59)

7900 rg0e

where In A is the Coulomb logarithm.

Equation (5.59) can also be derived from (5.56) by choosing the upper
integration boundary as /2 instead of #: in this case scattering is limited to
deflection angles less than or equal to 90°.
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We then obtain the following for the drag force:

TB

(& nrt
F,=-24 :
t,’z mTU% ’ (5 60)

where )
AD 47!'60 mrUT

a1 a5
=T824 and InAd=In

- dmed lgTgs|

We have already mentioned that the drag force caused by the background
plasma decreases with increasing particle speed. In this case we have a back-
ground plasma of particle density np containing particles with velocity vg
and mass mp. A test particle then experiences a drag force that is determined
by the reduced mass of the particles

(5.61)

mrp = —— D (5.62)

(5.63)

A useful approximation to this equation is

1
5 -

(5.64)

~
t,z ™~

The basic result is, as stated before, that the drag force exerted by the back-
ground plasma decreases with increasing particle speed. In addition, the drag
force is larger for electron—ion collisions (mtg &~ m,) than for particles of
equal mass (mrp = m/2).

5.5 Summary

Kinetic theory describes a plasma as an assembly of particles with statisti-
cally distributed properties. The basic quantity is the phase space density. In
thermal equilibrium it is described by the Maxwell distribution. The equa-
tion of continuity for the phase space density allows the derivation of the
basic equations of kinetic theory: the Boltzmann equation in its most general
form or as collisionless Boltzmann equation. For a pure electromagnetic field,
the collisionless Boltzmann equation becomes the Vlasov equation. If colli-
sions lead to small-angle deflections only, the collision term in the Boltzmann
equation can be described by the Fokker—Planck equation. Despite the lim-
itation to small-angle collisions, the Fokker—Planck equation can be applied
to a plasma: while Coulomb collisions can lead to large-angle deflection, these
are outnumbered by the small-angle deflections.
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Exercises and Problems

5.1. Describe the meaning of
ormal differences in a neutra

5.2. The solar wind is a proton gas with a temperature of about 1 million K.
Plot the distribution function and determine the most probable speed and
energy. Compare with the flow speed of 400 km/s and the kinetic energy
contained in the flow.

5.3. A spacecraft measures the proton distribution in the solar wind. Above
an energy of about 20 keV, the distribution can be described as a power law
in E with E~*. Plot the distribution and compare with the results of Problem
5.2. What kind of distribution is this?
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6 Sun and Solar Wind:
Plasmas in the Heliosphere

... but it is reasonable to hope that in not too distant a
future we shall be competent to understand so simple a

thing as a star.
A.S. Eddington, The Internal Constitution of the Stars'

Plasmas in interplanetary space originate from the Sun, as do most of the
disturbances and waves embedded in them. The solar atmosphere, the corona,

extends as solar wind far beyond the orbit of the outermost planet, Pluto,
filling a cavity in the interstellar medium called the heliosphere. The solar
magnetic field, frozen-in into the solar wind, is carried out and wound up
to Archimedian spirals by the Sun’s rotation. Fluctuations and waves on
different scales are superimposed, sometimes steepening to collisionless shock
waves. The solar wind and the frozen-in magnetic field change during the solar
cycle due to systematic changes in solar properties and transient disturbances
related to solar activity. Detailed accounts on solar physics and the physics
of the interplanetary medium are given in e.g. [113,484,572], and the solar
corona and the physics of solar activity are described in e.g. [9,193,244, 291,
410,420,424].

6.1 The Sun

For an astrophysicist, the Sun is an ordinary star of spectral class 2, also
called yellow dwarf, and luminosity V. It consists mainly of hydrogen (about
92% in terms of particle number or 72% in terms of mass) as the fuel for so-
lar energy production and helium (about 8%), partly primordial and partly
waste product of the energy generation. But the Sun is also more interesting
than other stars: owing to its close proximity, we are able to study not only
its electromagnetic radiation but also solar emissions of a different kind —
plasmas and energetic particles. These not only can be studied for the quiet
or average Sun but also for their dependence on the solar cycle, their re-
lation to certain features on the Sun, such as sunspots and filaments, and

! Copyright 1926, reprinted with kind permission from Cambridge University
Press.
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Table 6.1. Properties of the Sun

Radius rm = 696 000 km
Mass Mo =1.99 x 10°° kg
Average density 0o = 1.91 g/cm?
Gravity at the surface go = 274 m/s?
Escape velocity at the surface Vesc = 618 km/s
Luminosity Lo = 3.86 x 10°% kW
Magnetic field

polar 1G
general some G
protuberance 10-100 G
sunspot 3 000 G
Temperature

core i5 million K
photosphere 5780 K
sunspot (typical) 4200 K
chromosphere 4400-10 000 K
transition region L0 000-800 000 K
corona 2 million K
Sidereal rotation

equator 26.8 d
30° latitude 28.2 d
60° latitude 30.8 d
75° latitude 31.8 d

their association with the violent processes of the active Sun. Many of these
emissions are of interest to the layman, toc, because they shape and influence

our environment, from the a,tmosphere and the weather down to the realms
of biology and physiology (Chap. 10). The basic properties of the Sun are
summarized in Table 6.1.

Most of the Sun’s emission is electromagnetic radiation, amounting to
3.86 x 10?3 kW integrated over its surface or 6.3 x 10* kW /m?. With Stefan-
Boltzmann’s Law an effective temperature g of about 5780 K results. At
Earth’s orbit, the solar constant, which is the solar power received per unit
area, is 1380 W/m?. The solar radiation can be divided into five frequency
bands: (a) X-rays and extreme ultra-violet (EUV) with A < 180 nm con-
tributes to about 1073 of the total energy output. It is emitted from the
lower corona and the chromosphere, and varies during the solar cycle with
enhancements up to orders of magnitude during solar flares. (b) Ultra-violet
with wavelength between 180 and 350 nm contributes to about 9% of the
solar flux. It is radiated from the photosphere and the corona, its variations

are similar to the ones in X-rays, although they are smaller. (c) The visible
]lﬂ‘ht l’\ﬂfﬂrﬂﬂn QKQ and 7A0 nm nnnf‘lﬂ}\nfﬂc to Aﬂ07 +thao anarov fn nd dnoc
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not vary significantly with the solar cycle. Only in extremely strong flares a
local brightening can be observed. (d) The maximum energy flux of 51% is
in the infrared between 740 nm and 107 nm, showing no significant variation
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with solar activity. As the visible light, it is emitted from the photosphere. (e)
Radio-emission above 1 mm, originating from the solar corona, contributes
to only 10719% of the solar energy flux, but can be enhanced significantly
during solar flares.

6.1.1 Nuclear Fusion

The source of the Sun’s energy is nuclear fusion. This idea goes back to
Eddington in 1926 [143] and replaced Lane’s concept of 1869 which saw the
energy source in the Sun’s gravitational contraction.

Inside the Sun the basic process of nuclear fusion is the proton-—proton

cycle: four protons merge to one *He-nuclei (a-particle). In the first step, two
protons merge to a a deuteron 2T—T emitting a positron and a neutrino. In the

second step, a proton collides and merges with the deuteron, forming a *He-
nuclei under emission of a y-quant. When two *He-nuclei collide, they merge
to an a-particle, emitting two protons and a y-quant. The mass difference

between the four protons and the a-particle corresponds to an energy of
4.3 x 10712 J or 26.2 MeV. Formally, the reaction can be written as

'H(p, e ve)*D(p,y)°He(*He, 2py)*He + 26.2 MeV . (PPI)

Under solar conditions, half of the hydrogen initially present is converted
into deuteron within 10'° years: for two protons to merge, their distance
must decrease below a proton radius and one of the protons has to undergo

spontaneous 3-emission. The life-time of 2H is only a few seconds, it immedi-
ately captures another proton The time scale for the fusion of the resulting

3He—nucle1 is about 10° years. Thus the time scale of the proton-proton cycle
basically is determined by the first step, the fusion of two protons.
The last step in the PPI cycle can be replaced by one of the two reactions:

SHe(r,y) " Be(e ™, ve) Li(p,v)*Be(a)*He + 25.9MeV (PPII)

or
3He(a, v) Be(p,v)*B(e* ve)*"Be(a)*He + 19.5MeV . (PPIII)

In both cases the 3He-nucleus merges with an a-particle. In the PPII chain,
the resulting "Be is converted into 7Li by electron capture. The 7Li then is
converted by proton capture into the unstable isotope ®Be which decays into
two a-particles. In the PPIII chain, the "Be-nucleus captures a proton. The
resulting ®B-nucleus emits a neutrino and a positron, leading to an excited
8Be-nucleus which decays into two a-particles. With increasing temperature,
the latter two reactions become more important compared with the PPI cycle.

Independent of the details of the reaction, energy is liberated in the form
of electromagnetic radiation, positrons, neutrinos and, to a smaller extent,
kinetic energy of protons. The energy of ~s, positrons, and protons imme-
diately is converted into thermal energy while the neutrinos escape: their
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scattering mean free path is about 7000 AU, compared with the few cm of
a photon. Thus although a photon travels with the speed of light, it needs
about 100 000 years to diffuse from the Sun’s core to its surface.

6.1.2 Solar Neutrinos

Neutrinos emitted in the various chains of the proton—proton cycle have char-
acteristic energies. Thus their energy spectrum gives information about the
processes inside the Sun, allowing a test of our standard model of the Sun.
Neutrinos are one of the current problems in solar astrophysics. Compared
with the first observations, a larger number of solar neutrinos is being de-

tected today; however, it still is smaller than expected.
Part of the problem of detecting neutrinos and of interpreting the results
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arises from the measurement principle used: different techniques are sensitive
to different neutrino energies and thus also to different parts of the energy
production cycle. The first neutrino detector was a tank of 615 ton liquid

perchloroethylene located about 1500 m under the Homestake mine [120].
This sensitivity of this instrument is such that the B neutrinos are expected
to generate a signal of 5.6 SNU? with “Be neutrinos contributing 1.1 SNU.
Over the years, the Homestake experiment has measured an average of 2.56 +
0.23 SNU, compared with 7.6 & 1.2 SNU expected from the standard solar
model (SSM). This discrepancy is well known as the solar neutrino problem
[103].

The Japanese experiments Kamiokande [175] and Superkamiokande [176],
a 680 ton water tank 1 km underground in the Kamioka mine, have an even
higher energy threshold and are only sensitive to the high-energy end of the
8B neutrinos; see Fig. 6.1. These experiments show a neutrino deficit of about
50%.

Gallium experiments, such as SAGE, GALLEX, and GNO, have a much
lower energy threshold and thus are able to detect also the pp neutrinos.
These experiments give a neutrino flux of 74.7 + 5.0 SNU, lower than the
128 £ 8 SNU expected from the SSM [211].

Two possible explanations have been offered: either our model of the
Sun or our understanding of the neutrino is wrong [19, 21, 218, 293, 366, 368].
Fine-tuning of the solar standard model to fit the neutrino observations ap-
pears possible without changing the energy flux at the solar surface, although
often variations in one parameter lead to a better agreement between the
predictions and one of the experiments while the predictions for the other
experiments are still in disagreement with the observations. For instance,
a reduction in the core temperature in the SSM-would allow one to fit the
Super-Kamiokande observations, while there still would be a discrepancy with
the Homestake observations.

2 Solar neutrino unit; 1 SNU, equals 1073¢ captures per target atom per second.
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The other explanation is of great importance to elementary-particle
physics: it suggests that neutrinos, contrary to our current understanding,
have a mass and can oscillate between different flavors. It has been proposed
that the electron neutrinos created in the proton—proton chains are partly
converted into 7- or p-neutrinos during their travel time from the Sun to
the Earth. Since only the electron neutrinos can be detected by the above
experiments, a lower neutrino flux than would otherwise be expected results.

A more recent experiment, the Sudbury Neutrino Observatory (SNO),
suggests that indeed solar neutrinos change their flavor during their journey
from the Sun to the Earth [2]. SNO consists of 1000 tons of heavy water (D0)
at a depth of over 6000 m water equivalent. Owing to the use of deuterium
instead of ordinary hydrogen, not only can electron neutrinos be detected but
it is also possible to measure the total neutrino flux. Thus electron neutrinos
can be distinguished from other neutrino flavors. The results of SNO provide
evidence that some electron neutrinos are converted during their travel time
to a different neutrino flavor [3] at a rate which gives corrected fluxes in
agreement with the SSM. In addition, the KamLAND experiment [147] has
detected oscillations in antineutrinos produced in nuclear reactors.

In sum, these results increase our confidence in the SSM because one of
the major objections against it, the solar neutrino problem, appears to have
its origin in elementary-particle physics rather than in solar physics.

6.1.3 Structure of the Sun

Nuclear fusion takes place in the Sun’s core, which is about 0.3 r. in ra-

DUI'S o FY 120 aa M3 GAruv LEORE=

dius (see Fig. 6.2). It is surrounded by the radiative core or radiation zone,
where energy is transported by radiation. In the surrounding convection zone
energy is transported by convection. The top of the convection zone is the
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photosphere, the visible surface of the Sun. Here most of the visible light is
emitted. The convection cells can be seen as granulation of the photosphere.
From the core to the photosphere, the density decreases by more than ten
orders of magnitude, and the temperature decreases by a factor of 3000.

The photosphere is optically too thick to receive any electromagnetic ra-
diation emitted from deeper layers of the Sun. Thus solar neutrinos are the
only messengers escaping directly from the core of the Sun. All other informa-
tion about the internal structure of the Sun is obtained indirectly. The most
important tool is helioseismology; for a recent review see [7]. Seismology on
the Earth is mainly concerned with sudden bursts of mechanical waves during
either earthquakes or explosions initiated by humans to probe the terrestrial
interior. The goal of helioseismology is similar: to use mechanical vibrations
observed on the solar surface to obtain information about the solar interior.

R]]f hphnﬂnlqmn]no‘v 18 ATFF{—‘IT‘QT\"' Fr'nm Qt_‘l‘Ime\]’“ﬂ“\r on fhﬂ F‘QT‘"‘]”I hﬂf‘ﬁ‘l]ﬂﬂ nQr“‘l”ﬁ—

SSIAY AAVAIVOASIIIVI A Y 40 M1101 ULV 11 VEAL OUI0IIVIVE Y WAL VAU A Vil UV WO VoL

tions are always present on the Sun. They can be identified from the Doppler
shift of spectral lines. These mechanical vibrations of the solar surface are
centered around a period of about 5 min [318]. These oscillations have been
identified as a superposition of millions of standing waves with amplitudes of
the order of a few meters and speeds of the order of a few cm/s [317,529].

Detailed analysis of these observations allows us to infer parameters such
as the sound speed, density, temperature, and chemical composition in the
solar interior [10,203,294]. This information is used to confirm and refine the
standard solar model.

From the viewpoint of plasma physics, a second set of results of helio-
seismology is more important: it allows us to infer the rotation rates in the
solar interior. This is of particular importance for the understanding of the
solar dynamo process. The main results are the following: (a) The surface
differential rotation persists through the convection zone, while the radia-
tive transfer zone appears to rotate relatively uniformly [465,516]. However,
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about 0.94 solar radii. (b) The transition region, also called the tachocline, is
located near the base of the convection zone [33]. The tachocline also seems
to be the seat of the solar dynamo. Both features are summarized in Fig. 6.3.
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ional flow [217]. The flow speed is of the order of 20 m/s, that is, about two
orders of magnitude smaller than the rotation speed. This meridional flow is
believed to play an important role in the solar dynamo process [373].

With the good coverage of helioseismological observations since the mid-
1990s, an analysis of temporal variations has become possible. So far, no
significant temporal variations have been detected in the internal structure
of the Sun. But there are some solar-cycle-related modifications close to the
surface. For instance, the 5-min oscillations are shifted by up to 0.4 uHz with
higher frequencies during solar maximum [237], probably because of some
solar-cycle-related disturbances in the outer layers of the Sun.

In addition, the rotation rate varies with time: on the surface there ex-
ist zonal bands of slow and fast rotation which migrate slowly from high to
low latitudes during the solar cycle. These flow bands are correlated with
migrating magnetic-activity bands already known from the butterfly dia-
grams [235, 495]. Helioseismology has refined this picture: the bands move
towards the equator at low latitudes, while at latitudes above 50° they move
polewards [8]. This corresponds to the migration seen in magnetic patterns
(Fig. 6.28), and thus the poleward migration might be crucial in the under-
standing of the solar dynamo and, in particular, the polarity reversal [109].

One of the most recent instruments used to study solar oscillations is the
MDI (Michelson Doppler Imager) on board SOHO. Details about the instru-
ment, a movie showing a solar quake, and many results from this instrument
can be found at sohowww.nascom.nasa.gov/gallery/MDI/.
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Above the photosphere the solar atmosphere consists of three layers: the
chromosphere, the transition region, and the corona. The corona can be seen
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Coronal Hole

Coronal Hole

Fig. 6.4. (Left) Coronal structure during the total eclipse of 11 July 1991. Based
on a sketch by S. Koutchmy in K. Lang [308], Sun, earth and sky, Copyright 1995,
Springer Verlag; {Right) image of the total eclipse on 16 February 1980 (source:
www.hao.ucar.edu)

in visible light during a solar eclipse as a structured, irregular ring of ravs
around the solar disk. Its structure and extent vary with the solar cycle.
Figure 6.4 shows on the left-hand side a sketch of the coronal structure during
the total eclipse of 11 July 1991 and on the right-hand side a photo taken
during the eclipse of 16 February 1980. Since both have been taken during the
solar maximum, the corona is highly structured and extends far outwards.
During the solar minimum. only few structures are visible and the corona
appears smaller. However, the corona does not have a sharp outer boundary,
but instead shows structures which extend into different heights and then
fade into the background.

The charge states of heavier elements such as O, Si, Mg, and Fe indicate
coronal temperatures of about 1 million K. Nonetheless, the corona does not
radiate like a black body because it is too thin. Its temperature is roughly
independent of height, but it is about a factor of 200 higher than the photo-
spheric and chromospherie temperature, The fastest increase in temperature
from about 25 000 to 500 000 K occurs in the transition region, which is only
a few hundred kilometers thick and separates the corona from the chromo-
sphere (chromos = color) below. The latter has a Leight of about 2000 km
and can be seen during a total eclipse as a thin red ring around the solar disk.
giving the appearance of small flaincs. The chromospheric emission is weak
compared with the photospheric emission because the density of the chiromo-
sphere of about 107 % g/ain? is about five orders of magnitude smaller than
the photospheric density. However, owing to the higher temperature, the nrax-
imum of the chromospheric emission is in the UV, Here the chromospheric
emission exceeds the photospheric emission: a UV instrument thus “sees™ the
chromosphere but does not look down to the photosphere. Depending on the
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wavelength under consideration, different layers of the atmosphere are seen by
a telescope. The first observations at different wavelengths in the UV by OSO-
4 in 1967 showed particularly well the appearance of the polar coronal hole
at larger heights. An example of a modern instrument is EIT (Extreme ultra-
violet Imaging Telescope) on board SOHO; a description of the instrument,
results, and a picture gallery can be found at umbra.nascom.nasa.gov/eit/.

Excursion 5. Thermal emission Chromospheric emission is thermal emis-
sion, as is the photospheric emission. Some details of this emission can be
approximated under the assumption that the Sun is a black body. In this
case the spectrum of the emitted radiation can be described by Planck’s law:
the energy per unit interval of wavelength emitted by a unit surface area of
a black body into a unit solid angle is given by

2he? 1
BA(T) - 25 hc? ’
qexp(k/\T) —1
B Zhy” 1

B.(T) (6.1)

¢ exp(pp) -1

The total radiation emitted by the black body can be obtained by integration
over all wavelengths:

q:ﬂF:W/BATNA:aW, (6.2)
0

where o = 826 x 107 calem™ min ' K * = 56708 x 1078 Jm ?s 'K
This is the Stefan Boltzmann law. We have alreadv encountered this law
when talking about the temperature of the photosphere. The wavelength of
the 1naxinmum of Planck’s curve can be obtained by setting the first derivative
of (6.1) equal to zero. We then obtain Wien’s law,

A(inax) T = const = 2884 pm K . (6.3)

This can be used to determine the wavelength of the maximumn of the emission
of a black body.

For instance, from (6.3), the photospheric emission (5780 K) has its max-
imum at 500 nm, well inside the visible. The wavelengths of maximuim emis-
sion at the bottomn (25 000 K) aud top (500 000 K} of the transition region
are 115 mmn, which is in the UV, and 6 num, which is in soft X-rays, respec-
tively. Thus looking at the Sun in different frequency ranges means looking at
different layers of the atmosphere. The soft X-ray emission, since it is viewing
greater heights, reveals the coronal holes as dark patches particularly well, but
also shows the active regions as bright spots. An example is shown in Fig. 6.5.
which shows the evolution of the chromosphere and lower corona during one
solar cvcle, starting at the maximun in 1990 on the left and continuing to the
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Fig. 6.5. Variation of the Sun in soft X-rays during the solar cyvele as ob-
served bv Yohkoh; source: solar.physics.montana.edu/mckenzie/Images/The_
Solar_Cycle_XRay_hi. jpg

maximum in 1999 on the right. A nice movie showing the relation hetween
wavelength and height can be found at sohowww.nascom. nasa. gov/ as “Five
same-day iiages of Sun in different wavelengths™. d

The coronal emission consists of three components, the emission line or
E-corona, the continuum or K-corona (K for the German word Kontinuir).
and the Fraunhofer or F-corona. The E-corona was first observed during the
1868 solar eclipse. But only in the 1940s did scientists understand the sonrees
of the spectral lines, since these lines were not knowi from laboratory exper-
iments, because they required extremely high iomization states: for instance.
the 530.3 nm green line is from Fe XIV, the 637.4 nm red line is from Fe X.
and the 569.4 nm rvellow line is from Ca XV. These charge states indicate
temperatures of more than one million K. These high temperatures also allow
us to understand the great height of the corona. The photospheric tempora-
ture of 5780 K would lead to a scale height of about 150 k. At a distance
of one solar radius above the photosphere. the density would have dropped
by a factor of exp(—696 000/150). which is almost zero. With a coronal tem-
perature of two wmillion degrees. a scale height of 107 ki results, allowing the
large extent of the corona.

The main visible coronal enission, the K-corona, is not a real emission but
15 photospheric light scattered from coronal electrons. Therefere the coronal
electron density can be inferred from the intensity of the K-corona. Thus
Fig. 6.4 also can be interpreted as an electron density distribution. The K-
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corona is lincarly polarized because the clectrons are aligned in the coronal
niagnetic field.

Twpical coronal features include bright arcades, which can be interpreted
as closed magnctic loops where electrons are stored, and helmet streamers,
which are arcades from which a thin beam extends upwards. The ray-like
structures suggest open field lines with electrons streaming away from the
Sun. The rather dark regions are depleted of electrons. These coronal holes
can also be seen as dark patches in soft X-ray images and are the source
regions of the fast solar wind.

Depending on the underlying structures, the electron density at any
given height can vary by more than three orders of magnitude [297]. In
the lower corona, the intensity gradient is very steep, with a scale height
of about 0.1r;. Thus, even with an extremely good radiometric resolu-
tion, it is not possible to create images of the corona from just above
the photosphere out to ten or twenty solar radii. Instead, different in-
struiments have 1o be combined, as has been done. for example, with the

LASCO coronograph on the SOHO spacecraft [161]. Examples and fur-
ther details can be found at sohowww.nascom.nasa.gov/gallery/LASCO/
or lasco-www.nrl.navy.mil/lasco.html.

The last component, the F-corona, or ¥Fraunhofer corona, results from
scattering by slow-moving dust particles. It extends into the interplanctary
medium, where it is observed as zodiacal light. The F-corona is not part of
the solar atmosphere.

6.1.5 The Coronal Magnetic Field

Figure 6.6 is a very simplified schematic, showing only the most iimportant
features, namely coronal holes and helinet streamers. The latter develop over
active regions, the legs of the helmet streamer connecting regions of opposite
magnetic field polarity. Electrons are captured inside these loops, thus the
helmet streamer is a bright feature, The coronal lioles on the other liand are
regions with open field lines, allowing for a fast electron escape. Thus they
appear as dark features, often with rays indicating the direction of the ficld.

Over the poles of the Sun coronal holes are dominant. Occasionally, they
can extend down to the solar equator or even into the opposite hemisphere.

source surface

Fig. 6.6. Sketch of the solar corona.

Two helinet streamers are shown to-
fast wind gether with the coronal holes, the so-
lar equator, and the nominal loca-
tion of the source surface

slow wind
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Fig. 6.7. Photospheric magnetic-field mea-
surements from National Solar Observatory
(source: www.nso.noao.edu/synoptic/)

Streamer-like configurations are confined to the streamer belt, which 1s as-
sociated with the active regions. Thus the streamer belt’s extension and its
inclination relative to the solar equator varies over the solar cycle. The re-
sulting magnetic field pattern with different magnetic field polarities on both
sides of the streamer belt are carried out into interplanetary space by the
solar wind and lead to a scctor structure as described in Sect. 6.3.2.

While the coronal magnetic field as described above is rather orderly,
spectral line observations of the photosphere reveal a complex magnetic field
pattern associated with sunspots and active regions. Figure 6.7 shows an
example for the structure of the photospheric magnetic field. The bright
and dark spots indicate regions of strong magnetic fields. the color gives the
field’s polarity. Daily observations of the visible hemisphere of the Sun can
be combined to give a map of the photospheric magnetic field such as shown
at the top of Fig. 6.8.

Excursion 6. Zeeman effect. The basic tool used to determine the photo-
spheric magnetic field is the Zeeman effect, that is, the splitting of a spectral
line Ap in a magnetic field into a triplet of lines, with one member at wave-
length Ag, also the m-component, and two members at Ag + dA, where

me Ag9B _

oA = 4.7 x 107 NgB | (6.4)

me ¢
g being the Landé g-factor. The split lines are linearly polarized: the #-
component is polarized parallel to the field, and the side lines, also called
ov and og, are polarized perpendicular to it. Thus, when viewed parallel
to the magnetic ficld (longitudinal field), only the oy and og. are visible
as circularly polarized lines (sce Fig. 6.9). Viewed perpendicular to the field
(transverse field). all three components are visible, as linearly polarized lines.
Thus the Zecman effect allows the measurement of both the magnetic field
strength and its direction.

It should be noted that the photospheric magnetic field is not the only
factor influencing the spectral lines. Photospheric motions lead to shifts in
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Fig. 6.8. Recon-
structed  photosphe-
ric magnetic field
for Carrington ro-
tation 2004 (source;
wso.stanford. edu/
synoptic.html)

and calculated pho-

tospheric  field  for
the same rotation
(source: quake.

stanford.edu/ " wso/
coronal . html)

frequency owing to the Doppler effect. Thus a careful analysis of the Fraun-
hofer lines provide a wealth of information about the photosphere. O

Coronal loops, structures such as filaments and prominences, and in situ
observations in interplanetary space suggest that many of the small-scale
photospheric structures form closed loops within less than two solar radii
(sec Fig. 6.16). Thus a solar source surface can be defined: the small-scale
structures are closed below it and the resulting overall field pattern is carried
outwards by the solar wind. The source surface is at a height of about 2.5
solar radii and can be determined from the photospheric field pattern using

Longitudinal Field

®© H

O O

Ao—OA

Oy Or

Aot+OA

Transverse Field

____,...H

Ao—OA Ao
Oy b1

Ao+OA
ORr

Fig. 6.9. Zeeman splitting when viewed into the fiel (feff) and perpendicular to it

(right)
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Solar Latitude

- @ e Fig. 6.10. Magnetic field pattern on
, the source surface for solar-minimum
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line is the neutral line separating the
fields of opposite polarity; the thin
lines are equipotential lines
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the magnetic field at the source surface is directed radially, and (b) currents
either vanish or are horizontal in the corona. The resulting map is shown at
the bottom of Fig. 6.8. |

Figure 6.10 shows source surface maps for solar minimum and maximum
conditions. A distinctive feature is the neutral line (thick line), separating the
two magnetic field polarities. At the neutral line, the radial magnetic field
vanishes. During solar minimum (upper panel) it is roughly aligned with the
solar equator while with increasing solar activity (lower panel) the neutral line
becomes wavy and extends to higher solar latitudes. During solar maxima,
when the Sun changes polarity, the inclination of the neutral line is maximal.
Since the neutral line separates magnetic fields of opposite polarity, a current
must flow inside it: the neutral line is a current sheet. In Fig. 6.6 it would
extend outwards through the tips of the helmet streamers: its extension into
interplanetary space is called the heliospheric current sheet (HCS).

The above description gives the impression of a rather static transition
from the photospheric to the coronal magnetic field. Recent observation with
the Transition Region And Coronal Explorer (TRACE), launched in 1998,
revealed a highly filamented corona filled with flows and other dynamic pro-
cesses [194]. Variability and motions are observed at all spatial locations in
the atmosphere and on very short time scales. With the greatly improved
spatial resolution of TRACE, a number of new properties in the corona have
been identified, as follows. (a) Fine structures: the corona in active regions
consists of numerous threads of emitting plasma, which are all clearly sep-
arated from each other and in continuous motion. If these threads interact,
reconnection can occur. (b) “Moss” i1s an intricate, dynamic fine structure
near the base of active regions. (¢) Dynamic structures that change their
overall large-scale topology seem to indicate that new magnetic flux emerges
in these regions. (d) Bundles of long, nearly linear structures emanating from
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active regions in the vicinity of sunspots are related to steady outflows of
hot material at roughly the local sound speed. (e) The cool, absorbing ma-
terial embedded within the hot corona close to active regions is also in a
highly dynamic state. Examples and the most recent results can be found at
vestige.lmsal.com/TRACE/.

6.2 The Solar Wind

The corona does not show a well-defined outer boundary but ragged struc-
tures blending into the background. Thus how far does it extend?

The Earth’s atmosphere is stationary, shaped by an equilibrium between
incoming solar radiation and outgoing terrestrial radiation. On the Sun, the
situation is different. Here the temperature is much higher and the solar
atmosphere is not stable but blown away as solar wind, filling the entire
heliosphere. The first direct measurements of the solar wind [204] started in

1960. However, a particle flow from the Sun towards the Earth had already
been suggested at the beginning of the twentieth century. To explain the
relationship between aurorae and sunspots, in 1908 Birkeland [50] proposed
a continuous particle low out of these spots. Alternatively, Chapman [91]
and Chapman and Ferraro [95] suggested the emission of clouds of ionized
particles during flares only. Except for these plasma clouds, interplanetary
space was assumed to be empty. Evidence to the contrary came from an
entirely different source, i.e. the observation of comet tails. The tail of a
comet neither follows the path of the comet nor is directed exactly radially

T tha Qi1 Tratoad 1te A3 +3 A + 1d
away IrCili thic oUill. 1iistead, 1Us direciion ue‘v’laues several degrees frOm the

radial direction. Hoffmeister [226,227] suggested that solar particles and not
the solar light pressure shape the comet tails. Biermann [48] noted that the
fainter dust tails of the comets are indeed directed radially and most probably
shaped by light pressure, especially since their spectra resemble the solar
spectrum. To explain the shape of the main tail, he too invoked a continuous
solar particle radiation.

6.2.1 Properties

The high variability of the solar wind in space and time reflects the underlying
coronal structures. The most important features can be summarized as follows
[183,473,500]: the solar wind is a continuous flow of charged particles. It is
supersonic with a speed of about 400 km /s, which is 40 times the sound speed
in the solar wind. A plasma parcel travels from the Sun to the Earth within
roughly four days. The solar wind carries the solar magnetic field out into
the heliosphere, the magnetic field strength amounting to some nanoteslas
at the Earth’s orbit. The most recent observations are by WIND (see web.
mit.edu/afs/athena/org/s/space/www/wind.html for details) and by the
plasma. instrument on board ACE (see www.srl.caltech.edu/ACE/ for the
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instrumentation and general description and www.sel.noaa.gov/ace/ for
the solar wind data).

Two distinct types of plasma flow are observed — the fast and the slow
wind, see, for example, [449,473, 541]. The fast solar wind originates in the
coronal holes, the dark parts of the corona dominated by open field lines.
Fast solar wind streams are often stable over a long time period (some solar
rotations) and variations from one stream to another are small. The fast
solar wind has flow speeds between 400 km/s and 800 km/s, the average
density is low, about 3 ions/cm?® at 1 AU. About 4% of the ions are helium.
This ratio is very stable over different fast streams. The average particle flux
is about 2 x 102 m~2 s~!, implying a total particle loss from the Sun of
about 1.3 x 103! /s. The proton temperature is about 2 x 10° K, the electron
temperature is about 1 x 10° K.

The slow solar wind has lower speeds ranging between 250 km/s and
400 km/s. Its density is about 8 ions/cm® at 1 AU, and the flux density is
about twice as large as that in the fast solar wind. During solar minimum

the slow solar wind originates from regions close to the current sheet at the
heliomagnetic equator. The relative amount of helium is highly variable, its
average is about 2%. During solar maximum the slow solar wind originates
above the active regions in the streamer belt, and its helium content is about
4%. Compared with the fast solar wind, it is highly variable and turbulent,
often containing large-scale structures such as magnetic clouds or shocks.
The proton temperatures are markedly lower, about 3 x 10* K, while the
ion temperatures are similar. As in the fast wind, the temperature is always
higher parallel to the magnetic field than perpendicular to it. On the average
it 1s T'ﬂ ~ QT_'L.

Despite their differences, fast and slow solar wind streams also have simi-
larities. For instance, the momentum flux M = npmpvg on average is similar.
The same is true for the total energy flux, despite the fact that its individual
components, such as kinetic energy, potential energy, thermal energy, electron
and proton heat fluxes, and wave energy flux, are different.

Figure 6.11 shows hourly averages of solar wind parameters during solar
minimum conditions (Carrington rotation 1896). From top to bottom, the
panels give the angles between the solar wind and the Sun—Earth line in the
north-south and east-west directions, the thermal speed of the solar wind,
its density, and the bulk speed of the solar wind. Two fast solar wind streams
start at DOY 143 and 150; a third, albeit slower stream starts late at DOY
160. All three show up as steep increases in solar wind speed and thermal
speed. The density before the arrival of the fast stream increases as solar
wind is swept up, and it decreases abruptly as the spacecraft enters the fast
stream. Prior to the arrival, the flow is slightly from the east, and with the
arrival it turns abruptly to a flow slightly from the west.

A special feature of the solar wind is coronal mass ejections (CMEs). Here
the bulk speed is in the range 400 km/s to 2000 km /s and the composition is
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Fig. 6.11. Solar wind under solar minimum conditions, WIND measure-
ments (source: web.mit.edu/afs/athena/org/s/space/www/wind/wind_figures/
wind_95may20.gif)

significantly different; in particular, up to 30% of the ions can be a-particles,
and even Fe!®t or He' can be observed occasionally.

Is Slow Solar Wind Always the Same? Observations with the LASCO
coronograph on SOHO suggest small-scale density inhomogeneities in the
solar wind [477], originating from the tips of helmet streamers. These density
variations are assumed to travel along the heliospheric current sheet where
they had been detected in situ much earlier as localized maxima in proton
density associated with the passage of a sector boundary [55]. Most likely
these blobs form when a small plasmoid is disconnected from the helmet
streamer by reconnection [280, 546]. Thus, the slow solar wind seems to have
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two distinct sources: plasmoids forming in the streamer belt and strongly
overexpanding flux tubes at the boundaries of the coronal holes.

6.2.2 Solar Wind Models

The charge states of heavy ions indicate temperatures of about 10° K in
the corona, independent of height. Thus hydrogen is completely ionized and
the corona basically can be described as an electron—proton gas with small
admixtures of heavier elements. In the lower corona, the electron density is
about 108 to 10° cm™2 and it decreases with a scale height of about 0.1 rg.
One of the basic questions in understanding the corona and the solar wind is
related to heating: because the photosphere only has a temperature of about
5800 K, how can the corona be heated up to a million Kelvin?

Chapman’s Hydrostatic Corona. One of the first models of the corona,
introduced by Chapman in 1957 [92], avoided this question and simply de-

scribed the corona as a static atmosphere, an equilibrium between the pres-
sure gradient force and gravitation:

dp GM@

ar =

o (6.5)
with G being the universal constant of gravitation and M, the Sun’s mass.

Owing to some unknown mechanism, heat is supplied continuously from
the photosphere to the corona. Thus thermal energy has to be trans-
ported outward through the corona by heat conduction with a heat flow
Qu = —4nr?xdT/dr. Because the electrons are the more mobile part in the
electron—proton gas, the heat basically is transported by electron motion.
From the electron density distribution one expects a weakly height-dependent
heat conduction coefficient y. For a completely ionized corona, the variation
of density and temperature with height then is

n AT 7ro r\ 7
"o _ 0 .
ng To exp { 5Hy (ro) (6.6)

T=T, (1) ! (6.7)

To

and

with the scale height

2kpTy,
Hy = —— 5 (6.8)
mM@G/T
Unde n nditions, heat conduction is about a factor of 20 more effi-

O

opper. Thus the temperature decreases only weakly with height
(see (6.7 ), w1th the consequence that “... the coronal gas surrounding the
Earth may be expected to have a temperature of order of 100 000 K. This is
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... consistent with my main inference — that the Earth is surrounded by very
hot coronal gas, which greatly distends our outer atmosphere and that heat
must flow from it by conduction into our atmosphere” [93], p. 477.

Parker’s Hydrodynamic Corona. But the continuous particle flow in-
ferred from the comet tails is in contrast to a static atmosphere extending
far behind Earth’s orbit. Parker [393] argued that the high temperatures do
not allow for a stationary corona and that heat is transported by particle
streaming. Thus the solar atmosphere and the continuous particle radiation
from the Sun both are the same. Parker used a hydrodynamic approach. Thus
the hydrostatic equation has to be complemented by a term describing the
fluid motion, leading to Bernoulli’s equation. However, Parker did not solve
the heating and heat transport problems.

In a simple approach, only protons are considered because they are the
dominant ion species and carry virtually all of the mass of the solar wind.
The momentum balance then is p(u - V)u = —Vp — oMo G/r? or, in the

one-dimensional case for a spherically symmetric corona,

d’Ull- . 1 d GM@
I~ madr orkeT) -

2 (6.9)
The factor 2 in the pressure term nkgT considers that both electrons and
protons contribute a factor of nkgT to the pressure. With the equation of
continuity n(r)u,(r)r? = ng u,, 73, (6.9) can be written as

du, [ szT] %kpr? d T GMg
Uy — = .

dr drr?

(6.10)

mu; m  drr? r?

To describe the temperature gradient, Parker assumed an isothermal corona
above about 1.4r; as suggested by the charge states of the heavier ions.
Solutions of (6.10) are shown in Fig. 6.12. There are two curves repre-
senting special solutions. These curves intersect at the critical point (uc,r.)
with
GM@TTL QkBTO

c (:: - .].].
r TnT and u - (6.11)
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F
// \\\ Fig. 6.12. Topology of different so-

lutions for the solar wind equation
re T (6.10)
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with w = /GMg/r. For large distances, (6.12) can be approximated as

ur ~ 2ucy/In(r/rg). Figure 6.13 shows the radial dependence of the solar
wind speed for different coronal temperatures. For a coronal density of about
2 x 103cm™2 and a temperature of one million Kelvin, the critical point is
at about 6r¢ . The solar wind than accelerates up to about 407, afterwards
propagating at a nearly constant speed of 500 km/s. The supersonic flow
does not extend indefinitely, its density decreases during expansion. At a
certain radial distance, most likely beyond 70 AU, the solar wind pressure
will become too small to further support a supersonic flow. Where the flow
1s slowed down to subsonic speed, a termination shock forms. The solar wind
then continues as a subsonic flow until the pressure of the interstellar gas
becomes larger than the combined pressure of the solar wind and the frozen-in
magnetic field. This is the heliopause, the boundary of the heliosphere which
is expected beyond 100 AU. In front of the heliopause, a bow shock might
develop where the interstellar gas is slowed down by the obstacle heliosphere.

Solutions ‘C’ and ‘F’ of the solar wind equation also start as subsonic
flows in the lower corona. In solution ‘F’ the speed increases only weakly
with height and the critical velocity is not acquired at the critical radius.
The flow continues to propagate radially outward, but then slows down and
can be regarded as a solar breeze only. In ‘C’ the flow has accelerated too
fast and has become supersonic before reaching the critical height. It then
turns around and flows back towards the Sun as a supersonic flow.

The other curve going through the critical point, ‘B’, starts as a super-
sonic flow in the lower corona and becomes subsonic at the critical point. This
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flow would continue to propagate outwards at subsonic speed. If the flow had
decelerated less, as in curve ‘D’ it still would be supersonic at the critical
point, where it would accelerate again, leaving the Sun as a supersonic flow.
Solution ‘E’ is entirely different. It starts as an inward flow blowing subsoni-
cally towards the Sun from infinity. The flow accelerates as it approaches the
Sun, becoming supersonic at some distance larger than v.. At that point the
flow turns back and propagates outwards as a supersonic flow.

Only one of the mathematically possible solutions of (6.10), curve ‘A’
in Fig. 6.12, is an approximation of the solar wind. But how good is this
model? The assumption of an isotropic pressure p is valid near the Sun where
isotropy can be maintained by collisions. As the plasma moves farther out,
collisions become less frequent and the pressure parallel to the magnetic field
is twice the perpendicular one. The temperature is assumed to be isotropic,
too. Again, this might be true close to the Sun but not at the orbit of Earth.
In addition, electron and proton temperatures are not the same, as is assumed
in the model. These differences do not change the general character of the

solution but modify the numbers. Another limitation is the consideration of
only one particle species, namely protons. Since a-particles are four times
heavier than protons, even the 2% to 4% of He in the solar wind contribute
significantly to the momentum transport. Thus an additional set of equations
should be considered, leading to a reduction of the flow speed.

A more severe limitation concerns the fields. In the derivation of the
hydrodynamic flow, no effects of the magnetic and electric fields were con-
sidered: the electromagnetic forces in the momentum balance were ignored.
A more elaborate model should consider fields, too. In such a magnetohydro-
dynamic (MHD) model the critical point is lower in the corona, for average
conditions at a height of about two solar radii, which is close to the height of
the (fictitious) source surface. The general character of the solution nonethe-
less is the same as in the hydrodynamic model, for a comparison of such a
model with data see e.g. [532].

Parker’s hydrodynamic solar wind model nevertheless is a valid approxi-
mation of the solar wind in quiet conditions. A comparison of model results
with the solar wind observations, however, reveals a rather puzzling fact: the
hydrodynamic model is more appropriate to describe the slow wind originat-
ing in the streamer belt with its complex magnetic field structures than the
fast solar wind blowing directly out of the coronal holes, a situation which is
much closer to the assumptions inherent in the model.

Overexpansion of the Solar Wind. Observations suggest that the so-
lar wind and its sources might be even more complicated. In particular, it
appears that the solar wind does not expand radially. An expansion factor
can be defined as the ratio between the cross-sections of a flux tube at the
source surface and in interplanetary space. High-speed solar wind streams
from coronal holes then are associated with small expansion factors while the
low-latitude slow streams are associated with large expansion factors [545].
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These slow streams originate at the boundaries of coronal holes, their strong
expansion then causes them to fill the space above low-latitude closed mag-
netic field structures. Since the expansion factor can be inferred from the
magnetic field strength and distribution on the source surface, magnetograms
can be used to predict the solar wind speed at the orbit of the Earth.

6.2.3 Coronal Heating and Solar Wind Acceleration

Although the hydrodynamic description of the solar wind is a reasonable and
valuable approach, one fundamental problem has been neglected: the heating
of the corona. Basically, two lines of thought have evolved: heating by MHD
waves and turbulence or, alternatively, small-scale impulsive energy releases
due to reconnection, sometimes called nano-flares. A recent review about
heating mechanisms is given in [141,530].

Waves and Turbulence. Of the basic MHD waves, the fast and slow
magneto-acoustic waves are compressive, while the Alfvén wave is a non-
compressive propagation of fluctuations along the field. In a collisionless
plasma, the Alfvén wave propagates undamped, whereas the magneto-acoustic
waves undergo Landau damping. Wave energy is then converted into thermal
energy, mainly of the ion component in the plasma. Under solar conditions,
the slow mode is damped very strongly, while the fast mode can propagate
up to a distance of about 20r. On the basis of this, Barnes et al. [31] devel-
oped a model of the solar wind with coronal heating by fast magneto-acoustic
waves. While the Alfvén wave is not damped, it nonetheless contributes to
momentum transport and can be interpreted as a radiation pressure, accel-
erating the plasma. Although non-thermal broadening of some spectral lines
indicates the existence of waves or turbulence in the lower corona, it is not
completely understood which waves these are, how they propagate outward,
and whether the observations really are indicative of wave fields or, rather,
of turbulence. A brief review can be found in (30, 333]; recent developments
are described in [526)].

Excursion 7. Landau damping. Landau damping is a characteristic feature
of collisionless plasmas: waves are damped without energy dissipation by
collisions. In Landau damping, a propagating wave accelerates gas particles
contained in a distribution function that happen to have a similar direc-
tion and speed to the wave: Landau damping is therefore a resonance effect
or resonant damping. Landau damping is therefore an example of resonant
wave-particle interaction. Chen [97] compares this process to a surfer riding
an ocean wave: when surfing, a surfer launches him/herself in the propa-
gation direction into a steepening part of an incoming wave and is further
accelerated by this wave. Because a distribution function normally contains
many more slower than faster particles, the wave loses energy by accelerating
the slower particles. Thus the original distribution function (dashed line in
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Fig. 6.14. Landau damping: around the phase speed
the wave modifies the original particle distribution
(dashed) by accelerating particles

A\

Fig. 6.14) is deformed, with particles being removed from lower to higher
speeds around the phase speed of the wave: the distribution function flattens
near the phase velocity, where particles are in resonance with the wave. In-
teraction between the particles might lead to a redistribution of this energy
gain, tending to reestablish the original distribution.

— Impulsive Energy Releaser Reconmection So far, the corona has beem
treated only hydrodynamically and the magnetic field has been ignored. Even
for coronal heating by MHD waves, the field has been considered as only a
carrier for the waves, while its energy content has been neglected. The con-
version of field energy into thermal energy has therefore not been considered
as a heating mechanism, although this concept is widely applied in space
physics on larger scales: models for the acceleration of particles in the magne-
tosphere’s tail or solar flares often involve reconnection because the magnetic
field is the only source of energy available.

As we saw in Sect. 3.5, reconnection requires fields of opposite polarity.
The photosphere, as the top of the convection zone, is in continuous mo-
tion with bubbles rising and falling and plasma flowing in and out, as can
be inferred from the Doppler shift of spectral lines and even seen directly
in the TRACE data [194]. The plasma motion also shuffles the magnetic
field around: magnetic threads emerge in the intergranular lanes between the
granulation cells. While the latter are associated with an upwelling flow, a
downflow of plasma is observed in the former. A magnetic flux tube therefore
sits in the center of a tornado of downflowing gas. Thus, on a small scale, mag-
netic field configurations suitable for reconnection will form frequently [214],
eventually converting field energy into thermal energy [422]. Observational
evidence for such small-scale impulsive energy releases is found in electro-
magnetic radiation, in particular in so-called bright X-ray points [195] and
small-scale exploding EUV events. The recent TRACE observations reveal
that X-ray bright points are not really points, but can be resolved into highly
dynamic loops with distinct features in their footpoints [194]. These observa-

tions lend additional support to magnetic reconnection as a mechanism for

oo

coronal heating.
But heating by microflares still provides grounds for debate. One prob-
lem is related to the energy provided by these flares: it might not be enough
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to provide the required heating [12], although more recent studies using
SOHO/EIT [44] data and TRACE [398] data tend to find larger energy re-
leases. It is also suggested that, since reconnection can generate Alfvén waves,
the two models might be connected [479)].

6.3 The Interplanetary Magnetic Field (IMF)

The photospheric magnetic field was discovered by Hale in 1902. The splitting
of spectral lines due to the Zeeman effect suggests a photospheric field in
the order of 107* T or 1 G (G: gauss) outside and 3000 G to 4000 G inside
sunspots. Within less than 2 solar radii, this complex and highly variable field
is reduced to a rather simple, radially directed one. Since the conductivity
of the solar wind is high, the magnetic field is frozen into it and carried
out into interplanetary space. The Sun’s rotation winds up these field lines

to Archimedian spirals. Thus with increasing radial distance, the originally

radial magnetic field becomes more and more toroidal.

6.3.1 Spiral Structure

The Sun rotates with a sidereal rotation period of 27 days. The solar wind
flows radially away from the Sun, carrying the frozen-in magnetic field. While
the solar wind propagates outward, the base of the field line frozen into the
plasma. parcel is carried westward, forming an Archimedian spiral,® as shown
in Fig. 6.15. A similar effect can be observed with a rotating sprinkler; thus
the deformation of the field lines also is called the garden-hose effect.

The equation of the Archimedian spiral can be derived from the displace-
ments Ar and Ay. Initial conditions of the plasma parcel on the Sun are a
source longitude o and a source radius rg. At a time ¢ the parcel then can

Fig. 6.15. Deformation of a magnetic field line due to the combination of a radial
plasma flow and the Sun’s rotation. The numbers indicate consecutive times after
a plasma parcel has left the Sun at time tq

% An Archimedian spiral is defined as a curve resulting from a motion v of a point
along an axis that rotates with constant angular speed w around the origin:
r = ap with ¢ = v/w.
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be found at the position ¢(t) = we t+ wo and r(f) = ugowit + 0. Eliminating
the time yields the equation for the Archimedian spiral:

T = Usowi 90; 0 + 70 . (613)
©

With tan ¢ = wgr/usowi, the path length s along the spiral is given as

o _ Ltaow ( WHm{M \/1/»7—}) (6.14)

2(.0@

The magnetic field in the equatorial plane can be expressed in polar coor-
dinates B = (B, B.,). The magnitude of B depends on radial distance only:
|B| = B(r). Gauss's law in spherical coordinates (see A.3.3) yields

V.-B=—-—(r*B,)=0 (6.15)

or r* B, = r3B,,. Thus the magnetic flux through spherical shells is conserved
and the radial component of the field decreases as

B, = B, (""70)2 . (6.16)

Since the magnetic field is constant, it is dB/dt = 0. From the frozen-in
condition (3.84) we then get V x (u x B) = 0, or in spherical coordinates

W — (& 17
Jp=u \B.14)

Thus we have r(u, B, — uB,) = const. Let us assume rg to be at the source
surface. There B is radial and we get

ru, By — ru B, = rou,,Bo = rawe By - (6.18)

In the last step, the angular speed of the Sun is used to describe the azimuthal
component of the solar wind speed at the source surface. From (6.18) the
azimuthal component of the magnetic field is

2
ru,By — riwe By u, —rw
B, =—% 0700 _ =¥ ©B

TUy Uy

(6.19)

For large distances, rwe > wu,, (6.19) is approximately B, = —rwgBr/ur.
The azimuthal component therefore decreases with 1/r while the radial com-
ponent decreases as 1/r2. The field strength decreases with r as

2
B(r) = sz’" 0 \/ 14 (wf’") | (6.20)
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The angle ¢ between the magnetic field direction and the radius vector from
the Sun is tanty = B,/ B,. For large distances this reduces to tan ¢ = wgr/u,.
At the Earth’s orbit, tan) is about 1 for typical solar wind conditions, and
thus the field line is inclined by 45° with respect to the radial direction.

The current in the heliospheric current sheet is related to the magnetic
field by Ampére’s law (2.7). In spherical coordinates the current density in
the plane of the ecliptic then is

o B Btp To

Jr=Jjo-— and j, B =dog (6.21)

6.3.2 Sector Structure

So far we have considered only the shape of the interplanetary magnetic field
lines but not their direction. The first long-term observations of the IMF by

MP 11 963 over a couple of solar rotations revealed a sector pattern as
shown in Fig. 6.16: the magnetic fleld polarity is uniform over large angular
regions and then abruptly changes polarity. These magnetic field sectors are
stable over many solar rotations. At most times either two or four sectors can
be observed: if the neutral line is tilted without any wiggles as indicated in
the upper panel of Fig. 6.10, a pattern of two magnetic field sectors arises;
a wavy neutral line leads to four or more sectors. During solar maximum

\
Source surface —\

—
e e

e —— —

e s e

~—
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Fig. 6.16. Relationship between the photospheric, source surface and interplan-
etary magnetic field. Dashed and solid lines indicate negative and positive mag-
netic field polarities, respectively. Reprinted from K.-H. Schatten et al. [457], Solar
Physics 6, Copyright 1969, with kind permission from Kluwer Academic Publishers
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the sector structure is complex and distorted by a large number of transient
disturbances.

6.3.3 The Ballerina Model

The sector boundaries are the extension of the neutral line into the interplan-
etary medium, the so-called heliospheric current sheet (HCS). Figure 6.17
shows the HCS extending far into the interplanetary medium. The inclina-
tion of the neutral line defines the width of a cone inside which an observer in
space alternately sees different polarities of the coronal /interplanetary mag-
netic field. The maximum inclination of the neutral line at each time is called
the tilt angle. It can be used as an alternative measure of solar activity and

lQ an 11’1(‘1!"9"’{\1" f\F f]’\.ﬂ Trance over ur}'nr-]’\ ]’\(\fl’\ HD]I’] r\ﬁ]QT“If‘IDQ nan l’\ﬂ n]’\cnrvﬂﬂ
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Figure 6.18 shows a three-dimensional sketch of the wavy current sheet
with some field lines for solar minimum conditions. During solar maximum a

line would be bent towards high latltudes as also Suggested in the cross-
section shown in Fig. 6.17. Figure 6.18 anticipates the overexpansion of the
solar wind: field lines from the borders of the coronal holes expand such that
they overlay the closed magnetic field regions on the Sun, even extending
down to the heliospheric current sheet.

neutral ‘,./7\
I e

N line P o / \
% Solar
)<< / equator
S \‘.\\

.

Fig. 6.17. Heliospheric current sheet and
definition of the tilt angle « as inclination
of the neutral line in the tilted dipole model
proposed in [413]. The width of the cone is
twice the tilt angle «

Fig. 6.18. Current sheet in
the inner heliosphere in the
Ballerina model. The thick
lines indicate the magnetic
field lines. Based on [491]
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6.3.4 Corotating Interaction Regions

Fast and slow solar wind streams originate on the Sun. While these streams
propagate outward, the frozen-in magnetic field is wound up to Archimedian
spirals. In a slow stream, the field line is curved more strongly than in a
fast one. Since field lines are not allowed to intersect, at a certain distance
from the Sun an interaction region develops between the two streams. It was
soon realizes that “the collision of these plasmas will lead to the formations
of two shock waves and a tangential velocity discontinuity between them”
[132]. Because this structure rotates with the Sun, it is called a corotating
interaction region {CIR). Often the source locations of the fast and slow solar
winds are rather stable and an observer in space sees the CIR again during
the following solar rotations. In this case, it is called a recurrent corotating
interaction region.

Figure 6.19 shows an idealized sketch of the evolution of a CIR in the
inner heliosphere. On the Sun, there is an abrupt change in solar wind speeds
rom fast to slow. As stre opagate outward, flow compression an
deflection on both sides of the interface tend to smoothen the jump, leading
to a continuous increase in plasma speed. The region of compressed plasma
at the transition between the fast and slow stream at 1 AU typically extends
over about 30° while the plasma might originate from a coronal region as

Magnetic sector
boundary,
some 30°off

Fig. 6.19. Idealized
view of a corotat-
ing interaction region
(CIR) in the inner
heliosphere. Reprinted
from R. Schwenn [473],
in Physics of the in-
ner heliosphere, vol. I
(eds. R. Schwenn and

Compression
region

Sector boundory .
now wifhin compression . Marsch), Copyrlght

af stream interface

“Interface” 1990, Springer-Verlag
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wide as 90° or more. Thus magnetic field sector boundaries often found close
to the compression region are not necessarily related to the interface but
might originate in a coronal region far from the boundary between the fast
and slow streams. This is also evident from observations of the corona and
the photosphere: the boundaries of the coronal holes are not related to the
neutral line of the photospheric field. In particular, the polar coronal hole
can extend into the opposite hemisphere, crossing the solar equator as well
as the current sheet.

With increasing distance from the Sun, the characteristic propagation
speeds, which are the sound and Alfvén speeds, decrease. At some distance
between 2 and 3 AU, the density gradient on both sides of the compression
region becomes too large and a shock pair develops, propagating away from
the interface [247,490]. The shock propagating into the slow wind is called the
forward shock, the one propagating into the fast wind is the reverse shock.

Corotating interaction regions tend to distort or even destroy all small-
scale fluctuations and disturbances propagating outward from the Sun. In the

outer heliosphere, the magnetic field and therefore also the shock fronts are
more azimuthally aligned, sometimes extending around the entire Sun. Thus
finally the spoke-like structure of different solar wind streams close to the
Sun is converted into a shell of concentric shock waves propagating outward
like waves from a stone thrown into water. When CIRs or CIRs and travelling
interplanetary shocks interact, merged interaction regions result which play
a crucial role in the modulation of the galactic cosmic radiation. A summary
of the plasma physical properties of CIRs and their consequences for different
particle populations in the three-dimensional heliosphere is given in [27].

6.3.5 The Heliosphere During the Solar Cycle

Sunspots strongly modify the photospheric magnetic field, subsequently
changing the field on the source surface and the tilt angle of the neutral
line. These modifications are transported outwards even to the borders of
the heliopause and manifest themselves in spatial and temporal variations in
solar wind and magnetic field parameters.

The most dramatic variation of the heliospheric structure during the solar
cycle is related to the neutral line of the coronal magnetic field and its in-
terplanetary continuation as the heliospheric current sheet. The waviness of
the current sheet, as described by the tilt angle, increases towards the solar
maximum. Thus the current sheet is rather flat during the solar minimum,
as shown in the left panel in Fig. 6.20, while it extends to much higher lat-
itudes during solar maximum. During solar minimum the CIRs are confined
to the vicinity of the equatorial plane while during solar maximum conditions
stream interactions aiso can be observed at higher latitudes.

In the solar wind parameters, the solar cycle variations are less pro-
nounced [183,473]. In general, any long-term variations apparent in the data
are small compared with short-term variations. In addition, each solar cycle
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Solar Minimum Solar Maximum

Fig. 6.20. Waviness of the heliospheric current sheet during solar minimum and
maximum conditions, based on a sketch by R. Jokipii, University of Arizona

seems to be slightly different, and thus a parameter might be related to solar
activity quite well in one cycle but not in another. Despite the uncertain-

ties involved, there are some correlations which can be understood easily; for
instance: {a) The average solar wind speed is higher during solar minimum
than during solar maximum because high-speed solar wind streams are ob-
served more frequently and for longer times during solar minimum. {b) The
average solar wind densities are roughly constant except for individual time
periods when exclusively slow solar wind streams were observed. {(¢) The mo-
mentum flux is modulated by +28% with a well-defined minimum at solar
maximum, which just is a combination of (a) and (b). For the same rea-
son, the kinetic energy flux is modulated by £40%, again with its minimum
around solar maximum. (d) The relative amount of helium has a minimum
of 2.8% around solar minimum and a maximum of about 4% around solar
maximum. Again, this reflects the fact that during solar minimum conditions
the fast solar wind is observed more frequently.

6.4 Plasma Waves in Interplanetary Space

The interplanetary magnetic field is highly variable on different temporal and
spatial scales. For instance, fast and slow solar wind streams form interaction
regions. Coronal mass ejections, sometimes driving an interplanetary shock,
are transient disturbances, and on a smaller scale, waves and turbulence are
superposed on the average field.

Figure 6.21 illustrates the variability of the magnetic field on time scales
of minutes to hours. It shows the magnetic field azimuth (angle between

magnetic field line and radial direction), the elevation (inclination of the field

unth resnnni— +n tha wlans ~AF crlinticl and thoa v Aacoiéar £ Y I S |
WYiull L POlu LU LT pPHallc Ul CULLpUIL j, allld LU 11uX ucublby 11Ul A UILLIT pUllUU
of 7 hours during unusually quiet (left) and turbulent (right) interplanetary
conditions. Magnetic field fluctuations are more pronounced in direction than

in flux density and are quite irregular in amplitude and frequency.
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Fig. 6.21. Fluctuations in the magnetic field azimuth, the elevation, and the flux
density for extremely quiet conditions (left) and during a turbulent phase (right).
The different azimuth angles indicate an outward direction of the field in the left
panel and an inward direction in the right panel. Data from the Helios magnetome-
ter, University of Braunschweig

6.4.1 Power-Density Spectrum

The magnetic field fluctuation: 1 - b W 181ty Tum

[35,40]:°
Flly) =C k. (6.22)

Here k| is the wave number parallel to the field, g the slope, and C a constant
describing the level of the turbulence.

The power-density spectrum in Fig. 6.22 shows magnetic field fluctuations
on different scales. Its slope is distinct in different parts of the spectrum,
indicating different sources and modes of turbulence. Basically, four regimes
can be distinguished:

e Large-scale structures lasting a few days up to a solar rotation are related
to the stream structure of the solar wind and to solar wind expansion. Both
processes are the sources of turbulence on smaller scales; the frequencies
of the large-scale turbulence are below 5 x 10~% Hz.

e Meso-scale fluctuations are associated with the flux-tube structure of the
interplanetary medium which originates in the photospheric supergranula-
tion. Frequencies range between 5 x 10~% and about 10~% Hz.

e In the inertial range, mainly Alfvén waves with periods between some
20 min and more than 15 h are found, corresponding to frequencies be-
tween 10~4 and 1 Hz. The slope ¢ varies between —1.5 and —1.9. Magnetic
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field fluctuations in the inertial range seem to be responsible for the scat-
tering of protons in interplanetary space (Sect. 7.2).

e The smallest scales are in the dissipation range above 1 Hz. Here the spec-
trum is steeper with a slope close to —3. The observed fluctuations can be
attributed to ion cyclotron waves, ion acoustic waves, and Whistlers.

6.4.2 Waves or Turbulence?

So far we have described the fluctuations in terms of waves. But a single
observer in interplanetary space cannot decide whether the fluctuations car-
ried across him by the solar wind are waves or turbulence because he is
not able to distinguish between spatial and temporal variations. Thus the
question of whether the magnetic field fluctuations should be interpreted in
terms of waves or turbulence has led to a long and sometimes fruitless con-
troversy [332,525]. Only the modern concepts of MHD turbulence, e.g. [365],
allowed a kind of unification of both approaches: dynamical MHD turbu-
lence is not the simple superposition of different waves, but rather consists
of wave-packets which can interact with each other or can decay and excite
new waves.

We will not go into the details of this debate, but only introduce the
concept of Alfvénic turbulence or Alfvenicity because it offers a helpful tool
in the description of magnetic field turbulence. Alfvén waves are transverse
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waves propagating along the magnetic field line with the Alfvén speed va =
Bo/\/ligo (see Sect. 4.2.1). Fluctuations are Alfvénic if the fluctuations dtsowi
in flow speed and 4B in flux density obey the relation

(S’U,sowi ==x °B . (623)
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ne plamua and field data shown in Flg 0.4, the gooda correiation
between these fluctuations is evident. Fluctuations are classified as Alfvénic
if the correlation coefficient is larger than 0.6. Obviously, this is true for
Alfvén waves. But there is also a large number of other fluctuations which
fulfill (6.23). In particular, structures with variable |B| can also fulfill (6.23),
as can many of the static structures in the solar wind. Alfvén waves contribute
only a small amount to the Alfvénic fluctuations.

The Alfvénicity of fluctuations is useful in the description of the evolution
of turbulence from an orderly state (high Alfvénicity) to an entirely stochas-
tic one [525]. For instance, the Alfvénicity is larger close to the Sun than at
the Earth’s orbit, indicating that in the inner heliosphere most of the fluc-
tuations are of coronal origin. As these fluctuations decay, the Alfvénicity
decreases and the slope of the power-density spectrum evolves towards —5/3,
which is the Kolmogoroff spectrum of random, uncorrelated turbulence. The
Alfvénicity is larger in fast solar wind streams than in slower ones; thus in
the fast wind an orderly state is preserved over larger spatial scales. If fast
and slow streams interact, the Alfvénicity decreases and the spectrum takes
the slope of the Kolmogoroff spectrum. The Alfvénicity can also be different
on both sides of the heliospheric current sheet.

Ten
111
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The solar wind and its magnetic field therefore have to be understood as a
dynamically evolving, inhomogeneous, anisotropic, turbulent magneto-fluid.
With increasing distance, the fluctuations embedded in this fluid evolve from
Alfvénic turbulence close to the Sun towards a Kolmogoroff spectrum.

6.5 The Three-Dimensional Heliosphere

Until the early 1990s our knowledge of the heliosphere had been limited to the
plane of ecliptic. The main goal of the Ulysses mission, launched in October
1990, is the study of the heliosphere’s third dimension, i.e. plasmas, particles,
and fields in the polar regions of the Sun.

The Ulysses trajectory for the prime mission is shown in Fig. 6.24. A
swing-by at Jupiter allowed Ulysses to escape out of the plane of ecliptic into
an elliptical orbit around the Sun. This orbit is inclined by 80° relative to

the solar equator; the orbital period is 6.3 years. Ulysses flew below the Sun’s

south pole in autumn 1994 and above her north pole in summer 1995, both
polar passes were made during solar minimum. The mission will continue for
another two orbits, allowing for observations over the poles at solar maximum
and during the following minimum. The most important results of the first
polar pass are summarized in a series of papers in Science 268.

Plasma and field observations offered some surprises for the scientists.
For instance, the radial component of the magnetic field, which is most eas-
ily related to the global solar magnetic field, failed to show any latitudi-
nal gradient [26], although the photospheric magnetic field clearly reveals a
dipole-like pattern. Thus magnetic flux is removed from the poles towards
the equatorial regions, as had been suggested in the sketch in Fig. 6.18 and
is also suggested in the (empirical) concept of overexpansion. This observa-
tion has consequences for solar wind acceleration models, where the resulting

North Polar Pass,
Jun-Sep 95 & Sep-Dec 01 .

Orbit of Jupiter

Ecliptic Jupiter
Crossings Encounter
Mar 95 & Feb 92
May 01

Qi Pralo- Do
SUULL FUldl Dadx

Jun-Oct 94 & Sep 00-Jan 01 v

Fig. 6.24. Flight path of Ulysses. After a swing-by at Jupiter in February 1992,
the spacecraft left the plane of ecliptic



6.5 The Three-Dimensional Heliosphere 169

stress of the magnetic field thus far has not been considered (except for the
newer works which also consider the overexpansion), and for models describ-
ing the modulation of galactic cosmic rays. In addition, the magnetic flux in
the southern and northern hemisphere is different with an increase in radial
magnetic field strength of about 30% in the southern hemisphere [160,493].
This suggests an offset of the heliomagnetic equator by about 7° to the south:
the solar magnetic field therefore is not symmetrical about the heliographic
equator.

The plasma measurements showed a pronounced latitudinal variation of
the solar wind speed. As shown in Fig. 6.25, it increases from about 450 km/s
in the equatorial plane to about 750 km/s above the poles. Up to a latitude
of about 30°S, which corresponds to the tilt angle at that time, there is
a strong variation between fast and slow streams with a period of about
26 days, resulting in a recurrent CIR. At latitudes higher then 50°S, only
the fast solar wind streaming out of the coronal hole is observed [409], in
agreement with our expectations. The composition of the solar wind, on the

other hand, offered some surprises and also a big challenge for theory: the
compositions of the fast and slow streams were markedly different, but the
abundances were not what would be expected for ions accelerated in the hot
corona. Instead, they were more representative of ions formed in the lower
temperatures of the chromosphere [184].
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Fig. 6.25. Polar plot of solar wind speed as a function of heliclongitude for the
out-of ecliptic phase of the Ulysses mission from February 1992 through January
1997. Reprinted from D.J. McComas et al. [342], J. Geophys. Res. 103, Copyright

1998, American Geophysical Union
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A comparison between plasima aud magnetic field fluctuations iuside the
coronal hole revealed thie existence of large-amplitude, long-period Alfvén
waves propagating outward from the Sun [26]. Thus it appears that the fluc-
tuations, which originate close to the Sun in the acceleration region of the
solar wind, are less likely to decay in the uniform fast solar wind How than
they are in the complex and interacting flows in the plaue of ecliptic.

6.6 The Active Sun

The variability of the Sun is most obvious in the nuniber and spatial distribu-
tion of sunspots. But other properties, such as the electromaguetic radiation,
the solar wind, and the solar and interplanetary inaguetic fields, chauge too.
And, of course, during timnes of high solar activity there are the plienonena
of violent releases of energy and matter, i.e. flares and coronal inass cjections.

We have already considered a simple model of a sunspot i exaniple 11.
Figure 6.26 shows a white light image of a suuspot and its surroundings. The
dark spot. also called the umibra. is surrounded by a penumbra wlhicli consists
of radially oriented filameuts, Outside tlic pemunbra, the plhotospherie grai-
ulation cells are visible. The darker the wmbra, the lower the temperature
and the greater the nagnetic field strength. By use of the Stefan- Boltzinaun
law, the temperature 7y, inside the spot can he calenlated from the ratio
of the intensity I of the clectromagnetic radiation iuside the spot to that
for the photosphere [ppoia:

I . 4
spot ( nmnt_) (6 24)
Iphut a :rphur.u -
This temperature difference can be used to caleulate the difference in gas-

dynamic pressure and thus also the magnetic field strength. as dentonstrated
in example 11,

6.6.1 The Solar Cycle

The first records of suuspot, the prinie indicators for solar activity, date back
to the fourth century BC when the Greck astrouomners noted dark spots o the

Fig. 6.26. Sunspot with surrounding granules,
white light image., Source: www.uni-sw.gwdg.
de/ research/exp_solar/eflecken. html
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solar surface. Ancient Chinese astronomers knew abount sunspots, as did the
pre-Spanish Peruvians. In Europe, isolated records can be traced back to the
ninth century, but systematic observations started only with the development
of the telescope carly in the seventeenth centuryv. The variability of shape,
location, and nunber of sunspots was recognized early; however, owing to
the Maunder miimum, a period of very low solar activity in the seventeenth
century, the solar cvele was recognized only in 1843 by H. Schwabe.

Figure 6.27 shows two different representations of the solar cycle, I the
top panel. a butterfly diagrain gives the latitudinal distribution of sunspots,
and in the lower panel, the sunspot number is shown. Alternatively, a sunspot
relative nmnber or Wolf number can be used which considers the sunspot
size and its relation to other spots or an active region: R = k(10g + f)
with g being the number of sunspot groups, f the number of single spots,
and k a nonmnalization factor to standardize observations (e.g. corrections for
visibility]. At the solar minimum, the Sun is alimost spotless. Then spots
start to appear at latitudes around 30°. These spots are relatively stable ancd
often can be observed over some solar rotations. They move towards the solar
equator while at higher latitudes new spots emerge. The number of sunspots
increases until solar maximum. Afterwards, only a few new sunspots appear
on the disk while the sunspots at low latitudes dissolve. The total number
of sunspots decreases. Just after the solar minimum new sunspots begin to

DAILY SUNSPOT AREA AVERAGED OVER INDIVIDUAL SOLAR ROTATIONS

= - 00% W>01% [>10%

SUNSPOT AREA IN EQLAL AREA LATITUDRE STRIPS ("= OF STRIP AREA)

30N {

- 1 | .
E}, u.ul' iy LAl I
s .“r A

EQ

s

s — - ! — - -
18RO 1890 1900 1910 1920 1930 1940 1950 1960 1970 19840 1500 2000
DATE
g5 AVERAGE DAILY SUNSPOT AREA (% OF VISIBLE HEMISPHERE)
4 - — AL i
| |
I
0.4 | | L |
03 - = 1
0z f - ' !
il Y
W WK NE

s

1950

own

| v v 2 '
1Ee 1] 1890 14 1910 1920 193400 1940 1496 1970 1490 190 LU

Fig. 6.27. Two different representations of the solar eyele. (7Top) Butterfly
diagram of the latitudinal distribution of sunspots. with each bar marking a
sunspot. [ Bottorn) Sunspot number versus time for the same time period (source:
science.mfsc.nasa.gov/ssl/pad/solar/images/bfly.gif)
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emerge at higher latitudes. The average duration of such a cyele is 11 years
with variations between 7 and 15 years.

From the lower panel in Fig. 6.27, it is evident that solar activity is highly
variable between different solar cycles. For instance, the sunspot nurnber
in the 1958 solar maximum was about twice as large as that in the 1855
maximum. The highest number of sunspots for a month observed so far was
254 in October 1957. Over longer periods, variations by up to a factor of
4 have been observed; at some times, e.g. during the Maunder Minimum of
1650-1710, solar activity and sunspot numbers can be even smaller.

The magnetic cycle is twice as long: within the 11 vears of a sunspot
cycle, the solar field reverses its polarity once. This is evident in Fig. 6.28,
where the magnetic flux is plotted in a butterfly-diagramm. Thus only after
22 vears the original polarity pattern is restored. This 22-year cycle is called
the Hale cycle or the solar magnetic cycle.

Sine Latitude

1976 197 1982 IES |98 el 194 9

Year

Fig. 6.28. Butterfly diagram of net magnetic flux {constructed from the NSO /KP
synoptic rotation magnetic maps) from April 1975 to August 1997. Note the
dominant opposite polarities of the magnetic flux poleward and equatorward in
the butterfly pattern, reversed between the two hemispheres and between eycles
21, 22, and 23. Large-scale patterns of monopolar magnetic flux extend pole-
ward from the activity belts in several “streams”™. Those with the polarity of the
active-region follower ficlds ultimately result in the reversal of the polar fields.
The change in the tilt of the Sun’s axis inmtroduces an annual short-term varia-
tion in the polar fields. (These NSO/Kitt Peak data were produced cooperatively
by NSF/NOAO. NASA/GSFC, and NOAA/SEC.) Source of figure and caption:
www.hao.ucar. edu/smi/SMI_platel.html; sce [324]
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6.6.2 A Simple Model of the Solar Cycle

Evidently, the ¢lue to wuderstanding the solar cycle lies in the magnetic field
and its reversal. Helpful information, in particular for a proof of models, can
he found in the details of sunspots:

Sunspots emerge at relatively high latitudes and move towards the equa-
tor (Spérer’s law). During the solar eycle the latitude of emergence also
moves towards the equator.

2. Sunspots are obscerved in bipolar groups with the leading spot (in the
direction of apparent motion aud closest to the equator) having the same
polariry as the hemisphere it appeared in while the following spot has
the opposite polarity (Hale's ])Oldl ity a\\) The bl[)()l(ll gr oups n Oppo-

.--:fr\_ ]\/)v\\ YTy ]- MY ]\ vy Yf\ LYTNTY LI
SLU 11\,111151}11\41\ = 11dvVO UpspauaLL
C3

reverses in each new solar
3. Tll(‘ tilt dllﬂ](‘ of the active 1(\{.,1011\ is })10p()1t1011dl to the latitude (Joy's

The motion of the sunspots reveals another important property of the Sun,
namely its diflerential rotation: the Sun rotates faster at its equator and
stower at the poles with a sidercal rotation time of 26.8°/day at the cquator
and 31.8° at 75° latitude (see Table 6.1).

The Solar Dynamo — Basic Idea. The source of solar aetivity is u MHD
dvuamo, as first proposed by Babeock [17]. While the details of this process
are not completely understood, the underlving prineiple scems to be valid.
The dynamo process works within or at the bottom of the eonvection zone,
most probably at the tachocline where most of the shear is concentrated.
During the solar minimuin the Sun’s magnetic ficld is poloidal. Differential
rotation winds it up to a toroidal field, as already described (Sect. 3.6). The
magnetic field is then concentrated in flux tubes with radii of a few hundred
kilometers and magnetic field strengths between a few hundred and about
2000 G. The bulk motion in the convection zone twists the field lines. locally
increasing the magnetic field strength to up to some thousands of gauss. This
high flux density leads to magnetic buovancy driving up magnetie flux ropes
through the photosphere (sce Fig. 6.29).

The increased magnetic flux inhibits convection; thus less heat is trans-
ported towards the photosphiere and the regions of high mnagnetic Alux are
cooler. Where the flux tubes intersect the pheotosphere, bipolar sunspots
cinerge with the polarity pattern required by Hale's law. The latitude of
the first appearance of simspots is determined by the interplay of differential
rotation and magnetic ficld strength. With the cmmergence of sunspots the
nmagnetic pressure locally is reduced and the pro
tudes, leading to the motion of sunspots towards the (‘(111<]T()1 (1111111g 111(‘ solar
cvcle. Meridional flows in the convection zone combined with magnetic field
diffusion and dispersion drive the leading spot towards the equator while the

0NN conti
eSS Contll
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Fig. 6.29. Increased magnetic buoyancy drives
Magneti N flux tubes through the photosphere, creating
/ two sunspots of opposite polarity. Reprinted
from K. Lang [308], Sun, earth, and sky, Copy-
right 1995, Springer-Verlag

following spot stays behind. The leading spots of the opposite hemispheres
converge at the equator and dissolve by reconnection. The following spots

undergo reconnection with the polar fields. Since the polar field is slightly
smaller than the field accumulated in the following spots, the polarity of
these spots eventually takes over and the magnetic field is reversed. The pos-
sibility of this process is supported by the lanes of different than the prevalent
polarity of the hemisphere at higher latitudes, which can be seen in Fig. 6.28.

This last step, i.e. the pole reversal, is understood least. An alternative
explanation for the polarity reversal is the a-effect discussed in Sect. 3.6 that
creates a toroidal current Wthh in turn gives rise to a poloidal magnetic field
of opposite polarity.

The Solar Dynamo — Details. Two important details in the solar cycle
discussed above are the emerging of magnetic flux in an active region and
the treatment of the a-effect in different dynamo models.

The rise of a flux tube from the tachocline through the photosphere into
the chromosphere or even the corona is influenced predominately by an inter-
play between magnetic buoyancy, aerodynamic drag, and the Coriolis force.
For an isolated horizontal flux, the pressure balance is

B2

i+ —

= p. 6.25
20 P (6.25)

pi and p. are the internal and external gas pressures and B?/2uq is the
magnetic pressure. Equation (6.25) implies p; < p.. Expressing the pressure
by the gas law, we can rewrite (6.25) and obtain

B2 '
o RT + — = p.RT (6.26)
2110 g
or, after rearrangement,
Be — Oi _ B2

= . 27
Qe 2M0pe (6 ‘)
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As a consequence, the fluid in the flux tube has a lower density than its
surroundings and thus the flux tube must be buoyant. This effect is termed
magnetic buoyancy. The combination of magnetic buoyancy and aerodynamic
drag then determines the details of the rise and, later, the emergence of the
flux tube. The Coriolis force does not influence the lifting of the tube but
modifies its shape: it twists the rising flux tube from a plane loop into a
three-dimensional structure where the area enclosed by the loop has an S-
shape in the vertical direction. The inclusion of the Coriolis force allows us
to understand Hale’s and Joy’s laws.

As mentioned in Sect. 3.6, differential rotation and magnetic buoyancy
lead to the poloidal field and emerging flux in active regions, while the field
reversal requires an additional process to work, the a-effect. Models using
the mean-field theory differ in their treatment of this a-effect. These models
include cyclic convection, in which « is positive in the unstable layer and
negative in the tachocline or overshoot layer below; magnetostrophic waves,
which imply a negative «; flux loops which correspond to a positive «a; and

unstable global-scale Rossby waves.? The various models can be summarized
as follows [406]:

e Overshoot layer models (OL dynamos), also called co-spatial wave models,
combined with @ < 0, give the correct migration direction and thus are
able to model the butterfly diagrams, but tend to give cycle periods that
are too short.

e Distributed wave models (IF dynamos) require an abrupt spatial change
in diffusivity to excite dynamo waves. So far, strong toroidal fields can be
produced in these models.

e Co-spatial transport models (CP dynamos) can describe the field migration
in terms of density pumping or advection of the magnetic field but do not
address the origin of the deep toroidal field.

e Distributed transport models (BL dynamos) start from an entirely different
position: not a dynamo wave but a conveyor belt mechanism is responsi-
ble for the emergence and evolution of sunspots as seen in the butterfly
diagram. These models can reproduce the confinement of active regions
to low latitudes and describe the migration patterns of sunspots; however,
present models require an unrealistically low turbulent diffusivity.

If we disregard the many problems with the details of the process, how-
ever, we can nonetheless give a simple formal approximation to the solution
suggested by Parker [390] that outlines the main features required to describe

4 A Rossby wave is a standing wave that slowly drifts in a fluid layer in a rotating
body. The Rossby wave results from an interplay of a thermal or pressure gradient
that drives a convection cell, and the Coriolis force. A prominent example of a
Rossby wave is the undulating polar jet in the terrestrial atmosphere that guides
the pressure regimes and thus is responsible for the weather. A simple laboratory
experiment to produce a plane Rossby wave uses a rotating cylindrical tank with
a temperature gradient between the outer wall and the axis.
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Fig. 6.30. Local Cartesian coordinate system at a

point in the northern hemisphere of a spherical ro-

\/ tating body. Note that the coordinate system rotates
with the body, and thus the unit vectors vary with
time

the dynamo and the solar cycle, following [101]. The starting point is (3.135).
Since we shall deal with average quantities only, we shall omit all brackets
indicating averages, and B and v are meant to be average quantities. In
addition, we assume that viscosity is determined by the turbulent viscosity.
Rearrangement of (3.135) then gives

%?:Vx(uxv)—&—VX(aB)—i—ﬁVzB. (6.28)

We choose a Cartesian coordinate system fixed on the surface of the Sun as
sketched in Fig. 6.30: the y-axis points radially outwards, the z-axis points
in the toroidal direction (east—west direction), and the z-axis points in the
direction of increasing latitude.

To be in agreement with the observed butterfly diagram, we need an
equatorwards-propagating wave, that is, a wave propagating in the negative
z-direction. In addition, the solution should be symmetric with respect to the
rotation -axis. In a local Cartesian system, this implies 0/dy = 0.

The toroidal magnetic field is then simply Bye,, while the poloidal field
lies in the xz-plane. Since this field is solenoidal, it has zero divergence and
can be written as the rotation of a scalar field A(z, z):

B = By(z,2)ey + V x [A(z, z)e,] . (6.29)

The mean velocity field results from the differential rotation and thus has
a component in the y-direction: v = wvy(x)e,. The velocity shear then is
G = Ov, /0z. Equation (6.28) can then be written as

0B
= =GB:—a V?A+BV®B,, (6.30)
where a is constant. The z- and z- components of (6.28) can be written as
0A '
V x (Eey — aByey — 8 Very) =0. (631)
This equation can be solved is the following condition is satisfied:
0A 5
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Thus, for a field of the form (6.29), the dynamo equation (6.28) is satisfied
if A and B, satisfy (6.30) and (6.32). Thus instead of the dynamo equation
(6.28), we can solve the two equations (6.30) and (6.32) simultaneously.

Equation (6.32) describes the evolution of the poloidal field. Without the
a-term this would be a simple diffusion equation: any poloidal field would
just diffuse away. The a-term works as a source, generating new poloidal field
out of the turbulence, since, as discussed in Sect. 3.6, « is a measure of the
turbulent motion. Equation (6.30) describes the evolution of the toroidal field.
It has two sources: the first results from the velocity shear of the differential
rotation, and the second stems from the turbulent motion (as evident from
the « contained in this term), because just as the helical motion can twist
the toroidal field to produce a poloidal field, it can also twist a poloidal field
to produce a toroidal one. If the differential rotation is strong, this second
term can be neglected and (6.30) reduces to

9B, _ 594, VB, . (6.33)

Ay 7

—= =
ot dz
This equation describes the af2? dynamo and is a reasonable approximation
for the solar dynamo. If differential rotation were weak, the other source term
in (6.30) would be dominant and we would get an a® dynamo.
The af? dynamo is thus defined by (6.32) and (6.33). These equations
can be solved by wave-like solutions. The ansatz is

A= Apexp(wt +ikz) and B, = Bpexp(wt+ikz). (6.34)
Substituting in (6.32) and (6.33), we obtain
(w+ BEHAp = aBy and (w+ Bbk?)By = —ikG Ay (6.35)
or, combined,
(w+ BE)? = —ikaG (6.36)
which has the solution
w=—0k*+ (i\;ﬁl) kaG . (6.37)

For maintenance of the dynamo process, the real part of w must be larger
than zero: R(w) > 0. In addition, k is taken to be positive. The crucial term
is the product a(, which gives the combined effects of helical motion and
differential rotation. For aG > 0 and R(w) > 0, we obtain from (6.37)

5 [ Ry | Kol . a { Kl
w:—ﬁk‘Jrka—iV—k-QC or %(w):—ﬁk‘—{—\/%. (6.38)
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We can now define a dynamo parameter

oG]
B32k3

Ng= (6.39)

From (6.38), we see that the condition for dynamo growth is Ng > 2. The
eigenmodes of the marginally stable (Ng = 2) dynamo,

A, By ~ exp {i\ / E;—q t+ ikz} , (6.40)

correspond to waves propagating in the positive z2-direction, that is, pole-
wards.
For aG < 0 ,we obtain from (6.37)

w:_@kzﬂv/ﬂ‘_’;ﬂ /’“'“G or R(w) = Gk + 4 k"f'. (6.41)

Dynamo growth is again described by the dynamo parameter (6. 39) but the
marginally stable solutions now become
} , (6.42)

which correspond to an equatorwards-propagating wave. Thus for aG < 0,
we obtain a solution of the dynamo equation that accounts for both the
periodicity and the equatorwards propagation of the solar magnetic field.
Nonetheless, we should be aware that these solutions have been obtained
under simplified conditions. In particular, «, 3, and G are assumed to be
constant, which is certainly not true under realistic conditions. In a realistic
scenario, one would have to solve the dynamo equation in a finite region
with suitable boundary conditions. In addition, we have assumed that the
mean velocity u is purely in the toroidal direction. However, with a suitable

velocity field, an equatorwards-propagating wave can be obtained even if
aG >0 [102].

A, B, ~ exp {i k|§G|

6.6.3 Stellar Activity

Owing to its close proximity, the Sun is the only star whose surface we can
see directly. Thus we are able to identify such features as sunspots, filaments,
flares, and solar cycles, all indicating that the sun is a magnetically active star.
Magnetic activity is not unique to the Sun; it is not even strong on the Sun.
Other stars can show much stronger magnetic activity. Although spots and
flares cannot be observed directly, the Ca II line, which is a strong indicator
of the magnetic network on the Sun, can be studied in other stars, too. This
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has led to the identification of magnetic activity in other stars [25,429]. Cyclic
variations and also magnetically flat stars could be identified. Since many of
these stars have shorter star cycles than the Sun, it could be shown that the
variations in the solar cycle are small compared with the variations in the
magnetic cycles of comparable stars. The other active stars, therefore, are
often used to infer information about long-term variations in solar activity
[326].

A large number of articles on various aspects of solar and stellar activity
can be found in [389, 466, 564].

6.7 Flares and Coronal Mass Ejections
Flares and coronal mass ejections (CMEs) are violent manifestations of solar

activity. Both are related to the solar magnetic field, sunspots, and filaments.
The energy released in these processes had been stored in the field.

The first record of a solar flare dates back to Carrington in 1859, who
observed a sudden brightening of a sunspot in white light. After this “ex-
plosion”, the sunspot structure had changed and about a day later a violent
geomagnetic storm with strong auroral activity was observed. Although Car-
rington himself noted “a swallow does not make a surnmer”, this was the first
direct link between solar activity and its influence on Earth. Coronal mass
ejections only have been observed since the early 1970 with the advance of
space-borne coronographs. Today, one of the most controversial topics is the
relation between flares and CMEs.

Flares normally are associated with active regions and sunspots. Nonethe-
less, even during sunspot minimum on a spotless Sun sporadic flare events
of large magnitude can occur. Such flares observed during solar minimum in
general are associated with erupting filaments rather than with sunspots and
active regions. In addition, there tend to be fewer flares per solar rotation at
times of the highest sunspot number during a solar maximum [302]. For a
review on the magnetic nature of solar flares see [423].

In some cases, flares occur repeatedly in the same location and display
similar spatial structures during the evolution of the active region. Such flares
are called homologous [179, 566]: only part of the energy stored in the mag-
netic field is released and the overall topology of the field is retained. These
flares ‘are not necessarily small because the energy release depends on the
available magnetic energy and magnetic stability. If enough energy is stored
in the field even the release of only a relatively small fraction of it can lead
to a considerable flare.

Some major flares also can trigger flares in their neighbourhood or even in
remote active regions. Such flares are called sympathetic, see e.g. [361,570].
Sympathetic coronal mass ejections also can be observed [362].
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6.7.1 Electromagnetic Radiation

A flare is the result of a sudden violent outburst of energy, with energies of
up to 102° J being released over a time period of some minutes. White-light
flares, as the one observed by Carrington, are rare because even for the largest
flares the brightness is less than 1% of the total luminosity of the photosphere.
In certain frequency ranges, e.g. at the wings of the black body, the intensity
of the electromagnetic radiation can increase by orders of magnitude during
a flare. While the flare is defined as an outburst in electromagnetic radiation,
often it also is associated with the emission of energetic particles (Sect. 7.2)
and huge plasma clouds, the CMEs.

The electromagnetic radiation released in a flare in different frequency
ranges shows typical time profiles (see Fig. 6.31). These profiles can be used
to define the phases of a flare during which distinct physical processes occur.

In a large flare, the electromagnetic emission can be divided into three
parts. In the preflare phase, also called the precursor, the flare site weakly

brightens in soft X-rays and Hea. This phase lasts for some minutes; 1t 1s
observed in very large flares only, and indicates a heating of the flare site.
During the impulsive or flash phase, most of the flare energy is released and
the harder parts of the electromagnetic spectrum, such as hard X-rays and
v-rays, are most abundant. This phase lasts for a few minutes and can be
followed by a gradual or extended phase during which emission mainly occurs
in Ho and soft X-rays but microwave and radio emission also can continue.
This latter phase can last for some tens of minutes, and occasionally even for
a few hours. It is present in the larger events only. Note that most flares are
rather small, consisting of an impulsive phase only.

The impulsive phase is related to an impulsive energy release, probably
reconnection, inside a closed magnetic field loop in the corona, heating the
coronal plasma and accelerating particles. The heated plasma emits soft X-
rays. Accelerated electrons generate microwaves and hard X-rays at the top of
the loop or hard X-rays, y-rays, UV emission, and part of the Ha emission at
its footpoints, while accelerated ions generate v-ray line emission. Streaming
electrons also generate radio emission. Thus the electromagnetic radiation
also provides information about the acceleration and propagation of particles
accelerated in a flare.

Soft X-Rays and He. In a solar flare most of the electromagnetic radiation
is emitted as soft X-rays with wavelength between 0.1 and 10 nm. Soft X-
rays originate as thermal emission in hot plasmas with temperatures of about
107 K. Most of the radiation is continuum ermssion; lines of highly ionized O,
Ca, and Fe are also present. In a large flare, soft X-rays are emitted during
all three phases; the strong increase at the beginning of the impulsive phase
is related to an abrupt increase in the temperature at the flare site up to
about 5 x 107 K. The Ha emission also is thermal emission, its time profile
closely follows the soft X-ray profile.
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Hard X-Rays. Hard X-rays are photons with energies between a few tens
of kiloelectronvolts and a few hundred kiloelectronvolts, generated as brems-
strahlung of electrons with slightly higher energies [279,304,535]. Only a very
small amount of the total electron energy (about 1 out of 10%) is converted
into hard X-rays.

Microwaves. Solar microwave emission is generated by the same electron
population as the hard X-rays, as can be deduced from the similarities in
the time profiles [34,264,379]. As in hard X-rays, during the impulsive phase
the emission often consists of individual spikes, the ‘elementary flare bursts’.
Microwave emission is gyro-synchrotron radiation of electrons with energies
between some 10 keV and some 100 keV [430, 515]. When these mildly rel-
ativistic particles gyrate in the coronal magnetic field (about 20-100 G),
they emit radiation with frequencies between 10 and 100 times their gyro-



182 6 Sun and Solar Wind

frequency. This dependence on the magnetic field strength has a remarkable
consequence: as the magnetic field decreases with height, microwave emission
at a certain frequency, say 17 GHz, is generated by electrons with energies
above 200 keV in low lying flares or small loops, while in a loop extending
high into the corona an electron energy of more than 1 MeV is required [296].
While in the impulsive phase the elementary bursts give evidence for indi-
vidual, isolated energy releases, in the gradual phase the microwave emission
most probably is thermal emission.

~v-Rays. y-ray emission indicates the presence of energetic particles. The
spectrum can be divided into three parts: (a) Bremsstrahlung of relativistic
electrons and, to a lesser extent, the Doppler broadening of closely neighbored
~-ray lines leads to a 4-ray continuum. (b) Nuclear radiation of excited CNO-
nuclei leads to a v-ray line spectrum in the range 4 to 7 MeV. (c) Decaying
pions lead to 7y-ray continuum emission above 25 MeV. The details of these
mechanisms are described in [370,371,431]

The most important y-ray lines are at 2.23 MeV and 4.43 MeV. The 2.23

MeV line is due to neutron capture in the photosphere: *He-nuclei decay in
p/a or a/p interactions in the corona, emitting neutrons. These reactions
require particle energies of at least 30 MeV/nucl. The neutrons can propa-
gate independently of the coronal magnetic field. Elastic collisions decelerate
neutrons penetrating into the denser regions of the chromosphere or photo-
sphere. Eventually, the neutron is slowed down to thermal energies and can
be captured by 'H or 3He. Neutron capture by 'H leads to the emission of a
~-quant. The 4.43 MeV line results from the transition of a 12C nucleus from
an excited into a lower state, with the excitation being either due to nuclear
decay or .inelastic collisions with energetic particies.

Radio Emission. Electrons streaming through the coronal plasma excite
Langmuir oscillations. Solar radio bursts are metric bursts; their wavelengths
are in the meter range. In interplanetary space, radio bursts are kilometric
bursts. The bursts are classified depending on their frequency drift [43, 351].
The type I radio burst is a continuous radio emission from the Sun, basically
the normal solar radio noise but enhanced during the late phase of the flare.
The other four types of bursts can be divided in fast and slow drifting bursts
or continua (see the upper panel in Fig. 6.31).

The type III radio burst starts early in the impulsive phase and shows a.
fast drift towards lower frequencies. Since the frequency of a Langmuir oscil-
lation depends on the density of the plasma (see (4.52) and example 17), the
radial speed of the radio source can be determined from this frequency drift
using a density model of the corona. The speed of the type III burst is about
c¢/3, it is interpreted as a stream of electrons propagating along open field lines
into interplanetary space. Impulsive peaks in the hard X-ray emission can be
related to individual type 1II bursts, indicating individual energy releases.
Occasionally, the drift of the type III burst is suddenly reversed, indicating
electrons captured in a closed magnetic field loop: as the electrons propagate
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upward, the burst shows the normal frequency drift which is reversed as the
electrons propagate downward on the other leg of the loop.

In the metric type II burst, the frequency drift is much slower, indicating
a radial propagation speed of its source of about 1000 km/s. It is interpreted
as evidence of a shock propagating through the corona. Nonetheless, it is not
the shock itself that generates the type II burst but the shock-accelerated
electrons. As these electrons stream away from the shock, they generate small,
type III-like structures, giving the burst the appearance of a herringbone
(herringbone burst) in the frequency time diagram with the type II as the
backbone and the type III structures as fish-bones. The type II burst is split
into two parallel frequency bands, interpreted as forward and reverse shocks.

The metric type IV and V bursts are continuous emission directly fol-
lowing the type II and type III bursts, respectively. The type IV burst is
generated by gyro-synchrotron emission of electrons with energies of about
100 keV. It consists of two components: a non-drifting part generated by elec-
trons captured in closed magnetic field loops low in the corona, and a propa-

gating type IV burst generated by electrons moving in the higher corona. The
type V burst is a similar burst following the type III burst. But in contrast
to the type IV burst it is stationary, showing no frequency drift. Most likely,
it is radiation of the plasma itself.

Kilometric radio bursts in interplanetary space are interpreted in the same

way: type III bursts show a fast frequency drift, indicating electrons stream-
ing along a magnetic field line. If the location of the radio source can be
identified, this kilometric type III burst can be used to trace the shape of the
interplanetary magnetic field line [282]. The kilometric type II burst gives
evidence for a shock propagating through interplanetary space [83].
Solar Quakes Produced by Large Flares. An only recently discovered
by-product of flares is a circular wave packet emanating from the flare site.
This wave was first observed by the Michelson Doppler Imager (MDI) on
board SOHO during the large flare of June 1996 [295]. This magneto-acoustic
wave can be interpreted as a kind of solar quake, containing about four orders
of magnitude more energy than the 1906 San Francisco earthquakes. The
waves of this quake were similar to surface waves on a pond produced by a
stone. The waves accelerated from 10 kmm/s to about 115 km/s during their
outward propagation until they finally disappeared in the photosphere.

These solar quakes should not be confused with Moreton waves. The lat-
ter are the chromospheric component, seen in Ha radiation, of a solar-flare-
induced wave that propagates away from the flare site at a roughly constant
speed of about 1000 km/s. Moreton waves are attributed to fast-mode MHD
shocks generated in the impulsive phase of a flare.

6.7.2 Classes of Flares

Not all the phases indicated in Fig. 6.31 can be observed in all flares. Instead,
flares differ in their electromagnetic radiation, in the acceleration of energetic
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Table 6.2. Classes of solar flares

Impulsive Gradual
Duration of soft X-rays <1h >1h [387]
Decay constant of soft X-rays < 10 min >10 min [104, 387)
Height in corona < 10* km ~ 510" km [387]
Volume 10%® — 10 cm® 10%® — 10*° cm® [387)
Energy density high low [387]
Size in Ho ' small large [22]
Duration of hard X-rays <10 min >10 min [383]
Duration of microwaves <5 min >5 min [119]
Metric type II burst 5% always [84]
Metric type III burst always 50% [84]
Metric type IV burst rare always [84,292]
Coronal mass ejection rare always [84]

particles, and the association with a coronal mass ejection. Standard classi-
fications based on the magnetic structure and the energy release are given
in [271,435,542].

A useful, although frequently modified, classification Scheme for solar
flares goes back to Pallavicini et al. [387] WhO used Skylab soft X-ray im-
ages of the Sun, combined with intensity—time profiles. If a flare is observed
on the solar limb, the height profile of the electromagnetic emission can be
inferred. These limb flares can be divided into three distinct groups: (a) point-
like flares, (b) flares in small and compact loop structures, and (c¢) flares in

large systems of more diffuse loops. Flares of classes (a) and (b) are associated

with a short duration of the soft X-ray emission, less than one hour, while in
flares of class (c) the soft X-ray emission can last for some hours. Therefore,
the compact and point-like flares are called impulsive, and the flares in the
large diffuse loop are called gradual flares.

The classification scheme, originally introduced for the soft X-rays only,
over the years has been extended to other ranges of electromagnetic radiation,
as summarized in Table 6.2. These schemes do not always agree. On the basis
of the times scales, a flare might appear gradual in soft X-rays but impulsive
in hard X-rays or vice versa. These phenomenological criteria provide no
sharp separation into two classes but rather a continuous transition from
more.impulsive to more gradual flares. A better criterion, also pointing to
the physical difference, is the occurrence of a coronal mass ejection, leading
to an unambiguous classification of flares into confined (corresponding to
impulsive) and eruptive (corresponding to gradual).

We have to be careful not to confuse the classes of flares, i.e. impulsive
and gradual, with the phases of flares bearing the same name [23]. An impul-
sive flare appears to be rather simple in so far as it always has an impulsive
phase. However, in some small events, which are observed in interplanetary
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space as so-called *He-rich events [239], even the impulsive phase is rather
small with the Hea flare often too small to be detected although hard X-ray
and /or radio emission is observed [437]. Some large impulsive events can also
show a small gradual phase. In the larger flares (longer duration, larger volu-
mina) the situation is even more complicated. While the gradual phase is well
developed, an impulsive phase is not always present, only the largest gradual
flares show all three phases. The gradual flares with a gradual phase only
in general are small in electromagnetic emission, their main characteristic is
the coronal mass ejection. These solar events are often called disappearing
filaments because the expelled matter is their main signature while classic
flare emission is weak or absent.

6.7.3 Coronal Mass Ejections

With the aid of a coronograph, the corona can be observed continuously.
Basically, a coronograph is a telescope with an occulter screening off the
direct photospheric emissiomn. ound-based coronographs have been in use
since the 1930s, observing only selected coronal emission lines. Space-based
coronographs, on the other hand, observe the light scattered by the corona.
The first space-based coronograph was used on Skylab in 1973/74; the most
advanced coronograph is on SOHO [63, 161]. While the older coronographs
had a field of view from a height of about 1.5 r5 out to 5 or 10 7, the
combination of different telescopes in the LASCO coronograph on SOHO has
a field of view from 1.1 75 out to about 30 7. In addition, its resolution
is much better, thus smaller and fainter mass ejections have been detected.
Examples and further details can be found at sohowww.nascom.nasa.gov/
gallery/LASCO/ or lasco-www.nrl.navy.mil/lasco.html.

The most striking feature visible in a record of coronograph images is

the coronal mass ejection (CME). A coronal mass ejection is a bright struc-
ture propagating outward through the corona, as shown in Fig. 6.32. Large
data bases on CMEs exist from the Solwind-Coronograph on P78, the HAO-
coronograph on Solar-Maximum Mission (SMM), and the LASCO corono-
graph on SOHO. The basic features of CMEs can be summarized as fol-
lows [69,236, 246,369, 501]:
Solar Cycle Dependence. During solar maxima, about two CMEs are
observed daily, whereas during solar minima one CME is observed per week
[651]. This is not too surprising because CMEs are related to flares and
filaments which both are more frequent during solar maximum. With the
better spatial resolution of the LASCO coronograph these numbers increase,
however, the ratio between solar maximum and minimum does not change.

Latitude Distribution. Coronal mass ejections are distributed evenly on
both hemispheres, the average latitude is 1.5°N. Their distribution is flat
within +30° and decreases fast towards higher latitudes. The maximum in
the +£30° region reflects the latitudinal distribution of sunspots and flares.
During solar minimum, the CMEs cluster within +10° around the equator.
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Width. The projected widths of CAIEs show a distribution with an averagoe
at 46° and a median at 42°. CMEs smaller than 207 or larger than 607 are
rare; however, the largest angnlar extent is more than 120°. The width of
CMESs seetns to be independent of the solar eycle.

Speeds. CME speeds range fromn less than 10 km/s up to greater than
2000 km/s with an average of 350 km/s and a median at 285 ki/s. The
speeds of CMEs do not depend on the solar cvele. Fast and slow CMEs seern
to reveal different patterns of energy release: a slow CNE can accelerate in
the coronograph’s field of view, indicating a continuous energy release. A fast
CME, on the other hand. does not show evidence for acceleration. Here the
energy release appears to be more explosive.

Kinetics. During a CME between 2 x 10 g and 4 x 10'% ¢ coronal material
is ejected with a kinetic encrgy content between 1022 J and 6 x 104! J. This is
comparable with the energy released as electromagnetic radiation in a flare.
The combined potential and kinetic energy of the CAE is at least comparable
with the entire energy released in a flare.

Structure. Textbook coronal mass ejection are loop-like structures as shown
in Fig. 6.32. While these are the most impressive and also the most energetic
CMEs, other morphologies exist, too, with such picturesque names as spikes.
multiple-spikes. clouds, fans, or streamer blow-outs [236]. The basic difference
is a smaller extent and a structure distinet from a closed loop. One example
will be discussed in connection with Fig. 6.36.

Note that all the geometrical quantities discussed above are apparent
quantities only: while the coronal mass cjection is a three-dimensional strue-
ture, its image is only a two-dimensional projection into a plane perpendicnlar
to the Sun Earth axis. Thus sizes and speeds might be underestimated. In
particular, if the CME propagates directly towards the observer, its extent
and specd cannot be determined. It is even more difficult to detect becanse it
only becomes visible as a halo around the Sun after it has spread far enough.

Fig. 6.32. Image of the 4 May 1936 CNE.
taken by the HAO coronograph. The dark
disk in the lower left corner is the oc-
culting disk inside the coronograph, and
the dashed circle gives the photosphere.
The arrow in the center of the Snn points
towards the north. Note that this CME
is observed during solar minimumn coneli-
tions. Reprinted from S.W. Kahler and
A.J. Hundhausen [263]. J. Geophys. Res.
97. Copyright 1992, Awmerican Geoplivsi-
cal Union
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Owing to this projection effect, the three-dimensional structure of a CME
is debatable: it is not clear whether the leading bright structure is a loop
or a bubble. Here observations from two spacecraft from different positions
arc required. such as planned with the STEREO 1nission. For details of the
nission sec stp.gsfc.nasa.gov/missions/stereo/stereo.htm. details of

the coronograph can be found at wwwsolar.nrl.navy.mil/STEREQ/index.
html.

6.7.4 Coronal Mass Ejections, Flares, and Coronal Shocks

The speeds of coronal mass ejections are highly variable. In Fig. 6.33 the
range of CME speeds is compared with the Alfvén and the sound speed.
In the corona, 1mnost CMEs are too slow to drive a fast MHD shock wave.
Nonetheless, becanse many of the CMES are still faster than the sound speed,
they might drive slow or intermediate NTHD shocks. In at least one CME the
curvature of the loop snggests a slow shock [248].

In Sect. 6.7.1 we have learned about the metric type II burst, interpreted
as a shock wave propagating through the corona. The relationship between
type II bursts and CMEs is ainbiguous. From a statistical study of CMEs and
metric type Il bursts [476]. it is evident that about two-thirds of the metric
tvpe II bursts are accompaniced by a fast CMNE. However, there are also metric
type I1 bursts withont CMEs (one-third) as well as CMEs without netric type
IT burst {three-fifth). In particular, half of the CMEs without type II bursts
are fast CMEs, with speeds above 450 kin/s. The situation becomes even
worse if CMEs and type Il radio bursts are compared in individual events.
In some cvents, the CME's radial speed is markedly lower than the speed

CE I Fig. 6.33. Alfvén and
AN { I sound speed in the corona
and in interplanetary space
comparced with the solar
wind speed vgw and speeds
of coronal mass ejections
(CMEs). coronal type II
bursts. and interplanetary
type Il bursts. Reprinted
from J.-L. Bougeret [57],
in Collisionless shocks in
vV the heliosphere: reviews of
CHR_LOMO- current research (eds. B.T.
SPHERE| CORONA SOLAR WIND Tsurutani and R.G. Stoue).
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of the radio burst; in other events the source of the metric type II emission
is located behind the CME, occasionally overtaking it at later times. Thus
a CME is neither a necessary nor a sufficient condition for a coronal shock.
Nonetheless, the more energetic CMEs most likely drive a coronal shock.
The relationship between flares and coronal mass ejections also is a hotly
debated topic. Traditionally, the CME has been viewed as a phenomenon
accompanying large flares. Today, it is suggested that the CME is the primary
energy release while the flare is just a secondary process [200]. Both models
have their pros and cons, currently we probably should follow the suggestion
in [152] that the flare neither is the cause nor the consequence of the CME
but that both are triggered by a common mechanism, probably an instability
(see below). The observations leading to this statement are as follows.
Flares and CMEs can occur together; however, both also can occur sepa-
rately: about 90% of the flares are not accompanied by a CME, while about
60% of the CMEs go without a flare. The combined flare and CME events
are the most energetic events in both groups. In these events the flare, which

is small compared with the angular extent of the CME, is not necessarily
centered under the CME but more likely is shifted towards one of its legs.
The prime argument for the CME being the cause and the flare the con-
sequence is based on energetics: the energy released in the CME is larger
than the one released in the flare. But the mechanism of the energy release is
different, too: if a CME is accompanied by a flare, it has a high and constant
speed, indicative of an explosive energy release. A CME without flare, on the
contrary, often accelerates, indicating that energy is released continuously.

Timing is another crucial factor in this discussion: in about 65% of the
combined OCME /‘Harn ovonte tho (“T\ﬂ:‘ ]nar]o while 1 nt the other the Aara
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starts before the CME.

Combined, all these observations suggest that it might be difficult to view
flares and CMEs in terms of cause and consequence and they favour a picture
of a common trigger.

C.JO
cﬁ

6.7.5 Models of Coronal Mass Ejections (CMEs)

Many CMEs originate in filaments, and the magnetic field pattern of the
filament can even be recognized if the CME is detected in interplanetary
space, see, for example, [56].
So far we have learned that magnetic pressure prevents the filament from
“falling down” to the photosphere. But how and why can it suddenly be
blown out so violently to form a CME? A detailed analysis of the magnetic
field pattern of the filament and the photosphere reveals two different config-
urations In the normal conﬁguration (Kippenhahn and Schliiter [286] K-S
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as the photospheric field below it (left panel in Fig. 6.34). We have already
used this model in example 13. The inverse configuration (Raadu and Ku-
perus [427,428], R-K configuration), which is shown in the right panel, is
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Fig. 6.34. Magnetic field configura-
tions in solar filaments: (left) normal
configuration, also called K-S config-
uration, (right) inverse configuration,
also called R-K configuration

[T\ A

more complex: here the magnetic field inside the filament is directed oppo-
site to the one in the photosphere. In particular, in the large, high rising
filaments, which tend to give rise to CMEs, the R-K configuration seems to
be dominant.

The crucial feature is obvious in the R-K configuration: below the filament

there is an X-point configuration where magnetic fields of opposite polarity
can be found in close proximity. Such a location is favorable for reconnection.
The configuration might have been stable for a long time; however, the motion
of the magnetic field lines anchoring the filament or a slow rise of the filament
due to increased buoyancy can lead to the sudden onset of reconnection at
the X-point. Then the magnetic field energy is converted into thermal energy
and flow energy, leading to a further rise of the filament. At neighboring X-
points, reconnection sets in, too, ripping off the filament from its anchoring
structure and blowing it out as a CME. A filament of the K-S type can be
expelied by the same mechanism, only the forces acting on the anchoring field
lines must be larger to create a X-point configuration below the filament.

In the classical model of a filament, reconnection always takes place be-
tween the two legs of each field line. The resulting field configuration therefore
is a closed loop below the filament and a toroidal field line around it. A dif-
ferent situation arises if the legs of neighboring field lines merge, as sketched
in Fig. 6.35. As the filament (gray area) lifts owing to some instability, recon-
nection sets in. Since neighboring anchoring field lines reconnect, the filament
is surrounded by a helical magnetic field. The plasma in front of the erupting
structure is compressed. As it flows towards the trailing edge of the erup-
tion, vortices are generated behind the arcade core. The vortices drive the
plasma inwards and compress the current sheet below the filament. Therefore
the current density increases to a value where kinetic plasma instabilities are
excited. The increased resistivity leads to a higher magnetic diffusivity and
a new reconnection line below the filament, leading to the formation of a
secondary plasmoid below the original filament.

In this three-dimensional reconnection [202,325], open field lines extend-
ing into interplanetary space can also be involved. Thus, particles accelerated
in the reconnection region can easily escape into interplanetary space. In ad-
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Fig. 6.35. 3-D reconnection below an idealized filament. Figure taken from B.
Vrsnak [542], in Lectures on solar physics (eds. HM. Antia, A. Bhatnagar, and P.
Ulmschneider), Copyright 2003, Springer-Verlag

dition, the three-dimensional reconnection might evolve along the filament

more slowly, leading a slow CME and a more continuous energy release.

The expulsion of a filament is suitable for explaining the loop-shaped
CMEs. Other types of CMEs, however, require different geometries. One ex-
ample is shown in Fig. 6.36: reconnection in the tip of a helmet streamer. Its
outer portion consists of opposing magnetic fields. As somewhere on the Sun
new magnetic flux emerges, the coronal magnetic field is deformed and at the
current sheet reconnection sets in, blowing out an open magnetic field struc-
ture along the streamer. In the coronograph image, such a CME is seen as a
spike- or jet-like structure. Although operating on a larger scale, this mech-
anism is the same as in the blobs of high-density slow solar wind discussed
above.

6.7.6 Models of Flares

We can expand the above model of a loop-like CME to accommodate a flare.
By definition, this would be an eruptive or gradual flare. Figure 6.37 shows
again a filament in the inverse configuration. As reconnection sets in at the X-
point, three different phenomena occur: (a) The plasma is heated, leading to
thermal emission in the soft X-ray and visible ranges. (b) Particles are acceler-
ated, either streaming upward along field lines extending into interplanetary
space (solar energetic particles, Sect. 7 .2) or downward producing the hard
electromagnetic radiation. (c) The filament breaks loose and is ejected as a
CME. If the CME is fast enough, it drives a shock wave. Particles accelerated
at this shock escape into interplanetary space along open field lines. Because
the reconnection occurs on all anchoring field lines, the flare occupies a large
volume which extends rather high into the corona, thus fulfilling the criteria
of a gradual flare as summarized in Table 6.2.

Large confined flares might be explained by the same model, the only
difference would be in point (c): although reconnection sets in at the X-
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Fig. 6.36. Disconnection event: a
Disconnected Flux CME with an open magnetic field
i structure is expelled along a helmet
— streamer. Reprinted from D.J. Mc-
U-Shaped Cormas [343], Geophys. Res. Lett.
18, Copyright 1991, American Geo-
physical Union

point of one or a few anchoring fieldlines, the energy release is not large
enough to break all connections between filament and photosphere. Thus
the filament is not ejected and the flare is confined to a smaller volume.
Such a configuration in which the filament lifts but fails to detach and the
overall magnetic topology is retained is a suitable candidate for a series of
homologous flares.

In the point-like flares, which also are confined or impulsive flares, the
observations of energetic particles in interplanetary space (Sect. 7.2) suggest
a different scenario, as sketched in Fig. 6.38. Particles are accelerated inside
a closed loop, giving rise to electromagnetic emission. The loop is very stable,
preventing particles from escaping into interplanetary space. As the particles
bounce back and forth in the closed loop, they excite electromagnetic waves
which can propagate in all directions, interacting with the ambient plasma,
even accelerating particles. If these “secondary” particles are accelerated on
open field lines, they can escape into interplanetary space. Since the acceler-
ation requires particles and waves to be in resonance, different particles are
accelerated by different types of waves. If a particle species is common in
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Fig. 6.37. Simplified model of a
large eruptive flare. The energy re-
lease occurs in the reconnection re-
gion below the filament, leading to
heating, particle acceleration, and a
CME. The heated plasma and the
energetic particles give rise to elec-

Chromosphere
Photosphere

tromagnetic emission in various fre-
quency ranges

the corona, such as H and “He, the waves in resonance with these particles
are absorbed more or less immediately; thus these particles predominately
are accelerated inside the closed loop and therefore do not escape into inter-
planetary space. Other waves, however, travel larger distances before being
absorbed by the minor constituents, such as “He and the heavy ions, and
are thus more likely to accelerate these species on open field lines. Since the
escaping particle component is selectively enriched in these minor species,
this acceleration process is called selective heating.

.. Electromagnetic

Corona

space

Fig. 6.38. Model of an impulsive *He-rich flare.
Particles accelerated in a closed loop excite waves
which in turn accelerate particles on open field
lines. These latter can escape into interplanetary
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6.7.7 Magnetic Clouds: CMEs in Interplanetary Space

Coronal mass ejections in interplanetary space still carry the magnetic field
patterns from their parent filament. These closed magnetic field structures,
also called magnetic clouds, have features different from the ambient medium.

Figure 6.39 shows the magnetic field and plasma data for a typical mag-
netic cloud. Vertical lines indicate the boundaries of the cloud and the shock
wave driven by it. The typical signatures of a magnetic cloud can be sum-
marized as follows: (a) a decrease in magnetic field strength inside the cloud,
(b) a rotation of the magnetic field vector, in particular its elevation, (c) de-
creases in plasma density, plasma speed, plasma temperature, and therefore
plasma-3, and (d) a bi-directional streaming of suprathermal electrons back
and forth along the length of the cloud (not shown in the figure).

The magnetic field configuration of such clouds can be inferred from the
variation in magnetic field elevation: at the beginning of the cloud the mag-
netic field is almost perpendicular to the plane of ecliptic. Inside the cloud the

elevation decreases until at the end the magnetic held vector is almost oppo-
site to the one at the beginning. This is indicative of a magnetic field wrapped
around the ejecta as sketched in Fig. 6.40. In this picture the magnetic cloud
is sketched as a bundle of twisted magnetic field lines. The direction of field
rotation varies from cloud to cloud, reflecting the field configuration of the
parent filament. Just how long the magnetic cloud stays connected to the Sun

HELIOS 1

Fig. 6.39. Field and plasma data
for an interplanetary shock and the
1 magnetic cloud driving the shock.
| ) From top to bottom: magnetic field
L 1 | l ] flux density, elevation, azimuth, so-
1 | 5
1

lar wind speed, plasma density, and

{km/ss) [ : | ] proton plasma temperature. The
250 . A vertical lines indicate the shock

\ 150 1 ; | and the boundaries of the mag-
(em) | netic cloud. From L.F. Burlaga [70],
108 1 ] in Physics of the inner heliosphere

TatK) W%WM 7 vol. I (eds. R. Schwenn and E.
1°4|9 o 20 4 Marsch}, Copyright 1991, Springer-

JUNE , 1980 Verlag, Berlin
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Fig. 6.40. Proposed
topology of a magnetic
cloud in interplanetary
space. Reprinted from
o™ LF. Burlaga (70}, in
Physics of the inner
heliosphere, vol. IT (eds.
R. Schwenn and E.
Marsch), Copyright
1991, Springer-Verlag

still an open question, so therefore the dashed lines in Fig.6.40 indicate the
possibility but not the necessity of such a continued connection.

Magnetic clouds are the main cause for geomagnetic disturbances, their
geomagnetic effectiveness depends on whether the field at the leading edge

has a strong northward or southward component (Sect. 8.5.2).

6.7.8 Interplanetary Shocks

In the event in Fig. 6.39 a shock has been observed in front of the magnetic
cloud. But only about one-third of the CMEs in space drive an interplanetary
shock [199], while apparently all travelling interplanetary shocks are driven by
CMEs, although the magnetic cloud is not necessarily detected if the observer
is located at the flank of the shock. Most shocks are observed around the solar
maximum.

Interplanetary shocks are identified by characteristic changes in the
plasma and field parameters, in particular a sudden increase in plasma den-
sity, speed, and temperature, and a jump in the magnetic field strength.
Figure 6.41 shows two examples of shocks in the Helios data. From top to
bottom, plasma temperature, plasma density, solar wind speed, and magnetic
field strength are shown. Both examples can be identified best by the sudden
jump in magnetic field strength. Here it is also obvious that each of the shocks
consists of a forward shock (marked by a dashed line) and a reverse shock
(marked by an arrow). Owing to the rather poor temporal resolution the
shocks are more difficult to identify in plasma data. However, in the example
on the right, the jumps in the plasma parameters at the forward shock are
obvious. This is a fast, strong shock with a local shock speed of 1181 km/s.
The example on the left, although the jump in magnetic field is by the same
factor, is a slow, rather weak shock with a Speed of 508 km/s, only slightly
above the solar wind speed.

The properties of interplanetary shocks are highly variable. Between
0.3 AU and 1 AU, the basic characteristics are as follows:
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Fig. 6.41. Two examples for shocks observed by Helios 1. Vertical dashed lines
mark the arrival of the forward shock; the arrows mark the reverse shock. Solar
wind data from the MPAe Lindau experiment on board Helios, magnetic field data
from the University of Braunschweig magnetometer on board Helios
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° The magnetic compression (ratio between the upstream and downstream
magnetic field strengths) varies between 1 and 7 with an average at 1.9.

e Shock speeds in the laboratory frame vary between 300 km/s and 700 km/s
with an average of about 600 km/s. Occasionally, shock speeds above
2000 km/s can be observed. Obviously, shocks with speeds only slightly
above 300 km/s can be observed in very slow solar wind streams only.
Since the shock speed is lower towards the flanks, the tongue-like shape
of the shock front closely resembles the shape of the leading edge of the
magnetic cloud, as shown in Fig. 6.40.

e The angular extent of the shock varies between a few tens of degrees and
up to 180°; the shock is always wider than the driving CME.

¢ The Alfvén Mach number is between 1 and 13 with an average at 1.7.

The shock parameters, of course, are related to the properties of the CME,
such as speed, angular extent, and total energy released.

An lJ.J.tGLlJl(bJ.J.GtaL‘)’ ohuuk is a disturbance }uupag,a,uug into the expanding

solar wind. The shock should develop absolutely because it expands, and also
relative to the ambient medium as the latter expands differently. In particular,
the expansion of the shock leads to a decrease in the plasma and magnetic
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Us CME and flare

Fig. 6.42. Radial variation of the shock
speed from the Sun to 1 AU. If the CME is
very fast close to the Sun, shock and CME
slow down during propagation. This is gener-
ally the case when the CME is accompanied
CME without flare by a flare. If the CME is slow close to the
(disappearing filament) Sun, as in case of a disappearing filament,
T the propagation speed is roughly constant

flux densities. Thus the energy density also decreases. But the latter decreases
not only because of the shock’s expansion: turbulence created in the wake of
the shock and particles accelerated at the shock front (Sect. 7.6) also reduce
the shock’s energy.

Changes in shock parameters with radial distance can be quite different

from one shock to another. As an example, in Fig. 6.42 the radial variation
of the shock speed is shown. Two extreme cases can be distinguished. If a
shock is very fast close to the Sun (with CME speeds above 1000 km/s),
it is likely to decelerate in interplanetary space. On the other hand, shocks
that are rather slow on the Sun do not decelerate but propagate at roughly
constant speed. Possible interpretations can be found in the energy release
mechanism: it is more explosive in fast shocks and CMEs, which in general
are also accompanied by a flare, compared with rather continuous in the
slower ones. In addition, the faster shocks in general tend to be more efficient
particle accelerators, and thus part of the shock’s kinetic energy is converted
into kinetic energy of particles. In some sense this relates to the different
speed characteristics of the CMEs and to the conversion of shock kinetic
energy into particle energy.

6.8 Shock Waves

_A shock is a discontinuity separating two different regimes in an otherwise
continmuous medium. It is associated with something moving faster than the
signal speed in the medium: a shock front separates the Mach cone of a
supersonic jet from the ambient, undisturbed air. Here the disturbance and
the shock are moving, and thus the shock is called a travelling shock. Standing
shocks also form: in a river, a shock forms in front of the bridge pier where
the fast stream suddenly is slowed down. In space plasmas, both kinds of
shocks exist: mass ejections propagating from the Sun through interplanetary
space drive travelling shocks. The supersonic solar wind is slowed down at
planetary magnetospheres, forming the bow shock, a standing shock wave.
At these discontinuities the properties of the medium change dramatically.
We can define a shock as follows:
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1. The disturbance propagates with a speed faster than the signal speed. In
a gas, the signal speed is the speed of sound; in space plasmas, it depends
on the Alfvén speed and the sound speed.

2. At the shock front, the properties of the medium change abruptly. In a
hydrodynamic shock, pressure and density increase; in a magnetohydro-
dynamic shock, plasma density and magnetic field strength increase.

3. Behind the shock front a transition back to the properties of the undis-
turbed medium must occur. Behind a gas-dynamic shock, density and
pressure decrease; behind a magnetohydrodynamic shock, plasma den-
sity and magnetic field strength decrease. If this decrease is fast, a reverse
shock develops.

Shock waves can be stable for long times (in the solar system up to some

months) and can propagate even out to the boundary of the solar system.
While the study of gas-dynamic shocks started in the late nineteenth

century and had its heyday in the 1940s, the study of plasma shocks started

nuclear explosions in the atmosphere awoke. At that time, also a certain kind
of shocks in a plasma, has been detected that differed strongly from the gas-
dynamic shock: in these collisionless shocks, densities are too low to allow for
collision between individual atoms or molecules. Instead, the collective effects
of the electrical and magnetic properties of the plasma allow for frequent
interactions and the formation of a shock wave.

Collisionless shocks therefore are different from gas-dynamic shocks.
Nonetheless, the concepts about the fundamental nature of shocks are the
same as in a gas-dynamic shock, as are the basic conservation laws.

6.8.1 Information, Dissipation, and Non-linearity

A shock is a non-linear wave of “permanent” form propagating faster than
the signal speed. Thus an understanding of a shock has to invoke the concepts
of information, dissipation, and non-linearity.

Information can be transferred by a propagating disturbance; the sound
wave is the simplest example. It can transfer information either as a contin-
uous stream of different waves (as in language or music) or as a rather sharp
pulse like the “bang” following an explosion or the “clap” in hand-clapping.
Though the information contained in these latter signals might be more diffi-
cult to decipher, they are more useful for the explanation of shock formation
because they are wave parcels with a well-defined onset. These sounds travel
as pressure pulses through the air. Their distance from the source defines the
information horizon: inside the information horizon, the signal has already

been received, outside it has not yet been detected.
A sound wave is a compressional wave: the density increases with increas-
ing pressure. Sound waves are “simple” waves. The compression is assumed

to be adiabatic: the gas is compressed such that on expansion it returns to
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its original state. This is possible because the compression is fast enough to
prevent thermal conduction from removing heat. Thus the compression is
isentropic, the entropy does not change. Furthermore, we assume that the
disturbance is small and therefore viscosity, friction, and heat conduction
are negligible, and that the gas behaves according to the ideal gas law. We
then can calculate the sound speed according to (4.40). It is independent of
frequency but depends on the gas parameters, for instance the temperature.

The creation of a supersonic disturbance can then be viewed from different
perspectives: we can ask ourselves whether information can travel faster than
the speed of sound, we can study a disturbance moving faster than sound, or
we can study a large-amplitude disturbance.

Let us start with the latter case. A large-amplitude pressure pulse can be
created by an explosion. In air, close to the site of the blast, the sound speed
can increase up to about 1000 km/s. But the signal does not propagate as a
harmonic wave: in the compressional phase the pressure amplitude can ex-
ceed the atmospheric pressure. During decomnpression, however, the pressure

cannot drop below zero. Thus the amplitudes of the positive and negative
half-waves are different.® In addition, in a large-amplitude wave the change
in sound speed during compression and decompression becomes significant:
during compression the temperature increases and the wave can propagate
faster, while during the other half-wave the temperature decreases, leading
to a slower propagation. Thus the wave front steepens in time, similar to a
water wave running into shallow water. If the steepening eventually leads to
a jump in density and pressure, a shock wave has formed. This kind of shock

is called a blast wave shock. Type II radio burst in the solar corona probably
indicate blast waves (Qoct 6.7. 1\ Blast wave shocks are often used in the

FEPAVE W ¢ 1T IR i1 ¢ T \ I AFICWI U [e X R LWL Ws V) sLU Ll DAL 1M1 VLT

numerical simulation of 1nterplanetary shocks [138,245,494], although today
it is realized that interplanetary shocks are driven shocks.

A driven shock is associated with an object moving faster than a sound
wave. In this case, even a small-amplitude disturbance can lead to the pres-
sure and density jump that defines a shock. An object moving through air
transfers momentum and energy to the ambient molecules. The motion of
the object also requires motion of the air: molecules in front of the object
must give way to it by streaming around the object and again collecting be-
hind it. But to do this, the molecules must first receive information about
the approaching object. The pressure pulse in front of a subsonic vehicle
provides this information. For a supersonic vehicle, the information also has
to be provided, even if only for a short distance ahead. Thus the medium
has to be changed to allow for the faster propagation of information. As the

® The same argument holds in an even more expressive example, the shallow water
wave which steepens until it finally breaks and spills over. Although the water
wave as a surface wave requires a slightly different description it should be kept
in mind as an illustrations because it is more likely to be related to everyday
experience than an acoustical blast wave shock.
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motion starts to become supersonic, the initially small-amplitude pressure
pulses pile up in front of the vehicle, leading to a large-amplitude distur-
bance. This large-amplitude disturbance is able to change the properties of
the medium irreversibly: after the disturbance has passed by, the medium
will be in a different state. Since the disturbance will change the temperature
of the medium it also will change the sound speed.

6.8.2 The Shock’s Rest Frame

The simplest description of a gas-dynamic shock uses the shock’s rest frame
(see Fig. 6.43): gas with a speed larger than the signal speed is flowing into
the shock from the upstream medium which so far has not received any

infarmation ahont the annraachine chaecl Qince thic cide 1€ not modified }\U
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the shock, it is also called the low-entropy side. At the shock front, 1rrever31b1e
processes lead to the compressmn of the gas and a change in speed: across the
ion i nd thus th ount of matter
flowing through each element of the shock surface has to be constant. The
flow out of the shock front into the downstream medium is subsonic and the
density is increased. Thus we can define a shock as an entropy-increasing or
irreversible wave that causes a transition from subsonic to supersonic flow.
Theoretically, the disturbance driving the shock can propagate at any
speed. Therefore, the shock’s propagation speed can increase without any
limit. The Mach number M is defined as the ratio between the shock speed
in the upstream medium and the sound speed. It is always determined in
the rest frame of the shock. In the upstream medium, M is larger than 1,
in the downstream medium it is smaller. Thus in the downstream medium
the plasma leaves the shock with a speed smaller than the sound speed: any
disturbance in the downstream medium can propagate away from the shock.
We can now easily understand that a travelling shock and a standing
shock are identical: in a travelling shock a supersonic disturbance propagates
through the medium while in a standing shock the object is at rest and the
flow is supersonic. Thus the difference between standing and travelling shocks
depends on the frame of reference only; the systems are Galilean invariant.

SHOCK FRONT

upstream downstream
(low entropy) (high entropy) Fig. 6.43. Frame of reference for the de-
scription of a shock. The shock front is at
> e rest, plasma flows witl? a l?igh speed uy,
Uy Uy from the upstream medium into the shock
front and leaves it with a lower speed ug
into the downstream medium
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6.8.3 Collisionless Shock Waves

In a gas-dynamic shock, the important process is the collision between
molecules: they establish a temperature distribution, temperatures of dif-
ferent species are equalized, density and temperature fluctuations can prop-
agate, and the viscous forces associated with them lead to dissipation.

Space plasmas are rarefied, and thus collisions are rare. These shocks
are called collisionless shocks. The lack of collisions has some implications,
for instance: electrons and protons can have different temperatures, their
distributions can be very different from a Maxwellian making the classical
concept of temperature obsolete, the presence of a magnetic field might even
lead to highly anisotropic particle distributions, and processes of dissipation
involve complex interactions between particles and fields.

Nonetheless, shocks are frequently observed in space plasmas. While the
coupling between the particles due to collisions is negligible, the magnetic field
acts as a coupling device, binding the particles together. We have already used

this assumption in magnetohydrodynamics {MHD) where we have described
a magnetized plasma by concepts such as pressure, density, and bulk velocity.
These concepts also prove helpful in the description of the plasmas upstream
and downstream of the shock. The details of the shock front and the plasma
immediately around it, however, cannot be covered within this framework
because MHD does not consider the motions of and the kinetic effects due
to individual particles. While we are still far from understanding the details
of these processes, observations indicate that the collective behavior of the
plasma is mainly due to wave-particle interactions. Thus collisionless shocks
are an example of a macroscopic flow phenomenon regulated by microscopic
kinetic processes. A popular account can be found in [455], a discussion of
laboratory experiments to produce collisionless shocks is given in [135].

6.8.4 Shock Conservation Laws

Plasma properties in the upstream and the downstream media are different
in parameters such as bulk flow speed u, magnetic field B, plasma density
0, and pressure p. The relationship between these two sets of parameters is
established by basic conservation laws, the Rankine-Hugoniot equations.

Rankine-Hugoniot Equations in Ordinary Shocks. A very clear de-
scription of the Rankine-Hugoniot equations and their application to hydro-
and aerodynamic shocks is given in [108]. These equations describe the con-
servation of mass, energy, and momentum through the shock front, and can
even be applied to simple shocks in space plasmas if the distributions are
isotropic Maxwellians and the magnetic field is roughly parallel to the flow.

In these conservation laws the shock is assumed to be infinitesimally thin.
In optics, a boundary is thin with respect to the wavelength and thick with
respect to the spacing of the molecules in the crystal structure. Analogously,
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in MHD a boundary is thin with respect to the scale length of the fluid
parameters (if waves are involved, as in a shock, it is thin with respect to
the wavelength) but thick with respect to the Debye length and the ion gyro-
radius, both being characteristic for the collective behavior of the plasma.
In the remainder of this section the abbreviation [X] = X, — X4 gives the
difference of a quantity X in the upstream and the downstream media. The
Rankine-Hugoniot equations for a gas-dynamic shock then are:

e conservation of mass:

[mun] = [oun] = 0; (6.43)

e conservation of momentum normal to the shock:
[ou? +p| =0; (6.44)

e conservation of momentum tangential to the shock:
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e conservation of energy normal to the shock:

l(@;z + 'y:j lp) un] =0. (6.46)

Here u is the flow speed, u, (u;) the flow speed normal (tangential) to the
shock, p the density, p the pressure, and ~, the specific heat ratio, all measured
in the shock’s rest frame. The conservation of energy considers both kinetic

flow energy and internal energy. Combining (6.43) and (6.44) yields [u; = 0]:

the tangential component of the flow is continuous. Therefore, we can choose
a coordinate system moving along the shock front with the speed u¢. In this
normal incidence frame (see left panel in Fig. 6.44), u equals uy.

The mass conservation (6.43) can be used to estimate the local shock
speed. Making a Galilean transformation into the laboratory system, it can
be written as [p(vs — un)] = 0. Rearrangement gives the shock speed

vy = @dUn,d — Quln,u . (647)

0d — Qu

In applying (6.47) to shocks in space plasmas, in particular travelling inter-
planetary shocks, we should be aware of its limitations. First, the magnetic
field is neglected; the shock is a simple gas-dynamic one. Second, the shock is
assumed to be spherically symmetric with the flow perpendicular to the shock
surface. For an interplanetary shock, this is an oversimplification [244, 472]
and the speed estimated from (6.47) only gives the radial component of the
shock speed. It therefore can be used as a lower limit only. However, observa-
tions suggest that the deviation of the shock normal from the radial direction
is often less than 20° [89], and thus (6.47) is a reasonable approximation.
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Note that the shock speed alone is not indicative of the energetics of the
shock. The shock speed becomes large if the denominator in (6.47) is small.
Thus a small increase in density across the shock can often be associated
with a high shock speed, while the total energy in terms of compression and
mass motion is rather small.

FEzxample 21. For the shocks in Fig. 6.41, the following plasma parameters can
be determined from the figure: for DOYs 217 and 268, we obtain upstream
densites 30 cm™3 and 14 cm ™3, downstream densities 60 cm™ and 105 cm™3,
upstream speeds 360 km/s and 602 km/s, and downstream speeds 420 km/s
and 1101 km/s, respectively. From (6.47) we then obtain local shock speeds of
480 km/s and 1204 km/s; the compression ratios 7, are 2 and 7.3, respectively.
Both shock speeds are good approximations to the more accurate values given

—

in the figure. O

Rankine—Hugoniot Equations in MHD Shocks. The crucial difference

between a MHD shock and an ordinary shock is the magnetic field. Thus
we have to expand the conservation laws to also accommodate the field.
In addition, the geometry becomes more complex because the flow is not
necessarily parallel to the field.

Often a special rest frame is used, the de Hoffmann-Teller frame (right
panel in Fig. 6.44). In the normal incidence frame, the upstream plasma flow
is normal to the shock and oblique to the magnetic field. The downstream flow
is oblique to both the magnetic field and shock normal. In the de Hoffmann-
Teller frame [127], the plasma flow is parallel to the magnetic field on both
sides of the shock and the « x B induction field in the shock front vanishes:
the reference frame moves parallel to the shock front with the de Hoffmann—
Teller speed vy x B = —F.

For a MHD shock, the Rankine-Hugoniot relations can be inferred in the
same way as in a gas-dynamic shock [58,68,121]. With n being the unit
vector along the shock normal, the Rankine-Hugoniot equations are:

e the mass balance, which is the same as for the ordinary shock,

[ou-n] =0; - (6.48)
SHOCK FRONT SHOCK FRONT
upstream do wnstream upstream downstream
B ,
n Bd n | d
HB_._ . 913/ /’U'd
B, UYu uq B, %

Fig. 6.44. Frames of reference for MHD shocks: normal incidence frame (left) and
de Hoffmann-Teller frame (right)



6.8 Shock Waves 203

e momentum balance, where the additional terms describe the magnetic pres-
sure perpendicular and normal to the shock front,

et (pr ) n- BB o o)

e energy balance, where the additional terms describe the electromagnetic
energy flux E x B/ug with the electric field expressed by E = —~v x B,

l.u.n(%Jr%erB_Q)_(B'"L((}B‘“)]:o; (6.50)

e Maxwell’s equations
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which follows from VB = 0, and states that the normal component of the
magnetic field is continuous (B,, = const), and

nx(uxB)=0, (6.52)

which states that the tangential component of the electric field must be
continuous.

The Rankine-Hugoniot equations are a set of five equations for the unknown
quantities g, uw, p, B,, and B;.

6.8.5 Jump Conditions and Discontinuities

The Rankine-Hugoniot equations allow the calculation of the downstream
plasma parameters from the knowledge of the upstream parameters of a
MHD shock. But these conservation equations are more general; the solutions
of (6.48)-(6.52) are not necessarily shocks, instead a multitude of different
discontinuities can be described, too.

A contact discontinuity does not allow for a plasma flow across it, and thus
it i1s u, = 0. It is associated with an arbitrary density jump while all other
quantities remain unchanged. The magnetic field has a component normal to
the discontinuity (B, # 0), and thus the two sides of the discontinuity are
not completely decoupled but tied together by the field such that they flow
together at the same tangential speed wu;.

A tangential discontinuity separates two plasma regions completely from
each other. There is no flux across the boundary (u, = 0 and B, = 0) and
the tangential components of both quantities change ([u(] # 0 and [B;] # 0).
Plasma and field change arbitrarily across the boundary but a static pressure
balance is maintained: {p + B2/2u0] = 0. Tangential discontinuities thus are
examples for pressure balanced structures. Typical changes in plasma and
field parameters are sketched in the left panel in Fig. 6.45.



204 6 Sun and Solar Wind

p e P oo
v, V¢ ""N"V"“W v, v [T ]
Ay, WWW Cl»,,.t I AAANSTIAAANANAN A
p NS ST p N
Ptot  prrrmasTiaasansand Prot  prremaninanasan
B, B; ARl B, B o]
ap, ¢ B,
TD RD

Fig. 6.45. Changes in magnetic field and plasma parameters across a tangential
discontinuity (left) and a rotational discontinuity (right). Here o, indicates a change
in the direction of the quantity . pio: gives the total pressure, the sum of kinetic,
plasma, and magnetic pressures, based on [36]

1sotroplc plasma the ﬁeld and the flow change dlrectlon but not magnltude
The rotational discontinuity requires pressure equilibrium according to (6.49).
Because there is a flux across the boundary, we get u, # 0 and B, # 0. The
normal flow speed is u, = Bn/\/tog and the change in tangential flow speed
is related to the change in tangential magnetic field: [u,] = [B;/,/fo@]. Thus
normal flow speed and the change in tangential flow speed are directly related
to the Alfvén speed and the change in tangential Alfvén speed. The rotational
discontinuity therefore is closely related to the transport of magnetic signals
across the boundary. The jump conditions for a rotational discontinuity also
apply at boundaries suitable for reconnection. Typical changes in plasma and
field parameters are sketched in the right panel in Fig. 6.45.

6.8.6 Shock Geometry

One important parameter in the description of a MHD shock is the local
geometry, l.e. the angle #p, between the magnetic field direction and the
shock normal. Shocks can be classified according to Ogy:

® a perpendicular shock propagates perpendicular to the magnetic field:
fpn = 90°;

® a parallel shock propagates parallel to the magnetic field: fg, = 0°;

¢ an oblique shock propagates at any fg, between 0° and 90°. Oblique shocks
can be subdivided into
¢ quasi-parallel shocks with 0° < fg, < 45° and
¢ quasi-perpendicular shocks with 45° < g, < 90°.

The shock shown in Fig. 6.44 therefore is a quasi-parallel shock.
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6.8.7 Fast and Slow Shocks

A shock differs from the discontinuities described in Sect. 6.8.5 in so far
as there is a flow of plasma through the surface (u, # 0) combined with
compression and changes in flow speed. Note that in a parallel shock B; equals
0 and the magnetic field is unchanged by the shock, while in a perpendicular
shock the normal component of the magnetic field vanishes, B, = 0, and
both plasma pressure and field strength increase at the shock. The parallel
shock therefore behaves like a gas-dynamic shock — except for the fact that
the collective behavior of the plasma is regulated by the magnetic field and
not by collisions.

In a plasma, different modes of MHD waves exist which can steepen to
form a shock: fast, slow, and intermediate waves (see Fig. 4.4). Of these
waves, only the fast and the slow waves are compressive. The intermediate
wave is purely transverse with the velocity perturbation perpendicular to
both ko and By. The intermediate shock, sometimes also called an Alfvén

shock, only exists in an anisotropic medium. In an isotropic plasma, such
as the solar wind, it is not a shock but a rotational discontinuity: there is a
rotation of the magnetic field by 180° in the plane of the shock but no density
jump across the shock. Thus there is a flow across the boundary, but without
compression or dissipation. In addition, the planes defined by the magnetic
field and the plasma flow direction in the upstream and downstream media
are not parallel but oblique. In an intermediate shock the propagation speed
parallel to the magnetic field equals the Alfvén speed, i.e. vjny = vA cosOpy.

Real shocks are formed by fast and slow magneto-sonic waves only. In
both mndpq the plasma density and pressure change across the shock. The

il ALAVRACS LT0 B L) 1AL RRLALBLRY AL Al RALGALISY GRS = 1%

phase speed of these modes is (see (4.49))

208 gt gt = (0 +03) £ 1/ (02 +13)2 — 4020 cos? 0, (6.53)

with the + sign referring to the fast and the — sign to the slow mode. If
these waves propagate perpendicular to B, then #igter = ¥sow = 0 and
Vfast = \/v% + v2. For propagation parallel to B either veg equals vjgger
for vao > vs or Vipger €quals vgow for va < vg (see Fig. 4.4). For the different
modes, different Mach numbers can be introduced: M, is the Alfvén Mach
number, M, the sonic Mach number (the same as the Mach number in a sim-
ple gas-dynamic shock), and My and M; the slow and fast Mach numbers,
respectively.

The change in the magnetic field is different in fast and slow shocks: in a
fast shock the magnetic field increases and is bent away from shock normal
because the normal component of the field is constant. The normal compo-
nent of the upstream (downstream) flow speed is larger (smaller) than the
propagation speed of a fast MHD wave and both upstream and downstream
flow speeds exceed the Alfvén speed. In a slow shock, the upstream speed
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upstream downstream
fast shock

Fig. 6.46. Change in magnetic field di-
rection across a fast and a slow MHD
shock

exceeds the sound speed but not the Alfvén speed. In addition, the mag-
netic field strength decreases across the shock and the field therefore is bent
towards the shock normal (see Figs. 6.46 and 6.47).

Travelling interplanetary shocks in general and planetary bow shocks in
particular always are fast MHD shocks. So far, only a few slow shocks have
been observed in sztu in the solar system [90, 441] In the solar corona, how-

both the Alfvén and sound speed are much h1gher (see Flg 6 33).

For many aspects, in particular shock formation and particle acceleration
at the shock, the crucial quantity is not the shock speed but its component
vs|| = Vs Sec fpy, parallel to the magnetic field. A rather slow disturbance can
still have a large propagation speed parallel to B if fg, is large enough. To
form a shock, a disturbance must propagate with vg > v to catch up with
the waves propagating along the field, but it must not necessarily propagate
with vs > va. This problem becomes evident in the definition of the Alfvén
Mach number. In a stationary frame of reference, the Alfvén Mach number
is defined as

My = =2 (6.54)
VA

which is the shock speed in an upstream reference system relative to the
Alfvén speed. With this definition, even fast MHD shocks occasionally can
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Fig. 6.47. Changes in magnetic field and plasma parameters across a fast (left)
and a slow (right) shock. Based on [36]
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have Mach numbers smaller than 1. A better definition, such as the critical
Mach number
Vs — Uy

M, = (6.55)

v cosfpgy
is formally more helpful because M, = 1 exactly gives the intermediate shocks
while fast shocks always have M. > 1. But to determine the critical Mach
number, the local geometry fg, must be known.

6.8.8 The Coplanarity Theorem

In Fig. 6.44 we have tacitly assumed that the shock normal and the magnetic
field directions in the upstream and the downstream media all lie in the same
plane. This assumption is called the coplanarity theorem and is a consequence
of the jump conditions at the shock. It can be expressed as

n-(Byx B,)=0. (6.56)

If we only consider the transverse component, the momentum balance (6.49)
for an isotropic pressure p can be written as

B
Ut — ——B| =0. i
lQU Ut 2/1,0 t] (6 57)
Equation (6.52) can be written as [u, By — Bouy] = 0. Therefore both [By]
and [u,B,] are parallel to [u] and thus also parallel to each other. Then we
have [unB,] x [u,Bi] = 0. Resolving the parentheses gives

(un,u - Un,d)(Bt,u X Bt,d) =0. (658)

Since [uy,]| does not vanish, the upstream and downstream tangential mag-
netic components must be parallel to each other. Thus the upstream and
downstream magnetic field vectors are coplanar with the shock normal vec-
tor and the magnetic field across the shock has a two-dimensional geometry.
The bulk velocity is coplanar with the shock, too.

6.8.9 The Shock Normal Direction

An application of the coplanarity theorem is the calculation of the shock nor-
mal in observational data. If the shock normal is known, the angle 0g,, which
is crucial for shock formation and particle acceleration, can be calculated.
If only magnetic field measurements are available, the coplanarity theorem
(6.56) for the magnetic field can be used. Since the magnetic field is diver-
genceless, we have (B, — Bg) - n = 0. Thus together with (6.56) we have
defined two vectors perpendicular to the shock normal. These vectors can be

A nalailata +ha dharly maseeal,
U CdlCUldue it bilUCK IIOTTial.

(By x By) x (B, — By)
|(By x By) x (B, — By)|

n —

(6.59)



208 6 Sun and Solar Wind

This method does not work if B, is parallel to B4. The shock normal derived
according to (6.59) is called the coplanarity normal. If also three-dimensional
plasma measurements are available, other constraints, in particular the copla-
narity theorem for the bulk velocity, can be used to determine the shock nor-
mal. In addition, different methods can be combined into one overdetermined
solution and solved for a best-fit shock normal [453].

With the known shock normal we are also able to determine the shock
speed vs more accurately than suggested by (6.47):

PdUd — Quly

g = M. 6.60
0d — Qu ( )

Ezxample 22. Let us briefly return to example 21. From the details of the

AAAAAA Bh1A 4 callacogiia hao infarrad +ha ahanls moarmmal a1 +ha Airastinn ~F
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the upstream and downstream plasma flows relative to it. For simplicity, the

shock normal is given here as (1,0), with the z- component in the direction of

ﬂow is (0 94 0 34) and that of the downstream ﬂow is (0 98 0 17) the shock
is therefore almost quasi-parallel as expected from the weak compression in
the magnetic field. The shock speed then is

60 x (g??) x 420 — 30 x (8'321‘) X360
Vs = ' ' (O) km/s = 485 km/s ,

60 — 30
, (6.61)
which is slightly above the values of 480 km /s determined in example 21. O

6.9 What I Did Not Tell You

In the previous chapters, we have basically dealt with the “well-defined” top-
ics of physical concepts. In this chapter, we have encountered “real-world”
physics in a complex environment. We have used our concepts to describe the
observations; however, we should be aware that the basic concepts describe
only the general features of the natural phenomena — to understand the de-
tails and interpret the observations correctly, we need more advanced models
(Chap. 12).

But before we can turn to advanced models, we have to be aware of the
limitations of our measurements. For instance, all in situ measurements suffer
from one basic problem: interplanetary space is a three-dimensional medium
which is highly variable in space and time. Thus, formally, all our variables
are fields e(r,t) varying in time. What we observe is a time series of the
parameter € at a varying position inside the field because, in general, both
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the field (for instance, the magnetic field convected outwards with the solar
wind) and the observer move. Many of the ideas described in this chapter are
therefore based on sparse evidence.

We have already mentioned one example: in the interpretation of magnetic
field fluctuations, we are not able to distinguish between waves and turbulence
because the observed variations in plasma and magnetic-field parameters are
a mixture of temporal and spatial variations. But a one-point observation is
not only unable to resolve the nature of the local fluctuations, it is also unable
to resolve large-scale structures. For instance, the latitudinal distribution of
the solar wind speed shown in Fig. 6.25 is not a snapshot but sampled over
almost five years, because it took Ulysses that long to complete one orbit.
In addition, the solar wind speeds are measured at radial distances between
1.3 and 5 AU, again a consequence of Ulysses’ orbit. This sampling is not
necessarily a disadvantage, because in this case all sampling occurred during
a solar minimum and thus the figure can be interpreted as a measure for
average solar minimum conditions in the intermediate heliosphere between

1 and 5 AU. However, if we want to take a look at shorter time scales,
the figure is of limited use because it ignores all the short-term variability.
As a consequence, not only do we have to have our data but we also need
metadata, that is all relevant information about the data, instrumentation
and observational practice.

In this chapter we have also learned about an ambiguous method, that
of classification. Classification is useful because it helps us to focus on com-
mon aspects of different events/individuals and thus prevents us from getting
lost in details. But as long as we do not understand the physical differences
between the classes of events, our classification scheme will be based on phe-
nomenological criteria. Since the average height of males exceeds that of fe-
males, it might be worthwhile to discuss such a classification approach with
a 162 cm male and a 186 cm female to learn about its limitations.

The phenomenological classification scheme has another disadvantage:
with each new mission, it is at risk of becoming obsolete. For instance, in
this chapter, the occurrence of a CME has been mentioned as a possible
physical basis for the classification into impulsive and gradual flares. The
observations with the LASCO coronograph, however, showed that there were
more CMEs than believed previously and that many of the impulsive events
were accompanied by CMEs too. Thus, taking the occurrence of CMEs as a
criterion, we would get a different classification scheme, which would not be
in agreement with the original classification schemes. But CMEs also show
differences among themselves, in particular with respect to their spatial ex-
tent, their speed, and their ability to drive a shock. A distinction of CMEs
into different groups (again a classification) might help to support the origi-
nal classification scheme, and thus it is still valid that [ have introduced this
accepted standard in this book — but you should be aware that this clas-
sification is temporary, that it varies, and that, depending on the author’s
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understanding, the terms “impulsive” and “gradual’ are sometimes used with
slightly different meanings.

6.10 Summary

The heliosphere is structured by the solar wind and the frozen-in magnetic
field, which is wound up into Archimedian spirals due to the Sun’s rotation.
The fast solar wind originates in coronal holes at the poles while the slow wind
originates from the streamer belt close to the solar equator where sunspots,
filaments, and active regions are located. Where fast and slow solar wind
streams meet, corotating interaction regions form. Fluctuations on different
scales are superimposed onto the average field. They are related to waves orig-
inating in the corona, interactions between different solar wind streams, and
transient disturbances such as magnetic clouds and travelling interplanetary

shocks. The latter stem from coronal mass ejections, 1.e. violent expulsions

of huge plasma clouds.

Exercises and Problems

6.1. Explain the basic conservation laws across a shock front. What are the
differences between a gas-dynamic and a hydrodynamic shock?

6.2. Explain the differences between a fast and a slow shock.
6.3. Derive (6.14) for the length of the Archimedian spiral.

6.4. Consider a 10 MeV proton in interplanetary space. Determine its gyro-
radius, its gyration period, and the wave numbers of the Alfvén waves in
resonance with the proton (assume three different pitch angles, 10°, 30°, and
90°). Compare with the corresponding values for a 1 MeV electron.

6.5. For an observer on the Earth, calculate the length of the magnetic field
line to the Sun and its longitude of origin (connection longitude). Do the
same for an observer at 5 AU. (Assume a plane geometry with the field line
confined to the plane of ecliptic.)

6.6. Imagine a slow solar wind speed starting on the Sun. 30° east of this
stream, a fast stream with twice the speed of the slow stream originates.

Where would they meet? (Simple assumption of an Archimedian magnetic
field spiral.)

6.7. An electron beam with ¢/3 propagates through the interplanetary plasma,
and excites a radio burst (see example 17). Assume a decrease in plasma
density ~ 1/ r2. Calculate the frequency drift under the assumption that the
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electron beam propagates radially. How do these results change if the cur-
vature of the Archimedian field line, along which the electrons propagate, is
considered? How wotld the curvature of the field line influence the frequency
drift of a type II burst in front of an interplanetary shock?

6.8. A magnetic loop on the Sun has a parabolic shape with B = By(1 +
s?2/H?) with H = 30 000 m being the height of the loop and s the distance
from the top of the loop. Calculate the bounce peried of particles with a speed
of 2¢/3. As the particles interact with the atmosphere at the mirror points,
they create hard X-rays. What is the time interval between two subsequent
elementary bursts?

6.9. The plasma instrument on an interplanetary spacecraft detects a sudden
increase in plasma density. No other changes in plasma or field are observed.

Is this a shock?

6.10. The plasma instrument on an interplanetary spacecraft detects a dis-

continuity with a jump in plasma density from 4 cm 3 to 8 cm™3 and a
jump in plasma flow speed from 400 km/s to 700 km/s (all quantities in the
spacecraft frame). Determine the shock speed. What is the meaning of this
speed?

6.11. Assume the following average solar wind properties at the Earth’s orbit:
proton density 7 cm ™3, electron density 7.5 cm™3, He?* density 0.25 cm™3,
flow speed 400 km/s almost radial, proton temperature 2 x 10° K, electron

temperature 1 x 10° K, and magnetic field 7 nT. Calculate the flux densities

and tha Ay thratioh o0 anhara AF radn 1T ATT far +ha fo,1laurinm 3
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protons, mass, radial momentum, kinetic energy, thermal energy, magnetic
energy, and radial magnetic flux.






7 Energetic Particles in the Heliosphere

The space between Heaven and Earth — is it not like a bellow?
It is empty and yet not depleted;

Move it and more always comes out.

Lao-Tzu, Tao Te Ching

Particles in interplanetary space come from sources as diverse as the Sun,

the planets, and the vastness of space. The properties of the different particle
populations provide information about the acceleration mechanism(s) and
the propagation between source and observer. Thus energetic particles can
also be used as probes for the properties of the interplanetary medium. To
describe acceleration and propagation, we use concepts such as reconnection,
acceleration at shock waves, and wave—particle interactions.

This chapter starts with an overview of the different particle populations
and subsequently discusses some of them in detall, in particular solar ener-
getic particles and their propagation, shock-acceleration, particles accelerated

at travelling interplanetary shocks and planetary bow shocks, and galactic

cosmic rays and their modulation.

7.1 Particle Populations in the Heliosphere

Energetic particles in interplanetary space are observed with energies rang-
ing from the supra-thermal up to 10%° eV. The main constituents are pro-
tons, a-particles, and electrons; heavier particles up to iron can be found in
substantially smaller numbers. The particle populations originate in differ-
ent sources, all having their typical energy spectrum, temporal development,
and spatial extent. Figure 7.1 summarizes the particle populations, Table 7.1
their properties, a recent review can be found in [435].

7.1.1 Populations and Sources

(A) Galactic Cosmic Rays (GCR) are the high-energy background pop-
ulation with energies extending up to 10?° eV. They are incident upon the



214 7 Energetic Particles in the Heliosphere

1AU —_

{A) GALACTIC
COSMIC RAYS

+
(B} ANOMALOUS
COMPONENT

(FROM BEYOND 50AU )

AVERAGE \
MAGNETIC \
FIELD

FLARE FAST STREAM | A
(c) @) 4})4, g
g
/ 4 FORWARD
FLARE A
= ks INITIATED /[ : quo SHOCK

SHOCK \ 7
‘ e XN N
EARTH'S . _ '9@0
~V(F) BOW sHock " ()
\N

%
[LL"] ;bnl.h] '/

Y %/
{C) FLARES IN SOLAR ATMOSPHERE REVERSE

-1 - SHOCK

(E} COROCTATING INTERACTION REGION
(COROTATING EVENTS)

(F) PLANETARY MAGNETOSPHERES AND BOW SHOCKS

]

Fig. 7.1. Populations of energetic charged particles in the inner heliosphere.
Reprinted from H. Kunow et al. [305], in Physics of the inner heliosphere, vol.
IT (eds. R. Schwenn and E. Marsch), Copyright 1991, Springer-Verlag

heliosphere uniformly and isotropically. In the inner heliosphere, the galac-
tic cosmic radiation is modulated by solar activity: the intensity of GCRs is

highest during solar minimum and reduced under solar maximum conditions.
For reviews see, for example, [47,133,160, 163,268, 350,416, 552].

(B) The Anomalous Cosmic Rays (ACR), also called the anomalous
component, energetically connect to the lower end of the GCRs but differ from
them with respect to composition, charge states, spectrum, and variation
with the solar cycle [153,154,157,257]. As neutral particles of the interstellar
medium travel through interplanetary space towards the Sun, they become
ionized. These charged particles are convected outward with the solar wind
and accelerated at the termination shock. Then they propagate towards the
inner heliosphere where they are detected as anomalous component.

(C) Solar Energetic Particles (SEPs) are accelerated in solar flares, the
injection of these particles into the heliosphere thus is point-like in space and
time. SEP energies extend up to some tens or a few hundred megaelectron-
volts, occasionally even into the gigaelectronvolt range [271,359]. The latter

can }\n n}\cnr‘roﬂ «r1th nontron mnn1fnrc an tha oratimd the ovoant ic erallad o
lvia Tl Wil LivUuivn iiiuves Uil o€ giiuliu, vile event 18 Caued a

ground-level event (GLE). Owing to interplanetary scattering, particle events
in interplanetary space last between some hours and a few days, depending
on the scattering conditions and the observer’s distance from the Sun. SEPs
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Table 7.1. Characteristics of particle populations in interplanetary space. The
letter in the first column is the same as in Fig. 7.1, the subsequent columns give
the temporal and spatial scales as well as the typical energy range

Temporal Spatial Acceleration
scales scales Energy range mechanisms

A continuous global GeV—> TeV diffusive shock
B continuous global 10-100 MeV shock?
C ) & keV-100 MeV  reconnection, stochastic,
selective heating, shock

D days extended keV-10 MeV diffusive shock,
shock-drift, stochastic

E 27 days large-scale keV-10 MeV diffusive shock
F continuous local keV—-MeV diffusive shock, shock drift

. .
PDroviae OIl pProce

but also can be used as probes for the magnetic structure of interplanetary
space. Solar energetic particle events show different properties, depending
on whether the parent flare is gradual or impulsive [84,271,272]. In gradual
flares, the solar energetic particles mix with particles accelerated at inter-
planetary shocks. Although SEPs originate in flares, only a small fraction of
all flares leads to enhancements in energetic particles above background.

(D) Energetic Storm Particles (ESPs) are particles accelerated at inter-
planetary shocks. Originally, ESPs were thought to be particle enhancements
related to the passage of an interplanetary shock. The name was chosen to re-
flect their association with the magnetic storm observed as the shock hits the
Earth’s magnetosphere. Today, we understand the acceleration of particles at
the shock, their escape, and the subsequent propagation through interplane-
tary space as a continuous process, lasting for days to weeks until the shock
finally stops accelerating particles. The properties of particles accelerated at
interplanetary shocks are summarized for the tens and hundreds of kiloelec-
tronvolt range in [440,456,462,523,557] and for the megaelectronvolt range
in [83,85,267]. At very strong shocks, protons can be accelerated up to about
100 MeV or more [434, 528].

(E) Corotating Interaction Regions (CIR) also lead to intensity in-
creases. Protons with energies up to about 10 MeV are accelerated at the
CIR-shocks (32,159, 314, 358, 490]. The energetic particles can even be ob-
served remote from the corotating shocks at distances where the shocks have
not yet been formed [305,573] or at higher solar latitudes when a spacecraft
is above the streamer belt where the CIRs form [136,306, 487).

(F) Particles accelerated at planetary bow shocks are a local particle com-
ponent with energies extending up to some 10 keV [107]. An exception is the
Jovian magnetosphere where electrons are accelerated up to about 10 MeV.
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With a suitable magnetic connection between Earth and Jupiter, these Jovian
electrons can be observed even at Earth’s orbit [98,106).

Figure 7.2 gives the energy ranges and relative intensities for different
ion populations in the heliosphere. The figure is limited to energies below
100 MeV; above that energy the higher energetic end of the SEPs can be
found as well as the galactic and anomalous cosmic radiation. The spectrum
of the GCR is shown in Fig. 7.29.

7.1.2 Relation to the Solar Cycle

Figure 7.3 shows, from top to bottom, sunspot numbers, intensities of pro-
tons above 4 MeV, and intensities of protons above 60 MeV. The particle
data were obtained by the University of Chicago instrument on board IMP.
The lower proton energies are predominantly influenced by solar energetic-
particle events; the higher proton energies reflect the temporal development
of galactic cosmic rays, and only the individual events standing out above
the background are of solar origin.

The main characteristics of the solar-cycle dependence in the particle
components are (letters as in Fig. 7.1 and Table 7.1):

A GCP\S have higher intensities uuuug, solar minima and lower intensities

during solar maxima, as evident from the bottom panel of Fig. 7.3.
B ACRs, which constitute a minority in the lower panel of Fig. 7.3, show the
same temporal variation.
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Fig. 7.3. Energetic particles during the solar cycle, IMP measurements; data from
Space Physics Interactive Data Resource (SPIDR), spidr.ngdc.noaa.gov/spidr/
index.html

C SEP events are more frequent during solar minima than during solar max-
ima (middle panel and spikes in the lower panel): active regions and fila-
ments are more frequent during solar maxima than during solar minima.
However, SEP events are also observed during solar minima.

D ESP events are also contained in the middle panel and show the same
temporal variation as SEPs.

E CIR events are more frequent during solar minima.: a CIR is formed in the
interaction of a fast and a slow solar wind stream. The formation of the
CIR, the development of the shocks, and the particle acceleration all require
time. During solar maximum conditions, the stream pattern is frequently
disturbed by coronal mass ejections and magnetic clouds.

F Particle acceleration at planetary bow shocks appears to be rather inde-
pendent of the solar cycle. The temporal pattern in the observation of
Jovian electrons, for instance, is regulated not by solar activity but by
the magnetic connection between Jupiter and the observer. Of course, the

TNAWYVITINA £y 1
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In the study of energetic particles, we are interested in their source, in the
acceleration mechanisms, and in their propagation. Occasionally, the acceler-
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ation mechanism can be studied in situ, for example at travelling and coro-
tating shocks and at planetary bow shocks. For most populations, however,
the observer is remote from the source: there is no access to the acceleration
sites of solar energetic particles or galactic cosmic rays. Even particles accel-
erated at shocks in interplanetary space can be observed remotely from the
shock. In all these cases, interplanetary propagation has modified the parti-
cle populations. Therefore the properties of a particle population observed
in interplanetary space reflect in general the combined effects of acceleration
and propagation.

7.2 Solar Energetic Particles and Classes of Flares
Particle increases at the Earth’s orbit as a consequence of solar flares first

were detected in 1942 in neutron monitor records [164]. Because of the small
spatial and temporal extent of the particle source, SEPs not only provide

information about particle acceleration but also can be used to study inter-
planetary propagation.

Solar energetic particles are mainly protons, electrons, and «-particles
with small admixtures of *He-nuclei and heavier ions up to Fe. Protons and
ions can be accelerated up to some tens or hundreds of MeV /nucl, occasion-
ally even energies in the gigaelectronvolt range can be acquired. The electron
acceleration is limited to energies of some megaelectronvolts. The particle
increase above background can vary between hardly detectable and some or-
ders of magnitude (see Fig. 7.3). While the flare lasts only for a few minutes,

mavhe oven an hour. a solar enersetic narticle event at the Earth’s orhit tvn-

AALTHY RS T VAL Gl Ly G DULAL TLATL BU VAL PG VLI TVTDLLU QU VAT O Ui 5 LAY Uy

ically lasts for a day or two, depending on the number of particles injected
into space, scattering conditions, and the presence of a coronal mass ejection
fast enough to drive an interplanetary shock.

Solar energetic particle events observed in interplanetary space exhibit
different features, depending on whether the parent flare was impulsive or
gradual [84,272]; some of these features are summarized in Table 7.2.

What do the differences in particle populations tell us and how can they
be related to the flare scenarios in Sect. 6.7.6? First of all, we can infer that
different acceleration mechanisms must be at work. The high charge states
of Fe (20) and Si (14) in impulsive events are indicative of acceleration out
of a very hot environment with temperatures of about ten million Kelvin
[329]. The coronal temperature of about two million Kelvin would imply
lower charge states of about 14 for Fe and 10 for Si, such as observed in
gradual events. Thus in the impulsive flares, the plasma must be heated
while in gradual flares particles can be accelerated out of the corona without
significant heating. Particle events following impulsive flares are also enriched
in some of the heavier ions, in particular an increase in *He/*He, Fe/C, and
Fe/O is observed [438]. Particle events following gradual flares, on the other
hand. show coronal abundances.
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Table 7.2. Properties of energetic particle events following impulsive and gradual
flares. The numbers refer to particles with energies of a few MeV /nucl

3He-rich gradual
Particles electron-rich proton-rich
‘He/*He ~ 1 (enrichment 2000 times) ~ 0.0005
Fe/O ~ 1.234 (enrichment 8 times) ~ 0.155
H/He 10 100
Qre ~ +20 ~ +14
Duration hours days
Longitudinal cone < 30° < 180°
Metric radio bursts III, V I, IIL, IV, V
Coronograph - CME
Solar wind - ipl. shock
Event rate/a ~ 1000 ~ 10

These differences can be understood by the two flare models presented in
Sect. 6.7.6. Impulsive flares can be understood in terms of selective heating,
while in gradual flares particles are accelerated out of the cool coronal ma-
terial by the shock in front of the CME. Since the shock accelerates ions, in
particular H, more efficiently than electrons, impulsive flares are electron-rich
compared with gradual flares and also show a lower H/He ratio.

The shock in front of the CME has another consequence, namely the dif-
ferent longitudinal cones in which energetic particles can be observed. In the
model of selective heating, particles are accelerated on a few open field lines
adjacent to the closed loop in which the flare occurred. Thus out of the field
lines originating on the Sun, only a small bundle is filled with particles. But
these particles do not spread in all directions. Since SEPs are charged parti-
cles, they propagate along the magnetic field lines but not perpendicular to
them. Thus the particles stay on their field lines and an observer in inter-
planetary space only detects particles if she is on one of these field lines, i.e.
if she is magnetically connected to the source region. Owing to the curvature
of the interplanetary magnetic field line, under normal solar wind conditions
an observer on Earth is magnetically connected to a position at 60°W. Thus
for impulsive events, particles are detected on a spacecraft around the orbit
of Earth only when the flare occurred in the western hemisphere of the Sun.

In a gradual flare, the situation is different. The shock in front of the CME
has a large angular extent. Thus, the particles are not accelerated locally but
over a wide region. Therefore, particles are injected into a much larger cone of
field lines open to interplanetary space and the particle events therefore can
be detected at larger angular distances from the site of the energy release.
Thus, close to the Earth. particle events from gradual flares can also be
detected if they originated in the eastern hemisphere of the Sun.
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So far for a gradual flare we have only considered the particles accelerated
at the shock. But in the model of a large flare in Fig. 6.37, the CME and

below the ﬁlament stlll closely resemble those in a ﬂare w1thout CME The
characteristics of the particles interacting on the Sun can be inferred from
the y-ray line spectrum, and their temporal evolution also from the hard X-
ray emission. Corresponding observations indicate that the primary energy
release must be quite similar in impulsive and gradual events. In particu-
lar, although the electromagnetic emission in gradual flares lasts for a longer
time, the elementary energy release in both classes of flares occurs in bursts
that are similar. In addition, the compositions of the ions interacting on the
Sun are similar and both are indicative of some process similar to selective
heating. If the observer is magnetically cormected close to the flare site in a
gradual event, these flare-accelerated particles can also be detected in inter-
planetary space. The upper panel of Fig. 7.4 shows the temporal evolution
of the intensities of protons, O, and Fe in a gradual flare. In the lower panel
the Fe/O ratio is shown for different energies. Early in the event, the Fe/O
ratio is high, as expected for an impulsive event. With time, the Fe/O ratio
decreases to a value typical of gradual events or the solar wind plasma. Thus
early in the event, flare-accelerated particles are present while with increasing
time the particles accelerated at the shock become more and more abundant.
Note also the differences in the time profiles: the high-energetic Fe channel
rises rather fast, and the intensity decreases after its maximum, i.e. a few
hours after the flare. This closely resembles a diffusive profile as expected for
a short injection on the Sun. In H and O, on the other hand, the intensity
stays roughly constant or even increases towards the shock because particles
are continuously accelerated and injected from the shock as it propagates
towards the observer.

We should be aware that in most cases a classification scheme is used to
order a complex data set rather than to reflect physical processes. Nonethe-
less, the two classes described in Table 7.2 are distinct kinds of events. But
whether there really are only these two classes, or whether the two classes re-
present extreme cases of a more continuous change from impulsive to gradual,
is still under debate. In particular, there are large impulsive flares which are
not accompanied by a CME but show characteristics which are in between
those given in Table 7.2, while on the other hand there are disappearing-
filament events where the particles exhibit features typical of events follow-
ing gradual flares, although no flare is observed. In addition, even if a flare
is accompanied by a coronal mass ejection, the latter. does not necessarily
drive a shock. This latter point might become more interesting in the future,
as observations with the more sensitive SOHO coronograph show that small,
slow CMEs are relatively common and can also be observed in rather small
impulsive flares. Here the role of the CME is probably not the acceleration
of additional particles, because these CMEs tend to be small and slow, but
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1990, American Astronomical Society

rather the opening of the flare loop in which the initial energy release oc-
curs, allowing the particles to escape into interplanetary space. If the latter
scenario turns out to be true, the particles observed in space should exhibit
properties in between those given in Table 7.2: although the charge states
should be high, the selective enrichment should be diminished because the
accelerated particles can escape before the mechanism of selective heating has
developed fully. A more detailed discussion of the above classification scheme
and the two classes of particle events can be found in [435]; a critical review
of that scheme and a discussion of the issues mentioned in this paragraph is
given in [271].

From the long time scales (several hours to some days) of solar particle
events compared with the flare duration, in the 1950s Meyer et al. [356]
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suggested that interplanetary transport might be diffusive. In this section
we shall discuss the basic concepts of diffusion, their physical foundation in
particle scattering at magnetic inhomogeneities (resonance scattering), and
different transport equations.

7.3.1 Spatial Diffusion

Diffusion is the consequence of frequent, stochastically distributed collisions;
thus it is a stochastic process. Therefore, it is not reasonable to discuss the
motion of individual particles; instead one has to consider an assembly of
particles, described by the distribution function.

But diffusion is not only spatial diffusion. If we carefully drip a drop of
ink into a glass of water, in time the drop will spread and eventually ink
and water will be mixed completely: the thermal motion leads to collisions
between ink and water molecules, distributing both species uniformly. This

is spatial diffusion. If we carry out the same experiment with a good drop of

cold cream and a cup of steaming hot tea, we find a second consequence of
the collisions: after some time, tea and milk have the same temperature, thus
thermal energy is transferred from the faster molecules to the slower ones,
leading to diffusion in momentum space. The existence of both processes has
already been mentioned in connection with Fig. 5.3.

Let us start with spatial diffusion alone. All particles have the same speed
and collisions lead to changes in the direction of motion only. To describe
the effect of diffusion, we have to keep track of a larger number of small
spatial steps for a large number of particles. Because the stochastic aspect is
important, we can borrow some concepts from probability calculus and use
simple games with coins as illustrations.

Tumbling Drunkards and Tossed Coins. Spatial diffusion, or more cor-
rectly, the motion of a particle in spatial diffusion, occasionally is called
“drunkards walk”. To get the picture, imagine a couple of drunkards, happily
lingering around a distiller. As they hear a police siren in the distance, they
start to stagger away, everyone in his own direction. They all make steps
of equal length but random direction. As a police helicopter arrives at the
scene, every drunkard had made N steps of length A. The spatial distribution
of the drunkards, as seen from the helicopter, is shown in Fig. 7.5. None of
the drunkards has covered the maximum possible distance N A. Instead, they
are still relatively close to the distiller. How close, compared with the max-
imum distance, can be described by a quantity called the expected distance
or, mathematically more correct, the average squared distance. This average
displacement is Av/N as indicated by the circle.

Let us now reduce the problem to the one-dimensional case: the test
objects can only move along a straight line, again with constant step length.
We can simulate the resulting motion by flipping a coin: a head leads to a
step in the positive direction, a tail to a step in the negative one. Let us
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. Fig. 7.5. Distribution of drunkards staggering away from a
® distiller 1. The circle indicates the average expected distance

P AN

consider one particle only. At first glance one might expect the expected
distance to be close to the starting point. In particular, after a large number
of tosses, we would expect the number of heads and tails to be roughly equal
and therefore the net displacement to be small. This, however, is a faulty
reversion of the law of large numbers, which is often observed in people
gambling only occasionally: if the coin has shown tails 9 times in succession,
the chance of heads in the next toss is exactly the same as in all previous
tosses, 50%, because the coin does not remember the results from the last
OSses. ns inmalong series-of tosses; there can be quite alarge deviationfrom
a deadlock between heads and tails. This has been known since the middle of
the seventeenth century when game theory was quite popular. Thus if for a
long time one side of the coin can be dominant, as indicated in Fig. 7.6, then
a large net gain for the one and a large loss for the other gambler results.
Or, in case of one-dimensional motion, the displacement from the starting
position can become quite large.

The average squared distance (Az)?, or the expected distance for short,
can be determined easily. The total squared displacement of the particle is
the sum of the displacements dz; in each individual step:

10 W

100

~-10
r70

Fig. 7.6. Gain and
10 000 loss chart for tossing
coins. In the upper
panel, the result of
100 tosses is shown, in
the lower panel 10 000

tosses have been con-
[ .70 sidered
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Fig. 7.7. Galton board: many small
scatters work together stochastically,
forming a bell curve (Gauss’s distri-
bution)

/s AT N 2 AT Ay

(A.’L‘)z = (i: dilfq_) = (dlEl +dxzg + ... +d$N)2 = ZZd$1d$J . (71)

i=1 j=1

The individual displacements dx; are either +X or — A, both with a probability
of 0.5. Thus the product dz;dz; is either A? or —~A2. For i # j, dz; and dz;
are independent and both positive and negative values of the product have
the probability 0.5. In the sum (7.1) these terms cancel and only products
with ¢ = j remain. They are always +A2? and there are N such products.
Equation (7.1) then becomes

(Az)? = NAZ, (7.2)

Thus with increasing number N of steps, the average displacement from the
starting point increases as v'N.
If the particle has a speed v, the total distance s travelled during a time ¢ is
s = vt. If N is the number of direction reversals during this time interval, the
distance also can be written as s = N \. Therefore in (7.2) we can substitute
N by vt/ A:
(Az)? = NA? = yit = 2Dt . (7.3)

Here D is the diffusion coefficient:
D =Lp). (7.4)

Note that this diffusion coefficient has been defined for one-dimensional mo-
tion. For three-dimensional motion, the diffusion coefficient becomes

D=1wx. (7.5)

Galton Board and Bell Curve (Gauss’s Distribution). The average
distance is a statistical term which refers to a large assembly of particles. The
individual particles scatter around the starting point. Their distribution can
be described by the bell curve (Gauss’s distribution).
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P(zx)

Fig. 7.8. Broadening of a Gauss dis-
tribution with increasing standard de-
viation. Physically, this is equivalent to
the diffusive broadening of a distribu-
I T tion with time

The Galton board is a graphical way to derive this distribution. It consists
of rows of pins, indicated by dots in Fig. 7.7, and models the scattering the
particles experience: as a ball hits a pin, it is deflected either to the left or to
the right. Then it hits a pin in the next row, which leads to another deflection
and so on. The solid line indicates a sample path. Below the lowest row, the
parcvicics—are coected 111 Srots: 1€ S10 T WITICIT 8 Da [1TTally COIINCS 1O Iest,
results from a large number (equal to the number of rows) of stochastic
interactions of comparable strength. If we use a large number of balls, the
distribution in the slots will be a bell curve or Gauss’s distribution:

T — xp)?
P(:c):\/zi%g exp (—ET;))' (7.6)

Here x( is the average and o is the standard deviation. P(x) describes the
probability of a ball to be found in the slot at position z. The standard

deviation ¢ defines the width of the distribution: 68.3% of all values will be
inside the interval [zg — 0,20 + o] and 95.4% inside [zq — 20, ¢ + 20]. It is
given as

ol = ! Z(w ~z0)? =: (Az)?, (7.7)

n

and therefore describes the widening of the particle distribution or the ex-
pected displacement from the origin.

We can rewrite (7.6) and (7.7) to find an expression depending on the
diffusion coefficient. With (7.3) and (7.4) we find for the standard deviation

o =+/(Azr)2 = V2Dt = Vvt , (7.8)

and therefore for the bell curve

_ 1 N _(:c—a:o)2
P(z) = ————me p( R Ve ) , (7.9)

Note that the maximum stays fixed while the distribution broadens with
time, as described by (7.3) and shown in Fig. 7.8.
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The Diffusion Equation. If collisions happen in a homogeneous gas en-
closed in a fixed volume, the relevant quantity to describe the diffusive pro-
cess is the mean free path. It does not make sense to talk about a diffusion
coefficient or an expected displacement because, viewed from the outside,
the collisions do not change the properties of the gas, only the individual
molecules change positions. This could be depicted by something similar to
the Galton board: while in the Galton board the pins are arranged to form
a triangle with the input only at the tip of the triangle, the modified board
would consist of pins arranged in a rectangle with the input all over the top
line. For each input slot, the spatial distribution is the same as for a Galton
board. But the superposition of all the different input slots leads to the same
number of particles in each output slot. For a gas this implies that on average
for each particle leaving a volume element another one enters.

The situation is different if there is a gradient. Then there are more par-
ticles of the species under study in one part of the volume than in the other.
Accordingly, a random walk carries more particles out of the volume with

high density than particles are carried in from the lower density region. Thus
a net transport results, reducing the gradient and eventually leading to an
equalized distribution. The streaming S of particles can be described as

S =-DVU, (7.10)

with D being the diffusion tensor for anisotropic diffusion and U the particle
density. The gradient is the driving force for the flow, a larger gradient leading
to a larger flow. The flow also depends on the mobility of the particles,
described by the diffusion tensor. If diffusion is isotropic, the diffusion tensor
reduces to the diffusion coefficient and the streaming becomes § = ~DVU.
Since the diffusion coefficient depends on the particle speed and on the mean
free path, for a given gradient the flow as well as the average displacement are
largest for fast particles undergoing only few collisions (thus having a large
mean free path) and smallest for slow particles undergoing many collisions.
The equation of continuity (3.35), gives the following for a volume element

ON
—8;4‘ f Sdo =0. (7.11)
0O(5)

Here N is the number of particles and S is the flux of particles through the
surface o of the volume element V. If U is the particle density, (7.11) yields

%/Ud3x+ j’{ Sdo=0. (7.12)
1 o(V)
With Gauss’ theorem (A.33) this is

ou
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With (7.10) we can write the diffusion equation as

oU
= = V- (D). (7.14)

If the diffusion is independent of the direction (isotropic diffusion), we can
use the diffusion coefficient (7.4) instead of the diffusion tensor and get
ou
ot
If the diffusion coefficient is also independent of the spatial coordinate, as for
example in a homogeneous medium, the equation can be reduced further:

V- (DVU) . (7.15)

o DAU 7.16
- AU (7.16)

We have already encountered the one-dimensional form of this equation in

dect. 3.4.2 in kEqgs. (3.106) and (3.107).

Solutions of the Diffusion Equation. The solution of the diffusion equa-
tion depends on the boundary conditions. In the general case we shall con-
sider propagation from the source at a position ry. Thus we have to consider
a source ( in the diffusion equation:

%ij _ DAU = Q(ro,t) . (7.17)

o _ 19 (rzDra—[:) = Q(ro, t) (7.18)

with D, being the radial diffusion coefficient, which describes the diffusion
between different radial shells [380, 381].

The simplest case is a pulse-like injection of Ny particles at the position
ro = 0 at time t( = 0. A typical example is the injection of solar flare particles
into the interplanetary medium. The solution of the diffusion equation for a
radial-symmetric geometry then reads

Ur,t) = _ Mo exp (*i) : (7.19)
V (4mD,t)3 4Dt

Two typical diffusive profiles are shown in Fig. 7.9. The intensity rises
fast to a maximum and than decays slowly ~ t=3/2, The time of maximum
tm can be determined by setting the first temporal derivative to zero:

tm(r) = . (7.20)
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logU

A small

A large

Fig. 7.9. Typical diffusive
t profiles for small and large As

The time of the maximum decreases with increasing mean free path and in-
creasing particle speed. That is what we expect from our experience with
gases and liquids: the diffusion of a minor constituent is faster with increas-
ing temperature (corresponding to a higher particle speed) and decreasing

density (corresponding to an increase in particle mean free path). The time
of the maximum increases quadratically with increasing distance. This can
be understood easily from (7.8): the average distance increases with V.

Graphically, the time to maximum can be interpreted as follows [560]: if
we write (7.20) in the form t,, = (r/2)) (r/v), we have r /v as the direct travel
time for the distance r and can interpret r/2\ as a measure of the number
of mean free paths between the origin and the observer at r. The quantity
r/2X therefore characterizes the delay due to diffusion.

Inserting (7.20) into (7.19) gives the density at the time of maximum:

Ulr t) = ——20 e (—ﬁ) ~ (7.21)

NN

The intensity at the time of the maximum thus decreases with increasing
radial distance but it is independent of the diffusion coefficient.

Equation (7.20) is used frequently as a simple estimate of the radial mean
free path from the time of maximum of a particle profile observed in inter-
planetary space. Rewriting (7.20) we obtain

7,2

- Qut,

. (7.22)

Solutions of the diffusion equation so far have been obtained for the
spheric symmetric case, assuming that particles propagate radially from one
shell at r to the next one at r + Ar. The mean free path )\, then refers to
the radial mean free path. In interplanetary space, the geometry is different:
particles propagate along the magnetic field line, thus it is more reasonable
to use a particle mean free path A\ parallel to the magnetic field line. In
addition, the field is not radial but Archimedian. The solution, however, is
identical to the radial one as long as the relation
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Ar = A cos® ¢ or D, = Dy cos® ¢ (7.23)

is obeyed [380, 381]. Here 1/ is the spiral angle between the radial direction
and the Archimedian magnetic field line. Note that here it is assumed that
diffusion perpendicular to the magnetic field is negligible [158,256,432].

Diffusion—Convection Equation. So far, we have considered particles be-
ing scattered in a medium at rest. A different situation arises if the medium
is also moving, for instance an oil spill in a river: the oil is distributed by
diffusion but is also carried along with the moving fluid. In interplanetary
space, the convection is due to the solar wind: the particles are scattered at
inhomogeneities frozen into the solar wind and therefore propagating together
with the solar wind. Thus the streaming in (7.10) has to be supplemented by
velocity of the convective flow.

As above, the streaming can be inserted into the equation of continuity

—(3.34), giving the diffusion—convection equation ——

Ba—ltj +V({Uu) =V(DVU) . (7.24)
If u and D are independent of the spatial coordinate, (7.24) reads
%—[tj +uVU = DAU . (7.25)

In the radial-symmetric case, the solution for a J-injection then is

N (r-w)?
U(r,t)—\/me p{ iD.t } (7.26)

For small bulk speeds u of the medium the transport equation as well as its
solution converge towards the simple diffusion equation.

7.3.2 Pitch Angle Diffusion

Thus far we have not discussed the physical process of scattering. In the
graphical description we have tacitly assumed that we are dealing with large-
angle interactions: either the particle continues to propagate in its original
direction of motion or it is turned around by 180°. In chapter 5, however,
we have learned that fast particles in a plasma are more likely to encounter
small-angle interactions. Thus to turn a particle around, a large number of
interactions is required.

In space plasmas small-angle interactions are not due to Coulomb-scatter-
ing in the electric field of the background plasma but due to scattering at
plasma waves. The physical processes will be briefly sketched in Sect. 7.3.4;
the formal description is similar to the one discussed for spatial diffusion.
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Let us assume a magnetized plasma with an energy density exceeding that
of the energetic particles: the energetic particles then can be regarded as test
particles. Thus the particles gyrate around the lines of force and a pitch angle
can be assigned to each particle, often written in the form g = cosa. Each
interaction leads to a small change in g, i.e. a diffusion in pitch angle space.
We can derive a scattering term strictly analogous to spatial diffusion. Let
us start from (7.14). This can be rewritten easily: while the driving force
for spatial diffusion is a spatial gradient, the driving force for pitch angle
diffusion is a gradient in pitch angle space. Therefore the spatial derivatives
have to be replaced by a derivative to u and the scattering term reads

2 mtt).

with x being the pitch angle diffusion coefficient and f the phase space den-
sity. Note that the scattering depends on u, and thus the scattering can be
different for different pitch angles, depending on the waves available for wave—
particle interaction. The pitch angle diffusion coeflicient can be related to the
particle mean free path parallel to the magnetic field [215,256] by

+1
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Al = gv/E&TZL—))—du. (7.28)

Here \| does not describe the average distance travelled between two consec-
utive small-angle scatterings, but the distance travelled before the particles
pitch angle has been changed by 90°, i.e. the direction of motion has been
reversed. Thus for the overall motion, A has a meaning comparable to the
mean free path in ordinary spatial diffusion.

The term (7.27) also can be used to describe spatial scattering if we
also consider the field-parallel motion pv of the particles. Thus as in the
diffusion-convection equation we have to consider the streaming of particles
with respect to the scattering centers. The transport equation then can be

written as

0 8 o %)

of +u of _ 9 (. (2L f\

ot Vs T ou du
Here Of /Os is the spatial gradient along the magnetic field line. This depen-
denee is sufficient, because the motion of the guiding center is one-dimensional
along the magnetic field line and the particle gyrates around it. We will en-
counter this equation again as part of the focused transport equation (7.36)
for particles in interplanetary space. :

(7.29)

7.3.3 Diffusion in Momentum Space

Collisions not only change a particle’s direction of motion but also its energy.
We had already mentioned this as a basic requirement in the establishment of
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a thermal distribution. Momentum transfer can happen by collisions between
particles as well as by wave-particle interaction. If the energy gain in each
interaction is small compared with the particle energy, this can be described
as diffusion in momentum space [167,527]. Instead of particle flow, streaming
Sp in momentum results in

of _dp

<+

Sp = _DDPEE dt

f. (7.30)
Here Dy, is the diffusion coefficient in momentum space. The second term
describes non-diffusive changes in momentum, such as ionization, and corre-
sponds to the convective term in the spatial diffusion equation. It therefore
can also be described as convection in momentum space. Again, the physics
of the scattering process is hidden in Dy,

7.3.4 Wave—Particle Interactions

In this section we shall briefly introduce some of the basic processes of
wave-particle interactions. While in all previous sections the plasma was
regarded as well-behaved, wave—particle interactions are an example of the
non-linearity of plasma physics. While for the linear aspects treated before a
well-developed mathematical description is available, in the non-linear theory
no general algorithms exist. Only few analytical methods are known, most
of them relying on approximations. One of them is the limitation to lowest-
order perturbations, similar to the approximation described in Sect. 4.2. Let
us start this section with a brief introduction to quasi-linear theory.

Quasi-Linear Theory. Quasi-linear theory is based on perturbation theory;
interactions between waves and particles are considered to first order only.
Thus all terms of second order in the disturbance should be small enough to be
ignored. Only weakly turbulent wave—particle interactions can be treated this
way: the particle distribution is only weakly affected by the self-excited waves
in a random-phase uncorrelated way. This requirement not only corresponds
to small disturbances in perturbation theory but even directly results from
it as the waves are described in the framework of perturbation theory. The
waves generated by the particles will affect the particles in a way which will
tend to reduce the waves. Thus we assume the plasma to be a self-stabilizing
system: neither indefinite wave growth happens nor are the particles trapped
in a wave well.

The basic equation is the Vlasov equation (5.23). We split all quanti-
ties into a slowly evolving average part, such as fo, Eqg = 0, and By, and
a fluctuating part f1, F1, and B,. The long-term averages of the fluctuat-
ing quantities vanish: (fi) = (E,) = (B;) = 0. Note that in contrast to
the ansatz in Sect. 4.1.2 here the quantities with index ‘0’ are not constant
background quantities but slowly evolving average properties of the system.
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These are the quantities we are interested in — the fluctuating quantities are
of interest only in so far as they give rise to the evolution of the phase space
density. In Sect. 4.1.2, on the other hand, we were interested in the fluctuating
quantities because they gave rise to a new phenomenon, the waves.

With the above ansatz, the average Vlasov equation reads

aa'];o_i_ va“}'E‘UXBO aFO :——7% <(E1+’UXB1)?;f1—> . (731)

v dv
The term on the right-hand side contains the non-vanishing averages of the
fluctuations and describes the interactions between the fluctuating fields and
the fluctuating part of the particle distribution. These interactions combined
with the slowly evolving fields on the left-hand side of (7.31) lead to the phase

gnace evolution of the er\w]v varving part of the distribution. Note that we

= A A LAV RV LTS RS RV A VAl VWL Y iy Pl VU UL vaaw \aidviinsuaaviatoas. vaialy

have not made any assumptlons about the smallness of the fluctuations, the
only limitation is a clear separation between the fluctuating part and the
average behavior of the plasma.

Equation (7.31) is the fundamental equation in non-linear plasma physics.
Solutions, however, are difficult to obtain because they require an a priori
knowledge of the fluctuating fields to calculate the average term on the right-
hand side. This term has the nature of a Boltzmann collision term. Note
that these collisions are not particle—particle interactions but result from the
non-linear coupling between the particles and the fluctuating wave fields.

If the particles and the fluctuating fields are known, the term on the right-
hand side can be calculated. It can then be used to derive an expression for the
scattering coefficients mentioned above which depends on particle properties,
in general the rigidity, and the properties of the waves, in particular their
power density spectruin.

Resonance Scattering. The scattering of particles by waves can be de-
scribed as a random walk process if the individual interactions lead to small-
angle scattering only. Thus a reversal of the direction of motion requires a
large number of these small-angle scatters. If we assume a particle to be in
resonance with the wave, the scattering is more efficient because the small-
angle changes all work together into one direction instead of trying to cancel
each other. Thus pitch angle scattering will mainly occur from interactions
with field fluctuations with wavelengths in resonance with the particle motion
along the field. Such a resonance interaction can formally be understood from
a simple mechanical or electrical analogy, such as a light torsion pendulum in
a turbulent gas or a resonant circuit excited by noise [560]. A full treatment
of the theory with application to the scattering of particles in interplane-
tary space was first given by Jokipii [256] and, with a somewhat different
approacii, uy Hasselmann and Wibberenz lAlOJ

The idea is sketched in Fig. 7.10. Let us assume a simple model of magnetic
field fluctuations: the (relevant) waves propagate only along the magnetic field
(k||Bo) and the 