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Preface

Stochastic Calculus of Variations (or Malliavin Calculus) consists, in brief,
in constructing and exploiting natural differentiable structures on abstract
probability spaces; in other words, Stochastic Calculus of Variations proceeds
from a merging of differential calculus and probability theory.

As optimization under a random environment is at the heart of mathemat-
ical finance, and as differential calculus is of paramount importance for the
search of extrema, it is not surprising that Stochastic Calculus of Variations
appears in mathematical finance. The computation of price sensitivities (or
Greeks) obviously belongs to the realm of differential calculus.

Nevertheless, Stochastic Calculus of Variations was introduced relatively
late in the mathematical finance literature: first in 1991 with the Ocone-
Karatzas hedging formula, and soon after that, many other applications ap-
peared in various other branches of mathematical finance; in 1999 a new im-
petus came from the works of P. L. Lions and his associates.

Our objective has been to write a book with complete mathematical proofs
together with a relatively light conceptual load of abstract mathematics; this
point of view has the drawback that often theorems are not stated under
minimal hypotheses.

To faciliate applications, we emphasize, whenever possible, an approach
through finite-dimensional approximation which is crucial for any kind of nu-
merical analysis. More could have been done in numerical developments (cal-
ibrations, quantizations, etc.) and perhaps less on the geometrical approach
to finance (local market stability, compartmentation by maturities of interest
rate models); this bias reflects our personal background.

Chapter 1 and, to some extent, parts of Chap. 2, are the only prerequisites
to reading this book; the remaining chapters should be readable independently
of each other. Independence of the chapters was intended to facilitate the
access to the book; sometimes however it results in closely related material
being dispersed over different chapters. We hope that this inconvenience can
be compensated by the extensive Index.

The authors wish to thank A. Sulem and the joint Mathematical Finance
group of INRIA Rocquencourt, the Université de Marne la Vallée and Ecole
Nationale des Ponts et Chaussées for the organization of an International
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Symposium on the theme of our book in December 2001 (published in Math-
ematical Finance, January 2003). This Symposium was the starting point for
our joint project.

Finally, we are greatly indepted to W. Schachermayer and J. Teichmann
for reading a first draft of this book and for their far-reaching suggestions.
Last not least, we implore the reader to send any comments on the content of
this book, including errors, via email to thalmaier@math.univ-poitiers.fr,
so that we may include them, with proper credit, in a Web page which will
be created for this purpose.

Paris, Paul Malliavin
April, 2005 Anton Thalmaier
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1.5 Itô’s Theory of Stochastic Integrals . . . . . . . . . . . . . . . . . . . . . . . . 15
1.6 Differential and Integral Calculus

in Chaos Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.7 Monte-Carlo Computation of Divergence . . . . . . . . . . . . . . . . . . . 21

2 Computation of Greeks
and Integration by Parts Formulae . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1 PDE Option Pricing; PDEs Governing

the Evolution of Greeks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Stochastic Flow of Diffeomorphisms;

Ocone-Karatzas Hedging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3 Principle of Equivalence of Instantaneous Derivatives . . . . . . . . 33
2.4 Pathwise Smearing for European Options . . . . . . . . . . . . . . . . . . . 33
2.5 Examples of Computing Pathwise Weights . . . . . . . . . . . . . . . . . . 35
2.6 Pathwise Smearing for Barrier Option . . . . . . . . . . . . . . . . . . . . . . 37

3 Market Equilibrium and Price-Volatility Feedback Rate . . . 41
3.1 Natural Metric Associated to Pathwise Smearing . . . . . . . . . . . . 41
3.2 Price-Volatility Feedback Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3 Measurement of the Price-Volatility Feedback Rate . . . . . . . . . . 45
3.4 Market Ergodicity

and Price-Volatility Feedback Rate . . . . . . . . . . . . . . . . . . . . . . . . 46



X Contents

4 Multivariate Conditioning
and Regularity of Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.1 Non-Degenerate Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Divergences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3 Regularity of the Law of a Non-Degenerate Map . . . . . . . . . . . . . 53
4.4 Multivariate Conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5 Riesz Transform and Multivariate Conditioning . . . . . . . . . . . . . 59
4.6 Example of the Univariate Conditioning . . . . . . . . . . . . . . . . . . . . 61

5 Non-Elliptic Markets and Instability
in HJM Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.1 Notation for Diffusions on R

N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2 The Malliavin Covariance Matrix

of a Hypoelliptic Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3 Malliavin Covariance Matrix
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1

Gaussian Stochastic Calculus of Variations

The Stochastic Calculus of Variations [141] has excellent basic reference arti-
cles or reference books, see for instance [40, 44, 96, 101, 144, 156, 159, 166, 169,
172, 190–193, 207]. The presentation given here will emphasize two aspects:
firstly finite-dimensional approximations in view of the finite dimensionality
of any set of financial data; secondly numerical constructiveness of divergence
operators in view of the necessity to realize fast numerical Monte-Carlo simu-
lations. The second point of view will be enforced through the use of effective
vector fields.

1.1 Finite-Dimensional Gaussian Spaces,
Hermite Expansion

The One-Dimensional Case

Consider the canonical Gaussian probability measure γ1 on the real line R

which associates to any Borel set A the mass

γ1(A) =
1√
2π

∫
A

exp
(
−ξ2

2

)
dξ . (1.1)

We denote by L2(γ1) the Hilbert space of square-integrable functions on R

with respect to γ1. The monomials {ξs : s ∈ N} lie in L2(γ1) and generate a
dense subspace (see for instance [144], p. 6).

On dense subsets of L2(γ1) there are two basic operators: the derivative
(or annihilation) operator ∂ϕ := ϕ′ and the creation operator ∂∗ϕ, defined
by

(∂∗ϕ)(ξ) = −(∂ϕ)(ξ) + ξϕ(ξ) . (1.2)

Integration by parts gives the following duality formula:

(∂ϕ|ψ)L2(γ1) := E[(∂ϕ)ψ] =
∫

R

(∂ϕ)ψ dγ1 =
∫

R

ϕ (∂∗ψ) dγ1 = (ϕ|∂∗ψ)L2(γ1) .
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Moreover we have the identity

∂∂∗ − ∂∗∂ = 1

which is nothing other than the Heisenberg commutation relation; this fact
explains the terminology creation, resp. annihilation operator, used in the
mathematical physics literature. As the number operator is defined as

N = ∂∗∂ , (1.3)

we have
(Nϕ)(ξ) = −ϕ′′(ξ) + ξϕ′(ξ) .

Consider the sequence of Hermite polynomials given by

Hn(ξ) = (∂∗)n(1), i.e., H0(ξ) = 1, H1(ξ) = ξ, H2(ξ) = ξ2 − 1, etc.

Obviously Hn is a polynomial of degree n with leading term ξn. From the
Heisenberg commutation relation we deduce that

∂(∂∗)n − (∂∗)n∂ = n(∂∗)n−1.

Applying this identity to the constant function 1, we get

H ′
n = nHn−1, NHn = nHn ;

moreover

E[HnHp] =
(
(∂∗)n1|Hp

)
L2(γ1)

=
(
1|∂nHp

)
L2(γ1)

= E[∂nHp] . (1.4)

If p < n the r.h.s. of (1.4) vanishes; for p = n it equals n! . Therefore{
1√
n!

Hn, n = 0, 1, . . .

}
constitutes an orthonormal basis of L2(γ1).

Proposition 1.1. Any C∞-function ϕ with all its derivatives ∂nϕ ∈ L2(γ1)
can be represented as

ϕ =
∞∑

n=0

1
n!

E(∂nϕ)Hn . (1.5)

Proof. Using

E[∂nϕ] = (∂nϕ | 1)L2(γ1) = (ϕ | (∂∗)n1)L2(γ1) = E[ϕHn],

the proof is completed by the fact that the Hn/
√

n! provide an orthonormal
basis of L2(γ1). ��
Corollary 1.2. We have

exp
(

cξ − 1
2
c2

)
=

∞∑
n=0

cn

n!
Hn(ξ), c ∈ R.

Proof. Apply (1.5) to ϕ(ξ) := exp(cξ − c2/2) . ��
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The d-Dimensional Case

In the sequel, the space R
d is equipped with the Gaussian product measure

γd = (γ1)⊗d. Points ξ ∈ R
d are represented by their coordinates ξα in the

standard base eα, α = 1, . . . , d . The derivations (or annihilation operators)
∂α are the partial derivatives in the direction eα; they constitute a commuting
family of operators. The creation operators ∂∗

α are now defined as

(∂∗
αϕ)(ξ) := −(∂αϕ)(ξ) + ξαϕ(ξ);

they constitute a family of commuting operators indexed by α.
Let E be the set of mappings from {1, . . . , d} to the non-negative integers;

to q ∈ E we associate the following operators:

∂q =
∏

α∈{1,...,d}
(∂α)q(α), ∂∗

q =
∏

α∈{1,...,d}
(∂∗

α)q(α).

Duality is realized through the identities:

E[(∂αϕ)ψ] = E[ϕ (∂∗
αψ)]; E[(∂qϕ)ψ] = E[ϕ (∂∗

qψ)],

and the commutation relationships between annihilation and creation opera-
tors are given by the Heisenberg rules:

∂∗
α∂β − ∂β∂∗

α =

{
1, if α = β

0, if α �= β.

The d-dimensional Hermite polynomials are indexed by E , which means that
to each q ∈ E we associate

Hq(ξ) := (∂∗
q1)(ξ) =

∏
α

Hq(α)(ξα).

Let q! =
∏

α q(α)! . Then {
Hq/

√
q!
}

q∈E

is an orthonormal basis of L2(γd). Defining operators εβ on E by

(εβq)(α) = q(α), if α �= β;

(εβq)(β) =

{
q(β) − 1 , if q(β) > 0;

0 , otherwise,

we get
∂βHq = q(β)Hεβq. (1.6)

In generalization of the one-dimensional case given in Proposition 1.1 we
now have the analogous d-dimensional result.
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Proposition 1.3. A function ϕ with all its partial derivatives in L2(γd) has
the following representation by a series converging in L2(γd):

ϕ =
∑
q∈E

1
q!

E[∂qϕ]Hq . (1.7)

Corollary 1.4. For c ∈ R
d denote

‖c‖2 =
∑
α

(cα)2, (c | ξ) =
∑
α

cα ξα, cq =
∏
α

(cα)q(α).

Then we have

exp
(

(c | ξ) − 1
2
‖c‖2

)
=

∑
q∈E

cq

q!
Hq(ξ) . (1.8)

In generalization of the one-dimensional case (1.3) the number operator is
defined by

N =
∑

α∈{1,...,d}
∂∗

α∂α, (1.9)

thus
(Nϕ)(ξ) =

∑
α∈{1,...,d}

(−∂2
αϕ + ξα∂αϕ)(ξ), ξ ∈ R

d . (1.10)

In particular, we get N (Hq) = |q|Hq where |q| =
∑

α q(α).
Denote by Ck

b (Rd) the space of k-times continuously differentiable func-
tions on R

d which are bounded together with all their first k derivatives. Fix
p ≥ 1 and define a Banach type norm on Ck

b (Rd) by

‖f‖p
Dp

k
:=

∫
Rd

(
|f |p +

∑
α∈{1,...,d}

|∂αf |p (1.11)

+
∑

α1,α2∈{1,...,d}
|∂2

α1,α2
f |p + . . . +

∑
αi∈{1,...,d}

|∂k
α1,...,αk

f |p
)

dγd .

A classical fact (see for instance [143]) is that the completion of Ck
b (Rd) in the

norm ‖·‖Dp
k

is the Banach space of functions for which all derivatives up to
order k, computed in the sense of distributions, belong to Lp(γd). We denote
this completion by Dp

k(Rd).

Theorem 1.5. For any f ∈ C2
b (Rd) such that

∫
fdγd = 0 we have

‖N (f)‖L2(γd) ≤ ‖f‖D2
2
≤ 2 ‖N (f)‖L2(γd) . (1.12)

Proof. We use the expansion of f in Hermite polynomials:

if f =
∑
q

cqHq then ‖f‖2
L2(γd) =

∑
q

q! |cq|2 .
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By means of (1.9) we have

‖N (f)‖2
L2(γd) =

∑
q

|q|2 q! |cq|2 .

The first derivatives ∂αf are computed by (1.6) and their L2(γd) norm is given
by ∑

α

∫
Rd

|∂αf |2 dγd =
∑
q

|cq|2q!
∑
α

q(α) =
∑
q

|cq|2q! |q| .

The second derivatives ∂2
α1,α2

f are computed by applying (1.6) twice and the
L2(γd) norm of the second derivatives gives

∑
α1,α2

∫
Rd

|∂2
α1,α2

f |2 dγd =
∑
q

|cq|2q!
∑

α1,α2

q(α1)q(α2) =
∑
q

|cq|2q! |q|2 .

Thus we get
‖f‖2

D2
2

=
∑
q

|cq|2q! (1 + |q| + |q|2) .

As we supposed that c0 = 0 we may assume that |q| ≥ 1. We conclude by
using the inequality x2 < 1 + x + x2 < 4x2 for x ≥ 1. ��

1.2 Wiener Space as Limit of its Dyadic Filtration

Our objective in this section is to approach the financial setting in continuous
time. Strictly speaking, of course, this is a mathematical abstraction; the time
series generated by the price of an asset cannot go beyond the finite amount of
information in a sequence of discrete times. The advantage of continuous-time
models however comes from two aspects: first it ensures stability of computa-
tions when time resolution increases, secondly models in continuous time lead
to simpler and more conceptual computations than those in discrete time (sim-
plification of Hermite expansion through iterated Itô integrals, Itô’s formula,
formulation of probabilistic problems in terms of PDEs).

In order to emphasize the fact that the financial reality stands in discrete
time, we propose in this section a construction of the probability space under-
lying the Brownian motion (or the Wiener space) through a coherent sequence
of discrete time approximations.

We denote by W the space of continuous functions W : [0, 1] → R vanishing
at t = 0. Consider the following increasing sequence (Ws)s∈N of subspaces of W
where Ws is constituted by the functions W ∈ W which are linear on each
interval of the dyadic partition

[(k − 1)2−s, k2−s], k = 1, . . . , 2s .
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The dimension of Ws is obviously 2s, since functions in Ws are determined
by their values assigned at k2−s, k = 1, . . . , 2s . For each s ∈ N, define a
pseudo-Euclidean metric on W by means of

‖W‖2
s := 2s

2s∑
k=1

|δs
k(W )|2, δs

k(W ) ≡ W (δs
k) := W

(
k

2s

)
− W

(
k − 1

2s

)
.

(1.13)
For instance, for ψ ∈ C1([0, 1]; R), we have

lim
s→∞ ‖ψ‖2

s =
∫ 1

0

|ψ′(t)|2 dt . (1.14)

The identity 1 = 2[(1
2 )2 + (1

2 )2] induces the compatibility principle:

‖W‖p = ‖W‖s, W ∈ Ws, p ≥ s . (1.15)

On Ws we take the Euclidean metric defined by ‖·‖s and denote by γ∗
s

the canonical Gaussian measure on the Euclidean space Ws. The injection
js : Ws → W sends the measure γ∗

s to a Borel probability measure γs carried
by W . Thus γs(B) = γ∗

s (j−1
s (B)) for any Borel set of W .

Let et be the evaluation at time t, that is the linear functional on W
defined by

et : W �→ W (t),

and denote by Fs the σ-field on W generated by ek2−s , k = 1, . . . , 2s. By
linear extrapolation between the points of the dyadic subdivision, the data
ek2−s , k = 1, . . . , 2s, determine a unique element of Ws. The algebra of Borel
measurable functions which are in addition Fs-measurable can be identified
with the Borel measurable functions on Ws.

Let F∞ := σ(∪qFq). The compatibility principle (1.15) induces the fol-
lowing compatibility of conditional expectations:

E
γs [Φ|Fq] = E

γq [Φ|Fq], for s ≥ q and for all F∞-measurable Φ . (1.16)

For any Fq-measurable function ψ, we deduce that

lim
s→∞ E

γs [ψ] = E
γq [ψ] . (1.17)

Theorem 1.6 (Wiener). The sequence γs of Borel measures on W con-
verges weakly towards a probability measure γ, the Wiener measure, carried
by the Hölder continuous functions of exponent η < 1/2.

Proof. According to (1.17) we have convergence for functions which are mea-
surable with respect to F∞. As F∞ generates the Borel σ-algebra of W for
the topology of the uniform norm, it remains to prove tightness. For η > 0, a
pseudo-Hölder norm on Ws is given by

‖W‖s
η = 2−ηs sup

k∈{1,...,2s}
|δs

k(W )| , W ∈ Ws .
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As each δs
k(W ) is a Gaussian variable of variance 2−s, we have

γs

{‖W‖s
η > 1

} ≤ 2
2s

√
2π

∫ ∞

2s(1/2−η)
exp

(
−ξ2

2

)
dξ ≤ 2s exp

(
−2s(1−2η)

2

)
.

This estimate shows convergence of the series
∑

s γs

{‖W‖s
η ≥ 1

}
for η <

1/2, which implies uniform tightness of the family of measures γs, see
Parthasarathy [175]. ��

The sequence of σ-subfields Fs provides a filtration on W . Given Φ ∈
L2(W ; γ) the conditional expectations (with respect to γ)

Φs := E
Fs [Φ] (1.18)

define a martingale which converges in L2(W ; γ) to Φ.

1.3 Stroock–Sobolev Spaces
of Functionals on Wiener Space

Differential calculus of functionals on the finite-dimensional Euclidean space
Ws is defined in the usual elementary way. As we want to pass to the limit
on this differential calculus, it is convenient to look upon the differential of
ψ ∈ C1(Ws) as a function defined on [0, 1] through the formula:

Dtψ :=
2s∑

k=1

1[(k−1)2−s,k2−s[(t)
∂ψ

∂W (δs
k)

, ψ ∈ C1(Ws) , (1.19)

where W (δs
k) denotes the kth coordinate on Ws defined by (1.13). We denote

δs
k := [(k − 1)2−s, k2−s[ and write Dtψ =

∑2s

k=1 1δs
k
(t) ∂ψ

∂W (δs
k) .

We have to show that (1.19) satisfies a compatibility property analogous
to (1.15). To this end consider the filtered probability space constituted by
the segment [0, 1] together with the Lebesgue measure λ, endowed with the
filtration {Aq} where the sub-σ-field Aq is generated by

{
δq
k : k = 1, . . . , 2q

}
.

We consider the product space G := W × [0, 1] endowed with the filtration
Bs := Fs ⊗ As.

Lemma 1.7 (Cruzeiro’s Compatibility Lemma [56]). Let φq be a func-
tional on W which is Fq-measurable such that φq ∈ D2

1(Wq). Define a func-
tional Φq on G by Φq(W, t) := (Dtφq)(W ). Consider the martingales having
final values φq, Φq, respectively:

φs = E
Fs [φq], Ψs = E

Bs [Φq], s ≤ q .

Then φs ∈ D2
1(Ws), and furthermore,

(Dtφs)(W ) = Ψs(W, t) . (1.20)
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Proof. It is sufficient to prove this property for s = q−1. The operation E
Fq−1

consists in

i) forgetting all subdivision points of the form (2j − 1)2−q,
ii) averaging on the random variables corresponding to the innovation σ-field

Iq = Fq � Fq−1 .

On the 1δq
k

these operations are summarized by the formula

1δq−1
k

= E
Aq [1δq

2k
+ 1δq

2k−1
] .

Hence the compatibility principle is reduced to the following problem on R
2.

Let ψ(x, y) be a C1-function on R
2 where (x, y) denote the standard coordi-

nates of R
2, and equip R

2 with the Gaussian measure such that coordinate
functions x, y become independent random variables of variance 2−q; this
measure is preserved by the change of variables

ξ =
x + y√

2
, η =

x − y√
2

.

Defining

θ(ξ, η) = ψ

(
ξ + η√

2
,
ξ − η√

2

)
and denoting by γ1 the normal Gaussian law on R, we have

E
x+y=a[ψ(x, y)] =

∫ ∞

−∞
θ(a, 2−q/2λ) γ1(dλ),

which implies the commutation

∂

∂a
E

x+y=a = E
x+y=a ∂

∂ξ
. ��

Definition 1.8. We say that φ ∈ D2
1(W ) if φs := E

Fs [φ] ∈ D2
1(Ws) for all s,

together with the condition that the (Bs)-martingale

Ψs(W, t) := Dt(φs) (1.21)

converges in L2(G ; γ ⊗ λ) .

Remark 1.9. The fact that Ψs(W, t) is a Bs-martingale results from Cruzeiro’s
lemma.

Theorem 1.10. There exists a natural identification between the elements of
D2

1(W ) and

φ ∈ L2(W ) such that sup
s

‖φs‖D2
1(Ws) < ∞ . (1.22)
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Furthermore we have:

1. For any φ ∈ D2
1(W ) the partial derivative Dtφ is defined almost surely

in (W, t).
2. The space D2

1(W ) is complete with respect to the norm

‖φ‖D2
1(W ) :=

(
E

[
|φ|2 +

∫ 1

0

|Dtφ|2 dt

])1/2

. (1.23)

3. Given an F ∈ C1(Rn; R) with bounded first derivatives, and φ1, . . . , φn in
D2

1(W ), then for G(W ) := F (φ1(W ), . . . , φn(W )) we have

G ∈ D2
1(W ), DtG =

n∑
i=1

∂F

∂xi
Dtφ

i . (1.24)

Proof. The proof proceeds in several steps:

(a) A martingale converges in L2 if and only if its L2 norm is bounded.
(b) An L2 martingale converges almost surely to its L2 limit.
(c) The space of L2 martingales is complete.
(d) Let φi

s = E
Fs [φi], Gs := E

Fs [G]. Then Gs = F (φ1
s, . . . , φ

n
s ), and by finite-

dimensional differential calculus,

DtGs =
n∑

i=1

∂F

∂xi
Dtφ

i
s,

which implies (1.24) by passing to the limit. ��

Higher Derivatives

We consider the space D2
r(Ws) of functions defined on the finite-dimensional

space Ws, for which all derivatives in the sense of distributions up to order r
belong to L2(γs). The key notation is to replace integer indices of partial
derivatives by continuous indices according to the following formula (written
for simplicity in the case of the second derivative)

Dt1,t2ψs :=
2s∑

k1,k2=1

1[(k1−1)2−s,k12−s[(t1) 1[(k2−1)2−s,k22−s[(t2)
∂ψ

∂δs
k1

∂ψ

∂δs
k2

.

Cruzeiro’s Compatibility Lemma 1.7 holds true also for higher derivatives
which allows to extend (1.21) to (1.24) to higher derivatives. The second
derivative satisfies the symmetry property Dt1,t2φ = Dt2,t1φ. More generally,
derivatives of order r are symmetric functions of the indices t1, . . . , tr.

Recall that the norm on D2
1 is defined by (1.23):

‖φ‖2
D2

1(Ws) = E

[
|φ|2 +

∫ 1

0

|Dτφ|2 dτ

]
.
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Definition 1.11. The norm on D2
2 is defined as

‖φ‖2
D2

2(Ws) = E

[
|φ|2 +

∫ 1

0

|Dτφ|2 dτ +
∫ 1

0

∫ 1

0

|Dτ,λφ|2 dτdλ

]
. (1.25)

Derivatives of Cylindrical Functions

Let t0 ∈ [0, 1] and let et0 be the corresponding evaluation map on W defined
by et0(W ) := W (t0) . If t0 = k02−s0 is a dyadic fraction, then for any s ≥ s0,

et0 =
∑

k≤k02s−s0

δs
k,

which by means of (1.19) implies that

Dtet0 = 1[0,t0](t) . (1.26)

Since any t0 ∈ [0, 1] can be approximated by dyadic fractions, the same for-
mula is seen to hold in general. Note that, as first derivatives are constant,
second order derivatives Dt1,t2et0 vanish.

A cylindrical function Ψ is specified by points t1, . . . , tn in [0, 1] and by a
differentiable function F defined on R

n; in terms of these data the function
Ψ is defined by

Ψ := F (et1 , . . . , etn
) .

From (1.24) the following formula results:

DtΨ =
n∑

i=1

1[0,ti[(t)
∂F

∂xi
. (1.27)

1.4 Divergence of Vector Fields, Integration by Parts

Definition 1.12. A Bs-measurable function Zs on G is called a vector field.
The final value Z∞ of a square-integrable (Bs)-martingale (Zs)s≥0 on G is
called an L2 vector field on W .

For W s fixed, the function Zs(W s, ·) is defined on [0, 1] and constant on
the intervals ](k−1)2−s, k2−s[. Hence Definition 1.12 coincides with the usual
definition of a vector field on R

2s

; the {Z(W s, k2−s)}k=1,...,2s constituting the
components of the vector field.

The pairing between φ ∈ D2
1(W ) and an L2 vector field Z∞ is given by

DZ∞φ :=
∫ 1

0

Z∞(t)Dtφ dt = lim
s→∞

∫ 1

0

Zs(t)Dtφ
s dt, φs := E

Fs(φ); (1.28)

the l.h.s. being an integrable random variable on W .
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Definition 1.13 (Divergence and integration by parts). Given an L2

vector field Z on W , we say that Z has a divergence in L2, denoted ϑ(Z), if
ϑ(Z) ∈ L2(W ) and if

E[DZφ] = E[φ ϑ(Z)] ∀φ ∈ D2
1(W ) . (1.29)

Using the density of Hermite polynomials in L2(W ; γs), it is easy to see that
if the divergence exists, it is unique.

On a finite-dimensional space the notion of divergence can be approached
by an integration by parts argument within the context of classical differential
calculus. For instance on R, we may use the identity∫ ∞

0

Z(ξ)φ′(ξ) exp
(
−1

2
ξ2

)
dξ =

∫ ∞

0

φ(ξ)
(
ξZ(ξ) − Z ′(ξ)

)
exp

(
−1

2
ξ2

)
dξ

which immediately gives

ϑ(Z)(ξ) = ξ Z(ξ) − Z ′(ξ).

This formula can be generalized to vector fields on R
d, along with the canonical

Gaussian measure, as follows

ϑ(Z)(ξ) =
d∑

k=1

(
ξkZk(ξ) − ∂Zk

∂ξk
(ξ)

)
. (1.30)

From (1.30) it is clear that computation of divergences on the Wiener space
requires differentiability of vector fields; in order to reduce this differentiability
to differentiability of functions as studied in Sect. 1.3, it is convenient to work
with the Walsh orthonormal system of L2(λ) which is tailored to the filtration
(As).

Denote by R the periodic function of period 1, which takes value 1 on
the interval [0, 1/2[ and value −1 on [1/2, 1[. Recall that every non-negative
integer j has a unique dyadic development

j =
+∞∑
r=0

ηr(j) 2r

where the coefficients ηr(j) take the value 0 or 1. Using these notations we
define

wj(τ) :=
∏
r≥0

R(ηr(j) 2rτ) .

The family (wj)j≥0 constitutes an orthonormal base of L2([0, 1];λ). Develop-
ing θ ∈ L2([0, 1];λ) as θ =

∑
j≥0 αj wj gives

E
As [θ] =

∑
0≤j<2s

αjwj .
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Now if Z is an L2 vector field and W is fixed, we expand Z(W, τ) in the
Walsh orthonormal system as Z(W, τ) =

∑
j≥0 αj(W )wj(τ) to get ‖Z‖2

L2 =∑
j≥0 E[|αj |2]. Finally, we define

DtZ =
∑
j≥0

(Dtαj)wj ,

where Z(W, τ) =
∑

j≥0 αj(W )wj(τ) and

‖Z‖2
D2

1
:=

∑
j≥0

‖αj‖2
D2

1
. (1.31)

Theorem 1.14. The divergence ϑ(Z) of a vector field Z in D2
1 exists and

satisfies the Shigekawa–Nualart–Pardoux energy identity [160, 187]:

E
[|ϑ(Z)|2] = E

[∫ 1

0

|Zτ |2 dτ +
∫ 1

0

∫ 1

0

(DtZτ ) (DτZt) dt dτ

]
. (1.32)

In particular the following estimate holds:

E
[|ϑ(Z)|2] ≤ ‖Z‖2

D2
1

. (1.33)

Proof. First we show that estimate (1.33) is a consequence of (1.32):

E
[|ϑ(Z)|2] = E

[∫ 1

0

|Zτ |2 dτ +
∫ 1

0

∫ 1

0

(DtZτ ) (DτZt) dt dτ

]

≤ E

[∫ 1

0

|Zτ |2 dτ +
∫ 1

0

∫ 1

0

|DtZτ |2 dt dτ

]
= ‖Z‖2

D2
1
.

It remains to prove (1.32). We associate to Z the sequence

Zs =
∑

0≤j<2s

E
Fs [αj ]wj ;

then Zs may be considered as a vector field on the finite-dimensional space W s;
therefore (1.29) can be applied to give

ϑ(Zs) =
∫ 1

0

(
Ẇ s(τ)Zs(τ) − DτZs(τ)

)
dτ , (1.34)

where Ẇ s(τ) =
∑2s

k=1 W (δs
k) 1](k−1)2−s k2−s[(τ). It should be remarked that

the integral in (1.34) is the integral of an Fs-measurable function which is
constant on the subintervals of the dyadic partition of level s; integrating on
each of these dyadic intervals of length 2−s, we see that (1.34) writes as a
finite sum, as it should be for the divergence of a vector field on R

2s

. ��
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Lemma 1.15. The divergence ϑ(Zs) satisfies the identity (1.32).

Proof. By means of formula (1.29) and formula (1.34) we have

J : = E[ϑ(Zs)ϑ(Zs)]

= E

[
ϑ(Zs)

∫ 1

0

(
Ẇ s(τ)Zs(τ) − DτZs(τ)

)
dτ

]

= E

[
DZs

∫ 1

0

(
Ẇ s(τ)Zs(τ) − DτZs(τ)

)
dτ

]

= E

[∫ 1

0

∫ 1

0

Zs(τ ′)Dτ ′
(
Ẇ s(τ)Zs(τ) − DτZs(τ)

)
dτ dτ ′

]
.

Computing the derivative of a product as usual we get

Dτ ′
(
Ẇ s(τ)Zs(τ)

)
= Zs(τ)

(
Dτ ′Ẇ s(τ)

)
+ Ẇ s(τ)

(
Dτ ′Zs(τ)

)
.

We remark that if τ, τ ′ do not belong to the same dyadic interval then
Dτ ′Ẇ s(τ) = 0; if they do belong to the same dyadic interval the deriva-
tive is equal to 1. Note that this derivative replaces the double integral by a
simple integral where we integrate on the diagonal τ = τ ′; therefore

J − E

[∫ 1

0

|Zs(τ)|2 dτ

]

=
∫ 1

0

∫ 1

0

Zs(τ ′)
(
Ẇ s(τ)(Dτ ′Zs(τ)) − Dτ (Dτ ′Zs(τ))

)
dτ dτ ′,

where the last term has been obtained using commutation of the derivatives
Dτ and Dτ ′ . Introduce the vector field Yτ ′(τ) := Dτ ′Zs(τ) which is considered
as a vector field with respect to the variable τ , depending on the parameter τ ′.
Then, by means of (1.34), we have

ϑ(Yτ ′) =
∫ 1

0

(
Ẇ s(τ)(Dτ ′Zs(τ)) − Dτ (Dτ ′Zs(τ))

)
dτ .

Using this identity along with Fubini’s theorem we get

J − E

[∫ 1

0

|Zs(τ)|2 dτ

]
= E

[∫ 1

0

ϑ(Yτ ′)Zs(τ ′) dτ ′
]

.

Finally, commuting E and the integration with respect to time, we get along
with (1.29),

J − E

[∫ 1

0

|Zs(τ)|2 dτ

]
=

∫ 1

0

E
[
DYτ′ (Zs(τ ′))

]
dτ ′

=
∫ 1

0

dτ ′
E

[∫ 1

0

(DτZs(τ ′))Yτ ′(τ) dτ

]
. ��

Proof (End of the proof of Theorem 1.14). As {Zs} is a martingale with final
value Z, we have

‖Zs‖D2
1
≤ ‖Z‖D2

1
.
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As (1.32) has been established for Zs we can use its consequence (1.32) to
obtain

E
[|ϑ(Zs)|2] ≤ ‖Z‖2

D2
1

.

As the defining equation (1.30) is stable under conditional expectation we
deduce that

E
Fs [ϑ(Zq)] = ϑ(Zs), ∀ q > s .

Therefore the sequence {ϑ(Zs)} is a martingale of bounded L2 norm, and
hence converges in the L2 norm towards a function u. By passing to the limit,
u satisfies

E[DZφ] = E[uφ]

for any φ which is Fq-measurable for some q. As these functions are dense,
u must satisfy the defining relation (1.30); therefore Z has a divergence ϑ(Z) =
u; finally by passing to the limit, ϑ(Z) satisfies (1.32). ��

Proposition 1.16 (Functorial property of the divergence). Let Z be a
vector field and v be a smooth function on W ; then

ϑ(vZ) = vϑ(Z) − DZ(v) . (1.35)

Proof. Given a test function φ, then

DvZφ = v

∫ 1

0

Z(t)Dtφ dt = vDZφ

and

E[DvZφ] = E[vDZφ] = E[DZ(vφ)] − E[φDZ(v)]
= E[φ(vϑ(Z) − DZv)]

which gives the claim. ��
Remark 1.17. The previous statement does not make precise the spaces to
which each of the appearing ingredients belongs; for instance an L2 assumption
for Z and v implies a L1 result for DZv and the necessity of L∞ assumptions
on the test functions φ.

We shall use the following general result freely in the remaining part of
this book.

Theorem 1.18. For a vector field Z on W define

‖Z‖p
Dp

1
:= E

[(∫ 1

0

|Z(τ)|2 dτ

)p/2

+
(∫ 1

0

∫ 1

0

|DtZ(τ)|2 dt dτ

)p/2
]

. (1.36)

Then, for all p > 1, there exists a constant cp such that

E [|ϑ(Z)|p] ≤ cp ‖Z‖p
Dp

1
, (1.37)

the finiteness of the r.h.s. of (1.37) implying the existence of the divergence
of Z in Lp.
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Proof. See [150, 178, 212], as well as Malliavin [144], Chap. II, Theorems 6.2
and 6.2.2. ��

1.5 Itô’s Theory of Stochastic Integrals

The purpose of this section is to summarize without proofs some results of
Itô’s theory of stochastic integration. The reader interested in an exposition of
Itô’s theory with proofs oriented towards the Stochastic Calculus of Variations
may consult [144]; see also the basic reference books [102, 149].

To stay within classical terminology, vector fields defined on Wiener space
will also be called stochastic processes. Let (Nt)t∈]0,1] be the filtration on W
generated by the evaluations {eτ : τ < t} . A vector field Z(t) is then said to
be predictable if Z(t) is Nt-measurable for any t ∈ ]0, 1].

Proposition 1.19. Let Z a predictable vector field in D2
1 then

Dt(Z(τ)) = 0 λ ⊗ λ almost everywhere in the triangle 0 < τ < t < 1;

E
[|ϑ(Z)|2] = E

[∫ 1

0

|Z(τ)|2 dτ

]
. (1.38)

Proof. The first statement results from the definition of predictability; the
second claim is a consequence of formula (1.32), exploiting the fact that the
integrand of the double integral (DtZ(τ))(DτZ(t)) vanishes λ⊗λ everywhere
on [0, 1]2. ��
Remark 1.20. A smoothing procedure could be used to relax the D2

1 hypothesis
to an L2 hypothesis. However we are not going to develop this point here; it
will be better covered under Itô’s constructive approach.

Theorem 1.21 (Itô integral). To a given predictable L2 vector field Z, we
introduce the Itô sums

σs
t (Z)(W ) =

∑
1≤k≤t2s

W (δs
k)Z

(
k − 1

2s

)
.

Then lim
s→∞σs

t (Z) exists and is denoted
∫ t

0

Z(τ) dW (τ); moreover this Itô in-

tegral is a martingale:

E
Nσ

[∫ t

0

Z(τ) dW (τ)
]

=
∫ t∧σ

0

Z(τ) dW (τ),

and we have the energy identity:

E

[∣∣∣∣
∫ t

0

Z(τ) dW (τ)
∣∣∣∣
2
]

= E

[∫ t

0

|Z(τ)|2 dτ

]
. (1.39)

Proof. For instance [144], Chap. VII, Sect. 3. ��
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Theorem 1.22 (Itô calculus). To given predictable L2 processes Z(τ), a(τ)
we associate a semimartingale S via

S(τ) =
∫ τ

0

Z(λ) dW (λ) +
∫ τ

0

a(λ) dλ ; (1.40)

in Itô’s notation of stochastic differentials relation, (1.40) reads as

dS(τ) = Z dW + a dτ .

Given a deterministic C2-function ϕ, the image process S̃ = ϕ ◦S, defined by
S̃(τ) = ϕ(S(τ)), is a semimartingale represented by the two processes

Z̃(τ) = ϕ′(S(τ))Z(τ), ã(τ) = ϕ′(S(τ)) a(τ) +
1
2

ϕ′′(S(τ)) |Z(τ)|2;

in Itô’s differential notation this reads as

d(ϕ ◦ S) = ϕ′ dS +
1
2

ϕ′′ |Z|2 dτ .

Proof. See [144], Chap. VII, Theorem 7.2. ��

Theorem 1.23 (Girsanov formula for changing probability measures).
Let Z(τ,W ) be a bounded predictable process and consider the following semi-
martingale given by its Itô stochastic differential

dS(W, τ) = dW + Z(τ,W ) dτ ; S(W, 0) = 0 .

Let γ be the Wiener measure and consider an L2 functional φ(W ) on W .
Then we have∫

W

φ(S(W, ·)) exp
(
−
∫ 1

0

Z dW − 1
2

∫ 1

0

|Z|2 dτ

)
γ(dW ) =

∫
W

φ(W ) γ(dW ) .

Proof. This is immediate by Itô calculus. ��
Theorem 1.24 (Chaos development by iterated Itô integrals). We
associate to an L2 symmetric function Fp : [0, 1]p → R its iterated Itô integral
of order p defined as

Ip(Fp)(W ) =
∫ 1

0

dW (t1)
∫ t1

0

dW (t2) . . .

∫ tn−1

0

Fp(t1, t2, . . . , tn) dW (tn) .

Then the following orthogonality relations hold:

E[Ip(Fp) Iq(Fq)] = 0, p �= q;

E[|Ip(Fp)|2] =
1
p!

‖Fp‖2
L2([0,1]p) .
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The linear map⊕
p>0

L2
sym([0, 1]p) −→ L2(W ; γ), Fp �→

√
p! Ip(Fp) ,

is a surjective isometry onto the subspace of L2(W ; γ) which is orthogonal to
the function 1.

Proof. See [144], Chap. VII, Sect. 5, and Chap. VI, Theorem 2.5.3. ��
Corollary 1.25 (Martingale representation through stochastic inte-
grals). To any process M on W , which is a martingale with respect to the
filtration (Nt), there exists a unique predictable process β such that

M(t) = E[M(1)] +
∫ t

0

β(τ) dW (τ) .

Proof. See [144], Chap. VII, Theorem 5.2. ��

1.6 Differential and Integral Calculus
in Chaos Expansion

Theorem 1.26. A predictable L2 vector field Z has an L2 divergence which
is given by its Itô integral:

ϑ(Z) =
∫ 1

0

Z(τ) dW (τ) . (1.41)

Proof. Consider the semimartingale defined by its stochastic differential

dSε(τ) = dW (τ) + εZ(Sε(τ), τ) dτ,

where ε is a small parameter. Given a test function φ ∈ D2
1(W ) we have by

Theorem 1.23 (Girsanov formula)

E

[
φ(Sε(W )) exp

(
−ε

∫ 1

0

Z(W (τ), τ) dW (τ) − ε2

2

∫ 1

0

|Z(W (τ), τ)|2 dτ

)]
= E[φ(W )] .

Differentiating this expression with respect to ε and taking ε = 0, we get

E[DZφ] − E

[
φ

∫ 1

0

Z(τ) dW (τ)
]

= 0. ��

Theorem 1.27 (Clark–Ocone–Karatzas formula [51, 168, 170]). Given
φ ∈ D2

1(W ), then

φ − E[φ] =
∫ 1

0

E
Nτ [Dτφ] dW (τ) . (1.42)
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Commentary. This formula should be seen as an analogue to a basic fact
in elementary differential calculus: a function of one variable can be recon-
structed from the data of its derivative by computing an indefinite Riemann
integral.

Proof (of the Clark–Ocone–Karatzas formula). By Corollary 1.25 there exists
an L2 process β such that

φ − E[φ] =
∫

β(τ) dW (τ) .

For any predictable vector field Z we have by means of (1.41)

E

[∫
Dt(φ − E[φ])Z(t) dt

]
= E

[
(φ − E[φ])

∫ 1

0

Z(τ) dW (τ)
]

= E

[∫
β(τ) dW (τ)

∫ 1

0

Z(τ) dW (τ)
]

= E

[∫
β(τ)Z(τ) dτ

]
,

where the last identity comes from polarization of the energy identity (1.39).
Therefore, we get

0 = E

[∫ 1

0

[Dtφ − β(t)]Z(t) dt

]
,

and by projecting Dtφ − β(t) onto Nt we obtain

E

[∫ 1

0

(
E
Nt(Dtφ) − β(t)

)
Z(t) dt

]
= 0 . (1.43)

Since equality (1.43) holds true for any predictable vector field Z, we conclude
that E

Nt [Dtφ] − β(t) = 0. ��
Theorem 1.28 (Taylor formula with a remainder term). Given φ ∈
D2

2(W ), then

φ − E[φ] −
∫ 1

0

E[Dtφ] dW (t)

=
∫ 1

0

dW (t2)
∫ t2

0

E
Nt1 [D2

t2,t1φ] dW (t1) . (1.44)

Proof. Fix τ and consider the scalar-valued functional ψτ := Dτφ. First ap-
plying formula (1.42) to ψτ , and then using the fact that Dt(ψτ ) = D2

t,τφ, we
get

ψτ − E[Dτφ] =
∫ 1

0

E
Nt [D2

t,τφ] dW (t) .
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Using

E
Nτ [Dτφ] = E

Nτ [ψτ ] = E[Dτφ] −
∫ τ

0

E
Nt [D2

t,τφ] dW (t) ,

we conclude by rewriting (1.42) with E
Nτ (Dτφ) as given by this identity. ��

Theorem 1.29 (Stroock’s differentiation formula [191, 192]). Given a
predictable vector field Z belonging to D2

1, then

Dτ

(∫ 1

0

Z(t) dW (t)
)

= Z(τ) +
∫ 1

0

(DτZ)(t) dW (t) . (1.45)

Proof. We remark that DτZ(t) is Nt-measurable (in fact this expression van-
ishes for τ ≥ t); we prove firstly the formula for a predictable Bs-measurable
vector field Z of the type Z =

∑
k αk 1δs

k
:

Dτ (ϑ(Z)) = Dτ

(∑
k

αkW (δs
k)

)
=

∑
k

αk1δs
k
(τ) +

∑
k

(Dταk)W (δs
k).

The dyadic interval containing τ then gives rise to the term Z(τ) appearing
in (1.45). The result in the general case is obtained by passage to the limit.
��

Theorem 1.30 (Differential calculus in chaos expansion). Consider a
symmetric function Fp : [0, 1]p −→ R and denote

Ip(Fp)(W ) =
∫ 1

0

dW (t1)
∫ t1

0

dW (t2) . . .

∫ tp−1

0

Fp(t1, t2, . . . , tp) dW (tp)

the Itô iterated integral of order p. Fixing a parameter τ , we denote

F τ
p (t1, . . . , tp−1) := Fp(τ, t1, . . . , tp−1);

then
Ip(Fp) ∈ D2

1(W ), Dτ (Ip(Fp)) = Ip−1(F τ
p ) . (1.46)

Expanding a given φ ∈ L2 in terms of a normalized series of iterated integrals

φ − E[φ] =
∞∑

p=1

√
p! Ip(Fp),

we have φ ∈ D2
1 if and only if the r.h.s. of (1.47) is finite and then

‖φ‖2
D2

1
=

∑
p≥0

(p + 1) ‖Fp‖2
L2([0,1]) . (1.47)



20 1 Gaussian Stochastic Calculus of Variations

Proof. We establish (1.46) by recursion on the integer p. For p = 1, we apply
(1.45) along with the fact that DτZ = 0. Assuming the formula for all integers
p′ < p, we denote

Z(λ) = Ip−1

(
Fλ

p

∏
1≤s≤p−1

1[0,λ[(ts)
)

;

then

Ip(Fp) =
∫ 1

0

Z(τ) dW (τ) .

We differentiate this expression using (1.45) and the fact that DτZ = 0 to get

Dτ (Ip(Fp)) = Ip−1(F τ
p ),

which gives the claim. ��

Theorem 1.31 (Gaveau–Trauber–Skorokhod divergence formula [82]).
Given an L2 vector field Z, for fixed τ , the R-valued functional Z(τ) is devel-
opable in a series of iterated integrals as follows:

Z(τ) = E[Z(τ)] +
∞∑

p=1

Ip(τF p) (1.48)

where τF p is a symmetric function on [0, 1]p depending on the parameter τ .
Denote by τ

σF p the symmetric function of p + 1 variables defined by sym-
metrization of G(τ, t1, . . . , tp) := τF (t1, . . . , tp). Then, we have

ϑ(Z) =
∑
p≥0

Ip+1(τ
σF p), E

[|ϑ(Z)|2] ≤ ∑
p≥0

(p + 1)
‖·F p‖2

L2([0,1]p+1)

p!
, (1.49)

under the hypothesis of finiteness of the series of L2 norms appearing in the
r.h.s. of (1.49).

Proof. Note that formula (1.49) is dual to (1.47). From (1.49) there results an
alternative proof of the fact that Z ∈ D2

1 implies existence of ϑ(Z) in L2. ��
Theorem 1.32 (Stroock–Taylor formula [194]). Let φ be a function
which lies in D2

q(W ) for any integer q. Then we have

φ − E[φ] =
∞∑

p=1

Ip

(
E
[
Dt1,...,tp

(φ)
])

. (1.50)

Proof. We expand φ in chaos:

φ =
∑

Ip(Fp) .



1.7 Monte-Carlo Computation of Divergence 21

The hypothesis φ ∈ D2
q implies that this series is q-times differentiable; the

derivative terms of order p < q vanish, whereas the derivatives of terms of
order p > q have a vanishing expectation. The derivative of order q equals
q!Fq.

Theorem 1.33. Define the number operator (or in another terminology the
Ornstein–Uhlenbeck operator) by

N (φ) = ϑ(Dφ) .

Then we have

N (Ip(Fp)) = p Ip(Fp); ‖N (φ)‖L2 ≤ ‖φ‖D2
2
,

and ‖φ‖D2
2
≤

√
2 ‖N (φ)‖L2 , if E[φ] = 0.

(1.51)

Furthermore

N (φψ) = ψN (φ) + φN (ψ) + 2
∫ 1

0

Dτφ Dτψ dτ . (1.52)

Consider a finite linearly independent system h1, . . . , hq in L2([0, 1]), to which
we assign the q×q covariance matrix Γ defined by Γij = (hi|hj)L2([0,1]). Letting
Φ(W ) = F (W (h1), . . . , W (hq)) be a generalized cylindrical function, then

NΦ = Ψ, Ψ(W ) = G(W (h1), . . . , W (hq)), where G = N {h.}F,

2N {h.} =
∑
i,j

Γij

(
∂2

∂ξi∂ξj
− ξi ∂

∂ξj

)
, (Γij) = (Γij)−1 .

(1.53)

Proof. Following the lines of (1.12) and replacing the Hermite polynomials
by iterated stochastic integrals, we get (1.51). Next we may assume that
(h1, . . . , hq) is already an orthonormal system. Define a map Φ: W → R

q

by W �→ {W (hi)}. Then Φ∗γ is the canonical Gauss measure ν on R
q. The

inverse image Φ∗ : f �→ f ◦ Φ maps D2
r(Rq) isometrically into D2

r(W ); fur-
thermore we have the intertwining relation Φ∗ ◦ NRq = NW ◦ Φ∗ . Claim
(1.53) then results immediately from formula (1.10). To prove formula (1.52),
one first considers the case of generalized cylindrical functions ϕ(W ) =
F (W (h1), . . . , W (hq)) and ψ(W ) = G(W (h1), . . . , W (hq)), and then con-
cludes by means of Cruzeiro’s Compatibility Lemma 1.7. ��

1.7 Monte-Carlo Computation of Divergence

Theorem 1.14 (or its counterpart in the chaos expansion, Theorem 1.31) pro-
vides the existence of divergence for L2 vector fields with derivative in L2.
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For numerical purposes a pure existence theorem is not satisfactory; the
intention of this section is to furnish for a large class of vector fields, the class
of effective vector fields, a Monte-Carlo implementable procedure to compute
the divergence.

A vector field U on W is said to be effective if it can be written as a finite
sum of products of a smooth function by a predictable vector field:

U =
N∑

q=1

uq Zq (1.54)

where uq are functions in D2
1 and where Zq are predictable.

Theorem 1.34. Let U be an effective vector field as given by (1.54). Then its
divergence ϑ(U) exists and can be written as

ϑ(U) =
N∑

q=1

[
uq

n∑
k=1

∫ 1

0

Zk
q (t) dW k(t) − DZq

uq

]
.

Proof. As the divergence is a linear operator it is sufficient to treat the case
N = 1. By Proposition 1.16 we can reduce ourselves to the case u1 = 1;
Theorem 1.26 then gives the result.

Remark 1.35. It is possible to implement the computation of an Itô integral
in a Monte-Carlo simulation by using its approximation by finite sum given
in Theorem 1.27.

Computation of Derivatives of Divergences

These computations will be needed later in Chap. 4. We shall first treat the
case where the vector field Z is adapted. In this case the divergence equals
the Itô stochastic integral.

We have the following multi-dimensional analogue of Stroock’s Differenti-
ation Theorem 1.29.

Theorem 1.36. Let Z ∈ Dp
1(W n) be an adapted vector field; then the corre-

sponding Itô stochastic integral is in Dp
1(W n) and we have

Dτ,�

(
n∑

k=1

∫ 1

0

Zt,k dW k(t)

)
= Zτ,� +

n∑
k=1

∫ 1

0

(Dτ,�Zt,k) dW k(t) . (1.55)

Corollary 1.37. Assume that Z is a finite linear combination of adapted vec-
tor fields with smooth functions as coefficients:

Z =
q∑

j=1

ajZ
j , Zj adapted and aj , Z

j ∈ Dp
1 .
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Then by (1.35)

ϑ(Z) =
q∑

j=1

(aj ϑ(Zj) − DZj aj) (1.56)

and therefore

DY (ϑ(Z)) =
q∑

j=1

(DY aj)ϑ(Zj) + aj (DY ϑ(Zj)) − D2
Y,Zj (aj) , (1.57)

which provides a formula in explicit terms when taking DY ϑ(Zj) from (1.56).

There exists a beautiful general commuting formula, called the Shigekawa
formula, giving an explicit expression for DY ϑ(Z) without any hypothesis of
adaptedness (see Shigekawa [187] or Malliavin [144] p. 58, Theorem 6.7.6).
However, as this formula involves several Skorokhod integrals it is not clear
how it may be used in Monte-Carlo simulations.
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Computation of Greeks
and Integration by Parts Formulae

Typical problems in mathematical finance can be formulated in terms of PDEs
(see [12, 129, 184]). In low dimensions finite element methods then provide ac-
curate and fast numerical resolutions. The first section of this chapter quickly
reviews this PDE approach.

The stochastic process describing the market is the underlying structure of
the PDE approach. Stochastic analysis concepts provide a more precise light
than PDEs on the structure of the problems: for instance, the classical PDE
Greeks become pathwise sensitivities in the stochastic framework.

The stochastic approach to numerical analysis relies on Monte-Carlo simu-
lations. In this context the traditional computation of Greeks appears as
derivation of an empirical function, which is well known to be numerically
a quite unstable procedure. The purpose of this chapter is to present the
methodology of integration by parts for Monte-Carlo computation of Greeks,
which from its initiation in 1999 by P. L. Lions and his associates [79, 80, 136]
has stimulated the work of many other mathematicians.

2.1 PDE Option Pricing; PDEs Governing
the Evolution of Greeks

In this first section we summarize the classical mathematical finance theory
of complete markets without jumps, stating its fundamental results in the
language of PDEs. In the subsequent sections we shall substitute infinite-
dimensional stochastic analysis for PDE theory.

The observed prices Si(t), i = 1, . . . , n, of assets are driven by a diffusion
operator. The prices of options are martingales with respect to the unique risk-
free measure, see [65]. Under the risk-free measure the infinitesimal generator
of the price process takes the form

L =
1
2

n∑
i,j=1

αij(t, x)
∂2

∂xi∂xj
,
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where α = (αij) is a symmetric, positive semi-definite matrix function defined
on R+ × R

d. The components αij(t, x) are known functions of (t, x) charac-
terizing the choice of the model. For instance, in the case of a Black–Scholes
model with uncorrelated assets, we have αij(t, x) = (xi)2, for j = i, and = 0
otherwise.

We shall work on more general PDEs including first order terms of the
type:

L =
1
2

n∑
i,j=1

αij(t, x)
∂2

∂xi∂xj
+

n∑
i=1

βi(t, x)
∂

∂xi
(2.1)

with coefficients αij : R+ × R
d → R and βi : R+ × R

d → R. Note that this
includes also classical Black–Scholes models where under the risk-free measure
first order term appear if one deals with interest rates.

Denoting by σ the (positive semi-definite) square root of the matrix α =
(αij), and fixing n independent real-valued Brownian motions W1, . . . , Wn,
we consider the Itô SDE

dSi
W (t) =

n∑
j=1

σij(t, SW (t)) dWj(t) + βi(t, SW (t)) dt, i = 1, . . . , n . (2.2)

Given a real-valued function φ on R
d, we deal with European options which

give the payoff φ(S1
W (T ), . . . , Sn

W (T )) at maturity time T . Assuming that the
riskless interest rate is constant and equal to r, the price of this option at a
time t < T is given by

Φφ(t, x) = e−r(T−t)
E[φ(S(T )) | S(t) = x] , (2.3)

if the price of the underlying asset at time t is x, i.e., if S(t) = x.

Theorem 2.1. The price function satisfies the following backward heat equa-
tion (

∂

∂t
+ L − r

)
Φφ = 0, Φφ(T, ·) = φ . (2.4)

Sensitivities (Greeks) are infinitesimal first or second order variations of
the price functional Φφ with respect to corresponding infinitesimal variations
of econometric data. Sensitivities turn out to be key data for evaluating the
trader’s risk. The Delta, denoted by ∆, is defined as the differential form
corresponding, the time being fixed, to the differential of the option price
with respect to its actual position:

∆φ := d [Φφ(t, ·)] =
d∑

i=1

∆i
φ(t, x) dxi,

∆i
φ(t, x) =

∂

∂xi
Φφ(t, x), i = 1, . . . , n,

(2.5)

where the operator d associates to a function f on R
n its differential df .

The Delta plays a key role in the computation of other sensitivities as well.



2.1 PDE Option Pricing; PDEs Governing the Evolution of Greeks 27

Theorem 2.2 (Prolongation theorem). Assume that the payoff φ is C1.
Then the differential form ∆φ(t, x) satisfies the following backward matrix heat
equation: (

∂

∂t
+ L 1 − r

)
∆φ = 0, ∆φ(T, ·) = dφ , (2.6)

where

L 1 = L +
d∑

i=1

M i ∂

∂xi
+ Γ

and M i,Γ denote the following matrices:

(M i)j
q =

1
2

∂αij

∂xq
, Γj

q =
∂βj

∂xq
.

The matrix coefficient operator L 1 is called the prolongation of L and deter-
mined by the intertwining relation

d L = L 1d . (2.7)

Proof. Applying the differential d to the l.h.s. of (2.4), we get

0 = d

(
∂

∂t
+ L − r

)
Φφ .

Using the commutation d ∂
∂t = ∂

∂td and the intertwining relation (2.7), where
L 1 is defined through this relation, we obtain (2.6). It remains to compute
L 1 in explicit terms:

∂

∂xq
L =

1
2

∂

∂xq

n∑
i,j=1

αij ∂2

∂xi∂xj
+

∂

∂xq

n∑
i=1

βi ∂

∂xi

=
1
2

n∑
i,j=1

∂

∂xq

(
αij ∂2

∂xi∂xj

)
+

n∑
i=1

∂

∂xq

(
βi ∂

∂xi

)

= L
∂

∂xq
+

1
2

n∑
i,j=1

(
∂αij

∂xq

)
∂

∂xi

∂

∂xj
+

n∑
i=1

(
∂βi

∂xq

)
∂

∂xi

which proves the claim. ��

Theorem 2.3 (Hedging theorem). Keeping the hypotheses and the nota-
tion of the previous theorem, the option φ(ST ) is replicated by the following
stochastic integral

e−rT φ(SW (T )) − e−rT
E[φ(SW (T ))] =

∫ T

0

n∑
j=1

γj
W (t) dWj(t), (2.8)
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where

γj
W (t) =

〈
σ.j , e−rt∆φ(t, SW (t))

〉
= e−rt

n∑
i=1

σij ∆i
φ(t, SW (t))

is the function obtained by coupling the vector field σ.j with the differential
form ∆φ, multiplied by the discount factor e−rt.

Proof. Since all prices are discounted with respect to the final time T , we
may confine ourselves to the case of vanishing interest rate r; formula (2.8) is
then received by multiplying both sides by e−rT . According to Theorem 2.1,
if r = 0, the process M(t) = Φφ(t, SW (t)) is a martingale. By Corollary 1.25,
we have M(t) = M(0)+

∑
j

∫ t

0
γj dWj . The coefficients γj are then computed

using Itô calculus:

γj dt = [dΦφ(t, SW (t))] ∗ dWj =
∑

i

∆i
φ (dSi ∗ dWj) =

∑
i

∆i
φ σij dt. ��

Remark 2.4. The importance of the Greek ∆φ(t, S) comes from the fact that
it appears in the replication formula; this leads to a replication strategy which
allows perfect hedging.

Remark 2.5. By a change of the numeraire the question of the actualized price
may be treated more systematically. This problematic is however outside the
scope of this book and will not be pursued here. For simplicity, we shall mainly
take r = 0 in the sequel.

PDE Weights

A digital European option at maturity T is an option for which the payoff
equals ψ(ST ) where ψ is an indicator function, for instance, ψ = 1[K,∞[ where
K > 0 is the strike prize. As dψ does not exist in the usual sense, the backward
heat equation (2.6) has no obvious meaning. Let πT←t0(x0, dx), t0 < T , be
the fundamental solution to the backward heat operator ∂

∂t +L , which means
that (

∂

∂t0
+ L

)
πT←t0(·, dx) = 0, lim

t0→T
πT←t0(x0, dx) = δx0 ,

where δx0 denotes the Dirac mass at the point x0. Then, the value Φφ of the
option φ at position (x0, t0) is given by

Φφ(t0, x0) = e−r(T−t0)

∫
Rd

φ(x)πT←t0(x0, dx) . (2.9)

Fix t0 < T and x0 ∈ R
d. A PDE weight (or elliptic weight) associated to

the vector ζ0 is a function wζ0 , independent of φ, such that for any payoff
function φ,

d

dε

∣∣∣
ε=0

Φφ(t0, x0 + εζ0) = e−r(T−t0)

∫
Rd

φ(x)wζ0(x)πT←t0(x0, dx) . (2.10)
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Theorem 2.6. Assuming ellipticity (i.e. uniform invertibility of the matrix σ)
and σ ∈ C2, then for any ζ0 ∈ R

d, there exists a unique PDE weight wζ0 .
Furthermore the map ζ0 �→ wζ0 is linear.

Proof. We shall sketch an analytic proof; a detailed proof will be provided
later by using probabilistic tools.

The ellipticity hypothesis implies that πT←t0(x0, dx) has a density for
t0 < T with respect to the Lebesgue measure,

πT←t0(x0, dx) = qT←t0(x0, x) dx ,

which is strictly positive, i.e., qT←t0(x0, x) > 0, and a C1-function in the
variable x0. Then

wζ0(x) =
d

dε

∣∣∣
ε=0

log qT←t0(x0 + εζ0, x)

is a PDE weight. Letting wζ0
, w′

ζ0
be two PDE weights, we have for any test

function φ, ∫
φ(x)

(
wζ0(x) − w′

ζ0
(x)

)
qT←t0(x0, x) dx = 0 .

As qT←t0(x0, x) > 0 for x ∈ R
d, this implies that wζ0(x) = w′

ζ0
(x) almost

everywhere with respect to the Lebesgue measure. Finally, exploiting unique-
ness, as wζ0 + wζ1 is a PDE weight for the vector ζ0 + ζ1, we deduce that
wζ0 + wζ1 = wζ0+ζ1 . ��
Example 2.7. We consider the univariate Black–Scholes model

dSW (t) = SW (t) dW (t)

and pass to logarithmic coordinates ξW (t) := log SW (t). By Itô calculus, ξW is
a solution of the SDE dξW (t) = dW − 1

2 dt, and therefore

W (T ) = log SW (T ) − log SW (0) + T/2 .

The density of SW (T ) is the well-known log-normal distribution:

px(y) =
1

y
√

2πT
exp

(
− 1

2T

(
log

(y

x

)
+

T

2

)2
)

where x = SW (0). We conclude that

∆φ(x, T ) =
∂

∂x

∫
φ(y) px(y) dy =

∫
φ(y)

(
∂

∂x
log px(y)

)
px(y) dy,

∂

∂x
log px(y) =

1
xT

(
log

(y

x

)
+

T

2

)
,

∂

∂x
log px(SW (t)) =

W (T )
xT

,

and deduce the following expression for the PDE weight w:

w(x) =
1
x0

(
1
T

log
x

x0
+

1
2

)
. (2.11)
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This direct approach of computation of PDE weights by integration by
parts cannot always be applied because an explicit expression of the density
is often lacking. In the next section we shall substitute an infinite-dimensional
integration by parts on the Wiener space for the finite-dimensional integration
by parts. Using effective vector fields, these infinite-dimensional integration by
parts techniques will be numerically accessible by Monte-Carlo simulations.

2.2 Stochastic Flow of Diffeomorphisms;
Ocone-Karatzas Hedging

We write the SDE (2.2) in vector form by introducing on R
n the time-

dependent vector fields Ak = (σik)1≤i≤n and A0 = (βi)1≤i≤n . In vectorial
notation the SDE becomes

dSW (t) =
∑

k

Ak(t, SW (t)) dWk + A0(t, SW (t)) dt . (2.12)

Flows Associated to an SDE

The flow associated to SDE (2.12) is the map which associates UW
t←t0(S0) :=

SW (t) to t ≥ t0 and S0 ∈ R
n, where SW (·) is the solution of (2.12) with initial

condition S0 at t = t0. Since one has existence and uniqueness of solutions to
an SDE with Lipschitz coefficients and given initial value, the map UW

t←t0 is
well-defined.

Theorem 2.8. Assume that the maps x �→ σij(t, x), x �→ βi(t, x) are bounded
and twice differentiable with bounded derivatives with respect to x, and suppose
that all derivatives are continuous as functions of (t, x). Then, for any t ≥ t0,
almost surely with respect to W , the mapping x �→ UW

t←t0(x) is a C1-diffeo-
morphism of R

d.

Proof. See Nualart [159], Kunita [116], Malliavin [144] Chap. VII. ��
We associate to each vector field Ak the matrix Ak defined by

(Ak)i
j =

∂Ai
k

∂xj
, k = 0, 1, . . . , n .

Define the first order prolongation of SDE (2.12) as the system of two SDEs:

dSW (t) =
∑

k

Ak(t, SW (t)) dWk + A0(t, SW (t)) dt,

dtJ
W
t←t0 =

( n∑
k=1

Ak(t, SW (t)) dWk(t) + A0(t, SW (t)) dt

)
JW

t←t0

(2.13)

where JW
t←t0 is a process taking its values in the real n×n matrices, satisfying

the initial condition JW
t0←t0 = identity. The first order prolongation can be

considered as an SDE defined on the state space R
n ⊕ (Rn ⊗R

n). The second
component JW

t←t0 is called Jacobian of the flow.
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The second order prolongation of SDE (2.12) is defined as the first order
prolongation of SDE (2.13); it appears as an SDE defined on the state space
R

n ⊕ (Rn ⊗R
n)⊕ (Rn ⊗R

n ⊗R
n). The second order prolongation is obtained

by adjoining to the system (2.13) the third equation

dtJ W
t←t0 =

( n∑
k=1

Ak(t, SW (t)) dWk(t) + A0(t, SW (t)) dt

)
J W

t←t0 , t ≥ t0,

where [Ak]ij,s :=
∂Ak

∂xs
=

∂2Ai
k

∂xj∂xs
.

In the same way one defines third and higher order prolongations.

Theorem 2.9 (Computation of the derivative of the flow). Fix ζ0 ∈
R

n, then
d

dε

∣∣∣
ε=0

UW
t←t0(S0 + εζ0) = JW

t←t0(ζ0), t ≥ t0 . (2.14)

Proof. As the SDE driving the Jacobian is the linearized equation of the SDE
driving the flow, the statement of the theorem appears quite natural. For a
formal proof see [144] Chap. VIII. ��

Economic Meaning of the Jacobian Flow

Consider two evolutions of the same market model,

the “random forces acting on the market” being the same. (2.15)

This sentence is understood in the sense that sample paths of the driving
Brownian motion W are the same for the two evolutions. Therefore the two
evolutions differ only with respect to their starting point at time t0. From a
macro-econometric point of view, it is difficult to observe the effective realiza-
tion of two distinct evolutions satisfying (2.15): history never repeats again;
nevertheless statement (2.15) should be considered as an intellectual experi-
ment.

Consider now a fixed evolution of the model and assume that the state S0

of the system at time t0 suffers an infinitesimal perturbation S0 �→ S0 + εζ0.

Assuming that the perturbed system satisfies (2.14), its state at time t is

SW (t) + εζW (t) + o(ε), where ζW (t) := JW
t←t0(ζ0) . (2.16)

From an econometric point of view this propagation represents the response
of the economic system to the shock ζ0, appearing during an infinitesimal
interval of time at (t0, SW (t0)).
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Theorem 2.10 (Pathwise sensitivities). To a European option of payoff φ
at maturity T , we associate its pathwise value Ψ(W ) := φ(SW (T )). Then the
Malliavin derivative can be written as

Dt,k(Ψ) =
〈
JW

T←t(Ak) , dφ(SW (T ))
〉

. (2.17)

The r.h.s. may be considered as a pathwise sensitivity, i.e., a “pathwise Delta”.
The Greek ∆i

φ is given by averaging the pathwise Delta; we have

∆i
φ(t, x) =

n∑
k=1

σik(x) Et,x[Dt,k(Ψ)] (2.18)

where (σik) denotes the inverse of the matrix (σik), i.e., ei =
∑

k σik Ak .

Proof. Equation (2.17) results from (2.14). Equality (2.18) is obtained by
applying Itô’s formula to the r.h.s. of (2.18); the infinitesimal generator L 1

then appears as defined in (2.6). ��
The explicit shape of the Clark–Ocone–Karatzas formula (1.42) for Euro-

pean options can now be determined in the case of a smooth payoff function.

Theorem 2.11 (Ocone–Karatzas formula). Assume that the payoff func-
tion φ is C1, and denote

ζk
W (t) := JW

T←t Ak(SW (t)), t ≥ t0;

βk
W (t) := E

Nt
t0,x0

[〈ζW (t), dφ(SW (T ))〉] .
(2.19)

Then the payoff functional is represented by the following Itô integral:

φ(SW (T )) − Et0,x0 [φ(SW (T ))] =
∫ T

t0

d∑
k=1

βk
W (t) dWk(t) .

Proof. To a European option giving the payoff φ at maturity T , we asso-
ciate the corresponding payoff functional Ψ(W ) defined on W by the formula
Ψ(W ) = φ(SW (T )); then we apply formula (1.42) to the functional Ψ. ��

Under a pathwise weight we understand an R
n-valued function ΩT←t0(W ),

defined on the path space, independent of the payoff function φ such that

Et0,x0

[
Ωk

T←t0(W )φ(SW (T ))
]

= Et0,x0 [Dt0,kφ(SW (T ))] , k = 1, . . . , n .
(2.20)

We remark that the l.h.s. of (2.20) determines only the conditional expec-
tation of Ωk

T←t0
(W ) under the conditioning by SW (T ); there is no uniqueness

of the pathwise weight Ωk
T←t0

(W ). The relation between pathwise and elliptic
weight is given by

n∑
k=1

σik(SW (t0)) Et0,x0

[
Ωk

T←t0(W )|SW (T ) = x
]

= wei
(x) . (2.21)
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2.3 Principle of Equivalence of Instantaneous Derivatives

Integration by parts formulae have been established for vector fields Z on W ;
these are maps from W to L2([t0, T ]) which satisfy in addition a smoothness
or an adaptedness condition. The directional derivative along such a vector
field Z is given by

DZψ =
n∑

k=1

∫ T

t0

Dt,kψ Zk(t) dt .

We have to deal with an instantaneous derivation, that is a derivation
operator at a fixed time t0, for which no formula of integration by parts is
available. The strategy will be to replace the derivation at a fixed time t0 by
pathwise smearing in time where we differentiate on a time interval.

For given values of t0, S0 and ζ0 as above, the function ζW (t) = JW
t←t0(ζ0)

is called the pathwise propagation of the instantaneous derivative at time t0
in the direction ζ0. This definition may be seen as the probabilistic counter-
part to formula (2.6) at the level of PDEs. The main point of this pathwise
propagation is the following principle.

Remark 2.12 (Principle of equivalence under the Jacobian flow). For t ∈ [t0, T ]
and φ ∈ C1(Rn), we have

Dt0,ζW (t0)

(
φ(SW (T ))

)
= Dt,ζW (t)

(
φ(SW (T ))

)
. (2.22)

The meaning of (2.22) is clear from an econometric point of view: the infini-
tesimal perturbation ζW (t0) applied at time t0 produces the same final effect
at time T as the infinitesimal perturbation ζW (t) applied at time t.

2.4 Pathwise Smearing for European Options

We have defined the pathwise propagation of an instantaneous derivative.
From an econometric point of view this propagation represents the response
of the economic system to a shock ζ0, appearing during an infinitesimal in-
terval of time at (t0, SW (t0)). Such a shock is called an instantaneous pertur-
bation. Smearing this instantaneous perturbation means “brushing out the
shock effect at maturity by a continuous saving policy”.

A smearing policy of the instantaneous derivative ζ0 will be the data of an
R

d-valued process γW (t) = (γW
1 (t), . . . , γW

n (t)) satisfying the property

∫ T

t0

JW
T←t

(
n∑

k=1

γW
k (t)Ak(SW (t))

)
dt = JW

T←t0(ζ0) .

Let JW
t0←t be the inverse of the matrix JW

t←t0 ; then we have the following result.
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Proposition 2.13. The process γ constitutes a smearing policy of the instan-
taneous derivative ζ0 if and only if

∫ T

t0

JW
t0←t

(
d∑

k=1

γW
k (t)Ak(SW (t))

)
dt = ζ0 . (2.23)

Proof. JW
T←t0

= JW
T←t ◦ JW

t←t0 . ��
Theorem 2.14. A smearing policy γ of the instantaneous derivative ζ0 de-
fines a vector field γW on W ; denote by ϑ(γ) its divergence; then

d

dε

∣∣∣
ε=0

Et0,S0+εζ0

[
φ(SW (T ))

]
= Et0,S0

[
ϑ(γ)φ(SW (T ))

]
. (2.24)

We say that the smearing policy is adapted if the process γ is predictable.
In this case, the divergence is expressed by an Itô integral. More precisely, we
get:

Theorem 2.15. [8, 38, 57, 71, 88, 195, 204] Let γ be an adapted smearing
policy, then

d

dε

∣∣∣
ε=0

Et0,S0+εζ0

[
φ(SW (T ))

]
= Et0S0

[
φ(SW (T ))Ωζ0

T←t0
(W )

]
,

Ωζ0
T←t0

(W ) : =
∫ T

t0

d∑
k=1

γk(t) dWk(t) .

(2.25)

Canonical Adapted Smearing Policy

Define βW
k (t) by the relation

n∑
k=1

βW
k (t)Ak(SW (t)) = JW

t←t0(ζ0) or
n∑

k=1

βW
k (t)JW

t0←t Ak(SW (t)) = ζ0 .

Note that this relation is solvable for βW
k (t), since as a consequence of the

ellipticity hypothesis, the Ak(SW (t)) constitute a basis of R
d. Remark that

the processes βW
k (t) are predictable.

We choose an arbitrary predictable scalar-valued function gW (t) such that

∫ T

t0

gW (t) dt = 1 .

Such a function will be called a smearing gauge. Then γ = g β is an adapted
trading policy. For instance, one may take the constant function equal to
(T − t0)−1 as a smearing gauge, to get the canonical adapted smearing policy.
We shall introduce in Sect. 2.6 more general choices for smearing gauges.
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2.5 Examples of Computing Pathwise Weights

After circulation of [79, 80] in preprint form, methodologies have been de-
veloped in a huge number of articles related, e.g., [27–30, 32–35, 61, 87, 88,
113, 115]. A full account of these methods would surpass the limits of this
book. In addition, a final judgement on various computational tricks, such as
variance reduction, depends heavily on numerical simulations, a topic which
is not touched on here.

The following section has the limited purpose of illustrating the general
methodology on simple examples.

Weight for the Delta of the Univariate Black–Scholes Model

We short-hand notation by taking for initial time t = 0. The 1-dimensional
Black–Scholes model corresponds to the geometric Brownian motion

dSW (t) = σ SW (t) dW (t) , (2.26)

where σ is a constant.
For a European option of payoff φ(SW (T )) the Delta is given by

∆(x, T ) =
d

dx
Ex [φ(SW (T ))] .

As (2.26) is linear, it coincides with its linearization; therefore

JW
t←0 =

SW (t)
SW (0)

; JW
0←t =

SW (0)
SW (t)

; βW (t) =
1

σx
. (2.27)

We compute the weight for the Delta by taking g(t) = 1/T as smearing gauge
and get the smeared vector field

Z =
1

σTx

∫ T

0

Dt dt .

This gives

∆(x, T ) = E
[
DZΦ(W )

]
= E

[
ϑ(Z)Φ(W )

]
, Φ(W ) := φ(SW (T )) .

Since Z is predictable, its divergence can be computed by the following Itô
integral:

ϑ(Z) := ΩT←0(W ) =
1

σTx

∫ T

0

dW =
W (T )
σTx

.

Taking σ = 1 gives the formula appearing on the cover of this book

∆φ(x, T ) = Ex

[
φ(SW (T )) × W (T )

xT

]
. (2.28)

Remark 2.16. We keep the choice σ = 1 so that ξW (t) = log SW (t) is a solution
of the SDE dξW (t) = dW − 1

2 dt . Then

W (T ) = log SW (T ) − log SW (0) + T/2,

and formula (2.28) coincides with formula (2.11).
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Weight for the Vega of the Univariate Black–Scholes Model

By definition, the Vega is the derivative with respect to the constant volatil-
ity σ. With the replacement σ �→ σ+ε and denoting by SW ε the corresponding
solution of (2.26), we get

dSW ε(t) = σ SW ε(t) dW (t) + εSW ε dW (t) . (2.29)

Let ΨW = d
dε

∣∣
ε=0

SW ε . By differentiating (2.29), ΨW is seen to satisfy the
linear SDE

dΨW = σΨW dW + SW (t) dW, ΨW (0) = 0 . (2.30)

We solve this inhomogeneous linear equation by the Lagrange method of vari-
ation of constants. Writing

ΨW (t) = JW
t←0(u(t)) =

SW (t)
SW (0)

u(t) ,

we get by Itô calculus,

dΨW (t) =
SW (t)
SW (0)

du(t) + σ
SW (t)
SW (0)

u(t) dW (t) + σ
SW (t)
SW (0)

du(t) ∗ dW (t)

= σ
SW (t)
SW (0)

u(t) dW (t) + SW (t) dW (t)

which after the Lagrange simplification gives

du(t) + σdu ∗ dW = x dW (t), x = SW (0) .

A consequence of the last equation is du ∗ dW = x dt; therefore

u(T ) = x (W (T ) − σT ), ΨW (T ) = SW (T ) (W (T ) − σT ) .

Thus, the Vega of a European option at maturity T with a payoff φ(SW (T )),
where φ is a C1-function, takes the form

Vφ(x, T ) := Ex

[〈dφSW (T ),ΨW (T )〉] .

Consider the adapted vector field Y (t) = SW (t)/T ; then

∫ T

0

JW
T←t(Y (t)) dt = SW (T )

d

dx
.

In terms of the function f(W ) = W (T ) − σT , we get

Vφ(x, T ) = Ex[DfY Φ(W )], Φ(W ) := φ(SW (T )) ,

SW (T )(W (T ) − σT ) = xJW
T←0(f) .
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Consider now the adapted vector field xZ; then

Vφ(x, T ) = E[DxfZΦ] = E[Φϑ(xfZ)] = E [(xfϑ(Z) − DxZf)Φ] .

By Stroock’s Theorem 1.29, we get

DtW (T ) = Dt

∫ T

0

dW = 1, DxfZ(W (T )) =
f

σ
.

As ϑ(Z) has been computed already in (2.28):

ϑ(fxZ) =
W (T )2

σT
− 1

σ
, (2.31)

we conclude that

Vφ(x, T ) =
1

Tσ
Ex

[
φ(SW (T )) (W (T )2 − T )

]
. (2.32)

2.6 Pathwise Smearing for Barrier Option

The notion of a barrier has a strong meaning in everyday economic life: bank-
ruptcy may be thought of as touching a barrier. PDE formulations of barriers
lead to boundary conditions deteriorating both regularity of solutions and
efficiency of Monte-Carlo simulations (see [13, 32, 35, 83, 87, 181]).

In the first part of this section we will get estimation of Greeks by “smear-
ing the pending accounts before bankruptcy”; the rate of smearing accelerates
when bankruptcy approaches. We recover the well-known fact that ∆ has the
tendency to explode near the boundary.

The second part involves a more elaborated smearing by reflection on the
boundary. Its Monte-Carlo implementation, which has not yet been done,
seems to be relatively expensive in computing time.

Let D be a smooth open sub-domain of R
d. Denote by T the maturity time

and by τ the first exit time of SW (·) from D. We consider the contingent claim
given by the following functional on Wiener space W :

Ψ(W ) := ϕ(SW (T )) 1{T<τ}(W ) , (2.33)

where SW (t0) = S0 ∈ D for some fixed t0 < T and where ϕ is assumed to be
bounded on D.

We shall discuss in this section two different approaches to the computation
of the pathwise weight for European barrier options (2.33). Recall that

∆ =
d

dε

∣∣∣
ε=0

Et0,S0+εζ0 [Ψ] .

We consider the pathwise propagation of ζ0 as defined by (2.13):

ζW (t) = JW
t←t0(ζ0) =

d∑
k=1

βk(t)Ak(SW (t)) .
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Definition 2.17. Let Θ denote the class of predictable processes θ such that
θ(s) = 0 for s > τ and such that∫ T

t0

θ(s) ds = 1 .

The fact that Θ is not empty is shown later via an explicit construction.

Theorem 2.18. The Greek ∆ can be expressed by the following Itô stochastic
integral: for any θ ∈ Θ,

∆ = E
[
Ψ 1{T<τ} Hθ

ζ

]
where Hθ

ζ :=
d∑

k=1

∫ T

t0

βk(s) θ(s) dW k(s) . (2.34)

Proof. Consider (Ptϕ)(S0) := E
[
ϕ(S(t)) 1{t<τ}

]
for t ≥ t0. Then

(PT+t0−tϕ)(S(t)), t0 ≤ t ≤ min(T, τ) ,

is a local martingale, which implies that

N(t) := d(PT+t0−tϕ)S(t) ζ(t), t0 ≤ t ≤ min(T, τ) ,

is a local martingale as well. (Here we used the fact that the derivative of a
one-parameter family of local martingales is again a local martingale.)

Define h(t) = 1 − ∫ t

t0
θ(r) dr for t0 ≤ t ≤ T . Since

N(t)h(t) − N(t0)h(t0) −
∫ t

t0

N(r) dh(r) =
∫ t

t0

h(r) dN(r) ,

we conclude that

d(PT+t0−tϕ)S(t) ζ(t)h(t) −
∫ t

t0

d(PT+t0−rϕ)S(r) ζ(r) dh(r), t0 ≤ t ≤ T ,

is a local martingale as well. By definition, we have dh(r) = ḣ(r)dr = −θ(r)dr.
Observe now that

t �→
∫ t

t0

d(PT+t0−rϕ)S(r) ζ(r) θ(r) dr

− (PT+t0−tϕ)(S(t))
d∑

k=1

∫ t

t0

θ(r)βk(r) dW k(r)

is a local martingale. Using (PT+t0−tϕ)(S(t)) = E
Nt

[
ϕ(S(T )) 1{T<τ}

]
, we

conclude that

M(t) := d(PT+t0−tϕ)S(t) ζ(t)h(t)

+ E
Nt

[
ϕ(S(T )) 1{T<τ}

] d∑
k=1

∫ t

t0

θ(r)βk(r) dW k(r)

is a local martingale for t0 ≤ t ≤ T ′ := min(T, τ). The claim now follows by
comparing the expectations E[M(t0)] = E[M(T ′)]. ��
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We propose now a construction of θ ∈ Θ: we denote by d(m) the Euclidean
distance of a point m ∈ D to ∂D, then almost surely

J (W ) =
∫ τ

0

d−2(SW (r)) dr = +∞ . (2.35)

In fact, the Green function G of D is equivalent to d at the boundary; therefore

E[J (W )] =
∫

D

G(S0, x) dx �
∫

D

d−1(x) dx = +∞ . (2.36)

The step from (2.36) to (2.35) requires however a delicate argument about
the triviality of the tail σ-field of the Brownian motion. A more direct proof
of (2.35), based on Itô’s formula, can be found in Thalmaier–Wang [204],
Prop. 2.3.

Define now τ1 such that
∫ τ1

0

d−2(SW (r)) dr = 1; then a.s. τ1 < τ and we

may take
θ(r) = d−2(SW (r)) 1[0,τ1](r) . (2.37)

Remark 2.19 (Interior estimates). The fact that the stopping time T comes
from the exit time of the domain D has played a minor role in the previ-
ous computations. The same methodology can be applied to options which
undergo a strong change in their modalities at a stopping time.

Rolling Instantaneous Derivative Pathwise Along
the Barrier for a Markovian Smearing Until Maturity

We present a second methodology for computing pathwise weights for the
barrier option. Unlike the first method, this second method is very specific to
barrier options. It has not yet be used effectively for Monte-Carlo computa-
tions, but it has a deep mathematical significance.

We start from the point of view of intertwining partial differential opera-
tors as in Sect. 2.1.

If f satisfies Dirichlet boundary conditions on ∂D, then the tangential
component of the differential df of f , denoted by (df)ρ, vanishes on ∂D. Given
the payoff function ϕ on D we define ϕt as in (2.4) by the backward heat
semigroup

∂tϕt + ∆1ϕt = 0, ϕT = ϕ with boundary condition ϕt|∂D = 0 . (2.38)

Then ωt := dϕt satisfies the parabolic system

∂tωt + L ωt = 0, ωT = dϕ, (ωt)ρ = 0 . (2.39)
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The Ocone–Karatzas formula takes the form

ϕ − Et0,S0 [ϕ] =
∫ T

t0

ωk
t dW (t) ,

where ωk
t = 〈ωt , Ak(S(t))〉. Equation (2.39) has been solved by H. Airault [3],

adopting the following methodology. Let yW (t) be reflected Brownian motion
inside D. We take ζ(t) = JW

t←t0(ζ0) if the path does not hit the boundary.
“Each time” the boundary is hit at time t we take

ζ(t+) =
(
orthogonal projection on the tangent hyperplane to ∂D

)
(ζ(t−)) .

This definition is carried over rigorously by passing to the limit along the local
time. This transport of pathwise rolling then defines a Markov process which
leads to an expression for the Greek through an Itô stochastic integral:

Theorem 2.20.

∆ζ(t0) = 〈ωt0 , ζ(t0)〉 =
1

T − t0
Et0S0

[
Ψ
∑

k

∫ T

t0

βk
s dW k(s)

]
(2.40)

where ζ(t) =
∑d

k=1 βk(t)Ak(S(t)).

Proof. See H. Airault [3]. ��



3

Market Equilibrium and Price-Volatility
Feedback Rate

This chapter is based on the article [19]. We start by describing the basic mo-
tivation behind this approach. In view of the well-known difficulty of choosing
between possible models in mathematical finance, it is natural to search for
approaches which are non-parametric and model-free (see for instance [77, 189]
for an approach in this direction by a quite different methodology).

For assets traded at high frequency it is possible to measure the intra-day
variation of historical volatility, see for example Appendix A. For a long time
traders have observed general structural facts. For instance, the volatility of
an asset is generally negatively correlated with the price of the same asset;
this is a first order effect. The feedback volatility rate is a second order effect
which is supposed to describe the facility for the market to absorb small vari-
ations: it appears as a sort of liquidity index. The effective applicability of the
mathematical theorems of this chapter has to be tested in numerical studies
on real ephemerides; to be statistically significant numerical experiments must
show, for a well-chosen time resolution, stability of the sign of the computed
feedback volatility rate.

The multivariate feedback volatility rate can be mathematically devel-
oped in an elliptic multivariate context (see [19]); however as, even at high
frequency, historical cross-volatility between different assets is empirically a
dubious concept, it will not be pursued here.

3.1 Natural Metric Associated to Pathwise Smearing

In Chap. 2 we realized the smearing of the instantaneous derivative in two
successive operations:

(i) Construction of the pathwise transport ζW (t) of the instantaneous deriv-
ative.

(ii) Decomposition of ζW (t) with respect to the driving vector fields; the co-
efficients βk(W, t) are defined by
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ζW (t) =
d∑

k=1

βk(W, t)Ak(SW (t)) ,

where Ak denotes the kth column of the matrix σ :=
√

α . Note that
σ(β) = ζW (t). The smearing is realized by the Itô stochastic integral

w(W ) :=
∫ T

t0

θ(t)
d∑

k=1

βk(W, t) dWk(t), θ ∈ Θ, (3.1)

where

Θ =

{
θ : θ previsible such that

∫ T

t0

θ(s) ds = 1

}
. (3.2)

We have

E
[|w(W )|2] =

∫ T

t0

d∑
k=1

θ2(t) |βk(t)|2 dt .

Denoting by (σik) the inverse of the matrix (σik), we obtain

‖ζW (t)‖2
σ−1 =

∑
i,j,k

σki(SW (t))σkj(SW (t)) ζi
W (t) ζj

W (t)

= (σ−1(ζW (t)) |σ−1(ζW (t)))Rd

= ‖σ−1(ζW (t))‖2
Rd

= ‖βW (t)‖2
Rd .

This leads to the identity

E
[|w(W )|2] =

∫ T

t0

θ2(t) ‖ζW (t)‖2
σ−1 dt . (3.3)

The qualitative meaning of (3.3) is clear; for high volatility at time t the
smearing of ζW (t) is less expensive than for low volatility. It is thus legitimate
to say that

‖ζW (t)‖σ−1(SW (t))

defines an intrinsic norm.

3.2 Price-Volatility Feedback Rate

We consider the variation of price of a single asset during a short period of
the order of a few days. We use discounted values; thus actualization by the
basic interest rate is not necessary.
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Our basic assumption will be that the price process with respect to the
risk-free measure is given by the following SDE:

dSW (t) = σ(SW (t)) dW (t) − µ(SW (t)) dt , (3.4)

where W is a Brownian motion and where σ, µ are unknown smooth functions
describing a feedback effect of the price. For subsequent applications the case
µ �= 0 will be useful, even if for the risk-free measure we have µ = 0.

The pathwise sensitivity ζW (t) is a solution of the linearized SDE

dζW (t) = [σ′(SW (t)) dW (t) − µ′(SW (t)) dt] ζW (t) . (3.5)

We associate to a pathwise sensitivity ζ(t) the rescaled variation defined as

z(t) =
ζ(t)
σ(t)

, where σ(t) := σ(SW (t)) . (3.6)

Theorem 3.1. The rescaled variation z(t) is a differentiable function of t; its
logarithmic derivative λ(t) is called the price-volatility feedback rate function;
in explicit terms we have for every s < t,

z(t) = exp
(∫ t

s

λ(SW (τ)) dτ

)
z(s), and (3.7)

λ = −
(

1
2
σσ′′ + µ′ − µ

σ′

σ

)
. (3.8)

Proof. Using Itô calculus

d(σ) = σ′ (σ dW − µ dt) +
1
2
σ′′ σ2 dt;

d

(
1
σ

)
= −σ′

σ
dW − 1

2
σ′′dt +

1
σ

(σ′)2 dt − σ′

σ2
µ dt .

Therefore the rescaled variation has the Itô differential

dz = ζ d

(
1
σ

)
+

ζ

σ

(
σ′dW + µ′ dt

)
+ dζ ∗ d

(
1
σ

)
,

where the ∗ denotes the Itô contraction:

dζ ∗ d

(
1
σ

)
= −ζ

(σ′)2

σ
dt = −z(σ′)2 dt;

ζ d

(
1
σ

)
= z

(
−σ′ dW − 1

2
σσ′′ dt + (σ′)2 dt +

σ′

σ
µ dt

)
dz

z
= (σ′ − σ′) dW +

(
−1

2
σσ′′ + (σ′)2 − (σ′)2 − µ′ + µ

σ′

σ

)
dt .

It is important to note that the coefficient of dW vanishes; therefore z is a
differentiable function of t and

λ :=
ż

z
= −

(
1
2
σσ′′ + µ′ − µ

σ′

σ

)
. ��
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Theorem 3.2 (Meaning of the sign of λ for hedging). Consider the risk-
free process (i.e. take µ = 0). If the volatility is a convex function of the price,
the pathwise smearing of instantaneous derivatives decreases exponentially in
time.

Proof. The optimal smearing is given by the following minimizing problem:

J(T ) := inf
θ∈Θ

∫ T

t0

exp
(

2
∫ t

t0

λ(SW (s)) ds

)
θ2 dt

where Θ is given by (3.2). If λ ≤ λ0 < 0, then

J(T ) ≤ exp(2λ0(T − 1)), T > 1 ; (3.9)

the hedging cost of the option goes down exponentially as the maturity date
increases. ��
Remark 3.3. For the Black–Scholes model we have λ = 0.

Computation of the Price-Volatility Feedback Rate
in Logarithmic Coordinates

It results from Itô calculus that the rescaled variation is independent from
the choice of coordinate system; therefore λ as well, which can be seen as the
“appreciation rate” of the rescaled variation, is independent of the coordinate
system.

Taking as coordinate the logarithm of the price and making the change of
variables xW (t) = log(SW (t)), we denote

a(x) = exp(−x)σ(exp(x)) .

Then, using Itô calculus, xW (t) satisfies the following SDE:

dxW (t) = a(xW (t)) dW (t) − 1
2
a2(xW (t)) dt . (3.10)

Theorem 3.4. The price-volatility feedback rate λ associated to (3.10) is
given by

λ = −1
2
(a′a + aa′′) . (3.11)

Denoting by ∗ the Itô contraction, we consider the following cross-volatilities

dx ∗ dx := Adt, dA ∗ dx := B dt, dB ∗ dx := C dt .

Then λ takes the form

λ =
3
8

B2

A3
− 1

4
B

A
− 1

2
C

A2
. (3.12)
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Proof. We apply formula (3.8) with µ = 1
2a2. We have the Itô differential:

dx = a dW − 1
2
a2 dt

where A = a2. The cross-volatility B of A and x satisfies

B dt = 2aa′ dx ∗ dx = 2a3a′t .

Therefore
aa′ =

B

2a2
=

1
2

B

A
.

The cross-volatility C of B and x, defined by C dt = dB ∗ dx, is given by

2d(aa′) ∗ dx = 2
(
aa′′ + (a′)2

)
a2 dt = C dt .

But, on the other hand, we have

2d(aa′) ∗ dx =
1

A2

(
A (dB ∗ dx) − B (dA ∗ dx)

)
=

1
A2

(AC − B2) dt;

2aa′′ =
C

A2
− 3

2
B2

A3
. ��

3.3 Measurement of the Price-Volatility Feedback Rate

The volatility of the historical price process can be measured from its
quadratic variation in a pathwise procedure. On the other hand, the drift
driving this historical process, which is generally called the mean risky return,
is not directly accessible from market data; only estimations using Kalman–
Bucy filtering or Zakai filtering can be obtained. As a result the SDE driving
the historical price process cannot be econometrically deciphered.

Theorem 3.5. The SDE driving the risk-free process can be computed econo-
metrically using a pathwise procedure.

Proof. Its volatility is equal to the volatility of the historical price process
which can be effectively measured. Its drift vanishes in the price coordinate
system. ��
Theorem 3.6. The price-volatility feedback rate for the risk-free process can
be pathwise econometrically measured by a three-step sequence of iterative
volatility measurements.

Proof. We may use formula (3.12). First, from the observation of the price
process x, the volatility A is computed; from the processes x and A the cross-
volatility B is computed, and finally the cross-volatility C is computed via
C dt = dB ∗ dx. ��
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Remark Theorem 3.6 may be seen as a result in non-parametric Statistics.
The unknown function λ is determined from a single observation of the market
evolution.

Proposition 3.7. Keeping notation and assumptions as above, let

D = Vol(log(A)), E = Vol(log(D) .

The price-volatility feedback rate may be expressed as

λ = −1
4
η
√

D
(√

A +
ε

2

√
E
)

(3.13)

where ε2 = 1 and where η = 1 if x and A are positively correlated, and η = −1
otherwise.

Remark 3.8. As the computation of volatilities is numerically more stable
than the computation of cross-volatilities, formula (3.13) may be preferable
to (3.12) in certain cases.

Proof. A straightforward calculation gives

log A = 2 log a, D = 4
(

a′

a

)2

= 4(a′)2, E = 4
(

aa′′

a′

)2

. ��

The numerical exploitation of (3.12), resp. (3.13), depends on an appro-
priate numerical algorithm for constructing the volatility process from an
empirical process. The Fourier series method [145], see Appendix A, leads by
its global character to stable results for time resolutions of A in the order of
1/3 of the resolution δ of the price process. Iterating this resolution gap we
obtain that B can be calculated up to a time resolution δ/9, and C up to δ/27;
thus the time resolution for λ lies in the range of δ/27. A highly traded asset
gives a time series for the price process in the range of a new quotation every
10 or 20 seconds; for such an asset the time resolution of the price-volatility
feedback rate will lie in the range of minutes. See Appendix C for some results
on the numerical implementation of the price-volatility feedback rate.

3.4 Market Ergodicity
and Price-Volatility Feedback Rate

To any asset two processes may be associated: the historical price process and
the process corresponding to the risk-free probability measure. Any general
statement on the historical price process St needs the choice of a model; we
assume that two functions σ, µ are given such that the price process is driven
by

dSW (t) = σ(t, SW (t)) dW (t) − µ(t, SW (t)) dt; (3.14)
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the corresponding infinitesimal generator is then

R =
1
2
σ2 d2

dS2
− µ

d

dS
.

Definition 3.9. A complete elliptic market is said to be ergodic if the histor-
ical price process has an invariant probability measure ρ.

It is clear that under a long-term horizon, in the real economic world,
there are no ergodic markets. On a scale of a few days however ergodicity
may be observed in a market which oscillates around an equilibrium position.
The purpose of this section is to prove that a negative feedback volatility rate
implies ergodicity of the market.

Proposition 3.10. Assume that µ = 0. Furthermore assume that there exists
δ > 0 such that the price-volatility feedback rate associated to (3.14) satisfies
for all t

λ(t) < −δ . (3.15)

Then the market has no remote memory (that is zW (t) → 0 as t → +∞).
More precisely, we have the estimate

|zW (t)| ≤ exp (−δ(t − t0)) |zW (t0)|, ∀ t > t0 . (3.16)

Proof. The proof results from (3.7). ��
Theorem 3.11. We keep the assumptions of Proposition 3.10. Furthermore
assume that σ is independant of time and bounded along with its derivatives
up to order 4. Then the market is ergodic.

We start by proving the following lemma.

Lemma 3.12 (Construction of an intertwining operator). There exists
an elliptic operator such that

∂

∂τ

∫
πτ (S0, dS)φ(S) =

∫
πτ (S0, dS) (Rτφ)(S) ; (3.17)

0 < α(S, τ) < exp(−2δτ) |σ(S)|2, |β(τ, s)| ≤ exp(−δτ)σ(S) . (3.18)

Remark 3.13. If we take Rτ = R then (3.17) holds, but (3.18) fails.

Proof (of Lemma 3.12). By the semigroup property we have

∂

∂τ

∫
πτ (S0, dS)φ(S) =

1
2
σ2(S0)

d2

dS2
0

∫
πτ (S0, dS)φ(S) .

Using (3.16) and taking the conditional expectation with respect to SW (τ)
we get



48 3 Market Equilibrium and Price-Volatility Feedback Rate

1
σ(S0)

d

dS0

∫
πτ (S0, dS)φ(S)

= E
SW (0)=S0

[
exp

(∫ τ

0

λ(SW (ξ)) dξ

)
σ(SW (τ)) (φ′)(SW (t))

]

=
∫

πτ (S0, dS) β̃(S)φ′(S) where |β̃(S)| ≤ c exp(−δτ)σ(S) .

Iterating this procedure we get an estimate of the second derivative which
proves Lemma 3.12. ��
Proof (of Theorem 3.11). Consider the following SDE with time-depending
coefficients:

dS̃W =
√

α(τ, S̃W (τ)) dW (τ) + β(τ, S̃W (τ)) dτ, S̃W (0) = S0 . (3.19)

According to (3.17) the law of S̃(τ) is πτ (S0, ·). Furthermore by means
of (3.18), for any τ , R > 0,

E

∣∣∣∣∣
∫ S̃W (τ+R)

S̃W (τ)

dξ

σ(S̃W (ξ))

∣∣∣∣∣ ≤ c exp
(
−δ

2
R

)
,

which implies first that limτ→∞ S̃W (τ) exists in terms of the distance χ on R

defined by

χ(S1, S2) :=
∫ S2

S1

dξ

σ(ξ)
.

Since σ is bounded, convergence in the χ metric implies convergence in the
usual metric of R as well. Therefore, we may conclude that

ρS0 := lim
τ→∞πτ (S0, ·) exists.

The fact that the market is without remote memory implies that ρS0 = ρS1 .
See [57] for more details; [57] treats also the case µ �= 0. ��
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Multivariate Conditioning
and Regularity of Law

Given two random variables f and g on an abstract probability space, the
theorem of Radon–Nikodym ensures existence of the conditional expectation
E[f | g = a], almost everywhere in a. For Borel measures on a topological space,
it is a basic problem to construct a continuous version of the function a �→
E[f | g = a]. On the Wiener space, quasi-sure analysis [4, 144, 197] constructs,
for g non-degenerate, continuous versions of conditional expectations.

This theoretical issue has a numerical counterpart in the question of how
to compute a conditional expectation by Monte-Carlo simulation. The crude
way of rejecting simulations giving trajectories which do not satisfy the condi-
tioning turns out to be extremely costly, as far as computing time is concerned.
The papers [78, 79], a preprint of Lions–Régnier, followed by applications to
American options in [14, 42, 113, 181, 182], changed dramatically the Monte-
Carlo computation of conditional expectations.

It is clear that existence of continuous versions for conditional expectations
is very much linked to regularity of laws; such questions have been the first
objective of the Stochastic Calculus of Variations [140, 141]. We emphasize in
this chapter the case where the conditioning g is multivariate; the univariate
case is treated at the end of the chapter as a special case of our multivariate
study. In Sect. 4.5 the Riesz transform is introduced; it seems to be a new
tool in this field.

4.1 Non-Degenerate Maps

We consider maps g : W n → R
d with components g1, . . . , gd such that each

gi ∈ Dp
1(W n) for all p < ∞. The dimension d of the target space is called

the rank of g. The Malliavin covariance matrix of g is the symmetric positive
matrix defined by

σij(W ) :=
n∑

k=1

∫ 1

0

(Dt,kgi)(W ) (Dt,kgj)(W ) dt . (4.1)
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Definition 4.1. A map g : W n → R
d is said to be non-degenerate if

E
[
det(σ)−p

]
< ∞, ∀ p < ∞ . (4.2)

Definition 4.2 (Lifting up functions). Given φ ∈ C1
b(Rd), the lift of φ to

W n is the function φ̃ on W n defined by φ̃ = φ ◦ g. Then

φ̃ ∈ Dp
1(W n), ∀ p < ∞ . (4.3)

The operator φ �→ φ̃ is denoted by g∗.

Definition 4.3 (Pushing down functions). Let ν be the law of g, that is
ν = g∗(γ) is the direct image by g of the Wiener measure on W n. Then
conditional expectation gives a map

E
g : Lp(W n; γ) �→ Lp(Rd; ν) .

We call E
g[F ] the push-down of a function F ∈ Lp(W n; γ) .

Pushing down is a left inverse of lifting up, i.e., E
g(φ̃) = φ.

Definition 4.4 (Covering vector fields). Let z be a vector field on R
d

with components z1, . . . , zd. An R
d-valued process Z1

W (t), . . . , Zd
W (t) is called

a covering vector field of z if

n∑
k=1

∫ 1

0

Zk
W (t) (Dt,kgs)(W ) dt = zs

g(W ), s = 1, . . . , d . (4.4)

Theorem 4.5. Assume that g is non-degenerate. Then any vector field z
on R

d has a unique covering vector field ◦Z of minimal L2-norm. Further-
more, the hypothesis

z ∈ C1
b(Rd), g ∈ Dp

2(W n), ∀ p < ∞,

implies that
◦Z ∈ Dp

1(W n), ∀ p < ∞ . (4.5)

Proof. Denoting by (σik) the inverse of the matrix (σik), we define

◦Zk(t) =
∑

0≤s,�≤d

σs� (Dt,kgs) z�,

or symbolically,
◦Z =

∑
s,�

z�σ�sDgs . (4.6)
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Then we have

D◦Zgq =
∑

k

∫ 1

0

Zk(t)(Dt,kgq) dt

=
∑

0≤�,s≤d

z�σs�
∑

k

∫ 1

0

(Dt,kgs)(Dt,kgq) dt

=
∑
s,�

σqsσ
s�z� = zq .

It remains to show that ◦Z defined by (4.6) provides the minimal norm. Con-
sider another covering vector of the form ◦Z + Y where DY g. = 0. As ◦Z is a
linear combination of Dgs, the vanishing of DY g. implies that (Y |Dgs) = 0
for all s; thus ‖Y + ◦Z‖2 = ‖Y ‖2 + ‖◦Z‖2 ≥ ‖◦Z‖2 as claimed. ��

In the sequel we short-hand computations on matrix indices; these com-
putations are resumed in full details in the proof of (4.10) below. We get

Dτ,j
◦Z = −σ.,.z.(Dτ,jσ.,.)σ.,.z.(Dg.)

+ σ.,.Dτ,j(Dg.) + σ.,. ∂z.

∂ξi
(Dτ,jg

i);

Dτ,jσs� = Dτ,j(Dgs|Dg�)

=
∑

k

∫ 1

0

(
(D2

τ,t;j,kgs)Dt,kg� + (D2
τ,t;j,kg�)Dt,kgs

)
dt .

4.2 Divergences

Definition 4.6. We say that a vector field z on R
d has a divergence ϑν(z)

with respect to a probability measure ν, if the following formula of integration
by parts holds: ∫

Rd

〈z, dφ〉 dν =
∫

Rd

φ ϑν(z) dν, ∀φ ∈ C1
b(Rd), (4.7)

where
∫

Rd |ϑν(z)| dν < ∞.

Remark 4.7. Density of C1
b(Rd) in the continuous functions of compact sup-

port implies uniqueness of the divergence.

Theorem 4.8 (Functoriality of the divergence operator). Let g be a
non-degenerate map, ν be the law of g, and let γ be the Wiener measure. For
any covering vector field Z of z such that ϑγ(Z) exists, we have

ϑν(z) = E
g[ϑγ(Z)] . (4.8)



52 4 Multivariate Conditioning and Regularity of Law

Assuming furthermore that g ∈ Dp
2(W n) for each p < ∞, then for any coor-

dinate vector field ∂/∂ξi,

∃ϑν

(
∂

∂ξ

)
∈ Lp(Rd; ν), ∀ p < ∞ . (4.9)

Denoting by N the number operator defined in Theorem 1.33, then

ϑγ(◦Zi) =
∑

j

σij N (gj) +
∑

�

(D2g�)(◦Zi,
◦Z�)

+
∑
k,�

σik(D2gk)(◦Z�, Dg�). (4.10)

Proof. We have the intertwining relation

DZ(φ̃) = ũ where u = 〈z, dφ〉 =: ∂zφ ,

which symbolically may be written as

g∗(∂zφ) = DZ(g∗φ) . (4.11)

Note that this intertwining relation gives for the derivative of a composition
of functions:

DZ(φ ◦ g)(W ) = 〈dφ, g′(W )(Z)〉g(W ) = 〈dφ, z〉g(W ) ,

and therefore ∫
Rd

〈z, dφ〉ξ ν(dξ) = E[〈z, dφ〉g(W )]

= E[DZ φ̃] = E[ϑγ(Z) φ̃]

=
∫

Rd

φ(ξ) E
g=ξ[ϑγ(Z)] ν(dξ) .

We associate to the coordinate vector field ∂/∂ξi the minimal covering vector
field ◦Zi; then we have ◦Zi ∈ Dp

1(W n) by (4.5). Hence by means of (1.36) we
conclude that ϑγ(◦Zi) exists and belongs to Lp for any p < ∞. Formula (4.10)
leads to an alternative proof of (4.9) by means of (1.51).

Thus it remains to prove (4.10). Note that ◦Zi =
∑

j σijDgj implies by
(1.35) that

ϑ(◦Zj) = −
∑

j

σijN (gj) −
∑

j

DDgj (σij) ,

where the first term of the r.h.s. comes from the identity N (φ) = ϑ(Dφ) (see
Theorem 1.33). On the other hand, we have

−
∑

j

(DDgj (σij)) =
∑
j,k,�

σik(DDgj σk�)σ�j ,
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where

DDgj σk� = DDgj (Dgk|Dg�)

= (D2gk)(Dgj , Dg�) + (D2g�)(Dgj , Dgk)

=
∑
j,k,�

σik
[
(D2gk)(Dgj , Dg�) + (D2g�)(Dgj , Dgk)

]
σ�j

=
∑

�

(D2g�)(◦Zi,
◦Z�) +

∑
k,�

σik(D2gk)(◦Z�, Dg�)

which completes the proof. ��
Important comment. As the minimal covering vector field has a conceptual de-
finition, one may wonder why we bothered ourselves with the general concept
of covering vector fields. The reason is quite simple: the minimal covering vec-
tor field is in general not adapted to the Itô filtration; therefore a computation
of its divergence requires the difficult task of computing a Skorokhod integral
in an efficient way. In many cases it is however possible to find a predictable
covering vector field with its divergence given by an Itô integral, which is easy
to implement in a Monte-Carlo simulation.

4.3 Regularity of the Law of a Non-Degenerate Map

Let S (Rd) be the Schwartz space of functions decreasing at infinity, along
with all their derivatives, faster than any negative power of the Euclidean
norm on R

d. We further adopt the following notation:

D∞(W n) :=
⋂

(r,p)∈N2

Dp
r (W n) . (4.12)

Theorem 4.9. Let g be a non-degenerate map, and assume that

gi ∈ D∞(W n), ∀ i ∈ {1, . . . , d} . (4.13)

Then the law of g has a density with respect to the Lebesgue measure, which
is infinitely differentiable and belongs to the Schwartz space S (Rd).

Proof. Let s be a multi-index of length d of positive integers; denote by |s|
the sum of the components. We associate to s the differential operator with
constant coefficients defined by

∂s =
d∏

i=1

[
∂

∂ξi

]s(i)

.

Before continuing with the proof of Theorem 4.9 we formulate the following
lemma.
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Lemma 4.10. For any multi-indices s, there exists Qs ∈ D∞(W n) such that
the following formula of integration by parts holds for all φ ∈ C

|s|
b (Rd):

E[g∗(∂sφ)] = E[Qs g∗(φ)] . (4.14)

Proof. We proceed by induction on |s|. For |s| = 1 we may take Qi = ϑγ(◦Zi);
it results from (4.10) that Qi ∈ D∞.

Assume now that the lemma holds true for |s| < r. Given s of length r,
we can write

∂s = ∂q
∂

∂ξi
, |q| = r − 1 .

Defining φ1 :=
∂

∂ξi
φ, we get

E[g∗(∂sφ)] = E[g∗(∂qφ1)] = E[(g∗φ)Qq] = E[(D◦Zi
g∗φ)Qq]

= E[(g∗φ) (ϑ(◦Zi)Qq − D◦Zi(Qq))],

and therefore
Qs = ϑ(◦Zi)Qq − D◦Zi

(Qq) , (4.15)

which completes the proof. ��
Proof (of Theorem 4.9). Let u be the characteristic function of the law of g,

u(η) := E
[
g∗ψη

]
where ψη(ξ) = exp(i (ξ|η)Rd) .

Then, in terms of the Laplacian ∆ on R
d, we have

|η|2m
Rd u(η) = (−1)m

E
[
g∗(∆mψη)

]
.

By means of (4.14), and taking into account that integration by parts of ∆m

is possible with the weight Q∆m ∈ D∞, we get

|η|2m
Rd u(η) = (−1)m

E
[
(g∗ψη)Q∆m

]
which gives

|u(η)| ≤ E
[|Q∆m |]
|η|2m

. (4.16)

Estimate (4.16) implies that the law of g has a density p belonging to C∞
b (Rd).

As the Fourier transform preserves the space S (Rd), it remains to show
that u ∈ S (Rd); to this end we must dominate all derivatives of u. The case
of the first derivative is typical and may be treated as follows:

|η|2m ∂u

∂η1
(η) = (−1)mi E

[
g∗(∆mψ1

η)
]
,

where ψ1
η(ξ) = ξ1 exp(i (ξ|η)). Integration by parts leads to the required dom-

ination:∣∣∣∣ ∂u

∂η1
(η)

∣∣∣∣ ≤ 1
|ξ|2m

E
[|g1| |Q∆m |] ≤ 1

|ξ|2m

√
E
[|g1|2]E[|Q∆m |2]. ��



4.4 Multivariate Conditioning 55

4.4 Multivariate Conditioning

Theorem 4.11 (Pushing down smooth functionals). Let g be an R
d-

valued non-degenerate map such that g ∈ D∞(W n); let p ∈ S (Rd) be the
density of the law ν of g. To any f ∈ D∞(W n), there exists uf ∈ S(Rd) such
that the following disintegration formula holds:

E[f(g∗φ)] =
∫

Rd

φ(ξ)uf (ξ) dξ, ∀φ ∈ C0
b(Rd) ; (4.17)

furthermore

E[f | g(W ) = ξ] =
uf (ξ)
p(ξ)

=
uf (ξ)
u1(ξ)

, p(ξ) �= 0 . (4.18)

Remark 4.12. The conditional expectation in the l.h.s. of (4.18) is defined
only almost surely, i.e., for ξ /∈ A where ν(A) = 0. The r.h.s. however is a
continuous function of ξ on the open set p(ξ) �= 0; thus (4.18) provides indeed
a continuous version of the conditional expectation.

Proof (of Theorem 4.11). We deal first with the special case

f ≥ ε > 0, E[f ] = 1 . (4.19)

Let λ be the probability measure on W n, absolutely continuous with respect
to the Wiener measure γ, which has f as its Radon–Nikodym derivative:

dλ

dγ
= f . (4.20)

Further denote by ρ the law of g under the measure λ, thus ρ(A) = E[f1A(g)]
for any Borel set A of R

d. Given a vector field Z on W n, its divergence ϑλ(Z)
with respect to λ is defined by the formula of integration by parts∫

Ψϑλ(Z) dλ =
∫

(DZΨ) dλ .

Lemma 4.13. Keeping the notation from above, we have

ϑλ(Z) = ϑγ(Z) − DZ log f . (4.21)

Proof (of Lemma 4.13). We may calculate as follows:∫
(DZΨ) dλ =

∫
(DZΨ) fdγ

=
∫

[DZ(fΨ) − fΨDZ(log f)] dγ

=
∫

[ϑγ(Z)Ψ − ΨDZ(log f)] f dγ. ��
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Proof (of Theorem 4.11). Let v be the characteristic function of ρ,

v(η) :=
∫

Rd

exp(i(η|ξ)) ρd(ξ) =
∫

W n

(g∗ψη) dλ ;

then
η1v(η) =

∫
W n

D◦Z1(g
∗ψη) dλ =

∫
W n

ϑλ(◦Z1)(g∗ψη) dλ .

Using (4.21) we get

η1v(η) = E [f(ϑγ(◦Z1) − D◦Z1 log f) (g∗ψη)] ,

from which we conclude that |v(η)| < c/|η1|. Iterating this procedure of inte-
gration by parts, we see as before that v ∈ S (Rd).

It remains to remove assumption (4.19). Note that the condition E[f ] =
1 is easy to satisfy through multiplying f by a constant. We can find two
functions χ1, χ2 ∈ C∞

b (R) such that χ1 + χ2 = 1, supp(χ1) ⊂ [−1,∞[ and
supp(χ2) ⊂ ]−∞, 1]. For f given, we define

f1 = f · χ1(f) + 2, f2 = −f · χ2(f) + 2 .

Then f1, f2 satisfy the inequalities in (4.19); hence there exist ufi
∈ S (Rd)

satisfying (4.17). As relation (4.17) is linear, it may be satisfied by taking

uf = uf1 − uf2 .

The first equality in (4.18) is a consequence of the smoothing property of
the conditional expectation; the second one results from applying the first
equation to the function f = 1. ��

The following theorems provide more effective formulae for computing the
relevant conditional expectations. Indeed, by means of (4.18) the computation
of the conditional expectation may be reduced to the computation of uf (a).

We shall use the following assumptions:

g : W n → R
d is a non-degenerate map, g ∈ D∞ and f ∈ D∞. (4.22)

Let H be the Heaviside function defined by H(t) = 1 for t > 0 and H(t) = 0
otherwise. Finally set αH(t) = H(t − α).

Theorem 4.14. Let Ri
g : D∞ → D∞ be the first order differential operator

defined by
Ri

g(Ψ) = ϑ(Zi)Ψ − DZi
Ψ

where Zi are smooth covering vector fields of the coordinate vector field of R
d.

Under assumption (4.22) and assuming that p(a) �= 0 we have

uf (a) = E

[
Γg(f) g∗

(∏
ai

H(ξi)
)]

; Γg(f) = (R1
g ◦ . . . ◦ Rd

g)(f) . (4.23)
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Remark 4.15. We emphasize the important fact that the weight Γg(f) does
not depend on the values of the conditioning a.

The proof of Theorem 4.14 will be based on an approximation scheme.
Consider the convolution Hε := H ∗ ψε where ψε is a mollifier: ψε(t) =
ε−1ψ(t/ε), ψ being a C∞-function supported in [−1, 0] with integral equal
to 1. Denote by H ′

ε the derivative of Hε.

Lemma 4.16. The function uf defined by (4.17) has the expression:

uf (a) = lim
ε1→0

. . . lim
εd→0

E

[
f

d∏
i=1

aiH ′
εi

(gi)

]

= lim
ε1→0

. . . lim
εd→0

E

[
f DZ1 . . . DZd

g∗
(

d∏
i=1

aiHεi
(ξi)

)]
. (4.24)

Proof. We short-hand the notation by taking a = 0 and drop the indices ai.
Using (4.11) and (4.17), we have

E

[
f

d∏
i=1

H ′
εi

(gi)

]
=

∫
Rd

d∏
i=1

H ′
εi

(ξi)uf (ξ) dξ ,

and thus

lim
ε1→0

. . . lim
εd→0

∫
Rd

d∏
i=1

H ′
εi

(ξi)uf (ξ) dξ = uf (0) .

On the other hand

E

[
f DZ1 . . . DZd

g∗
(

d∏
i=1

aiHεi
(ξi)

)]

= E

[
f DZ1 . . . DZd−1g

∗
(

∂

∂ξd

d∏
i=1

aiHεi
(ξi)

)]

= E

[
f g∗

(
∂

∂ξ1
. . .

∂

∂ξd

d∏
i=1

aiHεi
(ξi)

)]
. ��

Recall that the rank of a non-degenerate map is the dimension d of the
target space. We prove Theorem 4.14 by induction on d. The case d = 1 is
covered by the following theorem.

Theorem 4.17. For d = 1, under assumption (4.22), denote by Z1 a covering
vector field of the coordinate vector field. Assume that ϑ(Z1) exists and that
p(0) �= 0. Then (4.23) holds true, which means that

uf (a) = E
[
aH(g)(fϑ(Z1) − DZ1f)

]
. (4.25)
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Remark 4.18. We may take as covering vector field the minimal covering vec-
tor field

◦Z1 =
Dg1

‖Dg1‖2
.

This will be developed in Sect. 4.6.

Proof (of Theorem 4.17). Starting from (4.23), we have

E [f DZ1g
∗(Hε)] = E [(f ϑ(Z1) − DZ1f) g∗(Hε)] . (4.26)

Thus letting ε → 0, we find (4.25). ��
Proof (of Theorem 4.14 by induction). The induction is done on the validity
of (4.23)r for a non-degenerate map g of rank ≤ r.

Note that (4.23)1 holds true as a consequence of (4.25). Assume now that
(4.28)r hold true for all r < d. Denote by (g1, . . . , gd) a non-degenerate map
of rank d, and let h be the R

d−1-valued map h = (g2, . . . , gd).

Lemma 4.19. The map h is non-degenerate.

Proof (of Lemma 4.19). Denote by σg, σh the corresponding covariance ma-
trices, then

det(σh) ‖Dg1‖2 ≥ det(σg) ,

therefore
‖det(σh)−1‖Lp ≤ ‖Dg1‖L2p ‖det(σf )−1‖L2p . ��

Consider g = (g1, h). By induction hypothesis, there exists a differential
operator Γh such that identity (4.23)1 holds true. Let {Zi : i = 1, . . . , d} be
covering vector fields for the coordinate vector fields of g. We compute Γh by
taking Zi, i = 2, . . . , d, as covering vector fields. Then by (4.24) we have

uf (0) = lim
ε1→0

(
lim

ε2,...,εd→0
E

[
f H ′

ε1
(g1)

d∏
i=2

H ′
εi

(gi)

])
.

Denoting f̃ = f H ′
ε1

(g1), we get

lim
ε2,...,εd→0

E

[
f̃

d∏
i=2

H ′
εi

(gi)

]
= lim

ε2,...,εd→0
E

[
f̃

d∏
i=2

H ′
εi

(hi)

]

= E

[
Γh(f̃)

d∏
i=2

H(hi)

]
,

and therefore

uf (0) = lim
ε1→0

E

[
Γh(f H ′

ε1
(g1))

d∏
i=2

H(gi)

]
. (4.27)

Formula (4.27) will be further evaluated by means of the following lemma.
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Lemma 4.20. For any smooth function ϕ the following formula holds:

Γh(ϕ(g1) f) = ϕ(g1)Γh(f) . (4.28)

Proof (of Lemma 4.20). Using the product formula (4.23) it is sufficient to
prove

Rs
h(ϕ(g1) f) = ϕ(g1)Rs

h(f), s = 2, . . . , d .

This commutation is equivalent to DZs
(g1) = 0 and holds true because the

Zi have been chosen to be a system of covering coordinate vector fields with
respect to g.

Proof (of Theorem 4.14; conclusion). By means of Lemma 4.20, formula (4.27)
can be written as

uf (0) = lim
ε1→0

E

[
H ′

ε1
(g1) Γh(f)

d∏
i=2

H(gi)

]

= E

[
Rg1

(
Γh(f)

d∏
i=2

H(gi)

)
H(g1)

]

where the last equality comes from an application of (4.23)1 to g1. As in (4.28)
we have now

Rg1

(
Γh(f)

d∏
i=2

H(gi)

)
=

(
d∏

i=2

H(gi)

)
×Rg1 (Γh(f)) ,

and hence,

uf (0) = E

[
R1

g(Γh(f))
d∏

i=1

H(gi)

]
. ��

Example 4.21. We compute the differential operator Γg in the bivariate case
of (4.23):

Γg = (ϑ(Z1) − DZ1)(ϑ(Z2) − DZ2) (4.29)
= DZ1DZ2 − [ϑ(Z1)DZ2 + ϑ(Z2)DZ1 ] + [ϑ(Z1)ϑ(Z2) − (DZ1ϑ(Z2))].

For an explicit formula one has to calculate DZ1ϑ(Z2). This has been done in
Sect. 1.7.

4.5 Riesz Transform and Multivariate Conditioning

The drawback of the methodology used in Sect. 4.4 is that one has to com-
pute iterative derivatives and derivatives of divergences. In this section we
shall propose an alternative formula where the divergences no longer need to
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be differentiated. The price to pay is that the bounded Heaviside function H
must be replaced by an unbounded kernel derived from the Newtonian poten-
tial; in a Monte-Carlo simulation thus trajectories ending near the required
conditioning get a preferred weight, a fact which does not seem unreasonable.

Theorem 4.22 (Construction of the Riesz transform). Consider on R
d

the kernels
Ci(ξ) = −cd

ξi

‖ξ‖d−1

where ‖ξ‖2 =
∑

i ξ2
i and cd = 2(d − 2)/a(d) for d > 2, c2 = 2/a(2); here a(d)

denotes the area of the unit sphere of R
d (i.e. a(2) = 2π, a(3) = 4π, . . . ).

Furthermore, denote by ∗ the convolution of functions on R
d. Then, for any

h ∈ C1(Rd) with compact support, we have

h(ξ) =
d∑

i=1

(
Ci ∗ ∂h

∂ξi

)
(ξ), ξ ∈ R

d . (4.30)

Proof. We give a proof that is valid under the more stringent hypothesis that
f ∈ C2 (see for instance [143] for a proof in the general case). Consider the
Newton potential kernel qd(ξ) defined as

q2(ξ) = log
1
‖ξ‖ and qd(ξ) = ‖ξ‖2−d, for d > 2 .

We remark that
∂

∂ξk
qd = a(d) Ck, q ≥ 2 .

The r.h.s of (4.30) can be written as

1
a(d)

d∑
k=1

∂qd

∂ξk
∗ ∂f

∂ξk
=

1
a(d)

qd ∗
(

d∑
k=1

∂2f

∂ξ2
k

)
=

1
a(d)

qd ∗ ∆f ,

where we used the identity linking convolution and derivations ∂u
∂ξk

∗v = u∗ ∂v
∂ξk

.
The conclusion follows now from the fact that qd/a(d) is the fundamental
solution of the Laplace equation. ��

Keeping the notations of Sect. 4.4, we can state the following theorem on
conditioning.

Theorem 4.23. Let Ri
g : D∞ → D∞ be the first order differential operator

defined by
Ri

g(Ψ) = ϑ(Zi)Ψ − DZi
Ψ

where Zi are smooth covering vector fields of the coordinate vector field of R
d.

Assuming that p(a) �= 0 we have

uf (a) = cd

∑
i

E

[
Ri

g(f)
gi − ai

‖g − a‖d−2

]
. (4.31)
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Proof. It is sufficient, as seen before, to prove the theorem for f > 0. Applying
the preceeding theorem with uf for h, we get

uf (a) = cd

∑
i

∫
Rd

∂

∂ξi
uf (ξ)

ξi − ai

‖ξ − a‖d−1
dξ

= cd

∑
i

∫
Rd

∂

∂ξi
log uf (ξ)

ξi − ai

‖ξ − a‖d−1
uf (ξ) dξ.

Thus, in terms of the image measure ν(dξ) = uf (ξ) dξ, we get

uf (a) = cd

∑
i

∫
Rd

ϑν

(
∂

∂ξi

)
ξi − ai

‖ξ − a‖d−1
ν(dξ)

= cd

∑
i

E

[
f ϑfµ(Zi)

gi − ai

‖g − a‖d−2

]
,

where the fact that ν = g∗(fµ) and the functoriality principle for divergences
have been used for the last equality. The proof is completed by the following
identity, written for an arbitrary test function v:

E[f ϑfµ(Zi) v] = E[fDZv] = E[DZ(fv) − vDZf ] = E[vR(f)]. ��

4.6 Example of the Univariate Conditioning

We could specialize the theorems obtained in the previous sections to the one-
dimensional case d = 1, except for the results of Sect. 4.5 which are valid only
for d ≥ 2. We prefer instead to give new proofs starting from scratch, hoping
that this more elementary perspective sheds additional light on the results of
the previous sections.

Theorem 4.24. Let φ be a real-valued random variable such that φ ∈ Dp
2(W ).

Denote ‖Dφ‖2 =
∫ 1

0
|Dtφ|2 dt and assume that there exists ε > 0 such that

E

[
‖Dφ‖−(2q+ε)

]
< ∞, 1/p + 1/q = 1 . (4.32)

Then the law P ◦ φ−1 of φ has a continuous density u with respect to the
Lebesgue measure.

Proof. Consider the vector field Z on W defined by Z = Dφ/‖Dφ‖2. Then
we have

(Z |Dφ) = 1 . (4.33)

Now assume that the following condition for the divergence ϑ(Z) of Z holds
true:

E[|ϑ(Z)|] < ∞ . (4.34)
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Considering the sequence of continuous functions

uξ0
n (ξ) =

⎧⎪⎨
⎪⎩

0, for ξ ≤ ξ0 − 1
n ,

1, for ξ ≥ ξ0 + 1
n ,

linear, between ξ0 − 1
n and ξ0 + 1

n ,

and denoting by ν the law of φ, we have

2
n

∫ ξ0+1/n

ξ0−1/n

ν(dξ) = E
[
(uξ0

n )′(φ)
]

= E
[
DZ(uξ0

n ◦ φ)
]

= E
[
(uξ0

n ◦ φ)ϑ(Z)
]

.

Letting n → ∞, we get that ν has a density u and that

u(ξ0) = E
[
ϑ(Z)1{φ(W )>ξ0}

]
.

The Lebesgue theorem of monotone convergence then implies that

lim
ξ→ξ0, ξ>ξ0

u(ξ) = u(ξ0), lim
ξ→ξ0, ξ<ξ0

p(ξ) = u(ξ0) .

It remains to prove (4.34). To this end we note that

(DτZ)(t) = −
(

2
Dτφ

‖Dφ‖3

)
Dt(φ) +

1
‖Dφ‖2

D2
τ,tφ ;

∫ 1

0

∫ 1

0

|DτZ(t)|2 dτdt ≤ 2(A + B) ,

where

A =
4

‖Dφ‖6

(∫ 1

0

‖Dτφ‖2 dτ

)2

=
4

‖Dφ‖2(W )
,

B =
1

‖Dφ‖4(W )

∫ 1

0

∫ 1

0

|D2
τ,tφ|2 dτdt =

‖D2φ‖2(W )
‖Dφ‖4(W )

.

Using Hölder’s inequality

E
[√

B
] ≤ ‖φ‖Dp

2
E
[‖Dφ‖−2q

]1/q
,

as ε > 0 in the hypothesis, we deduce the existence of η > 0 such that
E[B(1+η)/2] < ∞. Since

‖Z‖D1+η
1

≤ E[(A + B)(1+η)/2] ,

we get ‖Z‖D1+η
1

< ∞. Along with (1.37), E
[|ϑ(Z)|1+η

]
< ∞ is obtained. ��

Corollary 4.25. The decay of u at infinity is dominated by

‖ϑ(Z)‖Lp′ γ({φ > a})1/q′
, 1/p′ + 1/q′ = 1 . (4.35)



4.6 Example of the Univariate Conditioning 63

Theorem 4.26. Let Ψ ∈ Dq
1(W ). The conditional expectation E[Ψ|φ = a] is

a continuous function of a; in terms of the notation of the previous theorem
it is given by

E[Ψ|φ = a] =
1

u(a)
E
[
(Ψϑ(Z) − DZΨ)1{φ>a}

]
. (4.36)

Proof. We keep the notation of Theorem 4.24. Then we have

u(a) E[Ψ|φ = a] = lim
n→∞ E

[
Ψ (uξ0

n )′(φ)
]

,

where

E
[
Ψ (uξ0

n )′(φ)
]

= E[ΨDZ(uξ0
n ◦ φ)]

= E
[
Ψ(uξ0

n ◦ φ)ϑ(Z)
]− E

[
(uξ0

n ◦ φ)DZΨ
]

.

This proves the claim. ��



5

Non-Elliptic Markets and Instability
in HJM Models

In this chapter we drop the ellipticity assumption which served as a basic
hypothesis in Chap. 3 and in Chap. 2, except in Sect. 2.2.

We give up ellipticity in order to be able to deal with models with random
interest rates driven by Brownian motion (see [61] and [104]). The empirical
market of interest rates satisfies the following two facts which rule out the
ellipticity paradigm:

1) high dimensionality of the state space constituted by the values of bonds
at a large numbers of distinct maturities;

2) low dimensionality variance which, by empirical variance analysis, within
experimental error of 98/100, leads to not more than 4 independent
scalar-valued Brownian motions, describing the noise driving this high-
dimensional system (see [41]).

Elliptic models are therefore ruled out and hypoelliptic models are then the
most regular models still available. We shall show that these models display
structural instability in smearing instantaneous derivatives which implies an
unstable hedging of digital options.

Practitioners hedging a contingent claim on a single asset try to use all
trading opportunities inside the market. In interest rate models practitioners
will be reluctant to hedge a contingent claim written under bounds having
a maturity less than five years by trading contingent claims written under
bounds of maturity 20 years and more. This quite different behaviour has
been pointed out by R. Cont [52] and R. Carmona [48].

R. Carmona and M. Tehranchi [49] have shown that this empirical fact
can be explained through models driven by an infinite number of Brownian
motions. We shall propose in Sect. 5.6 another explanation based on the pro-
gressive smoothing effect of the heat semigroup associated to a hypoelliptic
operator, an effect which we call compartmentation.

This infinite dimensionality phenomena is at the root of modelling the
interest curve process: indeed it has been shown in [72] that the interest rate
model process has very few finite-dimensional realizations.
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Section 5.7 develops for the interest rate curve a method similar to the
methodology of the price-volatility feedback rate (see Chap. 3). We start by
stating the possibility of measuring in real time, in a highly traded market,
the full historical volatility matrix: indeed cross-volatility between the prices
of bonds at two different maturities has an economic meaning (see [93, 94]).
As the market is highly non-elliptic, the multivariate price-volatility feedback
rate constructed in [19] cannot be used. We substitute a pathwise econometric
computation of the bracket of the driving vector of the diffusion. The question
of efficiency of these mathematical objects to decipher the state of the mar-
ket requires numerical simulation on intra-day ephemerides leading to stable
results at a properly chosen time scale.

5.1 Notation for Diffusions on R
N

We start by recalling the notation of Sect. 2.2. On the space R
N (N will usually

be large) the coordinates of points r ∈ R
N are denoted rξ, ξ = 1, . . . , N . Given

(n + 1) smooth vector fields A0, . . . , An on R
N (the case n << N being not

excluded), the ξth component of Ak is denoted Aξ
k.

We shall work on R
N , but using infinite-dimensional Hilbert space tech-

niques; in practice N will be finite but large. This implies that mathematically
well-defined objects, as the determinant of an N ×N matrix, may become nu-
merically unstable. Having this “infinite-dimensional” point of view in mind,
we resume some computations already done in Chap. 5.

Given n scalar-valued Brownian motions W1, . . . , Wn we shall deal with
the following SDE:

drW (t) =
n∑

k=1

Ak(rW (t)) dWk(t) + A0(rW (t)) dt . (5.1)

Resuming in this situation the computations of Sect. 2.2, we associate to a
vector field Ak the function Ak : R

N �→ MN taking values in the space of
real N × N matrices, defined as

(Ak)ξ
η :=

∂Aξ
k

∂rη
.

For t > t0, let UW
t←t0(r0) be the solution of (5.1) with initial value r0 at time t0.

The linearized equation, again denoted

ζW (t) = JW
t←t0(ζ0) ,

is given by

dt(ζW (t)) =
n∑

k=1

Ak(ζW (t)) dWK(t) + A0(ζW (t)) dt . (5.2)
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Theorem 5.1. The map r �→ UW
t
→t0(r) is a flow of diffeomorphisms satisfying

the composition rule

UW
t←t1 ◦ UW

t1←t0 = UW
t←t0 , t0 ≤ t1 ≤ t ;

we define UW
t←t0 as the inverse map of UW

t0←t.

Proof. See Kunita [116], Malliavin [144], Nualart [159]. ��

5.2 The Malliavin Covariance Matrix
of a Hypoelliptic Diffusion

Fix W ∈ W n, the space of continuous paths from [0, T ] to R
n vanishing at 0.

The backward smearing operator is by definition the map Q←
W which assigns

to each θ ∈ L2([t0, T ]; Rn) the vector Q←
W (θ) in R

N defined by

Q←
W (θ) =

∫ T

0

n∑
k=1

JW
t0←t Ak(rW (t)) θk(t) dt ; (5.3)

analogously, the forward smearing operator Q→
W is defined by

Q→
W (θ) =

∫ T

0

n∑
k=1

JW
T←t Ak(rW (t)) θk(t) dt . (5.4)

As R
N and L2([t0, T ]; Rn) carry natural Hilbert space structures, the adjoint

(Q→
W )∗ is a well-defined object.
The forward Malliavin covariance matrix is defined as the symmetric

N × N matrix (σ→
W )ξ,η associated to the hermitian operator σ→

W := Q→
W ◦

(Q→
W )∗ on R

N :

(σ→
W )ξ,η =

∫ T

t0

n∑
k=1

(
eξ

∣∣ JW
T←t Ak(rW (t))

)
RN

(
eη

∣∣ JW
T←t Ak(rW (t))

)
RN dt (5.5)

where {eξ} denotes the canonical basis of R
N . The associated quadratic form

reads as (
σ→

W (ζ)
∣∣ ζ)

RN =
∫ T

t0

n∑
k=1

(
ζ
∣∣ JW

T←t Ak(rW (t))
)2

RN dt . (5.6)

The backward Malliavin covariance matrix is the symmetric N × N matrix
(σ←

W )ξ,η associated to the hermitian operator on R
N defined by

σ←
W := Q←

W ◦ (Q←
W )∗ . (5.7)

The backward covariance matrix is given by the following formula:
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(σ←
W )ξ,η =

∫ T

t0

n∑
k=1

(
eξ

∣∣ JW
t0←t Ak(rW (t))

)
RN

(
eη

∣∣ JW
t0←t Ak(rW (t))

)
RN dt

=
∫ T

t0

n∑
k=1

(
(JW

t0←t)
∗(ezξ)

∣∣Ak(rW (t))
)

RN

(
(JW

t0←t)
∗(eη)

∣∣Ak(rW (t))
)

RN dt.

(5.8)

The relation JW
T←t0

◦ JW
t0←t = JW

T←t combined with (5.7), (5.8) implies the
following conjugation between the forward and backward covariance matrices:

(JW
T←t0)

∗ ◦ σ←
W ◦ (JW

T←t0)
∗ = σ→

W . (5.9)

As the matrix JW
T←t0

is invertible, invertibility of σ→
W is equivalent to the

invertibility of σ←
W .

Theorem 5.2. Let the forward covariance matrix σ→
W be invertible.

i) For any ζ ∈ R
N , defining θ→W =

(
(Q→)∗ ◦ (σ→

W )−1
)
(ζ), we have

Q→
W (θ→W ) = ζ; (5.10a)

if λ→
W denotes the smallest eigenvalue of σ→

W then

‖θ→W ‖2
L2 = ((σ→

W )−1ζ | ζ) ≤ (λ→
W )−1‖ζ‖2 . (5.10b)

ii) For any ζ ∈ R
N , defining θ←W =

(
(Q←)∗ ◦ (σ←

W )−1
)
(ζ), we have

Q←
W (θ←W ) = ζ ; (5.11a)

if λ←
W denotes the smallest eigenvalue of σ←

W then

‖θ←ζ ‖2
L2 = ((σ←

W )−1ζ | ζ) ≤ (λ←
W )−1‖ζ‖2 . (5.11b)

Proof. The proof will be given only in the forward case and follows a short and
well-known duality argument in Hilbert space theory. Fixing another element
ζ ′ ∈ R

N , we have(Q→
W (θζ)

∣∣ ζ ′) =
(
θζ

∣∣ (Q→
W )∗ζ ′

)
=

(
((Q→

W )∗ ◦ σ−1)(ζ)
∣∣ (Q→

W )∗ζ ′
)

=
(
σ−1(ζ)

∣∣Q→
W ◦ (Q→

W )∗ζ ′
)

=
(
σ−1ζ

∣∣σ(ζ ′)
)

=
(
(σ∗ ◦ σ−1)ζ

∣∣ ζ ′) = (ζ | ζ ′),

where the last equality is a consequence of the fact that σ∗ = σ; therefore

(Q→
W (θζ) − ζ | ζ ′) = 0, ∀ ζ ′ ;
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taking ζ ′ = Q→
W (θζ) − ζ we get

Q→
W (θζ) − ζ = 0 .

We proceed now to the proof of (5.10b):

(θζ | θζ)L2 =
(
(Q→

W )∗ ◦ σ−1(ζ)
∣∣ (Q→

W )∗ ◦ σ−1(ζ)
)

=
(
σ−1(ζ)

∣∣Q→
W ◦ (Q→

W )∗ ◦ σ−1(ζ)
)

= (σ−1ζ | ζ). ��
Proposition 5.3. Assume that the vector fields Ak have bounded derivatives
up to fourth order, then

σ→, σ← ∈ Dp
1(W n) . (5.12)

Proof. We have to show that Q→ ∈ Dp
1(W n).

1) Fixing θ, we compute the derivatives

Dτ,k(Q→
W )(θ)

=
∫ s

0

dt

n∑
k=1

[(
Dτ,kJW

s←t

)
(Ak(rW (t))) θk(t) + JW

s←t

(
Dτ,kAk(rW (t))

)
θk(t)

]
.

Calculating first the second term, we get

Dτ,kAk(rW (t)) = 1{τ<t} Ak JW
t←τ (Ak)

which is dominated by the bound on the derivatives of Ak. The computation
of the first term involves the differentiation of the matrix-valued SDE (5.2):

ds(JW
s←t) =

(
n∑

k=1

Ak(ζW (t)) dWK(t) + A0(ζW (t)) dt

)
JW

s←t .

This derivative is obtained by differentiating again the coefficients Ak which
leads to second derivatives of the vector fields Ak.
2) By means of (5.8) the derivative Dτ,kσξη is equal to

∫ s

0

dt

n∑
k=1

(Cξ,η + Cη,ξ), where

Cξ,η :=
(
eξ

∣∣Dτ,k(JW
s←t Ak(rW (t)))

)
RN

(
eη

∣∣ JW
s←t Ak(rW (t))

)
RN

.

Note that the term Dτ,k(JW
s←t Ak(rW (t))) has already been computed in the

first step. ��
Remark 5.4. The computation of the derivatives of σ→ has been realized by
solving linearized SDEs along the process; in principle, this procedure is im-
plementable by a Monte-Carlo simulation.
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5.3 Malliavin Covariance Matrix
and Hörmander Bracket Conditions

Given two vector fields A1, A2 their Lie bracket is by definition the vector
field C with the components:

Cξ :=
∑

η∈{1,...,N}

(
Aη

1

∂A2

∂ξη
− Aη

2

∂A1

∂ξη

)
, ξ ∈ {1, . . . , N} . (5.13)

The Lie bracket C of the vector fields A1 and A2 is denoted by [A1, A2].
The Lie algebra A generated by n vector fields A1, . . . , An is defined as

the vector space of all fields obtained as linear combinations with constant
coefficients of the

Ak, [Ak, A�], [[Ak, A�], As], [[[Ak, A�], As], Au], etc.

Given r ∈ R
N , let A(r) := {ζ ∈ R

N | ζ = Z(r) for some Z ∈ A}.
Definition 5.5. We say that vector fields A1, . . . , An satisfy the Hörmander
criterion for hypoellipticity if A1, . . . , An are infinitely often differentiable and
if

A(r) = R
N for any r ∈ R

N . (5.14)

Lemma 5.6 (Key lemma). Assume that the vector fields Ak, along with
their derivatives, are uniformly bounded and satisfy the Hörmander criterion
for hypoellipticity. Denoting by λ(W ) the smallest eigenvalue of the covariance
matrix (5.8), then

E
[
λ(W )−p

]
< ∞, ∀ p < ∞ . (5.15)

Proof. See Malliavin [140] and Kusuoka–Stroock [124, 125]. ��
Some aspects of the computation will be considered in the last section of

this chapter.

5.4 Regularity by Predictable Smearing

We denote by πs(r0, dr) the probability transition starting from r0 at time 0
to be at time s = T − t0 at the volume element dr.

Given p > 1, we say that (p, 1)-forward regularity holds true if the following
formula of integration by parts is satisfied: ∀φ ∈ C1

b and ∀ ξ ∈ {1, . . . , N},∫
RN

∂φ

∂rξ
(r)πs(r0, dr) =

∫
RN

φ(r)Kξ(r)πs(r0, dr) , (5.16)

where
∫ |Kξ(r)|p πs(r0, dr) < ∞.
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It is obvious that conditions are needed on the driving vector fields Ak in
order that forward regularity can hold true; for instance, let A1, A2 be the two
first coordinate vector fields of R

N , take A0 = 0, then the generated diffusion
is a Brownian motion on R

2 and it is impossible to find an integration by
parts formula for other coordinate vector fields.

Given p > 1, we say that (p, 1)-backward regularity holds if for any φ ∈ C1
b

and any ξ ∈ {1, . . . , N},

lim
ε→0

1
ε

∫
RN

(
πs(r0 + εeξ, dr) − πs(r0, dr)

)
φ(r) =

∫
RN

φ(r)Hξ(r)πs(r0, dr) ,

(5.17)
where

∫ |Hξ(r)|p πs(r0, dr) < ∞.

Theorem 5.7. Let the Hörmander hypoellipticity criterion (5.14) be satisfied,
and assume that derivatives of any order of the vector fields Ak are uniformly
bounded. Then backward and forward regularity hold true for every p > 1 and
every r0 ∈ R

N .

Proof. First we are going to prove backward regularity. Consider the coordi-
nate vector fields (eη)1≤η≤N , and for η ∈ {1, . . . , N} define vector fields Yη

on W n by
Yη(W ) := (Q←

W )∗(eη) . (5.18)

It results from the backward structure that each Yη is predictable; therefore
the divergence of Yη is computable by the following Itô integral:

ϑ(Yη) =
n∑

k=1

∫ s

0

Y k
η (τ) dWk(τ) . (5.19)

Denote γ←
W := (σ←

W )−1 and consider the vector field Zξ on W n defined by the
following linear combination of the vector fields Yη:

Zξ :=
∑

η

(γ←
W )η

ξ Yη; then ϑ(Zξ) =
∑

η

(
(γ←

w )η
ξ ϑ(Yη) − DYη

(γ←
w )η

ξ

)
. (5.20)

According to (5.16) and (1.19), the divergence ϑ(Z) exists and ϑ(Z) ∈ Lp.
Using now (5.11a) gives

E [ϑ(Zξ)φ(rW (s))] = E
[
DZξ

(φ(rW (s)))
]

= lim
ε→0

1
ε

∫
RN

(
πs(r0 + εeξ, dr) − πs(r0, dr)

)
φ(r). (5.21)

Finally denote by Es the σ-field generated by W �→ rW (s). Taking conditional
expectation of (5.21) we get∫

RN

E
Es [ϑ(Zξ)] φ(r)πs(r0, dr)

= lim
ε→0

1
ε

∫
RN

(
πs(r0 + εeξ, dr) − πs(r0, dr)

)
φ(r) .
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To prove forward regularity we consider the conjugated matrix JW
0←s =: δW .

To a given coordinate vector field eξ on R
N , we define a vector field Uξ on

W n by the following linear combination of the vector fields Z∗:

Uξ =
∑

η

(δW )η
ξZη; then ϑ(Uξ) =

∑
η

(
(δW )η

ξ ϑ(Zη) − DZη
(δW )η

ξ

)
. (5.22)

Then

E [ϑ(Uξ)φ(rW (s))] = E
[
DUξ

(φ(rW (s)))
]

=
∫

RN

∂φ

∂rξ
(r)πs(r0, dr). ��

Remark 5.8. The experienced reader will see that the same result holds true
if invertibility of σ←

W is replaced by the condition that ζ lies in the range of
σ←

W , where ζ denotes a tangent vector at the initial point r0.

Remark 5.9. The approach used in this section is implementable in a Monte-
Carlo simulation.

5.5 Forward Regularity
by an Infinite-Dimensional Heat Equation

The idea is to use the Brownian sheets to construct heat processes on W n.
We use the following representation of the Brownian sheet

Ws(τ) = τB0(s) +
√

2
∞∑

q=1

sin(qπτ)
q

Bq(s), τ ∈ [0, 1] , (5.23)

where {Bq}q≥0 is an infinite sequence of independent R
n-valued Brownian

motions satisfying Bq(0) = 0.
We fix s and consider the SDE, companion of (5.1), taking now the form

dτ (rWs
(τ)) =

n∑
k=1

Ak(rWs
(τ)) dW k

s (τ) + A0(rWs
(τ)) dτ, rWs

(0) = r0 .

(5.24)
We consider the functional Φ : {B.} → R

N defined as Φ(B.(s)) = rWs
(1).

Theorem 5.10. The process s �→ Φ(B.(s)) is an R
N -valued semimartingale

such that

(σ→
Ws

)ξ,η = lim
ε→0

1
ε

E
Ns

[(
eξ

∣∣Φ(B.(s + ε)) − Φ(B.(s))
)

× (
eη

∣∣Φ(B.(s + ε)) − Φ(B.(s))
)]

. (5.25)

There exists a vector field α(r, s) = (αξ(r, s) : 1 ≤ ξ ≤ N) such that in terms
of the time-dependent elliptic operator
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Ls =
1
2

∑
ξ,η

σ̄ξ,η(r, s)
∂2

∂rξ∂rη
+

∑
ξ

αξ(r, s)
∂

∂rξ
, σ̄(r, s) := E

Φ(B.(s))=r[σ→
Ws

],

the following formula holds:

∂

∂s

∫
RN

πs(r0, dr)φ(r) =
∫

RN

πs(r0, dr) (Lsφ)(r), ∀φ. (5.26)

Proof. Use Itô calculus for proving (5.25). ��
Remark 5.11. This methodology reduces the study of a hypoelliptic operator
to the study of a non-autonomous elliptic operator Ls. It is of interest to see
how the elliptic symbol varies. Itô calculus applied to the process s �→ σ→

Ws

will give rise to a matrix-valued SDE for ds(σ→
Ws

).

5.6 Instability of Hedging Digital Options
in HJM Models

We follow the Musiela parametrization of the Heath–Jarrow–Morton model
(otherwise HJM model). In this parametrization a market state at time t0 is
described by the instantaneous interest rate rt0(ξ) to a maturity ξ, defined for
ξ ∈ R

+. The price P (t0, T ) of a default-free bond traded at t0 for a maturity
at t0 + T then has the value

P (t0, T ) = exp

(∫ T

0

rt0(ξ) dξ

)
.

Now the following question can be asked: what is the most general model
giving rise to a continuous arbitrage-free evolution? The HJM model answers
this general question. We shall limit the generality of the HJM model to the
case of a finite number of scalar-valued driving Brownian motions W1, . . . , Wn.
Then the HJM model is expressed by the following SDE: ∀ ξ ∈ R

+,

drt(ξ) =
n∑

k=1

Bk(t, ξ) dWk(t) +

{
∂rt

∂ξ
(ξ) +

n∑
k=1

∫ ξ

0

Bk(t, ξ)Bk(t, η) dη

}
dt .

(5.27)
As in the case of an elliptic market, the drift of the risk-free process is com-
pletely determined by the volatility matrix B.(t, ·).

The hypothesis of market completeness, in the sense that exogenous factors
of stochasticity are negligible, assumes that the stochasticity matrix A.(t, ·)
is Nt measurable where Nt denotes the σ-field generated by rs(·), s ≤ t. We
shall work under the hypothesis of Markovian completeness which means that
this dependence is factorizable through the final value rt(·). More precisely,
Markovian completeness means that there exists n such that
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drt(ξ) =
n∑

k=1

(Ak(rt))(ξ) dWk(t)

+

{
∂rt

∂ξ
(ξ) +

n∑
k=1

∫ ξ

0

(Ak(rt))(ξ) (Ak(rt))(η) dη

}
dt. (5.28)

An appropriate notion of “smoothness” of vector fields is a necessary hypoth-
esis in order to prove existence and uniqueness of solutions. Banach space
type differential calculus is not suitable because the operator r �→ ∂rt/∂ξ is
not bounded. To this end, a theory of differential calculus in Fréchet space
is needed (see Filipović–Teichmann [72, 73]). A precise differential calculus
treatment of (5.28) is in itself a whole theory which we shall only touch in
this book.

Our point is to avoid functional analysis and to concentrate on proving
that for reasonable finite-dimensional approximations numerical instabilities
appear in digital option hedging.

Let C = C([0,∞[) be the space of continuous functions on [0,∞[. Define
the logarithmic derivative of a measure µλ depending on a parameter λ as the
function satisfying, for every test function f ,

∂λ

∫
C

f(r)µλ(dr) =
∫

C

f(r) (∂λ log(µλ))(r)µλ(dr) .

Then a Hilbert norm on tangent vectors at r0 is given by

‖z‖2
t =

∫
C

[
d

dε

∣∣∣
ε=0

log(πt(r0 + εz, ·))(r)
]2

πt(r0, dr) . (5.29)

Definition of Compartmentation (Hypoelliptic Global Version)

The two norms ‖z‖s, ‖z‖s′ , s �= s′ are inequivalent. (5.30)

The operator Q←
W has been defined in (5.3). We choose now a Hilbert

metric ‖·‖C on C. Using the canonical Hilbert space structure of L2([0, s]; Rn),
the adjoint (Q←

Ws
)∗ gives the operator

σ←
Ws

= Q←
Ws

◦ (Q←
Ws

)∗ .

Theorem 5.12. We have the estimate

‖y‖2
s ≤ inf

{‖u‖C : σ←
Ws

(u) = y
}

.

Proof. See Theorem 5.7. ��

Theorem 5.13 (Pathwise compartmentation principle). Let W be a
fixed trajectory of the Brownian motion and denote by σ←

W (s) the covariance
matrix computed on [0, s]. Then, generically, the range of σ←

W (s) is strictly
increasing as a function of s.

Proof. See [5]. ��
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Corollary 5.14. There exist digital options for which the Ocone–Karatzas
hedging formula becomes unstable.

See Baudoin–Teichmann [24] for related results.

5.7 Econometric Observation of an Interest Rate Market

From our point of view, an econometric computation will be a numerical
computation realized in real time and made from observations of a single time
series of market data, without any quantitative assumption or any choice of
model.

Firstly we can compute historical variance from the market evolution;
for this purpose we can use the methodology of Fourier series described in
Appendix A or other algorithms (e.g., see [92]).

We get a time-dependent N×N covariance matrix dtr(t)∗dtr(t) =: C(t) dt;
denote by λk,t its eigenvalues and by φ̃k,t the corresponding normalized eigen-
functions. We assume that only a relatively small number N0 of eigenvalues
are not very close to zero. Denoting by φk,t =

√
λk,t φ̃k,t the canonical eigen-

vectors, we have

C(t) =
N0∑
k=1

φk,t ⊗ φk,t .

The vector-valued function t �→ φk,t is the econometric reconstruction of the
vector-valued function t �→ Ak(rW (t)) under the assumption that model (5.1)
holds true.

We keep the hypotheses used in Chap. 3 for constructing the feedback
volatility rate. We assume that

φk,t = Φk(r
W

(t)) (5.31)

where the Φk are smooth unknown functions of r varying slowly in time. In a
real market the Φk depend also on external factors; as our purpose is to study
the market on a short period of time, assumption (5.31) appears reasonable.

We use a model-free approach and make no assumption on the actual
expression of the functions Φk. The main fact is that, using the methodology of
iterated volatilities, we are able to compute econometrically pathwise brackets
[Φk,Φl].

Theorem 5.15. Under assumption (5.31) we have

∂φs,t
(φα

q,t) dt =
1

λs,t

N∑
β=1

φβ
s,t (dtφ

α
q,t ∗ dtr

β
t ) . (5.32)
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Proof. From our point of view, it is legitimate to compute cross-covariances of
any processes defined on the econometric time evolution. Under assumption
(5.31), we have

dtφ
α
q,t ∗ drβ

t =
N∑

γ=1

Cγ,β ∂γΦα
q dt .

We multiply this identity by φβ
s,t and sum on β:

∑
β

φβ
s,t (dtφ

α
q,t ∗ dtr

β
t ) =

∑
γ

⎛
⎝∑

β

φβ
s,t Cγ,β

⎞
⎠ ∂γφα

q,t dt = λs,t∂φs,t
(φα

q,t) dt .

Corollary 5.16. The brackets of the vector fields Φk are given by the following
expressions:

[Φs,Φk]α dt =
1

λs,t

∑
β

φβ
s,t (dtφ

α
k,t∗dtr

β
t )− 1

λk,t

∑
β

φβ
k,t (dtφ

α
s,t∗dtr

β
t ) . (5.33)

All previous statements are mathematical statements for a market driven
by the SDE (5.1). It is possible to use these statements as econometric tools
to decipher the market state if, at an appropriated time scale, the vectors φk,t,
[φk,t, φ�,t] show some kind of stability.
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Insider Trading

Anticipative stochastic calculus can be considered as a major progress of Sto-
chastic Analysis in the decade 1980–1990: starting with [82] and [160] and
developed in [46, 75, 97, 98, 103, 157, 159, 206].

Application of anticipative calculus to insider behaviour began with [89,
90], and has been developed to an elaborated theory in [6, 54, 99, 100, 131].
This chapter is mainly devoted to a presentation of work of P. Imkeller and
his co-workers [6, 54, 75, 97–100].

6.1 A Toy Model: the Brownian Bridge

As this chapter deals with abstract concepts, we shall first present in this sec-
tion the relevant concepts in the concrete framework of the Brownian bridge.

Fixing two points a, b ∈ R
n, let Ca→b

T denote the affine space of continuous
functions u : [0, T ] → R

n such that u(0) = a and u(T ) = b. Given a positive
integer s, let ξk = k2−sT for k = 0, 1, . . . , 2s be the dyadic partition of the
interval [0, T ]. As in Sect. 1.2, we consider the subspace sCa→b

T of Ca→b
T con-

sisting of the maps which are linear on the sub-intervals between consecutive
points of the dyadic partition.

We define a probability measure sρa→b
T on sCa→b

T by the formula

πε(a, η1)πε(η1, η2) . . . πε(η2−s−2, η2−s−1)πε(η2−s−1, b)
πT (a, b)

2s−1⊗
k=1

dηk

where ε = T2−s and where πt is the heat kernel associated to Brownian
motion on R

n:

πt(ξ, ξ′) =
1

(2πt)n/2
exp

(
−‖ξ − ξ′‖2

2t

)
.
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Theorem 6.1. As s → ∞, the measures sρa→b
T converge weakly to a Borel

measure ρa→b
T carried by Ca→b

T . Given 0 < t1 < . . . < tq < 1, the image of
ρa→b

T under the evaluations {eti
}i=1,...,q is

πt1(a, η1)πt2−t1(η1, η2) . . . πtq−tq−1(ηq−1, ηq)π1−tq
(ηq, b)

πT (a, b)

q⊗
k=1

dηk . (6.1)

The measure ρ0→b
1 is the conditional law of the Brownian motion W indexed

by [0, 1], under the conditioning W (1) = b, or equivalently:

E[Φ(W )] =
∫

W n

Φ dγ =
∫

Rn

π1(0, b) db

[∫
C0→b

1

Φ dρ0→b
1

]
. (6.2)

Proof. The first statement is proved following the lines of the proof to The-
orem 1.6; the proof shows at the same time that ρa→b

T is supported by the
space of Hölder continuous paths of exponent α where α < 1/2. Formula (6.1)
is first checked in the case where the tk are dyadic fractions; the general case
is obtained by passing to the limit. Note that formula (6.2) is equivalent to
the analogous statement for the image measures under the evaluation map
{eti

}i=1,...,q. The image of the Wiener measure γ by the evaluation map is

(
πt1(a, η1)πt2−t1(η1, η2) . . . πtq−tq−1(ηq−1, ηq)π1−tq

(ηq, b)
q⊗

k=1

dηk

)
db .

This completes the proof of the theorem. ��
Theorem 6.2. [68] Consider the SDE

dB(t) = dW̃ (t) + It(B(t)) dt, It(ξ) := ∇ log π1−t(·, b)(ξ) , (6.3)

where W̃ is a Brownian motion on R
n. The measure ρ0→b

1 is the law of the
process B(t), 0 ≤ t < 1, with initial condition B(0) = a.

The time-dependent vector field It defined in (6.3) is called the information
drift.

Proof. Let

∆ =
1
2

n∑
k=1

∂2

∂ξ2
k

be the Laplacian on R
n and

L = ∆ +
∂

∂t

the corresponding heat operator. Consider the parabolic operator

S = L + I ∗ ∇ . (6.4)
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As L v = 0 for v(ξ, t) := π1−t(ξ, b), we get the Doob intertwining property

S (φ) =
1
v
L (vφ) . (6.5)

This intertwining of infinitesimal generators extends by exponentiation to the
intertwining of the associated semigroups on measures:

US
t1→t2 =

1
v
◦ UL

t1→t2 ◦ v, 0 < t1 < t2 < 1 .

The last relation coincides with (6.1). ��
Theorem 6.3. For 0 ≤ t < 1 let Ft be the filtration generated by B(s), s ≤ t;
denote by γ the Wiener measure. Then the Radon–Nikodym derivative is given
by

dρ0→b
1

dγ

∣∣∣∣
Ft

= exp

(
−
∫ t

0

n∑
k=1

Ik
s (B(s)) dW̃k(s) − 1

2

∫ t

0

∥∥Is(B(s))
∥∥2

Rn ds

)
.

(6.6)

Proof. The proof is performed by a Girsanov transformation on the SDE (6.3),
see Theorem 1.23. ��

6.2 Information Drift and Stochastic Calculus
of Variations

In order to simplify the notation we confine ourselves to a market with a single
risky asset whose price S is given by a semimartingale on the Wiener space W .
More formally, S is assumed to be driven by the stochastic differential equation

dSW (t) = βt dW (t) + αt dt (6.7)

where W is a one-dimensional Brownian motion and βt, αt are Ft-measurable;
(Ft) denotes the Brownian filtration generated by W .

The regular trader is operating on the market at time t, only with the
knowledge of Ft at hand. The trading operations are done on the interval
[0, T ]. We assume existence of a random variable G which is FT -measurable
for the regular trader. For the insider however the value of G is known from
the beginning of the trading period. We denote by Gt the insider filtration
Ft∨σ(G); any Gt-measurable portfolio is an admissible strategy for the insider.
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The information drift is defined as the Gt-measurable function It such
that

W ′(t) := W (t) −
∫ t

0

Is ds is a (Gt)-martingale. (6.8)

In this section we use Stochastic Analysis on the space W with respect to the
filtration (Ft). The G-conditional law process t �→ µt,W takes its values in the
simplex of probability measures on R and is defined by

E
Ft [φ(G)] =

∫
R

φ(ξ)µt,W (dξ) . (6.9)

At maturity t = T the conditional law process takes its values in the Dirac
measures; the value at time t = 0 is the law of G.

Proposition 6.4. The G-conditional law process is an (Ft)-martingale.

Remark 6.5. Note that in a simplex it is legitimate to take barycentres of a
collection of points; thus the above statement is meaningful.

Proof. Given t < t′ < T , we compute〈
φ, EFt [µt′,W ]

〉
= E

Ft [〈φ, µt′,w〉]
= E

Ft [EFt′ (φ(G))]

= E
Ft [φ(G)] = 〈φ, µt,W 〉. ��

Every scalar-valued martingale on W can be written as a stochastic in-
tegral; by the next condition we assume that the same holds true for the
conditional law process:

1. There exists an adapted process aW (t) taking values in the signed mea-
sures such that ∀h ∈ Cb(R) the following representation holds:

〈h, µt,W − µ0〉 =
∫ t

0

〈h, aW (s)〉 dW (s) . (6.10)

2. For any s < 1, aW (s) is absolutely continuous with respect to µs,W :

daW (s)
dµs,W

=: δs,W . (6.11)

3. Finally, assume that

∀ t < T, E

[∫ t

0

|δs,W | ds

]
< ∞ . (6.12)

Theorem 6.6. Suppose that the conditions 1, 2 and 3 above hold true. Then
the information drift I exists and equals

It = δt,W (ξ0) (6.13)

where ξ0 is the value of G known by the insider.
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Proof. Consider a test function h and compute for τ > t

A : = E
Ft

[
h(G)(W (τ) − W (t))

]
= E

Ft

[
(W (τ) − W (t))

∫
R

h(ξ)µτ,W (dξ)
]

. (6.14)

Writing

〈h, µτ,W 〉 = 〈h, µt,W 〉 +
∫ τ

t

〈h, as,W 〉 dW (s) ,

the right-hand-side of (6.14) gives a sum of two terms. The first term is easily
seen to vanish:

E
Ft

[
(W (τ) − W (t))

∫
R

h(ξ)µt,W (dξ)
]

=
(∫

h(ξ)µt,W (dξ)
)

E
Ft [W (τ) − W (t)] = 0 .

For the second term we note that

E
Ft

[∫ τ

t

(∫
R

h(ξ) as,W (dξ)
)

ds

]
= E

Ft

[∫ τ

t

(∫
h(ξ) δs,W (ξ)µs,W (dξ)

)
ds

]
.

Letting Ψs(ξ) := δs,W (ξ)h(ξ), we have∫
h(ξ)δs,W (ξ)µs,W (dξ) =

∫
Ψs(ξ)µs,W (dξ)

= E
Fs [Ψ(G)] = E

Fs [h(G) δs,W (G)] .

Therefore

A = E
Ft

[
h(G)

∫ τ

t

δs,W (G) ds

]
,

and we deduce that

E
Ft

[
h(G)

(
W (τ) − W (t) −

∫ τ

t

δs,W (G) ds

)]
= 0. ��

6.3 Integral Representation
of Measure-Valued Martingales

The purpose of this section is to prove that condition (6.10) holds true un-
der a very weak hypothesis of differentiability. The reader interested mainly
in properties of the information drift can skip this section and proceed to
Sect. 6.4.

The main technical tool in this section is the stochastic calculus of variation
for measure-valued functionals. Denote by M the vector space of signed Borel
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measures on R of finite total variation; hence if |µ| denotes the total variation
norm of µ ∈ M , then |µ| < ∞. Let Cb(R) be the space of bounded continuous
functions on R which is dual to M through the pairing 〈f, µ〉 =

∫
f dµ.

Note that we can find a sequence {fi} in Cb(R) such that ‖fi‖Cb(R) = 1
and such that supi |〈fi, µ〉| = |µ| for all µ ∈ M . We define a mapping

Φ: M → R
N, Φi(µ) := 〈fi, µ〉 .

We consider M -valued functionals ψ : W �→ µW ∈ M and define

Dp
1(W ;M ) =

{
ψ : Φi ◦ ψ ∈ Dp

1(W ), i = 1, . . . , N, and ‖ψ‖p
Dp

1
< ∞

}
,

where

‖ψ‖p
Dp

1
:= E

[
|ψ|p +

(∫ 1

0

|Dtψ|2 dt

)p/2
]

(6.15)

and where |Dtψ| := supi |Dt(Φi ◦ ψ)|. Then a.s. in W , there exists c(W, ·) ∈
L2([0, 1]) such that

|Dt(Φi ◦ ψ)| ≤ c(W, t) .

This domination implies that:

∃νt,W ∈ M such that Dt(Φi ◦ ψ) = 〈fi, νt,W 〉; (Dtψ)(W ) := νt,W . (6.16)

Theorem 6.7 (Main theorem). Assume that the conditional law process
satisfies

µ1−ε, . ∈ Dp
1(W ;M ), ∀ ε > 0 . (6.17)

Then (6.10) holds true. If furthermore (6.11) and (6.12) are satisfied, the
information drift Is is well-defined for s < 1.

Proof. Fix ε > 0 and let ψi(W ) = Φi(µ1−ε,W ); then the Ocone–Karatzas
formula can be applied on [0, 1 − ε]:

ψi − µi =
∫ 1−ε

0

E
Fs [Dsψ

i] dW (s), µi := 〈f i, µ〉 .

The same formula holds for any finite linear combination of the fi. Fixing
h ∈ Cb(R), we find a sequence gk of linear combinations of the fi such that

lim gk(ξ) = h(ξ), uniformly ξ ∈ [−A,A], ∀A < ∞ , (6.18)

and sup
k

∥∥gk

∥∥
Cb(R)

< ∞ .

Then

〈gk, µ1−ε〉 − 〈gk, µ〉 =
∫ 1−ε

0

〈
gk, EFt [Dtψ]

〉
dW (t)

where ψ := µ1−ε,W and where Dtψ is defined in (6.16); letting k → ∞ and
using (6.18) we get (6.10). ��
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6.4 Insider Additional Utility

Assume that the price of the risky asset is given by the SDE

dSt = St(σt dW (t) + αt dt)

where the coefficients αt, σt are Ft-measurable and where σt ≥ σ > 0.
The regular trader portfolio is given by an Ft-measurable function πt

describing the quantity of the risky asset. Then the value V (t) of the portfolio
at time t is given by the SDE

dV (t) = V (t)πt dS(t) .

This linear SDE can be explicitly integrated and we get

V (t)
V (0)

= exp
(∫ t

0

σs dW (s) −
∫ t

0

(
1
2
π2σ2

s − πsαs

)
ds

)
.

Choosing as utility function U(t) = log V (t), we get

E[U(t)] = E

[∫ t

0

(
πsαs − 1

2
π2

sσ2
s

)
ds

]
+ log V (0) . (6.19)

Proposition 6.8. The portfolio maximizing the expectation of the logarithmic
utility of the regular trader is given by πs = αs/σ2

s ; the maximum expected
utility equals

Ur =
1
2

E

[∫ t

0

α2
s

σ2
s

ds

]
. (6.20)

Remark 6.9. Negative values of πs are admissible; negative portfolios are re-
alized on the market by selling call options.

Proof. As a consequence of the hypotheses made on σs and αs, the proposed
extremal portfolio is (Fs)-measurable. For fixed s it realizes the maximum of
the quadratic form − 1

2π2σ2
s + παs. ��

Insider Portfolio

With respect to the insider filtration (Gt) the Brownian motion W becomes a
semimartingale with drift; the drift is given by the information drift:

dW = dW ′ + Idt , (6.21)

where W ′ is a (Gt)-Brownian motion. Note that It is Gt-measurable.
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Theorem 6.10. The portfolio maximizing the expected utility of the insider
is

πs =
αs + Is

σ2
s

with U i = Ur + Ua as the maximal expected utility and the additional utility
Ua given by

Ua :=
1
2

E

[∫ t

0

I2
s

σ2
s

ds

]
. (6.22)

Proof. Using (6.21), we resume the computations made for the regular trader.
The situation is reduced to the previous situation with αs �→ αs + Is, and we
get

U i =
1
2

E

[∫ t

0

(αs + Is)2

σ2
s

ds

]
.

Formula (6.22) is equivalent to the following orthogonality relation:

E

[∫ t

0

αsIs

σ2
s

ds

]
= E

[∫ t

0

αs

σ2
s

(
dW (s) − dW ′(s)

)]

= E

[∫ t

0

αs

σ2
s

dW (s)
]
− E

[∫ t

0

αs

σ2
s

dW ′(s)
]

= 0;

the expectation of each of these two stochastic integrals vanishes, because
αs/σ2

s is Fs-measurable and therefore a fortiori Gs-measurable. ��

6.5 An Example of an Insider Getting Free Lunches

We assume that the price of the risky asset is given by the SDE

dSt = St

(
σ(St) dWt + α(St) dt

)
(6.23)

where the coefficients σ and α are differentiable functions of S. The insider
knows the exact value of the random variable

G = sup
t∈[0,1]

St . (6.24)

A practical example of this situation is the exchange rate between two
national currencies where some secret bounds are established by the central
banks; these bounds being enforced by a direct intervention of central banks
on the market. A massive action of central banks on the market could make
it necessary to add to (6.23) a local time describing the boundary effect. This
discussion can be extended to the possible feedback effect on the stochastic
model (6.23) of the insider trading. We shall suppose that the insider trading
is done at such a small scale that the stochastic model (6.23) is not violated.
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Theorem 6.11. The insider model defined by (6.23), (6.24) satisfies (6.17),
(6.11), (6.12). Therefore the information drift I exists and satisfies

E

[∫ 1

0

|Is| ds

]
< ∞ . (6.25)

Each (Fs)-semimartingale is a (Gs)-semimartingale; furthermore the infor-
mation drift satisfies

E

[∫ 1

0

|Is|2 ds

]
= ∞ ; (6.26)

hence with positive probability the insider has arbitrage opportunities.

Proof. The reader who wants a full proof, going further than the sketch below,
should consult Imkeller–Pontier–Weisz [100] and Imkeller [99].

Let Gt = supτ∈[0,t] Sτ ; then (Gt, St) is a Markov process. Denote by
qt,S(y) dy the law of sups∈[t,1] Ss under the conditioning St = S. The con-
ditional law process satisfies

〈φ, µt〉 = E
Ft [φ(G)]

= φ(Gt)
∫ Gt

St

qt,St
(y) dy +

∫ ∞

Gt

φ(y)qt,St
(y) dy. (6.27)

By the hypothesis of differentiability on the coefficients of SDE (6.24) we have
St ∈ D2

1 and also Gt ∈ D2
1 (see Nualart–Vives [164] and Nualart [159], p. 88).

The maximum Gt is reached at a unique point τt ≤ t and we have τt < t with
probability 1; consequently

Dt(Gt) = 0 . (6.28)

Differentiating (6.27) and using the equation qt,S(S) = 0, we get

〈φ,Dtµt〉 = (DtSt)

(
φ(Gt)

∫ Gt

St

∂q

∂S
(y) dy +

∫ ∞

Gt

∂q

∂S
(y)φ(y) dy

)
.

Then condition (6.17) is satisfied; condition (6.11) is satisfied as well where
the Radon–Nikodym derivative is

δt = (DtSt)

(
1[τ1,1](t)

∂

∂S
log

[∫ G

S

qt,S(y) dy

]
+

∂

∂S
log qt,S(G)

)
.

From the last expression one can derive (6.25) and (6.26). Condition (6.26)
implies that the Girsanov transformation involved to realize the disappear-
ance of the drift α + I diverges; therefore by the Delbaen–Schachermayer
theorem [65] the possibility of arbitrage opportunities is open. ��
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Asymptotic Expansion and Weak Convergence

In undergraduate calculus courses the Taylor formula provides the key tool
for computing asymptotic expansions. The Stochastic Calculus of Variations
started very quickly to play an analogous role in the probabilistic setting,
and stochastic Taylor formulae appeared in [2, 10, 23, 25, 26, 38, 50, 126,
127, 139, 176]. In all these developments, the result of Watanabe [213], which
provides the methodology of projecting an asymptotic expansion through a
non-degenerated map, plays a key role.

A second stream of papers appeared with the application of these method-
ologies to problems in asymptotic statistics, starting with [214–217] and fol-
lowed by many others. A third stream finally is concerned directly with math-
ematical finance where the following papers can be listed: [15–18, 78, 111, 114,
117–123, 128, 137, 138, 153, 154, 177, 198–200, 202, 203]. A reasonable survey
of the literature in this direction would go far beyond the limits of this book.

Based on the theory of stochastic flows, the first section of this chapter
develops an asymptotic formula for solutions of an SDE depending smoothly
on a parameter. The second section presents the theory of Watanabe distri-
butions on Wiener space and its consequences for asymptotic expansions. In
particular, we shall deduce an asymptotic expansion for European digital op-
tions in a market driven by a uniformly hypoelliptic SDE depending smoothly
on a parameter.

The two last sections deal with specific problems of convergence related to
the Euler scheme. Strong convergence of the Euler scheme in terms of Sobolev
norms on the Wiener space is treated in Sect. 7.3. The fourth section finally is
concerned with weak convergence of the scheme in a new space of distributions
on the Wiener space, the co-called diagonal distributions. The results of the
last two sections have been summarized in [146].
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7.1 Asymptotic Expansion of SDEs Depending
on a Parameter

We consider an R
d-valued SDE depending upon a parameter. Using the no-

tation of (2.2), we write in Stratonovich notation:

dSε
W =

n∑
k=1

Ak(Sε
W (t), ε) ◦ dW k + A0(Sε

W (t), ε) dt, Sε
W (0) = 0 . (7.1)

Theorem 7.1. Assume that the vector fields Ak have bounded derivatives of
any order in the variables (x, ε), then for any q there exist processes vj,W (t),
computable by solving Stratonovich SDEs, such that∥∥∥∥∥∥Sε

W (t) − S0
W (t) −

q∑
j=1

εj vj,W (t)

∥∥∥∥∥∥
Dp

r (W )

= o(εq), ∀ p, r < ∞ . (7.2)

Proof. In order to shorten the proof we limit ourselves to the case q = 1. We
extend the SDE to R

d+1 by adding an additional equation to system (7.1):

dε(t) = 0, dSε
W =

n∑
k=1

Ak(Sε
W (t), ε) ◦ dW k + A0(Sε

W (t), ε) dt,

ε(0) = ε, Sε
W (0) = 0. (7.3)

We denote UW
t←0 the stochastic flow of diffeomorphisms on R

d+1 as-
sociated to SDE (7.3) and consider the corresponding tangent flow JW

t←0

which has been defined in Chap. 2, (2.13). We remark that the hyperplanes
{ε = const} are preserved by the flow UW

t←0. Denote by e0, e1, . . . , ed the
canonical basis of R

d+1, the vector e0 corresponding to the component in ε.
Then (JW

t←0(se0))(e0) = (e0, uW (s, t)).
By the elementary integral Taylor formula,

Sε
W (t) − S0

W (t) = ε uW (0, t) +
∫ ε

0

(uW (s, t) − uW (0, t)) ds.

Taking v1,W (t) := uW (0, t), the remainder term ρ takes the form

ρ := ε

∫ 1

0

(uW (sε, t) − uW (0, t)) ds = ε2

∫ ∫
0<τ<s<1

(J W
t←0(τe0))(e0, e0) dτds

where Jt←0 denotes the flow associated to the second prolongation of SDE
(7.3) defined in Sect. 2.6. Now use the fact that Φ: W �→ J W

t←0(τe0) satisfies
bounds of the norms Dp

1(W ) uniformly in τ . ��
Remark 7.2. Suppose that the market described by SDE (7.1) a digital Eu-
ropean option with payoff f(ε) := E[1K(S)] is given. Then it is not clear
whether the results of this section imply the existence of an asymptotic ex-
pansion for f . However the Watanabe theory will permit us to establish such
an expansion.
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7.2 Watanabe Distributions and Descent Principle

We defined in Chap. 4, (4.12), the space

D∞(W ) =
⋂

p,r<∞
Dp

r (W ) .

A distance on D∞(W ) is given by the formula

δ(f1, f2) =
+∞∑

p,r=1

ηp,r 1 ∧ ‖f1 − f2‖Dp
r (W ) ,

where ηp,r > 0 such that
∑

p,r ηp,r < ∞. This topology on D∞(W ) is inde-
pendent of the choice of the sequence {ηp,r}.

With respect to this distance, D∞(W ) becomes a complete metric space.
We call D−∞(W ) the space of continuous linear forms on D∞(W ). It results
from [66] that, given T ∈ D−∞(W ), there exist c, p, r such that

|〈f, T 〉| ≤ c ‖f‖Dp
r (W ) .

We define a map χW : D∞(W ) �→ D−∞(W ) by associating to the function g
the linear form Tg given by

〈f, Tg〉 := E[fg] .

On R
d we consider the Schwartz space S (Rd) of functions rapidly de-

creasing together with all their derivatives, and denote by S ′(Rd) its dual,
the space of tempered distributions. We have a similar identification on
χRd : S (Rd) → S ′(Rd) defined by

〈u, Tv〉 :=
∫

Rd

u(x)v(x) dx ,

where dx is the Lebesgue measure on R
d. Recall that χRd(S ) is dense in

S (Rd).
Given a non-degenerate map F : W �→ R

d and a function u ∈ S (Rd), we
consider the inverse image F ∗u := u ◦ F = ũ. The fact that F ∈ D∞(W ; Rd)
implies that

F ∗[S (Rd)] ⊂ D∞(W ) .

Let p be the density of the law of F with respect to the Lebesgue measure.
By the results of Chap. 4 we get p ∈ S (Rd) and∫

Rd

uv p dξ = E[ũṽ] . (7.4)
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Theorem 7.3 (Watanabe’s continuity theorem). Let F be a non-
degenerate map. Given T ∈ S ′(Rd), let un ∈ S (Rd) be such that χRd(un)
converges to T in S ′(Rd). Then F ∗(un) converges to ST ∈ D−∞(W ) in the
topology of D−∞(W ), and the following duality formula holds:〈

f, ST

〉
=

〈
p E

F [f ], T
〉

, (7.5)

where E
F denotes the conditional expectation with respect to F .

Proof. It’s a well-known fact that S (Rd) is a topological algebra, and there-
fore S ′(Rd) a topological module on S (Rd); this implies that χRd(p un) con-
verges in S ′(Rd) to pT . This convergence lifts up to D−∞(W ) by F ∗ which
proves (7.5). ��
Theorem 7.4. Consider a family of maps F ε ∈ D∞(W ; Rd) such that F ε

has an asymptotic expansion in D∞(W ) up to order q:

lim
ε→0

ε−q

∥∥∥∥∥∥F ε −
q∑

j=0

εjFj

∥∥∥∥∥∥
Dp

r (W )

= 0, ∀ p, r < ∞ .

Let σ→
W (ε) be the Malliavin forward covariance matrix of F ε, as defined in

(5.6), and denote by λW
→(ε) its smallest eigenvalue. Assume that

sup
ε

E[λW
→(ε)−N ] < ∞, ∀N .

Then the law of F ε has a C∞-density pε with respect to the Lebesgue measure.
Furthermore, there exist C∞-functions fj on R

d such that for any ξ ∈ R
d with

p0(ξ) �= 0, we have:

lim
ε→0

ε−q

∣∣∣∣∣∣pε(ξ) −
q∑

j=1

εjfj(ξ)

∣∣∣∣∣∣ = 0 .

Proof. See Watanabe [213]. ��

7.3 Strong Functional Convergence of the Euler Scheme

Strong convergence of the Euler scheme is a classical fact. We shall refine this
result by expressing the convergence upstairs, i.e., on the probability space
itself. Convergence there is in terms of Sobolev norms on the Wiener space.
This functional convergence could be useful for evaluating the error in Monte-
Carlo simulations for look-back options.

We shall deal with the R
d-valued SDE

dξW (t) =
n∑

k=1

Ak(ξW (t)) dW k + A0(ξW (t)) dt; ξW (t0) = ξ0 , (7.6)
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where W is an n-dimensional Brownian motion on Wiener space W n and
Ak are smooth bounded vector fields on R

d with bounded derivatives of any
order. Let

L =
1
2

∑
k,α,β

Aα
k Aβ

k DαDβ +
∑
α

Aα
0 Dα, Dα = ∂/∂ξα,

be the associated differential generator.
Given ε > 0, the Euler scheme of mesh ε is defined by the following

recursion formula:

ξWε
(qε) − ξWε

((q − 1)ε) =
n∑

k=1

Ak(ξWε
((q − 1)ε))

[
W k(qε) − W k((q − 1)ε)

]
+ A0(ξWε

((q − 1)ε)) ε , ξWε
(t0) = ξ0. (7.7)

Using the notation tε = t0 +
[
(t − t0)/ε

]
ε where

[
a
]

is the largest integer
≤ a, the Euler scheme for all times is the process defined for t ∈ [t0, T ] as the
solution of the delayed SDE

dξWε
(t) =

n∑
k=1

Ak(ξWε
(tε)) dW k(t) + A0(ξWε

(tε)) dt, ξWε
(t0) = ξ0.

The remainder term θε(t) := ξWε
(t) − ξW (t) satisfies the SDE

dθε =
n∑

k=1

[
Ak

(
ξW (t) + θε(t)

)− Ak(ξW (t))
]
dW k(t)

+
[
A0

(
ξW (t) + θε(t)

)− A0(ξW (t))
]
dt + dχ(t),

where θε(t0) = 0 and

dχ(t) :=
n∑

k=1

εRk(t) dWk(t) + εR0(t) dt,

εRk(t) := Ak(ξWε
(tε)) − Ak(ξWε

(t)). (7.8)

Let Ak be the d × d matrix defined by differentiating the components of
the vector field Ak with respect to the coordinate vector fields. Then, almost
surely, the derivative of the solution ξWε

(t) to (7.7) with respect to the initial
data ξ0 defines a random flow of diffeomorphisms; its Jacobian is given by the
matrix-valued delayed SDE

dtJ
Wε

t←t0 = JWε

t←t0

(
n∑

k=1

Ak(ξW (tε)) dW k + A0(ξW (tε)) dt

)
, t ≥ t0,

where JWε

t0←t0 = identity.
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The derivatives of εRk(t) may be computed in terms of the Jacobian ma-
trix:

Dτ,�
εRk(t) = 1{τ≤t}

(
Ak(ξWε

(tε))JWε
t←τ (A�) − Ak(ξWε

(t))JWε
t←τ (A�)

)
;

(7.9)
the derivatives u(t) := Dτ,� θε(t) are computed by differentiating (7.8). We
get

du −
n∑

k=1

Ak(ξW + θε)u dW k − A0(ξW + θε)u dt =: dΓ

≡
n∑

k=1

Γk dW k + Γ0 dt, (7.10)

where Γ0,Γ1, . . . ,Γn can be computed using (7.9) and standard computations
of derivatives along the stochastic flow to SDE (7.6). By Itô’s formula, a
version of the Lagrange formula (variation of constants) may be established
for u(t). To take care of the Itô contraction, the Lagrange formula for ODEs
needs to be modified by adding the compensation vector field given by

Z :=
n∑

k=1

Ak Γk .

Then, by Itô’s formula, we get

u(t) = Jt←t0

[∫ t

t0
Jt0←τ

(
dΓ(τ) − Z(τ) dτ

)]
, (7.11)

where the Itô stochastic integral inside the brackets has to be computed first.
We introduce a parameter λ ∈ [0, 1] and define λθ as the solution of the SDE

dλθ(t) =
n∑

k=1

[
Ak

(
ξW (t) + λθ(t)

)− Ak(ξW (t))
]

dW k(t) (7.12)

+
[
A0

(
ξW (t) + λθ(t)

)− A0(ξW (t))
]

dt + λ dχ(t), λθ(t0) = 0.

As 0θ(t) = 0 for all t, denoting d
dλ

λθ = λu, we have θε =
∫ 1

0
λu dλ. By

differentiating (7.12) with respect to λ, we get the following linear SDE for
λu:

d λu = d εQ · λu + dχ , (7.13)

where d εQ =
∑n

k=1 Ak(ξW + λθ) dW k + A0(ξW + λθ) dt.

Theorem 7.5. For any p ∈ ]1,∞[ and any integer r > 0, we have

(
E

[
sup

t∈[t0,T ]

|θε(t)|pRd

])1/p

= O(
√

ε); sup
t∈[t0,T ]

∥∥θε(t)
∥∥

Dp
r

= O(
√

ε) . (7.14)
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Proof. Denote by εJW
t←τ the solution to the linear equation (7.13) with initial

condition εJW
τ←τ = id; as its coefficients Ak are bounded, we have uniformly

with respect to ε:

E

[
sup

t,τ∈[t0,T ]

∣∣εJW
t←τ

∣∣2p

]
≤ cp < ∞ .

For the same reason the compensation vector field Z is bounded in Lp; we get
E
[|εRk|2p

Rd

]
= O(εp). Using (7.11), we have

λu(t) = εJW
t←t0

[∫ t

t0

n∑
k=1

εJW
t0←τ

εRk(τ) dW k(τ) + εJW
t0←τ

(
εR0(τ) − Z(τ)

)
dτ

]
.

Consequently Dτ,kθ satisfies an SDE of the same nature as (7.8); the second
part of (7.14) is verified along the same lines. ��

7.4 Weak Convergence of the Euler Scheme

The “weakest” among weak topologies are topologies on spaces of distribu-
tions; we adopt this point of view in this section. Our main concern is to
establish asymptotic expansions “upstairs”, i.e., on the probability space it-
self. The Watanabe principle then makes it possible to pass from upstairs
estimates to estimates of densities.

We recall that the norm of the rth derivatives of f has been defined as

(∫ 1

0

. . .

∫ 1

0

|Dτ1,...,τr
f |2 dτ1 . . . dτr

)1/2

.

The Sobolev spaces Dp
r are defined with respect to this norm.

Consider the 1-dimensional subspace of R
s given by the diagonal {τ1 =

. . . = τs} and define a function V s on R
s by V s(τ1, . . . , τs) = Dτ1,...,τs

f
if τi ∈ [0, 1] and V s = 0 otherwise. We make an orthonormal change of
coordinates (η1, . . . , ηs) such that the diagonal is given by the equation ζ = 0
where ζ = (η2, . . . , ηs). Denoting by W s(η1, ζ) the function V s in this new
system of coordinates, we consider the partial functions W s

ζ : η1 �→ W s(η1, ζ).
The function V s is said to be diagonal-continuous if it has a version such
that ζ �→ W s

ζ is a continuous map from R
r−1 to L2(R). We denote by γDp

r

the subspace of Dp
r such that the second up to the rth derivative is diagonal-

continuous. A diagonal Sobolev norm is then defined by

‖f‖p
γDp

r
= E

[
|f |p +

(∫ 1

0

(Dτf)2 dτ

)p/2

+
r∑

s=2

sup
ζ∈Rs−1

‖W s
ζ ‖p

L2(R)

]
.
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Definition 7.6. A diagonal distribution (see [146]) is a linear form S on Dp
rγ

such that
|〈f, S〉| ≤ c ‖f‖γDp

r
.

We localize the method of Sect. 7.3 by using a Taylor expansion at λ = 0.
Denoting the second derivatives by λv := (d/dλ) λu and using Theorem 7.5,
we have

λθ = λ ◦u +
λ2

2
◦v + o(ε)

with o(ε) being uniform in λ. The question of asymptotic expansion of θ as o(ε)
is therefore reduced to the asymptotic expansion of ◦u, ◦v which we abbreviate
as u, v. We compute u from (7.13) for λ = 0 which realizes a computation along
the path of the original diffusion. In the same way, if (7.13) is differentiated
with respect to λ and if λ is set equal to 0, the terms

R1
k(t) :=

d∑
�,p=1

∂2Ak

∂ξ�∂ξp
(ξW (t))u�(t)up(t), Z1(t) :=

n∑
k=1

(Ak · R1
k) (ξW (t))

(7.15)
appear, and we get

v(t) = JW
t←t0

[∫ t

t0

n∑
k=1

JW
t0←τ (R1

k(τ)) dW k(τ)

+ JW
t0←τ

(R1
0(τ) − Z1(τ)

)
dτ

]
. (7.16)

Theorem 7.7 (Rate of weak convergence). There exist R
d-valued func-

tions ak�, bk, c on R
d, computable in terms of the coefficients of (7.6) and its

first fourth derivatives, such that for any f ∈ γD∞−0
3 ,

lim
ε→0

1
ε

E[θε(t) f ] =
∫ t

t0
E

⎡
⎣ n∑

k,�

ak�(ξW (τ))D2
τ,k;τ,�f

+
n∑

k=1

bk(ξW (τ))Dτ,kf + c(ξW (τ)) f

]
dτ .

Proof. Assume that diagonal distributions S̃1, . . . , S̃d are given and consider
the formal expression Sq =

∑
k(JW

t←t0)
q
k S̃k. As the coefficients of the matrix

JW
t0←t belong to γD∞−0

3 and as the space of diagonal distributions is a module
over the algebra γD∞−0

3 , we deduce that S is a diagonal distribution. Defining

ũ(t) := Jt0←t(u(t)), ṽ(t) := Jt0←t(v(t)) ,

we are reduced to finding a diagonal distribution S̃ such that

lim
ε→0

1
ε

E
[
ũ(t)f

]
= 〈f, S̃〉 , lim

ε→0

1
ε

E
[
ṽ(t)f

]
= 0 .
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To short-hand the notation, we write W (·) := JW
t0←τ (·); then ũ(t) =

ũ1(t) + ũ2(t) where

ũ1(t) :=
∫ t

t0

n∑
k=1

W(εRk(τ)) dW k(τ), ũ2(t) :=
∫ t

t0

W
(
εR0(τ) − Z(τ)

)
dτ .

Using the fact that an Itô integral is a divergence we get

E[fũ1(t)] =
∫ t

t0
E

[
n∑

k=1

(Dτ,kf) W(εRk(τ))

]
dτ .

Since εRk(τε) = 0, we get by applying Itô’s formula,

εRk(τ) = −
∫ τ

τε

∑
s

Ak(ξWε
(λ))·As(ξWε

(τε)) dW s(λ)−
∫ τ

τε

(εL Ak) (ξWε
(λ)) dλ

(7.17)
where

(εL Ak)(ξWε
(λ)) :=

1
2

∑
s,�,p

A�
s(ξWε

(τε))Ap
s(ξWε

(τε))
∂2Ak

∂ξ�∂ξp
(ξWε

(λ))

+
∑

�

A�
0(ξWε

(τε))
∂Ak

∂ξ�
(ξWε

(λ)) .

We want to eliminate the stochastic integral in (7.17). For this purpose, we
remark

E
[
(Dτ,rf) W (εRr(τ))

]
= E

[
E
Nτ (Dτ,rf) W (εRr(τ))

]
;

E

[
E
Nτε (Dτ,rf)

∫ τ

τε

∑
s

Ak(ξWε
(λ)) · As(ξWε

(τε)) dW s(λ)

]
= 0 .

From the Ocone–Karatzas formula, we get

E
Nτ [Dτ,rf ] − E

Nτε [Dτ,rf ] =
n∑

k=1

∫ τ

τε

E
Nλ(D2

τ,r;λ,kf) dW k(λ)

and with the short-hand notation W (·) analogous as above,

E[fũ1(t)] = E

[∫ t

t0
dτ

∫ τ

τε

dλ

(
n∑

r,k=1

(D2
τ,r;λ,kf) W

(
Ar(ξWε

(λ)) · Ak(ξWε
(τε))

)

+
n∑

k=1

(Dτ,kf) W (εL Ak)(ξWε
(λ))

)]

which as ε → 0 gives rise to the equivalence
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E[fũ1(t)] � ε

2
E

⎡
⎣∫ t

t0
dτ

⎛
⎝ n∑

r,k=1

(D2
τ,r;τ,kf) W

(
(Ar · Ak)(ξW (τ))

)

+
n∑

k=1

(Dτ,kf) W (0L Ak)(ξW (τ))

)]
.

Finally

E[fũ2(t)] = E

[∫ t

t0
f · (WR0 − WZ) dτ

]
may be computed as before. Now integrals along the paths of Dτ,kf , f appear,
and we get coefficients â, b̂, ĉ such that

lim
ε→0

1
ε

E[ũ(t)f ] =
∫ t

t0
E

⎡
⎣ n∑

k,�

âk�(ξW (τ))D2
τ,k;τ,�f

+
n∑

k=1

b̂k(ξW (τ))Dτ,kf + ĉ(ξW (τ)) f

]
dτ. (7.18)

We are left to deal with ṽ: combining (7.14) and (7.16) gives ṽ = O(ε). To
get the sharper estimate o(ε) we use that (7.15) expresses R1

k as a bilinear
functional in u. A typical term is

E

[
f

∫ t

t0

W ∂2Ak

∂ξ�∂ξp
u�up dW k

]
=

∫ t

t0
E
[B(τ)up(τ)

]
dτ ,

where B := (Dτ,kf)
W ∂2Ak

∂ξ�∂ξp
u�;

here we used the Clark–Ocone–Karatzas formula for f . Applying formula
(7.18) with f = B, we get∣∣∣∣E

[
f

∫ t

t0

W ∂2Ak

∂ξ�∂ξp
u�up dW k

]∣∣∣∣ ≤ c ε ‖B‖γDs
2
≤ c ε ‖f‖γD2s

3
‖u‖γD2s

2
,

and using (7.14), with θε(·) replaced by u, we obtain the required order of
convergence. ��
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Stochastic Calculus of Variations for Markets
with Jumps

Stochastic Calculus of Variations for jump process can be developed following
three different paradigms.

The paradigm which appeared first in the literature is to make a variation
on the intensity of jumps, the time when the jumps occur being fixed (see
[22, 36, 155]). This methodology gives in particular deep regularity results for
local times. As it has not yet been used in mathematical finance we shall not
discuss it here.

The second paradigm uses an approach of chaos expansion parallel to the
approach presented in Sect. 1.6 for the Wiener space. A beautiful conceptual
theory can then be built upon this approach [31, 161, 162, 179]: this theory is
as complete as the theory on the Wiener space. Nevertheless certain objects
appearing there are difficult to realize effectively by a trader operating on the
market.

The third paradigm is to build the theory on a concept of pathwise in-
stantaneous derivative. This approach, perfectly fitting to the computation
of Greeks, has a simple conceptual meaning and corresponds to operations
which can be easily implemented by a market practitioner; on the other hand
it introduces structural incompleteness to the market.

In Sect. 8.1 we construct the probability spaces for finite type jump
processes. Section 8.2 develops the Stochastic Calculus of Variations for expo-
nential variables, and Sect. 8.3 the Stochastic Calculus of Variations for Pois-
son processes. Section 8.4 finally establishes mean-variance minimal hedging
through a weak version of a Clark–Ocone formula.

We shall not develop the effective computation of Monte-Carlo weights for
the computation of Greeks, as it was done in [70, 180] by using the formula
of integration by parts on Poisson spaces.
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8.1 Probability Spaces of Finite Type Jump Processes

The general theory of scalar-valued, time-homogeneous, Markov jump pro-
cesses considers processes which in any time interval may have an infinite
number of jumps: the Lévy processes.

We call such a process of finite type if almost surely on any finite interval
the number of jumps is finite. This class of processes is qualitatively sufficient
for the needs of mathematical finance; we shall limit our study to this class
in order to avoid technical difficulties inherent to the general theory of Lévy
processes. Finally it is well known that the class of processes of finite type is
dense in the class of all Lévy pro-cesses.

Theorem 8.1 (Structural theorem). Let X(t) be a scalar-valued, time-
homogeneous Markov process of finite type. Then there exists a Poisson process
N(t) of intensity 1, a Brownian motion W , and three constants σ, c, ρ such
that

X(t) − X(0) = ct + σW (t) +
∑

1≤i≤N(ρt)

Yi , (8.1)

where (Yi)i≥1 is a family of independent equi-distributed random variables.

Proof. This is a classical fact. ��
Remark 8.2. An alternative point of view is to take formula (8.1) as the defi-
nition of processes of finite type.

We consider jump process defined on the time interval [0,+∞[ and denote
by W the probability space of scalar-valued Brownian motion indexed by this
interval. We further denote by µ the law of Y1 and introduce the probability
space Ωµ associated to a countable sequence of independent random variables
equi-distributed according to µ. This space can be realized on the infinite
product R

N equipped with the infinite product measure
⊗

k µk where µk = µ.
Consider the special case where µ is the exponential law ν, given by the

distribution of an exponential variable T defined as

P{T > a} = exp(−a), a > 0,

and denote N := Ων the Poisson probability space.

Theorem 8.3. The probability space Ω of a finite type jump process is the
direct product

Ω � W × Ωµ ×N . (8.2)

In the case where the law µ of the random variable Y1 is supported by q points,
we have

Ω � W ×N q . (8.3)
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Remark 8.4. As any law µ can be obtained as weak limit of laws concentrated
on a finite number of points, the case (8.3) seems to be sufficient for the need of
numerical finance. See [132], p. 215 for a precise scheme of the approximation.

Proof. Our Poisson process on R
+ is uniquely given by an independent se-

quence (Tn)n∈N of identically distributed exponential variables:

P{Tn > a} =
∫ +∞

a

exp(−s) ds = exp(−a) .

We define the probability space Ω of the Poisson process as the probability
space corresponding to this sequence {Tk} of independent exponential vari-
ables. Denote by Gk the σ-field generated by the first k coordinates T1, . . . , Tk.
The first jump of the Poisson process appears at T1, the second at T1 + T2,
and so on. The Poisson counting function is

N(t) = sup{k : T1 + . . . + Tk ≤ t} . (8.4)

We are going to prove (8.3). Let

µ =
q∑

s=1

ps δξs

where δξ denotes the Dirac mass at the point ξ. Taking q independent Poisson
processes Ns, then

X(t) = σW (t) +
q∑

s=1

ξsNs(ρst). �� (8.5)

Itô Stochastic Integral on Processes of Finite Type

We recall the definition of càdlàg functions on R
+, constituted by the class of

functions t �→ F (t) which are right-continuous with limits from the left; for
any t ∈ R

+, lim0<ε→0 F (t+ε) = F (t) and lim0<ε→0 F (t−ε) exists. Note that
the Poisson process as defined by (8.4) has càdlàg paths; by consequence the
process X(t) is also càdlàg.

We denote by (Ft) the filtration generated by X(·) :

Ft = σ-field generated by X(s), s ∈ [0, t] .

This filtration is right-continuous. We have two basic definitions:

• a process Y is adapted if Y (t) is Ft-measurable;
• a process Z is predictable if Z is left-continuous and adapted.
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In the case where the jump component disappears, the filtration (Ft)
is also left-continuous and the notions of adaptedness and of predictability
coincide. This is not the case in general; for instance, the process X(·) is
adapted but is not predictable.

The stochastic integral of a predictable process Z is defined as limit of the
Riemann sums:

∫ 1

0

Z(s) dX(s) = lim
p→∞

2p−1∑
k=0

Z

(
k

2p

) [
X

(
k + 1
2p

)
− X

(
k

2p

)]
. (8.6)

From this definition it results that the process defined by the indefinite integral

M(t) :=
∫ 1

0

Z(s) 1[0,t](s) dX(s)

is càdlàg.

Proposition 8.5 (Energy identity). If Z a predictable process, then

E

[∫ 1

0

Z dX

]
=

(
c + ρ E(Y1)

)
E

[∫ 1

0

Z dt

]
. (8.7)

Assume that c+ ρ E(Y1) = 0, then M(t) :=
∫ t

0
Z dX is a (Ft)-martingale and

its L2-energy is given by

E

[(∫ 1

0

Z dX

)2
]

=
(
σ2 + ρ E(Y 2

1 )
)

E

[∫ 1

0

Z2 dt

]
. (8.8)

Proof. This is classical L2 martingale theory. ��
It is clearly not possible for the trader to react on an infinitesimal scale of

time, the most general possible trading strategies are given by a predictable
process. Replicable assets on [0, T ] are therefore represented by stochastic
integrals on [0, T ] of a trading strategy.

8.2 Stochastic Calculus of Variations
for Exponential Variables

Denote by Ω the probability space corresponding to a sequence of identically
distributed exponential variables Tn. In logarithmic scale, let τn = log Tn: we
get P{τn > α} = exp(− exp(α)). For a single exponential variable we have the
following formula of integration by parts:

E
[
φ′(τ)

]
= E

[
φ(τ) δ

(
d

dτ

)]
, δ

(
d

dτ

)
:= exp(s) − 1 . (8.9)
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In fact, we have

E

[
dφ

dτ
(τ)

]
=

∫ +∞

−∞
φ′(s) exp(− exp(s)) exp(s) ds

= −
∫ +∞

−∞
φ(s) exp(− exp(s)) exp(s)(1 − exp(s)) ds .

The logarithmic change of coordinates has the drawback that the tradi-
tional scale for exponential variables is left. We transfer the derivation oper-
ator from the logarithmic scale to the usual scale by introducing a slightly
modified derivation:

s

(
d

ds
ψ

)
(s) =:

(
d†

ds
ψ

)
(s) = (ψ†)(s) .

Lemma 8.6 (Integration by parts for a single exponential variable).
We have

E
[
ψ†(T )

]
= E

[
ψ(T ) δ

(
d†

dT

)]
, δ

(
d†

dT

)
:= 1 − T ; (8.10)

E

[(
δ

(
d†

dT

))2
]

=
∫ ∞

0

(1 − s)2 exp(−s) ds = 1. (8.11)

Proof. See the previous computations. ��

Derivation Operator on Ω

Denote by C1
b (Ω) the functionals Φ on Ω depending on a finite number of

coordinates T1, . . . , Tq such that the dependence is one time differentiable,
the derivatives being uniformly bounded. Let

D̃kΦ := Tk
∂Φ
∂Tk

. (8.12)

Denote by �2 the sequence {wk(ω)}k>0 such that
∑

k E[w2
k] < ∞ and such

that wk is Gk−1 measurable. Define

D̃wΦ :=
∑

k

wkD̃kΦ =
∑

k

wk Tk
∂Φ
∂Tk

.

Theorem 8.7 (Cameron–Martin). The series∑
k

wk (1 − Tk) =: δ̃(w) (8.13)

converges in L2(Ω); we have the formula of integration by parts

E[D̃wΦ] = E[Φ δ̃(w)] . (8.14)
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Proof. We have E[1 − Tk] = 0; therefore the partial sum of the series (8.13)
constitutes a (Gk)-martingale which is L2-integrable. ��
Remark 8.8. Formula (8.12) implies that the operators DkΦ are closable. De-
note by D2

1(Ω) the functions Ψ ∈ L2(Ω) belonging to the intersection of all
domains such that

‖Ψ‖2
D2

1
= E

[
Ψ2

]
+

∑
k

E
[
(DkΨ)2

]
< ∞ .

Then D2
1(Ω) is a Hilbert space.

8.3 Stochastic Calculus of Variations
for Poisson Processes

On the probability space N of the Poisson process, we denote by S1 the time
of the first jump, by S2 the time of the second jump, and so on. We realize
an isomorphism N → Ω by the change of variable between S. and T. :

Sk =
k∑

j=1

Tj , which implies
∂Φ
∂Tk

=
∑
j≥k

∂Φ
∂Sj

for the derivatives.

The counting function of the Poisson process is N(t) = k, if t ∈ [Tk, Tk+1[.
Therefore the Stieltjes integral of the compensated Poisson process N(t) − t
satisfies the relation ∫

1[Sk−1,Sk[ d(N(t) − t) = 1 − Tk .

Note that 1[Sk−1,Sk[ is predictable. To a predictable weight wk we associate
the predictable process

m(t) =
∑

k

wk 1]Sk−1,Sk]

and consider the following stochastic integral∫
R+

m(t) d(N(t) − t) =
∑

k

wk(1 − Tk) .

Denote by H1 the Hilbert space of functions with derivative in L2 and
vanishing at t = 0. Let v : N → H1 be a map such that E[‖v‖2

H1 ] < ∞. We
define the derivative DvΦ by

DvΦ :=
∑

k

v(Sk)
∂Φ
∂Sk

. (8.15)
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Theorem 8.9. Let v be a predictable random process such that

E
[‖v‖2

H1

]
< ∞ .

Then

E
[
DvF

]
= E

[
Fδ(v)

]
, δ(v) =

∫ +∞

0

v′(t) d(N(t) − t) . (8.16)

Furthermore, we have the energy identity

E
[|δ(v)|2] = E

[‖v‖2
H1

]
. (8.17)

Proof. Previous computations combined with Sect. 8.3. ��
We extend this situation to the simple jump process of the form

X(t) = W (t) +
q∑

k=1

ξkNk(ρkt) (8.18)

where W is a Brownian motion and where Nk are Poisson processes, all
processes being independent.

Denote by {Sk
r }r the sequence of jumps of the Poisson process Nk. Take

as tangent space [H1]q+1. To v = (v0, v1, . . . , vq) ∈ [H1]q+1, associate the
derivative

DvΦ =
q∑

k=0

∫
Dt,kΦ v̇k(t) dt (8.19)

where Dt,0 is the derivative with respect to W (see Chap. 1) which vanishes
on the other components; the derivative Dt,k0 acts only on the component
Nk0 and vanishes on the other components, the action on Nk0 being given by

Dt,k0(S
k0
q ) = ρk0 1

[0,S
k0
q [

(ρk0t) . (8.20)

Remark that the r.h.s. is a predictable function of t. As the jump times deter-
mine the Poisson process Nk, any functional on Nk can be expressed in terms
of the Sk

q .
The following theorem establishes a remarkable parallelism between the

Stochastic Calculus of Variations on Wiener spaces and on Poisson spaces.

Theorem 8.10 (Carlen–Pardoux [47]). Let v : Ω → [H1(R+)]q+1 be a
predictable map such that E[‖v‖2

H1 ] < ∞. Then the following formula of inte-
gration by parts holds:

E
[
DvΦ

]
= E

[
Φ

q∑
k=0

∫
v̇k dXk

]
, (8.21)

where dX0(t) := dW (t) and dXk := ρk(dNk(t) − dt) is the compensated
Poisson process.

Proof. Apply (8.16). ��
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Compare [70, 180] for a computation of Greeks through the formula of
integration by parts.

As consequence of Theorem 8.10, the derivative Dv is a closable opera-
tor. We denote by D2

1(N ) the Sobolev space of functionals on N whose first
derivative is in L2.

Remark 8.11. Fixing t0 > 0, consider the random variable Ψ = N(t0);
then Ψ /∈ D2

1(N ). In fact, if we express N(t0) in terms of the Sk by
N(t0) =

∑∞
k=1 1[0,t0](Sk) and if we apply the chain rule, we have to deal

with the difficulty that the indicator function of [0, t0] is not differentiable in
L2. This difficulty can be overcome by developing a theory of distributions on
Poisson space [1, 67]. The goal of the next proposition is to give examples of
differentiable averages of N(t).

Proposition 8.12. Let F (t, k, ω) be a function such that F (t, k) ≡ F (t, k, ·) ∈
D2

1(N ) and denote (∇F )(t, k) = F (t, k + 1) − F (t, k). Then

Dv

∫ ∞

0

F (t,N(t)) dt = −
∫ ∞

0

vt (∇F )(t,N−(t)) dN(t)+
∫ ∞

0

[DvF ](t,N(t)) dt ,

(8.22)
where N−(t) = lim

t′<t, t′→t
N(t′).

Proof. Express the integral in terms of the sequence of jumping times Sk of
N(t): ∫ ∞

0

F (t,N(t)) dt =
∞∑

k=1

∫ Sk

Sk−1

F (t, k − 1) dt .

The derivative with respect to ω in the integral gives rise to the second term
of (8.22); it remains to differentiate the Sk. As Dv(Sk) = v(Sk), and using the
fact that v(0) = 0, we get

∞∑
k=1

F (Sk, k − 1) v(Sk) − F (Sk−1, k − 1) v(Sk−1)

=
∞∑

k=1

v(Sk) (F (Sk, k − 1) − F (Sk, k))

= −
∑

k

v(Sk) (∇F )(Sk, N−(Sk))

= −
∫ ∞

0

v(t) (∇F )(t,N−(t)) dN(t). ��

8.4 Mean-Variance Minimal Hedging
and Clark–Ocone Formula

Consider a market for which the underlying probability space takes the form
(8.18). To simplify the notations, let σ = 1, ξ1 = 1, q = 1. Denote by P



8.4 Mean-Variance Minimal Hedging and Clark–Ocone Formula 105

the predictable processes w = (w0, w1). Given F ∈ D2
1(W ×N ) which is G1-

measurable such that E[F ] = 0, mean-variance minimal hedging consists in
finding v ∈ P such that

E

[∣∣∣∣F −
∫ 1

0

v̇0 dW + v̇1 d(N − t)
∣∣∣∣
2
]

= inf
w∈P

E

[∣∣∣∣F −
∫ 1

0

ẇ0 dW + ẇ1 d(N − t)
∣∣∣∣
2
]

.

Theorem 8.13. The mean-variance minimal hedging problem has a unique
solution given by

v̇0(t) = E
G −

t
[
D0

t F
]
, v̇1(t) = E

G −
t
[
D1

t F
]

, (8.23)

where G −
t := σ(

⋃
t′<t Gt′) is the predictable filtration.

Proof. Let V be the vector space of random variables representable as sto-
chastic integrals of predictable processes. It results from the energy identity
(8.8) that V forms a closed subspace of L2(W ×N ); therefore the orthogonal
projection v of F onto V exists. As an orthogonal projection, v is characterized
by the relation

E

[(
F −

∫ 1

0

v̇0 dW + v̇1 d(N − t)
) (∫ 1

0

ẇ0 dW + ẇ1 d(N − t)
)]

= 0,

for all w ∈ P, and thus

E

[
F

∫ 1

0

ẇ0 dW + ẇ1 d(N − t)
]

= E

[∫ 1

0

(v̇0 ẇ0 + v̇1 ẇ1) dt

]

= E

[∫ 1

0

ẇ0(t)Dt,0F + ẇ1(t)Dt,1F dt

]
;

for the last equality the formula of integration by parts (8.21) has been used.
Taking the difference of the two members we get

0 = E

[∫ 1

0

ẇ0(t) (Dt,0F − v̇0(t)) + ẇ1(t) (Dt,1F − v̇1(t)) dt

]
. ��

In general, mean-variance hedging is not exact hedging and therefore jump
markets are not complete. The important question of completeness of some
specific jump markets is discussed in [31, 64, 67, 69, 132, 161]. In some cases
exact hedging may be realized by adding certain other martingales to the
basic martingales W and N(t) − t.



A

Volatility Estimation by Fourier Expansion

Volatility is a key parameter in financial engineering. The classical Black–
Scholes model assumes that volatilities of historical processes driven by the
logarithm of the prices are constant. Empirical evidence has shown that this
hypothesis is too restrictive. Time-varying volatilities are therefore a first step
to adjust the Black–Scholes model to real data.

Estimation of volatility variations in the long range (month scale) is gen-
erally done by assuming an a priori model of stochastic volatility. The choice
of this model is a difficult matter; its calibration is done by fitting the un-
known parameters to data through some kind of Zakai filtering procedure; the
evolution of historical volatilities is fitted by the solution of an SDE driven
by unknown Brownian motions.

Experimental evidence of market evolution at an intra-day scale indicates
that there exists no general model reasonably fitting data: as a consequence,
one has to switch to non-parametric Statistics. In the usual sense statistics
focuses on information extracted from the data of a population of different
market evolutions. It should be emphasized that our method is designed to
obtain results from the observation of a single market evolution. Such an
approach is not out of reach for highly traded assets on which several thousand
quotations can be made in a single day. The “statistical population” then has
to be considered as the mass of information collected in time. As averaging
principles are behind any statistical study, it is clear that volatility can only be
approached on a time scale larger than the average frequency of the quotation
data flow.

A possible procedure could be to split the time into subsequent intervals
Ik, each containing at least a certain number of quotations. Then one may
compute a volatility function σ2 in the following way: σ2 will be constant in
each of the Ik and its value on Ik will be the mean quadratic variation of
the observed quotations on Ik. This methodology proceeds by interval split-
ting; the drawback of information splitting procedures is a well-known fact in
statistics.
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The methodology of Fourier series proposed here can be considered as a
refinement of this crude methodology, avoiding any information splitting and
nevertheless being able to decipher abrupt variations in time of the historical
volatility.

Another advantage of the Fourier series approach is the fact that the
volatility is constructed as a function. It is therefore possible to iterate the
procedure and to compute the cross-correlation between price and volatility;
in a stable market this cross-correlation is negative; therefore an observed pos-
itive correlation monitors some market instability. A more advanced indicator
of market stability is the price-volatility feedback rate, introduced in [19] and
discussed in Chap. 3. A triple iteration of the Fourier series algorithm leads
to a pathwise computation of this price-volatility feedback rate.

A common assumption in mathematical finance is that the time evolution
of the price of an asset is a semimartingale of the form

dp = σ(t,W ) dW + b(t,W ) dt

where W is a Brownian motion. This assumption will be the only a priori
assumption on which our non-parametric estimation will be based.

Using Itô calculus the volatility of the price process p is obtained by

Vol(p)(t) ≡ σ2(t) = lim
ε→0+

E
Nt

[(
p(t + ε) − p(t)

)2

ε

]
.

However this formula cannot be used for numerical determination of the
volatility; effectively only a single path of the market evolution is observed and
the conditional expectation E

Nt cannot be deduced from the observations.
As a consequence, estimation of the volatility is mainly obtained through

the quadratic variation formula. In fact, there is a pathwise formula, essentially
due to Norbert Wiener, which states that

QV
∣∣t1
t0

(p) =
∫ t1

t0

σ2(s) ds

where the quadratic variation QV of p is given by

QV
∣∣t1
t0

(p) = lim
n→∞

∑
0≤k<(t1−t0)2n

[
p(t0 + (k + 1)2−n) − p(t0 + k2−n)

]2
.

Three bottlenecks appear when implementing this formula:

1. The price data are measured at tick times which are not equally spaced;
2. the computation of the volatility involves a numerical derivation;
3. the limit n → ∞ cannot be effectively realized.

The Fourier series approach has the advantage of eliminating completely
the second bottleneck and of smoothing the first one. The third bottleneck is
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not substantially changed; indeed the hypothesis that price evolution follows a
semimartingale is only an approximation; the way to overcome this bottleneck
is to approach limits as asymptotic series.

The computation of volatilities through harmonic analysis methods, first
introduced by [145] has been used in [19–21]; see also [7, 60, 91–94, 105, 106].

In Sect. A.1 we shall prove an identity which gives an exact expression for
the Fourier expansion of the volatility σ2(W, ·) in terms of the Fourier expan-
sion of the price p(·). Section A.2 discusses the numerical implementation of
this method.

A.1 Fourier Transform of the Volatility Functor

To a given function φ on the circle S1 we associate its Fourier transform
defined on the group of integers Z by the formula

F (φ)(k) =
1
2π

∫ 2π

0

φ(ϑ) exp(−ikϑ) dϑ, k ∈ Z .

Given two functions Φ,Ψ on the integers, their Bohr convolution is defined as

(Φ ∗ Ψ)(k) = lim
N→∞

1
2N + 1

N∑
s=−N

Φ(s)Ψ(k − s) . (A.1)

We denote by (H) the following hypothesis on the process p:

(H) p(t) = p(0) +
∫ t

0

σ(s,W ) dW (s) +
∫ t

0

b(s,W ) ds

where σ is an adapted function, b is not necessarily adapted, both functions
being bounded: |b| + |σ| ≤ c.

Theorem A.1. Let p be a process satisfying assumption (H) along with the
condition p(0) = p(2π). Then the following formula holds:

1
2π

F (Vol(p)) = Φ ∗ Ψ, where Φ = F (dp), Ψ̄(−k) = F (dp)(k) ; (A.2)

the equality holds in probability, which means that the limit in (A.1) exists in
probability.

Remark A.2. When p(0) �= p(2π), we may introduce

p̃(t) = p(t) − p(2π) − p(0)
2π

t .

Theorem A.1 then allows to compute the volatility of p̃. Finally we remark
that p and p̃ have the same volatility.
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Proof (of Theorem A.1). We give a sketch of the proof; details can be found
in [145]. Since the drift b does not contribute to the quadratic variation, with-
out loss of generality, we may suppose that b = 0; then p is a semimartingale.

We shall pursue the proof supposing that σ(t,W ) does not depend on W ;
the price to pay to treat this dependence are iterated Itô integrals realizing
chaos expansion. Note that in the case where σ(t) is independent of W , Wiener
stochastic integrals are sufficient for the proof.

We introduce the complex martingales

Γk(t) :=
1
2π

∫ t

0

σ(s) exp(−iks) dW (s), k ∈ Z .

By Itô calculus

Γk(2π)Γr(2π) =
1
2π

F (σ2)(k + r) + R(k, r)

where

R(k, r) :=
∫ 2π

0

(Γk dΓr + Γr dΓk).

Fix an integer N ≥ 1 and define

γq(N) =
1

2N + 1

N∑
s=−N

Γq+s(2π)Γ−s(2π) .

By (A.1) we conclude that

lim
N→∞

γq(N) = (Φ ∗ Ψ)(q)

where Φ = F (dp) and Ψ̄(−k) = F (dp)(k). On the other hand, by the above
product formula,

γq(N) =
1
2π

F (σ2)(q) + RN ,

where

RN :=
1

4π2

∫∫
0<t1<t2<2π

DN (t1 − t2)
(
eiqt1 + eiqt2

)
σ(t1)σ(t2) dW (t1) dW (t2) ,

DN (t) :=
1

2N + 1

N∑
s=−N

eist =
1

2N + 1
sin(N + 1

2 )t
sin t

2

.

We have ∫ 2π

0

|DN |2 dt =
1

2N + 1
.

Using the energy identity for iterated stochastic integrals, we get

E[R2
N ] ≤ c

2N + 1
.
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A disadvantage of the approximation procedure defined by (A.1) and (A.2)
is that positivity of the volatility can be lost in the approximation. We shall
modify slightly the procedure by taking advantage of the classical result:

Lemma A.3. Given a function Φ(k), let Φ̃(k) = Φ(−k). Then the convolution
product Φ ∗ Φ̃ has a positive Fourier transform:

F (Φ ∗ Φ̃) = |F (Φ)|2 .

We want to implement Lemma A.3 in real terms. Suppose that the Fourier
coefficients ak(p), bk(p) are computed:

ak(p) =
1
2π

∫ 2π

0

cos(kt)p(t)dt, bk(p) =
1
2π

∫ 2π

0

sin(kt)p(t) dt .

Then the Fourier coefficients of the derivative of p in the sense of distribution
are given by

a0(dp) = 0, ak(dp) = kbk(p), bk(dp) = −kak(p), k > 0 .

We define the prolongation to all integers k by parity for ak and by imparity
for bk; more precisely let

a∗
0 = b∗0 = 0, a∗

k =

{
ak(dp) for k > 0
a−k(dp) for k < 0

and b∗k =

{
bk(dp) for k > 0

−b−k(dp) for k < 0.

Theorem A.4. Let p be a process satisfying hypothesis (H). For 0 ≤ q ≤ 2N
where N is a positive integer, let

αq(N) =
1

2N + 1

N−q∑
s=−N

(a∗
q+sa

∗
s + b∗q+sb

∗
s) ,

βq(N) =
1

2N + 1

N−q∑
s=−N

(−a∗
q+sb

∗
s + b∗q+sa

∗
s) .

Then the trigonometric polynomial with α.(N), β.(N) as coefficients is posi-
tive. Denote by aq(σ2), bq(σ2) the Fourier coefficients of σ2. Then, for any
fixed q ≥ 0, as N → ∞, the following convergence in probability holds true:

lim
N

αq(N) =
1
π

aq(σ2), lim
N

βq(N) =
1
π

bq(σ2) . (A.3)

Proof. We may again suppose that b = 0. We confine ourselves to the case
where σ is a deterministic function of time; then p is a Gaussian process
and the Fourier coefficients of its differentials are Gaussian variables. The
covariances
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E
[
ak(dp)as(dp)

]
=

1
2π

(ak+s(σ2) + ak−s(σ2))

E
[
ak(dp)bs(dp)

]
=

1
2π

(bs+k(σ2) + bs−k(σ2))

E
[
bk(dp)bs(dp)

]
=

1
2π

(−ak+s(σ2) + ak−s(σ2))

give

E
[
aq+s(dp)as(dp) + bq+s(dp)bs(dp)

]
=

1
π

aq(σ2)

E
[
bq+s(dp)as(dp) − bs(dp)aq+s(dp)

]
=

1
π

bq(σ2) .

Therefore

π E[αq(N)] =
(

1 − q

2N + 1

)
aq(σ2) ,

π E[βq(N)] =
(

1 − q

2N + 1

)
bq(σ2),

and

lim
N

E[αq(N)] =
1
π

aq(σ2), lim
N

E[βq(N)] =
1
π

bq(σ2) .

Fix an integer N ≥ 1 and define the random function

ΦN (k) = 1[−N,N ](k) Γk, Γk := ak(dp) + ibk(dp) .

Then, by Lemma A.3, the Fourier transform of the convolution ΦN ∗ Φ̃N is
positive. Define for q ∈ {−2N, . . . , 2N},

γq(N) =
1

2N + 1

∑
s

Γq+sΓ−s 1[−N,N ](s) 1[−N,N ](q + s)

=
1

2N + 1
(ΦN ∗ Φ̃N )(q) .

Therefore γq(N) = αq(N) + βq(N), and then,

E[|γq(N)|2] − |E[γq(N)]|2 ≤ 3
(2π)4(2N + 1)2

∑
s1,s2: |si|≤N

|cs1−s2(σ)|2

≤ 1
(2π)3(2N + 1)

‖σ‖2
L2 → 0 .

A.2 Numerical Implementation of the Method

Construction of an Interpolating Trigonometric Polynomial

We rescale the day to [0, 2π] by putting T = (tn − t1)/2π. Suppose that the
price is known at a series of intermediate times tk. Choosing N ≈ n, the
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number of data items obtained during the day, we want to interpolate the
series of tick prices by a price function p(t) of the form

p(t) − p(t1) − a
t − t1

T
� a0 +

N∑
k=1

(ak cos kϑ + bk sin kϑ), ϑ =
t − t1

T
, (A.4)

where a = p(tn) − p(t1) and where � means that we use a truncation of the
Fourier series of the l.h.s. at step N . We take the function p to be constant in
each interval and continuous from the right. We differentiate p once and find

p′ =
∑
j>1

(
p(tj) − p(tj−1)

)
δϑj

where δx denotes the Dirac mass at point x. Then the Fourier coefficients of
p are obtained via integration by parts on the interval [ϑj−1, ϑj ] where the
function takes the constant value p(tj−1):∫ ϑj

ϑj−1

p(ϑ) cos kϑ dϑ =
1
k

p(tj−1)(sin kϑj − sin kϑj−1) ,

ak(p) =
1
π

∑
j>1

(p(tj−1) − p(tj)) sin kϑj ,

bk(p) = − 1
π

∑
j>1

(p(tj−1) − p(tj)) cos kϑj .

Filtering High Modes of Volatility

We get high modes up to the order 2N . A classical trick in Fourier Analysis
is to filter progressively high modes. For this purpose we introduce the two
following kernels, the first being the Fejer kernel, the second a modification
of the Fejer kernel:

ϕ1(λ) = sup{1 − |λ|, 0}, ϕ2(λ) =
sin2 λ

λ2
. (A.5)

As an approximation of the volatility we take

Ai(t) = α0 +
2N∑
q=1

ϕi(δq) (αq cos qϑ + βq sin qϑ), i = 1, 2 , (A.6)

where δ is a parameter adapted to the scale which is expected to give an
appropriate resolution of the volatility. The advantage of the kernel ϕ1 is that
it has a larger smoothing effect whereas, for the same value of δ, the kernel ϕ2

may exhibit sharper instantaneous variations. As far as the numerical value of
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δ is concerned, for both kernels it is advisable to take δ ≥ 1/(2N); in addition,
numerical tests are necessary to optimize the choice of δ.

According to well-known diffraction phenomena of Fourier series near the
limits of a time window, accurate results cannot be obtained immediately
after opening or shortly before closure of the market.



B

Strong Monte-Carlo Approximation
of an Elliptic Market

In this appendix we discuss the problem of how to establish a Monte-Carlo
simulation to a given strictly elliptic second order operator with real coef-
ficients which leads to good numerical approximations of the fundamental
solution to the corresponding heat operator. We are searching for a “good”
scheme having the following two properties:

• The scheme does not need any simulation of iterated Itô integrals.
• The scheme has the strong property of approximation of order 1.

The Romberg iteration of the Euler scheme, based on the asymptotic expan-
sion of Talay–Tubaro [201], is classically used to obtain weak approximations
of arbitrary high order. Our approximation of strong order 1 could be tried
in problems related to barrier options where the Talay–Tubaro methodology
is not immediately applicable.

The exposition here follows closely the reference [59]; we shall not enter
into the geometric ideas behind the computations which will be presented as
straightforward tricks. In fact these geometric ideas are from [57].

Experts in Numerical Analysis may be sceptical about the existence of any
“good” scheme. We have to emphasize that our new point of view will be to
think in terms of elliptic operators, instead of the usual point of view to work
on a fixed SDE. Many SDEs can be associated to an elliptic operator; each
choice corresponds to a parametrization by the Wiener space of the Stroock–
Varadhan solution of the martingale problem.

For applications to finance all these parametrizations are equivalent. How-
ever there exists a unique parametrization leading to the “good” scheme.

Change of parametrization means to replace the d-dimensional standard
Brownian motion W on the Wiener space W by an orthogonal transform W̃
whose Itô differential takes the form

dW̃k =
∑d

j=1

(
ΩW (t)

)k

j
dWj(t) (B.1)

where t �→ ΩW (t) is an adapted process with values in the group O(d) of
orthogonal matrices. We denote by O(W ) the family of all such orthogonal
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transforms which is isomorphic to the path space P(O(d)) on O(d). Pointwise
multiplication defines a group structure on P(O(d)) � O(W ).

Given on R
d the data of d + 1 smooth vector fields A0, A1, . . . , Ad, we

consider the Itô SDE

dξW (t) = A0(ξW (t)) dt +
d∑

k=1

Ak(ξW (t)) dWk(t), ξW (0) = ξ0 , (B.2)

where we assume ellipticity, that is, for any ξ ∈ R
d the vectors A1(ξ), . . . , Ad(ξ)

constitute a basis of R
d; the components of a vector field U in this basis are

denoted 〈U,Ak〉ξ which gives the decomposition U(ξ) =
∑d

k=1〈U,Ak〉ξ Ak(ξ).
By change of parametrization we mean the substitution of W by W̃ in (B.2);
we then get an Itô process in W̃ .

The group O(W ) operates on the set of elliptic SDEs on R
d and the orbits

of this action are classified by the corresponding elliptic operators L .

B.1 Definition of the Scheme S

Denote by tε := ε × integer part of t/ε; we define our scheme by

ZWε
(t) − ZWε

(tε) = A0(ZWε
(tε)) (t − tε) (B.3)

+
∑

k

Ak(ZWε
(tε))

(
Wk(t) − Wk(tε)

)

+
1
2

∑
k,s

(∂Ak
As)(ZWε

(tε))
{(

Wk(t) − Wk(tε)
)(

Ws(t) − Ws(tε)
)− εηs

k

}

+
1
2

∑
k,s,i

Ai(ZWε
(tε)) 〈[As, Ai], Ak〉ZWε (tε)

{(
Wk(t) − Wk(tε)

)(
Ws(t) − Ws(tε)

)− εηs
k

}
(B.4)

where W is standard Brownian motion on R
d, and ηs

k the Kronecker symbol
defined by ηs

k = 1 if k = s and zero otherwise. Denote by P(Rd) the path
space on R

d, that is the Banach space of continuous maps from [0, T ] into
R

d, endowed with the sup norm: ‖p1 − p2‖∞ = supt∈[0,T ] |p1(t) − p2(t)|Rd .
Fixing ξ0 ∈ R

d, let Pξ0(R
d) be the subspace of paths starting from ξ0. Given

Borel measures ρ1, ρ2 on P(Rd), denote by M (ρ1, ρ2) the set of measurable
maps Ψ: P(Rd) → P(Rd) such that Ψ∗ρ1 = ρ2; the Monge transport norm
(see [147, 211]) is defined as

dM (ρ1, ρ2) :=
[

inf
Ψ∈M (ρ1,ρ2)

∫
‖Ψ(p)‖2

∞ ρ1(dp)
]1/2

.
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Theorem B.1. Assume ellipticity and assume the vector fields Ak along with
their first three derivatives to be bounded. Fix ξ0 ∈ R

d and let ρL be the mea-
sure on Pξ0(R

d) defined by the solution of the Stroock–Varadhan martingale
problem [196] for the elliptic operator:

L =
1
2

∑
k,α,β

Aα
k Aβ

k DαDβ +
∑
α

Aα
0 Dα where Dα = ∂/∂ξα .

Further let ρS be the measure obtained by the scheme S with initial value
ZWε

(0) = ξ0. Then

lim sup
ε→0

1
ε

dM (ρL , ρS ) =: c < ∞ . (B.5)

Remark The proof of Theorem B.1 will provide an explicit transport func-
tional Ψ0 which puts the statement in a constructive setting; the constant c
is effective.

B.2 The Milstein Scheme

The Milstein scheme for SDE (B.2) (cf. for instance [151] formula (0.23)
or [110] p. 345; see also [139]) is based on the following stochastic Taylor
expansion of Ak along the diffusion trajectory: Ak(ξW (t)) = Ak(ξW (tε)) +∑

j(∂Aj
Ak)(ξW (tε))

(
Wj(t) − Wj(tε)

)
+ O(ε), which leads to

ξWε
(t) − ξWε

(tε) =
∑

k

Ak

(
ξWε

(tε)
) (

Wk(t) − Wk(tε)
)

+ (t − tε)A0

(
ξWε

(tε)
)

+
∑
i,k

(∂Ai
Ak)

(
ξWε

(tε)
) ∫ t

tε

(
Wi(s) − Wi(tε)

)
dWk(s);

the computation of
∫ t

tε
(Wi(s) − Wi(tε))dWk(s) gives the Milstein scheme

ξWε
(t) − ξWε

(tε) =
∑

k

Ak

(
ξWε

(tε)
) (

Wk(t) − Wk(tε)
)

+ (t − tε)A0

(
ξWε

(tε)
)

+
1
2

∑
i,k

(∂Ai
Ak)

(
ξWε

(tε)
) ((

Wi(t) − Wi(tε)
) (

Wk(t) − Wk(tε)
)− εηi

k

)
+ R

where

R =
∑
i<k

[Ai, Ak](ξWε
(tε))

∫ t

tε

(
Wi(s) − Wi(tε)

)
dWk(s)

− (
Wk(s) − Wk(tε)

)
dWi(s) .
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It is well known that the Milstein scheme has the following strong approx-
imation property:

E

[
sup

t∈[0,1]

∥∥ξW (t) − ξWε
(t)

∥∥2
]

= O(ε2) . (B.6)

The numerical difficulty related to the Milstein scheme is how to achieve a
fast simulation of R. The purpose of this work is to show that this simulation
can be avoided by a change of parametrization.

B.3 Horizontal Parametrization

Given d independent vector fields A1, . . . , Ad on R
d, we take the vectors

A1(ξ), . . . , Ad(ξ) as basis at the point ξ; the functions βi
k,s, called structural

functions, are defined (see [57]) by

βi
k,�(ξ) = 〈[Ak, A�], Ai〉ξ; [Ak, A�](ξ) =

∑
i

βi
k,�(ξ)Ai(ξ) .

The structural functions are antisymmetric with respect to the two lower in-
dices. Consider the connection functions, defined from the structural functions
by

Γi
k,s =

1
2

(βi
k,s − βk

s,i + βs
i,k) . (B.7)

Let Γk = (Γi
k,s)1≤i,s≤d be the d × d matrix obtained by fixing the index k in

the three indices functions Γi
k,s. Then, by means of the antisymmetry of βi

k,s

in the two lower indices, Γk is an antisymmetric matrix:

2(Γi
k,s + Γs

k,i) = βi
k,s − βk

s,i + βs
i,k + βs

k,i − βk
i,s + βi

s,k = 0 .

The matrix Γk operates on the coordinate vectors of the basis As(ξ) via
Γk(As) =

∑
i Γi

k,sAi. This gives Γk(As) − Γs(Ak) = [Ak, As]; the ith com-
ponent of the l.h.s. is 1

2 (βi
k,s − βk

s,i + βs
i,k − βi

s,k + βs
k,i − βk

i,s) = βi
k,s. Let

M = R
d × Ed where Ed is the vector space of d × d matrices. Define on M

vector fields Ãk, k = 1, . . . , d, as follows:

Ãk(ξ, e) =
(∑

�

e�
kA�(ξ), Nk(ξ, e)

)
,

(Nk)s
r(ξ, e) = −

∑
�,�′

e�
ke�′

r Γs
�,�′(ξ), ξ ∈ R

d, e ∈ Ed. (B.8)

Denoting for a vector Z on M by ZH its projection on R
d, we have:

Proposition B.2. The vector fields Ãk satisfy the relation [Ãk, Ãs]H = 0.
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Proof. The horizontal component [∂Ãk
Ãs]H is given by

[∂Ãk
Ãs]H =

∑
i

Ãi
k ∂iÃ

H
s +

∑
q

(∑
α,β

(Nk)α
β ∂(α

β)e
q
s

)
Aq

=
∑

i

(∑
�

e�
kAi

�

)(∑
�′

e�′
s ∂iA�′

)
−

∑
α,β

(∑
�,�′

e�
ke�′

β Γα
�,�′

)(∑
q

ηq
αηs

βAq

)

=
∑

i

(∑
�

e�
kAi

�

)(∑
�′

e�′
s ∂iA�′

)
−

∑
α,�,�′

e�
k e�′

s Γα
�,�′Aα,

using the fact that ∂(α
β)e

q
s = ηq

αηs
β . We finally get

[∂Ãk
Ãs]H =

∑
�,�′

e�
ke�′

s [∂A

A�′ −

∑
α

Γα
�,�′Aα] .

Therefore the horizontal component of the commutator is

[Ãk, Ãs]H =
∑
�,�′

e�
ke�′

s [A�, A�′ ] −
∑

α,�,�′
e�

ke�′
s (Γα

�,�′ − Γα
�′,�)Aα

which vanishes since Γ�(A�′) − Γ�′(A�) = [A�, A�′ ]. ��
Denote by eT the transpose of the matrix e and let

Ã0(ξ, e) =
(

A0(ξ) − 1
2

eJ

)
, J :=

d∑
k=1

N T
k Nk .

Consider the following Itô SDE on the vector space M:

dmW =
∑

k

Ãk(mW ) dWk + Ã0(mW ) dt, mW (0) = (ξ0, Id) . (B.9)

Proposition B.3. Denote mW (t) = (ξ̃W (t), eW (t)), then eW (t) is an orthog-
onal matrix for t ≥ 0, and for any f ∈ C2(Rd),

f(ξ̃W (t)) −
∫ t

0

(L f)(ξ̃W (s)) ds

is a local martingale.

Proof. We compute the stochastic differential of eT e:

d(eT e)�′
� =

∑
k

d(e�
ke�′

k ) = −
∑

m,k,p

(∑
u

e�
kep

meu
k Γ�′

p,u +
∑

v

e�′
k ep

mev
k Γ�

p,v

)
dWm

+
∑

k

⎛
⎝e�

k (Ã0)�′
k + e�

k (Ã0)�′
k +

∑
m,p,q,p′,q′

ep
mep′

k Γ�′
p,p′eq

meq′
k Γ�

q,q′

⎞
⎠ dt,
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where the last term of the drift comes from the Itô contraction
∑

k de�
k ∗

de�′
k =

∑
k(N T

k Nk)�′
� dt = J�′

� dt. The first two terms of the drift are computed
by using the definition of Ã0 :

∑
k

[
e�

k(Ã0)�′
k + e�′

k (Ã0)�
k

]
= − 1

2

[
(eT eJ)�′

� +
(eT eJ)�

�′
]
. Write eT e = Id + σ, then the drift takes the form −(σJ + Jσ)/2.

We compute the coefficient of dWm:

−
∑
k,p

(∑
u

e�
kep

meu
k Γ�′

p,u +
∑

v

e�′
k ep

mev
k Γ�

p,v

)

= −
∑

p

ep
m

(∑
u

(eT e)u
� Γ�′

p,u +
∑

v

(eT e)v
�′ Γ�

p,v

)
.

Using the antisymmetry Γ�′
p,� = −Γ�

p,�′ we obtain

dσ�
�′ = −

∑
m

dWm

∑
p

ep
m

(∑
u

σu
� Γ�′

p,u +
∑

v

σv
�′ Γ�

p,v

)
− 1

2
(σJ + Jσ)�

�′ dt .

(B.10)
Equation (B.10), together with (B.9), gives an SDE with local Lipschitz co-
efficients for the triple (ξ̃, e, σ); by uniqueness of the solution, as σ(0) = 0, we
deduce that σ(t) = 0 for all t ≥ 0. ��

In terms of the new R
d-valued Brownian motion W̃ defined by dW̃k(t) :=∑

�

(
eW (t)

)k

�
dW�, we have

dξ̃W =
∑

k
Ak(ξ̃W (t)) dW̃k(t) + A0(ξ̃W (t)) dt . (B.11)

B.4 Reconstruction of the Scheme S

We want to prove that our scheme S is essentially the projection of the
Milstein scheme (ξ̃Wε

, eWε
) for the solution mW = (ξ̃W , eW ) of the SDE (B.9).

In order to write the first component ξ̃Wε
we have to compute the horizontal

part of ∂Ãk
Ãj , which has been done in the proof of Proposition B.2; we get

ξ̃Wε
(t) − ξ̃Wε

(tε) = A0

(
ξ̃Wε

(tε)
)
(t − tε) +

∑
k,�

(
eWε

(tε)
)�

k
A�

(
ξ̃Wε

(tε)
)
∆(Wk)

+
1
2

∑
k,j

{∑
�,�′

(
eWε

(tε)
)�

k

(
eWε

(tε)
)�′

j

(
∂A


A�′ −
∑

i

Γi
�,�′Ai

)(
ξ̃Wε

(tε)
)}

× (
∆(Wk)∆(Wj) − εηj

k

)
where ∆(Wk) = Wk(t) − Wk(tε). By (B.6)

E

[
sup

t∈[0,1]

‖eW (t) − eWε
(t)‖2

]
≤ c ε2, E

[
sup

t∈[0,1]

‖ξ̃W (t) − ξ̃Wε
(t)‖2

]
≤ c ε2 .

(B.12)
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Consider the new process ξ�
W defined by

ξ�
W (t) − ξ�

W (tε) = A0

(
ξ�
W (tε)

)
(t − tε) +

∑
k,�

(
eW (tε)

)�

k
A�

(
ξ�
W (tε)

)
∆(Wk)

+
1
2

∑
k,j

{∑
�,�′

(
eW (tε)

)�

k

(
eW (tε)

)�′

j

(
∂A


A�′ −
∑

i

Γi
�,�′Ai

)(
ξ�
Wε

(tε)
)}

× (
∆(Wk)∆(Wj) − εηj

k

)
.

Lemma B.4. The process ξ�
W has the same law as the process ZWε

defined
in (B.4).

Proof. By Proposition B.3, Ŵ�(t)−Ŵ�(tε) :=
∑

k

(
eW (tε)

)�

k
(Wk(t)−Wk(tε))

are the increments of an R
d-valued Brownian motion Ŵ ; we get

ξ�
W (t) − ξ�

W (tε) = A0

(
ξ�
W (tε)

)
(t − tε)

+
∑

k

Ak

(
ξ�
W (tε)

)(
Ŵk(t) − Ŵk(tε)

)

+
1
2

∑
k,s

(
∂Ak

As −
∑

i

Γi
k,sAi

)(
ξ�
W (tε)

)

×
((

Ŵk(t) − Ŵk(tε)
)(

Ŵs(t) − Ŵs(tε)
)− εηs

k

)
.

By (B.7), we have 2
∑

i Γi
k,sAi = [Ak, As]+

∑
i

(〈[Ai, As], Ak〉Ai+〈[Ai, Ak], As〉
Ai

)
, where the first term is antisymmetric in k, s and does not contribute; the

remaining sum is symmetric in k, s. Thus we get

−
∑
i,k,s

Γi
k,sAi ∆(Ŵk)∆(Ŵs) =

∑
i,k,s

Ai〈[As, Ai], Ak〉∆(Ŵk)∆(Ŵs)

which proves Lemma B.4. ��

Lemma B.5. We have E

[
supt∈[0,1] ‖ξ�

W (t) − ξ̃W ε(t)‖2
Rd

]
≤ c ε2.

Proof. The following method of introducing a parameter λ and differentiating
with respect to λ, is steadily used in [146].

For λ ∈ [0, 1], let eλ := λeW + (1 − λ)eWε
and define the process ξλ

W by

ξλ
W (t) − ξλ

W (tε) = A0(ξλ
W (tε))(t − tε) +

∑
k,�

(eλ
W (tε))�

k A�(ξλ
W (tε))∆(Wk)

+
1
2

∑
k,j

{∑
�,�′

(eλ
W (tε))�

k (eλ
W (tε))�′

j

(
∂A


A�′ −
∑

i

Γi
�,�′ Ai

)(
ξλ
Wε

(tε)
)}

× (
∆(Wk)∆(Wj) − (t − tε)η

j
k

)
.
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Let uλ
W := ∂ξ/∂λ; then ξ�

W (t) − ξ̃W ε(t) =
∫ 1

0
uλ

W (t) dλ. Denote by A′
k,

(∂A

A�′)′, (Γi

�,�′Ai)′ the matrices obtained by differentiating Ak, ∂A

A�′ ,

Γi
�,�′Ai with respect to ξ, and consider the delayed matrix SDE

dJt←t0 =

[
A′

0(ξ
λ
W (tε)) dt +

∑
k,�

(eλ
W (tε))�

k A′
�(ξ

λ
W (tε)) dWk

+
1
2

∑
k,j

{∑
�,�′

(eλ
W (tε))�

k (eλ
W (tε))�′

j

(
(∂A


A�′)′ −
∑

i

(Γi
�,�′Ai)′

)(
ξλ
Wε

(tε)
)}

×
(
∆(Wk) dWj(t) + ∆(Wj) dWk(t) − ηj

k dt
)]

Jt←t0

with initial condition Jt0←t0 = Id. Then

uλ
W (T ) = JT←t0

∫ T

0

J−1
t←t0

[∑
k,�

(
eW (tε) − eWε

(tε)
)�

k
A�(ξλ

W (tε)) dWk(t)

+
∑
k,j

{∑
�,�′

(
eW (tε) − eWε

(tε)
)�

k

(
eλ

W (tε)
)�′

j

(
∂A


A�′ −
∑

i

Γi
�,�′Ai

)
(ξλ

Wε
(tε))

}

× (
∆(Wk) dWj(t) + ∆(Wj) dWk(t) − ηj

k dt
)]

which along with (B.12) proves Lemma B.5. ��



C

Numerical Implementation
of the Price-Volatility Feedback Rate

In this Section we present some numerical results illustrating the implemen-
tation in real time of the concepts introduced in Chapter 3.

Starting from a single market observation SW (t) over a well-defined inter-
val of time, we let xW (t) := log SW (t). According to Theorem 3.4 the price-
volatility feedback rate λ(t) associated to xW (t) can be calculated in terms
of the volatility function A(t) = vol(xW (t)) of xW (t) and the cross-volatility
functions B(t), C(t), defined by

dx ∗ dx = Adt, dA ∗ dx = B dt, dB ∗ dx = C dt .

The functions A(t), B(t), C(t) are estimated using the Fourier series method
of Appendix A.

To illustrate the method, the values of A(t), B(t), C(t) and λ(t) have been
calculated on IBM data for two trading days in the year 1999, see Figure C.2
(we acknowledge Olsen & Associates for the provision of the data sets). Since
taking logarithms of the stock prices, mainly affects the scales of A(t), B(t),
C(t), but lets the shapes of the curves more or less invariant, the numer-
ical computation has been done in terms of the stock quotations (without
switching to the logarithmic scale).

For the sake of comparison, a simulation study was performed for geomet-
ric Brownian motion SW (t) = exp(W (t) − t/2). Since the drift term t/2 in
xW (t) = log SW (t) = W (t)− t/2 does not affect the calculation of the volatil-
ities, it has been ignored in the simulation. The first window in Figure C.1
shows a trajectory of xW (t) ≡ W (t) simulated on a scale with a resolution
comparable to the IBM market data, where in the average a new quotation is
made every 4 or 5 seconds during a trading day of 6.5 hours. On the basis of
this simulated trajectory the volatilities were computed, adopting the same
algorithm as for the IBM data, see Figure C.1 for the resulting curves.



124 C Numerical Implementation of the Price-Volatility Feedback Rate

Fig. C.1. The price-volatility feedback rate for a simulated trajectory of (geometric)
Brownian motion. As expected, the estimated volatility displays almost constant
values close to 1, whereas the values of B(t) and C(t) oscillate near 0. As result, an
almost vanishing price-volatility feedback rate is found: λ(t) ≈ 0
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Fig. C.2. Daily values of A(t), B(t), C(t), λ(t) on IBM data. The time windows
[0, 2π] correspond to two typical trading days in 1999 (6.5 hours each). Jan 4 (left-
hand side) displays positivity of λ with large picks of A (instable market); April 9
(right-hand side) displays small and mainly negative values of λ along with a pro-
gressive damping of A (stable market). Graphics reproduced from [19] by courtesy
of Blackwell Publishing Inc
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Hörmander criterion 70

information drift 78, 80
insider filtration 79
insider portfolio 83
instantaneous derivative 33

pathwise propagation 33
smearing 33

integral
Itô 15
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