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Preface to the Fourth Edition 

This expanded edition of ALogistics Systems Analysis@ includes new re-
search results and numerous modifications to enhance comprehensiveness 
and clarity. It has two new sections, a new appendix, and more than half a 
dozen new figures. A few references have also been added, but the bibliog-
raphy is not exhaustive. Much of the new material is based on work by 
Profs. Alan Erera (Georgia Tech), Karen Smilowitz (Northwestern U.), 
and by PhD candidate Yanfeng Ouyang (U.C. Berkeley). Their help is 
gratefully acknowledged. The financial support of the National Science 
Foundation and the Volvo Foundations Center of Excellence for the Future 
of Urban Transportation at U.C. Berkeley is also acknowledged. 

The new appendix presents the logic behind the traveling salesman and 
vehicle routing results used in Sec. 4.2 to describe the transportation opera-
tion; Chapter 4 is more self-contained as a result. New section 5.6 intro-
duces and evaluates a general method that automatically translates the con-
tinuum approximation recipes of Chapters 4 and 5 into discrete system 
designs. This closes a gap in previous editions. Other additions include an 
explanation of how to develop system designs that can efficiently accom-
modate real-time control strategies to manage uncertainty (new section 
4.6.3), and extensions of the many-to-many design ideas of Chap. 6 (in ex-
panded section 6.5.3). An errata corrigendum will be posted on the au-
thors=s web site: http://www.ce.berkeley.edu/~daganzo/ This web site also 
explains how to order the solution manual to the problems in the book 
(professors only). 

Carlos F. Daganzo 
Berkeley, California 
November 2004 



Preface to the Third Edition 

Aside from the removal of minor errors, the main modification in this 
printing of "Logistics Systems Analysis" is an improved explanation of 
many passages that had been found confusing by colleagues and students, 
most notably in chapters 5 and 6. A few references have also been added, 
mostly having to do with material complementary to that of the book.

I would like to acknowledge the comments of Profs. Eric Mohr, Wei 
Lin, and David Lovell, and the input of graduate students Flavio Baita, 
Alan Erera, Reinaldo Garcia, and Juan Carlos Muñoz. 

Carlos F. Daganzo 
Berkeley, California 
November 1998 



Preface to the Second Edition 

The presentation and ideas in this second edition of "Logistics Systems 
Analysis" remain essentially unchanged from those of the first edition. The 
main modifications are the inclusion of an index, a more current reference 
list with brief discussions where appropriate, editorial changes to improve 
clarity, and the removal of a number of errors that had crept in the 1991 
edition.

After teaching from this monograph for a number of years, I have found 
that students do not really master the material in it until they have used it 
to formulate and solve real life problems of interest to them. Although 
solving a number pre-formulated problems is no substitute for this experi-
ence, such an effort can be a useful first step toward the ultimate goal. In 
view of this, an informal set of solutions to some of the exercises listed at 
the end of each chapter has been developed. They can be ordered by writ-
ing to the Institute of Transportation Studies, Publications Office, 109 
McLaughlin Hall, University of California, Berkeley, California, 94720.

 My sincere gratitude goes to Mrs. Ping Hale for her skillfull preparation 
of the revised manuscript, and to the University of California Transporta-
tion Center for funding our efforts.

Carlos F. Daganzo 
Berkeley, California 
August, 1995 



Preface to the First Edition 

Logistics, the subject of this monograph, is narrowly defined here to be the 
science that studies how to convey items from production to consumption 
in cost-effective ways; some subjects of interest to logistics managers such 
as reliability and maintenance are not addressed. The theories that are cov-
ered, on the other hand, apply to generic items that can represent people, as 
well as freight; they should be of interest to passenger transportation firms 
and agencies.

Besides transportation, a logistics system usually includes other activi-
ties such as inventory control, handling, and sorting, which must be care-
fully coordinated if cost-effectiveness is to be achieved. Yet, both in theory 
and practice these activities are often examined separately.

The operations research field includes sub-fields with specialized jour-
nals in inventory control, transportation, warehousing, etc... Over the 
years, these sub-fields have evolved into disciplines that have developed 
their own specialized conventions and jargon, as a result making it increas-
ingly difficult for researchers to communicate across disciplinary bounda-
ries. Something similar happens in practice when firms become compart-
mentalized; if responsibilities for different logistical activities are allocated 
to different managers, decisions in the best interests of the firm are diffi-
cult (if not impossible) to make.

This monograph represents an attempt to examine logistics systems in 
an integrated way. By necessity, we will not represent any of the activities 
as precisely as would be done in each one of the sub-fields of OR, but we 
will try to model them accurately enough to capture their essence. Our goal 
is to describe, and show how to find, rational structures for logistics sys-
tems, including their operation and organization.

This monograph also departs from traditional operations research proce-
dures in that it tries to avoid detailed descriptions of both problems and 
their solutions. For a typical problem, instead of searching for the ultimate 
solution based on reams of detailed data and time consuming numerical 
analyses, our goal will be to present reasonable solutions (described in 
terms of their properties) with as little information as possible. In fact a 
goal of our analyses will always be to determine what is the least amount 
of information that is needed to make a rational decision, and to use the 
simplest most transparent approach possible to identify good solutions. 
These features of our approach can help overcome the decision-makers' 
natural distrust of "black-boxes", and be quite helpful in instances where 
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time is of the essence. This is not to say that the more traditional detailed 
approaches to problem solving should not be used; when time and infor-
mation availability allow it, numerical detailed methods have proven to be 
quite useful. Yet, even in these instances detailed solutions sometimes can 
be improved if they are preceded by an exploratory analysis as described 
in this monograph.

The work presented in this monograph is a result of efforts undertaken 
by this author, his close colleagues and students for the last decade.

In the early eighties, Dr. Larry Burns of the General Motors Research 
Laboratories and I became interested in the internal movement of goods of 
a large firm. Because transportation in a large firm shares many similari-
ties with public transportation, we realized that, as had been done in the 
70's for transit design problems and location problems by Prof. Newell (of 
the University of California, Berkeley) and his students, it was possible to 
substitute large numbers of data by suitable averages and to treat discrete 
problems in a continuous manner. We did not suspect at the time the im-
pact that this endeavor was to have on General Motors. (To date, and using 
this approach, the General Motors research team headed by Dr. Burns has 
been commended repeatedly for numerous logistics improvements at GM).

In an effort to formalize this thinking, Newell and I taught an advanced 
1 unit graduate seminar at U.C. Berkeley in 1982. Later that year I ex-
panded and tested these notes while on sabbatical leave at M.I.T., hosted 
by Prof. Yosef Sheffi. Since then work has continued, with the contribu-
tion of Prof. Randolph Hall of U.C. Berkeley being particularly notewor-
thy, and the most current ideas are now taught in a four unit graduate 
course on networks and logistics.

Although most of the ideas in the course have been documented in the 
open literature, Professor Martin Beckmann (of Brown University) re-
marked at an EURO/TIMS conference in Paris in the late 80's that it is not 
easy for an "outsider" to get an overall view of this work. He convinced 
me that too many journals have published articles on the subject (some-
times with an unnatural chronology), and thus planted the seed for this 
monograph in my mind.

Mostly based on published works, this monograph attempts to present 
the subject in a logical way. New ideas are also presented when, in order to 
tell a cohesive story, "voids" in the literature had to be filled. Voids still 
remain and, hopefully, the monograph will spur further work on this young 
and evolving subject.

The first two chapters introduce preliminary ideas. Chapter 1 illustrates, 
by means of an example, the problem solving philosophy of the mono-
graph, and Chapter 2 explains the accounting method for logistics costs. 
Chapters 3 through 6 describe the theory as is applied to gradually more 
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complex problems. Chapter 3 explains the optimization method in detail 
and illustrates it with a problem involving only one origin and one destina-
tion. Chapter 4 examines problems with one origin and many destinations 
(or vice versa), assuming that each item travels in only one vehicle; Chap-
ter 5 allows for transshipments at intermediate terminals. Finally, Chapter 
6 examines "many-to-many" problems.

Before getting started, some remarks about notation and organization 
need to be made. Equations, tables and figures will be numbered (a.b),
where "a" is the chapter number and "b" the equation number. Also, be-
cause an attempt has been made to use as consistent a set of symbols 
throughout the monograph as possible, the reader should expect the nota-
tion often to be quite different from that in the references, which is un-
avoidable. Each chapter begins with some brief remarks on a few recom-
mended readings that are closely related to the topic at hand, and ends with 
a set of suggested exercises and a list of symbols. A reference list with the 
bibliographic citations is provided at the end of the monograph.

Although not its main goal, the monograph could be used for teaching 
graduate students about logistics, perhaps in a course also covering the 
more traditional OR optimization tools. It should be possible to cover the 
most basic ideas in 10 one hour classes with about two classes per chapter, 
but a lengthier exposition is recommended to delve into details. To this ef-
fect, each chapter contains a few suggested exercises, intended to solidify 
the students' grasp of the concepts in the chapter and/or explore extensions 
that could not be discussed in the text.

In closing, I would like to thank my friends and colleagues, Profs. 
Gordon Newell and Randolph Hall of the University of California (Berke-
ley), and Dr. Lawrence Burns of General Motors Corporation, for their 
contribution to the ideas in this monograph. 

I also thank Mrs. Phyllis DeFabio and Mrs. Ping Hale for their patience 
and perseverance in preparing the various versions of this manuscript. Ms. 
Gail Feazell prepared most of the Figures. The support of the Institute of 
Transportation Studies is also gratefully acknowledged. But most of all, I 
appreciate the love and understanding of the beauties and beauticians of 
my life.
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1 The Use of Succinct Models and Data 
Summaries

Readings for Chapter 1 

As we do in this chapter, Blumenfeld et al. (1987) describe the advantages 
of simple models; the opinions expressed in this reference are based on a 
case study where succinct models based on data summaries proved very 
effective; the reference is easy to read. Newell (1973) argues that a family 
of related transportation and location problems can be solved approxi-
mately with an approach that ignores "details"; this paper was the "seed" 
for the continuum approximation method to be presented in Chapter 3.

1.1 Different Approaches for Solving Logistics Problems 

Logistics can be defined in a number of ways, depending on one's view of 
the world; but in this monograph it is taken to be the set of activities whose 
objective is to move items between origins and destinations (usually from 
production to consumption) in a timely fashion.

Traditionally logistics problems are solved by gathering as much de-
tailed information as possible about the problem, formulating a mathe-
matical program including as input data all the information that might pos-
sibly be relevant, identifying solutions in detail by means of numerous 
decision variables, and then using the computer to sort through this nu-
merical maze. Because the data collection effort can be onerous, some-
times decisions are made with no systematic analysis. On other occasions 
the numerical optimization problem is NP-hard (which makes it difficult 
to obtain good solutions when the problem is formulated without simplifi-
cation) and decisions are made on the basis of heuristic solutions, which 
are not particularly insightful.

This monograph presents an alternative approach for logistics systems 
planning and analysis where, even if detailed data are available, the bulk of 
the approximations are made right at the outset. Detailed data are replaced 
by concise summaries, and numerical methods are replaced by analytic 
models. Without numerous pieces of information the analytic models can 
be solved accurately; it becomes possible to identify broad properties of 
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solutions close to the global optimum. These near-optimal solutions are 
then used to formulate guidelines for the design of implementable solu-
tions; i.e. solutions that satisfy all the detailed requirements ignored in the 
analysis. This final "fine-tuning" step may be carried out with the help of a 
(more traditional) computer optimization program, but this is not a re-
quirement. The remainder of this chapter compares the traditional and pro-
posed approaches. Daskin (1985) reviews both schools of thought, al-
though the non-detailed approach has evolved a great deal since then. A 
more recent review of the latter is given in Langevin et.al (1995). 

The proposed approach is particularly useful in planning applications 
over long horizons, where data are uncertain. Its simplicity also allows 
analysts to develop qualitative insights (e.g. into the most important 
trade-offs influencing the choice of final solutions) which can then be 
communicated meaningfully, without interfering details, to managers and 
decision-makers. Better decisions will be made as a result. A clear under-
standing of the trade-offs at work is also important because it allows quick 
but educated decisions to be made on the spot despite a changing world. 
Should conditions such as labor prices, availability of locations, etc... 
change suddenly between design and implementation, alternative solutions 
that account for these changes readily become apparent because the basic 
design principles stay the same. This is fortunate because sometimes it is 
just not possible to prepare new data and interpret the result of another 
numerical optimization in a timely manner.

The following example, reminiscent of the case study in Blumenfeld et 
al. (1987) and representative of the kinds of problems addressed later in 
this monograph, is used to expand the scope of the comparisons between 
detailed and simple models. It focuses on accuracy issues and illustrates 
how broad decisions can be evaluated without detailed data.

1.2 An Example 

A hypothetical manufacturer of computers, radios and television sets has 
three factories and 100 distribution centers in the continental U.S. The fac-
tories are located in Green Bay (computer modules), Indianapolis (televi-
sions, monitors and keyboards) and Denver (consoles); see Figure 1.1. 
Some of these components must be assembled before they are sold, and 
this can be done either at the distribution centers themselves or at a central 
location next to the Indianapolis factory, which we shall call "the ware-
house". We seek a distribution strategy that will minimize the sum of the 
transportation and inventory costs per year; see Figure 1.2.
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The computer modules cost $ 300 and weigh 5 lbs, the televisions (as do 
the monitor/keyboard sets) cost $ 400 and weigh 10 lbs, and the consoles 
cost $ 100 and weigh 30 lbs. Road trucks can carry 30,000 lbs and can be 
hired with driver for $ 1 per mile. (In practice real costs are higher, and 
volume not weight  often limits shipment size). We also assume that an 
inventory penalty is paid indirectly for each day that a product is waiting to 
be either transported or consumed. The penalty is figured to be 0.06% of 
the cost of the product per working day waited, corresponding to an inter-
est rate of about 15% per 250 work day year. Chapter 2 will discuss 
transportation, inventory, and other logistics costs in more detail.

Fig. 1.1 Location of 3 hypothetical factories 

For a given distribution strategy, cost can be calculated if we know the lo-
cations of the distribution centers and the yearly demand at each destina-
tion by item type. This is the detailed information that was mentioned in 
Sec. 1.1.

Table 1.1 (at the end of the chapter) contains 300 entries giving the hy-
pothetical distance in miles from each factory to each destination center. 
The locations of these centers were generated by random independent 
draws from a uniform distribution of positions in a 2500x1000 mile rec-
tangle with sides parallel to the coordinate axes. Distances were calculated 
as the sum of the absolute differences in the points' coordinates.
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For purposes of illustration we will assume that each distribution center 
sells every working day 10 television/console sets and 10 computer units 
consisting of a module, monitor and keyboard. (Although in practice these 
figures would change across distribution centers and from day to day, such 
complications are not included in our example because the distance table 
contains enough details to illustrate our point. See exercise 1.2.)

Fig. 1.2 Possible strategies for using a warehouse 

We also know from observation of the map (or a cursory perusal of Table 
1.1) that the average distance from a factory to a distribution center, as 
well as between the Green Bay and Denver factories and the warehouse, is 
on the order of 103. More accurate estimates could be obtained from the 
raw data, but this is not necessary.

Two broad strategies are considered first. With strategy (i) the ware-
house is skipped, and everything is shipped directly from the factories to 
the centers in full trucks without intermediate stops. With strategy (ii) eve-
rything is assembled at the warehouse. Trucks still travel non-stop and full 
from the factories to the warehouse, and from the warehouse to the centers.

The total transportation cost per year is obtained as the product of the 
cost of a typical truck trip, $ 103, and the number of truck trips per year. 
Every year, each destination requires 2500 items from the Denver and 
Green Bay factories and 5000 from Indianapolis. This is equivalent to 
2500(30/30,000)=2.5 trips per year from Denver, 0.417 from Green Bay 
and 1.667 from Indianapolis. And the total transportation cost is: 
100(2500+417+1667)  4.6  105 $/yr.
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This strategy minimizes transportation cost because every item travels the 
least distance possible in a full truck, but it exhibits exorbitant inventory 
costs. Because a truck from Green Bay only visits a center once every 
0.417-1 years, items from Green Bay spend on average 0.417-1/2 years 
waiting to be consumed at the destination and a similar amount of time at 
the origin waiting to be loaded. This result assumes that Green Bay makes 
up the loads for all the destinations simultaneously. The experienced 
reader will recognize that the inventory at the factory could be virtually 
eliminated if loads were to be made for the different destinations in suc-
cession, e.g., as explained in Sec. 4.3.3 of the text, but the calculations that 
follow are simpler by assuming simultaneous load make-up for all the fac-
tories. This simplification is adopted because it does not change the quali-
tative conclusions significantly. Note as well that the long waits arising 
from the current strategy are impractical, and this is confirmed by the high 
inventory costs that result. Given the 0.417-1 year wait, the inventory cost 
per item delivered from Green Bay is: (300)(.15)(0.417-1) = $ 108, and 
from the Denver and Indianapolis factories: $ 6 and $ 36.1 The yearly in-
ventory cost is thus a staggering: (2500)(100)[108+6+2(36)] = 46.5  106

$/yr, which brings the total to about 47 million dollars per year.
Strategy (ii) increases transportation costs because warehouse consoli-

dation requires items to travel more miles. However, it can also decrease 
inventory costs. Because all the distribution centers are served from the 
warehouse, with its higher volumes shipped, more frequent delivery is 
possible. Since all trip distances are on the order of 103 miles, the total 
transportation cost between the warehouse and the centers should be the 
same as the total transportation cost for strategy (i): 4.6  105 $/yr. Simi-
larly, between the factories and the warehouse, the cost should be the same 
as for strategy (i), excluding the Indianapolis items: about 100(2500+417) 

 3  105 $/yr. The total is thus: 7.6  105 $/yr.
Three components of the inventory cost should be considered; they are 

the cost of waiting between: (1) Green Bay and Indianapolis, (2) Denver 
and Indianapolis, and (3) Indianapolis (warehouse) and the destinations. (It 
is assumed that the item transfer from the Indianapolis factory to the ware-
house does not result in an inventory cost). Green Bay ships 1.25  106

lbs/yr, which results in 41 truck trips per year to the warehouse, yielding 
an inventory cost of $ 1.1 per item: (300)(.15)(41-1)  1.1. From Denver, 
trips to the warehouse are made 6 times more frequently since consoles are 
six times heavier than modules, and since in addition consoles are 3 times 
cheaper, the inventory cost per item must be 18 times smaller; i.e. $ .06. 

1 We are assuming that the Indianapolis' shipments contain both TV's and monitor/keyboard sets.
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On a yearly basis the inventory cost for freight inbound into the warehouse 
is thus: (1.1 + .06)(2500)(100)  $ 2.9  105.

Each center receives (2500)(15+40) lbs worth of goods every year and 
as a result is visited by a truck 4.6 times a year. Insofar as loads are being 
made-up at the warehouse for all the centers simultaneously, the inventory 
cost per computer set delivered is (300+400)(.15)(4.6-1)  $ 23. For televi-
sion sets it is $ 16. Since 250,000 sets of each type are processed every 
year, the inventory cost for outbound freight from the warehouse is: 
(23+16)(250,000)  98  105 $/yr.

The total inventory cost for strategy (ii) is 10.1  106 $/yr. Compared 
with strategy (i), the large reduction more than offsets the small increase in 
the transportation cost. The total cost is reduced by a factor of 4, to about 
10.9 millions of dollars per year. Given the outcome of strategy (i), it is 
natural to seek reductions in the inventory cost by shipping more fre-
quently in partially full trucks. No doubt this will increase the transporta-
tion cost, but it should be intuitive that if the dispatch frequency is judi-
ciously chosen the total cost will decrease. Chapters 2 and 3 explain how 
an optimal shipment frequency and the associated cost can be easily ob-
tained for each origin destination pair. Here we only need the optimal cost 
formula as it applies to our example. It is a function of only three vari-
ables, the freight rate for one trip (in $), the origin to destination flow (in 
lbs/yr) and the freight value (in $/lb):

cost/yr = 2[(.15)(rate)(flow)(value)]1/2. (1.1) 

Recall that the freight rate equals the distance (in miles). 
With this knowledge, we can explore extensions to strategies (i) and (ii), 

labeled (iii) and (iv), in which an optimal shipment frequency is used on 
all the transportation routes. Note that implementation of these strategies 
requires careful coordination between the transportation and inventory 
control managers, if they are different individuals.

Using Eq.(1.1), the reader can verify with very little effort that the total 
yearly cost for strategy (iii), still using 103 miles per truck trip as a coarse 
estimate for all the distances, is about 6.8 million dollars. The cost estimate 
for strategy (iv) is about $ 4.6 million.

The cost could conceivably be reduced if one allows some of the facto-
ries to ship direct and the remaining through the warehouse (strategy (v)); 
the calculations are simple since only two new routing schemes are possi-
ble: either Denver direct and Green Bay through the warehouse, or vice 
versa. The former is preferred but its cost, $ 5.5  106, is still higher than 
for strategy (iv).
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In later chapters we will show how routing strategies in which trucks are 
allowed to make multiple stops can be analyzed in a simple manner with 
data summaries; for our particular problem they can reduce cost somewhat 
further.

The reader is challenged to verify that the costs obtained using the de-
tailed data of Table 1.1 to evaluate costs and dispatching frequencies (in 
millions of dollars per year) are: 47 for strategy (i), 10.8 for strategy (ii), 
6.7 for strategy (iii), 4.5 for strategy (iv), and 5.4 for strategy (v). Although 
these figures differ slightly from our rough estimates, the ranking of the 
strategies  (i) < (ii) < (iii) < (v) < (iv)  is preserved. Table 1.2 summa-
rizes the total costs. The two cost columns in the Table are so close be-
cause the inventory cost, a large component of total cost for strategies (i) 
and (ii), is given exactly by the summary data. This would happen even if 
the consumption rates were to change across destinations. With different 
consumption rates there would be larger discrepancies for the remaining 
strategies, but their relative ranking would tend to stay the same; see exer-
cise 1.2. This ranking is also robust to (moderate) errors in summary data. 
If, for example, the average trip distance had been overestimated by 25%, 
the yearly cost estimate for strategies (i) to (v) would have been (in mil-
lions of dollars): 47, 11, 7.6, 5.0 and 6.0. Clearly, decisions taken with the 
simple approach are cost-effective, even if the yearly costs are not pre-
cisely known.

Table 1.2  Summary of the results for the case example

Shipping
Strategy

Estimated total 
cost in 106 $/year 

Exact total cost 
in 106 $/year 

(i) Direct, full trucks 47 47
(ii) Warehouse, full trucks 10.9 10.8
(iii) Direct, optimal frequency 6.8 6.7
(iv) Warehouse, optimal frequency 4.6 4.5
(v) Part direct, part warehouse 5.5 5.4

Note that in verifying the ranking each one of the 100 destinations must be 
considered separately. This is tedious, much like the data preparation effort 
needed for "real life" detailed numerical analyses. (To analyze a strategy 
allowing multiple truck stops one would have to deal with 1032 distances – 
in order to account for the distances between all possible customer pairs.)

The reader may complain that we have not explored more complicated 
strategies. For example, strategy (v) can be generalized to allow some cen-
ters to be served through the warehouse and others directly, so that the lo-
cational advantages of specific destinations can be exploited. Granted, this 
additional flexibility has the potential for small improvements, but the 
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price is the additional complexity of implementation. In any case, as ex-
plained in later chapters, even strategies that seem to require detailed in-
formation can often be examined with properly summarized data.

1.3 Remarks 

This section discusses the merits of the proposed approach, using the ex-
perience gained from this example as an illustration. The approach is 
evaluated on two dimensions: the flexibility it affords, and the accuracy of 
its results.

1.3.1 Usefulness and Flexibility 

We have already said that simple models reveal quite clearly the trade-offs 
underlying their recommendations; this is especially true when the final 
solution can be expressed in closed form as a function of only a few data 
summaries. In practice, a physical understanding of the reasons for the 
recommendations is quite useful to have because:

(1) it can be a convincing communication bridge between the analyst 
and the decision-maker when recommendations for action are being 
made, and

(2) it may point to better solutions than those allowed by the original 
formulation. This may lead to a reconsideration of the original question, 
perhaps suggesting that the scope of the problem should be expanded. 

Although we did not write any analytical expressions in Sec.1.2. (this will 
be done in later chapters) the reasons for the appeal of strategy (iv) are 
clear. If no transshipments are made, and given the small flows between 
individual origins and destinations, then either inventory costs have to be 
large, as with strategy (i), or else vehicles have to travel nearly empty, as 
with strategy (iii). Transshipments at the warehouse eliminate nearly 1/3 of 
the vehicle routes and increase route flows, reducing the cost per item on 
each route dramatically. Strategies (ii) and (iv) exhibit lower total costs as 
a result, even though individual items travel double the distance. Because 
this seems like a steep travel penalty to pay for perhaps too much flow 
consolidation, we are entitled to suspect that less consolidation with a 
smaller distance penalty could be more economical. What if flows could 
be increased less dramatically, by a factor of 2 (say) instead of 3, without 
increasing the travel distances noticeably? Consideration shows that this 
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can be achieved by using three warehouses (one near each factory) and al-
lowing different centers to receive items through the most conveniently lo-
cated warehouse. This realization indicates that the original problem for-
mulation should be reconsidered.

We had also mentioned earlier that insights gained during the analysis, 
especially if it yields a simple formula, reveal at a glance how the optimal 
solution should change if the basic conditions change. This knowledge 
should be most useful in a decision-making environment where conditions 
may change on short notice. In our case, the inefficiencies from low flows 
are most noticeable for the Green Bay factory, which makes expensive 
light items, and least so for the Denver factory. Thus, had the demand of 
television sets been much greater (which increases the flows from Denver 
and Indianapolis but not from Green Bay), we would expect strategy (v) to 
be the winner. The small and expensive items from Green Bay could be 
conveniently consolidated with the already heavy flow out of Indianapolis, 
and the bulky Denver items could be shipped directly. It should not be dif-
ficult to see (without any need for complex additional calculations) how 
the best distribution pattern should be modified if other changes occur, in-
volving for example: inventory rates, transportation rates, item values, 
and/or demand rates.

1.3.2 Accuracy of Its Results

Before turning our attention to accuracy issues it is worth noting that the 
largest cost reductions in the example [e.g. from strategy (i) to (ii)] result 
from the simplest decisions [e.g. "consolidate everything at the ware-
house"] for which little information and analysis effort is needed. Further 
improvements become gradually harder and harder to achieve both in 
terms of information, computation and difficulty of implementation. This 
pattern, typical of many applications, underscores two related facts: (a) 
lack of accurate detailed data should not be an excuse for avoiding analy-
sis, and (b) precision should not be pursued at all costs for its own sake. 
With this as a prelude, we now discuss the accuracy of the traditional and 
proposed approaches.

Errors to the proposed approach arise primarily from the simplifications 
made to the data, while errors to the traditional approach arise mostly from 
failure of the algorithms to identify good solutions. In a way, thus, we have 
to choose between solving a model based on approximate data accurately, 
or a more precise model approximately. In the former case the approxima-
tions are explicit and can be easily interpreted; non-essential information is 
eliminated early, before it can cloud the issues at hand.
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Another source of errors, ignored in the above remarks, arises from errors 
in the data (detailed or summarized) as they propagate to the final solution. 
While errors in data summaries can be easily traced to the final solution, 
the same cannot be said for models based on numerous detailed data. In 
later chapters we will discuss the perhaps surprising effect that errors in 
the data have on both detailed and simple models.

Besides data related errors, we must also consider the impact of problem 
formulation assumptions on both approaches; for example we may have to 
define how transportation costs depend on flow, how inventory costs de-
pend on time, etc... If approximations are made in a detailed model the 
analyst has no simple way of assessing their implications. Thus, being 
aware that a certain assumption allows more powerful algorithms to be 
used, the analyst may be tempted to adopt it perhaps thinking: "what I lose 
in accuracy, I will gain in increased closeness to optimality". This is a 
great danger for, on occasion, seemingly innocent changes radically 
change the nature of the optimal solution. [For our example, if the trans-
portation cost per trip is assumed to be proportional to the amount of 
freight carried, instead of a fixed quantity, then the optimal solution is to 
ship every item direct from the origin to its destination as soon as it has 
been produced. There is no incentive whatsoever to consolidate loads ei-
ther temporally or spatially.]

The above discussion is not meant to suggest that detailed models 
should not be used. Rather, it should underscore that both approaches to 
logistics systems analysis have proper application contexts.

In an environment where changing political pressures (which are hard to 
quantify) and changing economic opportunities interfere with well planned 
strategic decisions, numerical solutions may be too rigid. A set of simple 
guidelines, coupled with some understanding of the relationship between 
key input factors and the type of solution that is desirable, may be more 
useful than a detailed analysis. Simple models are also recommended for 
planning applications; especially in the early stages of analysis (when the 
problem itself is not yet fully understood) because many different options 
and formulations can be explored with them. Detailed models, on the other 
hand, are most useful for finalizing decisions. After a strategic decision has 
been made, hopefully based on sound technical advice, the design guide-
lines obtained with simple models must be translated into a practicable so-
lution that incorporates all the details. It is for this last step (termed 
"fine-tuning" in this monograph) that detailed computer optimization tools 
seem be most useful. Although this monograph will emphasize model 
building and guideline development, it will briefly describe some system-
atic fine-tuning methods as well. 
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Instead of being technique oriented (as most OR books are), this mono-
graph is organized along problem lines and uses a single problem solving 
philosophy. Increasingly difficult problems are considered in each suc-
ceeding chapter, using an incremental approach for their treatment – the 
insights and formulas developed in every chapter become "building 
blocks" for the ensuing ones. Chapter 2 discusses the various logistics 
costs considered in this monograph, and in the process also introduces the 
simple lot size model.

Suggested Exercises 

1.1 Provide a 1 page description of each one of the recommended read-
ings. Comment, in particular, on the problem solving philosophy of 
those two works as it relates to this chapter. Discuss points of 
agreement and disagreement as you see them.

1.2 Generate a table similar to Table 1.1 with a computer spreadsheet 
but now also including a different demand rate for each destination. 
Arrange the information with one row per destination. To generate 
the demands, as well as two sets of X- and Y-coordinates, use suit-
able expressions involving the random number generator of your 
spreadsheet, and store each set on a separate column. Given the co-
ordinates of three factories (stored elsewhere on the spreadsheet to-
gether with the rest of the information on prices and weights, etc...), 
fill in the columns with the distances. Then, repeat the analysis of 
Sec. 1.2. using the average demand and the average distances (or 
any coarse approximation thereof) from the table you generated. 
You will find that, with variable demand, the numerical results of 
the detailed and simple approaches differ somewhat more signifi-
cantly than in Sec. 1.2. Why? Does that change the ranking of the 
strategies? (For a uniform distribution of demand rates, the differ-
ences between the detailed and simple approaches with the data in 
Table 1.1 remain below 8%). 
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Table 1.1 Production characteristics of the three Factories, and distances to all 
other points

Production Characteristics For the Three Factories 
 Green Bay Indianapolis Denver 

price ($)= 300.00 400.00 100.00
weight (lbs)= 5.00 10.00 30.00

units/yr= 250000.00 500000.00 250000.00 

Distance (Miles) Between Factories 

 Green Bay Indianapolis Denver 

Green Bay 0.00 400.00 1100.00 
Indianapolis 400.00 0.00 1100.00 

Denver 1100.00 1100.00 0.00 

Distance (Miles) To the 100 Distribution Centers 

Center Number Green Bay Indianapolis Denver 

1.00 584.71 648.56 515.29 
2.00 1409.37 1409.37 309.37 
3.00 2119.45 2119.45 1019.45 
4.00 341.21 354.30 1441.21 
5.00 861.41 1261.41 473.65 
6.00 1363.68 1363.68 444.09 
7.00 857.30 570.52 1357.30 
8.00 937.19 537.19 1437.19 
9.00 1222.73 1588.18 688.18 

10.00 1875.46 1875.46 775.46 
11.00 1385.30 1785.30 885.30 
12.00 2070.18 2070.18 970.18 
13.00 860.75 860.75 139.25 
14.00 2214.84 2214.84 1114.84 
15.00 526.86 526.86 966.51 
16.00 1707.24 1707.24 607.24 
17.00 152.37 247.63 958.95 
18.00 1294.24 1659.63 759.63 
19.00 641.85 641.85 774.15 
20.00 845.44 845.44 952.46 
21.00 1655.95 2055.95 1155.95 
22.00 1513.14 1513.14 413.14 
23.00 399.68 350.98 1450.98 
24.00 1348.81 1348.81 655.88 
25.00 407.64 253.78 1353.78 
26.00 1001.02 1401.02 501.02 
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Table 1.1 (continued) 

Distance (Miles) To the 100 Distribution Centers 
Center Number Green Bay Indianapolis Denver 

27.00 997.20 997.20 755.62 
28.00 443.71 58.19 1041.81 
29.00 168.69 231.31 1148.58 
30.00 501.99 501.99 853.83 
31.00 1010.97 610.97 1510.97 
32.00 571.78 971.78 542.24 
33.00 795.88 841.63 304.12 
34.00 2171.06 2171.06 1071.06 
35.00 546.46 946.46 743.50 
36.00 697.64 660.46 1197.64 
37.00 231.72 231.72 1331.72 
38.00 1363.63 963.63 1863.63 
39.00 1964.34 1964.34 864.34 
40.00 112.04 307.45 987.96 
41.00 820.00 820.00 1920.00 
42.00 1146.20 1146.20 198.53 
43.00 1963.72 1963.72 836.72 
44.00 888.51 488.51 1586.05 
45.00 362.96 326.04 1426.04 
46.00 1627.74 2027.74 1127.74 
47.00 911.78 911.78 1048.26 
48.00 1615.09 2015.09 1115.09 
49.00 1262.57 862.57 1762.57 
50.00 2170.74 2170.74 1070.74 
51.00 924.65 524.65 1424.65 
52.00 99.92 499.92 1178.72 
53.00 710.23 1110.23 628.25 
54.00 1677.30 2077.30 1177.30 
55.00 827.57 427.57 1327.57 
56.00 1327.32 1727.32 827.32 
57.00 647.77 1047.77 739.44 
58.00 320.38 418.26 779.62 
59.00 1641.10 1783.92 883.92 
60.00 657.25 657.25 669.32 
61.00 800.39 800.39 1202.51 
62.00 968.10 1290.45 390.45 
63.00 2377.68 2377.68 1277.68 
64.00 1443.41 1601.62 701.62 
65.00 1402.79 1802.79 902.79 
66.00 1853.90 1853.90 753.90 
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Table 1.1 (continued) 

Distance (Miles) To the 100 Distribution Centers 
Center Number Green Bay Indianapolis Denver 

67.00 1556.15 1852.01 952.01 
68.00 2000.05 2000.05 900.05 
69.00 915.33 915.33 612.42 
70.00 1235.29 1235.29 422.84 
71.00 1116.23 1116.23 664.63 
72.00 923.32 523.32 1466.74 
73.00 1241.57 1284.57 384.57 
74.00 1036.80 636.80 1536.80 
75.00 836.46 836.46 306.70 
76.00 942.68 1342.68 442.68 
77.00 107.41 507.41 1130.05 
78.00 1295.62 1295.62 591.75 
79.00 1952.37 1952.37 852.37 
80.00 1312.65 1528.55 628.55 
81.00 966.23 966.46 133.77 
82.00 710.83 720.83 999.92 
83.00 256.57 301.83 1356.57 
84.00 1090.11 1490.11 590.11 
85.00 703.16 703.16 1803.16 
86.00 928.37 528.68 1428.37 
87.00 588.68 588.68 991.56 
88.00 1280.04 1280.04 473.06 
89.00 1893.91 1893.91 793.91 
90.00 471.56 871.56 851.39 
91.00 508.87 508.87 1608.87 
92.00 340.93 340.93 1440.93 
93.00 427.53 189.03 927.53 
94.00 751.30 751.30 1071.48 
95.00 2070.99 2070.99 970.99 
96.00 1696.71 1991.49 1091.49 
97.00 318.08 718.08 884.15 
98.00 509.14 909.14 938.48 
99.00 763.84 527.51 1263.84 

100.00 873.39 873.39 712.74 
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Readings for Chapter 2 

Daganzo and Newell (1990) describe a model for handling operations, and 
examine trade-offs among handling transportation and inventory costs. 
Section 2.4 covers much of the same material. Blumenfeld, Hall, and Jor-
dan (1985), and Horowitz and Daganzo (1986) examine minimum cost 
shipping strategies, with random demand and travel times, when a fast and 
expensive transportation mode can be used to forestall shortages. Part of 
Section 2.5 is devoted to this subject. 

2.1  Initial Remarks 

This chapter describes how to account for the various costs arising from a 
logistics operation; it also introduces related terminology and notation. Al-
though this will be done in the context of a single origin producing identi-
cal items1 for a single consuming destination, the formulas and concepts 
extend to the more general scenarios examined in the latter chapters of this 
monograph. Any modifications are described in these chapters. This sec-
tion presents a framework for the classification of logistics cost; specific 
cost types will be analyzed in the following sections.

In tracing the path of an item from production to consumption, we see 
that it must be: 

(i) carried (handled) from the production area to a storage area, 
(ii) held in this area with other items, where they wait for a transpor-

tation vehicle, 
(iii) loaded into a transportation vehicle, 
(iv) transported to the destination, and 
(v) unloaded, handled, and held for consumption at the destination. 

1 In this monograph we will often call the indivisible units that move over a logistics system, e.g., per-
sons, letters, parcels, etc., "items." When the logistics system handles an infinitely divisible com-
modity, such as fluids and grain, the term "item" may also be used; in that context it will denote a 
fixed, and usually small, quantity of the commodity. 
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These operations incur costs related to motion (i.e., overcoming distance) 
and cost related to "holding" (i.e., overcoming time). 

Motion costs are classified as either handling costs or transportation
costs. They are very similar; the main difference being the distances trans-
ported and the size of the batches moved together. Handling costs include 
packaging (in step (i) above); transportation costs include loading. Of 
course, loading is also a handling activity; and if a clear distinction is de-
sired, one could define as a handling cost the portion of loading costs that 
arise outside the transportation vehicle, and as a transportation cost, the 
portion that arises inside the vehicle. It is not really crucial that the cost of 
the specific action be allocated to a "correct" category. What is important 
is that in the final analysis all costs are included and none are double 
counted.

Holding costs include "rent" costs and "waiting" costs. This is not a 
generally accepted terminology, but it is useful for our purposes. As the 
name implies, rent costs include the rent for the space, machinery needed 
to store the items in place, plus any maintenance costs (such as security, 
utilities, etc.) directly related to the provision of storage space. Waiting 
costs are meant to capture the cost of delay to the items, including: the op-
portunity cost of the capital tied up in storage, any value lost while wait-
ing, etc. For a given set of fixed facilities (machinery and space), thus, the 
rent costs remain fixed, but the waiting costs depend on how the items are 
processed; i.e., the rent – unlike the total waiting cost per unit time – does 
not depend on the amount stored. We will examine these four cost catego-
ries one by one, and see how they can be quantified. Our goal is to identify 
which parameters influence the various costs, and the mathematical form 
of the relationships.

In analyzing these relationships, it is also important to choose how to 
present them. For example, one could measure transportation cost as: cost 
per item transported, cost per year, cost per trip, etc. But not all of these 
representations are valid for analysis. The cost per item can be converted 
to cost per year if we multiply it by the number of items produced in a 
year. The cost per item can be converted to cost per trip if we multiply it 
by the number of items in the transportation vehicle. Two representations 
are equivalent if the conversion factor is a constant that does not depend 
on the decision variables. For example, if we seek the optimal vehicle dis-
patching frequency that will maximize the yearly profit for a given produc-
tion level, the desired solution can be found by minimizing the total cost 
per year – when price and production levels are constant, yearly profit can 
be related to yearly costs by a known non-increasing function. The same 
solution could also be obtained by minimizing the average cost per item 
because the conversion factor, items produced per year, is a constant. The 
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cost per trip, however, would lead to an erroneous solution. In the remain-
der of this monograph we will assume that the yearly demand for items 
does not depend on the decision variables, and, therefore, it will be possi-
ble to express cost either as a total per unit time or a prorated average per 
item.

In our discussion we will usually include all the costs incurred by the 
items from origin to destination regardless of who pays them (the shipper, 
the carrier, or somebody else). If ownership of the item changes at some 
point during transportation (e.g., on arrival at the destination), waiting 
costs at the origin will be paid by the producer, and inventory costs at the 
destination by the consumer. While one may feel that costs borne by any 
entity other than our "client" (i.e., the organization whose operation we are 
trying to optimize) should be ignored, this is shortsighted. Such an optimi-
zation would tend to transfer the burden of the operation to entities other 
than our client (since their costs are not being considered); and as a result, 
they may be less willing to participate in the operation. If, for example, a 
producer ships infrequently (which minimizes its own transportation costs) 
and, as a result, causes large inventories at the destination, the consumer 
will be less willing to pay the price – and may expect a discount. Such a 
discount would obviously have to be included in the optimization of the 
shipping frequency, but it is difficult to quantify. Our expressions auto-
matically include the quantity that the discount would represent – the in-
creased cost to the consumer. Of course, if this is not desired, appropriate 
terms can be deleted from the expressions; the techniques remain the same. 

Let us now turn our attention to the various cost components. Section 
2.2 discuses holding costs, Sec. 2.3 transportation costs and Sec. 2.4 han-
dling costs. Section 2.5 explains how uncertainty and random phenomena 
influence cost accounting. 

2.2 Holding Costs 

A sufficiently detailed quantitative description of holding costs can be 
given in the context of a simple scenario with one origin and one destina-
tion. Consider the situation depicted in Fig. 2.1, where items are produced 
and demanded at a constant rate, D' . The four curves of the figure repre-
sent the cumulative number of items to have been: (i) produced, (ii) 
shipped, (iii) received at the destination, and (iv) consumed. We assume 
that the ordinates of the curves at time zero (when observation began) have 
been chosen so as to ensure that the vertical separation between any two 
curves at that time equals the number of items initially observed between 
the corresponding stations. 



18 Cost 

Rarely used in the inventory and queueing literature, cumulative count 
curves such as those depicted in Fig. 2.1 are particularly useful to trace 
items through consecutive stages. In our case, they conveniently describe 
in one picture how the number of items in various, logistic states (waiting 
for transportation, being transported, and waiting for consumption) change 
with time. Notice that the number of items waiting for transportation at any 
given time is the vertical separation between curves (i) and (ii) at the corre-
sponding point on the time axis, the number being transported is the verti-
cal separation between curves (ii) and (iii), and the number waiting for 
consumption is the vertical separation between curves (iii) and (iv). 

Fig. 2.1 Cumulative item counts at different stages in the logistics operation 

Chapter 1 in Newell (1982) shows in detail how various other measures of 
performance can also be gleaned from these graphs. Of special interest 
here are horizontal separations between the curves and the intervening ar-
eas. When items pass through the system in a "first-in-first-out" order, then 
the nth item to be counted at each observation station (i, ii, iii, or iv) is the 



Holding Costs 19

same item; as a result, the horizontal separation between any two curves at 
ordinate "n" represents the amount of time spent by that item between the 
corresponding stations. In the figure, thus, tm represents the transportation 
time. It should be intuitive that areas between curves represent total 
amount of wait (in "item-hours") regardless of the order in which items are 
processed. Thus, the shaded area in the figure represents the number of 
"item-hours" spent at the origin, and the dotted area represents the number 
at the destination. It follows that the average horizontal separation between 
two curves, measured between two points where the curves touch, repre-
sents the average time that a typical item spends between the operations 
represented by the curves. (The average horizontal separation between the 
curves can be expressed as the ratio of the area, i.e., the total wait, and the 
vertical separation between the two points, i.e., the number of items proc-
essed. Such a ratio is, by definition, the average wait per item.) 

In our example, the (constant) separation between the production and 
consumption curves represents the average "waiting" that an item has to do 
between production and consumption. This is equal to tm plus the maxi-
mum interval (or headway) between successive dispatches, H1 = max{Hi}
(see figure): 

.tHwait m1 (2.1a)

The room needed for storage at any given location should be proportional 
to the maximum number of items present at the location. This is repre-
sented in Fig. 2.1 by the maximum vertical separations between curves. 
Because the figure assumes that each vehicle carries all the items that have 
been produced, the storage area required at the origin is proportional to the 
maximum headway (otherwise the maximum inventory accumulation 
would be larger); i.e.: 

maximum accumulation IHD’=  (2.1b) 

The maximum accumulation at the destination is the same as it is at the 
origin (the reader can verify this from the geometry of the figure, remem-
bering that H1 = max{Hi}) . 

The expressions for average wait and maximum accumulation can be 
translated into costs per item or per unit time using cost conversion factors. 
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2.2.1 Rent Cost 

This is the cost of the space and facilities needed to hold the maximum ac-
cumulation; for properly designed systems it should be proportional to the 
maximum accumulation. The proportionality factor will depend on the size 
of the items, their storage requirements, and the prevailing rents for space. 
If the facilities are owned (and not leased), then the purchase cost should 
increase roughly linearly with size. Thus, one can compute an equivalent 
rent (based on the amortized investment cost over the life of the facilities) 
which should still be roughly proportional to the maximum accumulation. 

Let cr be the proportionality constant (in $ per item-year); then 

rent cost/year = cr (maxiumum accumulation)  (2.2a) 

and if the demand is constant, Eq. (2.1b) allows us to write: 

rent cost/item = cr (max accumulation)/D’=crH1  (2.2b) 

Note that the rent cost per item is independent of flow (the production and 
consumption rate D') and proportional to the maximum time between dis-
patches.

2.2.2 Waiting Cost 

Waiting cost, also called inventory cost, is the cost associated with delay to 
the items. As is commonly done in the inventory literature, it will be cap-
tured by the product of the total wait done by all items and a constant, ci , 
representing the penalty paid for holding one item for one time unit (usu-
ally a year). Thus, 

and

Because the above expressions implicitly value all the item-hours equally, 
caution must be exercised when the penalty depends on: (i) the time of 
day, week, or year when the wait occurs, and (ii) how long a specific item 
has already waited. For the example in Fig. 2.1, the waiting cost is: 

 per yeartotal waitt/year = cwaiting icos

. wait/itemaveragec=cost/itemwaiting i
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The left side of Equation (2.3a) assumes that the time unit is one year. The 
term in brackets represents the average accumulation of inventory in the 
system (the vertical separation between the production and consumption 
curves of Fig. 2.1). As we shall see, it is usually convenient to group the 
terms associated with H1 in Eqs. (2.2b) and (2.3b), by defining a stationary 
holding cost per item-day ch = cr + ci.

For problems in which the inventory at the destination can be ignored 
(e.g. for the transportation of people in many cases) the average wait added 
to tm should be computed for the shaded area in Fig. 2.1. The result, a 
value somewhere in between 2 ciH̄ and 2ciH1 , is no longer a function of 
H1 alone.

If we were shipping people, ci would represent the "value of time". 
When shipping freight, this constant would include the opportunity cost of 
the capital tied up in holding an item for one time unit. (If  denotes the 
"value" of an item, and i an agreed upon discount rate, then the opportunity 
cost is i ). For perishable items, and items exposed to loss and damage, ci
should also include any value losses arising from time spent in the system. 
The constant, ci is hard to determine precisely. We don't know people's 
value of time accurately and, as is well known in economics, it is hard to 
pinpoint "i". Furthermore, in most cases even the value of the items them-
selves is hard to measure. 

Suppose that an item costs 0 dollars to produce but it is sold for 1 dol-
lars ( 1 >> 0). Which of these two values should be used for inventory 
calculations? The answer depends on market conditions. If the demand is 
fixed, a reduction in inventory allows the production to be slowed (tempo-
rarily only) until the new lower inventory levels are reached (see Fig. 2.2). 
If the wait is reduced by  units, the production of D'  items can be 
avoided. The resulting one-time savings can be amortized over the life of 
the operation to yield a cost savings per unit time which is proportional to 
D' 0 . This is the same as saying that ci is proportional to 0 . 

If on the other hand the market could absorb everything that is pro-
duced, one could then sell the extra D'  items in inventory while keeping 
the production rate constant and the amortized extra revenue per unit time 

   ,tDc+HDc=
tHDc=cost/yearwaiting

miIi

mii
'  (2.3a) 

.
tc+Hc=

tHc

mii

mi

1

1 (2.3b)
waiting cost/item 
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would be proportional to D' 1 . This means that ci would be proportional 
to 1.

In practice, one often finds that even 0 and 1 are not known; this often 
happens when the items are components consumed within the firm as part 
of a multi-plant production process. Accounting systems are typically 
rigged to track the overall costs of production according to broad catego-
ries (e.g., labor, depreciation, etc.) but the costs are not prorated to the dif-
ferent components that are produced. 

Fig. 2.2 Inventory effect of a temporary reduction in the production rate

In other cases the product can be acquired at different prices from different 
producers, so 0 is not fixed. Then, the relevant price used for decision-
making is not necessarily the average. For example, if a producer can se-
cure limited supplies of items both for a low price ( 0 = ) and unlimited 
supply at a higher price ( 0 = => ), it will try to meet as much of its de-
mand with the cheap items. If the demand rate comfortably exceeds the 
capacity of the cheap supplier, further increases in the rate would be satis-
fied at cost =.Thus, this high value and not an average would be the rele-
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vant cost for an analysis of possible market expansions. Clearly, careful 
consideration is often necessary in determining something as seemingly 
basic as the Acost of goods sold@.

Finally, the value of ci that one would use in expressions such as Eqs. 
(2.3) should also reflect any indirect costs of delay to other aspects of the 
overall operation such as the effect of inventories on quality. These effects 
may be hard to quantify, but must be considered. Conventional wisdom in-
dicates that large inventories lower quality because their existence reduces 
the incentive to eliminate defects at the origin – after all, items found to be 
defective can be replaced from the existing stock. Without this incentive, 
the quality of all the items (even those that are not defective) may suffer. 

The value of ci can change by many orders of magnitude, depending on 
what is being transported. For people ci should be on the order of $10 per 
hour so that a bus load of 30 people would cost between 102 and 103 dol-
lars per hour. A truck carrying 20,000 lbs of goods costing on the order of 
$1 per pound (which would be typical of groceries, machinery, etc.) would 
contain cargo valued at $20,000. Amortized at 10 percent for a (2,000 
hour) year, the cargo costs on the order of 100 per hour. Cheaper and 
lighter cargoes can result in even lower costs. These "back-of-the-enve-
lope" calculations illustrate that while it may be difficult to define ci very 
precisely in any specific application, it should be possible to estimate its 
order of magnitude. Fortunately, rough estimates often are all that is 
needed. As we shall see, the structure of a logistic system depends on the 
order of magnitude of ci , but it is not very sensitive to small changes in ci.

Before turning our attention to motion costs, let us introduce some ter-
minology to identify the two terms, (ciH1) and (citm), of Eq. (2.3b). The 
first term, which depends on the maximum dispatching headway and arises 
when the items are stationary, will be called the "stationary inventory 
cost." The other component (citm), which arises while the items are moving 
and is independent of the dispatching headways, will be termed "pipeline 
inventory cost." 

The following two sections discuss motion costs. Transportation costs 
are addressed first. 

2.3 Transportation Costs 

We continue with the one-origin/one-destination situation that was de-
picted in Fig. 2.1. If one uses a public carrier to transport the items from 
the origin to the destination, the total cost per year will be the sum of the 
costs of each individual shipment. Published rates increase roughly line-
arly with shipment size. (The rates increase in steps, but the overall slope 
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is approximately constant for wide ranges of shipment sizes.) The mathe-
matical relationship is: 

v.c+ccostshipment vf  (2.4a) 
where v is the shipment size, cf is a fixed cost per shipment that should in-
clude things such as driver wages, and cv is the rate at which the variable 
cost per shipment increases size, e.g. due to increased fuel consumption. 
The cost for shipping a sequence {vi} of n shipments (i = 1, ... ,n) totaling 
V items (V = i vi) is thus: 

.Vc+nc=vcc= shipmentsnforcost vf

n

i
ivf

1
 (2.4b) 

The total cost only depends on the number of shipments, regardless of 
what they contain and when they happen, and the total number of items 
shipped. The cost per item, thus, decreases with the average shipment size, 
v̄

.c+
v

c=c+
V
nc=cost/itemtiontransporta vfvf

1
 (2.5a) 

These economies of scale arise because all the items in a shipment share 
the fixed cost, cf.

For our simple problem with one origin and one destination, the only 
decision variable appearing in Eq. (2.5a) is n (or v̄ ); thus, the variable cost 
should not influence shipping decisions. We will not eliminate it from our 
expression, though, because cv is not a constant for more complicated 
problems. (As we shall see, cv depends on distance; and for problems with 
many origins and destinations, the distance traveled is not fixed.) 

2.3.1 Relationship to Headways 

Like inventory and holding costs, the cost of transportation depends on the 
dispatching headways. The relationship is: 

vf c+HD/c=cost/itemtionTransporta  (2.5b) 

because V = i D'Hi = D'H̄ n ; i.e., v̄  = D'H̄ . The transportation cost de-
creases with the average headway, unlike holding costs which increased 
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with the maximum headway. Notice as well that for a given number of 
shipments, and thus a given average headway, the transportation cost is in-
dependent of the specific headways. Hence, shipments should be spread as 
regularly as practicable to reduce the maximum headway and the associ-
ated holding cost. If headways can be maintained constant, Hi = H, then 
both holding and transportation costs are functions of H. 

2.3.2 Relationship to Distance 

As an aside that will become important for multiple origin and/or multiple 
destination logistic problems, we examine the relationship between trans-
portation cost and distance.

Rate books reveal that cf and cv depend mainly on distance; the precise 
location or origins and destinations also influences these costs but to a 
lesser extent. The relationships are well approximated by linearly increas-
ing functions of distance, d: 

d.cccanddc+c=c dsvdsf ''

The interpretation of these four new constants appearing in the right side 
of these expressions is easier when the above expressions are substituted 
for cf and cv in Eq. (2.4b). The cost for n shipments totaling V items, when 
the origin and destination are d distance units apart, can be broken up in 
four terms as follows: 

Vd.c+Vc+ndc+ncshipments
nforcost

dsds ''  (2.5c) 

The first constant, cs , is the cost attributable to each trip, regardless of dis-
tance and shipment composition; it includes the cost of stopping the vehi-
cle and having it sit idle while it is being loaded and unloaded. Think of it 
as the fixed cost of stopping "cs", independent of what is being loaded and 
unloaded. The second constant, cd , is the cost attributable to each incre-
mental vehicle-mile. It is the vehicle cost (including the driver) for each 
mile traveled regardless of the vehicle's contents; i.e., the cost of distance,
"cd."

The third constant, c s , represents the added cost of carrying an extra 
item. It represents a penalty for delaying the vehicle while loading and 
unloading the item, as well as the cost of handling the item within the ve-
hicle. (Handling costs outside the vehicle will be considered in Section 
2.4.).
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The fourth constant is the cost attributable to each incremental item-mile. 
It can be viewed as the marginal wear and tear and operating cost per mile
for each extra item carried. This constant, and the fourth term as a whole, 
should be small compared with the second term (since the cost of a vehi-
cle-mile is relatively independent of a vehicle's contents); it will normally 
be ignored. 

If, instead of a single destination, the vehicle carried the items picked up 
at the origin to several destinations, making in the process ns delivery 
stops, Eq. (2.5c) would likely have to be modified slightly. Logically, rates 
must reflect the additional delay-cost for the extra stops. However, because 
not much else changes (the vehicle travels the same distance and carries 
the same number of items), one would expect only the first term of Eq. 
(2.5c) to change. Although not verified experimentally, it seems reason-
able to expect it will increase proportionately to the number of stops (1 + 
ns) . Accordingly, if we redefine cs to be the fixed cost per stop, then the 
cost of making n shipments is 

V,c+dnc+nn+cshipments
 for ncost

sdss '1  (2.5d) 

where the fourth term of Eq. (2.5c) has been neglected.
Whether Eq. (2.5d) matches actual rates when ns > 1 is an open ques-

tion. Multiple stops, however, are normally made as part of exclusive ser-
vice agreements between shippers and carriers, which should reflect the 
carrier's actual operating costs; in that case, Eq. (2.5d) seems justified. 
That carrier cost (or the shipper cost if it uses its own vehicle fleet) is well 
approximated by Eq. (2.5d) should be intuitive. Drivers' wages should be 
proportional to the total vehicle-time for all the trips. Because vehicle de-
preciation cost (overhead) is proportional to fleet size, i.e., the number of 
vehicle-years needed per year if the demand for vehicles is not seasonal, 
overhead can be prorated to the tasks of a year on a total vehicle-time ba-
sis. Thus, the sum of overhead and driver wages is proportional to the total 
vehicle-time for the n shipments. Other vehicle operating costs should be 
proportional to the total number of moving vehicle-hours. Because both the 
total time and the time in motion are linear functions of the vehicle-miles 
traveled nd , the number of stops n(l + ns), and the total amount of freight 
hauled V , the total cost should be roughly linear in these variables; i.e., 
Eq. (2.5d) is a good approximation for the carrier cost. 
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On dividing Eq. (2.5d) by V , the average cost per item is obtained: 

As a function of the average headway, the costs per item and per unit time 
are:

.c+
HD

dc+
HD
n+ccost/item sd

s
s '1

 (2.5e) 

.Dc+
H
dc+

H
n+ccost/time sd

s
s '1

 (2.5f) 

Although Eqs. (2.5e and 2.5f) do not show a dependence on the individual 
headways, we should recognize that irregular schedules may require slight-
ly larger cost coefficients if the shipper exclusively uses its own private 
fleet.

This happens because the fleet size needed is dictated by the operation 
of the system during time periods with the largest numbers of dispatches, 
with the result that fleet size costs are more closely related to the minimum 
headway than to the average. An extensive discussion of this issue for a 
problem with variable demand can be found in Hurdle (1973a) and 
(1973b); see also Du (1993). Fleet size considerations, thus, provide a sec-
ond incentive to keep transportation schedules as regular as possible. 

Finally, note that the in-vehicle time of a typical item, tm, is also a linear 
function of distance, d, and number of stops, ns. This observation will be-
come important later when vehicle routing is a decision variable. 

2.3.3 Relationship to Size; Capacity Restrictions 

Let us now return to the single origin and single destination situation of 
Fig. 2.1. So far, we have ignored the possibility of sending very large 
shipments; shipments that would not fit in the largest vehicles on the road. 
If one were to plot the cost per shipment versus shipment size for a range 
extending beyond this maximum, vmax , for a firm that owns its own vehi-
cles, one would likely find a graph as the one shown in Fig. 2.3. Whenever 
the shipment size reaches and exceeds a multiple of vmax a new vehicle 
needs to be dispatched with a resulting jump in cost. The steps of Fig. 2.3 
should be rather flat (with cvvmax << cf) since the cost of operating a vehi-
cle is rather insensitive to what it contains. Whether or not it is exactly as 
shown in Fig. 2.3, the transportation cost per shipment function, ft(v),

.'
1

sd
s

s c+
v
dc+

v
nccost/item
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should be "subadditive;" i.e., it must satisfy: ft(x1 + x2) < ft(x1) + ft(x2) for 
any x1 , x2 > 0 . This property is to be expected because one should not be 
able to reduce the cost of a shipment by shipping it in parts (see Problem 
2.3).

Fig. 2.3 Relationship between transportation cost per shipment and shipment 
size
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For most problems, though, one only needs to consider the linear part of ft
between 0 and vmax , as shipments larger than vmax are not economical. This 
can be easily seen if handling costs can be ignored (e.g., if the handling 
cost per item is a constant, independent of shipment size) by examining the 
sum of the average holding and motion costs per item as a function of 
shipment size. Figure 2.4 plots the average transportation cost per item as 
would be obtained from Fig. 2.3. The figure also plots the negative of the 
holding costs as a function of shipment size. (We are assuming here that 
headways are regular, H̄  = H1 = H ; and we are using Eqs. (2.2b) and 
(2.3b) with H1 = H = v/D . Recall that ch is the stationary holding cost per 
item-day, ch = ci + cr).

The optimal shipment size is the value of v for which the vertical sepa-
ration between the two curves of Fig. 2.4 is minimum. Clearly, the point 
can be identified by sliding the "waiting" curve upwards until it first 
touches the transportation curve. This can only happen either at point P of 
the figure (where v = vmax), or else at a point v < vmax , if the line is suffi-
ciently steep. For most problems, thus, one can ignore the behavior of the 
transportation curve for v > vmax , if one remembers to abide by the con-
straint: v < vmax.

Analytically, the optimal shipment size of Fig. 2.4 is the solution of the 
following problem: 

where

This is the well known "lot size" or "economic order quantity (EOQ)" 
model of the inventory control literature (Welch, 1956; Arrow et al., 1958) 
whose roots can be traced to the pioneering work of F.W. Harris in the 
early part of this century (Harris, 1913a and 1913b). Erlenkotter (1990) de-
scribes these works in a historical context.

.vv:  s.t.
v
B+Av:EOQ maxmin

.c=Band,D/c=A fh
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Fig. 2.4 Transportation and holding cost (per item) as functions of shipment size
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2.3.4 Relationship to Size: Multiple Transportation Modes 

We have already seen that shipment cost increases approximately linearly 
with size (Eq. 2.4), and that this is likely to be true for fairly broad ranges 
of shipment sizes. This qualification was made because if shipment size 
varies by a large amount, it may be cost effective to change transportation 
modes.

While some shipping modes, such as mail, exhibit a low fixed cost per 
shipment and a high cost per item, others may be the opposite. Fig. 2.5 
shows three such curves. Note that the best mode depends on the shipment 
size; as it grows, one tends to favor the modes with lower variable cost and 
higher fixed cost. (In comparing modes, the vehicle cost should include the 
fixed pipeline inventory cost per item, citm; faster modes may be preferred 
for valuable items.) 

Fig. 2.5 displays the transportation cost that results if one ships every-
thing by the cheapest mode – the lower envelope of the three cost curves. 
If, as shown, cost increases at a decreasing rate for each mode, then the 
lower envelope also increases at a decreasing rate. Like the cost curves for 
the specific modes, the shipment cost by the best mode is then increasing 
and concave, and therefore subadditive; this shows that cost cannot be re-
duced further by breaking the shipment into parts. The lower envelope is 
optimal.

If the individual modal component curves are merely subadditive, e.g., 
they exhibit jumps as in Fig. 2.3, then the lower envelope is not necessarily 
optimal, or subadditive. In this case, costs can sometimes be reduced by 
breaking a shipment into parts and sending it by different modes. For ex-
ample, if the cost parameters of two modes with vmax = 1 were (cf = 1, cv = 
0) and (cf = 0, cv = 1.5), then the single-mode shipment cost for v = 1.1 
would be either 2 or 1.65; i.e., 1.65 by the best mode. But this is not opti-
mal. The optimum is achieved by sending a one-unit shipment with the 
first mode (cost = 1) and the remainder with the second mode (cost = 
0.165). If shipments can be allocated to the modes in an optimal way and 
the modal cost curves are subadditive and increasing, then the overall cost 
curve can itself be shown to be subadditive and increasing (see problem 
2.4).

If the shipper operates its own vehicle fleet, the curves of Fig. 2.5 could 
represent different vehicle types, and the figure would then indicate the 
most economical vehicle type for the particular shipment size. Because 
such a choice is not as flexible as a choice of public carriers (i.e. modes), 
shippers do not change the vehicle fleet often. When the choice of vehicle 
type is not an issue, then the appropriate (linear) component curve should 
be used to evaluate transportation cost. 
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Fig. 2.5 Relationship between shipment cost and size for various transporta-
tion modes 

2.4 Handling Costs 

Handling costs include loading individual items onto a "container", mov-
ing the container to the transportation vehicle threshold, and reversing 
these operations at the destination. The container can be a box or a pallet,
or if the items are large enough, nothing at all. We examine here the cost 
of handling a shipment of size, v . 

If the items are handled individually, the handling cost per shipment 
should be proportional to v , so that 

If the items are small, it is not economical to move them individually; in-
stead they can be moved on "handling vehicles" such as pallets. Clearly, 
the handling cost should have a similar form as the transportation function, 

v.ccosthandling s'
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since items are being transported within a compound. If the batch is 
smaller than one pallet the cost of handling it should therefore be: 

The constant c f represents the (fixed) cost of moving the pallet regardless 
of what it contains, including the forklift driver's wages, plus the forklift's 
depreciation and operating cost. The constant c v captures the cost, ac-
counting for both labor and capital, of loading one item on the pallet. If v 
is larger than the maximum number of items that fit on a pallet, v max, then 
the handling cost function per shipment, fh(v) will still be a scaled down 
version of the transportation function, as in Fig. 2.6. 

At the destination, the handling cost function will be analogous, possi-
bly with different cf  and cv  but the same v max. As a result, the combined 
handling cost for the shipment at both ends of the trip should still have the 
form of Fig. 2.6, and should obey Eq. (2.6) if v < v max .2

One could compare the cost of moving items individually and moving 
them in pallets. But if more than one item fits on a pallet, it will usually be 
cheaper to move them in pallets.

2 Although we have used the words pallet and forklift repeatedly, we stress here that Eq. (2.6) also ap-
plies to other container-filling methodologies that do not use forklifts; e.g., to the Abucket-brigade@
method of order-picking using passive conveyors described in Bartholdi and Eisenstein (1996). In 
these cases, one just needs to make sure that the constants c=f and c=v are representative of the actual 
operation.

v.c+ccost/batchhandling vf '' (2.6)
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Fig. 2.6 Handling cost per shipment as a function of shipment size 

2.4.1 Motion cost 

Figure 2.7 depicts the sum of transportation plus handling costs for v max

<< vmax . The function, fm = ft + fh , is still subadditive and increasing. (See 
problem 2.4.) 
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Fig. 2.7 Relationship between shipment size and the combined cost per ship-
ment of transportation and handling 

Note that to within an error of c f , the motion cost per shipment, fm(v) , 
can be approximated by line PQ  of the figure, which is a lower bound: 

This indicates that handling costs can be subsumed in the transportation 
cost function, Eq. (2.4a), with a suitable definition for the fixed and vari-
able cost: 3

3 If v < v max it is better to use: c"f = cf + c f and c"v = cv + c v

.v
v
c+c+c+cvf f

vvfm '
max

(2.7)
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The expression for the variable motion cost per item, c"v , is intuitive; in 
addition to the variable transportation and handling costs per item, cv and 
c'v , it includes each item's prorated share of the fixed cost per pallet,        
c f /v max . 

2.4.2 The Lot Size Trade-Off with Handling Costs 

If we prorate the cost of a shipment to the items that it contains, we can 
construct a figure, analogous to Fig. 2.4, which can be used to determine 
the optimal size of the shipments. Figure 2.8 is not extended beyond vmax , 
since larger shipments continue to be undesirable. Note from the figure 
that if the waiting cost curve is pushed upwards, the first point of contact is 
either v < v max (if the waiting cost curve is very steep), or else it is likely 
to be an integer multiple of v max . (This is not always the case, but very lit-
tle is lost by assuming that it is – Daganzo and Newell, 1987). Because the 
lower bound from Eq. 2.7 is exact when v is an integer multiple of v max , 
one could use it instead of the exact (scalloped) curve while restricting v to 
be a multiple of v max . Except for the variable cost coefficient, c"v , this 
equation matches Eq. (2.4a) , and we saw already that variable costs do not 
influence the optimal shipment size. Thus, if shipment size is restricted to 
be an integer multiple of v max , the optimal shipment size is independent of 
handling costs.

We now examine the consequences of relaxing this restriction. If the op-
timal shipment size, v* , is greater than one pallet, we see from Fig. 2.8 
that allowing v to differ from a multiple of a pallet cannot improve things 
appreciably. In the most favorable case the cost savings can be shown to 
be about one tenth of cf/v max , with much smaller savings in other cases; 
see problem 2.5. Thus, even without the restriction, one can safely ignore 
handling costs in determining shipment size. 

If, on the other hand, v* is smaller than one pallet, then handling costs 
should be considered; there may be a significant difference between fm(v)
and its lower bound (see Fig. 2.8 and the previous footnote). If c f >> cf , 
then the optimal shipment size may be noticeably larger than if handling 
costs had been ignored. 

.
v
c+c+c=candc=c f

vvvff
max

'''''
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Fig. 2.8 Motion and holding costs (per item) as functions of shipment size 

In summary, the following simple recipe can be used: If economic ship-
ment sizes are likely to be larger than a pallet, ignore handling costs in the 
decision; but if shipment sizes are smaller than a pallet, then include the 
fixed cost of handling a pallet as part of the fixed cost per shipment and se-
lect the shipment size which is the minimum of problem "EOQ" with A = 
ch/D  and B = c"f . 

More complicated motion curves would arise if items had to be put into 
boxes, which could be put onto pallets, which would then travel on trucks. 
Because the relationship of boxes to pallets is analogous to the relationship 
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between pallets and trucks, the additional handling step would be reflected 
by a second set of scallops on Fig. 2.8. The selection of an optimal ship-
ment size would be affected by this second set of scales in a similar way: 
the cost of moving and filling boxes can be ignored if the optimal shipment 
size is larger than a box; otherwise, the fixed cost per shipment, c"f , 
should include the fixed cost of moving one box including opening and 
closing it, but not the cost of filling it. 

With a properly defined c"f , the optimal shipment size should still fol-
low from the solution of the "EOQ" problem: 

  ,vv;C+
v
B+AvEOQ maxmin (2.8a)

where:

.c+tc=Cand ,c=B  ,D/c=A vmifh '''' (2.8b)

Note that c"v should include any handling costs (per item) not included 
in c"f , and that the minimum of Eq. (2.8a) is unaffected by c"v since C is an 
additive constant in Eq. (2.8a). Also remember that if the minimum of 
(2.8a) is greater than one box (or pallet) the shipment size should then be 
rounded to the nearest box (or pallet); the cost, however, remains close to 
the minimum of (2.8a) without rounding. 

2.5  Stochastic Effects 

We have assumed in our discussion of cost that the transportation travel 
time and the production and consumption rates are constant. These as-
sumptions can be violated in two ways. The production and demand rates 
(and the travel time perhaps as well) may vary over time in a predictable 
manner, and also unpredictably. Predictable variations such as seasonal 
trends and day of the week effects will be examined in Chapter 3; optimal 
decisions can be found because costs can be predicted.

Unpredictable variations are another matter and are examined here; they 
require additional inventories, and may also increase transportation cost. 
Continuing with the single origin and single destination model, for the rest 
of this section we assume that production is driven by consumption. That 
is, the destination requests deliveries so that its inventory level can sustain 
at all times the demand that is anticipated. With inherently unpredictable 
demand and travel times, however, it is no longer possible to time the 
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shipments so they arrive just as the stock at the destination is running out, 
as with the first two shipments of Figure 2.1. Stochastic variations are the 
subject of much attention in the inventory control literature, where the ob-
jective is to determine optional levels of "safety stock" and reorder "trigger 
points" (see Peterson and Silver (1979) or Zipkin (2000) for example). 

These stochastic phenomena complicate matters, but in many cases the 
added holding plus motion costs (per item) that arise due to randomness 
can be shown to be known linear functions of either v or 1/v, and in other 
cases completely independent of v . This is fortunate because the added 
costs can then be captured by a deterministic EOQ model, Eq. (2.8a), 
where some of the constants ("A", "B", and "C") have been increased. 

2.5.1 Stochastic Effects Using Public Carriers 

Newell, in some unpublished notes, has pointed out that if transportation is 
reliable enough to ensure that shipments arrive at the destination in the or-
der in which they were requested, then the added cost due to randomness is 
constant. As a result, the demand and travel time uncertainty should influ-
ence neither the frequency of dispatching nor the average lot size. 

A common ordering strategy uses a trigger point v0 as follows: when-
ever the inventory on hand plus the number of items on back order equals 
v0 , a shipment of size v is requested.4 The reorder headways for this strat-
egy vary because the demand varies, but the shipment sizes remain con-
stant.

Let us assume that the demand arrival process can be approximated by a 
diffusion process with rate D' (items per unit time) and index of dispersion 
 (items).5 The index of dispersion represents the variance to mean ratio of 

the number of items to have arrived in one time unit. (Note that if items are 
measured by a physical quantity such as tons, cubic feet, etc.,  shares 
these units.) A suitable choice of  approximates most of the processes ex-
amined in the inventory literature. Let us also assume that the lead time, T ,
(the time between order placement and receiving) has mean t  and standard 
deviation . (The lead time should be close to the average transportation 
time, tm , if the origin can keep up with the requests; but this assumption is 
not needed here.) 

4 These strategies are called "(s,S)" in the inventory literature; see e.g., Peterson and Silver (1979); 
Zipkin (2000).

5 For a diffusion process, the number of arrivals in any time interval is a normal random variable, with 
mean and variance proportional to the duration of the interval, and independent of the arrivals in 
non-overlapping intervals. Newell (1982) proposes to approximate queuing and inventory phenom-
ena with diffusion processes.
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If one desires to avoid stock-outs, the trigger point, v0 , should be large 
enough to ensure that no stock-out occurs immediately before the arrival of 
an order. The best way of exercising this policy can be found with the help 
of the three curves in Fig. 2.9, relating time to the cumulative number of 
items that have been: (i) ordered, (ii) received, and (iii) consumed at the 
destination. The dashed lines in the figure represent the portion of the 
curves that is not yet known at time "NOW". A request for a shipment is 
depicted immediately after time "NOW" since at that time the sum of the 
inventory on hand and the back orders is shown to be v0 . Because all the 
back orders are sure to have arrived before the new order, it is clear from 
the figure that a stock-out will be averted immediately before the new or-
der arrives if the future consumption until the new order arrives (segment 
PQ  in Fig. 2.9) does not exceed the inventory currently on hand plus the 
back orders, v0 . 

This condition can be expressed probabilistically if we recognize that, 
conditional on the lead time, T  , PQ  is normal with mean D'T  and vari-

ance D' T  . The unconditional first two moments of PQ  are thus: 

.''var
'
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If the trigger point, v0 , is chosen several standard deviations greater 
than D t , stock-outs will be rare. The precise value of v0 is not important 
for our analysis (it is a function of D , , t ,  , and nothing else); what is 
important is that, as the figure clearly indicates, the contribution of v to-
ward the maximum and average accumulation is insensitive to v0 . This 
would, in fact, be the case even if v0 were chosen in a more involved man-
ner (e.g. recognizing the distribution of T ). Existing methods for selecting 
trigger points and shipment sizes (Peterson and Silver, 1977, Zipkin, 2000) 
exploit this insensitivity. 

In order to choose the optimal v , the motion and inventory costs must 
be balanced, as shown in prior sections. In the long run, the motion costs 
with and without stochastic effects are the same because the same number 
of shipments are sent in both cases (D /v shipments per unit time), but the 
holding costs are larger with stochastic phenomena. The maximum number 
of items present at the destination will certainly occur after the arrival of 
an order. As shown in the figure, for a typical order, this number is: 
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,PQ-v+v0

which is largest when PQ  is as small as possible. The term (v0 - PQ )
represents the contribution of randomness toward higher inventories; but 
the term is not dependent on our decision variable, v . Thus, except for an 
additive constant, the holding costs are as in the deterministic case; the op-
timal shipment size remains the same. 

Fig. 2.9 Evolution over time of the cumulative number of items ordered, re-
ceived and consumed for a simple trigger point strategy

For clarity, the inventory at the origin was ignored in the foregoing discus-
sion. Yet, the irregular way in which orders are placed will undoubtedly 
raise inventory and production costs at the origin. These effects, however, 
are shown below to be largely independent of v (their actual magnitude 
depends on how frequently the production is adjusted) and, thus, should 
not influence shipping decisions. 

If, as is usual, there is an incentive to maintain a steady production rate, 
then one would set it at a value D'p , slightly greater than D' to ensure that 
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the overall demand can be met in the long run. Although inventories at the 
origin would then tend to grow with time, every once in a while (every 
many reorders, presumably) the production process could be interrupted 
for a while to allow the demand to catch up with the cumulative number of 
items produced. The frequency of these stoppages would depend on pro-
duction and inventory cost considerations. 

A simple strategy would stop production whenever the inventory at the 
origin (after a shipment) reaches a critical value, v1 , and would resume it 
(also after a shipment) when the inventory dips below another value, v2;
see Fig. 2.10. The maximum inventory is therefore: v1 + v , and the aver-
age inventory: 1/2(v1 + v2 + v). The cost of production should be a func-
tion only of D'p and the duration of the on and off periods. The on and off 
periods, however, only depend on v1 , v2 and on the statistical properties of 
the smooth curve tangent to the crests of the orders sent curve (see Fig. 
2.10). On a scale large compared with v , this curve shares the statistical 
properties of the demand curve which do not depend on v. Therefore, the 
optimal production decisions (i.e., the choices of v1, v2 , and D'p) do not 
depend on v. 

As before, the inventory (maximum and average) can be decomposed 
into a portion that is proportional to v (represented by the shaded area in 
Fig. 2.10) and independent of the production strategy, and a remaining 
portion which is influenced by the production scheme and is independent 
of v . Thus, the extra production and inventory costs arising at both the 
origin and the destination due to the unpredictability of demand are largely 
independent of v . They can be ignored when determining the optimal 
shipment size. 

The foregoing discussion is not an exception; stochastic effects can be 
captured within the scope of a deterministic EOQ model in other situations 
as well. Problem 2.6 discusses the use of a private vehicle fleet, and the 
following subsection considers an operation where two different transpor-
tation modes are used. 

2.5.2 Stochastic Effects Using Two Shipping Modes 

It has been assumed so far that stock-outs are avoided by holding invento-
ries large enough to absorb fluctuations in demand and in the transporta-
tion lead time. In some instances, if a second, much more expensive, ship-
ping mode is available for expediting shipments, the total costs may be 
reduced by expediting small shipments at critical times. In these instances 
the optimal lot size v is also the result of an EOQ trade-off, although the 
trigger point decision is no longer independent of the shipment size deci-
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sion. For the following discussion it is assumed that the expedite mode is 
so fast that its lead time can be ignored. 

Fig. 2.10 Inventory effect of production and transportation decisions 

Most of the time the expedite mode lies in wait, and the system operates as 
if the primary mode was the only mode (see Fig. 2.9). The trigger point v0 , 
however, does not have to be chosen as conservatively as before, because 
when a stock-out is imminent enough items can be sent by the premium 
mode to avoid it. 

The analysis is simple. If, as is commonly the case, the time between re-
orders is large compared with the primary mode's lead time (i.e., so that 
when the trigger point, v0 , is reached there aren't any unfilled orders) then 
the probability that some items have to be expedited in the time between 
ordering and receiving a lot (of size v ) does not depend on v . It is a de-
creasing function of v0 , approaching zero when (v0 - E ( PQ ))2 >> 

var( PQ ).
The exact form of the expected amount expedited per regular shipment 

will depend on the strategy used for choosing the expedited lot sizes. (Al-
though these could be fixed, if possible they should be chosen just large 
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enough to meet demand until the regular order arrives). In any case, the 
expected amount expedited per regular shipment will also be a decreasing 
function of v0 , f(v0) . Assuming that the cost per item expedited is a con-
stant, ce , we find that the expected expediting cost per regular shipment is: 
cef(v0) . The moving cost per item is as a result: 

.c+
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vfc-c+c
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The maximum inventory still occurs when PQ  is as small as possible, and 

remains: v + v0 - PQ  ; the total cost per item is thus: 
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For a given v0 , if we think of the expected amount shipped by both modes 
with every regular shipment, v  = [v + f(v0)] as the "lot size," the equation 
is still of the EOQ form (2.8a), where the fixed moving cost has been in-
creased to include the expected cost of expediting, (ce - cv)f(v0):
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Unlike in the previous case, though, the trigger point v0 should not be cho-
sen independently of v. If v is large so that shipments are infrequent, expe-
diting a significant amount of freight with the average shipment only in-
creases the moving costs marginally. But if v is small, the penalty for 
expediting is paid more often; it may be more efficient to increase v0.
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Suggested Exercises 

2.1 Prove that if, as depicted in Fig. 2.1, the production and consump-
tion rates are constant and shipments always carry all the production 
that has accumulated prior to their departure, then the maximum ac-
cumulation at the destination equals the maximum accumulation at 
the origin. 

2.2 Use multiple regression analysis to validate Eq. (2.5c) using a recent 
book of rate tables. 

2.3 Prove that the graph of Fig. 2.3 depicts a subadditive function. 

2.4 Prove that the following functions are subadditive: (i) any positive, 
increasing and concave function defined for x > 0 , (ii) the sum of 
subadditive functions, and (iii) G(x) = min{f(x)+F(x-z): z  [0,x]} if 
f and F are subadditive. 

2.5 If the optimum shipment size obtained with the construction of Fig. 
5.8, v* , is in the interval ((n-1) v max , nv max) , evaluate the differ-
ence c(nv max) - c(v*) and show that it cannot exceed (5n)-1(cf/v max).

2.6 Assume that a firm operating its own vehicle fleet uses the trigger 
point strategy of Section 2.5 and Fig. 2.9, with trigger point v0 and 
shipment size v . A dispatched vehicle becomes available after a cy-
cle time Tr that varies with every shipment; Tr can be viewed as a 
random variable (independent of all the others) with mean tr and 
standard deviation r . If the demand has the stochastic properties 
discussed in the text, prove that the fleet size needed to ensure that 
the firm does not run out of vehicles is of the form: 

where constant  3. (Hint: the fleet size should be as large as the 
maximum number of requests that are likely to be received during a 
vehicle cycle). 

Comment: Multiplied by an appropriate constant, the second term 
of this expression is the contribution to transportation cost caused by 
uncertainty. Notice that it is proportional to (1/v) and independent of 
v0. Therefore, the optimal v is still given by the solution of Eq. 

 ,v/tD + /vD/v + tD rrr

2/122constant
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(2.8a) if the fixed transportation cost is duly modified. A modifica-
tion to the transportation coefficient of Eq. (2.8a) can also be found 
if, in order to lessen the need for a larger fleet, we allow the inven-
tory buffer at the destination to be increased in anticipation of (rare) 
vehicle shortages. 
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Glossary of Symbols 

A:  EOQ formula constant, A = ch/D',
B:  EOQ formula constant, B = cf,
cd:  Transportation cost per vehicle-mile ($/vehicle-distance), 
c'd:  Marginal transportation cost per item, per distance unit ($/item-

distance),
ce:  Cost per item expedited, when using two shipping modes, 
cf: Fixed transportation cost for a shipment, independent of size 

($/shipment),
c'f:  Fixed handling cost of moving a pallet, 
c"f:  Fixed motion cost (transportation + handling) per shipment, 
ch:  Holding cost per item, per unit time, ch = cr + ci,
ci:  Waiting cost per item, per unit time ($/item-time), 
cr:  Rent cost per item, per unit time ($/item-time), 
cs:  Fixed transportation cost of stopping for a shipment (part of cf in-

dependent of distance), 
c's:  Added transportation cost of carrying an extra item (part of cv in-

dependent of distance) ($/item), 
cv:  Added transportation cost per extra item carried ($/item), 
c'v:  Added handling cost per extra item handled, 
c"v:  Incremental motion cost per item moved (transportation + han-

dling),
d:  Distance traveled, 
D':  Demand rate (items/time), 
D'p:  Production rate (items/time), 
fh():  Handling cost function per shipment, 
fm():  Motion cost function per shipment, fm = ft + fh,
ft():  Transportation cost function per shipment, 
:  Index of dispersion of the demand arrival process (items), 

H:  Generic headway between successive shipments (time), assumed 
to be the first in a sequence, 

H1:  Maximum interval between successive dispatches (time), 
Hi:  Headway between the ith and the (i+1)th dispatch (time), 
i:  Annual discount rate for money ($/$-year), used in Sec. 2.1 only, 
n:  Number of shipments, 
ns:  Number of stops, 

:  Value of one item ($/item),
0:  Production cost of one item, 



48 Cost 

1:  Selling price for one item, 
PQ : Generic segment of a figure, 
pt:  Costs incurred during year t, 

:  Standard deviation of the lead time, 
t:  Time, 
t : Mean of the "lead time", T ,
T  :  Lead time (period between order placement and arrival), 
tm:  Transportation time between origin and destination, 
v:  Generic shipment size (items), 
V:  Total number of items shipped, 
v̄ :  Average shipment size, 
v':  Average number of items shipped (regular plus expedited) per 

regular shipment, 
v*:  Optimal shipment size, 
v0:  Inventory trigger point, 
vi:  Size of the ith shipment, 
vmax:  Capacity of a vehicle (items), 
v'max:  Capacity of a pallet (items).



3 Optimization Methods: One-to-One 
Distribution

Readings for Chapter 3 

Newell (1971) shows how to find an optimal sequence of headways for a 
transportation route serving a changing demand over time with a contin-
uum approximation method that avoids "details." This problem is mathe-
matically analogous to the problems with time dependent demand ad-
dressed in this chapter, which are traditionally solved with dynamic 
programming. Section 3.3, is based on this reference. Daganzo (1987) 
shows that a continuous approximation of a function and its variables can 
be more accurate than the exact, detailed and discontinuous world repre-
sentation they replace. This result is discussed in Section 3.2. 

3.1 Initial Remarks 

This chapter describes logistics problems linking one origin and one desti-
nation (one-to-one problems) and the methods used to solve them. The fol-
lowing points, mentioned in Chapter 1, will be revisited: 

(i) Accurate cost estimates can be obtained without precise, detailed in-
put data, 

(ii) Departures from an optimal decision by a moderate percentage do 
not increase cost significantly. Since there is no need to seek the 
most accurate estimate of the optimum, there may be little use for 
highly detailed data,

(iii) Detailed data may get in the way of the optimization, actually hin-
dering the search for an optimum,

(iv) Thus, we advocate a two-step solution approach to logistics prob-
lems: the first (analytical) step involves little detail and yields broad 
solution concepts; the second (or fine tuning) step leads to specific 
solutions, consistent with the ideals revealed by the first – it uses all 
the relevant detailed information.
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These points will be illustrated with simple extensions of the EOQ model 
introduced in Chapter 2. Section 3.2 analyzes one-to-one systems with 
constant production and consumption rates; the discussion focuses on the 
robustness and accuracy of the results. Section 3.3 examines the same 
problem when the demand varies over time; it describes numerical meth-
ods and a continuous approximation (CA) analytical approach that is based 
on summarized data. Section 3.4 illustrates how the CA approach can be 
used for a location problem that has an analogous structure, and Section 
3.5 demonstrates the accuracy of the CA solutions.

As a prelude to the more complex problems explored in forthcoming 
chapters, Section 3.6 explains how the CA approach can be extended to 
multidimensional problems with constraints, and Section 3.7 discusses 
network design issues. 

3.2 The Lot Size Problem with Constant Demand 

Let us now explore the optimization problem for the optimum shipment 
size, v* , described in the previous chapter: 

Consider first the case vmax =  . Then v* is the value of v which minimizes 
the convex expression Av + Bv-1:

.
A
B=v* (3.2)

Remember that B represented the fixed motion costs, cf , and A the holding 
cost per item, ch/D' . Note that v* is the value which makes both terms of 
the objective function equal. That is, for an optimal shipment size, holding 
cost = motion cost. 

The optimum cost per item is: 

 ,AB=cost/item=z 2** (3.3)

which is easy to remember as "twice the square root of the product" of the 
two terms of (3.1). It will be convenient to memorize Eqs. (3.2) and (3.3), 
since EOQ minimization expressions will arise frequently. 

.vv:
v
B+Av=z maxmin (3.1)
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As a function of cf, ch and D', the optimum cost per item increases at a de-
creasing rate with cf and ch and decreases with the item flow D'. There are 
economies of scale, since higher item flows lead to lesser average cost. 

In the remainder of this section we examine the sensitivity of the result-
ing cost to errors in: (i) the decision variable, v , (ii) the inputs (A or B) , 
and (iii) the functional form of the equation.

3.2.1 Robustness in the Decision Variable 

Suppose that instead of v* , the chosen shipment size is v0 = v* , where 
1 is a number close to 1, capturing the relative error in v0 . Then, the ratio 

of the actual to optimum cost z0/z* will be a number, ' , greater than 1, sat-
isfying:

.+=AB/
B
AB+

A
BA= 1

2
121

(3.4)

Independent of A and B , this relationship between input and output rela-
tive errors holds for all EOQ models. It indicates that if  is between 0.5 
and 2, so that the optimal shipment size is approximated to within a factor 
of 2, then ' < 1.25. If  is between 0.8 and 1.25, then ' < 1.025. Thus, a 
cost within 2.5 percent of the optimum can be reached if the decision vari-
able is within 25 percent of optimal. On the other hand, if  is several times 
larger (or smaller) than 1, then the cost penalty is severe, i.e., '  (or '
1/ ) . Obviously, thus, while it is important to get reasonably close to the 
optimal value of the decision variable (say to within 20 to 40 percent), 
from a practical standpoint it may not be imperative to refine the decision 
beyond this level. 

3.2.2 Robustness in Data Errors 

Let us now assume that one of the cost coefficients A (or B) is not known 
precisely. If it is believed to be A' = A  (or B' = B ) , for some  1, then 
the optimal decision with this erroneous cost structure is: 

1 This symbol is unrelated to the coefficient of variation of the prior chapter, also denoted by .
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or

Because the actual to optimal shipment size ratio, v*'/v* , is either -1/2 or 
1/2 (see Eq. (3.2)), the cost penalty paid is as if  = 1/2 . Thus, the resulting 

cost is even less sensitive to the data than it is to the decision variables. For 
example, if the input is known to within a factor of 2 (0.5  2) , then 
0.7  1.4 and '  1.1 . The cost penalty would be about 10 percent, 
whereas before it was 25 percent. The penalty declines quickly as  ap-
proaches 1. This robustness to data errors is fortunate because, as we 
pointed out in Chapter 2, the cost coefficients (for waiting cost especially) 
are rarely known accurately. 

3.2.3 Robustness in Model Errors 

A cost penalty is also paid if the EOQ formula itself is inaccurate. To illus-
trate the impact of such functional errors, we assume that the actual cost, a 
complicated (perhaps unknown) expression, can be bounded by two EOQ 
expressions; the cost penalty can then be related to the width of the 
bounds.

Suppose, for example, that the actual holding cost zh(v) is not exactly 
equal to the EOQ term (Av), but it satisfies: 

for some small  . (Such a situation could happen, for example, if storage 
space could only be obtained in discrete amounts.) Because  is small, the 
EOQ lot size v* is adopted. Clearly, then the absolute difference between 
the actual cost [zh(v*)+ B/v*] and the predicted EOQ cost z* cannot exceed 

/2 . It is also easy to see that the difference between the optimal cost with 
perfect information, min{zh(v) + B/v}, and z* cannot exceed /2 either. As 
a result, the difference between the actual and theoretical minimum costs – 
the cost penalty – is bounded by .

Usually, though, this penalty will be significantly smaller than the 
maximum possible; Figure 3.1 illustrates the unusual conditions generating 
the largest penalty. Thus, if  is small compared to z* (e.g., within 10 per-
cent) the functional form error should be inconsequential. The same con-

 ,A=Aifv=
A
B=v 1/2-1/2- **'

.B=Bifv= 1/2*

/2+Av(v)z/2-Av h
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clusion is reached if the motion cost is also inaccurate. In general, the EOQ 
solution will be reasonable if it is accurate to within a small fraction of its 
predicted optimal cost. 

Fig. 3.1 Cost penalty resulting from errors in the holding cost function 

3.2.4 Error Combinations 

If errors of the three types exist, one would expect the cost penalty to be 
greater. Fortunately though, when dealing with errors the whole (the com-
bined penalty) is not as great as the sum of its parts.
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Suppose for example that the lot size recipe is not followed very precisely 
(because, e.g., lots are chosen to be multiples of a box, only certain dis-
patching times are feasible, etc.) and that as a result 40 percent discrepan-
cies are expected between the calculated and actual lot sizes. We have al-
ready seen that such discrepancies can be expected to increase cost by 
about 10 percent. Let us assume, in addition, that one of the inputs (A or 
B) is suspected to be in error by a factor of 2, which taken alone would 
also increase cost by about 10 percent. Would it then be reasonable to ex-
pect a 20 percent cost increase? The answer is no; it should be intuitive 
that the penalty paid by introducing an input error when the lot size deci-
sion does not follow the recipe accurately should be smaller than the pen-
alty paid if the decision follows the recipe. In our example, the combined 
likely increase is 14 percent [the square root of the sum of the squared er-
rors: .14 = (.12 + .12)1/2]. Statistical analysis of error propagation through 
models reveals similar composition laws in more general contexts (see 
e.g., Daganzo, 1985). This subject, however, is beyond the scope of this 
monograph. Further information can be found in Taylor (1997). 

The above example illustrated how input and decision errors propagate. 
Although model errors follow similar laws – the whole is still less than the 
sum of the parts – for some approximate models the results are surprising. 
The composed (data and model) error can be actually smaller than the data 
error alone with the exact model! (Daganzo, 1987). This fortuitous phe-
nomenon, illustrated by problem 3.1, has a special significance because it 
arises when, as recommended in this monograph, certain discontinuous 
models with discrete inputs are approximated by continuous functions and 
data. A more detailed discussion of this issue can be found in Daganzo 
(1987).

For ease of exposition, our discussion of robustness and errors ignored 
the v < vmax constraint of Eq. (3.1), although similar remarks could have 
been made for the constrained solution and other non-EOQ models (see 
exercise 3.10). The constrained EOQ solution is now presented rather 
briefly, before turning our attention to the lot size problem with variable 
demand.

If, in solving the unconstrained EOQ problem, we find that v* > vmax , 
then the solution is not feasible. In that case, choosing v = vmax is optimal. 
Hence, the optimal EOQ solution can be expressed as: 

(3.5a),,min max
* v

A
Bv
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and the optimal cost per item z* is: 

max
max

max

max2

v>B/Aif
v

B+Av=

vB/AifAB  = z*

(3.5b)

Note that z* is an increasing and concave function of A , and also of B (see 
Fig. 3.2a and b). As a function of 1/A = D'/ch, and thus of D' , z* is decreas-
ing and convex; the economies of scale continue to exist for all ranges of 
D'. Finally, note that the total cost per unit time, D'z* , is proportional to 
D'1/2 until the capacity constraint is reached, and from then on increases 
linearly with D'. The critical point is D'crit = (vmax)2/cf . The general form of 
the relationship is depicted in Fig. 3.2c.

Fig. 3.2 Optimal EOQ cost as a function various parameters: (a) holding cost 
per item, A; (b) fixed motion costs, B; and (c) demand rate, D=.
Dashed lines are the unused branches of Eq. (3.5b) 
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3.3 The Lot Size Problem with Variable Demand 

Let us now consider the EOQ problem over a finite time horizon when the 
consumption rate D' changes with time in a predictable manner. The de-
mand pattern, an input to our problem, is characterized by a function D(t) 
that gives the cumulative number of items demanded between times 0 (the 
beginning of the study period) and t . The time derivative of this function 
D'(t) represents the variable demand rate. We then seek the set of times 
when shipments are to be received (t0 = 0 , t1 , ... , tn-1), and the shipment 
sizes (v0, v1 , ... , vn-1), that will minimize the sum of the motion plus hold-
ing costs over our horizon, t [0, tmax].

As in Chapter 2, we also define as inputs to our problem a fixed (mo-
tion) cost per vehicle dispatch cf , a holding cost per item-time ch = cr + ci,
and a maximum lot size vmax . With an infinite horizon and a constant de-
mand, D(t) = D't , this formulation reduces to the EOQ problem examined 
in Section 3.2, where A =ch/D' and B = cf .

For most of this section, we assume that the vmax constraint can be ig-
nored. We will relax this restriction in Section 3.6. Subsection 3.3.1, be-
low, examines the variable demand problem when rent costs are the domi-
nant part of holding cost; a simple solution can then be obtained. Subsec-
tion 3.3.2 shows that if inventory (waiting) costs are dominant, then the 
solution is not quite as apparent; two solution methods are then described: 
a numerical method in subsection 3.3.3 and an analytical method in sub-
section 3.3.4. 

3.3.1 Solution When Holding Cost Is Close to the Rent Cost 

If inventory cost is negligible, ci << cr , then holding cost approximately 
equals rent cost ch  cr . We have already mentioned that rent cost in-
creases with the maximum inventory accumulation (regardless of when it is 
held), and that otherwise the cost is rather insensitive to the accumulations 
at other times. This property of holding cost simplifies the solution to our 
problem.

Recall from Sec. 2.3 that given a set of n shipments, the motion cost 
during the period of analysis, cfn , is independent of the shipment times 
and sizes. The problem, then, is to find the sets of shipment times and sizes 
that will minimize holding cost. A lower bound to the maximum ac-
cumulation at the destination is the size of the largest shipment received, 
which is minimized when all the shipments are equal. Hence, the largest 
shipment – and, thus, the maximum accumulation – must exceed or at least 
equal D(tmax)/n . If a set of times and shipment sizes is found for which the 
maximum accumulation equals D(tmax)/n , the set is an optimal way of 
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sending n shipments with rent cost per unit time: crD(tmax)/n . Figure 3.3 
depicts such a solution for a hypothetical cumulative consumption curve 
D(t) . Each shipment is just large enough to meet the demand until the next 
shipment; the consumption between consecutive receiving times, the same 
in all cases, is D(tmax)/n . Clearly then, the following strategy is optimal:

(i) Divide the ordinate axis between 0 and D(tmax) into n equal seg-
ments and find the times ti for which D(t) equals (i/n)D(tmax) for 
i = 0, ... , n - 1. These are the shipment times, 

(ii) Dispatch barely enough to cover the demand until the following 
shipment.

One must now find the optimal n by minimizing the resulting cost. Inter-
estingly, it does not depend on the ti , only on n: 

    ,
tD
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n
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max

max

maxmax

(3.6)

where 'D  is the average consumption rate: 

Note that (3.6) is the EOQ expression with v = D(tmax)/n . The solution 
now requires that n be an integer (there are constraints on v), but we have 
already seen that any v close to the unconstrained v* is near optimal. As a 
result, unless the time horizon is so short that n* = 1 or 2, the optimal cost 
per item should be close to the cost with constant demand.

It should be intuitive that if vmax <  , the solution procedure does not 
change. It is still optimal to have equal shipment sizes, but the number of 
shipments should be large enough to satisfy: D(tmax)/n < vmax. The solution 
is still of the form (3.5), with v-1 restricted to being an integer multiple of 
D(tmax)-1 . 

./ttD=D maxmax
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Fig. 3.3 Selection of shipment times for least holding cost 

3.3.2 Solution when Rent Cost Is Negligible 

Let us now examine another extreme but common situation, where items 
are so small and expensive, that most of the holding cost arises from the 
item-hours spent in inventory, and not from the rent for the space to hold 
them. In this case the destination's holding cost should be proportional to 
the shaded area of Fig. 3.3. 

The combined origin-destination holding cost will also be proportional 
to this area if (i) the origin holding cost can be ignored, or (ii) if it is pro-
portional to the area. Situation (i) arises if the origin produces generic 
items for so many destinations that the part of its costs that would be pro-
rated to each destination is negligible. The second situation arises if the 

received
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production strategy at the origin is as described in Fig. 2.10. Then, we see 
from that figure that the total wait at the origin that can be attributed to the 
shipping strategy must be similar to that of the destination; i.e., it would 
also be proportional to the shaded area of Fig. 3.3. A third scenario arises 
with typical passenger transportation systems. 

When holding costs are proportional to the area of Fig. 3.3 they are no 
longer a function of n alone. Newell (1971) points out that for a set of 
points (t1 ... tn-1) to be optimal, each line PQ  (of Fig. 3.3) must be parallel 
to the tangent line to D(t) at the receiving time (point T in the figure). The 
reader can verify that if this condition is not satisfied, then it is possible to 
reduce the total shaded area by either advancing or delaying the receiving 
time by a small amount. 

Unfortunately, the smallest shaded area – and thus the waiting cost – no 
longer can be expressed as a function of n alone, independently of D(t). 
Thus, it seems that a simple expression for the optimal cost cannot be ob-
tained for any D(t) . (Subsection 3.3.4 develops an approximation when 
D(t) varies slowly with t). 

3.3.3 Numerical Solution 

There are different ways in which this problem can be solved numerically. 
For example, it can be formulated as a dynamic program in which a ship-
ment time, ti , is chosen at each stage (i = 1 , ..., n - 1) , and where the state 
of the system is the prior shipment time, ti-1 . The dynamic programming 
procedure yields an optimum holding cost for a given n , z*

i(n) , which can 
be substituted for the first term of Eq. (3.6) to yield n*.

The following procedure, based on Newell's property, is less laborious 
and works particularly well if D(t) is smooth, without bends or jumps (re-
fer to Figure 3.4 for the explanation): 

(i) Choose a point P1 on the ordinates axis and move across to T1,
(ii) Draw from P1 a line parallel to the tangent to D(t) at T1, and draw 

from T1 a vertical line. Label the point of intersection P2 . 

Steps (i) and (ii) identify a point P2 from a point P1 . They should be re-
peated to identify P3 from P2, P4 from P3, etc. ..., defining in this manner a 
receiving step curve, R(t). If R(t) does not pass through the end point, 
(tmax , D(tmax)), the position of P1 should be perturbed until it does. 



60 One-to-One Distribution 

If a different point P1 is chosen, a different number of steps may result, and 
the motion cost will change.2 The holding cost for the given P1 is propor-
tional to the area between R(t) and D(t) ; it will also change if P1 is moved. 
The overall optimum can be found by shifting the position of P1 and com-
paring the sum of the holding and motion costs. 

Fig. 3.4 Construction method for the cumulative number of items shipped ver-
sus time 

3.3.4 The Continuous Approximation Method 

The method about to be described, proposed by Newell (1971), replaces 
the search for {ti} by a search for a continuous function, whose knowledge 

2 As illustrated with problem 3.6, there may be more than one solution with the same number of steps.
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yields a set of ti with near minimal cost. It works well when D'(t) does not 
change rapidly; i.e., if D'(ti)  D'(ti+1) for all i . A by-product is a simple 
expression and decomposition principle for the total cost. 

Let us assume that an optimal solution has been found, and denote by Ii
the ith interval between consecutive receiving times: [ti-1 , ti) , i = 1, 2, ... . 
Then, divide the total cost during the study period into portions "costi" cor-
responding to each interval. That is, "costi" includes the cost, cf , of dis-
patching one shipment plus the product of ci and the shaded area for inter-
val Ii:

Clearly, the sum of the prorated costs will equal the total cost. Since D'(t) 
is continuous, it should be intuitive that there is a point t'i in each interval Ii
for which the area above D(t) satisfies: areai = 2(ti-ti-1)2D'(t'i). To see this 
informally, consider the triangle defined by the horizontal and vertical 
lines passing through a point Pi in the figure and a straight line passing 
through Ti with a slope that yields "areai" for the triangle; i.e. slope D'(t'i) . 
Since such a slanted line must intersect D(t) (otherwise the areas above 
D(t) and above the slanted line could not be equal) there must be a point 
between Ti and the point of intersection where the two lines have the same 
slope. The abscissa of this point is t'i. Therefore we can write: 

.dttDtt=tDtt=area iii
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If we now define Hs(t) as a step function such that Hs(t) = ti - ti-1 if t Ii (see 
Figure 3.5 for an example), then the cost per interval can be expressed as: 
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Note that this is an exact expression. 
If we now approximate D'(t'i) by D'(t) – which is reasonable if D'(t) varies 

slowly – the total cost over the whole study period can be expressed as the 
following integral: 
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Fig. 3.5 Obtaining a set of dispatching times from H(t)

We seek the function Hs(t), which minimizes (3.9). Unfortunately, this is 
akin to determining the {ti} themselves. A closed form solution can be ob-
tained if in (3.9) Hs(t) is replaced by a smooth function, H(t) , as shown in 
Fig. 3.5. That is: 

.dttDtHc+
tH

ccost if
t

0 2

max

(3.10)

Now, instead of finding Hs(t) , we can find the H(t) which minimizes 
(3.10) – a much easier task – and then choose a set of shipment times (i.e., 
Hs(t)) consistent with H(t). 

Clearly, the H(t) which minimizes (3.10) minimizes the integrand at 
every t ; thus: 

.tDc/c=H(t) if
1/22 (3.11a)

This is the time between dispatches (headway) for the EOQ problem with 
constant demand D' = D'(t) . 
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A set of shipment times consistent with H(t) can be found easily since H(t) 
varies slowly with t ; see (3.11a). Figure 3.5 suggests how this can be done 
systematically: Starting at the origin (point t0) draw a 45  line and find a 
horizontal segment from a point on the vertical axis, such as P1 in the fig-
ure, to the intersection with the 45  line. The elevation of P1 should be 
such that the area below the segment equals the area below H(t). The ab-
scissa of the point of intersection is the next shipment time, t1 . This locates 
t1 , given t0 . The construction is then repeated from t1 to locate t2 , from t2 , 
to locate t3 , etc. In practice one does not need to be quite so precise, since 
we have already seen that small deviations from optimality have a minor 
effect.

Replacing the right side of (3.11a) for H(t) in integral (3.10) yields a 
simple expression for the optimal cost: 

.dttDcccostTotal fi
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(3.11b)

The integrand of this expression is the optimal EOQ cost per unit time if D' 
= D'(t). 

Note that the integrand of Eq. (3.11b) can be written as: 

where the first factor represents the optimal cost per item for an EOQ 
problem with constant demand, D'(t) ; see Eq. (3.3). The average cost per 
item (across all the items) is obtained by dividing (3.11b) by the total 
number of items, 

The result is: 
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In practical terms this equation indicates that the average optimal cost per 
item can be obtained by averaging the cost of all the items, as if each one 
of these was given by the EOQ formula with a (constant) demand rate 
equal to the demand rate at the time when the item is consumed.

Equation (3.11b) has a similar (decomposition) interpretation: the ex-
pression indicates that, given a partition of [0, tmax] into a collection of 
short time intervals, the optimum cost can be approximated by the sum of 
the EOQ costs for each one of the intervals considered isolated from the 
others.

Equations (3.11) are so simple that they can be used as building blocks 
for the study of more complex problems as we shall see in later chapters. 
This is one of the attractive features of the CA approach; it yields cost es-
timates without having to develop, or even define, a detailed solution to 
the problem. 

The CA approach can also be used to locate points on any line (time or 
otherwise) provided that the total cost can be prorated approximately to 
(short) intervals on the line, while ensuring that the prorated cost to any 
interval only depends on the characteristics of said interval. In the previ-
ous discussion, the integrand of (3.10) is the prorated cost in [t, t+dt) , 
which does not depend on the demand rate outside the interval.

The CA approach can also be used to locate points in multidimensional 
space, when the total cost can be expressed as a sum of neighborhood costs 
dependent only on their local characteristics. Newell (1973) argues that the 
CA approach is comparatively more useful then, because in the multidi-
mensional case it is much more difficult for exact numerical methods to 
deal with the complex boundary conditions that arise. Because the CA ap-
proach will be used in forthcoming chapters repeatedly, the next section 
discusses two additional (one-dimensional) examples. 

3.4 Other One-Dimensional Location Problems 

The CA technique was originally proposed to find a near-optimal bus de-
parture schedule from a depot (Newell, 1971). Given the cumulative num-
ber of people D(t) demanding service by time t, the fixed cost of a bus dis-
patch cf , and the cost of each person-hour waited ci , the objective was to 
minimize the sum of the bus dispatch (motion) and waiting (holding) costs. 
With an unlimited bus capacity, this problem is almost identical to the one 
we have just solved; except for D(t) , which now represents the cumulative 
number of people (items) entering the system and not the number leaving. 
Equations (3.11), however, still hold (see problem 3.2) This should be in-
tuitive. Although the graphical construction of Figure 3.4 is now slightly 
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different (i.e., the sought passenger departure curve R(t) now touches D(t) 
from below) consideration shows that the new and old figures become 
qualitatively identical if one of them is rotated 180 degrees. Since such a 
rotation cannot change the mathematical relationships between the ele-
ments of the figure, it shouldn't be surprising that Eqs. (3.11) remain valid. 

The second example locates freight terminals on a distance line between 
0 and dmax. This interval contains origins, which send items to a depot. 

The distance line extends from the origin, O , to a depot, located at d = 
d  dmax. The flow of freight (number of items per day) that originates be-
tween O and d is a function of d , D(d), which increases from 0 to vtot (see 
Figure 3.6). Items are individually carried to the terminals at a cost cd' per 
unit distance per item. Each day a vehicle travels the route collecting the 
items accumulated at each terminal and takes them to the depot. 

The motion cost for this operation has three components: the handling 
cost at the terminals, assumed to be constant and therefore ignored, the ac-
cess cost to the terminals, and the line-haul cost of operating the vehicle 
from the terminals to the depot. The access cost is given by the product of 
c'd and the total item-miles of access traveled per day; it increases with the 
separation between stops as will be explained in a moment. The line-haul 
cost has the form of Eq. (2.5d): 

where ns is the number of stops (excluding the depot) and vtot is the total 
size of the shipment arriving at the depot. Note that the line-haul cost does 
not depend on the specific stop locations and that in contrast to the access 
cost, it increases with ns. As a function of ns we express it as: 

 ,nc+c=cost/day
haul-line

ss
o (3.12)

where co is a constant that will be ignored for design purposes. 
As the problem has been formulated, with one trip per day, the sum of 

the holding costs at all stops can be ignored – consideration reveals that the 
sum is constant. Pipeline inventory costs do depend on the decision varia-
bles (they should increase with ns) but for cheap freight the effect is negli-
gible relative to (3.12). Thus, all inventory and holding costs are neglected. 
The stops will be located as the result of a trade-off between line-haul and 
access costs. Without this simplification, which is inappropriate for pas-

 ,vc+dc+n+c=cost/day
haul-line

totsdss '~1
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senger transportation, the problem is equivalent to the transit stop location 
problem solved by Vuchic and Newell (1968) with dynamic programming, 
and later by Hurdle (1973), and Wirasinghe and Ghoneim (1981) with the 
CA method. (See problem 3.3). 

Figure 3.6 depicts the location of three terminals (at points d1, d2, and 
d3) and a curve, R(d), depicting the number of items in the vehicle as a 
function of its position. This curve increases in steps at each terminal loca-
tion. The size of each step equals the number of items collected. To mini-
mize access (and total) cost each item is routed to the nearest terminal, and 
as a result the step curve passes through the midpoints, Mi , shown in the 
figure. (The coordinates of Mi are mi = (di + di+1)/2 and D(mi); with m0 = 0 
and mns = dmax ). 

Let us see how the total cost can be prorated to short intervals, by con-
sidering the partition of (0, dmax] into the following intervals surrounding 
each terminal: I1 = (0, m1], I2 = (m1, m2] , ... , Ins = (mns-1 ;dmax]. Each inter-
val, Ii , adds an access cost proportional to the daily item-miles traveled for 
access to terminal i . This is given by the shaded area on the two quasi-
triangular segments next to the location of the terminal, (area)i , thus: 

For slowly varying D(d), the access cost can be rewritten as: 

Since each terminal adds cs to the daily line-haul cost (see Eq. (3.12)), the 
share of the total cost prorated to Ii is: 
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Fig. 3.6 Geometrical construction for a terminal location problem 

Since D'(d)  D'(di) for d Ii (we stated that D'(d) varied slowly), the above 
expression can be approximated by: 

If we now let s(d) denote a slowly varying function such that 
s(di) = mi-mi-1 (the function, used later to locate the terminals, indicates the 
size of a terminal's influence area depending on location), then we can re-
write the last expression once again, using s(d) instead of mi - mi-1:
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The total cost for the system is then: 

.dd(d)D(d) s
4

c+
s(d)
c ds

d

0dayper
costTotal max

(3.13)

As with Eqs. (3.11), the least cost s(d) minimizes the integrand at every 
point; given its EOQ analytical form, we find: 

.(d)Dc/c2s(d) ds
1/2' (3.14a)

(Note that if D' varies slowly, s(d) will vary slowly as we had assumed.) 
The expressions for the minimum total and average (per item) cost are 

similar to (3.11b) and (3.11c); the partition/decomposition principle still 
holds.
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To locate the terminals, one first divides (0, dmax] into non-overlapping in-
tervals of approximately correct, length I1, I2, etc. ..., by starting at one end 
and using (3.14a) repeatedly. If the last interval is not of correct length, 
then the difference can be absorbed by small changes to the other intervals. 
If dmax is large (so that there are at least several intervals), then the final 
partition should satisfy s(d)  mi-mi-1 if d Ii , and the approximations lead-
ing to (3.14) should be valid. With the influence areas defined in this man-
ner, the terminals are located next. They should be positioned within each 
interval so that the boundary between neighboring intervals is equidistant 
from the terminals. For a general sequence of intervals (e.g., of rapidly 
fluctuating lengths) this may be difficult (even impossible) to do, but for 
our problem with Ii Ii+1  the best locations should be near the center of 
each interval; in fact little is lost by locating the terminals at the centers.
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3.5 Accuracy of the CA Expression 

Although a systematic analysis of its errors has not been reported, experi-
ence indicates that the CA approach is very accurate when the descriptive 
characteristics of the problem (D'(t) in the text's examples) vary slowly as 
assumed. Also quite robust, the approach is effective even if the variation 
in conditions is fairly rapid – in our case, accurate results are obtained 
even if D'(t) varies by a factor of two within the influence areas. Perhaps 
this should not be surprising, in light of the EOQ robustness discussed in 
Section 3.2. 

When conditions are unfavorable, the CA method can both over- and 
underpredict the optimal cost. The following two examples identify said 
conditions, with the first example illustrating over-estimation and the sec-
ond underestimation. The basis for comparison will be the exact solution, 
which for our problem can be obtained readily, as described below. 

3.5.1 An Exact Procedure and Two Examples 

A construction similar to that in Fig. 3.4 can also be used for the terminal 
location problem. 

Note first that, given ns , for a set of locations to be optimal the line D(d) 
of Fig. 3.6 must bisect in two equal halves every vertical segment of R(d) . 
Otherwise, the terminal (e.g., terminal 3 of Fig. 3.6) could be moved 
slightly to decrease access cost. The optimal solution can then be found by 
comparing all the possible R(t) with the above property. 

For a given d1 , draw a vertical step that is bisected by D(d), and move 
across horizontally so that the horizontal segment is also bisected by D(t) . 
This identifies d2 . Repeat the construction to find d3, d4, etc. (Only those 
values of d1 for which the last vertical segment is bisected by D(t) need to 
be considered seriously.) The optimal solution corresponds to a d1 which 
minimizes the sum of the stop cost and access cost. The procedure is so 
simple that it can be implemented in spreadsheet form. (The user selects d1
and the spreadsheet returns the graphs, and the cost; it is then easy to find 
the solution either interactively or automatically with the computer.) The 
examples can now be discussed. 
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Example 1:

Fig. 3.7 Cumulative demand versus distance for example 1 

Terminals are to be located on two adjoining regions with high and low 
demand. Figure 3.7 depicts a generic piece-wise linear cumulative demand 
curve of this type. The coordinates of the break-point (distance, item num-
ber) are given by parameters Aa@ and Ab@. They, of course must be consis-
tent with the specified values for dmax , D(dmax), D=1 and D=2 . For this prob-
lem the continuum approximation approach yields – see Eq. (3.14b):

2max1 ''' 2
1

DadDacccostTotal ds
*
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A possible set of parameters is dmax = 500, D(dmax) = 1700, D=1 = 1, D=2 = 5, 
a = b = 200, c=d = 1 and cs = 160,000. This choice has been made because a 
systematic analysis shows that it produces the largest overprediction error 
in percentage terms. The predicted cost is:

In actuality the least possible cost is 8% smaller. It arises when a single 
terminal is located at d = 330. The reader can verify that the exact access 
cost for this location is 160,500 units. Since the terminal cost is 160,000 
units (for one terminal), the grand total is 320,500 < 348,328. 

This rather extreme example illustrates that the CA approach can over-
estimate the optimum cost. To understand why this happens let us decom-
pose the CA costs into its components. Note first that the ideal spacing be-
tween terminals predicted by the CA method with (3.14a) is: 

s(d) = 800 in the low demand section, and
s(d) = 357 in the high demand section. 

Thus, the CA access cost is calculated as if the average access distance was 
s(d)/4 = 200 in the low demand section and 89.25 units in the high demand 
section. Since there are 200 items in the low density region and 1500 in the 
high density region, the total CA access cost is approximately: 200 200 + 
89.25 1500 173,875. The CA stop cost is calculated by integrating the 
density of terminals over the service region, (200/800 + 300/357)  1.09, 
and multiplying this result by the cost of a terminal: 1.09 160,000 = 
174,400. The grand total is therefore: 173,875 + 174,400 = 348,275 
348,328.

It turns out, however, that just a single terminal in the high density re-
gion can serve both, the low density points with an average distance barely 
greater than the CA access distance, and the high demand section with an 
average access distance considerably inferior to the corresponding CA dis-
tance. For our chosen location (d = 330) the actual average access dis-
tances are: 230 units for the low density section (200 with the CA method) 
and 76 for the high density section (89 with CA method). Since we are us-
ing only one terminal, the final cost is lower. 

The overprediction effect arises because the demand curve varies sig-
nificantly and very favorably between the terminal and the edge of the ser-
vice region, and the CA approach does not exploit this variation. The 
variation is so favorable that it allows a terminal provided for the high den-
sity points to double up efficiently as a terminal for the low density points. 

.,*costTotal 328348
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Favorable conditions are unusual, however. When the demand does not 
vary rapidly the CA approach consistently underestimates demand. 

Example 2: An example where the CA approach underestimates cost is 
easy to construct. By its nature, the CA approach ignores that the number 
of terminals must be an integer; any situation with a finite region size (or 
time horizon) will exhibit this error type. To exclude the overprediction er-
ror type illustrated by example 1, the demand per unit length of region is 
set constant: D'(d) = D' . This also allows closed form comparisons to be 
made.

The CA solution (3.14b) is: 

max' dDcc=costTotal ds
*

Without losing generality, we choose the units of distance, item quantity 
and money so that dmax = 1, D(dmax) = 1 and cs = 1. Thus, D' = 1 and only 
the parameter c'd remains. The above expression becomes: 

.c=*costTotal d' (3.15a)

If the exact optimal solution has ns terminals, the distance line will be par-
titioned into ns intervals of equal length: Ii = ((i - 1)/ns, i/ns]. The total cost 
is then: 
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which is an EOQ expression in ns . Its minimum over ns = 1, 2, 3, ... is the 
optimal cost.

This least cost will always be greater or equal to the right side of Eq. 
(3.15a) because (3.15a) is the minimum of (3.15b) with unrestricted ns , 
obtained for n*s = (c'd/4)1/2. Clearly, the underprediction will be most sig-
nificant when n*s is close to an odd multiple of 0.5, or close to zero. Equa-
tion (3.4), which described the sensitivity of the EOQ cost expression to 
errors in the decision variables, also quantifies this underprediction; as n*s
increases the underprediction quickly vanishes. Once c'd > 16 (n*s is 
greater than 2) the difference is below one percent. If c'd > 4 (the value at 
which n*s = 1) then the maximum difference stays below six percent. Al-
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though for smaller c'd the difference can grow arbitrarily large as c'd  0, 
that is not the case that is likely to be of interest; the large spacing between 
terminals recommended by the CA method (much larger than dmax) indi-
cates that operating line-haul vehicles is probably an overkill. If it were of 
interest, and a terminal had to be provided, one could force the solution to 
the CA approach to satisfy the constraint ns > 1 . The next section will dis-
cuss how more involved constraints can be accommodated within a gen-
eral CA framework. 

Although exhibiting different errors types, both examples shared a 
common trait when their errors were largest: the ideal terminal spacing in 
an interval with constant demand exceeded the length of the interval; i.e., 
demand varied significantly within the spacing. Errors arose because this 
property violates the stated requirement for the CA approach: D'(d) should 
vary slowly over distances comparable with s(d). Conversely, the numeri-
cal results prove that an error below one percent results if D(d) is piece-
wise linear with segments at least three times as long as each s(d). Thus, 
any demand function that can be approximated in this manner should also 
yield accurate results. 

3.6 Generalization of the CA Approach 

The CA method can be applied to more complex problems – even prob-
lems that defy exact numerical solution. In forthcoming chapters it will be 
used to locate points in multidimensional (time-space) domains while sat-
isfying decision variable constraints. 

All that is needed is that the input data vary slowly with position, either 
in one or multiple dimensions, that the total cost can be expressed as a sum 
of costs over non-overlapping (small) regions of the location domain, and 
that these component costs (and constraints) depend only on the decisions 
made in their regions. If this is true, the decomposition principle holds and 
the CA results approximate the optimal cost accurately. 

As a one-dimensional illustration, let us return to the inventory control 
problem of Eqs. (3.7) to (3.11), and let us assume that there is a capacity 
constraint on shipment size: 

.vtD-tD ii max1

This constraint has a local nature because it only involves quantities de-
termined by events close to the time of shipment; i.e., by two neighboring 
dispatching times and by the amount of consumption between them. For 
any time t, thus, it should be possible to write the constraint approximately 
as an inequality including only variables and data specific to time t. 
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Recalling the definition of Hs(t) (see Fig. 3.6), and using the slow-varying 
property of D'(t), we can write: 

tDtHtDtHtD-tD sii 1

and the constraint can be replaced by the approximation based only on 
conditions at t: 

 ,tD/vtHor,vtDtH maxmax

which must be satisfied for all t. 
An approximate solution to our problem, thus, is an H(t) that minimizes 

(3.10) subject to this constraint. The solution is of the form indicated by 
Eqs. (3.5); i.e., the optimal H(t) is the least of: (i) the right side of (3.11a), 
(2cf/ci D'(t))1/2, and (ii) vmax/D'(t). Letting {x} denote the increasing con-
cave function {x1/2 if x < 1 ; or 2[1 + x] if x > 1}, we can express the 
minimum cost per unit time concisely in terms of the dimensionless quan-
tity, 2cfD'(t)/(ci vmax

2) : 

.v/ctDcvc ifi
2
maxmax 2

Integrated from 0 to tmax , this expression approximates the optimal total 
cost, as in Eq. (3.11b). Note that when the argument of  is less than one, 
as would happen if vmax is very large, then the expression coincides with 
the integrand of (3.11b), [2cicfD'(t)]1/2. An average cost per item can also 
be obtained as in Eq. (3.11c); its interpretation as a cost average across 
items (calculated as if each item was part of a problem with constant con-
ditions, equal to the local conditions for the item) is still valid.

In practical cases, a per-item cost estimate can be obtained easily with 
the following two-step procedure: 

(i) Solve the problem with constant conditions for a representative 
sample of items and input data, 

(ii) Average the solution across all the sampled items to obtain the re-
sult.

Note that the cost estimate can be obtained even without defining the deci-
sion variables in step (i). Problem 3.5 illustrates the accuracy of the CA 
method under capacity constraints. 
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3.6.1 Practical Considerations 

While for simple problems, such as the one solved above, the solution can 
be easily automated, more complex situations may benefit from decision 
support tools with substantial human intervention. The following two-step 
human/machine procedure is recommended: (i) first, recognizing that its 
recommendations may need fine-tuning adjustments, the CA (or other 
simplified) method is applied to a basic version of the problem without 
secondary details; (ii) then, trained humans develop implementable solu-
tions that account for the details, perhaps aided by numerical methods that 
can benefit from the output of the first step. 

In some cases, when time is of the essence humans alone may have to 
carry out this second step because efficient numerical methods capturing 
peculiar details may not be readily available, and developing them may be 
prohibitively time consuming. Furthermore, even without time pressures, if 
the details are so complex (or so vaguely understood) that they cannot be 
quantified properly, pursuing automation for the fine-tuning step would 
seem ill-advised. Fortunately, this is not a serious drawback; as argued ear-
lier, significant departures from ideal situations should not increase cost 
significantly, leaving humans considerable latitude for accommodating de-
tails.

As an illustration of these concepts, problem 3.6 re-examines the termi-
nal location problem of Section 3.4. when only 50 specific locations are 
feasible. The cost of the two-step procedure (fine-tuned by hand) is com-
pared to the ideal cost without restrictions, and (optionally) to the exact op-
timal cost obtained with dynamic programming. The reader will find that 
the fine-tuning step often identifies the exact optimum, and when it does 
not, the difference between the two-step and the exact optimal costs is 
measured by a fraction of a percentage point. Furthermore, the two-step 
and one-step (or ideal) costs are very close; of course, provided that n*s is 
not greater than 50. 

3.7 Network Design Issues 

In all the scenarios discussed so far, the items followed a predetermined 
path. Real logistics problems, however, often involve the choice of alterna-
tive routes (e.g., alternative ways of shipping) between origins and destina-
tions, in addition to the choice of when and how much to dispatch. In some 
instances one may even be interested in whether certain routes should be 
provided at all; or even in the design of an entirely new physical distribu-
tion network. 
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We also found in Section 3.1 that there were economies of scale in flow; 
i.e., the optimal cost per item decreased with D'. Later in this monograph 
we will have to consider logistics problems with multiple destinations, 
where an item's route is not predetermined and cost decreases with flow. 
We discuss here some key features of these problems, and conclude the 
chapter with a comparison of detailed and non-detailed approaches for lo-
gistic system design. 

3.7.1 The Effect of Flow Scale Economies on Route Choice 

A simple example with one origin and two destinations (see Figure 3.8) ef-
fectively illustrates the properties of optimal system designs with and 
without flow economies of scale. The origin, O , produces items of type i (i 
= 1, 2) for destination Pi at a constant rate, given by the parenthetical num-
bers in the figure: D'1 = D'2 = 4 items per unit time. The combined pro-
duction rate at the origin is D'1 + D'2 = 8 items/unit time. The arrows in the 
figure depict possible shipment trips; these transportation links are num-
bered 1, 2, 3. While all the items traveling to P1 , must travel directly be-
tween O and P1 , the items traveling to P2 may go either directly or via P1 . 

Let us assume that a fraction (to be decided) x , of the items for P2 are 
sent via P1 and the rest are shipped directly. This establishes a flow 
x1 = 4(1+x) on link 1 (OP1), a flow x3 = 4x on link 3 (P1P2) and a flow x2 = 
4(1 - x) on link 2 (OP2).

We also assume that the total cost on the network can be expressed as a 
sum of link costs, and that these depend only on their own flows. This is a 
reasonable assumption if no attempt is made to coordinate the shipping 
schedules on the three links, as then the prorated cost to each 
link should be close to the EOQ expression with demand rate equal to the 
link flow. Thus, if we let zi(xi) denote the cost per item on link i when the 
flow is xi, the total system cost per unit time is: 

With economies of scale, the functions xizi(xi) increase at a decreasing 
rate (are concave) as in 

.xzx=costTotal iii

3

1=i
(3.16)
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Fig. 3.8 Flows and costs for a simple 3-node network 

With economies of scale, the functions xizi(xi) increase at a decreasing rate 
(are concave) as in Figure 3.2c. Because the xi's are linear in the split x , 
the total cost is a concave function of the split – this (concave) dependence 
of cost on splits (decision variables) also holds for general networks. 

Suppose, for example, that 
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Then, as a function of x , (3.16) becomes: 

x. + x + x = costTotal 41612 2/12/1 (3.17)

This relationship is plotted on Fig. 3.9; as stated, the total cost is a concave 
function of the split, x . Like any concave function, it reaches a minimum 
at one of the ends of the feasibility interval. For our data the optimal solu-
tion is x* = 1 , indicating that everything should be shipped through P1.
The total cost is 6.8. Although shipping everything direct may be better for 
different data, clearly one would never want to split the flow to P2 among 
the two routes (OP2 and OP1P2) . 

A similar "all-or-nothing" principle holds for networks with multiple 
origins and destinations if the total cost is a concave function of all the link 
flows (Zangwill, 1968). In that case all the flow from any origin to any 
destination should be allocated to only one route. This is not difficult to 
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see: one can define a split between any two routes joining an origin and a 
destination, and since the link flows are linear in that split, the total cost is 
concave in the split; thus, only one of the routes can carry flow. Networks 
with diseconomies of scale behave in an opposite manner. In that case the 
total cost function is convex in the splits and there is an incentive to spread 
out the flow among routes. In fact, if for a one origin and one destination 
network, there exist several routes with identical cost functions (with dis-
economies); it is not difficult to prove that the total flow should be evenly 
divided among all the routes. 

Fig. 3.9 Concave cost function in the split

Networks with flow economies of scale also respond in a different manner 
to changes in conditions. While, with diseconomies, a small improvement 
to one of the routes would lead to a small change in the optimal flow dis-
tribution (see exercise 3.8), with economies, the optimal flows either stay 
the same or change by a discrete amount. This can be seen with the exam-
ple of (3.17). As long as z3 < [2 - 2-1/2]  1.3 , x* equals 1, but if z3 is in-
creased beyond this value ever so slightly, the solution jumps to x* = 0. 
This is typical of concave cost problems: minor changes to the input data 
can induce large changes in the optimal solution. Fortunately, the cost does 
not behave in such manner; despite the jump in our example the cost is a 
continuous function of z3:
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Let us now turn our attention to solution methods. 

3.7.2 Solution Methods 

The nature of the solution is not the only difference between networks with 
economies and diseconomies; the way to find it is also different. While 
networks with diseconomies are well behaved optimization problems 
without local minima that are not global, networks with economies are not. 
The books by Steenbrink (1974), Newell (1980), and Sheffi (1985) discuss 
networks with scale diseconomies in detail; Popken (1988) reviews the 
sparser (traditional/detailed) network design literature for networks with 
scale economies. Further information on this subject can be found in Ball 
et al (1995 and 1995a). 

Although local search algorithms can be used to find near optimal solu-
tions for large detailed networks with convex costs, the same procedures 
fail with concave cost networks. The task is then much more complicated, 
and the network sizes that can be handled by numerical methods much 
smaller.

Except for technical details, all local search algorithms work in the same 
manner. First, the total cost is evaluated for an initial feasible solution, de-
scribed by a set of variables that uniquely identify the decisions; e.g., the 
set of splits for all origin destination pairs. A small cost-reducing perturba-
tion to the feasible solution (e.g., a differential change to the splits) is then 
sought. If not found, the search stops because the initial solution is a local 
minimum; i.e., a solution that cannot be improved without substantial 
changes. Otherwise, an improved larger perturbation obtained from the 
original small perturbations is identified, and then used to construct a new 
improved feasible solution. The process is then iterated (seeking small 
cost-reducing perturbations to the new solution, etc.) until no significant 
improvements result. 

Local search techniques work acceptably for networks with scale dis-
economies, because in those instances any local minimum is a global 
minimum. Unfortunately, this is not the case with economies of scale. Fig-
ure 3.9 reveals that our simple problem has two local minima: x = 0 and x 
= 1 . If a local search algorithm is applied to our example, any starting so-
lution with x < 0.61 (the maximum in the figure) will converge sub-
optimally to x = 0 . While for our simple example this can be corrected 
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simply by starting with different x's , the task is daunting for large, highly 
detailed networks. In that case, the number of potential traps for a local 
search – all local minima regardless of cost – increases exponentially with 
the amount of detail. 

This is illustrated with an example, where items from a large number N 
of origins are shipped to one destination using two transportation modes (1 
and 2). We use xi to denote the split of production from origin i sent on 
mode 1, and assume that (to satisfy an agreement with the providers of 
type-1 transportation) each xi must satisfy xi > hi for some constant hi > 0 . 
Transportation by mode 2 is assumed to be more attractive, but limited in 
capacity; that is, the sum of the xi's must exceed a value h. 

For a set of splits to be feasible, thus, the following must be true: 

(3.18a)

We seek the set of feasible splits that minimize the total cost, or equiva-
lently the penalty paid because not all the items can be shipped by mode 2. 
The penalty paid for each origin is assumed to increase with xi , except at 
certain values where a fixed amount i is saved – perhaps because ship-
ments can then be multiples of a box, requiring less handling. To simplify 
the exposition, let us assume that there is only one such value i for every 
origin, and that away from this value the penalty equals xi; otherwise the 
penalty is xi - i. If we define i(xi) to be: i if xi = i and 0 otherwise, then 
the combined penalty for all the origins can be expressed as: 

.x-x iii

N

1=i
(3.18b)

Note that each one of the terms in this summation for which i > hi exhibits 
two local minima in the range of feasibility [hi,1]: xi = hi and xi = i . 

Any combination of x's, each equaling either hi or i , and satisfying 
(3.18a) is a local minimum, which could stop a search. If the i and the hi
are uniformly distributed between 0 and 1, and h is small, there will be 
O(2N/2) local optima. With so many traps, local search algorithms are 
doomed to failure for this problem – not because (3.18b) is discontinuous, 
but because it is not convex. A different method must be used. 

Certainly, one could search exhaustively over all the possible solutions 
with a combinatorial tool such as branch and bound, but these methods can 
only handle problems of small size – typically with O(102) decision vari-
ables or less. 

ixhhx ii

N

i
i ,1and,

1
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Alternatively, one could try to exploit the peculiar mathematical structure 
of Eqs. (3.18) – or whichever problem is at hand – to develop a suitable al-
gorithm. If successful, the approach would find a solution with all its de-
tail. In our case, the optimization of (3.18) can be reduced to a knapsack 
problem that can be solved easily (see exercise 3.8); in other instances it 
may be possible to decompose the problem into a collection of small easy 
problems. Very often, however, a simple solution method cannot be found. 
In our case, this would happen if there were more than one ( i, i) for each 
origin. Traditionally one then turns to ad hoc intuitive solution methods 
(known as heuristics) which one hopes will yield reasonable solutions. 

There is also another approach. If while inspecting the formulation, or 
even better in the process of formulating the problem, one realizes that cer-
tain details are of little importance one should leave them out. Our exam-
ple illustrates how removing minor details can turn a nightmare into an 
easy problem. If the i's are so small that the i(xi) in (3.18b) can be ne-
glected, then the objective function reduces to i xi . Former sources of dif-
ficulty, the i and i no longer enter the formulation. With less detail, the 
problem becomes well behaved (convex), and even admits a closed form 
solution; e.g., if i hi  h then the optimal splits are xi = hi and the total cost 
is i hi = Nh̄ . 

Note that the optimal cost is given by an average (there is no need to 
know precisely each individual hi in order to estimate the optimal cost), 
and that the optimal solution can be described with the simple rule "make 
every split as small as possible", which can be stated without making ref-
erence to the hi's.

In the rest of this monograph we will seek solutions to logistic problems 
using as little detail as possible, describing (as in the example) the solution 
in terms of guidelines which are developed based on broad averages in-
stead of detailed data. We recognize that the solutions obtained from such 
guidelines may benefit from fine-tuning once detailed data become avail-
able; but also note that incorporating all the details into the model early 
will increase the effort for gathering data, and, as illustrated, may even get 
in the way of obtaining a good solution. 

Observation of mother nature's logistics networks suggests that many 
logistics systems can be designed in this manner. Trees can be viewed as a 
logistic system for carrying nutrients from the soil to an above-ground re-
gion (the leaves) to meet the sun's rays. While every individual tree of a 
species is distinct from other individuals, we also see that the members of 
a species share many common characteristics on average. There is order at 
the macroscopic level. This is not surprising, since members of the species 
have adapted to similar environmental conditions, also filling the same 
niche in the eco-system. The detailed characteristics of an individual tree 
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are (like our logistic systems) developed from two levels of data in two 
different ways: 

(i) Members of the same species share a genetic code, which has 
evolved in response to the typical or average conditions that can be 
expected. This code is analogous to the guidelines of a simple 
model; e.g., "make each split as small as possible." 

(ii) In response to the detailed conditions of its location, a tree develops 
an individuality within the guidelines of the genetic code, better to 
exploit the local conditions. This would be analogous to the fine tun-
ing that could have taken place if the i, hi, and i had been given in 
our example. 

The same could be said for other logistic systems encountered in nature, 
such as the circulating and nervous systems of the human body. 

On further inspection we notice that, not only average characteristics, 
but some specific traits are also the same for all individuals, (e.g., some 
tree species have always one trunk, all humans have one aorta artery, etc.). 
It is as if nature had decided that these items of commonality are optimal 
for almost any conditions that can be encountered; therefore, that part of 
the design is not open to fine tuning. Perhaps the same can be said of logis-
tics systems. 

The logistics systems of nature also have economies of scale. It takes 
less energy to move a certain flow through one single pipe than through 
two pipes with one-half the cross section. As in our networks with concave 
costs, there is an incentive to consolidate flow into single routes that can 
handle great volumes efficiently. Nature has responded to this challenge by 
evolving hierarchical systems of conveyance, such as the three hierarchy 
network of Fig. 3.10. 

Scientists have begun to realize that apparently very complex ("fractal") 
structures, such as a fern leaf, can be replicated and/or described with just 
a few rules and parameters (Gleick, 1988, provides an entertaining descrip-
tion of these ideas). For the example of Fig. 3.10 the separations between 
"nodes" (e.g., A1 and A2) for each hierarchy might be found to be rela-
tively constant, perhaps varying with the distance from the root, as might 
be the number of branches at every node and the relative size of the main 
and secondary branches at nodes of the same hierarchy. The latter may 
also vary with the distance from the "root." 

A physical distribution network should probably be organized in a simi-
lar way with the root becoming the depot, the leaves the customers, and the 
nodes intermediate transshipment centers or terminals. Physical distribu-
tion networks that serve similar purposes, just as in nature, should likely 
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share the same hierarchical organization and overall traits even if the spe-
cific details differ. As in nature, it should be possible to describe their near 
optimal configuration with just a few simple rules and parameters (see 
problem 3.11). 

In this spirit, the chapters that follow will try to get at the "genetic code" 
of logistics systems; i.e., describe how general classes of logistics net-
works should be organized, with guidelines for obtaining an optimal struc-
ture developed without using detailed data. Building on the simple EOQ 
model, we gradually consider more complex systems. 

Chapter 4 describes problems with a single hierarchy consisting of one 
origin and many destinations (or the reverse); i.e., "one-to-many" prob-
lems. Chapter 5 describes "one-to-many" problems with transshipments 
(multiple hierarchies), and Chapter 6 concludes with "many-to-many" 
problems.

Fig. 3.10 Schematic representation of naturally occurring logistics systems 
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Suggested Exercises 

3.1 Various items have to be shipped from an origin to n destinations, i , 
i = 1, 2, ... , n . Destination i demands vi truckloads. If vi is not an in-
teger, a partially full truck will have to be dispatched; trucks are not 
allowed to visit more than one destination. The distance traveled by 
each truck serving i is di . According to Eq. (2.5c) the total cost of 
serving i , ci , can be expressed as: 

 ,dc+cv=c idsii (3.19a)

where (x)+ denotes the smallest integer greater than or equal to x . 
Independent of distance, the variable costs c'sV and c'dVd are omit-
ted from the expression. 

Consider also the approximation: 

.dc+c.+v=cc idsiii 50' (3.19b)

Then:

 (i) Plot ci and c'i vs. vi , and also ci and c'i vs. di , 
(ii) For n = 5, cs = 100, cd = 1, and the following data: 

i 1 2 3 4 5 

di 100 200 300 400 500 

vi 5.5 8.2 5.7 2.3 1.8 

Calculate the exact and approximate total costs, (TC and TC' respec-
tively) and the relative error in the approximation. 

Suppose that each predicted value vi has an error, i , which is the 
outcome of a normal random variable with zero mean and standard 
deviation,  = 0.2 ; these variables (for all i) are mutually independ-
ent and independent of di . Then:

(iii) If the values of vi given in part (ii) are the true but unknown 
ones, determine the predictions one might expect using Eq. 
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(3.19a) and Eq. (3.19b). Compare their accuracy relative to 
the (unknown) truth. You may solve this part either ana-
lytically or with a few simulations. Use of a spreadsheet is 
recommended,

(iv) Repeat part (iii), analytically for arbitrary cs, cd, n and  < 0.2, 
and obtain the expected accuracy of Eq. (3.19a) and Eq. 
(3.19b),

(v) Discuss the results, the applicability of Eqs. (3.19a) and 
(3.19b) in different instances, and the implications for model-
ing.

3.2 Repeat the CA argument leading to Eqs. (3.11) for the bus dis-
patching problem outlined at the outset of Section 3.4. Assume that, 
perhaps due to changes in the prevailing trip purposes with the time 
of day, ci is a slow varying function of time ci(t).

3.3 Formulate the equivalent of Eq. (3.10) for the transit stop location 
problem discussed in Section 3.4, assuming that every passenger 
travels from an origin along the line to the final stop. Also assume 
that pipeline inventory cost cannot be neglected, and that a passen-
ger's riding time is only 1/2 as costly as the same amount of walking 
time.
(Hint: at the end of the trip the vehicle carries more passengers; 
therefore, the penalty for stopping is more severe. See Hurdle, 1973, 
for inspiration). Explain how the formulation can be generalized to 
passenger trips with arbitrary origins and destinations along the line 
(see Wirasinghe, 1981, for inspiration.) 

3.4 Prove that the best location for a single terminal in Fig. 3.7 satisfies 
d/dmax = 1-(1-a0)/[2(1-b0)], where  a0 = a/dmax and b0 = b/D(dmax).
(Hint: Use a graphical argument to demonstrate that, at this position, 
moving the terminal to either side does not change the access cost). 

3.5 Describe a procedure, analogous to the exact method described in 
Section 3.3.3, for the capacity constrained inventory control problem 
of Section 3.6. (Hint: As suggested in one of the readings, start with 
an initial interval between dispatches t1 , and from it construct a se-
quence of headways that satisfy the capacity constraint and a neces-
sary condition for optimality.) Then for a case with constant de-
mand, develop expressions equivalent to Eqs. (3.15) and evaluate 
their accuracy as a function of vmax . 
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3.6 Freight is to be exported from a region of variable width, lying on 
one side of a transportation artery (e.g., a highway or railroad line) 
that is one thousand distance units (Du) long, L = 1,000 Du's. From 
the origins freight can only be carried perpendicularly to the artery, 
unless of course it moves on the artery itself. Freight must flow out 
of this region through a system of terminals (e.g., ports) that are to 
be located on this artery. The cost of travel within the region is one 
monetary unit (Mu) per weight unit (Wu) per Du. The cost of travel 
beyond the terminals is not considered as part of our study. The 
freight transportation needs per unit time (Tu) are expressed as a 
transportation demand density [Wu/(Du*Tu)] which depends on the 
position along the artery expressed in Du's, x . The demand density, 
w(x) , is expressed as follows: 

Then:

(i) Determine the optimal location and the total access cost per Tu 
when we locate n = 1, 2 and 3 terminals. (Use the procedure de-
veloped in Sec. 3.4), 

(ii) Show which locations you would use if only the attached 50 loca-
tions are feasible. Calculate for each case the percent change in ac-
cess cost, 

(iii) If each terminal costs cT = 80,000 Mu's per Tu to operate (includ-
ing any relevant amortized fixed costs), determine whether the op-
timum number of terminals that should be operated, n*, is 1, 2, or 
3. Calculate as well the total regional cost per unit time, including 
both transportation and terminal operations, z*. Do the calculation 
with and without the location constraints described in (ii), 

(iv) Determine n* and z* for arbitrary cT using the continuum ap-
proximation (CA) method. Compare the results for cT = 80,000 
with those for part (iii). Discuss how the CA results might differ 
from the true optimum as cT  0, with and without the 50 location 
restriction,

(v) Extra credit: Find the exact optimal solution to part (ii) using dy-
namic programming. Solve for n = 1, 2, 3, ..., 10. Then determine 
the ranges of cT for which the optimum number of terminals is 1, 
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2, etc. Calculate and plot the resulting z* as a function of cT and 
compare the result with your findings in parts (iii) and (iv). 

Data for Problem 3.6 

Coordinates of 50 possible locations 
19, 37, 46, 54, 77, 79, 90, 129, 132 

141, 159, 199, 210, 211, 223, 228, 236, 262 
265, 297, 300, 307, 369, 384, 394, 423, 431 
473, 475, 529, 543, 549, 551, 572, 640, 646 
652, 653, 654, 660, 682, 683, 685, 759, 776 
835, 866, 925, 953, 994

3.7 Suppose that the average link costs for the network of Fig. 3.8 ex-
hibited diseconomies of scale, increasing with flow instead of de-
clining, as follows: z1 = x1 , z2 = 3x2 , and z3 = constant. Describe 
then how the optimal split x* and the optimal total cost change as z3
is increased from zero to 20, 

3.8 Prove that the optimization problem defined by Eqs. (3.18) can be 
reduced to a knapsack problem if we can assume that a good solu-
tion can be found by restricting the xi to be either xi = hi or xi = i,,

3.9 Two factories owned by the same firm export refrigerators (factory 
A) and stereo components (factory B) through a seaport, C ; the 
items are taken by truck from A to C and from B to C. A truckload 
of refrigerators brings in $2  105 in revenue and a truckload of ste-
reos ten times as much. The production rates for A and B are D'A
and D'B truckloads per day, and the inventory carrying cost is 15 
percent per annum. The distances dAC and dBC are dAC = 300 miles 
and dBC = 300 miles; trucks cover 1200 miles/day (drivers are 
changed), and the transportation cost is $1.0 per truck-mile regard-
less of the load size being carried (back-hauls have been factored 
into this cost figure). We assume that production and transportation 
take place around the clock. Revenues are collected (COD) upon de-
livery at C, 

Ships sail weekly from C and carry all the items that have accumulated at 
the port when they depart. All the items go to (foreign) port D. 
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(i) Calculate the optimum dispatching frequency, q , the optimum 
shipment size, v , (0 < v < 1) and the resulting cost per day, z, for 
each manufacturer (use A and B as subscripts for the variables q, v, 
and z). Plot zA(D'A) and zB(D'B) . Discuss how COD payment upon 
arrival at D would change the shipping strategy, 

Alternatively, COD payments can be received at a land terminal, T, owned 
by an export company. At this terminal, which is equidistant from A and B 
(dAT = dBT = 100), items are unloaded and placed onto railcars for cheaper 
transportation.

The payment received for each truck load is in this case reduced by an 
amount  , which is proportional to the size of the truckload (v) and re-
flects the cost of transportation from T to C , plus the handling and delay 
costs at T:  = 100 v [1 + D'T-1/2] . Here, D'T denotes the number of full
truckloads handled at T per day. 

(ii) Find the minimum total cost per day as a function of D'A and D'B,
if all items are sent to T . Assume D'A < 0.4 and D'B < 4, 

(iii) If fractions xA and xb of the production at A and B are shipped 
through the terminal, and D'A and D'B = 0.05 truckloads per day, 
write the combined minimum total cost per day for both factories z 
= zA + zB . It should be a function of xA and xB only (0 < xA , xB <
1) . You should also assume that shipments from A and B to both 
C and T take place at regular intervals. Explain your treatment of 
inventory cost at A and B, 

 (iv) Consider a local improvement strategy, where the company 
changes the routing of its shipments if small changes to xA and xB
result in reduced costs. If they detect an improvement, they keep 
changing the routing splits (little by little) until no more improve-
ments are possible. Assume that you are in charge and that cur-
rently you are shipping everything through the terminal (xA = xB = 
1). What would happen? Assume that xA = xB = 0; and then xA = 0 
, xB = 1 . Repeat, 

(v) Draw a picture of the feasible region, sketch some (2 or 3) equicost 
contours and explain what happens. Can you prove which is the 
optimum solution? 

(vi) Suppose that A and B are not owned by the same conglomerate. 
but that each minimizes its own cost. Could you visualize an in-
stance where the minimum total cost solution was not attractive to 
either A or B? 

(vii) Suppose that (due to congestion),  = 100 (xA + xB) + 104(xA + 
xB)2 . Repeat parts (iii) to (v). 
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3.10 The robustness results of Section 3.2 extend to other cost functions, 
useful in later chapters. Repeat the analysis of Section 3.2 if z = Ava

+ Bv-b , where 0 < (a, b) < 1 . (The appendix in Daganzo and New-
ell, 1986, discusses the robustness of this expression in the decision 
variables.)

3.11 Most airline networks have a "hub-and-spoke" structure. Irrigation 
networks have a "trunk-and-branch" structure. 

(i) Why shouldn't an irrigation network have a hub-and-spoke pat-
tern? Why don't airlines use trunk-and-branch structures? 

(ii) Define qualitatively a network structure (draw picture) that would 
generalize hub-and-spoke, and trunk-and-branch.

Hub and Spoke Trunk and Branch
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Glossary of Symbols 

A:  EOQ formula constant, A = ch/D',
B: EOQ formula constant, B = cf,
cf:  Fixed cost of a shipment, 
ch:  Holding cost per item, ch = cr + ci,
ci:  Waiting cost per unit of time ($/time), 
cr:  Annual rent cost per item ($/item-year), 
cs: Fixed cost of stopping for a shipment (fixed part of cf),
c's:  Cost of carrying an extra item (fixed part of cv),
c0:  Constant, 
c'd:  Transportation cost per unit distance per item, 
:  Relative error in the EOQ cost coefficients, 
:  Variation range of the actual holding cost (unknown) around the 

EOQ holding cost, 
d̃ :  Depot location on a distance line, 
di:  Location of terminals on a line segment, 
D(t):  Cumulative demand function, as a function of time, 
D'(t):  Variable demand rate (as a function of time), 
D':  Constant demand rate (items/time), 
D'i:  Production rate of origin O for destination Pi,
D̄ ':  Average consumption rate, 
D'crit:  Critical value of D' at which the capacity constraint is reached, 
dmax:  Length of a distance line containing origins, 
dt:  Differential of time, 
:  Relative error in shipment size, 
':  Ratio of the actual to the optimum cost per item, 

h:  Upper bound for capacity of mode 2, 
hi:  Lower bound for xi,
Hs(t):  Step function defined by ti-ti-1 when t belongs to Ii,
H(t):  Smooth approximation of Hs(t),
Ii:  Generic interval, 
|Ii|:  Length of the interval Ii,
mi:  One-dimensional coordinates of Mi,
Mi:  Midpoints of curve segments, 
n:  Number of shipments, 
N:  Number of origins, 
ns:  Number of stops, 
ns

*:  Optimal number of terminals, 
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{x}:  Increasing concave function, 
O:  Generic origin, 
Pi:  Generic point; also, generic destination, 
Q:  Generic point, 
R(t):  Receiving step curve for EOQ with variable demand, 
s(d):  Continuous function defined by s(di)=mi-mi-1,
ti:  Time point, 
ti':  Point belonging to Ii,
Ti:  Generic point, 
tmax:  Time horizon, 
v:  Generic shipment size (items), 
v*:  Optimal shipment size, 
v*':  Optimal shipment size with erroneous cost structure, 
v0:  Actual chosen shipment size (instead of the optimum v*),
vi:  Shipment size of the ith shipment, 
vmax:  Maximum capacity of a vehicle (items), 
vtot:  Total number of items shipped, 
xi:  Flow on link i; also, split of production from origin i sent on 

mode 1, 
x*:  Optimum split of flows, 
z:  Objective function of the EOQ model (cost per item), 
z0:  Actual cost per item due to suboptimal v0,
z*:  Optimum cost per item in the EOQ model, 
zh(v):  Holding cost per item as a function of the shipment size, 
zi(xi): Cost per item on link i when its flow is xi,
zi

*(n):  Optimum holding cost obtained by Dynamic Programming. 
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Readings for Chapter 4 

Because this chapter is based on numerous references, cited in the text, 
only a representative few are recommended here. The vehicle routing re-
sults of Secs. 4.2 and Appendix A are largely based on Daganzo (1984a) 
and (1984b). A strategy for routing and scheduling deliveries from a single 
origin to many destinations with similar demand is developed in Burns, et 
al. (1985); some of the material in Sections 4.3 and 4.6 is related to this 
reference. Hall (1985) generalizes this strategy for problems with widely 
different customer sizes; Section 4.7 discusses this problem and similar ex-
tensions. Section 4.5, on implementation considerations, is based on two 
references: Clarens and Hurdle (1975), which shows how a detailed solu-
tion to a one-to-many problem can be obtained from CA guidelines, and 
Robusté, et al. (1990), which discusses ways of fine-tuning such solutions 
with an automated second step – this reference also compares the two-step 
approach with detailed optimization methods. Sections 4.6.2 and 4.6.3 dis-
cuss planning for uncertainty and dynamic operations; additional ideas 
along these lines can be found in Daganzo and Erera (1999) and Erera 
(2000).

4.1 Initial Remarks 

This chapter addresses physical distribution problems where items pro-
duced at a single origin are to be taken, without transshipment, to a set of 
scattered destinations over a service region, R . For the most part, the 
chapter will focus on delivery problems, although it should be recognized 
that collection problems from many sources to a single destination are 
mathematically analogous – the theory applies to both. The objective is to 
obtain simple guidelines for the design of a set of routes and delivery 
schedules that will minimize the total cost per unit time. The CA approach 
of Chapter 3 will be extended to this problem; yielding in the process sim-
ple formulae for the total resulting cost.

We saw in Chapter 3 that the continuum approximation method is most 
accurate for one-dimensional point location problems if the characteristics 
of the problem vary slowly along the location domain (e.g., the time or dis-
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tance line). Although our current problem is much more complex – in ad-
dition to a schedule for every customer, we must design a set of time-
varying routes to meet the schedule – it can be reduced to a point location 
problem in multiple (time-space) dimensions; accordingly, our solutions 
will be most accurate if the characteristics of the problem vary slowly over 
both space and time. An outline for this chapter is given after explaining 
this assumption in more detail. 

The results in this chapter apply to situations where a large number of 
destinations/customers N is distributed over a region R in a form that can 
be described by a slow varying continuous density function f(x) of the 
point coordinates x = (x1,x2) within R. That is, the actual number of points 
in a subregion of R , A , is approximately given by: 

.dNf xx
Ax

If f(x) remains nearly constant over A , (A is small), then the number can 
be written as: 

,Nfdf AN 0
Ax

xxx

where x0 is any point in A , and A is the area of A . Note that a design ap-
proach based on expressions of this type can be used even before the actual 
point locations are known. In the literature, a common interpretation of 
f(x) is as a probability density function for the coordinates of the custom-
ers, assumed to be located independently of one another. In that case, the 
above expressions represent the mean number of customers found in su-
bareas of R ; the actual number can vary across subareas with the same 
mean. Because one also finds that the standard deviation grows with N and 
A more slowly than the mean – it is of the form {Nf(x0)A
[1-f(x0)A]}1/2 when f(x) is nearly constant over A and points are located 
independently – these variations do not prevent continuous approximations 
to improve as N grows. 

Finally we also assume that the cumulative number of items demanded 
by each customer can be expressed as a demand curve, Dn(t) (n = 1, 2, ..., 
N), which is assumed to vary slowly with t . 

The chapter addresses one-to-many design problems, starting with the 
simplest situations and gradually incorporating complicating features. The 
analysis uses some basic results for the vehicle routing problem, which are 
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described in Sec. 4.2. Sections 4.3 to 4.5 examine in detail a special case 
where all the customers are identical, Dn(t) = D(t) , and show how (for that 
case) the continuous approximation method can be used to design a ra-
tional service strategy and to obtain cost expressions. Section 4.3 develops 
guidelines and cost expressions for situations where the vehicles are filled 
to capacity at the depot, section 4.4 analyzes (undesirable) situations when 
they cannot and section 4.5 shows how a detailed solution can be con-
structed from the guidelines. 

Sections 4.6 and 4.7 examine the case with different Dn(t) across n . 
Section 4.6 shows how to extend the guidelines and cost formulas for iden-
tical customers to this case, assuming that all the customers are treated 
alike; strategies like these are called "non-discriminatory" or "symmetric". 
Asymmetric strategies, useful when the customers are very different, are 
examined in Section 4.7. 

Up to Sec. 4.7, it is assumed that the production process at the origin 
can be adjusted without a penalty to meet the scheduled shipment quanti-
ties. Section 4.8 relaxes this assumption and discusses a general method to 
deal with other peculiarities. 

4.2 The Transportation Operation 

This section describes the transportation operation and simple formulas 
that capture its performance. It first shows that, given a set of delivery 
schedules for the customers in the region, one should use the vehicle routes 
which minimize total distance traveled – the main determinant of transpor-
tation cost. The bulk of the section (Secs. 4.2.1 and 4.2.2) then presents 
distance formulas for certain non-detailed, near-optimal vehicle routing 
strategies. The results are used throughout the chapter to determine sched-
ules, and then again throughout the remainder of the monograph. 

It is assumed throughout the chapter that items are distributed with iden-
tical vehicles capable of carrying vmax items. This definition of vehicle ca-
pacity can be used even if different item types move through the system, 
simply by redefining the concept of "item". If the maximum freight vol-
ume (or weight) that can be carried by a vehicle does not depend apprecia-
bly on the mixture of item types making up its load, one can think of an 
"item" as a unit of volume (or weight) and of vmax as the vehicle's volume 
(or weight) capacity. Each destination can then be viewed as a consump-
tion center for packages of unit volume (or weight) – "items" – containing 
an appropriate product mixture. Section 4.8 discusses more complex ca-
pacity restraints and suggests further readings. 
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Vehicles are dispatched on service routes from the origin (depot) at times 
t1 , t2 , etc., on delivery runs to particular subsets of customers (possibly the 
entire set each time). Since vehicles are identical, an operating strategy can 
be defined relatively easily. We seek the set {t }, as well as the delivery lot 
sizes and the specific customers served each " " ; i.e., the delivery sched-
ules for every customer.1 We also seek the routes that minimize transporta-
tion cost at each t  . Our task is simplified because, as shown below, the 
combined length of all the routes is the main determinant of cost, and sim-
ple route length formulas exist.

We saw in Chapter 2 that the cost of transportation on one vehicle route 
from one origin to several destinations was approximately a linear function 
of the total size of the shipment, the number of stops and the total distance 
traveled. If costs on all the vehicle routes are additive (this seems reason-
able), the cost of serving all the destinations for time t  should be the sum 
for the costs on each route; i.e., a linear increasing function of the total 
number of routes (vehicles) used, the total volume shipped, the total num-
ber of stops, and the total distance. For a given set of delivery schedules to 
each destination the total volume shipped at each t  is obviously fixed. 
Thus, we only need to focus on the number of routes, delivery stops, and 
vehicle-miles when seeking delivery routes for time t .

We consider only strategies that minimize the number of delivery stops 
by avoiding to the extent possible customer load-splitting among vehicles. 
This is achieved if each destination is visited by the minimum possible 
number of vehicles able to hold its delivery; i.e., one vehicle if v < vmax
items are to be delivered, and [v/vmax]+ otherwise.2 (For customers receiv-
ing v > vmax items, one would dispatch [v/vmax]- full vehicles exclusively to 
the customer, and would consolidate the remaining items with smaller de-
liveries to other nearby customers on a single vehicle route.) Although in 
some instances it may be possible to reduce the number of tours and the 
distance traveled by splitting loads (see problem 4.1), the reductions are 
unlikely to be significant in most cases. Of all the possible strategies with-
out load-splitting we prefer the one with the least distance, as this strategy 
should also minimize the number of vehicle routes. (This should be intui-
tive; a set of routes which minimize total distance should use vehicles to 
the fullest because fewer line-haul trips to and from the depot then need to 
be made.) 

Since a reasonable set of vehicle routes can be chosen on distance 
grounds alone, the routes can be designed without knowing the magnitude 

1 In this chapter " " will be used to index dispatching times and headways, and "i" to index service dis-
tricts.

2 We denote by [x]+ the smallest integer greater than or equal to x; and by [x]- the integer of part of x.
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of the cost coefficients in Eq. (2.5d). Focusing on the difficult case when v 
is smaller than vmax, the remainder of this section discusses distance-
minimizing routing schemes and presents simple formulas for estimating 
distance (and therefore transportation costs). The results depend on the 
number of customers to be served at time t  , their spatial distribution in the
region,   and  on   the  number  of   stops  that   vehicles can  make   C   =
[vmax/v]-. It is assumed that the lots carried to each customer are of similar 
size (a reasonable assumption for the cases with identical customers dis-
cussed in the first few sections of this chapter), so that C is the same for all 
vehicles; in later sections, C will be allowed to vary. 

4.2.1 Nondetailed Vehicle Routing Models: Many Vehicle 
Tours

Eilon, et al. (1971), developed simple approximate formulas for the dis-
tance of near-optimal vehicle routes in Euclidean square regions. The dis-
cussion presented here is based on more recent material extending Eilon et 
al.'s results to zones of arbitrary shape (Daganzo, 1984a and 1984b), and 
also incorporating other metrics and the influence of underlying transporta-
tion networks (Newell and Daganzo, 1986 and 1986a, and Newell, 1986). 
Appendix A summarizes the logic behind some of these results. 

In order not to introduce additional notation, we will use N to denote the 
number of destinations that must be visited. If tours are not being con-
structed for all the customers in the region, as occurs later in the chapter, 
the results can be easily reinterpreted. 

We have already mentioned that vehicles should be used to the fullest; 
that is, there should be at most one vehicle that makes fewer than C stops, 
and none if N is an integer multiple of C . Our strategies are of the "clus-
ter-first and route-second" type, where the service region is divided into 
non-overlapping zones of C customers, to be served by separate vehicles. 
For a given set of zones, the vehicle routes are easy to construct using 
some simple rules. To minimize the total distance (and, hence, the cost), 
these zones should have specific shapes and orientations, dictated by the 
relative magnitude of N and C2 . Two cases need to be considered: (i) 
when the number of vehicle routes N/C is much greater then the number of 
stops per route C , N >> C2 , and (ii) when only a few vehicle routes are 
needed N << C2.

For case (i), discussed in this subsection, delivery districts (or zones) 
should have a width comparable with the distance between neighboring 
points and be as long as necessary to contain C points; see Appendix A. 
The formulas are most transparent when expressed in terms of the spatial 
point density – in points per unit area – evaluated at a point inside the de-
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livery district, x : (x) = Nf(x) . (Because (x) varies slowly, just like f(x) , 
it does not matter which x is used). The factor (x)-1/2 , appearing in the 
formulas, represents a distance close to the average separation between 
neighboring points in the vicinity of x . For randomly scattered points, it 
has been found that (see Appendix A): 

./6C/lengthzone

/6 width
2/1

2/1zone

These dimensions are close to ideal and relatively independent of the met-
ric or underlying network. When  changes over R , district dimensions 
should also change over R, although more slowly. As the solution to the 
EOQ problem, these expressions are robust; departures from the ideal di-
mensions by 20 - 30 percent are largely inconsequential, but larger depar-
tures increase distance. This robustness makes it easy to carve out R into 
delivery districts of satisfactory dimensions. 

Zones should also be oriented "toward the depot", but the precise mean-
ing of this recipe depends on the underlying metric. One should build equi-
distance contours from the depot and design zones of the right dimensions 
that are perpendicular to these contours. For the Euclidian metric the con-
tours are concentric circles centered at the depot, so that the zones should 
fan out from the depot in the radial direction. For the L1 (or "Manhattan") 
metric,3 the contours are squares centered at the depot, at 45  to the met-
ric's preferred directions; in this case the zones should be perpendicular to 
these contours, so that they don't point exactly toward the depot. Ideal ori-
entations can also be defined when the network includes fast/cheap roads. 

Because the zones are narrow, it is easy to construct good vehicle 
routes, once the region has been carved into delivery districts. One simply 
needs to travel up one side of the zone, visiting the points in order of in-
creasing distance to the depot, and then return along the other side visiting 
the remaining points in the reverse order. The effectiveness of this routing 
scheme improves with the slenderness of the zones – it is exact if zones are 
infinitely narrow. This has been verified experimentally albeit indirectly 
by Robusté et al. (1990). 

Before turning our attention to distance formulas, let us show how to 
partition a region into delivery distances with proper shape and orientation. 
We recommend drawing delivery zones around the region's edge away 
from the depot, and then filling in the remaining space with more delivery 

3 The L1 distance between two points is the sum of the absolute differences in their coordinates.
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routes, always proceeding toward the depot. Figure 4.1 depicts an interme-
diate point of this process for an irregular region with an internal depot and 
a rectangular grid network – note how most districts are perpendicular to 
the (square) equi-distance (L1) contours. As we progress toward the depot, 
it may become necessary to pack a few zones with the "wrong" shape, but 
most will have the right dimensions and orientation. Because the distance 
traveled is not overly sensitive to (small) deviations from the ideal design, 
the distance formulas about to be developed should be accurate. This is 
confirmed by experiments in Daganzo (1984b), Robusté et al. (1990) and 
Hall (1993). 

Fig. 4.1 Intermediate stage of the delivery district design process 

The last of these references considered systems in which the number of 
stops in a tour depends on the shipment sizes handled at each stop. 

The total distance traveled to visit the C points in a given zone contain-
ing point x0 is: 

c
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C,krdistanceTour 0x
2/12 (4.1)

where r̄   is the average distance from the C points to the depot (on the 
shortest path) and k is a dimensionless constant that depends on the metric 
(k  0.57 for the Euclidean metric, and k  0.82 for the L1 metric). See 
Appendix A for more details. 

The first term of (4.1) can be interpreted as the line-haul distance 
needed to reach the center of gravity of the points in the zone, and the sec-
ond term as a local distance that must be traveled because the points are 
not next to one another. Note that each stop contributes toward the total a 
distance  comparable   with  the  separation  between neighboring  points,
k -1/2(x0) . This occurs, because the vehicle must be detoured on every leg 
between successive deliveries. In actuality, because there are only C - 1 
such legs, the factor "C" in (4.1) should be replaced by "C - 1" . Thus, a 
better expression is: 

.-Ck+rdistanceTour ]1][[2 2/1
0x (4.1a)

The improvement afforded by this expression, particularly obvious for 
C = 1 , fades in importance as C grows. Because (4.1) is more compact, it 
will be used unless C is small. 

Let us now see how the total distance over R can be expressed without 
regard to the detailed position of points, using a continuum approximation. 
Distance (4.1) can be prorated to each one of the points in the zone so that 
if point i (located at xi) is ri distance units away from the depot, then: 
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where the second approximate equality follows from the slow varying 
property of (x).

The total distance traveled in the region is the sum of (4.2) across all 
points:

.k+r
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(4.3)

For large N , the summations can be replaced by integrals independent of 
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the specific location of all the points: 

,xd1/2- xxx
R
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i (4.4a)

and
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R

rii (4.4b)

Thus, (4.3) can be rewritten as: 

.dk+/Cr2 -1/2

R

xxxxdistanceTotal (4.4c)

Note that this expression is well suited for continuum approximations be-
cause the cost in any given (small) area only depends on the local condi-
tions.

An alternative expression for the total distance is obtained after replac-
ing (x)dx by Nf(x)dx in (4.4a and 4.4b); it then becomes clear that these 
expressions can be interpreted as the product of N and the expectation of 
r(x) or -1/2(x) , when the probability density of position is f(x). Thus, let-
ting E(r) and E( -1/2) denote these expectations, the total distance can be 
expressed as: 

N.Ek+
C

rEdistanceTotal 2/12
(4.5a)

For a uniform density, E( -1/2) = -1/2 N/||= R and we can write: 

,N||k+N
C

rEdistanceTotal R2
(4.5b)

where R  denotes the surface area of R . 
Independent of the specific locations, Eqs. (4.4) and (4.5) are particu-

larly useful if cost must be estimated before the point locations are known. 
In that instance, it may be reasonable to view the actual locations (x1 , ... , 
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xN) as outcomes of i.i.d random variables with density f(x) , and interpret 
Eq. (4.5a) as the average total distance over all possible locations (x1 , ... , 
xN) . In any specific instance there will be some discrepancy between 
(4.5a) and the actual distance – for large N most of the difference typically 
will arise from fluctuations in iri , which are of order O(N1/2) and compa-
rable to the second term of (4.5a). If more accuracy is desired, one should 
wait for the point locations to become known. Comparisons made in Hall 
et. al. (1994) indicate that the approximation formulas just presented are 
fairly accurate even if the number of stops is not the same for all tours. 
That reference examines improved routing methods for problems in which 
the number of vehicle stops depends primarily on the vehicle's capacity 
and the shipment sizes handled at each stop. 

4.2.2 Non-Detailed Vehicle Routing Models: Few Vehicle 
Tours

If C2 >> N , the optimal strategy must be different from the one we just 
explained because zones of ideal length (approximately C/(6 )1/2) would be 
too long to fit in the service region. 

It is not too difficult, however, to design a partition of the region that 
will yield a distance close to a lower bound for the optimum; i.e., a near-
optimal partition. The lower bound is the distance for the shortest single 
tour visiting all the points, beginning and ending at the depot – the "travel-
ing salesman problem" (TSP) tour. Before describing the partitioning strat-
egy, however, we must introduce some basic properties of TSP tours with 
many points. 

It is well known in the TSP literature (Karp, 1977, and Eilon et al. 1971) 
that if a region with a nearly constant density of points is partitioned into a 
few subregions with many points each, then the length of the shortest tour 
in the region is close to the sum of the optimal subregional tours. Appen-
dix A contains a simple proof. The result should be intuitive because: (i) a 
grand tour can be constructed by connecting the optimal tours of the 
subregions with a few new legs, while at the same time deleting a like 
number of existing legs; and (ii) subregional tours can be constructed from 
a grand optimal single tour, by connecting the broken sections of the grand 
tour within each subregion with legs along its boundary. In both cases – (i) 
and (ii) – the original (optimal) and modified (suboptimal) tours differ in 
total length by no more than the combined perimeter of all the subregions, 
which is a relatively small quantity when the number of points is large. 
Thus, the optimal grand tour should be just about as long as all the optimal 
subregional tours combined. 

This property suggests that if the density of points is constant, then the 
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TSP tour for a subregion 1/4th the region's size (with 1/4th the points) 
should be about four times shorter; that is, the average distance per point 
should be roughly constant. Since the only distance parameter of the prob-
lem is -1/2 , the distance per point for large N must be of the form: k' -1/2,
where k' is a dimensionless constant, independent of region shape but de-
pendent on the metric; k' is believed to be about 0.75 for the Euclidean 
metric with randomly distributed points. The expression also holds, with a 
different k' , for regular arrangements of points. Note that the total tour dis-
tance can be expressed as: k'[N R ]1/2. In light of the TSP tour partitioning 
property, it should not matter much how the region is partitioned for the 
vehicle routing problem (VRP), provided that travel external to the dis-
tricts is avoided by ensuring that every zone touches the depot. In that case 
each VRP tour will be similar to the TSP in the district (the TSP may not 
have to visit the depot), and the combined VRP length should be close to 
the overall TSP length; i.e., the lower bound. This means that traditional 
"sweep"-type algorithms for the VRP, which result in wedge shaped dis-
tricts as we desire, should work well for the case with N << C2.

Alternatively one can build a TSP for the whole region, R , and partition 
it into segments of C points each that would be connected to the depot. The 
length of these segments is negligible compared to the total (if N << C2),
so that the length of all the tours should be close to the length of a TSP. In 
either case, the length of all tours is close to the TSP lower bound. If the 
density is constant, we can write: 

.||Nk=NkdistanceTotal R2/1 (4.6a)

As an aside we note that Eqs.(4.5) and (4.6a), which rest on partitioning 
properties of TSP and VRP tours, may need to be modified for systems in 
which the distance metric cannot be used to define a "norm". An example 
of such a metric is a rectangular warehouse with a system of transversal 
aisles that block travel in the longitudinal direction, except along the sides 
of the rectangle. For this type of system the length of a tour in which all 
the aisles with one or more service points are traversed in succession is 
(Kunder and Gudeus, 1975): 

212 ay+ydistanceTotal

where y1 and y2 are the longitudinal and transversal dimensions of the rec-
tangle, and "a" is the number of aisles containing a point. (Hall, 1993a, has 
refined this routing scheme and given improved formulae for "warehouse 
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routing".) If N is so large that each aisle contains many points it should be 
clear that: (i) the traversal strategy becomes optimal and (ii) the coefficient 
"a" of the above expression can be replaced by the number of aisles. 

This shows that the above expression is not of the form (4.6a) since both 
its terms are independent of N for N .4

We now return to the (usual) cases where (4.6a) can be applied, and 
note that for slow-varying nonuniform densities this distance expression 
can be approximated by the sum of expected TSP lengths over subregions 
with many points and (nearly) constant density. In integral form this is: 

,ENkdistanceTotal 2/1 (4.6b)

where E( -1/2) is given by (4.4a). The uniform density can be shown to 
maximize (4.6b); thus Eq. (4.6a) is an upper bound to (4.6b). 

Notice that, unlike Eqs. (4.4c and 4.4a), Eqs. (4.6) are independent of C; 
i.e., if vehicles make so many stops that zones of ideal length cannot be 
packed in the service region, then travel distance is not decreased appre-
ciably by increasing C. 

The vehicle routes within the wedge shaped zones are more difficult to 
develop in this case than in the previous one, which should not be surpris-
ing since the TSP problem is NP-hard. Nonetheless, simple algorithms 
such as the ones described in Daganzo (1984a) and Platzman and Bartholdi 
(1989) can yield tours within 20 percent of optimality. Simple fine-tuning 
corrections (see Newell and Daganzo, 1986) can then reduce its length by 
another 10 or 15 percent. Other fine-tuning approaches can yield tours 
even closer to optimality (see Robusté et al. 1990). It is not our purpose to 
describe here existing tour construction methods, since this is of marginal 
value for the theories that will follow. Suffice it to say that, in practice, it is 
possible to obtain tours within a few percent of optimality with an effort 
that only grows proportionately with the number of points to be visited. 

This concludes our review of VRP models and we can now return to the 
one-to-many problem with identical customers. Recall that we are seeking 
the set of delivery schedules for each customer and that, given the sched-
ules, the transportation cost at each t  can be easily estimated with the re-
sults that have just been presented. The chosen schedule should strike the 
best balance between transportation and holding costs. 

                                                
4 Something similar happens for the VRP. If a set of VRP tours is built by partitioning the single tour 

through the warehouse, then the total length of the line-haul connections should be 2E(r)N/C (Da-
ganzo and Newell, 1987). This means that the first term of (4.5b) still applies to "warehouse tours", 
but its second (local travel) term must be replaced by (2y1 + ay2).
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4.3 Identical Customers; Fixed Vehicle Loads 

This section considers strategies where the loads carried by each vehicle 
are given. Since one would then operate the smallest possible vehicles able 
to carry the loads, we will denote by vmax the load size used. The next sec-
tion will relax this assumption. 

Given Dn(t) = D(t) for t in [0, tmax] , we seek the dispatching times 
{t :  = 0,...,L} and vehicle routes which minimize the total logistic cost. 
We let t0 = 0 and t  < t +1 . Because all the customers are alike, there is no 
compelling reason to treat some differently from others, and we shall as-
sume that every customer is visited with every dispatch,  . Under these 
conditions, the search for the t  is facilitated considerably because, as is 
shown below, the transportation cost only depends on the number of dis-
patches, L. 

Decomposition principle: We now show that for a given number of 
dispatches, L , the total transportation cost between t = 0 and t = tmax is in-
dependent of the headways: H  = t  -t -1 (  = 1 , ... , L). 

We have already stated that the transportation cost for a given  is a lin-
ear function of the number of routes, the total number of delivery stops, the 
total number of items carried and the total distance (see Eq. (2.5d)). 
Clearly, the combined cost for all  must also be a function of these four 
descriptors. Because vehicles travel full, three of these (the total number of 
items D(tmax)N, the number of vehicle tours D(tmax)N/vmax , and the total 
number of delivery stops NL) are fixed; they do not depend on when or 
how much is shipped at each t  . 

For a given L , the total combined distance for all dispatches is also in-
dependent of the t  . As indicated by Eqs. (4.5), it is the sum of a local dis-
tance  term   proportional   to   the total  number of   stops   made   NL,
kLNE( -1/2), and a line-haul component which is proportional to the (fixed) 
number of vehicle tours: 2E(r)(# tours) = 2E(r)D(tmax)N/vmax . Note that the 
line-haul component is independent of L . 

With the cost coefficients defined for Eq. (2.5d), the total transportation 
cost between t = 0 and t = tmax is: 

N,t D+c'N/vtDrE c+

kLNEc+L+
v
tDNc

costtransport
combinedTotal

sd

ds

maxmaxmax

2/1

max

max

2
(4.7)

which only depends on one decision variable, L . An expression based on 
Eqs. (4.6) instead of (4.5) would be quite similar, and also independent of 
the {t } . Note that Eq. (4.7) holds regardless of how many items are in-
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cluded in each shipping period,  – even if customer lot sizes are greater 
than vmax (see Problem 4.1). It holds in particular if one decides to ship lar-
ger quantities than necessary in anticipation of future increases in the de-
mand curves. This has a profound implication for inventory control. Given 
a number of shipments L to be received by a customer, their sizes and tim-
ing can be chosen to minimize holding cost without affecting the transpor-
tation cost. This is explained next. 

4.3.1 Very Cheap Items: ci << cr

We examine first a case where items are so cheap (ci is small) that most of 
the holding cost arises because of the rent paid to hold the items, ch  cr. In 
future sections, with more expensive items and different customer types, 
the CA approach will be used to solve this problem. This is not possible 
now because, since the rent cost is a function of the maximum inventory 
held, said cost cannot be prorated to (small) time intervals based only on 
the inventories held at those times. Fortunately, for a given L the transpor-
tation cost is fixed, and the headways only influence the rent cost. Clearly, 
the headway selection problem is analogous to that examined in Sec. 3.3.1. 

We saw in Section 3.3.1 that holding cost is minimized if all shipments 
are just large enough to run out before the next delivery; and that if rent 
costs were the dominant holding costs (so that the rent cost was propor-
tional to the maximum lot size) then one should choose the dispatching 
times so as to minimize the maximum lot size. As shown in Fig. 3.3, all the 
lot sizes should be equal, and given by D(tmax)/L. The same occurs now. 
The minimum holding cost (for L dispatching periods) is thus: 

.tc
L
tDN=costholdingCombined r max

max (4.8)

The sum of this expression and (4.7) yields the total combined logistic 
cost. The optimal number of dispatching times, L, should be chosen by 
minimizing such a sum. Only the first and second terms of (4.7), capturing 
the local stop cost and the local distance cost, depend on L . The other 
terms, corresponding to the line-haul travel and the loading/handling cost, 
do not. Thus, the optimal L is the solution of an integer constrained EOQ 
equation that balances the local transportation cost and the rent cost; the 
solution is close to: 
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 ,
Ekc+c

tDtcL
dd

r

1/2

][ 2/1
maxmax (4.9)

if this quantity is greater than 1. Then we can write: 

 ,D/Ekc+cc+

+c+v/rE2c+c

dsr
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2/12/1
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2

'
itempercost

combinedTotal

(4.10)

where, as before, we use D̄'  for the average demand rate per customer, 
D(tmax)/tmax . Remarkably, the optimal cost does not depend on the shape of 
D(t) . Not many details are needed to provide a reasonable estimate of op-
erating cost. 

4.3.2 More Expensive Items: ci >> cr

As we did in Chapter 3, we now discuss the problems for items so expen-
sive per unit volume that most of the holding cost is inventory cost. That 
chapter showed how a CA approach could be used to locate points on the 
time line (the delivery times) in order to minimize approximately the sum 
of the holding and motion costs. 

The latter was modeled by a constant, cf , that represented the added cost 
of each dispatch. Reasonable for the one-to-one problem examined at the 
time, this simple formulation also applies now; note from Eq. (4.7) that 
with each additional dispatch, the transportation cost still increases by a 
constant amount, 

N.Ekc+cc dsf
2/1 (4.11)

This constant represents the local transportation cost induced by the N ad-
ditional customer visits resulting from the extra dispatch. The line-haul 
cost remains unchanged. 

Consequently, the results and methods of Chapter 3 for the EOQ with 
variable demand also apply here if one defines cf with Eq. (4.11), and re-
places D(t) by ND(t). Equations (3.11) can then be used to estimate cost. 
Of course, one should remember to add the (large) fixed components of 
Eq. (4.7) that do not depend on L. 
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Once the dispatch times {t } and the corresponding delivery lot sizes {v }
have been determined, the vehicle routes can be designed as described in 
Section 4.2, recognizing that the number of stops per vehicle (C = ns
vmax/v ) changes with .

For the special case with uniform density and constant demand, the cost 
formula reduces to a form analogous to Eq. (4.10), with ci, D' and ( R /N)1/2

substituted for cr , D̄'  and E( -1/2) (Burns et al. 1985). This approach has 
been used to streamline General Motors' finished product distribution pro-
cedures. The results have been compared with those of (less efficient) di-
rect shipping strategies (Gallego and Simchi-Levy, 1988.) 

4.3.3 Inventory at the Origin 

The theory we have described focused on the holding cost at the destina-
tion and used cost expressions as if there were an equivalent cost at the 
origin. This assumption, reasonable for the one-to-one problem, is now 
shown also to be reasonable if the one-to-many system is operated as we 
described. As we shall see, however, a modification to the operating pro-
cedure can drastically reduce the origin holding costs. 

With our dispatching strategy, where all the destinations are served with 
each  , the number of items accumulated at the origin reaches a maximum 
immediately before a dispatch, and at the destinations immediately after a 
reception. If production is flexible, one will produce by dispatch  only 
those items that must be sent by time t  (and no more) ; thus, the maximum 
accumulation at the origin is the size of the largest shipment received by 
any customer, times N . Because shipments arrive as supplies run out, this 
is also the maximum accumulation for all the customers. It is thus reason-
able to represent rent cost by the product of a constant, cr , and the maxi-
mum accumulation, as we have done. 

Inventory costs are slightly different. If one could produce the items as 
fast as desired, one would produce each combined shipment,  , during a 
short time interval prior to t  ; and would therefore avoid inventory costs at 
the origin. This is not likely, however. Although the production rate can 
change with time to satisfy a slow varying demand D(t), items are nor-
mally produced at a roughly uniform rate during each inter-dispatch inter-
val, since most production processes benefit from a smooth production 
curve. Thus, inventory costs should not be reduced in this manner. If some 
destinations request more expensive items than others, then inventory cost 
may be reduced without altering the production rate, simply by changing 
the order of production; one might want to produce the cheap items at the 
beginning of the inter-dispatch interval and the most expensive at the end. 
In most cases, however, only a fraction of the inventory cost at the origin 
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could be saved by exploiting these differences. 
Thus, the waiting cost at the origin should be comparable to the waiting 

cost at the destinations, and a strategy which assumes that both holding 
costs are equal should yield costs close to one which recognizes the inven-
tory cost at the origin more accurately. (Remember from Chapter 2 that an 
error in a cost parameter by a factor of 2 only increases the resulting EOQ 
cost by about 10 percent). 

Staggering production for delivery regions: With our operating strategy, 
all the points in the region, R , are visited at each instant,  . However, if 
instead of waiting for time t  , vehicles are dispatched just as soon as their 
last item is produced, both the storage room and the inventory cost at the 
origin may be reduced. As shown below, this reduction is largest if one can 
produce all the items for each one of the delivery districts, in sequence. 

If the delivery times to any customer are shifted by a time t  smaller 
than one headway (i.e., the new delivery times are t'  = t  - t  > t -1) , and if 

t  changes slowly with  so that the new headways are close to the old, 
then the total holding cost does not change appreciably. With a slow vary-
ing D(t), the maximum accumulation remains virtually unchanged, and so 
does the total number of items-hours; see the difference between the solid 
and dotted R(t) curves in Fig. 4.2. This is consistent with the CA solution; 
the cost is sensitive to the delivery headways used as a function of time but 
much less so to the specific dispatching times. 

Suppose that we label the tours used for the th shipment: j = 1, 2, 3, etc. 
Assume that items for destinations in tour j = 1 are produced first, items 
for destinations in j = 2 second, etc; and assume as well that every tour is 
started as soon as the orders for its customers have been completed. If the 
delivery districts do not change with every  it would be possible to label 
them consistently so that all destinations would have the same label in suc-
cessive dispatches. This would ensure that the th delivery headway to 
every customer is close to (t +1 - t ) , and that as a result the holding cost at 
all the destinations would remain essentially unchanged. The ordered pro-
duction schedule, though, would cut the maximum and average inventory 
at the origin by a factor equal to the number of tours used for the th ship-
ment, drastically reducing holding costs at the origin. 

Unless the demand is constant, D(t) = t + constant, it is not reasonable 
to assume that all the delivery districts remain the same; in that case a less 
ambitious version of our staggered production schedule can be employed. 

The service region can be partitioned into production subregions P1, P2,
... PP , where P is a number small compared with the number of tours in 
any  , but significantly larger than 1 (so that it can make a difference.) 
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Each production subregion should contain the same number of customers 
(i.e., the same total demand) and require at least several tours to be cov-
ered. Under such conditions, the distance for covering R with a VRP is not 
much different from the collective distance of separate VRP's to cover P1 , 
P2 , etc. This is true because, like the TSP, the VRP exhibits a partitioning 
property. (This should be obvious from the material in Sec. 4.2 since: (i) 
the cost in each subregion is the sum of the costs prorated to each of its 
points, and (ii) the cost per point is independent of the partition). 

Fig. 4.2 Staggered delivery schedules and their effect on accumulation 

The following strategy cuts inventories at the origin by a factor P , while 
preserving virtually unchanged the motion and holding costs at the destina-
tion:

(i) produce the items for any shipment in order of production subre-
gion: P1 first, then P2 , etc,
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(ii) On completing production for a subregion, Pp , dispatch the vehi-
cles to the subregion on VRP routes constructed for the subregion 
alone.

As a practical matter, P does not need to be very large; once it reaches a 
moderate value (say P  5) additional increases yield decreasingly small 
benefits. In fact, even if the demand was perfectly constant, it is unlikely 
that one would choose a P much larger than 5 because larger P's imply 
shorter production runs within each Pp , which hinders our ability to se-
quence the production to meet other objectives, such as operating with 
smoothing worker loads and materials requirements; see Burns and Da-
ganzo (1987). 

If production schedules are staggered as described, then the search for 
the optimal dispatching times should recognize that holding costs will be 
lower. The analysis could be repeated with a changed holding cost equa-
tion (e.g., Eq. (4.8) for the case cr >> ci) but this is unnecessary; a suitable 
(downward) adjustment to the holding cost coefficient, either ci or cr, has 
the same effect and also preserves our results. (If holding costs at the ori-
gin can be neglected, the coefficient should be halved; of course, there is 
no need to pinpoint its value very precisely, since the solution to our prob-
lem is robust to errors in the cost coefficients.) 

4.4 Identical Customers; Vehicle Loads Not Given 

In every case discussed so far, the total cost expression (e.g., Eq. (4.10)) 
decreases with the vehicle load carried, vmax . This should not be surpris-
ing, since the larger vmax the smaller the total number of vehicles that need 
to be dispatched. In any practical situation, thus, one would be well ad-
vised to use vehicles as large as possible; in fact, as large as the (highway, 
railway ... ) network would allow. Our analysis, however, ignored pipeline 
inventory cost and did not consider possible route length restrictions. With 
either one of these complications, it may not always be desirable (or possi-
ble) to dispatch full vehicles all the time; vehicle load size becomes a deci-
sion variable. We will discuss route length restrictions first, and will then 
incorporate pipeline inventory into the models. It will be shown that pipe-
line inventory cost can be ignored for freight that is neither perishable nor 
extremely valuable, and that it cannot be ignored for passengers. Were it 
not for this complication, the results of Section 4.3 could be used for one-
to-many passenger logistics (e.g., to design a commuter rail network serv-
ing a CBD). The section concludes with a discussion of restrictions on the 
delivery lot size. 
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4.4.1 Limits to Route Length 

If the optimization of Section 4.3 results in very small delivery lot sizes, 
each vehicle may have to make an unreasonably large number of stops. 
Very long routes may not be feasible if there are restrictions to the duration 
of a vehicle tour, due, for example, to labor regulations--see Langevin and 
Soumis (1989) and Kiesling (1995) for some case studies. This subsection, 
which may be skipped without loss of continuity on a first reading, ex-
plores the consequences of such restrictions. 

Tour duration limitations essentially impose a location-dependent limit 
on the number of stops. Presumably, locations distant from the depot will 
need to be served with fewer stops than those which are nearer since more 
time is needed to reach their general vicinity. To recognize this depend-
ence, we use Cmax(x) for the maximum number of stops around x ; we as-
sume that Cmax(x) varies slowly with x . 

Assume first that N is large, so that most delivery districts do not reach 
all the way to the depot. Then, to minimize distance one should still at-
tempt to design delivery districts of width (6/ (x))1/2 , while making them 
long enough to include a desired number of stops at (or near) coordinate x , 
ns(x) < Cmax(x). This yields: length = ns(x)/(6 (x))1/2. The total distance is 
then given by expressions similar to (4.3) and (4.5a); i.e.: 
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where ns,i denotes the number of stops per tour used for tours near xi ; if 
ns(x)  C , Eq. (4.12) coincides precisely with these expressions. Although 
the line-haul distance component (the first term) is somewhat different if 
ns(x) varies with x , the local component remains unchanged. 

Because this expression decreases with ns,i , the number of stops per tour 
should be made as large as practicable. For our problem, the number of 
stops used near location x on the th dispatch, ns (x), should satisfy: 

 ,/vv;Cmin=n maxs xx max

where v  denotes the delivery lot size used for period . The expression in-
dicates that the vehicle either reaches its route length constraint, or else is 
filled to capacity. 
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With this restriction some of the tours may carry less than a full load. As a 
result, it may appear that neither the total number of vehicle tours nor the 
line-haul transportation cost (formerly the third term of Eq. (4.7)) are 
fixed. Would they depend on the specific headways? The short derivation 
below shows that, while not fixed, the number of tours (and thus the sum 
of the line-haul and stop costs) can sometimes be approximated by an ex-
pression that only depends on the number of headways L ; then, the sched-
uling and routing decisions can still be decomposed. 

Approximation for the number of tours: Assume that R can be parti-
tioned into just a few subregions, Pp , with the same limitation on the num-
ber of stops: ns(x) < Cmax(x)  Cp . Characterize each subregion by the 
number of destinations Np, and their average distance to the depot E(rp) . 
We show below, that the number of tours in each subregion only depends 
on L. As a result, an expression for the total number of tours is developed. 
The number of tours in period  for subregion p is: 
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This inequality is a good approximation for the number of tours if rent 
costs dominate, as then the delivery lot size should be independent of  . 
The approximation will also be good, for the same reason, if the demand is 
nearly stationary. Then, we can write: 

(4.13b)
p

p
p

p
p

C
LL

v
tD

N

C
L

v
tD

NpNo.tours;

,0max

;max

max

max

max

max



114 One-to-Many Distribution 

where Lp = CpD(tmax)/vmax . (This constant represents a critical number of 
dispatching periods for subregion p . If L > Lp , then the lot sizes are so 
small that the vehicle cannot be filled in subregion p ; the number of stops 
constraint is binding.) If (4.13b) is a good approximation for the number of 
tours used in Pp , then the sum of the origin stop cost plus the line-haul 
cost for all tours (first and third terms of (4.7)) is: 
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which only depends on the dispatching times through L . O

For small L the expression is constant, and matches the corresponding 
components of (4.7), but once L exceeds some of the Lp (some tours hit the 
length constraint and are only partially filled), it increases with L at an in-
creasing rate. 

The optimal L can be found still as a trade-off between inventory cost, 
Eq. (4.8), and transportation cost, Eq. (4.7) with two terms revised by Eq. 
(4.14). Because the revised (4.7) is piecewise linear and convex, the sum 
of (4.7) and (4.8) has only one local/global minima. The revised derivative 
of (4.7) with respect to L is now a step function: 
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where the summation only includes p's for which Lp < L . The second term 
represents the cost increase for the extra tours that need to be sent because 
(some) vehicles cannot be filled to capacity. The first term is the original 
derivative of Eq. (4.7). In the special case where Cp is the same (Cmax) for 



Identical Customers: Vehicle Loads Not Given 115  

all points, there is only one subregion, with L1 = CmaxD(tmax)/vmax and N1 = 
N. Therefore, the second term is zero if L  CmaxD(tmax)/vmax , and equals 
(N/Cmax)(2cdE(r) + cs) otherwise. The optimal L can be found as follows: If 
there is a value of L for which the sum of (4.15) and the derivative of (4.8) 
equals zero, then that value is optimal; otherwise, the optimal value is the 
Lp for which the sum changes sign. 

Because (4.15) is larger than before, the optimal L will tend to be 
smaller and the resulting cost greater. This is intuitive; with limits to route 
length it may be advisable to increase the lot sizes (by reducing L ) to 
make sure that most of the vehicles travel full. 

Our results assume that all customers share the same L and v  . Although 
this simplification facilitates production scheduling, it may also increase 
logistics costs when Cp changes significantly across subregions. If a differ-
ent L can be used for different subregions, then fewer dispatching intervals 
and larger delivery lot sizes can be used for subregions with a low Cp; all 
the vehicles can be filled as a result. A strategy (a set of dispatching times 
and delivery districts) can then be tailored to each one of the subregions 
independently of the others. We will explore this point – the determination 
of routing/dispatching strategies that vary in time and space – more thor-
oughly in the next subsection. 

To conclude our discussion on route length restrictions, we must con-
sider the case with few vehicle tours, N << C2. But this is very simple. We 
already stated that, for this case, the transportation cost is insensitive to the 
number of stops per vehicle. Hence, route length restrictions do not influ-
ence either the optimal dispatching strategy or the final cost. 

4.4.2 Accounting for Pipeline Inventory Cost 

In all the optimization problems described so far we have found a solution 
which minimizes the sum of the motion cost, the holding (rent) cost and 
the stationary inventory cost. We did not consider the pipeline inventory 
cost of the items in the vehicles. 

It had been pointed out in Chapter 2 that the pipeline inventory cost per 
item was citm, where tm is the average time an item spends inside a vehicle. 
On average an item spends in a vehicle a time approximately equal to one-
half of the duration of the tour. If the vehicle travels at a speed s , and takes 
ts time units per stop, the duration of a tour with ns stops and d distance 
units long is d/s + (ns + 1)ts ; thus: 
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and
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Added for all items for all L shipping periods, the pipeline inventory cost 
becomes a simple function of the total number of (item-miles), (items) and 
(item-stops):
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The total number of items is D(tmax)N . The total number of item-miles and 
item-stops can be obtained easily if there are no route length restrictions. 
In that case vehicles travel full (from the depot) and every stop delays on 
average vmax/2 items; therefore, the total number of item-stops is NL 
vmax/2. Similarly, each vehicle carries on average vmax/2 items and the item-
miles equal the product of the vehicle-miles and (vmax/2) . We have already 
seen in the derivation of (4.7) that the total vehicle-miles are: 

.kNLE+
v

NtDr

distance
combined
Total

2/1

max

max2

Thus, the pipeline inventory cost can also be expressed as a function of the 
decision variables through L alone: 
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(4.17)

As a function of L , this expression is similar to Eq. (4.7), but it increases 
much more slowly: at a rate [Ncivmax/2]{ts + kE( -1/2)/s} as opposed to N{cs
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+ cdkE( -1/2)}. Normally, the quantity civmaxts representing the cost of delay 
to the items in a full vehicle during a stop should be several orders of mag-
nitude smaller than cs (the truck cost and driver wages during the stop). 
Likewise, the quantity civmax /s representing the inventory cost of a full 
truck per unit distance should be much smaller than cd (the vehicle operat-
ing cost per unit distance, including driver wages). Thus, if pipeline inven-
tory costs had been considered from the beginning, the results would not 
have changed. 

If the items are so expensive that the pipeline inventory component can-
not be neglected, then Eq. (4.17), unlike (4.7), increases with vmax . One 
could thus imagine a situation where a vmax smaller than the maximum 
possible might be advantageous; the vehicle loads cannot be assumed to be 
known. The transportation of people is a case in point, where the inventory 
cost of the items carried (the passengers) vastly exceeds the operating cost. 
That is why airport limousine services do not distribute people from an 
airport to the hotels in the outlying suburbs in large buses; this would re-
sult in unacceptably large routes, with some passengers spending too much 
time in the vehicle (see Banks, et al. 1982, for a discussion). Let us now 
see how to select the routes and schedules for a system carrying items so 
valuable that vehicle loads are not necessarily maximal. 

Without an exogenous vehicle load, the total transportation cost no 
longer can be expressed as a function of L alone, as in Eq. (4.7); the total 
vehicle-miles and the number of tours depend on the specific vehicle-loads 
used, and this has to be recognized in the optimization. 

To cope with this complication, we will consider a set of strategies more 
general than the ones just examined, but will analyze them less accurately. 
We will now allow different parts of R to be served with different delivery 
headways at the same time. To do this, we define the smooth and slow 
varying function H(t, x) , which represents the headways one would like to 
use for destinations near x at times close to t . 

(Until now we had assumed that the headways were only a function of t: 
H(t, x) = H(t) . As a result, the optimal dispatching times {t } could be 
found with the exact numerical techniques of Chapter 3; or if D(t) was 
slow varying, with the CA approach, as described in that chapter.) 

For the present analysis we also seek a function ns(t, x) which indicates 
the number of stops made by tours near x at a time close to t . Of course, 
this number cannot be so great that the vehicle capacity is exceeded; the 
following must be satisfied: 

.vt,H(t)Dt,n maxs xx (4.18)



118 One-to-Many Distribution 

The quantity in braces represents the combined demand rate at the ns desti-
nations visited by a tour, and the left side of the inequality the load size 
carried by the vehicle. 

(The approach we had used assumed that (4.18) was a pure equality, so 
that ns was only a function of t, ns(t) = vmax/[H(t)D'(t)] , implicitly given by 
H(t) .) 

Like H(t, x) , the function ns(t, x) will be allowed to be continuous and 
slow-varying during the optimization. Once H(t, x) and ns(t, x) have been 
identified, a set of delivery districts and dispatching times consistent with 
these functions must be found. This will be illustrated after the optimiza-
tion has been described. 

Let us write the total logistic cost per item that items at time-space point 
(t, x) would have to pay if the parameters of the problem were the same at 
all other times and locations, i.e., 

r.=r
,=
,D=tD

x
x and

As explained in Chapter 3, the decision variables, H and ns , that minimize 
such an objective function will become the sought solution, varying con-
tinuously with t and x [H(t, x) and ns(t, x)] . The minimum value of the ob-
jective function for these coordinates z(t, x), is the CA cost estimate. 

Noticing that a vehicle load consists of D'nsH items and a delivery lot of 
D'H items, we can express the total motion cost per item as: 
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(4.19a)

This expression, consistent with Eqs. (2.5e) and (4.7) when the number of 
tours is large compared with the number of stops per tour, has an intuitive 
physical interpretation. Each tour incurs a cost (2rcd + cs) for overcoming 
the line-haul distance and stopping at the origin, which prorated to all the 
items in the vehicle yields the first and fourth terms of (4.19a). The tour 
also incurs a cost (cdk -1/2 + cs) for each local stop and detour, which pro-
rated to the items in a delivery lot, yields the second and third terms of the 
expression. The last term is the (constant) cost of handling each item. 
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Thus, the first two terms are the cost of overcoming line-haul and local 
distance (assuming that many tours are needed) the third term is the cost of 
stopping at the destinations; the fourth the cost of stopping at the origin, 
and the last one the handling/loading cost. 

The holding costs can be expressed in a similar manner. For the pipeline 
inventory cost per item, zp, we use (4.16) and the distance per tour (4.1) 
with C = ns : 
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As with (4.19a), the four terms correspond to times spent in line-haul 
travel, local travel, destination stops, and at the origin. The stationary in-
ventory cost per item averages 

Hc=z is (4.19c)

if we count it both at the origin and the destination. The rent cost can be 
ignored because if items are expensive compared to transportation costs, 
they will certainly satisfy ci >> cr ; thus ch = (ci + cr)  ci , and we can 
write:

H.c=z hs (4.19d)

(Inclusion of rent costs would pose a problem because rent does not de-
pend only on local characteristics such as H and ns . An exception arises if 
the demand is stationary in time, D'(t) = D', because then the optimal solu-
tion is also stationary; i.e., H(t, x) is independent of t, and the rent cost is cr
H .) 

If instead of H (and as is often done in the literature) we use the delivery 
lot size v = D'H as a decision variable, keeping ns as the other variable, 
then the sum of Eqs. (19) can be expressed as: 

,v+n+
v
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1+=z s
s

43210 (4.20a)

where the 0 , ... , 4 are the following interpretable cost constants, which 
will be used from now on: 
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0 = (c's + cir/s + cits/2) ; handling and fixed pipeline inventory cost per 
item,

1 = (2rcd + cs) ; transportation cost per dispatch, 
2 = (cdk -1/2 + cs) ; transportation cost added by a customer detour, 
3 = 1/2 ci(k -1/2/s + ts) ; pipeline inventory cost per item caused by a 

customer detour and the ensuing stop, 
4 = ch/D' ; stationary holding cost of holding one item during the time 

(1/D') between demands. 

With the new notation, (4.18) becomes: 

;vvns max (4.20b)

in addition, we require 

(4.20c)

Equation (4.20a) is a "logistic cost function" (LCF) that relates the cost per 
item distributed to the decision variables of our problem. We will see in 
the remainder of this book that the determination of a realistic LCF is per-
haps the most important step in the design of a logistics system with the 
approach espoused in this monograph. In the present case, the minimum of 
Eq. (4.20a) subject to these inequalities is the solution to our problem. 
Note that 0 can (and often will) be omitted for optimization purposes. 
Note as well that, with a small modification to the expressions for 1 , 2 , 
and 3 , Eq. (4.20a) also applies to the VRP case with a small N (compared 
with ns

2); k should be replaced by k' and the term 2rcd should be omitted. 
We will assume for the remainder of this section that the 1, 2, and 3 for 
large N are used in the optimization; if the resulting ns found in an applica-
tion is inconsistent with these values, then the 's should be changed to 
recognize that N is "small". Our qualitative discussion also applies to this 
case, which is very similar. 

We now identify a condition under which the pipeline inventory term 
( 3ns) can be neglected, and show that in that case (4.20b) should be a pure 
equality. This has been pointed out in Daganzo (1985a) and Burns et al. 
(1985).

1sn
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The full vehicle condition: For any integer, ns , a feasible solution to Eqs. 
(20) is v = vmax/ns , which (ignoring 0) yields: 
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An upper bound, zu , to the minimum of Eqs. (4.20), z* , is obtained from 
z(ns) , using ns = 1 if vmax( 4/ 2)1/2 < 1 , and ns  vmax( 4/ 2)1/2 otherwise; 
that is: 
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A lower bound to the optimal cost is obtained by neglecting the pipeline 
inventory term 3ns of Eq. (4.20a), and optimizing (4.20). We see at a 
glance that (4.20a) decreases with ns for any v ; thus, one will always 
choose the largest ns satisfying (4.20b): ns  vmax/v . (Note that if v < vmax , 
then (4.20c) holds.) 

If this value is substituted for ns in (4.20a), without its first and fourth 
terms, we obtain a function z(v) , 
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whose minimum (subject to v < vmax) is a lower bound, z  . Its expression – 
see the constrained EOQ trade-off reviewed in Chapter 3 – is: 
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(4.21)

Notice that the expressions for zu and z  are almost identical: zu - z  = 
3vmax ( 4/ 2)1/2 if vmax( 4/ 2)1/2 > 1, and zu - z = 3 , otherwise. 
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The relative difference between any two of zu , z* and z  should be lower 
than  , the ratio of the maximum value of (zu -z ) to the second term in the 
upper part of (4.21), which bounds z  from below; i.e.:  = ( 3vmax/2 2).
The numerator of this constant, 3vmax, is the pipeline inventory cost accru-
ing to a full vehicle for one delivery detour; the denominator is double the 
vehicle motion cost per detour. For most commodities this ratio is orders 
of magnitude smaller than 1, so that the lower and upper bounds will 
nearly coincide. 

In summary, if  << 1, then filling the vehicles (as done with the strat-
egy leading to zu) is near optimal; the resulting cost is close to the lower 
bound, obtained without pipeline inventory costs. O

The incentive to fill vehicles, used so far in this chapter, does not apply if 
 = 3vmax/2 2 is large compared with 1. The minimization problem de-

scribed by Eqs. (4.20) then yields a strict inequality for (4.20b). We now 
examine the solution to this minimization problem with varying conditions 
in time-space (Daganzo and Newell, 1985). 

The unconstrained minimum of (4.20a) can be obtained numerically, 
and it can also be expressed analytically as a function of one single pa-
rameter  . To see this, let ns be close to the unconstrained minimum of 
(4.20a): ns  ( 1/ 3v)1/2 ; then z*(v) = 2( 1 3/v)1/2 + 2/v + 4v . This expres-
sion reflects an achievable cost if ns > 1 . Because z*(v) is convex, its 
minimum is the root of dz*(v)/dv = 0 . Using v' = ( 1 3v)1/2/ 2 , we can ex-
press this equation in terms of v' as follows: 

344 ''' v+v=i.e.,;v+1=v

where  = 4 2
3/( 1 3)2 . When v' is small compared with 1 the second 

term in the last expression can be neglected; in this case the solution is: v'
-1/4 <<1 for  >> 1. Conversely, if v' is large compared with 1, i.e.,  << 1, 

the first term can be neglected and the solution becomes v' -1/3 . The larg-
est of the two extreme solutions can be used as a rough approximation 
when 1. The optimal vehicle load is nsv = v' 2/ 3 , and ns = 1/ 2v' . If 
the vehicle load is smaller than vmax and ns > 1 , then the solution can be 
accepted. (This happens if 2v' < 1 and 3vmax). The optimal H and z can 
also be expressed as a function of v', and thus of  . 

Without pipeline inventory, the solution z* is as Eq. (4.21). In that case 
we see that z*  z  increases linearly with 1 (which also increases linearly 
with the distance from the depot r). Because there is an intercept, both z*

and the total cost per unit time ND'z* increase "less-than-proportionately" 
with r ; the ratio of cost to distance decreases. We also see that z* decreases 
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with the demand rate per customer D' , but increases with the spatial den-
sity of customers  if their aggregate demand rate ND' (i.e., D') is con-
stant. However, the total cost per unit time ND'z* is non-decreasing with 
D' . While not so obvious, these scale economies are also shared by the so-
lution to Eqs. (4.20) as just described. While ND'z* increases with D', z*

decreases; the optimal cost also increases less than proportionately with 
distance from the depot. 

To estimate cost for a problem with varying D'(t) , (x) and r(x) , one 
would need to average the analytical solution over t and x . Although it 
may be possible to do this in closed form using statistical approximation 
formulas for expectations (these indicate that cost increases with variable 
conditions; see Problem 4.3), a few numerical calculations should suffice. 
One could calculate z* for all the D(tmax)N items demanded, using their re-
spective t and x , but this would be too laborious. Instead, one can partition 
the time axis into m = 1, ... , M intervals and R into p = 1 , ... P subregions 
so that each (m, p) combination includes roughly the same amount of de-
mand. We use any interior point (t , x) of each combination to calculate 
both the parameters of the optimization and the resulting cost, zmp. The es-
timated cost is then the arithmetic average of the zmp. Section 4.5 shows 
how a detailed solution can be developed. 

4.4.3 Storage Restrictions 

We conclude our analysis of systems with identical customers with a dis-
cussion of storage restrictions. This subsection can be skipped without loss 
of continuity. 

Over the short term, it may not be possible to change the amount of 
storage at the destinations, and one may wish to design the distribution op-
eration recognizing this restriction. This problem, arising with the distribu-
tion of gasoline to service stations (Brown and Graves, 1980, Dror et al., 
1985, and Webb, 1989) is not difficult to model. 

Let v (x) denote the maximum allowable accumulation of items (i.e., 
the available storage space) for destinations at or near x, assumed to be 
smaller than vmax. This function should be slow varying and independent 
of t. Then, the total rent cost over the study period is approximately: 

,dvtc=costrentTotal r xxx
R

max

which is independent of the decision variables H and ns ; (or ns and v) . 



124 One-to-Many Distribution 

For any time and location, the optimal variables and cost are still the 
minimum of (4.20a) with two minor differences: (i) the holding cost pa-
rameter of 4 , ch , should not include rent costs (ch  ci) since they are 
fixed in the short term; and (ii) in addition to (4.20b) and (4.20c), one must 
include a constraint representing the storage restrictions at the destinations: 

.vv (4.20d)

The minimum of Eqs. (4.20) is the solution to the problem.
If items are cheap, so that the pipeline inventory can be neglected, then 

inspection of (4.20a, b, c, and d) reveals that for any feasible v , one will 
choose the largest possible ns satisfying (4.20b). We can thus restrict our-
selves to values of ns and v satisfying (4.20b) exactly, and solve instead: 
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This is an integer constrained EOQ. Since vmax > v  , then ns
* > 1 and the 

above minimum can be approximated (as discussed in Example 2 of Sec-
tion 3.5) by ignoring the integrality requirement – Equation (3.5b) of 
Chapter 3 gives the result with a different notation: A 4 ; B 2 ; and 
vmax  v  . We have ignored the possibility vmax < v , because if each des-
tination can hold a full vehicle load, then the storage restriction plays no 
role; i.e., the constraint to the number of stops is: ns = 1, 2, ..., independent 
of v  . 

If items are expensive, the solution can be obtained numerically for vari-
ous t and x . In both cases, the average of z* over (t, x) can be used to esti-
mate the total cost with variable conditions. 

Because the estimated total cost depends on v (x), this method can be 
used to explore the attractiveness of changes in the amount of storage 
space perhaps being contemplated as a strategic long run decision. One 
would have to balance the changes in rent cost against the changes in the 
remaining costs just discussed. 
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In most cases, it is likely that either cr << ci or cr >> ci (either rent costs or 
inventory costs dominate holding costs) and then the optimal amount of 
storage space easily follows from the results already presented. We have 
argued already that if cr << ci , rent costs should not influence the rout-
ing/dispatching strategy. For this case, then, each destination should be de-
signed to have barely enough space to hold the maximum delivery lot sizes 
it   will   receive  with   the   just   discussed   optimal  strategy:   v * (x)  =
maxt {v*(t, x)}. (This should certainly be the case for passenger terminals 
such as transit stations.) If, on the other hand, cr >> ci, then rent costs will 
influence dispatching. Fortunately, with dominant rent costs, pipeline in-
ventory can be neglected and vehicles should travel full; as a result, the 
decomposition technique illustrated at the beginning of Section 4.3 can be 
used to separate dispatching and routing decisions, yielding the (constant) 
delivery lot size. Again, the amount of storage space at the destination 
should be just enough to accommodate this lot size. 

4.5 Implementation Considerations 

This section describes how specific solutions can be designed from the op-
timization results in prior sections. It also discusses systematic ways for 
fine-tuning the designs. 

We saw in Chapter 2 that changes in the input parameters of an EOQ 
optimization have a dampened effect on the decision variables; this is also 
true for the objective function now at hand. Thus, if D(t) and (x) change 
slowly, the decision variables H (or v) and ns will change even more slug-
gishly over t and R . Because, as with the EOQ optimization, the decision 
variables themselves do not need to be set very precisely, it should be pos-
sible to identify large regions of the time-space domain where the decision 
variables can be set constant without a serious penalty. 

For our problem with identical customers, the partition is easily devel-
oped: (i) divide the time axis into m = 1, 2, ... , M periods with nearly con-
stant demand rates; and (ii) partition R into p = 1, 2, ... P subregions with 
similar customer density and distance to the depot. The subregions and 
time periods should be large enough to include respectively several deliv-
ery districts and several headways. This ensures that the number of stops in 
each district can be close to ideal, and that the theoretical headway H(t, x)
can be approximated with an integer number of dispatches. We anticipate 
now that, by designing a different spatial partition for every time period, 
this method can be extended to situations with different customers and 
time varying customer densities. 
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4.5.1 Clarens and Hurdle's Case Study 

An application of the technique for a very similar problem has been re-
ported by Clarens and Hurdle (1975). These authors explored the best way 
of laying out transit routes from a CBD to its outlying suburbs. They as-
sumed that the demand was stationary and changed with position. 

They describe the solution in terms of slightly different variables and 
inputs, but the differences are only superficial. They define the vehicle op-
erating cost as a function of time (and not distance), ct , and do not explic-
itly account for the number of stops; instead they assume that one knows 
from empirical observations the time that it takes for a bus to cover one 
unit area – a constant, (x) , that can vary with position. They define the 
demand as a density per unit area and unit time, (x) , which changes with 
position. Instead of a distance from the CBD, r(x) , they define an express 
(line-haul) travel time, T(x), and as a decision variable they use the area of 
a bus service zone, A(x), instead of ns(x). Thus, they work with the follow-
ing logistic cost function, which is equivalent to (4.20a): 

 ,H/c+A/+Tc+
H
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tt 222
(4.22)

where the bus load, A H is restricted to be below vmax = 45 passengers. 
Note that the mathematical optimization problem is analogous to Eqs. 
(4.20).

Figure 4.3, displays the demand distribution for the case study presented 
in that reference. Figure 4.4 depicts the worksheet that was used to design 
the vehicle routes (the reference does not seem to recognize the benefits of 
elongating the zones toward the depot) and Table 4.1 compares the actual 
and ideal zone sizes. 

Given the close agreement between these two columns of figures and 
the robustness of the CA solution to small departures from the recom-
mended settings, one would expect to have a cost that is very close to the 
minimum.

The Clarens-Hurdle case study is to this author's knowledge the only 
published example where the CA guidelines have been translated into a 
proposed design for a two-dimensional problem. 

On reviewing the procedure, it becomes clear that a great deal of human 
intuition is required to complete a design. Furthermore, careful efforts 
notwithstanding, the designer may miss opportunities for small improve-
ments at the margin that depend on specific details (e.g., stop locations, 
street intersections, etc.) of the particular problem. It might be worthwhile 
to use fine-tuning software to find these possible improvements if any exist. 
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4.5.2 Fine-Tuning Possibilities 

The rest of this section describes the results of some experiments where 
fine-tuning software was used to improve detailed VRP solutions devel-
oped quickly from the guidelines given in Section 4.2. The discussion is 
based on Robusté et al. (1990). 

These authors tested simulated annealing (SA) as a technique that is 
well suited for fine-tuning purposes. The brief discussion of simulated an-
nealing provided in this reference is included as Appendix B. The tech-
nique is attractive because: 

 (i) A prototype computer program can be developed quickly for most 
problems since the SA logic is very simple. (These authors devel-
oped software for the VRP, from scratch, in about three man-
days.)

(ii) The optimization can be controlled by means of input variables 
(called initial "temperature" and "cooling rate" or "annealing 
schedule") which determine how much the algorithm is allowed to 
increase (worsen) the objective function at different stages of the 
process in the hope of finding larger reductions later. 
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Fig. 4.3 Demand distribution for a transit line design problem. 
 (Source: Clarens and Hurdle, 1975). 
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Fig. 4.4 Worksheet for a transit design problem 
(Source: Clarens and Hurdle, 1975) 
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Table 4.1 Results of the transit line design process 
(Source: Clarens and Hurdle, 1975) 

Area
(square miles) Zone

Actual A*(x,y)

Headway
(minutes)

Average
Load

On Bus 
(persons)

Load
Factor

T(x,y)
(minutes)

r(x,y)
(min./sq

mi)

A 2.0 1.9 13 35 78 27 9 
B 1.9 1.9 14 31 69 27 10 
C 1.7 1.3 10 43 96 25 10 
D 1.0 1.1 9 39 87 26 11 
E 1.0 1.2 11 40 89 24 9 
F 1.3 1.4 14 36 80 26 10 
G 2.1 1.9 8 27 60 21 9 
H 1.2 1.5 7.3 38 84 22 8 
I a 1.2 1.2 7 45 Full 26 8 
J 1.1 1.2 7 36 80 20 8 
K 1.1 1.1 9.0 38 84 19 10 
L 1.0 1.0 6.7 45 Full 24 13 

M a 1.1 0.9 6.7 45 Full 26 13 
N a 1.3 0.8 5.8 45 Full 29 16 
O a 0.9 1.0 8 43 96 25 11 
P 1.0 1.0 9 30 67 17 11 
Q 1.0 1.3 10 23 51 15 8 
R 1.1 1.3 8 35 38 20 8 
S 0.9 1.0 7 40 89 21 10 
T 1.2 1.5 7 39 87 22 7 

a Zones where A*(x,y) = Ae(x,y).

Simulated annealing is known to converge in probability to the global op-
timum of combinatorial optimization problems, such as those arising when 
designing in detail logistics systems. Unfortunately, convergence is slow. 
To be guaranteed, the initial temperature has to be very large and the cool-
ing rate very slow; the computer time required rapidly becomes prohibi-
tively long with increasing problem size. However, with an overall idea of 
the system's structure, and a near optimal initial solution as would be ob-
tained with nondetailed methods, the scope of the annealing search can be 
restricted. As demonstrated in Robusté et al. (1990), a low initial tempera-
ture achieves that. It prevents the search from wandering away from the 
initial solution, while systematically testing variations that exploit the de-
tails (specific locations of customers, for example.) 

One of the examples in this reference considers a VRP problem with N 
= 500 points (randomly located according to a uniform density in a 6-inch 
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by 10-inch rectangle), C = 45 stops per tour and a centrally located depot; 
distances are Euclidean. For this test the VRP formula, Eq. (4.5b) with k 
0.57, predicts a total distance averaging 179 inches. With a high initial 
temperature, the SA approach yielded tours that were very long in reason-
able times; after one day of computation it obtained a set of tours 180.4 
inches long (Figure 4.5). This was reasonable, but longer than the hand 
constructed tours (Figure 4.6) using the VRP guidelines presented earlier. 
When the hand constructed tours were used to initiate SA with a low initial 
temperature, the SA algorithm found enough modifications to reduce the 
total length by about four percent – to 173.6 inches. 

Other tests performed in this reference show that the non-detailed ap-
proach, fine-tuned with SA, can obtain solutions with objective functions 
as low as those currently believed to be optimal. The efficiency of the two-
step approach has also been demonstrated in practice – the (non-detailed) 
results in Burns and Daganzo (1987) were used in conjunction with SA to 
schedule the assembly lines in some GM plants. 

These observations are in agreement with our philosophical conclusions 
in Chapter 2. Like the evolution processes in nature, to design a complex 
logistic system it seems best to develop a preliminary design based on the 
overall characteristics of the problem, and use the details later to fine-tune 
the preliminary design. This view has been adopted in the recent works of 
Langevin and StMleux (1992) and Hall et. al. (1994). Although the CA 
approach and the SA algorithm seem to be ideal companions for this two-
step approach, other methods may also be useful. The critical thing is not 
the specific approach for each step, but the fact that the first step disre-
gards details in searching over all possible solutions, and the second step – 
restricted to a small subset of possible solutions – incorporates all the de-
tails. Perhaps other computer fine-tuning methods will improve on SA 
(Neural Networks and Tabu Searches are currently in vogue; see Hopfield 
and Tank, 1985, and Glover, 1989 and 1990, for reviews). But the im-
provement should not be measured only on computation grounds; the abil-
ity to develop the software quickly is just as important. 
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Fig. 4.5 500 point VRP. SA solution with C = 45. 12 tours with total length = 
180.4". (Source: Robusté et. al., 1990) 

Fig. 4.6 500 Point VRP. C=45. Manual solution. 12 tours with total length = 
179.8 inches. (Source: Robusté et. al., 1990)
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4.6 Different Customers: Symmetric Strategies 

The rest of this chapter considers different customers. Extensions to the 
strategies we have just described, without exploiting the differences among 
customers, are easy to develop; they are described in this section. Asym-
metric strategies, which allow different customer types to be served differ-
ently, are explored in Section 4.7. Conditions under which these more 
complex strategies are likely to be of benefit are also discussed in that sec-
tion.

Let us allow Dn(t) to vary across customers, n, and possibly to be non-
stationary. With this generalization, even if the demand is stationary, D'n
can vary across n . With many customers the individual demand rates 
should be treated as "details," which we try to avoid. To this end, an ex-
pected demand density rate per unit area is used instead of the specific 
Dn(t)'s . This parameter, (t, x), is assumed to vary slowly with time and 
location so that the demand in a subregion, Pp of R (large enough to con-
tain several destinations but of small dimensions relative to R ) during a 
time interval [tm-1 , tm) is: 

dt.dt,
x p1

xx
P

t

=tt

m

m

(4.23a)

Similarly, we define a customer density, (t, x), which is also allowed to 
vary with time. Note that we are allowing here for the number and loca-
tions of customers to change with time; all we require is that these changes 
can be approximated with functions (t, x) and (t, x) , that vary smoothly 
with t and x .

Demand uncertainty, an important phenomenon when the tours have to 
be planned before the demand is known at the destinations, will also be 
considered in this section. It will be captured by an index of dispersion 
function, as described below. 

Take a partition {P1,...,Pp,...,PP} of R and a partition of time into con-
secutive intervals m = [tm-1 , tm) , and let Dmp represent the actual number 
of items demanded in Pp during m . The parameter (t, x) can then be de-
fined as the average demand rate density, so that (4.23a) now gives the 
mean of Dmp . We assume that, for any partition, the variables Dmp are in-
dependent, and identically distributed. Then their variance can be ex-
pressed as: 
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dt,dt,t, xxx
P p

Dvar
m

mp (4.23b)

where (t, x) is an "index of dispersion", with "items" as its physical di-
mension. A special case of this model arises if each customer's demand 
fluctuates independently of other customers, either like a stochastic proc-
ess with independent increments – such as a compound Poisson process or 
a Brownian motion process. Although in most cases a fixed  should cap-
ture demand fluctuations well, we allow (t, x) to vary slowly with t and x.
An index equal to zero represents known demand; no uncertainty. This 
case is examined next. 

For consistency with the literature, we continue to use H(t,x) and A(t, x)
as the decision variables instead of ns and v. Both formulations are equiva-
lent, since there is a 1:1 correspondence between two sets of variables – 
the number of stops in a tour is the number of customers in its district, 
which is given by ns (t, x)A(t, x) , and the delivery lot size is the con-
sumption   during   a   headway   in   the   area    around  a  customer:   v
 (t, x)H(t, x)/ (t, x) . Making these substitutions in Eq. (4.20a), and recog-

nizing that D' = /  , the cost per item at (t, x) can be expressed as: 

 ,+Hc+A+
H

+
HA

=z h
21

03 (4.24a)

where 1, 2 , and 3 are the constants defined in connection with Eq. 
(4.20), which now can vary in both time and space; constraints (4.20b), 
(4.20c), and (4.20d) become: 

 ,vAH max (4.24b)

and1A (4.24c)

.vH (4.24d)

Note that the new logistic cost function has the same functional form with 
respect to its decision variables as Eqs. (4.20a) and (4.22) have with re-
spect to theirs. Therefore, everything said in connection with these equa-
tions and their solution also applies now. The minimum of Eqs. (4.24) for 
different values of t and x can then be used to construct a near-best sym-
metric strategy. 
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The important thing to remember here is not the form of Eqs. (4.24), but 
the process followed to derive them and use them. This process is quite 
general and can be used for problems involving various peculiarities. Be-
cause it is impossible here to discuss all possible situations, the process is 
only illustrated with three examples involving stochastic phenomena and 
requiring some modifications to the equations. The first example (Sec. 
4.6.1) arises where items are indivisible and the expected demand per cus-
tomer per headway is less than one item; the second (Sec 4.6.2) when the 
customer demands are not known until the vehicles make the stop; and the 
third (Sec 4.6.3) when the vehicles make coordinated adjustments to their 
routes as demand information becomes known. These sections can be 
skipped on a first reading. 

4.6.1 Random Demand: Low Customer Demand 

Equations (4.24) implicitly assume that each customer is visited each time 
– the number of stops is equal to A . But if items are indivisible (as op-
posed to fluids, or very small items) and the demand by individual custom-
ers is so low that some have no demand during a headway, their stops can 
be skipped. 

For some demand processes, the proportion of stops that can be skipped 
should decrease with H as exp(-H/H0) , where H0 is a constant that depends 
on t and x . If the customers in a subregion are alike and their demand is 
well described by Poisson processes, then the parameter H0 is the average 
time between successive demands at one destination; i.e., H0 = D'-1 = / .
For other processes the relationship is similar. See problem 4.4 for an ex-
planation.

As a result, the effective density of stops is only [1 - exp{-H/H0}] . 
This expression must be substituted for the parameter  in the expressions 
for ( 2) and ( 3) appearing in (4.24) (remember that  also appears in 2
and 3). The optimization and design process can be carried out as de-
scribed earlier. Although the resulting optimization is slightly more com-
plicated, two extreme cases are quite simple. 

First, if H >> H0 then the density of stops is  as before; the solution 
does not have to be changed. The opposite extreme case with H << H0 , 
arising for example if  but D'  0 , also admits a simple expression 
for the stop density, even if the demand varies across customers (see prob-
lem 4.4). The expression is H/H0 H if items are not demanded in 
batches; then the number of vehicle stops per tour, ( H)A , equals the ve-
hicle load, HA, as one might expect. 

This limiting case arose in the study of Burns et al. (1985) involving the 
distribution of finished automobiles from a manufacturing plant to a very 
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large and scattered dealer network. It is also likely to arise with flexible 
routing passenger transport systems as in the airport limousine model pro-
posed by Banks et al. (1981). 

4.6.2 Random Demand: Uncertain Customer Requests 

If 3 is small (items are cheap) we have seen that the minimum of (4.24) 
will be such that AH = vmax . There is an incentive to dispatch totally full 
vehicles. Let us now see what modifications are needed if the exact de-
mand on a vehicle route is not known accurately when the vehicles are 
dispatched C a case with expensive items is not considered here because if 
time is of the essence, it is unlikely that one would operate with imperfect 
information. (Problems with uncertain demand have been studied in 
Golden and Yee, 1979; see also the review in Gendreau et al., 1996.) The 
system of interest operates with a headway (e.g., daily, weekly, etc.) to be 
determined, and advertised to customers as a service schedule that is to be 
met even if the volumes to be carried change with every headway. This 
scenario can arise for both collection and distribution problems, although 
for distribution problems of destination-specific items the demand will 
normally be known. The problem is then easy. If the size of each delivery, 
vn, is both known and small compared with vmax it should not be difficult to 
partition the service region into delivery districts of nearly ideal shape with 

nvn  vmax. Then, the distance formulae of Sec. 4.2 hold and Eqs. (4.24) 
can be used without modification. If some delivery lots are comparable to 
the vehicle's capacity, the routing problem is more difficult because one 
needs to balance the incentive for filling a vehicle by delivering a lot of the 
right size to an out-of-the-way customer with the extra distance that one 
would have to travel. Hall et.al. (1994) have explored improved routing 
schemes for this case and conclude that the basic distance formulae of Sec. 
4.2 do not need much of a correction. 

In view of the above, our discussion is phrased in terms of collection, al-
though hypothetical distribution problems with uncertain demand would 
be mathematically analogous. For collection problems some of the vehi-
cles may be filled before completing their routes, which would cause some 
of the demands to go unfulfilled. 

The overflow customers (still needing visits) could be covered in the 
same headway by collection vehicles with unused cargo space or, failing 
that, by vehicles dispatched from the depot. Clearly, if some vehicles can 
be rerouted before returning to the depot, some distance can be saved. Dy-
namic routing introduces modeling complexities that will be discussed in 
Sec. 4.6.3. For now we assume that all the overflow customers are visited 
by a separate set of secondary vehicle routes based at the depot and 
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planned with full information.5 This information is gathered by the original 
(primary) vehicles, which are assumed to visit all the customers. Because 
items are "cheap" secondary vehicles should also travel full. 

The decision variables are A and H , as before, but now the capacity 
constraint must be replaced by an overflow cost which depends on A and 
H . A new trade-off becomes clear. If the average demand for a tour satis-
fies AH << vmax , then the overflow cost will be negligible but most pri-
mary vehicles will travel nearly empty. On the other hand, if AH  vmax , 
a larger number of customers will overflow on averageCthe actual number 
will depend on the variability of demand as captured by its index of disper-
sion, .

Instead of a total cost per item, we work with a cost per unit time and 
per unit area. For given A and H , the transportation cost per unit time and 
unit area for primary tours is approximately independent of the overflow; it 
is well approximated by the product of the constant factor,  , and the first 
two terms of (4.24a): 

.
H

+
AH

21

Strictly speaking, this expression is an upper bound because it ignores the 
local delivery distance that it is saved by the stops that are skipped. 

Note that, especially when the fraction of tours overflowing is small, the 
overflow customers will tend to be geographically distributed in widely 
spaced clusters of customers corresponding to overflowing tours. Because 
the overflow transportation cost formulas with clustered destinations are 
more complicated, two simple bounds will be used instead to approximate 
the secondary distance traveled. (Blumenfeld and Beckmann, 1984, have 
developed formulas for VRP's with clustered demand points). It should be 
intuitive without a formal derivation that smearing the clusters uniformly 
over R increases the distance traveled, while collapsing them into a single 
point decreases it. Upper and lower bounds for secondary distance are de-
rived below, imagining that clusters are either spread or fused in this man-
ner.

5 An alternative approach proposed in Bertsimas and VanRyzin (1991) and also explored in Bertsimas 
et. al. (1991) and Hall (1992) consists in building a traveling salesman tour for the region, partition-
ing it into segments that do not violate the vehicle capacity constraint and then connecting the ex-
tremes of each segment to the depot by line-haul legs. Of course, for this approach to be feasible it 
must be possible to delay service for the kth TSP segment until the (k-1)th is finished. The approach is 
appealing because it eliminates overflows completely. On the other hand, it requires longer line-haul 
connections to the depot than the strategies one would use if overflows are handled with secondary 
tours.
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An expression for f0 , the fraction of items that must be delivered or col-
lected as overflow, will be derived shortly. Assume for now that it is 
given. Then the number of secondary (overflow) tours per unit area is 
Hf0/vmax , and the number of stops is close to f0  . This expression implies 

that the fraction of items overflowing is the same as the fraction of cus-
tomers; the expression is exact if primary vehicles don't deliver (or collect) 
partial lots, and is also a good approximation in other cases. 

With de-clustered overflowing customers, the upper bound to the secon-
dary distance per unit area is thus: 

.fk+
v

Hfr 0 2/1
0

max

2

[We are assuming here that the total number of customers is greater than 
the squared number of stops per vehicle: Nf0 >> (vmax / H)2] . With per-
fectly clustered groups the density of stops equals the density of incom-
plete primary tours. If we let g0 denote the probability that a tour over-
flows, then this density is g0/A ; thus a lower bound for the distance per 
unit area is: 
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The secondary transportation cost per unit area and unit time is obtained 
by multiplying either distance bound by cd/H , and adding to the result the 
cost of stopping. For the upper bound we have: 
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For the lower bound, the factor (f0 )1/2 of the second term should be re-
placed by (g0/A)1/2. If the overflow is so small that only a few secondary 
tours are used, Nf0 < [vmax / H]2 , then k should be replaced by k' and r 
should be set to 0 , regardless of position. 
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Either on primary or secondary tours, items reach the destination at regular 
intervals, as required, approximately H time units apart. Thus, the station-
ary holding cost per unit time and unit area is: 

.Hccost
holding

h

We are now ready to write the logistic cost function for our problem. In 
practical situations one would expect the difference between the upper and 
lower bound to be small. Therefore, we will use one of these bounds (the 
upper bound) below. In terms of total cost per unit time and unit area (the 
sum of primary and secondary transportation costs, plus the holding cost), 
the upper bound is: 
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where the parenthetical items are constants and the rest ( A , H , and f0 ) 
are decision variables. Note that the constant handling cost, 0 , has been 
omitted from the LCF. 

The fraction of items that overflow is related to A and H. As indicated 
by Eqs. (4.23) the mean and variance of the number of items to be carried 
by a primary vehicle are AH and A H . The expectation of the excess of 
this random variable over vmax is the average overflow for the vehicle. As-
suming that the demand is approximately normal, and letting  denote the 
standard normal cumulative distribution function (and ' its derivative – 
the probability density function), we can therefore write: 
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(4.26)

where
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(z) = 
z

-

(w)dw = ´(z) + z (z) , 

which is a convex function increasing from zero (when z  -  ) to  (when 
z  ) . Note that f0 may depend on position and time. 

Thus, Eq. (4.25) should be minimized, subject to (4.26). The procedure 
is simple. Conditional on AH, i.e. on the average vehicle load per district, 
f0 is fixed and (4.25) only depends on H; the optimal headway can be ob-
tained in closed form from (4.25) as an EOQ trade-off involving the 2nd, 
4th, 5th and 6th terms of that expression. The resulting cost is only a func-
tion of AH, which can be minimized numerically. The procedure also 
works for the lower bound, and when the number of secondary tours is 
low. For the lower bound one should replace the fourth term of (4.25) by 
kcd(g0/A)1/2/H, where g0 = (z).6 Note that g0 is fixed if AH is fixed, like 
f0.

Cost estimates and guidelines for the construction of a detailed strategy 
can be obtained as usual, by repeating the minimization for a few combina-
tions of (t, x) . As an exercise, the reader may want to solve this minimiza-
tion problem for some representative values of the input data of Problem 
4.5. More ambitiously, the reader could also verify that the final strategy 
and the resulting cost do not change much if the overflow local distance 
term is replaced by the lower bound. See problem 4.5. 

4.6.3 Dynamic Response to Uncertainty 

In many applications, vehicle routes can be adjusted dynamically during 
the course of operation. For example if a collection truck of an express 
package carrier falls behind schedule, central dispatch can reassign some 
of its remaining customers to currently underutilized trucks. If a firm can 
do this systematically with an efficient control strategy, it should be able to 
operate with fewer vehicles. 

To design such a system we must make a single set of planning (or con-
figuration) decisions at the beginning of the planning period, e.g., choosing 
the number of trucks; and then a stream of control decisions that change 
dynamically as information is revealed over time. To minimize the combi-
nation of fixed and operating costs, configuration decisions must anticipate 
and accommodate the long-run needs of the control strategy; that is, the 

6 The reader may complain that the result is not a lower bound because the first two terms of (4.25) 
overestimate the primary local distance, by an amount kf0

1/2. However, this is also the amount that 
was ignored for the secondary tours when it was assumed that overflowing points within a zone were 
Afused@ together.
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system should be planned for control. This is difficult to do exactly but as, 
explained in Daganzo and Erera (1999), can be achieved approximately if 
we can find a family of control strategies that is: (i) parametrizable (de-
scribable in terms of just a few parameters); (ii) appealing (containing for 
every reasonable system configuration a near-optimal strategy for the con-
figuration); and (iii) simple (with a predictable expected cost). Properties 
(i) and (iii) guarantee we can write a logistic cost function that captures 
approximately all fixed and recurring costs in terms of the configuration 
variables and control parameters. Property (ii) guarantees that good control 
parameters exist for every reasonable configuration. Hence, the minimum 
of the LCF is an Aappealing@ plan. Since an analytic expression exists the 
minimum can be searched effectively with conventional optimization 
methods, even if the number of variables and parameters is considerable. 

The selection of a proper family is more an art than a science. The temp-
tation is always to look for the most efficient control strategies, excelling 
at (ii), even if they fail the simplicity test (iii). The problem with this ap-
proach is that a search for the optimum configuration cannot then easily 
incorporate the effects of control. The result can be gross sub-optimization. 
Thus, for planning purposes we prefer to look for idealized (less efficient) 
control strategies that can be systematically analyzed. This allows us to 
explore a much larger solution space when configuring the system. The 
idealized strategies play the role of approximations to the more refined 
strategies during the optimization process, but the refined strategies can 
still be used when the system is operated. Several illustrations of these 
ideas can be found in Erera (2000). The example below is extracted from 
this reference. 

Let us consider again the load-constrained system of Sec. 4.6.2, but as-
sume now that H =1 day as in package collection systems. We want to 
configure a system where vehicles that are partially filled at the end of 
their runs can cover the overflow customers of other vehicles. Although 
very complex dynamic routing strategies can be designed to achieve this 
goal, we shall be satisfied with a simple one that is obviously sub-optimal 
but improves significantly on the static approach of Sec. 4.6.2. 

We partition the service region into an inner region close to the depot 
(region 2) and an outer fringe (region 1). Only customers in region 1 are 
allocated to primary tours. We use only one planning variable: the number 
of primary service zones in region 1, which equals the number of vehicles, 
m. The radius of the inner region, rT, is our control parameter. The ideal-
ized control strategy has two phases with several steps indicated by the 
numerals of Fig. 4.7. 
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Fig. 4.7 Steps of a dynamic routing scheme. Source: Erera (2000) 

In phase one vehicles travel to their service zones (step 1), serve their cus-
tomers (step 2), and either return to the depot, if filled, or else stop at the 
boundary between regions 1 and 2 (step 3). Unfilled vehicles wait there for 
the start of the second phase, until all vehicles are done. Then, they are re-
positioned along the boundary in anticipation of serving carefully designed 
groups of remaining customers (step 4). The size of these groups is chosen 
to be consistent with each vehicle=s available capacity. Vehicles first serve 
the part of their group in region 1(step 5), then the part in region 2 (step 6). 
Region 2 customers are arranged in wedges that can be served efficiently 
as vehicles return to the depot. Finally, if any customers remain unserved, 
they are served with a set of secondary tours (step 7). Note that virtually no 
customers require such secondary tours when systems are configured op-
timally.

This strategy generalizes the static procedure of Sec. 4.6.2, since the ef-
fects of the latter can be essentially achieved by setting rT = 0. Although 
the new strategy is sub-optimal, it has clear efficiencies over the static pro-
cedure; thus, it is Aappealing@ in the sense of (ii). The strategy also has 
properties (i) and (iii), since t is parametrized by the inner radius rT and is 
simple. An analytic approximation for the LCF is given in Erera (2000). 
The approximations in this reference were designed to be most accurate for 
intermediate values of rT, where the optimum was expected to be. The 
formulae are not given here because they would take too long to explain, 
but the qualitative results are interesting. 
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Figure 4.8 shows how the approximate total distance per day varies as a 
function of rT for a test problem, after the number of vehicles, m, was op-
timized. The figure also includes a dotted line from a simulation that used 
the recommended values of m and rT, and a more sophisticated control al-
gorithm. This curve gives the actual distance that could be expected in an 
implementation. Reassuringly, the value of rT recommended by the optimi-
zation (the minimum of the solid line) yields a near-minimum actual dis-
tance. Note from the figure that this distance is considerably smaller than 
that achieved with the static strategy (rT = 0). Erera (2000) shows with a 
battery of 20 problems that the reduction in the required number of vehi-
cles is even greater. The portion of the vehicle fleet required by uncertainty 
(the Afleet penalty@ in Erera=s lingo) was reduced by 50% or more in 19 out 
of 20 cases and by more than 70% in half of the cases. The median reduc-
tion in the Adistance penalty@ due to uncertainty, on the other hand was 
only about 30%. 

Fig. 4.8 Distance traveled for a test problem. Source: Erera (2000). 
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4.7 Different Customers: Asymmetric Strategies 

This section explores the advantages of offering different service levels to 
customers with different consumption rates and/or different holding costs. 
Because these differences are likely to be most notable for collection prob-
lems, our discussion will be phrased in these terms – factories and manu-
facturing plants typically consume a wide selection of parts and raw mate-
rials even if their product line is homogeneous. Before explaining how 
asymmetric collection strategies can be designed, their desirability is intro-
duced with a very simple example with two customer types, adapted from 
Daganzo (1985a). 

4.7.1 An Illustration 

Consider a problem with stationary conditions (i.e.  and  independent of 
time) obeying formulation (4.24) for which it is desirable to fill the vehi-
cles. More specifically, we assume that: (i) the third (pipeline inventory) 
term of Eq.(4.24a) can be neglected because items are "cheap", and (ii) 
that only constraint (4.24b) plays a role because storage room at the origins 
is plentiful and the customer density is so large that the ideal number of 
vehicle stops is sure to exceed 1. We also assume that the stop cost cs can 
be neglected. 

Let us now examine how the optimal system cost depends on  and  . 
Because Eq. (4.24a) decreases with A for any H, its minimum is reached 
for as large a district area A as possible. Therefore, as expected, the vehicle 
capacity constraint (4.24b) must hold strictly: A = vmax/( H) . On making 
this substitution and minimizing the resulting EOQ expression with respect 
to H , a simple formula for the cost per item, z* , is obtained. If 4 is re-
placed by its expression in terms of  and  (i.e., 4 = ch /  ) , and the re-
sult is expressed in cost units per unit time and unit area, the formula be-
comes:

 ,+=z 1/4
21

* 2/1 (4.27a)

where 1 = 0 + 1/vmax and 2 = 4chcdk . Notice that Eq. (4.27a) increases 
at a decreasing rate with  ,  and ß2; this concavity encourages discrimina-
tion, as we shall now see.

Suppose that there are two customer types, n = 1 , 2 , with demand char-
acteristics ( n , n ) and with different ch , so that ß2 is different for the two 
customer types: ß2

(1) and ß2
(2) . (In this section we use n to index customer 

classes, instead of customers.) Note then that  = 1 + 2 and  = 1 + 2 . 
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If the two customer classes are treated completely separately, as if the 
other did not exist, the combined cost per unit time and unit area, instead 
of being given by (4.27a), would be: 
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This second strategy is best if: 
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otherwise the symmetric strategy is best. 
If the two customer types are similar, Eq. (4.28) does not hold. There-

fore, a symmetric strategy is best: items should be shipped together be-
cause with the higher demand density resulting from amalgamation vehicle 
tours can cover smaller zones and save operating costs. This is not always 
the case, however. 

Inequality (4.28) will hold if one set of suppliers is highly concentrated 
( 1  0) while producing many items that are expensive to store ( 1 2

(1)

large) , and the other set has opposite characteristics ( 2 is large but 2
(2)

0) . Separate service for the two sets is then reasonable because the distri-
bution strategies for both sets should be different. For the second set one 
would like to save operating costs at the expense of holding cost (one 
would use a large H in order to reduce the area served by each vehicle) and 
for the first set one would do the opposite. In both cases the local operating 
costs plus the holding cost (left side of (4.28)) would be close to zero. 
However, if both items types are combined together, neither of the factors 
on the right side of (4.28) is close to zero – service has to be moderately 
frequent because some of the items are expensive to store, and tours must 
cover moderate size areas because all destinations have to be visited. 
Clearly, the requirements of the two sets of customers interfere with each 
other, increasing cost dramatically. 

This phenomenon explains why, in real life, separate logistic systems 
are used to carry widely different items, even if from a transportation 
standpoint alone it would seem wise to combine them. It should not be 
surprising, thus, to find several transportation modes (taxis, limousines, 
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buses, etc.) at the disposal of passengers exiting an airport. For freight 
transportation, the differences in the requirements of various customers are 
less likely to merit discriminating service; but the possibility should be 
considered.

The rest of this section describes methods for design of discriminating 
collection/distribution systems. 

4.7.2 Discriminating Strategies 

For general problems, the example just described suggests that cost may be 
reduced if the set of all customers is divided into classes with different 
characteristics, served with separate collection systems. 

For a given set of classes, total cost can be easily estimated as shown in 
Sec. 4.6; that section described the cost and structure of near-optimal 
symmetric strategies, as would be used within each of our subsystems. The 
tricky part is defining the customer subsets that will minimize total cost. 
Daganzo (1985) presents a simple dynamic programming procedure to 
achieve this goal without detailed customer information – the method only 
uses the frequency (probability) distribution of customer characteristics – 
and shows in the process that the optimal solution would rarely exhibit 
more than 2 or 3 classes. When it is found that cost is minimized with only 
one class, discriminatory service is not cost-effective. 

Although we have ignored in this section the pipeline inventory cost, 
and have also assumed that the same transportation mode is used for all the 
subsystems, this is not a prerequisite for discriminatory service to be at-
tractive. It is impossible to discuss here all the possible cases that can arise 
in detail, but a general statement can be made: if customers are very differ-
ent, then we should check whether dividing them into a few classes with 
(highly) different characteristics – and serving them separately – can re-
duce cost; this is unlikely to result in much gain when customers are not 
very different, though. Problem 4.6 is a case in point; it is solved by exam-
ining systematically all possible allocations of customers to (two) classes. 
Related analyses are conducted in Klincewicz et. al. (1990) and Hall and 
Racer (1993). 

With the approach just described, each customer class n is designed 
separately and is characterized by design parameters An and Hn . By re-
stricting these design parameters somewhat, Hall (1985) has developed a 
strategy that allows customers from all classes to share the transportation 
fleet while being visited at different frequencies. He requires A to be the 
same for all customers and each Hn to be an integer multiple of the time 
between dispatches H; that is, Hn = mnH , for an integer mn . He assumes 
that vehicles are dispatched at times t = 0, H, 2H, etc..., visiting each time 
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(1/mn)th of the customers in every class n. This allows the effective stop 
density, n{ n/mn}, to be greater than for any class alone while ensuring 
that individual customers are only visited every mn dispatches; it decreases 
the local transportation cost. 

With the help of f0 , a variable denoting the fraction of customers served 
in each period, Hall's strategy can be defined without resorting to classes. 
Accordingly, the symbol "n" now reverts to its original meaning, indexing 
individual customers. We seek the optimal mn for individual customers, as 
well as the optimal H and f 0 . As done at the outset, let us assume that the 
conditions are such that vehicles will be dispatched full. 

Then, the line-haul motion cost per item is 1/vmax , and does not depend 
on the allocation scheme for customers. The local motion cost per unit 
time and unit area is: 
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(4.29a)

(This somewhat conservative estimate assumes that stops are randomly 
and uniformly distributed within subregions of R larger than a collection 
district; it may be on the high side if customers of a similar kind cluster to-
gether.) The holding cost per unit time in a subregion of unit area, P , is: 

.D'Hmc nn
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(4.29b)

The system can be designed with a simple decomposition method. Condi-
tional on f0 and H , the transportation cost (4.29a) is fixed; thus, cost is 
minimized by the mn's that minimize the holding cost (4.29b). These mn's,
to be consistent with f0 , must satisfy: 

.f=/m 0
n

n

1
P

(4.29c)

Once the mn have been found, the conditional total cost is obtained. Test-
ing various values of f0 and H , we can identify a near-optimal solution. 
Alternatively, if one replaces the constraint [mn = 1, 2, 3, ...] by [mn > 1], a 
simple approximation for the minimal holding cost for a given f0 and H 
can be obtained (see Problem 4.7). The optimal strategy is then defined by 
the minimum over f0 and H of the sum of this approximation and the local 
motion cost expression. 
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4.8 Other Extensions 

One of the reasons for the very extensive literature on algorithms to vehi-
cle routing problems is that in actual applications almost every problem 
has some peculiarity that renders it unique. We have already seen that 
there can be a variety of cases depending on: 

(i) the relative size of the number of tours and the maximum number 
of stops per tour (Section 4.2), 

(ii) the relative cost of rent, inventory, and operating costs. (Sections 
4.3 and 4.4), 

(iii) limitations to route length and storage space (Section 4.4), 
(iv) dissimilarity in the values of items and the demand rates at differ-

ent destinations. (Section 4.7), 
(v) amount of uncertainty as to the customer lot sizes. (Section 4.6). 

In addition (and this is not an exhaustive list) one might find situations in 
which time enters the problem because customers request service during 
certain "time windows", or there is a limit to the amount of time an item 
can spend in transit (perishable items). There also are situations where ve-
hicles do both distribution and collection (routing with backhauls), and 
situations where vehicle loading considerations make it advantageous to 
visit customers in an order which does not minimize the total distance 
traveled.

It is clearly impossible within the scope of a short book to study in detail 
even a partial list of possible cases (and combinations of cases). But it is 
possible to give a broad recipe to deal with routing peculiarities. A solution 
to problem 4.8, an elevator system design, can be obtained with such an 
approach.

4.8.1 Routing Peculiarities 

At the core of our proposed two-step method for solving general distribu-
tion problems there should be a simple and efficient routing algorithm, 
whose performance can be quantified by means of simple formulas using 
average density as an input, instead of detailed customer locations. It is 
then a simple matter to add holding and pipeline inventory costs to the mo-
tion cost to define a logistic cost function. If routing/scheduling strategies 
can be defined in terms of a few decisions variables that are constrained 
only locally in the time-space domain, then the minimum of the (con-
strained) logistic cost function will approximate the cost generated by 
items in different portions of the time-space domain. The CA approach can 
be used. 
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Some routing cost models that allow this to be accomplished already exist. 
They are now briefly reviewed. Simple transportation cost formulas have 
been proposed for time-window problems (Daganzo, 1987a,b). The results 
show how cost increases with the narrowness of the windows, and with the 
proportion of customers with tight requirements. The proposed routing 
strategy uses a different set of delivery districts for the customers in each 
time window, and staggers the zones in such a way so as to leave most ve-
hicles in favorable locations at the beginning of each new window period. 

Perishable items such as newspapers (Han, 1984, and Han and Daganzo, 
1986), lead to VRP structures which are similar to those arising from the 
vehicle route length limitations discussed in Sec. 4.4.1. The main differ-
ence is that service districts that are far away form the depot should be (i) 
more elongated than usual and (ii) covered in a one-way pass that begins at 
the end of the district that is close to the depot and terminates at the far 
end. Although this modification increases the line-haul distance traveled, it 
also allows distribution to begin sooner and the districts to include more 
stops.

Models with both pick-ups and deliveries have been constructed for 
public transportation systems (Daganzo, Hendrickson and Wilson, 1977, 
Hendrickson, 1978) serving one focal point and a surrounding area. The 
strategies examined in these early works, however, are not as general as 
possible; they only consider two extreme cases for a partition of the sur-
rounding area into service zones. More recently, Daganzo and Hall (1990) 
present an improved cost model for routing with backhauls, emphasizing 
cases where the total flow in one direction (e.g. outbound from the depot) 
is a few times larger than in the other direction. The basic idea is briefly 
summarized below for the case where the dominant flow is outbound; the 
reverse situation is similar. One simply constructs distribution tours as if 
there were no pickups, allocates each pickup to the nearest return leg of a 
distribution trip (or "spoke"), and finally modifies the vehicle tours in rec-
ognition of the newly assigned stops. Because the density of spokes in-
creases rapidly toward the depot, significant vehicle deviations are only 
required for pickups near the outer fringe of the region. Pickup miles on 
the fringe can be reduced by ending the outermost delivery tours at the far 
end of their districts and by other modifications that are geared to optimize 
the spatial distribution of spokes. In fact, it is shown in Daganzo and Hall 
(1990) that under some conditions it is almost as if the secondary stops 
added only a stop cost and no distance cost. Hall (1993) has applied the 
concept of spokes to the VRP problem for deliveries only, in which cus-
tomers demand large and small items. 

Another complication that deserves attention involves the interaction of 
vehicle loading and routing. When items have awkward shapes and are 
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large, so that only a few fit in a vehicle, vmax may not be fixed; it may de-
pend on the specific customers that are visited or even the order in which 
they are visited. The latter phenomenon may arise if weight distribution re-
strictions, for example, dictate that some items (and thus some stops) must 
be handled before others. This topic is very complex and hard to handle 
generally; see Hall (1989) and Ball et al. (1995a) for example. 

4.8.2 Interactions with Production 

Another area where further results may be desirable involves the interac-
tion of physical distribution with production schedules. This interaction 
sometimes offers an opportunity for further cost reductions. 

This subject was broached in Sec. 4.3.3, where it was suggested that 
production of (destination-specific) items should be rotated among geo-
graphical customer regions every headway H. Dispatching the vehicles to a 
region immediately after its production run was completed greatly reduced 
the holding costs at the origin. It was assumed that production would be 
coordinated with transportation in this manner without much of a penalty. 
More likely, though, there may be a set-up cost associated with each 
switch in production item types. In this case production costs may be re-
duced by switching less frequently and holding higher inventories at the 
origin. An integrated solution can then be obtained by including in the lo-
gistic cost function the production set-up costs, e.g., as explained below. 

If no attempt is made to coordinate the production schedule with the 
physical distribution schedule, then the inventory at the origin of items of a 
certain type can be decomposed as shown in Figure 4.9 into a (shaded) 
component which depends on the time between setups for that item type,7

Hs , and a (dotted) component which depends on the transportation head-
way, H; see Blumenfeld et al. (1985a): 

H.c+Hc
originatitemper

costinventoryaverage i
s

i

22

7 We are assuming that the number of item types is large and, therefore, the steps of the production 
curve are nearly vertical. Similar conclusions can be reached for few item types.
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Fig. 4.9 Inventory accumulation when no attempt is made to coordinate pro-
duction and distribution 

The maximum accumulation also decomposes in a similar manner: 

HD.+DHonaccumulatiMaximum s

Because production costs depend on Hs and not on H , the sum of the pro-
duction and logistics costs is made up of two components: (i) a production 
component with only production decision variables (including Hs ), and (ii) 
a logistic component with only logistics variables (including A and H). 
Logistics and production decisions, thus, can be made independently of 
each other. 

By selecting H to be an integer submultiple of Hs , or vice versa, it is 
possible to reduce the inventory time at the origin by an amount equal to 
the smallest of H and Hs (Figure 4.10 depicts the case with Hs = 3H ), and 
the maximum accumulation becomes the difference between the maximum 
and the minimum of HsD  and HD  . 
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If this kind of coordination is feasible, the sum of the production and logis-
tics costs no longer decomposes, and a coordinated production and distri-
bution scheme should be considered. Blumenfeld et. al. (1985a) and (1986) 
have examined the case where each district is constrained to contain only 
one destination and all shipments are direct (ns = 1). They illustrated situa-
tions where coordination of production and distribution is most conducive 
to cost savings, and provided a bound on the maximum possible benefit. 
Further research may be worthwhile to relax the ns = 1 assumption and to 
allow more destinations than item types. 

Fig. 4.10 Inventory accumulation with coordinated schedules 

Throughout the chapter it was assumed that the total production rate, and 
not just the schedule by item type, could be adapted to the changing de-
mand without penalty. In practice, though, this is rarely so, even if the 
items produced are generic. (It is more costly to change the quantity of 
items produced than the kind of items produced because to adjust the pro-
duction rate one needs to hire extra labor, pay overtime or fire labor as 
needed – and the penalty for these actions is large; Newell, 1990, has ex-
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amined the production rate adjustment process.) We conclude this chapter 
by showing that this seemingly strong assumption can often be relaxed. 

Figure 4.11 shows how a production curve may be adapted to a gradu-
ally decreasing demand; the objective is tracking the smooth envelope to 
the crests of the shipment curve (which varies like the demand curve) as 
closely as possible, without many production rate changes. We had seen in 
Sec. 2.5 that for a similar model, portrayed in Fig. 2.10, lot size decisions 
were independent of production decisions; fortunately, this is also true 
now. In Fig. 4.11, the inventory at the origin decomposes in two compo-
nents: (i) a (shaded) component, which is due to the discreteness in the 
production rate changes and is independent of the shipping schedule,8 and 
(ii) a dotted component which is the same as if the production schedule 
was adjusted continuously as assumed in this chapter. Thus, costs can be 
divided into two components affected respectively only by production, or 
only by logistics decision variables. 

Fig. 4.11 Production for a gradually decreasing demand 

8 It is the same as if the production curve was driven by the demand curve itself.
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Suggested Exercises 

4.1 The maximum number of stops made by a vehicle delivering lots of 
size v ( v < vmax ) to identical customers is [vmax/v]- if a delivery lot 
cannot be split among vehicles. If vmax/v is an integer, an alternative 
way of expressing Eq. (4.5a) is: 

N.kE+v/vrEdistanceTotal 2 2/1
max

If vmax/v is not an integer this expression is a lower bound. The 
bound is very tight if delivery lots can be split among vehicles in or-
der to fill them. Hall (1993) explores in detail the shipment splitting 
issue.

(i) Show that this expression also applies if v > vmax and all the 
trucks are dispatched full (splitting delivery lots as needed), 
provided that a condition (equivalent to N >> C2) holds. Write 
the condition. Show as well that the expression is a (tight) 
lower bound if delivery lots smaller than vmax are not split. 

(ii) Derive as well the generalization of Eq. (4.6b), when the condi-
tion does not hold. Show that the distance expression is close to 
the above. 

4.2 Section 4.4.1 describes how to design a one-to-many distribution 
system when the maximum number of stops per tour cannot exceed 
Cmax(x) , a quantity that depends on location. Develop an expression 
for Cmax(x) when, aside from vehicle capacity, the only restriction to 
number of stops is the maximum time allowed for a vehicle tour, 
tmax. (Assume that the vehicle's average moving speed and time per 
stop are known.) 

4.3 If Eq. (4.21) is a good representation of the optimal cost for all (t, x),
explain the logic behind the following expression for the average 
cost over R , for the time horizon (we assume that cs  0 ):

4/112/1
max

'2

2

EDEckc+

/vcr=itempercostaverage

dh

d

If D' and  do not change much across items – i.e. their standard de-
viation to mean ratios (denoted here by  and ' ) are small compared 
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with one – show that: 

average cost per item 2E(r)cd/vmax +

[ 2(kchcd)2 tmax/{D(tmax) [N/ R  ]3} ] [ 1 + 2 + '2 ] 

This expression reduces to the above if  = ' = 0 , and like the above 
it increases with the 's . 

[Hint: Use a well-known approximation to the expectation of a non-
linear function of a random variable, based on a two-term Taylor se-
ries expansion of the function.] 

4.4 Assume that the demand for items by every customer in R follows a 
compound Poisson process with an inex of dispersion ; recall that 
the average number of events occurring per unit time is D'c = D'/  . 
Then explain why the proportion of all the customers in a subregion 
of R with no demand in time H is exp[-D'cH] . (Note that the con-
stant H0 defined in the text is the inverse of D'c ; as the average time 
between successive events, it is: H0 = /D' = /  .) 

4.5 Assume that service is to be provided to 400 customers uniformly 
scattered in a (20 mi. x 20 mi.) square region, with the depot in a 
corner. The following numerical constants describe the situation: 
/vmax = 0.1 (truckloads/day-mile2); 1/r = 2 ($/ vehicle-mile) ; 2 = 

21 ($/customer visit) ; kcd = 1 ($/veh-mile) ; cs = 20 ( $/vehicle 
stop); ch vmax = 30 ( $ / truckload-day ) ;  = 1 (truckload of items). 
Solve the minimization problem defined by Eqs. (4.25 and 4.26), es-
timate the upper and lower bounds to total cost, and define a distri-
bution strategy for the primary and secondary tours. 

4.6 Items are to be carried from a depot to many scattered destinations. 
Two modes of transportation are available: mode A is fast sA = 
and expensive cd

A >> cd
B . Mode B is slower: sB < . These features 

aside, the rest of the features are the same for both modes. They 
share the cost per stop, vehicle capacity and loading/handling cost. 

Storage space at the origin and the destinations is plentiful, so rent 
costs are neglected, but inventory cost changes drastically across 
destinations. This is described by a cumulative density function 
which gives the density, (ci) , for all the destinations with carrying 
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cost below ci. (For any ci these are assumed to be uniformly and 
randomly scattered about the service region, R.) If the demand is 
stationary and the same at all destinations, describe qualitatively a 
procedure for allocating the destinations to modes and the optimal 
service characteristics ( A and H ) of each mode. Assume that all the 
customers allocated to the mode are served in every headway, and 
that the pipeline inventory cost cannot be neglected. 

[Hint: Prove that if destination nA goes on mode A and nB goes on 
node B, then the inventory cost of nA must be greater than the inven-
tory cost of nB . Then find the minimum cost for both transportation 
modes as a function of a critical c̃ i ; iff ci < c̃ i , then mode B is 
used.]

4.7 Derive a closed form solution for the minimum of Eq. (4.29b) sub-
ject to (4.29c). Assume without loss of generality that the n are ar-
ranged in order of increasing Gn [ where Gn = (D'n) (ch

(n)) ] , and that 
the units of measurement are such that  = 1000 , and cs = 1 . 

Then, if the fraction of customers with Gn below x , P(x) , is: 

P(x) = 0  if    x  1 
 = a(x-1) if  1 < x < [ 1 + a-1 ] 
 = 1 if    x  [ 1 + a-1 ] 

solve for the minimum f0 and H . Do this for various values of "a" 
and describe the result. 

4.8 An 80 story office building is served by 20 elevators. Whether full 
or empty, elevators travel at a speed of one floor per 0.5 seconds. 
Each time they stop at a floor, their travel time is increased by t
seconds:

 ,n+=t 10

where n is the number of passengers exiting or entering the elevator 
at that particular floor. 

In the morning rush hour all the traffic originates at the lobby, at a 
constant rate of two passengers per minute per floor. 
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1. Arrange the elevators in banks so that the average passenger 
waiting plus riding time is minimized. (A bank is a set of "m" 
elevators serving the lobby and "b" contiguous floors.) Ignore 
pairing and assume that the arrival rate is maintained for a long 
time. Assume as well that an elevator can hold as many people as 
needed.

2. For part 1, it was reasonable to expect every elevator to stop at 
every floor. During the off-peak, however, (with demand rate 
<< 2 pax./min.) elevators may skip floors. Discuss how the opti-
mal banking strategy is affected by  . As an aid for thinking, you 
may use the following approximate expression for the total ser-
vice time, T(x) , for a passenger going to floor x (a floor that is 
included in a bank with b floors and is served by m elevators): 

where S is the elevator speed in floors/sec., and R is the elevator 
round trip time for that bank, 

with k = 5(1 + b) + [x + (b-1)/2]/S .

This expression assumes that t = 10 , regardless of n. It can be 
included in a spreadsheet for sensitivity analysis. Try  = 0.1 , 
0.3 , and 1.0 pax/min. Note the influence that elevator speed has 
on the homogeneity of your bank configuration. 

3. As a prelude to the material in Chapter 5, discuss how the use of 
skylobbies could improve the level of service and reduce the 
amount of floor space consumed by elevator shafts. 

[Hint for part 1: The number of elevators per floor should be 
about the same for each bank. Note that this is an engineering de-
sign problem; if you cannot identify the optimum analytically, 
you must still propose the best design possible. Use of a com-
puter spreadsheet is recommended.]
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Glossary of Symbols 

0: Handling and fixed pipeline inventory cost ($/item), 
1: Fixed cost per vehicle dispatch ($/dispatch), 
2: Transportation cost added by a customer detour ($), 
3: Pipeline inventory cost added by a customer detour ($/item), 
4: Stationary holding cost for one item during the time between de-

mands ($/item5),
A, A(x),A(t,x):  Area of A,
a: Number of aisles with a request, 
An: Area of delivery district used for type-n customers, 
A:  Subregion of R ; delivery district, 
ß: Characteristic constant used in Sec 4.4.2, 
ß1 , ß2 , ß2

(n):  Constants used in Sec 4.7.1, 
cd:  Cost per vehicle-"mile", 
cf:  Terminal handling cost constant, 
ch:  Holding cost per item-day, 
ch

(n):  Holding cost per item-day for type-n items, 
ci:  Inventory cost per item-day, 
cr:  Rent cost per item-day, 
cs:  Fixed transportation cost of a vehicle stop, 
c's:  Added transportation cost of carrying an extra item, 
cr:  Rent cost per item-day, 
ct:  Vehicle operating cost, 
C, Cmax:  Maximum number of stops made by a vehicle, 
Cmax(x):  Maximum number of stops in the neighborhood of x,
Cp:  Maximum number of stops in the pth subregion, 
, (x), (t,x):  Spatial customer density (customers/area), 
n:  Spatial density of type-n customers (customers/area), 

d: Tour length, 
D̄ ':  Time averaged demand rate for a customer, 
D', D'(t):  Demand rate per customer (at time t), 
Dmp:  Demand in subregion "p" during time interval "m" , 
Dn(t), D(t): Cumulative demand of customer "n" by time "t", 
: A mathematical ratio in the full vehicle condition proof, 

E( ):  Expectation of a random variable, 
( ):  Standard normal cumulative distribution function, 

f(x):  Probability density (for customer location) at x,
f0:  Fraction of items collected as overflow, 
, (t,x):  [Variance/Mean] of items demanded in a time interval (index of 

dispersion),
g0:  Probability of overflow, 
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H, H(t), H(t,x):  Headway, 
H0:   Time constant (in Sec. 4.6.1 only), 
H :   th headway, 
Hn:  Headway for the nth customer class, 
Hs:   Time between production setups, 
k:   Dimensionless factor for the VRP local distance; (more vehicle 

tours than stops per tour), 
k':   Dimensionless factor for the VRP local distance; (fewer vehicle 

tours than stops per tour), 
 , (t,x):  Demand density rate (items/time-area), 
n:   Demand density rate for type-n customers (items/time-area), 
 = (1,...,L):  Indexes for dispatching times and headways, 

Lp:   Number of dispatches for the pth subregion, 
m = (1, ...,M):  Indexes for time intervals, 
n = (1,...,N):  Indexes for customers, destinations, and customer classes, 
ns, ns(t,x):  Number of stops per tour , at (t,x),
ns*:   Optimal number of stops per tour, 
ns ,i:   Number of stops per tour, for tours near xi,
ns  (and ns (x)):  Number of stops per tour (near x) for the th dispatch, 
Np:   Number of destinations in the pth subregion, 
p = (1,...,P):  Indexes for the subregions of R,
Pp :   pth subregion in a partition of R,
r:   Average distance from the points in a delivery region to the depot, 
r(x) , (or ri):  Distance from the depot to point x , (or xi),
rp:   Average distance from the pth subregion to the depot, 
R :   Service region, 

R :  Surface area of R,
s :   Vehicle speed, 
(x):   Time to cover a unit area around x. (Sec. 4.5.1 only), 
m:   The mth time interval in a partition of the study period, 

t :   Time, 
t :   Time of the th dispatch, 
tm:   Average time spent in a vehicle (per item), 
tmax:   End of the study period, 
ts:   Time duration of a vehicle stop, 
T(x):   Express time to point x. (Sec. 4.5.1 only), 
v (and v ):  Delivery lot size to a customer (for the th shipment), 
vmax:  Vehicle capacity (items), 
vo , vo(x):  Maximum allowable accumulation at a destination (items), 
x = (x1,x2):  Spatial coordinates of a point, 
xo:  Inner point of A,
z: Cost per item, 
z*:  Optimal cost per item, 
zh and z :  Upper and lower bounds to z*. (Sec. 4.4.2), 
zmp:  Cost per item in subregion "p" for time interval "m", 
zm:  Motion cost per item, 
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zp:  Pipeline inventory cost per item, 
zs:  Stationary inventory cost per item, 
[ ]+:  Closest integer from above to the argument in brackets, 
[ ]-:  Integer part of the argument in brackets.



5 One-To-Many Distribution with 
Transshipments

Readings for Chapter 5 

Designing a one-to-many logistics system with transshipments is a com-
plex task, as one must decide how many terminals will be operated, their 
location, the routes and schedules of the various vehicle types operated, 
and the allocation of customers to specific terminals and routes. Daganzo 
and Newell (1986) shows how the design problem can be reduced to a 
simpler terminal sizing and location problem, as explained in Sec. 5.2. 
This reference is also at the core of the design discussion in Secs. 5.3 and 
5.5. The discretization approach presented in Sec. 5.6 is taken from Ouy-
ang and Daganzo (2004). 

5.1 Initial Remarks 

This chapter introduces the possibility of transshipments for one-to-many 
distribution (or collection problems). A transshipment is the act of taking 
an item out of a vehicle and loading it onto another. Typically, transship-
ments take place at fixed facilities, which we call terminals. For modeling 
purposes, these can be viewed as a set of berthing gates connected by an 
internal sorting, storage and transfer system. The berthing gates accommo-
date the vehicles while they are being loaded and unloaded; the sorting-
storage-transfer system moves the items from one vehicle to another. Al-
though many different technologies exist depending on the freight that is 
being moved, conceptually this makes little difference. (The internal trans-
fer system, for example, can use: carts on rails, forklift trucks, conveyor 
belts, idler rollers or gravity chutes.) The emphasis at efficient terminals is 
on moving the freight quickly with little allowances made for long term 
storage. But if there is a need to accommodate seasonal fluctuations in de-
mand, or to hold inventories closer to the points of demand when response 
time is critical and demand cannot be anticipated, terminals can also pro-
vide a warehousing function.

The chapter is organized as follows. Section 5.2 introduces qualitative 
properties of near-optimal systems, which allow the problem to be treated 
analytically; the remainder of the chapter uses these results. Section 5.3 
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shows in detail how systems where items are transhipped no more than 
once can be designed, using an uncomplicated scenario as an illustration. 
Section 5.4 then describes modifications to the procedure able to capture 
the following complicating features: schedule synchronization, variable 
and uncertain demand, asymmetric strategies, as well as constraints on lo-
cations, routes and schedules. Because the overall approach remains un-
changed, Section 5.4 is rather concise and focuses on the specific modifi-
cations; problems at the end of the chapter can be used for further study. 
Finally, with the one-transshipment results as a building block, Section 5.5 
solves the multiple transshipment problem. Section 5.6, then shows how to 
computerize the design guidelines used in Sections 5.3, 5.4 and 5.5. 

5.2 Distribution with Transshipments 

After reviewing the reasons for transshipments in one-to-many logistics 
systems, this section will show that finding the ideal spatial arrangement of 
terminals is the critical step in designing a system. The rest is easy be-
cause, for a given arrangement, there is a well defined set of item paths, 
vehicle routes, and schedules that (nearly) minimize total cost. 

5.2.1 The Role of Terminals in One-to-Many Distribution 

Items are often transshipped when there is an incentive to change transpor-
tation modes or vehicle types. While geographical barriers such as coast-
lines invariably require a modal change (e.g. at seaports), purely economi-
cal considerations may also encourage changes in vehicle type. 

We saw in Chapter 4 that vehicles should be filled to capacity for the 
distribution of "cheap" freight; i.e., where pipeline inventory cost is negli-
gible compared to the other logistic cost components. Because the optimal 
cost was a decreasing cost of vmax , we argued that (if there is a choice) one 
should use the largest vehicles that the local roads and the destination load-
ing/unloading facilities can accommodate. If vehicle size is limited in the 
immediate vicinity of the customers, transshipments at terminals in the 
general neighborhood of the customers may be attractive, as this could al-
low larger vehicles to feed the terminals. 

Consider Fig. 5.1a. This figure depicts one origin (the depot) and four 
customers that receive direct service once a day. Each daily trip is repre-
sented by one arrow joining the beginning and end of the trip. Let us as-
sume that the pattern of the figure is optimal for the situation at hand, and 
that the trips are made by delivery vans, due to the small access roads lead-
ing to the customers. 
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Fig. 5.1 Effect of a transshipment on vehicle-miles traveled 

If a terminal is introduced, as shown in Fig. 5.1b, the transportation cost 
can be reduced without changing the service frequency to the customers 
(i.e. the waiting cost at the destination). If the main roads can accommo-
date trucks with twice the capacity of vans, then only two trucks need to be 
dispatched between the depot and the terminal every day; as a result the 
transportation cost can be cut by a factor of two, or close to it. Destinations 
can still be served daily by vans from the terminal, as shown in the figure. 
This arrangement clearly reduces the total vehicle-miles traveled per day 
(the sum of the lengths of the arrows in the figure) and does not change the 
holding costs at the destinations. On the other hand, the arrangement may 
increase holding cost at the origin – items now leave the origin in larger 
batches – and introduces new handling and holding costs at the terminal. 
Whether the distribution scheme of Fig 5.1b is advantageous will depend 
on the magnitude of the transportation cost savings, which grow with the 
distance between the terminal and the depot, and with the size difference 
between vehicles delivering to the terminal and the customers. 
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A benefit from transshipments may be derived even if, due to route length 
limitations, vehicles cannot travel full. (Recall from Sec. 4.4 that pipeline 
inventory considerations, in addition to operating restrictions such as the 
duration of a work shift, may restrict delivery route length; very valuable 
items should not be delivered on many-stop routes.) To illustrate this bene-
fit, imagine that the system in Fig. 5.1a is optimal, and that its vehicles 
leave the depot only 1/2 full. In other words, we are assuming that increas-
ing (or decreasing) the delivery lot size is not desirable because holding 
costs at the destination would then be too large (or too small). Further-
more, although one could presumable reduce costs by using delivery routes 
with two stops without changing the delivery frequency, we also assume 
that the loading/unloading operation is so slow that there is no time in a 
work shift to make more than one stop and return to the depot. Thus, with-
out transshipments, the arrangement can be assumed to be optimal. 

Clearly, the introduction of transshipments as in Fig. 5.1b allows mat-
ters to be improved, since the terminal allows the routes to be broken into 
shorter segments. Although deliveries still take place in half filled vehi-
cles, the terminal is supplied by full vehicles. Further improvement is pos-
sible. Because the deliveries now start from a place closer to the destina-
tions, there may be time to make more than one stop and reduce even more 
the daily distance traveled for local delivery, as illustrated in Fig. 5.1c. No 
change in delivery lot sizes results. 

In summary, terminals allow us to decouple the line-haul transportation 
and local delivery operations, enabling us to use larger vehicles for line-
haul than are used for delivery; they also increase the number of delivery 
stops that can be made without violating route length limitations. We will 
see in Chapter 6 that terminals can also play a "break-bulk" role for many-
to-many problems. 

5.2.2 Design Objectives and Possible Simplifications 

The structure of a distribution system is defined by the number and loca-
tion of the transshipment points, the routes and schedules of the transporta-
tion vehicles, and by the paths and schedules followed by the items. Usu-
ally, the number and location of the transshipment points cannot be 
changed as readily as routes and schedules. The latter are tactical level 
variables, and the former strategic variables. Since customers are usually 
not affected by routing changes, the vehicle routes and item paths can of-
ten be viewed as operational level variables, which can be changed even 
more readily than the delivery schedules. 

For long term (strategic) analyses, decisions at all levels (operational, 
tactical and strategic) need to be made. For this type of problem we will 



Distribution with Transshipments 165  

develop optimal system configurations assuming that the terminals can be 
opened, closed and relocated without a penalty. This simplification is not 
as restrictive as it may seem because, if conditions change slowly with 
time, locations do not need to be changed often. If (t,x) changes slowly 
with time, near-optimal terminal locations will be shown also to change 
slowly with time (this dependence is even more sluggish than the depend-
ence of headways and number of stops on t , studied in Chap. 4). Because 
the overall cost is not overly sensitive to the specific locations (as seen in 
Chap. 3), one can keep a given set of terminals for a long time before some 
need to be opened, closed or relocated. In any case, relocation costs are 
likely to be greatly reduced by current trends in the logistics industry, such 
as the advent of "third-party logistics" firms that furnish full service termi-
nal/warehousing facilities; see Martin (1989) for a description of this type 
of operation. 

Unless the changes in (t,x) arise from policy decisions (e.g. expanding 
the service region over time), the timing of changes to  may be hard to 
predict. Without reliable information on them it might be reasonable to de-
sign the system as if the changes occurred gradually, using a smooth fore-
casted (t,x) demand density, or else adapting to the current circumstances 
as time passes. In either case one would rarely expect the optimal distribu-
tion of terminals to change rapidly with time, and it should be possible to 
design a strategy for opening, closing and relocating terminals that main-
tains a near-optimal distribution of terminals without large relocating 
costs. (Campbell, 1990a, has examined a few dynamic strategies; some 
will be described later in the Chapter.) 

For the short term one may be interested in adjustments to the tactical 
and operational decision variables. We may want to determine the best set 
of vehicle routes and frequencies for a given set of terminals; including, of 
course, the possibility of not using some of the terminals. These (tactical) 
problems will also be discussed in this chapter, although strategic analyses 
will be its main focus. 

Obviously, the design problem is very complicated if considered with 
all its details. Our immediate goal, thus, will be to reduce it to a form in-
volving little data and few decision variables, yet capturing the essence of 
the logistical costs. The remainder of this section is devoted to this en-
deavor; it describes some properties of near-optimal distribution systems 
with terminals that allow the formulation to be greatly simplified. The dis-
cussion is based on Daganzo and Newell (1986). 
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Figure 5.2 depicts a physical distribution network to carry items from one 
depot to multiple customers. The network includes terminals (dots on the 
figure), and multi-stop vehicle routes (looping arrows) that may stop at 
terminals and customers (x's) . 

Fig. 5.2 Structure of physical distribution systems. (Source: Daganzo and 
Newell, 1986.) 

Because we are only looking at distribution, we shall assume that a vehicle 
only loads items at the beginning of its route and only distributes them in 
succeeding stops. This is a reasonable assumption because the within-
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vehicle sorting complexity and stowage/restowage costs would increase 
substantially otherwise during a tour. Even collection/distribution systems, 
for which the savings of interspersing pick-ups and deliveries are obvious, 
tend to segregate them on individual tours. 

An item that needs to be taken to destination F in Fig. 5.2 may use vehi-
cle routes (OAO, ABCDA, and CFGHC), or (OADO, DACED, and 
CFGHC) to get there. In the first case, it would use path OABCF and in 
the second case OADACF. If redundant network structures, where some 
destinations can be reached by more than one path (such as those of Fig. 
5.2), can be shown not to be necessary, we would like to rule them out be-
fore starting any analysis. This is done next. 

Near-optimality of non-redundant networks: Here we show that, in 
many situations, networks providing redundant paths are not needed be-
cause total cost is concave on flow. 

For the proof we focus on an operational problem, where the terminal 
locations, vehicle routes and schedules are fixed but one can choose the 
item paths and vehicle sizes. Then, the daily cost of transportation will be 
the sum of the transportation costs on each route. Each one of these route 
costs should only depend on the size of the vehicle used on the route, as 
per the discussion of Chap. 2. Furthermore, the relationship should be con-
cave and increasing because of the economies of scale in vehicle size. 
Clearly then, on each route we should choose the smallest vehicles able to 
carry the load. Because the size of the vehicle must be proportional to the 
flow of items on the first link of its route, and these link flows are linear 
functions of the item path flows, transportation cost must be a concave 
function of the path flows. Assuming that the path of each item is chosen 
at the distribution center 0, independently of the time at which it becomes 
available for shipment and of the characteristics of the item, we see that 
the average time that items are waiting outside vehicles on a specific path 
is not affected by the path selection strategy at 0; the average time is fixed. 
Since travel times are also fixed, total inventory costs must be linear in the 
path flows. Therefore, the total distribution cost (if rent costs are ignored) 
must be concave in the path flows. (We recognize that rent costs are not 
concave. These costs, however, are typically small compared with trans-
portation costs and should, thus, be unable to reverse the effects of concav-
ity.)

Before discussing the implications of concavity, it is worth clarifying 
the two exceptions that were made in the above argument. If the selection 
of a path for an item is allowed to depend on the time it becomes available 
for shipment (e.g., passengers using public transportation systems will of-
ten choose the first of several lines to depart, if there is a choice) the sta-
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tionary inventory cost depends on flow; examples can be built where total 
inventory cost is convex in the path flows. Even in the (rare) case where 
dynamic path selection is an option, it is unlikely that one would provide 
multiple paths to exploit such dynamics. 

The second exception refers to items of different characteristics. As 
shown in Chapter 4, sometimes it is advantageous to send items of widely
varying prices per unit weight on different paths (e.g., expensive items by 
air freight and cheap goods by land). In such cases, the pipeline inventory 
cost is not linear in the path flow; it depends on which items are sent on 
specific paths. The cost concavity argument does not hold either. 

If all customers are treated alike – asymmetric strategies where this is 
not the case will be discussed later in the chapter – and rent costs are not 
dominant, then total costs are concave in the flows; in other words, there 
are scale economies. In this case, as we showed in Chapter 3, only one 
path should be used to reach each destination. 

The arguments of that chapter also apply if the destination is an inter-
mediate terminal because intermediate path flows are linear functions of 
path flows and concavity is preserved. Consequently, path redundancy to 
either intermediate or final destinations is not needed. If follows that each
terminal, or final destination point, needs to be served by only one vehicle 
route. Otherwise, the stop could be bypassed by all vehicle routes carrying 
no flow to it for a reduction in transportation cost. 

This implies that each destination point should be on only one route 
from only one terminal. That is, if we define the level-n influence area of a 
terminal as the set of points that are served from it with n or less trans-
shipments at succeeding terminals, level 0 influence areas must form a par-
tition of the service area. Since each terminal can only be on one vehicle 
route starting at another terminal, the influence areas at every level must 
also form a partition. Fig. 5.3 displays a possible structure where influence 
areas are simply connected sets (with no holes). We will reasonably as-
sume from now on that influence areas are simply connected. 

Near-optimal operations: Given the dispatching frequency from every 
terminal, we describe here which stops should be served from which ter-
minals, and the structure of the vehicle routes based at each terminal. 

To build such routes in a near-optimal way for a given set of stops their 
length should be minimized. Otherwise, a reduction in length could reduce 
total cost through decreases in the pipeline inventory cost, and the trans-
portation cost. Thus, it seems logical to construct the routes with a VRP 
technique, as described in Sec. 4.2.
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Fig. 5.3 Warehouses and influence areas. (Source: Daganzo and Newell, 1986)

We also need to decide which stops are to be served from which terminal. 
It will be assumed that vehicle routes do not stop at both terminal and final 
destinations. This is reasonable (and common practice) because otherwise 
sorting and scheduling work would increase substantially in size and com-
plexity. For systems with more than one level of terminals it will be as-
sumed that vehicle routes only stop at one level of terminal. This is also 
reasonable because substantially different flows pass through terminals at 
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different levels, and it just doesn't seem economical to serve them equally 
frequently with the same tour – this was discussed in Sec. 4.7. Thus, the 
routes from any level-j terminal1 will be assumed to serve all the level-(j-1) 
terminals in the level-j influence area, or the customers if j = 0 . 

As a result, a set of influence areas and terminals (at all levels) defines 
the stops served from every terminal. Since the VRP solution defines the 
routes, the overall strategy is defined by a set of influence areas and a set 
of dispatching frequencies. 

Because level-(n-1) influence areas are usually contained in much big-
ger level-n influence areas (otherwise terminals would not be cost-
effective), the flow through a terminal usually is considerably smaller than 
the flow through the terminal feeding it. This, among other reasons such as 
restrictions to heavy vehicle travel on local streets, makes it economical to 
distribute items in loads smaller than those used to feed the terminal. Thus, 
each item-mile requires more vehicle-miles during distribution from the 
terminal than while being fed to the terminal. Consequently, in order to 
minimize vehicle-miles of travel, terminals should be centrally located 
within their influence areas. This is true for influence areas of all shapes. 

The same location principle was applied to the one-dimensional termi-
nal location problem described in Secs. 3.4 and 3.5. Although the optimal 
terminal locations obtained in Sec. 3.5 were not exactly in the center of 
each interval, the displacements were slight. Not surprisingly, the CA ap-
proximation with centered terminals was found to be quite accurate. 
Campbell's (1990) two-dimensional analysis confirms that this simplifica-
tion leads to negligible errors; see also problem 5.1. 

Unlike VRP zones, influence areas should not be elongated toward the 
depot; their shape should be selected to be as close to a circle centered 
around its terminal as possible, because this minimizes vehicle-miles. Of 
course, perfect circles cannot be used because they would not fill the 
space, but non-elongated shapes – "round" we call them – that approximate 
circles (e.g. squares, hexagons, and triangles) should be appropriate. The 
specific round shape used does not matter much (Newell, 1973). 

It is thus possible to describe a near optimal system structure by the 
sizes of the various level influence areas, Ij (x) , as a function of position – 
together with the dispatching headways used at each level. As stated ear-
lier, this reduces the very complex design problem to the determination of 
just a few decision variables. Building on this result, the following sections 
show how to estimate cost and develop a system design for various scenar-
ios.

1 We say that a terminal is of level-j if its items are transshipped a maximum of j times after passing 
through the terminal. The terminal serves a level-j influence area.
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5.3 The One Transshipment Problem 

We will focus first on the problem with only one transshipment (finding 
I0 (x) ) . This most common case is also useful as a building block toward 
multiple transshipment solutions. The one transshipment problem is simi-
lar to the classical facility sizing and location problem (Beckmann, 1968; 
Lösch, 1954 and Weber, 1929); it is slightly more complicated, however, 
because in addition to facility sizes, service schedules need to be deter-
mined. A recent review of the facilities location literature with an empha-
sis, as in this monograph, on models with few details is given in Erlenkot-
ter (1988) – interestingly, a logistic cost function of the form [ xa + ßx-b] , 
as obtained in Daganzo and Newell (1986), is also proposed in this refer-
ence. Detailed models are reviewed in Love, et.al. (1988) and Brandeau 
and Chiu (1989). 

In the spirit of the CA approach we will consider an imaginary subre-
gion of R that is located r distance units away from the depot and exhibits 
a constant, stationary demand rate density (  items per unit time and unit 
area) and a constant spatial customer density (  customers per unit area). 
We will find the optimal dispatching frequency and the size of the influ-
ence area I* in the imaginary subregion, assuming that vehicle routes are 
constructed as described in Chap. 4 – the subscript "0" is not used to index 
"I" because only level-0 influence areas are being considered in this sec-
tion.

5.3.1 Terminal Costs 

If no effort is made to coordinate the inbound and outbound schedules at a 
terminal, but the inbound and outbound headways (Hi ; Ho) are constant, 
the accumulation of items at the terminal for a specific destination is given 
by the vertical separation between step curves such as those of Fig. 4.9. 
The average inventory cost per item is then (ci/2)(Hi + Ho) . 

The maximum accumulation of items of any type cannot exceed the 
maximum vertical separation between the two curves. Since the item flow 
through the terminal is D' = I , the maximum vertical separation is I(Hi + 
Ho). Thus, a conservative estimate for the holding costs per item at the 
terminal (the terminal serves an area of size I), is: 
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where Ht represents a (fixed) transfer time that an item must spend in the 
terminal even if Hi and Ho were zero, and cr

t is the terminal rent cost coef-
ficient (in monetary units per item-time). 

This expression is important because it indicates that the waiting costs at 
the terminal are a sum of three separable components: a first term which 
only depends on Hi and is identical to the term that would have existed if 
the terminals had been the final destinations; a second term which only de-
pends on Ho and is identical to the term that would exist if the terminal had 
been a depot producing items at a constant rate; and a third term which is a 
constant penalty.

For more realism we may also want to include a minimum rent to be 
paid per unit time, even if the maximum accumulation is zero, cr

o . This 
will discourage the operation of very small terminals. Prorated to the items 
served in one time unit, the minimum rent is cr

o/( I) ; thus, the third term 
of (5.1) becomes: 

.I/c+Hc+c r
tt

ri
0 (5.2a)

This expression only accounts for the holding costs specific to the termi-
nal; i.e. costs added by the transshipments, and not included in the sum of 
costs of distribution to the terminals (studied in Sec. 5.3.2, below) and the 
cost of distribution from the terminals (studied in Sec. 5.3.3). 

In addition, items passing through the terminal must pay a handling cost 
penalty, which will have three terms: the cost of unloading the vehicle, the 
cost of sorting and transferring the items internally and the cost of loading 
the outbound vehicles. The first term is the same that would have to be 
paid if the terminal was a final destination, and the third term the same as 
if the terminal was the depot; these two terms will be captured in Secs. 
5.3.2 and 5.3.3. The second term is terminal-specific. Its magnitude, on a 
daily basis, should grow roughly linearly with the number of items handled 
I; expressed as a cost per item, it should be of the form: 

,c+I/c t
f

o
f (5.2b)

where cf
o and cf

t are handling cost constants that depend on the nature of 
the items and the terminals. The total (motion plus holding) cost specific to 
the terminal is the sum of (5.2a) and (5.2b): 

(5.3)IItemperCostTerminal 5 /6
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where 5 = (cf
t + ci Ht + cr

t Ht) and 6 = (cr
o + cf

o)/  . Note that this expres-
sion is independent of Hi and Ho. It captures the costs not included in the 
sum of the costs of distributing to the terminals (inbound costs zi ), and the 
costs of delivering from the terminals (outbound costs zo).

5.3.2 Inbound Costs 

The total logistic cost, in addition to (5.3), must include all inbound and 
outbound costs; but these already have been studied. 

The inbound cost would be given by the minimum of Eqs. (4.20) as ap-
plied to a problem where the terminals are the final destinations. Thus, vmax
is the capacity of the vehicles used to feed the terminals, and the spatial 
density of customers  becomes the density of terminals I-1 . Care must be 
exercised in solving the equations because, for large I, constraint (4.20c) 
may be binding; it may be optimal for vehicles to visit only one terminal at 
a time (ns

* = 1) . Other constraints for route length or number of stops may 
also have to be considered (as explained in Chap. 4). 

In solving the problem we may also want to alter the value of k (the 
VRP dimensionless constant for the distance added by each stop) to reflect 
the fact that stops will now be (roughly) on a lattice. Exercise 5.2 shows 
that this coefficient declines a little, but the change is only on the order of 
15 percent. When there are more stops per tour than tours (this is highly 
unlikely when distributing to terminals) the change in k' is also small. 

In any case, the minimum inbound cost will be a function of decision 
variable I only. This function will decrease with I because the more con-
centrated the demand becomes at fewer terminals (I ) the cheaper it is 
to serve it. This was pointed out in Chapter 4. It should also be clear that 
the minimum cost per item can depend on parameters r and but not on .
It will be denoted: zi( ,r,I) . The cost per unit area and per unit time, zi , 
will share the same properties. 

5.3.3 Outbound Costs 

The outbound cost per item depends on the density of destinations, but not 
on the distance from the depot. It can be calculated with the continuous 
approximation method, as if the terminal were producing items for the cus-
tomers in its influence area, and averaging the result across the influence 
area in the usual way. Let z0( ,r, ) denote the per-item cost of serving 
without transshipments a set of customers located r distance units away 
from a depot (the terminal) when the demand rate density is  and the des-
tination density is  . This function is also given by the results in Chapter 
4, but it may be somewhat different than for inbound costs because: (i) 
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customers may be randomly scattered (not on a lattice like the terminals), 
(ii) vehicles may have smaller capacities, (iii) travel speeds may be lower, 
and (iv) perhaps all the customers do not need to be visited with each dis-
patch (recall the discussion of Sec. 4.6). 

According to the continuous approximation approach, the cost per item 
delivered from the terminal can be approximated by averaging z0( ,r, )
over r , where r is now the distance from points in the influence area to its 
terminal (recall the discussion of Eq. (3.11c) in Sec. 3.3.4). We will denote 
this average, independent of r but a function of I , by a capital "Z" super-
scripted by "zero" – the level of the influence area – Z0 . Thus: 

.r,,zEI,,Z r 0
0

We saw in Chapter 4 that z0 increased with r, and that in some cases (e.g. 
when the vehicles are filled to capacity – see Eqs. (4.10) and (4.21)) it does 
so linearly. It is thus reasonable to substitute Er[z0( ,r, )] by z0( ,E[r], ) , 
and to approximate E(r) by a simple function of I. Since influence areas 
will be drawn to approximate circles and the density of destinations is ap-
proximately uniform, we can assume that E(r) is 2/3 the maximum dis-
tance from the terminal, (I/ )1/2 , and thus: 

,,I.,z=,I,zI,,Z0 2/1
03

2
0 380 (5.4)

which increases with I , (linearly with I1/2 in some important cases). We are 
now ready to see how the system can be designed. 

5.3.4 The Design Problem 

The next step consists in writing a logistic cost function that relates the to-
tal cost per item distributed to the decision variables of the problem. In our 
particular case, the total cost per item distributed is the sum of the termi-
nal, inbound and outbound costs: 

outboundinboundterminal
I,,    Z+Ir,,z+/I+ i 0

65 (5.5)

Figure 5.4 depicts these functions and their sum. 
The value of I , I* , that minimizes this expression is the size of the in-

fluence area which we would like to use. Values of I larger than the service 
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region size, R  , do not need to be considered. The optimum influence 
area size, I*, should usually grow with the distance from the depot but it 
can also be independent of r, e.g., as occurs with the Acheap item@ scenario 
leading to Eq. (4.21). This will be illustrated with the example of Sec. 
5.3.5.

Fig. 5.4 Logistic cost components and influence area size

The minimum cost obtained with the above expression, denoted z1
*( ,r, )

because one transshipment is used, should be compared to the cost of dis-
tribution without transshipments, z0( ,r, ) . Only if z1* < z0 should trans-
shipments be used. The cost per item with upto one transshipment, z1 , is 
the minimum of z1* and z0: z1 = min{z0 , z1*} . 

Figure 5.5 depicts this relationship as a function of r for constant  and 
 . As we have indicated, z0 increases with r ; z1* also increases with r , but 

at a lower rate for large r . If the curves don't intersect, then terminals don't 
have the potential for reducing cost. We have already seen that terminals 
are beneficial (see Fig. 5.1) if there are restrictions to the size of a local de-
livery vehicle and/or route length limitations, but in the absence of such 
limitations transshipments are likely to be unnecessary (see Daganzo, 
1988, and the discussion at the beginning of Chap. 6). 
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Fig. 5.5 The cost of serving a point r distance units away. (Adapted from: Da-
ganzo and Newell, 1986) 

The expected total cost per unit time over any subregion of R , P , can be 
obtained even before a solution scheme is constructed, by integrating 
z1( ,r, ) over P . Expressed per unit time, the total cost, again denoted by 

a capital "Z" , is: 

 ,dr,,zZ 1
1
T xP P

where  , r and  can be slow varying functions of x . The subscript "T" al-
ludes to "total cost per unit time" and the superscript to the maximum 
number of transshipments allowed. 

To illustrate how a design can be obtained, Fig. 5.6a depicts the loci of 
points in R for which level-0 influence areas have five different sizes. This 
could be the result of solving the idealized model for different points in R , 
with different  , r and  . These sizes were chosen to increase relatively 
fast to make the partitioning more difficult. Points in between the curves 
require intermediate sizes. Figure 5.6b shows a possible partition of R that 
conforms fairly well with the stated requirements. 
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Fig. 5.6. Implementation example. (Source: Daganzo and Newell, 1986) 

In general, the complete design can be obtained as follows. First carve out 
"round" influence areas that pack and conform to the calculated sizes I(x)
as well as possible, as we have just shown. Then locate the terminals near 
their middle, obeying any local constraints that may exist. Finally, deter-
mine with existing methods (see Sec. 4.2) the optimal operating strategy 
within each influence area, separately from the others. 

Note from the figure that while many points in R do not belong to an in-
fluence area of the right size, few have to be enclosed in areas that are off 
by more than 50 percent from the target size. Larger discrepancies should 
be rare in practice. Discrepancies of typical magnitude introduce little error 
into the resulting cost, ZT

1(R), since the logistic cost function (5.5) is usu-
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ally rather flat around its minimum with respect to I – see Fig. 5.4. The so-
lution to problem 3.10 illustrates this fact by examining cost functions 
(5.5) of the common form: Ia + I-b (a,b  1). For this kind of expression 
the chosen value of I can depart from the optimum by as much as 50 per-
cent, and the resulting cost will still be within a few percent of the opti-
mum. When a and b are smaller than 1 the solution is even more robust 
than the EOQ expression (the case with a = b = 1). We can be reasonably 
sure as a result that demand points do not have to be enclosed in influence 
areas of the precise size for a solution to be near-optimal. 

For example, if (i) moderately priced goods have to be delivered to 
fixed retail outlets, (ii) vehicles can make multiple stops, and (iii) no ter-
minal economies of scale exist ( 6 = 0), then Eq. (5.5) consists of a con-
stant, a term proportional to I1/2 and a term proportional to I-1/4 . Then, I 
could be 1.5 times larger or smaller than I* and cost would only increase by 
about one percent. Although not quite so robust, the example about to be 
introduced exhibits a similar behavior. Among those problems explored by 
the author (involving various underlying metrics, deliveries of people and 
goods, routes with and without multiple stops, deliveries to fixed retail out-
lets, and individually located customers, etc. ..), the example corresponds 
to the set of conditions that makes the cost most sensitive to I . 

5.3.5 Example 

Here we consider a region R with constant  and  . Line-haul vehicles 
shuttle between a distribution center and consolidation terminals. Neither 
local nor line-haul vehicles are allowed to make multiple stops because the 
cost (and delay) of a stop is large compared with that of the moving por-
tion of the trip. This could happen for air transportation of valuable goods. 
Campbell (1990c and 1993) contains a similar analysis of problems with 
multiple stops. In our case, local transportation vehicles pick up their loads 
at the consolidation terminals and distribute them (non-stop) to destina-
tions scattered over the terminals' influence areas. Local vehicles are as-
sumed to have a small capacity, vmax , and to travel full; i.e, the solution to 
(4.20) is ns = 1 and v = vmax . To make things easier we also assume that 
the pipeline inventory cost and rent costs can be neglected; i.e., ch = ci. We 
then see that the minimum cost is of the form:2

.vc+
v
rc+constant=v+

v
+=r,,z hd

max
max

max4
max

21
0

2

2 When ns = 1 the local distance vanishes. The average customer demand rate is D' = / .
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To simplify the notation, we will ignore the constant term and introduce 
two constants "a" and "b" (a = ch  and b = 2cd/2.7) so that: 

(5.6a)

The first term is the stationary holding cost and the second term, the com-
ponent of transportation cost that is sensitive to distance. For this example, 
z0 is independent of , and so is the outbound cost function (5.4): 

.I
v

b+vaI,,Z 1/2

max

max0 (5.6b)

Inbound transportation to the terminals is assumed to take place on lar-
ger vehicles, of capacity v'max > vmax and cost per mile c'd , operated at ca-
pacity so that the cost zi( ,r,I) will be (for a demand rate D' = I ): 
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Again, using a' = c'h , b' = 2c'd and ignoring the constant we can write: 

(5.6c)

The first term of this expression represents inventory cost, and the sec-
ond the cost of overcoming distance. Inventory cost must increase with the 
number of destinations; as such it is proportional to I-1 . Other costs (han-
dling, etc.) that don't depend on I , r , or  would appear as part of the 
omitted additive constant. 

Let us assume that terminal costs are proportional to flow ( 6 = 0) . 
Then they can be ignored, and the optimal influence area size is the result 
of a trade-off between the cost of overcoming outbound distance from the 
terminals (2nd term of (5.6b)) and the stationary inventory cost from in-
bound distribution (first term of (5.6c)); the solution is: 
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.
b

vv’aI
2/3

maxmax* '2 (5.6d)

Therefore the one-transshipment cost is: 

.va
v

b.+
v

rb+vaz
1/32/3

max
maxmax

max*
1 '891 (5.7a)

The optimal size of the influence area increases with the 2/3 power of the 
vehicle capacities and decreases with the 2/3 power of the demand density; 
it does not depend on the distance, r , from the distribution center. This is 
logical, because changing r does not alter the terms traded off. These quali-
tative conclusions, however, are specific to the conditions of the example. 

To see how they would change, assume that the inbound vehicles, still 
restricted to making one stop, now can carry as many items as desired 
(v'max = ) . Then, the loads carried would be the result of an EOQ trade-
off, and instead of (5.6c) we would have: 

I
rba=Ir,,z

1/2
i 2 (5.6e)

and

.rba
b
vI

1/2
max* 2 (5.6f)

The optimal solution is no longer insensitive to r; it grows with r as indi-
cated earlier. It also varies with a smaller power of  and a larger power of 
vmax . The optimal cost also depends on r and  , although somewhat dif-
ferently:

.rba
v

b.+vaz
1/41/2

max

max*
1 832 (5.7b)

It should be easy to design a system with influence areas close to I* for 
most points. Failure to select an I equal to I* does not result in large in-
creases in cost. For both examples a 30 percent deviation from I* results in 
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a cost increase below three percent; for 20 percent deviations cost in-
creases less than one percent. These percentages refer only to the two cost 
terms that depend on I ; otherwise, the percentages would be even smaller. 
The dependence of cost on I (and its sensitivity to errors in  and  ) tends 
to weaken even more when multiple stops are allowed; the conditions of 
the example are unfavorable. 

5.4 Refinements and Extensions 

This section, which may be skipped on a first reading, addresses the fol-
lowing subjects which are extensions to the simple model of Sec. 5.3: (i) 
synchronization of the inbound and outbound transportation schedules to 
reduce terminal holding costs; (ii) treatment of location/routing constraints 
cutting across distribution levels; (iii) consideration of time-varying de-
mand, with and without uncertainty; and (iv) development of discriminat-
ing strategies when conditions warrant. 

The analysis of Sec. 5.3 was possible because inbound and outbound 
vehicle routes and schedules from the terminal could be set independently 
of each other. This decomposition allowed the results of Chapter 4 to be 
invoked, yielding simple inbound and outbound cost expressions. Because 
some of the extensions explored in this section link the inbound and out-
bound operations, a conditional decomposition method is used repeatedly. 
It entails the identification of suitable decision variables, conditional on 
which the problem decomposes across levels. We recommend a similar 
approach whenever inbound and outbound operations are coupled. 

5.4.1 Schedule Coordination 

It was assumed in Sec. 5.3 that inbound and outbound operations were in-
dependent. Yet, terminal holding costs can be reduced through synchroni-
zation. (Chapter 4 showed how synchronization of transportation and pro-
duction schedules could reduce holding costs; something similar happens 
here).

If we restrict the inbound headway to the terminal Hi to be an integer 
multiple of the outbound headway Ho , or the other way around, then it is 
possible to synchronize the arrivals and departures as shown in Fig. 4.10. 
This synchronization allows the average time in the terminal to be reduced 
by the smaller of the two headways: min {Hi ; Ho} . It is as if the departure 
curve on Fig. 4.9 had been shifted to the left by an amount, H , resulting in 
the pattern  of  Fig. 4.10. Then,  the maximum accumulation  is reduced by
I min{Hi , Ho} , and the terminal cost per item (5.3) becomes: 
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,c+cH;H-/I+ ri
oimin65 (5.8)

which no longer is independent of Hi and Ho . 

Conditional decomposition: The method we are about to present works 
even if the outbound headways from the terminal are not equal for all the 
delivery districts; but we shall assume for the moment that they are. The 
total cost will be expressed as a function of I , Hi and Ho . Conditional on 
these three variables (instead of only one, I ), the total logistic cost per 
item decomposes in three independent components: (i) an inbound motion 
cost, zm

i ; (ii) an outbound motion cost, zm
o ; and (iii) the terminal costs 

plus all holding costs. Thus, the new logistic cost function is expressed as 
follows:

 ,I++H;Hc+c
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oo
m

ii
m

1
65max

(5.9)

where we have assumed that the rent costs only need to be considered for 
the terminal. If rent costs at the origin and the destinations cannot be ne-
glected then a term of the form cr(Hi+Ho) should be added to (5.9). In this 
case, the headway choices may differ from those recommended below. In 
both cases, however, the choices arise from the minimization of a simple 
logistic cost function of three variables: I, Hi and Ho.

The inbound motion cost term in (5.9) assumes that the inbound routes 
have been optimized for the given set of terminals and inbound headways, 
independently of all outbound decisions. This cost can be estimated by the 
minimum of the first three terms of Eqs. (4.20) with respect to ns for a 
given v since the delivery lot size to a terminal, v , is fixed by Hi: v = IHi . 
We are pretending here, as in Sec. 5.3, that the terminals are the final des-
tinations. The outbound motion cost for delivery to the customers can be 
obtained in a similar way, also conditional on the delivery lot size to the 
customers, v = ( / )Ho . 

For most problems the inbound and outbound cost per item, zm
i and zm

o , 
will be decreasing (or non-increasing) functions of Hi and Ho respectively. 
This is logical since with longer headways more goods will have accumu-
lated with every dispatch and they can be distributed more efficiently.3 The 

3 This assumes that vehicles make many stops and therefore it is only true up to a point. Once Hi (or 
Ho) is so large that each destination requires a full vehicle load on each visit, increasing H is no 
longer beneficial.
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reader may wish to verify this analytically from Eqs. (4.20), with and 
without other complications, as discussed in Chapter 4. 

It follows from these properties that the least cost given by (5.9) is 
achieved when Hi = Ho ; it should be clear that if the smaller of the two 
headways is not equal to the other, increasing the smaller one until it 
equals the largest will reduce cost: clearly, the holding cost does not 
change, and we have already said that the motion cost declines with an in-
creasing H. Thus, we let Hi = Ho = H , so that (5.9) becomes: 

zm
i ( , r, I, H) + zm

o ( , , I, H) + (ci + cr)H + ( 5 + 6 I -1) ,

whose minimum ( I*, H* ) is the desired solution. 
To find it we can hold I constant and minimize the first three terms, the 

inbound plus outbound costs, with respect to H; the result is of the form: 

 ,I++IHc+c+
+I,,z+Ir,,z

ri

o
m

i
m

1
65

*

**

(5.10)

where H*(I) is the optimum headway for a given influence area size. This 
expression can now be treated like (5.5) for design purposes. 

Schedule synchronization takes some effort and may add to the total 
cost because the operation of the system is more complex. Obviously, it 
should only be used if the gains outweigh the complexity penalty. The 
higher the time value of the items the larger the gain and the more desir-
able synchronization becomes. As an exercise, the reader may want to re-
peat the simple example presented in Sec. 5.3.5, assuming that the sched-
ules are synchronized. (Note that in this example vehicles make a single 
stop, and therefore we cannot assume that Ho =Hi; see problem 5.3). 

Different outbound headways: Suitably modified, the approach we have 
described can be applied when the influence area is not homogeneous; e.g. 
if  and  change within the influence area.

In this case, as illustrated in Fig. 5.7, the vehicle routes to parts of the 
influence area with different characteristics (or sectors, j ) ought to have 
different numbers of stops and different headways, Ho

j . As in Chapter 4, 
these sectors should be no smaller than the districts covered by one vehi-
cle. Of course, this restriction is irrelevant if vehicles make only one stop. 
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Fig. 5.7. Distribution within an influence area with two sectors 

The decision variables are I , Hi and {Ho
j} . If the outbound headways are 

multiples or submultiples of Hi , then Eq. (5.9) holds with the following 
modifications: (i) the outbound motion cost is the demand weighted aver-
age of the costs of each sector, zo

m,j ( , ,I,Ho
j) , and (ii) the waiting cost is 

the demand weighted average of (ci + cr)max{Hi , Ho
j} . 

As before the zo
m,j are decreasing functions of Ho

j , and thus outbound
headways should be no smaller than the inbound headway. (Blumenfeld et 
al. 1986, and Daganzo, 1990, have addressed this issue.) Most likely, and 
even if the demand is quite heterogeneous within I, the solution with Ho

j = 
Hi = H will be close to optimal, and we can obtain H*(I) in the same man-
ner as we described. 

A more accurate approach described in the above mentioned references 
would find first the optimal {Ho

j} conditional on I and Hi . This is easy be-
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cause each Ho
j can be obtained independently of the others as the result of 

a trade-off between the outbound transport cost in its sector alone, and the 
corresponding waiting cost: 4 (ci + cr)max{Hi , Ho

j} One could then find the 
optimal Hi and I , either numerically or analytically. 

Further reductions to holding cost: In the discussion of dispatching 
strategies it was assumed, even when the schedules were coordinated, that 
the space needs at the terminal were the sum of the space needs for all the 
outbound destinations from the terminal. This assumption is conservative 
because it ignores that the need for storage space can be reduced if one 
staggers the delivery schedules, as was discussed at the end of Sec. 4.3. If 
vehicles depart the terminal once every two days for points in the influence 
area, we implicitly assumed that the maximum accumulation occurred at 
the same time for all outbound routes. But if some of the routes (1/2 of 
them, say) depart on even days and the other half depart on odd days, then 
the maximum accumulation will be reduced. It will be more difficult, 
though, to coordinate the deliveries to the terminal with the improved 
staggered schedule from the terminal. Obviously, the advisability of stag-
gering outbound dispatches will depend on the specific situation. In any 
case, the methods we have introduced in connection with Eqs. (5.5) and 
(5.10) still apply. 

5.4.2 Constrained Design 

Here we address two types of design restrictions, which influence the solu-
tion approach in different ways: (i) constraints to individual decision vari-
ables, and (ii) constraints to sets of variables. The first type of restriction 
arises in connection with tactical problems, which are used as an illustra-
tion for the solution approach to (i). 

Tactical problems: If some of the decision variables are fixed, the optimi-
zation process is often simplified. This situation is common for short term 
problems, where the terminal locations are given, but the vehicle schedules 
and routes need to be determined. 

If so few terminals are available that all should be used, then each influ-
ence area will be greater than ideal. One could then easily carve the region 
into influence areas around each terminal, perhaps allocating every cus-
tomer to the nearest terminal. Ideally, one would like to allocate customers 
using a marginal cost rule, ensuring that customers near the boundaries are 

4 It is shown in Daganzo (1990) that, even if the Ho
j are not restricted to be integer multiples of Hi, the 

optimal solution is an integer multiple of Hi.



186 One-to-Many Distribution with Transshipments 

not better off in the neighboring influence area, but this is quite laborious 
and unlikely to change the size of the influence areas enough to matter for 
cost calculations. (A marginal allocation is reasonable because outbound 
distribution costs per unit area z0( ,r, ) increase with r and as a result the 
total cost is convex in the zone dimensions). Once the partition has been 
completed, a cost estimate – as well as the optimal headways and routes – 
can be obtained for each influence area by minimizing an appropriate lo-
gistic cost function, e.g. (5.5) or (5.9), with a fixed I. Note that no minimi-
zation is necessary with Eq.(5.5). Finally, the detailed solution can be fine-
tuned by computer by testing whether marginal customers near the 
boundaries should switch terminals. 

If there are so many terminals that we don't know beforehand which 
ones should be operated, a preliminary step should be taken to make this 
decision. Based on the given arrangement of terminals, we would define a 
minimum feasible influence area size, Imin(x) , as a function of position. 
We would then obtain for different values of x an ideal influence area size, 
I*(x) , by minimizing (5.5) or (5.9) subject to I(x)  Imin(x) ; the result 
would then be used to decide which terminals to operate. Of course, if 
there are considerably more terminals than needed this constraint plays no 
role. Then, the terminals can be selected based on the solution to the stra-
tegic problem.

In the short term we may also have to account for restrictions in the flow 
through some of the terminals, which essentially impose a limit on the size 
of their influence areas. If such flow restrictions can be translated into an 
upper bound restriction to I(x) , I(x)  Imax(x) , then the preliminary step 
can still be carried out as indicated. The detailed allocation of customers to 
terminals during fine-tuning, however, must recognize the existence of the 
flow restrictions. The optimal allocation can be obtained by linear pro-
gramming. (If one thinks of terminals as sending a flow equal to their ca-
pacity to destinations requesting a flow equal to their demand, and we in-
clude an extra destination to which the slack capacity is sent at zero cost, 
then the flow allocation problem reduces to the Hitchcock transportation 
problem of linear programming). For our problem the costs have a special 
structure that relates to the geographical distribution of customers; i.e., 
customers that are close geographically have similar costs from all the 
terminals. As a result, it is not difficult to prove that the set of customers to 
be served from any terminal should be a well defined region around the 
terminal. Thus, if the terminal capacities change, only the boundaries to 
the regions should move. Hall (1989a) has discussed very cogently the 
geometric interpretation of the Hitchcock problem. 
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Multilevel constraints: The problem just discussed was viewed as a de-
sign problem with a constraint on the size of the influence areas. Con-
straints affecting only inbound, or only outbound, logistic operations are 
also easy to incorporate; one simply needs to make sure that the expres-
sions for inbound and outbound motion costs, zi

m and zo
m , properly reflect 

the effect of the constraints. We have already seen how to develop these 
expressions under a variety of conditions in Chap. 4. 

Constraints that cut across levels are a different matter. This occurs, for 
example, if there is a maximum time allowed for an item between the ori-
gin and the final destination, or a limited transportation budget and/or fleet 
size for both distribution levels. Multilevel constraints like these, can be 
captured with an extra level of decomposition. In addition to I , Hi and Ho , 
one should include one or more conditioning variables that will decompose 
the logistic cost function into independent subcomponents. 

For an example in which total time is limited to an amount tmax , e.g. for 
the distribution of perishable items, we could use maximum times for the 
inbound and outbound operation, t(1)

max and t(2)
max , and write the equivalent 

of Eq. (5.9) also as a function of t(1)
max and t(2)

max . The resulting 5-variable 
logistic cost function can be minimized subject to constraints on t(1)

max and 
t(2)

max that will ensure tmax will not be exceeded (e.g. t(1)
max + t(2)

max + max 
(Hi, Ho) + Ht  tmax) . A solution to this problem, for a newspaper delivery 
network, is discussed in Han (1984) and Han and Daganzo (1988). For this 
problem, in contrast to most other applications, as one moves farther away 
from the depot both the size of the influence areas and the length of the de-
livery routes decline.

If there is a total transportation budget or a fleet size constraint the same 
method can be used; one would allocate budgets/fleets to the two distribu-
tion levels and solve the resulting 5-variable problem. This technique can 
be applied to design elevator systems with skylobbies (see problem 5.5). 

5.4.3 Variable Demand 

This subsection discusses stochastic and deterministic demand variations. 

Stochastic demand: Here we examine the implications of random (unpre-
dictable) demand at the destinations. Random demand requires extra in-
ventories at the destinations – in the form of safety stocks as seen in Sec. 
2.5 – and also at the terminals. 

We will first see that the decision to hold a certain safety stock at a des-
tination can be separated from the routing decisions, conditional on the in-
bound and outbound terminal headways. A similar decomposition had 
been already introduced in Sec. 2.5 for one-to-one distribution problems. 
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We will then examine the need for inventories at the terminals (ware-
houses).

As explained in Chapter 2, we assume that the safety stock carried by a 
customer (destination) depends on the time between deliveries and re-
quests. With deliveries to many customers, however, it is unreasonable to 
assume that one would dispatch on request, at the precise time when the 
customer request arrives, lots of specific sizes as assumed in Chapter 2; it 
would then be impossible to construct "peddling" delivery tours. Rather, 
one would attempt to coordinate deliveries to all the customers by estab-
lishing a dispatching schedule from the terminal at headways Ho–a deci-
sion variable – and allowing customers to decide whether or not they de-
sire a delivery on any given dispatch as well as the size of the delivery, v > 
D'Ho . Note that the fixed lead time model of Chapter 2 arises with Ho = 0. 

For this operating scheme the inventory accumulation at a destination 
depends on the fixed lead time and on Ho , but it is independent of the 
transportation routing decisions. The solution to problem 5.6 reveals that 
the holding cost per item includes: a term proportional to v , chv/D' , that 
represents the load make-up cost as in Chap. 2, a safety stock component 
that increases slightly with Ho but is independent of v as in Chap. 2, and a 
new term, chHo , that captures the discreteness of the transportation sched-
ule. This is discussed in more detail in Daganzo and Newell (1987). 

Then, conditional on I , Hi and Ho , the customers' decisions about v are 
independent of the routing decisions; the problem decomposes. Transpor-
tation costs decrease with Ho , while holding costs increase. To enforce ra-
tional customer behavior, e.g. discouraging small orders, we will pretend 
that an amount cp is charged to the customer for each delivery. Whether 
real or fictitious (if the customers are part of the same firm) this charge can 
be used to control the customer lot sizes and in the process achieve some 
overall goal such as maximizing profit, minimizing the sum of costs to the 
supplier and the customers, etc... We show below how the various logistic 
cost components can be expressed as functions of I , Ho , Hi and cp . 

Aside from additive terms independent of v, the motion cost per item 
paid by a customer will be cp/v and the holding cost will be (ch /D')v . The 
optimal lot size chosen by the customer is thus the result of an EOQ trade-
off between those two costs: v* = [cp D'/ch]1/2, provided v* is greater than 
D'Ho ; it is D'Ho otherwise. Such a customer would place an order on one 
out of every v*/(D'Ho) dispatches, on average. If all customers were 
roughly alike, the reciprocal of this ratio would also represent the fraction 
of customers requesting service. The effective density of delivery stops e
in the region would then be: 
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e = [min{1, D'Ho[cp D'/ch]-1/2}] .

The average cost paid by a customer per item delivered is also the result of 
the EOQ trade-off: 

itemper
cost
customer  = 2[cp ch /D']1/2 + ch Ho + CONST.        , if v*  D'Ho

                  = cp /(D'Ho) + ch Ho + ch Ho + CONST. , otherwise.

Note that this expression is an increasing function of cp and Ho . In other 
cases (e.g. with different customers or other reorder strategies) the lot size, 
stop density and cost relationships would be similar; in particular, the ef-
fective stop density would still be a non-decreasing/non-increasing func-
tion of Ho and cp . 

This effective density, together with Ho and I determines the supplier's 
outbound motion costs from the terminal, zo

m , as discussed in Sec. 5.4.1. 
Inbound motion costs are also determined as in Sec. 5.4.1, from Hi and I . 
Both the inbound and outbound motion costs are insensitive to fluctuations 
in the number of items dispatched from the terminal every Ho because 
these costs only depend on the average terminal throughput I (see the dis-
cussion pertaining to Eq.(4.7) in Sec. 4.3). 

The supplier's holding costs at the terminal would increase with the fluc-
tuations in the number of items demanded per dispatching headway. Of 
order [ IHo]1/2 , however, the fluctuations should be small compared with 
the mean [ IHo] because influence areas contain many customers. Thus, 
the added warehousing costs should be small compared with the determi-
nistic holding costs, which in turn are small compared with the motion 
costs. As a result warehousing costs can be neglected as a first approxima-
tion, and terminal holding costs can be approximated by a simple function 
of Hi, Ho , and I , as described earlier in this chapter. 

The sum of the inbound, outbound and terminal costs captures the sup-
plier's logistics cost per item as a simple function of cp , I , Ho and Hi . It is 
then a simple matter to obtain the cp , I , Ho and Hi that minimize any de-
sired combination of the supplier and customer costs. 

If desired, the analysis can be refined by including warehousing costs at 
the terminal. These costs are likely to be significant only if the demand is 
highly variable and unpredictable, and order response time is critical. Al-
though, there is an extensive body of literature on inventory control for a 
hierarchical system of warehouses (see Schwartz, 1981, and Anily and 
Federgruen, 1993, for example), very simple models should suffice for our 
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purposes; sensible decisions can be reached without resorting to very de-
tailed models. Problem 5.7, an illustration, describes a situation where 
warehousing costs must be traded-off against transportation costs. In the 
problem, order response time is so critical that individual items are deliv-
ered immediately upon request from warehouses by a very expensive and 
expeditious transportation mode. Cheap transportation is used to feed the 
warehouses. The influence area size is the key decision variable for this 
problem because warehousing costs decrease with I (with larger I the fluc-
tuations in throughput are smaller) but the number of expensive vehicle-
miles traveled increases with I (since the distance traveled per item is pro-
portional to I1/2) . 

When the ratio of inventory cost to local distribution cost is sufficiently 
high warehouses should pool risk by operating in clusters that can share 
inventory by coordinating their local distribution. This has the potential to 
reduce cost even more. Two different cooperation methods are possible: (i) 
periodic redistribution of goods as per a transportation problem of linear 
programming (TLP); or (ii) continual re-balancing by serving customers 
roughly equidistant from two warehouses by the one with the least inven-
tory. The automobile industry essentially uses an extreme version of (ii) - 
since automobile purchasers are usually served by the nearest dealer hav-
ing the desired car. Hybrids of the two strategies can also be used. Hierar-
chical schemes, where a lead warehouse holds extra inventory for potential 
redistribution, can be used as well, but they are less efficient than (i). 
Strategy (i) should be optimized by treating the influence area size, cluster 
size, safety stock level and re-balancing period as decision variables. In 
case (ii), the re-balancing period is not an issue. The objective function for 
scheme (i) is easy to write using the expected distance formula for the sto-
chastic TLP given in Daganzo and Smilowitz (2004). The objective func-
tion for (ii) is more complicated - since the safety stock level affects the 
frequency deliveries from the second or third-nearest warehouse in a non-
trivial way - but this too can be done; see Daganzo and Erera (1999).

Hopefully, this brief discussion will have convinced the reader that it is 
possible to capture stochastic effects with minor modifications to the ap-
proach we have described. 

Non-stationary demand: At the tactical level, i.e. when only vehicle 
routes and schedules can be changed, non-stationary conditions do not in-
troduce major difficulties. If the average demand rate (t, x), the customer 
density (t, x) and the given set of terminals vary slowly with time the CA 
approach can be used. First we divide the time line into intervals with 
quasi constant conditions. Then, we find the optimal customer allocations, 
vehicle routes and frequencies for each interval independently as if the 
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number of terminals,  and  , didn't change with t . (The chosen solution 
and the cost estimated for each interval should recognize stochastic effects 
if they are deemed important. For this to be possible, however, the system 
should nearly reach a steady state in each interval.) 

Each solution is then adopted for its time interval. The average cost over 
time can be approximated by the weighed average of the costs for the in-
tervals.

The strategic problem, including the number and location of the termi-
nals can be addressed in a similar way if terminals can be opened, closed 
and relocated with little cost. If this is not the case the problem is consid-
erably more complicated because small changes in I from one time interval 
to the next, as would result from the CA approach, might require that most 
terminals be relocated, and the relocation cost is hard to define. 

If relocation is expensive we would like to relocate few terminals if I 
changes little. In fact, we would like to change only the absolute minimum 
number of terminals; i.e. "x" percent of them if I changes by "x" percent. 
This can be achieved if terminals are located approximately on a square 
lattice, and in every time interval the influence area size is restricted to 
take a value from the set {2KI0} for some integer K . (Note that if terminals 
are located on a square lattice, one can obtain another square lattice with 
twice the I oriented at 45o with the old, by eliminating 1/2 of the termi-
nals.) With the I restricted in this manner, it is a simple matter to define re-
location costs as a function of the change in I from interval to interval. 
Conditional on I , then, the remaining costs can be obtained as the solution 
to the tactical problem. Thus, it should be possible to use a dynamic pro-
gramming formulation to determine the best sequence of I's for a set of 
consecutive time intervals, where the dynamic programming stage is the 
time interval and the state is the I for the current interval. 

Alternatively, one can use a human/computer hybrid method. The hu-
man would specify a changing pattern of terminals over time and the com-
puter would readily solve the tactical problem, returning the total cost in-
cluding the cost of terminal relocations. 

More sophisticated methods don't seem necessary because long term 
forecasts as would be needed for strategic analysis are not likely to be reli-
able. Perhaps we should take a cue from nature in seeing how a logistic 
structure should adapt to changes in its environment without a forecast for 
future conditions. As a tree grows taller, new branches overshadow old 
branches, which may atrophy and die, but the larger older established 
branches survive. Because of the "cost" of growing new branches (opening 
a terminal), the tree does not totally redesign itself with each change in the 
environment; rather it preserves a large portion of its structure and builds 
on it. Moreover, the tree adapts to the future without knowing it – at best it 
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uses the recent past experience as an indication of things to come. In light 
of this, and since the logistic cost is not very sensitive to the specific loca-
tion and number of terminals, it should be possible to respond to a change 
in demand by opening and closing only a small fraction of the total number 
of terminals, and still obtain a configuration that will yield near minimal 
cost for the new conditions and the anticipated immediate future. Campbell 
(1990a) explored a few heuristic strategies for updating terminal locations 
under some scenarios and his conclusions agree with the above. 

5.4.4 Discriminating Strategies 

So far in this chapter we assumed that customers in the same general area 
received the same type of service in terms of delivery frequency and type 
of vehicle route. No attempt was made to discriminate across customers 
based on their individual characteristics. We had seen in chapter 4 that if 
some customers are much larger than others, or request substantially dif-
ferent items, it might be cost-effective to treat them differently, perhaps 
even serving them with different transportation systems. The same phe-
nomenon can be expected of systems with terminals but the question is 
now whether or not all customers should be served through the terminals; 
large ones may be better off with direct service. 

Approach: The conditional decomposition method introduced in this sec-
tion can also be used to explore this possibility. Given a set of terminals, 
the tactical problem could be solved by dividing the set of customers into a 
set that is served through the terminals and another set which is served 
without a transshipment, organizing the distribution process for the two 
sets separately, calculating the cost, and then comparing the results for dif-
ferent customer partitions. 

For the decomposition based on customer partitions to be successful one 
needs to focus only on a few partitions that have a chance of being optimal 
because the number of arbitrary partitions can be astronomical. Depending 
on the specific situation at hand, a set of candidate partitions should not be 
difficult to identify based on physical considerations. (The reader may 
wish to solve problem 5.8 as an exercise.) 

For example, if as in Sec. 4.7 the items have different values and the 
customers have different sizes, one may prove that the destinations with 
the largest dollar demand per unit time should be served direct and the rest 
through the terminal. This happens because one can reduce the holding 
cost by swapping customers between the two shipping methods without 
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changing the transport routes and cost.5 This property of the problem al-
lows us to use the fraction of customers that are served without transship-
ments, fo , to define the two customer classes and decompose the problem. 
The fo leading to the least cost is optimal. 

The proposed method also applies to passenger transportation problems, 
although in this case it is somewhat simpler since the partitions are deter-
mined by the passengers and not the analyst. A good example of this type 
of application is Wirasinghe et.al. (1977). This reference examines an ide-
alized situation in which passengers traveling to a city from its outlying 
suburbs have the option to travel either directly by bus (no transshipments) 
or indirectly by a faster transit system whose stations can be accessed by 
means of feeder bus lines. Passengers are assumed to use the fastest travel 
option so that proximity to the transit stations and distance from the city 
are the main determinants of their choices. Therefore, the resulting parti-
tions are purely geographical. The reference is noteworthy because it ap-
pears to be the first application of the CA approach to this type of problem. 

Items with different densities: The decomposition approach can also be 
used when customers differ in other ways. We have assumed so far that an 
"item" is a given volume of a commodity and that a vehicle can hold a 
fixed number of items, vmax . Although this is a fair description for most 
freight, for some commodities a vehicle will exceed the roadway axle-
weight limitations before it is filled. To side-step this problem we can de-
fine an item as a unit of weight when the commodity being handled is 
denser than the ideal density for the vehicle (the ideal density is the ratio of 
the vehicle's weight and volume capacities). All the discussion, theory and 
methods presented up to this point also hold for dense commodities with-
out any modifications. 

This of course assumes that all the destinations request items of similar 
density, or at least denser than ideal. If some customers are "light" (re-
questing items lighter than ideal) and others are "heavy" (denser than 
ideal) it may be advantageous to use an asymmetric treatment to exploit 
the differences. This situation is more likely to arise for collection prob-
lems from many suppliers than for distribution problems; e.g. for the col-
lection of the many different parts needed at an automobile assembly plant 
such as foam for seats, nuts and bolts. 

If a single origin produces many different commodities for a single des-
tination, it is not difficult to see that the number of vehicle loads needed to 
carry the amounts produced in a given time is minimized if one of the fol-

5 This argument is given in more detail in Daganzo (1985a) as a basis for the dynamic program pro-
posed in that reference.
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lowing two conditions is satisfied (Daganzo and Hall, 1985): (i) either all 
vehicles reach their weight capacity, except possibly the last one which 
may be partially filled, or (ii) all the vehicles reach their volume capacity. 
Note that one of the conditions is sure to be satisfied if all the loads are as 
large as possible while roughly containing the same mixture of items. This 
should be clear since all the loads will then be either below or above the 
ideal density. As a corollary of this observation we note that if a single 
destination is fed without transshipments from many small suppliers pro-
ducing different items, then the symmetric collection strategies described 
in Chapter 4 also minimize the number of vehicle tours. This happens be-
cause if both "heavy" and "light" suppliers are uniformly scattered over the 
area, then the collecting vehicles will automatically tend to pick up item 
mixtures with approximately the same density. Without transshipments, 
thus, there seems to be no incentive to discriminate across customers. An 
exception occurs if light and heavy suppliers tend to form separate clus-
ters, as illustrated in the above reference; in that case it may be advanta-
geous to increase the length of some tours to enhance their load composi-
tion, thereby reducing their number. This is in general a complicated 
problem, whose accurate solution depends on details such as the relative 
proximity of light and heavy supplier clusters.

Another exception occurs if transshipments are allowed. A case of par-
ticular interest occurs if the vehicles are only allowed to make one stop, 
but collection can take place with a transshipment. Suppliers with the 
lightest and densest commodities have the most to gain from sending their 
shipments through the terminal since, combined with complementary 
commodities at the terminal, they can be carried to the destination in ideal 
density loads requiring fewer vehicle-miles. An asymmetric treatment of 
customers would then be in order. Problem 5.9, based on Daganzo (1988), 
encourages the reader to develop an optimal asymmetric shipping strategy 
where the rent for space and the items are so cheap that holding costs can 
be ignored; only transportation and handling costs need to be considered. 
The solution is obtained by decomposition, conditional on the number of 
ideal density truckloads sent through the terminal. As part of the solution, 
the reader needs to determine which suppliers – and how much of their 
production – should be shipped through the terminal to obtain the condi-
tioning flow through the terminal. 
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5.5 Multiple Transshipments 

Multiple transshipments are unlikely to be advisable for most physical dis-
tribution applications, because each additional transshipment generates ad-
ditional handling costs and the vehicle economies (vmax vs. v'max) can be 
achieved with just one transshipment. In any case, systems that allow mul-
tiple transshipments can be designed, using the one-transshipment results 
as a building block. This section, based on Daganzo and Newell (1986), 
presents a simple recursive technique to this effect, and illustrates it with 
an example. The technique uses the function z1( ,r, ) – depicted in Fig. 5.5 
and obtained from the minimum of (5.5), (5.9) or similar expressions – to 
construct a function z2( ,r, ) representing the minimum cost per item with 
at most two transshipments. 

Figure 5.3 depicts a level-1 terminal and its influence area, whose size is 
now denoted I1(x). Recall that all the customers in a level-1 area are served 
from the level-1 terminal with at most 1 transshipment, not including the 
one at the level-1 terminal, and that the level-1 terminals themselves are 
served without transshipments from the depot. This structural organization 
makes it easy to express, conditional on I1 , the inbound, outbound and 
terminal costs for a level-1 terminal in a form similar to Eq. (5.5); the lo-
gistic cost function is now: 

The terminal and inbound costs assume the same functional form as in 
(5.5), since the cost of delivering and passing through the level-1 terminals 
does not depend on how the items are treated once they leave them. The 
outbound cost, however, is different. It has been superscripted by "1" since 
Z1 should now represent the average of z1( ,r, ) instead of the (larger) 
z0( ,r, ) – see Fig. 5.5. 

As in Eq. (5.4) we may want to approximate the average cost by the cost 
of the average: 

,,I.,zI,,Z )380()( 2/1
1

1 (5.12a)

but the accuracy of this approximation will now have deteriorated because 
z1 is more highly non-linear as a function of r than z0 – see Fig. 5.5. One 
may instead opt for using the exact definition: 
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1 (5.12b)

Either one of these expressions can be used to find the minimum of Eq. 
(5.11) with respect to I1 . The result should be a function of  , r , and ,
z2

*( ,r, ) which, as a function of r, should start higher and be flatter than 
either z0 or z1

* . As a result, we may find a second critical distance beyond 
which two transshipments are needed (z2

* < z1) . For most practical prob-
lems, though, this distance is likely to be large compared with the distance 
between the depot and the farthest reaches of R . 

It is theoretically possible, but practically unnecessary, to iterate this 
procedure to obtain the optimal size of higher level influence areas. The 
technique can also be applied if shipments are to be synchronized at the 
level-1 terminals,6 and also if constraints require a more extensive list of 
conditioning variables for the decomposition principle to apply. 

In order to design the system one would carve out the service region 
into influence areas approximating the ideal size I1(x) as was illustrated in 
Fig. 5.6. Of course, this only needs to be done for the portion of R lying 
beyond the second critical distance. The headways at the level-1 terminals, 
a byproduct of the optimization, can be used to construct the level-1 feeder 
routes and schedules. Within each level-1 influence area, the system can be 
designed as in Secs. 5.3 and 5.4. An example illustrates the procedure. 

5.5.1 Example 

The example that led to Eqs. (5.7) is continued here. However, to simplify 
the notation we will give some arbitrary values to the constants that ap-
peared: vmax = b = b' = a/  = a'/  = 1, and will then eliminate these vari-
ables from the notation. We assume that the demand and customer density 
do not depend on location or time, and use the case with v'max = .

We already know that: 

z0 = 1 + 2.7 r,    from Eq. (5.6a) 

Z0 = 1 + I0
1/2,    from Eq. (5.6b) 

zi(r,I0) = 2(r/I0)1/2,   from Eq. (5.6e) 

I0
* = 2 r1/2,    from Eq. (5.6f) and 

6 In this case one would minimize (5.9) holding Hi constant, and this variable would appear in the ex-
pression for Z1. The counterpart of (5.11) would then include the inbound and outbound headways as 
decision variables, in addition to I1.
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z1
* = 1 + 2.8 r1/4, from Eq. (5.7b).

Thus,

z1(r) = 1 + min {2.7r; 2.8r1/4}, (5.13)

which is plotted on Fig. 5.8. Note that when r  1.05, transshipments be-
come necessary. To calculate Z1(I1), one should take the expectation of 
(5.13) for the r values that arise in an influence area of size I1: r [0,
(I1/ )1/2] . 

Fig. 5.8 Example: cost of serving a point with and without a transshipment. 
(Adapted from: Daganzo and Newell, 1986) 

For small influence areas (I1  0.29-1), z1(r) = 1 + 2.7r and 

 Z1(I1) = 1 + I1
1/2,  if I1  0.29-1 .   (5.14a) 

For I1  0.29-1, we find: 
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If (5.14a) applies, the level-1 influence area is not large enough to require 
another transshipment. We expect (5.14b) to apply for the optimal I1

*.
Equation (5.11) now becomes (remember that we assumed 5 = 6 = 0) : 

2(r/I1)1/2 + 1 + I1
1/2 if I1 < 0.29-1 (5.15a)

2(r/I1)1/2 + 1 + 2.17(I1
1/8 - I1

-1) if I1  0.29-1 . (5.15b)

This expression should now be minimized for all values of r.7 Figure 5.9 
plots the reciprocal of I1

* as a function of r. Figure 5.10 plots the minimum 
cost as a function of r as well. 

When r reaches 3.75, the cost, z2
* , equals z1 . For larger values, two 

terminal shipping is best. 
Fig. 5.11 depicts a possible configuration of influence areas for a square 

of side 7 that attempts to be true to the density of terminals shown in Fig. 
5.10. Unfortunately, the size of the influence areas forces them to include 
points that would be better served with larger or smaller influence areas. 
For example, the level-1 influence zones have an area of approximately 20 
units, but they include points that optimally would require I1 = 13 to 
I1 = 42 , plus a few corners with even more stringent requirements. Inspec-
tion of Eq. (5.15), however, reveals that variations from the optimal I1 by a 
factor of 2 only increase the objective function by about 1 percent. (This 
robustness is even more pronounced than that observed for level-0 influ-
ence areas because the exponents of the objective function are now closer 
to zero). Thus, the departures from optimality observed in Fig. 5.11 should 
not matter much. 

7 For this particular problem the task is easy. One can find for every I1
*, the value of r that makes it op-

timal – and one can be plotted against the other.
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Fig. 5.9 Example: solution to Eq. (5.15). (Adapted from: Daganzo and Newell, 
1986)

The exact location of the boundaries and terminals can be fine tuned if de-
sired, but since they are fairly round and centered, respectively, the con-
figuration shown should be nearly optimal. In fact, even the precise loca-
tion of the boundary between 2 and 1 transshipment service areas is not 
particularly crucial. See Fig. 5.10. The following section describes an 
automatic way to fine-tune, or even develop a design. 
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Fig. 5.10 Example: optimal density of terminals as a function of distance. Re-
gions where zero, one, or two transshipments are best. (Adpated from: 
Daganzo and Newell, 1986)
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Fig. 5.11 Example: partition of service zone into influence areas. (Source: Da-
ganzo and Newell, 1986) 

5.6 Automatic Discretization 

Before starting, we should mention that the design problem has also been 
treated in the scientific literature as a pure optimization exercise - without 
resorting to the CA approach. In the applied mathematics literature the 
problem is called the Aoptimal resource allocation problem;@ see Okabe et 
al. (1992) and Du et al. (1999). Pertinent works seek cost-minimizing loca-
tions for point-like service facilities in a space continuum, among a con-
tinuum of customers. Unfortunately, these optimization problems turn out 
to be Aeasy@ only when cost is defined as a simple function of a distance 
norm. This cost structure, e.g., with the translational symmetry implied by 
a norm, is unrealistic for typical logistics problems where costs are com-
plicated and almost invariably location-dependent. 

More realistic cost scenarios can be analyzed by considering discrete 
versions of the problem with only a finite number of locations. An exten-
sive operations research literature explores this line of inquiry; see e.g., 
Daskin (1995) and Drezner and Hamacher (2002). Problems of this type 
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are usually solved with mixed-integer programming techniques, where the 
terminal locations and customer allocations are decision variables. But un-
fortunately, existing programming methods can only deal effectively with 
small problems if they have complicated cost structures. 

Our manual method overcomes these drawbacks. It succeeds, e.g., as in 
the example of Sec. 5.5.1, because it decomposes the problem in two man-
ageable parts. We first look for a continuous target I*(x) without paying at-
tention to the discrete locations, and then delegate the difficult but non-
crucial task of finding the specific locations to the human mind. As ex-
plained in Sec. 5.3.4, the human designer is simply asked to partition the 
service region into Around@ influence areas {Ii} of a size consistent with the 
CA target I*(x), and a set of centrally-located terminals {xi}.8 The remain-
der of this section, based on Ouyang and Daganzo (2004), shows that this 
second step can also be performed automatically, even for large problems. 

Because roundness is important, we first look for a set of non-
overlapping circular disks contained within the service region, of individ-
ual sizes as close the ideal I*(x) as possible. The number of disks is given 
by the CA procedure: N = I*(x)-1dx . More specifically, if we characterize 
the disks by their centers xi and their radii ri (for i = 1, 2, ... N), we look for 
a set of (xi ,ri) that satisfy: I*(xi) k ri

2 for i = 1, ... N, for a value of k as 
close to 1 as possible. Once this is done, we generate influence areas by al-
locating each point in the service region to the nearest xi. This is the right 
thing to do because it guarantees that the influence areas so generated con-
tain one disk a piece. Therefore, they must be Around@ - assuming that a so-
lution with k 1 has been found. 

To find a set of disks, we assign some initial values to the (xi ,ri) and 
model the disks as if they were physical particles that (i) are repelled when 
they overlap either with each other or with the boundary, and (ii) change 
radius as they move over the service region with the recipe: ri

[I*(xi)/k ]1/2. If k is sufficiently large, a discrete-time simulation of this 
system quickly leads to an equilibrium where all forces vanish and there is 
no overlap. 9 The simulation is then repeated with a smaller k. A step-wise 
gradual reduction in k is continued until an equilibrium cannot be found. 
This will happen before k =1, since circles do not partition Euclidean 
space. The procedure is then terminated. 

8 In this section, the subscript of the influence area variable AI@ no longer refers to the influence area 
level.

9 This assumes that the service region is Asimply connected@, in the sense that a disk of proper size can 
always be slid between any two points in the service region without touching the boundary. No gen-
erality is lost by this assumption, because complex areas (e.g., Japan) can usually be partitioned into 
simply connected components to which the model can be applied separately.
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It is reported in Ouyang and Daganzo (2004) that this procedure can 
quickly find good designs to problems of practical size. Figure 5.12 shows 
how the method converges in a case where the best design is known. The 
region is poly-hexagonal with N= 7, and the target area size I*(x) is inde-
pendent of location. The best design is shown in Fig. 5.12(a), and the algo-
rithm=s results in parts (b)-(d). 

-1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

N=7, Initial Locations

Fig. 5.12 Verification of convergence: (a) ideal solution, (b) initial locations, 
(c) location after 200 iterations, (d) equilibrium after 440 iterations 
(Source: Ouyang and Daganzo, 2004) 

The algorithm has also been applied to the example in Sec. 5.3.5 using 
(5.6f) as the target function with a = b = a= = b= = vmax = 1; i.e.: I*(x) = 
2[r(x)/ (x)]1/2. (Recall that r(x) was the Euclidean distance to the depot, 
and (x) the demand density.) Two cases were considered: (a) uniform 
demand, where  = 1 and I*(x) = 2r(x)1/2 ; and (b) declining demand, where 
(x) = r(x)-1/2 and I*(x) = 2r(x)3/4. Figures 5.13 and 5.14 show the respective 

a) b)

c) d)
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results for four square regions of sides L = 5, 7, 10 and 25. All the exam-
ples were solved in less than 30 minutes on a 1.7 GHz PC. 

Fig. 5.13 Terminal design for homogeneous demand: (a) L – 5, (b) L – 7, (c) L 
– 10, (d) L – 25. (Source: Ouyang and Daganzo, 2004)

a) b)

c) d)
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Fig. 5.14 Terminal designs for homogeneous customer demand: (a) L – 5, (b) L 
– 7, (c) L – 10, (d) L – 25. (Source: Ouyang and Daganzo,2004). 

In the uniform demand case the difference between the CA cost prediction 
for the variable costs – the integral of the last term of (5.7b) over the ser-
vice region – and the variable costs arising from the design is quite small: 
2.4% for L = 5, 0.8% for L = 7, 0.9% for L = 10, and 0.9% for L = 25. In 
the variable demand case the cost differences are 2.6%, 2.3%, 1.6%, and 
0.7% respectively. All these differences are exaggerations because they ig-
nore fixed costs, such as the first term of (5.7b), which are large and can be 
predicted without error by the CA method. In all cases, the CA prediction 
was lower than the actual cost. Ouyang and Daganzo (2004) further argue 
that this is not a coincidence, and that the CA predictions for our examples 
should be lower bounds to the optimum solution. Thus, the percentage dif-
ferences we observed can be interpreted as optimality gaps. 

Note that in both scenarios, and in agreement with theory, the accuracy 
of the CA formulae and the efficiency of the proposed design method im-

a) b)

c) d)
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proves with problem size considerably. This is fortuitous. It means both, 
that the CA formulae describe well the optimum costs of large complex 
problems, and that the CA discretization algorithm can complement con-
ventional optimization methods when they would have the most difficulty. 

Although the discretization procedure was illustrated with Euclidean 
metrics, it can also be applied to other metrics by deforming the disks dur-
ing the simulations, and using true distances in the tessellation step. For 
example, designs for L1 metrics should use square Adisks@ with the same 
repulsive forces as before, and the L1 distance formula. An example is 
shown in Figure 5.15. 

-5.5 -4.5 -3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5
-5.5

-4.5

-3.5

-2.5

-1.5

-0.5

0.5

1.5

2.5

3.5

4.5

5.5
N = 57, Uniform Density, L1 Metrics

-5 -4 -3 -2 -1 0 1 2 3 4 5-5

-4

-3

-2

-1

0

1

2

3

4

5
N = 57, Initial Locations

-5 -4 -3 -2 -1 0 1 2 3 4 5-5

-4

-3

-2

-1

0

1

2

3

4

5
N = 57, Iteration: 71

-5 -4 -3 -2 -1 0 1 2 3 4 5-5

-4

-3

-2

-1

0

1

2

3

4

5
N = 57, Iteration: 726

Fig. 5.15 Performance with an ideal solution.(Source: Ouyang and Daganzo, 
2004).
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Suggested Exercises 

5.1 Consider a square influence area centered at the origin in the cartesian 
plane, with side 2. Travel on the plane can only take place in direc^-
tions parallel to the coordinate axes. Both the depot and a terminal are 
placed on the abscissa axis. The depot is located at x= –10. The ter-
minal is located at x=xT.

Vehicles from the depot only visit the terminal. Vehicles from the 
terminal visit K randomly scattered points on the square once a day. 
Each day, one vehicle arrives at the terminal from the depot and K 
trips leave the terminal to a different set of points. 

Determine an expression for the expected total number of vehicle-
miles traveled per day as a function of K  1 and -1  xT  0 . Plot the 
relative difference between the minimum of this expression and its 
value for xT = 0 as a function of K . 

Demonstrate that for a Euclidean metric the relative difference is 
similar. (Suggestion: the problem can be solved analytically, but this 
is tedious. Instead, the reader may want to generate K random loca-
tions and calculate the differences in total distance with pencil and 
paper; a computer spreadsheet greatly simplifies the task).

5.2 Consider the VRP problem as described in Sec. 4.2 with distances 
given by a Euclidean metric and points homogeneously distributed on 
a lattice. Assuming that the region contains many more vehicle tours 
than points per tour (i.e. tours can be elongated as desired), show that 
the "k" coefficient is 0.5 for a square lattice, slightly larger (12-1/4) for 
an equilateral triangle lattice, and slightly smaller (27-1/4) for a hex-
agonal lattice. (See the application in Daganzo, 1984b, for a hint). (In 
all cases it is smaller than the coefficient for randomly distributed 
points.)
Repeat the analysis for the TSP (the result then applies to the VRP 
when there are few vehicle tours). Is the "k'" coefficient larger or 
smaller now? 

5.3 Repeat the example of Section 5.3.5 assuming that schedules can be 
synchronized, and that c'h = ch and c'd = cd . What would happen if 
v'max = vmax? Discuss from the solution how the benefit of coordina-
tion depends on the ratio v'max/vmax , the item value, the cost of trans-
portation, etc... 
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5.4 Consider again the example of Sec. 5.3.5, with the numerical data 
used in Sec. 5.5: v'max = ; vmax = b = b' = a'/  = a/  = 1 . Assume that 
(also as in Sec. 5.5), the depot is located on one of the corners of a 
square of side 7. Generate within that square two random sets of 
available terminal locations, with 5 and 25 points each. Compare the 
cost and structure of the solutions you would recommend in both 
cases, both to each other, and to the cost predicted by the CA ap-
proach without restrictions to location. 

Redesign the system if one half of the square contains 2 or three ter-
minals (e.g. corresponding to the locations of the set with 5 locations), 
and the other half about 12 or 13 terminals (corresponding to loca-
tions from the other set). 

5.5 Consider again the elevator system design of Problem 4.8. Describe 
and apply a procedure to find the optimal location for a skylobby, the 
number of elevators allocated to shuttle service, and the banking strat-
egy for the building sections above and below the skylobby. (Eleva-
tors provide shuttle service between lobbies, so that a passenger trav-
eling to one of the top floors will take a non-stop elevator to the 
skylobby and then will transfer to a "local" elevator to the final floor; 
see Fruin, 1971, and Mitric, 1972, for descriptions). 

5.6 The demand of a hypothetical customer follows a normal stochastic 
process with independent increments. The demand rate is D' and the 
index of dispersion is  (i.e. the variance of the number of items con-
sumed in time T is: D'T(items2) ). Possible delivery times are at time 
instants, t = 0, H, 2H, 3H, ... If an order is placed at time to , it arrives 
at the delivery instant immediately after: to + T  , where T  is an order 
response time (or lead time). 

Suppose that the customer places an order when the inventory on 
hand plus the amount on order jointly equal a trigger value, vo (more 
complicated strategies can be devised depending on when the trigger 
point is reached, but they would be harder to implement). The size of 
the order is a constant v. (For H = 0 , this strategy is analogous to the 
one presented in Chapter 2 in connection with Fig. 2.9.) 

Assuming that v >> D'H (i.e. we order enough to last several head-
ways), and that vo is chosen to avoid stock-outs, prove that the aver-
age (and maximum) accumulation at the destination decompose as 
suggested in the text: a headway delay term equaling 2H (and H), a 
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load make up term proportional to v and independent of H, and a 
safety stock term independent of v.
(Hint: show that if vo is chosen to equal D'(H + T ) + 
(CONSTANT)( D'(H + T ))2 , stockouts are very unlikely for 
(CONSTANT) > 2. Then prove the statement). 

Show as well that the proportion of delivery points where there is a 
stop is: D'H/v, and that given a reorder cost, cp, the optimal proportion 
is a simple function of cp , ci , D' (constants) and H. 

5.7 A factory produces items for a region containing many small custom-
ers. Customer n consumes items at an average (stationary) rate, D'n , 
but the actual number of items demanded during time intervals of 
length T days change over time. The actual number in any interval is 
viewed as a random variable with mean D'nT (items) and variance 
D'nT (items2), where  (items) is a constant index of dispersion which 

is the same for all the customers. The amounts consumed in any col-
lection of non-overlapping intervals are mutually independent vari-
ables, independent of the amounts consumed by other customers. For 
intervals such that D'nT >> ( D'nT)2 , the variables are approximately 
normal.

Two transportation modes are available. Mode 1 is fast but expensive; 
items can be considered to arrive at their destination a short time after 
they are ordered, but there are no economies for transportation in bulk 
– an item using this mode from point A to point B pays a fixed rate, c1
($/item-mile), based on distance AB. Mode 2 is slow but cheap. 

Currently only mode 2 is used to deliver items to the customers, but 
due to its slowness the customers must carry too large a safety stock 
(see Fig. 2.9). We seek to evaluate the merits of introducing a system 
of warehouses, similar to the level-0 terminals of this chapter, whose 
function would be to consolidate the demand fluctuations of all the 
customers in each influence area. Items would be delivered to the 
warehouses by mode 2 and from the warehouses with mode 1. This 
would effectively move all the safety stock from the customers to the 
warehouses – reducing its total size – but would increase transporta-
tion cost since mode 1 is now used. 

Assuming that items are delivered non-stop from the origin to each 
terminal in a full truck carrying vmax items, find the size I, of a ware-
house's influence area which minimizes the total logistic cost. You 
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may use ci for the waiting cost per item-day and assume that in any 
subregion P of R of a size comparable with likely sizes of an influ-
ence area, the number of customers with demand D'n is n P  and all 
the customers are uniformly distributed. 

(Hints: If the average distance from the depot to a warehouse is inde-
pendent of the number of warehouses – a reasonable assumption – 
then the cost of mode 2 transportation and handling is independent of 
the number and location of terminals. Explain why. You will need to 
determine the characteristics of the demand at a warehouse as a func-
tion of I, which will yield the inventory cost at the terminal from a 
construction such as Fig. 2.9. You will also need to estimate the num-
ber of item-miles traveled in the influence area.) 

5.8 Repeat the example of Sec. 5.3.5. for the case v'max =  , assuming 
that one half of the demand comes from a few large customers, "a" = 
0.1 , (remember a = ch ) and the other half from a larger number of 
smaller customers with "a" = 10 . Also assuming that 6 = 0 , explore 
the nature of the solution for various values of 5 – the transshipment 
penalty per item. Consider discriminatory customer treatment strate-
gies.

5.9 Items from many origins, i , have to transported to a common destina-
tion, Di miles away. A single organization (presumably located at the 
destination) is responsible for coordinating their transportation, and 
for the resulting freight charges. Although all of the flow, qi , from 
each origin can be shipped directly to the destination, it is also possi-
ble to ship a portion of the flow, fi , (possibly all of it) to a terminal, di
miles away, where it can be dispatched to the final destination. The 
distance between the terminal and the destination is D miles. No ped-
dling or collecting is allowed. 

Each origin makes items of a unique type, i . Only one vehicle type is 
available and items are so small that a vehicle can be filled with 
enough quantity of any item type mixture. Some of the flow from ori-
gins producing light items (items that cube out a vehicle before reach-
ing its weight capacity) is consolidated at the terminal with some of 
the flow from "heavy" origins. Management has determined that the 
total light-item flow sent to the terminal should precisely combine 
with the heavy-item flow through the terminal, so that only loads of 
perfect density leave the terminal. 
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Let wi denote the fraction of truck weight capacity taken up by one 
item of type i , and vi the corresponding fraction of volume capacity. 
The difference ai = wi - vi , small compared with 1, will be positive for 
"heavy" items and negative for "light" items ; it will be zero for items 
of ideal density. Show then that management's decision is equivalent 
to the constraint: 

.0=faq
i iii

Show, as well, that (if this constraint is satisfied) the vehicle-miles 
saved by using a given set of fi's (0  fi  1) can be expressed as: 

 ,fbq iiii

where bi is the following (possibly negative) constant:

Describe a simple (greedy) algorithm to solve the savings maximiza-
tion linear program, and apply it to the data of Table 5.1 (D = 400) , 
taken from Daganzo (1988a). 

Finally, prove that the "ideal density" strategy adopted by manage-
ment is optimal. 

.,max iiiii DwwvdD
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Table 5.1 

i qi/10 di Di i/ 10ai bi

1 1 10 393 0.23 -0.77 -291

2 1  22 398 0.71 -0.29 -92

3 1  24 399 0.64 -0.36 -119

4 1  42 436 0.32 -0.68 266

5 1  38 392 1.82  0.45  46 

6 1  78 333 0.42 -0.58 -87

7 1 100 446 1.32  0.24  54 

8 1  96 481 0.31 -0.69 -261

9 1  89 336 1.46  0.32 153

10 1  85 378 1.06  0.06 107

11 1  29 411 1.96  0.49  18 

12 1  63 389 1.16  0.14  74 

13 1  9 408 1.26  0.21  1 

14 1  10 402 1.94  0.48  8 

15 1  7 407 1.64  0.39  0 

16 1  51 362 1.24  0.19  89 

17 1  2 399 1.24  0.19  3 

18 1  1 400 0.87 -0.13 -51
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Glossary of Symbols 

1- 4:  See chapter 4 glossary, 
5:  Fixed cost per item handled at the terminal ($/item), 
6:  Eq.(5.3) constant, capturing terminal scale economies, 

cd:  Cost per vehicle-"mile", 
cf

o:  Terminal handling cost constant ($/time), 
cf

t:  Terminal handling cost per item ($/item), 
ch:  Holding cost per item-day, 
ci:  Inventory cost per item-day, 
cp:  Price charged for a customer delivery, 
cr

t:  Rent per item-day at the terminal, 
cr

o: Minimum rent per terminal, 
D':  Item flow through a point (customer or terminal), 
D'n:  Item flow for customer n, 
:  Spatial customer density (customers/area), 
e:  Effective spatial customer density (stops/area), 

fo:  Fraction of customers treated differently, 
:  [Variance/Mean] of items demanded (index of dispersion), 

H:  Headway, 
H*:  Optimum headway, 
Hi:  Inbound headway, 
Ho:  Outbound headway, 
Ho

j:  Outound headway to sector j, 
Ht:  Fixed terminal transfer time, 
I:  Influence area size (level-0), 
Ij:  Level-j influence area size, 
I*:  Ideal influence area size, 
Imin: Minimum allowable influence area size, 
Imax:  Maximum allowable influence area size, 
k:  Dimensionless constant of the VRP, 
:  Demand density rate (items/time-area), 

ns:  Number of stops per tour, 
ns*:  Optimal number of stops per tour, 
P:  Subregion of R,
r:  Distance from the depot, 
R :  Service region,
t:  Time, 
tmax:  Time allowed for distribution, 
t1

max, t2
max:  Time allowed for distribution: (1) inbound, (2) outbound, 

T :  Order response time, 
v:  Delivery lot size, 
vo:  Inventory trigger point, 
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v*:  Optimal customer delivery lot size (Sec. 5.4.3), 
vmax , v'max:  Vehicle capacities (items), 
x:  Spatial coordinates of a point, 
zi( ,r,I):  Inbound cost per item, 
zm

i:  Inbound motion cost per item, 
zm

i*:  Inbound motion cost per item, for an optimum headway, 
zm

o: Outbound motion cost per item, 
zm

o*:  Outbound motion cost per item, for an optimum headway, 
zo

m , j:  Outbound motion cost per item to sector j, 
zj( ,r, ):  Cost per item distributed with j, or less, transshipments, 
zj*( ,r, ):  Cost per item distributed with j transshipments, 
Z0( , ,I):  Average outbound cost per item in an influence area of size I ; no 
  transshipments, 
Zj( , ,Ij):  Average outbound cost per item in an influence area of size Ij ; j   
  transshipments, 
Z1

T(P):  Cost per unit time in P , with one or less transshipments. 
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Readings for Chapter 6 

Of all the chapters in this monograph, this is perhaps the one which is least 
related to the existing literature. Sections 6.2, 6.4.2 and 6.5.1 - considering 
respectively distribution with 0, 1, and 2 transshipments - are based on 
Daganzo (1987c). The results in this reference, however, are not presented 
literally; a more refined routing scheme, developed in the chapter, is used 
here. The discussion on detailed asymmetric strategies for distribution with 
only one terminal, at the end of Sec. 6.3.2, is based on Blumenfeld et.al. 
(1985a) and Hall (1987). 

6.1 Initial Remarks 

The first five chapters of this monograph have been devoted to logistics 
problems involving the movement of freight and people from one origin to 
any number of destinations – or else to the reverse problem of collecting 
freight and people from any number of origins for a single destination. 

We now turn our attention to problems involving any number of origins 
and destinations. In practice, many-to-many problems arise in connection 
with public carriers such as: airlines, the postal service, less-than-truckload 
carriers, railroads, etc. Unlike for private carrier operations, where most of 
the logistic costs are borne by the firm, some costs are now borne by the 
carrier and some by the shipper. This dichotomy, introduced in Sec. 5.4.3 
for the one-to-many problem, will also be recognized here.

The logistic problem will be specified as before, in terms of a geo-
graphical distribution of origins and destinations with certain supply and 
demand rates. It will be assumed that each destination demands a specific 
number of items from each one of the origins and that these cannot be sub-
stituted for one another. That is, we are dealing here with what normally is 
referred to in the network optimization literature as a multi-commodity
problem.

Single commodity problems arise if destinations specify a combined 
demand regardless of point of origin. Examples of these are water and 
electricity supply problems. These problems allow the analyst to specify 
which origins ship to which destinations, which greatly reduces the need 
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for travel and transportation. 
Single commodity problems are not addressed in this chapter because 

they can be reduced to special cases of the problems studied in Chapters 4 
and 5. If there are more destinations { j } than origins { i } , one can intro-
duce a single "super-origin" Oo with production rate equal to the total de-
mand rate at { j } , and then worry instead about finding the best scheme 
for serving { j } from Oo through a set of "terminals," { i }, assuming that 
items can be moved freely from Oo to { i } . To ensure that each real origin 
ships the prescribed amounts, the capacities of the fictitious terminals 
should be set equal to the origin's maximum production rates. If there are 
more origins than destinations, one would seek the best way of carrying 
items from the origins to a fictitious super-destination Do . 

This one-to-many interpretation of the single commodity problem in-
dicates that each real origin should serve the destinations in an influence 
area surrounding it, possibly with a transshipment, that these influence ar-
eas partition R , and that – conditional on certain variables – the opera-
tions in the influence areas should be independent of one another. Of 
course, the shed boundaries separating influence areas may shift with time 
if the demand and production rates vary with time. The system can be de-
signed as described in Secs. 5.4 and 5.5. 

Unfortunately, multi-commodity problems cannot be reduced in the 
same manner to a problem with a single origin or destination; they are in-
herently different and more difficult. This chapter will focus on the aspects 
of the problem that are better understood, for the most part involving sta-
tionary data and solutions, and emphasizing problems for which pipeline 
inventory is a negligible quantity. Reasonable for most freight transporta-
tion problems, this emphasis may not be appropriate for many-stop pas-
senger transportation systems, such as public transit. A thorough treatment 
of passenger transportation issues is beyond the scope of this monograph. 

This introductory section concludes with a brief discussion of a new role 
played by terminals in many-to-many logistics systems; Sec. 6.2 then ex-
amines distribution without terminals and no transshipments. The follow-
ing two sections examine the organization of systems with only one trans-
shipment per item: Section 6.3 discusses one-terminal systems, and Sec. 
6.4 systems with several terminals. The organization of these systems is 
discussed at three levels: (i) an operational level where the dispatching 
schedules and terminal locations are given, and we only seek the best way 
of routing the items and the vehicles; (ii) a tactical level where only the 
terminal locations (or only the schedules) are given; and (iii) a strategic 
level where everything is open to change. Section 6.5 concludes the chap-
ter with a discussion of multi-terminal, multi-transshipment systems. 



 Initial Remarks 217

6.1.1 The Break-Bulk Role of Terminals 

Section 5.2 illustrated how transshipments allowed items from a single 
origin to travel long distances in large batches to a terminal, and then in 
small batches from the terminal to the customers. This allowed route 
length restrictions and delivery vehicle size limitations to be met, while 
preserving transportation economies of scale. The same economies occur 
in reverse: small vehicles can carry items from scattered origins to a termi-
nal, where the small loads can be consolidated into larger ones for trans-
portation to a destination. We can think of terminals in many-to-one and 
one-to-many systems as consolidation points that allow line-haul and local 
operations to be decoupled. Consolidation is in fact their only role, for if 
there are no incentives to keep local routes short (e.g. pipeline inventory 
considerations, delivery vehicle size limitations, or other restrictions) and a 
filled vehicle carries a well defined number of items, then transshipments 
can be shown not to reduce costs (Daganzo, 1988).

This statement can be verified analytically from Eq. (5.5) by: (i) substi-
tuting either Eq. (4.10) or Eq. (4.21) with D'¯  replaced by /  for the func-
tion z0 ( , r, ) used in Eq. (5.4); and (ii) using (4.10) or (4.21) with I-1 in-
stead of  for zi( , r, I) . Simple algebraic manipulations then reveal that 
the minimum of (5.5) is greater than z0( , r, ) . 

The statement can also be verified intuitively. If the inbound and out-
bound schedules can be synchronized, it was shown in Sec. 5.4.1 that the 
inbound and outbound vehicles should arrive and depart from the terminal 
in perfect synchronization – with every outbound headway a multiple of 
the inbound headway. The least cost is often obtained with the scheme of 
Fig. 6.1a, where all the headways are equal and there is no discrimination 
across customers.1 In this case, however, the strategy depicted in Fig. 6.1b 
is also feasible. To see this, recall that delivery vehicles are as large as 
level-1 vehicles and that there are no route length restrictions. With the 
same pickup and delivery schedule as the old, the new strategy preserves 
holding costs and vehicle mileage. This is true because pipeline inventory 
costs are negligible. Clearly then, the new strategy is more attractive be-
cause it saves handling and terminal costs. 

Many-to-many multi-commodity problems are different. Under the 
same conditions, with no restrictions on delivery vehicle size and route 
length, transshipments can reduce logistics cost very significantly. Sup-
pose that a near optimal solution for a many-to-many problem without 
transshipments includes two vehicle routes that: (i) visit the same two sets 

1 The case with different headways is discussed in Daganzo (1988). Discriminating strategies for dif-
ferent customer types, some being served through the terminal and some not, also lead to the same 
conclusion – the construction of Fig. 6.1 can be applied to the set of routes that visit terminals.
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of origins and neighboring destinations, as depicted on the top half of Fig. 
6.2, and (ii) are operated with the same frequency. This arrangement 
would be reasonable if the destinations visited are similar as we shall soon 
see in Sec. 6.2 below. 

Fig. 6.1 Distribution with and without transshipments
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Fig. 6.2 Reduction in collection travel as a result of a break-bulk transship-
ment. (Source: Daganzo, 1987c) 

The bottom half of Fig. 6.2 illustrates how a transshipment can reduce 
transportation costs without increasing holding costs at the origins and des-
tinations. Without changing the times of departure, one vehicle could pick 
up items for both sets of destinations from some of the stops, and the other 
vehicle would do the same for the remaining stops. Both vehicles would 
visit just enough stops to carry the same load sizes as in the top part of the 
figure. To avoid the need for visiting both sets of destinations with both 
vehicles, these would swap appropriate portions of their loads at a terminal 
located near the end of their collection runs. It should be clear from the 
figure that such a swap would reduce the distance traveled and the number 
of stops, without increasing holding costs. It does entail additional fixed, 
handling and holding costs at the terminal but if the original number of 
collection stops is large the swap could be cost-effective. 

Notice that the magnitude of the savings increases with the number of 
routes that swap loads at the terminal; e.g., no savings could result with 
only one origin, or only one destination. Clearly, this opportunity for sav-
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ings is peculiar to many-to-many systems. Because loads must be "broken" 
before being reconstituted, transshipment points serving this function will 
be called, consistently with motor carrier jargon, break-bulk terminals 
(BBTs) . 

If there are vehicle size or route length limitations, many-to-many sys-
tems may include both consolidation terminals (CTs), whose function is to 
consolidate the small loads carried by local vehicles into larger (long-
distance) vehicle loads, and BBTs serving a swapping function for the 
CTs. This is quite common in existing systems. Motor carrier networks, 
for example, may include end-of-line terminals (CTs) and break-bulk ter-
minals; railroad networks include industry yards (CTs whose function is 
accumulating cars from local sidings) and classification yards (BBTs); air-
line networks include minor airports (CTs) and hubs (BBTs); the postal 
network is similarly structured, etc. For most of this chapter we will focus 
on the organization of logistic systems with BBTs only, where only one 
type of vehicle is used. In the meantime CTs will be viewed as the final 
origins and destinations. Section 6.5.2 will then show how an integrated 
system with both CTs and BBTs can be designed. 

6.2 Operation Without Transshipments 

Let us now examine strategies for serving a collection of scattered origins 
and destinations without transshipments. 

We will restrict our attention for the time being to transportation modes 
which are not set up to intermingle pick-ups and deliveries within the same 
route. Not appropriate for passenger transportation, this assumption is rea-
sonable if freight cannot be easily moved within the vehicle. Vehicle tours 
should then stop at only one origin and multiple destinations – or else the 
other way around. In this manner the freight does not have to be sorted and 
restowed every time the vehicle stops for a pick-up or delivery. 

Given the spatial densities of origins and destinations o(x) and d(x) , 
and an origin-destination flow density (xo, xd) denoting the number of 
items per unit time that need transportation from a region of unit area 
around xo to a region of unit area around xd [in this chapter  has units of 
items/(time  distance4)], we can evaluate the logistics cost per item by 
comparing 2 strategies:

(i) peddling with tours from each origin to many destinations, 
(ii) collecting with tours from many origins to each destination. 
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In the first case, with the transportation, handling and holding cost vari-
ables defined as in prior chapters, the cost per item is given by the function 
"z0" of Sec. 5.3. The arguments " r ,  , and  " of this function need to be 
reinterpreted, though: r now represents the distance between the origin and 
destinations in a tour (see Fig. 6.3),  becomes d , and  must be replaced 
by / o since in earlier chapters  represented the number of items de-
manded per unit time and unit area from one origin. Similarly, D' should 
be replaced by /( o d). Thus, for peddling, the cost per item averages: 
z0( / o , r , d). In the second case, collecting for one destination, the cost 
is: z0( / d , r , o); the solution with least cost should be chosen. If desired 
one can average this minimum over all possible combinations of xo and xd

to obtain a CA estimate of average cost. 
The explicit cost expressions given in Chapters 4 and 5, which would be 

used to develop z0 , assumed that vehicles return to the depot empty after 
completing the delivery run. For many to many systems, however, this is 
unlikely; most vehicles will find loads to carry, if not back to the same ori-
gins at least somewhere else. With most vehicles usefully employed at 
their destinations (load backhauling is discussed in Sec. 6.5.3.), one should 
discount the cost of the return trips. It is not difficult to see that the cost of 
open ended trips (as shown in Fig. 6.3) can be captured without changing 
the form of our logistic cost function, e.g. Eqs. (4.20a) or (4.24a), by using 
r instead of 2r in the evaluation of the line-haul transportation cost coeffi-
cient 1 ; i.e. using 1 = cs + cdr. We will assume in the following that 1
has been adjusted to reflect the availability of backhauls. 

For a case of peddling cheap items, when pipeline inventory can be ig-
nored, the minimum of Eqs. (4.20) is achieved for ns  vmax ( 4 / 2)1/2 (see 
the derivation of Eq. (4.21)). The minimum cost is then: 

where we have used 4 = ch
d o/  . Recall that 2 is cs + cd k ( d )-/12. Equa-

tion (6.1) is identical for collecting except for 2, which is then 2 = cs + 
cdk( o)-1/2 . Clearly, if o > d then z0 is least for collecting, and the reverse 
is true if o < d . This should be intuitive; it implies that the single stop is 
made at the end of the trip with the largest traffic generator (either an ori-
gin or a destination) and that multiple stops are made at the end of the trip 
where stops are most closely grouped. 

With our current definitions for 2 and 4 , the optimal number of stops 
leading to (6.1) is: 
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The right side of this expression is a dimensionless constant that may de-
pend on xo and xd , and we abbreviate it by K(xo, xd) . It represents the 
square root of the ratio of two quantities: (i) the average load make-up 
holding cost per item when every origin-destination pair is served without 
peddling or collecting by full vehicles, chvmax/D' = chvmax

o d/  ; and (ii) 
the  prorated  motion   cost  per  stop   of  one  item  in  a  full vehicle, (cs +
cdk( d)-1/2)/vmax . In other words, K2 can be viewed as the ratio of holding 
cost to transportation cost for a naive strategy in which one ships in full 
trucks and allows only one delivery stop; i.e., where only the transporta-
tion cost is minimized. 

Fig. 6.3  Many-to-many tours without transshipments. (Source: Daganzo, 
1987c)

The quantity "K" can vary by several orders of magnitude depending on 
the problem at hand and is typically large compared with 1. It can be of 
order 103 (perhaps even larger) when valuable items have to be moved be-
tween many small origins and destinations, and it is small when the system 
consists of few origin-destination pairs with large flows. 
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The constant "K" allows Eqs. (6.1) and (6.2) to be expressed concisely as 
follows:2

 ns = K , (6.3a) 
and

z0 = c's + { 1 + 2 2K}/vmax ,

where 1 is the line-haul motion cost per trip and 2 is the motion cost per 
added stop. If one repeats the analysis we have just done, allowing vehicle 
tours to make both deliveries and pick-ups, one finds that z0 increases with 
the 2/3 power of K and ns  K2/3 (Daganzo, 1987c). 

Notice that, without transshipments, an unreasonably large number of 
stops may need to be made. This calls for the introduction of BBTs to 
shorten vehicle routes. The constant "K" will also appear in the cost ex-
pressions for systems with break-bulk transshipments, and will dictate 
which system configuration is likely to work best. In the following sec-
tions, it is assumed that a single vehicle type, with capacity vmax , is used. 
The assumption is relaxed (with the introduction of CT's) in Sec. 6.5.2. 

6.3 One Terminal Systems 

Figure 6.4 shows how, by linking No origins and Nd destinations through a 
terminal, the number of two-stop routes is reduced from No  Nd to No+Nd.
The reduction is proportionately larger the larger the number of origins and 
destinations. This helps reduce transportation cost because, with fewer ve-
hicle routes linking origins and destinations, it is possible to carry the same 
amount of freight with equal service frequency in larger batches with 
fewer trips. With larger batches, the transportation cost per item-mile can 
be reduced by a factor: (No+Nd)/(NoNd) . Of course, if a smaller reduction 
in transportation cost is accepted then the service frequency on all the links 
can be increased. 

This route reduction phenomenon is the basis for the one-terminal 
strategies explored in this section. Symmetric strategies, where origins and 
destinations are only differentiated by position within the study region R , 
are studied first. With these strategies nearby origins (and nearby destina-
tions) receive similar service. 

2 z0 = c's - 2 2/vmax + { 1 + 2 2K}/vmax is a more accurate expression when ns is small. 

(6.3b)
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Fig. 6.4 Number of routes with one transshipment 

6.3.1 Symmetric Strategies 
We will explore first the operational level (routing) problem where the 
terminal location and the service frequency (headways) are given; only the 
item/vehicle routes are sought. Building on this case, we will then examine 
the tactical level (scheduling/routing) problem where only the terminal lo-
cation is given. Finally we shall address the strategic level problem. 

The operational problem: With one terminal, the operational level prob-
lem is simple. Given a set of inbound and outbound headways – possibly 
varying across broad subregions of R – the vehicle routes can be found 
with the solution of a vehicle routing problem, possibly constrained and 
including backhauls, as discussed in Secs. 4.2, 4.4 and 4.8.1. This estab-
lishes the distance traveled in R and the total motion cost during each dis-
patching interval. Since the holding costs are also known, and the number 
of dispatching instants per day is fixed, the logistics costs per day can be 
easily estimated. 

The tactical problem: At the tactical level we must choose the schedules 
and decide whether they are to be coordinated at the terminal or not. With-
out coordination, the terminal costs per item have the form of Eq. (5.3), 5
+ 6/ R  , which is independent of the tactical variables. 
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If the inbound and outbound operations are managed as if they were unre-
lated many-to-one and one-to-many systems then the methodology of 
Chapter 4 can be used to design each set of operations, and to estimate the 
resulting average inbound and outbound costs. In the notation of Chapter 
4, these costs would be z0( o, ro , o) , for inbound; and z0( d, rd , d) for 
outbound. Here, ro (or rd) represents the distance from an origin (or desti-
nation) to the terminal, and o (or d) represents the production (or con-
sumption) rate density in items per unit time per unit area. Clearly, the 
problem does not require any new treatment.

If schedules can be coordinated, inbound and outbound headways for 
different subregions of R could be chosen from a menu of the form, H
2p, where H is an arbitrary time value and p is an integer. This "power-of-
two" strategy (Daganzo, 1990) allows the average route to use a headway 
within 50% of optimal, ensuring at the same time that all the headways are 
integer multiples or submultiples of each other. As a result, if all the 
schedules are forced to coincide at one time (say, at time t=0) then every 
pair of routes will be synchronized as well as possible and the savings 
from synchronization will be greatest;3 they will equal the smaller of the 
two headways on the two vehicle routes used by any given item (see Figs. 
4.9 and 4.10). In other words, the third term of (5.9) yields the holding 
cost, which is a convex increasing function of the headways. This facili-
tates the design process, as explained below.

Note that the inbound and outbound operations can proceed as described 
in Chapter 4, as if the terminal was the depot. Therefore, the motion cost 
can be easily estimated. The notation for motion costs introduced in con-
nection with Eq. (5.9) can be used to summarize these costs. There, we de-
noted by zo

m the function relating a terminal's outbound motion cost per 
item to the demand and customer densities, the size of the influence area I , 
and the headway H. This function also describes the inbound (or out-
bound) costs in the neighborhood of x for our current situation, if we re-
place the size of the influence area by R  ,  by the production (or con-
sumption) rate density in the neighborhood of x, o (or d ),  by the 
density of origins (or destinations), o (or d) , and H by either the origin 
(or destination) headway Ho (or Hd) . Because this function must now be 
used to describe the sum of the inbound and outbound motion costs, the 
superscript " o " is omitted from the result, which becomes zm . (In this 
chapter, the superscript " o " is used to differentiate origins from destina-
tions " d ", whereas it was used to differentiate the outbound from the in-
bound direction in Chapters 4 and 5 ).

3 A similar strategy was used in Sec. 5.4.1 for coordinating one inbound headway with many outbound 
headways; these were multiples of the inbound headway.
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If backhauls are used, the dependence of the motion costs on the in-
put/decision variables is qualitatively similar but modifications are needed 
in the expression of zm. If the flows in both directions are balanced one can 
simply use r instead of 2r in the motion cost expressions of Chap. 5, as we 
suggested earlier. If the flows are unbalanced by more than a factor of 2, a 
good first approximation is to neglect the cost of overcoming distance for 
the secondary flow and keep all other costs the same, as explained in Da-
ganzo and Hall (1990). Alternatively, one could use improved formulae 
such as those proposed in that reference.

In any case, it is now easy to find headways that minimize approxi-
mately the sum of zm and the holding costs. For example, if the "power of 
two" constraint is ignored, one can find numerically the headways that 
minimize the (convex) sum of the holding plus motion costs, averaged 
over the whole region. The headways can then be adjusted without major 
repercussions, e.g. to the nearest "power-of-2" multiple of the smallest 
headway. Even more drastically, Daganzo (1990) claims that restricting all 
the headways to be equal in one of the directions, a helpful simplification, 
is likely to result in near minimal cost unless there are vast differences 
among customers. See Problem 6.1. 

A case of special interest arises when vehicles are dispatched full be-
cause items are cheap, route length is not restricted, etc.... Then, for a 
given set of headways, zm is given by the minimum of the second and third 
(motion cost) terms of Eq. (4.20a) with respect to ns ; note that the delivery 
(or collection) lot size v used in the neighborhood of x is fixed since the 
headway is given. Because these terms decrease with the number of stops 
ns , the minimum is achieved when nsv  vmax . Therefore, the inbound part 
of zm is: 

.
v

+
v

=zinbound 21
m

max

Since v = ( oHo)/ o and 1 = (cs + rcd), the inbound motion cost at an origin 
is:

.
H

+
v

rc+c=zinbound oo

o
2ds

m
max

The destination (outbound) cost expression is identical, with the super-
script "o" on the last term replaced by " d ". 
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Note that the above expression increases linearly with r at a rate cd/vmax
that is independent of the headways. This should not be surprising, since 
items travel in full vehicles for any headway. Also note that the expression 
is convex-decreasing in the headways, as stated. Recognizing that the 
headways can change with position, we can express the total motion cost 
per day as: 

.d
H

+
H

+d
v

rc+c+=dayper
costmotion

d

d

o

o

2
dsdo

RR

xx
max

Note that the optimal headways will be the result of a trade-off between 
the second term of this expression and the holding cost per day. Both ele-
ments of the trade-off are independent of r, the distance to the depot.4 That 
is, if the terminal is moved, the optimal schedules do not change. The only 
portion of the cost that changes is the first integral of the motion cost, 
which is a weighted average of r across x . This decomposition property 
will simplify the strategic analysis. 

In other words, if vehicles travel full, the optimal cost of the tactical 
problem depends on the terminal position (through r) as follows: 

The same relationship (with a different "CONSTANT") holds true without 
coordination – see problem 6.2. 

The strategic problem: The terminal is optimally located if its distance 
function r(x) minimizes the total tactical costs. 

If vehicles travel full the optimal solution is the minimum of the 
weighted average expressed by the above integral. This is the well known 
Weber-point location problem, which can be easily solved (see Losch, 
1954, for example). We reiterate that the optimal location is in this case 
independent of all other operational and tactical details. 

If vehicles do not travel nearly full almost always, then the problem 
does not decompose quite so cleanly. As an approximation, one can calcu-
late the tactical costs for a few candidate locations with different r(x), and 
make the selection accordingly. This approach should be quite satisfactory. 

4 In integral form, the holding cost per day is: 
R R

dxdxxxx
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We have argued repeatedly that logistics problems are usually not very 
sensitive to the specific dispatching times, terminal locations, etc... if those 
are reasonably close to the optimum. Numerical experimenttation with ac-
tual data confirms this for the Weber problem. S. Bhaskaran and R. Kro-
mer (1986) have done extensive sensitivity analyses for locations of Gen-
eral Motors facilities in the continental US, invariably finding that vast 
regions of the country provide costs within 1% of optimal. Additional evi-
dence in this respect can be found in Campbell (1992 and 1993a). 

The same should be true for non-Weber problems. For most large sys-
tems, one would expect to find substantial portions of R where locating a 
terminal yields nearly as good a solution as the optimal location. Finding a 
satisfactory solution, thus, should be easy. Hall (1986) has illustrated the 
process when time-zones are important and there is a deadline for pick-ups 
and deliveries. Also arguing that the specific location does not matter 
much, he shows that the ideal region for locating a terminal is shifted 
eastward due to the asymmetry introduced by the time-zones. To explore 
in more detail the concepts of Sec. 6.3.1, the reader is encouraged to solve 
problem 6.3. 

6.3.2 Discriminating Strategies 

To this point we have assumed that every origin destination (O-D) pair is 
served through the terminal. This, however, may be inefficient when the 
origin is close to the destination and both are far from the depot. Too much 
circuity is introduced. 

Using a conditional decomposition procedure similar to that of Sec. 
5.4.4, we examine in this subsection ways of discriminating across O-D 
pairs. We examine first strategies that only differentiate O-D pairs by their 
general location within R, and then discuss briefly more detailed strategies 
that account for other characteristics of the origins and destinations.

Decomposition by location: Instead of dealing with O-D pairs individu-
ally, they will be treated in groups. To accomplish this, the service region 
is divided into origin subregions, i, and destination subregions, j, (hope-
fully not too many); O-D pairs for the same two subregions (i,j) are then 
treated in the same manner. We use Pi and Pj to denote the surface areas of 
these subregions. In the following, variables indexed by superscript "i" will 
refer to origin zones, and variables indexed by "j" to destination zones. 

If the inbound and outbound headways at the terminal are known for 
every i and j, then the operational problem is simple. We need to determine 
what proportion of the flow from subregion i to subregion j , fij , should 
travel direct, and what proportion through the terminal (Figure 6.5). If for 
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direct distribution between subregions i and j it is better to peddle than col-
lect, we will assume that fij of the origins in subregion i ship to j on a di-
rect, peddling route, and the remaining origins through the terminal. The 
desired split is then achieved by partitioning the origin subregion into a di-
rect-shipping and an indirect-shipping part. (The same flow split between i 
and j can be achieved in other ways, but the cost can be shown to be 
higher). The average cost for items shipped direct, zij , is given by Eq. (6.1) 
if vehicles travel full. Note that zij is a constant independent of all tactical 
and operational variables. Most notably, it is independent of the fij. We 
now show that under certain conditions, the operational problem decom-
poses by O-D subregion pair. 

Conditional on the headways Hi and Hj , the holding cost per item for 
travel from i to j through the terminal is known and independent of fij . Re-
call that it equals chmax{Hi, Hj} if the schedules are perfectly coordinated. 

The motion costs per item ( zm
i and zm

j ) are also as described in section 
6.3.1, but with smaller origin and destination flow densities: 

i

iijiji Pf1  ,   for production 

and

The total terminal-motion cost per day from i to the terminal is thus: 
iPizm

i. A similar expression holds for the destinations j. Thus, the total 
terminal-motion cost per unit time is: 

If vehicles are dispatched full, we have: 
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Fig. 6.5 Routing possibilities, with and without a transshipment 

We have used the constants i and j (densities of origins and destinations) 
in these expressions for the density of collection and delivery stops to/from 
the terminal. This is reasonable for the origins, in view of the partitioning 
scheme for splitting the flows, and is also reasonable for the destinations as 
long as every destination receives some flow through the terminal. There-
fore, it is safe to assume that in the expression for the total terminal-motion 
cost per day only the i and j depend on the splits and that, as explained 
earlier, the dependence is linear. Note as well that the rate at which cost in-
creases with the splits is independent of the headways, as happened in Sec-
tion 6.3.1. 

If the headways are constant the terminal-motion cost per day is the sum 
of a constant plus an amount (cs + rcd)/vmax for every item collected and 
every item delivered r miles away from the terminal. The contribution of 
O-D subregion pair (i,j) toward this quantity is: 
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and its contribution toward total daily direct-shipping costs is: 

.zfPP ijijjiij

The sum of these three expressions across (i , j) is a logistic cost function, 
which is to be minimized with respect to the fij for a given set of headways 
(the operational problem). The fij 's must be in the unit interval; they are 
not restricted by other constraints. Therefore, since the objective function 
is separable in the fij , each fij can be chosen independently of the others, 
by minimizing its contribution to the objective function. In physical terms 
this means that for a given set of headways, we will ship without trans-
shipments if the direct-cost per item, zij , is smaller than the marginal cost 
of sending an item through the terminal: 

.H,Hc+
v

cr+r+c ji
h

d
ji

s max2
max

Otherwise, we should ship through the terminal. Because fij should be ei-
ther 0 or 1, all the sources in an origin subregion will ship in the same 
manner.

If the system is operated on the clock with a unique headway H, and the 
conditions are fairly homogeneous – so that zij is the sum of a constant and 
rijcd/vmax , where rij is the distance from i to j – then the decision for fij is 
only based on the circuity of the terminal route. We ship direct whenever 
ri+ rj - rij is greater than a fixed quantity. 

If the vehicles cannot be operated full, then the operational problem is 
more complicated because the fij 's don't define a separable linear program 
anymore, but it should be possible to solve it approximately with relaxa-
tion schemes. Note, however, that with the high flows likely to arise in this 
type of problem (otherwise we would not be considering the direct ship-
ping option to begin with) it is quite unlikely that route length constraints 
or pipeline inventory cost considerations would prevent filling the vehi-
cles.

The tactical problem is easy to solve if the operational problem can be 
solved. If the system is operated on the clock (with a unique H), it is a 
simple matter to choose the best H by testing various values; the one with 
the least cost should be chosen. If a unique headway is not desirable the 
solution is more difficult. We have seen, however, that conditions have to 
be drastically different for some i's and j's for that to be the case. It should 
then be fairly obvious which (i,j)'s should be operated on lower or higher 
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frequencies than the norm; and to identify a few reasonable headway sets 
for testing. These techniques can be applied to Problem 6.4. 

More detailed discrimination: Decomposition approaches also work if 
other details of the origins and destinations, besides location, are also used 
to discriminate across O-D pairs. This is desirable if the additional dis-
criminating characteristics, such as production rates and item values, 
change drastically across origins and destinations. In this case, instead of 
partitioning the region into subregions, one must deal individually with the 
specific origins and destinations; but this detailed approach is not difficult 
to apply if vehicles are not allowed to either peddle or collect. 

For this scenario, Hall (1987) bases routing decisions on both location 
and the specific demand and production rates. He assumes that the total lo-
gistic cost of the links inbound to the terminal is linear in flow. (We have 
seen already that this will happen if these links are operated with full vehi-
cles; thus the assumption implicitly assumes that the flows on these links 
are fairly substantial). With this assumption, the problem decomposes by 
destination: the best way of receiving items at each j from all the i's can be 
determined independently for all j's. Each of these destination subproblems 
can be further decomposed if one holds constant the headway (or the 
shipment size as Hall suggests) from the terminal to the destination. The 
method can be applied with and without coordination at the terminal; and 
can probably be extended to allow for multi-stop non-terminal routes. 

Blumenfeld et. al (1985a) have addressed the same problem without the 
linearity condition, but their method only works for few (3 or 4) origins 
and any number of destinations. The problem is also decomposed by desti-
nation; but to achieve independence one must condition jointly on the in-
bound headways (or shipment sizes) from every origin to the terminal.

It is impossible to explain here all the possible situations and how they 
could be addressed (see Hall, 1993b, for more examples). Suffice it to say 
that if some sort of asymmetric service is suspected to be beneficial it 
might be possible to use a decomposition method if a proper set of condi-
tioning (tactical) variables can be found. 

6.4 Multi-Terminal Systems: One Transshipment 

The remainder of this chapter discusses systems with more than one termi-
nal, and for the most part it will address strategic problems. We seek the 
location and number of terminals that should be operated, as well as the 
schedules and routes to be used. This section considers the case where 
each item is transshipped at most once, and section 6.5 multiple transship-
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ments. Symmetric strategies will be examined in some detail, with dis-
criminating customer treatments discussed only briefly. We begin with an 
extended discussion of the operational problem – that of determining the 
vehicle and item routes for given terminal locations and dis-patching fre-
quency – as it is of central importance with multiple terminals. 

6.4.1 The Operational Problem 

A building block toward tactical and strategic analyses, the solution to the 
operational problem is also of intrinsic interest to public carriers. Because 
public carriers do not haul their own freight, they cannot determine pre-
cisely the value of the items moving through their system and the ensuing 
inventory costs. Thus, for these carriers the tactical problem is somewhat 
academic. In practice the service level (e.g.daily deliveries) is chosen 
based on marketing considerations, and is widely advertised. The market 
then determines which types of commodities move through the system. 

The routing schemes about to be introduced extend those in Hall (1984), 
Hall and Daganzo (1984), Daganzo (1987c), and Campbell (1990b). For 
clarity, they are described for a one-dimensional region first, with 2-
dimensional generalizations introduced later. For the one-dimensional case 
we describe non-hierarchical solutions – where the same flow is routed 
through all the terminals – first, and more efficient hierarchical methods 
second.

Non-hierarchical routing on the line: Figure 6.6a displays a region R
and NT = 7 evenly spaced terminals. We assume that there are many ori-
gins and destinations in the region (No, Nd >> NT.)

The non-redundancy principle introduced in Chapter 5 for one-to-many 
networks also applies here; with only one transshipment allowed, the flow 
between each O-D pair should move through only one terminal. As a result 
each terminal has a separate set of origin-destination pairs to serve. Given 
this set, each terminal should be operated as studied in the previous sec-
tion. We will assume (reasonably so – see problem 6.1) that all the origins 
and destinations are served with the same headway H. As a result the 
number of stops made by vehicles on their peddling and collecting routes 
must be adjusted by location in response to the spatially changing demand 
and supply rates. 

The terminal could then be operated on a clock, with all the vehicles ar-
riving and leaving the terminal at once, for minimal delays to the items. 
We will also assume that H is the same for all terminals. This is reasonable 
because a unique H simplifies the operating plan and the job of advertising 
the service schedules. 
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The best operating plan will minimize the total vehicle-miles and the num-
ber of vehicle stops. We assume that pipeline inventory can be neglected, 
and that vehicles leave and arrive at the terminals full. 

Assuming that each origin generates less than a truckload of goods per 
headway, the goods it ships through a terminal can be collected with a sin-
gle stop by a single collecting vehicle. Hence, the number of collection 
stops made during H at one origin, mo , equals the number of terminals to 
which that origin is shipping. Similarly, the number of delivery stops per 
destination, md , is the number of terminals from which deliveries are re-
ceived. Thus, the number of stops made in H is a direct function of the al-
location of O-D pairs to terminals. In a subregion (interval) of unit size 
(length) the number of stops is: o mo + d md . 

As in Sec. 4.2, we define collection (distribution) line-haul distance of a 
terminal as the average distance to (from) the terminal from (to) every ori-
gin (destination) using it, multiplied by the number of collection (distribu-
tion) tours started at the terminal. In other words, the total line-haul dis-
tance in R equals the number of item-miles traveled, divided by vmax.
Therefore, it is uniquely defined by the allocation of O-D pairs to termi-
nals.

Note that if each vehicle were to make only one collection stop, then the 
line-haul distance would equal the total distance traveled. Because vehicles 
make multiple stops, the total distance traveled is greater than the line-haul 
distance. In agreement with Sec. 4.2, we call the distance added by the 
stops "local distance". We now show that the local collection distance 
traveled per headway in a given region is proportional to the number of 
stops made in the region, except for a constant that can be ignored. First 
note that the local distance for a tour with ns stops is: (ns-1)/(2 o) . This is 
true because for every two stops added to a tour, its length only increases 
by one interstop distance, ( o)-1 . (You must imagine that one stop is tacked 
on to the end of the tour and the other one to the beginning, so as to keep 
the tour's center of gravity fixed; then only the stop at the far end lengthens 
the tour.) Clearly, according to the formula, each collection stop made in a 
region contributes (2 o)-1 distance units to the total local distance, and each 
vehicle tour subtracts the same amount from this total. Because the total 
number of collection tours is fixed (remember that vehicles travel full) the 
total distance deducted in R is a constant, which we ignore here. The same 
occurs for distribution, where each stop adds (2 d)-1 distance units. This es-
tablishes that the local travel costs, for both collection and distribution, 
only depend on the number of stops made in the region; the less the better.
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Since the number of stops is a direct function of the O-D allocation to ter-
minals, an allocation uniquely defines the local travel costs; as well as all 
the stopping and line-haul travel costs. 

Fig. 6.6 Standard vs. hierarchical routing and terminal systems 

In the following we examine various allocation strategies and their effect 
on stops, local distance and line-haul distance. Since local distance is pro-
portional to the number of stops, to assess the efficacy of an operating 
strategy, it suffices to keep track of the line-haul miles and the number of 
vehicle stops. 

A possible strategy is depicted by the arrangement in Fig. 6.6a. The 
shaded area around terminal "A" represents its collection influence area. 
We assume that all the items from the shaded area are shipped through 
"A", regardless of destination, and that origins outside the shaded area ship 
through other terminals. Consequently, from that terminal items are deliv-
ered to all destinations. If all the terminals in Fig. 6.6 (or in the two-
dimensional case depicted in Fig. 6.7) were to operate in this manner the 
influence areas would partition the service region and, we would have: mo

= 1 and md = NT ; thus, the number of stops per headway, per unit length 
would be: o + d NT . If there are more destinations than origins then it 
would be better to define distribution influence areas and the number of 
stops would be smaller: oNT + d; we will assume without loss of general-
ity that this is not the case. 
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The strategy we have just described is termed 1-terminal routing because 
each (small) area either ships or receives from only one terminal. A draw-
back of the strategy is that items sometimes travel more line-haul miles 
than the minimum possible, as happens for an item traveling from P1 to P2
in Fig. 6.6a. 

Fig. 6.7 Hierarchical routing in two dimensions

An alternative routing scheme that eliminates this back-tracking is illus-
trated with terminal "B". This terminal has two influence areas, displayed 
by the cross-hatched segments to its right and left, but it only draws part of 
the supply from these areas. The influence area located to the left of B 
ships through B only items destined for points east of B (as well as for 1/2 
of the points in the influence area that are closer to B than to any other 
terminal.) The influence area located to the right, similarly, sends items to 
all points west, and to the points within itself that are closest to B. 

This 2-terminal routing scheme eliminates back-tracking for most ori-
gin-destination pairs, except for O-D pairs lying entirely within two 
neighboring terminals. The ensuing savings in line-haul distance are 
achieved at the expense of one extra stop per origin. Since mo = 2 , the 
number of stops per headway and per unit length is now: 2 o + d NT.
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In going from 1- to 2-terminal routing we save approximately rmax/4NT
line-haul vehicle-miles per inbound vehicle tour (since in the first case 
about 1/2 of the inbound miles are backtracking miles and in the second 
case nearly none), but we add o stops per unit length per headway. If the 
level of demand is such that we require Nv vehicle tours to collect all the 
items in R during a headway (Nv =  rmax

2 H/vmax) then the saved line-haul 
vehicle-miles per headway in R are: rmaxNv/4NT. Usually, Nv >> NT , and 
the total line-haul distance saved should be several times larger than rmax . 
The extra local collection distance, on the other hand, is negligible by 
comparison since it equals: ( o)rmax (2 o)-1 = rmax/2 . Thus, only if the in-
trinsic cost of a stop, cs, is large enough to nullify the line-haul savings, 
would the 1-terminal strategy be preferable. This is a moot issue, however, 
because the number of stops can be reduced below the 1-terminal levels, 
without additional backtracking, by hierarchical schemes. 

Hierarchical routing on the line: So far, as in Hall (1984) and Hall and 
Daganzo (1984), terminals have not been differentiated in any manner; if 
the origin and destination flows don't change much with location, the flow 
passing through each terminal is nearly the same. These strategies, how-
ever, result in many more delivery than collection stops, or the opposite. 
We illustrate now how one can greatly decrease the number of delivery 
stops with a small increase in the number of collection stops. We will do 
this first for a one-dimensional region (as in Fig. 6.6) and later for a two-
dimensional region (as in Fig. 6.7). 

Figure 6.6b shows the same region and terminals of Fig. 6.6a, but now 
the terminals have been labeled by numbers. The terminal near the center 
is labelled "1"; it partitions R into two equal halves. The terminals located 
near the middle of each half are labelled "2", and the ones located near the 
middle of each fourth are labelled "3". These labels represent levels within 
a hierarchy of terminals, with "1" being the highest level. A system with a 
full  set of terminals  and  = 1, ... ,  L levels will  have 2L -1  terminals and
2( -1) terminals at each level. (In earlier chapters L denoted the number of 
time periods, but that variable is not used in this chapter.) 

A routing strategy that avoids backtracking could be defined as follows: 
Serve each O-D pair by the highest level terminal between the origin and 
the destination; if there is no terminal in between, use the neighboring one 
which can be reached from both customers with the least combined dis-
tance.

The definition uniquely identifies a terminal for each origin-destination 
pair; because there can never be a tie for the highest level between termi-
nals. This is true because, with our labelling strategy, two terminals of the 
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same level are always separated by one or more higher level terminals. 
Notice that each origin sends items exactly through L terminals and re-

ceives items through L terminals. For example, origins in the cross-
hatched section of Fig. 6.6b would ship through the level-1 terminal for all 
points west of the section, through the level-3 terminal at the right end of 
the section for points in the neighboring section to the right, and through 
the level-2 terminal on the right half of the region for the remaining points 
farther east. The destinations in the shaded region would also receive items 
from the whole region through the same three terminals. (It is recomm-
ended at this point to identify mentally the 3 terminals that would be used 
for each of the 8 segments in the figure). Not given in detail here, a formal 
proof of our statement for arbitrary L can be constructed along the follow-
ing lines. For any origin segment, one would start by identifying the set of 
destinations served through the level-1 terminal. Recognizing that lower-
level terminals within this set are not used, one would then show that only 
one of the level-2 terminals is used to serve the remaining points. The ar-
gument would then be repeated for lower levels. Thus, without increasing 
line-haul (backtracking) miles, the number of stops can be reduced to L( o

+ d) from 2 o + dNT. If o d , the reduction in the number of stops can 
be quite substantial: from mo+md NT to mo+md 2L = 2log2(NT+1) . Thus, 
we see that with a hierarchical routing strategy, the number of stops only 
increases logarithmically with the number of terminals. 

Note that the flows through the various terminals are radically different 
even if the origins and destinations are uniformly distributed. Not counting 
O-D pairs within a segment, the level-1 terminal handles 1/2 of all the ori-
gin destination pairs. The level-2 terminals handle 1/2 of the rest; i.e. 1/4 
of the total. Since there are two level-2 terminals, each handles 1/8 of the 
total. Assuming that there are more than 3 levels, the level-3 terminal 
would handle 1/2 of the rest: (1/2)  (for =3), and since there are 2( -1) ter-
minals of this type, each would handle 2/(4 ) of the traffic, etc... 

Hierarchical terminal systems are used by many common carriers. Fed-
eral Express, an overnight package delivery carrier (H=1 day), started their 
operation with one hub in Memphis (Tennessee) and later opened another 
hub in Oakland(California). The Oakland hub is a secondary hub that only 
serves O-D pairs in the Western United States, and is in our terminology a 
level-2 terminal. Federal Express operates nowadays with L=2. Similar hi-
erarchies can be found upon inspection of airline networks, although in 
that case the highest level terminals cannot carry as much traffic as it 
would be ideal because of airport capacity limitations. 
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Two-dimensional extension: We are now ready to see how the hierarchi-
cal strategy can be extended to two dimensions. In this case it helps to 
think in terms of two sets of parallel lines in two perpendicular directions, 
defining a square grid as shown in Figure 6.7. Each set of lines is num-
bered with the bisecting strategy used in Fig. 6.6b, with the result shown in 
Fig. 6.7. The dark (level-1) lines should cross near the center of the region, 
R, and terminals are assumed to be located at or near the intersection of 
any two lines (level-3 lines are represented by dashed lines in our figure). 
Thus, with L=3, there should be a maximum of (2 -1)2 terminals, since 
there are (2 -1) lines in each family. The actual number of terminals may 
be smaller if some of the lines intersect outside R . 

The terminal selection process for a given O-D pair is simple. Choose 
the highest numbered line from each set that is crossed by the segment 
joining the origin and the destination, and use the terminal located at the 
point of intersection. 

As in one dimension, this defines unambiguously the terminal to be 
used, unless the trip does not cross a line in one of the directions. If this 
happens, one is assumed to choose the least circuitous terminal on the 
highest level line crossed in the other direction; thus, in traveling from P1
to P2 an item would be shipped either through A1 or A2; see Figure 6.7. If 
the path crosses no lines, then the origin-destination pair lies entirely 
within a cell of the grid and one would choose among the four terminals on 
the corners. 

If travel were only possible in the directions of the grid (distances fol-
low an L1 metric) then only the trips in which one (or both) of the families 
are not crossed would entail some back-tracking. If the origins and destina-
tions are independently distributed of each other, and NT>>1, then the 
probability that a trip requires some backtracking in one direction will be 
on the order of (1/NT)1/2 , the reciprocal of the number of lines in one direc-
tion; and the average distance added to the trip will be about 1/3 of the 
separation between terminals, ( R /NT)1/2. This extra distance result holds 
because: (i) the sum of the distances to the best line (of the two possible) is 
2/3 of the distance separation between lines (see problem 6.5), and (ii) be-
cause as is well known (e.g., Larson and Odoni, 1981), the average separa-
tion between points is 1/3 of the lattice spacing. Thus, the expected added 
distance is one third of the lattice spacing, as claimed; and if one considers 
both directions the incremental distance should be twice as large. Since the 
probability of backtracking in either direction is 1/NT, the expected added 
distance across all O-D pairs should then be: 

2 R 1/2/(3NT) . (6.4)
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This expression assumes that travel takes place along a grid. If this is not 
the case the distance added by the terminal stopover will be a different ex-
pression, but should behave qualitatively similarly.5

If R is not close to a square, or NT is not close to (2L-1)2 for some inte-
ger L, then some levels may have less than a full complement of terminals. 
Figure 6.8 illustrates this; with L=3, it has NT= 18 terminals, when NT
should have been 49. It should be clear from the derivation, however, that 
Eq.(6.4) should be fairly accurate, even without a full complement of ter-
minals.

Let us now turn our attention to the number of stops per origin and des-
tination, mo and md. With a full complement of terminals, each origin 
would ship through L2 terminals, and nearby destinations would receive 
through the same terminals; thus, mo  md  L2 . With less than a full com-
plement of terminals, the number of stops would be smaller. Figure 6.8 de-
picts the number of stops for collection (or delivery) that are made per ori-
gin (or destination) in each cell. Note that, even though L=3, only 4 cells 
require 9 stops. The average across cells is significantly smaller, approxi-
mately 6.7 stops. 

A reasonable approximation for the number of stops is given by L2, us-
ing for L the real solution of NT = (2L-1)2: L = log2(1 + NT

1/2). That is: 

For NT = 18, as in the figure, this yields a better approximation than using 
L=3; i.e., 5.7 , instead of 9 stops. This expression is exact if the amount in 
brackets is an integer, and other examples (e.g. with N=4 and N=12 ) re-
veal that it tends to under-predict the actual number of stops by about 10%. 
A simpler expression which is very accurate for NT<102 is:6

(6.5b)

and since Eqs. (6.5) tend to under predict the actual average by about 10% 
we will use instead: 

.Nmm T
do 2/13 (6.6)

5 The expression used in Daganzo (1987c), [2 R 1/2/(3NT)]{1-(4NT)-1/2}, is qualitatively similar to Eq. 
(6.4). Developed by Hall and Daganzo (1984) for a 4-terminal routing strategy (which is inefficient 
in terms of number of stops but yields the same backtracking distance), this expression is exact when 
R is a square; it accounts for the peculiar edge and corner zones, which is only important if NT is 
small.

6 The difference between (6.5b) and twice (6.5a) is less than 1 stop, and for NT>3, less than 3.6%.

.1log
2

2
2

1

T
do Nmm (6.5a)

2/16.2 T
do Nmm
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Fig. 6.8 Hierarchical routing without a full complement of terminals 

We notice that the circuity distance (6.4) decreases with NT , but the cost 
caused by local stops (6.6) increases with NT . Thus, we shall look for the 
number of terminals that minimizes cost. Before we address this strategic 
problem, one last point needs to be discussed. 

Detailed solution: It has been assumed so far that terminals were more or 
less located on a square lattice within the service region. We then showed 
how it was possible to develop a labeling system that minimized the num-
ber of terminals serving each point in R while keeping backtracking at a 
minimum.

If the terminal locations are given and they do not remotely resemble a 
lattice, one can achieve the same goal with a detailed trip assignment 
scheme. Essentially, each O-D pair ( i , j ) must be assigned to one termi-
nal, k=1 ,..., NT , minimizing the line-haul distance cost and, the local mo-
tion cost--including local distance and stops. 

The solution can be specified in terms of zero-one decision variables 
xk

ij, taking the value 1 if terminal k is used between i and j , and 0 other-
wise. The line-haul cost equals, as before, the item-miles traveled multi-
plied by cd/vmax , and each local stop adds 2  (cs + cdk 1/2) to the local 
motion cost. (Note that the distance arguments given for one-dimensional 
problems were equivalent to using k=0.5 in the expression for 2 ). Letting 
rk

ij denote the known distance of a trip from i to j , passing through termi-
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nal k, and Dij the number of items that must be carried from i to j during 
one headway, we can write: 

;xmin+;xmin= stops#Total
i

ij
k

jk
j

ij
k

ik

11

and

.xrD=Miles-Item#Total ij
k

ij
k

ij

ijk

Assuming for simplicity that 2 is the same for pickups and deliveries ( o

d) , then we would like to minimize: 

where the xk
ij are zero-one variables with:7

.=xij
k

k

1

Detailed data are needed to solve this non-convex minimization problem; 
the procedure may be unwieldy with many origins and destinations. The 
two-step process espoused in this monograph can then be useful. First, pre-
tend that the region R has been squeezed and stretched, as if it was made 
of a pliable material, until the terminals fall on a grid as in Fig. 6.8; trips 
can then be assigned to terminals as previously described. The resulting 
assignment is likely to be quite good on its own merits; and it can also be 
used as an initial solution in the minimization of (6.7), perhaps with simu-
lated annealing, if the required detailed data are available. 

6.4.2 Strategic and Tactical Problems 

To solve the strategic and tactical problems we use the optimal solution of 
the idealized operational problem. This is reasonable, since at this level 
one should not plan to use a poor set of terminal locations. The collection 

7 It is not difficult to include terminal flow restrictions (e.g. requiring that ijDijxk
ij remains below 

some limit for terminal k) in the formulation, but this may complicate the solution procedure.
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cost per item transported due to the number of stops is based on Eq. (6.6). 
Recognizing that the number of stops at each origin is mo = 1.5 NT

1/2, we 
can write: 

where the quantity in brackets represents the reciprocal of the number of 
items collected at the average origin in one headway. A similar expression 
holds for the outbound stop cost. 

If we assume that o = d =  (the reader can generalize this assumption 
easily) we obtain:

We will also assume in our exposition that  and  do not change over the 
region. If they do it is better to work with a (less intuitive) total regional 
cost per day; the resulting expressions, presented in Sec. 6.5.3., are close to 
the ones with constant conditions when averaged across items. Qualita-
tively similar conclusions are reached. 

A line-haul circuity cost per item can be obtained from the extra dis-
tance traveled by each item (6.4). Since items travel in full vehicles, the 
prorated circuity cost per item is: 

This cost is paid in addition to the basic line-haul cost, which is propor-
tional to the average distance between origins and destinations; this basic 
cost is of order [cd/vmax] R 1/2 . 

We should also include a fixed cost of operating a terminal; i.e., an ex-
pression like Eq. (5.3) of Chapter 5, with R /NT instead of I, which 
should increase linearly with NT:

.
|65 R|

N+=itempercostterminal T (6.8c)
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Finally, we must also include the stationary holding cost at the origins and 
destinations:

.Hc=itempercostholding h (6.8d)

The sum of Eqs. (6.8) is our logistic cost function. With it we can an-
swer a variety of questions. A strategic level question could be: how many 
terminals should be operated, given H ? This might be appropriate for a 
carrier that is planning entry in a market niche with a well defined H . 

Alternatively we may be interested in determining the best H for a given 
NT , or in selecting both together. Everything is possible, and easy to do, 
since the objective function is defined in terms of only one or two decision 
variables, and is unimodal (it is a "positive" polynomial of the form used in 
geometric programming). 

For a given NT , the best H balances local stop costs and holding cost; 
circuity and terminal costs are fixed. We find: 

and the total cost per item, not including the fixed basic line-haul cost, is: 

As an example, we find the optimal number of terminals for a case where 
fixed terminal costs can be neglected and where the cost of a stop cs is 
small compared to the distance component kcd

-1/2 ; thus 6  0 and 2

cdk -1/2 . The cost per item (using (3k2)1/2  1 and disregarding the constant 
5 ) is: 
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where No is the number of origins (and destinations), and K is the dimen-
sionless constant introduced at the outset of this Chapter in connection 
with Eq. (6.2). The factor in brackets, comparable with the basic line-haul 
cost, represents the cost of crossing the service region (if it was "round" in 
shape) prorated to the items in a full vehicle. 

The minimum of (6.9b) is obtained for 

and the result is 

The cost without transshipments (6.3b), when expressed as a function of 
the same variables, adopts the same form but the term in braces is of order 
K/(No

1/2) . Clearly, if No is large, terminals reduce cost dramatically.8

Interpretation: A comparison of the number of stops of each vehicle 
route is interesting. The numbers of local stops without transshipments is 
ns  K. With transshipments, the number of stops is larger for the vehicles 
serving the lowest level terminals, located at the intersection of dashed 
lines in Figs. 6.7 and 6.8. Thus, we focus on these. Vehicles based at one 
such terminal serve all the destinations in the 4 cells next to it and no des-
tinations beyond; a total of 4 d R /NT customers. A similar expression 
holds for origins. The item flow passing through the terminal is the aver-
age flow for one O-D pair, /( o d) , multiplied by the number of pairs 
served through it. The terminal can only serve O-D pairs entirely within a 
square   4-cell   sub-region  centered  at   the  terminal.   There  are  16 o d

[ R /NT]2 such O-D pairs. Some of these, however, are better served by 

8 Equation (6.10b) also yields a smaller cost than the non-hierarchical routing method in Daganzo 
(1987a) when  No is large.  The  expression  there  is analogous to  (6.10b) but the value in  braces is:

 1.7 (K/No)2/3 . The number of terminals used without a hierarchy is also considerably smaller; N*T

(1.3No/K)2/3 , for (No/K) > 102 .

(6.9b)
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terminals on the edge of the square subregion. Thus, the actual number 
served through the terminal should be somewhat smaller. The reader is en-
couraged to prove that only 9/16 of the O-D pairs in the sub-region are 
served through the terminal if origins and destinations are uniformly dis-
tributed. Therefore, we can write: 

so that the flow through a lowest level terminal is about: 9 [ R /NT]2 items 
per unit time, or (9 /vmax) H ( R /NT)2 delivery vehicle loads (trips) per 
dispatch. Since these trips must collectively stop at 4 d R /NT customers, 
the average number of delivery stops per trip is: 

.
H||9
Nv4

n T
d

d
s R

max (6.11)

The collection stops are given by a similar formula. 
Equations (6.11), (6.9a) and (6.10a) yield the following expression for 

the maximum number of delivery (or collection) stops with an optimum 
number of terminals: 

With many customers (No > 100K), this value is smaller than the average 
number of delivery stops with the non-hierarchical strategy in Daganzo 
(1987c). (The result there was ns*/No

1/2 = (K/No)2/3) . For example, if 
No=104 and K=102 , then one should operate about 50 terminals, using 
something like the 3-level pattern depicted in Fig.6.7, and vehicles would 
make a maximum of 5 stops. The number of stops without terminals would 
have been much greater, ns = 102 , according to (6.3a). With a non-
hierarchical strategy the average number of delivery stops is also close to 
5 but we can only use 25 terminals. Because of the increased circuity, the 
cost is about 20% higher. 

Qualitatively, though, the results in that reference and the improved 
ones presented here tell the same story. As the items become more valu-
able, and the origins more diffuse and small the number of terminals 
should be reduced, as illustrated in Fig. 6.9. Cheap bulky items can be 
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routed through more terminals, which is logical since the circuity costs 
will dominate. The only difference between the hierarchical and non-
hierarchical results is that the optimal system can make use of more termi-
nals since the number of stops does not increase as rapidly with NT . 

Fig. 6.9 Desirable structures for one transshipment systems. (Source: Da-
ganzo, 1987c) 

Note also that if No decreases but other parameters change so as to keep K 
constant, e.g., the individual customers become larger, the advantage of 
(6.10b) over (6.3b) also decreases. If one factors in the fixed and variable 
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terminal costs we find that the optimal NT is smaller; not surprisingly, 
shipping without a transshipment eventually becomes desirable for suffi-
ciently large customers.

6.4.3 Extensions 

It was assumed until now that vehicle routes could be as long as necessary 
and have as many stops as needed. If this is not the case, but we are still 
dealing with cheap items carried in full vehicles, one can modify the opti-
mization of the strategic and tactical problem to yield the desired result. 
One would still try to run the system on a clock, with a common headway, 
but perhaps would stop introducing new terminals as soon as the lowest 
level terminals resulted in routes with too many stops. 

The desired system configuration would be given by the minimum of 
Eqs. (6.8), where NT and H would have to satisfy ns

d , ns
o  nmax , with the 

ns given by Eq. (6.11). This constraint, like the inclusion of terminal costs 
(6.8c) in the objective function, will tend to produce a smaller NT than 
suggested by Eq. (6.10a). 

Equations (6.8) were developed for cheap items, and identical vehicles, 
but similar expressions can be developed in other cases, including situa-
tions where H can vary across terminals of different levels. Although it is 
impossible to cover all aspects of the problem in this monograph, it should 
be clear that in many cases the steps to be followed should be quite similar. 
The reader is encouraged to try problem 6.6, which addresses an idealized 
situation peculiar to airlines (the exercise extends the work of Jeng, 1987, 
who studied an idealized model of a single hub airline.) 

If some of the origins and destinations are much larger than others it 
may be worthwhile to consider discriminating strategies whereby the ori-
gin-destination pairs with the largest flow would be served non-stop and 
the rest though the system of terminals, as in Sec. 6.3.2. 

If pairs are chosen for inclusion in either one of the categories based on 
the amount of flow alone, with no regard for location, then it is possible to 
find the best O-D pair allocation (and the resulting system design) by con-
ditioning on the number of pairs that are handled without a transshipment. 
For any number, the costs on the two systems are independent of actions 
taken to control the other system and as a result the two can be optimized 
separately, as we have learned previously. A near-best allocation can be 
formed by repeating the process for various (carefully selected) numbers 
of origin-destination pairs in the non-terminal system, and comparing total 
costs.

As with one terminal, ideally one might want to use the geographical lo-
cations of origins and destinations and relevant flow information in decid-
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ing where to allocate an O-D pair, but the problem is more complex than 
with only terminal. Fortunately, with several terminals the importance of 
location is diminished because the maximum distance added by a terminal 
stop-over is smaller. 

In summary, this section illustrates how the number of vehicle stops and 
the total logistic cost can be reduced by transshipping items once at break-
bulk terminals. We have seen that a hierarchy of terminals enhances the 
transshipment benefits. 

6.5 Multi-Terminal Systems: Multiple Transshipments 

This section shows how further cost reductions can be achieved with addi-
tional transshipments. Section 6.5.1 discusses two transshipments through 
BBTs; as in the prior sections, it will be assumed that vehicles of maxi-
mum size, vmax , can reach the origins and destinations. It will also be as-
sumed that the pipeline inventory cost can be neglected, relative to trans-
portation costs. Systems with both BBTs and CTs are examined in Section 
6.5.2.

6.5.1 Two Transshipments Through BBTs 

With two transshipments, a non-hierarchical arrangement of terminals is 
no longer asymmetric with respect to collection and distribution; as we 
shall see, it requires few local stops at both ends of a trip. 

Thus, a hierarchy of terminal levels is not used to select an item's route 
through the terminals: each O-D pair is simply assigned to the least circui-
tous terminal pair, considering only terminals in the immediate neighbor-
hood of the origin or the destination. In Figure 6.7 only the terminals on 
the four corners of the cell containing the origin (or the destination) would 
be potential candidates. Of the 16 possible combinations the pair adding 
the least distance should be chosen. A typical item would first travel to the 
origin terminal on a collection vehicle; it would then be sent to the destina-
tion terminal on an inter-terminal vehicle and finally, after a second trans-
shipment, it would be delivered to its destination. 

We will assume here that: (i) all the vehicles arrive and leave the termi-
nals full, (ii) the system is operated on a clock with a common headway H, 
and (iii) every terminal pair is linked by a non-stop vehicle route along the 
shortest path; i.e., multiple stops at the terminals are not allowed. Condi-
tions (i) and (ii), used with one transshipment systems, should be desirable 
here for the same reasons. Condition (iii) ensures that the vehicle-miles of 
inter-terminal travel are minimum. A more general set of conditions, e.g. 
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with different headways for collection and distribution than for local 
travel, does not reduce cost (Daganzo, 1987c). 

With the system operated on a clock the holding cost per item is not in-
creased by the second transshipment; it is still given by chH . The motion 
cost and terminal cost expressions are examined next. 

If we decompose collection and delivery vehicle-miles into line-haul 
and local components as before, and define inter-terminal travel as line-
haul, then the total line-haul vehicle-miles still equal the total item-miles 
divided by vmax . Consideration shows that for our routing scheme the dis-
tance added by the two transshipments is the same as the distance added 
with only one, Eq. (6.4). As a result, the line-haul circuity cost per item is 
still given by Eq. (6.8b). 

Local motion costs are still proportional to the number of stops, with the 
same proportionality factor. As before, the number of stops per customer 
equals the number of terminals serving the customer in both directions. 
But this number, given by Eq. (6.6) for one transhipment, is now reduced 
to 4 + 4 = 8 . It is even less for customers along the boundary of the region. 
Consequently, the stop cost per item, assuming that o d as in Eq. (6.8a), 
is instead about (3/8)(NT)1/2 times smaller: 8 2 /( H R ) . 

For a given NT and total demand, the fixed terminal costs don't change, 
but the terminal costs proportional to flow should just about double; after 
all, items are handled twice and spend twice the amount of time moving 
through terminals. Thus, the terminal cost per item should become: 2 5 + 

6NT/ R  . 
The solutions of the strategic and tactical problems are now analogous 

to the minimization of (6.8). Now, however, we must introduce a flow 
conservation constraint. Because the system operates on a common sched-
ule,9 vehicles are full, and multiple stops at terminals are not allowed, the 
number of collection tours arriving at a terminal (i.e. vehicle loads) must 
equal NT . To see this note that the number of vehicle loads collected at a 
terminal for other terminals must equal the number departing for other 
terminals, and this number is NT-1 . Because 1/NT of the freight collected 
is local, the number of vehicle loads collected must be NT . The same oc-
curs for distribution, but with o = d and spatially homogeneous demand 
the condition is redundant. Thus: 

.N=
vN

H||
T

T

2

max

R

9 If this constraint is relaxed, e.g. by allowing different headways, one can prove that cost can be re-
duced by changing one of the headways.
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If terminal costs are neglected, and we use k = 0.5 in the expression for 2 , 
the optimal number of terminals and number of stops can still be expressed 
as a function of No and K alone. For No > 102K the following closed form 
expressions are obtained: 

.
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K
N
n

oo

*
s

2
12

(6.12b)

For smaller No , the results are given in Table II of Daganzo (1987c). The 
results in this reference use a slightly lower estimate for circuity cost than 
(6.8b) but this has no noticeable numerical impact on the final result. 

The total cost per item also assumes a form similar to Eq. (6.10b). But 
now (for all No ) the factor in braces is even smaller; it is (2.8K/No) . The 
difference between the two factors reaches a maximum, about 0.15, for 
No/K on the order of 101 . But the actual difference is smaller because in 
deriving the one transshipment results we used two conservative simplifi-
cations, Eqs. (6.4) and (6.6), which lead to slightly higher cost estimates 
for low No/K . For No/K comparable with 101, the cost overestimation is on 
the order of 0.08. Thus, the maximum difference between 1-transhipment 
and 2-transshipment costs should be on the order of 7% (and not 15%) of 
the cost of driving an item across the service region in a full vehicle. 

Let the cost of transhipping a vehicle load including fixed delays and 
handling cost, 5 vmax , be momentarily defined in terms of the cost of driv-
ing a vehicle a critical distance, cdrcrit = 5 vmax . Then, adding one trans-
shipment to every item would have the equivalent effect of adding rcrit
miles to the distance traveled by each item in a full vehicle. Clearly, two 
transshipments should not be considered if rcrit > 7% of the diameter of the 
service region. For rcrit  102 miles (a value typical of trucking operations) 
only service regions as large as the largest countries in the world have the 
potential for benefiting from two BBT transshipments. 

6.5.2 Many-To-Many Systems with Consolidation Terminals 

The above statements do not imply that items (e.g. a letter) should not be 
handled more than twice between an origin and a destination; we are only 
stating that there is no need to have them pass through more than 1 or 2 
break-bulk terminals – terminals serving multiple origins and multiple des-

2
1

4
1 0

0
* 8

K
NNNT (6.12a)
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tinations where vehicles of similar characteristics swap their loads. 
Consolidation terminals (connected with either a single origin or a sin-

gle destination) should also be used to achieve the two main functions de-
scribed in Chapter 5: reducing the length of delivery and collection routes, 
and allowing small vehicles to reach the origins and destinations. 

A rationally designed many-to-many system might be organized as 
shown in Fig. 6.10, using both consolidation (CT) and break-bulk (BBT) 
terminals. Each consolidation terminal would collect (and distribute) items 
from origins (and destinations) in an influence area around it; influence ar-
eas would form a partition of the service region to ensure that service is 
provided everywhere. Conceivably one could have smaller CT's within 
each of these influence areas, but this is unlikely. The upper level CT's, 
shown by dots in the figure, would then become the entry points in the 
many-to-many network of BBT's, shown by squares in the figure. The fig-
ure denotes by arrows the paths that items either originating or ending in 
influence area 1 would take on the network; a single BBT transshipment is 
assumed. Conceivably, the BBT's themselves could also be gates to the 
system, acting like upper level CT's with their own influence areas. 

A conditional decomposition approach, combining the result of Chap-
ters 5 and 6, can be used to develop desirable structures for an integrated 
logistic system such as the one in the figure. Conditional on the size, ICT , 
of the influence areas of the consolidation terminals, i.e. on the number of 
gates (e.g. post offices) to the break-bulk network, No = Nd = R /ICT , it is 
possible to determine the near-minimum cost per item on both portions of 
the system.10 On the consolidation portion of the system within the influ-
ence areas, one ould use the methods of Chapter 5, and on the break-bulk 
portion those of Secs. 6.2, 3 and 4.11 In addition to No , we may want to 
freeze NT and the headway for the BBT network, H. In this way we can 
conveniently explore the economic merits of synchronizing the operations 
on both networks, and can invoke the results of either Sec. 6.2, 6.3, 6.4 or 
6.5, depending on whether NT = 0 , NT = 1 , or NT  1 . The values of No , 
NT and H that minimize the sum of both costs should then be chosen. A 
more detailed design can then be developed as we have already learned, 
perhaps using fine tuning tools with detailed data. Problem 6.7 illustrates 
the approach. 

10 The discussion assumes that only the CT's act as gates to the system.
11 If BBT's can be operated as gates, the procedure needs to be modified slightly; one should remember 

to recognize the terminal cost savings resulting from combining BBT and CT functions at the BBT's.
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Fig. 6.10 Many-to-many system with both consolidation and break-bulk termi-
nals

A recent application of these ideas, with some further development, is 
documented in Smilowitz (2001) and Smilowitz and Daganzo (2004), 
which describe an effort to design and evaluate large scale, integrated 
package delivery systems such as those of UPS and FedEx. These refer-
ences examine the conditions under which it makes sense to integrate an 
air-express network into an existing ground network. The CA techniques 
proved to be practical and accurate cost predictors. 

They revealed that the larger a ground network, the more efficiently it 
can absorb a given air network. This helps explain why UPS has chosen to 
run an integrated air/ground network, but not FedEx. Of course, other fac-
tors can also contribute to such decisions. Labor issues are perhaps the 
most obvious, since existing contracts would likely have to be renegotiated 
after a structural change in operations. 

6.5.3 Extensions 

Variable demand: We have not discussed in detail in this chapter how 
one should handle non-homogeneous origin and destination tables. It was 
assumed for the most part that origins and destinations were homogene-
ously distributed and that the flows between regions of comparable size 
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was relatively independent of position. In practice, though, this is not 
likely to happen since population densities typically change over space. 

We have seen that if some customers are much larger than others it may 
be better to serve them without transshipments, but we did not explore how 
to deal with spatial variations in demand density and customer density (we 
treated  , o and d as constants). In prior chapters we had used the con-
tinuous approximation method to deal with such variations, and this is also 
possible here. While it might now appear that we would have to specify an 
origin-destination flow table in detail, (xo ,xd) , the solution is mostly sen-
sitive to the generation and attraction rate densities: o(x) and d (x) . 

With variable demand we would still try to locate the BBT terminals on 
a lattice, but would want to vary the number of consolidation terminals and 
their operation according to location. One may also wish to locate more 
BBT's in high density areas, but we will ignore this for the moment. The 
optimal solution, thus, is defined in terms of the H , NT , HCT(x) , and 

CT(x) , where CT(x) is the spatial density of CT's in the vicinity of x , and 
HCT(x) is the headway used at those CT's. We now show that, holding H 
and NT constant, the total cost decomposes locally in a manner that allows 
HCT and CT to be defined with the CA approach. 

The motion cost during consolidation is independent of H and NT . For a 
given terminal, it only depends on o , d , CT and HCT , and can be pro-
rated to small sub-regions of R as a function of x alone. If no transship-
ments take place in the consolidation area, the average motion cost per 
item for collection is given by the function zm

o( o, o , CT
-1 , HCT), defined 

in connection with Eq. (5.9) of Chapter 5. As stated, the arguments of zm
o

only depend on x. Similarly, the motion distribution cost is: 
zm

o( d , d , CT
-1 , HCT) . 

The two components of BBT motion costs are also well behaved. Given 
NT and H , the circuity (line-haul) cost per unit time over R is insensitive 
to CT(x) and HCT(x) . We note that flow will pulse through BBT's differ-
ently if these variable change, but the total item-miles should remain fixed. 
Therefore, this cost can be ignored for the minimization of the consolida-
tion terminal variables. Important for the minimization of NT and H, we 
also note that the average circuity cost per item should be rather insensitive 
to (xo , xd) if O-D trips are comparable with the diameter of R.12 Equation 
(6.8b) should then be a good approximation. The BBT (local) stop cost per 
unit time and unit area arising from visits to the CT's can be obtained sim-
ply. Equation (6.6) gives the number of stops at each CT every headway. 

12 If there were predominant directions of travel along well defined corridors – stable with time –
circuity might be reduced by positioning the lattice on favorable locations. However, the resulting 
savings (i.e. the solution's dependence on (xo , xd)) should be rather mild in most cases. 
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Since there are CT  CT's  per  unit  area  and  each  stop  costs '2  =  cs  +
cdk CT

-1/2 , the BBT system=s local stop cost per unit time and unit area, z's
is:

We have argued in Chapter 5 that the terminals' cost per unit time should 
be of the form 5(# items/unit time) + 6(# terminals) . This total cost for 
the CT's can be prorated locally to small areas as a cost per unit time and 
unit area, z'T:

.++=,,’z CT
do

CT
do

T 65

Consistent with Eq. (5.3), this expression yields the total cost when inte-
grated over R. It is again independent of the origin-destination flow de-
tails, (xo , xd) . 

Finally, we must account for holding cost. If the schedules of the break-
bulk and consolidation vehicles are not synchronized, then the waiting cost 
for an item traveling from xo to xd is ch(HCT(xo) + H + HCT (xd)) . The total 
holding cost for all items can be prorated to a unit area per unit time so that 
it only depends on the location: 

./2H+o
CTh

do
CT

do
h Hc+=HH,,,’z x

If the two systems are synchronized and H=HCT for all locations, then the 
total holding cost can also be prorated locally: 

./2H)c+(=H),,(’z h
dodo

h

In either case, z'h is independent of (xo , xd) . 
Since all the cost components can be prorated to small sections of R as a 

function of x alone, given NT and H , it is possible to obtain the best HCT
and CT for any location, x, by minimizing the sum of z'h , z'T , z's , the col-
lection motion cost ozm

o( o , o , CT
-1 , HCT) , and the delivery motion cost 

dzm
o( d , d , CT

-1 , HCT) . The minimum of this sum is a function only of 
x, NT and H: z'*(x, NT, H) . Integrated over R, it yields the (approximate) 
total system cost per unit time for a given NT and H , exclusive of the BBT 
circuity costs and BBT terminal costs. Reasonable values for NT and H can 

.'3,,' 2

2
1

CT
T

TCTs H
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now be found easily numerically by minimizing the sum of the integral, 
the BBT circuity costs Eq. (6.8b) and the BBT cost (6.8c). The last two 
costs expressed per unit time for the whole R are: 

and

where D is a constant, representing the total number of items traveling per 
unit time: 

.dd,=D dodo xxxx
RR

We have assumed that the NT terminals would be homogeneously distrib-
uted over R , but in practice one would try to locate them at the intersec-
tions of major flow corridors if these have been identified in order to re-
duce circuity costs. The location of the BBT's, however, does not affect 
any of the costs used in the above calculations, except perhaps for the line-
haul circuity cost. By providing more BBTs in sections of R with heavy 
demand and higher concentrations of CT's it may be possible to reduce the 
extra line-haul distance traveled by an average item below 2 R 1/2/(3NT).
Any such adjustment, however, should change the distance considerably 
less than a small percentage increase in NT . Thus, even if the circuity dis-
tance with the adjustment could be quantified by a more detailed expres-
sion, the resulting optimization would likely yield a similar value for NT
and H . Given what we know about the robustness of solutions (see Chap-
ter 3), the solution we did obtain should result in costs that are not far from 
the ideal. 

If desired, and once the locations of the CT's have been chosen, one may 
be able to formulate and solve approximately a detailed optimization pro-
gram similar to (6.7), with the location of the NT break-bulk terminals as 
decision variables in addition to the flow allocation variables, xij

k . We are 
optimistic about such endeavor when the desired number of BBT's is not 
large as would occur when the number of gates to the BBT network is it-
self moderate. If the number of BBT's is large, then circuity costs are small 
and minor reductions to it are of secondary importance. 

T

d

Nv
Dc

3
2 2

1

max

Rcircuity
cost

,2 65 TND
BBT
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Backhauls: It was assumed throughout this chapter that vehicles could be 
usefully employed at the end of their trips. This effect was captured by ad-
justing the motion cost coefficient 1 . Although not exclusively, this as-
sumption is reasonable if the origin-destination flows are balanced (i.e. 
(xo , xd) (xd , xo)) ; then when a local vehicle finishes the last delivery 

it is automatically well positioned to start a collection run with little dead-
heading. Furthermore, with a symmetric O-D flow pattern the inbound and 
outbound flows at every BBT are equal, which obviates the need for inter-
terminal empty vehicle travel. 

If the demand is unbalanced, a more accurate accounting of vehicle-
miles is necessary since partially empty vehicles will either be arriving or 
departing from the terminals. The problem is likely to be more severe for 
BBT's than for CT's, since vehicles travel longer distances between CT's 
and BBT's than between CT's and individual customers. 

Models and formulas have been developed to estimate CT vehicle mile-
age when vehicles and crews are based at an individual terminal and vehi-
cles backhaul between the last delivery and the first pick-up (Daganzo and 
Hall, 1990). Such formulas would also apply to BBT routing with one 
transshipment.) An extensive algorithmic literature on the VRP with back-
hauls also exists (Casco et al., 1988). When the imbalance between in-
bound and outbound freight is significant, Daganzo and Hall (1990) shows 
that the distance traveled is just barely greater than the distance that would 
have to be traveled to collect (or distribute) the dominant direction of flow 
only, as if the other direction did not exist. We have already pointed out in 
Sec. 6.3.1 that this would require doubling 1 for the dominant direction 
and setting it equal to zero for the secondary. With the proper distance 
formula, it should not be difficult to duplicate the analysis in this chapter. 

If vehicles can visit a number of terminals, and some neighboring termi-
nals have opposite imbalances, empty miles might be reduced further by 
backhauling from the last delivery of one terminal to a pickup of the 
neighboring one and balancing that trip by sending an empty vehicle from 
the second terminal to the first. The advantage of multi-terminal backhaul-
ing is particularly clear for inter-terminal vehicles in a two transshipment 
system. Now too, imbalances between pairs of BBT's result in some BBT's 
having an excess of inbound flow and others an excess of outbound flow. 
The solution to the Hitchcock problem of linear programming can be used 
to route empty BBT vehicles among terminals to minimize empty miles. 
The solution to the Hitchcock problem, however, may require some crews 
to visit several BBT's before returning to their home base; an outcome 
which is not desirable in practice. Other real life constraints also compli-
cate the decision. Since carriers can greatly benefit from fewer empty 
miles, substantial research efforts have been made to improve backhauling 
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decisions (see for example: Jordan, 1982, Powell et. al, 1984, and Dejax 
and Crainic, 1987). Most of these works, however, are algorithmic in na-
ture, dealing with peculiarities such as real time control with imperfect in-
formation, and don't yield simple distance formulae as a function of few 
descriptors. This is indeed difficult for this problem. Jordan and Burns 
(1984) and Hall (1990) have sought estimates of empty miles for small 
networks, using strategies where each vehicle visits at most 2 BBT's before 
returning home; see also problem 6.8. This is pessimistic, however. 

We would like to estimate empty vehicle miles as a simple function of 
NT , which could then be used with Eqs. (6.8) to explore the various trade-
offs. A somewhat optimistic estimate of this quantity, good for large NT, is 
given in Daganzo and Smilowitz (2004). This reference proved with a 
combination of dimensional arguments and mathematical analysis that the 
expected distance required to reposition an empty truck in a large homoge-
neous system operated with the Hitchcock recipe must be insensitive to the 
shape of the service region, and is given by: 

 ,Nb+a T
-1/2
BBT 2log

where BBT is the spatial density of BBT=s, and a and b are dimensionless 
constants that depend on the metric. Simulations show that a  1 and b 
0.078 in the Euclidean case. In practical terms, this means that the average 
distance traveled by an empty truck is roughly comparable with the separa-
tion between nearby terminals; i.e., that it is about twice as long as for the 
Euclidean TSP, for NT  25 to 210. By multiplying the expected distance 
formula with the expected number of back hauls (easy to estimate if an un-
derlying stochastic model is given), we can estimate the total expected 
empty vehicle miles. The result is optimistic because it is based on the 
Hitchcock problem, which slightly underestimates the distances of the real 
world.

Fortunately, formulas for empty back hauls do not have to be very accu-
rate, because in most cases empty miles should be a small proportion of 
the total, and do not depend heavily on NT. After all, if flow imbalances 
are serious, a carrier will normally take marketing steps to correct the im-
balances since every extra item in the non-dominant direction can be car-
ried without extra vehicle-miles. This can be done by pricing directions 
differently, or by other means. For example, rental car companies have 
drive-away programs to reposition their fleet and, because UPS's parcel 
flows tend to be heavier in the westward direction, that firm has considered 
using their trucks for carrying California produce toward the eastern U.S. 



Multi-Terminal Systems: Multiple Transshipments 259  

Large scale manufacturing systems: The methods and ideas we have 
presented in this monograph can be extended to the organization of manu-
facturing systems (e.g., to the planning and design of supply chains). We 
saw in Chapter 5 how the factory location problem was a special case of 
the terminal location problem in a one-to-many distribution network. This 
view was premised on the assumption that the inputs to the manufacturing 
process were ubiquitous; i.e. that changing the locations of a factory did 
not change the inbound logistics costs, which then could be ignored to de-
fine the system. 

If some of the inputs are not ubiquitous, and must be obtained from 
fixed sources regardless of location, then the one-to-many model does not 
hold. But, we can view the production process as a many-to-many logistic
process that conveys these raw materials from their sources to destination 
markets, in the form of a final product, passing through factories and ter-
minals on their way. 

Factories can be viewed as special kinds of terminals which somehow 
change the nature of the items entering and leaving. In this monograph 
terminals satisfied a flow conservation equation ensuring that the number 
of items (e.g. tons) entering a terminal were in the long run equal to the 
number leaving. But this weight (or volume) conservation des not apply to 
factories. Burns (1986) likes to distinguish between factories that trans-
form raw materials into parts, reducing weight and volume (production 
plants), from those that combine parts into bulkier final products (assembly 
plants).

Transshipment points in a manufacturing network must be treated dif-
ferently depending on whether they are bulk reducing, bulk conserving, or 
bulk increasing. Depending on the industry, each item may be produced 
and assembled at an integrated factory in a single location, or they may 
not. In an integrated system several factories may manufacture the items, 
but every item passes through only one factory. Suitably modified, the 
models of Secs. 6.3 and 6.4 would apply. They would have to capture the 
different transportation needs of the inbound and outbound items. This has 
been preliminarily explored for the one-factory problem when all the vehi-
cles arrive and leave the factory fully loaded in Bhaskharan and Daganzo 
(1987). This report shows that most of the logistics costs are independent 
of location; and that only the cost of overcoming distance (with full vehi-
cles) depends on it. As a result, the best location is the solution to a Weber 
problem (already discussed), where origins and destinations have weights 
which reflect the ease of transport and the value of their items. If inbound 
volume greatly exceeds outbound volume then there is an incentive to lo-
cate the factory close to the raw material sources; if the factory adds much 
value, then there is an incentive to locate the factory near the markets. 
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If there are clearly defined zones for raw materials and markets, and these 
are far apart, then there is an incentive to "dis-integrate" the system. Pro-
duction plants could be located close to the raw materials and assembly 
plants close to the markets. In this manner transportation costs can be 
greatly reduced since raw materials make their way to the market in their 
most easily transportable form: parts, of which waste materials have been 
scrapped and burned away at the source but which have not yet been as-
sembled into awkwardly shaped final products. 

For a large firm, able to operate multiple factories, it may be best to op-
erate specialized parts plants and assembly plants. Parts with similar raw 
material needs would be produced in the same plant, located optimally 
with respect to the raw materials and recognizing the different cost of pro-
duction (e.g. labor productivity and wages) at different locations. Parts 
would then be assembled into final products at assembly plants close to the 
markets, allowing production to take place where it is most efficient with-
out incurring very large transportation costs. The practice is very prevalent 
in the automobile manufacturing industry, where parts are often shipped 
half way around the world for assembly in another country. 

It seems worthwhile to extend the non-detailed methods espoused in this 
book to aid in a more through understanding of large scale manufacturing 
systems in dynamic environments. The techniques seem ideally suited to 
that end. They have recently been used to unveil near-optimal designs and 
operating rules for some simple supply network scenarios, and to quantify 
the difference in performance between optimally-designed centralized and 
decentralized networks (Daganzo, 2002, 2004). This work, however, only 
begins to scratch the surface of possibilities.

Suggested Exercises 

6.1 A single terminal serves 10 inbound routes and 2 outbound routes. 
The origin-destination flow density is such the each inbound route 
sends 1 item to each outbound route per unit time. The average wait-
ing cost per item for any origin destination pair belonging to inbound 
route, i, and outbound route, j, is proportional (ci=1) to the transfer 
time from i to j. This transfer time is a function of the headways on 
these two routes, Hi and Hj, and on how they are synchronized. 

The inbound and outbound motion costs per item on a specific route, 
, decrease with the headway on the route as: k /H . We assume that 

for the inbound routes the constants ki are (5, 9, 3, 2, 10, 7, 8, 3, 2 and 
1) and the outbound constants, kj, are (10 and 1). 
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(i) Describe what kind of operation would lead to motion costs of 
the form: k /H , and a situation that might lead to the widely 
different k 's used in the example, 

(ii) Find the optimal headway on each route if there is no syn-
chronization,

(iii) Find the optimal headway if the system operates with a 
unique, H, and obtain the total system cost per unit time, 

(iv) Repeat the analysis for a synchronized system where the Hi
and Hj are restricted to the powers of 2 (times a factor) as de-
scribed in the chapter. Compare the results. (See Daganzo, 
1990, for answer.) 

6.2 Prove that if the schedules are not coordinated, for a problem with one 
BBT , the total tactical cost per day only differs from the tactical cost 
with coordination by a constant independent of the terminal position. 
(Hint: it is not necessary to derive an expression for the tactical cost; a 
succinct word proof can be given ). 

6.3 Five hundred suppliers, uniformly and randomly scattered over a cir-
cular region of radius 500 miles centered on the origin of coordinates, 
send their products to ten manufacturers through a terminal located at 
the origin. Each manufacturing plant requires 10 truckloads worth of 
goods every day, from all the suppliers combined. The locations of 
the suppliers change from time to time (so their coordinates are not 
known when the tactical and strategic decisions are made) but the 
manufacturing plants don't move; their locations are indicated at the 
end of the exercise. For the following parameter values (cd = 2 $/veh-
mile , cs = 30 $/stop , ch = 30 $/day-truckload) , solve the tactical level 
problem; i.e. determine H , and the number of stops on inbound and 
outbound routes; sketch as well a few of these routes. (Assume that H 
must be an integer multiple of a day). 

Solve then the strategic level problem. It is a Weber point location 
problem whose objective function can be calculated, as a function of 
position, with a spreadsheet. Outline a 1% indifference area for the 
terminal location. 
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Manufacturing plant coor-
dinates

j xj/500 yj/500

1 -0.10 -0.74

2 0.32 -0.35

3 0.87 -0.28

4 0.36 0.11

5 -0.26 -0.93

6 -0.56 0.34

7 -0.52 0.44

8 0.51 -0.01

9 0.45 0.41

10 -0.08 0.05

6.4 An airline provides service to every city pair (i,j) in its service region 
either linking the city pair with non-stop service, or serving it with 
non-stop flights to and from the hub. 

Cities are classified into K categories according to a dimensionless 
size parameter, pk, normalized so that 

.1=pk
k

The trip flow from all the cities in category k1 to all the cities in cate-
gory k2 is Dpk1pk2, where D is the total passenger flow in the system 
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(trips per unit time). We let Nk denote the number of cities in category 
k, assumed to be distributed homogeneously over the region. 

Assuming that all the flights shuttle back and forth between two cities 
(one being the hub in many instances), and that the cost of each one-
way flight is [ o+cd(distance)] , describe a decomposition method to 
determine: (i) the common headway, H, for flights to/from the hub, 
(ii) the O-D pairs that would be served through the hub, and (iii) the 
frequency of service for the O-D pairs served non-stop. You may as-
sume that there is a unique airplane type that can carry vmax people, 
that pipeline inventory costs are negligible, that the terminal costs per 
passenger is fixed, 5, and that the stationary inventory cost per pas-
senger-time unit at the origin and the destination is valued at ci mone-
tary units. 

As an extension of this exercise, the reader with access to a personal 
computer may want to generate with a spreadsheet Nk random city lo-
cations – defined by cartesian coordinates with origin at the hub--for 
each one of the K classes, and solve the problem numerically with the 
spreadsheet for specific values of the data. It is recommended to use 
widely different values for the pk.

6.5 Consider 2 points independently located in the unit interval when all 
the locations are equally likely. Let D0 denote the sum of the distances 
from the two points to the left side of the interval, and D1 the sum of 
the distances to the right end point. Prove that E[min(D0 ,D1)] = 2/3 . 

[Hint: Note that the distances from the two points to the left end of 
the interval, x1 and x2 , are independent uniform (0 , 1) random vari-
ables. Sketch in the sample space for x1 and x2 the event

{min(D0 , D1)  d} , and show that its probability is d2 .] 

6.6 Air transportation in a Linear Country. There are 30 equally 
spaced airports on a line segment that is 3,000 miles long. Each one of 
these airports is estimated to generate 3,000 passengers per day; one-
thirtieth of this flow (1/29th if one desires to be precise) is destined to 
each of the other airports. That is, all origin-destination pairs have the 
same flow. 
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 We assume that the airline provides a competitive level of service: 

(i) Passengers do not stop between their origin and destination 
more than once, 

(ii) Service frequency of at least one flight per day is provided on 
all flight segments of the network. 

Part I: Network Structure 

The airline currently operates airplanes that can hold 200 passengers. 
We seek the minimum cost to the airline (in number of airplane-miles 
per passenger flown, d), and the resulting level of service to the pas-
sengers (in terms of the average additional flight miles traveled be-
cause of transfers, and the service frequency on the various types of 
flight segments.) Find these values for the following three routing 
strategies

A) Nonstop flights provided only, 
B) Hub and spoke (one transfer hub in the middle of the coun-

try),
C) Hub and spoke (n transfer hubs, equally spaced). 

For Part C you may assume that each hub has an influence area and 
that those influence areas do not overlap. (The influence area of a hub 
is defined as the region containing all the airports that consolidate 
their outbound flights at the hub in question: while inbound flights at 
a hub arrive from within its influence area, outbound flights serve all 
30 airports). Find the optimal n. 

Part II: The Influence of Technology 

If the cost per airplane-mile, , is proportional to: 

where C is the seating capacity, repeat part IC while simultaneously 
finding the best aircraft technology for inbound and outbound links. 

,1
400

exp C
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Part III: Refinements 

Repeat Part IC if flights are synchronized with a unique headway at 
each hub and we use the one dimensional hierarchical routing scheme 
described in the text. Determine the headway used at the different 
level hubs. 

6.7 Equation (5.6b) of Chapter 5 defines an average cost per item for 
items carried from (to) a terminal to destinations (from origins) in its 
influence area, if as explained in connection with that example vehi-
cles make only one stop and items are carried in full vehicles from the 
terminal. In that expression " I " represents the influence area around 
the terminal, and  is the spatial density of trip destinations (or ori-
gins) per unit time – which we have termed in this chapter d(or o).

Combine Eq. (5.6b) of Chapter 5 with Eqs. (6.8) of Chapter 6 to de-
termine the optimal number of consolidation terminals for a logistic 
system in which only one BBT transshipment is used, and no attempt 
is made to coordinate inbound and outbound schedules at the CT's . 
Assume that the capacity of the vehicles traveling between terminals 
(vmax in (6.8b)) is greater by a factor of 4 than the capacity of the con-
solidation vehicles, and that the actual number of origins and destina-
tions is very large (much larger than the number of CT's and BBT's). 
Assume that CT's cost the same to hold and operate than BBT's (the 
coefficients of (6.8c) apply to both), and that both 6 and cs are negli-
gible.

6.8 "Caca's" Foods Inc. (CFI) has two factories located in a corridor (a 
linear segment) of length R (see diagram). Each factory produces 
items of different characteristics (factory 1, cases of sake; factory 2, 
frozen Kobe beef). Trucks carry the goods from each factory to cus-
tomers that are uniformly and closely spaced over the segment. 

factory 1 Rfactory 2

a2

a1

0
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The total demand per customer from factory i (i = 1, 2) is i truck 
loads/unit time; this is the same for all customers. 

The Kuwahara Transportation Company has been hired by CFI to de-
liver their products in the corridor. Kuwahara's trucks can be used to 
transport either type of food. Devise a transportation strategy that will 
minimize the total vehicle-miles traveled. Neglect all inventory costs. 

[Hint: How should you route full trucks? How about empty trucks? 
See Jordan and Burns, 1984, for inspiration.] 
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Glossary of Symbols 

1:  Line-haul cost per vehicle trip ($/trip), 
2:  Motion cost per added stop/detour ($/stop), 
'2:  Motion cost per added stop/detour at a CT ($/stop), 
5:  Fixed cost per item handled at a terminal ($/item), 
6:  Eq.(5.3) constant, capturing terminal scale economies, 

BBT:  Break-bulk terminals, 
cd:  Cost per vehicle-"mile", 
ch:  Holding cost per item-day, 
cs:  Cost per vehicle stop, 
c's:  Cost per item loaded on a vehicle, 
CT: Consolidation terminal, 
D:  Total number of items demanded in R per unit time, 
D':  Item flow at a point, 
D̄' : Average item flow, 
Dij:  Number of items carried from i to j during one headway, 
Do:  A superdestination. (Sec. 6.1 only), 

o(or i):  Spatial density of origins (i) , (origins/area), 
d(or j):  Spatial density of destinations (j), (destinations/area), 
CT:  Spatial density of consolidation terminals, (terminals/area), 

fij:  Proportion of flow from i to j traveling directly, 
H:  Headway, 
H*:  Optimum headway, 
H : Base headway for "power of two" strategy, 
Hd(or Hj):  Destination (j) headway, 
Ho(or Hi):  Origin (i) headway. (Notation is different from Ch. 5), 
HCT:  Consolidation terminal headway, 
i:  Origin label, 
I:  Influence area size, 
ICT:  Influence area of a consolidation terminal, 
j:  Destination label, 
k:  VRP local cost coefficient (dimensionless), 
K:  Characteristic constant of many-to-many problems, 
:  BBT level, for hierarchical routing, 

L:  Number of BBT levels for hierarchical routing, 
 (or ij):  Origin-destination (i,j) flow density (items/time area5). Starting in 

Sec. 6.2, 
o (or i):  Origin (i) flow density (items/time-area), 
d (or j):  Destination (j) flow density (items/time-area), 

mo:  Number of terminals collecting from one origin, (number of 
 stops per origin per headway), 
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md:  Number of terminals delivering to one destination, (number of 
delivery stops per destination per headway), 

ns:  Number of stops in a vehicle route, 
ns

d:  Number of destinations in a delivery vehicle route, 
ns:  Number of stops in a vehicle route, 
ns*:  Optimal number of stops in a vehicle route, 
No:  Number of origins, 
Nd:  Number of destinations, 
NT:  Number of terminals, 
NT*:  Optimum number of terminals, 
Nv:  Number of vehicle tours, 
Oo:  A superorigin (Sec. 6.1 only), 
r (or rij):  Distance between origin (i) and destination (j) subregions, 
rk

ij:  Distance from i to j , passing through terminal k , 
rcrit:  Distance traveled, equivalent to one transshipment, 
rmax:  Length of a linear service region, 
ro (or ri):  Distance between an origin subregion (i) and a terminal, 
rd (or rj):  Distance between destination subregion (j) and terminal, 
Pi:  Area of origin subregion I, 
Pj:  Area of destination subregion j, 
R:  Service region, 

R :  Service region size, 
t:  Time, 
v:  Delivery (or pickup) lot size, 
vmax:  Vehicle capacity (items), 
xk

ij:  Zero-one decision variables, indicating whether terminal k is used 
between i and j , 

x:  Spatial coordinates of a point, 
xo:  Spatial coordinates of an origin, 
xd:  Spatial coordinates of a destination, 
zi( ,r,I):  Cost per item carried from a single origin to terminals serving influ-

ence areas of size, I , 
z0( ,r, ):  Cost per item distributed from a single origin, without transship-

ments,
zij:  Average cost for items shipped direcly from i to j, 
zm:  Motion cost per item, 
zm

o (or zm
d): Motion cost per item between origins (destinations) and BBT, 

zm
i:  Motion cost per item from origin i to a terminal, 

zm
j:  Motion cost per item from a terminal to destination j, 

z's:  Local stop cost per unit time and unit area at CT's, 
z'T:  Cost of the CT's per unit time and unit area, 
z'h:  Holding cost per unit time and unit area, 
z'*(x, NT, H): Cost per unit time and unit area exclusive of the BBT (circuity and 

terminal) costs.



References

Anily, S. and Federgruen, A. (1993) "Two-echelon distribution systems with vehi-
cle routing costs and central inventories", Opns. Res. 41(1), 37-47.

Arrow, K. J., Karlin, S. and Scarf, H. (1958), Studies in the Mathematical Theory 
of Inventory and Production, Stanford Univ. Press, Stanford, CA.

Ball, M.O., Magnanti, T.L., Monma, C.L. and Nemhauser, G.L. (eds.) (1995), 
Network Models, Handbooks in Operations Research and Management Sci-
ence, Vol 7, Elsevier, New York, N.Y. 

Ball, M.O., Magnanti, T.L., Monma, C.L. and Nemhauser, G.L. (eds.) (1995a), 
Network Routing, Handbooks in Operations Research and Management Sci-
ence, Vol 8, Elsevier, New York, N.Y. 

Banks, J., Driscoll, W. and Stanford, R. (1982)" Design methodology for an air-
port limousine service" Trans Sci. 16, 127-148.

Bartholdi, J.J. III and Eisenstein, D.D. (1996) AA production line that balances it-
self@, Opns. Res. 44(1), 21-34. 

Beckmann, M. (1968) Location Theory, Random House, New York, N.Y.
Bertsimas, D.J., Jaillet, P. and Odoni, A.R. (1990) "A priori optimization", Opns.

Res. 38(6), 1019-1033.
Bertsimas, D.J. and Van Ryzin, G. (1991) "A stochastic and dynamic vehicle rout-

ing problem in the Euclidean plane", Opns. Res. 39(4), 601-615.
Bhaskaran, S. and Daganzo, C.F. (1987) "Transportation and inventory considera-

tions in single facility location", General Motors Research Laboratories Pub-
lication, Warren, Mich. (presented at ORSA/TIMS conference New Orleans, 
La, 1987).

Bhaskaran, S. and Kromer, R. (1986) "Internal memorandum on facilities loca-
tion", General Motors Research Laboratories, Warren, Mich.

Blumenfeld, D.E., and Beckmann M. (1984) "Use of continuous space modeling 
to estimate freight distribution costs", General Motors Research Laboratories 
Publication GMR-4780, Warren, MI. Reprinted in Trans. Res. 19A(2) 
173-187, 1985. 

Blumenfeld, D.E., Hall, R.W. and Jordan, W.C. (1985) "Trade-offs between 
freight expediting and safety stock inventory costs", J. Bus. Log. 6, 79-100. 

Blumenfeld, D.E., Burns, L.D., Diltz, J.D. and Daganzo, C.F. (1985a) "Analyzing 
trade-offs between transportation, inventory and production costs on freight 
networks", Trans. Res. B 19B(5), 361-380. 

Blumenfeld, D.E., Burns, L.D. and Daganzo, C.F. (1986) "Synchronizing produc-
tion and transportation schedules", General Motors Research Laboratories 
Publication GMR-5519, Warren, MI. Reprinted in Trans. Res. 25B(1) 23-27, 
1991.

Blumenfeld, D.E., Burns, L.D., Frick, M., Daganzo, C.F. and Hall, R.W. (1987) 
"Reducing logistics costs at General Motors", Interfaces 17(1), 26-47.



270 References

Brandeau, M.L. and Chiu, S.S. (1989) "An overview of representative problems in 
location research", Man. Sci., 35(6), 645-674. 

Brown, G.R. and Graves, G.W. (1980), "Real time dispatch of petroleum tank 
trucks", Working paper 306, Western Management Science Institue, UCLA, 
Los Angeles, CA.

Buckingham, E. (1914) AOn physically similar systems: Illustrations on the use of 
dimensional equations,@ Physics Review 4, 345-376. 

Burns, L.D. (1986) Unpublished memoranda, General Motors Research Laborato-
ries, Warren, Michigan.

Burns, L.D., and Daganzo, C.F. (1987) "Assembly line job sequencing principles", 
Int. J. Prod. Res. 25(1), 71-79. 

Burns, L.D., Hall, R.W., Blumenfeld, D.E., and Daganzo, C.F. (1985) "Distribu-
tion strategies that minimize transportation and inventory costs", Opns. Res.
33(3), 469-490.

Campbell, J. (1990) "Location-allocation for distribution to a continuous demand 
with transshipments" School of Business Administration, U. of Missouri, St. 
Louis, MO. Reprinted in Nav. Res. Log. 39(5), 635-649, 1992.

Campbell, J. (1990a) "Locating transportation terminals to serve an expanding 
demand", Trans. Res. B 24B(3), 173-193. 

Campbell, J. F. (1990b) "Freight consolidation and routing with transportation 
economies of scale", Trans. Res. 24B(5), 345-361. 

Campbell, J. F. (1990c) " Designing logistics systems by analyzing transportation, 
inventory and terminal cost tradeoffs", J. of Bus. Logistics 11(1), 159-179, 

Campbell, J. F. (1992) "Location-allocation for distribution systems with trans-
shipments and transportation economies of scale", Ann. Opns. Res. 40, 
77-79.

Campbell, J. F. (1993) "One-to-many distribution with transshipments: an analytic 
model", Trans. Sci. 27(4), 330-340. 

Campbell, J. F. (1993a) "Continuous and discrete demand hub location problems", 
Trans. Res. 27B(6), 473-482.

Casco, D.O., Golden, B.L. and Wasil, E.A. (1988) "Vehicle routing with back-
hauls: Models algorithms and case studies", in Vehicle Routing: Methods and 
Studies (B. L. Golden and A. A. Assad, editors), Elsevier Science, Amster-
dam, The Netherlands. 

Clarens, G. and Hurdle, V.F. (1975) "An operating strategy for a commuter bus 
system", Trans. Sci. 9, 1-20. 

Daganzo, C.F. (1984a) "The length of tours in zones of different shapes", Trans.
Res. B 18B, 135-146.

Daganzo, C.F. (1984b) "The distance traveled to visit N points with a maximum 
of C stops per vehicle: An analytic model and an application", Trans. Sci.
18(4), 331-350.

 Daganzo, C.F. (1985) "Mathematical specification of transportation models", in 
Measuring the Unmeasurable, P. Nijkamp, M.Leitner, and E. Wrigley eds., 
pp.663-678, NATO ASI Series D #22, Martinus Nijhoff, Dordrecht, The 
Netherlands.



 References 271

Daganzo, C.F. (1985a) "Supplying a single location from heterogeneous sources", 
Trans. Res. B 19B(5), 409-420.

Daganzo, C.F. (1987) "Increasing model precision can reduce accuracy" Trans.
Sci. 21(2), 100-105.

Daganzo, C.F. (1987a) "Modeling distribution problems with time windows", 
Trans. Sci. 21(3), 171-179.

 Daganzo, C.F. (1987b) "Modeling distribution problems with time windows. Part 
II: Two customer types", Trans. Sci. 21(3), 180-187. 

Daganzo, C.F. (1987c) "The break-bulk-role of terminals in many-to-many logis-
tics networks", Opns. Res. 35(4), 543-555.

Daganzo, C.F. (1988) "A comparison of in-vehicle and out-of-vehicle freight con-
solidation strategies", Trans Res. B 22B(3), 173-180. 

Daganzo, C.F. (1988a) "Shipment composition enhancement at a consolidation 
center", Trans Res. B 22B(2), 103-124.

Daganzo, C.F. (1990) "On the coordination of inbound and outbound schedules at 
a transportation terminal" Proc. 11th Int. Symp. Trans. and Traffic Theory,
(M. Koshi, editor), pp. 379-390, Yokohama, Japan. 

Daganzo, C.F. (2002) A theory of supply chains. Springer, Heidelberg, Germany. 
Daganzo, C.F. (2004) AOn the stability of supply chains@, Operations Research

52(6), 909-921. 
Daganzo, C.F. and Erera, A.L. (1999) AOn planning and design of logistics sys-

tems for uncertain environments" in New Trends in Distribution Logistics
(M.G. Speranza and P. Stahly, editors) Lecture Notes in Economics and 
Mathematical Systems, vol 480, pp. 3-21, Springer-Verlag, New York 
(1999).

Daganzo, C.F. and Hall, R.W. (1990) "A routing model for pickups and deliveries: 
No capacity restrictions on the secondary items", Institute of Transportation 
Studies Research Report UCB-ITS-RR-90-3, Univ. of California, Berkeley, 
CA. Reprinted in Trans. Sci. 27(4), 315-329, 1993. 

Daganzo, C.F., Hendrickson, C.T. and Wilson, N.H.M. (1977) "An approximate 
analytic model of many-to-one demand responsive transportation", Proc. 7th 
Int. Symp. on the Theory of Traffic Flow and Transportation, (T. Sasaki and 
T. Yamaoka, editors), pp. 743-772, Kyoto, Japan. 

Daganzo, C.F. and Newell, G.F. (1985) "Physical distribution from a warehouse: 
vehicle coverage and inventory levels", Trans. Res. B 19B(5), 397-408. 

Daganzo, C.F. and Newell, G.F. (1986) "Configuration of physical distribution 
networks", Networks 16(2), 113-132. 

Daganzo, C.F. and Newell, G.F. (1987) "Handling operations and the lot size 
trade-off", Institute of Transportation Studies Working Paper UCB-ITS-WP- 
87-9, Univ. of California, Berkeley, CA. Reprinted in Trans. Res. 27B(3) 
167-184, 1993. 

Daganzo, C.F. and Smilowitz, K. R. (2004) ABounds and approximations for the 
transportation problem of linear programming and other scalable network 
problems@ Transportation Science 38(3), 343-356.. 

Daskin, M.S. (1985) "Logistics: An overview of the state of the art and perspec-
tives of future research", Trans. Res. A, 19A (5/6), 383-398. 



272 References

Daskin, M.S. (1995) Network and Discrete Location: Models, Algorithms and Ap-
plications, Wiley, New York, USA. 

Dejax, P.J. and Crainic, T.G. (1987) "A review of empty flows and fleet manage-
ment models in freight transportation", Trans. Sci. 21, 227-247. 

Drezner, Z. and Hamacher, H.W. (2002) Facility Location: Applications and The-
ory. Springer, Berlin, Germany. 

Dror, M., Ball, M. and Golden B. (1985) "A computational comparison of algo-
rithms for the inventory routing problem", Working paper 166, Dept. of 
Management Sciences Univ. of Waterloo, Waterloo, Ontario, Canada. 

Du, Y. (1993) "Fleet sizing and empty equipment redistribution for transportation 
networks", PhD thesis, Dept. of Ind. Eng. and Opns. Res., Univ. of Califor-
nia, Berkeley, CA. 

Du, Q., Faber, V. and Gunzburger, M. (1999) ACentroidal Voronoi tessellations: 
applications and algorithms@, SIAM Review, 41(4): 637-676. 

Eilon, S., Watson-Gandy, C.D.T. and Christofides, N. (1971) Distribution Man-
agement: Mathematical Modelling and Practical Analysis, Hafner, New 
York, N.Y. 

Erera, A. L. (2000) ADesign of large-scale logistics systems for uncertain envi-
ronments@ Ph.D. Thesis, Dept. of Industrial Engineering and Operations Re-
search, U. California, Berkeley, CA. 

Erlenkotter, D. (1988) "The general optimal market area model", Working paper 
348, Western Management Science Institute, UCLA, Los Angeles, CA. Re-
printed in Ann. Opns. Res. 18, 45-70, 1989. 

Erlenkotter, D. (1990) "Ford Whitman Harris and the Economic Order Quantity 
Model", Opns. Res. 38(6), 937-946. 

Fruin, J.J. (1971) Pedestrian Planning and Design, M.A.U.D.E.P., New York, 
N.Y.

Gallego, G., and Simchi-Levy, D. (1988) "On the effectiveness of direct shipping 
strategy for one warehouse multi-retailer R-systems", Dept. of Industrial En-
gineering Report, Columbia University, New York, N.Y. 

Gendreau, M., Laporte, G. and Seguin, R. (1996) AStochastic vehicle routing@.
Euro. J. Opnl. Res., 88(1), 3-12. 

Gleick, J. (1988) Chaos: Making a New Science, Penguin Books, New York, N.Y. 
Glover, F. (1989) "Tabu search, part I", ORSA J. on Computing 1(3), 190-206. 
Glover, F. (1990) "Tabu search, part II", ORSA J. on Computing 2(1). 4 32.
Golden B.L. and Yee J.R. (1979) "A framework for probabilistic routing", AIIE

Trans. 11, 109-112. 
Hall, R.W. (1984) "Travel distance through transportation terminals on a rectangu-

lar grid", J. Opnl. Res. Soc. 35, 1067-1078. 
Hall, R.W. (1985) "Determining vehicle dispatch frequency when shipping fre-

quency differs across suppliers", Trans. Res. B 19B(5), 421-432. 
Hall, R.W. (1987) "Direct versus terminal freight routing on a network with con-

cave costs", Trans. Res. B 21B(4), 287-298. 
Hall, R.W. (1989) "Vehicle packing", Trans. Res. B 23B(2), 103-121. 
Hall, R.W. (1989a) "Graphical Interpretation of the transportation problem", 

Trans. Sci. 23(1), 37-45. 



 References 273

Hall, R.W. (1989b) "Configuration of an overnight package air network", Trans.
Res. A 23A(2), 139-150. 

Hall, R.W. (1990) "Characteristics of multistop/multilevel vehicle routes", Insti-
tute of Transportation Studies Report, Univ. of California, Berkeley, CA. 
Reprinted in Trans. Res. 25B(6), 391-403, 1991. 

Hall, R. W. (1992) "Pickup and delivery systems for overnight carriers", Transpor-
tation Center Working Paper 106, Univ. of California, Berkeley, CA. To ap-
pear in Trans. Res.

Hall, R.W. (1993) "Properties of vehicle routes with variable shipment sizes in 
euclidean plane", Trans. Res. Rec. 1413, 122-129. 

Hall, R.W. (1993a) "Distance approximations for routing manual pickers in a 
warehouse", IIE Transactions 25(4), 76-87. 

Hall, R. W. (1993b) "Design for local area freight networks", Trans. Res. 27B(2), 
79-95.

Hall, R.W. and Daganzo, C.F. (1984) "Travel distance through transportation ter-
minals on a grid: Alternative routing strategies", General Motors Research 
Publication GMR-4719. Warren, Mich. 

Hall, R.W. and Daganzo, C.F. (1985) "Vehicle miles for a freight carrier with two 
capacity constraints", Trans. Res. Rec. 1038, 34-40. 

Hall, R.W., Du, Y. and Lin, J. (1994) "Use of continuous approximations within 
discrete algorithms for routing vehicles: experimental results and interpreta-
tion", Networks 24(1), 43-56. 

Hall, R.W. and Racer, M. (1995) "Transportation with common carrier and private 
fleets: system assignment and shipment frequency optimization", IIE Trans-
actions 27, 217-225. 

Han, A. (1984) "One-to-many distribution of nonstorable items: Approximate ana-
lytic models", PhD thesis, Dept of Civil Eng., Univ. of California, Berkeley, 
CA.

Han, A. and Daganzo, C.F. (1986) "Distributing nonstorable items without trans-
shipments", Trans. Res. Rec. 1061, 32-41. 

Han, A. and Daganzo, C.F. (1988) "Distributing nonstorable items: transshipments 
allowed", Paper presented at EURO IX/TIMS XXVIII Joint International 
Conference, Paris, France. 

Harris, F.W. (1913) "How many parts to make at once", Factory, The Magazine of 
Management 10, 135-136,152. 

Harris, F.W. (1913a) "How much stock to keep on hand", Factory, The Magazine 
of Management 10, 240-241, 281-284. 

Hendrickson, C.T. (1978) "Approximate analytic performance of integrated transit 
components", PhD thesis, M.I.T., Cambridge, MA. 

Hopfield, J.J. and Tank, D.W. (1985) "'Neural' computation of decisions in opti-
mization problems", Biol. Cybern. 52, 141-152. 

Horowitz, A.D. and Daganzo, C.F. (1986) "A graphical method for optimizing a 
continuous review inventory system", Prod. Inv. Man. 27 (4), 30-45. 

Huang, M.D., Romeo, F., and Sangiovanni-Vincentelli, A. (1986) "An efficient 
general cooling schedule for simulated annealing", IEEE International Con-
ference on Computer-Aided Design, Santa Clara, California. 



274 References

Hurdle, V. O. (1973) "Minimum cost locations for parallel transit lines", Trans.
Sci. 7, 340-350. 

Hurdle, V.F. (1973a) "Minimum cost schedules for a public transportation route. I. 
Theory", Trans. Sci. 7(2), 109-137. 

Hurdle, V.F. (1973b) "Minimum cost schedules for a public transportation route. 
II. Examples", Trans. Sci. 7(2), 138-157. 

Jeng, C.Y. (1987) "Routing strategies for an idealized airline network", PhD the-
sis, Univ. of California, Berkeley, CA. 

Jordan, W.C. (1982) "The impact of uncertain demand and supply on empty rail-
road car distribution", PhD thesis, Cornell University, Ithaca, N.Y. 

Jordan, W.C. and Burns, L.D. (1984) "Truck backhauling on two terminal net-
works" Trans. Res. B, 18B(6), 487-503. 

Karp, R.M. (1977) "Probabilistic analysis of partitioning algorithms for the travel-
ing salesman problem", Math. Opns. Res. 2, 209-224. 

Kiesling, M.K. (1995) "A comparison of freight distribution costs for combination 
and dedicated carriers in the air express industry", PhD thesis, Dept. of Civil 
Engineering, Univ. of California, Berkeley. 

Klincewicz, J.G., Luss, H. and Pilcher, M. G. (1990) "Fleet size planning when 
outside carrier services are available", Trans. Sci. 24(3), 169-82. 

Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P. (1983) "Optimization by simulated 
annealing," Sci. 220, 671-680. 

Kunder, R. and Gudehus, T. (1975) "Mittlere wegzeiten beim ein-dimensionalen 
kommissionieren", Zeitschrift fur Operations Research 19, B53-B72. 

Laarhoven, P.J.M. and Aarts, E.H.L. (1987) Simulated Annealing: Theory and 
Applications, D. Reidel Publishing Co., Dordrecht, The Netherlands. 

Langevin, A., Mbaraga, P. and Campbell, J.F. (1995) "Continuous approximation 
models in freight distribution: an overview", Centre de Recherche sur les 
Transports Publication CRT-992, Universite de Montreal, Montreal, Canada. 
(Trans. Res. in press). 

Langevin, A. and Saint-Mleux, Y. (1992) "A decision support system for physical 
distribution planning", J. Decision Systems 1, (2-3) 273-256. 

Langevin, A. and Soumis, F. (1989) "Design of multiple-vehicle delivery tours 
satisfying time constraints", Trans. Res. B 23B(2), 123-138. 

Larson, R.C. and Odoni, A.R. (1981) Urban Operations Research, Prentice-Hall, 
Englewood Cliffs, N.J. 

Lin, S. (1965) "Computer solutions of the traveling salesman problem", The Bell 
System Tech. J., 44, 2245-2267. 

Lösch, A. (1954) The Economics of Location (translation of "Die Räumliche Ord-
nung der Wirtschaft, 2nd ed, 1944), Yale Univ. Press, New Haven, Conn. 

Love, R.F., Morris, J.G. and Wesolowsky, G.O. (1988) Facilities Location: Mod-
els and Methods, North Holland, New York, N.Y. 

Martin, J.D. (1989) "Third-party logistics comes of age", Container News
pp.23-25, December, 1989. 

Mitra D., Romeo F., and Sangiovanni-Vincentelli, A. (1986) "Convergence and 
finite-time behavior of simulated annealing", Adv. in Appl. Probab., 18(3), 
747-771.



 References 275

Mitric, S. (1972) "Vertical transportation in tall buildings" Ph.D. thesis, Dept. of 
Civil Eng., Univ. of California, Berkeley, CA. 

Newell, G.F. (1971) "Dispatching policies for a transportation route", Trans. Sci.
5, 91-105. 

Newell, G.F. (1973) "Scheduling, location, transportation and continuum mechan-
ics: some simple approximations to optimization problems", SIAM J. Appl. 
Math. 25(3), 346-360. 

Newell, G.F. (1980) Traffic Flow on Transportation networks, MIT Press, Cam-
bridge, Mass. 

Newell, G.F. (1982) Applications of Queueing Theory, Second edition, Chapman 
Hall, London. 

Newell, G.F. (1986) "Design of multiple vehicle delivery tours III: Valuable 
goods", Trans. Res. B 20B(5), 377-390. 

Newell, G.F. (1990) "Hiring temporary labor" (mimeo), Dep. of Civil Eng., Univ. 
of California, Berkeley, CA. 

Newell, G.F. and Daganzo, C.F. (1986) "Design of multiple vehicle delivery 
tours I: A ring-radial network", Trans. Res. B 20B(5), 345-364. 

Newell, G.F. and Daganzo, C.F. (1986a) "Design of multiple vehicle delivery 
tours II: Other metrics", Trans. Res. B 20B(5), 365-376. 

Okabe, A., Boots, B. and Sugihara, K. (1992). Spatial Tessellations: Concepts and 
Applications of Voronoi Diagrams. Wiley, Chichester, UK 

Ouyang, Y. and Daganzo, C.F. (2004) ADiscretization and validation of the con-
tinuum approximation approach for terminal system design@ Presented at the 
2004 meeting of the Trans. Res. Board.; Trans. Sci. (in press). 

Peterson, R. and Silver, E.A. (1979) Decision Systems for Inventory Management 
and Production Planning, Wiley, New York, N.Y. 

Platzman, L.K. and Bartholdi, J.J., III (1989) ASpacefilling curves and the planar 
travelling salesman problem@, J. Assn. Comp. Mach., 36(4), 719-737. 

Popken D. (1988) "Multiattribute, multicommodity flows in transportation net-
works" PhD thesis, Dept. of Industrial Engineering and Operations Research, 
U. California, Berkeley, CA. 

Powell, W.B., Sheffi, Y. and Thiriez, S. (1984) "The dynamic vehicle allocation 
problem with uncertain demands", Proc. 9th International Symposium on 
Transportation and Traffic Theory, (J. Vollmuller and R. Hamerslag, edi-
tors), pp. 357-374, Delft, The Netherlands. 

Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T., (1986) Nu-
merical Recipes: The Art of Scientific Computing, Cambridge University 
Press, Cambridge, U.K. 

Robuste, F., Daganzo, C.F. and Souleyrette, R. (1990), "Implementing vehicle 
routing models", Trans. Res. B , 24(4), 263-286. 

Schwarz, L.B. (editor) (1981) Multi-level production/inventory control systems: 
theory and practice, TIMS studies in the management sciences v 16, Elsevier 
North-Holland, Amsterdam, The Netherlands. 

Sheffi, Y. (1985) Urban Transportation Networks, Prentice-Hall, Englewood 
Cliffs, N.J. 



276 References

Smilowitz, K.R. (2001) ADesign and operation of multimode, multiservice logis-
tics systems,@ PhD thesis, Department of Civil and Environmental Engineer-
ing, U. California, Berkeley, CA. 

Smilowitz, K.R. and Daganzo, C. F.(2004) ACost modeling and design techniques 
for complex transportation systems@ Working Paper 04-2004, IEMS Depart-
ment, Northwestern University; (submitted for publication). 

Steenbrink, P.A. (1974), Optimization of Transport Networks, John Wiley & Sons, 
New York, N.Y. 

Taylor, J. R. (1997), An Introduction to Error Analysis: The Study of Uncertain-
ties in Physical Measurements (2nd ed.), University Science Books, Sausa-
lito, CA. 

Vuchic, V. and Newell, G.F. (1968) "Rapid transit interstation spacing for mini-
mum travel time", Trans. Sci. 2, 303-339. 

Webb, I. (1989) "An integrated approach to strategic and tactical inven-
tory/routing problems", PhD thesis, Massachusetts Institute of Technology, 
Cambridge, MA. 

Weber, A. (1929) On the Location of Industries (translation of "Uber den Standort 
der Industrie", 1909), Univ. of Chicago Press, Chicago, Ill. 

Welch, W.E. (1956) Tested Scientific Inventory Control, Management Publishing 
Co. Greenwich, Connecticut. 

Wirasinghe, S.C. and Ghoneim, N.A. (1981) "Spacing of bus-stops for many to 
many travel demand", Trans. Sci. 15, 210-221. 

Wirasinghe, C.S., Hurdle, V.F. and Newell, G.F. (1977) "Optimal parameters for a 
coordinated rail and bus transit system", Trans. Sci. 11(4), 359-74. 

Zangwill, W.I. (1968) "Minimum concave cost flows in certain networks", Man.
Sci. 14, pp. 429-450. 

Zipkin, P.H. (2000) Foundations of Inventory Management, McGraw-Hill, New 
York, N.Y. 



Appendix A: Some Properties of the TSP and the 
VRP

This appendix proves some properties of planar traveling salesman and 
vehicle routing problems. By this we mean, problems where the points xi
are randomly and uniformly located on a two-dimensional Cartesian region 
with distances given by a norm. 

TSP

We look here for the expected distance of the optimum TS tour, dTSP, in a 
region R of area R = R  with N points on average. Point locations and 
tour lengths vary across realizations, e.g., from day to day. Locations are 
assumed to follow a homogeneous 2-dimensional point process with rate 
(points/area), such that N = R. This process can take many forms; e.g., be 
a regular lattice,1 a Poisson process, a clustered Poisson process or a hybrid 
of these. We shall show that dTSP/N  k -1/2 as (N, R)  if both the proc-
ess and the zone shape are fixed. The constant k depends on the norm and 
the process, but not on shape. 

Assume for now that the zone shape, norm and process type are fixed, 
and that , R and N are parameters. Then, we know from dimensional 
analysis  that the  average  distance per  point, dTSP/N,  must be of the form,

-1/2f(N), where Af@ is a function to be determined; see Buckingham (1914). 
We expect this function to be monotonic, and hence to have a limit, k, if it 
is bounded. In fact, the following is true. 

Proposition 1: For square regions, the function Af@ is bounded with k > 0. 
Proof: Consider a square R composed of m2 smaller squares of area S, and 
form a sub-optimal TS tour by forming optimal tours in the individual 
squares and linking them in sequence. A sequence of contiguous squares 
(sharing a side) exists if m is even. The expected length of such a sub-
optimal tour across all possible realizations is bounded from above by the 
sum of the expected lengths of m2 individual optimal tours, m2N -1/2f(N) = 
m2(NS)1/2f(N), plus the expected length of the linkages. Since these links 

1 For homogeneous lattices the relation N = R is only meaningful for large regions, such that dis-
placements of the lattice do not affect significantly the number of points in R. This restriction is not a 
problem for us, since the results in this appendix pertain to situations where (N, R) .
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join contiguous squares, their combined length cannot exceed m2S1/2,
where  is a norm-specific constant. Thus, an upper bound to the expected 
length of the complete tour is: [m2N1/2f(N) + m2]S1/2. This, of course, also 
bounds from above the expected length of the optimum tour, which is: 
(Nm2) -1/2f(Nm2) = m2N1/2 f(Nm2)S1/2. Thus, m2N1/2f(N) + m2  m2N1/2

f(Nm2) for any even m; or, equivalently, f(N) + N-1/2  f(Nm2). We now 
see by fixing N and letting m go to infinity that Af@ is boundedBi.e., with a 
finite limit. We also see that this limit must be positive since it must ex-
ceed the expected distance between nearest neighbors, which is itself posi-
tive.

Corollary: The limit f(N) k, exists and is the same for zones of all 
shapes.
Proof: We have established that for large N the average distance per point 
in a square tends to k -1/2 as N . Consider now a fixed region R parti-
tioned into M = N1/2 elementary squares with N1/2 points each on average, 
where M, N . (Zones of any shape can be approximated in this way.) 
Now, form a tour by linking optimal elementary tours as in the previous 
proof. For 2-dimensional regions R, the length of the linkages is of order 
O(MS1/2) = O(M1/2R1/2) = O(N1/4R1/2) = O(N3/4) -1/2. The expected distance 
per point for the resulting tour is therefore: k -1/2 + O(N3/4) -1/2/N, where k 
is the limiting constant for a square. Since the second term in this expres-
sion is of a lesser order it can be neglected for N . This proves the cor-
ollary.

An upper bound to k can be found by finding the expected length of heu-
ristic tour construction methods. We describe here the swath heuristic in 
Daganzo (1984a). Let R be a square, with distances given with by an L1
norm oriented with the sides, and points by a homogeneous Poisson proc-
ess with density . Cover the square with a swath of width w, as shown in 
Fig. A1. The width should be an even integer sub-multiple of R1/2. Visit the 
points in order of appearance by traveling along the swath, only deviating 
laterally to visit them; see figure. If w is small so we can ignore corner ef-
fects, the distance of a tour can be decomposed into a longitudinal distance 
(the length of the swath) and a transverse distance (the sum of all the lat-
eral deviations). The longitudinal distance is R/w. The average lateral de-
viation is the average distance between two random points in a segment of 
length w; i.e., w/3. Thus, the expected transverse distance is ( R)w/3, the 
expected total tour distance, R/w + Rw/3, and the expected distance per 
point: 1/( w) + w/3. This expression is minimized by w = w*  (3/ )1/2,
which yields for the average distance per point:  (4/3)1/2 -1/2.  1.15 -1/2.
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Note that w* becomes small compared with the dimensions of R as  in-
creases. Thus, for  we can carve R with a swath of length arbitrarily 
close to w*, and we can conclude that k < 1.15 for the L1 norm. For the 
Euclidean metric, similar derivations yield k < 0.87. 

Fig. A1 The swath heuristic for the TSP 

The formula also applies to rectangles and other geometric shapes that can 
be carved into a swath of near-optimum width even if  is not large. But 
the formula does not apply to very narrow rectangles of length L and width  
l,   if  their  width   is  considerably  smaller  than  2w*  =  2(3/ )1/2;  i.e.,  if
l2 << 12. In this case, which is of importance for the VRP, we can instead 

choose w = l/2 and construct a tour by traveling up and back the length of 
the rectangle just once. The expected distance for such a tour is 2L + Nl/6,
so that the average distance per point is 2L/N + l/6 = 2L/ R + l/6 =  2/ l + 
l/6. Thus, a general TSP distance approximation formula for rectangles is: 

dTSP/N  2/ l + l/6,  if l2 < 12, and
 1.15 -1/2,  otherwise. 

The top part of this formula is more accurate than the bottom, and its pre-
cision improves as l is reduced. (This should be intuitive: if l  0 with 
fixed L and , the formula predicts dTSP = 2L, which is the exact result.) 

w

longitudinal 
segment

transversal 
segment
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VRP

A VRP requires all the demand information for a TSP (points, metric, 
etc...) plus some information about the vehicle fleet. We shall only use 
here the vehicle capacity V (items/vehicle) and the depot location. Addi-
tional information such as vehicle speed and stopping time is relevant for 
some applications. We also need information about the items demanded at 
each point. We shall assume that customer demands are independent 
across customers, and given by a distribution that can be characterized by 
its mean, v << V. 

If we assume momentarily that R is a circle and look for the expected 
optimum VRP distance dVRP under the Euclidean norm, the problem can be 
characterized with only 5 parameters: R, N, v, V and the distance from the 
depot to the center of the circle, r. Therefore, to be dimensionally correct, 
its solution must be of the form: (dVRP/R1/2) = f(r/R1/2, N, v/V). We shall 
now show that when N  with all else constant solutions to the VRP can 
be constructed with expected distance given by 2rN(v/V) + kVRP(RN)1/2,
and that this expression is near-optimal; i.e., 

dVRP/N  2r(v/V) + kVRP
-1/2         for .

The first term on the right side is a Aline-haul distance@ needed to reach the 
customers from the depot, which depends on r, and the second term a Alo-
cal distance@ for detours, which depends on the characteristic distance be-
tween points -1/2. This expression holds for non-circular regions if r is in-
terpreted as the distance from an item=s demand point to the depot, 
averaged across all items. To establish these facts we first introduce some 
upper and lower bounds.

Proposition 2: An upper bound to the VRP distance is 2rN(v/V) + 
kTSP(RN)1/2.
Proof: Consider the following TSP partitioning strategy. For each realiza-
tion of a problem construct an optimum TST and number all the items in 
the order they would be collected, from 1 to S (the number of items for the 
realization). Send vehicle 1 to collect items 1 to V (in order), vehicle 2 to 
collect items V+1 to 2V,vehicle 3 to collect items 2V+1 to 3V, etc. until all 
items have been collected. The length of the resulting VRP routes is obvi-
ously bounded from above by the sum of dTSP and the combined length of 
all the Aline-haul@ connectors between the TST and the depot. Consider 
now a similarly constructed VRP solution that starts with item 2 and ends 
with item 1. The new distance too, will be bounded from above by the sum 
of dTSP and the combined length of the new connectors. If we construct S 
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VRP solutions in this manner we know that their average distance davg
must bound from above the smallest distance in the collection; and hence 
the optimum VRP distance. Note that the combined length of all the con-
nectors is the sum of the round trip distances from all items to the depot. 
Thus, if we now average across all realizations both davg and the optimum 
VRP distances, the former continues to bound the latter. Furthermore, the 
average length of the connectors of an average vehicle tour is 2r(Nv/V), as 
per the definition of r. Thus, the average of davg is 2r(Nv/V) + kTSP(RN)1/2.

Proposition 3: The two components of the upper bound, 2r(Nv/V) and 
kTSP(RN)1/2, are lower bounds to dVRP.
Proof: The TSP portion, kTSP(RN)1/2, is a lower bound because the TSP so-
lution solves optimally a less constrained VRP problem, with V = .

To see that the line-haul portion is a lower bound, consider an optimum 
VRP solution and V identical copies of one of its individual vehicle tours. 
For each copy measure the two connectors between the depot and one of 
the items. In all cases the length of the tour is bounded from below by the 
length of these connectors. Therefore, it is bounded from below by their 
average. Since this is true for all the tours in the VRP solution, we see that 
the average vehicle tour length is bounded from below by 2r, and that 
2r(Nv/V) must be a lower bound to dVRP.

The line-haul lower bound is tighter than the local component if 2r(Nv/V) 
> kTSP(RN)1/2; i.e., if 2r/(V/v) > kTSP(R/N)1/2 = kTSP

-1/2. This inequality 
holds if  > [kTSP(V/v)/(2r)]2 . When  is small the reverse is true. We now 
show that tours with less local distance than predicted by the TSP parti-
tioning method can be constructed, if  is sufficiently large. 

Consider a region S with an external depot, as shown in Fig. A2, where 
distances are given by a ring-radial metric centered at the depot. The re-
gion is first partitioned with a set of concentric rings of width L. A sweep 
is then performed on each ring to define the delivery zones. A zone is de-
fined each time the item count reaches V. These zones are then divided 
longitudinally in two equal strips of length L and width w. Each vehicle is 
then routed from the depot to the nearest customer in its zone (in the radial 
direction) and then visits all the customers in the current strip in order of 
increasing radial distance. On reaching the end, the vehicle swaps strips by 
moving transversely along the ring and then visits the remaining customers 
in reverse order. 
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Fig. A2 The ring and sweep strategy for the VRP 

The simplest result arises when the depot is so far from the region that dis-
tances inside each zone are given by an L1 norm. In this case the VRP dis-
tance can be neatly decomposed into radial and transverse distances, and 
this is exploited below. Let Ni and Di be the number of customers and the 
total demand in ring i, and Ri and Ti the corresponding radial and trans-
verse distances. We use angled brackets A<>@ to denote the average of 
these quantities across all realizations. They satisfy: 

<Ni> = Ri   (where Ri is the area of Si Bthe portion of S in ring 
i),

<Di> = v Ri,
<Ri>  2ri(v/V) Ri (where ri is the distance from the outer edge of ring i

to the depot), 
<Ti> ti (V/v)/6  (where ti is the length of the longest arc in Si).

The two inequalities are also good approximations. The second inequality 
requires some explanation. It assumes that S is large compared with a typi-
cal delivery zone. In this case most zones are away from the boundary and 

L

ri

ti

ring Si
w{

V-items

L
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rectangular, as the one shown in Fig. A2, and a lateral move requires on 
average 1/6 of the width of the zone. Since the average number of zones in 
a ring is < Di /V >  <Di >/V (we can ignore rounding effects for large S)
the average distance for a move is approximately (1/6)ti V/<Di>. We ex-
pect approximately <Di>/v movesBone per customer visit. Therefore, the 
expected total lateral distance is <Ti>  ti (V/v)/6. We now show that this 
quantity is actually an upper bound. 
Proof: If an individual tour has 1 or more stops on each strip, the number 
of lateral moves is n-2, where n is the number of stops in the tour. One of 
these moves crosses both strips and is therefore equivalent to two single-
strip moves. Thus, there are n-1 single moves, with an average total dis-
tance of (n-1)l/6, where l is the width of the zone. If an individual tour has 
fewer than 1 stop on either of the strips its transverse distance is less. Thus, 
(n-1)l/6 is an upper bound to the average transverse distance of any tour 
conditional on n and l. Since the random variables n and l are independent 
(delivery lot sizes, which influence n, are independent of location) an up-
per bound to the unconditional average transverse distance of a tour is <n-
1><l>/6. Furthermore, since one of the points in a tour may also be visited 
by the previous tour (if the load has to be split) we see that <n-1> is 
bounded from above by the average number of points in a tour; i.e., the ra-
tio the number of points in the ring <Di>/v and the average number of 
tours in the ring, <#i>. Recall that <#i> = < Di /V >  <Di>/V. Clearly, an 
upper bound to the average transverse distance of a tour is: (V/v)<l>/6.
Since the average total transverse distance in ring i, <Ti>, is the product of 
the average distance per tour and <#I>, it follows that <Ti>
<#i>(V/v)<l>/6. Note now from the definition of ti that the average width 
of a zone <l> is bounded from above by ti /<#i>. Hence,<Ti>  ti(V/v)/6.

The expected total VRP distance is the sum of the distance for all rings. 
When L is sufficiently small compared with the diameter of S (we con-
tinue to ignore boundary effects) this can be expressed as: 

<Total VRP distance>  2ri(v/V) Ri + ti(V/v)/6
 (2r+L)(v/V) R + (R/L)(V/v)/6.

The first terms on both sides of the last equality are equal because the 
round trip distance to the edge of a ring is the round trip distance to its cen-
ter plus the width of the ring. The second terms are equal because the area 
of Si approximately equals the product of L and ti.
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If we now choose L to minimize the right side we find: 

L* = (V/v)(6 )-1/2

and

Total VRP distance  2r(v/V) R + 2R( /6)1/2  2r(Nv/V) + 0.82(RN)1/2.

Since the expected number of tours is Nv/V, the expected distance per tour 
is 2r + k -1/2 (V/v), where k = 0.82. If V >> v, the factor V/v is an ap-
proximation for the average number of stops in a tour. This is the result on 
which Eq. (4.1) of the text is based. The text assumed that the number of 
stops was fixed--as if V was a fixed integer multiple of v: V/v = C. The 
logic of this appendix also leads to Eq. (4.1) for other norms and inhomo-
geneous metrics. For the Euclidean metric the value is k  0.57 (Daganzo 
1984b). This is considerably lower than the TSP partitioning value, kTSP.2

2 Current estimates of the Eucledian kTSP based on computer simulations exceed 0.7. A lower bound to 
kTSP based on the average distance from a random point to its nearest and second nearest neighbors is 
0.625.
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Simulated Annealing 

Simulated Annealing (SA) belongs to a general class of "probabilistic hill 
climbing" algorithms whose goal is to approximate global optima in com-
plex combinatorial optimization problems. Based on an analogy with an-
nealing in solids (Kirkpatrick et al., 1983), SA can be described as a proc-
ess which "... first 'melts' the system being optimized at a high effective 
'temperature', then (slowly) lowers the 'temperature' in stages until the sys-
tem 'freezes' and no further changes occur." Its objective is finding a con-
figuration (or state) for which a certain cost function takes its minimum 
value, (i.e. a minimum energy state). 

The SA algorithm generates new configurations with some probabilistic 
rules, and either accepts or rejects them depending on their relative cost. 
Unlike other iterative improvement algorithms, however, SA will some-
times accept configurations that increase cost if the result of a certain ran-
dom acceptance rule is positive. The probability of acceptance is con-
trolled by a parameter, T, analogous to the temperature in physics. 

Given an initial configuration, s1 , with cost c(s1) , and initial tempera-
ture, T=T1, the SA algorithm changes the configuration and the tempera-
ture with each iteration, t=1,2,..., in the following way (the terminology is 
adopted from Mitra et al., 1986): A generate function chooses a candidate 
configuration to jump from the current configuration, st , an accept func-
tion determines whether the candidate should be accepted, and an update
function changes the temperature from Tt to Tt+1 ; the latter function also 
updates the configuration. 

If the algorithm is in a certain configuration at time t, the function gen-
erate randomly selects a new configuration from a set of feasible 
"neighbor" configurations. The design of this function must be customized 
for each particular problem – a function will be "theoretically sound" (i.e. 
guaranteed to converge when combined with other theoretically sound ac-
cept and update functions) if it can reach any state from the initial state by 
jumping from neighbor to neighbor in a finite number of moves, and if the 
neighbors are chosen with equal probability. This is a sufficient, although 
not necessary condition. Lin (1965) has proposed a set of moves for the 
TSP.

Although several accept functions are theoretically sound, the most 
common is that proposed by Kirkpatrick et al. (1983), which is based on 
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Boltzmann's probability density distribution (the result is known as the 
Metropolis algorithm). If the cost of the new configuration, c(st+1), is less 
than the cost of the old configuration, c(st), the new configuration is ac-
cepted with probability one. Otherwise, it is accepted with probability: 

The time t is increased by one unit regardless. 
The update function defines the "cooling schedule" which reduces the 

temperature from Tt to Tt+1 . A schedule is theoretically sound if it de-
creases the temperature very slowly (i.e. no faster than (log(t))-1 for sched-
ules in which the temperature is reduced at every iteration), and has a suf-
ficiently large initial temperature. 

With theoretically sound generate, accept and update functions, the 
simulated annealing algorithm has been shown to converge in probability 
to a minimum cost configuration (see Laarhoven and Aarts, 1987, and Mi-
tra et al., 1986, for details). However, this results in prohibitively long exe-
cution times. Although guidelines exist to accelerate the cooling schedule 
in practice (see Huang et al., 1986, and Laarhoven et al., 1987, for exam-
ple), execution times can still be long. For a specific problem type some 
experimentation is desirable to determine practical cooling schedules; i.e. 
settings for the initial temperature, the reduction factor, and a convergence 
criterion.

For effective application of simulated annealing there must be: 1) a 
quick way of calculating the cost of a configuration, and 2) a quick way of 
altering the system. For the classical TSP, the cost function is the tour 
length. The SA algorithm then tries variations on this tour and checks for 
improvements in tour length. The following implementation for the TSP 
(Press et al., 1986) was adopted for the experiments in Robuste et al., 
(1990):

1. Configuration. Points are numbered i=1,2...,N and each has coordi-
nates (Xi, Yi). A configuration is any permutation of the set 
{1,2,...,N}. Its cost is the sum of the distances between the N con-
secutive pairs of points, 

2. Generating rearrangements (Lin, 1965). Either 1) a (random) section 
of the tour is removed and replaced with the same points running in 
the opposite order (a reversal), or 2) a (random) section of the tour is 

.exp 1

t

tt

T
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removed and replaced between two points in another randomly cho-
sen part of the tour (a transport), 

3. Annealing schedule. Initially the temperature is set equal to a large 
initial value, T1. The temperature is maintained constant for several 
trials (i.e. for a "temperature step"), and then is geometrically re-
duced by a constant factor,  . 

For this annealing schedule to guarantee convergence in probability, the 
number of iterations in a temperature step must be large enough for the 
underlying Markov Chain to have reached a steady state. While methods 
exist to estimate whether this steady state has been reached, they are likely 
to result in long temperature steps – and execution times – especially so af-
ter the temperatures have been lowered.
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