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PREFACE

Data Envelopment Analysis (DEA) is a data-oriented approach for
performance evaluation and improvement. In recent years, we have observed
a notable increase in interest in DEA techniques and their applications. Basic
DEA models and techniques have been well documented in the DEA
literature. Although these basic DEA models are useful in determining the
best-practice frontier, identification of best-practices is seldom the ultimate
goal with respect to performance evaluation. It is generally important to
further analyze the business operations after the identification of best-
practice, so that in-depth managerial information can be derived. It is also
important to correctly design and model the performance issues. Because of
the complexity of the business or engineering operations which are often
characterized by multiple functions, multiple stages and multiple levels, new
(and advanced) DEA methods are needed to reconcile the multidimensional
aspects of performance evaluation issues.

The book presents unified results from the authors’ recent DEA research.
New methodologies and techniques are developed in application-driven
scenarios, to go beyond identification of the best-practice frontier, and seek
solutions to aid managerial decisions. These new DEA developments are
deeply grounded in real-world applications. DEA researchers and
practitioners alike will find this book helpful. Theory is provided for DEA
researchers for further development and possible extensions. However, each
theory is also presented in a practical way for DEA practitioners via
numerical examples, simple real management cases and verbal descriptions.

The book covers pure DEA applications in such areas as highway
maintenance, technology implementations, and others. DEA methodology
enhancements are wrapped into applications. New DEA theoretical
developments are included, for example, on how to use DEA as a



xvi Preface

benchmarking tool, and how to use DEA in multi-criteria decision making.
The book provides a balanced coverage of DEA for both academic
researchers and industry practitioners. It addresses advanced/new DEA
methodology and techniques that are developed for modeling unique and
new performance evaluation issues. Some of the DEA models can be
computed using the accompanying DEAFrontier software which is an Excel
Add-In.

Wade D. Cook

Schulich School of Business
York University

4700 Keele Street

Toronto, Ontario

Canada M3J 1P3

Email: weook@schulich.yorku.ca

Joe Zhu

Department of Management
Worcester Polytechnic Institute
Worcester, MA 01609 USA
Email: jzhu@wpi.edu



Chapter 1
DATA ENVELOPMENT ANALYSIS

1.1. INTRODUCTION

Data Envelopment Analysis (DEA) is a relatively new “data oriented”
approach for evaluating the performance of a set of peer entities called
Decision Making Units (DMUs) which convert multiple inputs to multiple
outputs. The definition of a DMU is generic and flexible. Recent years have
seen a great variety of applications of DEA for use in evaluating the
performances of many different kinds of entities engaged in many different
activities in many different contexts in many different countries. These DEA
applications have used DMUs of various forms to evaluate the performance
of entities, such as hospitals, US Air Force wings, universities, cities, courts,
business firms, and others, including the performance of countries, regions,
etc. Because it requires very few assumptions, DEA has also opened up
possibilities for use in cases which have been resistant to other approaches
because of the complex (often unknown) nature of the relations between the
multiple inputs and multiple outputs involved in DMUs (Cooper, Seiford and
Zhu, 2004).

Since DEA in its present form was first introduced in 1978, researchers
in a number of fields have quickly recognized that it is an excellent and
easily used methodology for modeling operational processes for
performance evaluations (Cooper, Seiford and Tone, 2000). This has been
accompanied by other developments. For instance, Zhu (2002) provides a
number of DEA spreadsheet models that can be used in performance
evaluation and benchmarking. DEA’s empirical orientation and the absence
of a need for the numerous a priori assumptions that accompany other
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approaches (such as standard forms of statistical regression analysis) have
resulted in its use in a number of studies involving efficient frontier
estimation in the governmental and nonprofit sector, in the regulated sector,
and in the private sector.

In their originating study, Charnes, Cooper, and Rhodes (1978) described
DEA as a ‘mathematical programming model applied to observational data
[that] provides a new way of obtaining empirical estimates of relations -
such as the production functions and/or efficient production possibility
surfaces — that are cornerstones of modern economics’.

Formally, DEA is a methodology directed to frontiers rather than central
tendencies. Instead of trying to fit a regression plane through the center of
the data as in statistical regression, for example, one ‘floats’ a piecewise
linear surface to rest on top of the observations. Because of this perspective,
DEA proves particularly adept at uncovering relationships that remain
hidden from other methodologies. For instance, consider what one wants to
mean by “efficiency”, or more generally, what one wants to mean by saying
that one DMU is more efficient than another DMU. This is accomplished in
a straightforward manner by DEA without requiring expectations and
variations with various types of models such as in linear and nonlinear
regression models.

1.2. ENVELOPMENT AND MULTIPLIER DEA
MODELS

Consider a set of n observations on the DMUs. Each observation, DMU
(=1, ...,n),uses minputs x, (i=1, 2, ..., m) to produce s outputs y, (»=
1,2, ...,5). The CCR ratio model can be expressed as

maxh, (u,v) = X,u,.y, | 2vx, (1.1)
where the variables are the u,'s and the v;’s and the y,,’s and x;, 's are the
observed output and input values, respectively, of DMU, , the DMU to be
evaluated. Of course, without further additional constraints (developed
below) (1.1) is unbounded.

A set of normalizing constraints (one for each DMU) reflects the
condition that the virtual output to virtual input ratio of every DMU,
including DMU,; = DMU,, must be less than or equal to unity. The
mathematical programming problem may thus be stated as

maxh, (u,v) = ¥, u.y, ! Tyx,

subject to:
Sy, [ Yvix, <lforj=1,..,n, (1.2)

u., v; = 0.
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The above ratio form yields an infinite number of solutions; if (u*, v*) is
optimal, then (& u*, av*) is also optimal for o > 0. However, the
transformation developed by Charnes and Cooper (1962) for linear fractional
programming selects a representative solution [i.e., the solution (u, v) for
which 3" v,x,, = 1] and yields the equivalent linear programming problem
[the change of variables from (u, v) to (¢, v) is a result of the Charnes-
Cooper transformation],

5
maxz = Z Y,

r=1

subject to

Zy,yrj - Zv,xi/ <0 (1.3)
r=1 =1

m

vx, =1

ivio
i=1

M.,v, 20
The dual program of (1.3) is
6" =ming

subject to

DixA <6k,  i=12,.,m (1.4)
Jj=1

zy’jij 2 ym r= 1,2,...,S;

J=1
4,20 Jj=12m,

Since & =1 is a feasible solution to (1.4), the optimal value to (1.4), 8" <
1.If 8" = 1, then the current input levels cannot be reduced (proportionally),
indicating that DMU. is on the frontier. Otherwise, if 8 < 1, then DMU,
is dominated by the frontier. 8" represents the (input-oriented) efficiency
score of DMU, .

Table 1-1. Supply Chain Operations Within a Week
DMU Cost ($100) Response time (days) Profit ($1,000)

1 1 5 2

2
1
1
4

W oW
N BN
[N NS NS\
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We now consider a simple numerical example shown in Table 1.1 where
we have five DMUs (supply chain operations). Within a week, each DMU
generates the same profit of $2,000 with a different combination of supply
chain cost and response time.

Figure 1-1 presents the five DMUs and the piecewise linear frontier.
DMUs 1, 2, 3, and 4 are on the frontier. If we calculate model (1.4) for
DMUS,

Min 6

Subject to:

1 A+ 24, +44; +6 4, +4 15 < 40

SA+t24 13+ 14, +4 45 <44

20+ 24,4205 424, 245> 2

241, lg, /13,/14, /15 > 0
we obtain a set of unique optimal solutions of 6" = 0.5, A, = 1, and /1:. =0
(/ # 2), indicating that DMU?2 is the benchmark for DMUS5, and DMUS5
should reduce its cost and response time to the amounts used by DMU2.

5 - DMUA1

4 1 DMU5

2 MU2

11 DMU DMU4

Total supply chain cost ($100)
w

o T T T T T T 1
0 1 2 3 4 5 6 7

Supply chain response time (days)

Figure I-1. Five Supply Chain Operations

Now, if we calculate model (1.4) for DMU4, we obtain 8" =1, /1: =1,
and /1:. =0 (j # 4), indicating that DMU4 is on the frontier. However, Figure
1-1 indicates that DMU4 can still reduce its response time by 2 days to reach
DMU3. This individual input reduction is called input slack.

In fact, both input and output slack values may exist in model (1.4).
Usually, after calculating (1.4), we have
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*

xX. —

i io

h\

i

S
M

T

Ax, i=L2,...m

FaR )

(1.5)

i y,/ Y r=12,..,s

where s; and s’ represent input and output slacks, respectively. An
alternate optimal solution of #" = 1 and A4; = 1 exists when we calculate
model (1.4) for DMU4. This leads to s, = 2 for DMU4. However, if we
obtain #° =1 and 1, = 1 from model (1.4), we have all zero slack values.
i.e., because of possible multiple optimal solutions, (1.4) may not yield all
the non-zero slacks.

Therefore, we use the following linear programming model to determine
the possible non-zero slacks after (1.2) is solved.

m &y
max ) s+ s

i=1 r=1
subject to

Zx,,z,“ =6'x, i=12,.,m (1.6)

Zyrj/Ij -si =y, r=12,.,s;
=1

2,20 j=12.m.

For example, applying (1.6) to DMU4 yields

Max s, +s, +5,
Subject to
1 A;+22, +4 43 +6 4, t4 45 + Sl = 69 =6
5 ﬂ1+2/12+12/3+ 1/14+4/15+ S2 = 19 =1
2 /1] + 22/2 +2ﬂ,3 +214 +2/15 - Sl =2
A, Az, A3, Ay, As, S, 8, S1+ >0

with optimal slacks of s;" =2, s; =5 =0.

Definition 1.1 (DEA Efficiency): The performance of DMU, is fully

0

(100%) efficient if and only if both (i) 8" = 1 and (ii) all slacks s;"=s'"=0.

Definition 1.2 (Weakly DEA Efficient): The performance of DMU, is
weakly efficient if and only if both (i) 8" = 1 and (ii) 5;° # 0 and/or s
#0 for some i and r.
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In Figure 1.2, DMUs 1, 2, and 3 are efficient, and DMU 4 is weakly
efficient. (The slacks obtained by (1.6) are called DEA slacks.)

In fact, models (1.4) and (1.6) represent a two-stage DEA process
involved in the following DEA model.

ming - (). s; + Zs:)
i=1 r=1
subject to

i=12,..,m, (1.7)

[

n
szxi, +5; =k,
j=1

n

+ .
zllyrl _SI‘ = ym r= ]32,-",5,
=1

4,20 j=12,...n

The presence of the non-Archimedean € in the objective function of (1.7)
effectively allows the minimization over 6 to preempt the optimization
involving the slacks, s; and s’ . Thus, (1.7) is calculated in a two-stage
process with maximal reduction of inputs being achieved first, via the
optimal 8" in (1.4); then, in the second stage, movement onto the efficient
frontier is achieved via optimizing the slack variables in (1.6).

In fact, the presence of weakly efficient DMUs is the cause of multiple
optimal solutions. Thus, if weakly efficient DMUs are not present, the
second stage calculation (1.6) is not necessary, and we can obtain the slacks
using (1.5). However, priori to calculation, we usually do not know whether
weakly efficient DMUs are present.

Model (1.7) is usually called “envelopment” DEA model. The dual
program to (1.7) is called “multiplier” DEA model.

§
maxz =y iy,

r=1
subject to

m

i,ury,j - ZV,-XU- <0 (1.8)
r=1 i=1

m
Zvixio = 1
i=1

m,v, 2e>0

r2 i
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If we consider the following DEA model,

Min Zivixiu /Zr uryro
Subject to

Tvixy 2wy, 2 1forj=1,...,n, (1.9)
u., v, > £>0.
where £ > 0 is the previously defined non-Archimedean element, then we
have the following output-oriented multiplier and envelopment DEA models

m
min q = Z Vixio
i=l

subject to

Zv,.xij—z,uryrjzo (1.10)
i=1 r=1

me=1
r=1

MV, 2¢E, Vr,i

max ¢ + 5(isi’ + isf)
i=1

r=1
subject to:

ny./l_. +s =x, i=12,..m; (1.11)
j=t

7

+ o
Zyrjlj -8, =¢y,, r=L2,.,s;
j=1

2,20 Jj=12m,

As before, model (1.11) is calculated in a two-stage process. First, we
calculate ¢* by ignoring the slacks. Then we optimize the slacks by fixing
¢ in the following linear programming problem,
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n p)
maxz s+ Z s

i=1 r=1
subject to

> x4 +s7 =x, i=12,.,m; (1.12)
j=1

Zyrjﬂ’j -5t =¢"y, r=12,..s
=1

4,20 j=12,..,n

We then modify the previous input-oriented definition of DEA efficiency
to the following output-oriented version.

Definition 1.3: DMU, is efficient if and only if ¢* =1 and 5" = s7" =0
for all i and ». DMU, is weakly efficient if ¢ =1 and s;”#0 and (or) 5" #0
for some i and 7.

The frontier determined by the above DEA models exhibits constant
returns to scale (CRS). Thus, the above DEA models are called CRS DEA
models with different orientations. Figure 1-2 shows a CRS frontier — ray
OB. Based upon this CRS frontier, only B is efficient.

The constraint on ), 4, in the envelopment models actually determines
the returns to scale (RTS) type of an efficient frontier. If we add > 4, =1,
we obtain VRS (variable RTS) models. The frontier is ABCD as shown in
Figure 1-2.

5X

Figure 1-2. CRS Frontier
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If we replace 3., 4; = 1 with 3,4, <1, then we obtain non-increasing
RTS (NIRS) envelopment models. In Flgure 1-3, the NIRS frontier consists
of DMUs B, C, D and the origin.

Figure 1-3. NIRS Frontier

If we replace 37, 4, =1 with >, 4, > I, then we obtain non-decreasing
RTS (NDRS) envelopment models In Flgure 1-4, the NDRS frontier
consists of DMUs, A, B, and the section starting with B on ray OB.

54 Y
ND
4 4 D
c

3 NDRS

B
2 ¢ E
11 NDRS

A
0 + + +
0 1 2 3 4 5 X

Figure [-4. NDRS Frontier



10 Cook and Zhu

Table 1-2 summarizes the envelopment and the multiplier models with
respect to the orientations and frontier types. The last row presents the

efficient target (DEA projection) of a specific DMU under evaluation.

Table 1-2. DEA Models

Frontier Input-Oriented Output-Oriented
Type
minﬁ—g(is{+is:) max¢+£(2s +Zs )
i=1 r=1
subject to subject to
XA X s =6k, i=12,..m Z/Ijx,.,. +5; =x, i=12,..m
it e
CRS YAV, =S =y, r=12.8 XAy,-s; W P =12,..,8;
F=Aa 757
2,20 J=1200n A, 20 =12,
VRS Add ¥, 4, =1
NIRS Add 37,4, <1
NDRS Add 37 4, > 1
Efficient (¢ —@¢'x -5 i=12,,m  [%,=x, -5~  i=12,..,m
Target D=V, +s =12, P.=@ vy, +s r=12,.,s
max Z HY,, + U1 mlniv,xw +v
subject to subJect to
zﬂryr] Zlelj +/USO zv'xy Z/'lryr/ VZO
ilew_l zll yr()_l
/’lr’Vl > 0(8) ﬂr’v > 0(5)
CRS where =0 where v=0
VRS where g free where v free
NIRS where £ <0 where v >0
NDRS where >0 where v <0
1.3. ASSURANCE REGION DEA MODELS

Note that the only restriction on the multiplier DEA models is the
positivity of the multipliers imposed by €. In the DEA literature, a number of
approaches have been proposed to introduce additional restrictions on the
values that the multipliers can assume.

Some of the techniques for enforcing these additional restrictions include
imposing upper and lower bounds on individual multipliers (Dyson and
Thanassoulis, 1988; Roll, Cook, and Golany, 1991); imposing bounds on
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ratios of multipliers (Thompson et al., 1986); appending multiplier
inequalities (Wong and Beasley, 1990); and requiring multipliers to belong
to given closed cones (Charnes et al., 1989).

We here present the assurance region (AR) approach of Thompson et al.
(1986). To illustrate the AR approach, suppose we wish to incorporate
additional inequality constraints of the following form into the multiplier
DEA models as given in Table 1-2:

v, .
a, <—L<8, i=1..,m

(1.13)

Here, v, and g, represent multipliers which serve as “numeraires” in
establishing the upper and lower bounds represented here by «;, £, and by
0, , y, for the multipliers associated with inputs i =1, ..., m and outputs r =
I, ...,s where o, = B, =6, =y, = 1. The above constraints are called
Assurance Region (AR) constraints as developed by Thompson et al. (1986)
and defined more precisely in Thompson et al. (1990).

Uses of such bounds are not restricted to prices. For example, Zhu
(1996a) uses an assurance region approach to establish bounds on the
weights obtained from uses of Analytic Hierarchy Processes in Chinese
textile manufacturing in order to reflect how the local government in
measuring the textile manufacturing performance.

The generality of these AR constraints provides flexibility in use. Prices,
utils and other measures may be accommodated and so can mixtures of such
concepts. Moreover, one can first examine provisional solutions and then
tighten or loosen the bounds until one or more solutions is attained that
appears to be reasonably satisfactory to decision makers who cannot state the
values for their preferences in an a priori manner.

1.4. SLACK BASED DEA MODELS

The input-oriented DEA models consider the possible (proportional)
input reductions while maintaining the current levels of outputs. The output-
oriented DEA models consider the possible (proportional) output
augmentations while keeping the current levels of inputs. Charnes, Cooper,
Golany, Seiford and Stutz (1985) develop an additive DEA model which
considers possible input decreases as well as output increases
simultaneously. The additive model is based upon input and output slacks.
For example,
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m 5
maxz s; + z s;
i=1

r=1

subject to:

z/l}.xy. +85; =x, i=12,.,m (1.14)
j=1

n

+ .
Z/ljy'fi =Sy TV r= 1,2,...,S,
=1

/11.,.3'._ st=0

Note that model (1.8) assumes equal marginal worth for the nonzero
input and output slacks. Therefore, caution should be excised in selecting the
units for different input and output measures. Some a priori information may
be required to prevent an inappropriate summation of non-commensurable
measures. Previous management experience and expert opinion, which prove
important in productivity analysis, may be used (see Seiford and Zhu
(1998)).

Model (1.8) therefore is modified to a weighted CRS slack-based model
as follows (Ali, Lerme and Seiford, 1995; Thrall, 1996).

max ) w;s; + . w,s;
i=1 r=1
subject to (1.15)

n
lexij +s; =x, i=12,.,m
j=1

n

+ (v o
Z/lfyr,/ -85, =y, r=12,..,s
j=1

A;,87 .8, 20

where w; and w, are user-specified weights obtained through value
judgment. The DMU, under evaluation will be termed efficient if and only
if the optimal value to (1.9) is equal to zero. Otherwise, the nonzero optimal
s;" identifies an excess utilization of the ith input, and the non-zero optimal
s identifies a deficit in the rth output. Thus, the solution of (1.15) yields
the information on possible adjustments to individual outputs and inputs of
each DMU. Obviously, model (1.15) is useful for setting targets for
inefficient DMUs with a priori information on the adjustments of outputs
and inputs.

One should note that model (1.15) does not necessarily yield results that
are different from those obtained from the model (1.14). In particular, it will
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not change the classification from efficient to inefficient (or vice versa) for
any DMU.

Model (1.15) identifies a CRS frontier, and therefore is called CRS slack-
based model. Table 1.5 summarizes the slack-based models in terms of the
frontier types.

Table 1-3. Slack-based Models

Frontier type Slack-based DEA Model

CRS maxiw,‘s[ + iw:s:
i=1 r=1
subject to
iﬂ,xu +57 =x, i=12,..,m;
=1
XAV, =8 =y, r=L2,.s
=l
A;587,5, 20
VRS Add ¥4, =1
NIRS Add ¥4, <1
NDRS Add 374, > 1

1.5. MEASURE-SPECIFIC DEA MODELS

Although DEA does not need a priori information on the underlying
functional forms and weights among various input and output measures, it
assumes proportional improvements of inputs or outputs. This assumption
becomes invalid when a preference structure over the improvement of
different inputs (outputs) is present in evaluating (inefficient) DMUs (see
Zhu (1996b)). We need models where a particular set of performance
measures is given pre-emptive priority to improve.

Let I < {1,2, ..., m} and O < {1,2, ...,s} represent the sets of specific
inputs and outputs of interest, respectively. Based upon the envelopment
models, we can obtain a set of measure-specific models where only the
inputs associated with I or the outputs associated with O are optimized (see
Table 1-4).

The measure-specific models can be used to model uncontrollable inputs
and outputs (see Banker and Morey (1986)). The controllable measures are
related to set 7 or set O.

A DMU is efficient under envelopment models if and only if it is
efficient under measure-specific models. i.e., both the measure-specific
models and the envelopment models yield the same frontier. However, for
inefficient DMUs, envelopment and measure-specific models yield different
efficient targets.
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Consider Figure 1-1. If the response time input is of interest, then the
measure-specific model will yield the efficient target of S1 for inefficient S.
If the cost input is of interest, S3 will be the target for S. The envelopment
model projects S to S2 by reducing the two inputs proportionally.

Table 1-4. Measure-specific Models

Frontier
Type Input-Oriented Output-Oriented
miné — E(Zs + Zs ) max ¢ + g(Zs + Zs )
subject to subject tol B
lglljxﬁ +s; =6k, iel; ié/ljxi,. +s5; =x, i=12,..m
CRS illjxﬁ +5; =x, iel; _'Z’/l_iyr,. -5 =¢y,, reo0;
=
gl/ljy,j —-s5i=y, r=12,.,8 él/l V=5, =V re0;
;20 Jj=12.,n. 4,20 =12,...,n.
VRS Add 3,4, =1
NIRS Add ¥4, <1
NDRS Add T4, =1
Efficient (3 =6'x, -5 iel £, =%, —8" i=12,.,m
Target X, =X, — s,.“** igl Voo = ¢ Vit s re0
Po=y,+s r=L2,..,5 Do =Y, T8 re0

1.6. SOLVING DEA WITH DEAFRONTIER
SOFTWARE

One can solve the DEA models discussed previously using the
spreadsheets and Excel Solver as described in Zhu (2002). In this section, we
will demonstrate how to solve the DEA models using the DEAFrontier
software supplied with the book.

1.6.1 DEAFrontier Software

DEAFrontier is an Add-In for Microsofi® Excel and uses the Excel
Solver. This software requires Excel 97 or later versions.

To install the software the CD-ROM using Windows, you may follow
these steps:

Step 1. Insert the CD-ROM into your computer’s CD-ROM drive. (If the
auto run doe not execute, following the following steps.)
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Step 2. Launch Windows Explore.
Step 3. Click Browse to browse the CD and find the file “Setup.exe”.
Step 4: Run “Setup.exe”

DEAFrontier does not set any limit on the number of units, inputs or
outputs. However, please check www.solver.com for problem sizes that
various versions of Excel Solver can handle (see Table 1-5).

Table 1-5. Microsoft® Excel Solver Problem Size

Standard Excel Premium Premium Solver
Problem Size: Solver Solver Platform
Variables x Constraints 200 x 200 1000 x 8000 2000 x 8000

Source: www.solver.com

To run DEAFrontier, the Excel Solver must first be installed, and the
Solver parameter dialog box must be displayed at least once in the Excel
session. Otherwise, an error may occur when you run the software, as shown
in Figure 1-5. (Please also make sure that the Excel Solver works properly.
One can use the file “solvertest.xls” to test whether the Excel Solver works.
This test file is also available at www.deafrontier.com/solvertest.xls.)

Figure 1-5. Error Message

You may follow the following steps.

First, in Excel, invoke the Solver by using the Tools/Solver menu item as
shown in Figure 1-6. This will load the Solver parameter dialog box as
shown in Figure 1-7. Then close the Solver parameter dialog box by clicking
the Close button. Now, you have successfully loaded the Excel Solver.
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Tools on the Web.,

Figure 1-6. Display Solver Parameters Dialog Box

olver Parameters

Figure 1-7. Solver Parameters Dialog Box

If Solver does not exist in the Tools menu, you need to select
Tools/Add-Ins, and check the Solver box, as shown in Figure 1-8. (If
Solver does not show in the Add-Ins, you need to install the Solver
first.)
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v aralysis TonPak

v Analysis ToolPak - VBA
™ Conditionat Sum Wizard
™ Eueo Currency Tools

[ Internet Assistant VBA
A1 Lookup Wizard

Figure 1-8. Solver Add-In

Next, open the file DEAFrontier.xla, and a “DEAFrontier” menu is added
at the end of the Excel menu. (see Figure 1-9). Now, the DEAFrontier
software is ready to run.

DEAFronter §  Tvpe g @v%ﬁsm for migﬁ Y-8x

& Envelopment Modsd == o

© multipler Model with Epsion i

Restricted Multipliers

Slack-hased Model

B Measure Specific Model
RTS Estimation

(5 yariable-Banchimark Model

About DEAFrortier B ;
Quit DEAFrontier | UnprotectLevel shaets

Figure 1-9. DEAFrontier Menu

1.6.2 Organize the Data

The sheet containing the data for DMUs under evaluations must be
named as “Data”. The data sheet should have the format as shown in Figure
1-10.
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althrugh ortly two are shown

B J R S : w Loz
rlnput Measure ‘Input Measure Output Measure :Output Measure
- In column A} Starting with column B (cell | -
(cell A2), B2), enter data for enter data for
enterthe |.
DMU inputs, no blank columns| -\ outputs, n; blagk columns
§ are allowed kS are allows
\
Y
Multiple inputs ars allowed, \ Mulliple outputs are allowed,

althiough only b are showr hers

[ ———
e o,
s

kY
Leave one blank column

it o s N
X 4 ¥ vihpata /5

. o between the last input measure
/ Namethe 5 and the first output measure
[ sheet containg _
{\ the data on
\_ DMUs as Data
S Format for Data sheet
i e
|/

e

Figure 1-10. Data Sheet Format

Leave one blank column between the input and output data. No blank
columns and rows are allowed within the input and output data. Figure 1-11
shows an example where we have top 10 US commercial banks in 1995 with
three inputs (employee, assets and equity)and two outputs (market value and
profit. (see Seiford and Zhu (1999) for detailed discussion on this data set.)

£ envelopment model

. BEoie D B TR e

arks mployee:  Assets Equity  Market Value Revenus’ M

2 Citicorp 85300 256853 19581 332217 31890 .

3 . BankAmerica Corp. 95288 2324460 20222 27148.6 20386

,,,,, 4 NationsBank Corp. 58322 187298 12801 20295.9 16288

5 Chemical Banking Corp. 39078 182926 11912 16971.3 14884

6 JP. Morgan & Co. 15600 184879 10451 15003.5 13838
7 Chase Manhattan Corp. 33365 121173 9134 12616.4 11336
____ 8 First Chicago NBD Corp. 35328 122002 8450 123511 10681
_____ 9 First Union Corp. 44536 131880 90431 16815  10582.9
10 Banc One Corp. 46900: 90454  B8197.5 14807.4  8870.9

11..Barkers Trust New York Cor  14000: 104000 5000 52524 8600 :

331‘2'«‘ AAAAA T o L e

Figure 1-11. Sample Data Sheet
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Negative or non-numerical data are deemed as invalid data. The software
checks if the data are in valid form before the calculation. If the data sheet
contains negative or non-numerical data, the software will quit and locate the
invalid data.

1.6.3 Run the Envelopment Models

Figure 1-12. Envelopment Model

To run the envelopment models in Table 1-2, select the “Envelopment
Model” menu item. You will be prompted with a form for selecting the
models, as shown in Figure 1-13.

Model Orientation refers to whether a DEA model is input-oriented or
output-oriented and Frontier Type refers to the returns to scale type of the
DEA efficient frontier. The software’s default selection is an input-oriented
CRS model.

The software performs a two-stage DEA calculation. First, the efficiency
scores are calculated, and the efficiency scores and benchmarks (Efficiency
Reference Set) (/1;) are reported in the “Efficiency” sheet, as shown in
Figure 1-14.



20 Cook and Zhu

Murket Vaiue

O e 58 ATS  Benchmarks

1000 Constant 1000 G
2 BankAmetica Corp. . 1301 Decreasing 0428 Ciicor  0.872 BancOne Cop?
3:NationsBank Corp. B9 noiwasiog gt Cricand 17008 48, Mmm&tu
4:Chemical Banking Carp. . 37 Increasing . Céicod 0412 JP.Mogan&Co” 0,203 First Union Corp!
5.J.P.Margan & Co. AD00 ¢ Consian Y AP Moigas &
§:Chase Manhattan Corp. ] 0452 Increasing . Chicor? D132 P Morgan Cot
7.First Chicago NBO Corp. D50 incimasing. 2 Bw\wr: 076 IP, Margan Ko 1 095 Pt Unian i
8 FrstUnion Carp, 1000 Constant FistUnion Corp®
9 Banc One Corp. Bana Doe oo

10 Bankers Trust New York Carp. 1 000 Bankers Trust New York C\:\rer

Figure 1-13. Efficiency (Envelopment Model)

The “Efficiency” sheet reports the input and output names. Column A
reports the DMU No. Column B reports the DMU names (banks in this
case). Column C reports the efficiency scores (it also indicates the type of
DEA models used). Column D reports the optimal Zl which is used to
identify the returns to scale classifications, reported in column E. The
Efficiency Reference Set is reported under the “Benchmarks”.

At the same time, a “Slack” sheet is generated based upon the efficiency
scores and the l_*,. using the following formula (1.5). Then a “Target” sheet
is generated.

Recall that the slacks calculated from (1.5) are not optimized and do not
necessary reflect the DEA slack. Therefore, the “Target” sheet may not
represent DEA efficient target.

Slack Calculatio

§ The eﬁ’ »:lenf: ‘scares and benchmarks

set of slacks Fr m the ﬁrst DEA run.

0 you want 10 calculate the inpUt/output
lacks in the second stage? If so, the slack
heat and the target sheet will bie replaced
Y New. ones. .

Figure 1-14. Slack Calculation
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Therefore, you will be asked whether you want to perform the second-
stage calculation, i.e., fixing the efficiency scores and calculating the DEA
slacks (see Figure 1-15). If Yes, then the Slack and Target sheets will be
replaced by new ones based upon. See file “envelopment model.xls” for the
DEA results.

1.6.4 Run the Multiplier Models

Figure 1-15. Multiplier Model

To run the multiplier models, select the “Multiplier Model” menu item.
You will be prompted with a form for selecting the models as shown in
Figure 1-15. The form is similar to the one shown in Figure 1-12. The results
are reported in a sheet named “Efficiency Report”, as shown in Figure 1-16
where the DEA efficiency and optimal multipliers are reported. (Figure 1-16
shows the results of input-oriented VRS multiplier model. See also the file
“multiplier model.xls” in the CD.)
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. Qutputs

2 Employes Market Valus
Assets Reverue

Equity

) Citicorp 1.00000 0.00001°0.00000:0.00001:  0.00000. 0.00003 0.0000
BankAmerica Corp 0.86891 0.00000 0.00000:0.00000:  0.00004 0.00000: -0.18650

NationsBank Corp. 0.90689 £.00000 0.00000:0.00006:  0.00003:0.00002; 0.07724
Chemical Banking Corp. 0.90142 0.00000° 0.00000:0.00005.  0.00003 0.00002 0.13796
J.P. Mergan & Co. 1.00000 0.00001. 0.00000:0.0000¢:  0.00002 0.00003:  0.22535
Chase Manhattan Corp. - 1.00000 0.00001 0.00001:0.00000: ~ 0.00003°0.00003:  0.25851
First Chicago NBD Corp 094686 0.00001°0,00001: 000000 6.00003:0.00003!  0.25351
First Union Corp. :1.00000 0.00000° 0.00000:0.00003  0.00004 0.00002 0.10780

Banc Cne Corp. 1.00000 0.00001,0.00001:0.00000:  0,00003:0.00004 0.26544
Bankers Trust New York Corp 1.00000 (.00002: 0.00001: 0.00002 0.00000.0.00012 0.00000

OIi~io s Witaia

P
=)

Figure 1-16. Efficiency Report (Multiplier Model)

1.6.5 Run the AR Models

We need to first set up the sheet “Multiplier” which contains the ARs.
For example, if we want to include the following ARs

| g2l <95
vA.\'.\'ul,\‘

15 < vEm/zIayeu < 3
vKuin
3 < ILlMarkernluu < 4

:LlRevemm
then the data in the “Multiplier” sheet should be entered as shown in Figure
1-17.

£l AR model

B
Emploves.  Assels
1.5 Employes Equity
3 Market Value Revenus

\multiplier /

WS —

Figure 1-17. Restrictions on Multipliers
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To avoid any errors, we suggest copying and pasting the input and output
names from the “data” sheet when entering the information into the
“Multiplier” sheet. If the input (output) names in the two sheets do not
match, the program will stop.

Figure 1-18. AR Model

Once the “Multiplier” sheet is set up, select the “Restricted Multipliers”
menu item and you will be prompted to choose a DEA model, as shown in
Figure 1-18. Figure 1-19 shows the results of the input-oriented CRS
multiplier model with the above ARs.

Note that you can also add ARs that link the input and output multipliers
for the “Restricted Multipliers”. Note also that if the ARs are not properly
specified, then the related DEA model may be infeasible. If that happens, the
program will return a value “-9999” for the efficiency score.
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28 AR modet

Cutputs
Market Value
Revenus ¢

TSy

DR o T3 ¥ Marfie Eficiericy (e Bty Pt ylus
Citicorp 1.00000 0.00000: 0.00000:0.00000°  0.00002
BankAmerica Corp. 0.80538 0.00000: 0.00000° 0.00000:  0.00002
NationsBank Corp. 0.84015 0.00001: 0.00000: 0.00000 0.00003
Chemical Banking Corp. 0.84197 0.00001: 0.00000: 0.00000:  0.00004
J.P. Morgan & Co. 0.93845 0.00001:0.00000: 0.00000:  0.00005
Chase Manhattan Corp. 0.86080 £.00001: 0.00000 0.00000:  0.00006
First Chicago NBD Corp. 0.81792 . 0.00000: 0.00001:  0.00005
First Union Corp. 0.92079 . 0.00000: 0.00000  0.00005

Banc One Corp. 1.00000 . 0.00001: 0.00000  ©0.00006
Bankers Trust New York Corp 0.63273 0.00001. 0.00001 0.00008

SO i~ Os WiN s

Figure 1-19. AR Results

1.6.6 Run the Slack-based Models

To run the slack-based models, select the “Slack-based Model” menu
item. You will be prompted with a form for selecting the models presented
in Table 1-3, as shown in Figure 1-20.

Figure 1-20. Slack-based Models
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If you select “Yes” under the “Weights on Slacks”, you will be asked to
provide the weights, as shown in Figure 1-21. If you select “No”, then all the
weights are set equal to one.

x

Ermployes %’M
Assets , g'—
Etuity ' g‘”
Market Value - B
Revenie g’w

e e

2
g
£
i
H
i
b3
3
3
£
4
i
&

Figure 1-21. Slack Weights

The results are reported in a sheet named “Slack Report” along with a
sheet named “Efficient Target”. See file “slack model.xls” in the CD.

1.6.7 Run the Measure-Specific Models

To run the measure-specific models, select the “Measure Specific Model”
menu item. You will be prompted with a form for selecting the models
presented in Table 1-4, as shown in Figure 1-22.

hteasure-specfic Madel x|

i "6 the dath (DMK 1ol B Aimatis) are ertared 1 The worksheet i

g {ata’!, pease spedify T w e

§ «~Frontier Type - Beturas fo Scale | Ok k

i i i z s

{ . Geps s ;

L : 7 . Cancel !

L ,  Plhase velehthe specifs

L NIRS O NDRS msasurels) Hold Oulif
an one selsation

- Model Oﬁ&l'at“ﬁ Ty

|

i :

§ @ Teput-Oriented ™
3 ¢ .

5

¥

C: Outpit-Oriented

Developsd b far Shu i

Figure 1-22. Measure-specific Models
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Select the measures that are of interest. If you select all the input or all the
output measures, then you have the envelopment models.

The results are reported in the “Efficiency”, “Slack” and “Target” sheets.
See file “measure specific model.xls” in the CD.

REFERENCES

10.

11.

Ali, A. 1., C.S. Lerme and L.M. Seiford (1995), Components of
efficiency evaluation in data envelopment analysis, European Journal
of Operational Research, 80, 462-473.

Banker, ,R.D. and R.C. Morey (1986), Efficiency analysis for
exogenously fixed inputs and outputs, Operations Research, 34, 513-
521.

Charnes, A. and W.W. Cooper (1962), Programming with linear
fractional functionals, Naval Research Logistics Quarterly 9, 181-185.
Charnes, A., W.W. Cooper, and E. Rhodes (1978), Measuring the
efficiency of decision making units, Furopean Journal of Operational
Research 2, 429-444.,

Charnes, A., W.W. Cooper, B. Golany, L.M. Seiford and J. Stutz,
(1985), Foundations of Data Envelopment Analysis for Pareto-
Koopmans Efficient Empirical Production Functions, Jowrnal of
Econometrics (1985), 30, pp. 91-107.

Charnes, A., W.W. Cooper, D.B. Sun, and Z.M. Huang (1990),
Polyhedral cone-ratio DEA models with an illustrative application to
large commercial banks, Journal of econometrics 46, 73-91.

Cooper, W.W., L.M. Seiford, and K. Tone (2000), Data Envelopment
Analysis: A Comprehensive Text with Models, Applications,
References and DEA-Solver Software, Kluwer Academic Publishers,
Boston.

Cooper, W.W., L.M. Seiford and J. Zhu (2004), Handbook on Data
Envelopment Analysis. Kluwer Academic Publishers, Boston.

Dyson, R.G. and E. Thanassoulis, 1988, Reducing weight flexibility in
data envelopment analysis, Journal of the Operational Research Society
39, No. 6, 563-576.

Roll, Y., W.D. Cook, and B. Golany (1991), Controlling factor weights
in data envelopment analysis, I/E Transactions, 23, 2-9.

Seiford, L.M. and J. Zhu (1998), Identifying excesses and deficits in
Chinese industrial productivity (1953-1990): A weighted data
envelopment analysis approach. OMEGA, International Journal of
Management Science 26, No. 2, 279-296.



Chapter 1. Data Envelopment Analysis 27

12.

13.

14.

15.

16.

17.

18.

19.

Seiford, L.M. and J. Zhu (1999), Profitability and marketability of the
top 55 US commercial banks, Management Science, Vol. 45, 1270-
1288.

Thompson, R.G., F.D.Jr. Singleton, R.M. Thrall, and B.A. Smith
(1986), Comparative site evaluation for locating a high-energy physics
lab in Texas, Interfaces 16, 35-49.

Thompson, R.G., L. Langemeier, C. Lee, E. Lee, and R. Thrall (1990),
The role of multiplier bounds in efficiency analysis with application to
Kansas farming, Journal of Econometrics 46, 93-108.

Thrall, R.M. (1996), Duality, classification and slacks in DEA, Annals
of Operations Research, 66, 109-138.

Wong, Y.-H.B. and J.E. Beasley (1990), Restricting weight flexibility
in data envelopment analysis, Journal of the Operational Research
Society 41, 8§29-835.

Zhu, J. (1996a), DEA/AR analysis of the 1988-1989 performance of the
Nanjing Textiles Corporation, Annals of Operations Research 66, 311-
33s.

Zhu, J. (1996b), Data envelopment analysis with preference structure,
Journal of the Operational Research Society 47, No. 1, 136-150.

Zhu, J. (2002), Quantitative Models for Performance Evaluation and
Benchmarking: Data Envelopment Analysis with Spreadsheets and
DEA Excel Solver, Kluwer Academic Publishers, Boston.

Part of this chapter is based upon chapter 1 in Zhu, J. (2002), Quantitative Models
for Performance Evaluation and Benchmarking: Data Envelopment Analysis with
Spreadsheets and DEA Excel Solver, Kluwer Academic Publishers, Boston



Chapter 2

MEASURING EFFICIENCY OF HIGHWAY
MAINTENANCE PATROLS

2.1. BACKGROUND

A number of applications of DEA are found in the area of maintenance.
In the particular application discussed in this chapter, we look at the
performance of highway maintenance crews or patrols in the province of
Ontario, Canada. The discussion herein is based on the work of Cook et al
(1990), (1991), and (2001). The problem of measuring efficiency in the
roadway maintenance sector is an important one that has been examined by
others as well. Deller and Nelson (1991), for example, examined a similar
problem but where network size is used as an output and material, labour
and capital are inputs. Later, Rouse et al. (1997) revisited the road
maintenance problem for the case of highways in New Zealand, by
considering additional inputs and outputs. In particular, they attempt to
address environmental differences among patrols by incorporating factors
aimed to capture geological indicators. This was undertaken, presumably in
realization of the fact that patrols are not necessarily comparable via the
conventional inputs and outputs. As well, they attempt to pay attention to
weight restrictions as raised earlier by Roll, Cook and Golany (1991).

At the time that the initial study of Cook et al. (1990) was conducted, the
stipulated rationale for having a formal performance measure for each patrol
was to permit budget setting in a resource constrained environment. As
funding for maintenance has eroded over time, a need has arisen for a formal
mechanism whereby patrols are treated equitably in regard to the allocation
of maintenance dollars. What is most appealing about the DEA rationale in
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this setting, is that if an inefficient patrol can attain efficiency status, its
projected inputs X can aid in setting its budget, where X is the vector
of Inputs.

Most of the routine maintenance activities on Ontario’s highways fall
under the responsibility of the 244 patrols scattered throughout the province.
Each such patrol is responsible for some fixed number of lane-kilometers of
highway, and those activities associated with that portion of the network.
More than 100 different categories of operations or activities exist, and are
grouped under the headings: ‘surface,” ‘shoulder,” ‘right of way,” ‘median,’
and ‘winter operations.’

The present system for monitoring patrol activities is the Maintenance
Management System (MMS). This is a computerized record keeping system
which keeps track of total work accomplished by type of operation, patrol
and highway class. This system is similar to those in other Canadian
provinces and states in the U.S.A.

While various statistics (such as median operations accomplished, by
highway class) are maintained, there is presently no formal process for
evaluating patrol activities. An area of importance to the Ministry has to do
with the efficiency with which maintenance operations are carried out in
various parts of the province. Since observed accomplishments influence
budgetary decisions, a better understanding of efficiency will give
management a yardstick for measuring what accomplishments can be
expected within a given budget limit.

While there are various possible approaches to the problem of measuring
efficiency in this context, the DEA framework is particularly appropriate for
a number of reasons. First, the prospect of obtaining “production standards”
in the usual engineering sense seems doubtful. The number of different
“products” and different environmental and soil conditions mitigate against a
conventional industrial engineering approach. Second, DEA is capable of
handling non-economic factors, like number of accidents, maintenance
dollars (an economic factor), cars/day, average age of pavement, etc., and
allows for measurement of such factors on different scales. Such an
approach seems particularly suited to the maintenance area, since factors
such as traffic intensity, safety parameters and average age of pavements are
an important part of the picture.

These and other reasons point to the appropriateness of DEA.
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2.2 DEA ANALYSIS

2.2.1 The Model and its Factors

In a study of potential factors which could be utilized to best represent
causes and effects relating to patrol performance, four outputs and three
inputs have been chosen. Specifically, the efficiency e is given by

_ w,(ASF) +u,(ATS) + u,(RCF) +u, (4PF)
v, (MEX) +v,(CEX )+ v,(CLF)

and (u,,u,,4,,u,) and (v, U,, U;) denote output and input factor weights
respectively.

b

ASF — Area Served Factor

This factor was chosen to measure the extent of the work load for which
the patrol has responsibility. The ASF factor value is calculated from the
formula

ASF = Y[ L (TLE), (4,+C) +L,(5,B,+D)|

where:
L, — Length of road section i
TLE, - Two-lane equivalent of road section i
S,— Shoulder width of road section i
A,— Coefficient for road surface type j (the one in road section i)
B, — Coefficient for shoulder type j (the one in road section 7)
C — Coefficient for winter operations
D — Coefficient for other operations (ROW, median etc.)

ATS — Average Traffic Served
This factor is intended to be a measure of the overall benefit to the users

of the highway system in a patrol. The formula for computing ATS is given
by

ATS =10 )" L (AADT),

where AADT; is the Annual Average Daily Traffic and 107 is a scaling
factor designed to bring ATS within a reasonable range for analysis.

RCF — Pavement Rating Change Factor
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This factor measures the actual change in PCR, (Pavement Condition
Rating) of the various road sections, relative to a ‘standard’ change for the
same period.

APF — Accident Prevention Factor

Much of the work of maintenance staff arises due to the need to prevent
accidents (surface & shoulder repairs, washouts, etc.) In this regard, accident
prevention can be viewed as a cause or goal of maintenance.

A reasonable measure of accident prevention should be directly
proportional to traffic level (ATS), and inversely proportional to the
observed number of accidents. The chosen form is given by

ATS
APF =100 ——,
C

where 100 is a scaling factor and C is the number of road accidents, during
the observed period, on all road sections serviced by a patrol.

MEX — Maintenance Expenditures

This is the total of all expenditures linked to the patrol. It includes both
“in-house” work as well as maintenance activities performed by private
contractors. Moreover, MEX includes any district-supplied services such as
equipment and district supervisors’ salaries.

CEX — Capital expenditures

This is the total of all capital expenditures made toward improving the
existing highway infrastructure. This would include resurfacing, shoulder
paving, repairs to structures, dome construction, etc. — all activities which
complement maintenance efforts. Excluded are new link and new structure
construction, since these do not directly complement maintenance.

CLF - Climatic Factor

What can often be an overriding consideration in the performance of a
patrol, is the environmental circumstances in which that patrol must operate.
The amount of snowfall, for example, will clearly influence the level of
winter maintenance (snow removal and salting) needed. The extent of spring
breakups will directly influence the need for summer road surface work.

Four sub-factors were taken into account in arriving at an overall climatic
factor:

Snowfall

Major temperature cycles

Minor temperature cycles
Rainfall
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Available data from weather stations were used to compute these sub-
factors.

The overall climatic factor for a patrol is computed from:
CLFc= 2 P,(X. (W, /D)),
i j

where
k — patrol index;
P, — weight of station 7 in calculating the climatic factor of patrol &
Wi relative importance weight of climatic factor j.

W, = 50
W, =300
W,=20,000
W, =1,000

It is noted that the weights W]. were chosen while taking into account the
numerical scales of each of the climatic factors (e.g. the snowfall numbers
are much greater in size than the major cycle numbers). In addition, the
weights were selected with attention to the resultant CLF measure being
relatively of the same order of magnitude as the other efficiency factors.

2.2.2 Data and Unbounded Runs

In the present study, 4 districts are used, having a combined total of 62

patrols. As an illustration, the factor values for one of the patrols are given
by:

ASF =404
ATS =267
RCF =184
APF =331
MEX = 585
CEX =284
CLF =715

The first level of analyses carried out uses the entire set of patrols, with
62 L.P. problems being solved. It is noted that the only constraints other than
the ratio restrictions (converted to linear format) are restraints stipulating
that all variables should be nonzero. This means that no patrol is permitted to
assign an importance of 0 to any factor. The model is therefore, referred to
as the ’unbounded’ model. (The bounded model, to be discussed, will
contain significant upper and lower bounds on the variables).
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The results from the 62 unbounded runs are shown under column (1) of
summary Table 2-1. Note the rating of 0.725 for the first patrol in District 2.

DMU

O N W e g

10
11
13
15
16
17
18

0 ~IT NN AW

o

11
12
13
14

Table 2-1. Summary of Efficiencies

Efficiencies

3

]

2

£ Z
= O
1 2
725 517
768 .654
.663 .540
.700 .606
.650 .545
739 581
.841 .675
948 .699
951 786
1 1

1 .569
1 .664
857 704
835 .608
787 .640
756 492
761 .658
1 497
990 695
1 661
.840 .637
944 .624
613 443
.802 587
1 528
921 .520
457 .380

Indiv. Wgts Entire

Sample

614
671
622
679
756
.836
912

761
.891
774
722
744
642
152
.641
.874
945
811
.786
562
729
705
677
430

Indiv. Wgts Within

District
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DMU
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Efficiencies

Unbounded

CSW

2

528
.181
813
.822
.966
157
745
852
727
706
832
673
739
430
172
.803
591
.648
724
145
659
440
213
343
746
.593
.836
.964
455
449
710
419
.609
670
643

Table 2-1 continued

Indiv. Wgts Entire
Sample

W

353
940
.881

.849
.824
949
836
.980
903
.869
879

825
872
763
153
.848

799
526
369
S41
914
674
948

597
625
.890
586
762
795
.849

@™ Indiv. Wgts Within
had District

—_

925

912
.906
984
.945

955
939
.956

.883
.897
.870
.885
953

875
526
370
541
974
674
966

.600
635
921
586
768
.843
.849

35
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2.2.3 Bounded Runs

It must be emphasized again that the unbounded model yields efficiency
ratings that tend to credit the patrol with a higher level of performance than
may be justified. Since complete flexibility in choice of weights is
permitted, the model will often assign unreasonably low or unreasonably
high weights (multipliers) to some factors in the process of trying to drive
the efficiency rating for the patrol in question as high as possible. Moreover,
the weight assigned to a factor (e.g. CEX) by one patrol may differ
drastically from the weight assigned to that factor by another patrol. Thus, in
order to exercise some reasonable level of control over the manner in which
importance weights are assigned, bounds need to be imposed in the model.

Given a set of absolute bounds L, U on output multipliers and Li,
U /2 on inputs, the constraints L} < g, < U, and L.ZI. v, U /2 are added
to model (1.3) of Chapter 1.

The efficiency ratings resulting from runs of this bounded version of the
model are displayed in column 3 of Table 2-1. It is noted that the efficiencies
obtained from the bounded runs are lower than or equal to the corresponding
efficiencies arising from the unbounded analysis.

2.2.4 Deriving a Common Set of Weights

A case can be made, however, for having a Common Set of Weights
(CSW). Being able to evaluate all patrols from a common reference point
provides one basis for rank ordering the DMUs from best to worst. While no
“best” method exists for determining such a set of weights, a simple
procedure was developed for the organization in question.

Briefly, the procedure works as follows: Choose the highest priority
factor, (e.g., £ ), and while restricting all factor weights to be within their
respective bounds, maximize (or minimize) the weight for the factor in
question. In this particular case £, is chosen as a first priority since it is both
a reliable measure of output and is believed to strongly affect efficiency. The
factor weight is maximized if the indicated direction is “up,” and is
minimized if the direction is “down.”

When the optimal weight value (e.g. £ = 800) is determined, it is then
fixed at that level in the later optimization stages. The next factor in priority
is then chosen (e.g. v,), and minimized subject to the same constraints as
applied previously, but with g = 800. This process is continued until all
factor weights have been set and the Common Set of Weights is established.

Efficiency ratings using the CSW are shown in column 2 of Table 2-1.
Note that patrol 15 in District 2 has an efficiency rating of 1.0, when using
these weights. Thus, at least in this case, the CSW is feasible.
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2.2.5 District Runs

In order to extract maximum information for effective managerial
control, the DEA model was run for each district separately. The resultant
set of district efficiencies appears in Column 4 of Table 2-1. It is noted that
these district efficiencies are higher than the corresponding values obtained
when the entire set of patrols was considered. The smaller comparison
groups in the district analyses give rise to this phenomenon. It is also the
case that some patrols which were inefficient in the earlier analysis, obtained
a rating of 1.0 in the district setting, since those efficient patrols in other
districts against which comparison was made have been removed from the
peer group.

Because significant differences may exist from one district to another (for
example, climatic and highway type differences), the intra-district efficiency
measures of column 4 in Table 2-1 may provide a fairer appraisal of
performance. At the same time, it is desirable to detect any district-to-district
differences, necessitating inter-district comparisons. Overall district
performance can be viewed in a number of ways. Two useful measures that
can be derived are technical efficiency and managerial efficiency.

Technical Efficiency — with this measure we compare “best”
performance in a district to best performance in another district. This is taken
as an indicator of the ‘technical potential’ of a district. Simply speaking,
technical efficiency is a measure of the distance of the district frontier from
the overall frontier.

One technique for obtaining this measure is to bring all points in a district
to the district frontier by applying the “adjustment” method proposed in
Charnes et al (1978). A somewhat simpler approach is to “correct” the
district efficiencies by dividing the overall efficiency of each patrol (column
3 of Table 2-1) by the relative efficiency within the district (column 4). The
resulting quotients are approximations of individual patrol efficiencies if
they were brought to the district frontiers.

Taking the average of all corrected efficiencies within a district is then a
measure of technical efficiency. These values are shown in column 2 of
Table 2-2. it is noted, for example, that the best performance of district 20
(.986) is near the best for the entire group. District 3 on the other hand has its
best performers only at 79% of the overall best performance.

Managerial Efficiency — this measure refers to the actual performance of
patrols, rather than that of best performers as above. The most reasonable
measure to take is the average of the actual efficiencies for the patrols in a
district. Column 1 in Table 2-2 provides the average of efficiencies when the
comparison group is the overall set. Column 3 is the average when the
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comparison group is only that set of patrols within the district. Naturally, the
latter average (column 3) is larger than the former (column 1).

Table 2-2. District Efficiencies

(1 ) (3)

Eff. Ave. eff.

of relative dist. front.

# of to overall relative to relative to

District patrols frontier over. front. district frontier
2 13 762 884 .862
3 14 716 790 903
8 21 .847 938 904
20 14 720 986 732

It is noted that the managerial efficiency relative to the entire group is
approximately equal to the product of the managerial efficiency relative to
the district and the technical efficiency of the district. Exact equality fails
here because of the manner in which the averages are obtained.

2.2.6  Analysis of Various Characteristics

Over and above the input parameters chosen for the analysis of patrols,
there are other influences (on performance) which deserve attention. These
influences can be thought of as characteristics or circumstances which can
affect the efficiency with which a patrol operates. Two particular
characteristics have been chosen:

(1) % privatization
(2) traffic level

The method used to examine a given characteristic was to (1) define
levels for that characteristic, (2) separate out those patrols corresponding to
the various levels, and (3) do a separate analysis on each of the subgroups
arising from this separation process. As an illustration, consider %
privatization. Here, a particular level (for example, 10%) was chosen as the
threshold separating “high” from “low” privatization. Those patrols with a
percentage at or below 10% were then subject to the aforementioned
analyses. This was then repeated for patrols above 10%.

The percentage of privatization is defined as the proportion of the total
maintenance budget for the patrol which is utilized on privatized jobs. The
proportion can be determined from the budget codes provided in the data file
from which the financial information was extracted. As an example of the
type of analysis which would proceed from the setting of a threshold level,
the following displays the results for District 8. (See Table 2-3).
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Table 2-3. Analysis by % Privatization: District 8

Subgroup A (above 10%) Subgroup B (below 10%)
Patrol # D A D B
1 .7458 7730
2 3530 4560
3 1 1
4 .9248 1
5 1 1
6 9120 9255
7 .9060 .9060
8 9835 1
9 .9450 9450
10 | 1
12 9553 9553
13 9384 .9387
14 9561 9679
15 1 1
16 .8829 .8988
17 .8975 .8992
18 .8701 .8733
19 .8847 .8893
21 .9529 9789
22 1 1
25 8747 1
z 7.6268 7.8360 11.3559 11.5109
Av. .8474 .8773 .9463 .9592

Table 2-4. District 8. Sub-group A: above 10%. Sub-group B: below 10%

Average efficiencies

Number of DMUs District Analysis Sub-group analysis
Sub-group A 9 .8474 8773
(high privatization)
Sub-group B 12 9463 9592
(low privatization)
Total/Average’ 21 .9039

The column labeled “D” provides the overall district efficiencies which
were presented earlier and have been obtained without consideration of
privatization influences. When those patrols in district 8 with privatization
below 10% are examined separate from the rest, different efficiency ratings
result. These are displayed under column A. Note, for example, that the
rating for patrol 1 rises from .7458 to .7730. Recall that the rating for a
patrol when looked at in the presence of a subgroup will always be at least as
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high as is the corresponding “entire group” rating. The results of this type of
analysis can be summarized in terms of averages, as per Table 2-4.

As a general rule, when looking at changes in average performance from
the “entire district” results to the subgroup (say low privatization) results,
small changes point to a positive influence of the level of the characteristic
corresponding to that subgroup. For example, in the case of low privatization
in district 8, the average efficiency rating of .9592 is not significantly
different than the average for these patrols when analyzed relative to the
entire district (.9463). This can only be explained by the fact that very few
high privatization patrols were on the frontier. Thus, low privatization
patrols tend to perform better than high privatization patrols since more of
the former were on the frontier than was true of the latter. On the other hand,
the average efficiency rating for high privatization patrols jumped from
.8474 to .8773. This means that some improvement in the performance
picture for high privatization patrols occurs when the efficient low
privatization patrols are removed from the analysis.

As to possible inferences which one might make in the case of, say,
district 8, patrols practicing a low privatization policy tend to perform on
average better than is true of those with high privatization. In the case of
patrol #2, for example, 0.103 points out of the total efficiency gap of .647
(=1 - .353) can be explained by privatizing out a large proportion (= 11%)
of its work.

In general, privatization impacts are different from district to district.
Overall there is no conclusive evidence that privatization increases
efficiency. In fact the converse seems to be true in the case of district 20.

2.3. OUTPUT DETERIORATION WITH INPUT
REDUCTION

2.3.1 Theoretical versus Achievable Targets

As with many applications of DEA, implementation in the maintenance
crew setting has revealed a gap between the theoretical and realistically
achievable resource reduction in inefficient units. Specifically, for a given
inefficient patrol, the actual input reduction (1 — ) deemed feasible by the
maintenance supervisor and geotechnical staff, who have intimate
knowledge of that patrol’s highway network, generally falls short of the
DEA-derived 1-6 for that DMU. There is a belief that below the aX|
level, the remaining resources would not be sufficient to keep the roadway at
the same standard as is currently experienced by that DMU. The general
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explanation for this is that the frontier units that act as peers for such
inefficient units, may be operating in a more favorable environment. In the
highway setting, this can mean that the frontier units may be achieving
efficiency partially because highway surface conditions are superior to those
of inefficient units, or that roadway sub-grade structures result in slower
deterioration in the peer patrols. As well, the model of Cook et al. (1990)
fails to account for certain environmental factors such as average daily
temperature.

Some attempt was made in the earlier study to control for road condition,
by way of a non-discretionary input, the average pavement rating. This
rating is, however, generally not adequate to reflect the level of ongoing
maintenance needed to maintain a certain standard. This rating primarily
captures visible surface conditions such as extent of pavement cracking,
number and severity of ruts and potholes, etc. It would not account for sub-
grade depth, total pavement thickness and so on. If kept at a desirable
standard, the roadway would be expected to achieve a certain life expectancy
before major rehabilitation is required. If available resources are reduced
below some critical point X, however, a faster deterioration would result,
and the expected useful lives of roads in that patrol would be reduced.

In an attempt to provide a more acceptable DEA methodology (that
would be accepted by management within the transportation ministry), the
earlier model of Cook et al. (1990) was upgraded to include a provision for
climatic conditions. This was done in recognition of the fact that severity of
snowfall clearly influences winter maintenance expenses, while the amount
of rainfall impacts summer maintenance. Cook et al (1994) present an
upgraded version of the earlier model that incorporates these factors, as well
as a delineation between summer and winter traffic conditions. Even with
this further allowance for environmental differences, however, many patrols
are still unable to achieve computed performance targets, and argue that
significant anomalies still exist.

Rouse et al. (1997) experienced a similar problem, and introduced a
categorical variable in an attempt to address environmental differences that
exist among patrols. As presented by Banker and Morey (1986), categorical
variables are intended to recognize different environments in which DMUs
may operate. See also Rousseau and Semple (1993). Essentially, if the
setting is one where there is a single dimension (e.g. size of bank branch)
according to which DMUs can be grouped, so that those in the same
category are clearly comparable, then this enhanced model structure might
solve the aforementioned problem of DMU anomalies. In an attempt to
apply this logic in the maintenance patrol setting, however, the authors found
that there was no such single dimension along which patrols could be
ranked. For example, much of the winter and spring maintenance is a
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function of snowfall, temperature, temperature fluctuations, number of
freeze/thaw cycles, etc. Patrols in the north do experience lower winter
temperatures, thus causing pavements there to break up more rapidly than is
true in similar patrols with more favorable temperatures. Thus, one might be
tempted to categorize patrols according to temperature (or even total days of
extreme cold weather). Unfortunately, it is the number of fieeze/thaw cycles
which can cause even more pavement surface damage (although
geotechnical research fails to capture precisely how much more damage). It
turns out to be the case that northern patrols suffer fewer such cycles than is
true of patrols in more favorable temperate locations (i.e. southern patrols).
One could also point to non-climate related factors, such as extent to which
sub-grades under road surfaces are influenced by poor drainage conditions
(e.g. swampland). A factor such as this might serve as a categorical variable
as well.

The conclusion of this investigation was that categories of DMUs could
be formed in several (often conflicting) ways. While it is true that more than
a single categorical input can be included, meaning that a partial ordering of
the data is possible (see e.g., Cooper, Seiford and Tone (2000)), in the
present circumstances there appeared to be so many different dimensions on
which DMUs could be categorized, that the model became somewhat
indeterminate. This fact rendered the categorical variable approach rather
inapplicable in the environment examined.

2.3.2 Enforced Input Reduction

The conventional application of DEA (for example, the VRS input-
oriented model of Banker et al. (1984)), may not be appropriate in many
settings for at least two reasons. First, the projection to the frontier may not
be ‘slackless’, which will occur if a DMU is improperly enveloped. Thus,
the very idea that in order to reach a projection on the frontier, outputs may
actually have to increase, for example, renders the model rather unrealistic in
a setting where the outputs are traffic served and area. Arguably, increased
outputs here can mean performing a level of maintenance above that which
is currently the practice, hence providing a better and more serviceable
roadway for those drivers who do use it. The second, and more serious
restriction of the DEA structure, is that even if one acknowledges that a
radial reduction in inputs by a factor 1-8 is not feasible, there is the
common presumption that a reduction of a lesser amount 1-o (where
o > @) will be acceptable to management. The problem here is that even if
it is accepted that a given patrol cannot forfeit more resources than (1-
o)X, and still provide the same level of service, budget realities can deem
it necessary to operate with less resources than this level dictates. Thus,
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budgetary reality calls for enforced input reduction, often beyond the aX
critical level. Such enforced reduction in inputs is generally accompanied by
erosion of outpults.

The important feature of the efficiency measurement exercise here, is that
the measure itself is simply a means to an end. Management wishes to use
such measures as a mechanism for establishing an appropriate level of
maintenance funding within the province. Equally important, it wishes to
gauge the impact on the highway system in the common event of under-
funding. What will be the extent of the damage to the serviceability of the
highway? What are the long run implications of reduced maintenance on
future capital reconstruction of the highway network?

In the event where less resources are available than needed to meet
standards, management’s course of action would depend on the problem
setting. In a bank branch situation, for example, inadequate resources, (for
example branch personnel), might simply mean that there will be longer
waiting times for customers, more complaints, lost accounts, and reduced
sales of financial services products. In the long run, performance suffers
through deteriorating sales, and overall transactions; that is, outputs decline.
In the maintenance setting, inadequate resources could result in some
maintenance activities being uniformly discontinued throughout the patrol
area (e.g., crack sealing could be halted, roadside activities such as grass
cutting might be done less often, etc.). Alternatively, management may
choose to maintain the higher traffic-volume roads to standard, while
sacrificing maintenance work on less important ones. Thus, on average, the
serviceability, hence the output deteriorates.

The principle issue that maintenance management now faces is to obtain
not only a measure of the theoretical efficiency vis-a-vis a frontier of best
performing patrols, but, as well, to evaluate this against practically
achievable targets. At the same time, as indicated above, management wants
to assess the likely decline in roadway standards, should an inefficient patrol
be required to achieve frontier status. Such information can aid management
in setting budget targets. Specifically, reduced standards in a patrol can have
long term implications for drivers (in the form of rougher roads), and for the
government agency, and ultimately the taxpayer, in the form of more
frequent capital expenditures prompted by shortened pavement lives.
Savings in present day maintenance expenditures would, therefore, need to
be traded off against accelerated resurfacing and reconstruction options.

2.3.3 Modeling Output Erosion

Let us now examine the phenomenon of output decline within the DEA
context. Assume that there are # decision making units, R outputs and /
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inputs, and consider the variable returns to scale (VRS) model of Banker et
al. (1984) for development purposes herein. Let X /.,Y_ ; denote respectively
the vectors of inputs and outputs for DMU ;. For purposes of exposition, we
also assume in this section that all variables are discretionary. In the example
of the following section, however, certain variables are nondiscretionary,
and are treated as such.

The ratio form of the variable returns to scale model of Banker, Charnes
and Cooper (1984) (BCC), is given by:
uY +o

vX

o

subject to:

max

uY;+o 2.1
vX

u,v >0, @ unrestricted

<1, Jj=L.,n

/

The linear programming equivalents (dual and primal problems) are:
max uY, + o
subject to 2.2)
vX, =1

MY, + a)—vXj £0,j=1..,n

H,v 20, @ unrestricted
and

min &

subject to:

0X, - i’lin 20

J=1

7 <y (2.3)
=t

Z’l/zl

J=1

A >0, j=1..,n

As indicated above, earlier attempts to include environmental variables,
and to introduce categorical inputs failed to produce targets which many
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patrols deemed achievable. Hence, management has tended to adjust DEA
targets to better reflect the reality existing in certain patrols. Specifically,
patrol supervisors, in collaboration with geotechnical engineers, and regional
office maintenance managers, have specified what they perceive as the
maximum possible input reductions (1—o;)% in respective patrols j.

These values are set with the understanding that if a reduction of more than
(I-ex;)% in all discretionary inputs (primarily the maintenance budget)
should occur in patrol j, it is claimed that outputs will begin to erode by
some percentage ;. Output erosion generally means that a lower quality of
road maintenance is being administered, as discussed in the previous section.

As indicated above, the visible consequence of insufficient resources in a
patrol can mean the equivalent of discontinuing maintenance on a portion of
the network. To put this in context, note that the outputs we have used in the
previous study are fraffic (total users served), and area (roadway and
roadside combined) maintained. Reduced outputs can be viewed as fewer
road users receiving adequate services.

Let us assume for purposes of model development in this section, that
declared expectations of output erosions are provided in good faith and
represent reality. Clearly, there can be an incentive for the patrol supervisor
to overstate potential output erosion, making intended budget reductions
appear highly undesirable from management’s perspective. There are a
sufficient number of patrol-specific anomalies, such that impacts of budget
reductions can only be truly estimated by the maintenance supervisor and
accompanying geotechnical staff of that patrol. Hence, senior (head office)
management could potentially be ‘at the mercy’ of patrol staff in regard to
honest declarations.

One has to remember, however, that certain realities do make it rather
difficult if not impossible, for patrol management to cheat in this regard.
First, geotechnical staff is generally shared by several patrols, meaning that
there would be little incentive to exaggerate the resource needs of one patrol
at the expense of another. As well, the claims of one district supervisor must
hold up to scrutiny by other supervisors who compete for the same
resources. The modeling considerations discussed herein are, therefore,
correct and relevant only to the extent that erosion rates reflect what will
actually happen. Issues pertaining to obtaining accurate estimates of output
deterioration in patrols are, thus, primarily behavioral in nature, and beyond
the scope of this research.

To mode! the output deterioration phenomenon, refer to Figure 2-1. Note
that in this simplified image of projection, with a single input and single
output, inputs are reduced with no impact on outputs up to the point «r X .
From that point on, outputs are assumed to radially deteriorate at a rate of y,
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per radial percentage unit reduction in X

,» finally projecting to a level Y,
on the frontier.
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Figure 2-1. Adjusted Projection for an Inefficient DMU

In the situation studied, managers were unable to provide a precise value
for y;. Rather, they were able to specify this parameter within bounds
Y, SV S0 Estimation of the ranges [7,,,7,,] posed more difficulty in
some patrols than in others. Patrols with relatively uniform traffic and
uniform road conditions throughout, presented less of a problem in regard to
defining lower and upper bounds on y. For those patrols where a wide
range of circumstances exist among the highway sections making up its
network, these ranges were, however, more difficult to capture. In this latter
case one finds situations, for example, where a budget reduction can mean
that a particular ditching operation to enhance drainage on a small section of
the roadway may be shelved. The immediate, or even long term impact of
such an activity can be difficult to quantify in terms of road deterioration,
etc. Specifically, it can be the case that large budget cuts may effect few
drivers, or many, depending upon the type of activity foregone. In such
circumstances, management tended to specify a wider range (}/U, Y, j) than
in situations where there was more certainty. Again, we emphasize that the
declared ranges are assumed to be good faith declarations, since the zero-
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sum game environment leaves little room for any given supervisor to
exaggerate his/her needs.

For model development purposes in this section we assume that y;isa
known value. In the following section, we return to the con51derat10n of a
range (,;7,;)- Let patrol o be one for which the frontier target of
(1-6,)X, reduction in resources is not achievable, but rather there is a

declared maximum reduction of (1-a,)X,, where o, > 6,. Formally, the
primal linear programming variant (2.4) of the CCR model (2.3) becomes
min ¢
subject to:
-dAX, =20
il
24 Y-y -p1 %Y
J=1
Zﬂj =1
i=l
A4 >0, j=1..,n
or
min ¢
subject to:
-Zlﬂ'jX,i 20
THARAT, ) O
le =1
=
4, 20 j=L..,n

While slacks are not explicitly displayed in (2.5) they do play a role in
the application developed herein. More direct reference is made to slacks,
and how they are computed later.

Note that the dual form of this is:
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max u(l-y. )Y, +o

subject to:

vX,—ul, =1

,qu+a)—vXj <0, j=1..n

MY 20,
® unrestricted

(2.6)

and the resulting equivalent ratio model is:

ax Mo to—y,01Y,

vX,—7,1Y,
subject to:
ne +tw)/vX,; <l, j=1..,n 2.7
J7RY >0

W unrestricted

It is noted that since output erosion is an inherent feature in afl DMUS, it
would appear that rather than (2.7) the appropriate ratio model should be:

max ﬂK} +a)_7/()a{)#)/()
VX() _}/()uKI
subject to:
+o-yaul,
s oy e, <1 (2.8)
vX; =y, 1Y,
J7Y >0

@  unrestricted

It can be shown, however, that these two formulations are equivalent, as
given by the following theorem.

Theorem 2.1: Problems (2.7) and (2.8) are equivalent..
Proof: It is sufficient to prove that at any point (/,®,V)

AY +d—y oY, <1

VX, — 1,
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if and only if
S
270
vX,

Case 1: Assume (AY, +®)/V.X, =1. In this case DMU j is a frontier
unit, meaning that ¢, =1. Hence,

AY,+6 -y fY, Y +d-yAY,

vX, —7,AY, VX, -y
as well.
Alternatively, assume (ALY, + @)/ VX, <1.

Let 49]. denote the optimal input-oriented DEA score, for example
0,= (,u*Yj +a)*)/V*Xj > ([JY/ +a§)/19X_j.

It follows that

(,&Yl +a3)/17Xj :¢j <90, =(,u*Yj tox)/veX, <a,.

Then,

v (Y +oXy,AY)
A ~ ~ A ~ A /JY] +w— ~
WY +o—a(y,AY) < A ro-¢,(r,aY) "~ VX,
VX, -y, A7) VX —(y,40Y)) VX, (7, A4Y))

_ VX (Y, + ) (Y, + o)y AY )
(OOX ;) =X ,(7,4Y))
_ @y, + @)X, -y, 1Y,
VX, [0X, —y 0]

Y+
= <1
vX‘l.
Yy +o-y .« .I[JY.
Case 2: Assume JA — JJ T <
VE Y Y

Then,uY£+a) ya,uY <VX y,uY or
&Y, +o-vX, <(a —1)(7,uY)<O So (,uY +0)/VX; <1
Hence the result QED.

In the section to follow we examine the output deterioration in the
context of highway maintenance crew efficiency.
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2.4. THE APPLICATION

Referring again to the highway maintenance example, consider the
following sample of 14 patrols.

In this example two outputs were chosen to represent the aggregate
service performed by maintenance crews.

Table 2-5. Output and Input Data

Outputs Inputs
Patrol# Size Traffic Total Average
Served Expenditure Rating
1 696 39 751 67
2 616 26 611 70
3 456 25 538 70
4 616 31 584 75
5 560 28 665 70
6 446 16 445 75
7 517 26 554 76
8 492 18 457 72
9 558 27 582 74
10 407 18 700 69
11 463 33 630 78
12 350 88 1074 75
13 581 55 1072 74
14 413 24 696 80

Outputs
Size - a measure that is an aggregate or composite of the number of
kilometres of paved surface, amount of paved versus gravel shoulders, etc.
Traffic Served - this measure accounts for the average daily traffic and
the length of the roadway served.
Two inputs were used in the analysis, namely:
Inputs
Total Expenditure - the annual maintenance budget for the patrol.
Average Pavement Rating - this is a standard indicator per road section
(on a 0-100 scale).

Arguably, one might consider treating average pavement rating as an
ordinal rather than cardinal variable. In this instance, the model of Cook et
al. (1993) might aid in deriving projections. It should be pointed out,
however, that the rating is established through formal geotechnical data
gathering and as such should be treated as quantitative rather than
qualitative. With the inherent lack of precision in this measure, a somewhat
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more formal treatment could involve the imprecise DEA arguments of
Cooper, Park and Yu (1999) and Zhu (2003;2004). We have not undertaken
this herein. For a more full description of these factors, see Cook et al.
(1990).

It is noted that on the input side, the available budget (total expenditure)
is clearly a discretionary variable, while the road condition, an indicator of
the environment in which the patrol operates, is clearly non-discretionary.
Arguably, surface maintenance expenditures such as the filling of potholes
and sealing of cracks do have a minor impact on the pavement rating
(causing it to increase slightly). However, it is not really at the discretion of
management to change the pavement condition in any direct way.

As discussed above, the initial analysis of patrol efficiency was
conducted here for two primary reasons. First, there was a desire to
determine the benchmark crews against which inefficient ones could be
evaluated. This provided management with the best and, even more
importantly, the worst performers, hence isolating areas where waste existed,
and improvements were possible. A second, and related reason for the
analysis, was to have a set of measures that could potentially aid in budget
setting. Specifically, under various overall provincial highway maintenance
budget scenarios, how should allocations to individual patrols be made?

The input-oriented DEA model of Banker et al. (1984) was applied, but
restricting the input variable Average Pavement Rating to be
nondiscretionary. Specifically, the mixed discretionary/nondiscretionary
version of model (2.3) was applied, namely

min 8

subject to:

=Y Ax;—s=0,  ieDI
j=1
X, —2/1 X, =8 = ieNDI 2.9)
z&l.y,j —-s’=y_, reDO
=1

Zn:)“j =1
j=1

Here, the set of discretionary inputs DI is the budget, and the
nondiscretionary inputs, NDI consists of the single variable pavement rating.
Outputs are assumed to be discretionary (DO) to the extent that under budget
reductions, patrol crews can choose to service the road network in a manner
that is below standard. It is noted that we explicitly represent input and
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output slacks here as sl.1 ,sr2 respectively. In solving (2.9) we use a 2-stage
process wherein the sum of slacks is minimized in stage 2. This
unconventional way of handling slacks has some practical merit here in that
for example on the input side we are identifying a minimal reduction in
resources needed to reach the frontier proper from a frontier extension point.

Table 2-6 presents the projections and efficiency score & for each of the
14 DMUs. When positive slacks exist they are displayed in brackets. In this
example, exactly 7 of the patrols are efficient, both in the radial sense
(=1, and in the CCR-efficient sense, in that all slacks are zero (see
Cooper, Seiford and Tone (2000)). The remaining inefficient units are a mix
of properly enveloped (DMU#5), and improperly enveloped units (DMUs
#7,9,10,11,13,14).

Table 2-6. Efficiency Scores & Projections

DMU Size Traffic Expenditure Rating Score
1 696 39 751 67 1

2 616 26 611 70 1

3 456 25 535 70 1

4 616 31 584 75 1

5 560 28 588 75 .883
6 446 16 445 75 1

7 517 26 531 T2 (4)* 958
8 492 18 457 72 1

9 558 27 543 73.75(.25) 934
10 536 (129) 29.67 609 69 .870

(11.67)

11 463 33 589 72.67 (5.33).935
12 350 88 1074 75 1

13 581 55 855 69.75 (4.25).797
14 479.8 24 510 72.26 (7.74).733

(66.8)

*Numbers in brackets represent positive slacks. Note, for example, that the road rating for
patrol #7 was 76 meaning that a projected value of 72 leaves a slack of 4.

In attempting to apply the recommended expenditure reductions arising
from the efficiency analysis, some (inefficient) patrols found that the
projected values could not be achieved. In consultation with head office
maintenance management, patrol supervisors provided a minimum budget
level that they believed was necessary to maintain the network at a standard,
as set by the department. In the case of patrol #5, for example, it was
estimated that at most an 8% budget reduction was possible. Beyond this, it
was felt that a reduction in maintenance effort would need to occur, and a
lower quality of service would be the consequence.
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As discussed earlier, an attempt was made to estimate the range

(71;+7,,) for the parameter ¥;, for each patrol j. Figure 2-2 illustrates
how the erosion projection of Figure 1 might now appear.

Y

T

Y

0% $,X, 06X, (10)‘(0\ (1- o) X, X, X

Figure 2-2. Range of Adjustable Projections

Recall that 1—-7; is the expected percentage reduction in outputs
(service) per radial percentage unit reduction in those discretionary inputs of
X, (ie., the maintenance budget for j). For discussion purposes here, this
range was taken to be ¥; € [.2,.8] for each j. The results for model (2.5) for
each of ¥, =.2 and ¥, =.8, are displayed in Table 2-7. It is noted that
only results for inefficient units are shown since all projections for efficient
units are, by definition, the same as their current positions.

For slackless projections such as is the case for DMU #5, projected
outputs help to reveal the extent of erosion of the system. Here, under the
current status, size and traffic managed are represented by the values
(560,28). The computed efficiency score for this patrol is .883, meaning that
a reduction in expenditure of 11.7% would be needed in order to reach the
frontier of best performance. The projection corresponding to this rating is
shown in the row labeled ‘Unadjusted.’

In this case, the claimed maximum reduction possible, without eroding
outputs, is 8% (¢, = 92% as compared to 8 = 88.3%). Below the 92%
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level, if outputs decline at a rate of ¥, =.2 (20% of the input reduction
beyond that point), then the resulting projected size and traffic that can be
serviced are (555.4, 27.8). This represents a .7% decrease in service. Note
that the new efficiency score is given by ¢ = .879. The corresponding
projection for ¥, = .8 is (527.7, 26.5), or a 5.7% decrease in outputs, with
¢ =.852. Again, see Figure 2-7.

Table 2-7. Efficiency Scores, Unadjusted and Adjusted Projections

DMU  Status Size Traffic Exp.  Rating Effic. &
5 current 560 28 665 70 — —
unadj. 560 28 587.4 70 883 —
Y=2 555.4 278 584.2 70 879 92
¥, =28 527.7 26.5 566.8 70 852 92
bdd. 543.6 272 587.4 70 .883
7 current 517 26 554 76 — —
unadj. 517 26 531 73(3) 958 —
Y =2 515.7 259 530.2  73(3) 957 97
Y,=28 508.9 25.6 526.6 72.9(3.1) 951 97
bdd. 5122 258 5309 73.9(2.1) 958
9 current 558 27 582 74 — —
unadj. 558 27 543.3 73.8(.2) 934 —
Y =2 556 26.9 5422 73.7(3) 932 95
Y,=28 545.8 26.4 537.0 73.5(5) 923 95
szdd 550.6 26.6 5433 740 934
10 current 407 18 700 69 — —
unadj. 536(129) 29.7(11.7) 609 69 .87 —
V=2 536(136) 29.7(12)609 609 87 .95
Y,=8 536(155) 29.7(12.8) 609 69 .87 .95
bdd. 536(155) 29.7(12.8) 609 69 .87
11 current 463 33 630 78 — —
unadj. 463 33 589.3 72.7(5.3) 935 —
7,=2 463 33 589.3 72.7(5.3) 935 935
¥,=8 463 33 589.3 72.7(5.3) 935 935
bdd. 463 33 589.3 72.7(5.3) 935
13 current 581 55 1072 74 — —
unadj. 581 55 854.8 69.7(4.3) 797 —
71=2 573.1 543 839 70.5(3.5) 783 85
75=38 500 47.3 7242 73.2(.8) 676 .85
& bdd. 556.6 52.7 854.8 73.2(.8) 797
14 current 413 24 696 80 — —
unadj. 479.8(66.8) 24 509.9 72.3(7.7) 733 —
V=2 481(78.3) 23 504.6  72.2(7. 725 .85
73=38 486(124.1) 21 483.6 72.1(7.9) 695 .85
6 bdd.  436(62) 21.8 509.9 74.6(5.4) 733

Thus, under the worst case scenario, patrol 5 could experience a 5.7%
decrease in service delivered to the road user and to the tax-paying public.
Recall that while decreased service can take several forms, it is useful to
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view this scenario as portraying a lower quality product, a faster
deterioration of the network, and a higher capital expenditure in the long run.

For projections with slack on the output side, a slightly different
interpretation takes place. Consider the two situations portrayed by patrols
#10 and #14. For #10, the projected outputs are the same under all three
scenarios (unadjusted, ¥, and %, ). For example, the frontier projected size is
536 in all situations, and the efficiency score remains at 87%. The actual
projected point (on the frontier extension)is, however, given by

Frontier projection-slack
=536-129 =407 in unadjusted case
=536-136 =4001n ), case
=536-155 =381in ¥, case.

407

'
h

400 9 :
! N

381 G

Figure 2-3. Projection with Qutput Slack

Figure 2-3 provides a representation of this phenomenon. (Note that a
similar result occurs for the traffic factor). From a lost service perspective, it
is these frontier extension values that are of interest to management.

For #14, the situation is very similar except that there is slack in only one
of the outputs (size), and the efficiency score continues to decrease as we
move from the unadjusted projection where 8 =.733,to 7, (§ = .725) and
to a, (¢ =.695).
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24.1 Base-Line Budget Considerations

The rationale for deriving input-oriented efficiency measures in the
present setting, appears to be twofold. First, the measures point to those
patrols that are inefficient, and those that are efficient; this sets out
benchmarks that management can utilize to help poorly performing patrols
to improve their status. Second, efficiency measures can aid in setting
budgets. Budget planning here would appear to be an exercise in scenario
analysis, and the results obtained from Tables 2-6 and 2-7 put bounds on the
minimal fiscal requirements for the maintenance function. One scenario is
that provided by the achievable projections described by the ¢; measures.
Specifically, the (1—¢;) % reduction in discretionary inputs (maintenance
expenditure, in this case), can be achieved without any erosion to output
measures. Under this scenario, for the sample of 14 patrols considered, the
current budget of $9359 could be reduced to $8874. Thus, a budget
reduction of $485 (thousand) would appear to be immediately achievable.

The minimal budget projections under the »; and J, output erosion
scenarios are given by $8656, and $8494 respectively. These lower
anticipated budgets, depending on the outcome erosion rates that may result,
provide management with a guide as to the possible savings obtainable if all
DMUs were required to move to a frontier efficiency status.

Possibly, a more realistic and fair system of minimal budget setting
would be one wherein patrols are required to reduce expenditures only by
the original 1—6 measure. Specifically, if no output erosion occurred, an
inefficient patrol O would need to operate only at an expenditure level of
Ox,,, to be deemed efficient, rather than at the often lower level of @x,.
Here, x,, denotes the expenditure level (i=1) for DMU o. For example, in
the case of patrol 13, the budget allocation would be .797 X 1072 = $854.8
(thousand), rather than the lower figures $839 and $724.2 corresponding to
¥, and %,, respectively. To compute the output erosion corresponding to
this more favorable Oax,, position, we resolve a modified version of (2.5)
wherein ¢ is restricted to not be less than 6. Figure 2-4 illustrates this idea.

The resulting projections are shown in Table 2-7, corresponding to the
status entitled € -bdd. In computing these projections the most pessimistic
view of output deterioration has been assumed ( %, =.8 was used). Except in
cases #10 and #11, the projections for inefficient units are not on the frontier,
but such units would be operating at budget levels that would normally be
seen as more appropriate than those resulting from the 3,,7¥, scenarios. The
overall minimal budget for the 14 patrols in this case is $8682. Let us regard
this as a base-line or starting budget position.
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Figure 2-4. 8-Projection for an Inefficient DMU

24.2 Budget Allocation Beyond the Base Line

The various projections discussed above provide management with a
broad scope for making budget decisions. Let us assume that the supplied ¥,
(or expected ¥;) represent reality and are not exaggerated claims by the
management of DMU .. If the organization adopts the Ox,, position as a
form of base-budget status, then the aggregate base budget operating level is

B,=> 6, (2.10)
j=1

At this base budget level, patrol j would be providing a level of service
of

yj’zyj[l_}/j(aj_aj)]’ (2.11)

if j is experiencing output erosion (i.e., & <« j). Otherwise, y; =Y
One advantage of adopting a base-budget approach as the starting point
for allocating maintenance funding to patrols, is that it becomes somewhat
transparent as to what budget impacts will be for funding above the base

level. For example, if there is a $1 (thousand) increase in patrol js budget
above the Hxl.j level, one can estimate the increase in y; that can be
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expected to occur. Specifically, the improved values of the components of
y,» currently at y’, are given by:

, 1
Y, =yl=y(e=8,—)]
X,
2.12)
1

J

X

Note that y/x;; is the vector of existing output rates (outputs per
monetary unit of budget), and ¥; is the expected rate of increase in outputs
per monetary increment to the base budget.

In the single output case (y; is a scalar), one could allocate additional
resources to patrols according to the per unit gain factor ¥,y ;/x,; (ranked in
descending order). Specifically, if DMU j, has the highest gain factor, then
one would presumably increase patrol j, s budget by & ;1 so that

§j17j1yj1/x1j1 =Yn— )’jl
or
5]‘1 =[(yj1 '—yj'l)xljl]/(%'lyjl) (2.13)

If resources still remain, allocate funds accordingly to the patrol j,,
whose gain factor is ranked in second place, and so on.

In the multiple output case, optimization is problematic in that the patrol
most desirable for a funding increment in regard to the system size
dimension, may not rank highest on the traffic dimension. Thus, the problem
is multi-criteria in nature, with a ranking of the patrols being available for
each output type. Since the units that define the outputs are not comparable,
one reasonable mechanism for ranking the patrols (for consideration for
budget increments) would be to replace the vector y; by the weighted
aggregate output 4y, where i, is the optimal multiplier vector (shadow
prices from (2.9) for problem j).

Pure optimization here may be somewhat elusive in that ¥, as discussed
earlier, is known only within a range (%,;,%,;)- Management would need to
choose an appropriate value ¥; in this range if a comparison of patrols is to
be made.

2.5. DISCUSSION

This chapter has examined the application of DEA in the area of highway
maintenance. It has illustrated as well, the difficulty of matching theoretical
and achievable targets.
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The suggested modifications to the conventional DEA model help to
capture the consequences on the output side that can occur when inputs are
reduced according to the computed performance measures. The failure to
realize projected reductions in resources without such consequences in many
real world settings can, in most instances, be attributed to factors not
included in the modeling exercise. These factors commonly pertain to the
environment that one DMU may face versus that of its peers. This
environment may be physical (differences in road sub-surface structures in
maintenance patrols, for example,) or demographic (e.g., customer mix
characteristics in financial services settings). Another explanation relates to
the random nature of outputs or input requirements. In the maintenance crew
setting, annual maintenance needs on highways (i.e., budget requirements)
are greatly a function of weather, severity of winters, and so on.
Geographical location plays an important part. It can be that frontier DMUs
are those located in geographically favorable settings, where winter
maintenance needs are minimal and roadway deterioration is less prevalent
than in other areas. Thus, maintenance needs are random and frontier DMUSs
can be outliers at the lower tail of the maintenance cost distribution.

Earlier attempts to introduce categorical variables to permit comparison
of a DMU to only those others that are proper peers, did not seem to resolve
or explain the gap between theoretical and achievable targets. This
necessitated the application of model (2.5). This model will hopefully
provide a useful enhancement to the existing DEA methodology. It provides
a bridge between theoretical performance targets and the practical situations
facing DMU management.
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Chapter 3
PRIORITIZING HIGHWAY ACCIDENT SITES

3.1. INTRODUCTION

The problem of designing a safety retrofit program involves several
components: (1) forecasting target accidents at a selected set of road sites,
(2) evaluating the effectiveness of various measures for reducing accidents,
and (3) prioritizing the sites in order of effectiveness. A significant body of
literature has been dedicated to the first two components, and in particular,
to accident prediction modeling. In the present chapter, however, we do not
address these two components, but rather we concentrate on the third
component, namely, the prioritizing of sites. The discussion herein is based
upon Cook, Kazakov and Persaud (2001).

In practice, prioritization of accident sites has been dealt with in various
ways:

o rank ordering by total target accident counts;

e converting all target accidents to the equivalent of accidents that

involve only property damage and then ranking sections according to

these equivalent accidents;

e ranking according to the ratio of the benefit (reduction in accidents) to

the cost of applying the recommended retrofit measures.

While these methods for ranking accident sites all have merit, they
generally fail to recognize the multi-criteria nature of the problem at hand.

In this chapter we present a DEA-based procedure for selecting a retrofit
program in a budget constrained environment. The procedure specifically
acknowledges the fact that multiple criteria or factors are involved, for
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example, different accident classes, and different kinds of costs, such as
government agency- and user costs. Furthermore, the method adopted takes
account of the fact that there is no well established means of converting
these multiple criteria to a single dimensional problem.

3.2 THE PROBLEM

Suppose that a set of I road sections of a given length, for example, 0.5
km have been identified for possible safety treatment. Consider for each road
section i€ {l,...,I} a finite set J, of potential retrofit measures. Members
of J, may be combinations of individual retrofit measures, for example,
illumination together with shoulder widening. It is understood that for each
measure j, the farget accidents can be identified and measured on each
section. For example, for roadway illumination, target accidents would be
some portion of all those accidents occurring at night. With this definition, a
particular accident might be the target for more than one retrofit measure,
and it is possible that some accidents may not be targeted at all.

Let 7, be the expected number of target accidents of severity k for
retrofit measure j on road section 7. A point estimate 7, of l;; can be
obtained from any one of a number of forecasting techniques. Here, we use
the Empirical Bayesian procedure, (see Hauer (1986) and Persaud (1995)),
which makes use of the actual number of such accidents for this site in the
recent past. We do not concentrate here on the accident prediction aspect of
designing a retrofit program, but rather refer the reader to the relevant
literature on forecasting techniques. See, for example, Abbess et al. (1981),
Hauer (1992) and Persaud (1993). It is pointed out that the statistical
distribution of f;x can also be estimated to reflect the uncertainty in the point
estimate ;.

For each retrofit measure, and each accident severity class, there is an
accident modification or reduction factor a, such that the expected annual
number of target accidents in class k after the implementation of the retrofit
J on section 7 is a,t, . Thus, the point estimate of the annual accident
savings is Y, =t (1-a,).

The application of a retrofit measure to a road section, therefore, gives
rise to a set of outputs or benefits { y,.jk},’;. Thus, retrofit measures have
multidimensional rather than single dimensional outcomes or consequences.
The current state of practice is to attach weights #, to the different accident
types k, thereby converting the multiple dimensional outcomes Y toa
uni-dimensional benefit Z::l u.y,. In principal, the u, should reflect the
saving achieved per prevented accident of type k. As an example, in the
state of Kentucky weights have been selected to be representative of
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insurance cost relating to such accidents. In that jurisdiction, all accidents are
grouped into three major categories—(1) fatalities, (2) injuries, and (3)
property damage only. Empirical studies carried out there concluded that the
relative weights 9, 5 and 1 on categories (1), (2) and (3) respectively,
reasonably characterize the respective costs. See Troxel (1993). Studies
carried out in other jurisdictions have lead to somewhat different weights.
Thus, the relative values or prices {u,}r, associated with these outcomes
(for example, the accident costs), are not well established in the strict sense,
although estimates of average accidents costs are available in various
jurisdictions. To complicate matters further, there are also multidimensional
inputs associated with the application of any retrofit treatment; two of the
obvious ones are (1) the cost x,, incurred by the transport ministry (hence,
the tax paying public) of actually applying the measure, and (2)costs x;,
experienced by drivers that are due to lost time with road closures. The
transport ministry cost associated with any retrofit measure can be directly
stipulated; user or driver costs are less specific. A possible surrogate for
driver cost or inconvenience is X, = ADT xt, where t is the number of
days during which the repair is underway and ADT is the average daily
traffic. This definition of driver cost or inconvenience is simply an estimate
of the number of drivers being exposed to the repair operation. Arguably, a
more suitable reflection of driver inconvenience should take account of peak
period traffic and average trip delay per driver. Until suitable data is
available, however, the above definition of x; will be applied, and is the
common one adopted in practice.

Obviously, other inputs might take the form of environmental variables
such as adjustments to ministry costs. Such adjustments could, for example,
capture characteristics of the jurisdiction where the repair is being carried
out; an example might be the cost of transporting materials to the repair site
in one district versus another. For purposes herein, however, we use as
inputs only the two costs indicated above.

Stated in simple terms, the problem of selecting a best set of road
sections for safety improvement is one of finding those sections that yield
the greatest accident reduction benefits {B,} at the lowest (combined
agency- and user) costs {C, }. In purely technical terms, B; and C; can be
expressed in the additive forms

K
By =2y
k=1

and
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for some sets of multipliers {u, }r_, and {v,} . As indicated above, the u,
represent the relative weights or importance attached to the various accident
classes; the most tangible definition of importance is the public cost
associated with those classes. Similarly, the v, are the relative importance
multipliers for the inputs, which in our example are transport ministry costs
and user costs. How these values should be chosen is less transparent than is
true of the #,.

In some transportation departments no attempt is made to consider any
input (cost), aside from the direct expense to the department; specifically,
only X, is considered. In other situations such as is the case for the Ontario
ministry, studies have attempted to capture the cost per driver, per hour lost
in travel time, as a measure to total driver inconvenience. This measure then
becomes the exchange rate between one hour lost by the driver versus $1
expended by the transportation department. This then dictates v, and v,. As
with the output side, however, there can be a significant degree of variability
in this exchange rate, depending, for example, on the composition of trucks
versus private automobiles on the road section 7 in question. As well, the
amount of business travel as compared to other travel influences this rate.
So, arguably v, and v, may be estimated in some range, but would be
difficult to fix precisely.

Clearly, if one could derive aggregate values B, and Ci/" the selection
problem then could be viewed in terms of finding those sections I whose
(benefit/cost) ratios B{.i/C!./ are largest. In purely economic terms we would
be choosing accident sites where the payoffs in accident reductions are
greatest relative to the monetary (agency- and user) investments. There are
several problems, however, with this approach, with the principal one being
that there is no correct set of multipliers {u,,v,}. Furthermore, one needs to
evaluate the relative worths of various retrofit measures for each site. In the
section to follow we present a model for dealing with these problems.

3.3. APPLICABILITY OF THE DEA METHODOLOGY

In some respects, the problem of selecting accident sites can be viewed in
the context of multi-attribute or multi-criteria decision making (MCDM). A
vast literature exists on MCDM, which is covered extensively in Cook and
Kress (1992). One particular area of MCDM is multi-attribute utility theory.
Utility models attempt to derive a function which transforms a set of non-
comparable attributes for an entity (e.g., an accident site), into a single value;
a multi-dimensional problem is thus converted to a single dimensional
problem. One form of utility function views attributes as additive and linear.
The function, therefore, is comprised of a set of weights which when
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applied, say, to different accident types would derive a uni-dimensional
value measuring the overall benefit from safety improvements applied to any
given accident site.

While conceptually utility theory is a viable means of deriving an overall
measure for site improvements, it does have certain disadvantages. First, the
model provides for a single set of weights which would apply to all accident
sites. There are generally no clear rules for how such weights should be
chosen, and, as well, one may arguably want different weights for different
sites, which could make allowance for differences pertaining to types of
drivers, roadside conditions and so on. Second, some attributes can be seen
as outputs from safety improvements (accident reductions) and others as
inputs to the improvement process (e.g., safety expenditures). Utility theory
has no convenient way of allowing for this dichotomy.

DEA is a tool which is, in certain respects, an extension of the utility
theory model. It views data factors as being separated into two groups, and
as well, allows for different multipliers for different accident sites. How does
DEA relate to the discussion regarding B, and C{.}. above?

Referring again to the discussion in the previous section, it can be argued
that while viewing the relative desirability of accident sites in terms of a
benefit/cost ratio is an appropriate way to proceed, the concept presumes the
existence of fixed weights. So, while the expression 9y, +4y,, +1y,,, for
example, captures the aggregate benefit (in the Kentucky model) if the
weights were accurate, it is more correct to write the expression as
O+A)y, +(5£A)y, +(1£A,)y,; Here, 9%A,, for instance,
reflects the fact that the importance attached to a fatal accident (insurance
cost) lies in the range (9—A,)f,9+A,), where A, could be obtained
from data on past fatality settlements.

What is required, therefore, is a mechanism for applying benefit/cost
analysis in this broader context, taking into consideration the uncertainty
relating to the multipliers. The DEA methodology of Charnes et al. (1978)
was designed specifically as a tool for evaluating different entities (for
example, accident sites), wherein there is inherent uncertainty as to the
values of the multipliers of inputs and outputs. Specifically, it provides a
basis for assigning appropriate multipliers to facilitate benefit/cost analysis
in this more general setting.

One possible criticism of the DEA approach might be that too much
flexibility is permitted in the choice of the weights. In particular, an accident
site that has no fatalities or injury accidents may still receive a high rating z
simply because a low or even zero weight can be placed on those two
accident classes and a large weight may be placed on property damage
accident reductions. Clearly, such a choice for weights is not consistent with
what is known to be appropriate for describing the relative importance of the
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various classes of accidents. Specifically, this may result in the selection of
sites for improvements where only property damage accidents have
happened instead of truly hazardous locations where fatalities have occurred,
and meaningless prioritization could result. To prevent undesirable choices
of multipliers, a modified version of model (1.3) of Chapter 1 can be
employed wherein restrictions on the weights can be imposed. Many
different versions of weight restrictions have been examined in the literature,
including absolute lower and upper limits on individual multipliers, as
discussed in Cook et al. (1990), and in Chapter 2, the assurance region
method of Thompson et al. (1992), and the cone-ratio method of Charnes et
al. (1990). The latter may be appropriate here, in that it permits one to
impose upper and lower bounds on ratios of weights. For example, if it is felt
that the public cost of a fatality at any given site will be at least 4 times that
of an injury accident, but not more than 9 times, then if %, and u, are the
multipliers for fatalities and injuries, respectively, a restriction of the form

Uu
4<21<9
u2

can be imposed. This reduces of course to the linear constraints

u,—4u, 20 and u, —9%u, <0.

We point out that the range (4,9) is purely for illustrative purposes herein.
The choice of range would, in practice, be jurisdiction specific. Similar
restrictions may be selected to control the relative sizes of the multipliers v,
and v, on ministry and driver costs.

In the section to follow we apply the DEA methodology to a sample of
road sections in Ontario where accidents have occurred in the past.

34. APPLICATION TO A SAMPLE OF SAFETY
SECTIONS

For purposes of demonstrating the DEA tool in this setting, a sample of
42 road sections was selected for analysis. Table 3.1 displays the data. The
data in the first three columns represent the estimated reductions in numbers
of accidents that will occur if the retrofit treatment is undertaken. These
numbers are based upon accident reduction factors available in the literature
applied to projected numbers of target accidents likely to occur on the
sections. It is to be noted that the actual data has been scaled for purposes of
analysis. Specifically, the actual figures for the first road section were in fact

Fatality | Injury | PDO | Cost | Traffic
0.0034 | 0.041 | 0.520 | 100 | 4090
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These were scaled to 34,41,520,100 and 409 respectively. Since the DEA
model is scale invariant, this transformation does not affect the analysis. It is
noted that rows 1-5 in Table 3-1 are in fact the same section with five
different retrofit measures and associated accident reduction and agency cost
factors. Similarly, rows 610 represent a particular road with five different
treatments. For each of the other road sections, only a single retrofit measure
is considered.

Two separate analyses were carried out utilizing the DEA package
discussed in Chapter 1 and contained herein. In the first analysis, no cone-
ratio bounds were placed on the accident type multipliers (i.e., the
multipliers u,,u, and u, were left unrestricted in terms of upper and lower
bounds). Table 3-1 displays the DEA scores, labeled Theta I. In the second
analysis limits were imposed of the form

4< U Giatity <10
uin/’ury
uinjz ry
3<AE L,
Uppo
and the resulting DEA scores are shown as Theta IL.'

3.4.1 Selecting Treatments and Sections

The problem to be addressed is one of choosing those safety initiatives
that should be undertaken within budget restrictions, and at the same time
selecting an appropriate treatment for each chosen section. One approach to
this problem is to rank the (section, treatment)- combinations in order of
their aggregate benefit/cost ratios. The Theta-parameters provide these
ratios.

A first step is to rank the impact of the various treatments for any given
section. This means, for example, that we would take the five treatments for
the first section, and select the highest ratio. (For example, choose the
highest among the first five numbers under Theta [ in Table 3-1. Clearly, the
second, fourth or fifth would all qualify as recommended treatments.)

The second step is to rank order the resulting Theta-scores (having
chosen one for each section), then choose the first K sections such that the
corresponding K costs fall within the budget, but if a K+1st were
included, the available budget would be exceeded.

"It is noted that because of the scaling of the actual data presented earlier, the
bounds applied to the scaled data were in fact. 0.4<u/u,<1 and
3<u,/u, <8.
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Table 3-1. Fatality data for various road sections

Section Fatality Injury PDO Cost  Traffic Theta I Theta IT
1 34 41 521 100 409 0.83593 0.77533
13 79 8 50 409 1 0.46273
3 40 57 362 60 409 0.93450 0.81590
4 153 216 1108 450 409 1 1
5 140 137 1100 400 409 1 0.94432
6 42 22 536 100 872 0.50499 0.46394
7 56 4 144 60 872 0.60523 025174
8 43 59 478 200 872 0.40190 0.38611
9 86 73 895 110 872 0.86070 0.84261
10 29 69 751 50 872 1 0.91083
11 9 1 204 60 614 0.25573 0.22808
12 40 16 748 200 910 0.53988 0.44476
13 47 2 309 50 587 0.70954 0.47937
14 58 40 59 100 337 0.92708 042128
15 3 25 572 100 860 0.48858 0.44707
16 79 65 749 50 866 1 1
17 11 28 310 200 861 0.24489 0.21999
18 4 14 900 40 685 1 1
i9 101 95 819 110 648 1 1
20 28 86 223 160 391 0.75470 0.51924
21 87 93 1050 300 1047 0.64038 0.60160
22 61 21 219 40 531 1 0.58744
23 46 35 17 60 592 0.64865 0.28478
24 23 31 189 50 528 0.49614 0.41923
25 9 24 715 50 918 0.71027 0.69033
26 52 17 274 100 436 0.70221 0.45303
27 42 26 352 40 512 0.78433 0.71331
28 14 8 687 200 725 0.57809 0.43687
29 4 26 462 40 511 0.79083 0.72433
30 10 37 406 100 978 0.38437 0.34152
31 14 65 139 100 366 0.73879 0.45234
32 37 55 143 100 708 0.49837 0.32042
33 55 70 158 100 748 0.65832 0.39811
34 18 57 657 100 780 0.68541 0.62642
35 35 26 636 100 865 0.56140 0.53051
36 24 45 507 100 954 0.48131 0.44618
37 36 65 412 100 946 0.54942 0.45745
38 5 16 138 100 478 021476 0.19328
39 50 61 161 100 759 0.58011 0.36375
40 39 59 782 100 769 0.78650 0.75580
41 53 43 99 100 811 0.49538 0.27450
42 27 11 162 100 522 0.32131 0.23140
43 14 72 76 100 595 0.59069 0.30209
44 20 4 183 100 369 0.33563 027251
45 49 28 482 100 1123 042472 0.39457
46 48 27 241 100 658 049240 0.34601
47 2 26 743 100 962 0.56746 0.52569
48 29 31 119 100 514 0.37126 0.26700
49 21 22 223 100 700 0.25822 0.25463

50 18 25 488 100 502 0.64175 0.57059
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Recall that the imposition of cone-ratio bounds has the effect of reducing
the Theta parameters. Consequently, fewer “ones” appear under the Theta 11
column in Table 3-1. Thus, appropriate bounds allow one to break ties.
Consider, for example, the second treatment for the first safety section.
Under Theta I this section was rated 1 primarily because a heavy weight was
placed on the injury accident figure of 79, and very little weight was given to
the fatality figure 13. For treatment 14, the opposite is true (fatalities are
weighted high and injuries low.) With the imposition of the cone-ratio
bounds, the weight on fatalities is forced to be at least 4 times greater than
that on injuries, and so on. As a result, in the second run (Theta II), the rating
on the second treatment dropped to .46. Thus, treatment 14 would now be
chosen for the first section, primarily for its dominance in reducing fatalities.

Applying this logic using Theta II, and with a budget of $1100K or
$1,100,000, the chosen sections and treatments would be:

Section Theta 11 Cost (K$)
4 1.00 450
16 1.00 50
18 1.00 40
19 1.00 110
10 0.91 50
40 0.75 100
29 0.72 40
27 0.71 40
25 0.69 50
34 0.62 100
21 0.60 55

In this case, the list of projects consumes $1085K of the $1100K, and no
other project exists which can be accomplished using the remaining $15K. In
practical terms, one might argue that some other selection of projects might
have been chosen which could consume a larger portion (perhaps all) of the
given budget of $1100K. If, for example, only a budget of $1000K had been
available, only those sections down to DMU 25 would have met the strict
criterion of falling within the budget limit. That is, sections 4,16,18,...,25
consume $930K, and if we go to DMU 34 with its cost of $100K, we would
run over the budget limit. Of course, if one ignores DMU 34 altogether and
goes to the next section on the list, i.e., DMU 21 with a cost of $55K, then it
could be included in the set. Thus, refinements to the basic ranking idea are
easily implemented.
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Obviously, a less ad hoc approach to the ranking method is to attempt to
apply a standard knapsack algorithm. This is in recognition of the fact that
the problem we face here is really a capital budgeting problem with the
objective being to choose those projects with the highest ratings (Thetas),
and with a single constraint on the cost. One is reluctant to take this
approach here, however, since in the usual capital budgeting problem, the
objective function is generally one where meaningful numerical data such as
profit or revenue is being maximized. The Theta values in the present
problem are not profits or revenues, but rather are ratings that have come
about by way of a process that is completely disconnected from the budget
constrained setting that we eventually come to.

An alternative, but somewhat more complex approach, to the resource
allocation problem involved with selecting safety projects is that suggested
by Cook and Green (2000). Their approach effectively amounts to
(implicitly) looking at all subsets of projects, each of whose total budget
comes as close as possible to the given budget without exceeding it. They
use a mixed integer programming technique to search through the various
candidate subsets. The benefit of this more involved approach is that it
determines that set of projects whose aggregate benefit (total reduction in
accidents) per dollar spent is maximized. We have not applied this approach
to this particular data set.

3.5. CONCLUSIONS

In this chapter a procedure has been presented for selecting a set of safety
retrofit projects. One of the complexities surrounding this selection is the
multi-dimensional nature of the problem. Specifically, one must consider
various accident types on the benefit or output side, as well as agency cost,
user inconveniences and possibly environmental factors on the input side.
The data envelopment analysis method is applied to this multiple criteria
setting using a sample of road sections, each with accompanying proposed
retrofit measures.

It should be emphasized that the DEA model structure has been extended
in the literature, and would permit a much broader analysis of accident sites
than might appear to be the case from the above example. Clearly, a
complete analysis of sites should attempt to address the many behavioral
factors that can influence accident occurrences—age of drivers, gender split,
extent of alcohol involvement, speeds involved, and so on. While no
provision to examine these issues was made in the example herein, one could
incorporate qualitative data factors (see Cook et al. (1992)) as well as non-
discretionary variables as per Banker and Morey (1986), to handle such non-
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controllable inputs as average driver-age and speed. Driver mix would be
viewed as non-discretionary in that it, unlike economic factors, cannot
generally be changed. Such behavioral or driver-mix data may not be
available in many jurisdictions, although all accident related information
(alcohol involvement, driver age, etc.) are normally contained in police
records.

Only three accident categories and two types of costs are used for
demonstration purposes herein. Further work is required to enlarge this
variable set to include other factors which may be pertinent to the analysis.
In particular, factors that more accurately capture roadway user cost, rather
than using traffic only, should be considered.
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Chapter 4

BENCHMARKING MODELS
Evaluating the Effect of E-business Activities

4.1. INTRODUCTION

Performance evaluation and benchmarking has become an important
continuous improvement tool for business units in the high-technology world
of computers and telecommunications where competition is intense and
grows more so each day. Benchmarking activities positively force any
business unit to constantly evolve and improve in order to survive and
prosper in a business environment facing global competition. In fact, as
reported in a recent Wall Street Journal poll (Lancaster, 1998),
benchmarking is one of the top three important and popular tools for
continuous improvement. Gap analysis is often used as a fundamental
method in performance evaluation and benchmarking. However, as pointed
out by Camp (1995), one of the dilemmas that we face is how to show
benchmarks where multiple measurements exist. It is rare that one single
measure can suffice for the purpose of performance evaluation. As a result,
some multi-factor based gap analysis methods have been developed. e.g.,
Spider charts, AHP maturity index, and Z charts. Although gaps can be
identified within each performance measure, it remains a challenging task to
combine the multiple measures in the final stage.

Therefore, benchmarking models that can deal with multiple performance
measures and provide an integrated benchmarking measure are needed. Note
that DEA has been proven an effective tool for evaluating the relative
efficiency of peer DMUs when multiple performance measures are present.
DEA identifies an efficient frontier (tradeoff curve) along with efficiency
scores for all DMUSs. Benchmarking is a process of defining valid measures
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of performance comparison among peer DMUSs, using them to determine the
relative positions of the peer DMUSs and, ultimately, establishing a standard
of excellence. In that sense, DEA can be regarded as a benchmarking tool,
because the frontier identified can be regarded as an empirical standard of
excellence. However, when a new DMU outperforms the identified efficient
frontier, a new frontier is generated by DEA. As a result, we do not have the
same benchmark for other new DMUE. i.e., the original DEA method needs
to be modified as a multi-criteria performance benchmarking tool.

The current chapter presents two DEA-based benchmarking models
where the identified efficient frontier (benchmark) remains the same during
the benchmarking process. One is called the variable-benchmark model
where each DMU under benchmarking is allowed to choose a portion of the
benchmark frontier so that the benchmarking performance of the DMU is
characterized in the most favorable light. The other is called the fixed-
benchmark model where each DMU is benchmarked against the fixed
components from the benchmark frontier. The two DEA-based
benchmarking are applied to a large Canadian bank (thereafter, CBANK) in
measuring the effectiveness of the service delivery configuration.

There are many DEA studies on banking performance. For example,
Sherman and Gold (1985) published the first significant DEA bank analysis
and started what turned out to be a long list of DEA applications to banking
from several different angles (Paradi, Vela and Yang, 2004). Sherman and
Ladino (1995) reported that a use of DEA in the restructuring process of the
33 branches of a U.S. bank led to an annual savings of over $6 million. Oral
and Yolalan (1990) introduced a DEA model that forced each of 20 branches
in a sample to compare itself with the global leader — a Turkish bank.

According to the Canadian Bankers Association, the Canadian banking
industry includes 16 domestic banks, 31 foreign bank subsidiaries and 21
foreign bank branches operating in Canada. In total, these institutions
manage over $1.7 trillion in assets. Technology innovation is the most
important factor contributing to the dramatic changes taking place in
Canada's financial services marketplace. Canada's bank financial groups
have led the way in providing Canadians with many new ways to access
financial services. Canadians have embraced debit cards, ABMs, telephone
banking, the Internet and hand-held wireless devices. Advances in
technology continue to revolutionize the industry, breaking down geographic
batriers and permitting customers to access financial services from virtually
anywhere, at any time. In recent years, Canada’s banks have demonstrated a
consistent performance, with profits rising significantly from 1995 to 1997.

The rest of the chapter is organized as follows. The next two sections
introduce our DEA-based benchmarking models developed in Zhu (2002)
and Cook, Seiford and Zhu (2004). We demonstrate how to use the software
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for DEA benchmarking models. The models are then applied to benchmark a
set of e-branches against the best-practice of traditional branches.
Concluding remarks are given in the last section.

4.2 VARIABLE-BENCHMARK MODEL

Let E" represent the set of benchmarks or the best-practice identified by
DEA. Based upon the input-oriented CRS envelopment model, we have

min5CRS
subject to
Z /lx <5(RS new (41)

JeE*

Z /I_'yr/ >y:“‘
Jjel*

4,20,je E’

where a new observation is represented by DMU™" with inputs x* (i =1,

., m) and outputs " (r =1, ..., s). The superscript of CRS indicates that
the benchmark frontier composed by benchmark DMUs in set E’ exhibits
CRS.

Model (4.1) measures the performance of DMU™ with respect to
benchmark DMUs in set E° when outputs are fixed at their current levels.
Similarly, based upon the output-oriented CRS envelopment model, we can
have a model that measures the performance of DMU™ in terms of outputs
when inputs are fixed at their current levels.

maxz CRS

subject to
2 Axy < x 4.2)

Jek*

ZL l_-y,i > Z_(R\y:uw
JeE*
A,20,j€ E’

Theorem 4.1 6" = 1/, where 5" is the optimal value to model
(4.1) and 75" is the optimal value to model (4.2).

[Proof]: Suppose l (j € E")is an optimal solution associated with &
in model (4.1). Now let 7" =1/, and A} = A, 67" . Then ™ and
A} are optimal in model (4.2). Thus, st =g | g

Model (4.1) or (4.2) yields a benchmark for DMU ", The ith input and
the rth output for the benchmark can be expressed as
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> Ax; (ith input)

ek L 4.3)

2 Ay, (rth outpur)

jeEx T

Note also that although the DMUs associated with set E™ are given, the
resulting benchmark may be different for each new DMU under evaluation.
Because for each new DMU under evaluation, (4.3) may represent a
different combination of DMUs associated with set E”. Thus, models (4.1)
and (4.2) represent a variable-benchmark scenario.

Theorem 4.2

(i) 6 <1 or £ > 1 indicates that the performance of DMU™" is

dominated by the benchmark in (4.3).

(i) 6 =1 or ¢ =1 indicates that DMU"™ achieved the same

performance level of the benchmark in (4.3).

(iii) ™" > 1 or £ <1 indicates that input savings or output surpluses

exist in DMU*" when compared to the benchmark in (4.3).

[Proof]: (i) and (ii) are obvious results in terms of DEA efficiency concept.
Now, 6" > 1 indicates that DMU™" can increase its inputs to reach the

benchmark. This in turn indicates that 6“**" - 1 measures the input saving

achieved by DMU™". Similarly, 7 < I indicates that DMU™ can

decrease its outputs to reach the benchmark. This in turn indicates that 1 -

7" measures the output surplus achieved by DMU™" . w

%2 ¥2 /
4 Y

'y
\\
\
AN
N\
\
x\/

Figure 4-1. Variable-benchmark Model
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Figure 4-1 illustrates the three cases described in Theorem 4.2. ABC
(A'B'C') represents the input (output) benchmark frontier. D, H and G (or D',
H', and G") represent the new DMUs to be benchmarked against ABC (or
A'B'C'). We have 65" > 1 for DMU D (z,;*" <1 for DMU D') indicating
that DMU D can increase its input values by &5 while producing the same
amount of outputs generated by the benchmark (DMU D' can decrease its
output levels while using the same amount of input levels consumed by the
benchmark). Thus, §5°° > 1 is a measure of input savings achieved by
DMU D and 7" <1 is a measure of output surpluses achieved by DMU
D

For DMU G and DMU G', we have 6. =1 and 7 =1 indicating
that they achieve the same performance level of the benchmark and no input
savings or output surpluses exist. For DMU H and DMU H', we have &5
<1 and 75" > 1 indicating that inefficiency exists in the performance of
these two DMUs.

Note that for example, in Figure 4-1, a convex combination of DMU A
and DMU B is used as the benchmark for DMU D while a convex
combination of DMU B and DMU C is used as the benchmark for DMU G.
Thus, models (4.1) and (4.2) are called variable-benchmark models.

From Theorem 4.2, we can define 5 - 1 or 1 - 7 as the
performance gap between DMU™" and the benchmark. Based upon &
or 7" | a ranking of the benchmarking performance can be obtained.

It is likely that scale inefficiency may be allowed in the benchmarking.
We therefore modify models (4.1) and (4.2) to incorporate scale inefficiency
by assuming VRS.

ming”™
subject to

< VRS _ new
IEEL: A%y S677x,;

2 Ay 2y @4

subject to

> Ax, <x

jek*

2 Aiyr/‘ 2TVRSy:ww (45)

JekEx -
Y A =1
JeE*

A;20,jeE
Similar to Theorem 4.2, we have
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Theorem 4.3

i) 6™ <1 or ™ > 1 indicates that the performance of DMU™ is
dominated by the benchmark in (4.3).

i) 6™ =1 or ™ =1 indicates that DMU" achieves the same
performance level of the benchmark in (4.3).

(iii) 6" > 1 or ™ <1 indicates that input savings or output surpluses
existin DMU™" when compared to the benchmark in (4.3).

Note that model (4.2) is always feasible, and model (4.1) is infeasible
only if certain patterns of zero data are present (Zhu 1996). Thus, if we
assume that all the data are positive, (4.1) is always feasible. However,
unlike models (4.1) and (4.2), models (4.4) and (4.5) may be infeasible.

o “3( » Input-oriented bencl king model is infeasi
’ Casel I—» o The benchmarking performance is indicated by output
surpluses
E Case Il

/ / §4
/ // Case IV
[y Oytput-drient l/
/ enc malé;g (odel
is itfeagible
e

/
7/
/ marking
ance j:
by inp!

Case V
(underperforming)

(inputy

Figure 4-2. Infeasibility of VRS Variable-benchmark Model

Theorem 4.4

(i) If model (4.4) is infeasible, then the output vector of DMU™" dominates
the output vector of the benchmark in (4.3).

(ii) If model (4.5) is infeasible, then the input vector of DMU™" dominates
the input vector of the benchmark in (4.3).
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[Proof]: The proof follows directly from the necessary and sufficient
conditions for infeasibility in the super-efficiency DEA model provided in
Seiford and Zhu (1999). =

The implication of the infeasibility associated with models (4.4) and (4.5)
needs to be carefully examined. Consider Figure 4-2 where ABC represents
the benchmark frontier. Models (4.4) and (4.5) yield finite optimal values for
any DMU™ located below EC and to the right of EA. Model (4.4) is
infeasible for DMU™ located above ray E"C and model (4.5) is infeasible
for DMU™ located to the left of ray E'E.

Both models (4.4) and (4.5) are infeasible for DMU"™ located above E"E
and to the left of ray EF. Note that if DMU™ is located above E"C, its
output value is greater than the output value of any convex combinations of
A,BandC.

Note also that if DMU™ is located to the left of E'F, its input value is
less than the input value of any convex combinations of A, B and C.

Based upon Theorem 4.4 and Figure 4-2, we have four cases:

Case I: When both models (4.4) and (4.5) are infeasible, this indicates that
DMU™ has the smallest input level and the largest output level
compared to the benchmark. Thus, both input savings and output
surpluses exist in DMU"™ .

Case II: When model (4.4) is infeasible and model (4.5) is feasible, the
infeasibility of model (4.4) is caused by the fact that DMU"™ has
the largest output level compared to the benchmark. Thus, we use
model (4.5) to characterize the output surpluses.

Case IIl: When model (4.5) is infeasible and model (4.4) is feasible, the
infeasibility of model (4.5) is caused by the fact that DMU"™ has
the smallest input level compared to the benchmark. Thus, we use
model (4.4) to characterize the input savings.

Case IV: When both models (4.4) and (4.5) are feasible, we use both of them
to determine whether input savings and output surpluses exist.

If we change the constraint ¥4, =1t0o ¥4, <land ¥4, > I, then we
obtain the NIRS and NDRS variable-benchmark models, respectively.
Infeasibility may be associated with these two types of RTS frontiers, and
we should apply the four cases discussed above. Table 4-1 summarizes the
variable-benchmark models.
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Table 4-1. Variable-benchmark Models

Frontier Type Input-Oriented Output-Oriented
min 5Fromler max z_Fromler
subject to _ subject to
CRS Z ljxij < 5Fromzerxinew 2 ljx,j < xinew
JeE* JEE*
new Frontier _ new
jezE:‘*ljyrj 2yr jg*ﬂ’jyrj ZT yr
A,20,jeE A,20,jeE
VRS Add T4, =1
NIRS Add ¥4, <1
NDRS Add T4, > 1

4.3. FIXED-BENCHMARK MODEL

Although the benchmark frontier is given in the variable-benchmark
models, a DMU™ under benchmarking has the freedom to choose a subset
of benchmarks so that the performance of DMU™ can be characterized in
the most favorable light. Situations when the same benchmark should be
fixed are likely to occur. For example, the management may indicate that
DMUs A and B in Figure 4-1 should be used as the fixed benchmark. i.e.,
DMU C in Figure 4-1 may not be used in constructing the benchmark.

To address this situation, we turn to the multiplier models. For example,
the input-oriented CRS multiplier model determines a set of referent best-
practice DMUs represented by a set of binding constraints in optimality. Let
set B={DMU, :j € I} be the selected subset of benchmark set E .ie,
I, c E". Based upon the input-oriented CRS multiplier model, we have

~CRS* S new
o = maxy .y,
r=1

subject to
z:-i:uryr/ - ;Vixzj =0 Jjely

s ; 4.6)
rgl‘uryrj _EVIXU So ]QIB

ivixi””w =1

i=1

M.V, 20.

By applying equalities in the constraints associated with benchmark
DMUs, model (4.6) measures DMU™’s performance against the
benchmark constructed by set B. At optimality, some DMU, j ¢ 1, may
join the fixed-benchmark set if the associated constraints are binding.

Note that model (4.6) may be infeasible. For example, the DMUs in set B
may not fit into the same facet when they number greater than m+s-1, where
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m is the number of inputs and s is the number of outputs. In this case, we
need to adjust the set B.

Three possible cases are associated with model (4.6): & > 1 indicating
that DMU"™ outperforms the benchmark; & = 1 indicating that
DMU™ achieves the same performance level of the benchmark; & < 1
indicating that the benchmark outperforms DMU"™" .

By applying RTS frontier type and model orientation, we obtain the fixed-
benchmark models in Table 7-2

~ CRS*

Table 4-2. Fixed-benchmark Models

Frontier Input-Oriented Output-Oriented

Type
max E,ur M+ mmiv X +v
subject to subject to
Z,u Yy~ Zv,xlj+,u 0 jelg ZV,X,, Z,u yy,tv=0 jely
Z/t,y,_,—Zvixi,+ﬂS0 Jelg Zl Xy Z/ty,,+v>0 Jelg
iv,x, Suy =1
Iur’V Z O 1Ur7v 2 0

CRS where #=0 where v=0

VRS where y free where v free

NIRS where £ <0 where v >0

NDRS where 4> 0 where v <0

DMU™ is not included in the constraints of ¥, 4.y, - ZLv,x; +u<

0 (jely) (Xhvix, - Xy, +v>0(jgly)). However, other peer
DMUs ((j ¢ 1) are included.
The above models are used in Zhu (2001) in measuring quality of life and

Zhu (2004) in evaluating purchasing bids.

4.4. BENCHMARKING MODELS IN DEAFRONTIER
SOFTWARE

Zhu (2002) describes how these benchmarking models can be solved in
Microsoft® Excel -and Excel Solver. Here, we demonstrate how these
benchmarking models can be solved using the DEAFrontier software.

To run the variable-benchmark models presented in Table 4.1, we need to
set up the data sheets. Store the benchmarks in a sheet named “Benchmarks”
and the DMUs under evaluation in a sheet named “DMUs”. The format for
these two sheets is the same as that shown in Figure 1-10. Then select the
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Variable Benchmark Model menu item. You will be prompted with a form
for selecting the model orientation and the frontier type as shown in Figure
4-3. Note that if you select a frontier type other than CRS, the results may be
infeasible. The benchmarking results are reported in the sheet
“Benchmarking Results”.

< Medel Orientation

V‘E:Em‘?,d,,, ,’ Ot rented

Frpnﬁ:r Type - Returns to Scal -

loos cws

¢ NIRS CANDRS carr. |
Devé‘mzedbzlaulh; { 4

Figure 4-3. Variable Benchmark Models in DEAFrontier

To run the fixed-benchmark models presented in Table 4-3, we store the
benchmarks in a sheet named “Benchmarks” and the DMUs under
evaluation in a sheet named “DMUs”. Then select the Fixed-Benchmark
Model menu item. You will be prompted with a form for selecting the model
orientation and the frontier type. The results are reported in the “Efficiency
Report” sheet. If the benchmarks are not properly selected, you will have
infeasible results and need to adjust the benchmarks.

4.5. APPLICATION TO BANK BRANCHES

In the financial services industry worldwide, the traditional face-to-face
customer contacts are being replaced by electronic points of contact to
reduce the time and cost of processing an application for various products.
To best respond to this new marketplace, the CBANK identified a need to
conduct research into the design and delivery of financial services by the
most efficient and effective means while meeting internal operational
performance goals. CBANK created a set of 12 e-business branches
(thereafter, e-branches') using a new banking concept intended to create
customer convenience with more efficient platforms for performing

' We code these e-branches as el, €2, ..., e12.
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transactions. The e-branches are aimed at increasing the speed of service
delivery and decreasing costs in significant proportions through branch
operation automation via Internet, ATMs, telephone banking and other
electronic means. From a business perspective, these e-branches are a result
of application of technology toward the automation of business transactions
and workflows (Kalakota and Whinston, 1997).

Sales
Effectiveness

Better relations
(e-branches)

h 4

—

Lower costs/Improved profits
i Higher earnings

Productivity

Figure 4-4. The effect of e-business activities on banking performance

Figure 4-4 presents the impact of e-business on banking performance.
Based upon Harvey (1996), sales effectiveness/customer satisfaction leads to
better relationships with a bank branch’s current clients who are inclined to
bring more of their business to it. This increases market share, as does the
influx of new customers who hear about the branch’s legendary levels of
service. Increased share means that more transactions are being processed,
presumably with the same amount of fixed cost. That, in turn, lowers unit
cost and increases revenues, both of which lead to improved productivity
and higher earnings. More earnings result in increases in the bonus pool,
higher merit increases, and a higher stock price, which benefits all
shareholders and the workforce. This leads to happier banks. We should not
forget that the reverse of the cycle is also true. If a bank branch does not
provide the level of service that people want, it will lose customers to the
competition. Since the e-branches are in a new form of business and banking
is done in very different ways, uncertainty surrounds the development of this
new delivery model.

Performing a benchmarking study is extremely critical to the CBANK in
undertaking the e-business activities and to examine whether the e-branches
enhance the productivity and sales effectiveness while reducing
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expenditures. i.e., the CBANK wants to examine whether the e-business
activities have a positive impact on the business cycle presented in Figure 3.
Clearly productivity in this case is characterized by a number of measures
including, labor, information technology investment, transactions, and
others.

We develop two DEA inputs: FTE (full time equivalent) counts which
include sales, service, support and other staff, and operating expenses which
include spending on stationary, communications, shortage & losses, business
development, employee training, advertising & publications, computer costs,
and others.

Table 4-3. Transactions and Processing Time

Processing Time
(hour)
DEA Outputs Transaction Description Min. Max.
1 (Tranl) Set up a new collateral or non collateral loan 198 2.093
2 (Tran2) Open a new account (menu account) .353 541
3 (Tran3) Process a branch deposit to menu account .044 070
4 (Tran4) Process a withdrawal from menu account .040 .055
5 (Tran3) Update passbook for menu account in branch .018 .026
6 (Tran6) Process visa cash advance .041 101
7 (Tran7) Process a business deposit .039 .092

There are two types of transactions: sales and service. We select seven
transactions (DEA outputs) presented in Table 4-3 that account for over 90%
of the volume of sales and service related work carried out.

4.5.1 Identification of Benchmark frontier

This section identifies the best practice frontier of traditional bank
branches in each quarter from 1995 to 1996°. The identified best-practice in
each quarter is later used as the benchmark frontier to evaluate the quarterly
performance of e-branches.

Table 4-3 reports the minimum and maximum process times for the seven
transactions. The minimum and maximum process times are used as lower
and upper bounds for output multipliers in the multiplier models to develop
the following weight restrictions.

Tran, Tran,
<5929, 11.271

1.475< < 47.568,

ran, an,
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Tran, Tran,
< 52.325,30.346 <

14.345 < < 116.278,

ran, an

Tran, Tran,
< 51.049, 8.576 <

ang ran,

7.812 < < 53.667

There are about 1200 traditional branches within the CBANK. We will
identify the efficient ones in each quarter to use as a benchmark data set.
Both CRS and VRS multiplier models in Table 1-2 with the above AR
restrictions are applied to identify the quarterly best-practice frontier.

4.5.2 Benchmarking the e-branches against the traditional
branches

We benchmark the 12 branches (e-branches) against the identified best-
practice of traditional branches in each quarter from 1995 to 1996. The last
quarter of 1996 is regarded as the “turning point”, since the e-branches were
created during the last quarter of 1996. Note that the best-practice of
traditional branches was changing quarterly. Thus, we here capture a
dynamic picture of the performance change of these 12 e-branches.

The results from the CRS variable-benchmark model (4.1) indicate a
dramatic performance change from the third quarter to the fourth quarter in
1995 when the automation is implemented: all the e-branches outperform the
best-practice of traditional branches. However, the performance of the e-
branches decline into 1996. Based upon the optimal value to model (4.1) we
classify the e-branches into four categories with respect to the performance
change during 1996 (see Figure 4-5):

% The current study uses the real data from 1995 to 1996, since the CBANK had just started
the service re-designing for the 12 branches. After that period, the CBANK had stopped
the re-designing of these branches.
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(i) branches, el, €3, and e6 where the performance improves over
the first three quarters of 1996 and then declines;
(ii) branches €2, e5, €7, and e12 where the performance improves

from 96Q1 to 96Q2, then declines from 96Q2 to 96Q3, and then
improves from 96Q3 to 96Q4°;

(iii)  branches e4, e8, €9 and e10 where performance improves from
96Q1 to 96Q2 and then declines;

(iv) branches ell where the performance declines from 96Q1 to
96Q2, and then improves.

Only 5 e-branches, in the second quarter of 1996, and 3 e-branches in the
third quarter of 1996 outperformed the best-practice. i.e., the optimal value
to model (4.1) — 5 is greater than one. The majority of the e-branches
did not show performance improvement compared to the best-practice of
traditional branches.

Recall that model (4.1) assumes CRS, i.e., scale inefficiency is not
allowed. We therefore turn to VRS models. Similar results are obtained. This
indicates that scale is not a factor related to the productivity in the e-
branches.

Under the case of VRS (models (4.4) and (4.5)), no infeasibility occurs,
because most of the e-branches are under-performing units compared to the
benchmark, this indicates that most of the e-branches are of Case V in Figure
4-2.

4.5.3 Benchmarking within e-branches

The previous analysis indicates that there was no productivity gain as a
result of branch automation when the performance of e-branches is
compared to the best-practice of traditional branches. Recall that the 12 e-
branches were re-engineered from 12 existing traditional branches which
were under-performing units compared to the best-practice in the first three
quarters in 1995. Thus, it might be difficult for the newly established e-
branches to close the performance gap between the best-practice and their
predecessors. Therefore, we next study the performance change within the
12 branches. i.e., we compare the e-branches to the best-practice of these 12
branches before the automation.

First, we compare the e-branches in each quarter of 1996 to the best-
practice of e-branches in each quarter of 1995%. The results from models
(4.1), (4.4) and (4.5) show that (i) when the best-practice of the e-branch

?96Q1 stands for the first quarter of 1996.
4 The “e-branches” in 1995 are referred to the 12 branches before the automation.
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predecessors in the first quarter of 1995 is used as the benchmark, most of
the e-branches outperform the benchmark, although the performance of most
e-branches declines into the last quarter of 1996, and (ii) under the
assumption of VRS, two e-branch moved from Case Il into Case IV
described in Figure 4-2, indicating a productivity decline and most of the e-
branches can be categorized by Case III in Figure 4-2. Only one e-branch in
the second quarter of 1996 is of Case I, representing the best scenario with
lowest costs and highest performance.

Overall, the performance of e-branches declines as the benchmark is
changed from the first quarter to the last quarter of 1995°.

Next, we assume each branch in each quarter of 1995 represents a branch.
Since automation happened during the last quarter of 1995, we exclude the
branches in that quarter from the identification of best-practice. Thus, we
have 12 (branches) x 3 (quarters in 1995) = 36 branches. We then
benchmark the e-branches in the last quarter of 1995 and in each quarter of
1996 against the best practice of these 36 branches.

In these 36 branches, eight branches, namely, €1-95Q1, e1-95Q2, e3-
95Q1, e5-95Q2, e6-95Q2, ¢5-95Q3, €6-95Q3, and e10-95Q3, are best-
practice branches. These eight branches are used as benchmarks in model
(4). In model (9), we select €5-95Q3, ¢695Q3, and ¢10-95Q3 as three fixed
benchmarks, since they represent the best-practice right before the
establishment of e-branches.

Tables 4-4 and 4-5 report the benchmarking scores from models (4.1) and
(4.6) respectively. These are optimal values to models (4) and (9). A larger
value indicates a better performance. For example, under 96Q1 of Table 4-4,
¢l has a score of 2.1658 when el is compared to the best-practice of the
traditional branches in the first quarter of 1996. This indicates that el in the
first quarter of 1996 outperformed the traditional branches. For e2, the
corresponding benchmarking score is 0.3942, indicating that e2 was
dominated by the traditional branches.

Overall, the performance of these e-branches declines from the first
quarter to the last quarter of 1996.

When the wvariable-benchmark model is used, the benchmarking
performance of e3, e6 and €9 constantly declines. The performance of el

* However, as pointed by one reviewer, since the conversion to e-branches took place during
the last quarter of 1995, this particular quarter may be tainted with the effects of the
conversion. Also, not all the branches are converted in the same day. As a result, quarter
totals include a mix of new and traditional branches. On the other hand, it is possible that
these branches were already producing at a higher level during 1995, and therefore there
were no noticeable changes once e-branch conversion took over. The one quarter
performance jump can be due to the novelty aspect as customers would come and check
things out.
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which outperforms the best-practice improves during the first three quarters
and then declines. Note that only one branch (el1)’s performance declines,
outperform the best-practice, and then declines. The remaining 7 branches
show a performance improvement from the first to the second quarter of
1996 and then show a constant performance decline with respect to the best-
practice.

Table 4-4. Benchmarking within e-branch: variable-benchmark model

e-branches 95Q4 96Q)1 96Q2 96Q)3 96Q4
el 2.3770 2.1658 2.3860 3.3878 1.0513
e2 0.3942 2.0119 0.3632 0.2353
e3 16.2577 0.7857 0.7101 0.6768 0.1803
e4 8.6272 1.1054 1.1725 0.8412 0.1988
e5 32.4540 0.9147 1.1725 0.7577 0.3429
e6 12.9585 1.5031 1.4502 1.4078 0.4256
e7 6.1554 0.4223 0.6771 0.3753 0.1488
e8 14.1309 0.8519 0.9365 0.7965 0.2839
e9 11.5337 1.1467 1.0672 0.8693 0.2227
el0 7.6262 0.9750 1.7775 0.8508 0.3504
ell 9.0184 1.2259 0.5872 1.0533 0.2725
el2 8.4983 0.9209 1.7458 1.0977 0.4279
Table 4-5. Benchmarking within e-branch: fixed-benchmark model

e-branches 95Q4 9601 96Q2 96Q3 96Q4

el 2.2038 1.4076 1.2771 1.4672 0.4706

c2 0.2818 0.8540 0.3332 0.1826

e3 10.9393 0.7857 0.6931 0.6516 0.1764

e4 6.6742 1.1054 1.0399 0.7302 0.1356

eS5 21.8097 0.8787 1.0496 0.7499 0.3406

e6 9.3977 1.0599 1.0730 1.0539 0.3274

e7 4.0593 0.4152 0.4761 0.3746 0.1460

e8 9.5579 0.7892 0.7187 0.7094 0.2567

e9 7.8706 1.0149 1.0488 0.8693 0.2133
el0 5.8255 0.9750 1.3070 0.8508 0.3092
ell 6.3961 1.2092 0.5789 0.7750 0.1960
el2 6.5173 0.9209 1.2823 1.0977 0.3856

When the fixed-benchmark model is used, as expected the benchmarking
scores decrease, implying a worse performance with respect to the best-
practice. The performance change of el and ell remains the same patterns
as those under the variable-benchmark model. The benchmarking
performance of €3, e4, e6 and e8 constantly declines. The remaining 6
branches show a performance improvement from the first to the second
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quarter of 1996 and then show a constant performance decline with respect
to the best-practice.

Finally, we note that an additional factor may contribute to the dramatic
performance improvement when the CBANK launched the e-branches in the
last quarter of 1995. There were some additional staff employed by the e-
branches that were not reported as they were under the balance sheet of the
head office and not paid for by the e-branches. The CBANK phased out
these unreported staff over the first two periods (the last quarter of 1995 and
the first quarter of 1996). Thus, the number of staff in the last quarter of
1995 and the first quarter of 1996 was understated. As a result, the resulting
benchmarking scores should be decreased in the last quarter of 1995 and the
first quarter of 1996. Such adjustment indicates that the performance change
of e-branches does not move in a favorable direction.

The above analysis indicates that the e-business activities (establishing the
e-branches) do not lead to an increased productivity. This empirical finding
helps the CBANK to further examine its current e-business options.

4.6. CONCLUSIONS

To aid the CBANK in undertaking e-business activities, the current study
is directed at evaluating and benchmarking branch bank performance. Two
DEA-based benchmarking models are developed to study the change :in
performance that branches undergo when moving from the old to the new
structure where transactions are automated. The study reveals that e-
branches (new structure) did not exhibit productivity gain when compared to
both the best-practice of traditional branches and e-branches’ predecessors.
This finding allows the bank to examine its business options, and gain an
understanding of what does not work well in terms of the makeup of new
branches. This further can point to weaknesses and strengths in e-branch
operations. The current study provides tools needed to monitor the
performance change and further facilitates the development of the best
strategic option for the organization with regard to branch makeup.
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Chapter 5

FACTOR SELECTION ISSUES IN BANK
BRANCH PERFORMANCE

S.1. INTRODUCTION

Although many studies and applications have demonstrated the
effectiveness of DEA, it remains that for large-scale problems, with many
different factors or variables available, at least fwo impediments to effective
implementation may still exist. First, it is recognized that a DEA analysis
entails explicitly specifying a set of factors to be used in the model, and
classified as to which will constitute outputs or results, and which are inputs
or impacts. In many settings, however, it can be problematic to define the
most appropriate of those factors to be integrated into the analysis (and their
status as to input or output); as with conventional statistical analyses, many
choices can exist. A second major element involves implementation, and has
to do with management’s own perceptions as to what constitutes good versus
poor performance. If a methodology fails to uncover what management feels
is best or worst practice, that methodology is unlikely to succeed as the
measurement tool of choice. This is particularly the case in those settings
such as banks, where established procedures are in place to formally track
the activities of the DMUs (e.g., branches).

In this chapter we examine how expert knowledge in the form of
classification information can be incorporated within the DEA structure, to
enhance performance measurement. It must be said initially that
management perceptions as to good versus poor performance may or may
not be enlightened. “Expert knowledge” may be nothing more than
uninformed opinion or bias, and as such should not be brought to bear on
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performance evaluation. In many cases, however, expeert opinion is in fact
grounded in a solid knowledge of the situation at hand.

Consider the example involving measuring the relative efficiencies of
highway maintenance crews as discussed in Cook et al. (1990) and Cook and
Zhu (2003). In the early stages of the development of the DEA model there,
district geotechnical staff and maintenance supervisors were consulted
regarding the work load of maintenance crews in the study area. From those
discussions, a choice was made regarding appropriate inputs and outputs.

In the preliminary analysis no provision was made for winter versus
summer maintenance, with the result that maintenance crews (patrols) in the
‘snow belt” tended to all receive very low efficiency scores. It was
management’s conviction, however, that a number of those crews were in
their words, efficient, arguing that the greater effort by those crews in the
form of more frequent use of snow removal equipment, and application of
road salting, needed to be taken into account. With this, it was realized that
an output measure accounting for the winter factor was necessary. When this
modification was incorporated, it indeed did occur that certain crews were,
under the initial model, being unduly penalized in the absence of a proper
definition of factors.

This example serves to demonstrate that management opinion may not
necessarily be given in the form of explicit identification of input/output
factors, but rather is often expressed in a more global ‘sense’ of DMUs being
efficient versus inefficient. In many circumstances, this form of expression
of expertise can be a valuable input to the performance measurement
exercise.

Section 5.2 presents the problem setting for a particular DEA analysis
undertaken in a major Canadian bank. With this setting as a backdrop, the
remainder of the chapter sets out to describe a DEA model augmented by
branch classification information. We argue that the latter is a form of expert
knowledge that should be accounted for in any DEA analysis for such a
performance measurement situation. In Section 5.3 we review various
discriminant models that are applied in the aforementioned first stage.
Section 5.4 discusses the broad structure of the expert-enhanced DEA
model. As discussed above, we view the modeling of performance
measurement as a two-stage process. In the first stage, a classification or
discriminant model is used to designate the status (output or input) for each
variable; in the second, the DEA analysis is performed, based on the variable
designations chosen. In this first set of experiments, all variables are
assumed to be flexible as to their input versus output status. An extensive
simulation experiment is conducted in Section 5.5, using data supplied on
200 bank branches, and classification data provided by branch consultants.
Section 5.6 utilizes a particular discriminant model, and adds the feature that
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certain of the variables are inflexible (i.e. are locked in from the beginning as
inputs or as outputs). Outcomes from this resulting second set of
experiments are presented.

5.2. THE PROBLEM SETTING

The current chapter documents a case analysis of performance
measurement of branches within a major Canadian bank. The distinguishing
feature of this application, in comparison to others in a similar setting, is the
presence of an existing performance measurement system. As with many
banks, this particular one employs branch consultants who closely monitor
branch operations by collecting detailed time study information on each
process. This leads to estimates of processing times that help consultants to
classify branches into various categories as to their efficiency status. This
existing procedure for classifying branches is inexact and not transparent. It
combines both quantitative information based on time studies, as well as
demographic (customer-base) data. Specifically, consultants will attempt to
evaluate branches based upon their potential to perform. An example
demographic parameter would be to percent of high value customers in their
customer base. A large percentage of high value customers generally implies
a potential for a higher than normal level of product sales, (e.g. mutual
funds) in that branch. Such factors are part of the rationale for a final
classification.

Attempts to apply conventional DEA principles here met with some
implementation difficulties. Essentially, the frontier branches arising from
the DEA analysis in many instances do not coincide with the classification
identified by branch consultants. In a pure operational efficiency sense, DEA
results are an accurate portrayal of branch performance, at least from the
perspective of technical efficiency. In a pragmatic sense, however, the
analysis appears to be failing to capture those elements, many qualitative,
that branch consultants take into account.

Table 5-1. DEA Variables

Variable Description

FTETOT The sum of all full time employees (sales and service
positions)

RSP The number of retirement savings plans sold

LOANTOT The total of all loans and mortgages

MOPCAO The total of accounts opened

MDPMTRF The number of deposits and transfers

MWDMUPD The number of withdrawals and updates
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Data for six operational variables were supplied for the study, as
presented in Table 5-1.

These variables capture the business activity of branches. One difficulty
of applying conventional DEA in this situation is defining the (input versus
output) status of each of the supplied variables. One can claim that a variable
such as total withdrawals and updates should be considered as an output in
that it is a part of the branch’s workload. However, if the strategy of the bank
is sales oriented, then this variable may, in fact, create a deterrent to sales
generation, thus representing a type of environmental input. Other variables
such as mortgages and loans are clearly outputs, and no dispute exists as to
their status.

This performance measurement setting thus presents the challenge of
combining two forms of data—quantitative data on a set of supplied variables,
and qualitative data in the form of a classification of branches supplied by
bank consultants. Appendix I presents a sample selected from a set of 200
branches that have been classified as high or low in terms of performance.
Since the current approach to performance measurement (and the qualitative
factors that lead to that approach) appears in the form of a classification of
the branches, the methodology proposed herein attempts to capture that
information as well as the data provided in Table 5-1. As indicated above,
we propose a two stage approach to performance measurement. In the first
stage the current classification information is used to aid in designating the
status (input versus output) of variables to be used in the DEA analysis. In
the second stage, the resulting inputs and outputs are used to perform a DEA
analysis leading to branch performance measures. To facilitate stage one,
various discriminant tools are examined in the following section.

These variables capture the business activity of branches. One difficulty
of applying conventional DEA in this situation is defining the (input versus
output) status of each of the supplied variables. Arguably one can claim that
a variable such as total withdrawals and updates should be considered as an
output in that it is a part of the branch’s workload. However, if the strategy
of the bank is sales oriented, then this variable may, in fact, create a deterrent
to sales generation, thus representing a type of environmental input. Other
variables such as mortgages and loans are clearly outputs, and no dispute
exists as to their status.

This performance measurement setting thus presents the challenge of
combining two forms of data—quantitative data on a set of supplied variables,
and qualitative data in the form of a classification of branches supplied by
bank consultants. Appendix I presents a sample selected from a set of 200
branches that have been classified as high or low in terms of performance.
Since the current approach to performance measurement (and the qualitative
factors that lead to that approach) appears in the form of a classification of
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the branches, the methodology proposed herein attempts to capture that
information as well as the data provided in Table 5-1. As indicated above,
we propose a two stage approach to performance measurement. In the first
stage the current classification information is used to aid in designating the
status (input versus output) of variables to be used in the DEA analysis. In
the second stage, the resulting inputs and outputs are used to perform a DEA
analysis leading to branch performance measures. To facilitate stage one,
various discriminant tools are examined in the following section.

5.3. DISCRIMINANT MODELS

As indicated above, the aim of this chapter is to demonstrate the use of
discriminant tools to provide a link between expert knowledge in the form of
classification information, and conventional quantitative data, thereby
providing a format for both data sources in the conventional DEA structure.
To facilitate the discussion in later sections, we provide here a brief review
of some of the standard discriminant models that have been applied to our
data. Specifically, we examine logistic regression (LR), multiple
discriminant analysis (MDA), goal programming (GP), and integer goal
programming (IGP).

5.3.1 Logistic Regression

The logistic regression (LR) technique, Kleinbaum (1994), analyzes the
relationship between a categorical dependent (or response) variable, and a
set of independent (or explanatory) variables. A principal model within LR
is the Logit model, which has only two categories in the response variable —
event A or non-A.

To place the problem in a general framework, let R denote the random
response variable of interest (in the present setting, the response corresponds
to the categorization of n bank branches as high or low performers). For each
branch k =1,...,n, let Z, = (qu)f=1 be a Q-dimensional vector of variables.

CXp (ijﬂquqk) -p (5.1)
=P. :
[ +exp (2le b,z,)]

Here, the b are the multipliers (regression coefficients) of the Q
variables, Zys and P, denotes the probability that branch k will be classified
as a high performer. The probability of the non-event (branch is a low
performer) is then:

E(R,=1) =
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Q
exp (zq=1quqk) _i_p
-

E(R,=0) =1~ : -
(®=0 [1+exp (O 6,2,0)]

Therefore, we can state that
0
E(R, =1)/E(R, =0)=P, [(1- B)=exp (X" b,2,)

The fraction P, /(1-P,)is called the odds ratio. Now, take the natural
log of the odds ratio

Pk Y
L=L,| 17 |= >'bz,,
k

g=1
with limr,,z_mo Prob(R, =1)=1and limﬁ'z—)+m Prob(R, =1)=0. L is
called the logit, and hence the name logit model. Here ﬁq denotes the
population regression coefficient of which bq is an estimate.

5.3.2 Multiple Discriminant Analysis

The basic purpose of multiple discriminant analysis (MDA) is to estimate
the relationship between a single non-metric (categorical) dependent variable
(groups), and a set of metric independent variables (predictors). MDA,
which can classify two or more groups, identifies the areas where the
greatest difference exists between the groups, derives a discriminant
weighting coefficient for each variable to reflect these differences, and then
assigns each individual to a group, using the weights and each individual’s
ratings on the characteristics. The ultimate goal in MDA is to predict to
which group a new observation belongs.

MDA is based on centroids and groups. It involves deriving the linear
combination of the two (or more) independent variables that will
discriminate best between the a priori defined groups. This is achieved by
the statistical decision rule of maximizing the between-group variance,
relative to the within-group variance. This relationship is expressed as the
ratio of between-group to within-group variance. If the variance between is
large relative to the variance within the groups, we say that the discriminant
function separates the groups well.

The test for the statistical significance of the discriminant function is a
generalized measure of the distance between the groups centroids. This is
done by comparing the distribution of the discriminant scores for the two
groups. If the overlap in the distribution is small, the discriminant function
separates the groups well.
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5.3.3 Goal Programming Models

Applications of linear goal programming-based approaches in
discriminating between two groups of observations, have appeared in
numerous publications, e.g. Mignona and Glover (1995). With GP we seck a
hyperplane to separate two groups of points in the best possible way,
regardless of whether or not they can be completely separated. See Glover
(1990).

Assume that the » bank branches have been grouped into two categories
G,,G,, where G, represents branches classified as low performers, and G,,
those considered as high performers. Freed and Glover (1986) present
several variations of a goal programming model for discriminating between
two groups. Stated in simple terms, the GP model is

n
minZkkcxk
k=1
subject to:

Q
quzqk—aksT, keG,,
g=1
0

bz, +o 2T, keG,, (5.2)
g=1

o, 20,V T, bq unrestricted in sign.

Here, the ¢, are goal achievement variables, and T is a variable
representing the threshold against which branch performance is compared.

The goal is to minimize the weighted sum of deviations. In problems
where it is especially important to correctly classify certain observations,
those observations can be weighted by increasing the appropriate 4, values
in the objective function.

5.3.4 1GP Models

The integer programming formulation, where the objective is to minimize
the number of misclassified points, can be stated as follows:

n
min z 12

k=1
subject to

Q
Ybz,-My, <T, keG,,

g=1
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2]
sz +My, 2T, keG2,
g=1

94 qk

7.£{0,1}, T,b, unrestricted in sign,

where M is a large positive number, and the y, are binary variables used to
count the number of violations.

5.4. EMBEDDING EXPERT KNOWLEDGE IN THE
ADDITIVE DEA MODEL

Consider the situation in which management has provided an expert
opinion in the form of a classification of DMUs into two principal groups -
call them good and poor performers. We now wish to apply the principles of
DEA to derive a measure of performance for each member of an entire set of
DMUs, but in a way that embeds this classification information into the
model structure. If one were to develop an expert system, an appropriate
question to ask here would be ‘what functional relationship among the
available variables (e.g., sales, staff size, deposits, etc.), would provide a
classification of the DMUs that most closely resemble management’s
classification?” Any expert system works essentially in this way. The
assumption must be, of course, that this form of information does in fact
constitute expertise, and that we actually do wish to create a model that can
come as close as possible to replicating the expert’s view of performance.

In the context of DEA, an analogous interpretation of this idea is to pose
the question as ‘which variables should serve as outputs and which as inputs,
such that the DEA analysis produces performance measures that are
clustered in a way that best imitates management’s classification?” Such a
DEA model will then be a form of expert system performance measurement
tool. The most basic method for embedding expert opinion into the DEA
structure is a two-stage process. In the first stage, a classification model is
applied to aid in choosing which variables to designate as outputs and which
as inputs. In the second stage, the DEA model is applied to derive a
performance measure for each DMU. The hypothesis is that the DEA scores,
so derived, will be consistent with management’s opinions. Specifically,
when ranked, the scores will provide a clustering of the sample DMUs into
two groups that imitate the groupings provided by the experts. In this
chapter we set out to test this hypothesis.

Discriminant techniques are particularly helpful in variable selection in
this context as they:

e use the branch consultant’s knowledge in terms of branch
discrimination; and



Chapter 5. Factor Selection Issues in Bank Branch Performance 101

e do not depend upon prescribed variable orientations

Some parameters are often not analyzed in a DEA analysis (e.g.
environmental data, demography, fixed inputs ...), but may well have been
part of management’s mental model in classifying the branches.
Discriminant techniques can assist in extracting classification knowledge,
and use this information to select appropriate variables, by orienting them to
produce results generally consistent with management’s perceptions. In this
way, the resulting DEA mode! incorporates a broad range of factors, both
explicit, and implicit.

Each discriminant technique (see discussion in the subsection to follow)
computes a discriminant function fi(x,.}.,c,./) = y,, where each variable has a
coefficient (or weight). Here, », can be a probability (i.e., logistic
regression), or a scalar (i.e., goal programming). The nature of y, is not
particularly important, in that it is used only as a classification measure,
based on a threshold (or cutoff value). This threshold determines if the
observation I with the score ¥, belongs to group 1 or 2 (with two groups
cases).

The principal objective of the experiment carried out in this chapter is to
provide an improved DEA model that utilizes branch consultants’ judgment.
We reiterate that in our particular case this judgment, or knowledge, is
represented by the classification of a set of bank branches into two groups...
high and low performers. While the particular problem setting herein
classifies branches via expert opinion, the same idea applies in situations
where classification can arise in other ways (e.g. bankrupt versus non-
bankrupt firms). The basic hypothesis is that the sign of a discriminant
function coefficient can be used to determine if the corresponding variable
should be considered as an input, or an output in a DEA model. This
approach can be very useful when a DEA problem has flexible variables
(variables that could be either inputs or outputs).

One can put forward at least three reservations concerning this approach:

1. Is the current application one in which there is flexibility concerning
the status (output or input) of some of the candidate variables?

In many applications, it is the case that variable status is well defined.
There is generally no dispute, for example, as to the (input) status of branch
staff in bank branch performance analysis. It has, however, been recognized
in previous applications (see, e.g., the highway maintenance application of
Cook et al.(1991)), that it can be difficult to decide on the status of certain
factors. For example, is the road surface condition variable in the highway
maintenance problem, an environmental input variable that influences the
amount of maintenance resources that need to be applied to the road
network, or a discretionary output that reflects the quality of earlier
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maintenance work done? In a bank setting, should one consider back office
work (filing, etc.) as an output, reflecting the work carried out by the branch,
or as an input that deters staff from performing perhaps more important
duties? We, therefore, contend that there is sufficient scope for flexibility in
many applications, including the current one, as to variable status.

2. Should the branch consultants’ knowledge base, pertaining to branch
performance, be viewed as a level of expertise that is worthy of
incorporation into a measurement model?

There is no question that in some settings, management opinion as to
performance status of a DMU can be misdirected. This may result when
management is focused on only one component of an operation, and fails to
take full consideration of all aspects of performance. We argue, however,
that in the problem setting considered herein, branch consultant knowledge
must be treated as being more than opinion. Rather, it should be seen as
expert knowledge, on par with the type of expertise modeled in any expert
system. Evaluation of branch performance by internal consultants is a
common practice in most major banks. Typically, micro-level work-studies
are conducted within a sample of branches, to establish some form of
standards. There is usually, however, no transparent definition of the
mechanisms whereby the performance status of the branch is derived. This is
generally due to the attempt by the consultant to merge any computed
quantitative evaluation with qualitative factors that capture the environment
or context within which the branch is compelled to conduct its business. This
context can include the demographic makeup of the customer base, such as
the financial profile of the average customer, age, ethnic makeup, and so on.

In most banks, there is seldom a single and definitive quantitative
measure available as to the performance status of branches. Rather, the
practice appears to be to classify branches into two or more groups on the
basis of perceived levels of productivity. Arguably, incorporation of such
information into a performance measurement model can serve to provide a
more accurate representation of branch efficiency. As well, any model that
builds on such information is more likely to succeed in being accepted
internally.

3. There is no clear reason why the central tendency focus of
discriminant models should lend itself to aid in variable selection for
[frontier-based tools such as DEA.

This position is difficult to dispute. It is the purpose of the experiments
conducted herein, however, to provide evidence that, despite the obvious
logic in this contention, these (central tendency) tools can, in certain
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situations, improve DEA performance in the sense of creating scores that
reflect the expert’s view.

The branch consultant’s knowledge in the present setting is represented
by a data set in which 200 bank branches are organized into two groups: 100
high performing and 100 low performing branches. A sample of this data is
provided in the appendix. For each branch, data have been provided as
discussed previously.

We do not attempt, in this particular instance, to reduce the number of
variables by using a pre-screening process such as factor analysis or other
statistical means. We are assuming that the branch consultants have selected
the variables on which they wish to apply strategies, and that all of these
variables have been deemed as important, and should, therefore, be retained.
However, in many settings, such pre-screening would be essential. We
assume here, as well, that all variables are flexible, and can be deemed as
either inputs or outputs. This assumption is removed in the next section.

5.4.1 Linking Discriminant Techniques and the Additive
DEA Model

In the additive DEA model of Charnes et al. (1985), the objective is to
maximize the production of outputs for the minimum amount of inputs. This
model has the advantage that the objective function is a summation of inputs
and outputs (Z Outputs-z Inputs). Recall that the formulation of the
additive model is expressed by:

max pu¥, —vX,
subject to:

uY, —vX, <0 V,
m=>1,

v2>1.

Thus, we can better understand the hypothesis stating that the selection of
inputs and outputs can be based on the sign of the discriminant analysis
coefficients. To see this, consider the logistic regression (LR) technique
discussed earlier. Using the LR model of (5.1) the associated discriminating
rule can be stated as follows:

If P, < P, then DMU, €G,, else DMU, € G, where P, is the LR
threshold (usually 0.5).

The LR function can be restated as

1

Pk = 0
[1+exp(——zq=l b,z,)]
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and LR rule can be divided into two inequalities

P <P,DMU, €G, (5.3a)
P > P, DMU, €G, (5.3b)

Note that the formulae (5.3a) and (5.4b) resemble those of the linear goal
programming discriminant model discussed earlier. In that case, the logistic
regression threshold plays the role of the goal programming threshold. Let us
define the function g as the following linear combination:

0
u, :quzqk.

g=1
Then, we can restate discriminant equations (5.3a) and (5.3b)

v P, DMU, €G,,
[1 + exp(—u,)]
.
[ + exp(—u,)]

or equivalently as

> P,, DMU, €G,

u, < — ln(L—lJ, DMU, G, (5.4a)

T

u, = — 1n[L—1J, DMU, eG,, (5.4b)
T

Notice that —In(1/P, —1) is the Cutoff Value ‘T’ for the LR model,
when the function is linearized.

In contrast with the linear goal programming model, the LR model does
not use a large value M to re-classify the observations on the wrong side of
the hyperplane. Therefore, we can say that the final formulation (5.4a),(5.4b)
is similar to the linear goal programming model with the following

assumptions:
T=-In L—1 .
PT

In solving LR model (5.1) (or GP model (5.2)), let (J, denote those
variables ¢ =1,...,Q for which b, <0, and (), those for which b, >0. As
well, use the notation

/’lq:bq’ qng’ vq:_bq’ qgQZ'
qu :qu’ qgQI’ qu =qu9 qgQ2.

Then, the expression for u, = e b z , can be represented b
p 4 q=1 47 qk P Yy
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U= z KV~ Z VoXar
qs0) 40,
or
u,=pul, —vX,
in vector notation.

Comparing this to the format for the additive DEA model given above,
one can immediately see the rationale for choosing as outputs Y,, those
variables in Z,  which are assigned positive coefficients, and as inputs
X, , those that receive negative coefficients.

In conclusion, with the additive DEA model it appears that the signs of
the discriminant function (e.g., LR) coefficients can aid in determining the
appropriate orientation of the variables: a positive coefficient indicates an
oulput, and a negative coefficient, an input.

We do not concern ourselves here with significance of variables in the
usual sense, as we assume all variables are to be retained.

5.4.2 Data transformation

A new data set has been included in this study to be used with goal
programming and integer linear programming computations. This data set is
a transformation of the original data set that has been provided by the bank.
It is a projection onto an arbitrary positive interval (100,200), resulting in
every observation being measured on the same scale. This projection avoids
the ill-conditioned matrix phenomenon when using goal programming or
integer goal programming. The projected data set has been used in the
experiment to compare the results produced by these two discriminant
techniques.

5.4.3 DEA measures

The DEA software used for the experiments is IDEAS VS5.1. This
software computes different efficiency scores depending on the model
(additive, input, output, CRS, VRS). This study uses IOTA and DELTA
measures computed. IOTA is a Ratio Measure, while DELTA is a Distance
Measure.

Delta is a weighted aggregation of the differences between the observed
and the projected points. If the observed point and the projected point are the
same (efficient DMU), Delta will be zero. Delta is optimized for additive
models.
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5.5. THE SIMULATION EXPERIMENT

5.5.1 Methodology

We wish to test the claim that selecting the inputs and the outputs in a
manner consistent with expert judgment, can actually improve the predictive
capability of DEA models. The demonstration’s aim will be to compare the
DEA models thus improved with those not constructed with our method. The
methodology consists of: (1) determining an average performance of the
improved DEA models and, (2) comparing this average performance with
the set of other DEA model’s performances. The possible number of DEA
models for a given type corresponds to the set of the possible combinations
of variables; in our case, there are 728 DEA models (3° - 1). (It is noted that
although in the current setting, only the 2% -1 = 63 full variable
combinations are of interest, we display results for all combinations here).

The performance measure of quality that will be used to assess the expert
DEA mode!, will be that model’s ability to classify branches according to
their DEA scores. A DEA model i will be considered as superior to model j,
if model i properly classifies (consistent with management’s judgment) more
branches than is true of model j.

The average performance computation will be based on the use of a
statistical methodology. Its principle is to calculate a performance that is the
average of at least 10 similar experiments’ performances. These experiments
are similar as they all use the same initial data set. Each experiment builds a
predictive model by using 90% of this initial data set and then testing this
model on the 10% left. These subsets are created randomly, and the result of
each predictive model indicates the performance of the corresponding
experiment.

These experiments will also enable us to compare different techniques
that help to define the inputs and outputs (i.e. LR, GP, IGP, MDA).

Therefore, the methodology used for this experiment is divided into two
phases:

e The analysis phase, composed of five sequential stages, creates 10
predictive models using 10 analysis samples;

e The predictive phase tests these predictive models on 10 holdout
samples.

5.5.2 Estimating the Predictive Model

The Random Sampling Stage (1) creates (randomly) 10 analysis and 10
holdout samples, out of the initial branch data set. These samples are used by
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the discriminant techniques through the remaining stages. The analysis
samples have 180 observations each (90% of the branch data set), and the
holdout samples have 20 observations each (10% of the branch data set). In
each sample, half of its observations are classified as efficient, and the other
half as inefficient to respect the initial proportions.

During the Discriminant Techniques Stage (2), the selected tools (LR,
GP, IGP, MDA) are applied to the analysis samples. The signs of the
coefficients for each discriminant function found, determine a combination
number used to retrieve a DEA score in the Matching DEA Scores Stage.
See Stage 4 below.

The DEA Combinatorial Process Stage (3) computes the DEA measure
for every input/output combination (728 combinations) of each scenario.
This process creates 10 sorted classification tables summarizing, for each
combination, the best threshold and the number of properly classified
observations. These classification tables are used in step (4) to find specific
results indexed by a combination number obtained in step (2).

The Matching DEA Scores Stage (4) builds other tables summarizing
DEA scores by technique. It also ranks the results according to a position
within the DEA classification table.

The Classification Summary Table Stage (5) is the final stage before the
interpretation of the analysis stage. It consolidates and summarizes the
scores by averaging the results to obtain an average performance.

Finally, the DEA Predictive Classification Stage (6) (see next subsection)
computes DEA scores on the holdout samples and classifies the

200 observations by using the thresholds found in the analysis process
and computed on only 180 observations. During this stage, similar
classification tables are created. Unlike other statistical experiments that
would use only the holdout sample, here we are using the entire data set.

Table 5-2 summarizes the classification results for each discriminant
technique. Each row indicates the average classification results. The first
row, for example, displays the results computed when using logistic
regression coefficient signs to determine inputs and outputs. The first
column displays the average performance of the DEA models using these
variable combinations to classify branches according to their DEA scores.
The second column indicates the percentage of branches that are
misclassified. The third column shows the average rank of this score within
the DEA Classification Tables. The final column displays the number of
properly classified DMUs in the holdout sample of 20 units. For example,
the DEA Score of 136, in the first row, means that when using the logistic
regression coefficients and the Delta measure (additive DEA score), 136
branches out of 180 are properly classified on average, meaning that 24.4%
of the branches are misclassified. This result is, on average, in the 78.5th
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position(out of 728) within the DEA Classification Table. The last row
shows the best results; in this case it indicates that determining inputs and
outputs with goal programming is the best method for computing DEA
scores in terms of classifying the branches in the best manner (the best
results are underlined). It is noted that rescaling the original data gives the
same results when using goal programming.

Table 5-2. Summarized DEA classification table (additive model/analysis stage)

Average results Prop. Class (180) % not class. Ranking out of 728
Inputs/outputs (LR) 136 24.4 78.5

Inputs/outputs (GP) 1455 19.2 50

GP (data rescaled) 145.5 19.2 50

Inputs/outputs (IGP) 128 28.9 149.5

IGP (data rescaled) 1345 253 83

Inputs/outputs (MDA) 124 31.1 197

Best results 145.5 19.2 50

5.5.3 Testing the predictive model

The DEA Predictive Classification Stage is the second part of the
methodology. The principle is to use the same combinations of inputs and
outputs, and the same thresholds as those computed in the analysis part. This
predictive process is divided into three steps.

e Step 1: The DEA Process computes the DEA scores for each possible
combination of inputs and outputs (728 combinations). Note that we do not
compute DEA scores on just the holdout samples, but on the entire data set
composed of 200 branches. By using the thresholds and the coefficients
computed in the previous part, we create 10 DEA classification tables.

e Step 2: The Matching DEA Scores Process is similar to the one
applied during the analysis part. It consists of building one table per
discriminant technique, indicating for each scenario the classification score
that corresponds to the combination of inputs and outputs computed during
the analysis phase.

¢ Step 3: The classification Summary Tables Process is the final stage
that summarizes the measures for the 10 scenarios and the discriminant
techniques into one table.
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Table 5-3 shows the classification results obtained at the end of this
process. Each row indicates the average classification results. The first row
displays the results computed when using logistic regression coefficient
signs to determine inputs and outputs. For example, the score of 160.5, in the
second row, means that when using goal programming coefficients and the
Delta measure (additive DEA score), 160.5 branches out of 200 are properly
classified on average, which is similar to saying that 19.8% of the branches
are misclassified. This result is, on average, in the 46.5th position (out of
728) within the DEA Classification Table. The final two columns present the
outcomes from the holdout sample of 20 DMUs. For example, using GP to
select variables for the DEA analysis, the resulting DEA model properly
classifies approximately 16 out of the 20 hold out branches. Again, it would
appear that goal programming is the best technique for selecting variables
for computing DEA scores, in that it classifies the branches in the best
manner (the best results are underlined). Specifically, goal programming

appears to be a favorable vehicle for incorporating expert opinions into the
DEA framework.

Table 5-3. Summarized DEA classification table (additive model/predictive stage)

Out of 200 % Not Out of 728 Out of 20 % Not
With LR 152 24.0 75 14.3 28.5
With GP 160.5 19.8 46.5 16.3 18.5
GP data rescaled 160.5 19.8 46.5 16.3 18.5
With IGP 138 31.0 206 14.2 29.0
With IGP rescaled 149.5 253 76 13.7 31.5
With MDA 149.5 25.3 76 13 35.0
Best results 160.5 19.8 46.5 16.3 18.5

5.6. VARIABLES WITH IMPOSED INPUT AND
OUTPUT STATUS

The branch consultant knowledge used for these experiments is in the
form of a classification of branches into two groups: the high and low
performing branches. One can also take into account another type of
information, namely predefined variable orientations. Indeed, in many cases,
the branch consultants, when classifying branches, already know which
variables are definitely inputs and which are outputs, versus those that can be
considered as either inputs or outputs. It is important to consider this kind of
information during the analysis.

In our case, the branch consultants were requested to specify which
variables they would consider as inputs and which as outputs. They defined
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FTETOT as being an input and RSP and LOANTOT as being outputs. They
displayed no strong opinion about the remaining variables. We refer to these

as flexible variables.

Table 5-4. Variable predefined orientations

Variable Orientation Description

FTETOT Input The sum of all full-time employees (sales/service
positions

RSP Output The number of retirement savings plans sold

LOANTOT Output The total of all loans/mortgages

MOPCAO Flexible The total of accounts opened

MDPMTRF Flexible The number of deposits/transfers

MWDMUPD Flexible The number of withdrawals/updates

Therefore, this type of information can be incorporated into the models
by matching the signs of the coefficients according to their predefined
orientations. For instance, FTETOT is defined as an input, which means that
its associated coefficient, within any discriminant model, should be negative.
Similarly, an output variable indicates a positive coefficient.

There is no convenient mechanism for adding this kind of constraint to
models such as logistic regression or multiple discriminant analysis, whereas
this can be done with goal programming models. Fortunately, as discovered
carlier, goal programming provides results that are approximately on par
with logistic regression. Hence, there is no sacrifice in discriminant power,
by resorting to goal programming as the tool of choice. Therefore, adding
sign restriction constraints to the previous goal programming structure (5.2)
results in the following formulation:

min Z ho,
k=1
subject to:

0
quzqk -o, T, keG,
g=1 (5.5)

q

90
Zb z,ta, 2T, ke,
g=1

b, >0, qeQ’,

bq <0, geQ,
where Q" is that subset of factors ¢ in {I,Q} which are to be designated

as outputs, and (O~ , those designated as inputs, In the current setting
Qf = {RSP,LOANTOT} Q0 = {FTETOT}.
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The principle is to carry out the same experiments as those of the
previous sections, but with three main differences:

® We use only one discriminant technique, goal programming, to
determine the orientation of the flexible variables.

® Additional constraints are imposed in the model to take into account
the fact that RST and LOANTOT are outputs, and that FTETOT is an input.

e The number of possible input/output combinations is reduced with
three variable orientations now known; there are now 27 combinations.

Table 5-5. Additive DEA classification table for scenario #1

Combination nos. | Input/Output | DEA Nos. Of Nos. Of Non
Out of 728 Combination | Threshold branches Prop. Prop. Class
Class Branches

135 12233 239 151 29

115 12213 7561 150 30

109 12211 7711 149 31

130 12232 2766 148 32

133 12233 4095 148 32

112 12212 5011 145 35

127 12231 4433 144 36

114 12212 2841 135 45

117 12213 3863 134 46

111 12211 3780 133 47

132 12232 592 131 49

129 12231 577 129 51

124 12223 267 126 54

118 12221 2272 124 56

121 12222 2392 124 56

123 12222 3070 117 63

120 12221 2421 116 64

126 12223 3168 116 64

113 12212 950 112 68

116 12213 1854 109 71

122 12222 4631 109 71

131 12232 2459 108 72

125 12223 5109 107 73

119 12221 5137 106 74

110 12211 2796 105 75

134 12233 2300 103 77

128 12231 1756 99 81

According to the branch consultant strategy, some input and output
combinations will not be possible even if they are included in the 27
remaining cases. Indeed, if one looks at Table 5-5, it can be seen that the
first row indicates the combination #135 that corresponds to the following
variable combinations: one input (FTETOT), two outputs (RSP and
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LOANTOT), with the other variables are not considered for the analysis.
Recall that the strategy is to keep all variables within the analysis scope to be
able later on to reduce inputs or increase outputs of the inefficient branches
to bring them to the efficient frontier. Therefore, the ranking will be based
on the remaining combinations.

Table 5-5 displays for one of the ten scenarios (i.e. scenario #1), the input
and output combinations and the classification results for each of the 27
possible combinations. The values in this table are sorted, in descending
order, according to the number of properly classified branches. The best
DEA model (in terms of classification capability) is in first position, and the
worst is in last position. Similar tables have been obtained for the other
scenarios, but have not been displayed here. Each row of this table specifies:

o Its input and output combination number.

e Its input and output combination description. A value of 1 defines an
input, a value of 2 an output, and a value of 3 that the variable is not
included in the analysis. For instance, combination #109 indicates
designations.

Combination

Variable Id Orientation Comment
FTETOT 1 Input Predefined
RSP 2 Output Predefined
LOANTOT 2 Output Predefined
MOPCAO 1 Input Flexible
MDPMTRF 1 Input Flexible
MWDMUPD 1 Input Flexible

e The computed DEA threshold to discriminate the branches.

e The number of properly classified branches (out of 180), using this

input and output combination, and this DEA threshold;

e The number of non-properly classified branches.

It is noted that combination #109, the goal programming optimal
combination, ranks in 3rd place out of the 27 combinations considered. In
addition, if we consider that, in accordance with bank consultants’ strategy,
we want to keep every variable in the analysis, combination #109 is, in fact,
in second position. Indeed, combination #135 should be excluded from the
analysis set since the remaining flexible variables are not included in the
analysis (they are neither inputs nor outputs).

The goal programming model presented above has been applied to each
of the ten scenarios. The objective of this process is to determine 10 input
and output combinations that will be used to find the corresponding DEA
classification tables computed previously.

Table 5-6 displays summaries of the experiments of the additive oriented
DEA model. The ten-fold cross validation methodology has been used to
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compute an average performance for the restricted models. The table has 10
rows, one for each subset of 180 branches. Each subset is used in the goal
programming restricted model to find the input/output combination. In that
case, combination #109 is chosen for every scenario (it could be different for
some of them). Each row, then, indicates the number of branches properly
classified, and the percentage of branches not properly classified, when
using the DEA scores computed by the model, (additive or input), that
corresponds to the inputs and outputs defined by combination #109. The last
column displays the ranking of each scenario, within the 27 sorted possible
combinations (Table 5-5). Notice that the ranking does not exclude the
scenarios with variables excluded (such as the scenario #135).

Table 5-6. Averaged additive DEA classification results for the 10 scenarios

Class results DMUs out of 180 % not prop.classified | Ranking out of 27
109 149 172 3
109 147 18.3 3
109 150 16.7 2
109 147 18.3 3
109 141 21.7 4
109 147 18.3 3
109 146 18.9 4
109 148 17.8 3
109 151 16.1 2
109 145 19.4 4
Average 147.1 18.3 3.1

In conclusion, restrictions imposed on the goal programming model
multipliers, to express variable orientations predefined by bank consultants,
provides better results, on average, than is true of the unrestricted DEA
version. Recall that the average performance of the additive experiment gave
145.5 branches properly classified while the average restricted result is 147.1
branches properly classified.

5.7. THE INPUT-ORIENTED MODEL

We now examine the incorporation of classification data into the input-
oriented radial model of Charnes et al. (1978). Recalling that the linearized
form of this model is given by
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max 'Y,

subject to:

v X, =1

,uTYj —vTX/. <0, all j
M, 20, all i,

It is noted that one can equally write the objective function in the form
max #'Y ~v'X,, since v'X, is a constant by virtue of the first
constraint in the above model.

One can immediately see the connection with discriminant analysis here,
wherein we designate what will be an output versus an input according to the
signs of the coefficients of those variables in a discriminant model.

A simulation experiment identical to that described above was applied to

the radial (input-oriented) model. Table 5-7 is analogous to the earlier Table
5-2.

Table 5-7. Summarized DEA Classification Table (Input/Analysis)

Discriminant # of properly % of not Position # out of

Technique used classified properly 728 sorted DEA
DMUs out of classified DMUs | combinations
180 using DEA
scores

Inputs and Outputs selected with | 162 10.0% 355

LR coefficient signs

Inputs and Outputs selected with | 156 13.3% 66.5

GP coefficient signs

Inputs and Outputs selected with | 156 13.3% 66.5

GP coefficient signs (Data

Rescaled)

Inputs and Outputs selected with | 146 18.9% 130.5

ILP coefficient signs

Inputs and Outputs selected with | 159 11.7% 475
ILP coefficient signs (Data

Rescaled)

Inputs and Outputs selected with | 144.5 19.7% 138

MDA coefficient signs

Best Results 162 10.0% 35.5
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In this case the LR model performs slightly better than the GP model as
per Table 5-2

The DEA Predictive Classification Stage is the second part of the
methodology. The principle is to use the same combinations of inputs and
outputs, and the same thresholds as those computed in the analysis part. This
predictive process is divided into three steps.

Table 5-8 Summarized DEA Classification Table (Input/Predictive)

Discriminant # of properly % of not Position # out of

Technique used classified properly 728 sorted DEA
DMUs out of classified DMUs | combinations
180 using DEA
scores

Inputs and Outputs selected with | 182.5 8.8% 26.5

LR coefficient signs

Inputs and Qutputs selected with | 171 14/5% 62.5

GP coefficient signs

Inputs and Outputs selected with | 171 14.5% 62.5

GP coefficient signs (Data

Rescaled)

Inputs and Outputs selected with | 163 18.5% 120

ILP coefticient signs

Inputs and Outputs selected with | 180 10.0% 32

ILP coefficient signs (Data

Rescaled)

Inputs and Outputs selected with | 153.5 23.3% 179

MDA coefficient signs

Best Results 182.5 8.8% 26.5

Table 5-8 shows the classification results obtained at the end of this
process. Each row indicates the average classification results. The first row
displays the results computed when using logistic regression coefficient
signs to determine inputs and outputs. For example, the score of 182.5, in the
second row, means that when using logistic regression coefficients and the
Theta measure (input-oriented DEA score), 182.5 branches out of 200 are
properly classified on average, which is similar to saying that 8.8% of the
branches are misclassified. This result is, on average, in the 26.5th position
(out of 728) within the DEA Classification Table. Here, it would appear that
logistic regression is the best technique for selecting variables for computing
DEA scores, in that it classifies the branches in the best manner (the best
results are underlined). It should be pointed out, however, that goal
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programming appears to be nearly as favorable a vehicle for incorporating
expert opinions into the DEA framework.

Table 5-9 displays the best classification scores of the additive and input-
oriented DEA model experiments, at the end of the analysis stages. It is
useful to note that the input-oriented model gives better classification results
than those of the additive model. It is clear, however, that both models
perform very well when using our theory to select variables. Indeed, if we
look at the additive DEA model, the best classification score ranks at the 5o
position within the 728 combinations, versus position 35 for the input-
oriented model.

Table 5-9. Comparison of Analysis Stage Results

Comparison of the best DEA Classification Scores for the Additive and Input Oriented
Models

at the end of the Analysis stages

# of properly % of non properly Position #within 728
classified branches classified branches | possible combinations
out of 180

Additive DEA 1455 19.2% 50

Model

Input DEA Model 162 10% 355

From this comparative table, we can say that for either model, when
utilizing the variables from the best discriminant tool, the results outperform
those corresponding to most of the random combinations of inputs and
outputs.

Table 5-10. Comparison of Predictive Stage Results

# of properly classified % of non properly Position #within 728

branches out of 200 classified branches possible combinations
Additive 160.5 19.8% 46.5
DEA Model
Input DEA 182.5 8.8% 26.5
Model

Table 5-10 displays the best classification scores of the additive and
input-oriented DEA model experiments, at the end of the predictive stage.
Here again, we can see that the classification results are impressive.

Performance of Holdout Sample

The models computed during the predictive stage have been applied to
the entire set of 200 branches, instead of simply on the holdout sample of 20
branches. Due to the relative efficiency nature of DEA, the desire was to
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compare the improved DEA model with the basic one. However, to
demonstrate the effectiveness of the idea, the results for the 20 branches in
the 10 experiments were extracted and are displayed in Table 5-11.

Table 5-11. Classification of Holdout Samples Using Input DEA Models and Goal
Programming Coefficient Signs to Select Inputs and Outputs

Holdout Samples ~ Threshold # of properly classified % of Not Properly
DMUs Out Of 20 Using Classified DMUs
DEA Scores

1 0.59213 16 20.0%

2 0.58852 16 20.0%

3 0.5661 17 15.0%

4 0.56224 16 20.0%

5 0.6749 17 15.0%

6 0.60775 17 15.0%

7 0.59785 15 25.0%

8 0.59826 18 10.0%

9 0.60775 19 5.0%

10 0.4578 16 20.0%

Average 16.7 16.5%

The results show that on average 83.5% of the holdout DMUs are
propetly classified in the input-oriented model.

Imposed Input and Output Status

As in the case of the additive model, the radial input-oriented model was
examined when a subset of the available variables is already preclassified as
inputs or outputs. Following the same analysis as conducted previously,
Table 5-12 displays the results.

The format of this table is the same as described earlier. In conclusion,
restrictions imposed on the goal programming model multipliers, to express
variable orientations predefined by bank consultants, provides better results,
on average, than is true of the unrestricted DEA version. Recall that the
average performance of the input-oriented experiment gave 156 branches
properly classified while the average restricted result is 164.5 branches
propetly classified.

5.8. GP CONSTRAINT - ENHANCED DEA MODEL

The model structures discussed above, build expert opinion into the first
stage of the analysis, where classification models are applied to decide
variable designation (inputs and output). In the second stage, a standard
DEA model is used to derive performance scores for the DMUSs. It can be
argued that the performance measures can be enhanced by re-introducing the
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expert’s classification information directly into the second stage DEA
structure itself. Specifically, we permit the expert to intervene in this stage,
by imposing constraints on the DEA model that capture his/her decisions.
The hypothesis is that by integrating this additional knowledge into the
model, the results will be more consistent with expert heuristics.

Table 5-12 Input DEA Classification Table for Scenario #1

Combination Input & DEA # of propety # of non properly
#outof 728  Output Threshold classified branches classified branches

Combination out of 180 using

DEA scores

135 12233 0.20576 179 1
109 12213 0.28851 165 15
130 12211 0.32661 154 26
132 12221 0.40456 151 29
117 12232 0.19817 150 30
123 12212 0.23472 148 32
124 12231 0.54461 148 32
126 12212 0.18983 147 33
133 12213 0.16233 147 33
127 12211 0.43612 146 34
112 12232 0.33523 145 35
111 12231 0.23081 144 36
121 12223 0.57055 144 36
134 12221 0.14155 144 36
114 12222 0.44277 143 37
125 12222 0.15762 143 37
122 12221 0.17537 142 38
131 12223 0.20618 141 39
115 12212 0.06281 138 42
129 12213 0.23995 138 42
118 12222 0.58899 136 44
120 12232 037177 134 46
113 12223 0.63637 132 48
116 12221 0.62134 132 48
119 12211 0.30946 128 52
128 12233 0.30817 126 54
110 12231 0.71518 116 64

The approach will be to compare the resuits arising from this enhanced
model, on which additional constraints have been imposed, with those from
a comparable non-restricted model. Again, let G1 be the set of the high
performing branches of the analysis sample (90 branches) and G2 be the set
of 90 low performing branches. The DEA model is applied on the entire data
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set of 200 branches, but we impose classification restrictions on a subset of
the data set (180 branches).

Reconsider problem (5.6), but where we desire to impose additional goal
programming constraints to discriminate between the branches of the two
groups G, and G,, according to their respective DEA scores. Here, the
DEA measure is defined by the ratio: u'Y,/v'X,.Consider then, the
following integer goal programming model.

min Z 12
subject to:

u'yY

vi'x

T
“Y M <T-e G2={91.180)
vx 7 (5.7)
,
u¥
VD¢
u' >0 v >0
7,€{0,1}
T unrestricted

Let M ,7;, and T be the optimal values derived in this model.

This model attempts, through the first two constraint sets (on G, and
G, ) to properly classify the members of G, and G,. The variables y,
record the number of misclassified branches.

This formulation is clearly nonlinear, and in real situations, with large
data sets, deriving a solution can be computationally challenging. It can be
important to avoid adding such nonlinear restrictions into the input oriented
model. The purpose of the experiment herein is to compare three
approaches:

(1) The non-restricted input oriented model, expressed in its linear version;

(2) The input oriented model, with nonlinear goal programming constraints
added. The results computed by this enhanced DEA model takes into
account expert opinion, expressed in a ratio form;

(3) The input oriented model, with linear goal programming constraints
added. Indeed, with this experiment, we wish to demonstrate that this
can be a good approximation of the nonlinear version (i.e. ratio
constraints). The performance of this DEA model will be compared with
the two other cases, to determine if it can be used as a replacement for
the nonlinear version, and if it is providing better results than a non-
restricted model.

+ My, 2T + &, G1={1.90}
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5.8.1 Imposing Nonlinear Goal Programming Constraints
in an Input Oriented DEA Model

The nonlinear problem presented above was solved, and the optimal
values derived were inserted into the goal constraints, thereby transforming
them into a linear form as follows (this holds, since the optimal values are
now scalars):

WYz2(T+e-Mpw'X, ieG ={1.90}
WY <(T-e+Mp)W'X, ieG,={91.180}

These constraints are then added to the linear form of the input-oriented
model:

max ,uTYO

subject to:

vX, =1

uY-—vix<o
WY>(T+e-M7iWw'X ieG,
pY<(T-s+MypW'X ieG,

u' >0 v 20

{1..90}
{91..180}

Table 5-13. Summarized Results for the Input Restricted Experiment

Unrestricted|A1  {A2 |A3 [A4 [A5 |A6 |A7 |A8 |A9 [A10 |Average
0) D) 12 13 1@ )6 (1) 1(8) (9 1(10) JA1-AL0
Threshold |.44 30 .30 |25 |30 .24 .22 .30 1.331.30 .29 |.288
# of 171 191 (190 (189 (190 [188{192 |191 189191 |188 |189.9
Properly
Classified
Branches
#ofnon }29 9 10 |11 {10 (12 |8 9 1119 12 ]10.1
Properly
Classified
Branches

This three-stage process, applied to the bank data set, is similar to the
previous experiment, and Table 5-13 summarizes the results of the ten
restricted DEA models compared to the unrestricted DEA model. The last
column demonstrates that, on average, the nonlinear restricted version of the



Chapter 5. Factor Selection Issues in Bank Branch Performance 121

DEA model is properly classifying 189.9 branches out of 200 branches. If
we compare this average performance with the unrestricted version, we
recognize that it is doing better, both in terms of classification, and in terms
of overall benchmarking.

5.8.2 Imposing Linear Goal Programming Constraints in
an Input Oriented DEA Model

This case assumes that the following linear goal programming model can
be used in place of the nonlinear formulation. Notice that the third set of
constraints indicates that every DEA score must not exceed 1. In fact, even if
we used the net profit oriented form as an approximation to the ratio form
we still need to keep the original requirements of the input oriented model.
Hence, we have imposed the DEA constraints into the goal programming
model, to respect the nature of the DEA scores:

min z;/i

subject to:

WY -VX+My,2T+e G1={1.90}

WYV X-My <T-& G2={91.180} (5.9
uy<vx

/JT > 6, v 6, ¥, € {O,l}

T unrestricted

Let M , ¥, and T be the optimal values derived in this model, and
consider the constrained DEA model

max 'Y,
subject to:
VX, =1
WY —vx<o
WYV X2T+e-Mp, ieG, ={1.90}
WYV X<T-e+My, ieG,={91.180}
w20 v >0
Again, this process is similar to the one used with the additive
formulation. The final stage computes the DEA model, and classifies the

scores for each of the ten versions. Table 5-14 summarizes the results for the
unrestricted version, and the ten restricted models. The last column is the

(5.10)
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average of the ten restricted results, and gives an estimate of the performance
we can have with this approximation. We can see that 188.8 out of 200
branches are properly classified, while only 171 branches are properly
classified with the unrestricted version. This average performance is very
close to the nonlinear restricted performance (i.e. 189.9). Therefore, we can
conclude that instead of using a nonlinear form for restricting an input
oriented model, one can use its linear approximation, and get close results.

Table 5-14. Summarized Results for the Input Restricted Experiment (Linear Constraints)
Unres. | Al A2 A3 Ad A5 Ab A7 A8 A9 AlQ | Avg.
0 M@ | |GG e D6 [0 |10 | Al

Al0

Threshold | 0.44 034 [ 031 {026]030]025(022{031}030]| 031102902

# Prop 171 189 188 189 190 | 188 191 187 189 187 190 | 188.8

Classified

Branches

# non 29 1 12 11 10 12 9 13 11 13 10 112

Prop

Classified

Branches

5.9. SUMMARY

This chapter has examined the embedding of expert knowledge within the
DEA model structure. The principal form that such information will take is a
classification of a subset of DMUs into two or more groups. We examine
only the case of two groups or classes here. It has been demonstrated that
considering such information can result in DEA scores that are more in line
with management’s view of performance.

Modifications of this idea can be executed, such as the imposition of sign
restrictions on factor multipliers, arising from locking in such factors as
either inputs/outputs. Finally, the DEA analysis can be further enhanced by
requiring that those DMUs classified by management, obey that
classification to the extent possible within the wider DEA analysis.
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Chapter 6

MULTICOMPONENT EFFICIENCY
MEASUREMENT IN BANKING

6.1. INTRODUCTION

Banks have evolved over time from their traditional role as reactive
monetary intermediaries, and service providers, toward a more general and
proactive function as universal financial agents with a distinct sales culture.
This new status has resulted in the introduction of a broad range of financial
products to the market place. Under the Canadian Bank Act of 1991, it
became legal for an institution to engage in a broad range of financial
activities. Technology has contributed as well to the changes that banks are
undergoing; a range of convenient customer access points has emerged such
as ATMs (Automatic Teller Machines), debit cards, telephone- and PC
banking, to name a few.

Banks generate profits from two main sources -- (1) interest income,
which captures the spread realized on loans and traditional activities, and (2)
non-interest income from fees and financial services activities. While
historically interest income was the principal source of profits for the bank,
the importance of non-interest income has grown significantly over time. It
is interesting to note that the profitability ratio, that is the profit as a
percentage of assets, has increased dramatically since 1991. Specifically, for
the period 1980—1990, the ratio ranged from 0.24% to 0.79%, with an
average of 0.43%; the corresponding figures for the period 1991-1995 are
0.59% to 1.90% with an average of 1.20%. This dramatic change has been
due in part to the revised regulations in the Bank Act, and partially to
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improved access to financial services, coupled with a more active sales
orientation.

Performance measurement, using tools such as Data Envelopment
Analysis (DEA), as proposed by Charnes et al. (1978), has tended to
concentrate on achieving a single measure for each member of a set of
decision making units (DMUs). In most applications, a single measure of
production or profit efficiency provided by the DEA methodology has been
an adequate and useful means of comparing units and identifying best
performance. This has been particularly true in the case of banks, where the
primary candidates for DMUs are branches, and in their traditional setting,
product and prices have tended to be undifferentiated. Numerous studies of
bank-branch efficiency using DEA have been conducted over the past 15
years — see, for instance, Charnes et al. (1990), Oral and Yolalan (1990),
Schaffnit et al. (1997), Sherman and Gold (1985), and Sherman and Ladino
(1995).

There is now a desire to create value-added customer segments by
identifying their specific needs. The new challenge is to optimize resource
allocation, with most of the industry now allocating 60-80% of its human
capital to customers and markets that represent less than 20% of its customer
base. There is a growing need to view performance in a more dis-aggregated
sense, paying specific attention to different components of the operation.
These components include different classes of products or sales activities,
such as mutual funds and mortgages, and different elements of service. By
measuring a branch’s performance on each of a set of such components,
particular areas of strength and weakness can be identified and addressed,
where necessary.

In this chapter we present models for deriving aggregate measures of
bank-branch performance, with accompanying component measures that
make up that aggregate value. The technical difficulty surrounding the
development of an appropriate model has to do with the presence of shared
resources on the input side, and mechanisms for allocating such resources to
the individual components.

The idea of measuring efficiency relative to certain subprocesses or
components of a DMU is not new. Fére and Grosskopf (1996), for example,
look at a multistage process wherein intermediate products or outputs at one
stage, can be both final products and inputs to later stages of production.
Those authors are not explicitly interested in obtaining measures of
efficiency at each stage, but rather are concerned with overall efficiency
measurement, whereby the network structure of the intermediate activity
explicitly enters into the model description. Hence, they are able to provide a
better representation of the technology than would a ‘black box’ input and
final output model. Another example is due to Fire and Primont (1984) and
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involves the evaluation of efficiency of a set of multiplant firms as DMUs,
while at the same time measuring the efficiency of plants within firms.

These applications of multicomponent efficiency measurement do not
involve shared resources as does the situation examined herein. The work of
Beasley (1995) on separating teaching and research, most closely compares
to the present application, although we show herein that our treatment of
shared resources leads to a linear rather than a nonlinear model. Section 6.2
modifies the conventional radial projection DEA model for bank-branch
performance by providing a methodology for splitting shared inputs among
the identified components. For development purposes, we concentrate on
two specific components, namely service-specific and product-specific sales
activities. The model structure used is based on the original CRS model of
Charnes et al. (1978). An application is examined in Section 6.3. In Section
6.4 we present an additive form of the multi-component model. Discussion
and conclusions follow in Section 6.5.

6.2. A MULTICOMPONENT PERFORMANCE
MEASUREMENT MODEL

With the increased emphasis on sales and the differentiation of products
and customer segments, there is a need to provide a performance
measurement tool with component-based information as part of the
aggregate efficiency score.

6.2.1 Multiple Functions and Shared Resources

While one may wish to measure the performance of several components
of the DMU, we will, for purposes of development in this chapter, assume
that transactions can be separated into exactly two distinct classes: service
and sales. It should be emphasized that this split is not always transparent;
the opening of a mortgage loan would generally be classified as a “sales”
transaction, although there are “service” activities that must be performed
from time to time pertaining to that loan, such as loan renewal. Thus, a
particular transaction may contain both sales and service components. Care
should, therefore, be exercised in clearly delineating those activities that
belong to each function. Furthermore, one would generally need to separate
those sales activities that are volume related (and pertain to specific
products), from those that involve the “selling” part of the sales activities.
The latter would include reviewing customer portfolios, answering customer
requests on various products, and so on. The former would involve the
transaction tasks performed after the customer has chosen a particular
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product. In summary, the selling aspect of sales does not relate to specific
sales products while the transaction part of sales is product-specific. In this
section we consider only those sales activities that are product or volume
specific. We take up the non-volume related activities in a later section.

For notational purposes, let (Y Y 2) denote the sets of service and sales
transactions, respectively, i.e. the two sets of outputs are

= (Vo) and 7 = (1l )

On the input side, this split is more complex. Some resources can be
designated as dedicated service inputs, some as dedicated to sales, and still
others are shared by the two functions. If, for example, branch staff are
classified as Sales, Service, and Support, we can, for illustrative purposes,
assume that Support staff are shared by the two functions while the other two
classes are dedicated. In some branches this distinction may be less clear
than in others. Technology resources may as well be classified as shared.

A schematic of the production process for a particular DMU is given in
Figure 6-1.

1
X1 Service

T ]
Branch j

i \
X? / X Sales

Figure 6-1. Production Process for a DMUj with Shared Resources

Here, X, ! X * and X; denote [,I, and [ -dimensional vectors of
service dedlcated- sales ded1cated- and shared mputs respectively. Some
portion «, (O<a <1) of the shared resource X ; s allocated to the service
function of DMU j, with the remainder (1 Q, ) being allocated to sales. In
the model to be developed herein, ¢;is a decision variable to be set by the
DMU. At least two difficulties arise in attempting to capture a measure of
performance of the DMU on both service and sales functions within some
overall efficiency measure. First, if one attempts to derive an overall
measure of performance that somehow incorporates sales and service
components, the importance of the components of X relative to one
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another, and relative to the dedicated resources X' and X (as reflected in
the v-vectors v',v* and V'), may be different when considering the impact
of X* on Y' as compared to its impact on ¥>. For example, consider the
simple case of one staff type for each dedicated class (X' = no. service staff,
X?*= no.sales staff), and two resources, support staff and available
technology, as shared inputs. One may argue that in evaluating service
efficiency, technology is more important than support staff. As an example,
a constraint such as v, =2V, might be imposed. On the other hand, if
technology such as ATMs play a minor role in sales, then a constraint such
as v, <0.3v] may be an accurate reflection of the importance of the two
shared resources relative to one another. Clearly, these constraints are
infeasible if imposed simultaneously. Moreover, even if this issue could be
resolved, there would be no clear way of separating the resulting aggregate
measure into separate sales and service indicators.

1
X1 Service

j
~_ w1 —
Branch |

j/ N

(1-o)X; Sales

Figure 6-2. Splitting Shared Resources

A second difficulty arises if instead of developing an aggregate measure,
one attempts to derive separate measures of performance relative to sales and
service, with the intention of combining these separate measures into an
aggregate score after the fact. The problem here is that the shared resources
X* would need to be apportioned to these two functions in some manner
consistent with their usage in creating the outputs of the functions. With any
shared resources, however, branches do not generally maintain a record of
the usage split at the function level. Consequently, a mechanism is needed
to split shared resources across functions in some equitable manner. To
motivate the development, reconsider Figure 6-1, but with the shared
resources X allocated to the two functions according to proportionality
variables, 05 as depicted in Figure 6-2. The issue pf how ¢; should be
derived is discussed below. Let o= 0y 0y O ) denote the column
vector of proportionality variables, and let (XX denote the column vector
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(alxll,a X3 e aIxI)T. Further, we let(1- a)X‘ denote the column
vector ( (1 0‘1)x1,v(1 az)xzj, (1 o ,,)

6.2.2 The Aggregate Performance Measure

From Figure 6-2 one can argue that since the total bundles of outputs Y
and Y’ + are produced from the inputs X l X 2 and X a measure of
aggregate performance e can be represented by

., u'Y! +u’Y?
75 X+ (aXs)+v‘2((l a)X: )+ X’

For this representation, the vectors of multipliers #* and v' would be
determined in a DEA manner to be discussed below. The rationale for
allowing for the possibility of different vectors v* and v* for the shared
service and sales resources, respectively, is that the relative importance of
the components of X° in generating Y' may be different than their
importance in generating Y. This was discussed earlier. In this manner, we
avoid the possibility of infeasibilities created by possibly conflicting
restrictions on the multipliers v°. There is yet another rationale for
permitting v and v to be different multiplier vectors. It can be argued
that normally in a DEA analysis there is no clear connection between subsets
of outputs and subsets of inputs. In this event, it is certainly the case that v"
and v should be the same vectors since they pertain to the same inputs (for
example, support staff). When a direct link can be made between such
subsets of input and output bundles, however, one might then attempt to
impose some form of linking constraints as discussed in earlier literature.
We do this in the model discussed below. Such constraints may only be
feasible if v" and v® are, in fact, permitted to be different vectots.

6.1)

6.2.3 Function-Specific Performance Measures

From e, performance measures for DMU j that capture service and
sales efficiency would appear to be appropriately represented by e; and ef ,
respectively, as defined by: ’

‘ ut, (6.2)
e.= .
TS Gy (aX‘)
and
2Y2
el = il . (6.3)

Lo (- X)
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Property 6.1 The aggregate performance measure e? is a convex
combination of the service and sales measures.

Spemﬁcally el=pfel+ ﬂ)e where [ is the portion of all inputs
utilized in e (applled to the sefvice component), i.e.

[V} +v (@X;)]
[vl)(;. +v" (aX3)+v (1 —a)X_‘;')+v2X12.J '

The aggregate measure is, therefore, a weighted average of the
performance across the various functions of the organization, as one would
intuitively expect. From this property it is seen that a DMU will be deemed
efficient, if and only if it is efficient in both service and sales components.
Again we point to the importance of separate vectors v",v"% being
permitted in the aggregate measure (6.1). If v" and v* are forced to be the
same in (6.1), yet are permitted to be different in (6.2) and (6.3), then no
connection between the aggregate and function-specific measures, as per
Property 1, can be made.

B;=

6.2.4 Derivation of ¢,e},e;

The defined measures are based upon proportionality variables & which
will be treated as DMU-specific variables. Thus, it will be at the discretion
of each DMU j to allocate X across the two functions. Furthermore, the
mode! will make the necessary provisions to ensure that all three measures
are appropriately scaled, specifically they will not exceed unity.

Consider the following mathematical programming model:

max e,

subject to:

e; <1 i

ej. <1, Y j

ei <1, Vvj (6.4)
0<e, <], Vi

(U 1)eQ,

1 2 8 2
(v R UCIRY )EQ2

wLul v v v =8, Yi,j
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In this formulation, the objective is to maximize the aggregate efficiency
rating for each DMU “0”, while ensuring that the function level ratings (for
sales and service) do not exceed 1. We replace £ by & here to denote the
fact that an absolute lower bound ¢ may be in effect. The sets 2, and €,
are assurance regions (see Thompson et al. 1990) defined by any restrictions
imposed on the multipliers. Similar work was done by Beasley and Wong
(1990). The set Q, may, for example, contain ratio constraints on the
components ,u and ,u (the output multipliers), dictated by ranges on
transaction processing tlmes The region €2, would be defined by any
restrictions expressing the relative importance of the various inputs
pertaining to their impacts on outputs. More will be said regarding such
assurance regions later. In general, (6.4) is a constrained version of the
original model of Charnes et al. (1978) wherein linking constraints that
connect output and input bundles are present.

6.2.5 An Alternative Formulation

Model (6.4) can be reduced to a non-ratio format in the usual manner of
Charnes and Cooper (1962), yielding:
e’ =max y'Y' + p’Y?
subject to:
VX4 (@X )+ v (-a) X)) +v X =1
PY )+ Y v X v (aX ) -vi(1-a) X -V’ X} <0,V j

HY] VX =y (aX})<0 '
WY -vH(1-a)X))-v’X:<0 v
0<e, <1, Vi

1.2 1.8 8 22 (6.5)
(W, w)eQ, (v ,viviv)eQ,

M.,V 20, Vi, j
Since ¢, is a decision variable, thls problem is clearly nonlinear. If we

make the change of variables V"' =av"' and ¥** =(1 —a)v**, then problem
(6.5) reduces to the following form:
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ef =max 'Y, + 1°¥;
subject to:
VXX 4 X 4V X =]

PY [+ Y] VX -V X -7 X v X <0, V)

Y v X, -viX7<0 V)
H J v 7 J J (66)
WY -7 X v X1 <0, Vj
0<e <], Vi

(W, 1HeQ, (v, v, 5", vHeQ,

s 147 5V;,V] 26

Vizad, v 2(1-a,)0

The form of f—lz depends upon how €, is structured. Clearly, if €, is

the full real space, as is the case when no additional restrictions are imposed
on the input multipliers, then (6.6) is a linear programming problem whose
solution will immediately yield a solution to the nonlinear model (6.5). In
the case that Q, is a proper subset of the real space, defined by restrictions
on the input multipliers, then (6.6) may or may not be linear. We consider
various types of restrictions on the vectors v, and their impact on the
linearity of €2, , hence model formulation (6.6). Again, we point out that this
model is similar to that developed by Beasley (1995) for analyzing the
efficiency of universities in terms of teaching and research. In that case the
same vector V' was used for both functions (teaching and research), rather
than allowing for different multipliers for vectors on the two components.
As a result, Beasley’s model does not have an LP equivalent.

6.2.6 Types of Constraints in Q,

1. Absolute bounds on the components of (v',v,v",v").

In the case of upper and lower bounds of the form J,<v; <J,, where
e=1,2,s,,5,,, then Q, will consist of linear restrictions since, for example,
0,<Vv'<6, becomes a0, <V, <, 0,.

2. Share of total virtual input occupied by a particular subset of
inputs.
Here, we might have constraints of the form
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vi(aX") <c
vi(aX +vi(1-a)X*)

Again, such constraints are linear and do not result in nonlinear
restrictions in €2, .

3. Ratio constraints

Restrictions of the cone-ratio variety, see Charnes et al. (1990), may
result in nonlinearities in €2, , depending upon which components of the v-
vectors are compared. Specifically, cone-ratio restrictions that do not
involve v" or v will result in linear constraints in €,, for instance the
cone-ratio restriction v,.]1 /Vli >c¢ can be rewritten as the linear constraint
vill >cv? . Ratio constraints on the multipliers of the shared resources will
render bz nonlinear; for example, restrictions of the form

.\']
Ll

— 2,
5
v
are transformed to
(27 V:l 27 _il\‘] (24
——2c—or —/ 2¢ —,
oV, a, V! o,

B iy iy i iy
in order to take account of the sharing of resources between sales and service
activities.

6.2.7 Special Cases

The extent to which both shared and dedicated resources exist can vary
from one situation to another. There can be special circumstances where, for
example, there are no dedicated resources and all resources are shared. This
does not change the general structure of the constrained DEA model (6.4),
nor the requirement that component measures must fall out of the resulis.
One special case is worth noting, namely, when no shared resources are
present, and only resources dedicated to the separate components are
involved. In this situation, (6.4) is completely separable in the sense that one
can derive the individual component measures ell, and ef by two separate
DEA analyses; one for sales and one for service. The overall aggregate
measure €, is then a convex combination of these two measures.

In the following section an application of this multi-component model to
a set of bank branches is provided. Due to the presence of ratio constraints
of this latter type in the example, the resulting model is nonlinear. In a
practical setting with a large number of bank branches to evaluate, solving a
quadratic programming problem for each would probably prove to be
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problematic. A linear relaxation of this nonlinear model is discussed, and
outputs from the example are presented. Such a relaxation would prove to be
more tractable in the situation where many DMUs are present.

6.3. AN APPLICATION

The model presented herein evolved from an earlier conventional DEA
study of branch efficiency in a major Canadian bank. A total of
approximately 1300 branches was involved, with the aim of the study being
to identify benchmark branches for purposes of establishing cost targets.
While data on several hundred different transactions is available from bank
records, thirteen of the major ones (some grouped) account for
approximately 80% of branch workload, and were used as outputs in the
analysis. The only inputs considered in that study were personnel counts.
Time studies were conducted previously on a small sample of typical
branches, and provide ranges on unit processing times for all transactions.
These ranges were the basis for the cone-ratio constraints on output
multipliers for the DEA runs performed. One result of the aforementioned
study was that members of the set of branches identified as being efficient,
were those that were primarily service oriented units—specifically those
with low levels of activity on the sales side while being very efficient in
terms of routine counter transactions. The clear desire of the organization
was a methodology that could provide a measure of performance on both
components as well as an overall efficiency score. In this way one can
identify not only those branches that are underperforming, but also the
component that is weakest. The model discussed in Section 2 was applied to
a dataset of 20 branches out of the full set of bank branches. These were all
chosen from one district. For purposes of illustration only, a subset of
transaction types was chosen as outputs, and only personnel counts were

used as inputs. The chosen input- and output measures used are summarized
in Table 6-1.

Table 6-1. Input- and Output measures used in an application of the model

Inputs Outputs

FSE # service staff MDP # counter level deposits

FSA # sales staff MTR # transfers between accounts

FSU # support staff RSP # retirement savings plan openings
FOT # other staff MOR # mortgage accounts opened

The relevant data for a one year period is displayed in Table 6-2. To
provide for a realistic picture of branch performance, a number of
restrictions were imposed:
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Table 6-2. Branch Data for a selection of 20 bank branches

service outputs sales outputs inputs shared inputs
DMU  MDP MTR RSP MOR  FSE FSA FSU FOT
01 2.873 1.498 03.6 04.2 0.455 0.492 0.17 0.73
02 3.093 1226 059 09.7 0.942 0.661 1.88 1.00
03 1.857 0.865 03.7 04.9 0.510 0.293 0.47 1.01
04 8.532 3290 048 122 1.239 0.916 1.13 0.10
05 4.304 1.777 07.9 16.8 1.015 0.724 448 0.12
06 4.340 0.110 005 00.9 0.883 1.474 3.61 0.33
07 4.640 1.493 08.7 05.2 0.594  0.320 2.86 0.21
08 6.821 3.243 07.4 11.0 0.815 0.669 2.99 0.16
09 4.709 2599 065 06.3 0.862 0.670 092 1.21
10 0.015 0.037 00.6 029 0.000  0.060 5.45 1.55
11 8.532 4.332 09.7 072 0.972 1.216 0.12 0.14
12 5.312 2.718 03.5 03.5 0.035 1.007 0.42 0.31
13 3.643 2.115 08.4 06.4 1.317 0.550 2.59 0.17
14 4.878 3.010 059 06.0 0.610 0.939 0.54 0.12
15 4.109 1.993 06.0 06.2 0.511 0.659 1.96 0.01
16 4.950 2950 053 04.7 0.719 0.602 1.17 0.49
17 6.389 2.415 12.3 07.8 1.485 0.689 5.03 0.26
18 2.939 1.377 09.0 04.3 0.528 0.436 0.39 0.13
19 6.184 1.975 02.7 043 0.743 0.546 0383 0.56
20 3.053 0.951 01.0 03.2 0.508 0.395 1.44 1.25

Type 1: Ratio constraints on multipliers

Ratio constraints of the form a=< 4, / M, <b on output multipliers were
imposed to reflect processing times. Ratio constraints on the shared input
multipliers were applied to reflect the relative importance of the two inputs
(support and other staff) that are split between sales and service.

Type 2: Limitations on «,

It is generally the case that some bounds need to be imposed on the
fraction ¢; of shared resource i being allocated to service activities. For
illustrative purposes the range 1/3<¢; < 2/3 was chosen.

Type 3: Constraints on the ratios of total service inputs to total inputs.

Here constraints are imposed to restrict the portion of virtual inputs being
allocated to the service component. Recalling the definition of ﬂ
Property 1, restrictions were imposed on the range over which ,6' could
vary. For present purposes the limits 1/3<3,<2/3 were applied. While
the same limits were used for all branches j in the example herein, it may be
the case that different ranges would apply to different classes of branches.
Large urban branches may allocate different mixes of resources to sales than
small or mid-size branches.



Chapter 6. Multicomponent Efficiency Measurement in Banking 137

6.3.1 Model Relaxation

The model presented in the previous section is nonlinear in the presence
of ratio constraints (Type 1) on shared input multipliers. Specifically, when
we impose constraints o <v;' /v,' <b, these take the form

2% o, e Ve, < b
a, via, 0{2

in the presence of the transformation discussed in Section 3. To render
the model more tractable, various linear relaxations are possible. One
approach attempted was iterative. Specifically, in the first stage all ¢, are
assumed to be equal for any given branch (i.e., &, =d, a single variable),
and the resulting linear problem was solved to determine a starting solution
This yields an optimal solution (,u(l),v(l), )) Fixing p= ,u(l) and v= v(w,
the second stage derives a best set of ¢, (&) relative to the constants Ha
and v(l) In subsequent stages one alternately fixes either (n) or the pair
(,u(n),v(n)) and optimizes (6.4) on the other. One of the difficulties
encountered with this method was that many iterations were required in
order to converge to a solution that was reasonably close to the optimum.

An alternative and somewhat more practical method was investigated.
This amounted to choosing a grid of points in each ¢, range. In the present
case, each of the two ¢, ranged from 0.25 to 0.75 and the grid of 5 values
0.25, 0.35, 0.45, 0.65, 0.75 was used. Recall that o is the percent of
“support staff" allocated to service transactions and that c, represents the
split of “other staff'. This resulted in 5x5=25 different combinations for
().

Given the relatively small sample of DMUs in this particular example (20
DMUs), the problem can easily be treated directly in its nonlinear form, and
was solved using a standard spreadsheet solver.

6.3.2 Results

A proper evaluation of data such as that in Table 6-2 is complicated by
the fact that the sales component is a two-level process as discussed earlier.
The ranges for average processing times, as reflected in the cone-ratio
constraints imposed upon the output multipliers, pertain only to the second
of these two levels, namely the transaction part of sales. These average
times do not account for the level of effort required to transact the sale. This
effort would involve activities such as interaction with customers, review of
portfolios, etc. To compensate for the wunderstated values of the u,
components, one must either scale up these values, or adjust (downward) the
resources (inputs) allotted to the sales component. The latter option
becomes problematic in that the portion of sales resources not allocated to
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the transaction part of sales is left as unassigned inputs (i.e., they appear to
not contribute to any of the outputs). In the present situation, the former
option of scaling up the sales output multipliers was chosen. The scaling
factor ¥, defined as the ratio of the “Total Sales effort” to the “Transaction
effort” was based on an estimate provided by the organization. The ranges
provided for g, namely asy; <b, were replaced by scaled ranges
yaxs ,u_,.s;/b. The resulting aggregate, service and sales efficiency scores
are displayed in Table 6.3. It is noted that only one of the branches (#11), is
efficient in the aggregate sense, that is in both sales and service. Clearly,
branches may be efficient in one component only, such as is the case for
branches #12 and #18. The respective ; and «, values are also shown.

Table 6-3. Efficiency Scores and Optimal Split of Shared Resources

DMU Aggregate Service Sales o] o)
a 1 2
°k %k °k

01 0.47972 0.52172 0.45354 0.72676 0.75000
02 0.40499 0.17158 0.52749 0.75000 0.25000
03 0.41946 0.23162 0.50145 0.75000 0.25000
04 0.74913 0.51905 0.91297 0.75000 0.64929
05 0.54472 0.17250 0.54472 0.75000 0.75000
06 0.14925 0.17663 0.03273 0.75000 0.66891
07 0.47257 0.28014 0.55697 0.75000 0.75000
08 0.58236 0.38787 0.70302 0.36427 0.29968
09 0.41178 0.36773 0.43157 0.25000 0.55019
10 0.07307 0.00570 0.09894 0.26281 0.68108
11 1 1 1 0.75000 0.66891
12 0.57384 1 0.29015 0.75000 0.74959
13 0.40464 0.17685 0.53991 0.53334 0.75000
14 0.70675 0.71811 0.70001 0.53334 0.75000
15 0.49252 0.36720 0.55537 0.75000 0.75000
16 0.44784 0.46087 0.43869 0.25000 0.54547
17 0.36581 0.19350 0.45445 0.25000 0.72687
18 0.85924 0.46010 1 0.25000 0.72687
19 0.49243 0.52389 0.37181 0.72682 0.72188

20 0.21444 0.26296 0.18235 0.72676 0.72224
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6.4. MEASURING MULTI COMPONENT
EFFICIENCY - AN ADDITIVE MODEL

6.4.1 Addressing Some Shortcomings

The model described above, when applied within the organization, did
help to point to areas where inefficiency existed within branches, and aided
in setting targets for improvements. Two suggestions from management for
enhancement of performance measurement arose from this application.

6.4.1.1 Non-Volume Related Activities

The first issue has to do with the characterization of those activities
surrounding the sales function. The sales function within the bank
environment can be viewed as consisting of two sets of activities. The first
set, and those examined in the previous sections, would be classified as
volume-related activities. These activities consist of those tasks linked
directly to sales products, affer the decision to purchase has been made.
These would include the filing of documents, preparation of certificates, etc.
Such tasks are characterized by known time estimates, arrived at in the same
manner as is the case for service transactions.

The second set, the non-volume-related activities, may not be directly
linked to any specific product. Such activities would include responding to
customer queries, routine tasks such as reproduction of forms, reviewing
customer portfolios, carrying out computer searches, and so on. Support
costs for print materijals, computer expenses, etc. would, as well, fall into this
category.

6.4.1.2 Providing a Fair Balance Between Sales and Service
Performance Measures

The model of the previous section, because of the form of the objective
function, will often produce component measures e’ and e’ that differ from
each other in an unreasonable way. Essentially, the model, in setting out to
maximize the aggregate score e? will do so by maximizing one of the two
component measures at the expense of the other. A suggestion raised by
management was to attempt to derive measures with the idea of showing
both sales and service performance in the best light. To address the above
two concerns, an additive form of the DEA model was adopted.
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6.4.2 The General Additive Model

In the next subsection we develop a dual-component DEA model for
evaluating both sales and transaction functions within bank branches. For
purposes of that development, the Pareto-Koopmans, or additive model
structure is exploited. While the additive model is seldom the structure of
choice in most DEA analyses (one generally utilizes one of the radial
models), it is demonstrated that it’s structure is, in fact, a general framework
containing the radial models as special cases. Specifically, any of the
standard models are obtainable by way of constrained versions of the
additive model. For development purposes herein, it is convenient to
approach the standard models from this angle, rather than in the more
conventional way.

It is instructive to examine both dual and primal forms of the additive
model:

The Dual
subject to:
Z ViXy — Z MY~ I, >0,Vj (6.7b)
He 2 Wy, 91 (6.7¢)
v, 2 1/x, Vi (6.7d)

It is noted that we have chosen lower bounds on the multipliers (6.1c)
and (6.7d) that are DMU-specific. This is usually referred to as the umits
invariant form of the model. The “dual” of (6.7a) is the model:

The primal

max Y (s;/x,) + > s/, (6.82)
subjecl:t to: r

D Ax,+s <x,, Vi, (6.8b)
j

DAY =St 2y, (6.8¢)
ZI:}%:L (6.8d)
s:],sf,ﬂj >0, Vi,r,]. (6.8¢)

If we adopt the notation
6, =1-si/x, ¢, =1+5sly, (6.9)
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andlet g,=1- Hi,ar =g, —1, model (6.8a)-(6.8¢) becomes

max » 6+ ¢, (6.10a)
subje(;t to: r

z/ix,] +0.x,  <x,,Vi (6.10b)
Z Ay =@ Y2 ¥, r (6.10¢)
2/1 =1 (6.10d)
9,,415,,/1 20,Vi,r,j (6.10¢)

This format is a particularly convenient way to view the additive model,
as it exhibits an immediate connection to other models. This form is related
to the “Russell Measure” as discussed in Fare and Lovell (1978). There, the
objective function takes the form

min R :[29,.+Z(1/¢,)}/(1+R),

where LR are the numbers of inputs and outputs, respectively. Cooper et al.
(1999) discuss several variations on the additive model, as does Thrall
(1996).

It is immediately clear that one can adopt a purely input oriented
variation on the additive model concept, by setting ¢7 ,=0 for all r, and
replacing constraints (6.10b) and (6.10c) by

Zﬂx,,+g,xm <x, (6.11a)

Z Y52V, (6.11b)

This type of structure is discussed in Zieschang (1984). In the section to
follow we focus attention on the input oriented model. Futhermore, if we
restrict the @, further by requiring that they all be equal, then we have a
structure equivalent to the standard input oriented radial model of Charnes,
Cooper and Rhodes (1978) (or at least Banker et al. (1984)).

In the case that the input oriented approach is to be taken, in which case
(6.11a) and (6.11b) replace (6.10b) and (6.10c) in the primal problem
(6.10a), the equivalent modification to the dual problem (6.7a) is to replace
the lower bound on , (constraint (6.7¢) by u, = 0. As with the Russell
measure, an appropriate measure of performance in the input oriented
additive model is
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I I
R =>(-g)1=Y 6/ (6.12)
i=1 i=1

It is noted that in the restricted case where &, =6 for all i (the BCC
radial model), R, = 6. In any event, it will be the case that 0 < R, <1, with
R, =1 ifall g,=0; for example, in this case the pair x°,x° ) is on the
frontier or an extension.

Stated formally then, the pure input version of (6.10a)-(6.10e) is:

tmng,!/l
subject to:
Zﬂx +6x <x,, Vi

2/1 V2 Vs T (6.13)

Zﬂ, =1

9/1>0

Thus, the additive model can be viewed as a flexible mechanism for
capturing different aspects of efficiency. Admittedly, restricted versions of
the model can fail to be comprehensive in the sense discussed by Cooper et
al. (1999). Obviously, it will be true that restricting attention to the input side
of the problem, for example, can mean that improper envelopment can
occur, as is well known in the radial models.

6.4.3 An Additive Model for Sales and Service Components

The notation of the previous section will be used in the current model,
but with the one addition, namely, to use two output multipliers z*' for the
per unit processing times for volume-related and 1% for non-volume related
portions of the sales outputs Y,Z. We also chose in this second analysis to
use the VRS DEA model, hence defined output variables £, and 2 for
service and sales components.

An alternative to optimizing the aggregate efficiency measure as in the
previous sections, is to attempt to optimize, in some manner, both the service
measure

T e =v'X, V' (aX) - p'Y,) -, (6.14)
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and sales measure'
e, =V X, +v((1-a) X)) - @'V} = pPY} — . (6.15)
One approach is to minimize the maximum inefficiency, for example, we
solve the goal programming problem.
min d
subject to:
e <d,e, <d

S,1,-S,0,20, 8,1,-8,0,20, Y.

In attempting to reduce the maximum inefficiency (d), the model has the
tendency to equalize the sales and service performance measures if
feasibility permits. In some respects this could be justified insofar as one can
argue that a branch will, or should, give equal importance to all components
of its business. It must be pointed out that additional restrictions may be
imposed on the multipliers in (6.16) (e.g., assurance regions as per
Thompson et al. (1990)). For example, the components of £' would be
related to one another through limits arising from branch time studies. For
model development purposes in this section, however, we avoid applying
specific additional restrictions. This permits us to obtain primal and dual
efficiency measurement models, not tied to application-specific situations.
The inclusion of these in the models is examined in the next section dealing
with the application of the tools in a specific setting.

(6.16)

1 1,2 . .
In the context of the VRS structure, we let ¢, £, denote service and sales variables,
respectively.
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Formally, the dual form of the proposed model is given by (6.17).
min d
subject to:
-V X1 vieX)+u'y, +,ua +d=0
+v‘1(aX Yy—u'Y! - >0, V),
VX2 -1~ a)XO)+yZlY2
+,uzzY2 +u2 +d=0
VX ((1-a) X)) - p1”'Y}
#22Y2 — 1220, V), 6.17)
vilzl/(x,.”.|11 D, Viel,
v,.zzl/(xi.|l2 D.Viel,,
v;"lzl/(x,i:.|lx D, Viel,
v;.“zzl/(x,‘.:.|l‘\, D, Viel,
>0, VreR,
1'>0, VreR,
yfzz(), VreR,

Note that we have introduced the lower bounds 1/x..| 1, |, etc., to force
0<d<1. Here, | I, | denotes the cardinality of the input set /,.

To deal with the nonlinearity created by the products av' and
(1-a)v*?, introduce the change of variables ¥"' = av*', and v** = (1-
o )vs2

Then, replace the two constraints V' >1/(x).|1,[) and v
>1/(x; |1, ) by avi'2al/(x].|1,]) and (1-a) v‘]‘lz 21 (x, |1, ]) -
al ) 1))

It is generally the case that constraints will be imposed on the o;
specifically, the percent of any resource that can be allocated to the service
component will be required to be within some interval, namely

Lo, <L.
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Model (6.17) can now be rewritten in the form:

5 =max{zs: e 1 LD+ Y G2 LD

iel) iel,

+Z|:S,ZY2 i, | 1 D+L1}/i1 _L?Viz]}
iel,

subject to:
> Ax) = Apax, +5,<0, iel,
k

io
1.5 1 s1 .
Z/Ik Xy —Aax, +s <0, iel,
k
2_2 2 .
Z/’i’k lk /1+lxla+si SO’ 1612’
k

2.8 2 52
Zﬂk Xy =A%, +s <0, iel,

10

Z yrk—llﬂyrv_o rERl’

Z kyrk +1ym—0’ rERZ’
A+ A2

n+1 n+1 1
=7 1 | T D)+ M(xg, 1 )
+y, =77 <0,

1 2 1 2 1 2
ViV Ay Ay 8;, 8 =0,

(6.18)

145
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The dual of this problem is given by

€p=maX{ZS3/(X}i, RAEDIRICARA)

iel; iel,

el

+ >[5 e, 11, D+ Ly, —L?ﬁ]}

subject to:
z/lll A x! +s <0,iel,

n+1"%io

1.8 1 s1 .
Z/’L =A% s <0, iel,

J

le 2—/12 x2 +s <0, iel,,

- n+1"io (619)
2/1,2 = AhX, +52<0, i€,

_zllyr/ ]yro_o FERD

Zﬂzyrj +1ym<0’ I"ER2,
/1n1+1+/1n2+1 =1

SSI /(xm I ]s |)+S1:Y2 /(xl:‘(.)' I I.\' |)
+7i ”‘7:‘ <0,
Vi A AL, 87 20.

Letting 6, =5 /x,,07 =57 /x2,6"" =5 /x,0° =5 | x;

io® i o™i io? io?

problem
(6.19) can be written as
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e, =max{2é‘ N1+ 671,

iel, iel,

+ 2167 /11, D+Ly; —Lfﬂ}

iel,
subject to:
Zﬂ,l ’—/11 x +9 x <0, iel,

n+l"Vio

Zﬂl S 407 x <0, iel,

2,12 2 Q2 %0+ %% <0,

io 2 >

6.20
Zﬂz Q2 x4+07x <0, iel, — (6:20)

iy n+1"vio
J

Z}“lyr/ }11+1yr(;—0 FERI’

_Z/’Lzyr/ +1yro_0 FERZ

AL+ A2

n+l n+l 1
—6,-“ / | I.\' |+‘9i"2/| I.\' l+yil ”'7/1'2 <0,
It can be seen that (6.20) is a direct generalization of (6.13). The
equivalent of the R, measure givenin (6.12) is e, =1 —e,.
It must be noted, of course that e, =e, (the objective function value of
(6.18)) is the maximum of the two components e, ,e, , as per (6.2) and

(6.3). the separate sales and service measures would fall out as part of the
analysis.

6.5. APPLICATION TO BANK BRANCHES

To demonstrate the application of the additive structure, we again examine
data on a sample of branches, with somewhat different outputs. Data on
twenty branches is displayed in Table 6.4. The outputs chosen were:

Service:
TOTEMU - total number of menu account transactions
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VISA — number of Visa cash advances

CAD — number of commercial deposit transactions

Sales:

RSP — number of RSP account openings
MORT - number of mortgages transacted

BPL — number of variable rate consumer loans transacted

Cook and Zhu

In the current example, inputs were restricted to personnel only. We have
not included other operating expenses such as computers, rent, etc.
Specifically, the inputs were:

Service: FSE — total number of full time equivalent service staff

Sales:

FSA — total number of full time equivalent sales staff

Shared: FSU — total number of full time equivalent support staff
FST — total number of full time equivalent “other” staff.

Table 6-4. Sales and Service Outputs and Inputs

Transit #TOTMENU VISA CAD RSP MORT BPL FSE FSA FSU FOT
1 51803 2973 190522 421 567 101 5525 98.15 48.07 359.55
2 10477 710 49898 75 172 13 1473 3239 17.15 7.24
3 11195 431 39523 68 73 19 96 1422 855 215
4 6480 422 30713 49 48 15 1048 905 515 1

5 37695 921 26922 210 128 144 279 1722 502 1.08
6 9211 362 43056 120 127 57 917 1579 244 1

7 16483 529 13123 74 150 9 10.53 1249 219 141
8 456 20 10127 6 29 15 106 10 545 155
9 5985 382 21945 32 28 19 871 8.02 394 1

10 8682 351 11010 84 78 52 7.05 1125 236 096
11 5287 182 16474 59 97 15 661 942 188 1

12 18292 171 18014 104 84 443 73 933 179 1.05
13 5669 264 11303 36 62 144 39 392 1 0.8
14 9656 332 6745 65 63 14 67 862 092 121
15 18566 308 76174 134 80 14 1029 1094 487 1.03
16 39430 500 60832 199 199 200 25.07 20.55 4.69 0.83
17 11601 423 36692 73 137 107 1225 1091 3.88 0.96
18 8030 406 19598 62 86 50 9 13.35 3.16 0.97
19 16991 658 21334 91 111 78 127 18.02 211 176
20 10473 463 51225 132 71 39 1815 1865 692 1
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As discussed earlier, in applying the models described herein, attention
was paid to multiplier restrictions that reflect the relative welghts to be
placed on the various outputs. Specifically, the components of /.t and ,u
have been constrained in a ratio sense to obey time limits on branch
transactions. For example, the specified time interval for a commercial
deposit transaction is (in minutes) (1.2, 3.6); that for a VISA cash advance is
(0.8, 2.5). To reflect these limits in the multipliers ,u2 and ,u3, we require
28 < 1/ 44, <45 Similar restrictions have been applied to the components
of ,u to accommodate the time limits on the transaction portion of sales
outputs.

Table 6-5. Results from Model

Varl 2 3 4 5 6 78 8

o, 0.742798 | 0.75 0.25 0.25 025 0371086 [ 0.746744 | 0.25
&, |05 0.5 0278917 | 05 0.25 0.5 0.5 0.5

d 70.14% 85.13% 40.00% 80.24% | 0.00% 23.59% 9427% 34.77%

ES 29.86% 14.87% 60.00% 19.76% | 100.00% | 76.41% 5.73% 65.23%

ET 29.86% 14.87% 60.00% 19.76% | 100.00% | 76.41% 5.73% 65.23%

Var 9 10 11 12 13 14 15 16

1:11 0.413508 | 0.507633 [ 0.25 0.25 0.25 025 0.25 0.25

2 Tos 0.75 0.25 0.57965 | 0.417598 | 0.75 0.75 0.675252
d 29.79% 23.65% 66.80% 0.00% 0.00% 0.00% 0.00% 0.00%
ES 70.21% 76.35% 48.50% 100% 100% 100% 100% 88.01%
ET 70.21% 76.35% 33.20% 100% 100% 100% 100% 100%
Var 17 18 19 20 Average | SDev.

, 0.25 0.75 0.75 025 40.16% 21.62%

, 0438533 | 0.75 0.75 0.75 54.45% 17.12%

d 16.94% 68.09% 62.51% 65.80% | 38.09% 33.18%

ES 89.71% 31.92% 37.49% 34.20% | 62.41% 32.30%

ET 83.06% 31.92% 37.49% 34.20% | 6191% 33.18%

No such detailed information was obtainable on the non-volume portion
of the sales component. From interviews with branch consultants, it has been
estimated that 30% to 50% of the sales effort lies with the non-volume
activity, and the remainder is the transaction or volume-related work. In
general, this would imply that 3 < 'y 1/ y7) y? <1 for each branch k. To
simplify matters, we choose here to take a more restricted view, and
constrain the ratio Jor each product i to be in this range. Specifically,

< u’y; /iy, <1, implying that 2 < 24 2l <1,

Table 6-4 displays the data on all inputs and outputs for a sample of 20
branches of the bank. The resuit from applying model (6.18), (augmented by
the multiplier restrictions discussed above), are shown in Table 6-5. Recall
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that d represents the maximum inefficiency associated with the two
components (sales and service). The corresponding efficiency measures e,
(sales) and e, (service) are displayed. It is noted that d =1—min{e,,e}.
As noted earlier, this model tends to force e, and e, together, and in a large
percentage of the cases, the two measures are equal.

We have not directly addressed the issue of an aggregate measure of
efficiency which should be some combination of the two separate measures.
Arguably, this aggregate measure e, should be some average of the
component scores. A reasonable candidate for this might be of the form
e,=pfe,+(1- e, where [ is the proportion of total resources
consumed by the service component (dedicated service inputs together with
shared inputs).

In the application of model (6.18), the splitting variables ¢, and ¢, have
each been restricted to the range .25 < o <.75. This range would need to be
established by branch consultants in much the same manner that ranges on
output multiplies might be set by way of time study estimates.

6.6. CONCLUSIONS

This chapter has examined model structures for dealing with multi-
component efficiency measurement in a banking environment. The
conventional DEA approach, as applied in bank related studies, has tended to
concentrate on a single measure of performance for the DMU. Very often,
however, there are multiple components or sub units within the DMU whose
individual performance is required. The model provided herein provides a
mechanism for developing multi-component measures.
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Chapter 7

DEA AND MULTICRITERIA DECISION
MODELING

7.1. INTRODUCTION

Many real world problems involve evaluating a set of alternatives or
choices when multiple criteria need to be considered. The general DEA
model is an example of a special type of multiple criteria decision model
(MCDM) framework, wherein both outputs and inputs are present. A
number of the chapters that follow examine various types of problems, all of
which fall within the generic MCDM framework. Typically, such problems
can involve both quantitative and qualitative data. In the current chapter we
examine the usage of the DEA methodology to tackle such problems.

A linear composite index is a simple, straightforward and intuitive means
for evaluating alternatives in the presence of multiple criteria. In notational
terms, if v, represents the score or evaluation of alternative i with respect
to criterion j and Wi is the weight or importance associated with criterion
J» then the linear composite index is given by R, —z Wv If, for
example, the alternatives are proposed capital projects to be ]undertaken by
an organization, then the {R} provide a basis for judging which projects
should be initiated and which should not.

This type of approach has been adopted in the past in several research
areas and contexts. See, for example, the expectancy-value class of attitude
models in Fishbein (1961) and Rosenberg (1956), the composite criterion
model proposed by Srinivasan and Shocker (1973), and investigated by
Parker and Srinivasan (1976), and additive utility function examined in
Keeney and Raiffa (1976), and Hwang and Yoon (1981). The Analytic
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Hierarchy Process (Saaty, 1980) is another well known example of the use of
linear composite indices for evaluating alternatives. In this setting, the
parameters {v,.l.}” and {W} are the normalized principal eigenvectors of
appropriate ratio-scale matrices which represent pairwise comparisons of
criteria importance and alternatives’ relative standings with respect to each
criterion.

In the usual setting, the criteria j are quantitative or numerical.
Specifically, each alternative i 1is assigned a cardinal value v;. For
example, the v, might be cost figures. Even when a criterion is 1nherent1y
qualitative, such as the flavor of a product expressed on a ten point scale, the
scale values v, are treated as if they were numerical in the same sense as
cost data. (See, for example, the AHP model of Saaty (1980)). Korhonen and
Wallenius (1990) examine the use of qualitative data in a linear decision
model context. AHP techniques are used to estimate the linear coefficients of
this model.

There are two major weaknesses with traditional approaches to MCDM.
First, as indicated above, qualitative data in the form of rank positions is
commonly treated as if it possessed quantitative meaning. Second, these
frameworks do not have a convenient mechanism for handling
simultaneously, a mix of qualitative and quantitative factors.

The models presented herein for dealing with MCDM structures is based
on the DEA ideas of Charnes et al. (1978). Full details are provided in Cook
and Kress (1991; 1994). In Section 7.2 we present brief descriptions of a
number of case examples of problems involving multiple criteria. Section
7.3 develops the relevant model structures for tackling such problems.
Section 7.4 extends such structures to the situation where some alternatives
may be examined only in terms of proper subsets of the full set of criteria.
Section 7.5 presents concluding remarks.

7.2. CASE EXAMPLES

7.2.1 Evaluating Capital Construction Projects

Many real world problems involve prioritizing a set of available
alternatives, generally for the purpose of isolating a best or most desirable
subset. A common example and possibly the most familiar one is that
involving the ranking and selection of a set of fundable projects in a
constrained budget situation. While any number of real world problem
situations can be cited, we use two site specific project prioritization
examples to illustrate the model presented later.
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Prioritizing capital construction projects in a hydroelectric utility company

The annual capital construction program in a large hydroelectric
company spans a broad range of initiatives — construction of new buildings,
installation of power lines, upgrading of generating stations, and so on.
These initiatives address many different needs and must be evaluated along
several dimensions. The relevant dimensions include:

1. installation cost — this factor varies widely from project to project
and may be a single-year or multiple-year value.

2. operating cost — this is an estimate of the ongoing cost of
maintaining or operating the project or structure;

3. environmental impact — this factor is intended to capture the overall
contribution to or detraction from the environment (air quality,
ground water damage, and so on);

4. contribution to new energy sources and supply — some initiatives
such as the installation of power lines can improve energy
availability;

5. impact on existing or ongoing initiatives — certain projects may have
an effect on existing programs, either in a positive or negative sense;

6. senior management support — this factor needs to be considered as it
can influence the ongoing maintenance of the outcome from the
project.

The first two criteria are clearly quantitative in the sense that a monetary
figure, perhaps estimated, can be supplied for each initiative considered. The
latter four criteria would, however, in most cases be considered as
qualitative. A criterion for which precise quantitative (numerical) values can
be obtained is called a cardinal criterion. A criterion which is qualitative in
nature and according to which only a rank ordering of preferences can be
obtained, is called an ordinal criterion. Specifically, in terms of a factor such
as senior management support, one can only rank order or categorize the
initiatives. For example, in the case of the hydroelectric company examined,
five rank positions or categories are allowed for each ordinal criterion. In
their terminology, these categories are designated

extremely important/valued;
very important/valued;
average importance/valued;
minor importance/valued;
not important/valued.

bl

Therefore, each potential project is assigned a rank position from 1 to 5.
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Having ranked the projects according to each criterion, the next step is to
prioritize the criteria themselves. While in some environments the criteria
may only be ordinally ranked (see Cook and Kress, 1991), in other cases
numerical criteria weights are specified. The latter practice is common in
situations where multiple criteria decision making is a recurring exercise. In
a case such as the present one where prioritizing of a capital construction
program is an annual exercise, it is very common for management-specified
weights to be available. Furthermore, such weights are closely scrutinized
and are re-evaluated on an ongoing basis as situations and priorities evolve.

What is also an important consideration in such decision making
environments is the clearness or preciseness with which projects can be
categorized in the case of an ordinal criterion. It may, for example, be easier
to distinguish or discriminate between projects relative to environmental
impact (criterion 3) than is the case for a criterion such as the impact on
existing programs (criterion 5). This means that one would like to attach
more relevance to the rank positioning in the case of the former criterion
than in the latter. While existing composite index models do not directly
account for criteria clearness, the methodology proposed herein contains
such a facility.

Rehabilitation and system expansion decisions in highway network
management

Transportation and highway departments everywhere are responsible for
the management of the various highway networks under their jurisdictions.
Highway capital expenditures fall into two general categories, namely
rehabilitation of existing pavement and construction of new links (system
expansion).

Many models exist which attempt to address the rehabilitation side of the
highway management problem. These formal models have all attempted to
view the problem of resource allocation as a single criteria problem, using an
aggregate measure such as the PCI (Pavement Condition Index). Linear
programming models, Markov models and various ranking procedures are
some examples of the model structures used.

In regard to system expansion initiatives less formal attempts have been
made. Although it has long been recognized that multiple criteria should be
considered, final decisions on initiatives to be funded have generally been
made in terms of some single factor such as ‘capacity’, deemed to be the
most important.

In a recent study by the transportation department under consideration, a
number of different factors or criteria were cited as being pertinent to
decisions on priorities for funding. This realization has therefore raised the
question as to how these various factors can be incorporated into a priority
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setting framework. The model described later has been tested on a large
sample of data.
In the case of rehabilitation the set of criteria identified in the study are:

e PCI (pavement condition index);
Present traffic;

Predicted future traffic;

Percent commercial vehicles;
Accident level;

Vehicle operating costs;

Rider disruption.

In all but the last two criteria, numerical data is available. Since roads
can only be ranked according to rider disruption, and since data on vehicle
operating costs can be difficult to obtain, the latter two criteria are ordinal.
For system expansion at least four major factors have been identified which
should enter the priority setting exercise:

e Level of service (service is measured in six categories:
A,B,C,D.EF);
Volume/capacity ratio;
Accident prevention;
Long run operating cost.

Here again some criteria are ordinal, while others are numerical.

In the case of both rehabilitation and system expansion there is general
agreement regarding the relative importance of criteria. Specifically, it is
believed that PCI is more important that the percent of commercial vehicles,
which is more important than rider disruption, and so on. There is a further
concern and belief that some criteria are ‘clearer’ than others. For example,
it is easier to distinguish between the importance of the various rehabilitation
sections on the basis of rider disruption than is the case for vehicle operating
cost. The multidimensional nature of the problem is evident, as is the fact
that both numerical and ordinal data are involved.

In the sections to follow we propose an extension to the usual composite
index methodology. The main feature of this extension is that it is able to
accommodate both ordinal and cardinal criteria. At the same time, it derives
weights corresponding to the different rank positions or -categories
mentioned above, and addresses directly the issue of criteria clearness (or
fuzziness). The ultimate outcome from the model is a logical means of
deriving an aggregate or composite index for each alternative, hence a
prioritization of the complete set of alternatives.



158 Cook and Zhu

7.2.2  Selecting Automated Test Equipment at Northern
Telecom

Northern Telecom (now called Nortel) had by the early 1990s established
itself as a major player in the worldwide manufacture of digital switching
equipment and related products that comprise the heart of telephone
networks around the world. In 1990, discussion began between management
and engineers in three divisions of Northern Telecom, involving the
development of a new generation of circuit board testing equipment called
Automated Test Equipment (ATE). New test equipment that was both
efficient and flexible was needed to accommodate rapid changes in circuit
design and customer demands for increasingly high levels of operating
reliability.

In the past, test equipment had been developed in-house by one division,
then bought and modified by other divisions for their needs. All three
divisions produced different mixes of products and circuit boards.
Maturation of the telecommunication industry towards common
communication standards, however, has presented the opportunity for the
organization to seek commonality of equipment between divisions, and to
explore co-development with suppliers as well as off-the-shelf purchase of
new equipment.

The emerging vision of the ATE is that of a system comprised of a
sophisticated combination of hardware and software offering flexibility in
the types and volumes of circuit packs that it could interface, and the
conditions that could be simulated to test each board. It was felt that any
specifications should be presented in a very loose fashion, and be of a
qualitative rather than strictly quantitative nature. This would encourage
individual prospective suppliers to exercise creativity in the deployment of
their organization’s unique capabilities. For example, the organization was
interested in incorporating artificial intelligence software into the design. To
operationalize this into a specification, a description was provided as to what
this software would do, where it would be used and the user interface.
Individual vendors would respond with what they believed they could offer
in the way of making this vision a reality. Thus, two vendors could have two
different designs but with equal merit. By allowing suppliers to promote
their own unique technical capabilities, it was believed that the overall
design would be improved in the long run. Northern Telecom, therefore,
realized that they would have to be flexible in the definition and evaluation
of design criteria.

In evaluating vendors, experience in the telephone industry and
familiarity with ATE technology were highly valued. These two general
criteria were used to informally reduce a field of many potential suppliers
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down to a manageable set, each member of which would be asked to submit
proposals for participation in a co- development relationship. All three
divisions had preferred vendors that they felt should be considered, but all
agreed that invited vendors should have some experience in the industry to
facilitate communication between technical personnel. Northern Telecom
believed it could bring extensive skills and experience to any relationship,
but required that all potential vendors have familiarity with the building of
integrated test systems.

Six alternatives were considered; three involved in-house development,
and three with other companies. Each organization submitted detailed
information about their approach to each specification. In addition, they
were asked to cost their proposals as best they could, given the preliminary
nature of the discussions. Each of the three divisions involved in the ATE
team then evaluated the information received. To establish a common value
system, the evaluation team had developed a decision matrix which
accommodated most of the issues of interest to all three of the divisions. A
total of 40 criteria covered the spectrum of issues deemed important by the
three divisions.

The decision matrix in Table 7-1 spells out the “rating” of each supplier
along each criterion. A 5-point Likert scale was used to specify the level of
importance in each case.

The methodology available at that time for combining outcomes across
the criteria involved the supplying of “weights” as shown.

To derive an overall rating for each of the six alternatives (vendors), a
weighted total score was computed. For alternative No. 1, for example, the
rating (on a one to five scale) for criterion No. 1 is 4, for criterion No. 2 is 5,
etc. The criteria weights are: criterion No. 1 - 8; criterion No. 2 - 10; ---.
Thus, the overall score for alternative No. 1 is 8 x 4 +10 x 5+ --- = 869.
The overall scores resulting from the data of Table 7-1 are

Vendor # Rating
1 869
2 876
3 1213
4 1360
5
6

1103
1059

Therefore, the relative ranking of the vendors that one achieves by
applying this weighting method to the data of Table 7-1 are
No. 4> No.3> No.5> No. 6> No.2> No. 1.
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Table 7-1. Evaluation Matrix

Evaluation Supplier
Criteria # Weights 1 2 3 4 5 6
1. 8 4 5 5 5 3 1
2. 10 5 1 5 3 5 4
3. 8 2 1 1 5 2 4
4. 8 5 5 5 3 5 4
5. 7 2 2 1 2 5 3
6. 10 2 2 2 5 4 4
7. 10 2 3 3 4 4 4
8. 7 2 3 4 5 3 3
9. 10 2 2 4 4 2 2
10. 10 5 5 5 1 1 1
11. 10 1 1 5 5 4 3
12. 10 1 1 4 4 4 1
13. 8 1 1 2 5 1 3
14. 6 1 1 2 3 1 3
15. 10 5 5 5 5 5 3
16. 8 3 2 3 4 3 2
17. 8 1 1 2 5 2 5
18. 8 1 1 2 5 2 5
19. 10 5 5 5 5 5 4
20. 8 3 2 3 5 3 4
21. 6 1 1 1 5 2 3
22. 6 1 1 1 2 1 3
23. 7 1 1 1 1 1 1
24 9 2 5 5 5 5 3
25. 9 1 1 1 1 1 1
26. 7 2 2 4 4 4 4
27. 10 5 5 5 5 5 5
28. 7 3 3 5 5 5 5
29. 9 1 1 1 1 1 1
30. 9 1 1 1 1 1 1
31. 9 5 5 5 5 5 5
32 10 4 5 5 5 2 2
33. 9 2 3 4 4 4 4
34. 8 1 1 4 4 4 3
35. 10 2 2 3 3 2 3
36. 10 2 2 5 5 4 4
37. 10 3 3 5 5 3 3
38. 10 1 1 5 5 5 5
39. 5 1 1 1 4 2 4
40. 10 5 5 5 4 4 1

Note: The specific nature of the criteria are not specified for reasons of confidentiality.

This “supplied weighting” approach is one that is commonly adopted in
such multiple criteria problems. While this approach is simple to understand,
it possesses at least two major weaknesses. First, one is forced to specify
explicitly the numerical sizes of weights, using some arbitrarily chosen
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scale. This exercise is very much at the whim of the decision maker(s), even
when it is based on the very best advice and information from the relevant
players at the time. In the case at hand, the weights were arrived at through a
process which, although democratic and consensus seeking in nature,
resulted in widely varying opinions as to what the relative sizes of the
weights should be. In this regard, the extent to which the weights reflect a
true “consensus” may be less than satisfactory.

The second, and even more disturbing aspect of the methodology used to
rank the vendors, has to do with the treatment of the 5 point ordinal scale on
which vendors are ranked as if it were a cardinal (interval) scale.
Specifically, the overall score for a vendor was taken as a weighted sum of
the rank positions which that vendor achieved. This, however, is generally
not the intention of these rank positions. For example, in stating that vendor
A is preferred to vendor B, and B is preferred to C (according to some
criterion), and assigning them rank positions 4, 3 and 2 respectively, should
not carry with it the connotation that “A is twice as importance as C” (i.e.
having a rating of 4 versus a rating of 2). The numbers 4, 3 and 2 should be
interpreted as rank positions only, and not as absolute worths of A,B and C
according to the criterion in question.

In the section to follow, we present an alternative approach for achieving
a prioritization of the vendors, where only ordinal or ranking data is
available. The approach makes use of the ordinal scales only in that sense, as
distinct from the above described procedure which explicitly uses the
numbered rating data. Furthermore, the approach does not require that the
decision maker explicitly specify criteria weights, but rather that only the
relative importance of the criteria be given.

7.2.3  Country Risk Evaluation

Country risk evaluation is an important component of the investment and
capital budgeting decisions of international investors. The increased
internationalization of investment in recent decades has raised the exposure
of investors to the risks associated with events in many different countries.
Consequently, substantial resources are now being devoted to country risk
analysis by international investors who realize the importance of identifying,
evaluating, and managing the uniquely international risks they face. For
many international investors, profits and opportunities for growth have
increasingly come to depend on how effectively they cope with international
uncertainties.

In response to increased internationalization of investment, formal
country risk evaluation is becoming “firmly established as one of the
essential international business functions” (Ting, 1988). For example,
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country risk assessment units have been established by most large financial
institutions and by more than one-third of the companies contacted in a
recent survey (Kobrin, 1986). However, typically the unit’s approach is
neither formal nor analytical, and may often involve no more than a checklist
or the outline of a country study. Few companies appear to have developed a
systematic method of assessing the uniquely international risks facing their
various projects.

While assessing and quantifying the impact of the country risks facing a
MNCs (Multinational Corporations) operations presents a formidable
problem, it is an essential component of a MNCs capital budgeting
decisions. For example, to determine either the appropriate risk-adjusted
discount rate to use or how to correctly adjust expected cash flows, it is
necessary to evaluate and quantify the relevant country risk factors, and to
monitor their changes over time (see Ang and Lai (1990), and Goddard
(1990)). Then capital budgeting decisions can directly utilize comparable
evaluations of country risk, and minimize the subjective component of the
risk assessment process. Further, a formal, analytical approach facilitates
testing to determine which approach and what factors have been the most
successful in correctly assessing the importance of the various risk criteria
(see Blask, 1978; Ting, 1988).

There are two broad categories of risk faced by international investors:
“macrosociopolitical” risks and “micro” risks. The potential impact of both
macro- and micro-risks vary among specific projects, firms and industries.
The extent to which a MNC’s projects are vulnerable to these risks depends
as much, if not more, on the specific nature of the project as on the condition
of the host country. For this reason it is clearly inappropriate to adopt a
single country risk measure for all MNCs, or for all projects of a particular
MNC, in a specific country (this point is the central theme of Ting (1988)
and, as he notes, the most common criticism of country risk-rating services).

The value of a project’s “assets in place” are largely independent of the
MNC’s future investment strategy and of the project’s future ownership
structure. The value of a project’s “real options” however follows from the
MNC’s discretionary exercise of options to exploit positive NPV investment
opportunities. These real options are largely firm specific (requiring, for
example, the MNC’s idiosyncratic technical skills or manufacturing
processes) and hence their value is highly dependent on both the MNC’s
future investment strategy and on the project’s future ownership structure.
Therefore, Phillips-Patrick (1989, 1990) argues that a project whose value
consists primarily of “assets in place” is subject to greater country risk than a
project whose value consists mainly of “real options.”

Currently, the most popular quantitative approach to country risk
evaluation applies fixed (often equal) weights to the risk variables or criteria
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employed. The approach developed in this chapter allows investors to rank
the risk criteria themselves, according to both their importance and their
relative clarity. This approach recognizes that the rankings of the criteria
will, in general, vary from one investor to another, reflecting the
heterogeneous nature of their projects. Since the investors’ projects possess
heterogeneous sensitivities to the various types of risk, they will, in general,
rank the various criteria (risks) differently. This allows each investor to
determine a different optimal set of criteria weights and hence, to obtain a
different rating (and hence, ranking) of the riskiness of the countries
evaluated, dependent upon the specific nature of their investment project.

Cook and Hebner (1993), examine 14 criteria for evaluating risk. Data
obtained from the Japanese Bond Research Institute was used as the basis for
ranking 100 countries in terms of investment risk. The specific criteria
employed were:

i) F,.1 - social stability rating for country .
ii) F;Z - political stability rating for country .
iii) E3 - consistency of policies rating for country 7.
iv) F,.4 - industrialization rating for country i .
V) F;S - economic problems rating.

vi)  F?’-fiscal policy rating.

vii) F;” - monetary policy rating.

viii) F®- growth potential.

ix) I, - susceptibility to war.

X) F;m - international standing.

xi) F''- balance of payments.

xii) F, 2 debt servicing capacity.

xiii) E13 - foreign investment policy.

xiv) F;M - foreign exchange policy.

In the section to follow a model structure is presented that can be utilized

to tackle practical MCDM problems of the type discussed above. For further
details on this model, see Cook and Kress (1996).

7.3. THE MODEL

Suppose N alternatives (for example, projects) are to be evaluated
relative to a set of K, ordinal and K, cardinal criteria. Denote these two
sets of criteria as ORD and CARD, respectively. Thus,

K, =|ORD|and K, = | CARD|.
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For the k-th cardinal criterion, let a,(i) denote the value or worth
associated with alternative 7. As in the AHP caseN(Saaty (1980)), there is no
loss of generality in assuming that the {ak(l')}i=1 are normalized, that is
2i=1ak(i) =1. Let W, denote the supplied weight or importance
associated with criterion & . Again without loss of generality, we assume

K4k,
> W, =1. (7.1)
k=1

Now, in the case that only cardinal criteria are present, the composite
index or aggregate rating corresponding to alternative [ is given by
ZkeCARDWkak(i)' Since the {ak(i)}i are normalized, the term W a, (i) is
the proportion of W, credited to the 7 -th alternative.

For ordinal criteria k, there are no specified a,(7)- values. What is
supplied is the rank position of the i -th alternative on the & -th criterion. In
that regard, define

1 if alternative 7 is ranked in ¢-th position
d,,(i) = { on criterion k,
0 otherwise.

To see how a composite index should be defined when both ordinal and
cardinal criteria are present, we argue as follows:

W, =6W,, (7.2)
where & is a scaling parameter to be determined by the model below. Thus,
the W, are simply scaled versions of the W, . For ordinal criterion & , let w,,
denote the value or worth associated with rank position £ on criterion &
(see Cook and Kress, 1991). For consistency, the w,, -values should take on
the same role for ordinal criteria as the a, (/) assume for cardinal criteria.
More to the point, if the rank position occupied by the 7-th alternative
relative to criterion k is denoted by ¢,, then w,, is analogous to a,(i).
Note that

L
Wi, = zdkﬂ(i)wkli .
=1

Clearly then, to carry the composite index idea over to the ordinal setting
it is reasonable to impose the constraint

L N L
ZZdH(i)wke => M,w, =1, keORD, (7.3)
/=1

=1 j=1
since

N
Zak (7)=1 forany k € CARD.

i=1
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Here,
N
M, =>d, 0.
i=1

With these ideas in place, we extend the definition of a composite index
to the mixed ordinal/cardinal case.

Definition 7.1: In the presence of both ordinal and cardinal criteria, the
mixed criteria composite index for an alternative is given by

L
R = Z ZWkdu(i)Wu + z W, a, (7). (7.4)
keORD ¢=1 4eCARD
It is noted than an ordinal criterion contributes

L L
w, dee(i)wkrz = Hszdke(i)Wke
=

£=1
to the index R,. A cardinal criterion contributes OW,a, (i).
To facilitate the discussion below, we introduce a change of variables

x,, = 60w, for ke ORD. (1.5)

The composite index is then rewritten as

L
R=> > Wd,()x,+0 Y Wa,() (7.4)
keORD /=1 keCARD
where

L
> M,x,=6, (7.6)

/=1

due to (7.3).

The issue now arises as to how to determine an appropriate set of x,,
values as well as an appropriate scaling parameter 6. First we discuss
constraints that the x,, should satisfy, and describe how the criteria
fuzziness concept can be incorporated into the x,, derivation process.

Rank position discrimination

For any criterion k the importance to be associated with the £-th rank
position should exceed that of the (£ +1) st. Therefore, it should be true that
Xy, > X,,,- More particularly, define G,, to be a positive function, and
impose the constraints x,, ~x,,,, = G,, forall k,£. The G,, should reflect
two phenomena. First, the relative worths x,, of the successive rank
positions (£ =1,2,...,L) may not be equally spaced. That is, it may be
desirable to have larger gaps (x,, —x,,,) between some pairs of rank
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positions £ and £+1 than between other pairs. It may, for example, be
desirable to distinguish more clearly between the first and second rank
positions than between the ninth and tenth positions. Second, in addition to
accounting for the relative gaps between rank positions, the G,, should
embody a lower bound on the absolute gaps as well. To accommodate both
aspects, represent G,, in a product form G,, = g,u,. The g, are supplied
parameters which are to capture the lower bounds on the relative gaps
Xy — X4, - If, for example, we wished to distinguish less and less between
rank positions as £ increases, then the g, would be chosen as a decreasing
sequence. The u, are decision variables to be determined by the model (see
below). As will be discussed below, these variables will be used to reflect
criteria clearness. The product g,u, provides, then, the minimum absolute
discrimination between consecutive rank positions for an ordinal criterion

k.
Criteria clearness

The u, provide a convenient means of capturing criteria clearness. In
particular, if criterion k, is clearer than criterion k,, we impose the
constraint u, >u, (or w —u, —z2 0, where z is a small positive
scalar). Thus, smaller u, values correspond to fuzzier criteria, meaning that
for any rank position £,G,, is larger than G, ,. Hence, the minimum
amount of discrimination between consecutive rank positions £and £+1 is
greater for clear criteria than for fuzzy criteria.

Having established certain restrictions to which the x,, should adhere, a
reasonable approach for deriving a composite index for an alternative i is to
find a set of x,, (and &) that meet these restrictions, but that also show
alternative i in the most favorable light. This philosophy was introduced by
Charnes, Cooper and Rhodes (1978) in the context of developing efficiency
measures for a set of decision making units (DMUs). In the present setting,
the alternatives or projects would represent the decision making units. Using
this argument, an appropriate mixed-criteria composite index can then be
derived for an alternative i, by solving the linear programming problem:

L
R(z)=max Y Y Wd,0)x,+0 Y Wa() (.7

keORD ¢=1 keCARD
subject to
L
> Y Wd, (Dx,+60 Y. Wa,@)<l, i=1,.,N, (1.8
keORD ¢=1 keCARD

Xy —%,,—84,20, ke ORD, (=1,..,L-1, (7.9)
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Xy, — g4, 20, ke ORD, (7.10)
L
ZMHxM—49=O, k € ORD, (7.11)
]
U = Uy >z, je ORD, (7.12)
Uy > 25
X,,0,u, 2 0. (7.13)

We, therefore, find variables x,,,6 and u, which yield the highest
possible index R, for the alternative i, in question, subject to these
variables abiding b"y a set of natural restrictions. This problem is solved for
each one of the NV alternatives. Constraints (7.9) provide for the lower limit
restraints discussed earlier. Constraints (7.11) incorporate the fuzziness
facility. In this notation, #,, =u, if criterion k is ranked j-th in terms of
clearness. Constraing (7.10) is simply (7.6) rewritten. In order to bound the
problem, constraints (7.8) impose an upper limit on each composite index.
Clearly, any bound could be imposed here, but since normalization to unity
was used on the raw data (a, (i) and W,), it is natural to use an upper limit
of 1.

We have used the notation R (z) to denote the fact that the solution
obtained will generally depend on ‘the value of z chosen. Clearly, as is true
in the data envelopment analysis context, a different set of {xke,e,u k} can
arise for each alternative i. While this inherent property of flexible
weighting parameters is theoretically sound, it has raised some objections
from practitioners who have found difficulty in accepting the principle that
one DMU is viewed in a different perspective than other DMUs. In the
engineering context, for example, productivity measurement is based on
finding a common set of standards or multipliers, hence the idea of flexible
weights does not arise.

Thus, while the idea of weight flexibility is appealing in that it helps to
show each alternative in its best light, practical considerations may dictate
that a common set of weights be determined. In the general DEA context, the
idea of a common set of weights has been examined by Roll et al. (1991).

In the following section it is shown that the # -problem structure of
model (7.7)-(7.12) can be replaced by a single-problem structure. This
structure which yields a single set of weights is shown to be equivalent, in a
certain sense, to the original # -problem model.
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7.3.1 The Modified Model

The model of Section 7.3 possesses a number of important properties
as spelled out by the theorems below. In the presence of these properties it
will be shown that the basic model can be replaced by a simple modified
version to affect a ranking of the alternatives.

Theorem 7.1. The optimal rating scores R:(Z) of (7.7) are monotonic non-
increasing in z.

Proof: This follows from the fact that increasing values of z further
constrain the linear programming model. Q.E.D.

Theorem 7.2. If z: is the maximum value of z for which R,(z) =1, and if
Z, . = max, {Zi}, then problem (7.7)-(7.12) is feasible if and only if
z<z

max *

Proof: Suppose there exists a value Z>z__ for which (7.7)-(7.12) is
feasible, and that )QH,H, u, is a feasible solution for that Z. By definition of
Z,.o R <1 for all i.Let £ be a small parameter, and let {ékz} be a non
negative solution to the set of linear systems of inequalities.

M, 5, =£, (7.14a)
?

£ 2E, 228,20 (7.14b)

It is easily seen that a solution for (7.14a)-(7.14b) always exists.
Specifically, define:

Xyp =Xy + Epps
0=0+8, )
where £ is small enough such that R, <1, for all i.Clearly, {X,,},0 also

constitutes a feasible solution for (7.7)-(7.12) since
(a) R <1, forall i, by definition.

(B) Xy =X o™ Xy ¥ Epp = Xpput — Eppa Z Xy = Xy, SINCE £y 2 £y
© sz(.‘)z'kt.’ 0= zMuxu + ZMMSH —0-¢&= ZMkexk/z -6=0.
By choosing £ large enough to drive at least one of the R, up to 1, we

have a feasible solution with at least one of the R, =1, thatis R, (£)=1, in
contradiction to the maximality of z__ . Q.E.D.

Theorem 7.3.1f R/ (z") =1, forall z< 2z
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Proof: This follows from Theorem 7.1.  Q.E.D.

Theorem 7.4. At optimality, at least one of the constraints of (7.8) is
binding.

Proof: The value of z is restricted by the constraints in (7.8) (the problem
Max z, subject to (7.9)~(7.12) is unbounded). If all hold at strict inequality
(LHS strictly less than 1), then it means that z can be increased, in
contradiction to its maximality.  Q.E.D.

From the above theorems and observations, it is clear that different
values of the parameter z can lead to different solutions. The larger the
value of z chosen, the greater become the gaps between the importance
values x,, assigned to consecutive rank positions on ordinal criteria. As
indicated earlier, z is a minimum measure of discrimination between such
rank positions. It is also true that the larger the value chosen for z, the more
constrained the feasible region becomes, and the fewer will be the number of
alternatives achieving a rating of 1. (See Theorem 7.1).

There are two compelling arguments for using the largest possible value
of z(i.e., z,, ) in deriving ratings for the alternatives (that is, in solving
(7.7)-(7.12)). First, there is the issue of discrimination as raised in the
preceeding discussion. Since the intention of the model is to assign worths or
values to the chosen rank positions £=1,1,...,L, it is reasonable to
differentiate between these positions to the greatest extent possible. The
value z,  accomplishes this goal. Second, from Theorem 7.3, any
alternative that achieves the rating status of 1 for z , will retain this status
for all smaller z-values. Such alternatives are in this sense, then, truly
deserving of a first-place status as compared to alternatives that were in first
place for smaller values of z but lost this status for larger values. Hence,
those alternatives i with R(z_,)=1 are the real winners in the ultimate
ranking scheme.

We, therefore, propose a modified version of model (7.7) through (7.12)
which finds the maximum value of the parameter z for which a feasible

solution exists. Specifically, we solve the problem
max z

subject to constraints (15.8)-(15.12),

where z is treated as a variable rather than as constant in constraints (7.11).
Again, we point out that in solving such a problem we are finding a solution
(a set of variables (x,,,60,u,)) which possesses the highest degree of
discrimination between criteria on the basis of clearness, hence the greatest
discrimination between rank positions £ .

It has been found that in many cases there are alternate optima to this
problem. While there is no clear indication that any one solution to such a

max )

(7.15)
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problem is preferred over any other, it can be argued that a solution which
makes as many of the R, as large as possible would be highly desirable.
Consequently, the objective function of (7.2) can be replaced by

N
max Mz + ZRI,, (7.16)
i=1
where M is a large positive number.

In this manner, the largest degree of discrimination between criteria and
rank positions is achieved (z is maximized) and the total of the composite
indices is maximized at the same time. It must, of course, be pointed out that
because of the existence of alternate optima, certain alternatives may be
ranked in first place using one solution, while others may possibly occupy
first place if a different solution is used. (7.16) does provide an opportunity,
however, to find a solution with as many first place alternatives as possible.

To illustrate the modified model, consider the following numerical
example based on the capital construction problem described in Section 7.2.

Example: The following criteria weights approximately reflect the
priorities set by an electrical utility company.
(1) Initial cost =0.12
(2) Operating cost = 0.08.
(3) Environmental impact = 0.20
(4) Contribution to new sources = 0.15
(5) Impact on existing activities = 0.10
(6) Management support = 0.35.
The ratings of 10 proposed projects along each of the six factors are
given in Table 7-2.

Table 7-2. Ranking of alternatives

Alternative Criteria

1 2 3 4 5 6
1 10 1.2 1 1 3 4
2 5 1.7 1 3 4 4
3 2.3 2.3 4 4 2 3
4 17 2.6 5 1 1 1
5 12 0.8 2 5 2 2
6 32 0.3 3 4 3 5
7 12 3.5 4 5 5 5
8 19 6.2 2 2 3 2
9 6.1 2.1 3 1 5 1
10 5 2.5 4 1 2 4

It is noted that the numerical values for the first two criteria are in fact
figures which have been obtained by subtracting the actual costs from a
value larger than the maximum cost in each criterion.
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When the modified model of this section was applied, the resulting
composite indices and rankings obtained were as shown in Table 7-3. In a
second run of the model, the weights on criteria 1 and 3 are interchanged.
The results are displayed in Table 7-4.

Table 7-3. Composite indices and rankings of alternatives

Alternative Composite indices (%) Rankings

79.9

71.2

619

100.0

770

75.8

50.8

100.0

92.1

— O |00 [N | [ [ DI —
[ == [ON A = (OO0 |~

0 72.8

Table 7-4. Revised indices and rankings

Alternative Composite indices (%) Rankings

73.1

61.0

54.8

100.0

73.0

87.2

51.8

100.0

76.8

— O |0 [~J NN AW N =

0 68.7

S s e |G ON = [ NO OO |

From a comparison of the two tables we can see that a number of the
alternatives are still ranked at the same level. Alternatives 4 and 8, for
example, retain their 100% status. This is reasonable since in the case of
alternative 4, say, less importance is now attached to its fifth place standing
on the third criterion. Thus, the 100% rating is even more justified after the
change in weights than before. Alternative No. 6 went from a sixth place
standing to a third place standing due primarily to a heavier weight being
shifted to criterion No. 1 where alternative 6 is a top performer.

A third analysis was performed in which criterion No. 4 was removed
from the problem and its weight equally distributed over the remaining five
factors. The resulting output is shown in Table 7-5.

Note that a dramatic shift in the rank position of project No. 9 has
occurred (it went from a ranking of 3 in Table 7-3 to a ranking of 9 in Table
7-5). This can be partially explained by the fact that a criterion on which this
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project was ranked in first place has been removed. Hence, the strength of
this positioning has been lost.

In the above analyses, model (7.15) was used since the desire was to
prioritize all projects in term of the same optimal solution. It is worth
pointing out that if model (7.7)-(7.12) is applied somewhat different results
arise. Applying the original criteria weights, the comparable results to those
of Table 7-3 are shown in Table 7-6.

Table 7-5. Results with fourth criterion removed

Alternative Composite indices (%) Rankings
1 84.1 5
2 69.0 8
3 71.2 9
4 100.0 1
5 84.4 4
6 95.5 6
7 53.2 10
8 100.0 1
9 64.0 1
10 83.9 7

Table 7-6. Revised Composite Indices

Alternative Composite indices (%) Rankings

82.5

71.2

67.7

100.0

84.3

78.2

60.1

100.0

100.0

— O Q0 |~J N | | [N [
Sy = [ ON [ [ OO0 [N

0 74.1

Since these indices arise as a result of finding a best set of weights for
each alternative (using the optimal z from (7.16)) each rating will be at least
as large as before. Clearly, since each alternative now has its rating
maximized, the sum of ratings will ‘truly’ be maximized as opposed to
attempting to maximize this sum in (7.16). Notice that the relative
positioning of alternatives is roughly the same (but not exactly) as was the
case in Table 7-3. Note also that in addition to the two alternatives with a
previous rating of 100% retaining that rating, a third alternative has moved
from 95.5% to 100%.

In summary, it must be said that while one can get a somewhat different
picture of the relative positioning of the alternatives from the two models,




Chapter 7. DEA and Multicriteria Decision Modeling 173

the many examples run have shown that the differences are minor. The
advantage that (7.16) has over (7.7)-(7.12) is that a single set of ‘best’
weights is found, hence having more managerial appeal.

7.3.2 Implementation Issues

In the two site-specific situations examined, a number of implementation
issues deserve mention.

Prioritization versus resource allocation

This tool is designed as a means of rank ordering a set of alternatives (for
example, projects). In a limited budget framework, the projects to be
‘funded’ are then selected by starting with the top ranked alternative and
moving down the list until available resources are exhausted. The
assumption is that each project is in a ‘go — no go’ situation; i.e., either it is
funded 100% or not at all.

While in the capital construction project situation under consideration
this is generally the case, there are settings where partial funding is an
option. The issue as to how to use the ratings R, to decide what portion of a
project to fund is, however, an open question. One suggestion in the case of
AHP (Saaty, 1980) is that the level of funding should be proportional to the
weighted rating the project receives. It is generally the practitioners’ view,
however, that such an approach makes no sense in that the R, are really only
relative measures. Thus, the problem of resource allocation, where projects
can be partially funded, seems to be an unresolved issue.

Non-comparable subsets of projects

A major problem arising in the highway project ranking problem is one
involving ‘non-comparable’ projects. Specifically, rehabilitation projects
must be evaluated in terms of one set of criteria, while system expansion
projects are to be rated relative to a different set of factors. Admittedly, some
criteria such as job creation are common to both sets of projects. However,
the cost of any project in the latter category generally far exceeds that for
alternatives in the former category.

Having recognized this non-comparability issue, the organization is now
attempting to gain a better understanding as to the appropriate criteria to use
to bring the two categories of projects into a common light.

Rank reversal
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The model, like other tools such as AHP, does exhibit the rank reversal
phenomenon in certain situations. Recall that this means that the relative
ranking of two alternatives can be reversed if a third alternative is removed
from the set being evaluated. In a large number of examples examined,
however, rank reversal occurred only a small percentage of the time and in
situations where pairs of alternatives are ranked very closely (e.g.,
R, =0.79 and R, =0.78). In the two site-specific applications under study
no serious rank reversal situation occurred.

7.4. EVALUATION RELATIVE TO PARTIAL
CRITERIA

In the previous sections it was assumed that any given alternative i could
be evaluated (assigned a rank position) in terms of each member k of the full
set of criteria K . In many decision environments, however, this requirement
is not pertinent. Consider, for example, the case where in ranking projects in
an electric utility company, one may be considering alternatives such as
construction of power lines, additions and modifications to nuclear reactors,
upgrades to buildings, maintenance of office facilities, and so on. In such a
varied set of alternatives, criteria such as “impact on environment,” or,
“contribution to technological advancement” may apply to some options
(e.g., reactor construction), but may be entirely inapplicable to others such as
building maintenance. In a completely different setting, consider one of the
principal application areas of data envelopment analysis, namely the
evaluation of productivity of a set of bank branches. See, for example,
Sherman and Gold (1985) and Oral and Yolalan (1990). The traditional
settings examined to date and cited in the literature, view banks at a given
point in time and assume each branch can be evaluated in terms of the same
criteria (inputs and outputs). If we want to compare, however, the new full
service type of banking environment to the traditional branches, problems
arise. The new style banks now offer services such as life and property
insurance policies, mutual fund investment options, and so on, that are not
available in some (conventional) branches. The comparison of old and new
as a single set will then need to consider the partial criteria issue.

The problems associated with comparing a set of alternatives (projects,
bank branches, etc.) when some criteria are relevant to certain members of
the set but not to others, revolve around the interpretation of missing data
and how to account for it. One ad hoc approach to this has been to generate
synthetic data by using, for example, an average value for a criterion, where
the average is over those alternatives for which that criterion is relevant. In
the case of the bank branches, for instance, this would mean looking at the
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average of insurance sales for the new style branches, and then crediting
each of the old style branches with that average value. In assessing projects,
one option clearly is to fully penalize an alternative for “failing to perform”
on a given dimension. Being fully penalized may mean being credited with
the worst possible rank position on the given criterion, or being assigned no
rank at all. This latter is the basis for the aggressive model to follow. On the
other hand, if one argues that an alternative should not be penalized for not
being eligible to be ranked on a given criterion, then a more benevolent
action should be taken.

We now consider the general case in which an alternative / can be
evaluated in terms of only a subset K, < K of the criteria. The manner in
which the set of N alternatives is to be evaluated in this partial criteria case
depends upon the assumptions one makes regarding fair comparison. We
present three approaches to the evaluation:

Aggressive evaluation
One point of view regarding evaluation of the N alternatives is to adopt
the original full criteria model ((7.7)-(7.13)), and replace the term

K L ) L . . .
2k=121=1 d,(H)w, by ZkeK,- Zl=1 d,,(iyw,. In this case when a criterion

k, is not part of the pertinent set K, for alternative i

[

a credit of 0 is given.

That is d, ,(i,) =0for all /. This approach subscribes to the concept that

part of any alternative’s worth (e.g., the worth of a project to an
organization) is the benefit w,, derived from each criterion. Hence, the fact

that the project cannot compete in terms of a particular criterion k& only
serves to put that project at a disadvantage vis-a-vis other projects which do
obtain a rank position on k . Thus, projects must compete aggressively (or at
least are evaluated aggressively) with no compensation for failure to achieve
a standing relative to certain criteria.

Clearly, this approach rewards those alternatives for which the cardinality
| K, | of K, is large, and penalizes those for which the cardinality is small.

While the approach has the advantage of treating all alternatives on an
equal footing, it could be judged as being unfairly harsh in situations where
criteria are simply inapplicable. In a situation, for example, where
environmental impact is one of the factors used for evaluation, the
1 — L scale may, in some circumstances, be interpreted as “good” to “bad.”
Thus, a rating of / = 1 means that an alternative has a very positive effect
vis-a-vis environmental benefits, while / = L may imply a very negative
impact. An alternative (e.g., building maintenance) which is neutral should,
if given a rank at all, be rated somewhere in the middle of the scale. Hence,
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the manner in which scales are defined can influence the applicability of the
standard model in the partial criteria case.

Average performance evaluation
To avoid the potential problems created by cardinality differences among
the sets K, as cited in the previous model, an approach which utilizes an

average performance per pertinent criterion can be adopted. Specifically,
we replace Zsz | Zlel d,(Hw,in (7.7 and  (7.8) by
ZkEK,.Zleldkl(i)wk[/lKi |. In a certain sense, this model is a natural

extension of (7.7)-(7.13). That is, if in the full criteria case (i.e., | K, |= N
. K L . K L .
for all 7) we replace Zk=121=1dk1(l)wk/ by Zk=121=1dkl(l)wkl/N’ we

get an equivalent formulation. This formulation avoids the size differences in
the K, but does penalize the alternative i whose criteria set K, contains

low ranked criteria versus an alternative that may be evaluated in terms of a
similar number, but of higher ranked criteria. As with the previous model,
there may be circumstances where this is a desirable property, and others
where it is not.

Benevolent evaluation: performance relative to the ideal

In the case where we want to evaluate alternatives in the fairest possible
(i.e., most benevolent) way, it can be argued that such an evaluation should
not penalize an alternative for failing to be considered in terms of a large
portion of the criteria, nor for failing to be evaluated relative to the most
important criteria. This approach would then advocate evaluating an
alternative in terms of only those criteria k on which it receives a ranking [ .
Only the importance of these “pertinent” criteria relative to one another
would then come into play, and the standing of these criteria vis-a-vis the
complementary set (the set on which 7 is not evaluated) would not enter the
picture.

One means of accomplishing the aforementioned benevolent approach is
to compare each alternative ito the best possible or ideal performance for
that alternative. In the notation of the earlier model, the ideal alternative
would receive a rating of

Ry = z Wy -

keK
Clearly, any alternative {which ranks lower than first place (/ > 1) on
any criterion k£ will score worse than this ideal, hence R, < R, . Thus, the
measure

R =R/R

ideal *



Chapter 7. DEA and Multicriteria Decision Modeling 177

is a reasonable and convenient way of expressing the performance level of
. R, is similar in some respects to an industrial productivity measure where
we compare actual to standard performance, although it could be argued that
R, 4q 1S probably something less than R, . For our purposes, R,
represents the only tangible (and, in principle, achievable) measure that can
be used as a backdrop against which to evaluate alternatives.

With this concept as a basis, and proceeding in a manner analogous to

problem (7.7)-(7.13), consider the following N problems:

L .
p* D zkEK,- 21:[ dk[ (la)wk]

R, =maxR, = 717
ZkeK;' W
subject to
2
d,(Ow
Zke](,. ZI=1 Ml < = L..,N; (7.18)

—_
W
ZkeK, k1

(7.8)-(7.13).

In this ratio formulation, the numerator in (7.18) represents the actual
performance of alternative 7, with the denominator being the theoretical or
best possible performance. It is noted that in this formulation constraints
(7.18) are redundant, and can, therefore, be removed from the problem.
Unlike the linear problem, this formulation having a fractional objective
function, is nonlinear, and in general can be difficult to solve. By way of a
transformation, however, this problem can be converted to a linear format.

Specifically, let
7,=1/ Z W,

keK,-a
and define the variables W, =7, w,, i, ,=7u,v=rvand F=rF.
Problem (7.7)-(7.13) (in the absence of constraints (7.18)) can then be
written in the form:

L
R =maxR = z de,(i(,)wk, (7.19)
’ © kek, M1
subject to
Z w, =1; (7.20)
kek;,

Wy = Wiy — 8l 20,
k=1,.,K; [=1,.L-1,
Wy — gt 20, k=1,.,K; (7.21a)
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Wkl - ka _tk(ﬁ’u - wu,) <0,
k=1,..K; (7.21b)
wkl - wk+11 - ‘7Hk 20,
k=1,.K-1,1=1,.,L;

Wy ~VH, 20, I=1,..L; (7.22)
iy =By~ F 20, j=1. K- (723)
D271,z (7.24)
Fxtpz (7.25)
T, Wi, 0, F 20, Yk, (7.26)

Note that this formulation is somewhat more elaborate that (7.7)-(7.13).
The reader is referred to Cook et al. (1996).

Lemma 7.1: There exists an optimal solution to problem (7.17)-(7.18) in
which " w, <1.

Proof: For any feasible solution W =(w,) to (7.17)-(7.18), cW is also a
feasible solution for any c¢>1. Hence, we may impose a bounding
constraint Z vek, Wit <@ in (7.17)-(7.18) for some @&, and still have an

equivalent problem. Furthermore, for z small enough we may, with no loss
of generality, arbitrarily choose € =1. Hence, the result. Q.E.D.

Lemma 7.2: There exists an optimal solution ﬂ);,,ﬂ;,ﬁ*,ﬁ *,r: to (7,19)-
(7.26) in which 7, =1.

Proof: Due to Lemma 7.1 and the definition of 7 , we have

0
1
i p———

ZkeK,.n w"l
To yield maximum flexibility in the problem, it is optimal to force 7, to

its lower limit (the problem is the least restricted in this case). Hence r: =1.
Q.E.D.

Theorem 7.5: In the special case where all K, = K and | K |= K, problem
(7.19)-(7.26) is equivalent to problem (7.7)-(7.13) if an (N +1)st
alternative, the ideal alternative, is added to the latter.
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Proof: From Lemma 72 T =1, hence

w;, = W,,u, =ii,,v="7,F" = F" Furthermore, constraint (7.20) may be
K . . .
replaced by Zk=l w,, <1, the upper limit on the rating for the ideal

alternative. Since constraints (7.8) are redundant in the presence of this
inequality, the result follows. Q.E.D.

By virtue of Theorem 7.5, problem (7.17)-(7.18) can be written in the
form:

L
R =max R =Y > d,(i)w, (727)
’ kek,, =1
subject to
> Wy <1 (7.28)
keK;,
(7.9)-(7.13).

Common set of weights

As with problem (7.7)-(7.13), (7.27)-(7.28) will generally yield a
different set of weights w,, for each alternative i, being evaluated. Along
the lines of the previous section, a common set of weights can be derived by
solving the problem:

Zz =max z (7.29)
subject to
> w, <l i=1..,N; (7.30)
kek;
(7.8)-(7.13).

This problem is clearly bounded since every criterion £ can be assumed
to lie in at lease one subset K;, hence w, <1 for all k. Thus, z will
achieve an optimum. The final ratings to be assigned to any alternative i is

given by
L . *
zkeK, Z1=1 d,(w,

* 3
E W,
kek; K1

where the w,:, are the optimal variables from problem (7.29)-(7.30).

Model (7.17)-(7.18) (hence model (7.29)-(7.30)) has the advantage that it
provides a fair evaluation to an alternative 7, regardless of the status of those
criteria K, that pertain to that alternative. Specifically, an alternative is not
penalized for or given an unfair advantage because of the nature of its
particular criteria. This very property may in certain circumstances,

R =
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however, be seen as a weakness of the approach. If in a project rating
situation, for example, the contribution of projects to a specific management
goal is a key element in deciding on the set of choices to be funded, then the
model of this section may not be appropriate. On the other hand, if projects
from different departments are to be fairly assessed so that all contenders
have an opportunity to compete, then it may be desirable not to have criteria
not pertinent to an alternative, affect how that alternative is rated in a relative
sense.

1.5. CONCLUSIONS

This chapter has examined MCDM problems in the context of DEA. A
multicriteria composite index model is presented which can accommodate
both qualitative and quantitative data. Various example problem settings are
given. The chapter also extends the methodology to handle situations where
some alternatives may be evaluated only in terms of a proper subset of the
full set of criteria. The proposed approach is based on examining
performance of an alternative relative to an ideal status for that alternative.
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Chapter 8
MODELING RANK ORDER DATA

8.1. INTRODUCTION

In a wide range of problem settings to which DEA can be applied,
particularly in not-for-profit cases, qualitative factors are often present. In
some situations such factors may be legitimately “quantifiable,” but very
often such quantification is superficially forced, as a modeling convenience.
Typically, a qualitative factor such as management competence, for
example, is captured either on a Likert scale, or is represented by some
quantitative surrogate such as plant downtime or percentage sick days by
employees.

It can be the case as well, that purely quantitative variables may be such
that accurate data is not available, hence figures provided are often rough
estimates of the actual data values. In a number of studies of bank and bank
branch efficiency, for example, discretionary inputs such as “percentage of
high value customers™ in the customer base, can be an important influence
variable vis-a-vis performance. It reflects investment potential on the part of
the customer. See Cook, Hababou and Tuenter (2000) and Cook and
Hababou (2001). This variable is, however, generated from disposable
income of the customer, for which accurate data is seldom available. For
existing branches, a surrogate for such a variable is the level of investment
of the customer. For new (planned) branches, the level of investment that
would be created can be predicted from income demographics for the
customer base for that branch. Such income data is, however, often
unreliable.
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In situations such as those described, the “data” for certain influence
factors (inputs and outputs) might better be represented as rank positions in
an ordinal, rather than numerical sense. Refer again to the management
competence example. In certain circumstances, the information available
may permit one only to put each DMU into one of L categories or groups
(e.g. ‘high’, ‘medium’ and ‘low’ competence). In other cases, one may be
able to provide a complete rank ordering of the DMUs on such a factor.

This chapter examines the modeling of qualitative data in the DEA
structure. The following Section 8.2 discusses two practical problem settings
in which qualitative data occurs naturally. In the first, we examine a problem
of R&D project ranking and selection, where various non-quantifiable
factors need to be considered. In the context of DEA, the projects represent
the decision making units. This example is adopted from Cook et al. (1996).
In the second example, due to Kim et al. (1999), and Zhu (2003), a mix of
ordinal and numerical factors are evaluated. Section 3 examines the radial
projection DEA model in the context of ordinal data. Section 4 discusses the
application of this ordinal DEA model to the two presented problems. In
Section 5, various settings involving ordinal data are discussed. Conclusions
and further directions are presented in Section 6.

8.2. PROBLEM SETTINGS INVOLVING ORDINAL
DATA

8.2.1 Ordinal Data in R&D Project Selection

Consider the problem of selecting R&D projects in a major public utility
corporation with a large research and development branch. Research
activities are housed within several different divisions, for example, thermal,
nuclear, electrical, and so on. In a budget constrained environment in which
such an organization finds itself, it becomes necessary to make choices
among a set of potential research initiatives or projects that are in
competition for the limited resources. To evaluate the impact of funding (or
not funding) any given research initiative, two major considerations
generally must be made. First, the initiative must be viewed in terms of more
than one factor or criterion. Second, some or all of the criteria that enter the
evaluation may be qualitative in nature. Even when clearly quantitative
factors are involved, such as long term savings to the organization, it may be
extremely difficult to obtain even a crude estimate of the value of that factor.
The most that one can do in many such situations is to classify the project
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(according to this factor) on some scale (high/medium/low or say a 5-point
scale).

Let us assume that for each qualitative criterion, each initiative is rated
on a 5-point scale, where the particular point on the scale is chosen through a
consensus on the part of executives within the organization. Table 8-1
presents an illustration of how the data might appear for 10 projects, 3
qualitative output criteria (benefits), identified as 1, 2, and 3, and 3
qualitative input criteria (cost of resources), identified as 4,5, and 6. In the
actual setting examined, a number of potential benefit and cost criteria were
considered as displayed in Tables 8-2 and 8-3.

We use the convention that for both outputs and inputs, a rating of 1 is
“best”, and 5 “worst”. For outputs, this means that a DMU ranked at position
1 generates more output than is true of a DMU in position 2, and so on. For
inputs, a DMU in position 1 consumes less input than one in position 2.

Table 8-1. Ratings by Criteria

Project No. Outputs Inputs

— D G0 =] AN W LN

N == N R W = = N =
SN S W= = BN
B N S S L7, B US I SOy S 96
N W= =W W&
NN W RN WNW»MNDW;
DN LW WK BN =N =N

Regardless of the manner in which such a scale rating is arrived at, the
conventional DEA model is capable only of treating the information as if it
has cardinal meaning (e.g. something which receives a score of 4 is
evaluated as being twice as important as something that scores 2). There are
a number of problems with this approach. First and foremost, the projects’
original data in the case of some criteria may take the form of an ordinal
ranking of the projects. Specifically, the most that can be said about two
projects i and j is that i is preferred to j. In other cases it may only be
possible to classify projects as say ‘high’, ‘medium’ or ‘low’ in importance
on certain criteria. When projects are rated on, say, a 5-point scale, it is
generally understood that this scale merely provides a relative positioning of
the projects. In a number of agencies investigated (for example, hydro
electric and telecommunications companies), 5-point scales are common for
evaluating alternatives in terms of qualitative data, and are often
accompanied by interpretations such as:
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1 = Extremely important
2 = Very important

3 = Important

4 = Low in importance

5 = Not important,

Cook and Zhu

which are easily understood by management. While it is true that market
researchers often treat such scales in a numerical (i.e. cardinal) sense, no one
seriously believes that an ‘extremely important’ classification for a project
should be interpreted literally as meaning that this project rates three times
better than one which is only classified as ‘important.” The key message here
is that many, if not all criteria, used to evaluate R&D projects are qualitative
in nature, and should be treated as such. The model presented in the
following sections extends the DEA idea to an ordinal setting, hence
accommodating this very practical consideration.

Table 8-2. Potential Benefits

Criteria

Sub-criteria or Interpretation

1. Enhancement of energy efficiency

2. Enhancement of
diversification/alternative energy
sources

3. $Saved internal to organization

4. Impact on environment

5. Enhancement to internal technical
capability and research profile

6. Enhancement to research profile as
viewed by the external community

7. Economic impact on external

community

8. Impact on nuclear performance

-development of high yield technologies
-initiatives which will reduce energy demand
-development of technologies for utilizing residues
-initiatives which provide or strive for new energy
sources

-provide for flexibility in or adaptability of existing
and new facilities

-cost reduction devices

-new technology to replace obsolete equipment
-reduction of emissions into water and atmosphere
-reduction of risk of nuclear accidents

- provides training and develops expertise
-provides technical resources (software, equipment,
etc.)

-builds linkages to external research community.
-impact on research status among other utility
companies

~impact on profile abroad

-job creation outside organization

-$ savings to public and industry created by energy
efficiency devices
-influence on nuclear station maintenance, etc.
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Table 8-3. Potential Costs

Criteria Sub-criteria or Interpretation
1. Technical expertise available internally
2. Technical expertise available externally consultants
other research centres
3. Technology available equipment
software

8.2.2 Efficiency Performance of Korean Telephone Offices

Kim et al. (1999) examine 33 telephone offices in Korea and use the
following factors to develop performance measures.

Inputs

(1) manpower

(2) operating costs

(3) number of telephone lines

Outputs

(1) local revenues

(2) long distance revenues

(3) international revenues

(4) operation/maintenance level
(5) customer satisfaction.

All inputs and outputs (1),(2),(3) are quantitative, and can be used in the
DEA framework in the usual way. Output #4 is, however, ordinal and
provides a complete ranking of the 33 DMUs. Output #5 is a categorization
of the DMUSs on a S-point Likert scale. Table 8-4 displays the data.

In the section to follow the conventional DEA structure is adapted to
accommodate variables measured on an ordinal scale.

8.3. MODELING ORDINAL DATA

The above problems typify situations in which pure ordinal data, or a mix
of ordinal and numerical data, are involved in the performance measurement
exercise. There appear to be two general approaches in the literature to the
handling of ordinal/qualitative data within the DEA framework. The first
effort was presented in Cook et al. (1993), (1996). The general approach
given below leads ultimately to their model. The second and related effort is
that due to Cooper et al. (1999), under the title imprecise data. Again, using
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the general structure given below, one arrives at their model. Rather than
adopting, outright, one or the other of these approaches, let us cast the
ordinal data problem in a general DEA format. Specifically, consider the
situation in which a set of N decision making units (DMUs), k=1,...N are to
be evaluated in terms of R, numerical outputs, R, ordinal outputs, I,
numerical inputs, and I, ordinal inputs. Let Y}C =(y lrk ), Yi =(y fk) denote

the R;- dimensional and R,-dimensional vectors of outputs, respectively.

Table 8-4. Data for Telephone Offices

DMU No X1 X2 X3 Y1 Y2 Y3 Y4 Y5
1 239 7.03 158 47.1 16.67 34 28 2
2 261 3.94 163 375 14.11 20 26 3
3 170 2.1 90 20.7 6.8 12.6 19 3
4 290 4.54 201 41.8 11.07 6.27 23 4
5 200 3.99 140 334 9.81 6.49 30 2
6 283 4.65 214 424 11.34 5.16 21 4
7 286 6.54 197 47 14.62 13 9 2
8 375 6.22 314 555 16.39 7.31 14 1
9 301 4.82 257 492 16.15 6.33 8 3
10 333 6.87 235 47.1 13.86 6.51 6 2
11 346 6.46 244 49.4 15.88 8.87 18 2
12 175 2.06 112 20.4 4.95 1.67 32 5
13 217 4.11 131 29.4 11.39 4.38 33 2
14 441 7.71 214 61.2 25.59 33 16 3
15 204 3.04 163 323 9.57 3.65 15 4
16 216 224 154 32.8 11.46 9.02 25 2
17 347 5.65 301 59 17.82 8.19 29 1
18 288 4.66 212 42.3 14.52 7.33 24 4
19 185 3.37 178 33 9.46 291 7 2
20 242 5.12 270 65.1 24.57 20.7 17 1
21 234 2.52 126 31.6 8.55 7.27 27 2
22 204 424 174 325 11.15 2.95 22 3
23 356 7.95 299 66 2225 14.9 13 2
24 292 4.52 236 50 14.77 6.35 12 3
25 141 5.21 63 21.5 9.76 16.3 11 2
26 220 6.09 179 479 17.25 22.1 31 2
27 298 3.44 225 424 11.14 4.25 4 2
28 261 43 213 41.7 11.13 4.68 20 5
29 216 3.86 156 31.6 11.89 10.5 3 3
30 171 2.45 150 24.1 9.08 2.6 10 5
31 123 1.72 61 12 4.78 2.95 5 1
32 89 0.88 42 6.4 3.18 1.48 2 5
33 109 1.35 57 10.6 3.43 2 i 4

Similarly, let X}, = (x},) and X2= (x2) be the I;-dimensional and I,-

dimensional vectors of inputs, respectively.

In the situation where all factors are quantitative, the conventional radial
projection model for measuring DMU efficiency is expressed by the ratio of
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weighted outputs to weighted inputs. Adopting the general variable returns
to scale (VRS) model of Banker, Charnes and Cooper (1984), and stating it
in ratio form, the efficiency of DMU “0” follows from the solution of:
Co=max(Hot X p, Y, t ¥ plyL)
reRy

rely

1 1 2,2
(Z Ui Xio+z Uixiv)

el iely
subject to:
(ot 3 poyu+ X iy (8.1)
ref) reR,

(3 vix+3 vixi)<l,allk

fely iely

1 2 1 2 :
M, ., 0,0 > ¢g,allri

Problem (8.1) is convertible to the linear programming format:
C=max pot X g, Yy, t X puly,

refly reRy

subject to

[ 1 2 2
Z Ui Xio + Z Ui xio - ] (82)
iel) i€l

1 1 2 2

Mot X po Yyt X M, Yy -

reRy rely

1 1 2 2
2 U Xu -2 U x, <0,allk
iel) iely
1 2 1 2 :
Mo My, 0, 00 >¢g,allr,i,
whose dual is given by
min6 - Y si-& Y s
reRUR, iel\Ul,
subject to

Nﬂ { + _ 1 R
ka:l kyrk - Sr R ATY re 1
N

2 + .2
z:lﬂ’kyrk - Sr _yro’ rERZ
n=

A Xy -s =0,iel (8.2)
k ik i

M=

1
exio -

k=1

Ox2 -5 Axi-s =0, i€l
Xit)-z_:l Xy =S TV 1€ L

=

N

S A4-=1

k=1

Avssy.s; >0,allk,r, i,6 unrestricted

For the problem settings described in the previous section, precise values
for outputs in R, and inputs in I, are not available. Cooper et al. (1999),
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(2001), and Zhu (2003) refer to this as an example of imprecise DEA or
IDEA. To place the problem in a general framework, assume that for each
ordinal factor (reR,, i€l,), a DMU k can be assigned to one of L rank
positions, where L < N. As discussed earlier, L=5, is an example of an
appropriate number of rank positions in many practical situations. We point
out that in certain application settings, different ordinal factors may have
different L-values associated with them. For example, in the problem
described in subsection 2.2, ‘customer satisfaction,” ys is measured on a 5-
point scale, while ‘operation/maintenance level,” y, provides for a full
ranking of all 33 DMUs (L=33). For exposition purposes, we assume a
common L-value throughout. We demonstrate later that this provides no loss
of generality.

In the development below it is assumed that a “full ranking” of all DMUs
is available for each ordinal factor. That is, each DMU is assumed to occupy
a rank position on each ordinal factor, as opposed to there being only a
partial ranking of the DMUs on some factor. In Section 5 we discuss a
situation where such partial ranking does occur.

One can view the allocation of a DMU to a rank position ¢ on an output r,
for example, as having assigned that DMU an output value or worth yf (£).
The implementation of the DEA model (8.1) (and (8.2)) thus involves
determining two things:

(1) multiplier values u f , u,.2 for outputs r € R, and inputsi € 1;
(2) rank position values yf (£), 1€R,, andx 2(£),i €, all £.

Cooper et al. (1999) use a similar format to the one presented here, and
approach this problem in a two-stage manner. Their approach for handing
imprecise data first derives appropriate values (in our notation) for the
y2(£) and x> (/) (i-e., they resolve item (2) above). These values having
now been quantified, the conventional DEA model (8.2) can be solved. In
this section we show that the problem can be reduced to the standard VRS
model by considering items (1) and (2) simultaneously. Further mention of
IDEA appears later.

To facilitate development herein, define the L-dimensional unit vectors
Vo = (Fa(£)), and 8, = (8, (£)) where

1 if DMUkisrankedin ¢ th positiononoutput r
]/rk ( E ): .

0, otherwise
1 if DMUkisranked in £ th position on input i

0, otherwise

é‘ik(g)= {
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For example, if a 5-point scale is used, and if DMU #1 is ranked in £ =
3" place on ordinal output r=5, then y,(3) =1, y,,(£) =0, for all other rank
positions £ . Thus, y2, is assigned the value y? (3), the worth to be credited
to the 3™ rank position on output factor 5. It is noted that y’ can be
represented in the form

yfk :yf(e rk): g‘; yz (Z) }/rk (z)a

where £, is the rank position occupied by DMU k on output r. Hence,
model (8.2) can be rewritten in the more representative format.
L
o=max fo+ T op,y, Y X ulyi(0)7,(0)
reRy reR, I=

subject to:

1.
T Ux,tY Y 0 () S, (=1
iel| iely f=1

L

Bot Tyt TRMY[(£) 7,(£)- Tulx,-

reRy reRy =1

TS0Fx2(£) 8, (£)<0,allk (83)

(Y2=(y2(£), Xi= x (L)} €¥

1 1
/urﬂvizg

In (8.3) we use the notation W to denote the set of permissible worth
vectors. We discuss this set below.

It must be noted that the same infinitesimal & is applied here for the
various input and output multipliers, which may, in fact, be measured on
scales that are very different from another. If two inputs are, for example,
x,l.lk representing ‘labor hours’, and x|,, representing ‘available computer
technology’, the scales would clearly be incompatible. Hence, the likely
sizes of the corresponding multipliers v), v), may be similarly different.
Thrall (1996) has suggested a mechanism for correcting for such scale
incompatibility, by applying a penalty vector G to augment &, thereby
creating differential lower bounds on the various v;, g, . Proper choice of G
can effectively bring all factors to some form of common scale or unit. For
simplicity of presentation we will assume the cardinal scales for all reR |,
iel, are similar in dimension, and that G is the unit vector. The more
general case would proceed in an analogous fashion.

Permissible Worth Vectors
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The values or worths {y>(£)}, {x?(£)}, attached to the ordinal rank
positions for outputs r and inputs i, respectively, must satisfy the minimal
requirement that it is more important to be ranked in P™ position than in the
(£+1)" position on any such ordinal factor. Specifically, y2(£) >y2(£+1)
and x’(£)< x>(£+1). That is, for outputs, one places a higher weight on
being ranked in £™ place than in (£+1)" place. For inputs, the opposite is
true. A set of linear conditions that produce this realization is defined by the
set ¥, where

W= (Y2, XD yi(0) - yi(£+1) 2¢, £=1, .L-1, y; (L) 2 &,
X2 (L+1)-x>(£)> €, £=1,. . L-1,x; (1)> ¢ }.

Arguably, £ could be made dependent upon £ (i.e. replace £ by &,). It
can be shown, however, that all results discussed below would still follow.
For convenience, we, therefore, assume a common value for & .

We now demonstrate that the nonlinear problem (8.3) can be written as a
linear programming problem.

Theorem 8.1
Problem (8.3), in the presence of the permissible worth space ', can be
expressed as a linear programming problem.

Proof: In (8.3), make the change of variables
W, = oy (), wi = o] (€)
It is noted that in ¥, the expressions
yi()-y;(d+hze,y; L)z ¢
can be replaced by
Iy - ply; )z ple, plyi L)z py g,

which becomes

1 1

2 2 2
wr/. -wr1’+l Z IU r g’WrI,Z /J r £.
A similar conversion holds for the x? (£).

Problem (8.3) now becomes

L
e=max o+ ¥ wyl + ¥ ¥ er/ 7 (£)
reRl

reR2 4=l
subject to
L
T oix,tY ¥ wié,(£)=1
iell iel2  ¢=1 i

)
Hot 21;1 /url ylrk+ ZRZ z w7 (€)= % bixg -

f=] iell

Y S wié,(£)<0,allk 84)

iel2  f=1
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wlowl. > pte, £=1,..L-1,allr € R,
1

w, >u’ g,alreR,

wia-wr>vle, =1, . L-Laliel
wi>vle,alie]

uh, v > g,allr € Ry,i el
ﬂrz,ufzg,allre Ryiel,

Problem (8.4) is clearly in linear programming problem format.
We state without proof the following theorem.

Theorem 8.2
At the optimal solution to (8.4), u 2= v?= ¢ forallr € Ry, i € L.

Problem (8.4) can then be expressed in the form:

I
€ = max /uo + z #: yi‘o * 2 Z W]’" }/’“(K)

reRy reR2  ¢=1
subject to
I
Z UiIX}o +Z z lei 610(€)=1
iell iel2  f=1
I
ot 2 oy * X X ow,y, ()=
reRl reR2  f=1
L
gl v X} - _2112 FZ:’ w2, (£)<0,allk (8.5)

-wl, +wl, <-&%, £=1,.L-1, allreR,
-w! <- £, allr €R,
+wl<-g,0=1,..,L-Lalliel

-wli<-ghaliel,

2
it+l

-w
u,v >e,reR,iel

It can be shown that (8.5) is equivalent to the standard VRS model. First
we form the dual of (8.5).



194
. + - 2 L 1 2
mn -3 s, - €Y s8,-€ X 2 a, - ¢
reRl iell reRf2 =1

subject to:

N
1 _ 1
kz‘l lk yrk -S:_y")’reRl

M=

g x! -

io

A X} -s; =0,i€el

x>~
LN

N
Zik yrk(l) - arll = ym (1)
k=1

N
zj’k }/rk (2) + a:l - aiZ = }/r() (2)
k=1

N
Zlk Vu (L) + a:L—l - alrL =7, (L)
=1

N
5, (L) 6 - Z,lk 5, (Ly—ai =0
k=1

N
S, (L-D0-> 4 &, (L-1)+a; —a;_ =0

k=1

N
6, ()0 — z/lk 6, )+ aizz - Ol,ﬁ =0
=1

M=

A,=1

bl
Il

1
+ - 1 2
ﬂk’sr’si s Upps Oy ZO

6 unrestricted.

Cook and Zhu

TS a

iel2  f=1

(8.5)

reR,

iel,

Here, we use {4, } as the standard dual variables associated with the N

ratio constraints, and the variables {c, «,} are the

dual variables

associated with the rank order constraints defined by W . The slack variables

s¥,s; correspond to the lower bound restrictions on x, v/

i .

Now, perform simple row operations on (8.5”) by replacing the A
constraint by the sum of the first £ constraints. That is, the second constraint
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(for those 1 € R, and i € 1) is replaced by the sum of the first two
constraints, constraint 3 by the sum of the first three, and so on. Letting

7 x (= 7= 7, () + 7,2+t 7, (£),

n=1

and
5. (D=3 5,=8, L)+ L-D)+.+ 8, (4),

problem (8.5”) can be rewritten as:
min 6 -¢ Ys' -3 s;-

reRrl iell
L L
2 1 2 2
g D, € ZZ“M
reR2 (=1 iel2 =1

subject to

N

Zlk y‘rk 'S: =y}.‘,,r € Rl

k=1

0x' -$ax. -s =0,iel, (8.6")

k=t

N — —
247 £)- a, =y, (L),
reRy £=1,..L

—_ N —
66 ,(£)-34, 8 ,(£)r-a] =0,i €T £=1...L
N
$A=1
k=1

v - 1 2 .
ArSt.s, ., o, >0,allir, £,k
@ unrestricted in sign.

The dual of (8.6”) has the VRS format:

L
e =max f,* Tp Yt DD W 7, (£)

reR2¢=1
subject to
L
YU'x+ TYw 8, (£)=1 (8.6)
iell iel20=1

L -—
H, +.21;'1#: Yt ZZW w? () leluilek -

reR2 /=1
1 a—
. 2
Y Y wls ,(£)<0allk
iel; f=1
1 1 1 2 2
/.l,.,U,ZE,WM,Wﬂzé‘,
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which is a form of the VRS model. The slight difference between (8.6) and
the conventional VRS model of Banker et al. (1984), is the presence of a
different & (i.e., £°) relating to the multipliers w!,, w?, than is true for the
multipliers g ', v/. It is observed that in (8.6”) the common L-value can
easily be replaced by criteria specific values (e.g. L, for output criterion r).
The model structure remains the same, as does that of model (8.6). Of
course, since the intention is to have an infinitesimal lower bound on
multipliets (i.e., £ >0), one can, from the start, restrict
H lr’ Uil 2 & 2
and

2 2
Iur’ui 28'

This leads to a form of (8.6) where all multipliers have the same
infinitesimal lower bounds, making (8.6) precisely a VRS model in the
spirit of Banker et a. (1984).

It is interesting to note that the IDEA approach of Cooper et al (1999)
essentially involves tackling problem (8.2) by first attributing values to the
imprecise data (rank positions), and second, optimizing (in the DEA
structure) to arrive at optimal multipliers. The Cook et al (1993), (1996)
approach to (8.2) is somewhat the reverse of this. It amounts ultimately to
attributing values to the multipliers, and then letting the DEA optimization
derive the values for the rank positions. Thus, these seemingly quite different
approaches would appear to arrive at approximately the same final point.

Criteria Importance

The presence of ordinal data factors results in the need to impute values
y2(£), x}(£) to outputs and inputs, respectively, for DMUs that are ranked
at positions £ on an L-point Likert or ordinal scale. Specifically, all DMUs
ranked at that position will be credited with the same “amount” y2(£) of
outputr (r € Ry)and x (£) of inputi (i € L).

A consequence of the change of variables undertaken above, to bring
about linearization of the otherwise nonlinear terms, e.g., w), = u 2y2(¥¢),
is that at the optimum, all z 2= g% 0= £ Thus, all of the ordinal criteria
are relegated to the status of being of equal importance. Arguably, in many
situations, one may wish to view the relative importance of these ordinal
criteria (as captured by the 2, v?) in the same spirit as we have viewed
the data values {y? }. That is, there may be sufficient information to be able
to rank these criteria. Specifically, suppose that the R, output criteria can be
grouped into L, categories and the I, input criteria into L, categories.

Now, replace the variables u ? by 43(m), and v? by v *(n), and restrict:
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pi(m) - gX(m+)>¢e, m=1,...L-1
prL)>e
and
vin)- v+ >g,n=1,....L,-1
vily)>e.

Letting m, denote the rank position occupied by output r € R,, and n; the
rank position occupied by input i € I, we define the change of variables

wy, = 4 (m)y (L)
wi =0’ (m)x7 ()

The corresponding version of model (8.4) would see the lower bound

restrictions z 2, v?> £ replaced by the above constraints on Z(m)and v

(n). Again, arguing that at the optimum in (8.4), these variables will be

forced to their lowest levels, the resulting values of the z%(m), v *(n) will be
#2(m)=(L+1-m)g, vin)=(Ly+1-n)s.

This implies that the lower bound restrictions on w !,, w % become

wl>@L+1-m) &’ wi>(Ly+1n) &%

We now apply the above concepts to the data for the two problem
settings discussed earlier.

8.4. SOLUTIONS TO APPLICATIONS

8.4.1 R&D Project Efficiency Evaluation

When model (8.6') is applied to the data of Table 8-1, the efficiency
scores obtained are as shown in Table 8-5.

Table 8-5. Efficiency Scores (Non-ranked Criteria)

Project | 1 2 3 4 5 6 7 8 9 10

Score 076 1073 | 100 {067 |1.00 |082 |067 1067 |055 |037

Here, projects 3 and 5 turn out to be ‘efficient’, while all other projects
are rated well below 100%. In this particular analysis, & was chosen as 0.03.
In another run (not shown here) where £ = 0.01 was used, projects 3, 5 and
6 received ratings of 1.00, while all others obtained somewhat higher scores
than those shown in Table 8-5. When a very small value of &£ (&£=0.001)
was used, all except one of the projects was rated as efficient.
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Clearly this example demonstrates the same degree of dependence on the
choice of £ as is true in the standard DEA model. See Ali and Seiford
(1993).

From the data in Table 8-1 it might appear that only project 3 should be
efficient since 3 dominates project 5 in all factors except for input 5 where
project 3 rates fourth while project S rates fifth. As is characteristic of the
standard ratio DEA model, a single factor can produce such an outcome. In
the present case this situation occurs because w2, = 0.03 while w3, = 0.51.
Consequently, project 5 is accorded an ‘efficient’ status by permitting the
gap between w2, and w to be (perhaps unfairly) very large. Actually, the
set of multipliers which render project S efficient also constitute an optimal
solution for project 3.

If we further constrain the model by implementing criteria importance
conditions as defined in the previous section, the relative positioning of
some projects change as shown in Table 8-6.

Table 8-6. Efficiency Scores (Ranked Criteria)

Project | 1 2 3 4 5 6 7 8 9 10

Score 071 (072 | 1.00 |060 | 1.00 | 080 | 062 |063 |050 |035

Hence, criteria importance restrictions can have an impact on the
efficiency status of the projects.

8.4.2 Evaluation of Telephone Office Efficiency

The data of Table 8-4 has been evaluated using Model (8.6”). Both CRS
and VRS models were applied, the results of which are presented in Table 8-
7.

Initially, in applying DEA in this application, no attempt was made to
impose constraints on multipliers. Under the CRS structure, approximately
half of the offices (17 of the 33) are declared efficient. With the VRS model,
the number of efficient units climbs to 25 out of 33. When criteria
importance is introduced, the efficiency status (efficient versus inefficient)
changes for some units. As well, the relative sizes of efficiency scores
change. Note, for example, that the relative positions of offices 10 and 11 are
reversed under the constrained VRS model versus those assumed in the
unconstrained model. As well, only 15 of the offices (rather than 25) are
rated as being efficient.
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Table 8-7. Efficiency Scores
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DMU# CRS Score VRS Score VRS Score-constrained
1 1 1 1

2 1 1 1

3 1 1 1

4 927 1 973
5 1 1 921
6 .907 .994 .906
7 .848 .849 .823
8 .668 670 .644
9 .848 970 .885
10 617 747 731
11 763 815 716
12 1 1 915
13 1 1 1

14 1 1 1

15 1 1 1

16 1 1 .886
17 .898 1 1

18 928 1 935
19 .993 993 961
20 1 1 1

21 1 1 1

22 1 1 1

23 .846 1 1
24 918 1 .904
25 1 1 1
26 1 1 955
27 824 .937 926
28 .954 1 919
29 .949 1 1

30 1 1 1

31 1 1 907
32 1 1 1

33 .962 1 1

8.5. DISCUSSION

We have examined in this chapter the issue of performance measurement
in the presence of qualitative data. The methodology presented herein
demonstrates that when the idea of rank position data is introduced within
the DEA structure, the resulting model can be transformed to a version of the
conventional VRS model. This implies that all of the output results from
standard DEA models apply. The CRS and VRS scores achieved using the
model (8.6”) are close to those obtained using the alternative IDEA structure
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of Cooper et al. (1999). This hints at the potential equivalence of the two
approaches.

An important observation regarding radial projection, both here and in the
IDEA approach of Cooper et al. (2001), is that one assumes that a (1-8) x
100% reduction in a rank order position for an inefficient DMU, results in a
legitimate (projected) rank order position. Of course, since radial projection
treats all scales as continuous, not discrete, it would rarely be the case that
projected points on the frontier would in fact correspond to discrete (Likert
scale) positions. Hence, efficiency scores obtained by model (8.6’) really
represent lower bounds (on &), and would in practice need to be adjusted
upward to bring the projected positions to points that are allowable in Likert
scale sense. We do not pursue herein how such adjustments would be made,
but point to this as an interesting direction for future research.
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Chapter 9

RESOURCE ALLOCATION IN AN R&D
DEPARTMENT

9.1. INTRODUCTION

This chapter examines a model for aiding in resource allocation in a
research and development setting. A particular organization investigated was
the former Ontario Hydro. The models presented herein were designed using
that setting as a framework; a framework that typifies a number of R&D
situations. The basic problem involves allocating an annual research budget
among a set of program areas and across various departments involved in
those program areas, such that the overall benefit to the organization is as
high as possible. While the problem of defining appropriate research areas is
an important issue for management to consider, it will be assumed for
purposes of the present discussion that these areas have already been
decided.

The problem of resource allocation in regard to R & D departments has
been approached primarily from the point of view of “projects” or “research
options.” Most of the models for assessing options assume multiple criteria
or factors are involved. Utility approaches to the multidimensional problem
have been examined by Geoffrion et al (1976), Hoel and Lin (1971) and
Souder (1967 & 1973). Another class of approaches involves mathematical
programming models such as those of Gear and Lockett (1972), and Charnes
and Steadry (1964). Cook and Roll (1988) approach the problem of R & D
project selection from the perspective of the past productivity of the
organizations or operating units proposing the projects. Oral et al (1991)
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examine project prioritization from the point of view of data envelopment
analysis.

In these approaches, it is assumed that data pertaining to each criterion
appears in quantitative form. A few authors have concentrated on modelling
in an environment in which only ordinal data can be obtained. See, for
example, Bernardo (1977), and Cook and Seiford (1982). Lootsma et. al.
(1986) present a method for deriving criteria weights based upon subjective
judgments of executives, and then suggest allocating an available budget
based on the best aggregate benefit to cost ratio. Here, the aggregate benefit
for a project is the weighted total score obtained by that project on a set of
ordinal factors.

All of these models assume that the problem is “zero-one,” in the sense
that a project or option is to be funded or not funded. They do not address the
issue of partial allocation of resources to an initiative. Saaty (1980) suggests
a method for doing this by basing the level of funding for an initiative on the
rating that the initiative received in a weighted sense relative to the other
initiatives being evaluated. Specifically, if on a 100 point scale one research
option ranked at 85% while another ranked at 75%, Saaty’s proposal calls
for splitting the budget by directly using these two subjective ratings.

Other than this method suggested by Saaty (1980), no definitive resource
allocation model in a qualitative data/multiple criteria environment presently
exists. In the sections to follow, various issues pertaining to the resource
allocation problem are discussed. A number of possible methods for
allocating the research budget are presented, and a suggested approach is
given.

9.2. CRITERIA FOR EVALUATING RESEARCH
IMPACT

In a large research organization such as Ontario Hydro resource
allocation must in general be viewed from a macro, i.e., program, point of
view. Effects of shifts in budget allotments cannot normally be translated
into impacts at a specific project level, but rather must be evaluated in terms
of overall influences. Furthermore, impacts must be measured in terms of
various factors or criteria. Specifically, various types of benefits are derived
from the research in a given program (impacts on the environment, savings
to the organization, ...). At the same time the capability of the department to
carry out research, even if financial resources are not a constraint, may be
influenced by the availability of certain liquid resources such as technical
expertise, equipment, etc.
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In Appendix A, a suggested set of criteria for evaluating the research
program of a particular organization is given. A notable feature of some, if
not all, of these factors is that they are generally measurable only on an
ordinal scale. That is, if a research initiative is viewed in terms of a factor
such as “dollars saved by the organization,” it is very likely that the most
accurate information one can expect a manager to supply regarding the
impact that budget changes would have on this initiative, will be of the form
“the effect is high, medium or low.” Alternatively, one might adopt a 5-point
rating scale where the levels are defined as

l- the research has a very high impact in
terms of this criterion

2- has a high impact

3- has a medium impact

4 - has a low impact

5- has almost no impact.

Such a scale is common in many situations where qualitative factors must be
evaluated.

9.3. INFORMATION REQUIREMENTS FROM
MANAGEMENT

The resource allocation problem, as presented, has to do with finding the
most advantageous way in which to partition the total research budget across
a set of research areas. The problem must be viewed at this macro level of
“research areas,” rather than at the micro “specific project” level. Thus, the
problem is not one of project selection, as will be discussed in the next
chapter, but rather is one of “should $X or $Y be allocated to a given area?”
In this context, the resource allocation problem must be viewed as a zero
sum game — whatever additional budget any one research area receives, this
will be at the expense of other areas.

Stated in simple terms, the resource allocation problem is:

“Given an existing research budget allocation to a set of research areas,
can an improvement (in total benefit derived by the organization) come
about by moving funds from one area to another?”

The answer to this question, in equally simplistic terms, is that this
reallocation of research funds should be carried out if the net loss to the
research area incurring the budget cut (and the loss to the organization at



206 Cook and Zhu

large) is less than the net gain to the area experiencing the budget increase.
Clearly then, the key ingredient needed to be able to answer this question is
information regarding the marginal net losses and gains associated with
budget changes.

In the section to follow, a model is presented for helping management to
evaluate the impact of such budget shuffles. This model requires, as input
data, managements’ opinions as to the marginal effects, in terms of each
criterion, that are likely to be created by budget modifications. The simplest
way to view budget modifications is in terms of some basic monetary unit.
While the size of this basic unit must ultimately be decided by management,
it is assumed for illustrative purposes herein that a basic unit of $100,000 is
to be used.

As a starting point, suppose that management supplies information to the
following questions:

1. For each research area how would you rate, on a five point scale, the
impact of a budget cut of one basic monetary unit? Make this judgment for
each of the criteria (Appendix A).

2. What is the effect of a $2 unit cut?

3. What is the effect of a $1 unit increase?

4, What is the effect of a $2 unit increase?

It must be noted at this point that the above questions regarding a $2
increase or decrease can be posed in at least two ways. The first is that given
above: “What is the effect of a $2 unit change?” Alternatively, the question
could be presented as: “What is the effect of a second $1 unit change given
that a $1 unit change has already taken place?” While at present it is not
clear why we distinguish between these two information solicitation modes,
this will become more apparent later. For purposes of the development in
this and the next section, we assume the questions as originally posed are
appropriate.

Table 9-1. Response Matrix

IActions

Research Change in Criterion

Area j (Budget/Level) Sl 52 57

1 o1 =—82 unit 1 2 1
02 =-81 unit 2 3 3
63 = +31 unit 2 1 D
04 =+32 unit 1 1 3

3 O1=—-82 unit D 4 1
02 =—§1 unit 4 1 3
63 = +81 unit 3 4 1
04 =+82 unit 4 5




Chapter 9. Resource Allocation in an R&D Department 207

Responses to these questions can be recorded in the form of a matrix for
each research area. The entries inside this response matrix are numbers from
the 5-point scale discussed earlier. Table 9-1 illustrates such responses. The
“1” in the upper left hand corner of the matrix, for example, would mean that
a $2 unit budget cut to research area p is rated as having a very high
detrimental effect on that research area in regard to benefit ;.

The process whereby ratings such as these can be derived is an important
management issue. It is advisable to create the table in a “column- wise”
fashion. Thus, for each criterion, the decision maker would first need to
establish the impact, on a 5-point scale, that a $1 unit budget increase or
decrease would entail. Using this as a bench mark, a $2 unit change in either
direction would then be evaluated, and so on. This approach of working in a
column allows for comparison of a budget change of one size to a budget
change of another size. Evaluating a single budget change across all criteria
first (i.e., “row wise”) is a much more difficult task.

It must be emphasized that the particular set of criteria to be used is not
an issue here (these must be decided by management), nor is the number of
possible actions (-$2, ~-$1, +$1, +$2). The latter can be expanded to any
number of incremental budget changes desired. Furthermore, it may be
desirable to think in terms of % changes to research area budgets, rather than
specific $ amounts. This matter will be discussed later. What is at issue here
is the need to think in terms of marginal impacts if budget modifications are
made. It is information of this type which will drive the model discussed in
the next sections.

9.4. MODELLING RESOURCE ALLOCATION - THE
BASIC IDEA

The basic approach recommended for allocating the research budget
among a set of research areas consists of four steps:

Step 1: Obtain rating information of the type presented in Table 9-1 for
each research area;

Step 2: Determine, using a multiple criteria model (various models are
described in the next subsection), a rating R; for each research area p and
budget change v. This rating will be a percentage <100%, and will
represent the relative impact of that budget change on that area. This impact
can be positive (if v > 0) or negative (if v < 0);

Step 3: Arrange the R; values from lowest to highest;

Step 4: Make budget reallocations according to the relative sizes of the
R’
P
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The mechanics of Steps 2 and 4 will be described in the following
sections. Various techniques are proposed there for using the qualitative data
of Step 1, and arriving at a set of weights w,,(p,v). These weights
represent the worth or value of being ranked in the £ th rank position, on the
1 to 5 scale, relative to criterion k. The w,,(p,v)' for each research area
p and budget level change v are combined to provide an overall rating R;,

To illustrate Steps 3 and 4, suppose that there are only 3 research areas,
and let the R; values be as given in the following table.

Table 9-2. R; Values

Research Budget Change v

Area D - $2 - $1 + $1 + $2
1 .83 .76 .61 .88
2 .79 .72 .70 .72
3 .65 .81 .56 .58

Arranging these values from highest to lowest we have:

R? = 88
R* =.83
R = 81
R’ =.79
R'=R’=.72

R" =70

R = .65
R = .61
R =.58
R =.56

The idea is that we can shift an amount of funds v =3$¢ from any
research area p, to an area p, provided the corresponding R;;w < R;fp.
For example, the negative benefit or damage associated with a $2 unit
decrease in the budget of area 3 is rated at R;> =.65. On the other hand, a
$2 unit increase in the budget of area 1 is rated at R;”” = .88. Thus, a shift of
$2 from area 3 to area 1 produces a net gain in benefits to the organization.
We define the gain index for the movement of $2 units between research
areas 3 and 1 as

1 . . .
We use the notation W,, only from this point on.
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Gy = (R, RP).

Clearly, any movement of funds that results in a positive gain index will
improve the overall benefit of the research budget to the organization.

The problem to be solved, therefore, is to find a set of gain indices G;l ”
which represent the best improvement in overall research impact to the
organization. In a later section we present a possible function f for defining
the G;l »,» and a heuristic method for deriving an appropriate optimal set of
G, ,, values is discussed.

It is pointed out that Steps 1-4 represent a reallocation of the budget
relative to a current budget split. Once this reallocation has been completed,
management may decide to repeat the entire exercise, beginning with the re-
specification of perceived marginal changes in benefits relative to the newly
created budget split. As many cycles could be carried out as felt necessary
by management.

9.5. DEVELOPING THE RATINGS R,

The R; are to represent a prioritization of the overall benefits associated
with various budget changes that could be applied to the set of research areas
under consideration. For purposes of the discussion in this section, we will
cast the problem in a somewhat more generic setting than that of the
previous sections. That is, suppose there are N items or alternatives (budget
changes, projects, products, etc.) to be ranked. Each of these is to be
evaluated in terms of K ordinal or qualitative criteria. In the example
described earlier (Section 4), each (budget change, research area) pair
constitutes an alternative. Thus, in that setting N was equal to 3 x 4 =12.

For illustrative purposes, consider the situation in which six alternatives,
e.g., budget changes, applied to research areas are to be evaluated in terms of
three criteria - (1) safety benefits, (2) environmental benefits, and (3) long
term returns (profitability). Suppose that for each criterion the six
alternatives can only be evaluated in an ordinal sense, say on a 5-point scale.

In the case of safety, for example, alternative 1 ranks last or 5th,
alternative 2 ranks 3rd, ... etc. Table 9-3 displays the evaluations for all
alternatives on all criteria.

The problem at hand is to prioritize or rank the six alternatives from most
to least preferred, utilizing the preference data provided. At least two
complicating issues must be addressed, however, if such a prioritization is to
be achieved. First, the standing or importance of a given alternative may be
very different on some criteria than on others. Alternative #1, for example,
ranks 1st on criterion 2, but last (5th) on criterion 1. On the other hand,
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alternative #3 ranks Ist on criterion 1 but 3rd on criterion 2. Which
alternative should be ranked highest? This question raises a second issue of
criteria importance. If criterion 1 is much more important than criterion 2,
how should this be factored into the analysis? In some cases it may be
possible to supply reasonably representative weights, while in other
instances it may only be possible to rank the criteria. How should an ordinal
ranking of criteria be dealt with?

Table 9-3. Rankings of Alternatives by Criteria

Criteria
|Alternative 1 2 3
1 5 1 2
2 3 4 5
3 1 3 4
4 2 3 4
5 2 2 2
6 4 5 1

9.5.1 Conventional Approach

The problem of how to combine muitiple attribute data is a familiar
problem of utility theory. Essentially, we want to develop an overall utility
function which can reduce the problem to one involving a common
quantitative unit of measurement.

A crude, but often utilized procedure for obtaining a prioritization of
alternatives in such situations is to begin with a given set of criteria weights
wy, W,, w,. Using these “known” values, a weighted rank is obtained for
each alternative. These weighted ranks are then arranged from lowest to
highest to achieve the desired prioritization of the alternatives. Suppose, for
example, that safety is given an importance weight of w,= 10, environment
a weight w, = 7 and profitability a weight w; = 5. The weighted rank R,
for alternative #1 would then be

R =10x5+7x1+5x2=67.
The corresponding value R, for alternative #2 is
R, =10x3+7x4+5x5=83.

For this set of weights, alternative #1 comes out at a lower value than #2,
meaning that project #1 should be given a higher priority than #2 >,

2. . . . .

Since a rank of 1 means “most important,” and 5 means “least important,” the project with
the lowest weighted rank will be given the highest priority. Clearly, if we reversed the scale (5
is best, 1 is worst), the opposite interpretations would be givento R, and R,.
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There are two basic operational shortcomings with this crude approach:

1. The method requires that the analyst be able to choose, in some manner
and using some scale, a set of weights reflecting the absolute importance of
the criteria. While in some instances criteria weights may have evolved over
time and are a “given”, in other cases the weight assignment exercise is ad
hoc, hence very much at the whim of the decision maker. Even when such
assignments are based on the very best advice and information from the
relevant players at the time, the scales and values chosen are, in the final
analysis, arbitrary. Furthermore, the values chosen often arise from a set of
widely varying opinions solicited from experts, executives, etc. The final
“consensus” may be less than satisfactory.

2. A second, and even more disturbing aspect of this methodology is the fact
that the rank positions of the alternatives, which are only intended as relative
(ordinal scale) priorities, are being treated as if they were absolute cardinal
(interval scale) values. Ranking alternative 3 in Ist place on the safety
criterion, and alternative 4 in 2nd place, for example, is not meant to imply
that alternative 3 should be valued as being twice as important as alternative
4 relative to this criterion. These rank positions express relative priorities
only, not absolute worths.

9.5.2 A Proper Evaluation of Ordinal Data

Therefore, there are generally two sets of “unknowns” in such an
environment — the v,, expressing the “value” of the different rank
positions £=1,...,L, and the w, expressing the importance of the K
criteria. ‘

With this notation, if an alternative ranks in the ¢” category or position
on the k" criterion, it will be given a credit of w,v, for this criterion.
Recall that in the above example, alternative #1 received a total credit or
value of

R =w x5+w, xI+w,x2.

Thus, for criterion 1, the credit was w, x 5. The suggestion is that the
credit should be w,v;, where v, and w, are to be determined. As a general
setup, let us use a single variable, with a double subscript, w,, in place of
the product w,v,. In this case the restrictions specified in (a) and (b) above
become

Wie = Wi .1

Wk/i > wk+lé” (92)

forall ¢ and k.
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Clearly, there are an infinite number of combinations of weights w,,
satisfying these conditions. What is required is a procedure for selecting an
“appropriate” set. Whatever this set is, it will immediately dictate the
“rating” which each alternative will receive, and therefore the final rank
ordering of the alternatives. For example, in the case of alternative #1 in the
above, R, is given by

Ry = w5 +w, +wy,, (9.3)

since this alternative ranked fifth on criterion 1, first on criterion 2 and
second on criterion 3.

One approach for deriving a set of worths w,, is to use a philosophy
similar to the Data Envelopment Analysis (DEA) method as proposed by
Charnes et al (1978). This approach strives to find for each of a set of
alternatives (budget shifts) a best or highest possible rating subject to certain
constraints on the weights w,,. In the present case, this would amount to
maximizing R; for each area p and budget shift v. Proceeding in this
fashion, a set of multipliers w,, would be determined corresponding to each
(p,v) pair. Cook and Kress (1991) present a modified version of this model
wherein a single set of multipliers can be derived. We adopt this latter
approach here. Stated in basic and general terms, the model for deriving the
w,, takes the form

max z (9.4a)
subject to
R < 100%, for all p,v (9.4b)
Wy — W —8(2) 20, forall ¢ k=1,..,K-1 (9.4¢)
Wy, —8(2) 20, forall ¢ (9.4d)
W, =W, —h,(2) 20, forall &£, £=1,..L-1 (9.4e)
w, —h,(z) 20, forall &, (9.4

where k is the set of criteria under consideration, L is the number of rank
positions for evaluating impacts (L =5 in the present example), and g,,(2)
and A,,(z) are discriminating functions (see Cook & Kress (1991)).

The constraints (9.4b) restrict the aggregate rating of each budget shift v
per program p to not exceed 100%. Constraints (9.4c) and (9.4d) specify
that the extent to which one discriminates between criteria of consecutive
importance (kK and k+1) should be at least some amount g,,(z).
Constraints (9.4e) and (9.4f) specify this same discrimination vis-a-vis rank
position £ and {+1. Finally, the objective of maximizing the
discrimination parameter z is intended to uncover a set of weights w,, that
provide some form of maximum discrimination between consecutive rank
positions and between criteria of decreasing importance k.
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The theoretical properties and rationale for such a model is provided in
Cook and Kress (1991).

Later in the chapter a full example is given illustrating the output from
this model.

9.5.3 Multiple Voters and Levels of Credibility

It is useful to view the structure of the research division in terms of
research areas and departments. Viewed in matrix format, each department is
involved in research in one or more of the areas. Thus, we can view the
matrix as consisting of Os and 1s. There is a 1 in the (d, p) slot of the
matrix if department d allocates part of its budget to work on area p.
Otherwise, there is a 0 in the slot.

Research Area p
Depty t+ 2 3 - 10
d
1 1 0 1 - 0
0 1 1
3 0 0 1 1
6

In the process of gathering management opinions as to the impacts of
budget changes, it must be assumed that each “voter,” say a department
manager, will provide a set of information as described in the previous
sections. The problem arises as to how to aggregate the opinions of say, six
department managers. At least two complicating factors must be considered.
First, for any given research area p only a subset Vp of the voters may
provide an opinion (Vp < 6). Second, because a given voter may have more
knowledge of a research area than some other voter may have, it is necessary
to consider the “credibility” of the opinions expressed.

To illustrate the ideas to be discussed, consider the simple example where
there are 2 departments, 2 research areas, 1 criterion and 2 proposed budget
changes. Furthermore, suppose that any manager’s competence or credibility
is graded at one of three possible levels:

Level 1 - highly competent
Level 2 - competent

Level 3 - low competence
Let the credibility matrix be
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| Research Area

Dept. 1 2
1 1 3
2 2 1

Thus, department manager #1 has full knowledge of area 1 (credibility
level 1), but has poor knowledge of area #2 (credibility level 3). Suppose the
responses for the two managers are:

Manager #1
Fovk
Program| A Budgetf Criterion 1
1 A 2
Ay 1
2 Ay 3
Ay 2
Manager #2
Tk
Program| A Budget| Criterion |
1 A 1
Ay 1
2 Ay 2
Ay 2

That is, manager #1 believes that a budget change A, (e.g. a $100,000
increase) to research area | would have an impact relative to criterion 1
equal to “2” on a 5-point scale, and so on. Manager #2, however, rates the
impact as a “1,” (that is, he/she believes it to have more impact.)

The problem is to compile or aggregate the opinions of the managers into
one overall set of responses.

The approach suggested determines weights to be used in combining
managers opinions. These weights are then applied to the individual ratings
to get a weighted median. We introduce the following notation:

p = index for the research area under consideration
c = index for the criterion under consideration
Jj = index for the budget change under consideration
d = index for the department under consideration
v, = a constant representing the number of

managers who voted on research area p
L, = set of competence levels of managers
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who vote on research area p.

r. = the rating which department manager d gives
to budget change v concerning criterion ¢ and
research area p

W, = a decision variable describing the worth of an
opinion with
¢" ranked competence level (£=1,2,3) that a
department manager
gives regarding a research area.

Using arguments similar to those of the previous sections we can derive
an appropriate set of multipliers W ,W,,W, by solving the following pre-
emptive linear programming problem.

max Mz+) Y > D W, |rr =T
P d

¢ veV
subject to
W, -W,-g(z) 20
W, -, - g,(2) 20 ©.5)

Wi+W,+W, =C
where M is a large constant, V' is the set of all budget changes (note some
members of ' are negative changes and some are positive), g,(.) is a
discriminating function, and C is some scaling constant. The variables in
this LP problem are 7,.,, W,, and z.

Here, the notation £, denotes the credibility level for department
manager d when voting on program p. For example, referring to the
credibility matrix above, ¢, =3. That is, manager #1 is not very familiar
with program #2 and is rated as having low competence or reliability in
terms of his/her vote. Hence, the rating level is 3.

Suppose that g,(z) = z for all ¢, then it can be shown that the solution
to this problem is such that W, = z", W, =2z",W," =3z". That is, the W'
are a type of Kendall score (Kendall (1962)). This being the case, it is not
necessary to solve the above problem to find the appropriate median ratings
Voo, If, for example, C=6, then W =3,W;=2W =1, (Kendall
scores) and the “weighted” median of the {rI‘fcv }4 will yield the required
v

g This approach then permits us to aggregate managers’ opinions into an
overall consensus set of ratings.

In this section the problem of evaluating the relative impacts of various
budget modifications at the program level has been examined. We now look
at the issue of deriving a best set of budget adjustments.
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9.6. BUILDING REALLOCATION

Earlier the idea of a gain index GI.‘;,.2 was presented, specifically

G, = f(R",R).

iy,

Since the R’ are relative ratings rather than numerical quantities (such
as monetary impacts) there is no clear definition for the function f. Since
the R’ arise from a linear model (hence, are a form of linear or additive
utility) a reasonable definition for f is:

G, =f(R",R)=R -R" (9.6)

B
That is, f is the net gain or improvement in the rating by moving
resources v from area i, to area /,. This idea is used below.
At this point it is necessary to distinguish two cases pertaining to the
manner in which monetary units shift between areas:

Case I: Monetary Shifts with no Splitting

In this case it is assumed that if v monetary units are moved from area
P,, that same v unit is moved fo one and only one other area p, (the v
units cannot be split across a set of areas). The following zero-one integer
programming problem can be used to determine an optimal set of budget

shifts:
max ZZZGZIpr;lpz (9.7a)
pl p2 v
subject to
Z zx;m <1 forall p, (9.7b)
p2#pl v
Z Zx;lpZ <1 forall p, (9.7¢)
plzp2 v
D DXty > xS, forall po (97d)
p2Ep v plzp v
X, =0 or 1 (9.7¢)
Here,
v 1if v monetary units are moved from area p, to area p,
Xpip2 = .
0 otherwise

Constraint (9.7b) ensures that at most one level of resources (V) leaves
any area p,and requires that if this happens then this amount go to exactly
one other area p,. Constraint (9.7¢) guarantees that any amount v entering
an area p, can come from exactly one source p,. Constraint (9.7d)
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prohibits resources from both entering and leaving any given research area
D

This integer programming problem can be viewed as a generalization of a
multilevel linear assignment problem with the set of matrices {G, , },.\,
constituting the levels. The generalization arises from the fact that what will
constitute the origins and destinations will come about as a result of the
optimization process rather than being known beforehand. That is, if
resources leave an area p;, and go to an area p,, then p, will, by
definition, be an origin and p, a destination. If one knew in advance which
areas were origins, which destinations and which neither, then constraint
(9.7d) could be ignored and (9.7a),(9.7b),(9.7¢),(9.7d) would be solved as a
standard linear assignment problem.

The situation is further complicated by at least two possibilities which
may arise:

1. It may be beneficial to move resources in either direction between
two areas. Specifically, there can exist pairs of areas (p,, p,) for which
G;l »n >0 and G;z », > 0 as well. This can be the case, for example, if
two areas are such that gaining resources in each is highly beneficial,
while losses in resources from either has little impact;

2. A program p, can be an origin relative to some areas p, (it is
beneficial to move resources from p, to p,), but a destination relative
to other areas p,.

In the particular problem under investigation, a conventional zero-one
integer programming algorithm was used.

Case II: Monetary Shifts with Splitting

In this case it is assumed that when v, monetary units leave p,, these v,
units can be split among several other areas p,. Similarly, the v, units that
enter any area p, can come from several areas p,.

In this situation, the issue arises as to how to measure the rnet loss (gain)
per unit of resources leaving (entering). If, for example, v, =3 monetary
units, rated as Rp in terms of loss to area p,, and if 1 of those units is
moved to area p, and the other 2 units to p,, how should the gains and
losses be evaluated? If we were to argue that the loss per unit to area p, is
R;l/ 3 (or in general R; /v), there arises a scaling problem in the sense that
the maximum value of RZ is 100%. So, if v is large then the loss per unit to
area p, is very small (hence unimportant), and it will always appear
beneficial to move a large amount of resources out of an area and split that
amount among as many other areas as possible. There is an additivity (or
divisibility) problem here.
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There is no clear resolution to this problem, and we therefore do not
presume to be able to provide the definitive answer. We do offer, however,
one possible approach below. In describing this approach, however, it is
necessary to return to the issue of how information is solicited from
management. Recall that the point was made earlier that the methods used to
elicit information from management can take different forms. Clearly, we
get different outcomes in terms of the R depending upon the approach used
to gather the information.

If splitting is permitted, it is reasonable to use the second form of
information elicitation mentioned earlier. That is if v=83, for example, then
three different ratings RII,I,R;I,R;I are obtained using managements
responses to the questions

- What is the impact of the 1st $1 change?
- What is the impact of the 2nd $1 change?
- What is the impact of the 3rd $ change?

Furthermore, define R, = z:_l R’ . So

(=1 P
I_ell’l = R1171’RT§71 = Rll’l + le’ﬁi’l = Rll’l + R1271 + R;I

Hence, ]T}’,] is the “total” impact of a $v resource shift. Using this
definition, the implied average impact per monetary unit is R,/v. This
average value is used below in the model for deriving optimal resource
shifts.

With this in mind, we generalize the definition of the G;l » 0

12 V,.

G =

V23 (98)

G;‘l;zz is then the average net benefit of each monetary unit moving from
area p, to area p, if p, loses v, units in total and p, gains v, units in
total. Define the integer variables xv‘"z = number of monetary units flowing
directly from area p, to area p, where v, leaves P and v, enters p,.
Define also the variables
, _{l if v, monetary units leave p,

h 0 otherwise

vy

{1 if v, monetary units enter p,
Py -

0 otherwise

An optimal set of budget shifts can then be derived from the following
linear integer programming model:
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max » > YN G (9.92)

Pt M

subject to

Dy =y forallp,v, (9.9b)
P "

ZZx;‘I‘,; = vz, forallp,,v, (9.9¢)
i

Zy;];‘] +>zp 21 forallp, (9.9d)
v v,

DI ITTID IR’ 09
b P V2

vy > :
x> 20 and integer

Vo 2, € {01}

Constraint (9.9d) ensures that resources can either flow into or out of any
given area (but not both) and in only one amount v. Hence, for any p, at
most one variable in the set {y, .z, }, is positive. Given this, constraints
(9.9b) and (9.9¢) balance the flows in and out of areas. Finally, constraint

(9.9¢) guarantees the equality of total resources leaving all areas with total
resources entering all areas.

9.7. APPLICATION

A particular organization examined involved 9 departments with 5
program areas. Total existing budgets for those areas are:
P, - $3.5 million
P, - 7.3 million
5 - 4.6 million
P, - 9.3 million
D5 - 8.2 million
Information was gathered from the 9 department heads involving:

(a) the ratings of the impacts of budget changes vis-a-vis four criteria. In
this particular case a three point rating system was used (as opposed to a 5-
point scale). The data provided shows the perceived impacts of decreasing a
budget by $0.5 million, $1 million or $2 million, and increases of these same
amounts. It is noted that this data was collected with the intention of
applying the restricted model (9.7a)-(9.7¢).

(b) prioritization of the 4 goals.
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Table 9-4 presents the ratings of the various goals by the 9 voters. A
consensus model (Cook and Seiford (1978)) was used to aggregate these into
a single ranking (Goal 1 > Goal 2 > Goal 4 > Goal 3). In Table 9-5 the
aggregated or median of the 9 voters opinions as to the impacts of budget
shifts is given. Applying model (9.4a)-(9.4f) the rating of the various budget
shifts for the different programs were obtained, and appear in Table 9-6. In
the application of the restricted model (9.7a)-(9.7¢) (no splitting of monetary
shifts) there are three alternative optima as shown in Table 9-7.

Table 9-4. Ratings of Goals by Voters (5-point Scale)

Goal
Voter Gl G2 G3 G4
a 1 1 2 4
b 2 3 1 5
c 1 2 1 1
d 1 2 5 2
e 3 3 4 2
f 2 2 3 5
g 3 1 5 4
h 1 2 4 1
i 1 3 3 3
Table 9-5. Budget Change Impacts
Budget Goal
Program change 1 2 3 4 P3 +2 —- — — —
pl +2 — — — — ($5.5million) +1 2 2 1 2
($3 million) +1 3 2 2 3 +53 3 2 3
+.5 3 2 3 3 -53 3 2 2
-5 3 2 3 2 -13 2 2 1
-1 3 2 1 2 3 1 2 1
-2 3 1 2 1 P4 +2 - —_ = —
P2 +2 — — — — ($54 million) +1 2 3 1 2
($6.6 million) +1 3 2 3 2 +53 3 2 2
+1 3 2 3 2 -53 3 2 2
+.5 3 3 3 3 -1 2 3 1 1
-5 3 3 3 2 21 3 1 1
-1 2 2 3 2 PS5 2 - — — —
-2 1 1 3 1 ($104million) +1 3 2 2 3
+53 3 2 3
-53 3 2 3
-13 3 3 2
23 2 3 2

An additional set of data was collected to be used for the general model
(9.92)-(9.9¢). We do not bother to present the detailed data here, but do point
out that the optimal budget shifts arising from this (as shown in Table 9-8)
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are quite different from those of the restricted model. It is noted that
complete matching does not need to occur in this model. For example, two
programs each lost $2, while three programs gain, with some gains being in
smaller amounts (in two of the three cases).

Note that an optimal ranking of the goals when these 9 opinions are
combined is Goal 1 > Goal 2 > Goal 4 > Goal 3. That is, the goals GI,
G2, G3, G4 are ranked 1,2,4,3 respectively. A consensus ranking method
was used to derive this overall ranking.

Table 9-6. Aggregate Ratings for Program Budget Combination

Alternative Rating
P2B6 100.0 -2-2 62.57
-3-1 92.8 * -5-6 62.57*
-4-6 92.8 -1-2 61.13
-4-1 87.04** -1-1 62.13
-3-2 84.17 -5-2 61.13
-2-1 82.73 -3-4 58.25
-1-6 81.29** -4-4 58.25
-3-6 81.29 -4-3 58.25
-1-5 81.29 -1-3 56.81
-4-5 81.29 -2-4 53.94
-4-2 75.53 -5-5 53.94
-2-5 74.09 -5-4 52.50
-3-5 72.65 -5-4 52.50
-5-1 69.77 -3-3 52.50
-1-4 62.57 -2-3 48.18

Notation:

P2B6 - Program #2 & Budget change #6 (i.e. - $2)
P3B2 - Program #3 & Budget Change #2 (i.e., +$1)
Note:

* $2 moving from P5 to P3

** §2 from P1 to P4.

Table 9-7. Alternate Optimal Solutions

Scenario # Solution 1 Solution 2 Solution 3
1 $1 from P5 = P3 — —
$0.5 from P2 = P4
2 $2 from P5 = P3 $1 from P5 = P3 $2 from P1 = P3
$2 from P1 = P4 $2 from P1 = P4 $2 from P5 — P4
3 $2 from P5 = P4 $2 from P5 — P3 $1 from P5 = P3

$1 from P2 = P3 $0.5 from P2 = P4 $0.5 from P2 = P4
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Table 9-8. Optimal Solution — Splitting Allowed

Program # $ leaving $ entering Final Budgets
1 — $0.5 $4

2 $ — 5.3

3 — $1.5 $6.1

4 — 2.0 11.3

5 $2 — 6.2

9.8. CONLUDING COMMENTS

We have presented a model for evaluating budget shifts among a set of
programs or research areas, where the impact data are ordinal. Such data is
typical of this environment insofar as impacts on broad general research
initiatives are difficult to quantify. In the process of making budget shifts
among research areas, there are implied impacts on the sizes of the budgets
held by the departments. If, for example, a department derives its entire
budget as a result of research carried out in one area, then losses or gains in
that area may have immediate severe consequences vis-a-vis that funding,
On the other hand, if a department carries out research in a number of areas,
some of which are down graded (budgets reduced) while others are
upgraded, there may be no effect on that department’s funding at all.

It may be possible to minimize budget change impacts at the department
level (either by budget increases that can cause staff shortages, or decreases
that may lead to staff layoffs) using a goal programming approach. Possible
goals may be (a) to retain department budgets at current levels, (b) avoid
layoffs in departments where staff may need to interact with other
departments, (c) avoid increased staff needs of a type that is difficult to
acquire, and so on. While these department-level impacts have not been
addressed here, they are by no means trivial considerations. They are,
however, a second level issue worthy of later study.
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APPENDIX A: BENEFITS

Criteria Sub-criteria or Interpretation
1.Enhancement of energy - development of high yield technologies
efficiency

- initiatives which will reduce energy demand
- development of technologies for utilizing residues

2. Enhancement of - initiatives which provide or strive
diversification/alternative for new energy sources
energy sources - provide for flexibility in or adaptability

of existing and new facilities

3. $ Saved internal to organization - cost reduction devices
- new technology to replace obsolete equipment

4. Impact on environment - reduction of emissions into water
and atmosphere
- reduction ofrisk of nuclear accidents

5. Enhancement to internal - provides training & develops expertise

technical capability & - provides technical resources

research profile (software, equipment, etc.)
- builds linkages to external research
community.

6. Enhancement to research - impact on research status among other utility
companies

Profile as viewed by the

external community - impact on profile abroad

7. Economic impact on - job creation outside organization

external community - $ savings to public & industry

created by energy efficiency devices

8. Impact on nuclear - influence on nuclear
performance station maintenance, etc.



Chapter 10
RESOURCE CONSTRAINED DEA

10.1. INTRODUCTION

In certain performance measurement situations it is required to select a
subset of alternatives from a given set of choices, and in a resource-
constrained environment. When both multiple outputs and inputs are
involved, the DEA model structure offers the opportunity to make choices
based upon optimizing aggregate output relative to aggregate input.

In this chapter we examine two examples of such resource-constrained
settings. The first involves choosing from a set of projects, a subset which is
to be implemented. Each project is expected to make use of input resources
of various types, to produce a set of outputs. In essence, our approach treats
each subset of the projects that could feasibly be selected within the resource
constraints as a single, composite project. These composite projects are then
evaluated, by data envelopment analysis, against a 'production technology'
defined by the available projects. In fact, evaluation and selection are
combined in a single model by placing the data envelopment analysis model
within a mixed-binary linear programming framework. This model is
illustrated using Oral, Kettani and Lang's (1991) data on 37 R&D projects.

The second application involves selecting a set of best or preferred sites
for planned retail facilities. Again, the model is concerned with choices in a
resource-constrained setting.
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10.2. PROJECT PRIORITIZATION: A RESOURCE-
CONSTRAINED DEA APPROACH

10.2.1 Introduction

The application discussed here falls firmly into the multi-criteria decision
making arena. Tt involves the selection, from a larger set of proposals, of a
subset of projects to be undertaken. Individual projects are expected to
produce benefits under a number of headings and, in so doing, will make use
of resources under a number of headings. It is desired to establish a subset of
projects that can be justified to all concerned as making the best use of the
available resources.

This prioritization problem, in various forms, has received substantial
attention over the past several decades. See Martino (1995). Our approach to
the problem has its origins in Bunch et al. (1989) but is specifically related to
that of Oral, Kettani and Lang (OKL) (1991). OKL's point of departure is
identical to ours: the CCR DEA model.

In the interest of fairness to each of the proposed projects, OKL
erect a rather complex multi-stage collective evaluation and selection model
on this foundation. Our approach, which combines evaluation and selection
in a single stage, remains substantially faithful to CCR DEA, and is
somewhat less complex.

10.2.2 Modelling Preliminaries

Aset P(={l...k...| P |}) of project proposals is to be evaluated over a set
O(= {1] |O |}) of outputs and a set I(= {11 |1 |}) of inputs. Project
k is characterized by the magnitudes of its outputs y, (= 0) to be produced
and its inputs x,,(= 0) to be consumed. There is a limit , on the quantity of
input { available to the set of projects as a whole, and we assume that at
least one project satisfies these limits. It is desired to select a subset of
projects, s < P, which can be justified as making the best use of the
available resources.

It is assumed that all the projects are, in principle, supportable; all would
be undertaken in the absence of the resource constraints. It is also assumed
that the projects are neither synergistic nor interfering, in the sense that, if
both projects  and [ were selected, the outputs thus produced would be
the sum of their respective outputs and similarly for the inputs used.

If some function, 8, =H(xkﬁ,...,xk,.,...,yke,...,ykf,...) were available,
such that it were possible to arrive at an ‘objective’ evaluation &, of each
project, a net benefit say, this could be used to rank the projects. Further, s
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could be obtained in a relatively straightforward manner. A natural
representation for this situation might be as a binary knapsack problem along

the following lines:
max zkEP ¢ G,

subject to
Doaxe <L iel (10.1)
¢, €{0,1} keP

Difficulties arise because of the non-availability of &, or there might at
least be disagreement among the various interested parties concerning its
form and detail.

A DEA-based approach circumvents these difficulties by allowing each
project proposal to evaluate itself, relative to all the projects under
consideration. Essentially, each project k is allowed to rate itself as highly
as possible via a kind of benefit/cost ratio:

h, = (z‘;e() ukiyk/) /(Ziel ViXi )
by choosing the weights #,;and v, to be applied to its outputs and inputs,
respectively. The only restriction imposed is that no project p is allowed to
receive a rating greater than 1 with those weights. This self-evaluation is
achieved by solving the following linear program on behalf of each project

k , as per Charnes et al. (1978). (Also see Charnes et al. (1991) for a formal
treatment of situations where one or more of X;;, y,; might be zero.):

max A, = Zje()ukiyki keP
subject to

D VK =1 (10.2)

_ <
Zje() Uy Ziel ViXpi = 0 pEe P
Uy sV >0, je0,iel

While self-evaluation in this way is entirely notional, there is an implicit
fairness in the process. The ratings achieved depend only on the data for
each project relative to the data for the other projects.

The values of A, might now be used to rank the projects, but the problem
of how to select a subset to support within the resource constraints persists.
It is tempting to simply replace 6, by 4, in the binary knapsack problem of
(10.1). However, this would, in general, be misguided, as the following
example indicates. Imagine the situation where there are a number of
projects, each with a single output and a single input. Three of the projects,
A, B and C, have the following values for x , ¥, and % ,respectively:
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A 400 400 1.00
B 300 225 0.75
C 100 26 0.26

It can easily be seen that from the viewpoint of the knapsack model,
project A is inferior to a combination of projects B and C. However, the
latter combination is obviously inferior to A, in terms of the quantity of
output produced per unit of input, and should never be chosen in preference
to A.

Clearly, while A, may provide a meaningful ranking of the projects, to
the limits of the discrimination available given an upper limit of 1, it is not
appropriate to treat these values additively as in (10.1). In order to retain the
apparent flexibility and fairness offered by a DEA-based approach, we
combine evaluation and selection into a single prioritization model, as
described in the following section.

Before proceeding, however, it is worth pointing out that our proposed
model attempts to draw a compromise between what might be regarded as
two opposing views of optimal selection in this context. One view is the
traditional benefit/cost ratio approach to evaluating a set of choices (e.g.
projects). This approach concentrates on the output per unit of input; project
o is thus preferred to project [ if the benefit/cost ratio of the former
exceeds the latter. No direct consideration of budget limitations on the inputs
is given at the evaluation stage; these must, somehow, be considered at the
selection stage.

An alternative view is that typified by the usual mathematical
programming approach where Dbenefit/cost ratios are not a direct
consideration; rather, satisfying budget constraints on the input resources
while maximizing some measure of total output (benefit) is the goal. Said
another way, if two groups of projects both meet the resource constraints
(perhaps more than one such constraint), and yield equal aggregate benefits,
we would be indifferent as far as the desirability of these two groups was
concerned. From the benefit/cost viewpoint, however, the group with the
smaller cost would be preferred. So, on the one hand (the benefit/cost
approach), resources have a value and the less used, the better. On the other
hand (the mathematical programming approach), we essentially assume
resources have no value, except when we try to exceed their budgetary
limits. What we propose herein is an approach to evaluation and selection
that tries to capture both of these aspects.
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10.2.3 A Prioritization Model

Given that the individual projects are independent, neither synergistic nor
interfering, any subset s of the set P of projects can be thought of as a
single, composite project. The outputs of this composite project Y are the
combined-by-addition outputs of its constituent projects; 51m11arly for its
inputs X ;. The focus of interest now, of course, is an evaluation of each
composite project relative to the set of all such composite projects. This
latter set we will call TI(P) and is essentially the so-called power set of P
(Halmos (1960)) (excluding the empty set ¢). The individual projects
constituting the highest rated composite(s), satisfying the resource
constraints, are then candidates for selection. Thus, noting that
Y, = Zkes yyand X, = Zkﬂ X, equation (10.2) becomes:

max h = Z_isO Uy, s e II(P)
subject to

2,51 wi%si = (10.3)
ZieO Uy = Luier Vsi*pi <0 p eIl(P)
u;,v, 20 jeO,iel

8 ?

As the number of elements (composite projects) in IT(P)is 2" -1,
which is large even for relatively modest | P |, (10.3) does not represent a
practical proposition. However, as a first step toward practicality, the
number of " <" constraints in (10.3) can be reduced from 2" —1 to |P).

Imagine dividing the " <" constraints in (10.3) into two groups: the first
group is associated with the singleton subsets of P ie. {1},{2}..{ P},
while the second group is associated with the non-singleton subsets e.g.
{1, 2}, {1, 3}, etc. (10.3) can then be written as:

max h, = Z gy SE II(P)

subject to

Qe Vi =1 (10.4)
Z,E() Vypl ZIGI si pl = 0 p (= P

Z/e() s ql_zxel si<gi <0 qeTI(P)-P'
U Vy 2 >0 jeO,iel
where P'= {{l}, {2} {| P |}} , the set of all singleton subsets of P .
It is evident that any constraint in the second group of " <" constraints is

an additive combination of two or more constraints in the first group. Thus,
if the constraints in the first group are satisfied, then, so must any constraint
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in the second group. Therefore, the second group contains only redundant
constraints and can be removed. The basic prioritization model for
composite projects thus becomes:

max h = Zjeo uy,  sell(P)

subject to

Do VX =1 (10.5)

zjeO UV — Ziel VX, <0 peP
u,v, 20 je0,iel

82
We now restrict the scope of the index s in the objective function of
(10.5) by recognizing that, in this context, interest would be restricted to a
particular subset of TI(P). This subset Scan be characterized by the
following two conditions:
Condition (a): For all s € S, the constraints on all resources are satisfied:

Viel, zke‘yxki <L,

Condition (b): For all s €., no project can be added without violating
Condition (a):
Vp € P —s,3i € I such that zkew{p} x,; >L,.

Condition (a) is an obvious requirement while Condition (b) follows from
the observation that all projects are supportable. Any composite project to
which a further project could be added without violating Condition a) would
be so augmented. Thus, the proposal is to look only at those composites that
absorb at least one of the resources up to its usable limit; i.e. any amount of
that resource left over is not sufficient to permit inclusion of another project.
Then, within that subset of composites, one finds the composite whose
aggregate benefit to aggregate cost ratio is maximized.

Rather than generating the set S explicitly, and subsequently evaluating
each of its members via (10.5), we do so implicitly by placing (10.5) within
a mixed-binary non-linear programming framewotk (10.6), below. Here, ¢,
is 1 if project kis included in the composite s*, and 0 otherwise.
Optimization now takes place over ¢,,u; and v,.
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max z jeO U; (Z keP ckyk/')

(Cx.#;,%;)

subject to

Ziel vi(ZkePckxki) =1

Z,-Eo Uiy _Ziel vx, <0 peP

Zkep cx, +l =L iel (10.6)
(I-¢,)x,+Mc, +Md, 21, +1/M kePjiel

> dusI|-1  keP

¢.d, €{0,1}  kePjiel

u;,v;,0, 20 je0O,iel

27

M>>0

Before going on to linearize (10.6), some explanation is in order. The
model now seeks the best evaluated subset satisfying Conditions (a) and (b),
above. Obviously, Condition (a) translates directly into the constraints:

Zke[) axy +h =1L,
where /, is the slack in resource i . Condition (b) is a little more difficult but
is implemented by the constraints:
(I-¢)x,+Mc, +Md,, 21, +1/M keP,iecl

> . d.<Il-1  keP.

The effect here is to require that at least one of the resource slacks, /;, be
too small to allow another project into s". For a given s € S, consider the
first of these constraints for some k es, i.e. ¢, =1. The constraint is
obviously satisfied because of the positive multiple of M on the left hand
side. Now, consider the situation for some k¢ s, i.e.c, =0, and x,, </,.
The corresponding first constraint can be satisfied by setting d,; =1, thus
achieving a positive multiple of M on the left hand side. However, the effect
of the second constraint is to ensure that at least one of the variables
d,>dy,...dy, remains at zero. Hence, 3i € I'such that x,, 2/, +1/Mas
required.

While software capable of solving (10.6) is available, it can be linearized
to bring it within the capability of more readily available mixed-binary linear
programming software. This linearization involves the following changes of
variables: a,, = ¢,u; and b, = ¢,v,.

Model (10.6) now becomes:
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max Z(kel’,je()) Ay Yy

(O -Gy b o4 797)

subject to

Z(kel’ iel) bki X = I

Z/e() Iypl Zzel ipi <0 pEP

Zkel, cx, +1. <L iel

(1-c¢)x, +Mc, +Md,, 2. +1/M keP, iel (10.7)

> du<lIl-1 keP

¢.d,€{0,1}  keP,iel

a, >0

a, <MclkeP, jeO

u; = ay

b, 20

b, <Mc,

v, 2 b,

v, <b, +M(l-¢,)

M>>0
where the two sets of constraints highlighted by the vertical bars serve to
connect the new variables a,,b,, to the original variables ¢,,u, and v,.

Before applying this model in the next section, it is important to note that

the fairness in evaluation implicit in (10.2) is retained in our prioritization
model. Each project proposal thus has an equal right to participate in the
definition of the 'production technology' as well as to combine with other
projects to be evaluated against said technology and to be selected. This

process depends only on the data for the projects relative to each other and
on the available resources.

keP,iel

10.2.4 An Application

OKL (1991) demonstrate their approach to collective evaluation and
selection in an application relating to the Turkish iron and steel industry.
Here, 37 projects are available, each of which is predicted to provide
benefits under five headings:

e direct economic contribution to the iron and steel sector through
improved quality and productivity, cost reductions, etc.
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e indirect economic contribution to sectors depending on the iron and steel
sector through better quality, lower prices, etc.

o technological contribution through better use of imported technology,
etc.

e scientific contribution in the sense of better use of existing scientific
knowledge, advancing the body of scientific knowledge, etc.

e social contribution in terms of job creation, better working conditions,
higher living standards, etc.

In achieving benefits under these headings, each project would require a
budget allocation from a single monetary resource. The data for the projects
are shown in Table 10-1.

The total resource available to the selected projects is 1000.00 units. The
average resource requirement over the 37 projects is 67.99. It could therefore
be expected that s * would contain in the order of 15 projects.

On solving (10.7), using AMPL/CPLEX, with the data summarized in
Table 10-1, s *= {1, 6, 14, 15, 16, 17, 18, 23, 26, 27, 31, 32, 34, 35, 36, 37}
with a collective rating (h_\,) of 0.700 and a total resource use of 962.8 units.
For purposes of comparison, OKL's selected subset is identical except our
projects 6 and 32 are replaced by 21 and 29, with a resource use of 964.7.
We thus agree on 14 of the 16 projects selected. Their selected subset has a
collective rating of 0.690 when evaluated by (10.5).

It should be emphasized that the weights u;,v; do not reflect any a
priovi judgments concerning their absolute or relative values. If it is
considered important to reflect such judgments within the prioritization
process, further constraints can be added in the manner of Thompson et al.'s
(1986) 'assurance region’ extension to the CCR DEA model. In general, we
can consider (10.7) as augmented with a possibly empty set of constraints
AR(u,,v,)s . These represent any restrictions on the weights and their inter-
relatlonshlps that the decision maker(s) deem appropriate.

By way of sensitivity analysis for our solution to OKL's problem, we
have experimented with various forms of assurance region augmentation to
(10.7). As an illustration, AR(u,,v,)s of the form:

Uj 2 Ujp 2 U 2 Uy 2 U s

where jl,..., js, a permutation of the integers {1,...,5}, reflect weak
orderings of the weights #;. Taking all such weak orderings into account
identifies a robust 'core' of 13 projects {1, 14, 16, 17, 18, 23, 26, 27, 31, 34,
35, 36, 37} which is invariably selected. It also identifies a 'margin' of 6
projects {6, 11, 15, 21, 29, 32} which are selected in various groups of 2 or 3
according to the specific ordering imposed on the weights.
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Table 10-1. Data on 37 research and development projects relating to their expected
performance on five criteria and their costs

R&D Indirect Direct Technical | Social Scientific | Proj. Cost
1 67.53 70.82 62.64 4491 46.28 84.20
2 58.94 62.86 57.47 42.84 45.64 90.00
3 22.27 19.68 6.73 10.99 5.92 50.20
4 47.32 47.05 21.75 20.82 19.64 67.50
5 48.96 48.48 34.90 32.73 26.21 75.40
6 58.88 77.16 35.42 29.11 26.08 90.00
7 50.10 58.20 36.12 3246 18.90 87.40
8 47.46 49.54 46.89 24.54 36.35 88.80
9 55.26 61.09 38.93 47.71 29.47 95.90
10 52.40 55.09 53.45 19.52 46.57 77.50
11 55.13 55.54 55.13 23.36 46.31 76.50
12 32.09 34.04 33.57 10.60 29.36 47.50
13 27.49 39.00 34.51 21.25 25.74 58.50
14 77.17 8335 60.01 41.37 51.91 95.00
15 72.00 68.32 25.84 36.64 25.84 83.80
16 39.74 34.54 38.01 15.79 33.06 35.40
17 38.50 28.65 51.18 59.59 48.82 32.10
18 41.23 47.18 40.01 10.18 38.86 46.70
19 53.02 51.34 42.48 17.42 46.30 78.60
20 19.91 18.98 25.49 8.66 27.04 54.10
21 50.96 53.56 55.47 30.23 54.72 74.40
22 53.36 46.47 49.72 36.53 50.44 82.10
23 61.60 66.59 64.54 39.10 51.12 75.60
24 52.56 55.11 57.58 39.69 56.49 92.30
25 31.22 29.84 33.08 13.27 36.75 68.50
26 56.64 58.05 60.03 31.16 46.71 69.30
27 50.40 53.58 53.06 26.68 48.85 57.10
28 30.76 32.45 36.63 2545 34.79 80.00
29 48.97 54.97 51.52 23.02 45.75 72.00
30 59.68 63.78 54.80 15.94 44.04 82.90
31 48.28 55.58 53.30 7.61 36.74 44.60
32 39.78 51.69 35.10 5.30 29.57 54.50
33 24.93 29.72 28.72 8.38 23.45 52.70
34 22.32 33.12 18.94 4.03 9.58 28.00
35 48.83 53.41 40.82 1045 33.72 36.00
36 61.45 70.22 58.26 19.53 49.33 64.10
37 57.78 72.10 43.83 16.14 31.32 66.40

10.3. CHOICE OF DEA MODEL

The choice of the CCR DEA model as the basis for our prioritization
model implies that its underlying empirical ‘reference technology’ or
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‘production possibility set’ is suitable to our purposes. See, for example,
Grosskopf (1986) and Maindiratta (1990).

An (empirical) production possibility set is a declaration of the totality of
potential production possibilities that might plausibly be observed. In our
case, this is based on the evidence of the finite collection of production
possibilities that are to be observed. In a situation where there is a set
D= {l...d... | D l} of decision making units (DMUs) where DMU d has
produced a vector of outputs Y, =(Y,...Y,...Y,,) from a vector of
inputs X, = (X ;.. X ;- X)) » then the CCR production possibility set,
TR (D) can be represented as:

{(X,Y) e RNy AX, <X, Y AY,2Y,4, 20,YdeD}(10.8)

(7

We then identify the set D of DMUs in (10.8) with our set of composite
projects IT(P), where the latter obviously contains the individual projects as
the singleton subsets of P. It can then be immediately observed that
T®(II(P)) contains non-negatively scaled versions of all projects,
individual and composite. This is implicit in (10.3), above, which is the
starting point for our prioritization model.

The argument behind the derivation of model (10.5) from (10.3) can now
be seen. Imagine the set of input/output vectors corresponding to the
composites in [I(P) divided into two subsets: those associated with the |P|
singleton subsets {1},{2},...{| P]} (i.e. the individual projects themselves),
and the remainder associated with the non-singleton subsets (i.e. the
composites).

We can therefore write the vector (ZPEH(P) 4,X F’szH(P) ,Y,) in
(10.8) as

(ZpeP »%p qu(H(P)P) q q’zpp pY qu(l'[(P)P) (] ) (10.9)

where P'= {{ },{2},{| P|}} Now, with the convention that an index ¢
identifying a composite in (10.9) also identifies the subset of projects
comprising that composite, any 4, # 0 in (10.9) can be set to zero by the
algorithm:

Vpegl, > A4, + 4,

This follows from the way that input/output vectors corresponding to
composites are constructed, i.e., by addition of the input/output vectors of
the projects themselves. Repeated application of the above algorithm for all
ﬂ, #0 would serve to drive all l to zero. TR (TI(P)) is essentially
equlvalent to T°®(P) . The latter is thus capable of representing the former.

A key feature of the CCR reference technology, by virtue of the
unbounded (from above) multipliers /11, , is that constant returns to scale are
assumed. We regard this as appropriate here for two main reasons. Firstly,
there seems little merit in rewarding projects for being relatively efficient
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technically but at an inappropriate scale. See Banker et al. (1984) in terms of
their proposed conversion of inputs into outputs. Secondly, the effect of the
resource constraints will ensure that the composites in S will operate at a
similar scale, subject only to the granularity inevitable in combining discrete
projects.

However, if it were required to take scale aspects into account, this would
typically be done via the Banker, Charnes and Cooper (BCC) (1984)

production possibility set, T°°°(II(P)) . This differs from T (TI(P)) in

that, as well as the lower bounds on the multipliers ﬂ,p , there is a 'convexity'

constraint in the form of A =1 on their sum. It can easily be seen
pell(P) P y

that and TP““(II(P))and T®““(P) are not equivalent; the composite
project equivalent to the sum of all the individual projects is in the former,
by definition, but not in the latter.

Importantly, Kao (1998) shows that T°““(II(P)) is equivalent to the
Koopmans production possibility set (see Grosskopf (1986)) T " (P)
which, itself, differs from T°®(P) by the incorporation of upper bounds
A, < 1on the multipliers. It is a straightforward matter to modify (10.5) and,
hence (10.6) and (10.7), to implement T*°™™™* (P) rather than, T°* (P),
if desired.

104. SELECTING SITES FOR NEW FACILITIES

10.4.1 Introduction

Site selection for facilities is an important problem that has been studied
extensively and reported on widely in the literature. Among the numerous
applications are location of facilities such as fire stations, ambulance depots,
and police stations. See, for example Savas (1969). These applications are
aimed primarily at minimizing the distances between supply and demand
centers. A related class of site selection problems pertains to coverage; an
example is the deployment of health care clinics in rural areas (Eaton et al.
(1982), and Calvo et al. (1973)). Here, the objective is to choose sites for
clinics so as to optimize some function of total output (e.g. patients served),
and generally in a resource constrained setting. In this situation, travel
distance (or time) by the consumer is not directly an objective, but may be
imposed in the form of a constraint.

Many existing site selection models tend to view situations from a uni-
dimensional perspective. In Eaton et al. (1982) , for example, total patients
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served is the output of interest as opposed to defining different classes of
outputs—outpatient clients, critical care patients, expectant mothers, etc. In
this multi-output situation, one type of patient may impose different resource
requirements than another type. As a result, this multi-dimensional setting is
complicated by the fact that often there is no well defined rate of substitution
between the different output types. One generally cannot say, for instance,
that the resource requirements for one outpatient is equal to one-third the
requirements for a critical care in-patient. Therefore, the multi-output setting
cannot be converted to a single output situation. On the resource or input
side, a similar situation can prevail. Different classes of inputs (e.g., staff
types, equipment, physical facilities) may exist, for which there is not a
common rate of exchange. Specialized equipment (e.g. for radiation
treatments) will be used for only certain patient types.

As a departure from the uni-dimensional philosophy of traditional set
covering approaches to site selection, a number of authors, including Fisher
and Rushton (1979), have advocated the development of analytical
techniques for handling the multi-criteria nature of the problem. One such
multi-criteria methodology is the data envelopment analysis (DEA)
technique. Thompson et al (1986) presented one of the earliest DEA
applications involving the evaluation of sites for a high-energy physics lab in
Texas. Later, Desai and Storbeck (1990) looked at the concept of relative
spacial efficiency when two measures of access are involved, namely total
travel distance and least number of people not covered. Balakrishnan et al.
(1994) apply a two stage technique to choosing sites for retail outlets. In the
first stage, a set of location—covering scenarios or configurations is
generated, with each configuration satisfying given adequacy requirements.
Then, in the second stage, viewing a configuration from a multi-criteria
standpoint, DEA is applied to generate a score for that configuration.
Athanassopoulos and Storbeck (1995) provide a comparative evaluation of
DEA and the free disposal hull (FDH) method in the context of site
selection. Again, they generate a candidate set of configurations of units, and
then treat those configurations as the decision making units.

In the current section we demonstrate how DEA can be used to select
sites for facilities in a resource constrained setting. As a practical setting for
the model development, we examine the problem of selecting sites for new
branches of a retail housewares and hardware store chain. We present a
variation of the DEA model for choosing a best subset of a set of potential
sites. This variation builds on the model of Section 10.2. This model is used
to do a detailed case analysis of the selection of sites for retail stores.
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10.4.2 Site Selection for a Retail Store Chain

A certain national chain of stores sells a wide range of houseware and
hardware products. Products can generally be classified into a few major
groups: (a) self-service housewares, (b) self-service hardware, (c) counter
sales of automotive parts, (d) counter sales of electronic devices (televisions,
stereos, VCRs, etc.), (e) furniture and appliance sales. The chain also
operates a catalogue shopping arm. The company currently operates a set of
15 stores across the country, and wishes to select a set of new locations to
expand its operation.

In selecting a location for a store, it can be argued that the merits of this
location would be judged relative to the outputs generated (e.g., sales of the
different classes of products) versus the inputs consumed (resources needed
to support the facility). In simplistic terms, it is the profitability of the
location that would determine its relative desirability. The difficulty which
can arise in a setting such as this is that one type of product can place
different demands on resources than another type. For example, self service
products require little staff involvement, versus sales of furniture and
appliances or even automotive parts where product knowledge is a
prerequisite on the part of the sales person. Thus, it is necessary to have a
forecast of sales potential in different product classes as opposed to simply a
forecast of aggregate sales.

While it is the case that for each potential location, a forecast of
aggregate sales dollars is needed, some caution must be taken in obtaining
this forecast. Arguably, one could develop a forecast for each stock keeping
unit (SKU) within a class, either in the form of monetary sales or units of the
product. This could be done in the form of a regression model with
independent variables such as population size, customer demographics, etc.
For the stores in question, however, each class of products contained a large
number of SKUs. Moreover, sales figures for a sample of SKUs examined
showed a high degree of variability across the stores, and poor fits result
from any of the models attempted.

Forecasting in this situation, for a large class of items, resembles the
problem of developing aggregate production forecasts for workforce
planning purposes in manufacturing. Essentially, one converts a collection of
products into a single pseudo-product, representing the production hours
consumed in each period. One then projects into the future, obtaining a
forecast of upcoming labor needs. The analogy to aggregate planning in the
current setting, would be to view net monetary sales (sales revenue less,
product cost), as the output for a product class. It would then appear that it is
net dollar sales that one should attempt to forecast for any new proposed
location. Here, however, net sales is highly variable among the existing
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locations, and appears to have little correlation to any of the logical predictor
variables (population size, customer demographics, etc.) This may be due, in
large part, to the fact that the selling price charged for an individual SKU can
vary widely from one store location to another, due to promotions offered at
the store level, discounts obtained when the product was purchased, etc. As
well, the proportional mix of SKU volumes within a class can vary between
stores. An examination of the average price per unit of product in a class
(across the analysis sample of stores) showed a high degree of variability,
thus contributing to the high variance in total sales revenue.

For aggregate sales planning purposes, the most predictable variable was
the total units of products sold. As will be seen in a later section, this
variable is highly correlated to certain predictor variables that are available
for the proposed locations. Hence, it is this variable which we forecast. It is
notable that if operational efficiency were at issue here, it is precisely this
total units variable that one would choose to represent outputs, since it
reflects staff workload. Workload is more a function of the number of
transactions than of the profitability of those transactions. In our case,
however, it is profitability, or return on investment, that is more correctly the
issue in evaluating potential locations. Clearly one can represent aggregate
net dollar sales as the product of total units sold and average profit per unit.
Specifically, if y, is the forecast of total demand (in units) for product
group r atsite k, and if g, is the average net sales (selling priceless cost)
per unit of product in that group, then the expected aggregate net sales from
site k& is g MY Here R denotes the set of product groups. However,
as discussed above, since the average price, (hence, average net sales), is
highly variable from one location to another, £, is not explicitly available,
although bounds are obtainable. It is this feature of the revenue function
which points to DEA as a model structure for selecting sites. We discuss this
below. On the input side there are two types of factors to be considered in
terms of servicing customer demand (the outputs).The first type of input or
influence is the resources available. This could be viewed in various ways,
but the two most logical forms of resource are:

1. Initial capital outlay (construction and/or redecorating expenses),
which is influenced by the size of the facility;

2. Annual operating expenses, including salaries, utilities, rental, etc.

Obviously, one could separate salaries in the form of total FTE staff
numbers, but staff mix becomes an issue and is a function of the product mix
problems discussed earlier.

A second level of influence factors are those that pertain to customer
demographics, as well as those involving the influence of competition. To an
extent these factors are part of the forecasting model for aggregate unit sales,
although, for reasons to be discussed in a later section, the regression model
may not include all such variables. For this reason, certain
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(nondiscretionary) factors may be included in the DEA model, rather than
directly within the forecasting model.

Again, in notational terms if x, denotes the amount of input or factor 7
available at store location k, and v, denotes the price or value associated
with one unit of input x,,, then the total resources dedicated to location k is

oy Vi%y- Here I denotes the set of all inputs. This expression is
somewhat less transparent than is true of weighted outputs zreR MYy, In
that we are mixing economic and non-economic factors on the input side. (In
the application to be discussed, a single nondiscretionary variable, level of
competition, is added on the input side.) Thus, it is useful to view the v,
merely as multipliers, and not directly as prices in the same sense that the 1,
can be interpreted.

10.4.3 A DEA Based Model

Consider the situation where K| existing facilities are in place, and let
{¥4},ex denote the R -component vector of outputs produced by facility k.
Let {x,},, denote the I -component vector of inputs. In the site selection
situation, y, would denote the number of units sold of product group r at
store k. Similarity, x, represents resource type i consumed by k, oris a
nondiscretionary variable, depending on the value of 1.

Suppose that K, potential sites are being considered as locations for new
stores, and assume that a forecast is available for the numbers of units
{¥ i }rer of product in groups # € R. In the section to follow we discuss the
development of such forecasts. On the input side, the competition variable
x,, for any location k is non-discretionary (i.e., it is a given value). The
other two inputs x,, = operating budget, and x,, = capital outlay when
establishing the store at the site, are at the discretion of the company. Thus,
these latter two are decision variables. If a store is to be established at
location k, the values assigned to x,, and x,, will clearly influence the
performance ratio of the store. Normally, the performance score for a site k
would be expressed as zreR Byl s Vi computed relative to all
other existing facilities, as well as newly created ones. In our case, however,
with both discretionary inputs (DI) and nondiscretionary inputs (NDI), a
proper form of the ratiois [}, 4,V — 2 o VixaV D, Vixy.

In a resource constrained setting the problem of interest is how to choose
that subset S of the potential new sites {K, +1,K, +2,...,K, + K,} which
will yield the greatest aggregate benefit to the organization, while not
violating these resource limits. This idea is similar to the problem of project
prioritization discussed in the previous sections as per Cook and Green
(2000). The important difference here is that, unlike the project selection
problem where the X, were fixed resource requirements (if a project is to be
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implemented), the x, in the current setting are decision variables that can
take on values to be determined by the organization.

We let [, = I denote that subset of (discretionary) inputs for which
bounds are to be imposed. In the site selection problem, /, would generally
consist of the two resource inputs — operating and capital expenditures.
Correspondingly, 7, denotes the compliment of I,. As well, let K, denote
the existing set of DMUs {l,...,K,}, and K,, the set of potential new sites
{K, +1,...,K,}. For any subset S, we represent the performance measure
of S as the solution to the optimization problem:

max Z[Z Yo _Zvixik]/zzvixik (10.10a)

keS reR iel; ke iel,

subject to

[Z,u,yrk - Zv,.x,.k]/Zvix,.k <1, ke K, (10.10b)

reR iel; iel;

0, < [Eyryrk - Zvixik]/ZVixik >0,, keS (10.10c)

reR iel; iel;

> x, <C, iel, (10.10d)
keS
x, 2L,iel, keS (10.10e)
x,20,iel u,v 2 allr, i (10.101)

As discussed in Cook and Green (2000), when composites of DMUs (.S
is a composite) are being considered, the appropriate production technology
is that provided by the CRS model of Charnes et al. (1985). Essentially one
needs to assume that for any DMU, multiples of that DMU are also in the
production possibility set. Recall, that the primal problem for CRS allows
any A; 20, whereas for the VRS model of Bankeg ¢t al. (1984), one must
operate within the convex hull of existing DMUs (2, A, =1), meaning that
composites may be beyond the bounds of the production possibility set.
Hence, for composite considerations, CRS is the appropriate technology.
Moreover, since the stores considered in the application herein, are of a
relatively comparable size, non-constant returns to scale were deemed to be
a non-issue.

Here, the lower bound @, in (10.10¢) is to be selected by management. It
may, for example, be decided that the minimum performance level for any
new site k € S must be at least g, = 80%. The upper limit of g, for every
store kK € S may be taken as any value less than unity. We do not choose
@, =1, as this would permit a yet to be established facility to have an
arbitrarily small level of each resource (> L,), possibly rendering all
existing DMUs inefficient. As well, since output figures (total units of
products by class) are estimates, their actuals may, in fact, exceed these
levels, potentially putting proposed sites beyond the frontier of known
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performance. We therefore propose that only known facilities should define
the production frontier.

Restrictions (10.10d) provide for limits C, on the amount of resource
available of input type i. Obviously, a limit on any nondiscretionary input
may not have meaning. Constraints (10.10e) impose minimum requirements
L., on resource commitments x, for established new sites (those where
stores are to be placed). In the case of capital , L, may be dictated by the
minimum size facility that would be considered.

It should be pointed out at this stage that optimization of a ratio of
aggregate output to aggregate input may result in only one site being
selected, that is, the cardinality of S may be 1. In most instances this would
mean that the constraints on resources C; would play little or no role in the
optimization process (except in the rare circumstance that some particular
site required extensive resource input). The idea, however, is to select sites
in a manner which makes the best use of available resources. This means
that any set of sites .S to which an additional site could be added, without
violating the resource constraints, would be so augmented.

To ensure consideration is given only to subsets of sites to which no
additional sites can be added, we first replace (10.10d) by the equivalent
expression

Zvix,.k +vs, =v,Ciel (10.11)
keS
where s, is the slack variable corresponding to constraint i € I, in (10.10d).

Next, to implicitly allow for consideration of all possible subsets S, we

introduce binary decision variables d, where

1 if a store is to be located at k£
o otherwise;

We now replace y,, by d,y,, and the decision variable x, by d,x,.
Thus, any given subset of sites S corresponds to a particular set of positive
d, variables.

Finally, to ensure that no additional site can be added to a set .S under
consideration, it is necessary to require that at least one of the slack variables
in (10.11) be too small to allow for enough of the corresponding resource to
be committed to any new site. Specifically, any feasible set of sites S must
be such that for at lease one input i, there is not sufficient resource s,
remaining (after the allocation to sites in S is made), to support any
additional site from the complement of §. To accomplish this, introduce
binary variables #,,i € I, and k € K, and add the constraints

V.S < ViLi -1/M +Mdk + Mrl.k,i € Il’k € K2 (10.12)

>or <l |-Lkek, (10.13)

iel)
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We can see from (10.12), that since any site k€S has d, =1, the
constraints will be clearly satisfied for all i. For k € S,d, =0, meaning
that either v,s, <v,L, ~1/M or r, =1. Constraint (10.13) permits only at
most | I, | =1 of these binary variable 7, to be unity, meaning that for any
non-selected site k, at least one of the inputs 7 must have a (weighted)
slack v,s; strictly less than the (weighted) lower bound v, L,.

For any given {d,} and {x,} (ie, if these variables were fixed), it is
noted that the resulting linear fractional programming problem (10.10)-
(10.13) could be replaced by a linear programming equivalent. Since this
non-fractional equivalent of (10.10)-(10.13) holds regardless of the values of
d, and x, (assuming they are not all zeros), then, the above problem can be
converted to the form

max [ sy, =D dvix,]

keK, reR iel;
subject to
z dev,.x,.k =1
kek, iel,|
Z/uryrk - Zvixik <0, keK,
reR iel
Xdkluryrk - devixik - e_zzdkvixik <0, keK,
reR iel iel,
deﬂryrk - devi‘xik - e_lzdkvixik 20, keK,
reR iel il
Z dvx, +vs, =v,C, iel
kek,

dx, >d.L, iel,kek, (10.14)
vs, SvL-1/M+Md, +M,, iel,kek,
zl?k S|[1|—1, kEKz
iel,

x, 20, iel,kek,
M.V, =€, allr, i
d, €{0,1} allk

To facilitate writing this as a mixed binary linear problem, we first make
the observation that if we add the constraints
x, SMd, . keK,iecl (10.15)
then, for i€ I, the product d,x, can be replaced by x, wherever it
appears. Next we make the changes of variables
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a, =pud, Vrkek,
b,=vd, Vikek,
¢, =vix,iel kek,
e=vs,icl kek,
To connect a,, with 4, and d,, yet avoid defining the transformation

explicitly as (nonlinear) constraints, we impose the restrictions
0<a, <Md,
a,<u <a,+M(1-d,).

From this, we see that d, =0=a,, =0 and u, 20. If d, =1 then
lur = ark'

Similarly, the definition of b, implies

0<b, <Md,
b, <v,<b,+M(1-d,).

Finally, in replacing v,x,, by ¢, , for i € I|, we ultimately compute X,
as c,/v,, after the problem is solved. As well, slacks s, are determined
from e,/ v,.

We note that condition (10.15) becomes (after multiplying through by
v;)

¢, SMb,,iclkeKk, (10.16)

With the above change of variables and linking constraints, the required

mixed integer formulation of our site selection problem is:

max Z [2 a, V. — Z byxy

keK, reR iel,
subject to
PIDICY
keK, iel
Zluryrk - Zvixik <0, ke K,
reR iel
Zarkyrk - ezzcik - Zbikxik <0, kek,
reR iel| iel,
Zarkyrk - elzcik - Zbikxik 20, keKk,
reR iel) iel;
Zcik+ei=CiVia iEIl
kek,
cik—Libik 20, iEIl,kEKZ

VL —e+Md, +Mr, >1/M, iel,kek,
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Zrik <7 -1, keK, (10.17)
iel

a, —Md, <0,reR, keK,
M, —a,+Md <M,reR, keKk,
u—a, 20,reR, keK,
b, —Md, <0, iel,kek,
v,—=b, +Md, <M, iel,kek,
v,—b, 20, iel,kek,
¢, —Mb, <0, iel,kek,
a,.b,,c,.e, 20,1 >2€,v, 2e,r e R, iel,kek,
d,,r, €{0,1}, iel,kek,

10.4.4 An Application

The application to which we apply the model developed above pertains to
the selection of prospective sites for a set of new home building stores, as
described in Section 1. The data in Table 10-2 corresponds to the existing
fifteen such stores. Associated with each store is the annual operating budget
in units of $1,000. So, for example, the annual cost of operating store #1 is
$750,000. To permit consideration of the capital cost associated with
existing locations, the most practical approach seemed to be to combine its
impact with operating cost. In this particular organization, the capital outlay
for any given store was either borrowed funds or was viewed as such. Hence,
interest and amortized principal (25 year amortization period) have been
added to what would normally be considered as operating expenditures,
namely salaries, wages, taxes, insurance, and all utilities. The figures
displayed in the last column of Table 10-2 include the interest and annual
principal consideration pertaining to the capital costs of stores currently
operating. It must be noted that in some instances (e.g. stores 3, 7 and 9), the
initial borrowed funds for construction have been repaid. In these cases the
operating cost figures have been increased to reflect what the real (current)
costs in annual interest and principal would be if those expenses were still in
effect. For stores with ongoing capital costs, all figures have been adjusted to
reflect current rates.

As discussed earlier, aggregate sales revenue among the 15 existing
stores was found to be highly variable. This is due primarily to the wide
variation in net profit per unit of any given product, but is, as well, a
function of the fact that the proportional distribution of SKU sales volumes
is somewhat variable from store to store. This latter aspect can likely be
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attributed to customer taste and level of affluence. The most predictable
variable appears to be aggregate units sold, when the large numbers of SKUs
were combined. We have chosen here to divide total sales volumes into two
major classes, namely: Class 1 - furniture and appliances, where a high
degree of floor sales effort is required; and Class 2 - all other sales (generally
necessitating minimal floor staff involvement). These two sales figures
appear as columns 1 and 2 in Table 10-2.

Columns 3, 4, and 5 in Table 10-2 are demographic factors. Competition
records the number of direct competitors within a two-mile radius of the
store in question. These competitors are retail establishments that sell a large
proportion of the product lines carried by the store in question. Hence, store
#1 has 3 direct competitors in the same vicinity. Column 4 displays the
number of single family dwellings per thousand persons in the metropolitan
area where a store is located. This variable was chosen as a surrogate for
disposable income, the rationale being that homeowners may reflect a higher
level of affluence than non-homeowners, and are, thus, more likely to
purchase higher value items. Column 5 provides figures for total population
(in thousands) in the store vicinity. Since most of the stores are located in
smaller cities and towns, the vicinity is generally defined as the entire city.
In the case of stores 1, 4, and 6, however, which are all located in the same
large city, the “vicinity” in each case is a two-mile radius of the store.

In formulating a predictive model, the correlation matrix provides some
insight into the connections among the variables of Table 10-2. It is noted
that housing and population are highly correlated (.769), hence the product
“Popsing” of these (total houses in the store vicinity) was computed; the
revised correlation matrix is displayed in Table 10-3. Arguably, although
competition is not highly correlated to sales, it would appear to be
appropriate to include it in the analysis. The resulting regression model is
given by:

Sales 1 =41.5 + .05 (5.93) House + .73 (.99) Comp

The t-values are shown in brackets. It is noted that the competition
variable is not only insignificant, but, as well, assumes the incorrect sign (it
is negatively correlated to sales as per Table 10-3). This is very likely caused
by the relatively low correlation between competition and Sales 1, versus the
higher correlation between Popsing and Comp.

A plausibly more appropriate model for forecasting sales is to base the
latter on total housing alone, namely

Sales 1 =30.96 + 0.054 (5.58) Popsing

The total housing variable has a t-value of 5.58, and the overall R? value
is 79.5%. This model has been used to generate the Sales 1 figures of Table
10-3, for the six potential locations.

Correspondingly, the forecasting model for Sales 2 is give by
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Table 10-2. Data on Existing Stores

Sales 2 =47.46 + 0.038 (3.45) Popsing
which has an R? -value of 66.2%. Again the predicted Sales 2 values for the
six proposed locations are displayed in Table 10-4.

247

Outputs Inputs(Predictors)
Furn/Appl Other
Store Sales 1 Sales2  Competition # Single homes  Total Pop.  Annual
(100 units) (1000 (100) Vicinity Operating Cost
units)
(1000) ($1,000)
i 2 3 4 5 6
1 58 73 3 15 20 750
2 21 46 4 7 15 490
3 49 55 3 13 22 680
4 63 68 2 17 30 620
5 57 70 2 15 25 730
6 62 65 1 18 23 860
7 41 52 3 10 18 520
8 35 46 3 8 12 390
9 39 49 3 9 11 490
10 29 45 4 7 12 420
11 33 40 4 6 14 550
12 48 65 2 14 28 730
13 52 68 1 18 20 880
14 65 65 1 20 43 960
15 51 72 2 17 18 820
Table 10-3. Correlation Matrix
Comp Single Pop salesl sales 2 Popsing
Comp 1
Single -0.45557 1
Pop 0.014427 0.768513 1
salesl -0.35883 0.928864 0.764681 1
salesl -0.46301 0.907664 0.607424 0.859388 1
Popsing -0.507 0.870882 0.970757 0.891511 0.814325 1
Table 10-4. Data on Potential Sites
Predicted
Site # Sales 1 Sales 2 Competition # Single Population
(100 units) (1000 units) homes
i 54 64 3 17 25
2 44 57 4 12 20
3 74 78 2 20 40
4 36 51 5 8 12
5 78 81 1 25 35
6 51 62 3 15 25
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The DEA Analysis

For the DEA analysis, Sales 1 and Sales 2 were the outputs used, with
annual operating expenditure (which includes annualized capital outlay), and
competition being the inputs.

As discussed earlier, competition should be seen as a nondiscretionary
input, and was treated as such in the analysis. Arguably, in a resource
allocation setting such as this, one should only be concerned with the
profitability of the various sites, hence nondiscretionary variables should not
really be a consideration in the DEA analysis. However, it can be claimed
that if the competition variable had been kept as part of the forecasting
model as discussed above, it is likely that the estimated sales figures would
have been different from those currently available. Specifically, it can be
argued that those sites with a high competition may have overstated sales
figures, and those with low competition, are possibly understated. Thus, if
the DEA score is presented as in (10.10a), we indirectly make the
nondiscretionary variable part of the forecast.

As indicated above, the capital cost component has been included as part
of the annual operating budget, hence the DEA analysis provides for a single
discretionary input. This avoids, at the same time, undesirable weight
differences (the exchange rates) that might occur if separate operating and
capital inputs were used.

The problem of the high variability in net sales revenues described
earlier, is addressed here by way of an analysis of average prices across the
15 stores for the two classes of products. The ranges of average prices were:

Sales 1 — ($355, $521)
Sales 2 — ($5.75, $9.35)

Given that Sales 1 figures in Tables 10-2 and 10-4 are expressed in
hundreds of units and, those for Sales 2 are in thousands of units, these two
ranges lead to the assurance region restrictions

38<f2<9
H
or more appropriately the pair of constraints
M, =9, <0
My, — 3.8, 20.

Clearly, other restrictions can be imposed here. For example, although
the model given in the previous section has no specific provision for the
extent of coverage provided by the selected sites, various modelling
restrictions can facilitate this. One example would be to impose the
constraint Zk . d, 2 N, where N is a lower limit on the number of sites
to be selected. SZuCh a condition is easily implemented in the optimization
model, and can permit management to evaluate various scenarios.
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In this particular application, the lower and upper limits on the efficiency
of any composite of sites were chosen as 6, = 80% and 6,= 98%,
respectively. Recall that with the constant returns to scale model, composites
of proposed store sites legitimately fall within the production technology.
Hence, these composites are evaluated against the existing CRS frontier as if
they were actual operating units. This means that if sites 1 and 5, for
example, were combined as a single entity, and considered as a DMU, the
efficiency score would be 84.3%. While the objective was to obtain a single
best selection of the available six sites, as described in Table 10-4,
management was interested in looking at a range of options, since certain
coverage issues were also at stake.

Table 10-5. Feasible Combinations of Sites, and Their Corresponding Efficiency Scores
Proposed Sites

1 2 3 4 5 6
Efficiency
d, d, d, dA d; dﬁ Score (%)
1. X X 843
2. X X 81.8
3. X X 87.6
4. X X 824
5. X X X 93.5
6. X X X 84.1
7. X X X 91.7
8. X X X 88.7
9. X X 92.6
10. X X 96.8
11. X X 86.3
12. X X 85.8
13. X X X 853
14. X 93.5
15. X 90.5
16. X X 86.3
17. X X X 93.7
18. X X 889
19. X X 84.1
20. X X X 86.8
21. X X 88.6
22. X X X 86.5
23. X 949
24 X X X 87.0

Table 10-5 presents the outcomes for all possible combinations of the 6
sites where the available annual operating budget is $2,250,000. (Any
combinations not shown were not feasible). It would appear that the best
combination of sites is combination #10 which composes sites 1,3 and 6,
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with an overall score of 96.8%. Few 2-site solutions are feasible, with the
best being sites 3 and 5, yielding an overall score of 87.6%.

10.5. EXTENTIONS TO THE SELECTION MODEL

The previous sections have presented a basic prioritization model, (10.7)
+ AR(ui,v,.). In the present section, some useful extensions will be
sketched out in the context of prioritizing highway safety retrofit projects.
We point out, however, that these extensions can have analogous
interpretations in other problem settings such as the site selection example.
In this context, the projects comprise specific sections of highway that are
being considered for improvement from the viewpoint of accident potential
or hazard. It is advantageous to use this alternative application setting, which
itself instigated our work, as this will not only lend some perspective on the
breadth of applicability of our basic model, but will also serve as an example
of the necessity for, and ease of, its extension. These extensions will relax
the assumptions concerning the independence of the projects and in so doing
will exploit the binary structure in (10.7) to model details such as mutual
exclusion/inclusion within subsets of projects.

Identifying hazardous sections of highway and prioritizing measures to
improve them, in terms of reducing potential accidents, is a major
consideration in all highway departments. A significant literature exists on
the characterization of hazardous locations. The subject of interest here
consists of two inter-related aspects. Firstly, there is a concern with the
prediction of accident rates and their severity in terms of explanatory factors
such as traffic levels, road geometrics and so on. This research has focused
on the use of multiple regression as a mechanism for obtaining appropriate
predictions (Head 1959). A second component of research in the road safety
and accident analysis arena involves accident reduction factors; specifically
the improvement in safety that will be achieved if a segment of highway
network is modified in some way . See, for example, Persaud et al. (1992).
This corpus of work, together with appropriate expert judgment, enables the
prediction of benefits achievable consequent on the allocation of retrofit
funds to specific project proposals.

With regard to prioritizing identified hazardous locations for treatment,
the practice in most jurisdictions has been to rank these locations by either
total accident frequency (e.g. using the total number of accidents on the road
section over the past 3 years), or accident rate (e.g. accidents per million
vehicle kilometers). A number of jurisdictions have recognized the multi-
criteria nature of the prioritization problem. Thus, in looking at accident
reductions, total accidents should properly be broken down into different
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severity classes such as fatal, major injury, minor injury, and property
damage. In Kentucky, for instance, numerical weights are applied to various
accident types to reflect costs to the public. Troxel (1993) discusses a
number of severity models for combining fatal and injury accidents into an
overall figure. There are, of course, different views in different jurisdictions
of what the weights on different accident types should be. Persaud et
al.(1992) present a multi-criteria methodology for determining appropriate
weights to attach to different classes of accident in evaluating the relative
importance of a set of retrofit measures. Further to these considerations,
benefits can go beyond accident reduction and may also include improved
road serviceability and traffic flow.

Thus, on the benefit (or output) side, the prioritization problem is clearly
muiti-dimensional. On the cost (or input) side, the multi-dimensional nature
is also apparent. Obviously, the monetary expenditure required to implement
a particular safety improvement, vis a vis the overall retrofit budget for the
planning period, is the primary input at issue. Other factors may also
impinge: availability of labour, plant, materials, and design office time, for
example.

In this multi-output/multi-input setting, a model of the form dealt with in
the previous sections, i.e (10.7) + AR(u ,.,v,.), clearly has potential as a tool
for assisting in the selection of a subset of projects from a larger collection
of proposals. However, hitherto, we have assumed that projects are
essentially independent, an assumption which now must be modified.

While in many prioritization settings the issue to be addressed is whether
or not to undertake a given project, in the highway safety project
prioritization problem there is at least one additional dimension; namely, the
treatment or design choice. Specifically, there can be alternative ways to take
corrective action at a particular hazardous site. For example, run off road
accidents may be preventable or can be reduced either through shoulder
upgrading (paving or widening), installation of guard rails, or even
corrections to the geometry of the roadway. Each option has different
associated outputs in terms of reductions in the various accident types and
roadway serviceability as well as different calls on resources. Thus, there is a
mutually exclusive set of treatments that may be applied for each hazardous
site being considered. Model (10.7) can be easily modified to cater for this
situation. Firstly, denote the set of distinct hazardous sites under
consideration as Q and the set of (mutually exclusive) treatments being
considered as T. The index set of all project variants under consideration
thus becomes the cartesian product of sets Q and T

P=QXT.
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Subscripts referring to this index set, such as kand p, are now ordered
pairs <q,t> where g€ Q and t€T. To ensure that no more than one
project variant at a site q is selected, the following constraints are needed:

Zlﬂ €l <1 for geQ

A second practical modeling requirement is that of specifying
commonality of treatment, whereby a group of potential project sites in some
geographic area should receive the same treatment. If, for example, shoulder
widening is applied in a particular location to prevent accidents, it would
normally be the case that this treatment would be implemented throughout
the surrounding area. Thus, if A (subset of Q) is a set of sites to be so
considered, we proceed as follows:

1. define binary variablesg,, for reT,

2. include the constraint ZleT gxn <1

3. include the constraints
Clay) = 8ar acA,teT

or
Clasy < Eau aeA,teT

The first set of constraints in 3 implies that all (or none) of the sites in A
be selected and treated identically, whereas the second version allows some
of the sites to remain untreated.

10.6. CONCLUSING COMMENTS

In this chapter we have introduced the concept of selection within the
DEA framework. This binary choice version of the DEA methodology opens
a number of avenues for identifying specific groups of DMUs with certain
desirable properties. An example of the use of this methodology for
identifying core business components in a multi-plant firm environment is
given in Cook and Green (2004), and as discussed in Chapter 11. Further
research in this area is encouraged.
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Chapter 11
MULTICOMPONENT EFFICIENCY

Measurement and Core Business Identification in Multiplant
Firms

11.1. INTRODUCTION

The DEA model, developed by Charnes, Cooper and Rhodes (1978),
provides a constant return to scale (CRS) methodology for evaluating the
performance of a set of comparable decision making units (DMUs). In the
usual setting, each DMU is evaluated in terms of a set of outputs that
represent its accomplishments, and a set of inputs that represent the
resources or circumstances at its disposal.

In some application areas, it has been recognized that the DMU may
perform different types of functions. In such situations, it is desirable to
derive a measure of performance, not only at the level of the DMU, but, as
well, at the level of the particular function within the DMU. Cook and Roll
(1993) were the first to examine the idea of partial efficiency measures,
where the separate components of the DMU possess their own bundles of
outputs and inputs. These bundies were assumed to be mutually exclusive of
one another. Beasley (1995) examined both teaching and research
components within a set of universities in the UK, and presented a nonlinear
programming model for measuring DMU performance. A similar situation is
encountered in Cook et al. (2001; 2000), where sales and service
components are evaluated within a set of bank branches. They discuss linear
models for providing both overall performance of a branch, as well as
separate component performance measures. In that context, as with Beasley
(1995) the input is a shared resource to be allocated to two production units.
The complicating feature in each of these problem settings, that was not
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present in Cook and Roll (1993), is the presence of shared resources. The
existence of shared resources means that the usual DEA structure must be
modified to provide for a splitting of those resources among the various
components.

In the current chapter we examine a set of manufacturing plants operating
under a single corporate umbrella, with the objective of identifying how well
each plant performs in each of its components thus identifying what might
be considered each plant’s a core business. Here, each component consists of
a group of products selected from the totality of products offered, according
to the specific interests of the corporate decision maker. Unlike the
aforementioned dual-component applications (e.g., sales and service
components in a bank branch), these components may overlap. Examples are
(1) those products made from rolled steel of given dimensions; (2) those
products servicing the automotive industry, ..., etc. This setting is clearly
similar to those discussed above in that product groups are functions of the
business, and, as will be seen, there are resources that are shared among
those components. The models proposed here represent a departure from the
earlier work of Beasley (1995) and Cook et al.(1993; 2001; 2002), in two
respects. First, we examine the extension of the earlier models to a multi-
component (two or more) setting. Second, using this multi-component
structure as a point of departure, we develop models for identifying the most
appropriate product groupings for each plant (DMU).

Section 11.2 presents the problem setting in more detail. In Section 11.3,
extensions of the models of Cook et al. (2000; 2001) and Beasley (1995) are
presented. Multiple, and potentially overlapping components are considered.
These models are appropriate where the issue is one of identifying overall
performance, as well as isolating particular areas (components) where the
plant can be improved. Section 11.4 extends this idea to those situations
wherein the organization wishes to identify the segment of the business that
is performing best in any given DMU. In this way, the core business of each
plant can be isolated, thus aiding the company in any reorganization
initiatives designed to capitalize on the strengths of each location. Section
11.5 discusses the application of these models in the plant setting described
earlier. Conclusions are given in Section 11.6.

11.2. MULTICOMPONENT EFFICIENCY
MEASUREMENT AND CORE BUSINESS
IDENTIFICATION

In this chapter we examine multi-component efficiency measurement
from two perspectives. In the first situation, we make the assumption that the
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purpose of the performance assessment exercise is to determine an aggregate
measure of efficiency, as well as measures for each of the separate
components. Such evaluation will aid management in identifying the extent
to which overall performance can be improved. As well, for specific
business areas, the measures can point to those that are doing well, as well as
those that require attention. Section 11.3 addresses this setting.

In the second situation, it is assumed that the organization wishes to go
beyond simply identifying the level of performance of specific subunits of
the business. Rather, it is desirable to identify the area(s) where DMUs are
performing best, hence defining what might reasonably be regarded as each
DMU’s core business. A given DMU may then wish to focus its energies on
this selected part of the operation, while de-emphasizing, or in some cases,
even abandoning those portions of the business where it performs at a less
than satisfactory level. This development is undertaken in Section 11.4.

To illustrate these ideas we examine a company with several plants that
operate in the rolled steel industry. The company manufactures steel
products, both of the finished variety that are sold on the open market, and
semi-finished items that are custom-ordered, and sold to other
manufacturers. These latter products can, for example, be items such as slit
steel, used by other firms that manufacture steel doors and door frames.
Other products, such as cylindrical bearings, are further along the value
chain, and are purchased by companies that manufacture such consumer
products as lawn mowers, or outboard motors for boats. Anticipating the
detail given in Section 11.5, it is convenient to view the company’s
operations in terms of nine distinct products, and in conventional DEA terms
each of these products would be considered an output. However, corporate
management as well as being interested in the overall efficiency of each
plant, is also interested in performance with respect to four overlapping
groupings of these nine products. In what follows we will refer to a defined
group of products, variously and interchangeably, as a component, subunit or
segment. In some cases products are grouped to represent a particular market
segment, e.g., automotive manufacturers who source certain products from
the company. In other cases they are grouped to represent an internally
meaningful segment of the operation, e.g., all products both semi-finished
and finished, but pertaining to a certain size or quality of steel, or products
made on particular machines.

In the section to follow, we present model structures for evaluating both
the aggregate performance of each of a set of DMUs, as well as the
performance of the separate subunits or components within a DMU’s
operation. For purposes of this development, we utilize the problem setting
discussed herein as a backdrop.
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11.3. MULTICOMPONENT MODEL STRUCTURES

The conventional model structure for evaluating the relative efficiency of
each member of a set of DMUs is the DEA model of Charnes et al. (1978).
Specifically, given an output vector ¥, = (¥,,, V4. Vg )» and input vector
X, =(x,,%Xy -, %), for each of a set of n DMUs k=1,...,n, the
constant returns to scale model is given by

max /un)/a /vuXa’

subject to
uY /v, X, <1, allk, (11.1)
M.V, 2 E.

The structure in (11.1) presumes that one desires to measure the overall
efficiency (e.g., operational efficiency) of each DMU, without consideration
for the performance of subunits that may exist within the DMU. In the
problem setting presented herein, we wish to provide for a more detailed
performance evaluation, i.e., at the level of these subunits.

11.3.1 Multi-component Efficiency Measurement with
Shared Inputs: Non-overlapping Subunits

Our point of departure for the discussion in this section, is the model
structures of Cook et al. (2000), (see also Cook and Hababou (2001)). There,
the authors examine the problem of providing separate efficiency measures
for both sales and service components of a set of bank branches for a major
Canadian bank. Adopting the notation of Cook et al. (2000), and extending
their model structure to “T” components, we have:

Parameters:
th =the R -dimensional vector of outputs included in the # th component of
DMU k.
R = set of all outputs
R = set of outputs generated by the  th component.
,’C = the I -dimensional vector of inputs dedicated to the ¢ th component of
DMU k.
1 = set of all inputs.
I ~ =set of inputs dedicated to the [ th component.
X,  =the I’ -dimensional vector of inputs shared among the 7" components of
- DMUK.
r = set of shared inputs.

L . U = lower, upper limits on the portion of the I th shared resource,
R pp

that can be assigned to the  th component of a DMU.
T = set of all components.
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Decision Variables:

1

ﬂ[‘ = vector of multipliers applied to outputs Y
o = vector of multipliers applied to inputs X

v, = vector of multipliers applied to that portlon of shared inputs X5 , that
, are assigned to component £.

a, = vector representing the proportion of shared inputs X5 , allocated to

the £ th component.

In the two-component problem addressed in Cook et al. (2000), the
principal area of difficulty was the presence of shared inputs X
Specifically, there are certain resources such as branch expenditure on
computer technology and general branch staff, that are shared across the two
components of the business. There is no well defined split of these resources
across different functions, and the basic problem has to do with the
allocation of these inputs among the components. To facilitate this, and at
the same time extend the idea to the general case of T components, a
decision vector ak is introduced that permits the DMUk in question to
apportion X among the T competing components. In Cook et al. (2000),
this is done in a manner that optimizes the aggregate performance measure
(of DMU “0™) glven by:

ey = 2 Y (VX + v (e, X)))] (11.2)
teT tel’
The component-specific performance measures ef, are given by:
e, = mY, /v, X, + v, (@, X)) (11.3)

It is pointed out that the notation o X (‘f represents the vector
(aolx(,l,aozxoz, al')lsx:;s) of shared inputs allocated to component ¢ by
DMU “o”

In the discussion below, we distinguish between optimal performance
measures and performance measures for a DMU k, evaluated in terms of the
multipliers for a DMU “0” currently being considered. (Doyle and Green
(1994) use the term cross-evaluation in this instance). For this purpose, we
adopt the notation ¢§,2; to denote the measures for DMU k that represent
their optimal performance, while e,‘(’,e,'c denote performance relative to
multipliers arising from the optimization of (some other) DMU “0”

The multi-component DEA model is given by:

¢, =maxe, (11.4a)
subject to
e, <1,all 1,k (11.4b)

L<a, <U allt,iel’, (11.4¢)
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>ay,=licl’, (11.4d)

tel'

wovi v 2g, all t. (11.4e)

Here, the objective (11.4a) maximizes the overall performance measure
for the DMU “0”, in the spirit of the original DEA model of Charnes et al.
(1978). Correspondingly, we restrict each component measure €, by an
upper bound of 1 in (11.4b). A permissible range on the proportion of the
i th shared resource that can be allocated to the fth component by any DMU
is given by (11.4c). Constraints (11.4d) specify that the proportional splits of
any input i across the 7 components sum to unity. Finally, constraints
(11.4¢) restrict multipliers to be strictly greater than zero.

The limits L,U;, on the proportions ¢, of the various inputs i to
components { would need to be specified by the user. Such limits might
generally arise from any information available at the plants regarding
standard amounts of inputs I per unit of product in components £.

From the above discussion it is clear that problem (11.4) is a restricted
version of problem (11.1). Specifically, any feasible solution to (11.4) is also
feasible for (11.1). Problem (11.4) only permits multipliers which identify
each component of the plant as a bona fide sub-DMU whose performance
measure is captured at the same time as that of the entire plant. Problem
(11.1), however, is focused purely at the plant level, with no recognition
whatever of subunits.

Definition 11.1: A DMU “0” is said to be efficient if its aggregate score
é =1

Definition 11.2: A DMU “0” is said to be efficient in its tth component if
éfz = 1

Theorem 11.1: In model (11.4), the resulting aggregate performance
measure ¢; for any DMU k, does not exceed unity, i.e., &7 <1.

Proof:

If we define
Bi =i Xy +v) (@ XDV D (v, X, + v, (@, X)),

e
then, the aggregate measure (in terms of the (z,,v,) multipliers), is given
by
& =2 Biét
el

Hence, e, is a convex combination of the component measures, and as

such e <1. Q.ED

Theorem 11.2: In model (11.4), a DMU is efficient if and only if it is
efficient in each of its components.
Proof:
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Case 1: Assume all component measures €, =1.
By definition,

&= Bié

1eT

from Theorem 11.1, and since zt Bi =1, it follows that & = 1.

Case 2: Assume €, = 1. Then, if any €, <1, it must be the case that
ei=> Biei<l,
1T
as well, in contradiction. Q.E.D.

We now examine multi-component performance measurement when
overlaps can occur.

11.3.2 Multi-component Efficiency Measurement with
Overlapping Subunits

The models presented above presume a set of subunits that are mutually
exclusive. Arguably, in the bank branch setting of Cook and Hababou
(2001), and Cook et al. (2000), sales and service components meet the
mutual exclusivity requirement. In many settings this restriction may not
hold, however, as is the case with the business components described later.

In the case where mutual exclusivity prevails, it is sufficient to subdivide
a shared input among the set of components. That is, 04'”. represents the
portion of input i assigned to component /. It is not necessary to address
how this portion a('”. is distributed among the outputs comprising component
t. In case there is overlap among the components due to the existence of
common outputs, the manner in which the proportions {c’,}._, behave, is no
longer clear. It is, for example, not true that .o, =1, due to the
overlap.

In recognition of the overlap problem, we need to be more exacting as to
how the shared input i is assigned to outputs & R. Specifically, we define
variables ¢, that denote the proportion of shared input x); (the ith
component of vector X ) that is allocated to output y,.. As well, let
L,U’, denote lower and upper bounds, respectively, on ¢,,, and impose
the constraint

Zam.r =1.

reR
The proportion &, of input i allocated to component # is then the sum
of the proportions ¢, of i allocated to those outputs comprising ¢, i.e.

tel
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! —
a, = z &,

1e9
For brevity in modelling, we henceforth denote the feasible set of
a=(a') by
Aa = {aa = (a{’)) . (l) a(’)i = 2 a{)ir;
reR’
(2) Lf s at)ir = Ul”(3)z a{)ir = 1’

reR

a

oir

>0,alliel’, all t}.

The multi-component DEA model is then given by:

Max e/, (11.52)
subject to

e, <1, all t,k, (11.5b)
a,eN,, (11.5¢)
i, v v >g, all t (11.5d)

It is noted that the objective function (11.5a) credits the DMU for
producing an output yf}r as many times as that output appears as a member

of a component’s output set. For example, an output y,, contained in both

components =1 and £=2, (ie., ¥\ =), would appear in (11.5a)

orl OF2

. 1 2
twice,as g,y and 4y .

ory
We point out, however, that, as in the case of non-overlapping subunits, it
is also true here that problem (11.5) is simply a restricted version of problem
(11.1), if we view the inputs X in (11.1) as all being shared inputs. This is
captured by the following theorem.

Theorem 11.3:
Any feasible solution to problem (11.5) is feasible to (11.1).

Proof: Define the R-dimensional multiplier vector U’ = (u.) by
, |4 if productr is in component t
u =
0  otherwise

and let U = ZmT U’. Letting Y denote the R-dimensional vector of all
outputs as used in (11.1), it follows that
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> uY' =UY.
teT
Similarly, one can replace the set of inputs {X'} by the I -dimensional
vector X(1) = (X", X?,...,X"), and replace the set of “shared resource”
vectors o’ X' by the sum of these component shares to get X°. Let
X =(X(),X"), the full vector of all inputs. Then, as with the output side,
one can express the denominator of the performance measure as
DIVX +v(@ X)) =VX,
tsT
where V' is defined in terms of the v',v" in a manner analogous to the
definition of U in terms of {z'}. Hence €/ in (11.5) can be written as

e’ =UY/IVX.

Since it is true that each component measure €, < 1, then it must also be
true that the aggregate score ¢, <1 as well. Thus, any feasible solution to
(11.5) is also feasible for (11.1).

Q.ED.

Hence, the overlap of the components does not lead to inconsistencies in
regard to problem (11.1). Defining the aggregate measure in this manner
results in the following theorem. The Proof is analogous to those of
Theorems 11.1 and 11.2, and is, therefore, omitted.

Theorem 11.4

(a) The aggregate measure of efficiency given by (11.5a) does not exceed
unity.

(b) A DMU will be aggregate-efficient, (the objective function (11.5a)
will equal unity), if and only if it is efficient in each component measure.

Model (11.5), thus, allows one to examine the performance of a DMU in
each business area. As well, it provides an overall or aggregate measure of
performance across all business components.

Because the orientation of model (11.5) is toward evaluation of the DMU
at an aggregate level, with component measures arising only as a by-product,
it can be argued that the individual subunits of the business may not be
shown in their most favorable light. In some cases, the strategic intent of the
organization might be to identify the core business for each DMU, the
purpose being to focus the attention of the DMU toward the areas of the
business at which it performs best. In the section to follow, we present model
structures wherein the intention is to choose a core business component on
behalf of each DMU. It should be pointed out that the identification of a core
business component will not necessarily imply the immediate termination of
all activities at a plant that are not included in that component. Rather, a
DMU would initially continue to service all existing activities, possibly
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phasing out non-core activities as these are redistributed to where they are
best accomplished over some time horizon.

11.4. MODELLING SELECTION OF CORE BUSINESS
COMPONENTS

A typical problem setting would be one where each of a set of plants for
a given company produces a full product line, for sale and distribution to
customers. There can be a number of reasons why it is cost effective for a
certain product line, for example, to be manufactured in particular locations,
but not in others. Certain manufactured items may, for instance, require
specialized and expensive equipment that the company might prefer to make
available in only one location. Alternatively, certain customers (e.g. farmers)
may be highly concentrated in one geographical area, meaning that a plant
close to that concentration should produce products related to that customer
group. As well, simple economies of scale may dictate that the production
for a product be concentrated in only a few plants, or even a single plant.

The problem then is to identify which collection of products or product
lines should be handled by any given plant, thus defining that plant’s core
business.

The conventional DEA model does not readily lend itself to resource
allocation (i.e. allocation of shared inputs). The DEA approach focuses
attention on the performance of a particular DMU “o”. If the objective is to
allocate components to DMUs (plants), and to divide shared resources
among products (and thus among components), one needs to view this
allocation process from the perspective of the entire collection of DMUs,
simultaneously rather than from the conventional DEA perspective, i.e.
iteratively, one DMU at a time.

To facilitate the allocation of components to DMUs, define the bivalent
variables {d;}_,, for each DMU &,

{1 if component ¢ is assigned to DMU k,

i

0 otherwise.

The aggregate performance (ratio) measure for the collection of DMU,
given an allocation defined by a chosen set of d, values, can be expressed

as:
AR A
2. D X +v (@ X))
The optimal assighment of components to DMUs, as defined by the d,: ,
is arguably that for which the ratio of aggregate output to aggregate input is
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maximized. The set of d, for which this maximum occurs can be
determined by solving the fractional programming problem:

maxy . [> du' Y1 ). di(vV' X, +v' (e X)) (11.6a)
k ! k [

subject to

UV X +vTi(e X)) <, all k¢ (11.6b)
ael,, (11.6¢)
> d, =1, all k, (11.6d)
4

>d, =1, ally (11.6¢)
k

uovovtze allt, d, {01}, all k,t. (11.6f)

Constraints (11.6b) restrict the ratio of outputs to inputs in any
component to not exceed unity. (11.6¢) requires that the resource splitting
variables satisfy conditions as defined earlier in A,. Constraints (11.6d)
force each plant k£ to support at least one product group or component.
Similarly, (11.6e) stipulates that each component must be produced at one or
more of the plants.

It is conceivable that at the optimum, certain plants may be chosen to
support several product groups, while other plants may service only one
group.

Model (11.6a)-(11.6f), assigns multipliers x',v',v" to each component
t in each DMU k. While it is not the purpose of the model to measure the
efficiency of the entire operation of each plant, the supplied (common set of)
multipliers do in fact provide the basis for an efficiency score for each plant
and the aggregate across all plants, should one want to extract these. That
aggregate score clearly includes the contribution rendered by both core and
non-core components of the plant. Admittedly, the set of multipliers is
derived in a manner designed to display core components in their best light,
and by implication, non-core components in a light less than best. Hence,
non-core components may be represented in a disadvantageous manner. One
might argue that this is appropriate since, over time, such non-core
components will, in any event, be phased out. Thus, their estimated
performance (by that stage) will be a non-issue. At the same time, the model
does, in fact, recognize their existence, and the bounds [L/,U/]
appropriately force the allocation of shared resources across all components
(both core and non-core). Thus, choice of these bounds by management
affirms the continuing presence of non-core components in the operation.
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Thus, the real purpose of the model is to single out those components of
each plant on which that plant exhibits its best performance. It is these core
components whose aggregate performance we wish to capture.

The implication of this is that when a set of plants exhibit inefficiency, it
is often desirable to strive for specialization. The questions that management
would like to answer are:

(1) In what parts of the operation should each plant specialize?

(2) If plant operations were reorganized to implement such
specialization, what would be the anticipated performance of the
resulting operation?

(3) How would each reorganized (future) plant perform?

Question 1: The purpose of the model is to extract those components at
each plant that appear to be the ones in which the plant should specialize.

Question 2. While the model yields an aggregate performance across all
core components in all plants, there is an implied measure of performance
for each plant on a portion (core business portion) of that plant’s operation.
Specifically, using {QL}LI, for each k, the model yields a measure of
performance for that subset of components in terms of the inputs that those
components utilize, and the outputs generated by those components. This
measure captures how the (reduced) plant would perform if non-core
business elements were not present.

Question 3: In a reorganized structure, the essence of the model is that
each plant would concentrate only on its core business activities. It is argued
that if each plant were to scale up its operation such as to come to full
capacity in its resource utilization, then it is hypothesized that the resulting
output generated would be scaled up by the same factor.

To solve problem (11.6a)-(11.6f), it can be shown that it is representable
as a mixed integer linear programming problem. This is given by the
following theorem.

Theorem 11.5
Problem (11.6a)-(11.6f) can be represented as a mixed integer (binary)
linear problem.

Proof: Problem (11.6a)-(11.6f) is equivalent to the mixed binary
nonlinear programming model:

maxz z du'Y; (11.7a)
k t

subject to
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YN d (v X v (g X)) =1
kot

WY -V X, +v' (e, X)) <0, all k1,
aegA,,

Zd’ >1, all £,
!
>d, =1 allt,
&
W ovt ze all t, d, £{0,1}, all k,t.
Make the change of variables:

—u8t —ui

st 1 st gt o gt ot to_ gt 1
vih=via, v =d " v, =dV, u =d .
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(11.7b)

(11.7¢)
(11.7d)
(11.7¢)

(11.7f)

(11.7g)

It is noted that we can replace an expression such as v,'c = d,’cv' by the

constraint set
v, S Md,,
vz,
vi<vi + M(1-d,),

where M is a large positive number. Specifically, if d, =0, then v, =0;
if d, =1, then v; =v'. A similar set of constraints can be imposed to
replace the nonlinear expressions u;, =d, ', and v,' =d,v". Problem
(11.7a)-(11.7g) can then be written as the mixed binary linear programming

model



268 Cook and Zhu

maxy > wY,,
k

1eT
subject to

> (XX =1,

k1T

[ Y — (v, X, +vX])]<0, all £,
k" k Tk k k

1T’

v, <Md,, all t,
vizv,,allt,

vi<v, +M(1-d)), all t,
u <Md., all t,
uzu,allt,
s <u +M(1-dy), all t,
v <Md,, all t,

vz allt,
7V +M(1-d,), all k,t,
ag,
> dy =1, all k,

"

Y diz1allt,
k

pr>eal, allit, (11.8)
uv >e, allir,t,

u,,, vy 20, all i,r,k,

vd >0, allr,ti=1,..,1°

die{0,1}, all kt.

This completes the proof.
QED
There are clearly variations of this model where, for example, it may be
pertinent for certain product groupings or components to be manufactured in
only certain plants that are perhaps in the best possible position to handle
them. This might be due to equipment capability, proximity of the market,
and so on. Thus, for a given component 7, we might require that
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d’ =0,ke K", where K is the set of allowable plants for manufacturing
component # , and K is its compliment.

[

In the section to follow, this model is used to allocate business
components to ten plants within the company under study.

11.5. APPLICATION OF CORE BUSINESS SELECTION
MODEL TO A SET OF PLANTS

In the problem studied, 10 plants currently operate under a single
corporate umbrella, producing a variety of steel products including bearings,
pipes and sheet steel of various sizes. Clearly, some of these products are of
the finished goods variety (e.g. pipes), while others are semi-finished,
becoming components in other manufactured items (bearings), or are sold to
other plants for further manufacturing (sheet steel).

As indicated earlier, it is convenient to view each plant’s business as
consisting of various components. While it is the case that there can be a
large number of products to consider (e.g. different sizes of circular
bearings), here items have been grouped by management under a few major
categories. For purposes of this study we present the operation of any plant
as consisting of four (overlapping) components, defined by their outputs y:,
the number of units of output # in the #th component:

Component #1:
e All solid bearings (yI‘ )

e Circular bearings (automotive) (y,)

e Sheet steel < 4 feet in length (3;).
Component #2:

e Solid bearings (automotive) ;)

o Steel pipes < 8 feet in length 3)

e Sheet steel 4 feet to 8 feet in length (7)

Component #3:
e Steel pipes> 8 feet in length (1))

 Sheet steel > 8 feet in length ()
Component #4:
e Circular bearings (automotive) (y;)

e Circular bearing (non-auto) ()
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e All solid bearings ()3 )
o Sheet steel < 4 feet in length ()

Table 11-1 displays the data for all outputs for the 10 plants considered.

Table 11-1. Outputs for Four Components

e RS T LI /S AN N VA U A VA VAR )
1 50 30 70 30 60 50 40 80 30 50 50 70
2 45 35 60 25 50 50 40 75 35 55 45 60
3 75 25 50 35 55 40 50 70 25 60 75 50
4 60 40 80 40 40 30 70 50 40 50 60 80
5 35 25 25 20 25 20 35 20 25 30 35 25
6 55 60 40 40 60 45 60 50 60 50 55 40
7 120 100 100 100 80 120 120 60 100 110 120 60
8 60 80 25 50 100 20 80 35 80 80 60 25
9 25 75 65 20 25 80 100 70 75 70 25 65
10 100 55 40 70 35 65 35 45 55 60 100 40

The resources committed to the production of these product lines can be
grouped under four headings, namely

e Shop labour (x,)

e Machine labour (x,)

e Steel splitting equipment (x,)
e Lathes (x,)

Shop labour and machine labour are measured in full time equivalent
(FTE) staff. Both equipment variables are expressed in hundreds of hours of
capacity available per month. Given the manner in which the four
components have been defined, with the inherent overlap of products, all
four of these inputs should be viewed as shared resources.

Table 11-2 shows the amounts of the four resources corresponding to
each plant.

The connection between the shared inputs and the product outputs (V)
is quite complex, and must be reflected through the «,,. If a given input
such as lathes (x,) does not impact on a particular output such as sheet steel
(< 4feet) (y,) then that particular variable ¢ is set to zero. Figure 11-1
shows the input-to-output impact matrix.

In the figure, an “x” denotes the fact that the particular input contributes
to the output shown. It must be noted as well, that when we have a product
common to two or more components, the corresponding variables ¢, must
be equated. For example, since sheet steel < 4 feet is part of both
components 1 and 4 (i.e., y; = ¥, ), then ¢; =, ;.
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Table 11-2. Shared Resources

271

DMU X, X, X, X,
1 30 15 100 150
2 40 12 90 180
3 35 16 97 100
4 38 20 85 85
5 28 9 110 125
6 37 13 76 140
7 31 18 83 110
8 35 15 100 150
9 25 19 95 190
10 30 10 65 210

Input 1 1 1 2 2 0.2 3 3 4 4 4 _4

AR VIS V5 VIS VRS LSS A R DA PN A PR A

x — — X — X X X X —_ — — X

i

X X X - X _ - — — X X X —_—

2

X — — X —_— X X X X _ — — X

3

x X X — X _ — — — X X X -

4

Figure 11-1. Input Versus Output Impact Matrix

For solution purposes we have restricted each ¢, to lie in the range .1 to
4. This means that for each shared input 7, at least 10% and not more than
40% of that input would be dedicated to any given output r. Although the
decision on such bounds was difficult for management to pin down, the .1-.4
range was deemed reasonable. As well, we impose both upper and lower
limits on the numbers of plants to which any given component can be
assigned. Specifically, we require for each component 7 :

1<>d, <4
k

Hence, at least one plant, and no more than four plants can be assigned

component f.

Efficiency Results
Table 11-3 displays the optimal component assignment to plants. In

summary:

Component #1 —— Plants 5,7,10
Component #2 ——> Plants 6,8
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Component #3 ——> Plants 1,3,9
Component #4 —— Plants 2,4

Table 11-3. Assignment of Components to Plants

DMU T, T, T, T,
1 0 0 1 0
2 0 0 0 1
3 0 0 1 0
4 0 0 0 1
5 1 0 0 0
6 0 1 0 0
7 1 0 0 0
8 0 1 0 0
9 0 0 1 0
10 1 0 0 0
Table 11-4. Decomposition of DMU Efficiency

Assignment of components toPartial efficiencies of component

plants
DMU L 1, 1T, 1, 1 T, T, T, Aggregate

efficiency

1 0 0 1 0 0.51 0.68 1.00 1.00 0.93
2 0 0 0 1 054 068 1.00 1.00 0.94
3 0 0 1 0 052 061 090 076 0.75
4 0 0 0 1 0.53 039 076 1.00 0.86
5 1 0 0 0 0.43 0.45 0.25 0.59 0.47
6 0 1 0 0 0.60 0.79 0.83 0.79 0.78
7 1 0 0 0 1.00 1.00 1.00 1.00 1.00
8 0 1 0 0 0.56 1.00 050  0.56 0.60
9 0 0 1 0 0.45 0.34 1.00  0.84 0.78
10 1 0 0 0 0.81 0.78 0.85 0.86 0.85

The overall efficiency score corresponding to this assignment is 96.6%
(the value of objective function (11.7a)). Specifically, if plants are evaluated
only on their core business components, their performance will be such that
if viewed as a single entity, the aggregate score is 96.6%. Table 11-4
displays both the current aggregate efficiencies for the 10 plants, as well as a
decomposition of these scores into component efficiencies. For example,
Plant #3 currently displays an overall performance score of 75%. This is
composed of partial efficiency scores of 52%, 61%, 90% and 76% for
components 1, 2, 3 and 4, respectively. Recall that the measure of partial
efficiency for a DMU k in its £ th component is given by

e, =Y /IV'X, +av" X} .

It is noted, as well, that with the recommended component-to-plant
assignments, plant #3 would be expected to have an efficiency of 90% (up
from 75%), if it could ultimately phase out non-productive portions of its
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operation, and move its full emphasis to that part of the business defined by
component #3. It must be emphasized that the component ¢, assigned to a
plant may not be the one whose partial efficiency is highest for that plant.
Notice, for example, that component #2 is assigned to plant #6, with a partial
efficiency of 79%, yet component #3 actually performs better within that
plant (at a partial efficiency of 83%). This can occur because rather than
minimizing a sum of efficiency ratios, we are optimizing the ratio of
aggregate output (across all plants), to aggregate input.

11.6. DISCUSSION

This chapter has examined the problem of identifying core business
components for each of a set of comparable decision making units. In the
context of a set of manufacturing plants, a modified version of the DEA
model of Charnes et al. (1978) has been developed and demonstrated. Unlike
conventional applications of DEA where the scope of the business (bundle of
products produced) is assumed to remain fixed, the approach herein is
intended to aid in making decisions pertaining to functional specialization in
plants. An important by-product of the core-business selection process is the
evaluation of efficiency of each component of the business as well as of the
overall DMU. The result, as demonstrated by Table 11-4, is an efficiency
profile that management can utilize in deciding where to aim for
improvements and, as well, which components to de-emphasize or phase out.

We do not attempt to address issues relating to plant reorganization
toward specialization. Rather, the model can aid management in choosing
those (core) business activities to place within each plant. The logistics of
restructuring and any change management considerations are beyond the
scope of the current chapter.

One of the potential shortcomings of the model given here is the apparent
absence of consideration of distribution costs on the input side. Specifically,
in some settings, the choice of a particular plant as the location out of which
a given component of the business will be operated, has distributional
consequences. For example, manufacturing auto parts in a location remote
from automobile plants (the customer) may be more costly than having them
manufactured at a less efficient, but closer-to-market facility. In the
application discussed herein, this issue was not highlighted as a major
concern. Presumably, in situations where distribution is a major issue, one
would need to augment the input bundle to include a provision for
distribution costs.
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Chapter 12

IMPLEMENTATION OF ROBOTICS
Identifying Efficient Implementors

12.1. INTRODUCTION

One significant component of the factory of the future is the industrial
robot.! Statistics from various countries show significant growth in the
number of robots and plants using robots since 1980. It is becoming
increasingly important to understand which firms are doing an adequate job
of implementing robotics, and why they have been successful. Determining
factors that lead to better robotics implementation is complicated by the
difficulty in determining project success. Performance is often defined in
terms of multiple criteria, and the levels for each should be interpreted in
relation to similar applications in firms with similar or competing interests.
This presents a complex situation in which to identify the more or less
successful implementers. It is only after the better performers are identified
that one can weigh the merits of various robotics implementations.

This chapter introduces a model of implementation efficiency which
utilizes DEA methodology to rank implementation performance in the
presence of multiple criteria. The source data are from a field study of
robotic applications in 30 companies. Three conditions believed to influence
implementation efficiency are tested, illustrating how DEA ratings can be
used to study the implementation of new technology.

'A robot is defined as a programmable multifunctional manipulator designed to
move parts, tools or specialized devices through variable programmed motions for
the performance of a variety of tasks.
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12.2. A MODEL OF IMPLEMENTATION EFFICIENCY

12.2.1 Background

In the research on technological innovation, the primary focus has been
on the decision phase, that is, the stages leading up to the organization’s
choice to adopt new technology. The later stages of the adoption process,
during which the innovation is actually implemented, have generally
received much less attention. There are a number of reasons for this:

e The implementation events are contingent upon a great many

factors, including those related to:
-the technology’s characteristics, such as its physical
complexity and its state of development;
- the innovation’s requirements for skills and expertise beyond
those already within the organization;
- the organizational restructuring needed to accommodate the
new technology;
- the availability of necessary skills and resources;
- the organization’s history and culture for change.
¢ Even with identical prior conditions and implementation objectives,
implementation processes may vary considerably among adopting
organizations (i.e., equi-finality). (Leonard-Barton, 1988).

e Conversely, the same innovation may be adopted by different

organizations to fulfill widely divergent objectives.

These conditions limit the comparability of implementations, even where
similar technologies are adopted. As a result, it is difficult to form a clear
picture of the critical conditions that lead to successful technology
implementation. Moreover, determining a project’s “success” may pose
serious problems. This is especially true for projects with multiple
objectives. First, a new process technology’s impact can be subtle and
widespread, extending well beyond the altered operation. For example, the
installation of a robotic system may reduce labour costs for the specific
application as intended, but increase material costs (because of the need for
more consistent inputs) and indirect costs (because higher skills in
programming and maintenance may be required). Additionally, the adoption
of advanced equipment may affect worker attitudes, impact sales or even
accompany a complete shift in corporate capabilities. Second, few firms
gather comprehensive information about completed projects, with post-
audits done poorly, if at all. As a result, there are usually scant data about the
new technology’s actual performance against the criteria — such as improved
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efficiency or enhanced profitability — by which the project was initially
justified.

Under these circumstances, investigators have to use the best information
that is generally available to compare relative success among
implementation projects. This means that some surrogates of inputs and
initial conditions have to be used and that outcomes have to be judged on a
broader basis, with multiple criteria reflecting the many objectives managers
have for their particular projects. In examining the implementation of one
type of technology — computerized information systems — Pinto and Slevin
(1988) propose three criteria for assessing project outcomes: technical
validity (whether the technology works as intended), organizational validity
(whether clients or users are satisfied with the outcomes) and organizational
effectiveness (whether the organization achieved overall positive benefits).

Most new technology projects can be assessed for their technical and
organizational validity; however, measuring organizational effectiveness is
much more difficult. It is difficult to attribute the organization-wide net
benefits of a process technology improvement, including changes in profits
or market share, image enhancement, etc., even within a firm that conducted
intensive, multi-year post-audits. It is virtually impossible to do so within
those firms that conducted little or no follow-up work (which are the
majority). Without the ability to gauge a project’s organizational
effectiveness, the measurement of the relative success of a technology
implementation is based almost exclusively on operational measure of
technical validity and organizational validity.

Comparing outcomes is also complicated by the differences among
projects and the initial conditions at each site. Any comparison of relative
project success must control for those conditions that would be expected to
impact eventual results. Two dominant conditions that often vary from site
to site are the project’s technical design and the initial availability of critical
technical skills and resources. Most process technologies are at least in part
unique, since they must be modified to suit the particular requirements of
each plant’s operations; in some cases, they may be virtually custom-made
for each application. The levels of modification impose different challenges,
with differing levels of system complexity and differing dependence on
newly developed hardware and software. Sites also vary in their access to
experienced personnel who would have the technical and management
expertise. It is only appropriate that comparisons of outcomes should be
made relative to these input conditions. The DEA methodology
accomplishes the requirements of comparing projects with differing initial
conditions and with various goals by using multiple constraints or input
conditions to determine relative success (or efficiency) ratings of comparable
projects on the basis of numerous outcome measures.
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12.2.2 Assessing the Implementation of Industrial Robotic
Systems

To demonstrate the comparison of similar implementations, we use a
group of projects that installed robotic systems in industrial plants. In each
case, the system was the plant’s first use of robots. Information on each
implementation is taken from project records, interviews with a number of
managers at each site and direct observations of the systems in action.

Few of the 31 plants had any detailed records about actual costs for their
projects, either for their system’s initial installation or for their subsequent
operation. Costs of purchased equipment and services were the only
expenditures that all sites could report, even though all of the plants incurred
other costs — for modifications, training, plant preparation and management
time — that were usually substantial but rarely captured. In some cases, the
non-capital startup costs were estimated to have been very high and
continued for several months following system installation. Cost, then,
provided little indication of the inputs actually required to complete these
projects.

The project outcomes were equally difficult to judge on the traditional
basis of efficiency improvement. For example, 14 of the 31 projects were
welding applications; with these projects, the main benefits included not
only reduced cost but improved weld quality plus the automation of
hazardous operations (where, for instance, the increased automotive use of
galvanized metal introduced new problems with dangerous fumes in
welding). Moreover, in many different applications, robotic systems failed to
reduce labour costs as expected, because the robots were found to require
constant monitoring. Despite the lack of clear economic advantage in many
projects, almost all of the systems became routinized. With some smaller
firms, the robot systems were clearly inefficient compared to the direct costs
of doing the same work manually, but the firm managers believed that the
improved consistency and the enhanced image gained by adopting robots
made up for the higher costs.

Given these conditions, measures that indicated the projects’ technical
and organizational validity were judged to be most appropriate for gauging
outcomes, rather than comparing financial benefits. Objective measures of
how well the system worked, both initially and in routine use, were uised to
indicate its technical validity. Subjective measures (managers’ opinions) of
how well the system achieved expectations indicated organizational validity.
More specifically, technical validity was gauged by:

e startup duration, the length of time from system installation until the
completion of debugging;
e uptime, the proportion of the scheduled running time that the system
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was capable of operating once in routine use.

Organizational validity was judged by:

* management satisfaction, the perceived degree to which the project

met expectations.

Management satisfaction reflected multiple opinions wherever possible,
with the mean score being used as the measure.

Conditions under which the projects were carried out varied considerably
from site to site. Some of the firms that adopted robots were small plants
with limited technical resources and experience with programmable
equipment; others were large plants, with highly competent technical staff
and considerable experience using and maintaining other forms of
programmable equipment. A measure of previous technical experience with
similar technologies was developed to differentiate these conditions in each
plant. Additionally, the systems themselves varied widely in characteristics
that were likely to affect implementation ease. Some systems were relatively
simple, consisting of a single robot interacting with one other piece of
automated equipment; other systems contained up to twelve robots that
interacted with several other machines. Some systems were designed to
perform a single task while others had to be programmed to carry out
numerous different operations, or perform similar operations on a wide
variety of different work-piece designs. These design elements were scaled
and combined to form a measure of each system’s complexity.

The systems also varied in the degree to which they employed newly
developed technology. Some systems employed proven, “off the shelf”
robots, controllers and other components while others required specially -
prepared grippers, part-handling mechanisms and other machines. Since
newly developed manufacturing equipment tends to face more startup
problems and failures, a measure of this facet of each system was devised to
control for this condition.

Appendix 1 contains a brief description of each of the input and outcome
measures. Some of these measures are interval; others are only ordinal. For
some of the measures, the derived values form distinctly non-linear patterns,
while others have limited variability. These conditions severely limit the
usefulness of least-squares-based analytical techniques. Fortunately, the
DEA methodology can deal with these problematic measurements.

12.2.3 The Model Structure

A robotics project can be viewed as a Decision Making Unit, in much the
same manner as one would view a factory, government department, etc. It
utilizes resources or inputs, and produces outputs or results. Comparison of a
project to an operating unit is a useful paradigm, if one considers the manner
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in which the productivity standing of a factory would be measured. In such
an industrial setting, efficiency or productivity is generally approached from
an engineering perspective. This approach is based upon production
standards. Such standards specify the best (minimal) amount of each input
needed to produce one unit of output, and the productivity rating of the
DMU is generally given by the ratio of standard or required inputs to actual
inputs consumed.

While productivity standards can be derived in an engineering
environment, such is not the case in the project setting. Outputs or outcomes
are not reducible to a common unit of measurement such as hours or dollars,
and inputs are not purely economic, but rather characterize the environment
or circumstances surrounding the implementation. Thus, an alternative to the
absolute approach to efficiency measurement offered by the conventional
engineering method, is a relative efficiency model (DEA). For our purposes
here we adopt the constant returns to scale version of the DEA model.

There are several important reasons why this method is particularly well
suited to the implementation efficiency problem at hand. First, factors such
as technical complexity of the new system and its use of new technology
form an important part of the picture, yet are not easily reducible to
economic units for purposes of setting standards. Therefore, as indicated, the
conventional approaches are not applicable here. At the same time, scale
measurements of these factors are available, allowing for a relative
comparison of the projects. Second, the method possesses certain
characteristics which render it a valuable tool in the context of the present
problem. These characteristics are:

1.The model can provide a clear discrimination among the projects,
hence separating them into various rank classes;

2.1t can help in pointing to reasons for apparent inefficiencies,
therefore aiding in either verifying or disproving popular belief vis- a-
vis influences on implementation success;

3.The model makes allowance for any special circumstances
prevailing in some project settings (e.g., low versus high degree of
technical or management experience); and

4.Its structure is such that one can evaluate parameters that are not
directly included in the model, yet which may have an important
impact on implementation efficiency (e.g., number of employees in
plant, urgency of the project, etc.).

This approach for determining weights for each DMU can be justified by
arguing that since non-economic factors are present, there is no “correct set”
of weights that apply to all projects. The importance, for example, of the
complexity factor to projects in large plants may be different than to those in
small plants. Thus, rather than having to try to assign some set of common
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weights to inputs and outputs, the model itself chooses weights that are
appropriate for each project.

In the sections to follow, we elaborate on the problem setting and the
outcomes resulting from the DEA analysis.

12.3. THE DATA

The DEA evaluation of implementation efficiency was applied to data
collected on 31 robotics projects at 30 different sites implemented during the
period 1980 to 1986, as detailed in McCutcheon (1988). In each case, the
project was the plant’s first use of robotic technology. In one case, two
projects were installed simultaneously and independently. Data were
collected by onsite interviews, conducted primarily with process or
manufacturing engineering managers. The distribution of the plant sizes,
industrial sectors and uses for the robots are shown in Appendix 2.

The projects involved wide ranges of plant sizes, robot applications,
system complexity levels and outcomes. Although it was anticipated that
only successful projects would be found, two of the 31 projects studied had
been abandoned and several were considered by their implementers to be
partial failures.

Although arc welding applications and vehicle component manufacturing
appear to dominate the sample, these categories in fact included widely
varied projects. The vehicle component applications ranged from light
stampings for automobiles to heavy welded sections for off-road equipment
and military vehicles. While 42% of the surveyed systems were used for arc
welding, these applications ranged from simple systems used in job shops to
extremely complex systems dedicated to mass production.

The site studies resulted in the collection of data on a wide range of
factors. For purposes of measuring implementation efficiency, six direct
factors (3 outcomes and 3 influence variables as described earlier) were
selected for use in the DEA model. In addition, three control variables were
chosen to be used for further analysis. Appendix 1 contains a detailed
description of these 9 variables. A table of the numerical values for the 31
sites investigated is contained in Appendix 3.
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12.4. ANALYSIS OF EFFICIENCY

12.4.1 Preparing the Model for DEA Analysis

The implementation efficiency model described in section 2 was applied
to the 31 projects. The effect of DEA analysis on the model is illustrated in
Figure 1. Part of the input to this model is a set of limits on each of the three
input and three output variables. The choice of limits is rather arbitrary. For
purposes here, the limits on all inputs and on the output variable MSAT were
set very wide based on the belief that there may be a high degree of
uncertainty or ambiguity regarding these variables.

STIME and UPTIME were regarded as the variables whose data was
perhaps the most reliable, and whose importance weights should be
subjected to the tightest control.

12.4.2 OQOutcome from the Overall Analysis

The DEA model was run for the 31 sites, and an efficiency rating was
obtained for each. Table 12-1 displays the results. In this case 7 of the 31
projects obtained an efficiency score of 1.00 or 100%, meaning that they are
not dominated by other more efficient sites. The remaining 24 projects
obtained ratings at a lower level, indicating that each is dominated by some
other efficient site or combination of sites. As an example, compare sites #5
and #30. Site 5 had outputs that were higher than those for #30 (#5 took less
time to put the project in place, its system is serviceable more often, and
management satisfaction is higher than is true for #30). On the other side, the
influences or inputs for #30 are more favorable than for #5 (meaning that
#30 should have actually had better outputs than those of #5).

The outcomes in Table 12-1 demonstrate a wide range of ratings,
meaning that the DEA model has been able to discriminate clearly among
the implementation sites. Moreover, through arguments similar to that of the
previous paragraph, one can detect, in many cases, clear reasons why some
sites score low on the efficiency scale.
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Figure 12-1. Implementation Efficiency Model

Table 12-1. DEA Efficiency Ratings for 31 Sites
Robotics DEA Robotics DEA
Project Rating Project Rating
1 62.9% 16 66.6%
2 81.1% 17 69.0%
3 70.9% 18 100.0%
4 52.4% 19 52.2%
5 100.0% R0 64.4%
6 64.1% 21 100.0%
7 52.3% 22 100.0%
8 82.2% 23 69.3%
9 69.0% 24 93.0%
10 54.9% 25 100.0%
11 69.5% 26 58.6%
12 100.0% 27 87.8%
13 65.0% 28 100.0%
14 65.2% 29 57.2%
15 51.6% 30 58.7%

31 89.4%
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12.4.3 Using the Control Parameters

Three additional parameters — plant size, the use of supplier
management techniques, and the project’s perceived urgency — were
examined for their impacts on implementation efficiency. Each parameter
was expected to influence results. Comparing the initial efficiency ratings
against those derived by including each of these parameters shows how
rankings would be affected if the parameter were to be considered an input.

Size has been found repeatedly to correlate with organizational
innovativeness, with larger organizations tending to adopt more innovations.
(Ettlie and Rubenstein, 1987). However, as pointed out by Rogers, size is
most likely a surrogate for other factors, such as organization structure or the
availability of slack resources, that have a more direct influence. (Rogers.
1983). During the implementation phase, plant size may have two effects:
larger plants may have more sophisticated staff (reflected in the measure for
previous experience with similar technologies) and more sophisticated
infrastructures, which should lead to better results; (Gerwin. 1988), at the
same time, larger plants may have more mechanistic managerial
relationships which may impede implementation efficiency.

The use of a wide range of supplier management techniques for
controlling technical innovation projects conducted largely by vendors has
been shown to reduce system startup problems significantly. (Wood and
Elgie, 1976). Including a measure of each plant’s supplier management
methods in the analysis provides an indication of their impact on overall
implementation results.

The urgency associated with getting these robotic systems into routine
use varied considerably from project to project. In some cases, the new
systems were seen as essential for assuring the plant’s continued survival,
whereas in others, the systems had no special urgency, being viewed in part
as experimental, undertaken as learning opportunities. Perceived urgency has
been shown to have an influence on the initial stages of innovation adoption
decisions. (Ettlie and Vallenga, 1979). Urgency was included here to see if it
had a discernible impact on the project’s implementation stage as well.

To gain some insight into the influence of a parameter such as supplier
management, the 31 project sites were separated into two groups. Those sites
with a supplier management rating between 0 and 8 (Jow) were separated
from those with a rating higher than 8 (high). A DEA analysis was then
applied to each of these groups separately. Table 12-2 shows the outcomes.
Column #1 displays the original ratings prior to the split off analysis (same
ratings as in Table 12-1). Column #2 presents the new ratings for those
projects in the low supplier management group (15 projects), while column
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#3 shows the revised ratings for the high supplier management group (16
projects).

Table 12-2. Evaluation of Supplier Management

Robotics Project DEA Rating  Low Sup Mgt. Group High Sup Mgt. Group
i 62.9% 72.7%
2 81.1% 81.1%
3 70.9% 71.7%
4 52.4% 71.7%
5 100.0% 100.0%
6 64.1% 73.1%
7 52.3% 64.1%
8 82.2% 90.6%
9 69.0% 77.4%
10 54.9% 58.5%
11 69.5% 70.9%
12 100.0% 100.0%
13 65.0% 70.8%
14 65.2% 70.7%
15 51.6% 59.6%
16 66.6% 81.4%
17 69.0% 87.4%
18 100.0% 100.0%
19 52.2% 59.1%
20 64.4% 75.3%
21 100.0% 100.0%
22 100.0% 100.0%
23 69.3% 69.5%
24 93.0% 93.1%
25 100.0% 100.0%
26 58.6% 71.4%
27 87.8% 100.0%
28 100.0% 100.0%
29 57.2% 85.1%
30 58.7% 62.5%
31 89.4% 89.8%

[Mean Score  80.3% 81.4%

It is noted that the rating for a project in any subgroup analysis is always
at least as high as is the value for that project when the entire group is under
consideration. For example, the rating for project #1 increased from 62.9%
to 72.7% when the low supplier management group was split off for a
separate analysis. The reason for this is that the project (#1) is being
compared to a smaller group in the latter case.

Table 12-3 presents summary statistics, specifically the arithmetic means,
for the two subgroups; before and after the split.
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When members of the low supplier management group were being
evaluated relative to all 31 projects, the average rating for this subgroup of
15 sites was 71.6%. When this subgroup of 15 was split off for separate
analysis, the average rating grew to 80.3%. The corresponding figures for
the high group were 77.0% and 81.4%.

Table 12-3. Average Efficiency Ratings of Low and High Supplier Management Groups

Supplier Management
Analysis Group |Low Scoring High Scoring
Before 71.6% 77.0%
After 80.3% 81.4%
Change in Average Score 8.7% 4.4%

At least three important observations can be made regarding the high
versus the low supplier management group. First, it is observed that the low
group has a worse performance standing on average than is true of the high
group (71.6% versus 77.0%). The second observation is that the low group’s
average increases by 8.7% (80.3-71.6), while the high group average
increases only by 4.4%. It can be argued that the original efficiency gap of
28.4% (100% - 71. 6%} for this low scoring group is closed by 8.7% due to
the removal of high supplier management sites. Thus the size of the gap
removed representing the change in the average score in Table 12-3 is a
reflection of how one group suppressed the scores of the other. Since the
reduction in the high scoring group efficiency gap (4.4%) is less than that of
the low scoring group (8.7%), the high scoring group had more of an effect
on keeping the low scoring group’s rankings low than vice versa. The third
observation is that there were more top performers in the high group than in
the low, prior to the split off. Specifically, in the set of seven sites which
achieved an efficiency score of 100%, five of these were in the high supplier
management group, while fwo only were in the Jow supplier management
group.

Hence, it can be said that for the particular sites in question, a high
degree of supplier management appears to have a positive influence on
implementation efficiency.

Tables 12-4 and 12-5 present summary statistics similar to those of Table
12-3 for plant size and urgency, showing the arithmetic means before and
after being split into two subgroups.

Here again, the group with the smaller sites has the higher average rating
(when compared to the larger sites), contains the majority of the top
performers, and views the opposing (larger sites) group as presenting little or
no effect on their scoring. For the large plants, quite the opposite is true. The
average rating is very low (69.7%), two top performers only are present, and
an enormous effect is removed when the group of smaller plants is
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eliminated from the comparison set. That is, given that the efficiency gap of
30.3% (100%-69.7%) is closed by 15.9% (85.6%-69.7%), one can argue that
this gap is explained by the opposing group’s presence (or lack of presence).

Table 12-4. Average Efficiency Ratings of Small and Large Sites

Plant Size
Analysis Group Small Large
0-200 Employees) (Above 200 Employees)
Before 79.5% 69.7%
After 80.0% 85.6%
Change in Average Score  |.5% 15.9%

Table 12-5. Average Efficiency Ratings of Low and High Urgency Sites

Urgency
Analysis Group Low Scoring High Scoring
Before 73.3% 77.2%
After 73.3% 91.5%
Change in Average Score 0% 14.3%

The outcomes for the urgency parameter are somewhat difficult to
interpret. First, it should be noted that the scale values for this parameter
ranged for 1-4, which may not provide a measure with sufficient variability.
Furthermore, an attempt to split the 31 sites into two relatively equal sized
groups failed. There were 22 low urgency (i.e., those <2 on the 1-5 scale),
and only 9 high urgency (i.e., > 2 on the 1-5 scale) sites.

The fact that the average rating in the low urgency class did not change
from before to after the split off is due to the fact that, while not all of the top
performers lie in the low urgency class, those top performers against which
the Jow urgency sites are measured are only those in the low group. That is,
none of the low urgency sites are being compared to the two top performers
that fall in the high urgency group.

On the other hand, since the average rating for the high urgency group
does change (moves from 77.2% to 91.5%), clearly a number of the
members of this group were being evaluated against top performing low
urgency sites. Note, for example, that prior to the split off, the high urgency
site #2 had a rating of 81%. When the split off occurred (the low urgency
group was removed), its rating climbed to 100%.

While most of the top performers fall in the low urgency class, it is true
that the worse performers also occupy this class (e.g., sites #4, 7, 15 and 19).
Thus, the low urgency group is very heterogeneous. The high urgency group
is less so. Little else can be concluded about the urgency impact on
implementation efficiency.
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12.5. DISCUSSION AND SUMMARY

Each of the plants had its own set of criteria for judging the success of its
project. Some projects were designed specifically to reduce labour costs;
others were economical means to reduce workplace hazards; still others were
viewed, at least in part, as experiments in flexible technology applications.
On these bases, the projects had limited comparability. However, at a
fundamental level, all projects were expected to meet common criteria of
technical success and organizational acceptance.

Using measures for these common criteria, the DEA methodology
provides a means of ranking the projects according to their outcomes. The
analysis using DEA has two advantages. First, it indicates the relative
achievements of the plants, given the widely differing conditions they faced
in implementing their first systems involving robots. Moreover, it allows this
comparison in an environment where the data made parametric analytic tools
inappropriate. DEA has a major advantage in allowing the use of data as
they are found in the real world.

Second, the model was capable of showing the impact of particular
conditions on relative implementation efficiency. One of these conditions,
management’s perception of the project’s urgency, had results which proved
difficult to interpret. However, the other two, plant size and the use of
supplier management techniques, proved to be conditions that had to be
taken into account when assessing the relative efficiencies of the plants.
When comparing the implementation efficiency of plants, managers must
judge them relative to plants of similar size and supplier management
capability. Interestingly, in the short term, good supplier management is
within the project manager’s ability to influence, while plant size is a factor
usually determined by the firm’s top management. Therefore, managers
assessing relative project performance may choose to disregard the former
factor while considering the latter as a basis of comparison.

Advanced manufacturing projects such as the introduction of robotic
systems into individual plants will continue to be evaluated using traditional
financial measures such as return on investment. Unfortunately, as often
noted, these metrics will not always capture the full impact of new
technology on a plant’s competitiveness. Inevitable errors in the forecasting
of cash flows and parameters such as discount rates will produce
comparisons of planned to actual performance that are difficult to interpret.
As noted by Kaplan and Johnson (1987) traditional cost accounting systems
are struggling to furnish better information needed to evaluate projects.
There will always be a need to have a common financial measure such as
ROI to compare proposed projects competing for scarce resources. This
should not be confused with the need for effective post-project assessments
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of project performance that contribute to organizations learning about how to
implement better.

We would recommend that project gatekeepers or evaluators expand the
number and variety of types of measures for evaluating advanced
manufacturing project performance. Tools, such as DEA, facilitate the
resolution of the resulting “messy” evaluation task. The ability to parse the
effect of controllable factors such as supplier relationships versus less
controllable factors such as plant size, leads to fairer assessments of
individual project leaders and their team members. Consistent project
evaluation techniques would provide metrics for a corporate wide database
of innovation aimed at speeding transfer of best practices between plants in
large companies. (Johnston and Leenders, 1990). Post project audits can be
made more precise in their identification as to which operating and
organizational policies should be changed to facilitate project
implementation. In addition, private and public agencies responsible for
evaluating research output from diverse projects can more consistently rank
projects under their control.

Given the problems in comparing various new technology
implementations, the DEA technique provides an effective means of judging
project outcomes. Its ability to use widely differing forms of data as
indicators in inputs and outputs helps to overcome the inherent difficulties
with such comparisons. In addition, using a database such as the one here,
managers can determine the appropriateness of considering certain factors in
judging project results. In this way, projects can be compared relative to
others that faced similar conditions, providing potentially fairer
comparisons.
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APPENDIX 1: VARIABLES IN IMPLEMENTATION
EFFICIENCY MODEL

Three initial conditions at the start of a project:

SYSTEM COMPLEXITY (COMPLX): A count of four components of
robotic systems, summed to created an absolute scale of overall system
complexity. The four components are:

e the number of machines controlled by the central controller

e the number of unique part numbers that require distinct

programming

e the number of robots

e the number of discrete operations performed by robots in a cycle

(e.g., lift, load, perform one weld)

PREVIOUS EXPERIENCE WITH TECHNOLOGY (PREVEXP): This
variable captures the expertise of the production department relevant to the
new system. It is a summed score of four 5-point measures that were scaled
for;

¢ number of system-years operating programmable equipment

maintenance capabilities with programmable equipment
number of system-years of experience with systems powered by the
same method

e maintenance expertise with similar mechanical systems.

NOVELTY OF THE APPLICATION (NEWAPP): was based on 5-point
scales for each major component; each scale reflecting the component’s
innovativeness ranging from the purchase of a standardized off the shelf
equipment to the development of a customized component.

e Three outcomes at the end of the project:

START UP TIME (STIME): the number of weeks required to take the
technology from physical installation to the point where it was routinized
into normal production. Routinization was determined by either the point of
official hand over of the technology to day to day operations or the date of
the last major modification.

UPTIME (UPTIME): an estimate of the percentage of the total
production time available for operation in which the technology was in
service.
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MANAGEMENT SATISFACTION (MSAT): a perceptual measure on a
5 point scale from very dissatisfied to highly satisfied with the degree to
which the project met expectations.

e Control Parameters:

SUPPLIER MANAGEMENT (SUPMGT): This is a measure which rates
the project teams efforts to manage their system suppliers. It has 7
categories:

e use of written specifications for the work to be done

e requirements that the vendor provide adequate documentation prior

to the system’s final installation

e continual contact during the equipment development stages (e.g.,
weekly or bi-weekly meetings or telephone calis)
visit(s) to vendor’s plants while equipment was being built
requirements for pre-tests under plant conditions
prior assessment of vendor’s financial strength
prior assessment of vendor’s technical capability

Each category was scored 0 (not carried out), 1 (carried out, but only for
this special project) or 2 (carried out; routine procedure for the plant or for
the project manager).

PLANT SIZE (PLTEMP): this variable records the number of employees
within the plant when the system was implemented.

URGENCY: (URGENCY) this measure is on a 5-point scale, based on
the reporting manager’s assessment of the urgency connected with the
project.
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APPENDIX 2: SITE DEMOGRAPHICS

Plant Size

Number of Employees at the time Number of
of the project sites

up to 100 5

101 - 250 11

251 -500 8

more than 500 7

Robot System Applications
Primary use of the robot(s) Number of projects
Arc welding 13

Part handling 6

Machine loading/unloading
Assembly

Spot welding

Soldering

Palletizing

Toolhandling

Adhesive application

—— = = D WA

Industry Sector

Industrial sector served by Number of
the project projects
Vehicle assembly 2
Vehicle component manufacture 11
Heavy engineered equipment 1
Metalworking job shop 2
Electronics component assembly 2
Appliance assembly i
Construction materials 1
Plumbing fixtures and supplies 3

Other commercial/industrial

products 6

Pharmaceutical laboratory work

—
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APPENDIX 3: DATA MATRIX OF VARIABLES AND

PROJECTS

Robotics

Projectlnputs

NEWPREVCOM-MSAT

APP EXP PLX
1 11 11 39
2 4 20 27
3 14 6 39
4 13 18 33
5 11 4 38
6 11 9 40
7 16 16 42
8 10 9 36
9 8 12 34
10 9 19 34
11 5 18 39
12 4 15 14
13 11 18 34
14 i3 16 38
15 16 13 42
16 15 11 28
17 15 11 28
18 2 11 31
19 17 14 42
20 9 12 36
21 2 22
22 8 16 2
23 19 4 34
24 11 4 38
25 5 6 25
26 15 14 35
27 3 11 34
28 10 4 25
29 5 18 36
30 10 16 32
31 9 4 28

Control
Outputs Parameters
UP- S- URGENCYPL SUP-

TIME TIME TEMPMGT
78 197 2 160 4
95 184 3 3500 10
8 175 2 76 7
78 150 1 300 7
90 188 3 350 10
78 176 1 245 13
8 194 1 300 5
97 180 2 160 13
80 188 4 1200 12
78 176 2.5 500 11
100 176 2 300 10
78 144 3 200 9
95 176 3 1700 11
99 199 1 40 12
78 188 1 120 7
65 184 3 1100 8
78 188 3 1100 8
90 188 1 120 18
78 196 2 200 8
78 190 1 520 10
78 185 2 120 13
78 135 1 600 10
78 100 1 200 6
80 195 2 75 4
65 152 1 200 8
83 189 2 500 11
80 179 1 150 5
78 198 2 60 8
78 145 2 80 5
78 165 1 450 10
40 174 3 280 7



Chapter 13

SETTING PERFORMANCE TARGETS FOR NEW
DMUS

13.1. INTRODUCTION

A problem of considerable interest to many organizations, and to be
examined herein, involves the setting of performance targets for a yet fo be
created decision making unit. Typically, such a problem arises in site
selection decisions for new facilities. Consider, for example, the selection of
a site for a health care facility (clinic, hospital, etc.). Suppose that estimates
for the demand for various types of services - for example, geriatric care,
prenatal services, emergency provisions, and so on — have already been
established. That is, the outputs y, are given values, or at least can be
estimated. An issue affecting the design of the facility is that involving the
inputs. While some inputs are given values, such as the demographics of the
population where the facility is to be located, other factors may be less
certain. More to the point, the resources, such as staffing needs, required in
order to be able to deliver those services are at the discretion of the
organization. One approach to addressing the resources side of the problem
is to set as targets those staffing levels which would ultimately result in an
efficiency score for the new facility that is at or above some acceptable level.
Stated in DEA terms, the resource targeting problem is one in which the
outputs (services) are given or known, while some of the targer inputs
(staffing, operating budgets, etc.) are values to be chosen in such a way that
the relative efficiency rating meets some desired standard. Hence some
inputs are discretionary while others may be nondiscretionary.
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In other situations, the roles of outputs and inputs may be reversed. In the
site selection exercise for a retail establishment, the costs or input parameters
may be known, or can be estimated — size of facility, staff makeup, operating
budget, etc. The problem in this case becomes one of setting output targets,
such as sales of various products or services, that will result in an overall
performance measure, i.e., efficiency score, that meets some acceptable
standard. An example might be the positioning of a new branch of a bank. If
in a given setting, the approximate cost or input values are known, the bank
may want to establish sales targets for the branch for various loans,
investment sales in GICs and RRSPs, etc. These targets, which would result
in an efficiency rating at or above some level, can then be compared to
estimated outputs to see if the proposed site is desirable and can meet
expectations. Viewed from this perspective, the output target problem is
pertinent to the marketing of new products and/or the establishment of new
sales territories.

13.2. THE PERFORMANCE TARGET PROBLEM
WITH NO RESOURCE BOUNDS

13.2.1 The Input Target Problem

For a given set of n decision making units, for example, health care
facilities, let { yri}f=1 be the set of given outputs and {xij}i[:l, the set of
inputs for facility j. The input oriented DEA model presented earlier can be
utilized to derive an efficiency score for each DMU . Specifically, we
adopt the BCC model (L-P version) for purposes of discussion here: Model
(13.1) is the dual and (13.2) the primal form of the model.

R
max z Yy, T W
=1

VAR R

subject to

/ (13.1)
Z ViXy, =1
i=1

R I
w+ Z,uryrj —ZVixU <0,j=1...,n
r=1 i=1

,v, 2 0,all »,i, w unrestricted.
r i 4

and
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min &
subject to

n (13.2)
z/lly'/ Zyrj(1’r = 1 = 1,...,R
j=1

Ox,, — > Ax,20,i=1,.,1
Jj=1

Z A, =1
J=1
4,20, @ unrestricted

Consider now the problem of selecting a site for a new (n + 1) st facility,
the performance of which must ultimately be judged against the other
existing DMUs. For present purposes, we assume that the demand for
services, for example, the outputs {y,,., }f:] are given values. Suppose,
however, that the inputs are not immediately available, and that the problem
at hand is to set targer values {x,}._, for these inputs, such that the
resulting efficiency rating & for this new facility is at least some acceptable
level €. To an extent, this problem addresses a feasibility issue.
Specifically, the setting of an efficiency performance floor value of @
permits one to determine the maximum inputs x,,,, (for example, operating
expenses, staff levels, capital costs, etc.) that are allowable if the facility is to
meet that value. If the actual estimated input requirements exceed the
maximum limits, then presumably the venture would not meet the feasibility
specifications.

Viewing the input target problem from the perspective of problem (13.2),
the requirement is to find an input vector ( x,,,;,..., X;,,;) S0 that the solution
to (13.2) with j, = n+1, gives an optimal £ value in excess of &, that is
we want #(=mind) > 6. In addition to the constraints given, additional
restrictions may be imposed on the {x,,, }Ll. For example, there may be
minimum or maximum levels x,,, which some of the components x
must obey. This case is addressed in Section 13.3.

Clearly, if the x,,, represent resource requirements, such as staffing,
then the larger their values, the more likely it will be that the outputs y,, can
be delivered. Thus, the larger the inputs the more flexibility the facility will
have in conducting its operation.

To get a clear picture of the input target problem, consider a simple
example of 2 DMUs, each producing a single unit of output and consuming
2 inputs in amounts:

in+1
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Input
DMU| 1 2
1 10 2
2 12 1

We wish to find appropriate values x,,,X,, for a new DMU #3. Assume
that an efficiency score of at least & = 80% is to be achieved by the new
DMU. Figure 13.1 illustrates the situation.
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Figure 13-1. Isoquant for 2-D Problem

Points A and B show the positioning of the inputs for the two DMUs; the
line segment AB is the only legitimate facet, and represents the efficient
frontier. The portion of the cone enclosed by the two rays out of the origin
and projected through A and B and lying behind the frontier represents that
area where properly enveloped DMUs can lie (for example, at point E). A
point such as E', outside the cone would be improperly enveloped. The line
segment CD represents all possible properly enveloped DMUs that would
have an efficiency score of & =80%. That is, OA/OC = OB/OD = 8 =
0.80.

It is noted that as with the line segment AB, any points on the vertical
line out of A (for example, point A') and on the horizontal line out of B (for
example, point B') will have efficiency scores & of 100%. Any improperly
enveloped DMUs such as £ will be measured against these two frontier
extensions, and will show positive slack in one of the second set of
constraints in (13.2). Hence, any input target point (x13,x23) that has
positive slacks will be improperly enveloped (for example, E ). All slacks
must be zero if the point is to be properly enveloped.
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In this simple case it is clear that any point inside the area ACDB is a
candidate for the input target point (x5, X,; ).

The problem is then to derive a set of target inputs {x,,,, },.1=1 such that the
resulting DMU will have an efficiency score 8 > @, and will be as close as
possible to being propetly enveloped. We consider first the case where no
additional restrictions such as upper and lower bounds are imposed on the
{X,,11 }i- This means that inputs can be reduced or increased as much as
desirable without hitting any bounds.

13.2.2 Unimpeded Movement of Inputs

The problem to be solved is one of finding a set of target inputs {x, ,}_
that is maximal in some sense, such that the efficiency score O > 6 at the
optimum of (13.2). The difficulty with dealing directly with this problem is
that one has an optimization problem (min &) within a larger optimization
problem (max some function of the x,,,). An alternative to this approach is
to reverse the problem, i.e., find a minimal set of x,,,, while ensuring that
0 < 6. To this end, consider the following nonlinear problem:

I
mino + gz s;

i=1
subject to

&= Xy

OXpy = D AX, =5, =0,i=1,..,1

J=1

20,i=1,...,1

> AV Z Vst =L, R (13.3)
J=1

0<6

Zﬂj =1

J=1

2;20,620,x,, 20,Yi,j.

The nonlinegrity arises from the product of & and x, ;.
The term & Si S8, in (13.3) guarantees that out of all alternate optima, any
properly enveloped point (x,, ,,...,X,,,,) Will be chosen over an improperly
enveloped point. In terms of the simple example above, the point will be

chosen from within the area ACDB.

Lemma 13.1. _
At any optimum (", A", x,,,,0") of (13.3), 8" = 6.
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Proof:

If there exists an optimal solution to (13.3) for which 8" <& then there
is a scaler ¥ >0 such that the x,, values X, = x; . — ¥ are feasible
inthe second set of constraints in (13.3), when & =46. Since all
Emn <X, ., then @ =a" —y is feasible inthe first set of constraints,
meaning that &" cannot be optimal. This contradicts the assumption on &,
and the result follows.

_ Q.ED.

From this lemma it follows that constraint @ < may be removed and
6 replaced by & in the second set of constraints, thus reducing the problem
to a linear format. The next theorem follows immediately, and the proof is
omitted.

Theorem 13.1:

If (x],,,->X},,,) is an optimal target input vector in the sense of
problem (13.3), and if x;, and y,, are set equal to x,, and y.
respectively in problem (13.2), then the optimum & in problem (13.2) is
givenby 6 = 0.

It is noted that at the optimum of (13.3), all s, = 0.

From a technical efficiency standpoint, every point on CD is equally
desirable in that they all produce a score of 8 = @. Problem (13.3) is merely
a vehicle for generating a feasible solution. From an economic or
effectiveness standpoint, one would arguably wish to choose a least cost
combination on CD if prices were known. Specifically, if {c },1 were the
costs of the inputs, it would be appropriate to choose {x,, +1}, _, according to
the optimization problem

min Y .5,
j=

subject to
0%, — 2 A%y =0,i=1,..,1

J=1

Zﬂfl‘yrj 2yrn+17r:]9'-'aR (134)

Jj=1

lej:l

A%, 20,Yi, j.

j 2 Vin+t
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The first set of constraints in (13.3) guarantee that only properly
enveloped points are considered.

For the simple example presented earlier, point C will be the optimum to
problem (13.3), whereas the optimum for (13.4) would depend upon the
prices c;.

13.3. RESTRICTED INPUT SPACE

If additional restrictions V' are imposed on the x,,,, (for example, ¥ is
not the full space R’), the nature of the feasible space as per Figure 13.1 can
change significantly. We consider two types of restrictions — upper bounds
and lower bounds on the x,,,,.

13.3.1 Upper Bounds on the x,_,
In the case that upper bounds X; ,, are imposed on the allowable input
targets, then W is defined as

Y= {(xin+17"' i x1n+1 ).C,‘R] | 'xin+1 < ‘xil;+l } (13‘5)

This definition allows, of course, for the case that some x;,,, may be co.
A finite upper bound x;,,, may, for example, exist for some input i, if the
organization simply imp"oses a limit on a particular resource (for example, in
the case of a bank, the number of back office staff may not be permitted to
exceed some level within any branch of the type being considered.)
Alternatively, the maximum rent that might be paid in a particular location
would in general be bounded. _

If the additional constraints (13.5) are appended to (13.3), and if € =6
is feasible, then an appropriate set of target inputs can be derived. If 8 is
not feasible then no @ < 0 will be feasible either. In this case, the lowest
efficiency score & allowable for the 7+ 1st DMU will be some value
strictly larger than @. To determine @, set all restricted x,,,, at their upper
bounds x; ., and let all unrestricted variables be assigned a large value M.

n

Call these values ¥, Then, solve the minimization problem

I
miné + gz s;

i=1
subject to

Ha?mﬂ"zijxv —-5,=0,i=1..,1

J=1
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DAYy Z Vpust =1, R (13.6)
=

2’11‘:1

=t

0<0<1

/lj 20,j=1,...,n

To visualize the problem, a revised version of Figure 13-1 is shown as
Figure 13-2, where an upper bound on x,,, has been imposed. Depending
upon the positioning of the bound, & = # may or may not be feasible. Since
the bounding plane shown as the vertical line out of ¥ ,,,; does not interact
the & bounding CD, then the optimal solution & will exceed . In this

illustrative case, the optimum will occur at point F and 6 = OA/OF.

¢ -
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{} — H H
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Figure 13-2. Imposed Upper Bound on Input 1

In general, with upper bounds, the optimum set of target inputs is given

by

Rimt1 = X1 — 5, » (13.7)
where %, is either an imposed upper bound X, ., or equals M. s,.* is the
slack in the i th constraint of the first set of restrictions in (13.6).

Clearly, problem (13.6) will be feasible provided at least one point on the
efficient frontier satisfies the constraints. In the example of Figure 13-2 this
means that the upper bounding plane cannot be to the left of the segment
AA . In this case & would exceed 1.
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13.3.2 Upper Bounds on the x,
In the case that lower bounds x|, are imposed on some of the input
variables, W is defined by

\P = {xin+1’ 9x1n+1)gRl | xin+1 2 i€1+1 } (138)

Again, it is noted that some lower bounds may be zero. The feasible
region might now appear as in Figure 13-3, Figure 13-4 or Figure 13-5; these
figures represent 3 possible situations regarding the degree of restrictiveness
of the lower bounds. In Figure 13-3, where we require x,; = X3, a portion
GB of the efficient frontier AB is in W. This means that if we solve
problem (13.3) with (13.8) imposed, then a set of target inputs will be found
for which the projected point will be on GB. In this particular example the
target input point will be at H. A DMU at H can be projected unimpeded
directly to G. Any point between I and H would first project to the IG
segment where input 1 would become nondiscretionary, and the projection
would then be vertical (with only input 2 as discretionary now) to point G.
This would result in a € smaller than &.

input 2

fnput ¢

Figure 13-3. Lower Bound where ¢* =1
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Figure 13-5. Lower Bounds where ¢* > 6%

Clearly, any point on HD will suffice as a target input point.

In the case that lower bounds do not provide for access to the frontier
proper, as is the situation described by Figures 13-4 and 13-5, then
projection can take place only on to an extemsion of the frontier. In the
example shown here, projection will be onto the extension BB'. In Figure
13-4 the target input would be D, and its projection would be back to J, then
down to J'. Point D has a @ value of 8. As above, any point on ID other
than D will have a 8 value less than 6.
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Figure 13-5 is a situation where & will be strictly less than 8 for any
feasible point. In this simple example, K will be the target point and its
projection will be to K .

To formalize these ideas, let £ denote the set of efficient (and properly
enveloped) DMUs. We are now interested in those members &, of & that
are input boundary points. A DMU j is an input boundary point if there
exists an input i, such that x, ~<ux, , for all j=1,..,n That is, the
minimum of the x ,j across all DMUS J occurs in DMU J,. Frontier
extensions can emanate only from boundary points. Note in Figures 13-3,
13-4, 13-5 that both A and B are boundary points. That is, the minimum
amount of input 1 is consumed by point A; the minimum of input 2 is
consumed by point B. Thus, &, =& = {4, B} for this example. The lower
limit ¥;; on input 1 exempts point A from consideration, however, as a
point from which a boundary extension can emanate. Therefore, only point B
is of interest in terms of generating a surface for projections. In general, let
5? , denote the subset of boundary points in &, from which frontier
extensions can emanate. Specifically, &, consists of those DMUs j,
wherein the minimum component X, " >x X, ml-

To derive a target input point, 51mply expand each member of _f
into the feasible region (defined by V). Specifically, solve the J lmear
programming problems:

min ¢,

subject to

$%; Z Xl =10, 1 (13.9)
4,20,

where J = {j| ]Sé: }. Let ¢ denote the solution to (13.9) for a partlcular
jeJ. Define ¢* =min, T {¢ }, and let j, be such that ¢ =g, .

¢" =1, then DMU j is fea51ble to ¥ and a portion of the efficient fron‘mer
is expanded as in Figure 13-3. In thlS case, solve (13.3) with (13.8) imposed
to derive target inputs. If 1< ¢" <=, we have the situation described by
Flgure 13-4, and the target input pomt is given by (x,,,,,...,%,,,,) Where
Xipey =X,/ O.1f " >L + as described by Figure 13-5, the target input point
is given by X1 =¢" x . In this case the optimal 6" = j— is strictly less
than 6.

13.4. NONDISCRETIONARY VARIABLES

The discussion of the previous two sections centres around deriving a set
of target inputs designed to achieve a given level of performance & if such a
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level is feasible. In the case where restrictive lower bounds are imposed on
inputs it may not be possible to reach the floor performance score &.

In the presence of a nondiscretionary input i, there is no choice
regarding positioning in the i dimension. Refer again to Figures 13-3, 13-4,
and 13-5. If x, is a nondiscretionary variable then the target input point must
be located directly on the vertical line out of ¥ 5. In the case of Figure 13-3,
this point will be at H' which is horizontally opposite H (the line H His
parallel to the horizontal axis), if an efficiency rating of 8 is to be achieved.
Here, the projection is to point G on the frontier. The point H' is derived in
general by modifying problem (13.3). Specifically, replace the set of inputs I
by two subsets [, and [ ,, representing the discretionary and
nondiscretionary inputs, respectively. The second set of constraints in (13.3)
is replaced by two sets of restrictions

0%,y — D A X, =5, =0,i=1,..,1, (13.10)
=1
X = D AX; =5, =0,i=1,,...,1, (13.11)
Jj=1
The first set of constraints in (13.3) is replaced by
o-x,,20,i=1..,1], (13.12)
and the objective function becomes
Iy
mina+82s,.. (13.13)

J=1

Note that & is set to & in (13.10). Assume that the inputs are
renumbered so that the first J, are the discretionary inputs, and so on.

In the case that no portion of the efficient frontier is exposed, we proceed
as in Section 13.3, except that when 0< ¢ < Hé, the expression
X,y = X; /0 holds only for the discretionary variables i =1,...,1,. The
other inputs are fixed at their nondiscretionary positions. This produces the
point D" in Figure 13.4.

In the situation that ¢ > %, the target inputs are located at K as was the
case previously.

13.4.1 Uncertainty in the Nondiscretionary Variable

The above assumes that the value X, ., for a nondiscretionary variable
can be explicitly determined (for exampole, the demographic makeup of the
population). If this value is under estimated, (for example, if the true value is
Xins) however, then the use of & =6 to choose the values of the
discretionary variables x,,, will not yield a projection on to the frontier
(Figure 13-6). In this illustration where the projection is only to G, it is
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clear that a smaller value of @ then & is needed in order to project the
selected x,,,, onto the frontier. Obviously, if the value of X, ., is over
estimated, then the projection of the x,,,, using & = 0 will go below the
frontier. This means only that larger values of the x,,,, could have been
used. That is, the chosen x,,, actually provides a higher efficiency then

desired.
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Figure 13-6. Under Estimation of Value of the Nondiscretionary Variable

To provide for the eventuality that the chosen value of the
nondiscretionary variable may be under estimated, the following logic could
be used: choose a set of target inputs for the discretionary variables such that
if (1) the estimated value X, of x, ,,, occurs, then an efficiency of & =1
results, but if (2) a higher value x,,,+1+ [ of X; .. oceurs, the resulting
efficiency @ > 6. We propose solving the following linear problem in the
case of a single discretionary variable:

max /3 - 3(2 Xina1)
i#i,

subject to

X, Zﬂx =0,i#i,

X it ~ Z Yp =
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ym+1 - Z ﬂf;ylji < 0’ Vl"

meH Z/II x; =0,i#1,

Xhu+ B Z Alx,, =0 (13.13)
j=1

yrn+l _Zﬂ'_?yrj S O’vr
S A =1

=

i/lj=1

1n+1>ﬂ’1 )“2 IB>O VZ .]

In this problem we determine the maximum amount S by which x, .,
may increase from the estimated point X, ,,,. Essentially, we are allowmg
for the maximal flexibility in the outcome of the uncontrollable variable
X; .- To ensure that a proper facet of the frontier is chosen in the selection
of each of the two sets of multipliers {ﬂ, } and {/12} the term
—g(zm ns1) 18 appended to the objective function. This forces the b
as low as’ possible. In the figure, this would mean choosing x,,,, at a point
H' as opposed to some higher point M. Of course, in this case since there is
only one facet on the frontier, then such a point M would not actually arise,
but could if other factors were present.

In the case of multiple nondiscretionary variables, there is no clear
definition of maximal flexibility. Potential objectives might be to maximize

the total deviation, i.e.

7
max ) /3 (13.15)
=14
or maximize the minimum deviation, i.e.,
maxy (13.16)
subject to
y—ﬁiso)i:'[d+la"-)la (1317)

and subject to the other constraints in (13.13).
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13.5. CONCLUSIONS

In this chapter we have examined the problem of setting input targets for
new facilities when outputs are assumed to be known values. This problem is
common in many retail settings where site location issues are involved. Both
discretionary and nondiscretionary inputs are examined. All of the
arguments here, regarding input targets, apply equally to the case where
target outputs are at issue. In cases where standard size facilities are to be
built, for example chain stores of a certain configuration, the required target
market for the product mix becomes the focus of management. It is the
output oriented model that would be the pertinent structure in this case. The
development is straightforward, and is therefore omitted.
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Chapter 14
AGGREGATING PREFERENCE RANKINGS

14.1. INTRODUCTION

In a preferential election each voter selects a subset of k candidates from
a ballot of m choices, and rank orders these k candidates from most to least
preferred. Such a voting format is common in municipal elections, where a
number of candidates are required to fill various positions. This same
structure appears in other prioritization settings, such as the ranking of
projects, products in a consumer survey, etc. We shall utilize the preferential
voting example for discussion purposes throughout the chapter.

A problem of interest for over 200 years has to do with the aggregation
of votes from preferential ballots. Borda (1781) proposed the “Method of
Marks” as a means of deriving a consensus of opinions. This method
amounts to determining the average of the ranks assigned by voters to each
candidate, with the winning candidate being the one with the lowest average.
An equivalent version of this model was later presented by Kendall (1962).
Cook and Seiford (1982) have extended the Kendall model using an
I? distance approach. Other distance based models have been advanced by
Armstrong et al. (1977), Blin (1976), Cook and Seiford (1978), Cook and
Kress (1984), Kemeny and Snell (1962), and others. In these distance
models the voter ranks @/ of the alternatives or candidates.

Other models for aggregating preferential votes have arisen from
parliamentary settings. The so-called American system, English system and
West Australian system are examples of such models, as discussed in
Keesey (1974). In some of these models the winning (first place) candidate
is determined purely in terms of the maximum number v, of the first place
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votes. Here, v, denotes the number of Jjth place votes earned by candidate
i. Ties are often broken (among candidates with the same number of first
place votes) by utilizing 2" place votes, 3 place votes, etc. Under the
American system, for example, the nominee having the least number of first
choices is dropped. Those ballots on which that candidate was ranked first
are now destroyed. The second choice votes received by the remaining
candidates are now added to the first choices received by each. A nominee is
declared elected if the total of his first and second place votes constitutes a
majority — otherwise the candidate with the fewest number of first and
second place votes is dropped, and the process is repeated by bringing third
place votes into consideration.

Existing preferential voting models are arguably deficient in that they fail
to provide a fair overall assessment of a candidate’s standing --- a composite
or aggregate evaluation of his first place, second place, third place standings,
etc. The problem is one of how to combine the jthplace votes, for
j=1,2,..k, in some rational manner.

In Sekction 14.2 a model is presented which utilized a composite index
z, = Z ; of the Jth place standings of candidate i . The objective of
the model is to derive multipliers w; (the level of importance attached to
Jthplace votes) which will accord a candidate a fair assessment of his
standing. This is accomplished by allowing for flexibility in the assighment
of weights from one candidate to another. Since this process may result in
several candidates being tied for first place, the model also provides for
maximum discrimination among such candidates. This robustness property
is a principal feature of the model.

The procedure used to derive the w;, hence the index z,, is analogous to
the DEA method of Charnes, Cooper and Rhodes (1978). The usual DEA
model possesses two important characteristics which could prove
undesirable in the preference ranking setting. First, it is necessary to solve k
problems; one for each decision making unit. Second, a number of units will
commonly end up being tied for first place, i.e. will be on the efficient
frontier. In Section 14.3 it is shown that the special properties of our
composite index model eliminates both of these characteristics. Specifically,
it is shown that only 1 problem, not & problems, needs to be solved to
determine a winning candidate. Moreover, it is demonstrated that in most
cases only one candidate will end up in the first place. Hence, ties for first
place will generally be broken, and an ordinal ranking of the k best
candidates emerges. It is also shown that a certain special case of this model
is equivalent to Borda’s method of marks for deriving a consensus among a
set of ordinal rankings.

Examples and geometric interpretations are provided.
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14.2. A FAIR MODEL FOR AGGREGATING
PREFERENTIAL VOTES

In the preferential voting framework each candidate i=1,2,....m
receives some number v, of first place votes, v,, of second place votes,
v, of kth place votes. The problem is to utrlrze these votes in a reasonable
manner to obtain an overall desirability index z,for each candidate.
For any given set of weights or multipliers W, we define the desirability
index for candidate 7 by

k
z, = Zw‘,vv. (14.1)

Clearly, any preset values w;are likely to favor some candidates while
discriminating against others. In Borda’s model, for example, the w;are the
numbers, 1,2,3,...,n. Moreover, the weights are the same for each
candidate. What is required is a set of multipliers which provides the fairest
possible treatment for each candidate. Specifically, we wish to determine a
set of multipliers {w’;} for candidate 7, which maximizes z; . To achieve
this, we solve the problem

subject to
{w e, (14.2)

where @ is some subset of R*.

In the context of preferential voting, the feasibility set © should be
characterized by at least two types of constraints. First, z, should be
bounded above, i.e. z, <@ for some €. Without such a parameter 6,
problem (14.2) would ‘be unbounded. Moreover, it is necessary to define
some best attainable performance level (G)that any candidate can achieve.
As a convention, we set & =1 or 100%. As will become apparent, the final
rank ordering of the candidates is independent of the choice of .

The second set of constraints has to do with the priority attached to the
J th versus ( Jj+ 1) place votes. It is clear that any reasonable aggregation
scheme should be constrained by w; > w,,,. More generally, we define a
function d(j,&):d:N X R* - R+ ie. d(j,€) is a non-negative
function defined on the Cartesian product of the space of positive integers
NE{],Z,...,K} and the positive real line R™. Moreover, d(j,{;‘) is
restricted to be non-decreasing ing. We impose the constraints
w, — > d(], ) This lower limit d(j,g) on the gap between the

i j+1
importance attached to the j th versus ( J+ 1) st place standing is referred to
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as the discrimination intensity function. The parameter & is called the
discriminating factor.
Problem (14.2) then becomes:

k
z, (g) = max Zl: Wy, ;
=

subject to

k
ijvii <1, i=12,..m,
j=1

w‘, -w,, zd(j,€), J=L2.,k-1 (143)
w, > d (k,€).

This problem is now solved for each candidate i, = 1,2,...,m.

Note that by defining a single “input” variable w,and input data
quantities U, =1, 7 =1,...,m, problem (14.3) is equivalent to the well
known DEA~AR model. See Thompson et al (1986, 1989). The constraints
W, =W, 2 (d , .9) represent the assurance region (AR).

To illustrate this problem, consider the case of four candidates, where
two of these are to be elected from a preferential ballot. Let the 1¥ and 2™

place standings be given as follows:

# Votes
Candidate i v, v,
1 6
2 4 11
3 8
4 3 0

Figure 14-1 shows the positioning of the four candidates in the (v‘l, v{z)
space. These are referred to as R, R,, R;, R, .

If problem (14.3) is now solved for each of the four candidates, the
constraint space appears as in Figure 14.2. In this diagram we have set

d( j,g)EO. Candidate #1 has an optimum either at point

3 3 . 3 1
Al w :3—4,w2 =i or pointB| w, =~2—é-,w2 =5 ) In any event,

the rating for candidate #1 isz, =1.0. Similarly, candidate #2 has its
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optimum at the point A where Z; =1.0, and candidate #3 at point B

* . . 3
where z; = 1.0.Candidate #4 has its optimum at point C, where z, =—.

Referring back to Figure 14-1, if the points representing candidates #1
and #2 (i.e. Rl & R2) are joined, the resulting line segment has a slope
given by the ratio of the w,, w,coordinates of point A in Figure 14.2. We
refer to the set of line segments joining points R2— R1- R3as the
desirability frontier, in that candidates 7 on this boundary have achieved the
highest attainable index z, =1.0. In fact, the desirability rating for
candidate #4 is given by the ratio of the line segment or range from the
origin 0 to R4 to the line segment 0 to R4’.

1
2y (s,
kY

10 %

2 @, (5,2

4
-
@«:ﬁ

Wi

Figure 14-1. Desirability Frontier

Two important points must be emphasized here. First, different
multipliers (w,,w,) were used for the different candidates. Point A in
Figure 14-2 defines the importance attached to first and second place votes
in evaluating the standing of candidate #2. Point B is used to evaluate
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candidate #3. Points A and B are both optimal for candidate #1, and C is
optimal for candidate #4.

B8 vowsiom region

K4

Figure 14-2. Feasible Weight Space fore =0

Second, if d ( j,f;) =¢ and ¢ increases from its O-level, the optimal
points for certain candidates can change. Figure 14-3 shows the shape of the
feasible region when € = 1/27. Here, the optimum for candidate #2, for
example, is located at E. The resulting different coefficients of E, versus
those of A, lead to a redefinition of the desirability frontier. See line segment
R1—R2" in Figure 14-4. Now, candidate #2 no longer has an index of
Z; =1, meaning that the number of possible first place candidates has been
reduced from three to two.

Clearly, the value of the discriminating factor & influences the ranking
of the candidates, in the sense that it discriminates among candidates on the
frontier. In the section to follow we examine the impact of this factor.
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14.3. A MODEL FOR RANKING THE CANDIDATES

In model (14.3), for any given value of &, one or more candidates / will
achieve the maximum attainable desirability index z, (8) = 1. In this section
we show that there is a maximum value for £ for which this problem has a
solution, and demonstrate that the derivation of this value can lead to an
ordinal ranking of the candidates. First a number of properties of (14.3) and
z, (8) are presented.

Property 14.1:

Forany i,,z, (8) is a monotonic non-increasing function of £ .

Proof:

From the monotonicity of d ( j,g), it is clear that the feasibility region
in (14.2, 14.3), for a given &, contains the corresponding region for &', if
&' > £ . Therefore, the objective function cannot increase.

Q.ED.

Corollary 14.1:
If z, (&) =1 then z, (&) =1forall £ <¢,.

Proof:

This follows from Property 14.1 and the i -th constraint in (14.3). For a
given function d(j,g), define [, = {i; z,(0) = 1}. We assume that
d ( j,g) is defined such that I, # . For any igl, let g, be the largest
value of & such that z,(£)=1, and let £, =Max, {e }. Clearly £,
may be o, for example when d (j, 5) =0 forall jand ¢.

Q.E.D.

Property 14.2:

£ isthe largest value of & for which there exists a feasible solution for

max

(14.3).

Proof:

Without loss of generality we can assume that g;ax <o, Let
£> E;ax and suppose that there exists a feasible solution w = (w,,..., w,)
for (14.3). Then, by the definition of & we must have that z(g) <1 for

all i,...,m . The dual of (14.3) is

max

m k
min Zx,. —Zd(j, €)Yy,
J=1

i=1

subject to
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zxivil -2 Vit (14.4)
=1

Zx: VYL — Y, 2, j=2.k,
X,y 20

From complementary slackness it follows that at optimality,
x: == x; = 0. This implies that at least one of the constraints in (14.4)
is violated, in contradiction. We conclude that the problem of determining
the desuablhty index for each alternative applies only for & in the closed
interval I:O £ :l, which is the feasible range of ¢ .

max

Q.E.D.

Theorem 14.1:
There exists an alternative #, such that z, (¢) > z,(¢), V i=1,...m,

Ve in|0, €

max ]

Proof:

Let alternative i be such that & =g, . Hence, z, (¢)=1, for all
values of & in the feasible range. Pick any alternative 7 such that z,(g) <1
for 6‘ <e< e'max . We conclude that there exists a nonempty set S of
alternatlves such that for a// feasible values of the discriminating factors &,
the alternatives i, in S are superior, in terms of the desirability index, to all

other alternatives.

Q.ED.
Consider the problem
max & (14.52)
subject to
k
ZW_,vi,. <1, i=1l..m, (14.5b)
w,—w,, —d(j,e)20 (14.5¢)
—d(k,) >0 (14.5d)
W, € > 0. (14.5¢)

Property 14.3:

At optimality, at least one of the constraints in (14.5b) holds at equality,
that is there exists a candidate #, such that Z[:l wy, =1
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Proof:
This follows directly from the proof of Property 14.2.
Q.ED.

It follows from Property 14.3 and Theorem 14.1 that the solution to
(14.5) y1elds all the winning candidate(s). Specifically, the candidates i for
which z wv, =1 at ¢_, , dominate all other candidates in that they
possess the Ilnghest level of robustness in terms of the range of £. For the
case d(j,&)= ¢, in a random sample of 60 problems, each with 20 voters
and 10 candidates, 93% of the cases yielded a single first place candidate.

Having derived the first-place candidate i , the i, th constraint in (14.5b)
can now be eliminated and (14.5) resolved. That candidate 7 with
Z wy,, = =1 will hold second place, and the process is repeated.

The following theorem characterizes the nature of the w; differentials
vis-a-vis the discrimination intensity function.

Theorem 14.2:
In optimality, all the constraints in (14.5¢) and (14.5d) hold as equalities.

Proof:

Let {l Zw vy = 1} and, without loss of generality, assume that

>0 forall i I, . Suppose that an optimal solution of (14.2) is such that
Ws -w.,, —d(s, 6‘) d >0, for some s . Define

. {wi -0, j=1.s,
w, =<

w, Jj=s+ 1,...k.

Clearly,
k k
Zw_'.vu < Zw_.vu <1 Viel,

iw'j ,.j<iwv <l Viel,
J=1

w' ~w' ,—d(Jj, ¢ max)>0 with w, —w , —d(s,e

max) = 0
It follows that (w,&,, ) is also an optimal solutlon for (14.2). For w,
all the constraints in (14.5b) are strict. But, according to Property 14.3 this is

impossible. Q.ED.

Corollary 14.2:

Problem (14.5) is equivalent to
max &
subject to
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k k

> O dle), <1, i=1..m, (14.6)

=t f=j
20,

.

Proof:
From Theorem 14.2, the w; can be recursively expressed as sums of the

d(l,¢). Q.ED.

The ease with which problem (14.5) can be solved depends very much on
the form of the d(j,&) function. If d is a linear function, for example, then
(14.5) will be a linear programming problem. Such would be the case say
where d(j,&) =a;e, with (g, being a set of scalars. Special cases of this
would be: (i) a;= constant; (ii {aj} is a monotonic increasing sequence
(larger gaps between w; & w,,, as J increases); (iii) {a, is a decreasing
sequence (smaller gaps as j increases).

An important subclass of discrimination intensity functions is that for
which d(j,&) = g(j)h(g), where h(g) is strictly monotonic increasing in
£ . The linear examples of the previous paragraph fall into this category. For
this subclass, problems (14.5) and (14.6) have closed-form solutions.
Specifically, problem (14.6) becomes:

max &
subject to
k k
h()Y. O e, <1, £20, and
J=ld=j
k k
Ena = Min A7 2 (D)) '] (14.7)

Jj=1 I=j
A winning candidate i is, therefore, the one for which this minimum is
attained. Due to the monotonicity of 4, it is sufficient to find the candidate
1 for which
k&
PIPNC{ONS (14.8)
J=l =
is maximized.

Special cases:

(1) Exponentially decreasing intensity of discrimination values:
g(j) = e ™. The maximum of (14.8) then becomes:

k 1 _ e—a(k—j+1)
max Z Py .
oA e —1
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The candidate i, for which the above maximum is attained, is the
winner.

(2) Constant intensity of discrimination values: g(j) =1. In this case,
k .
the winner is a candidate with the maximum value of Z - (k= j+1v,.

This is, of course, the well-known Borda method of marks.
Consequently, Borda’s (and Kendall’s 1962) model for deriving a consensus
among a set of voter rankings is a special case of our model when g(j) =a
constant.

Example:
Consider the case of 20 voters, each of whom is asked to rank 4 out of 6

candidates on a ballot. Let the outcome from the vote be as shown in matrix
V.

Standing

1 2 3 4

a 3 3 4 3

b 4 5 5 2

V= c 6 2 3 2
d 6 2 2 6

e 0 4 3 4

f 1 4 3 3

(195

For example, candidate “a” receives 3 first, 3 second, 4 third and 3
fourth-place votes. Specifically, v,, =3, v, =3, v, =4, v, =3.

Case 1: d(j,£)=g&=>b is the winner, £, = 0.0233. (This is the
Borda/Kendall winner.)

Case2: d(j,£)=¢/j=d isthe winner, g, =0.0577.

Case3: d(j,g)=¢€/ j!= c is the winner, £, = 0.0808.

*

In Case 1 the discrimination intensity is evenly distributed among the
rank positions; therefore the fact that candidate b had the largest number of
votes for rank positions 1, 2 and 3 played a major role in determining
him/her as the winner. In Case 3 on the other hand, the discrimination
intensity function is exponentially decreasing in j, which implies that the
first place vote has a relatively very large weight while the fourth position
has very little weight in determining the winner. Although candidate d
received more total votes (16) than candidate ¢ (13), the fact that d's
advantage was concentrated in the fourth position while in the third position
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¢ had a slight advantage on d, (in positions 1 and 2 they had identical
scores) plays a key role in determining ¢ as a winner for the

d(j,e)=¢/j! case.

144. CROSS EVALUATION

The above analysis, as provided by problem (14.5), might be criticized as
running counter to the objective of providing the fairest possible treatment of
each candidate. The principal conclusion is that for discrimination intensity
functions of the form d(j,&) = &, this problem is equivalent to applying the
Borda-Kendall count technique.

While in some situations it may be desirable to have a common
(imposed) set of weights, clearly the flexibility to choose the most favorable
standing for each candidate can be compromised. Specifically, adopting a
starting point of fairness in evaluation inherent in (14.3) is compromised by
a commitment to discrimination via (14.5).

Before proposing an alternative to the approach given above, we rewrite
problem (14.3). Specifically, we make the change of variables

g
ti = Zlvqx >
and (14.3) becomes, by virtue of Theorem 14.2 and Corollary 14.2:
k
Z, = Maximize ZWUV:} (14.9a)

J=1

Subject to:

it g

k
Z, =YWV, <1 for g=1,2..,m. (14.9b)
j=1

The relationship between weights w.. and W..is given by

J
Wy = ZWix
x=!

One interpretation of the Cook and Kress (CK) method is to examine it in
terms of “who” is choosing the weights. While candidates in general do not
choose their own weights in (14.3), it may appear that the winner does
choose his/her own weights. The winner in (14.3) effectively does so by
establishing a desirability of 1.0 with the weights:

k
wRi = h(gmax )(2 g(x)) Where h(gmax) = l/ﬂ'p
x=j

The other candidates are then ranked using these weights. CK’s
procedure, in a sense, yields the winner and the winner’s weights are used to
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rank order the other candidates. Thus, candidates are ranked according to
how they are cross-evaluated (Sexton et al. 1986; Oral et al. 1991) by the
winner(s), P.

In order to retain the essence of CK’s approach, i.e. (14.9(a)-(b)), but still
discriminate between candidates, we are now motivated to investigate how
the idea of cross-evaluation, by all candidates, within this model can be used
to arrive at an overall rating of each candidate.

When model (14.9) is solved for candidate i, as well as obtaining Z,

i
we are also provided with values Z, , which can be thought of as
evaluations of q’s desirability from i’s point of view — within this modeling
framework. The values obtained in a complete run of the model can be
organized in a matrix Z in which the values across a row i(Z;) represent
how candidate 7 rates all candidates and values down column i(Z),)
represent how candidate i is rated by all candidates. Thus, the matrix can be
regarded as the summary of a self- and peer-rating process in which on-
diagonal elements represent self-ratings and off-diagonal elements represent
peer-ratings. Such a matrix, for the example in Table 14-1, is shown in Table
14-1

Table 14-1. Votes achieved by candidates a-f

Candidate 1 2 3 4
a 3 3 4 3
b 4 5 5 2
c 6 2 3 2
d 6 2 2 6
e 0 4 3 4
f 1 4 3 3

Table 14-2. A cross-evaluation matrix for the example of Table 14-1

a b c d e f
a 0.813 1.0 0.813 1.0 0.688 0.688
b 0.667 1.0 0.786 0.714 0.35 0.475
c 0.5 0.667 1.0 0.95 0.0 0.167
d 0.5 0.667 0.813 1.0 0.0 0.167
e 0.813 1.0 0.813 1.0 0.688 0.688
f 0.813 1.0 0.813 1.0 0.688 0.688

The problem now is to arrive at an overall rating for each candidate,
consistent with the self- and peer-ratings in Z, which can then be used to
rank the candidates. Our first inclination is to follow Sexton et al. (1986) and
regard the column averages of Z as suitable overall ratings. In essence, each
candidate is being allowed equal right to interpret the voter’s preferences,
(i.e. all the candidates’ standings) as manifested in Z , rather than just the
winner(s) according to CK’s approach. Thus, each candidate is being
accorded a weight of 1/m in determining any candidate’s overall rating.
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Applying this idea to the cross-evaluation matrix in Table 14-1, the column
averages and corresponding ranking is as follows:
d(.944) >b(.899) >c(.840) >a(.684) >f(.479) >e(.402).

However, consider the situation if there were two extra candidates, g
and /A say, each receiving one third-place vote. The cross-evaluation matrix
for this situation is given in Table 14-1. (To reflect the fact that the electorate
is finite, with twenty voters, we have deducted one third place vote from
each of candidates, e and f.)

Table 14-3. A cross-evaluation matrix for the example of Table 14-1 after appending two
extra candidates

a b c d e f g&h
a 0.813 1.0 0.813 1.0 0.688 0.688 0.063
b 0.667 1.0 0.786 0.714 0.35 0.475 0.0
c 0.5 0.667 1.0 0.95 0.0 0.167 0.0
d 0.5 0.667 0.813 1.0 0.0 0.167 0.0
e 0.813 1.0 0.813 1.0 0.688 0.688 0.063
f 0.813 1.0 0.813 1.0 0.688 0.688 0.063
g&h 0.714 1.0 0.786 0.714 0.429 0.5 0.071

*A cross-evaluation matrix for the example of Table 14-1 after appending two extra
candidates, g and h, who each receive one third-place vote. The standings of candidates ¢ and
f have each been reduced by one third-place vote to reflect the finite electorate of twenty
voters.

It can be seen that the order of the candidates is now:

b(.917) >d(.877) >c(.826) a(.692) >f(.484) >e(.409) g=h(.041); there
has been a reversal in the positions of candidates b and d consequent on the
introduction of the two lowly rated candidates g and h. The ‘principle of the
independence of irrelevant alternatives’ (e.g. Arrow, 1951), has been
contravened. However, French (1986) suggests, echoing many other
commentators, that this principle is

“...arguably the most controversial assumption within social choice
theory, not to say within decision theory...”.

For our own part, we must be concerned by a rank reversal provoked by a
very lowly rated candidate, such as in the example above, but this concern
would not necessarily extend to all contexts. In the turbulence following in
the wake of the exit from the scene (or entry to the scene) of a highly rated
candidate, we perhaps should not be surprised to see some change in the
order of the candidates.

In order to mitigate the effect observed above, we may relax the
assumption that each candidate be accorded a weight of 1/m in the
establishment of the overall ratings. Instead, we suggest that each candidate
applies a weight in proportion to his/her overall rating rather than uniformly
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1/m i.e. a form of ‘weighted voting” (Tideman, 1976). Thus if ®is the row
vector of final ratings, we now solve:

1/>.6)0Z=0 (14.10)
i=1

to obtain candidate i’s overall rating, 6, .

For the cross-evaluation matrices of Tables 14.3 and 14.4 we now obtain:

d(.928) >b(.852) >c(.847) >a(.643) >f(.411) >e(.310) and
d(.926) >b(.854) >c(.846) >a(.644) >f(412) >e(.312) >g=h(.022)

respectively. The previous rank reversal does not now occur and, perhaps
more important, the overall ratings are scarcely changed between the two
situations.

In order to solve (14.10), we proceed iteratively as follows:

Step1: @™ =(1/).6")0"Z (14.11)
i=1

Step2: O =@™

Initially we set @ as (1,1,...,1) so 1/249,.°ld is 1/m, and the first
iteration gives the vector of simple column averages of Z. This is then
refined in subsequent iterations. The algorithm in (14.11) is essentially the
“Power Method” for the principal eigenvalue/eigenvector of Z . While this
method is not particularly efficient as a means of obtaining principal
eigenvalue/eigenvectors of arbitrary matrices, it works very well for cross-
evaluation matrices, converging to 3 decimal places in about five iterations.

The resemblance of (14.11) to the Power Method is not surprising, or
course, since (14.10) can be rewritten as:

®z=(i9i)® , (14.12)

whereupon ® can be seen as the left-hand eigenvector of Z, scaled to an
eigenvalue of ZQ.Our proposal can now be seen to be reminiscent of
Wei’s rating method (Wei, 1952; but see Cook and Kress, 1992), and also
Saaty’s “Analytic Hierarchy Process” (Saaty, 1977; 1994), which both use
the principal eigenvector of a matrix as representing an overall rating. Of
course, the meanings of the matrices and the manner of their determination
in these two cases, are somewhat different from our cross-evaluation matrix.
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14.5. CONCLUSION

The problem of aggregating votes in a preferential election has been a
subject of study for over 200 years. In this chapter a model is presented
which aggregates votes into an overall index, in a way that allows each
candidate to be assessed in a fair manner. The model amounts to
determining, for each candidate i, the best set of weights w;to apply to j th
place standings v, for that candidate. We define a discrimination intensity
function d(j,&) which specifies the minimum amount by which the
multipliers w,and w,,, must differ. It is shown that for a certain general
subclass of these functions, the winning candidate can be obtained by a
closed-form expression. Furthermore, it is shown that for the special case in
which all consecutive pairs of weights deviate by the same amount
(d(k,e)=d(J,€)), our model is equivalent to the well-known models of
Borda and Kendall.
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Chapter 15

RANKING PLAYERS IN ROUND ROBIN
TOURNAMENTS

15.1. INTRODUCTION

In a round robin tournament, each of n players competes with every
other player exactly once, with each match resulting in a decision (no
draws). The problem of rank ordering the players based upon the results
from the competition has been studied by numerous authors. These include
Ali et. al. (1986), Goddard (1983), Kendall (1962), Wei (1952), Cook et al
(1988a; 1988b; 1988c; 1990; 1992), Moon (1968), and others. The player
ranking problem is very often approached in a 2-stage fashion. In stage one,
a player’s performance is used to arrive at a rating for that player. Stage two
then takes that set of ratings and creates an ordinal ranking. The necessity of
stage two arises due to the presence of ties in the ratings of stage one, and,
therefore, is concerned primarily with algorithms for breaking such ties (see
e.g. Goddard (1983)). It is the stage one problem with which we concern
ourselves herein.

Tournament ranking theory has been applied in many areas including the
problem of prioritizing transportation projects. In Cook et. al. (1988) such a
model has been developed within the Ministry of Transportation, Ontario,
Canada. In this context, projects are rated across multiple dimensions, and
evaluated using a concordance model of the ELECTRE type (Roy 1968).
The result of this analysis is a binary preference matrix with a structure
similar to that of tournament. Since the ultimate desire is to rank order the
projects based on this binary matrix, a tournament algorithm is applied at
this stage.
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In section 2 of this chapter, we begin by examining strict tournaments,
that is where matches between players always result in a win. We briefly
review some of the existing player rating models, and explore possible
weaknesses which these models may exhibit. From these observations, we
then establish a set of criteria which should be adhered to in developing a
rating based on the outcomes of a tournament. In particular, these criteria
call for a consideration of strength of a player j in accounting for the worth
of a win of 7 over j. Specifically, we consider not only the immediate or
Ist generation wins, but also 2nd generation wins, 3rd generation wins, ...,
etc. A tournament rating model is then presented which takes account of the
strength factor. We briefly discuss the geometric interpretation of the model
in terms of the Data Envelopment Analysis (DEA) constructs of Charnes,
Cooper & Rhodes (1978) and others. An illustrative example is included.
Finally, we present an enumeration algorithm for obtaining m" generation
scores.

In section 3 we extend these ideas to the case of weak tournaments.
Section 4 examines the ranking of players in multiple tournaments, and
Section 5 looks at cases where only partial tournaments may exist.
Conclusions are presented in Section 6.

15.2. A MODEL FOR RATING PLAYERS

Existing Rating Methods

A number of approaches have been suggested in the literature for rating
n players, using as the basis for the ratings, the adjacency matrix 4 = (a,])
Recall that a; =1 if player i defeats player j, and a; = =0 otherwise. The
concept in these approaches is to develop a set of scores from the elements
of A. We briefly review some of these methods:

1. Row-Sum or Kendall Scores (Kendall (1962)). This approach amounts
to computing the sum of the elements @, in each row i of A, and using this
as the rating for that player. This techmque counts only direct wins, and
makes no attempt to measure the strength of players.

2. Row-Sum Scores of a Higher Power A" of A (Wei (1952)). Here, a
win against a stronger player is awarded a higher score than one against a
weaker player, that is, the strength of the opponent is a major factor in
determining the score of the player. However, the number of wins which a
player achieves is not directly taken into account.

3. Row-Sum of p -Connectivity Matrices (Goddard (1983)). The r
stage p -connectivity matrix (pj) is defined by
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n n
-1 -1
Py =P+ 2. pityay
k=1 k=1

The concept here is to continue to generate higher powers P until the
row sums of P” are no longer tied. This method is somewhat between the
previous two methods, but also fails to take account of player strength in a
reasonable manner.

Criteria for Rating Players

Each of the aforementioned methods exhibits both strengths and
weaknesses vis-a-vis the attainment of a reasonable rating of the players.
The following is a proposed set of criteria which any player rating method
should adhere to:

e The direct scores or wins of each player should be taken into account.

o Ratings should be based on the strength of the defeated opponents.

e The method should rate each player relative to the others in the fairest
or best possible way (give each player his “best shot™.)

The Model

The model we propose for rating players is based on determining a set of
weights 0 <W, <1 such that the above criteria are observed. The approach
looks at the entire range of wins of a player i over players j, not only in
the immediate sense (/ beats j), but in the more remote or m" generation
senses (I beats k& who beats j). We give the following definitions.

Definition 15.1: The digraph G(T') of tournament 7 is that graph
whose set of nodes V' consists of the n players, and whose edges E
represent the outcomes (wins and losses) of the competition.

Definition 15.2(a): The m" Generation Score (MGS) of player i is the
number of nodes j for which there is a Hamiltonian path of length m in
G(T) that originates in node i and terminates in node j.

In this definition, a Hamiltonian path i —i —1,,...7, of length m is an
acyclic path. Since no cycles can be present then the path consists of m + 1

different players.

Definition 15.2(b): The Weighted m" Generation Score (WMGS) of
player i is the number of different Hamiltonian paths of length m which
originate in node i.

It is noted that the difference between these two concepts is that if &
different Hamiltonian paths of length m originate in i and terminate in J,
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then the contribution of player j to player i is 1 under Definition 15.2(a),
whereas the contribution is £ under Definition 15.2(b).

Definition 15.3: The m"” generation adjacency matrix A(m) = (a,;(m))
is that matrix in which a,(m) =1 if there is an m -arc Hamiltonian path
leading from i to j, and a,(m) =0 otherwise.

The weighted adjacency matrix A" (m) is defined in the same manner
except that a;/ (m) is the number of paths from i to j.

It is noted that the m" generation score for player i is the i" row sum of
A(m). Hence,

a,(m) =Y a,(m). (15.1)
j=L
Similarly,
a’(m) = Z a; (m).

In the following we assuime that the unweighted score a, (m) will be
used as the measure of m"” order power or strength, rather than the
weighted version, although clearly a case could be made for either of these.
In order to formulate our model, it is necessary to make some assumptions:

Assumption 15.1: The score of each player is a linear combination of the
m™ generation scores, m=1,2,...,n—1. That is, each generation score
contributes to the evaluation of the player.

Definition 15.4: The weighted total rating for player i is the sum
n-1
= 2 a,(m)a, (m), (15.2)
-1

where the ¢, (m) are the weights to be assigned to the MGS values of player
i

Assumption 15.2: The coefficients ¢,(m) are monotonically
decreasing. That is, the closer the generation, the more important is the
score.

This assumption means that the scores from closer generations bear at
least as much relevance as do those from more distant generations.

Assumption 15.3: Each player i should be given the opportunity to
choose the best possible set of weights ¢, (), in the sense of rendering the
rating W, for player i as high as possible.
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By defining W, in this manner (15.2), criteria (1) and (2) are covered
Specifically, the strength of a player i is measured by the number of m"
generation wins over players j. Assumption 3 is aimed at addressing

criterion (3).

With the aforementioned in mind, we consider the following model for
each player i, :

n-1
max, o Wi = z:; a, (m)a, (m) (15.3a)
subject to
n~1
=Y o, (ma, (m)<Li=12,.,n (15.3b)
a,()za (2. .20 (n-D)2e>0 (15.3¢)

This model is solved # times, corresponding to the n players . For
each player, the best possible set of ¢, (m) is chosen. The only restrictions
imposed on the choice of weights are (1) that they be monotonically
decreasing (15.3¢), as per assumption 15.3, and (2) in the spirit of DEA, that
no player rating W, (including W the one being maximized) exceed some
fixed constant. For consistency, thlS constant is chosen as 1.

It is noted that since a different set of ar(m) is allowable for each player,
(15.3a-c) can be formulated as

maxzn: W, = i ni a, (ma, (m) (15.4a)
i=1 i,=1 m=1

subject to
n-1
Zal.o (m)a,((m)<1,i, =1,2,...,n,i=12,...,n, (15.4b)

a(Nze ()220 (n-1)2e>0

Model (15.4a)-(15.4¢) can, therefore, be solved once to determine the set
of n weights W, by virtue of the problem’s separability.

i =1,2,...,n  (154c)

2%

15.2.1 Obtaining m th- Generation (Weighted m th-
Generation) Scores

The weighted m"” generation adjacency matrix A"”(m) records the
number of acyclic paths between each pair of points in the network of
players. It is noted that if one simply takes the m"” power A" of the
tournament matrix, the ij'h element gives the fotal number of m -arc paths
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between I and j. Unfortunately, paths with cycles are contained in this

number.

An Enumeration Algorithm

In the general case, it is necessary to employ some algorithm for
obtaining the acyclic paths needed in order to obtain A" (m). We suggest a
simple implicit enumeration procedure as one of many possible approaches.
It is noted that once A" (m) is determined, the unweighted matrix A(m) is
found by setting all nonzero entries equal to 1.

The Algorithm:

1.

For each player i, all 1st generation paths (i — j) are obtainable
from the adjacency matrix A4 =(a,). That is, if, @, =1, then
i — j is a 1st generation path starting at node i and ending at node
j. Label node j with the set G ={1,2,...,n} \ {7, j}. So G is the
set of nodes available for use in generation 2.

For each (m—1)" generation path (i, >i —>..—>1i,),
determine the set G={1,2,..,n}\{i,,i,...,i,,} of nodes
available to be used in generation m. If G is empty or @, =0,
for all j&G, go to the next (m —1)" generation path. If a, 1 ;=1
create the m" generation path i, —>i,—>..—>i _, —> and
revise the set G to G = G\ {j}. Go to the next element of G and
continue until all of its available nodes have been considered.
Having created all m" generation paths, for each pair of players I
and j, count the number of paths leading from i/ to j in m steps.
This becomes a, (m), the ij" element of A”(m). If m=n-1,
stop. Otherwise set m —1 = m and go to step 2.

Example:
Consider the 5-player tournament whose adjacency matrix is given by

[
S = O

4
1
0
1

_—0 O~
S O~
S = =

4 0 1 0 0 1
5 0 0 1 0 0

Figure 15-1 shows the first-generation paths. Figure 15-2 shows the
second-, third-, and fourth-generation paths starting with player 2.
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Figure 15-1. First-generation paths
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Note that using the second generation node 1, only nodes 4 and 5 are
allowable next (third) generation nodes. The second, third, and fourth
generations out of nodes 1, 3, 4 and 5 would be determined in the same

manner.

Now, to get the (2,5) entry (e.g.) of A(3), we simply accumulate the
number of paths arriving at node 5 at the third stage (=2), i.e., paths

253515 5and2—>3->4->5.
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Figure 15-2. Second-, third-, and fourth-generation paths

. h . .
For this tournament the m" generation matrices are

I 2344 1 2 345

1 100321 11111

2 210022 200011
A'(2)=3 A"B)=3 p 1003 A"@=3p oo 01
4 420100 411001

5 502010 501000

15.3. WEAK RANKING OF PLAYERS

The previous section viewed each competition in the tournament as one
where a direct or strict win/loss occurs. In the case where ties or draws are
permitted the theory must be extended. To facilitate this extension, we
introduce a broader definition of the pairwise comparison matrix to include
ties or draws:

Definition 15.5: A weak tournament is a pairwise comparison matrix
A=(a;) where
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1 if player i/ defeats player j,
a; =112 if players i and j tie, and (1)
0  otherwise.

Consider the weak tournament given by

| a b d e f

a 0 0 12 12 1

1 0 12 1 1 0

A= ] 0 12 0 0 12 0
d 12 0 0 12 12

120 12 12 0 1

r0o 1 1 12 0 0

Definition 15.6: The graph G, of a weak tournament is a graph whose
set of nodes V' consists of the n players and whose edges E represent the
outcomes (wins, draws and losses) from the competition.

The graph G, corresponding to the above weak tournament is shown in
Figure 15-3.

Figure 15-3. Graph Gw

Clearly G, can consist of both directed (win or loss) and undirected
(draw) edges.
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The model to be presented in this section again takes account not only of
immediate outcomes of player i versus player j, but outcomes in the more
remote or /" generation sense (i beats k who beats ). In this context, it
is, therefore, necessary to look at paths from i to j in G,.

Definition 15.6: The set of nodes i, 2 i, >...> i, in G, form a simple
path of length k£ —1 if and only if i,i,,...,i, are distinct, i.e. contain no
cycles.

Here, the notation i, > i, means that either #; defeats or ties with £,.

As an example of a simple path, consider the aforementioned 6-player
weak tournament given by A,. The set of nodes or players a,c,b,de, for
instance, constitutes a simple path of length 4 in that a>c>b2>d 2e,
and no cycles exist. The path @ > ¢ > b > a is not a simple path in that a
cycle is present.

In a regular tournament (one containing no ties), the graph G contains
only directed arcs, in that all preferences are strict, that is, each match
produces a win. If a simple path of length m exists between two players i
and j, player i is said to have an m” generation or m" order win over J.
In a weak tournament, however, a simple path may contain both directed and
undirected arcs. The concept of a generation in the pure directed graph sense
is then no longer sufficient to characterize the nature of this path. The
number of undirected arcs present in the path must also be accounted for.
The following definition addresses this phenomenon.

Definition 15.7: A simple path in a graph G, is said to be of type
(m, k) if and only if it is of length m and the number of undirected edges in
itis k, where k < m.

In order to evaluate the overall rating or rank position of a player, we
wish to measure the numbers of wins of various types and orders. For this
purpose, the m" generation, k" order scores will be utilized.

Definition 15.8: The m"” generation k" order score (MKS) of player i
is the number of players j for which there is a simple path of type (m,k) in
G,, that originates in node i and terminates in node j.

In A, above, the 2nd generation st order score (m=2,k=1) for
player a is 5 since a has a second order win over each of b,c,d,e and f,
and in each case there is a path of length 2 with exactly one pair of players in
the three that tie in their match. For example, player a defeats player ¢ who
ties with player b. Thus a has a second generation first order win over b.
A similar result is true for player a versus ¢,d,e and f.
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Definition 15.9: The weighted m" generation k" order score (WMKS)
of player i is the number of different simple paths of type (m,k) which
originate in node i. It is noted that since a number of different paths can
connect two players i and j, WMKS > MKS.

The Model

Let a;"(m, k) denote the number of distinct simple paths emanating from
node i (i.e., a;’(m,k) is the WMKS of i). Let a,(m,k) denote the MKS
of i. In the next section an algorithm is given for generating the WMKS and
MKS scores.

In the model to be presented herein we wish to assign each player 7 a
score or rating which reflects his/her composite wins in a m” generation
sense. As well, we adopt the DEA framework for incorporating these
multiple generations. In scoring a player, therefore, we make the following
assumptions:

Assumption 15.4: The composite score or rating of each player is a
linear combination of the WMKS. That is, each generation-order pair

contributes its score to the evaluation of the player, i.e.
n=1 m

W, =3 a(mka’(m,k), (15.5)
m=1 k=0
where «,(m, k) is the weight to be assigned to the WMKS value of player
i. The model presented below provides a mechanism for generating these
weights.
It is clear that some dominance relations must be imposed on the weights
o, (m, k). First, it is natural to assume that within a given generation-value
m, the smaller the order k the larger the weight ¢, (m, k). Since a tie is
usually considered as half a win, a reasonable requirement may be to
constrain the ratio of two consecutive weights by the scores ratio of their
corresponding paths, that is
o, (m,k) 5 m—k/2
o, (m,k+1) - m—(k+l)/2.
For example, if m =3 (3rd generation scores), then the weight of a 1st
order score (one tied preference) should be at least as large as (3-.5)/(3-
1)=1.25 times the weight of a 2nd order score, where among the three
relations in each of the corresponding paths, two are ties. Note that for a
given k&, the right hand side of (15.6) is monotonic decreasing in m, which
means that as the generation gets higher the information in the corresponding
scores becomes fuzzier, and, therefore, the relation between two consecutive
weights is less discriminant. On the other hand, this lower bound increases,

(15.6)
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for a fixed m, as k increases. This property reflects the marginal increasing
value of a strict preference when these types of preferences become scarce.
Second, the rationale for the decreasing monotonicity, for a fixed k, of
the right hand side of (15.6), coupled with the dominance relation in the
strict case, imply that for any k < m
a,(m,k) > o, (m+1,k). (15.7)
The above discussion is summarized in Assumption 15.5 below:

Assumption 15.5: For any m” generation k" order score, the
corresponding weights must satisfy the following two conditions:

(a) (m—(k+1)/2)o;(m, k) —(m—k/2)e,(m,k+1)> 0 (15.8)
(b) ot;(m, k)= ot;(m+1,k).

Under these two assumptions, let us apply the convention that weights
should be chosen such that no composite score is higher than 1. Adopting the
DEA approach, the following linear programming model can be utilized to
derive for each player i , the best set of multipliers or weights o, (m,k) to

apply to the a,"(m, k).

02

Here, a(m,k) can denote either the MKS or WMKS:
n-l m
max W, = z Z a, (m,k)a; (m,k) (15.9a)
m=1 k=0
subject to
i g , 15.9b
ZZain(m,k)ai“(m,k)sl i=1,..,n ( )

=1 k=0
(m—(k+1)/2)a, (m,k)—(m—kiQ)e, (m,k+1)20
m=1,...n-1,k=0,.,m (15.9¢)

o (mk)y—a(m+1,k)20 m=1,...n-2,k=0,..,n (15.9d)

an-Ln-1)ze¢ (15.9¢)
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Example: Consider the weak preference matrix 4.

a b ¢ d e
2l 0 1 12 10
blo o 1 10
A=l 0 0 11
dlo 0 0 0 0
el 1 1 0 1 0

The WMKS values ;" (m, k) are given by:

Table 15-1. WMKS Values for 4,

Alternative

m k a b c d e
i 0 2 2 2 — 3

1 1 — i e —
2 0 2 2 3 — 4

1 2 1 2 — 1

2 _ _ — _ _
3 0 2 2 2 — 3

1 2 1 1 — 2

2 J— J— o J— J—

3 _ — _ _
4 0 1 1 1 — 1

1 1 — — — 1

2 _ — _ _ _

3 _ _ _ - —

4 _ — _ _ _

It is noted that player d had no wins, hence obtains a zero score for all
m and k, therefore ranking in last place.

Notice also that no scores are recorded in this example for
a”(2,2),a"(3,2), a"(3,3),a"(4,2),a"(4,3), and a”(4,4). Taking this
observation into consideration, we can reduce the number of constraints in
(15.9¢)-(15.9¢) to account only for relevant weights, that is, weights that
apply to nonzero scores.

For example, the constraint 1.5¢, (3,2) - 2¢, (3.3) 2 0 may be omitted.

The modified problem (15.9¢)-(15.9¢) was solved with the data in Table
15-1, and for various values of the parameter L whose largest feasible value
is .05. Table 15-2 summarizes the optimal composite scores for each player,
and Figure 15-4 provides a graphical representation of these results.
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Figure 15-4. Optimal Composite Scores
Table 15-2. Optimal Composite Scores
L 0 0.01 0.02 0.03 0.04 0.05
a 0.833 0.828 0.823 0.818 0.813 0.807
b 0.667 0.656 0.644 0.633 0.622 0.608
c 0.892 0.868 0.845 0.821 0.798 0.774
d 0 0 0 0 0 0
e 1 1 1 1 1 1

For any alternative 7, the composite score W, is a non-increasing piece-
wise linear function of L. In this example we note that for small values of
L(L £.032), c is rated higher than a, whereas for L>.032, a is rated
higher than c¢. In any event, the tie between a and ¢ is broken. Therefore,
the overall ranking of the players is either e>c>a>b>d or
e>a>c>b>d, depending on whether higher order scores are accorded
a low versus high value.

15.3.1 Obtaining WMKS

The WMKS matrix 4" (m, k) = (a; (m,k)), comprising the data of the
previous problem, records the number of acyclic paths between each pair of
points in the network of players. Once this matrix is determined, the WMKS
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value for each player i is obtained by summing the elements of the i" row
of the matrix. To avoid cycles, and to distinguish #2 -arc paths with various
numbers of ties, an algorithm is required. While various approaches are
possible, we suggest a simple enumeration procedure. It is noted that once
A"(m, k) is determined, the unweighted matrix A(m,k) is found by
setting all nonzero entries to 1.

In the algorithm to follow, it is necessary to keep track of both the length
m of the path and the number of ties. The latter will be recorded using flag
variables E, |, = # tied players in path iy = —>1 .

An Enumeration Algorithm
(i) Set F, =0 for all players i.

(ii) For each player #, all 1st generation paths (i = j) are
obtainable from the adjacency matrix A=(a,). That is, if

; =lor1/2 then i — j is a st generation path startmg at node I
and ending at node j. Label node j with the set
G={1,2,...,n} \{i, j}. So G is the set of nodes available for use in
generat10n2 If @, =1/2 set F, = F; + 1. Otherwise F;j F.

(iii) For each (m-1)" generatlon path (1 =L >0 ),
determine the set G ={1,2,...,n} \ {i,,i,...,1, ,} of nodes available
to be used in generatlon m. If G is empty or @, . =0 forall jeG, g0
to the next (m—1)" generation path. If am ; =1, create the m"
generatlon path i, >i,—>..—i _, — j and revise the set G to

G\{]} Set E,, =F, . . If a . =1/2 set
iy = i 1. Goto the next “siement of G, and continue until
all of its avallable 'nodes have been considered.
(iv) Having created all m" generation paths for each pair of players
i and j, count the number of paths leadmg from i to j m m steps,
and having k£ tied players. This becomes a; (m, k), the ij" element of
A" (m, k).
If m =n—1, stop. Otherwise set m —1 = m and go to step (iii).

Example: Consider the 5-player tournament whose adjacency matrix is
given by

| 1 2 3 4 5

1 0 12 0 1 1

12 0 1 12 1

4= p 1 0 0 1 0
0 1120 0o 12

5 0 0 1 12 o
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Figure 15-5. m" Generation, k " Order Paths for Player 2

Figure 15-5 illustrates how the algorithm is applied to obtain m"
generation, k" order paths for a given player (player 2). For example, there
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is a 3rd generation, 0" order path from player 2 to player 5
(2 >3 —>1-5). There is a 3rd generation, 2nd order path from 2 to 5 as
well 2 >1>4-55).

A sample m" generation, k" order matrix is:
1

A (mk)y=4(2,1) =

O & W —
OO OO
S OO =N
SN O O =W
SO O N =ik
D = = = N[N

The corresponding WMKS values a,"(2,1) (row sums) are:

a’ 2,1)=5
a’ 2,1)=3
al 2,1)=3
al (2,1)=3
al 2,1)=0

15.4. MULTIPLE TOURNAMENTS

In the case where data from multiple tournaments are available the
problem of rating players becomes more complex. Not only is there the fact
that not all players compete in all tournaments, but there is also an issue of
tournament difficulty. In the present subsection we will consider only the
case of complete tournaments, i.e., where all players compete in each
tournament. Tournament difficulty (or importance), which we do wish to
look at here, can be viewed from at least two perspectives. First, tournament
difficulty may be player dependent—competing against better players makes
a tournament more difficult than would be true of one with lesser
competitors. Second, the importance of a tournament may in some cases be
viewed from a prestige standpoint. Wins in an internationally recognized
tournament may be seen as being more important than those in lower profile
matches. Thus, the issue of difficulty or importance can involve several
considerations. While we do not propose to delve into the matter of how
relative importance should be decided, we do wish to look at how one should
evaluate players when the relative importance has been expressed.

Consider then the case of 7' tournaments which can be arranged in order
of difficulty. Without loss of generality we assume

Ti >T2 >...>_’Z; >...TT,
that is tournament 7, is the most difficult followed by 7,,..., and so on.

This being the case, we assume that a player is awarded more credit or
weight for a win over a given player in a more difficult tournament T,l than
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in a less difficult tournament I, (i.e., where 7, > T, .) In that regard, let w,
be a variable (whose value is to be determined) that expresses the level of
difficulty of tournament 7.

In the case of multiple tournaments, several approaches can be taken to
arrive at a ranking of the players. Here, our approach advocates finding a set
of m th generation multipliers {&'(m)}, for each tournament ¢=1,...,T
together with a set of tournament difficulty multipliers {w,}, through the

following multi tournament generalization of problem (15.3a)-(15.3¢):
T M
W, = max Z Z wa' (m)a; (m)
R L O KL} et >

subject to

I M
Zz wea' (myaj(m)<li=1,..,n

t=1 m=l

M
Do (myd,(my<li=1,.. mt=1,.T (15.10)

m=1

am-am+)zem=1,..M-1t=1,..,T

a(M)zet=1,.,T

w-w,2¢&t=1.,T-1

W, 2 &

Here, we again provide each player with the opportunity to choose not
only the most favorable weights «'(m) on the m generations, but also to
weight the importance of the tournaments (while respecting the constraints)
in a manner that makes his/her rating W, as high as possible.

Problem (15.10), unlike problem (15.3a-c), is nonlinear in the presence of
products of variables, i.e., wa'(m). Generally, such nonlinearities would
render the problem very difficult to solve, but in the present case an
equivalent linear formulation is at hand.

A Linear Representation

An equivalent linear representation of problem (PT) can be accomplished
through a simple change of variables. Specifically, define

B, = wea' (m), (15.11)
and replace the second, third, and fourth constraints by the equivalent
constraints

M
wlZa’(m)ai’_(m) <w,i=1..mt=1..,T
m=1
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wa' (m)y-wa'm+)2ew,m=1,....M-1Lt=1..,T
wa' (M)zew, t=1,..,T
Now, rewrite problem (15.10) in the form

T M
R = maxzz B,.a; (m)

? {Bun}

=1 m=1
subject to
I M
> Bua(my<li=1,..n
=1 m=1
M
> Baa my-w, <0,i=1..,nt=1.T (15.12)
m=1

ﬂlm _IB’lmH _ng ZO,m:I,.._,M—l,t:I,_._,T
ﬁ,M —EW, Zo,tzl,...,T

w-w, 2&t=1..,T-1

W, 2 €

Since all w, are strictly positive, then an optimal solution to the LP
problem (15.12) immediately yields an optimum to (15.10) in the usual way.

Common Weights Across Tournaments

In the above model a different set of multipliers &' (m) arises for each
tournament 7,. If it is desired to obtain a single (common) set c(m) that
applies to all tournaments, then one would need to solve the n quadratic
problems (15.10) where we replace «'(m) by a(m). Unfortunately, in this
case, the linearization procedure presented above doesn’t work.

15.5. PARTIAL TOURNAMENTS

In the previous section it was assumed that each of n players
participated in the same set of T tournaments. Here we examine a
generalization of this idea. Assume each player ig{l,...,n} competes in
some subset K, c{7,,T,,...,T,} of the T tournaments. Further, it is
assumed that any tournament where i competes is complete in the sense that
each player in that tournament has exactly one match with each of the other
players in the tournament. So, each of these tournaments is round robin in
the usual sense. Finally, we assume for simplicity that the number of
generations M that is used to capture player strength is common across all
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tournaments. As will be pointed out later, this assumption can be removed
without changing the general approach.

The problem with attempting to model player performance in the partial
tournament setting using (15.10) is that a player i, who competes in only a
small subset K of tournaments will tend to be dommated by a player i,
where K, is a much larger set; i.e., W, <W,, simply because of the
numbers of matches played in the two cases. Hence this formulation fails to
account for the differential numbers of matches K, played. To accomplish
this we propose the following generalization of (15.10)

M
Dok, Qs Wi (M)t (m)

W, = max
0 !

(e (m)}, ) ZteK,“ W,
subject to

M
ZIEKI- Zm=‘ wlal(m)ai: (m) <

<Li=1,.,n
Zth,. W’
M
Za'(m)a,.'_(m) <lLi=1,..,n1k,
a(m—-a'(m+)zem=1,.. . M-1t=1,.T (15.13)

amyzet=1,.,T
w—w, 2&t=1.,T-1
W, 28

Problem (15.13), a fractional linear problem, therefore accounts for
tournament participation by way of normalization. In this manner, players
can be properly compared regardless of the number of tournaments in which
each is involved.

Following the earlier change of variables /3,, = &' (m)w,, and letting
v,=1,w, and y, =7, [3,, problem (15.13) is equivalent to the linear
prografhming problem ’

W, =max Z f ,u,ma,.’u'(m)

ek, i m=1
subject to
S
1ekK;,

Ziﬂlma’.’_(m)—z‘/’ <0,i=1,..,n

teK; m=1 tek;
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M
Z,u,ma,.’_(m)—v, <0,i=1,..,n,tek, (15.14)

Uy 2€v,m=L.. M-Lt=1,.T
,u,MZé:v t=1,.

vV, — V. Zgr,.a,t=1,...,T—1

v, 2 £T,

In solving problem (15.13) we may impose a restriction of the form

< W, SO for some chosen scaler ©. Since £ is an infinitesimal, we
may Wlth no loss of generality choose ) = 1. The maximum value of W
for ©>1 is only greater than W, at © =1 by an amount of the order of £
That is,

W, (©>D =W, (©)+0(s).
Thus, from a practical point of view, problem (15.13) is equivalent to a
problem with a constraint i w, <1 added.
Thus, we may augment pro{;lem (15.14) by the additional restriction

7, 21 (15.15)

Again, g1ven a solution (7,,u",v’) to (15.15), then w; :ﬁ:— and
(x'*(m) =% js a solution to (15.13). It is noted that at the optimum
T = z',

15.6. CONCLUSIONS

This chapter has examined the application of the DEA model to the
problem of ranking players in a tournament. Tournament theory has a long
history with many different methodologies having been applied to the player
ranking issue. These previous methods have generally been rating-based or
have involved maximum-likelihood concepts. The advantage of the DEA
approach is the maximum fairness principle that it embodies. It also offers
the opportunity to directly address extensions to the original tournament
structures, namely, those pertaining to multiple matches and partial
participation in those matches.
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Chapter 16
CONTEXT-DEPENDENT DEA

Models and Extension

16.1. INTRODUCTION

DEA identifies efficient DMUs from a given set of DMUs. It is well
known that adding or deleting an inefficient DMU or a set of inefficient
DMUs does not alter the efficiencies of the existing DMUs and the efficient
frontier. The inefficiency scores change only if the efficient frontier is
altered. i.e., the performance of DMUs depends only on the identified
efficient frontier. In contrast, researchers of the consumer choice theory
point out that consumer choice is often influenced by the context. e.g., a
circle appears large when surrounded by small circles and small when
surrounded by larger ones. Similarly, a product may appear attractive against
a background of less attractive alternatives and unattractive when compared
to more attractive alternatives (Simonson and Tversky, 1992).

Considering this influence within the framework of DEA, one could ask
“what is the relative attractiveness of a particular DMU when compared to
others?” As in Tversky and Simonson (1993), one agrees that the relative
attractiveness of DMU |, compared to DMU , say DMU, (or a group of
DMUs). Relative attractiveness depends on the evaluation context
constructed from alternative options (or DMUs).

In fact, a set of DMUs can be divided into different levels of efficient
frontiers. If we remove the (original) efficient frontier, then the remaining
(inefficient) DMUs will form a new second-level efficient frontier. If we
remove this new second-level efficient frontier, a third-level efficient
frontier is formed, and so on, until no DMU is left. Each such efficient
frontier provides an evaluation context for measuring the relative
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attractiveness. e.g., the second-level efficient frontier serves as the
evaluation context for measuring the relative attractiveness of the DMUs
located on the first-level (original) efficient frontier. On the other hand, we
can measure the performance of DMUs on the third-level efficient frontier
with respect to the first or second level efficient frontier.

In this way, we obtain a context-dependent DEA where the relative
attractiveness is obtained when DMUs having worse performance are chosen
as the evaluation context, and the relative progress is obtained when DMUs
having better performance are chosen as the evaluation context. The
presence or absence (or the shape) of the evaluation context (efficient
frontier) affects the relative attractiveness or progress of DMUs on a
different level of efficient frontier. When DMUs in a specific level are
viewed as having equal performance, the attractiveness measure or the
progress measure allows us to differentiate the “equal performance” based
upon the same specific evaluation context (or third option).

Note that different input/output measures play different roles in the
evaluation of a DMU’s performance. Customers may make trade-offs among
different measures of a product. For example, suppose we want to buy a dot-
matrix printer and we may, given the price, make tradeoffs amongst the
speed, print quality, and input buffer (memory) which are some of the most
important features that distinguish 24-pin dot-matrix printers. We may not
consider the printer memory feature to be very vital, because dot-matrix
printers only use memory as a buffer space to download fonts. Thus, we give
more consideration to speed and print quality. Perhaps, the printer is simply
used to print long program codes or data-base listings, so that speed
outweighs print quality.

Therefore, in measuring the relative attractiveness and progress,
incorporation of value judgment is also very important. The current chapter
uses the result of Zhu (2002) to develop a context-dependent DEA with
value judgment. The method is applied to measure the relative attractiveness
of a set of printers that is studied by Doyle and Green (1991). The
application demonstrates that the context-dependent DEA helps practitioners
to produce finer evaluation of efficiency in practical problems.

The rest of the chapter is organized as follows. The next section
presents the context-dependent DEA. We then incorporate the value
judgment into the context-dependent DEA. The method is applied to a set of
32 printers. Conclusions are provided in the last section.
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16.2. CONTEXT-DEPENDENT DEA

Our model formulation below uses a vector notion for inputs and
outputs where DMU,; ( = ..., 1) produces a vector of outputs

(yll, »Yy) by usmg avector ofinputs x; = (X,;5....%,,

LetJ' ={DMU ,j=1,..,n} be the set of all n DMUs We
interactively ~ define J™' =J' —E' where E' ={DMU, eJ'|
¢ (1,k) =1}, and ¢"(I,k) is the optimal value to the following linear
programming problem:

# (k) = max ¢(l.k)

subject to

DAy, 2 gk, (16.1)

JeF(Ih)

2,20 jeFJ)

where (xk, Y, ) represents the mput and output vector of DMU,, and

jeF(J') means DMU, eJ', i, F(-) represents the correspondence

from a DMU set to the correspondmg subscrlpt index set.

When /=1, model (1) becomes the original output-oriented CCR model
and DMUs in set E' define the first-level efficient frontier. When [ = 2,
model (1) gives the second-level efficient frontier after the exclusion of the
first-level efficient DMUSs. And so on. In this manner, we identify several
levels of efficient frontiers. We call E’ the Ith-level efficient frontier. The
following algorithm accomplishes the identification of these efficient
frontiers by model (1).

e Step I: Set [ = 1. Evaluate the entire set of DMUs, J ', by model (16.1)
to obtain the first-level efficient DMUs, set E' (the first-level efficient
frontier).

e Step 2. Exclude the efficient DMUs from future DEA runs.
J =J —E'. (af J*' =D then stop.)

e Step 3: Evaluate the new subset of "inefficient" DMUs, J “1 by model
(1) to obtain a new set of efficient DMUs E™' (the new efficient
frontier).

o Step4:Leti=1+1.Gotostep 2.

o Stopping rule: J'*' = & the algorithm stops.

There exists an input-oriented version of model (16.1). However, the
input-oriented version of model (16.1) yields the same stratification of the
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whole set of DMUs. Figure 16.1 plots the three levels of efficient frontiers of
10 DMUs with two outputs and one single input of one (see Table 16.1).

6 - Output 2
5 MU3
DMU7
4 4 w—
‘H—%‘ﬂgv MUe
3 DMU1C D N
DMU
2 A % DMU1
DMU4
11 DMU8 l
0 T T T * T L 4 !
0 1 2 3 4 5 6 7
Output 1
Figure 16-1. Efficient Frontiers
Table 16-1. Sample DMUSs
DMU 1 2 3 4 5 6 8 9 10
Output 1 6 5 2 5.5 475 3 1 4 3 1
Output 2 2 3.5 5 1.5 2.5 3.5 4 1 3 3.5

Now, based upon these evaluation contexts E' (=1, .. L), we can
obtain the relative attractiveness measure by the following context-

dependent DEA.

Qq(d)zln})a()g)ﬂq(d) d=1,.,L-1

subject to
2y, 2Q,d)y,;

JeF(ER*)
PIVEIEEH

JeF(ER* Ty

. I,+d
A;20  jeF(E"™).

o

(16.2)
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where DMU =(x,,¥,) is froma specnﬁc level E"
have (i) Q. (d) <1 foreachd=1,..

, 06{1 Ll} We
and (i) Q_ (d+1)<Q (d).

05

Definition 16.1: A q(d ) = is called the (output-oriented) d-degree

Q; (d)

attractiveness of DMU , from a specific level E".

Suppose, e.g., each DMU in the first-level efficient frontier represents an
option, or product. Customers usually compare a specific DMU in E" with
other alternatives that are currently in the same level as well as with relevant
alternatives that serve as evaluation contexts. The relevant alternatives are
those DMUs, say, in the second or third level efficient frontier, etc.. Given
the alternatives (evaluation contexts), model (16.2) enables us to select the
best option - the most attractive one.

In model (16.2), each efficient frontier of E~* represents an evaluation
context for measuring the relative attractiveness of DMUs in E" Note that
A ,(d) is the reciprocal of the optimal value to (16.2), therefore Al ,(d)>1
The larger the value of A ;(d) , the more attractive the DMU, is, "because
this DMU,_ makes 1tse1f more distinctive from the evaluatlon context
E"“*¥ . We are able to rank the DMUs in E" based upon their attractiveness
scores and identify the best one.

To obtain the progress measure for a specific DMUq eE", [ e{2, ..,
L}, we use the following context-dependent DEA.

P (g)= ﬂr’_r}?()é) P(g) g=1..1-1

subject to
24y, 2 P(@)y,; (16.3)

JEF(E"™8)
x. < .
z ﬂ'} x./ - x‘l ’
JjeF(E"™®)

A,20 jeF(EY™).

We have (i) P (g) > 1 for each g = 1,
P/(g+D)>P/(g).

Definition 16.2: The optimal value to (16.3), i.e., Pq* (g), is called the
(output-oriented) g-degree progress of DMU, from a
specific level E*

eee, 1 -1, and (ii)

0

Each efficient frontier, E“7#, contains a possible target for a specific
DMU in E* to improve its performance. The progress here is a level-by-
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level improvement. For a larger P (g), more progress is expected for
DMU , . Thus, a smaller value of P (g) is preferred.

16.3. CONTEXT-DEPENDENT DEA WITH VALUE
JUDGMENT

In the previous section, both attractiveness and progress are measured
radially with respect to different levels of efficient frontiers. The
measurement does not require a priori information on the importance of the
attributes (input/output) that feature the performance of DMUs. However
different attributes play different roles in the evaluation of a DMU’s overall
performance. Therefore, we introduce value judgment into the context-
dependent DEA.

Incorporating Value Judgment into Attractiveness Measure

In order to incorporate such a priori information into our measures of
attractiveness and progress, we first specify a set of weights related to the s
outputs, #, (r = 1, ..., 5) such that iu =1. Based upon Zhu (1996), we
develop the followmg hnear programmmg problem for DMU, =(x,,y,)

(xlq’ mq9y1q9 9ysq) lnE“ E{l L 1}
@, (d)= max Zu O (d) d=1..,L-I,

2;,90,(d)
subject to
DAy, z®d)y, r=l..s
]EF(E'“+I (164)
z&j.xy. <x, i=1,..,m;
JeF(ER™)
CI);(d)Sl r=1,.,s;

. I,+d
4,20 jeFE™).
=, | ,
Definition 16.4: 4 (d) = ——— is called the (output-oriented) value
! @, (d)
judgment (VJ) d-degree attractiveness of DMU, from a

specific level E" .

Obviously, A "(d) > 1. The larger the A *(d) is, the more attractive the
DMU , appears under the weights #, (» = 1,..., 5). We now can rank DMUs
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in the same level by their VJ attractiveness scores incorporated with the
preferences over outputs.

If one wishes to prioritize the options (DMUs) with higher values of the

¥, th output, then one can increase the value of the corresponding weight u,
These user-specified weights reflect the relative degree of desirability of the
corresponding outputs. For example, if one prefers a printer with faster
printing speed to one with higher print quality, then one may specify a larger
weight for the speed (output). The constraints of @/ (d) <1 (r=1, ..., s)
ensure that in an attempt to make itself as distinctive as possible, DMU _ i
not allowed to decrease some of its outputs to achieve higher levels of other
preferred outputs.

Consider DMUs, 1, 2 and 3 in Table 16.1 and select the second-level
efficient frontier as the evaluation background, i.e., we consider the VJ first
degree attractiveness.

Case I: If let u; = — U = 0.5, i.e., the preference over the two outputs is
equal, then we have A "(1) =1.0787, (1) =1.2019 and A (1) = 1.1429.
Thus, DMU2 is the most attractive one;

Case II: If let u, = 0.98 and_ u, =0.02, i.e., we _prefer the first output,
then we have 4, (1)=1.0949, 4, (1) =1.0077 and 5 (1) =1.0050. Thus,
DMUI1 is the most attractive one;

Case III: If U = 0.02 and u, =0.98, ie., we prefer the second output,
then we have A" (1)=1.0030, A "(1) = 1.0081 and A4, (1) =1.2595. Thus,
DMUS3 is the most attractive one.

It can be seen that different weight combinations lead to different
attractiveness scores.

Note that :47—; (d) (or CD; (d)) is an overall attractiveness of DMU,, in

terms of outputs while keeping the inputs at their current levels. On the other

1
hand, each individual optimal value of ———, ( = 1, ..., s) measures the
@, (d)
attractiveness of DMU, in terms of each output dimension. Note that
4(d) is not equal to gu,A;(d), where A (d) = q);,l(d).

Definition 16.5: For DMU, eE", | €{2, .., L}, the optimal value
;{T_ "(d) = ———— is called the (output-oriented) value

judgment (VJ) d-degree output-specific attractiveness
measure.
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Consider case I of VJ first degree attractiveness. When ”1 =u, =05,
we have (i) A (1) = 1.1710, A2 (1) = 1 for DMUL; (ii) A (1) = 1.0526,
A (1) =1 4006 for DMU2; and (111) Ay () =1, A2 (1) = 1. 3333 for DMU3.
Thus DMUI is the most attractive one in terms of the first output, whereas
DMU?2 is the most attractive one in terms of the second output.

Let @) (d)y,, =, ~s;(d) (=1, ..., 5) in (4). Since @;(d)< 1,
s; (d) = 0, model (4) is equivalent to the following linear programming
problem:

min ZD sid)  d=1,..,L-1

Ajs8g (a')
s.t. z/l Yy =s,(d) r=l..,s
]EF(EI “’
Z/I x; <X, i=1,..,m; (16.5)
jEF(EI‘“I
sq(d)ZO r=1,.,s;

. 1,+d
A;20  jeFE"™).

u
where D =—"—_ ie., u, is normalized by the corresponding output
yrq

quantity. s,(d) in (5) can be regarded as the maximum possible output

reduction to a specific efficient frontier E"* . Therefore, the output-specific
attractiveness measure characterizes the difference between DMU p cE"

and E** interms of a specific output.

With the output-specific (or input-specific) attractiveness measures, one
can further identify which outputs (inputs) play important roles in
distinguishing a DMU’s Performance On the other hand, if ®F (d) =1,
then other DMUs in E*“™ or their combinations can also produce the
amount of the #,th output of DMU , i.e., DMU, does not exhibit better
performance with respect to this specific output dimension. Therefore,
DMU, should improve its performance on the #,th output to distinguish
itself in the future.

Incorporating Value Judgment into Progress Measure

Similar to the development in the previous section, we can define the
output-oriented value judgment (VJ) progress measure:
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P "(g)= ma(x Zu P/(g) g=1..1,-1

I ‘I

zﬂ’jyrj '—Pq (g)yrq r=1..,s;

JeF(EY¥)
> Ax, <x, i=1,...,m (16.6)
JeF(ER™8)
P/(g)z1 r=1..,s8

. I-g
4,20 jeFE"™).

Definition 16.6: The optimal value 1:’*(g) is called the (output-oriented)
value Judgment (VJ) g—degree progress of DMU, in a
specific level E*

The larger the Fq* (g) is, the greater the amount of progress is expected
for DMU , . Here the user-specified weights reflect the relative degree of
desirability of improvement on the individual output levels.

16.4. INPUT-ORIENTED CONTEXT-DEPENDENT DEA

Here we provide the input-oriented context-dependent DEA. Consider
the following llnear programming problem for DMU =(x,,y,) ina
specific level B, l,e{l, .., L-1}:

H,(d)=minH (d) d=1,..,L-1,
st Y Ax, <H (d)x,;

jEF(EI +d

Zl V2V,

jEF(E" +d

. I+d
4,20 jePFE").

(16.7)

Note that dividing each side of the constraint of (A.1) by H,(d) gives:
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Zinqu

JeF(Ele*y

> Ly, 2,
‘]EF(EI+I) ’ Hq(d)
v ﬂ’i . I,+d
1 =—22_>0 jeFE"™)

q

. 1
Therefore (A.1) is equivalent to (2), and we have (i) H_ (d) = ————

! Q,(d)
for DMU, e E", I, {1, .., L-1}, (i) H,(d)>1 foreachd = 1,...,L-1,,
and H,(d+1) > H,(d).

Definition 16.7: H (d) s called (mput-orlented) d-degree attractiveness of
DM U, from a specific level E"

The bigger the H, ; (d) is, the more attractive the DMU_ is. Model
(A.1) determines the relative attractiveness score for DMU, when outputs
are fixed at their current levels. To measure the progress of DMU, eE",
[, e {2, .., L}, we develop

G*(g) =minG,(g) g=1L../,-1
> A4, <G, (B)x,;

JEF(EP8)

(16.8)
DAY 2,
JeF(E &)
,1,. >0 jeF(E"™).
We have (i) G,(g) = for DMU, eE", I,e{2, .., L}, (ii)

( )
G;(g) <1 for each g = l,...,la —1, and (iii) G;(g+l)< G;(g).

Definition 16.8: M ; (2 is called (input-oriented) g-degree

1
G,(2)
progress of DMU  from a specific level E-.

Obviously M ; (g) > 1. For a larger M; (g) , more progress is expected.
Next, we develop the following linear programming problem for

DMUq = (xq,yq) = (xlq,...,xmq,y,q,...,yw) in B, l,e{l, .., L-1}:
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H(d)y=minY wH!(d) d=1,.,L-],
i=1

s.t. z/"tjxi, <H (d)x, i=l.,m;

JeF(ER*)
Zﬂjyﬂ 2 Y, r=1..s;

JeF(ER™T)
H(d)21 i=1,.,m

. I +d
2,20  jeFE"™).

m

where w, (i = 1, .., m) such that ZWi =1 are user-specified weights
i=1

reflecting the preference over the input improvements.
Definition 16.9: The optimal value H q* (d) is called (input-oriented) value
judgment (VJ) d-degree attractiveness of DMU_ in a
specific level E"
To measure the (input-oriented) value judgment progress, we have

G, (g)=minY wGi(g) g=L..l, -1
i=1

S.t. lex” SGU(&)x,s  i=le,m

JeF(E7#)
leyr_, 2 Vs r=1..,s;
JjeF(ER™8)
G,(g)<1 i=1,..,m

. I-g
A;20  jeF(E"™).

Definition 16.10: The optimal value M ; (g) =

(A), is the (input-

G, (2)

oriented) value judgment (VJ) g-degree progress of
DMU, from a specific level E".
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16.5. CONTEXT-DEPENDENT DEA MODELS IN
DEAFRONTIER SOFTWARE

Here, we demonstrate how these context-dependent DEA models can be
solved using the DEAFrontier software. The context-dependent DEA
consists of three functions: (i) Obtain levels, (ii) Calculate context-depend
DEA models, and (iii) Unprotect the sheets containing the levels (see Figure
16-2).

-About DEAFrontier N Lo
Quit DEAFroritier | Unprotect Level sheets

Figure 16-2. Context-dependent DEA Menu

The first function is the stratification model (16.1). It generates all the
efficient frontiers — levels (Figure 16-3). This function will first delete any
sheet with a name starting with “Level” and then generate a set of new
sheets named as “Leveli(Frontier)” where i indicates the level and Frontier
represents the frontier type. For example, Level1(CRS) means the first level
CRS frontier. The “level” sheets are protected for use in the context-
dependent DEA. However, they can be unprotected by using the “Unprotect
the sheets” menu item. The format of these level sheets must not be modified.
Otherwise, the context-dependent DEA will not run properly and accurately.

Figure 16-3. Obtain Levels
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Once the efficient frontiers are obtained, the context-dependent DEA can
be calculated using the “Context-dependent DEA” submenu item as shown
in Figure 16-4.

BCRS) — TeveB(CRS)
“leval(CRS) 1O Levelcrs)
LeveIS(CRS§ ' 8 mg?ﬁg
Levelz(CRE
LevedtORS) b L oA Level1{CRE)

Figure 16-4. [Please provide a caption for this figure]

In Figure 16-4, if one does not wish to specify the weights in model
(16.4), for example, then the regular context-dependent DEA model (16.2) is
calculated.

The results are reported in the “Context Dependent Result” sheet for the
regular context-dependent DEA models, and “Context Dependent VJ” for
the models with value judgments. In this sheet, the context-dependent scores
are the optimal values to the context-dependent models described in this
chapter. To obtain the attractiveness or progress scores, one has to adjust the
context-dependent scores based upon Definitions 16.1-16.10.
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16.6. APPLICATION

Doyle and Green (1991) benchmarked 37 computer printers using DEA.
We revisit their data set by using the newly developed context-dependent
DEA. In order to keep the results consistent and comparable with Doyle and
Green (1991), we choose price (in US dollars) as the single input. The
following features/measures are chosen as outputs: (1) input buffer; (2) mean
time between failure (MTBF); (3) 80-column throughput; (4) graphics
throughput; (5) sound level and (6) print quality (see Table 16-2).

Table 16-2. Data for the 32 Printers

Printer name DMU Price Input MTBF 80-column Graphics Sound Print
Epson LQ-500 1 499 8 4000 101 850 72 5
NEC P2200 2 499 8 4000 85 830 72 5
Seikosha SL- 3 549 16 3200 56 451 68 4
Copal WH 6700 4 795 50 4000 102 450 69 3
Epson LQ-850 5 799 38 4000 148 1350 71 7
Printronix P1013 | 6 895 2 4000 107 683 78 6
Panasonic KX- 7 899 45 4000 107 850 75 7
Brother M- 8 949 32 4000 107 931 72 5
Citizen Tribute 9 949 24 5000 122 917 73 6
ALPS ALQ324 10 995 71 5000 105 562 69 6
Fujitsu DL3400 11 995 24 8000 146 1440 63 7
NEC P7 12 995 50 5000 111 1255 65 6
Sanyo PR-241 13 999 10 8000 90 955 68 6
Dataproducts 14 1099 32 5000 121 687 72 5
Epson LQ-1050 15 1099 48 6000 147 1367 71 7
Facit B3450 16 1245 16 4000 134 1090 72 5
C. Itoh C-715A 17 1295 32 7200 131 1186 74 7
Nissho NP-2405 18 1295 36 6000 139 650 72 7
ALPS P2400C 19 1395 256 6000 146 1000 70 7
Okidata 20 1399 30 4000 184 2400 67 9
Epson LQ-2500 21 1449 40 6000 128 1459 70 6
Fujitsu DL2600 22 1495 80 6000 146 1588 69 8
NEC P5XL 23 1495 40 7000 132 1421 68 7
Radio Shack 24 1599 64 3000 150 465 68 7
AT&T 477 25 1695 80 6000 146 1301 69 7
Hewlett-Packard | 26 1695 36 20000 191 542 69 15
Nissho NP-2410 27 1745 54 6000 169 683 71 12
NEC P9XL 28 1795 48 7000 170 1928 68 8
M 29 1799 32 4800 205 1069 63 7
C. Itoh C-815 30 1995 42 7200 182 2823 72 10
Fujitsu DL5600 31 2195 24 8000 236 3176 68 12
Japan Dgtl. Labs | 32 2495 128 4000 169 497 63 9
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There are two kinds of input buffers: standard and optional. Because
some printers have zero values for either the standard or optional input
buffer, we combine the two scores to give a composite input buffer score so
that all scores are positive. The larger the buffer, the more output a computer
can transmit to the printer and the sooner the computer is freed for other
uses. As stated in Stewart (1988), MTBF (in hours) is a significant
specification of a manufacturer’s rating of the durability of a printer. The
current study does not have access to the MTBF of the following 5 printers:
Star Micronics NB24-15, Toshiba P341SL, IBM Proprinter X124, Star
Micronics NB-15 and Toshiba P351SX.

The third and fourth outputs are measures of printing speed in characters
per second (cps) which is the document length in bytes divided by the
number of seconds to print it. (Higher numbers signify faster performance.)
The fifth output is a measure of the noise level (in dBA) where lower
numbers are preferable. Based upon Seiford and Zhu (2002), because it is an
output measure, we subtract each number from 100 to obtain an adjusted
score for the DEA analysis. The last output is a combined quality score for
text and graphics quality scores where larger numbers indicate a higher
quality. Note that the last four outputs are among the test criteria used by
Stewart (1988). Also, based upon Stewart (1988), printers 1 to 13 are in the
low price category ($499-$999), printers 14 to 23 are in the middle price
category ($1000-$1499), printers 24 to 30 are in the high price category
($1500-$1999) and printers 31 and 32 are in the deluxe price category
($2000-$2499).

By using the DEA model (16.1), we obtain five levels of efficient
frontiers. They are,

E' ={DMU,|j=1,2,3,5,19,20,26}

E’ ={DMU |j=4,7,10, 11, 12,15}

E’ = {DMU,|j=6,8,9,13,22,27,30,31}

E' = {DMU,|j=14, 16,17, 18,21, 23,25, 28, 29, 32}
E’ ={DMU, |j =24}

It can be seen from the original DEA (CCR) model, seven printers in E'
are efficient. This result is slightly different from that of Doyle and Green
(1991), partly because we treat one of the outputs, sound level, in a different
way. Note that three of the six “outstanding buys” selected by Stewart
(1998), namely, DMU1 (Epson LQ-500), DMU20 (Okidata Microline 393)
and DMU26 (Hewlett-Packard RW480) are in the first-level efficient
frontier and the remaining three, namely, DMU4 (Copal WH6700), DMU11
(Fujitsu DL3400) and DMU31 (Fujitsu DL5600) are in the second-level and
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third-level efficient frontier, respectively. We next discuss the 13 printers in
E' and E* in detail.

Table 16-3. Attractiveness and progress scores for the 13 printers in E' and E

Background (Efficient frontier)
Printer DMU 2nd-level 3rd-level 4th-level
Name No. first-degree second-degree third-degree
Epson LQ-500 | 1 1.50092® 1.854460 2.32072@
NEC P2200 2 1.50092Q0 1.78060@ 2.306223
Seikosha SL- 3 1.51699@ 1.85487@ 2.28781®
Epson LQ-850 | 5 1.33046©® 1.59208® 1.83955®
ALPS P2400C | 19 2.57175® 3.429360 3.577690
Okidata 20 1.18545® 1.31406@ 1.59716@
Hewlett- 26 1.46755@ 1.54022® 2.12224®

first-degree** first-degree second-degree
Copal WH 4 1.16312 1.504320 1.727180®
Panasonic KX- | 7 1.13117@ 1.28282® 1.536040%
ALPS 10 1.27868@ 1.41235@ 1.60646®
Fujitsu 11 1.030200 1.36654® 1.67563@
NEC P7 12 1.19557® 1.29240® 1.57736®
Epson LQ- 15 1.22295® 1.18763® 1.38622®

*The number to the right of each score indicates the ranking position.
** This represents progress.

First, by using (16.2) we consider the attractiveness and progress of the
fourteen printers when different efficient frontiers are chosen as evaluation
contexts. Table 3 gives the results.

The number to the right of each score indicates the ranking position by
the attractiveness measure. (O represents the top-rank position.) Note that
DMU19 (ALPS P2400C) and DMU4 (Copal WH 6700) are the most
attractive printers in the first and second levels, respectively, no matter
which evaluation context is chosen. Also, DMUI (Epson 1.Q-500) and
DMUI11 (Fujitsu DL3400) have the second and third ranking positions,
respectively.

In fact, for DMUSs that are not located on the first or last level of efficient
frontier, we can characterize their performance by their attractiveness and
progress as shown in Figure 16-5 where the solid circle represents the DMU
being evaluated. The most desirable category is the Low Progress — High
Attractiveness (LH) and the least desirable category is the High Progress —
Low Attractiveness (HL). A high progress indicates that the DMU needs to
improve its outputs substantially, and a high attractiveness indicates that the
DMU does not have any close competitors. For example, for the printers in
E?, we may categorize (i) Copal WH 6700 (DMU4) and Fujitsu DL3400
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(DMUI11) as LH, (ii) Panasonic KX-P1524 (DMU7) as LL, (iii) ALPS
ALQ324 (DMUI10) as HH, and (iv) NEC P7 (DMUI12), Epson LQ-1050
(DMU15) as HL.

3 b Attractiveness:s
o G Lowo Higho
& &~
[ o,
T~ g T~ LHY
ooy ;\\
Lowu o\ -
© ")
. o "
- Q - {v
Progressc
- F 3 &
e HLY T~ HHY
Higho »
= o e \ 5
L] \ o
O e (} K
kgl 0 - 4:

Figure 16-5. Attractiveness — Progress

Next, we consider DMU19 (ALPS P2400C). Note that this printer has the
largest input buffer, 256k (the average value of the others is 40k). Thus, the
massive input buffer is likely to lead to the large attractiveness score for that
printer, and consequently, the attractiveness measure for DMU19 may be
biased. Therefore, we need to define some weights, u, (r = 1,..., 6) to
construct the output-oriented VJ attractiveness score by using model (16.4).

Stewart (1998) writes:
“Among low-price units, the Epson LQ-500 (3499),
the Copal Write Hand 6700 (8795), and the Fujitsu
DL3400 (8995) each offer bargain hunters good
combinations of speed and quality.”
Thus, if we prefer speed and quality, we specify the following weights
where more weight is put on 80-column throughout, graphics throughout and
print quality which characterize speed and quality.

Weight-1: u; = 0.004, ;= 0.003, u;=0.33, u,= 0.33, u;= 0.003, us= 0.33
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Tables 16-4 and 16-5 report the VJ (first-degree) attractiveness scores for
the printers in E' and E?, respectively.

. . . 1 2,
Table 16-4. V] attractiveness scores for the seven printers in ' when E” is chosen as the
evaluation context

Printer Name DMU No no weight weight-1 weight-3
Epson LQ-500 1 1.500920 1.315290 1.39505
NEC P2200 2 1.500920 1.23141@ 1.27585
Seikosha SL-80AI 3 1.51699Q 1.00125@ 1.00208
Epson LQ-850 5 1.330460 1.223840 1.25242
ALPS P2400C 19 2.571750 1.00255® 1.00319
Okidata Microline 393 20 1.18545® 1.05441@ 1.00078
Hewlett-Packard RW480 26 1.46755@ 1.04331® 1.06608

*The number to the right of each score indicates the ranking position.

. . . 2 3.
Table 16-5. V] attractiveness scores for the seven printers in E° when E” is chosen as the
evaluation context

Printer Name DMU No no weight weight-1 weight-2
Copal WH 6700 4 1.504320 1.00320 1.00431
Panasonic KX-P1524 7 1.28282® 1.06673 1.14002
ALPS ALQ324 10 1.41235@ 1.00263 1.00347
Fujitsu DL3400 11 1.37561® 1.201170 1.03405
NEC P7 12 1.29241® 1.01478 1.00407
Epson LQ-1050 15 1.18991® 1.08059 1.00399

*The number to the right of each score indicates the ranking position.

It can be seen that DMUL (Epson LQ-500) and DMUI1 (Fujitsu
DL3400) are the top-ranked printers in E' and E?, respectively. Note that
DMUI11 (Fuyjitsu DL3400) is the top-ranked unit among the inefficient
DMUs by the CCR model (see Figure 2). This observation strengthens the
conclusion that these two printers are the best ones.

However, DMU4 (Copal WH6700) which is ranked highly by the CCR
model does not have a large attractiveness score. When calculating the VJ
attractiveness score for DMU4, model (4) identifies DMUS8 and DMU9 as
the referent DMUs. (The associated optimal lambda values are 0.013 and
0.824, respectively.) Thus, the unattractiveness of DMU4 is due to the
presence of DMUS8 and DMU?9. Note that DMU4, DMUS8 and DMUS9 are all
in the low price category. Hence, DMUS8 (Brother M-1724L) and DMU9
(Citizen Tribute 224) could be the potential competitors for DMU4 (Copal
WH6700).

It can also be seen that DMU26 (Hewlett-Packard RW480) has a small
attractiveness score of 1.04331 although it achieves a top rating in terms of
text and graphics quality. Note that our VJ attractiveness measure is based
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on the situation where inputs are fixed at current levels. Model (16.4)
identifies DMU7 (Panasonic KX-P1524) as the referent printer. If we
examine the original data for the two printers,

Printer DMU Price Input MTBF 80-column  Graphics Sound  Print
name No. buffer throughput  throughput  level quality
Panasonic 7 899 45 4000 107 850 75 7
KX-P1524

Hewlett- 26 1695 36 20000 191 542 69 15
Packard

RW480

we observe that the price of DMU26 almost doubles that of DMU7. Note
that DMU?7 is in the low price category and DMU26 is in the high price
category. However DMU26 does not have a higher value of graphics
throughput, and consequently, the presence of DMU7 makes DMU26 less
attractive. DMU7 may be a better alternative for DMU26 if one’s budget is
restricted. In other words, in terms of the price and the printers in E’,
DMU26 (Hewlett-Packard RW480) is not attractive among the seven
printers in E'. This result is consistent with the statement in Stewart (1988,
pl124): “If you’re willing to pay the price, you can definitely find speed and
quality in one unit (Hewlett-Packard RW480)”. Finally, note that DMU19
dropped to the sixth position in terms of attractiveness ranking.
If quality alone is the consideration, then we choose the following
weights:
Weight-2: 2,=0.005 (r=1, ..., 5) and us= 0.975

From the last column of Table 5, we see that the most attractive printer is
DMU7 (Panasonic KX-P1524), followed by the DMU11 (Fujitsu DL3400)
which were suggested by Stewart (1988) for quality consideration.

If we prefer 80-column throughout and quality, we specify the following
weights:

Weight-3: u; = 0.005, u>= 0.005, u;=0.49, u,= 0.005, us= 0.005, us= 0.49

In this case, DMU20 (Okidata Microline 393) is the most unattractive
printer among the seven printers in E' (see last column in Table 16-4).
Stewart (1988) stated “The Okidata Microline 393 (§1399) looks more like a
high-price unit in terms of 80-column throughout and quality”. In fact,
DMUs 11 is in the reference set under model (16.4), i.e., this DMU serves as
the evaluation context when measuring the VJ attractiveness of DMU20. In
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terms of the price, DMU20 obviously does not have the advantage in 80-
column throughout and quality.

. . . .ol
Table 16-6. Outpui-specific attractiveness scores for the printers in K

Printer name DMU | Input MTBF | 80-column | Graphics Sound | Print
No. buffer throughput | throughput | level | quality

Epson LQ-500 1 1 1 1.379 1.177 1.509 | 1.424

Referent Printer Fujitsu DL3400 (DMU11)

NEC P2200 [2 1 [ 1 [ 1161 [ 1.149 [ 1509 | 1.424

Referent Printer Fujitsu DL3400 (DMU11)

Seikosha SL- 3 1 1 1 1 1.165 | 1.015

80AI

Referent Printers Panasonic KX-P1524 (DMU7) and Fujitsu D1.3400 (DMU11)

EpsonLQ-850 |5 1 [1 [ 1.608 [ 1320 [ 1.026 | 1.428

Referent Printer Fyjitsu D1.3400 (DMU11) and NEC P7 (DMU12)

ALPS P2400C | 19 2749 |1 [1 1 [ 1 [ 1

Referent Printer ALPS ALQ324 (DMU10) and NEC P7 (DMU12)

Okidata 20 1 1 1 1.185 1 1

Microline 393

Referent Printers Fujitsu DL3400 (DMU11)

Hewlett-Packard | 26 1 1468 |1 1 1 1.258

RW480

Referent Printer Fujitsu DL3400 (DMU11)

Finally, we illustrate how to identify which of the six features (outputs)
of each printer in E' exhibits the leading performance with respect to the
printers in E*. That is, based upon E’ and the first-degree attractiveness,
we determine, for a printer in E', (a) the “superior” features that other
printers may have difficulties to catch up, and (b) the “noninferior” features
for which other printers or their combinations also achieve the same
performance level. This analysis provides the manufacturers with
information on (i) which features of a printer should be improved to gain a
competitive edge, and (ii) the referent printers in E> may be viewed as
potential competitors.

Let us assume equal weights in model (16.4), i.e., u, =1/6,r=1, ..., 6.
Table 16.6 reports the six output-specific attractiveness measures along with
the referent printers. (The DEAFrontier software provides the information by
Output Changes in the “Context Dependent VJ” sheet.)' It can be seen that
four printers in E® appear in the reference set, of which three are
outstanding buys, and in particular, Fujitsu DL3400 (DMUI11) almost
appears in every reference set. The two outstanding buys in E', namely

! The scores in Table 16.6 are reciprocals to the “Output Changes” in the “Context Dependent
VJ” sheet based upon Definition 16.5.
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Okidata Microline 393 (DMU20) and Hewlett-Packard RW480 (DMU26),
which are in the high/deluxe price category, do not exhibit good
performance in terms of output-specific attractiveness measures. For
instance, DMU20, which is the winner (middle price) in graphics tests, only
has 1.185 on its graphics throughput, and 1.0 on all other features. DMU26
exhibits good performance only on MTBF and print quality. However,
Epson LQ-850 (DMUS5) exhibits a good performance based upon many of
the output-specific attractive measures. This indicates that if no preference is
given to specific output features, this printer may be a good choice in the
presence of the outstanding buy, DMU11 (Fujitsu DL3400).

16.7. CONCLUSIONS

Context-dependent DEA is developed to measure the attractiveness and
progress of DMUs with respect to a given evaluation context. Different
strata of efficient frontiers rather than the traditional first-level efficient
frontier are used as evaluation contexts. In the original DEA, adding or
deleting inefficient DMUs does not alter the efficiencies of the existing
DMUs and the efficient frontier whereas under the context-dependent DEA,
such action changes the performance of both efficient and inefficient DMUs.
i.e.,, the context-dependent DEA performance depends on not only the
efficient frontier, but also the inefficient DMUSs. This change makes DEA
more versatile and allows DEA to locally and globally identify better
options. Value judgment is incorporated into the context-dependent DEA
through a specific set of weights reflecting the preferences over various
output (or input) measures. In particular, the attractiveness measure can be
used to (i) identify DMUs that have outstanding performance and (ii)
differentiate the performance of DEA efficient DMUs.

The application of comparing computer printers illustrates that in-depth
information can be obtained by the context-dependent DEA when compared
to the results obtained from the original DEA method. Context-dependent
DEA identifies the most attractive printer among the outstanding buys
located at two different levels of efficient frontiers. It also identifies the most
attractive printer in terms of individual features, e.g., speed and quality. The
method uncovers better options and prescribes possible improvement when a
specific printer is rated as inefficient by the original DEA model. With a
restricted budget, the DEA-efficient printers may not necessarily be the best
choice. In our application, we are able to identify better alternatives. In
addition, with a sensitivity analysis of weights, one could determine
allowable weight ranges to be specified by users or experts.
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Chapter 17

EVALUATING POWER PLANT EFFICIENCY
Hierarchical Models

17.1. INTRODUCTION

In many problem settings that potentially lend themselves to analyses via
DEA, there are identifiable groups or clusters of DMUs, whose impacts
should be captured in the analysis. One form of grouping has been examined
by Banker et. al. (1986), where the idea of categorical variables was
discussed. Such variables allow for a comparison of any DMU with those in
its own category and in those categories below it. Categorical variables
generally apply in those situations where there is a natural nesting of the
groups of DMUs. For example, in evaluating a set of banks, if the banks are
arranged in increasing order according to the sizes of the towns or cities in
which they are located, then categorical variables can be used to represent
this size component, and banks in a given population category will be
compared only to DMUs in this same category and to those in smaller
population categories.

In many situations, however, where there is a grouping phenomenon
present, categorical variables do not provide an appropriate structure for
analysis. Consider the problem of evaluating DMUs such as hospitals in
different parts of the country. Here, grouping may take several forms. First,
in countries such as Canada or the United States, there may be jurisdictional
considerations, e.g., state or provincial regulations can have budgetary or
legislation implications for the hospitals. In Canada, for example, health care
is under provincial rather than federal jurisdiction. Second, there may be
different categories of medical units - extended care facilities, convalescent
units, surgical units, and so on. Clearly, these DMUs do not form anything
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resembling a homogeneous set, making it necessary to address the group
elements of the problem. At least two issues must be examined in the context
of such problems:

Issue 1: There are both DMU (e.g., hospital) level factors and group (e.g.,
all extended care facilities versus all surgical facilities) level factors which
should be dealt with in their proper settings;

Issue 2: We want not only to identify a measure of efficiency for each
individual DMU (hospital), but also for each identified group of units. How
do hospitals (as a group) in one jurisdiction compare, in an efficiency sense,
to those in another jurisdiction? Do extended care facilities perform
differently than surgical facilities?

In the following sections we examine the problem of efficiency
evaluation when grouping of DMUs is a consideration. The discussion is
based on the articles by Cook et al. (1998) and Cook and Green (2004). In
Section 17.2 we present a problem setting where both individual DMU and
group evaluation arise. The case illustrates two types of grouping -
hierarchical grouping and grouping on levels. Section 17.3 presents
appropriate model structures for evaluating group and individual DMU
efficiency in a hierarchy. In particular we discuss a procedure for adjusting
ratings of DMUs at any given level in a hierarchy to reflect ratings of groups
of those units at levels higher up in the structure. In Section 17.4 we examine
efficiency within groups on a level and develop a procedure for combining
different efficiency ratings for a given DMU. In Section 17.5 the models are
illustrated through an analysis of the application discussed in section 17.2. In
Section 17.6 the power plant evaluation problem is re-examined using the
multicomponent concepts presented in Chapter 6. This arises from the need
to deal with output shared among power units within a grouping. Section
17.7 illustrates the concepts using data similar to that found in Section 17.5.
Conclusions and further directions follow in Section 17.8.

17.2. HIERARCHICAL STRUCTURES: POWER
PLANTS

Ontario Hydro (now called Ontario Power Generation) is a crown
corporation supplying electric power to both domestic and foreign markets
in the northern USA. Two classes of power units or plants are managed
under Hydro’s jurisdiction — nuclear and thermal. While the number of
nuclear units is relatively small, a total of 40 such units of varying ages,
capacities, fuel types and so on are operated by the corporation. These latter
will be the setting for the analysis of section 17.5.
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The standard measure of productivity used by management is the ratio of
total annual expenditure (operating, maintenance and administration) to total
energy produced, in megawatt hours per year. While it is the case that the
total power production is a principal output of the operation, and is certainly
the most convenient and readily available indicator of productive capability,
management is interested in other, related indicators as well. What may be
missing in this simplistic measure of productivity is a consideration of those
factors that reflect management’s skill. To a great extent, a power unit’s
efficiency measure should reflect the quality of maintenance that keeps it
operating, and the abilities of management in charge of that maintenance. At
least two types of other outputs should be considered, namely outages and
deratings.

An outage is a situation in which a unit is shut down, hence it is not
generating electric power. Types of outages include:

e planned outage, which is scheduled downtime (usually for major
overhauls);

e maintenance outage, a form of scheduled down time, but for more
minor, i.e., routine maintenance;

e forced outage, which is unscheduled and generally caused by
equipment failure, environmental requirements, or other unforeseen
incidents. There is generally some prior warning for this type of
shutdown, and some delay is possible;

* sudden outage, which is a forced outage with no prior warning.

While it can be argued that operating hours essentially capture all forms
of outages, it must be recognized that there is a difference between taking a
unit out of service on a scheduled basis at non peak times, versus sudden
brownouts or blackouts. The latter ignite public opinion, interrupt business
operations, and generally reflect negatively on the organization. Thus, such
outages should play a direct role in any measure of efficiency.

A derating is a reduction in unit capacity, where the operation may, for a
number of reasons, operate at only a fraction (e.g., 75% or 50%) of its
available (full) capacity. Breakdowns in coal belts, pulverizers or rollers (of
which there are several operating in any plant) is a primary cause of such
forced deratings. Environmental restructions, in particular SO, emissions,
can limit the extent to which a plant can operate at full capacity.
Furthermore, such restrictions will often apply to a group of units (e.g., at a
given geographical location).

As with outages, there are several forms of deratings, some of which are
beyond the control of management and which have nothing to do with
maintenance quality (e.g., grid or transmission network load restrictions),
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while others are a clear reflection of maintenance quality, such as equipment
failures.

As with outputs, inputs should include several factors. In addition to
expenditures, factors such as plant age and available but not operating time
(ABNOT) should play a role as well. The latter factor (ABNOT) is the time
during which the plant is able to operate, but for reasons beyond
managements control (such as SO, restrictions), the plant is not running.

Grouping is a natural phenomenon here. Plants can be grouped by size or
capacity, by geographical location, and so on. It is this necessity to view
problems from a grouping and hierarchical perspective that we examine
herein.

17.3. MODELS FOR EVALUATING PLANT
HIERARCHIES

The power plant application discussed in the previous section provides an
example of what might be termed a pure hierarchy. The basic DMU is the
power unit. These 40 units are naturally clustered into 8 plants.

17.3.1 The Two-Level Hierarchy

For simplicity of presentation in this subsection we assume there are only
two levels in the hierarchy. Let the level 1 (power units) vectors of inputs
and outputs be denoted X(1),Y(l)respectively, with v(1), (1)
representing the appropriate multipliers in the input orientation version of
the CCR (Charnes et al. 1978) model.

In the normal case where we are interested only in a level 1 (power unit)
analysis of efficiency, the “multiplier” form of the CCR model is:

max #T(l)Yo(l) (17.1a)
subject to:

vi(DX,(1)=1
yT(l)Y/.(l)—vT(l)X].(l)SO, jeJ (17.1¢)
,Lz(l),v(l)zg, | (17.1d)

(17.1b)

where .J is the set of DMUs under consideration. Suppose, however, that we
want, in addition, to evaluate the relative efficiencies of the 8 plants into
which the 40 units are grouped. Clearly, one approach might be simply to
evaluate each DMU relative to the entire set of 40 units as indicated above,
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(hence J would represent the entire set of power units), and use the average
of the ratings for those units within any plant as representative of the
standing of that plant. While it is difficult to argue that such an approach is
wrong, it does possess some undesirable aspects. First, those factors that
apply at the group level (level 2) are not represented (or at least not
represented appropriately) in level 1. Second, and as indicated above, it
would seem more appropriate at level 1 to evaluate a DMU relative to those
DMUs in the same group only. In this case, J in (17.1¢) above would refer
to those units in a specific plant, whereupon, those factors which distinguish
the groups (plants) can be omitted from the level 1 evaluation, and can more
properly be applied at level 2. If this is done, then averaging within a plant
does not help at all to understand the relative standings of the level 2 DMUs.

An alternative approach for evaluating efficiency at both levels 1 and 2,
is to treat the level 2 groups themselves as decision making units, using a
combination of the group-specific factors, and factors which emerge from
level 1. The use of level 1 factors at level 2 may involve some form of
aggregation as will be discussed in the next section.

For notational purposes define

K - the number of groups of level 1 DMUs, hence K is the number of
DMUs at level 2;

k - a subscript representing a DMU at level 2;

J, - asubscript representing a level 1 DMU that belongs to group £;

Yk{k O, X F (1) - level 1 outputs and inputs;
Y, (2), X, (2) - those level 2 outputs and inputs that are aggregates of
factors that are used to evaluate level 1 DMUs;

Y?(2),X}(2) - those outputs and inputs used at level 2 that distinguish
the K groups, and which were not used at level 1.

Let v(1), (1) and v(2),u(2) denote the level 2 multipliers to be
associated with X,(2),Y,(2) and X 2(2),Y7(2) respectively. It is noted
that v(1), (1) are the same multipliers as used in level 1, as will be
explained below.

In performing the analysis within a general model framework we make
the following assumptions:

(a) When the “DMU” under consideration is a level 1 unit, we want to
ensure that it is evaluated only relative to those units in the same group,
hence DMUs in other groups should be excluded or disengaged from the
constraint set;

(b) Level 2 DMUs (groups) should not interfere with, hence should be
disengaged from, level 1 analyses;

(c) Level 1 DMUs should be included or engaged in the analysis of level
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2 units.

Assumption (c¢) above is invoked with the argument that multipliers
v(1), (1) when applied at level 2 should also be feasible when applied to
any level 1 units within the groups under consideration. Specifically, since
the efficiency of a given group I at level 2 should be related to the
efficiencies of that group’s members, then the multipliers v(1), z(1) should
be such that when applied to each member of the group, the ratio for that
member should not exceed unity.

To accommodate the above considerations we propose the following
general model. When applied to a level 2 DMU, the model would take the
form:

maxe,=u' (DY, (2)+u" (2)Y2(2) (17.2a)
subject to:

v (DX, (2)+v ()X (2)+ Mw(2)=1
KDY )+ 1 QT2 -V (DX, (2)-

(17.2b)

. (17.2¢)
V! (2)X,f(2)—w(2)s0 k=1..K
(DY, (=Y ()X, ()=, (D=0, j8], k=1, K (7d)
w(2)—-w,(1)=20, k=1..,K (17.2¢)
(), u(2),v(1),v(2)2& (17.26)
w, (1), w(2) =0, Vk (17.2g)
When applied to a level 1 DMU, the model would take the form
max e, =v" (1)Y,(1) (17.2a)
subject to:
(17.2bY

vT(l)XO(l) +Mw,(1)=1
(17.2¢)-(17.2g)

Here M denotes a large positive number. In (17.2d), J, denotes the
index set of level 1 DMUs in group k (plant k). The notation ¥,'(2) in
(17.2a) denotes the type 1 output (an aggregate of level 1 outputs) used at the
second level and for a particular DMU k£ ="0.". In (17.22") the notation
Y,(1) denotes the output at level 1 for a particular DMU and group
(J,,k)="0." The variables w,(1),w(2) are introduced to include or
exclude certain DMUs from the analysis. In reference to the above
discussion, these are referred to as engagement variables. It is noted that in
(17.2b"), w,(1) refers to the particular level 2 groups k ="0" in which the
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DMU under evaluation lies at the time. So, for example, all DMUs in a
particular group k& will be assigned the same variable w,(1).

In reference to assumptions (a), (b) above, we prove the following
theorem:

Theorem 17.1: In the evaluation of any level 1 DMU jkosko, only DMUs
within the same group (k,) as that DMU will be engaged. All other level 1
groups and all level 2 DMUs are disengaged.

Proof: Only the particular group k£ ="0" in which the level 1 DMU under
consideration lies, has its engagement variable (w,(l)) involved in
constraint (17.2b"). This variable will be forced to zero, otherwise the
objective function value of (17.2a') will equal zero. Furthermore, since all
other engagement variables are free to assume the most favorable values
possible (from the perspective of the DMU under evaluation), then all w, (1)
(except for w (1)) and w(2) will assume values large enough to render
redundant all constraints in (17.2¢), as well as all constraints in (17.2d)
cotresponding to those J,,k#"0." Since constraints (17.2¢) are also
redundant, the result follows.

QED

From this theorem it follows as well that when a level 2 DMU is under
evaluation, the engagement variable w(2) will be forced to zero (hence
engaging all level 2 DMUs). By virtue of constraints (17.2e), all w,(1)=0
as well, hence engaging all level 1 DMUSs, thereby verifying assumption (c).

17.3.2 Efficiency Adjustments in a Hierarchy

In Section 17.5 we present an analysis of the efficiencies of power plants
and groups of plants. One issue that arises in such multi level analyses has to
do with adjustments in DMU efficiencies at one level to account for scores
assigned at a higher level. Specifically, the scores achieved by individual
DMUs (e.g., level 1) are measured only against others in the same group. To
adjust these to reflect the standings of the groups themselves, it is necessary
to merge the scores at these two levels in some reasonable manner. We
describe a three step procedure to bring about the desired adjusted ratings.

Step 1: (Remove inter-group noise)
Scale the level 1 ratings by dividing each rating e, in group k by the
average of the group k ratings. Specifically, define
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Sy, = ey /e, where e, =( Z ey ) 17, |
Juedy
where |J, | denotes the cardinality of .J,. Since the level 2 ratings are
intended to account for any inter-group differences, this transformation is
intended to remove any differences (noise) among the groups that are not
level 2 - related. See Property 17.2 below and explanation following it.

Step 2: (Introduce level 2 adjustment)
Adjust the scaled ratings fkf,, by multiplying them by the level 2 (group)
ratings e,. That is, define ‘

8y, = Sy, %€

Step 3: (Adjust to [0,1] scale)
Further adjust the step 2 ratings 8y, to ensure that the maximum level 1
rating is unity. Specifically, we want to adjust the 8, ratings to the form

h./k 8y, R
where R is such that 4, <1, and max,  {h, }=1. Hence
R=min,  {l/g, }.

The final adjusted ratings therefore have two important properties:

Property 17.1: All level 1 ratings /4, <1, with at least one 7, " =1
Property 17.2: The averages of the ratings j, within the K’ groups are

h ¢,
such that = b= A
hiy L)

The latter property captures the fact that the final adjusted ratings not
only represent the standing of DMUs (e.g., power units) within their own
group k (plant), but also reflect their standing relative to DMUs in other
groups. That is, if the rating e, of one group k, is, for example, only 80%
of the rating e, of another group k,, then the averages for the DMUs in the
two groups, namely h k and hk , have this same property.

17.3.3 The Multi level Hierarchy

The model (17.2a)-(17.2g) can be generalized to the case of an L-level
hierarchy. We assume that the outputs and inputs used at any level £ are
aggregates of £ —1 level factors together with any additional factors that
distinguish the groups at the £ th level. We introduce the following notation:

£ - subscript representing a level in an L-level hierarchy;
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K, - the number of DMUs at the £ th level;

k@ - a subscript representing a DMU at level £;

Ji, - a subscript representing a DMU at level £—1 that lies within a
group k, (that is, withina DMU £, at the next level up in the hierarchy);

J, - the subset of DMUs Jk at level £—1 that lie within group £,;

Y;T/k -1,X ,':'j (£~ 1)} - those outputs and inputs used at level
¢—1 that are aggregates of factors used for analysis of DMUs at lower
levels m < £—2. The subscript k, refers to the particular £—1 level group
(i.e. £th level DMU), and ]k to a DMU within that group;

Y, - L =1, ' (£—1) - those outputs and inputs at level £—1 that
dlstmgulsh the DMUS at that level, and which were not used at any lower
level,

W, (£—1) - denotes the engagement variables applicable at level £—1.
These distinguish the groups at this level.

w(L) - denotes the engagement variable applicable at level L.

The model, when applied at the £ —1 level then takes the form:
/-1
max e, = »_ u" (m)Y;"(¢—1) (17.3a)

m=1

subject to:

f:vT(m)Xg"(e—lnMwo(z—l):l (17.30)

m=1

Z p(m)Y (L) - Zv (mX"(L)-w(L)<0,j=1,.,K, (173c)

m=1

Z H(myY,, (£=1)~ i vimX, , (£=1)-w, ((-1)<0,

m=1

=2, Lk, =1,..,K,,j,&J, (17.3d)
w(L)-w, (L-1)20,k, =1,...,K, (17.3¢)
W, (L=1)=w, ((-2)20,k,=1,...K k_¢el, (17.36)

pw(m),v(m)yzem=1,..,0-1 (17.3g)
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where I, is comprised of those sets of DMUs at level {—2 that make up
the k,th setatlevel ¢ —1.

As with the 2-level problem discussed earlier, the engagement variables
w, (£—1) act to include or exclude sets of DMUs as the analysis proceeds.
~ With regard to adjustments to ratings, a similar procedure could be applied
here by starting at the top level L in the hierarchy to bring about alterations
to the ratings at level L-1. Then, apply these adjusted ratings to alter the L-2
level ratings, and so on.

In this subsection we have examined the problem of evaluating DMUs
and groups of DMUs which appear in the form of a hierarchy. In the
following subsection this idea is extended to look at the alternative
groupings of DMUs on the same level.

17.4. GROUPING ON LEVELS

The power plant application discussed above is a prime example of a
pure hierarchy in that DMUs are grouped at each level according to a single
attribute - in this case a jurisdictional or geographical attribute. In Section
17.5 we analyze the efficiency of the set of power plants and groupings
thereof. In this case, the problem of efficiency evaluation seems to invite a 2-
level analysis, in that plants can be grouped by a number of different
attributes - capacity, geographical location, fuel type and so on. All these
factors can be judged as level 2 attributes, although admittedly one can
conceive of very complex mixes of these. One could, for example, group
plants at the second level according to geographical location, then at a 3rd
level group locations by capacity, assuming, of course, that only one
capacity of plants exists at a given location. In the present example, this is
not exactly the case. Of course, if at the third level we attempted to group by
capacity, regardless of the location, then the hierarchical structure is
destroyed. Groups at one level would be broken apart when going to the next
level.

In the following subsection we will consider grouping only at one level
(level 2 in the case of the power plants), and according to multiple attributes.
If we wish to have plants at level 1 evaluated strictly within the groups that
will form the DMUs at level 2, it would appear that multi attribute grouping
implies simply replicating model (17.2a)-(17.2g) as many times as there are
attributes. Suppose, for example, that we wish to group plants in two ways:
(1) geographical and (2) according to capacity. The most practical approach
would appear to be to run this model once for each type of grouping. This
would lead to two sets of efficiency ratings. While an elaborate model with
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engagement variables can easily be formulated, there would seem to be no
practical advantage in doing so.

17.4.1 Deriving an Aggregate Rating

The issue of grouping on a level according to a number of different
attributes gives rise to the problem of how to derive some form of overall
rating for a DMU. Suppose, for example, that plants are grouped by
geographical location. A given plant j, when evaluated in a DEA manner,
will be compared to other plants within the same group (at the same
location). The number of other plants in that group and the efficiencies of
those other plants will, of course, influence the score that j receives. When
evaluated according to some other grouping attribute such as capacity, plant
Jj will, in all likelihood, receive a different score. The problem then is how
to view the aggregate or overall standing of j, given the different ratings for
J that arise out of this multi attribute analysis.

One approach to this problem of deriving an overall efficiency measure is
to introduce an importance multiplier on the J th attribute. To formalize this,
assume there are I attributes, hence I different grouping types, and let e;
denote the efficiency rating received by DMU j when viewed in terms of
the grouping created by the ith attribute. Let ¢, denote the weight or
importance to be accorded attribute ig/. The o, may either be supplied
weights or may need to be determined (discussed below). Using these
multipliers, we define the aggregate efficiency of DMU j to be:

€= Z €y

icl
In the event that the ¢, are decision variables, there may or may not be
information available as to appropriate values for these variables. In any
event, and in the spirit of general DEA, one approach to deriving an
aggregate rating for DMU j, is to determine {c;} through the optimization

procedure
i
.
e, =maxe, = maxz ae; (17.4a)
i=1

subject to:

1
z ae, <1,jeJ
i=1

a=(a,.c)sd, (17.4¢)

(17.4b)



384 Cook and Zhu

where @ defines the available information on the {¢,}. Constraints (17.4b)
bound the problem by requiring that the aggregate efficiency for each DMU
not exceed 1.
One minimal set of restrictions on the ¢, might be an ordinal ranking of
the attributes. Suppose, for example, that the set of attributes consist of:
(b) geographical location,
(c) capacity,
(d) age,
(e) fuel type used.

Furthermore, assume that these attributes can be prioritized in order of
importance to the organization (the utility company). With no loss of
generality, assume that the most important attribute is geographical location,
followed by capacity, then age, and finally fuel type. In notational terms, this
would imply that &, > o, > &, > . Introducing an infinitesimal £,® may
then be defined in this case by

O ={a=(a,..,a) | -a,

>gi=1,.,I-1a,2¢} (17.4d)

The idea of ordinal relations among multipliers in DEA was discussed in
Ali, Cook & Seiford [1991] and Golany [1988]. A somewhat similar
structure appears in Cook, Kress and Seiford [1996] in the context of
incorporating ordinal data within the DEA framework. Clearly, problem
(17.42)-(17.4d) is a set of .J linear problems with each yielding a best or
most efficient aggregate evaluation for the DMU j under consideration.
One possible drawback to this approach is the fact that a different set of
{e,} will arise from each of the J optimizations. This, of course, can be a
general criticism of the DEA approach.

17.4.2 A Common Set of Multipliers

If it is desirable to obtain a single or common set of multipliers {c,}, one
approach to use in this particular instance is to determine the largest value of
& for which a feasible set of ¢, exists. Specifically, solve the single
optimization problem:

£" = maxe (de)
subject to (17.4b)-(17.4d)

The set of ¢, that are optimal in this problem provide a means of
evaluating all DMUs on a common basis. The essence of this approach is
that the minimum extent to which we distinguish or discriminate between the
importance measures (¢;) attached to the various criteria is maximized.
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17.4.3 Multiple Rankings of Attributes

In the above it is assumed that an overall single rank ordering of the
attributes in [ is at hand. This ordering is intended to express the relative
importance of the various grouping mechanisms (geographical location,
capacity, etc.). In some situations it may be necessary to ask the question
“importance in what sense?” If environmental considerations are paramount,
the above rank ordering which places geographical location first in
importance may be appropriate. On the other hand, if new technology for
powering the plants (new fuel types, e.g.,) is an issue, then the attribute ‘fuel
type’ used may rank in first place. Therefore, multiple rankings of the
attributes may be in order.

To formalize this concept, assume that Q ranking vehicles or
mechanisms are to be considered. Let ¢ denote the importance or weight
to be given to attribute ie] when viewed from the perspective of ranking
vehicle g£Q. Furthermore, let the decision variable [3, represent the
weight to be given to vehicle g. While various types of restrictions could be
imposed on the ﬂ we assume here that only positivity constraints are
imposed, ie. [, > ¢ for all g. If a rank ordering on the o is now
imposed relative to each g, then O feasible regions {®, } _, would be
deﬁned Specifically, define

©, ={a’' =(o,a],...a])a] —a] zel=1,.,1-La! 2¢&}, (1741
where a” denotes the ¢th ranked attrlbute from the point of view of the
g th ranklng vehicle. Following the logic of problem (17.4a)-(17.4c), an

aggregate efficiency rating for DMU j could then be determined by
solving the J problems:

o 1
e, =maxe, = maxz Z Ble, (17.5a)

g=1 i=}
subject to:

17.5b

>3 e, <Ljel (475
g=1 i=1
o =(of,..,a])e®,,q=1,..,0. (17.5¢)
B,zeq=1..,0 (17.5d)

Problem (17.5a)-(17.5d), unlike the earlier single ranking vehicle
formulation, is nonlinear with the product of the [, and af. This
formulation can be transformed to an equivalent linear structure, however,
through a simple change of variables. That is, define

— q
541’ - ﬂqai >
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and note that the constraints @ —a! >¢ and o 2¢& can be replaced
(through multiplication by ,B on both sides of the inequality) by
6, —0,.  2&B,, and >€ﬁ Problem (17.5a)-(17.5d) is then
equivalent to the linear problem

Q 1
e, =maxe, =max) > 5.e, (17.62)
g=1 i=l
subject to:
. - (17.6b)
XTI,
g=1 i=l
5 qiy _6111, | ——gﬂq 2 0’£: 17---91_1;q=1,---,Q (1760)
6, —€B,20,g=1..,0. (17.6d)

That is, given an optimal solution (J; g ﬁ ) to (17.6a)-(17.6d), then
al” =0, /[3 and /3, constitute an optimal solution to (17.41)-(17.4j), due to
the fact that all 5 ﬂ are strictly positive.

In certain 51tuat10ns the ranking vehicles referred to above may take the
form of opinions offered by a set of (J voters (e.g. managers). That is, the
relative importance of the I grouping attributes may be a matter of opinion,
hence model (17.5a)-(17.5d) (and therefore (17.6a)-(17.6d)) is intended to
derive a rating which takes into consideration the various opinions
(rankings) offered.

Clearly the earlier comments regarding a common set of weights applies
in the present situation as well.

In the following section an application is presented which illustrates
some of the model structures presented in this and the previous section.

17.5. EFFICIENCY ANALYSIS OF POWER PLANTS: AN
EXAMPLE

Earlier a description was given of a problem setting involving thermo
generating plants, wherein it was argued that efficiency should be viewed in
terms of a set of outputs and inputs. Table 17-1 shows the number of thermal
units operating at each of 8 locations, two of which (Plant 4(1) and Plant
7(1)) are each broken down into two groups for a total of 10 groupings.
Given also are the construction dates, fuel types and capacities in megawatt
hours.

In the analyses of the plants, two levels were examined, namely, the
individual power unit level (level 1) and a second level where plants are
grouped in various ways. Two forms of analyses were carried out:
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(1) a hierarchical analysis at the two levels, where plants are grouped in
level 2 by location;

(2) analysis of efficiency on a level where, with different types of
grouping, it is necessary to deal with several ratings for a given

DMU.

Table 17-1. Thermal Plants

Fuel
Location #units  Age Range Utilized Size (MWH)
Plant 1 8 1971-72 U.S. Bit. Coal

& Western Cdn. Coal 500
Plant 2 8 1968 U.S. Bit. Coal 300
Plant 3 4 1970 U.S. Bit Coal 500
Plant 4 (1) 1 1964-66 U.S. Bit Coal 100
Plant 4 (2) 2 1974-75 Liquid Bit 150
Plant 5 4 1974 Oil 500
Plant 6 1 1978 Lignite Bit. Coal 200
Plant 7 (1) 4 1956 Gas/Coal 100
Plant 7 (2) 4 1960 Gas/Coal 200
Plant 8 4 1952 U.S. Bit. Coal 50

Table 17-2 displays the raw data for the 40 plants under analysis.' Shown
are three outputs and two inputs. These outputs and inputs are defined as
follows:

Outputs

® OPER - a function of equivalent full capacity operating hours. This
factor accounts for the fact that when operating at less than 100% capacity
(e.g. if the unit is derated to 50% capacity), the operating hours during this
period are prorated. To bring the scale of values for the units of
measurement within the range of the scales used for other factors, we apply a
scaling factor of 15, i.e. OPER = 1 x full capacity operating hours.

® OUT — a function of the number of forced and sudden outages.

OUT=N-K(# forced outages + # sudden outages). Sudden and

forced outages, as unscheduled shutdowns of operations, are often
consequences of equipment failure. Again, to bring scales into line we
arbitrarily choose N=200, K=10.

It is pointed out that this is sanitized data for illustration purposes only. It in no way reflects
the actual operating positions of the various plants.
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Table 17-2. Outputs and Inputs for Unit Level Analyses
Group Unit  Outputs Inputs
OPER ouT EQDER  MAINT occup
Plant 1 1 573 95 110 538 895
2 560 138 120 290 770
3 637 151 150 386 886
4 685 139 160 290 760
5 542 157 130 343 721
6 520 100 120 470 810
7 531 122 60 439 820
8 511 135 160 293 888
Plant 2 1 521 102 93 440 771
2 634 93 102 324 780
3 610 86 75 378 825
4 538 95 106 380 815
5 591 116 119 241 880
6 650 123 105 141 766
7 621 107 91 355 823
8 686 125 110 270 750
Plant 3 1 620 120 130 350 750
2 550 81 95 630 770
3 525 105 125 495 860
4 580 125 106 345 800
Plant 4(1) 1 430 105 140 190 810
Plant 4(2) 1 560 110 105 280 770
2 510 125 95 180 820
Plant 5 1 650 170 140 300 7000
2 550 120 120 275 800
3 580 160 110 447 650
4 640 110 130 370 720
Plant 6 1 480 95 125 228 880




Chapter 17. Evaluating Power Plant Efficiency 389

Table 17-2 continued

Group Unit  Outputs Inputs
OPER ouT EQDER  MAINT OCCUP
Plant 7(1) 1 320 70 110 230 790
2 250 60 110 220 790
3 370 100 140 320 840
4 280 90 100 280 810
Plant 7(2) 1 520 120 100 281 750
2 1430 100 140 302 850
3 470 110 150 227 770
4 410 80 110 254 825
Plant 8 1 475 100 120 179 750
2 560 150 120 143 800
3 510 120 110 114 750
4 425 140 90 172 820

® EQDER - a function of forced deratings caused by equipment failure.
EQDER = N-K (# equipment related deratings), with N=200 and
K=10 as above.

Since on the output side, any measure used must be such that bigger is
better, one cannot directly take outages as an output. To achieve the bigger is
better condition, we subtract outages from some constant to create a proper
scale measure. The value 200 has been chosen arbitrarily, but at the same
time to yield “OUT” values that are in line with the scales used for other
factors. Some sensitivity analyses were done relative to this parameter (200),
and the particular value chosen was found to have very little effect on the
final relative efficiency outcomes.

Inputs

¢ MAINT - the total maintenance expenditure (labor + materials) in
thousands of dollars.
Clearly, we could separate this into monetary inputs, but for purposes
here we aggregate the two amounts into one figure.
® OCCUP - a function of total occupied hours, that is
OCCUP = £ (Total hours available - available but not operating
hours).
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In evaluating the ten level 2 DMUs (where, for example, the group of
plants at Plant 1 is taken as a DMU), the averages of the level 1 DMUs make
up the first three outputs and the first two inputs. For example, the average
of the ten Plant 1 operating hours figures is 582. In addition to these
aggregated figures, two further outputs, ENDER (a factor for environmental
deratings) and planned capacity were used for the level 2 analyses. As well,
a third input, average year of construction, was utilized. The data for the
level 2 analyses is shown in Table 17-3.

Table 17-3. Group Level Data

Outputs [nputs
Group Oper.  Out. Eqder Ender Cap Maint. Occup _Yr. const.
Plant 1 582 130 126 125 500 381 818 71
Plant 2 606 106 100 147 300 317 801 68
Plant 3 569 103 108 121 500 455 795 70

Plant 4(1) 430 105 140 111 100 190 810 65
Plant 4(2) 420 105 100 125 150 350 815 75
Plant 5 605 140 125 141 500 348 717 74
Plant 6 480 95 125 117 200 348 800 78
Plant 7(1) 305 80 115 110 100 263 808 56
Plant 7(2) 458 103 125 116 200 266 799 58
Plant 8 493 128 110 135 50 152 780 52

17.5.1 Hierarchical Analysis

Table 17-4 displays the outcomes from the hierarchical analysis. Here,
power units have been grouped by location (Plant 1, Plant 2, ..., Plant 8),
and have been analyzed using the hierarchical DEA model (17.2a)-(17.2g)
and (17.2a'),(17.2b')). The 10 group ratings are shown under column (3).
Column (4) provides the “within group” ratings of individual power units,
i.e., those ratings achieved when units are compared only to the members of
their own group. To obtain ratings whereby all 40 DMUs can be compared
on a common basis, the suggested three-stage adjustment developed earlier
has been applied to the column 4 figures. The resulting adjusted values are
shown in column 5.
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Table 17-4. Efficiency Scores - Hierarchical Analysis (Grouped by Location)

Hn @ 3 4 &) (1) @ 06 ©] &)
Group Unit Group Unit Adjusted  [Group Unit Group  Unit Adjusted
Ratings Ratings Unit Ratings Ratings Unit
Ratings Ratings
Plant1 1 100.0 708 70.8 Plant4(1) 1  100.0 100.0 877
2 99.1 99.1 Plant4(2) 1  80.6 100.0  70.7
3 86.0 86.0 2 100.0  70.7
4 100.0  100.0 Plant 5 1 100.0  100.0 902
5 100.0  100.0 2 935 84.3
6 711 71.1 3 100.0  90.2
7 76.1 76.1 4 95.7 86.3
8 98.7 98.7 Plant 6 1 875 100.0 768
Plant2 1 100.0 820 80.2 Plant 7(1) 1  87.1 100.0  76.4
2 89.1 87.1 2 1000  76.4
3 80.7 78.9 3 100.0  76.4
4 88.5 86.5 4 1000 76.4
5 95.1 93.0 Plant 7(2) 1 939 100.0 905
6 1000 978 2 84.5 76.4
7 824 80.5 3 1000 905
8 1000 97.8 4 79.6 72.0
Plant 3 1 100.0 100.0 949 Plant 8 1 1000 100.0 897
2 86.1 81.7 2 1000  89.7
3 83.7 79.4 3 100.0  89.7
4 100.0 949 4 90.9 81.6

17.5.2 Hierarchical Analysis

In the above analyses, power units were grouped by location (e.g., the 8
Plant 1 units formed one group). The within groups analyses resulted in the
ratings shown in column 4 of Table 17-4. Two other types of groupings were
then evaluated - by fuel type and by capacity. Table 17-5 specifies the
memberships of the groups. When the within group analyses were carried
out on the power units under these alternative groupings, ratings of units
changed to reflect group membership. Table 17-6 displays power unit ratings
under the different membership scenarios (columns (2),(3),(4)). The location
scenario has been replicated here (from Table 17-4). To combine the three
ratings for each power unit, model (17.4a)-(17.4d) and model (17.4e) with
(17.4b)-(17.4d) were applied. The outcomes from these models are displayed
under columns (5) and (6) respectively. In both instances the set @ of
(17.4d) is defined such that capacity is rated to be of highest importance,
followed by location, then by fuel type, i.e.,

Capacity > location > fuel.
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Although multiple rankings of attributes could clearly be applied to this
example, such an analysis was not carried out here.

Table 17-5. Plant Groupings by Capacity and Plant Groupings by Fuel Type

Group Capacity Units Included

Group 1 500 MWH Plant 1, Plant 3, Plant 5

Group 2 200-300 MWH Plant 2, Plant 6, Plant 7(2)

Group 3 < 200 MWH Plant 4(1), Plant 4(2), Plant 7(1), Plant 8
Group Fuel Type Units Included

Group 1 U.S. Bit. Coal Plant 1, Plant 2, Plant 3, Plant 4(1), Plant 8
Group 2 Gas/Coal Plant 7(1), Plant 7(2)

Group 3 Liquid Bit. Coal Plant 4(2)

Group 4 Oil Plant 5

Group 5 Liqgnite Bit. Coal Plant 6

Table 17-6. Power Unit Ratings Under Different Groupings
M €3] €)) @ &) ©
Grouping by
Plant  Unit  Location Capacity Fuel Aggregate Aggregate
(District Wts.) (Common

Wts.)
1 1 70.8 68.8 69.6 69.8 69.6
2 99.1 87.1 90.7 93.1 91.7
3 86.0 82.0 86.0 84.7 84.0
4 100.0 100.0 100.0 100.0 100.0
5 100.0 90.0 100.0  96.7 95.0
6 71.1 70.8 71.0 71.0 71.0
7 76.1 69.6 76.1 73.9 72.8
8 99.5 98.7 99.5 99.0 98.8
2 1 82.0 80.1 73.6 81.0 79.6
2 89.1 88.9 874 89.0 88.7
3 80.7 80.7 78.1 80.7 80.3
4 88.5 80.4 72.1 84.4 81.7
S 95.1 85.0 78.4 90.0 87.3
6 100.0 100.0 100.0 100.0 100.0
7 82.4 824 80.6 824 82.1
8 100.0 100.0 100.0 100.0 100.0

3 1 100.0 89.0 90.7 94.5 929
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2 86.1 76.6 76.9 81.3 79.8
3 83.7 68.9 68.9 76.3 738
4 100.0 78.0 82.7 89.0 86.1
4(1) 1 100.0 100.0 100.0 100.0 100.0
42) 1 100.0 100.0 100.0 100.0 100.0
2 100.0 88.1 100.0 96.0 94.0
5 1 100.0 100.0 100.0 100.0 100.0
2 935 86.6 93.5 91.2 90.0
3 100.0 100.0 100.0 100.0 100.0
4 95.7 95.6 95.7 95.6 95.6
6 1 100.0 80.6 100.0 93.5 90.3
8y (2 3 ) &) 6
Grouping by
Plant Unit Location Capacity Fuel Aggregate Aggregate
(District Wts.) (Common
Wis.)
7(1) 1 100.0 80.5 72.3 90.2 85.6
2 100.0 80.4 75.5 90.2 86.1
3 100.0 96.2 85.4 98.1 95.7
4 100.0 74.5 73.7 87.2 82.9
7(2) 1 100.0 95.8 100.0 98.6 979
2 84.5 84.5 84.5 84.5 84.5
3 100.0 100.0 100.0 100.0 100.0
4 79.6 72.8 79.6 77.3 76.2
8 1 100.0 100.0 93.0 100.0 98.8
2 100.0 100.0 100.0 100.0 100.0
3 100.0 100.0 100.0 100.0 100.0
4 90.9 90.9 89.4 90.9 90.7
17.6. SIMULTANEOUS EVALUATION ACROSS LEVELS

The model discussed above evaluates efficiencies at various levels in a
hierarchy in a multi-stage fashion. Specifically, in stage 1, performance
measures for power units within each plant are computed relative to their
peers (within that plant’s subset of units). In stage 2, the plants, at Level 2,
are treated as DMUs, and requisite efficiency scores are computed there.
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Level 1 scores (for the power units) are then adjusted to reflect differences in
efficiencies among the plants. In the hierarchical structure, DMUs at Level
n have 2 types of inputs and outputs: (1) those consisting of aggregates of
the corresponding factors at Level #—1, and (2) additional measures that
apply only at Level n.

In the current section we approach efficiency measurement at the various
levels in this hierarchical structure by considering all levels simultaneously,
and by directing the optimization at the highest level in the hierarchy. In the
two-level setting, this means treating the plants at Level 2 as the DMUSs, with
the power units at Level 1 viewed as components of the DMUs. The
complicating feature of this approach is the presence of plant-specific output
factors which must be apportioned across the components in an equitable
manner. The ideas used here are similar to those applied in Chapter 6
involving multi component efficiency in banking.

There appear to be at least two disadvantages of the two-stage approach
discussed above. First, the measure applied (as suggested by the power
authority) is simply related to the frequency of environmental deratings per
year, as opposed to some function of the level of the SO, above or below
the threshold. Arguably, it is the quantity of environmental damage that one
may wish to capture as an output from the plant. Second, since the
environmental variable only applies at the plant level, it is then the case in
the hierarchical model that each power unit within that plant is equally
penalized. Clearly, however, an individual power unit in a plant may
contribute more or less toward the production of hazardous materials (e.g.
S0O,) than is true for some other power unit. A power unit that is, for
example, shut down for maintenance during peak pollution periods would
not likely contribute as much to pollution accumulation as other units that
were operating at full capacity during that time.

In this section, we present an augmented version of the DEA model that
views both levels in the hierarchy simultaneously, generating performance
measures for each plant and for the power units within those plants. Level 2
(plant level) variables are allocated across the level 1 power units. This is
done in a manner consistent with any imposed constraints on the proportions
of the output assigned to the various power units, and with the objective of
maximizing the performance measure of the level 2(plant) unit under
consideration at any stage in the DEA model.

Consider the situation in which there are K power plants, with J,
power units within plant k. We define:

Y, =(»,,) - the R, - dimensional vector of outputs generated by
power unit j, in plant k.

X, = (xky.k) - the I - dimensional vector of inputs consumed by power

unit j, in plant k.
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Y., =(,,) - the R,- dimensional vector of outputs generated by plant

Let v, 4, 12, denote vectors of multipliers associated with X kik’Yk/k and
Y,, respectively.

It is noted that in the current application, plant level (level 2) factors
appear only on the output side. In the previous model, year of construction
was taken as a level 2 input, but turned out to be relatively insignificant.
While the model structure herein is easily extended to include both inputs
and outputs, we restrict our attention only to such factors on the output side.

To facﬂltate model development define the R,-dimentional decision
vectors a = (ozr2 . ), Where ar ,, is the proportion of output y,, . allocated
to power un1t Jp- As well, let f’ ,X, denote the aggregates of the output
vectors {Y}, } ~and input vectors {X 4, 1 » respectively. That is

Yo=Y, X, = 2 X,
Jegdy e

In this particular problem setting, aggregates derived in this manner make
logical sense, although in some settings, sums of outputs may not be
relevant.

The proportion a ;, of output y, o to be allocated to power unit j,
may fall within certain logical bounds. Arguably, in the case that a given
output 7, is, for example, SO, emissions, the relative shares of this output
allocated to two given units j, , j, could depend on a number of factors.
These would include fuel types used, capacities in megawatt hours,
operating hours, frequency of equipment failure deratings, etc. Since fuel
type and capacity are fixed for units within the same plant, one can assume
that O/Z e is a function of factors such as operating hours. Reasonable
bounds mlght take the form:

L <o /ozr21 <U,

Jk 1 J

Here, we assume that power unit #1 in plant &k is taken as a standard, and
other units j, are compared to #1. L and U, 5, Tepresent lower and upper
limits respectively on the ratio of the proportlons of output 7, assigned to
power units #1 and # j, .

In the present two-level structure as described earlier, the plant (k) level
performance measure (for any given set of multipliers (&, 1,v)) is given
by:

F =Y, +puY VvX, (17.7)

Here, we distinguish between Y,, the aggregate of level 1 (power unit)

outputs, and Y, , the plant level (level 2) outputs that are to be allocated to

the respective level 1 units. We can view Y,, as a form of shared output

(that is, shared among the power units). The correspondmg ]k power unit
performance ratio is given by:
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=[u¥,, +u, a;'kYk\, VvX,, (17.8)
We use here the notatlon a/ Y* to denote the R,-dimensional vector
[alhrykls’az,,‘ykb’ aszAykRZ\]'

Property 17.3: The aggregate performance measure e’ of (17.7) is a
convex combination of the J, power unit measures {e } , defined in
(17.8).

Property 17.4: A power plant k is efficient (¢ =1) if and only if each
power unit j, within the plant is efficient (e W =D

We now propose the following two-level variant of the standard CCR
model:

max €’

subject to:

¢t <1 all k,

eh <1 all kjed, (179
L.kS(Z,Z,k/a”—U‘,.k all r,k, j,&J,,

2, o, = all 1y, k,

el

Qs s My sV, 20, allr,r,k, j,i.

Problem (17.9) is nonlinear i 1n two respects. First e* and ¢* are linear
fractional functionals. Second e* ;. involves the product of variables M, : i
However, it can be shown that (17.9) is equivalent to a linear programming
formulation, as given by the following theorem.

Theorem 17.2:
Problem (17.9) can be represented as a linear programming problem.

Proof:
First it is noted that from Property (17.4), the constraints e’ <1 are

redundant, and can be removed from the problem. Make the change of
variables
7k’2.lk ’u"z ) "2/k
It is noted that the constraint set
Lj - a"z/k/a’zI < U
becomes
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Lot <ot <U o

Je hl iy Je Tl
which, with multiplication through by £z, , becomes
L.I'k}/"z1 < }/k"z.l'k < Ufkyrzl'
As well, the convexity restriction

ko
z a"z.ik =1

gy

Z }/’tﬁ.— :’u“‘rz'

Jeedy

can be replaced by

Following the standard conversion of Charnes and Cooper (1962) the
linear fractional programming model (17.9) becomes
max u¥’+uY’,
subject to:
vX, =1,
pY, 75 Y, —vX, <0 allk, j, (17.10)

k k k .

ij7r215 Vi SUJ,,‘;/,21 all »,k, j,
k ..
Vrys Moo My s Vi >0 allr,n,k, j,,i.

Clearly, problem (17.10) satisfies the necessary linearity property.
QED

From the optimal solution of (17.10), one can compute o}',‘z 5, from

~k . Ak A
Xnj = yrz_/k/lu.\'rz

In the following section, we apply model (17.10) to evaluate efficiencies
of a set of power plants and corresponding power units.

17.7. ANALYSIS OF EFFICIENCY: AN EXAMPLE

Considering again the data of Table 17-2, we can view the power plants
(level 2 in the hierarchy) as aggregates of the units that comprise those
plants. In this regard, the aggregates of all level 2 outputs and inputs can
serve as level 2 factors. (As discussed previously, such aggregation may not
be relevant in all cases, although it is so in this instance). In addition, there
are factors that pertain primarily to the plant level only. The best example of
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such a factor in this situation is SO, emissions. The total environmental
damage caused by a plant can be measured by the level (density of
particulates) of SO, above some tolerable threshold, and multiplied by the
number of hours that this phenomenon prevails during the year. Again, this
factor falls into the more is worse category, as is true of the level 1 outputs,
and was subtracted from the worst case value.

17.7.1 Proportional split of plant-level outputs

In the process of solving (17.10), the y, - f - variables (that give rise to the
@ - variables) are intended to split the shared output (SO,) across the
units in a plant, in a way that is most fair for that plant. If a particular power
unit jkK in a plant is experiencing a higher degree of outages and equipment-
related deratings than is true of the other units in that plant, then jkl should
arguably be penalized with a smaller proportion of the environmental
damage due to SO,.

Unfortunately, the data is too coarse to be able to detect when a power
unit was simultaneously experiencing equipment-related deratings, and
environmental (SO,) deratings. Clearly, if a power unit j, was shut down
for some reason on a given day when SO, emissions were high, the
corresponding o should be set to 0. To capture this idea we have imposed
assurance region constraints, as per Thompson et al. (1992), of the form:

L _a,m/a SU,,

i

where we have numbered that power unit 1 as the unit whose total OUT +
EQDER is lowest. (This is the power unit whose total number of hours of
outage + equipment deratings is highest). The argument is that for plant
k arl should be the lowest proportion among all units for that plant. We
have then chosen le =1 for all units j,. Since it is unclear what the
precise relationship is concerning the timing of non-environmental deratings
and outages (as discussed above), we have chosen here to set all U.ik equal
to one another. We experimented with different values, and found that while
the efficiency ratings of the various power units within a plant tended to
decrease as U W is lowered, their order (relative to one another) was quite
stable. Table 17-7 displays the plant-level and associated power unit-level
efficiency scores.

The advantage of viewing efficiency in this manner is that not only can
one evaluate the performance of plants, but at the same time can uncover the
extent to which each of the subunits (power units) within the plant is
contributing to that performance. This permits management to identify
which power units in a plant are under-performing, and which units could
serve as benchmarks within that plant. Following Properties 17.3 and 174, it
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is noted that for efficient plants such as 4,5 and 6, all power units within
these are efficient as well.

Table 17-7. Power Plant & Power Unit Ratings

Unit Plant Unit Plant
Plant Unit Rating Rating Plant Unit Rating Rating
1 1 .64 .833 4(1) 1 1 1
2 1 4(2) 1 1 1
3 .99 2 1
4 1
5 1 5 1 1 1
6 .67 2 1
7 46 3 1
8 1 4 1
2 1 58 861 6 i 1 1
2 .80
3 .63 7(1) 1 .87 .84
4 1 2 1
5 1 3 .81
6 1 4 69
7 1
8 1 7(2) 1 .82 935
2 .92
3 1 .82 793 3 1
2 91 4 1
3 .79 8 1 .99 .997
4 .66 2 1
3 1
4 1

17.8. CONCLUSIONS

This chapter has presented DEA-based models for evaluating the
efficiency of a set of power plants, and corresponding power units as a
hierarchical structure. In the earlier part of the chapter, hierarchical
efficiency was viewed as a multi-stage process. In Section 17.7 however,
hierearchical efficiency measurement is viewed at all levels simultaneously.
This is accomplished by first defining the decision making units (DMUs), as
the units at the highest level in the hierarchy (power plants in the current
application). The elements lower down in the hierarchy are then viewed as
components of the top level DMUs, and as such, have their efficiency
evaluated as well.

A complicating feature of this latter structure is the presence of outputs at
any level in the hierarchy that must be allocated among the components at
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the next stage down in that hierarchy. In the setting herein, this is
accomplished by defining variables which provide for a split of such (plant-
level) outputs among the power units within each plant. We demonstrate that
this resulting non-linear model can be converted to a linear programming
problem.

The developed models have been applied to 40 power generating units
organized under 8 plants. Sulphur dioxide (SO,) emissions are generally
regarded as a plant-level output which we wish to allocate to the power units
under each plant. This allocation in practice could be a function of various
factors including the percent downtime for scheduled maintenance, etc. The
outcome of the efficiency evaluation is given in Table 17-7.

The application of DEA principles to hierarchical structures is an
important area for research. Many organizational structures tend to exhibit
such a profile. The ideas herein can potentially lend themselves to other
areas of study, for example, supply chains. The ideas are also somewhat
related, as well, to the concepts presented by Fare and Grosskopf (1996)
regarding intermediate products, as well as structures studied in the network
DEA model of Fare and Grosskopf (2000).
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LICENSING AND WARRANTY AGREEMENT

READ THIS: Do not install or use the CD-ROM until you have read and agreed to
this agreement. By opening the accompanying software packet, you acknowledge
that you have read and accepted the following terms and conditions. If you do not
agree and do not want to be bounded by such terms and conditions, do not install or
use the software “DEAFrontier”.

License: The copyright to the software in the CD-ROM (the “DEAFrontier”) is
owned by Joe Zhu. The “DEAFrontier” is protected by the United States copyright
laws and international treaty provisions. No part of the DEAFrontier may be
reproduced, stored in a retrieval systems, distributed (including but not limited to
over the Internet), modified, decompiled, reverse engineered, reconfigured,
transmitted, or transcribed, in any form or by any means without the permission of
the author. The DEAFrontier may not, under any circumstances, be reproduced for
sale. This license allows you to use the DEAFrontier for educational and research
purposes only, not for commercial purposes. You may only (i) make one copy of the
DEAFrontier for backup or archival purposes, or (ii) transfer the DEAFrontier to a
single hard disk, provided that you keep the original for backup or archival
purposes. You may not (i) rent or lease the DEAFrontier, (ii) copy or reproduce the
DEAFrontier through a LAN or other network system or through any computer
subscriber system, or (iii) modify, adapt, or create derivative works based upon the
DEAFrontier. You may be held legally responsible for any copying or copyright
infringement which is caused by your failure to abide by the above terms and
conditions.

Limited Warranty: The warranty for the media on which the DEAFrontier is
provided is for thirty (30) days from the original purchase and valid only if the
packaging for the DEAFrontier was purchased unopened. If the Publisher receives
notification within the warranty period of defects in materials or workmanship, the
Publisher will replace the defective software media. The Publisher and the author
provide no other warranties, expressed or implied, including without limitation
implied warranties of merchantability and fitness for a particular purpose, and shall
not be liable for any damages, including direct, special, indirect, incidental,
consequential, or otherwise. The Publisher does not warrant that the functions
contained in the DEAFrontier will meet your requirements or that the operation of
the DEAFrontier will be error-free.

DEAFrontier Installation Instructions
The CD-ROM contains the DEAFrontier* which is a DEA Add-In for Microsoft
Excel. This software “DEAFrontier” requires Excel 97 or later versions. Please read
Chapter 1 for installation instructions.
*May not work on a Macintosh






