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PREFACE 

Data Envelopment Analysis (DEA) is a data-oriented approach for 
performance evaluation and improvement. In recent years, we have observed 
a notable increase in interest in DEA techniques and their applications. Basic 
DEA models and techniques have been well documented in the DEA 
literature. Although these basic DEA models are useful in determining the 
best-practice frontier, identification of best-practices is seldom the ultimate 
goal with respect to performance evaluation. It is generally important to 
further analyze the business operations after the identification of best- 
practice, so that in-depth managerial information can be derived. It is also 
important to correctly design and model the performance issues. Because of 
the complexity of the business or engineering operations which are often 
characterized by multiple functions, multiple stages and multiple levels, new 
(and advanced) DEA methods are needed to reconcile the multidimensional 
aspects of performance evaluation issues. 

The book presents unified results from the authors' recent DEA research. 
New methodologies and techniques are developed in application-driven 
scenarios, to go beyond identification of the best-practice frontier, and seek 
solutions to aid managerial decisions. These new DEA developments are 
deeply grounded in real-world applications. DEA researchers and 
practitioners alike will find this book helpful. Theory is provided for DEA 
researchers for further development and possible extensions. However, each 
theory is also presented in a practical way for DEA practitioners via 
numerical examples, simple real management cases and verbal descriptions. 

The book covers pure DEA applications in such areas as highway 
maintenance, technology implementations, and others. DEA methodology 
enhancements are wrapped into applications. New DEA theoretical 
developments are included, for example, on how to use DEA as a 
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benchmarking tool, and how to use DEA in multi-criteria decision making. 
The book provides a balanced coverage of DEA for both academic 
researchers and industry practitioners. It addresses advancedlnew DEA 
methodology and techniques that are developed for modeling unique and 
new performance evaluation issues. Some of the DEA models can be 
computed using the accompanying DEAFrontier software which is an Excel 
Add-In. 

Wade D. Cook 
Schulich School of Business 
York University 
4700 Keele Street 
Toronto, Ontario 
Canada M3 J 1 P3 
Email: wcook@schulich.yorku.ca 

Joe Zhu 
Department of Management 
Worcester Polytechnic Institute 
Worcester, MA 0 1609 USA 
Email: jzhu@wpi.edu 



Chapter 1 

DATA ENVELOPMENT ANALYSIS 

1.1. INTRODUCTION 

Data Envelopment Analysis (DEA) is a relatively new "data oriented" 
approach for evaluating the performance of a set of peer entities called 
Decision Making Units (DMUs) which convert multiple inputs to multiple 
outputs. The definition of a DMU is generic and flexible. Recent years have 
seen a great variety of applications of DEA for use in evaluating the 
performances of many different kinds of entities engaged in many different 
activities in many different contexts in many different countries. These DEA 
applications have used DMUs of various forms to evaluate the performance 
of entities, such as hospitals, US Air Force wings, universities, cities, courts, 
business firms, and others, including the performance of countries, regions, 
etc. Because it requires very few assumptions, DEA has also opened up 
possibilities for use in cases which have been resistant to other approaches 
because of the complex (often unknown) nature of the relations between the 
multiple inputs and multiple outputs involved in DMUs (Cooper, Seiford and 
Zhu, 2004). 

Since DEA in its present form was first introduced in 1978, researchers 
in a number of fields have quickly recognized that it is an excellent and 
easily used methodology for modeling operational processes for 
performance evaluations (Cooper, Seiford and Tone, 2000). This has been 
accompanied by other developments. For instance, Zhu (2002) provides a 
number of DEA spreadsheet models that can be used in performance 
evaluation and benchmarking. DEA's empirical orientation and the absence 
of a need for the numerous a priori assumptions that accompany other 
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approaches (such as standard forms of statistical regression analysis) have 
resulted in its use in a number of studies involving efficient frontier 
estimation in the governmental and nonprofit sector, in the regulated sector, 
and in the private sector. 

In their originating study, Charnes, Cooper, and Rhodes (1978) described 
DEA as a 'mathematical programming model applied to observational data 
[that] provides a new way of obtaining empirical estimates of relations - 
such as the production functions and/or efficient production possibility 
surfaces - that are cornerstones of modern economics'. 

Formally, DEA is a methodology directed to frontiers rather than central 
tendencies. Instead of trying to fit a regression plane through the center of 
the data as in statistical regression, for example, one 'floats' a piecewise 
linear surface to rest on top of the observations. Because of this perspective, 
DEA proves particularly adept at uncovering relationships that remain 
hidden from other methodologies. For instance, consider what one wants to 
mean by "efficiency", or more generally, what one wants to mean by saying 
that one DMU is more efficient than another DMU. This is accomplished in 
a straightforward manner by DEA without requiring expectations and 
variations with various types of models such as in linear and nonlinear 
regression models. 

1.2. ENVELOPMENT AND MULTIPLIER DEA 
MODELS 

Consider a set of n observations on the DMUs. Each observation, DMU,,. 
( j  = 1 ,  . . ., n), uses m inputs xii (i = 1,2,  . . ., m) to produce s outputs y, (r = 

1,2, . . ., s). The CCR ratio model can be expressed as 

maxh, (u, v) = C, u,y, C i ~ i ~ i ~  (1.1) 
where the variables are the u, 's and the vi's and the y,,'s and xi, 's are the 
observed output and input values, respectively, of DMU,, the DMU to be 
evaluated. Of course, without further additional constraints (developed 
below) (1 .l)  is unbounded. 

A set of normalizing constraints (one for each DMU) reflects the 
condition that the virtual output to virtual input ratio of every DMU, 
including DMUI = DMU,,, must be less than or equal to unity. The 
mathematical programming problem may thus be stated as 

maxh,  (u, v) = Cp urY 1 Civi~io 
subject to: 

~ u r y , l C i v i x ,  < 1 fo r j=  1, ..., n, 

u,, vi 2 0. 
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The above ratio form yields an infinite number of solutions; if (u*, v*) is 
optimal, then ( a  u*, av* )  is also optimal for a > 0. However, the 
transformation developed by Charnes and Cooper (1962) for linear fractional 
programming selects a representative solution [i.e., the solution (u, v) for 
which Cyl,vixio = 11 and yields the equivalent linear programming problem 
[the change of variables from (u, v) to ( p ,  v) is a result of the Charnes- 
Cooper transformation], 

subject to 

i=l 

p r , v i  2 0 
The dual program of (1.3) is 

19: = min 6 

subject to 

Since 8 = 1 is a feasible solution to (1.4), the optimal value to (1.4), e* 5 
1. If 8* = 1, then the current input levels cannot be reduced (proportionally), 
indicating that DMU, is on the frontier. Otherwise, if 8' < 1, then DMU,, 
is dominated by the frontier. 8' represents the (input-oriented) efficiency 
score of DMU,, . 

Table 1-1. Supply Chain Operations Within a Week 
DMU Cost ($100) Response time (days) Profit ($1,000) 

1 1 5 2 
2 2 2 2 
3 4 1 2 
4 6 1 2 
5 4 4 2 
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We now consider a simple numerical example shown in Table 1.1 where 
we have five DMUs (supply chain operations). Within a week, each DMU 
generates the same profit of $2,000 with a different combination of supply 
chain cost and response time. 

Figure 1-1 presents the five DMUs and the piecewise linear frontier. 
DMUs 1, 2, 3, and 4 are on the frontier. If we calculate model (1.4) for 
DMU5, 

Min 8 
Subject to: 
1 A, + 2/22 +4A3 +6A4 +4& < 4 8  
5 A, + 2/22 +la3  + lA4 +4A5 5 4 8  
2 A, + 2% +2A3 +2L, +2& 2 2 
AI, A2, A3,& A5 2 0 

we obtain a set of unique optimal solutions of 8* = 0.5, 4 = 1, and A; = 0 
(j # 2), indicating that DMU2 is the benchmark for DMU5, and DMU5 
should reduce its cost and response time to the amounts used by DMU2. 

DMW 

I 

1 2 3 4 5 6  7 

Supply chain response time (days) 

Figure 1-1. Five Supply Chain Operations 

Aow, if we calculate model (1.4) for DMU4, we obtain 8* = 1, A: = 1, 
and /ZTi = 0 (j # 41, indicating that DMU4 is on the frontier. However, Figure 
1-1 indicates that DMU4 can still reduce its response time by 2 days to reach 
DMU3. This individual input reduction is called input slack. 

In fact, both input and output slack values may exist in model (1.4). 
Usually, after calculating (1 .4), we have 
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where s; and s: represent input and output slacks, respectively. An 
alternate optimal solution of 0" = 1 and /1; = 1 exists when we calculate 
model (1.4) for DMU4. This leads to s; = 2 for DMU4. However, if we 
obtain 0' = 1 and 21 = 1 from model (l.4), we have all zero slack values. 
i.e., because of possible multiple optimal solutions, (1.4) may not yield all 
the non-zero slacks. 

Therefore, we use the following linear programming model to determine 
the possible non-zero slacks after (1.2) is solved. 

i=l r=l 

subject to 

For example, applying (1.6) to DMU4 yields 
Max s;+s;+s: 
Subject to 
1 A1 +2A2+4A3 +6&+4&+ s ;=68*  = 6  
5 Al+2&+lA3+ l/ZJ+4;15+ s; = l o *  = 1 
2 4 + 222 +2A3 +2& +2& - ST = 2 
nl, A,, AWL 15, s; , 8; , 8: 1 0  

with optimal slacks of s,' = 2, s,' = s y  = 0. 

Definition 1.1 (DEA Efficiency): The performance of DMU,, is fully 
(100%) efficient if and only if both (i) 0* = 1 and (ii) all slacks s: = s: = 0. 

Definition 1.2 (Weakly DEA Efficient): The performance of DMU, is 
weakly efficient if and only if both (i) 0' = 1 and (ii) st:* # 0 and/or s:* 
# 0 for some i and r. 
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In Figure 1.2, DMUs 1, 2, and 3 are efficient, and DMU 4 is weakly 
efficient. (The slacks obtained by (1.6) are called DEA slacks.) 

In fact, models (1.4) and (1.6) represent a two-stage DEA process 
involved in the following DEA model. 

subject to 

The presence of the non-Archimedean E in the objective function of (1.7) 
effectively allows the minimization over B to preempt the optimization 
involving the slacks, s; and s: . Thus, (1.7) is calculated in a two-stage 
process with maximal reduction of inputs being achieved first, via the 
optimal B* in (1.4); then, in the second stage, movement onto the efficient 
frontier is achieved via optimizing the slack variables in (1.6). 

In fact, the presence of weakly efficient DMUs is the cause of multiple 
optimal solutions. Thus, if weakly efficient DMUs are not present, the 
second stage calculation (1.6) is not necessary, and we can obtain the slacks 
using (1.5). However, priori to calculation, we usually do not know whether 
weakly efficient DMUs are present. 

Model (1.7) is usually called "envelopment" DEA model. The dual 
program to (1.7) is called "multiplier" DEA model. 

r =I 

subject to 
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If we consider the following DEA model, 
Min Ci~ixio 1 Cr uryr,, 
Subject to 
Civ,x, lCru,yri > 1 f o r j =  1, ..., n, (1-9) 
ur ,v j2  E > O .  

where E > 0 is the previously defined non-Archimedean element, then we 
have the following output-oriented multiplier and envelopment DEA models 

m 

min q = C vixio 
i=l 

subject to 

i=l r=l 

subject to : 

As before, model (1.1 1) is calculated in a two-stage process. First, we 
calculate 4' by ignoring the slacks. Then we optimize the slacks by fixing 
&* in the following linear programming problem, 
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subject to 

Ai 2 0  j = 1 , 2  ,..., n. 
We then modify the previous input-oriented definition of DEA efficiency 

to the following output-oriented version. 

Definition 1.3: DMU, is efficient if and only if (* = 1 and st:* = s: = 0 
for all i and r. DMU,, is weakly efficient if (* =1 and. s-* #O and (or) s:* #O 
for some i and r. 

The frontier determined by the above DEA models exhibits constant 
returns to scale (CRS). Thus, the above DEA models are called CRS DEA 
models with different orientations. Figure 1-2 shows a CRS frontier - ray 
OB. Based upon this CRS frontier, only B is efficient. 

The constraint on C'j=, 4 in the envelopment models actually determines 
the returns to scale (RTS) type of an efficient frontier. If we add C'j=, Aj = 1, 
we obtain VRS (variable RTS) models. The frontier is ABCD as shown in 
Figure 1-2. 

Figure 1-2. CRS Frontier 
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If we replace z.=, ili = 1 with z=, ili 5 1, then we obtain non-increasing 
RTS (NIRS) envelopment models. In Figure 1-3, the NIRS frontier consists 
of DMUs B, C ,  D and the origin. 

Figure 1-3. NIRS Frontier 

If we replace z=, A, = 1 with z=, A, > 1, then we obtain non-decreasing 
RTS (NDRS) envelopment models. In Figure 1-4, the NDRS frontier 
consists of DMUs, A, B, and the section starting with B on ray OB. 

Figure 1-4. NDRS Frontier 
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Table 1-2 summarizes the envelopment and the multiplier models with 
respect to the orientations and frontier types. The last row presents the 
efficient target (DEA projection) of a specific DMU under evaluation. 

Table 1-2. DEA Models 
Frontier Input-Oriented Output-Oriented 

S 

rnine-~(?s;  + CS:) maxb+&; + i s : )  
r=l i=l r=L 

subject toi=' subject to 

n 

CRS t.ljyrj j = ~  -s: = y ,  r=1,2 ,..., s; . i=~  ~ ~ ~ y ~ - s :  = k ,  r=1,2 ,..., s; 
Aj  2 0  = , 2 ,  . n. R i 2 0  j= 42 ,..., n. 

VRS Add x=, /Zj = 1 
NIRS Add z=, /Zj 5 1 
NDRS Add z=, ili 2 1 

CRS 

max t ~ r y r o  + P 

VRS where p free where v free 
NIRS where p 5 0 where v 2 0 
NDRS where p 2 0 where v 5 0 

fn 
min C vix, + v 

1.3. ASSURANCE REGION DEA MODELS 

subj&t to subj% I to 

$pryr, -&,xu + p  2 0  
s 

t V i X v  -zHyr, + v 2 0  
r=l i=l ,=I r =I 

Note that the only restriction on the multiplier DEA models is the 
positivity of the multipliers imposed by E. In the DEA literature, a number of 
approaches have been proposed to introduce additional restrictions on the 
values that the multipliers can assume. 

Some of the techniques for enforcing these additional restrictions include 
imposing upper and lower bounds on individual multipliers (Dyson and 
Thanassoulis, 1988; Roll, Cook, and Golany, 1991); imposing bounds on 
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ratios of multipliers (Thompson et al., 1986); appending multiplier 
inequalities (Wong and Beasley, 1990); and requiring multipliers to belong 
to given closed cones (Charnes et al., 1989). 

We here present the assurance region (AR) approach of Thompson et al. 
(1986). To illustrate the AR approach, suppose we wish to incorporate 
additional inequality constraints of the following form into the multiplier 
DEA models as given in Table 1-2: 

v. 
a i I I I f l i ,  i = l ,  ..., m 

"6 (1.13) 
Pr 6, I - < y,, r = 1, ..., s 
4, 

Here, vie and pro represent multipliers which serve as "numeraires" in 
establishing the upper and lower bounds represented here by ai, Pi, and by 
6, ,  yr for the multipliers associated with inputs i =1, . .., m and outputs r = 

1, ..., s where a,<, = 4 = 6 ,  = yro = 1. The above constraints are called 
Assurance Region (AR) constraints as developed by Thompson et al. (1986) 
and defined more precisely in Thompson et al. (1 990). 

Uses of such bounds are not restricted to prices. For example, Zhu 
(1996a) uses an assurance region approach to establish bounds on the 
weights obtained from uses of Analytic Hierarchy Processes in Chinese 
textile manufacturing in order to reflect how the local government in 
measuring the textile manufacturing performance. 

The generality of these AR constraints provides flexibility in use. Prices, 
utils and other measures may be accommodated and so can mixtures of such 
concepts. Moreover, one can first examine provisional solutions and then 
tighten or loosen the bounds until one or more solutions is attained that 
appears to be reasonably satisfactory to decision makers who cannot state the 
values for their preferences in an a priori manner. 

1.4. SLACK BASED DEA MODELS 

The input-oriented DEA models consider the possible (proportional) 
input reductions while maintaining the current levels of outputs. The output- 
oriented DEA models consider the possible (proportional) output 
augmentations while keeping the current levels of inputs. Charnes, Cooper, 
Golany, Seiford and Stutz (1985) develop an additive DEA model which 
considers possible input decreases as well as output increases 
simultaneously. The additive model is based upon input and output slacks. 
For example, 
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i=l r=l 

subject to : 

Note that model (1.8) assumes equal marginal worth for the nonzero 
input and output slacks. Therefore, caution should be excised in selecting the 
units for different input and output measures. Some apriori information may 
be required to prevent an inappropriate summation of non-commensurable 
measures. Previous management experience and expert opinion, which prove 
important in productivity analysis, may be used (see Seiford and Zhu 
(1998)). 

Model (1.8) therefore is modified to a weighted CRS slack-based model 
as follows (Ali, Lerme and Seiford, 1995; Thrall, 1996). 

subject to 

where w; and w,' are user-specified weights obtained through value 
judgment. The DMU, under evaluation will be termed efficient ifand only 
ifthe optimal value to (1.9) is equal to zero. Otherwise, the nonzero optimal 
s,:* identifies an excess utilization of the ith input, and the non-zero optimal 
s:* identifies a deficit in the rth output. Thus, the solution of (1.15) yields 
the information on possible adjustments to individual outputs and inputs of 
each DMU. Obviously, model (1.15) is useful for setting targets for 
inefficient DMUs with a priori information on the adjustments of outputs 
and inputs. 

One should note that model (1.15) does not necessarily yield results that 
are different from those obtained from the model (1.14). In particular, it will 
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not change the classification from efficient to inefficient (or vice versa) for 
any DMU. 

Model (1.15) identifies a CRS frontier, and therefore is called CRS slack- 
based model. Table 1.5 summarizes the slack-based models in terms of the 
frontier types. 

Table 1-3. Slack-based Models 
Frontier type Slack-based DEA Model 
CRS 

subject to 

aj,s,,s; 2 0 

VRS Add C'J=, / Z j  = 1 
NIRS ~ d d  c'J.=, aj 5 1 
NDRS ~ d d  c:=, ai 2 1 

1.5. MEASURE-SPECIFIC DEA MODELS 

Although DEA does not need a priori information on the underlying 
functional forms and weights among various input and output measures, it 
assumes proportional improvements of inputs or outputs. This assumption 
becomes invalid when a preference structure over the improvement of 
different inputs (outputs) is present in evaluating (inefficient) DMUs (see 
Zhu (1996b)). We need models where a particular set of performance 
measures is given pre-emptive priority to improve. 

Let I G {1,2, ..., m) and 0 c {1,2, ..., s) represent the sets of specific 
inputs and outputs of interest, respectively. Based upon the envelopment 
models, we can obtain a set of measure-specific models where only the 
inputs associated with I or the outputs associated with 0 are optimized (see 
Table 1-4). 

The measure-specific models can be used to model uncontrollable inputs 
and outputs (see Banker and Morey (1986)). The controllable measures are 
related to set I or set 0. 

A DMU is efficient under envelopment models if and only if it is 
efficient under measure-specific models. i.e., both the measure-specific 
models and the envelopment models yield the same frontier. However, for 
inefficient DMUs, envelopment and measure-specific models yield different 
efficient targets. 
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Consider Figure 1-1. If the response time input is of interest, then the 
measure-specific model will yield the efficient target of S 1 for inefficient S. 
If the cost input is of interest, S3 will be the target for S. The envelopment 
model projects S to S2 by reducing the two inputs proportionally. 

Table 1-4. Measure-specific Models 
Frontier 
Type Input-Oriented Output-Oriented 

mine - E ( ~ s ;  + is:) max4 + ~ ( 2 s ;  + is : )  
i=l r=l i=l  r=l 

subject to subject to 
II n 

C Ajx, + s- = @xi,, i E I ;  ~ A . X . .  +st: = x ,  i=1,2 ,..., m; 
. / = I  

i=l .I ' I  

n n 

CRS ~ A . x . .  j=l .I 11 + s; = x,  i P I ;  j=l 1 A . y .  .I v - s: = bl,, r E 0; 

2 l jyn  -s: = y ,  r=i, , . . . ,s;  2 ~ . ~ .  j = l  1 v -s: = y m  r e o ;  
.j=l  

Ai 2 0  j = 2 . n. Aj 2 0 j=1,2 ,..., n. 

VRS 

NIRS 

NDRS 

Add C'j=, /Ii = 1 

~ d d  r=, aj 5 I 

Add -&Ai 2 1 

1.6. SOLVING DEA WITH DEAFRONTIER 
SOPTWARE 

One can solve the DEA models discussed previously using the 
spreadsheets and Excel Solver as described in Zhu (2002). In this section, we 
will demonstrate how to solve the DEA models using the DEAFrontier 
software supplied with the book. 

1.6.1 DEAProntier Software 

DEAFrontier is an Add-In for MicrosoR@ Excel and uses the Excel 
Solver. This software requires Excel 97 or later versions. 

To install the software the CD-ROM using Windows, you may follow 
these steps: 

Step 1. Insert the CD-ROM into your computer's CD-ROM drive. (If the 
auto run doe not execute, following the following steps.) 
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Step 2. Launch Windows Explore. 
Step 3.  Click Browse to browse the CD and find the file "Setup.exem 
Step 4: Run "Setup.exe" 

DEAFrontier does not set any limit on the number of units, inputs or 
outputs. However, please check www.solver.com for problem sizes that 
various versions of Excel Solver can handle (see Table 1-5). 

Table 1-5. MicrosoftO Excel Solver Problem Size 
Standard Excel Premium Premium Solver 

Problem Size: Solver Solver Platform 
Variables x Constraints 200 x 200 1000x8000 2000x8000 
Source: www.solver.com 

To run DEAFrontier, the Excel Solver must first be installed, and the 
Solver parameter dialog box must be displayed at least once in the Excel 
session. Otherwise, an error may occur when you run the software, as shown 
in Figure 1-5. (Please also make sure that the Excel Solver works properly. 
One can use the file "so1vertest.xls" to test whether the Excel Solver works. 
This test file is also available at www.deafrontier.com/solvertest.xls.) 

Figure 1-5. Error Message 

You may follow the following steps. 
First, in Excel, invoke the Solver by using the Tools/Solver menu item as 

shown in Figure 1-6. This will load the Solver parameter dialog box as 
shown in Figure 1-7. Then close the Solver parameter dialog box by clicking 
the Close button. Now, you have successfully loaded the Excel Solver. 
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Figure 1-6. Display Solver Parameters Dialog Box 

Figure 1-7. Solver Parameters Dialog Box 

If Solver does not exist in the Tools menu, you need to select 
ToolsIAdd-Ins, and check the Solver box, as shown in Figure 1-8. (If 
Solver does not show in the Add-Ins, you need to install the Solver 
first.) 
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Figure 1-8. Solver Add-In 

Next, open the file DEAFrontier.xla, and a "DEAFrontier" menu is added 
at the end of the Excel menu. (see Figure 1-9). Now, the DEAFrontier 
sofiware is ready to run. 

otect Level sheets 

Figure 1-9. DEAFrontier Menu 

1.6.2 Organize the Data 

The sheet containing the data for DMUs under evaluations must be 
named as "Data". The data sheet should have the format as shown in Figure 
1-10. 
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inputs, no blank cotumns O U ~  puts, no blank columns 
are allowed 

Ween the last inpu 

DMUs as Data 

Leave one blank column between the input and output data. No blank 
columns and rows are allowed within the input and output data. Figure 1-1 1 
shows an example where we have top 10 US commercial banks in 1995 with 
three inputs (employee, assets and equity)and two outputs (market value and 
profit. (see Seiford and Zhu (1 999) for detailed discussion on this data set.) 

Figure 1-1 1. Sample Data Sheet 
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Negative or non-numerical data are deemed as invalid data. The software 
checks if the data are in valid form before the calculation. If the data sheet 
contains negative or non-numerical data, the software will quit and locate the 
invalid data. 

1.6.3 Run the Envelopment Models 

Figure 1-12. Envelopment Model 

To run the envelopment models in Table 1-2, select the "Envelopment 
Model" menu item. You will be prompted with a form for selecting the 
models, as shown in Figure 1 - 13. 

Model Orientation refers to whether a DEA model is input-oriented or 
output-oriented and Frontier Type refers to the returns to scale type of the 
DEA efficient frontier. The software's default selection is an input-oriented 
CRS model. 

The software performs a two-stage DEA calculation. First, the efficiency 
scores are calculated, and the efficiency scores and benchmarks (Efficiency 
Reference Set) ( A ; )  are reported in the "Efficiency" sheet, as shown in 
Figure 1-14. 
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Figure 1-13. Efficiency (Envelopment Model) 

The "Efficiency" sheet reports the input and output names. Column A 
reports the DMU No. Column B reports the DMU names (banks in this 
case). Column C reports the efficiency scores (it also indicates the type of 
DEA models used). Column D reports the optimal cA; which is used to 
identify the returns to scale classifications, reported in column E. The 
Efficiency Reference Set is reported under the "Benchmarks". 

At the same time, a "Slack" sheet is generated based upon the efficiency 
scores and the A; using the following formula (1.5). Then a "Target" sheet 
is generated. 

Recall that the slacks calculated from (1.5) are not optimized and do not 
necessary reflect the DEA slack. Therefore, the "Target" sheet may not 
represent DEA efficient target. 

Figure 1-14. Slack Calculation 
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Therefore, you will be asked whether you want to perform the second- 
stage calculation, i.e., fixing the efficiency scores and calculating the DEA 
slacks (see Figure 1-15). If Yes, then the Slack and Target sheets will be 
replaced by new ones based upon. See file "envelopment model.xls" for the 
DEA results. 

1.6.4 Run the Multiplier Models 

Figure 1-15. Multiplier Model 

To run the multiplier models, select the "Multiplier Model" menu item. 
You will be prompted with a form for selecting the models as shown in 
Figure 1-15. The form is similar to the one shown in Figure 1-12. The results 
are reported in a sheet named "Efficiency Report", as shown in Figure 1-16 
where the DEA efficiency and optimal multipliers are reported. (Figure 1-16 
shows the results of input-oriented VRS multiplier model. See also the file 
"multiplier model.xls" in the CD.) 
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I 1 1  3 Nat~onsBank Corp 0 90689 0 00000 0 00000 0 00006 0 00003 0 00002 
1 12 4 Chemlcal Banklng Corp 0 90142 0 00000 0 00000 0 00005 0 00003 0 00002 
1 3  5 J P Moraan & Co 1 00000 0 00001 0 00000 0 00000 0 00002 0 00003 0 2253 

14 C Cne5o Manna'fan C o v  1 ICOCL 0 111C31 0 0:OOl 0 00003 : 1))0:3 0 O C O C j  C 2595' 
15 7 F r ~ :  ~n ceyc N3:J Csrp 0 34Ee6 0 O(C 11 0 O?OCl 0 OOOCS 1000:3 C OC'IO:, C ?5:.5 
"O e FI 5tG1017 c 3 p  1 o:oo( 3 occoo o ocooo o coo09 : U I O N  ( 30((: o 10780 
1 7  9 Bdr'c r,ne C c r ~  1 OCOOr) 0 UOC31 0 OC0Ol 0 COO01 3 OOOS? 0 00101 C 2 6 W  
' 8  10 Y a n k w  T~J:! hcx ,or* C >ro 1 I 0 0 0  ? 23:1? C 0.:001 (1 10007 3 111000 ( 30.317 0 01700 . * 

Figure 1-16. Efficiency Report (Multiplier Model) 

1.6.5 Run the AR Models 

We need to first set up the sheet "Multiplier" which contains the ARs. 
For example, if we want to include the following ARs 

"~irn~/oye,yee 1 <- < 2.5 
V~.~.\cr.y 

V~rnpioyee 1.55- < 3 
V ~ q s i y  

3 1 ~ ~ o r k e r ~ d u e  1 4  
P R ~  wnzre 

then the data in the "Multiplier" sheet should be entered as shown in Figure 

Figure 1-1 7. Restrictions on Multipliers 
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To avoid any errors, we suggest copying and pasting the input and output 
names from the "data" sheet when entering the information into the 
"Multiplier" sheet. If the input (output) names in the two sheets do not 
match, the program will stop. 

Figure 1-1 8. AR Model 

Once the "Multiplier" sheet is set up, select the "Restricted Multipliers" 
menu item and you will be prompted to choose a DEA model, as shown in 
Figure 1-18. Figure 1-19 shows the results of the input-oriented CRS 
multiplier model with the above ARs. 

Note that you can also add ARs that link the input and output multipliers 
for the "Restricted Multipliers". Note also that if the ARs are not properly 
specified, then the related DEA model may be infeasible. If that happens, the 
program will return a value "-9999" for the efficiency score. 



24 Cook and Zhu 

Figure 1-19. AR Results 

1.6.6 Run the Slack-based Models 

To run the slack-based models, select the "Slack-based Model" menu 
item. You will be prompted with a form for selecting the models presented 
in Table 1-3, as shown in Figure 1-20. 

Figure 1-20. Slack-based Models 
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If you select "Yes" under the "Weights on Slacks", you will be asked to 
provide the weights, as shown in Figure 1-21. If you select "No", then all the 
weights are set equal to one. 

Figure 1-21, Slack Weights 

The results are reported in a sheet named "Slack Report" along with a 
sheet named "Efficient Target". See file "slack inodel.xls" in the CD. 

1.6.7 Run the Measure-Specific Models 

To run the measure-specific models, select the "Measure Specific Model" 
menu item. You will be prompted with a form for selecting the models 
presented in Table 1-4, as shown in Figure 1-22. 

Figure 1-22. Measure-specific Models 
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Select the measures that are of interest. If you select all the input or all the 
output measures, then you have the envelopment models. 

The results are reported in the "Efficiency", "Slack" and "Target" sheets. 
See file "measure specific model.xls" in the CD. 
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Chapter 2 

MEASURING EFFICIENCY OF HIGHWAY 
MAINTENANCE PATROLS 

2.1. BACKGROUND 

A number of applications of DEA are found in the area of maintenance. 
In the particular application discussed in this chapter, we look at the 
performance of highway maintenance crews or patrols in the province of 
Ontario, Canada. The discussion herein is based on the work of Cook et a1 
(1990), (1991), and (2001). The problem of measuring efficiency in the 
roadway maintenance sector is an important one that has been examined by 
others as well. Deller and Nelson (1991), for example, examined a similar 
problem but where network size is used as an output and material, labour 
and capital are inputs. Later, Rouse et al. (1997) revisited the road 
maintenance problem for the case of highways in New Zealand, by 
considering additional inputs and outputs. In particular, they attempt to 
address environmental differences among patrols by incorporating factors 
aimed to capture geological indicators. This was undertaken, presumably in 
realization of the fact that patrols are not necessarily comparable via the 
conventional inputs and outputs. As well, they attempt to pay attention to 
weight restrictions as raised earlier by Roll, Cook and Golany (1991). 

At the time that the initial study of Cook et al. (1990) was conducted, the 
stipulated rationale for having a formal performance measure for each patrol 
was to permit budget setting in a resource constrained environment. As 
funding for maintenance has eroded over time, a need has arisen for a formal 
mechanism whereby patrols are treated equitably in regard to the allocation 
of maintenance dollars. What is most appealing about the DEA rationale in 
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this setting, is that if an inefficient patrol can attain efficiency status, its 
projected inputs OX, can aid in setting its budget, where X ,  is the vector 
of Inputs. 

Most of the routine maintenance activities on Ontario's highways fall 
under the responsibility of the 244 patrols scattered throughout the province. 
Each such patrol is responsible for some fixed number of lane-kilometers of 
highway, and those activities associated with that portion of the network. 
More than 100 different categories of operations or activities exist, and are 
grouped under the headings: 'surface,' 'shoulder,' 'right of way,' 'median,' 
and 'winter operations.' 

The present system for monitoring patrol activities is the Maintenance 
Management System (MMS). This is a computerized record keeping system 
which keeps track of total work accomplished by type of operation, patrol 
and highway class. This system is similar to those in other Canadian 
provinces and states in the U.S.A. 

While various statistics (such as median operations accomplished, by 
highway class) are maintained, there is presently no formal process for 
evaluating patrol activities. An area of importance to the Ministry has to do 
with the efficiency with which maintenance operations are carried out in 
various parts of the province. Since observed accomplishments influence 
budgetary decisions, a better understanding of efficiency will give 
management a yardstick for measuring what accomplishments can be 
expected within a given budget limit. 

While there are various possible approaches to the problem of measuring 
efficiency in this context, the DEA framework is particularly appropriate for 
a number of reasons. First, the prospect of obtaining "production standards" 
in the usual engineering sense seems doubtful. The number of different 
"products" and different environmental and soil conditions mitigate against a 
conventional industrial engineering approach. Second, DEA is capable of 
handling non-economic factors, like number of accidents, maintenance 
dollars (an economic factor), carslday, average age of pavement, etc., and 
allows for measurement of such factors on different scales. Such an 
approach seems particularly suited to the maintenance area, since factors 
such as traffic intensity, safety parameters and average age of pavements are 
an important part of the picture. 

These and other reasons point to the appropriateness of DEA. 
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2.2. DEA ANALYSIS 

2.2.1 The Model and its Factors 

In a study of potential factors which could be utilized to best represent 
causes and effects relating to patrol performance, four outputs and three 
inputs have been chosen. Specifically, the efficiency e is given by 

u,(ASF) + u2(ATS) + u,(RCF) + u, (APF) 
e = 

v, (MEX) + u2 (CEX) + u, (CLF) 
9 

and (u,, u2, u,, u, ) and ( v,, v,, v, ) denote output and input factor weights 
respectively. 

ASF - Area Served Factor 
This factor was chosen to measure the extent of the work load for which 

the patrol has responsibility. The ASF factor value is calculated from the 
formula 

where: 
L, - Length of road section i 
TLE, - Two-lane equivalent of road section i 
Si- Shoulder width of road section i 
A,- Coefficient for road surface type-j (the one in road section i) 
Bi - Coefficient for shoulder type j (the one in road section i)  
C - Coefficient for winter operations 
D - Coefficient for other operations (ROW, median etc.) 

ATS - Average Traffic Served 
This factor is intended to be a measure of the overall benefit to the users 

of the highway system in a patrol. The formula for computing ATS is given 
by 

where AADTi is the Annual Average Daily Traffic and 10" is a scaling 
factor designed to bring ATS within a reasonable range for analysis. 

RCF - Pavement Rating Change Factor 
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This factor measures the actual change in PCR, (Pavement Condition 
Rating) of the various road sections, relative to a 'standard' change for the 
same period. 

APF - Accident Prevention Factor 
Much of the work of maintenance staff arises due to the need to prevent 

accidents (surface & shoulder repairs, washouts, etc.) In this regard, accident 
prevention can be viewed as a cause or goal of maintenance. 

A reasonable measure of accident prevention should be directly 
proportional to traffic level (ATS), and inversely proportional to the 
observed number of accidents. The chosen form is given by 

A TS 
APF = loo-, 

C 
where 100 is a scaling factor and C is the number of road accidents, during 
the observed period, on all road sections serviced by a patrol. 

MEX - Maintenance Expenditures 
This is the total of all expenditures linked to the patrol. It includes both 

"in-house" work as well as maintenance activities performed by private 
contractors. Moreover, MEX includes any district-supplied services such as 
equipment and district supervisors' salaries. 

CEX - Capital expenditures 
This is the total of all capital expenditures made toward improving the 

existing highway infrastructure. This would include resurfacing, shoulder 
paving, repairs to structures, dome construction, etc. - all activities which 
complement maintenance efforts. Excluded are new link and new structure 
construction, since these do not directly complement maintenance. 

CLF - Climatic Factor 
What can often be an overriding consideration in the performance of a 

patrol, is the environmental circumstances in which that patrol must operate. 
The amount of snowfall, for example, will clearly influence the level of 
winter maintenance (snow removal and salting) needed. The extent of spring 
breakups will directly influence the need for summer road surface work. 

Four sub-factors were taken into account in arriving at an overall climatic 
factor: 

Snowfall 
Major temperature cycles 
Minor temperature cycles 
Rainfall 
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Available data from weather stations were used to compute these sub- 
factors. 

The overall climatic factor for a patrol is computed from: 

i i 

where 
k - patrol index; 
Pki - weight of station i in calculating the climatic factor of patrol k 
W .  relative importance weight of climatic factor j. 

.I 

It is noted that the weights Wj were chosen while taking into account the 
numerical scales of each of the climatic factors (e.g. the snowfall numbers 
are much greater in size than the major cycle numbers). In addition, the 
weights were selected with attention to the resultant CLF measure being 
relatively of the same order of magnitude as the other efficiency factors. 

2.2.2 Data and Unbounded Runs 

In the present study, 4 districts are used, having a combined total of 62 
patrols. As an illustration, the factor values for one of the patrols are given 
by: 

ASF = 404 
ATS = 267 
RCF = 184 
APF = 331 
MEX = 585 
CEX = 284 
CLF = 715 

The first level of analyses carried out uses the entire set of patrols, with 
62 L.P. problems being solved. It is noted that the only constraints other than 
the ratio restrictions (converted to linear format) are restraints stipulating 
that all variables should be nonzero. This means that no patrol is permitted to 
assign an importance of 0 to any factor. The model is therefore, referred to 
as the 'unbounded' model. (The bounded model, to be discussed, will 
contain significant upper and lower bounds on the variables). 
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The results from the 62 unbounded runs are shown under column (1) of 
summary Table 2-1. Note the rating of 0.725 for the first patrol in District 2. 

Table 2-1. Summary of Efficiencies 

DMU 

D P 
2 1 

3 
5 
6 
7 
9 
10 
11 
13 
15 
16 
17 
18 

3 1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

Efficiencies 
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Table 2- 1 continued 

DMU Efficiencies 
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2.2.3 Bounded Runs 

It must be emphasized again that the unbounded model yields efficiency 
ratings that tend to credit the patrol with a higher level of performance than 
may be justified. Since complete flexibility in choice of weights is 
permitted, the model will often assign unreasonably low or unreasonably 
high weights (multipliers) to some factors in the process of trying to drive 
the efficiency rating for the patrol in question as high as possible. Moreover, 
the weight assigned to a factor (e.g. CEX) by one patrol may differ 
drastically from the weight assigned to that factor by another patrol. Thus, in 
order to exercise some reasonable level of control over the manner in which 
importance weights are assigned, bounds need to be imposed in the model. 

Given a set of absolute bounds L:, U; on output multipliers and L: , 
Uj on inputs, the constraints L> pi 5 U; and L; < v j  < u,: are added 
to model (1.3) of Chapter 1. 

The efficiency ratings resulting from runs of this bounded version of the 
model are displayed in column 3 of Table 2-1. It is noted that the efficiencies 
obtained from the bounded runs are lower than or equal to the corresponding 
efficiencies arising from the unbounded analysis. 

2.2.4 Deriving a Common Set of Weights 

A case can be made, however, for having a Common Set of Weights 
(CSW). Being able to evaluate all patrols from a common reference point 
provides one basis for rank ordering the DMUs from best to worst. While no 
"best" method exists for determining such a set of weights, a simple 
procedure was developed for the organization in question. 

Briefly, the procedure works as follows: Choose the highest priority 
factor, (e.g., p , ) ,  and while restricting all factor weights to be within their 
respective bounds, maximize (or minimize) the weight for the factor in 
question. In this particular case p, is chosen as a first priority since it is both 
a reliable measure of output and is believed to strongly affect efficiency. The 
factor weight is maximized if the indicated direction is "up," and is 
minimized if the direction is "down." 

When the optimal weight value (e.g. p, = 800) is determined, it is then 
fixed at that level in the later optimization stages. The next factor in priority 
is then chosen (e.g. v,), and minimized subject to the same constraints as 
applied previously, but with p, = 800. This process is continued until all 
factor weights have been set and the Common Set of Weights is established. 

Efficiency ratings using the CSW are shown in column 2 of Table 2-1. 
Note that patrol 15 in District 2 has an efficiency rating of 1.0, when using 
these weights. Thus, at least in this case, the CSW is feasible. 
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2.2.5 District Runs 

In order to extract maximum information for effective managerial 
control, the DEA model was run for each district separately. The resultant 
set of district efficiencies appears in Column 4 of Table 2-1. It is noted that 
these district efficiencies are higher than the corresponding values obtained 
when the entire set of patrols was considered. The smaller comparison 
groups in the district analyses give rise to this phenomenon. It is also the 
case that some patrols which were inefficient in the earlier analysis, obtained 
a rating of 1.0 in the district setting, since those efficient patrols in other 
districts against which comparison was made have been removed from the 
peer group. 

Because significant differences may exist from one district to another (for 
example, climatic and highway type differences), the intra-district efficiency 
measures of column 4 in Table 2-1 may provide a fairer appraisal of 
performance. At the same time, it is desirable to detect any district-to-district 
differences, necessitating inter-district comparisons. Overall district 
performance can be viewed in a number of ways. Two useful measures that 
can be derived are technical efficiency and managerial efficiency. 

Technical Efficiency - with this measure we compare "best" 
performance in a district to best performance in another district. This is taken 
as an indicator of the 'technical potential' of a district. Simply speaking, 
technical efficiency is a measure of the distance of the district frontier from 
the overall frontier. 

One technique for obtaining this measure is to bring all points in a district 
to the district frontier by applying the "adjustment" method proposed in 
Charnes et a1 (1978). A somewhat simpler approach is to "correct" the 
district efficiencies by dividing the overall efficiency of each patrol (column 
3 of Table 2-1) by the relative efficiency within the district (column 4). The 
resulting quotients are approximations of individual patrol efficiencies if 
they were brought to the district frontiers. 

Taking the average of all corrected efficiencies within a district is then a 
measure of technical efficiency. These values are shown in column 2 of 
Table 2-2. it is noted, for example, that the best performance of district 20 
(.986) is near the best for the entire group. District 3 on the other hand has its 
best performers only at 79% of the overall best performance. 

Managerial Efficiency - this measure refers to the actual performance of 
patrols, rather than that of best performers as above. The most reasonable 
measure to take is the average of the actual efficiencies for the patrols in a 
district. Column 1 in Table 2-2 provides the average of efficiencies when the 
comparison group is the overall set. Column 3 is the average when the 



38 Cook and Zhu 

comparison group is only that set of patrols within the district. Naturally, the 
latter average (column 3) is larger than the former (column 1). 

Table 2-2. District Efficiencies 
(I) (2) (3) . . 
E ff. k;e. eff. 
of relative dist. front. 

# of to overall relative to relative to 
District patrols frontier over. front. district frontier 
2 13 .762 ,884 362 
3 14 .716 .790 .903 
8 21 ,847 .938 .904 
20 14 .720 .986 .732 

It is noted that the managerial efficiency relative to the entire group is 
approximately equal to the product of the managerial efficiency relative to 
the district and the technical efficiency of the district. Exact equality fails 
here because of the manner in which the averages are obtained. 

2.2.6 Analysis of Various Characteristics 

Over and above the input parameters chosen for the analysis of patrols, 
there are other influences (on performance) which deserve attention. These 
influences can be thought of as characteristics or circumstances which can 
affect the efficiency with which a patrol operates. Two particular 
characteristics have been chosen: 

(1) % privatization 
(2) traffic level 

The method used to examine a given characteristic was to (1) define 
levels for that characteristic, (2) separate out those patrols corresponding to 
the various levels, and (3) do a separate analysis on each of the subgroups 
arising from this separation process. As an illustration, consider % 
privatization. Here, a particular level (for example, 10%) was chosen as the 
threshold separating "high" from "low" privatization. Those patrols with a 
percentage at or below 10% were then subject to the aforementioned 
analyses. This was then repeated for patrols above 10%. 

The percentage of privatization is defined as the proportion of the total 
maintenance budget for the patrol which is utilized on privatized jobs. The 
proportion can be determined from the budget codes provided in the data file 
from which the financial information was extracted. As an example of the 
type of analysis which would proceed from the setting of a threshold level, 
the following displays the results for District 8. (See Table 2-3). 
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hble 2-3. Analysis by %Privatization: District 8 
Subgroup A (above 10%) Subgroup B (below 10%) 

Patrol # D A D B 
1 .7458 .7730 
2 .3530 ,4560 
3 1 1 
4 .9248 1 
5 1 1 
6 .9120 .9255 
7 ,9060 .9060 
8 .9835 1 
9 .9450 .9450 
10 1 1 
12 .9553 .9553 
13 .9384 ,9387 
14 .9561 ,9679 
15 1 1 
16 ,8829 3988 
17 3975 3992 
18 3701 .8733 
19 ,8847 ,8893 
2 1 .9529 ,9789 
22 1 1 
25 3747 1 

C 7.6268 
7.8360 11.3559 11.5109 

Av. 3474 3773 .9463 .9592 

Table 2-4. District 8. Sub-group A: above 10%. Sub-group B: below 10% 
Average efficiencies 

Number of DMUs District Analysis Sub-group analysis 
Sub-group A 9 3474 ,8773 
(high privatization) 

Sub-group B 12 
(low privatization) 

The column labeled "D" provides the overall district efficiencies which 
were presented earlier and have been obtained without consideration of 
privatization influences. When those patrols in district 8 with privatization 
below 10% are examined separate from the rest, different efficiency ratings 
result. These are displayed under column A. Note, for example, that the 
rating for patrol 1 rises from .7458 to .7730. Recall that the rating for a 
patrol when looked at in the presence of a subgroup will always be at least as 
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high as is the corresponding "entire group" rating. The results of this type of 
analysis can be summarized in terms of averages, as per Table 2-4. 

As a general rule, when looking at changes in average performance from 
the "entire district" results to the subgroup (say low privatization) results, 
small changes point to a positive influence of the level of the characteristic 
corresponding to that subgroup. For example, in the case of low privatization 
in district 8, the average efficiency rating of .9592 is not significantly 
different than the average for these patrols when analyzed relative to the 
entire district (.9463). This can only be explained by the fact that very few 
high privatization patrols were on the frontier. Thus, low privatization 
patrols tend to perform better than high privatization patrols since more of 
the former were on the frontier than was true of the latter. On the other hand, 
the average efficiency rating for high privatization patrols jumped from 
3474 to 3773. This means that some improvement in the performance 
picture for high privatization patrols occurs when the efficient low 
privatization patrols are removed from the analysis. 

As to possible inferences which one might make in the case of, say, 
district 8, patrols practicing a low privatization policy tend to perform on 
average better than is true of those with high privatization. In the case of 
patrol #2, for example, 0.103 points out of the total efficiency gap of .647 
(=1 - .353) can be explained by privatizing out a large proportion ( w  11%) 
of its work. 

In general, privatization impacts are different from district to district. 
Overall there is no conclusive evidence that privatization increases 
efficiency. In fact the converse seems to be true in the case of district 20. 

2.3. OUTPUT DETERIORATION WITH INPUT 
REDUCTION 

2.3.1 Theoretical versus Achievable Targets 

As with many applications of DEA, implementation in the maintenance 
crew setting has revealed a gap between the theoretical and realistically 
achievable resource reduction in inefficient units. Specifically, for a given 
inefficient patrol, the actual input reduction (I -a)  deemed feasible by the 
maintenance supervisor and geotechnical staff, who have intimate 
knowledge of that patrol's highway network, generally falls short of the 
DEA-derived 1 - 8  for that DMU. There is a belief that below the ax,, 
level, the remaining resources would not be sufficient to keep the roadway at 
the same standard as is currently experienced by that DMU. The general 
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explanation for this is that the frontier units that act as peers for such 
inefficient units, may be operating in a more favorable environment. In the 
highway setting, this can mean that the frontier units may be achieving 
efficiency partially because highway surface conditions are superior to those 
of inefficient units, or that roadway sub-grade structures result in slower 
deterioration in the peer patrols. As well, the model of Cook et al. (1990) 
fails to account for certain environmental factors such as average daily 
temperature. 

Some attempt was made in the earlier study to control for road condition, 
by way of a non-discretionary input, the average pavement rating. This 
rating is, however, generally not adequate to reflect the level of ongoing 
maintenance needed to maintain a certain standard. This rating primarily 
captures visible surface conditions such as extent of pavement cracking, 
number and severity of ruts and potholes, etc. It would not account for sub- 
grade depth, total pavement thickness and so on. If kept at a desirable 
standard, the roadway would be expected to achieve a certain life expectancy 
before major rehabilitation is required. If available resources are reduced 
below some critical point ax,, however, a faster deterioration would result, 
and the expected useful lives of roads in that patrol would be reduced. 

In an attempt to provide a more acceptable DEA methodology (that 
would be accepted by management within the transportation ministry), the 
earlier model of Cook et al. (1990) was upgraded to include a provision for 
climatic conditions. This was done in recognition of the fact that severity of 
snowfall clearly influences winter maintenance expenses, while the amount 
of rainfall impacts summer maintenance. Cook et a1 (1994) present an 
upgraded version of the earlier model that incorporates these factors, as well 
as a delineation between summer and winter traffic conditions. Even with 
this further allowance for environmental differences, however, many patrols 
are still unable to achieve computed performance targets, and argue that 
significant anomalies still exist. 

Rouse et al. (1997) experienced a similar problem, and introduced a 
categorical variable in an attempt to address environmental differences that 
exist among patrols. As presented by Banker and Morey (1986), categorical 
variables are intended to recognize different environments in which DMUs 
may operate. See also Rousseau and Semple (1993). Essentially, if the 
setting is one where there is a single dimension (e.g. size of bank branch) 
according to which DMUs can be grouped, so that those in the same 
category are clearly comparable, then this enhanced model structure might 
solve the aforementioned problem of DMU anomalies. In an attempt to 
apply this logic in the maintenance patrol setting, however, the authors found 
that there was no such single dimension along which patrols could be 
ranked. For example, much of the winter and spring maintenance is a 
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function of snowfall, temperature, temperature fluctuations, number of 
freezelthaw cycles, etc. Patrols in the north do experience lower winter 
temperatures, thus causing pavements there to break up more rapidly than is 
true in similar patrols with more favorable temperatures. Thus, one might be 
tempted to categorize patrols according to temperature (or even total days of 
extreme cold weather). Unfortunately, it is the number offieezehhaw cycles 
which can cause even more pavement surface damage (although 
geotechnical research fails to capture precisely how much more damage). It 
turns out to be the case that northern patrols suffer fewer such cycles than is 
true of patrols in more favorable temperate locations (i.e. southern patrols). 
One could also point to non-climate related factors, such as extent to which 
sub-grades under road surfaces are influenced by poor drainage conditions 
(e.g. swampland). A factor such as this might serve as a categorical variable 
as well. 

The conclusion of this investigation was that categories of DMUs could 
be formed in several (often conflicting) ways. While it is true that more than 
a single categorical input can be included, meaning that apartial ordering of 
the data is possible (see e.g., Cooper, Seiford and Tone (2000)), in the 
present circumstances there appeared to be so many different dimensions on 
which DMUs could be categorized, that the model became somewhat 
indeterminate. This fact rendered the categorical variable approach rather 
inapplicable in the environment examined. 

2.3.2 Enforced Input Reduction 

The conventional application of DEA (for example, the VRS input- 
oriented model of Banker et al. (1984)), may not be appropriate in many 
settings for at least two reasons. First, the projection to the frontier may not 
be 'slackless', which will occur if a DMU is improperly enveloped. Thus, 
the very idea that in order to reach a projection on the frontier, outputs may 
actually have to increase, for example, renders the model rather unrealistic in 
a setting where the outputs are traffic served and area. Arguably, increased 
outputs here can mean performing a level of maintenance above that which 
is currently the practice, hence providing a better and more serviceable 
roadway for those drivers who do use it. The second, and more serious 
restriction of the DEA structure, is that even if one acknowledges that a 
radial reduction in inputs by a factor 1 - 8  is not feasible, there is the 
common presumption that a reduction of a lesser amount 1 - a  (where 
a > 8) will be acceptable to management. The problem here is that even if 
it is accepted that a given patrol cannot forfeit more resources than (1- 
a ) X ,  , and still provide the same level of service, budget realities can deem 
it necessary to operate with less resources than this level dictates. Thus, 
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budgetary reality calls for enforced input reduction, often beyond the ax, 
critical level. Such enforced reduction in inputs is generally accompanied by 
erosion of outputs. 

The important feature of the efficiency measurement exercise here, is that 
the measure itself is simply a means to an end. Management wishes to use 
such measures as a mechanism for establishing an appropriate level of 
maintenance funding within the province. Equally important, it wishes to 
gauge the impact on the highway system in the common event of under- 
funding. What will be the extent of the damage to the serviceability of the 
highway? What are the long run implications of reduced maintenance on 
future capital reconstruction of the highway network? 

In the event where less resources are available than needed to meet 
standards, management's course of action would depend on the problem 
setting. In a bank branch situation, for example, inadequate resources, (for 
example branch personnel), might simply mean that there will be longer 
waiting times for customers, more complaints, lost accounts, and reduced 
sales of financial services products. In the long run, performance suffers 
through deteriorating sales, and overall transactions; that is, outputs decline. 
In the maintenance setting, inadequate resources could result in some 
maintenance activities being uniformly discontinued throughout the patrol 
area (e.g., crack sealing could be halted, roadside activities such as grass 
cutting might be done less often, etc.). Alternatively, management may 
choose to maintain the higher traffic-volume roads to standard, while 
sacrificing maintenance work on less important ones. Thus, on average, the 
serviceability, hence the output deteriorates. 

The principle issue that maintenance management now faces is to obtain 
not only a measure of the theoretical efficiency vis-a-vis a frontier of best 
performing patrols, but, as well, to evaluate this against practically 
achievable targets. At the same time, as indicated above, management wants 
to assess the likely decline in roadway standards, should an inefficient patrol 
be required to achieve frontier status. Such information can aid management 
in setting budget targets. Specifically, reduced standards in a patrol can have 
long term implications for drivers (in the form of rougher roads), and for the 
government agency, and ultimately the taxpayer, in the form of more 
frequent capital expenditures prompted by shortened pavement lives. 
Savings in present day maintenance expenditures would, therefore, need to 
be traded off against accelerated resurfacing and reconstruction options. 

2.3.3 Modeling Output Erosion 

Let us now examine the phenomenon of output decline within the DEA 
context. Assume that there are n decision making units, R outputs and I 
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inputs, and consider the variable returns to scale (VRS) model of Banker et 
al. (1984) for development purposes herein. Let Xi,5 denote respectively 
the vectors of inputs and outputs for DMU j .  For purposes of exposition, we 
also assume in this section that all variables are discretionary. In the example 
of the following section, however, certain variables are nondiscretionary, 
and are treated as such. 

The ratio form of the variable returns to scale model of Banker, Charnes 
and Cooper (1984) (BCC), is given by: 

uy] + w  
max - 

v x ,  
subject to: 

u, v 2 0, w unrestricted 
The linear programming equivalents (dual and primal problems) are: 

max pY, + w 

subject to (2.2) 
vX,] = 1 

pYi + w-vXi < O , j = l ,  ..., n 

p , v  20, w unrestricted 

and 

min I9 

subject to : 

As indicated above, earlier attempts to include environmental variables, 
and to introduce categorical inputs failed to produce targets which many 
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patrols deemed achievable. Hence, management has tended to adjust DEA 
targets to better reflect the reality existing in certain patrols. Specifically, 
patrol supervisors, in collaboration with geotechnical engineers, and regional 
office maintenance managers, have specified what they perceive as the 
maximum possible input reductions (I - a,)% in respective patrols j .  
These values are set with the understanding that if a reduction of more than 
(1 -aj)% in all discretionary inputs (primarily the maintenance budget) 
should occur in patrol j, it is claimed that outputs will begin to erode by 
some percentage yj. Output erosion generally means that a lower quality of 
road maintenance is being administered, as discussed in the previous section. 
As indicated above, the visible consequence of insufficient resources in a 
patrol can mean the equivalent of discontinuing maintenance on a portion of 
the network. To put this in context, note that the outputs we have used in the 
previous study are traflc (total users served), and area (roadway and 
roadside combined) maintained. Reduced outputs can be viewed as fewer 
road users receiving adequate services. 

Let us assume for purposes of model development in this section, that 
declared expectations of output erosions are provided in good faith and 
represent reality. Clearly, there can be an incentive for the patrol supervisor 
to overstate potential output erosion, making intended budget reductions 
appear highly undesirable from management's perspective. There are a 
sufficient number of patrol-specific anomalies, such that impacts of budget 
reductions can only be truly estimated by the maintenance supervisor and 
accompanying geotechnical staff of that patrol. Hence, senior (head office) 
management could potentially be 'at the mercy' of patrol staff in regard to 
honest declarations. 

One has to remember, however, that certain realities do make it rather 
difficult if not impossible, for patrol management to cheat in this regard. 
First, geotechnical staff is generally shared by several patrols, meaning that 
there would be little incentive to exaggerate the resource needs of one patrol 
at the expense of another. As well, the claims of one district supervisor must 
hold up to scrutiny by other supervisors who compete for the same 
resources. The modeling considerations discussed herein are, therefore, 
correct and relevant only to the extent that erosion rates reflect what will 
actually happen. Issues pertaining to obtaining accurate estimates of output 
deterioration in patrols are, thus, primarily behavioral in nature, and beyond 
the scope of this research. 

To model the output deterioration phenomenon, refer to Figure 2-1. Note 
that in this simplified image of projection, with a single input and single 
output, inputs are reduced with no impact on outputs up to the point q,XO. 
From that point on, outputs are assumed to radially deteriorate at a rate of yo 
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per radial percentage unit reduction in X,, finally projecting to a level f ,  
on the frontier. 

Figure 2-1. Adjusted Projection for an Inefficient DMU 

In the situation studied, managers were unable to provide a precise value 
for yj. Rather, they were able to specify this parameter within bounds 
y,j I y j  I yzi. Estimation of the ranges [ Y , ~ ,  Y , ~ ]  posed more difficulty in 
some patrols than in others. Patrols with relatively uniform traffic and 
uniform road conditions throughout, presented less of a problem in regard to 
defining lower and upper bounds on y.  For those patrols where a wide 
range of circumstances exist among the highway sections making up its 
network, these ranges were, however, more difficult to capture. In this latter 
case one finds situations, for example, where a budget reduction can mean 
that a particular ditching operation to enhance drainage on a small section of 
the roadway may be shelved. The immediate, or even long term impact of 
such an activity can be difficult to quantifL in terms of road deterioration, 
etc. Specifically, it can be the case that large budget cuts may effect few 
drivers, or many, depending upon the type of activity foregone. In such 
circumstances, management tended to specify a wider range (y, ,, yZj) than 
in situations where there was more certainty. Again, we emphasize that the 
declared ranges are assumed to be good faith declarations, since the zero- 
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sum game environment leaves little room for any given supervisor to 
exaggerate hislher needs. 

For model development purposes in this section we assume that yj is a 
known value. In the following section, we return to the consideration of a 
range (yIi ,yzj).  Let patrol o be one for which the frontier target of 
( 1  -0,)X; reduction in resources is not achievable, but rather there is a 
declared maximum reduction of ( 1  - oq,) X,, where a. > 0,.  Formally, the 
primal linear programming variant (2.4) of the CCR model (2.3) becomes 

min 4 
subject to: 

subject to: 
n 

While slacks are not explicitly displayed in (2.5) they do play a role in 
the application developed herein. More direct reference is made to slacks, 
and how they are computed later. 

Note that the dual form of this is: 
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max ~ ( 1 -  Y o a x ,  + 

subject to: 

vx, -pY, =1 

pYj + u - vXi 10,  j = l ,  ..., n 
(2.6) 

P, Y 2 0, 
u unrestricted 

and the resulting equivalent ratio model is: 

max PY, + u - Y,%PY, 
vx, - Y#Y, 

subject to: 

(pYj + w) 1 vXj 51, j = 1, ..., n (2.7) 

P , V  2 0  
w unrestricted 

It is noted that since output erosion is an inherent feature in all DMUs, it 
would appear that rather than (2.7) the appropriate ratio model should be: 

max '4 + 'u - Y,%PY, 
vx*  - Y#K 

subject to: 

w unrestricted 

It can be shown, however, that these two formulations are equivalent, as 
given by the following theorem. 

Theorem 2.1: Problems (2.7) and (2.8) are equivalent.. 

Proof: It is sufficient to prove that at any point ($, 6, c )  
$Yj + 6 - yjai$Yi 

1 1  ;xi - y$Yi 
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if and only if 
,2Yj + ; 

I 1  ;xi 

Case 1 : Assume (,byj + G)/ exj = 1. In this case DMU j is a frontier 
unit, meaning that a, = 1. Hence, 

I;Yi + cj - y,a,jbY. .I - 'hYi + 43 - y,jiY. 
- . ' = I  

exj - yi,Ciyi cx, - y,#Y, 
as well. 

Alternatively, assume ( b y j  + h)/ ;Xi < 1. 
Let Q j  denote the optimal input-oriented DEA score, for example 

O,i = ( p * Y , + w * ) / v * x j  >( jY i+; ) l cX i .  
It follows that 
( I ; Y , + 6 ) l l ; X , j = @ j 1 0 , = ( , u * Y , + w * ) / ~ * X j I a j .  
Then, 

bY .+&y .a .by 
J  Case 2: Assume ,. J J ~ 5 1 .  
vx  .-y .by 

J J J  
~ h e n b Y ~  + h - y,ajfiYj 5 fix, - y,bq. or 

$Yj + 2 - v x j  I (a, - l)(y,bY,) 5 0. So (byj + ;)/exj I 1. 
Hence, the result. QED. 

In the section to follow we examine the output deterioration in the 
context of highway maintenance crew efficiency. 



Cook and Zhu 

2.4. THE APPLICATION 

Referring again to the highway maintenance example, consider the 
following sample of 14 patrols. 

In this example two outputs were chosen to represent the aggregate 
service performed by maintenance crews. 

Table 2-5. Output and Input Data 
Outputs Inputs 

Patrol# Size Traffic Total Average 

Served Expenditure Rating 

1 696 39 75 1 67 

2 616 26 61 1 70 

3 456 25 538 70 

4 616 31 584 75 

5 560 28 665 70 

6 446 16 445 75 

7 517 26 554 76 

8 492 18 457 72 

9 558 27 582 74 

10 407 18 700 69 

11 463 33 630 78 

12 350 88 1074 75 

13 581 55 1072 74 

14 413 24 696 80 

Outputs 
Size - a measure that is an aggregate or composite of the number of 

kilometres of paved surface, amount of paved versus gravel shoulders, etc. 
Traffic Sewed - this measure accounts for the average daily traffic and 

the length of the roadway served. 
Two inputs were used in the analysis, namely: 

Inputs 
Total Expenditure - the annual maintenance budget for the patrol. 
Average Pavement Rating - this is a standard indicator per road section 

(on a 0-100 scale). 
Arguably, one might consider treating average pavement rating as an 

ordinal rather than cardinal variable. In this instance, the model of Cook et 
al. (1993) might aid in deriving projections. It should be pointed out, 
however, that the rating is established through formal geotechnical data 
gathering and as such should be treated as quantitative rather than 
qualitative. With the inherent lack of precision in this measure, a somewhat 
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more formal treatment could involve the imprecise DEA arguments of 
Cooper, Park and Yu (1999) and Zhu (2003;2004). We have not undertaken 
this herein. For a more full description of these factors, see Cook et al. 
(1990). 

It is noted that on the input side, the available budget (total expenditure) 
is clearly a discretionary variable, while the road condition, an indicator of 
the environment in which the patrol operates, is clearly non-discretionary. 
Arguably, surface maintenance expenditures such as the filling of potholes 
and sealing of cracks do have a minor impact on the pavement rating 
(causing it to increase slightly). However, it is not really at the discretion of 
management to change the pavement condition in any direct way. 

As discussed above, the initial analysis of patrol efficiency was 
conducted here for two primary reasons. First, there was a desire to 
determine the benchmark crews against which inefficient ones could be 
evaluated. This provided management with the best and, even more 
importantly, the worst performers, hence isolating areas where waste existed, 
and improvements were possible. A second, and related reason for the 
analysis, was to have a set of measures that could potentially aid in budget 
setting. Specifically, under various overall provincial highway maintenance 
budget scenarios, how should allocations to individual patrols be made? 

The input-oriented DEA model of Banker et al. (1984) was applied, but 
restricting the input variable Average Pavement Rating to be 
nondiscretionary. Specifically, the mixed discretionary/nondiscretionary 
version of model (2.3) was applied, namely 

rnin 6 

subject to: 
n 

Ox,, - C Ajxij - s,! = 0, &Dl 

Here, the set of discretionary inputs DI is the budget, and the 
nondiscretionary inputs, NDI consists of the single variable pavement rating. 
Outputs are assumed to be discretionary (DO) to the extent that under budget 
reductions, patrol crews can choose to service the road network in a manner 
that is below standard. It is noted that we explicitly represent input and 
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output slacks here as st!,.$ respectively. In solving (2.9) we use a Zstage 
process wherein the sum of slacks is minimized in stage 2. This 
unconventional way of handling slacks has some practical merit here in that 
for example on the input side we are identifying a minimal reduction in 
resources needed to reach the frontier proper from a frontier extension point. 

Table 2-6 presents the projections and efficiency score 8 for each of the 
14 DMUs. When positive slacks exist they are displayed in brackets. In this 
example, exactly 7 of the patrols are efficient, both in the radial sense 
(8 = I ) ,  and in the CCR-efficient sense, in that all slacks are zero (see 
Cooper, Seiford and Tone (2000)). The remaining inefficient units are a mix 
of properly enveloped (DMU#5), and improperly enveloped units (DMUs 
#7,9,lO,l l,l3,14). 

Table 2-6. Efficiency Scores & Projections 
DMU Size Traffic Expenditure Rating Score 
1 696 39 75 1 67 1 
2 616 26 61 1 70 1 
3 456 25 535 70 1 
4 616 31 584 75 1 
5 560 28 588 75 .883 
6 446 16 445 75 1 
7 517 26 53 1 72 (4)* .958 
8 492 18 457 72 1 
9 558 27 543 73.75 (.25) .934 
10 536 (129) 29.67 609 69 .870 

(1 1.67) 
11 463 33 589 72.67 (5.33).935 
12 350 88 1074 75 1 
13 581 55 855 69.75 (4.25).797 
14 479.8 24 510 72.26 (7.74).733 

(66.8) 

*Numbers in brackets represent positive slacks. Note, for example, that the road rating for 

patrol #7 was 76 meaning that a projected value of 72 leaves a slack of 4. 

In attempting to apply the recommended expenditure reductions arising 
from the efficiency analysis, some (inefficient) patrols found that the 
projected values could not be achieved. In consultation with head office 
maintenance management, patrol supervisors provided a minimum budget 
level that they believed was necessary to maintain the network at a standard, 
as set by the department. In the case of patrol #5, for example, it was 
estimated that at most an 8% budget reduction was possible. Beyond this, it 
was felt that a reduction in maintenance effort would need to occur, and a 
lower quality of service would be the consequence. 



Chapter 2. Measuring ESficiency of Highway Maintenance Patrols 53 

As discussed earlier, an attempt was made to estimate the range 
(y, j ,  y, j )  for the parameter yj,  for each patrol j. Figure 2-2 illustrates 
how the erosion projection of Figure 1 might now appear. 

Figure 2-2. Range of Adjustable Projections 

Recall that 1 - yj is the expected percentage reduction in outputs 
(service) per radial percentage unit reduction in those discretionary inputs of 
X (i.e., the maintenance budget for j ). For discussion purposes here, this 
range was taken to be yj E [.2,.8] for each j. The results for model (2.5) for 
each of yj, = .2 and yj, = .8, are displayed in Table 2-7. It is noted that 
only results for inefficient units are shown since all projections for efficient 
units are, by definition, the same as their current positions. 

For slackless projections such as is the case for DMU #5, projected 
outputs help to reveal the extent of erosion of the system. Here, under the 
current status, size and traffic managed are represented by the values 
(560,28). The computed efficiency score for this patrol is .883, meaning that 
a reduction in expenditure of 11.7% would be needed in order to reach the 
frontier of best performance. The projection corresponding to this rating is 
shown in the row labeled 'Unadjusted.' 

In this case, the claimed maximum reduction possible, without eroding 
outputs, is 8% (a, = 92% as compared to 0 = 88.3%). Below the 92% 
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level, if outputs decline at a rate of Y, = .2 (20% of the input reduction 
beyond that point), then the resulting projected size and traffic that can be 
serviced are (555.4, 27.8). This represents a .7% decrease in service. Note 
that the new efficiency score is given by q3 = .879. The corresponding 
projection for y, = .8 is (527.7, 26.5), or a 5.7% decrease in outputs, with 
q3 =.852. Again, see Figure 2-7. 

Table 2-7. Efficiency Scores, Unadjusted and Adjusted Projections 
DMU Status Size Traffic Exp. Rating Effic. a! 
C current 560 28 665 70 

unadj. 
y1 =.2 

P Zb8d. 
current 
unadj. 
y1 =.2 

Kl'i:. 
current 
unadj. 
y1 =.2 

P 2:d. 
current 
unadj. 
y, =.2 

P ;:d. 
current 
unadj. 
y1 =.2 

@:if;. 
current 
unadj. 
y1 =.2 

k ;:d. 
current 
unadj. 
yl =.2 481(78.3) 8 =.8 486(124.1) 

bdd. 436f62) 

Thus, under the worst case scenario, patrol 5 could experience a 5.7% 
decrease in service delivered to the road user and to the tax-paying public. 
Recall that while decreased service can take several forms, it is useful to 
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view this scenario as portraying a lower quality product, a faster 
deterioration of the network, and a higher capital expenditure in the long run. 

For projections with slack on the output side, a slightly different 
interpretation takes place. Consider the two situations portrayed by patrols 
#10 and #14. For #lo, the projected outputs are the same under all three 
scenarios (unadjusted, y, and y,). For example, the frontier projected size is 
536 in all situations, and the efficiency score remains at 87%. The actual 
projected point (on the frontier extension)is, however, given by 

Frontier projection-slack 
= 536-129 = 407 in unadjusted case 
= 536 -136 = 400 in y, case 
= 536 - 155 = 381 in Y, case. 

Figure 2-3. Projection with Output Slack 

Figure 2-3 provides a representation of this phenomenon. (Note that a 
similar result occurs for the traffic factor). From a lost service perspective, it 
is these frontier extension values that are of interest to management. 

For #14, the situation is very similar except that there is slack in only one 
of the outputs (size), and the efficiency score continues to decrease as we 
move from the unadjusted projection where 0 =.733, to Y, ( 4  = .725) and 
to a, ( 4  = .695). 



2.4.1 Base-Line Budget Considerations 

The rationale for deriving input-oriented efficiency measures in the 
present setting, appears to be twofold. First, the measures point to those 
patrols that are inefficient, and those that are efficient; this sets out 
benchmarks that management can utilize to help poorly performing patrols 
to improve their status. Second, efficiency measures can aid in setting 
budgets. Budget planning here would appear to be an exercise in scenario 
analysis, and the results obtained from Tables 2-6 and 2-7 put bounds on the 
minimal fiscal requirements for the maintenance function. One scenario is 
that provided by the achievable projections described by the 5 measures. 
Specifically, the (1 - a,) % reduction in discretionary inputs (maintenance 
expenditure, in this case), can be achieved without any erosion to output 
measures. Under this scenario, for the sample of 14 patrols considered, the 
current budget of $9359 could be reduced to $8874. Thus, a budget 
reduction of $485 (thousand) would appear to be immediately achievable. 

The minimal budget projections under the Y,  and y2 output erosion 
scenarios are given by $8656, and $8494 respectively. These lower 
anticipated budgets, depending on the outcome erosion rates that may result, 
provide management with a guide as to the possible savings obtainable if all 
DMUs were required to move to a frontier efficiency status. 

Possibly, a more realistic and fair system of minimal budget setting 
would be one wherein patrols are required to reduce expenditures only by 
the original 1 - O measure. Specifically, if no output erosion occurred, an 
inefficient patrol 0 would need to operate only at an expenditure level of 
Ox,,, to be deemed efficient, rather than at the often lower level of qx,,. 
Here, xio denotes the expenditure level (i=l) for DMU o. For example, in 
the case of patrol 13, the budget allocation would be .797 x 1072 = $854.8 
(thousand), rather than the lower figures $839 and $724.2 corresponding to 
y, and y2, respectively. To compute the output erosion corresponding to 
this more favorable Oax,, position, we resolve a modified version of (2.5) 
wherein @ is restricted to not be less than 8. Figure 2-4 illustrates this idea. 

The resulting projections are shown in Table 2-7, corresponding to the 
status entitled 6 -bdd. In computing these projections the most pessimistic 
view of output deterioration has been assumed (y2=.8 was used). Except in 
cases #10 and #11, the projections for inefficient units are not on the frontier, 
but such units would be operating at budget levels that would normally be 
seen as more appropriate than those resulting from the y,, y2 scenarios. The 
overall minimal budget for the 14 patrols in this case is $8682. Let us regard 
this as a base-line or starting budget position. 
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Figure 2-4. 8-Projection for an Inefficient DMU 

2.4.2 Budget Allocation Beyond the Base Line 

The various projections discussed above provide management with a 
broad scope for making budget decisions. Let us assume that the supplied yj 
(or expected yj) represent reality and are not exaggerated claims by the 
management of DMU ,.. If the organization adopts the exio position as a 
form of base-budget status, then the aggregate base budget operating level is 

j=1 

At this base budget level, patrol j would be providing a level of service 
of 

Y ;  = ~ j [ l - y , C q  -'j)l, (2.1 1) 

if j is experiencing output erosion (i.e., Bj < a j ) .  Otherwise, y; = yj. 
One advantage of adopting a base-budget approach as the starting point 

for allocating maintenance funding to patrols, is that it becomes somewhat 
transparent as to what budget impacts will be for funding above the base 
level. For example, if there is a $1 (thousand) increase in patrol js  budget 
above the Ox, level, one can estimate the increase in y j  that can be 
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expected to occur. Specifically, the improved values of the components of 
y j ,  currently at y J ,  are given by: 

Note that yj lx, j  is the vector of existing output rates (outputs per 
monetary unit of budget), and yj is the expected rate of increase in outputs 
per monetary increment to the base budget. 

In the single output case ( y j  is a scalar), one could allocate additional 
resources to patrols according to the per unit gain factor y j  y jlx, (ranked in 
descending order). Specifically, if DMU j, has the highest gain factor, then 
one would presumably increase patrol jl s budget by Sjl so that 

If resources still remain, allocate funds accordingly to the patrol j,, 
whose gain factor is ranked in second place, and so on. 

In the multiple output case, optimization is problematic in that the patrol 
most desirable for a funding increment in regard to the system size 
dimension, may not rank highest on the traffic dimension. Thus, the problem 
is multi-criteria in nature, with a ranking of the patrols being available for 
each output type. Since the units that define the outputs are not comparable, 
one reasonable mechanism for ranking the patrols (for consideration for 
budget increments) would be to replace the vector y j  by the weighted 
aggregate output p j y j ,  where pj is the optimal multiplier vector (shadow 
prices from (2.9) for problem j ) .  

Pure optimization here may be somewhat elusive in that y j ,  as discussed 
earlier, is known only within a range (Y, j ,  " / z j ) .  Management would need to 
choose an appropriate value yj in this range if a comparison of patrols is to 
be made. 

2.5. DISCUSSION 

This chapter has examined the application of DEA in the area of highway 
maintenance. It has illustrated as well, the difficulty of matching theoretical 
and achievable targets. 
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The suggested modifications to the conventional DEA model help to 
capture the consequences on the output side that can occur when inputs are 
reduced according to the computed performance measures. The failure to 
realize projected reductions in resources without such consequences in many 
real world settings can, in most instances, be attributed to factors not 
included in the modeling exercise. These factors commonly pertain to the 
environment that one DMU may face versus that of its peers. This 
environment may be physical (differences in road sub-surface structures in 
maintenance patrols, for example,) or demographic (e.g., customer mix 
characteristics in financial services settings). Another explanation relates to 
the random nature of outputs or input requirements. In the maintenance crew 
setting, annual maintenance needs on highways (i.e., budget requirements) 
are greatly a function of weather, severity of winters, and so on. 
Geographical location plays an important part. It can be that frontier DMUs 
are those located in geographically favorable settings, where winter 
maintenance needs are minimal and roadway deterioration is less prevalent 
than in other areas. Thus, maintenance needs are random and frontier DMUs 
can be outliers at the lower tail of the maintenance cost distribution. 

Earlier attempts to introduce categorical variables to permit comparison 
of a DMU to only those others that are proper peers, did not seem to resolve 
or explain the gap between theoretical and achievable targets. This 
necessitated the application of model (2.5). This model will hopefully 
provide a useful enhancement to the existing DEA methodology. It provides 
a bridge between theoretical performance targets and the practical situations 
facing DMU management. 

REFERENCES 

Banker, R.D., A. Charnes and W.W. Cooper (1984), Some models for 
estimating technical and scale inefficiencies in data envelopment 
analysis, Management Science 30, 1078-1092. 
Banker, R.D. and R.C. Morey (1986), The use of categorical variables in 
data envelopment analysis, Management Science 32,16 13- 1627. 
Charnes, A., W.W. Cooper and E.L. Rhodes (1978), Measuring the 
efficiency of decision making units, European Journal of Operational 
Research 2,429-444. 
Cook, W.D., Y. Roll, and A. Kazakov (1990), A DEA model for 
measuring the relative efficiency of highway maintenance patrols, 
INFOR 28, 113-124. 
Cook, W.D., Y. Roll, L. Seiford and A. Kazakov (1991), A data 
envelopment approach to measuring efficiency: case analysis of highway 
maintenance patrols, Journal of Socio-Economics 20, 83-103. 



60 Cook and Zhu 

6. Cook, W.D. and J. Zhu (2001), Output deterioration with input reduction 
in data envelopment analysis, IIE Transactions, 35, 309-320. 

7. Cook, W.D., A. Kazakov, and Y. Roll (1994), On the measurement and 
monitoring of relative efficiency of highway maintenance patrols, Data 
Envelopment Analysis: Theory, Methodology and Applications, 
Charnes, A., Cooper, W.W., Lewin, A. and Seiford, L. (eds.), Kluwer, 
New York. NY. 

8. Cook, W.D., Kress, M., and Seiford, L.M. (1993), One the Use of ordinal 
Data in Data Envelopment Analysis, Journal of Operations Research 
Society 44,133-140. 

9. Cooper, W.W., Park, K.S., and Yu, G., (1999), IDEA and AR-IDEA: 
Models for Dealing with Imprecise Data in DEA, Management Science 
45,597-607. 

10. Cooper, W.W., Seiford, L., and Tone, K., (2000), Data Envelopment 
Analysis: A Comprehensive Text with Models, Applications, References 
and DEA-solver Software, Kluwer Academic Publishers, Boston. 

11. Deller, S.C. and C.H. Nelson (1991), Measuring the economic efficiency 
of producing rural road services, American Journal of Agricultural 
Economics 73, 194-20 1. 

12. Roll, Y., W.D. Cook and B. Golany (1991), Controlling factor weights in 
data envelopment analysis, IIE Transactions 23,2-9. 

13. Rouse, P., M. Putterill and D. Ryan, (1997), Towards a general 
managerial framework for performance measurement: A comprehensive 
highway maintenance application, Journal of Productivity Analysis 8, 
127-149. 

14. Rousseau, J., and J. Semple (1993), Categorical outputs in data 
envelopment analysis, Management Science 39, 384-386. 

15. Shereman, H.D., and G. Ladino, (1995), Managing bank productivity 
using data envelopment analysis (DEA), Interj$aces 25,60-73. 

16. Zhu, J. (2003), Imprecise data envelopment analysis (IDEA): A review 
and improvement with an application, European Journal of Operational 
Research 144,513-529 

17. Zhu, J. (2004), Imprecise DEA via standard linear DEA models with a 
revisit to a Korean mobile telecommunication company, Operations 
Research 52,323-329 

This chapter is based upon W.D. Cook, Y. Roll and A. Kazakov, 1990, A DEA 
Model for Measuring the Relative Efficiency of Highway Maintenance 
PatrolsJNFOR, 28, No. 2, 113-124, and W.D. Cook. and J. Zhu, 2001, Output 
Deterioration with Input Reduction in Data Envelopment Analysis, IIE 
Transactions, 35, 309-320, with permission from INFOR and Taylor & Francis, 
respectively. 



Chapter 3 

PRIORITIZING HIGHWAY ACCIDENT SITES 

3.1. INTRODUCTION 

The problem of designing a safety retrofit program involves several 
components: (1) forecasting target accidents at a selected set of road sites, 
(2) evaluating the effectiveness of various measures for reducing accidents, 
and (3) prioritizing the sites in order of effectiveness. A significant body of 
literature has been dedicated to the first two components, and in particular, 
to accident prediction modeling. In the present chapter, however, we do not 
address these two components, but rather we concentrate on the third 
component, namely, the prioritizing of sites. The discussion herein is based 
upon Cook, Kazakov and Persaud (2001). 

In practice, prioritization of accident sites has been dealt with in various 
ways: 

rank ordering by total target accident counts; 
converting all target accidents to the equivalent of accidents that 

involve only property damage and then ranking sections according to 
these equivalent accidents; 

ranking according to the ratio of the benefit (reduction in accidents) to 
the cost of applying the recommended retrofit measures. 

While these methods for ranking accident sites all have merit, they 
generally fail to recognize the multi-criteria nature of the problem at hand. 

In this chapter we present a DEA-based procedure for selecting a retrofit 
program in a budget constrained environment. The procedure specifically 
acknowledges the fact that multiple criteria or factors are involved, for 
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example, different accident classes, and different kinds of costs, such as 
government agency- and user costs. Furthermore, the method adopted takes 
account of the fact that there is no well established means of converting 
these multiple criteria to a single dimensional problem. 

3.2. THE PROBLEM 

Suppose that a set of I road sections of a given length, for example, 0.5 
km have been identified for possible safety treatment. Consider for each road 
section i E (1, ..., I) a finite set Ji of potential retrofit measures. Members 
of Ji may be combinations of individual retrofit measures, for example, 
illumination together with shoulder widening. It is understood that for each 
measure j, the target accidents can be identified and measured on each 
section. For example, for roadway illumination, target accidents would be 
some portion of all those accidents occurring at night. With this definition, a 
particular accident might be the target for more than one retrofit measure, 
and it is possible that some accidents may not be targeted at all. 

Let tijk be the expected number of target accidents of severity k for 
retrofit measure j on road section i . A point estimate iiik of tvk can be 
obtained from any one of a number of forecasting techniques. Here, we use 
the Empirical Bayesian procedure, (see Hauer (1986) and Persaud (1995)), 
which makes use of the actual number of such accidents for this site in the 
recent past. We do not concentrate here on the accident prediction aspect of 
designing a retrofit program, but rather refer the reader to the relevant 
literature on forecasting techniques. See, for example, Abbess et al. (1981), 
Hauer (1992) and Persaud (1993). It is pointed out that the statistical 
distribution of tijk can also be estimated to reflect the uncertainty in the point 
estimate iijk. 

For each retrofit measure, and each accident severity class, there is an 
accident modification or reduction factor a jk  such that the expected annual 
number of target accidents in class k after the implementation of the retrofit 
j on section i is ajktuk. Thus, the point estimate of the annual accident 
savings is yP = t* ( 1  - 4,). 

The application of a retrofit measure to a road section, therefore, gives 
rise to a set of outputs or benefits { y u k } f = , .  Thus, retrofit measures have 
multidimensional rather than single dimensional outcomes or consequences. 
The current state of practice is to attach weights u, to the different accident 
types k, thereby converting the multiple dimensional outcomes yijk to a 
uni-dimensional benefit C\,y,,. In principal, the u, should reflect the 

k=l B 
saving achieved per prevented accident of type k. As an example, in the 
state of Kentucky weights have been selected to be representative of 
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insurance cost relating to such accidents. In that jurisdiction, all accidents are 
grouped into three major categories-(1) fatalities, (2) injuries, and (3) 
property damage only. Empirical studies carried out there concluded that the 
relative weights 9, 5 and 1 on categories (I), (2) and (3) respectively, 
reasonably characterize the respective costs. See Troxel (1993). Studies 
carried out in other jurisdictions have lead to somewhat different weights. 
Thus, the relative values or prices {uk)f=, associated with these outcomes 
(for example, the accident costs), are not well established in the strict sense, 
although estimates of average accidents costs are available in various 
jurisdictions. To complicate matters further, there are also multidimensional 
inputs associated with the application of any retrofit treatment; two of the 
obvious ones are (1) the cost xi/, incurred by the transport ministry (hence, 
the tax paying public) of actually applying the measure, and (2)costs xi,, 
experienced by drivers that are due to lost time with road closures. The 
transport ministry cost associated with any retrofit measure can be directly 
stipulated; user or driver costs are less specific. A possible surrogate for 
driver cost or inconvenience is xi,, = ADT x t, where t is the number of 
days during which the repair is underway and ADT is the average daily 
traffic. This definition of driver cost or inconvenience is simply an estimate 
of the number of drivers being exposed to the repair operation. Arguably, a 
more suitable reflection of driver inconvenience should take account of peak 
period traffic and average trip delay per driver. Until suitable data is 
available, however, the above definition of xV, will be applied, and is the 
common one adopted in practice. 

Obviously, other inputs might take the form of environmental variables 
such as adjustments to ministry costs. Such adjustments could, for example, 
capture characteristics of the jurisdiction where the repair is being carried 
out; an example might be the cost of transporting materials to the repair site 
in one district versus another. For purposes herein, however, we use as 
inputs only the two costs indicated above. 

Stated in simple terms, the problem of selecting a best set of road 
sections for safety improvement is one of finding those sections that yield 
the greatest accident reduction benefits {B,,) at the lowest (combined 
agency- and user) costs {Cg). In purely technical terms, By and Cii can be 
expressed in the additive forms 

and 
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for some sets of multipliers {u,)f=, and {v,)~=,. As indicated above, the u, 
represent the relative weights or importance attached to the various accident 
classes; the most tangible definition of importance is the public cost 
associated with those classes. Similarly, the v, are the relative importance 
multipliers for the inputs, which in our example are transport ministry costs 
and user costs. How these values should be chosen is less transparent than is 
true of the u, . 

In some transportation departments no attempt is made to consider any 
input (cost), aside from the direct expense to the department; specifically, 
only xVl is considered. In other situations such as is the case for the Ontario 
ministry, studies have attempted to capture the cost per driver, per hour lost 
in travel time, as a measure to total driver inconvenience. This measure then 
becomes the exchange rate between one hour lost by the driver versus $1 
expended by the transportation department. This then dictates v, and v,. As 
with the output side, however, there can be a significant degree of variability 
in this exchange rate, depending, for example, on the composition of trucks 
versus private automobiles on the road section i in question. As well, the 
amount of business travel as compared to other travel influences this rate. 
So, arguably vl and v, may be estimated in some range, but would be 
difficult to fix precisely. 

Clearly, if one could derive aggregate values BV and CV, the selection 
problem then could be viewed in terms of finding those sections i whose 
(benefitkost) ratios BVICV are largest. In purely economic terms we would 
be choosing accident sites where the payoffs in accident reductions are 
greatest relative to the monetary (agency- and user) investments. There are 
several problems, however, with this approach, with the principal one being 
that there is no correct set of multipliers {u,, v,). Furthermore, one needs to 
evaluate the relative worths of various retrofit measures for each site. In the 
section to follow we present a model for dealing with these problems. 

3.3. APPLICABILITY OF THE DEA METHODOLOGY 

In some respects, the problem of selecting accident sites can be viewed in 
the context of multi-attribute or multi-criteria decision making (MCDM). A 
vast literature exists on MCDM, which is covered extensively in Cook and 
Kress (1992). One particular area of MCDM is multi-attribute utility theory. 
Utility models attempt to derive a function which transforms a set of non- 
comparable attributes for an entity (e.g., an accident site), into a single value; 
a multi-dimensional problem is thus converted to a single dimensional 
problem. One form of utility function views attributes as additive and linear. 
The function, therefore, is comprised of a set of weights which when 
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applied, say, to different accident types would derive a uni-dimensional 
value measuring the overall benefit from safety improvements applied to any 
given accident site. 

While conceptually utility theory is a viable means of deriving an overall 
measure for site improvements, it does have certain disadvantages. First, the 
model provides for a single set of weights which would apply to all accident 
sites. There are generally no clear rules for how such weights should be 
chosen, and, as well, one may arguably want different weights for different 
sites, which could make allowance for differences pertaining to types of 
drivers, roadside conditions and so on. Second, some attributes can be seen 
as outputs from safety improvements (accident reductions) and others as 
inputs to the improvement process (e.g., safety expenditures). Utility theory 
has no convenient way of allowing for this dichotomy. 

DEA is a tool which is, in certain respects, an extension of the utility 
theory model. It views data factors as being separated into two groups, and 
as well, allows for different multipliers for different accident sites. How does 
DEA relate to the discussion regarding Bv and C, above? 

Referring again to the discussion in the previous section, it can be argued 
that while viewing the relative desirability of accident sites in terms of a 
benefitlcost ratio is an appropriate way to proceed, the concept presumes the 
existence of fixed weights. So, while the expression 9 y,, + 4 y,, + 1 y,, , for 
example, captures the aggregate benefit (in the Kentucky model) lf the 
weights were accurate, it is more correct to write the expression as 
(9 & A,) yii, + (5 + A, ) yi!, + (1 f. A,) yf j ,  Here, 9 + A,, for instance, 
reflects the fact that the Importance attached to a fatal accident (insurance 
cost) lies in the range (9 - A,) f ,  9 + A,), where A, could be obtained 
from data on past fatality settlements. 

What is required, therefore, is a mechanism for applying benefitlcost 
analysis in this broader context, taking into consideration the uncertainty 
relating to the multipliers. The DEA methodology of Charnes et al. (1978) 
was designed specifically as a tool for evaluating different entities (for 
example, accident sites), wherein there is inherent uncertainty as to the 
values of the multipliers of inputs and outputs. Specifically, it provides a 
basis for assigning appropriate multipliers to facilitate benefitlcost analysis 
in this more general setting. 

One possible criticism of the DEA approach might be that too much 
flexibility is permitted in the choice of the weights. In particular, an accident 
site that has no fatalities or injury accidents may still receive a high rating z 
simply because a low or even zero weight can be placed on those two 
accident classes and a large weight may be placed on property damage 
accident reductions. Clearly, such a choice for weights is not consistent with 
what is known to be appropriate for describing the relative importance of the 



66 Cook and Zhu 

various classes of accidents. Specifically, this may result in the selection of 
sites for improvements where only property damage accidents have 
happened instead of truly hazardous locations where fatalities have occurred, 
and meaningless prioritization could result. To prevent undesirable choices 
of multipliers, a modified version of model (1.3) of Chapter 1 can be 
employed wherein restrictions on the weights can be imposed. Many 
different versions of weight restrictions have been examined in the literature, 
including absolute lower and upper limits on individual multipliers, as 
discussed in Cook et al. (1990), and in Chapter 2, the assurance region 
method of Thompson et al. (1992), and the cone-ratio method of Charnes et 
al. (1990). The latter may be appropriate here, in that it permits one to 
impose upper and lower bounds on ratios of weights. For example, if it is felt 
that the public cost of a fatality at any given site will be at least 4 times that 
of an injury accident, but not more than 9 times, then if u, and u2 are the 
multipliers for fatalities and injuries, respectively, a restriction of the form 

U 
41'19 

Y 
can be imposed. This reduces of course to the linear constraints 

u, - 4u,2 0 and u, - 91.4, 1 0. 
We point out that the range (4,9) is purely for illustrative purposes herein. 

The choice of range would, in practice, be jurisdiction specific. Similar 
restrictions may be selected to control the relative sizes of the multipliers v, 
and v2 on ministry and driver costs. 

In the section to follow we apply the DEA methodology to a sample of 
road sections in Ontario where accidents have occurred in the past. 

3.4. APPLICATION TO A SAMPLE OF SAFETY 
SECTIONS 

For purposes of demonstrating the DEA tool in this setting, a sample of 
42 road sections was selected for analysis. Table 3.1 displays the data. The 
data in the first three columns represent the estimated reductions in numbers 
of accidents that will occur if the retrofit treatment is undertaken. These 
numbers are based upon accident reduction factors available in the literature 
applied to projected numbers of target accidents likely to occur on the 
sections. It is to be noted that the actual data has been scaled for purposes of 
analysis. Specifically, the actual figures for the first road section were in fact 

Fatality I Injury I PDO I Cost I Traffic 
0.0034 1 0.041 1 0.520 1 100 1 4090 
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These were scaled to 34,41,520,100 and 409 respectively. Since the DEA 
model is scale invariant, this transformation does not affect the analysis. It is 
noted that rows 1-5 in Table 3-1 are in fact the same section with five 
different retrofit measures and associated accident reduction and agency cost 
factors. Similarly, rows 6-10 represent a particular road with five different 
treatments. For each of the other road sections, only a single retrofit measure 
is considered. 

Two separate analyses were carried out utilizing the DEA package 
discussed in Chapter 1 and contained herein. In the first analysis, no cone- 
ratio bounds were placed on the accident type multipliers (i.e., the 
multipliers u,, u, and u, were left unrestricted in terms of upper and lower 
bounds). Table 3-1 displays the DEA scores, labeled Theta I. In the second 
analysis limits were imposed of the form 

'inittry 31- < 8, 
UPDO 

and the resulting DEA scores are shown as Theta 11.' 

3.4.1 Selecting Treatments and Sections 

The problem to be addressed is one of choosing those safety initiatives 
that should be undertaken within budget restrictions, and at the same time 
selecting an appropriate treatment for each chosen section. One approach to 
this problem is to rank the (section, treatment)- combinations in order of 
their aggregate benefithost ratios. The Theta-parameters provide these 
ratios. 

A first step is to rank the impact of the various treatments for any given 
section. This means, for example, that we would take the five treatments for 
the first section, and select the highest ratio. (For example, choose the 
highest among the first five numbers under Theta I in Table 3-1. Clearly, the 
second, fourth or fifth would all qualify as recommended treatments.) 

The second step is to rank order the resulting Theta-scores (having 
chosen one for each section), then choose the first K sections such that the 
corresponding K costs fall within the budget, but if a K + 1 st were 
included, the available budget would be exceeded. 

'1t is noted that because of the scaling of the actual data presented earlier, the 
bounds applied to the scaled data were in fact. 0.4 5 u,/u2 1 1 and 
3 1 u21u3 1 8 .  
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Table 3-1. Fatality data for various road sections 
Section Fatalitv Iniuw PDO Cost Traftic Theta1 Theta I1 
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Recall that the imposition of cone-ratio bounds has the effect of reducing 
the Theta parameters. Consequently, fewer "ones" appear under the Theta I1 
column in Table 3-1. Thus, appropriate bounds allow one to break ties. 
Consider, for example, the second treatment for the first safety section. 
Under Theta I this section was rated 1 primarily because a heavy weight was 
placed on the injury accident figure of 79, and very little weight was given to 
the fatality figure 13. For treatment 14, the opposite is true (fatalities are 
weighted high and injuries low.) With the imposition of the cone-ratio 
bounds, the weight on fatalities is forced to be at least 4 times greater than 
that on injuries, and so on. As a result, in the second run (Theta 11), the rating 
on the second treatment dropped to .46. Thus, treatment 14 would now be 
chosen for the first section, primarily for its dominance in reducing fatalities. 

Applying this logic using Theta 11, and with a budget of $1100K or 
$1,100,000, the chosen sections and treatments would be: 

Section Theta I1 Cost (K$) 

4 1 .OO 450 

16 1.00 50 

18 1 .OO 40 

19 1 .OO 110 

10 0.91 50 

40 0.75 100 

29 0.72 40 

27 0.71 40 

25 0.69 50 

34 0.62 100 

2 1 0.60 55 

In this case, the list of projects consumes $1085K of the $1 loOK, and no 
other project exists which can be accomplished using the remaining $15K. In 
practical terms, one might argue that some other selection of projects might 
have been chosen which could consume a larger portion (perhaps all) of the 
given budget of $1 100K. If, for example, only a budget of $1000K had been 
available, only those sections down to DMU 25 would have met the strict 
criterion of falling within the budget limit. That is, sections 4,16,18, ... ,X 
consume $930K, and if we go to DMU 34 with its cost of $loOK, we would 
run over the budget limit. Of course, if one ignores DMU 34 altogether and 
goes to the next section on the list, i.e., DMU 21 with a cost of $55K, then it 
could be included in the set. Thus, refinements to the basic ranking idea are 
easily implemented. 
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Obviously, a less ad hoc approach to the ranking method is to attempt to 
apply a standard knapsack algorithm. This is in recognition of the fact that 
the problem we face here is really a capital budgeting problem with the 
objective being to choose those projects with the highest ratings (Thetas), 
and with a single constraint on the cost. One is reluctant to take this 
approach here, however, since in the usual capital budgeting problem, the 
objective function is generally one where meaningful numerical data such as 
profit or revenue is being maximized. The Theta values in the present 
problem are not profits or revenues, but rather are ratings that have come 
about by way of a process that is completely disconnected from the budget 
constrained setting that we eventually come to. 

An alternative, but somewhat more complex approach, to the resource 
allocation problem involved with selecting safety projects is that suggested 
by Cook and Green (2000). Their approach effectively amounts to 
(implicitly) looking at all subsets of projects, each of whose total budget 
comes as close as possible to the given budget without exceeding it. They 
use a mixed integer programming technique to search through the various 
candidate subsets. The benefit of this more involved approach is that it 
determines that set of projects whose aggregate benefit (total reduction in 
accidents) per dollar spent is maximized. We have not applied this approach 
to this particular data set. 

3.5. CONCLUSIONS 

In this chapter a procedure has been presented for selecting a set of safety 
retrofit projects. One of the complexities surrounding this selection is the 
multi-dimensional nature of the problem. Specifically, one must consider 
various accident types on the benefit or output side, as well as agency cost, 
user inconveniences and possibly environmental factors on the input side. 
The data envelopment analysis method is applied to this multiple criteria 
setting using a sample of road sections, each with accompanying proposed 
retrofit measures. 

It should be emphasized that the DEA model structure has been extended 
in the literature, and would permit a much broader analysis of accident sites 
than might appear to be the case from the above example. Clearly, a 
complete analysis of sites should attempt to address the many behavioral 
factors that can influence accident occurrences-age of drivers, gender split, 
extent of alcohol involvement, speeds involved, and so on. While no 
provision to examine these issues was made in the example herein, one could 
incorporate qualitative data factors (see Cook et al. (1992)) as well as non- 
discretionary variables as per Banker and Morey (1986), to handle such non- 
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controllable inputs as average driver-age and speed. Driver mix would be 
viewed as non-discretionary in that it, unlike economic factors, cannot 
generally be changed. Such behavioral or driver-mix data may not be 
available in many jurisdictions, although all accident related information 
(alcohol involvement, driver age, etc.) are normally contained in police 
records. 

Only three accident categories and two types of costs are used for 
demonstration purposes herein. Further work is required to enlarge this 
variable set to include other factors which may be pertinent to the analysis. 
In particular, factors that more accurately capture roadway user cost, rather 
than using traffic only, should be considered. 
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Chapter 4 

BENCHMARKING MODELS 
Evaluating the Effect of E-business Activities 

4.1. INTRODUCTION 

Performance evaluation and benchmarking has become an important 
continuous improvement tool for business units in the high-technology world 
of computers and telecommunications where competition is intense and 
grows more so each day. Benchmarking activities positively force any 
business unit to constantly evolve and improve in order to survive and 
prosper in a business environment facing global competition. In fact, as 
reported in a recent Wall Street Journal poll (Lancaster, 1998), 
benchmarking is one of the top three important and popular tools for 
continuous improvement. Gap analysis is often used as a fundamental 
method in performance evaluation and benchmarking. However, as pointed 
out by Camp (1995), one of the dilemmas that we face is how to show 
benchmarks where multiple measurements exist. It is rare that one single 
measure can suffice for the purpose of performance evaluation. As a result, 
some multi-factor based gap analysis methods have been developed. e.g., 
Spider charts, AHP maturity index, and Z charts. Although gaps can be 
identified within each performance measure, it remains a challenging task to 
combine the multiple measures in the final stage. 

Therefore, benchmarking models that can deal with multiple performance 
measures and provide an integrated benchmarking measure are needed. Note 
that DEA has been proven an effective tool for evaluating the relative 
efficiency of peer DMUs when multiple performance measures are present. 
DEA identifies an efficient frontier (tradeoff curve) along with efficiency 
scores for all DMUs. Benchmarking is a process of defining valid measures 
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of performance comparison among peer DMUs, using them to determine the 
relative positions of the peer DMUs and, ultimately, establishing a standard 
of excellence. In that sense, DEA can be regarded as a benchmarking tool, 
because the frontier identified can be regarded as an empirical standard of 
excellence. However, when a new DMU outperforms the identified efficient 
frontier, a new frontier is generated by DEA. As a result, we do not have the 
same benchmark for other new DMUs. i.e., the original DEA method needs 
to be modified as a multi-criteria performance benchmarking tool. 

The current chapter presents two DEA-based benchmarking models 
where the identified efficient frontier (benchmark) remains the same during 
the benchmarking process. One is called the variable-benchmark model 
where each DMU under benchmarking is allowed to choose a portion of the 
benchmark frontier so that the benchmarking performance of the DMU is 
characterized in the most favorable light. The other is called the fixed- 
benchmark model where each DMU is benchmarked against the fixed 
components from the benchmark frontier. The two DEA-based 
benchmarking are applied to a large Canadian bank (thereafter, CBANK) in 
measuring the effectiveness of the service delivery configuration. 

There are many DEA studies on banking performance. For example, 
Sherman and Gold (1985) published the first significant DEA bank analysis 
and started what turned out to be a long list of DEA applications to banking 
from several different angles (Paradi, Vela and Yang, 2004). Sherman and 
Ladino (1995) reported that a use of DEA in the restructuring process of the 
33 branches of a U S .  bank led to an annual savings of over $6 million. Oral 
and Yolalan (1990) introduced a DEA model that forced each of 20 branches 
in a sample to compare itself with the global leader - a Turkish bank. 

According to the Canadian Bankers Association, the Canadian banking 
industry includes 16 domestic banks, 31 foreign bank subsidiaries and 21 
foreign bank branches operating in Canada. In total, these institutions 
manage over $1.7 trillion in assets. Technology innovation is the most 
important factor contributing to the dramatic changes taking place in 
Canada's financial services marketplace. Canada's bank financial groups 
have led the way in providing Canadians with many new ways to access 
financial services. Canadians have embraced debit cards, ABMs, telephone 
banking, the Internet and hand-held wireless devices. Advances in 
technology continue to revolutionize the industry, breaking down geographic 
barriers and permitting customers to access financial services from virtually 
anywhere, at any time. In recent years, Canada's banks have demonstrated a 
consistent performance, with profits rising significantly from 1995 to 1997. 

The rest of the chapter is organized as follows. The next two sections 
introduce our DEA-based benchmarking models developed in Zhu (2002) 
and Cook, Seiford and Zhu (2004). We demonstrate how to use the software 
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for DEA benchmarking models. The models are then applied to benchmark a 
set of e-branches against the best-practice of traditional branches. 
Concluding remarks are given in the last section. 

4.2. VARIABLE-BENCHMARK MODEL 

Let E* represent the set of benchmarks or the best-practice identified by 
DEA. Based upon the input-oriented CRS envelopment model, we have 

where a new observation is represented by DMUn"' with inputs x,Yv ( i  = 1, 
. . ., m) and outputs y y  (r = 1 ,  . . ., s). The superscript of CRS indicates that 
the benchmark frontier composed by benchmark DMUs in set E* exhibits 
CRS. 

Model (4.1) measures the performance of DMUn"" with respect to 
benchmark DMUs in set E' when outputs are fixed at their current levels. 
Similarly, based upon the output-oriented CRS envelopment model, we can 
have a model that measures the performance of DMUn"" in terms of outputs 
when inputs are fixed at their current levels. 

max CRS 

subiect to 

Theorem 4.1 6'Rs* = llzcRs*, where 6'''L'" is the optimal value to model 
(4.1) and T , ~ ~ ' '  is the optimal value to model (4.2). 

[Proof]: Suppose A; (j E E* ) is an optimal solution associated with 6'R"* 
in model (4.1). Now, let T"~." = 11 dcR'* , and A! = A*. SocRs* . Then T"~"* and 

. ,I.: are optimal in model (4.2). Thus, 6cR.s* = ll;cRs* ' 
Model (4.1) or (4.2) yields a benchmark for DMUnC"' . The ith input and 

the rth output for the benchmark can be expressed as 
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C A;x, (ith input) 

C /2:.yij (rth output) 

Note also that although the DMUs associated with set E* are given, the 
resulting benchmark may be different for each new DMU under evaluation. 
Because for each new DMU under evaluation, (4.3) may represent a 
different combination of DMUs associated with set E* . Thus, models (4.1) 
and (4.2) represent a variable-benchmark scenario. 

Theorem 4.2 
(i) GCR'* < 1 or z("~'* > 1 indicates that the performance of DMU,""" is 
dominated by the benchmark in (4.3). 
(ii) 6CR.Y' = 1 or zCRS* 

= 1 indicates that DMU"" achieved the same 
performance level of the benchmark in (4.3). 
(iii) GCRS* > 1 or zCRs* < 1 indicates that input savings or output surpluses 
exist in DMU,""'" when compared to the benchmark in (4.3). 

[Proof]: (i) and (ii) are obvious results in terms of DEA efficiency concept. 
Now, GCR'* > 1 indicates that DMUnc"' can increase its inputs to reach the 

benchmark. This in turn indicates that 6',xY* - 1 measures the input saving 
achieved by DMUn"". Similarly, T"~'* < 1 indicates that DMUne'" can 
decrease its outputs to reach the benchmark. This in turn indicates that 1 - 
z"R"* measures the output surplus achieved by DMUne" . 

Figure 4-1. Variable-benchmark Model 
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Figure 4-1 illustrates the three cases described in Theorem 4.2. ABC 
(A'B'C') represents the input (output) benchmark frontier. D, H and G (or D', 
H', and G') represent the new DMUs to be benchmarked against ABC (or 
A'B'C'). We have 6ERs* > 1 for DMU D (ziRs' < 1 for DMU D') indicating 
that DMU D can increase its input values by S F  while producing the same 
amount of outputs generated by the benchmark (DMU D' can decrease its 
output levels while using the same amount of input levels consumed by the 
benchmark). Thus, S F  > 1 is a measure of input savings achieved by 
DMU D and z y  < 1 is a measure of output surpluses achieved by DMU 
D'. 

For DMU G and DMU G', we have S:;:RS* = 1 and zr = 1 indicating 
that they achieve the same performance level of the benchmark and no input 
savings or output surpluses exist. For DMU H and DMU H', we have S F  
< 1 and z:fs* > 1 indicating that inefficiency exists in the performance of 
these two DMUs. 

Note that for example, in Figure 4-1, a convex combination of DMU A 
and DMU B is used as the benchmark for DMU D while a convex 
combination of DMU B and DMU C is used as the benchmark for DMU G. 
Thus, models (4.1) and (4.2) are called variable-benchmark models. 

From Theorem 4.2, we can define SCRS* - 1 or 1 - zCRS* as the 
performance gap between DMUnel'' and the benchmark. Based upon SCRs* 
or zCm , a ranking of the benchmarking performance can be obtained. 

It is likely that scale inefficiency may be allowed in the benchmarking. 
We therefore modify models (4.1) and (4.2) to incorporate scale inefficiency 
by assuming VRS. 

min 8 VRS 

subject to 
1 /Zixij < SvR.s~,Y'V 

isEt 

max z v''s 
subiect to 

Similar to Theorem 4.2, we have 
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Theorem 4.3 
(i) iYVRS* < 1 or zvRv > 1 indicates that the performance of DMUn"" is 
dominated by the benchmark in (4.3). 
(ii) iYVRay* = 1 or zVm = 1 indicates that DMUn"'" achieves the same 
performance level of the benchmark in (4.3). 
(iii) iYVR'* > 1 or zVRs' < 1 indicates that input savings or output surpluses 
exist in DMUn"" when compared to the benchmark in (4.3). 

Note that model (4.2) is always feasible, and model (4.1) is infeasible 
only if certain patterns of zero data are present (Zhu 1996). Thus, if we 
assume that all the data are positive, (4.1) is always feasible. However, 
unlike models (4.1) and (4.2), models (4.4) and (4.5) may be infeasible. 

[ case1 

Input-oriented benchmarking model is infeasible . The benchmarking performance is indicated by output 
surpluses 

I I Case 11 

Figure 4-2. Infeasibility of VRS Variable-benchmark Model 

Theorem 4.4 
(i) If model (4.4) is infeasible, then the output vector of DMUn'" dominates 
the output vector of the benchmark in (4.3). 
(ii) If model (4.5) is infeasible, then the input vector of DMUn"" dominates 
the input vector of the benchmark in (4.3). 
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[Proof]: The proof follows directly from the necessary and sufficient 
conditions for infeasibility in the super-efficiency DEA model provided in 
Seiford and Zhu (1999). 

The implication of the infeasibility associated with models (4.4) and (4.5) 
needs to be carefully examined. Consider Figure 4-2 where ABC represents 
the benchmark frontier. Models (4.4) and (4.5) yield finite optimal values for 
any DMUn" located below EC and to the right of EA. Model (4.4) is 
infeasible for DMUn" located above ray E"C and model (4.5) is infeasible 
for DMUn" located to the left of ray EVE. 

Both models (4.4) and (4.5) are infeasible for DMU"" located above EWE 
and to the left of ray EF. Note that if DMUn" is located above EWC, its 
output value is greater than the output value of any convex combinations of 
A, B and C. 

Note also that if DMUn" is located to the left of E'F, its input value is 
less than the input value of any convex combinations of A, B and C. 

Based upon Theorem 4.4 and Figure 4-2, we have four cases: 

Case I: When both models (4.4) and (4.5) are infeasible, this indicates that 
DMUn" has the smallest input level and the largest output level 
compared to the benchmark. Thus, both input savings and output 
surpluses exist in D M ! " .  

Case 11: When model (4.4) is infeasible and model (4.5) is feasible, the 
infeasibility of model (4.4) is caused by the fact that DMUn" has 
the largest output level compared to the benchmark. Thus, we use 
model (4.5) to characterize the output surpluses. 

Case 111: When model (4.5) is infeasible and model (4.4) is feasible, the 
infeasibility of model (4.5) is caused by the fact that DMUn" has 
the smallest input level compared to the benchmark. Thus, we use 
mode1 (4.4) to characterize the input savings. 

Case IV: When both models (4.4) and (4.5) are feasible, we use both of them 
to determine whether input savings and output surpluses exist. 

If we change the constraint C A, =1 to C A, 5 1 and C A, 2 1, then we 
obtain the NIRS and NDRS variable-benchmark models, respectively. 
Infeasibility may be associated with these two types of RTS frontiers, and 
we should apply the four cases discussed above. Table 4-1 summarizes the 
variable-benchmark models. 
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Table 4-1. Variable-benchmark Models 
Frontier Type Input-Oriented Output-Oriented 

min 8 Frontier max z 
subject to subject to 

CRS 1 2,xu I 8Fr0n'ier~~" 1 2,x, I x,?" 
jsE* jsE* 

1 2 . y .  > ynw C 2 . y  . > ZFrOntrery:" 
,&* rJ - ,&* - 
2, 2 0 , j ~  E* 2, ~ o , ~ E E *  

VRS Add 2 2 ,  = 1 
NIRS Add C 2 ,  5 1 
NDRS Add C 2 ,  2 1 

4.3. FIXED-BENCHMARK MODEL 

Although the benchmark frontier is given in the variable-benchmark 
models, a DMUn" under benchmarking has the freedom to choose a subset 
of benchmarks so that the performance of D M n m  can be characterized in 
the most favorable light. Situations when the same benchmark should be 
fixed are likely to occur. For example, the management may indicate that 
DMUs A and B in Figure 4-1 should be used as the fixed benchmark. i.e., 
DMU C in Figure 4-1 may not be used in constructing the benchmark. 

To address this situation, we turn to the multiplier models. For example, 
the input-oriented CRS multiplier model determines a set of referent best- 
practice DMUs represented by a set of binding constraints in optimality. Let 
set B = { DMU, : j E I, ) be the selected subset of benchmark set E* . i.e., 
I, c E* . Based upon the input-oriented CRS multiplier model, we have 

SRS* = max i p r  y? 
r=l 

subiect to 

By applying equalities in the constraints associated with benchmark 
DMUs, model (4.6) measures DMUn"'s performance against the 
benchmark constructed by set B. At optimality, some DMU, j e I,, may 
join the fixed-benchmark set if the associated constraints are binding. 

Note that model (4.6) may be infeasible. For example, the DMUs in set B 
may not fit into the same facet when they number greater than m+s-1, where 
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m is the number of inputs and s is the number of outputs. In this case, we 
need to adjust the set B. 

Three possible cases are associated with model (4.6): E''w > 1 indicating 
that DMU"" outperforms the benchmark; ZCRaS' = 1 indicating that 
DMUnc" achieves the same performance level of the benchmark; Z''Rs* < 1 
indicating that the benchmark outperforms DMUn"" . 

By applying RTS frontier type and model orientation, we obtain the fixed- 
benchmark models in Table 7-2 

Table 4-2. Fixed-benchmark Models 
Frontier Input-Oriented Output-Oriented 
Type 

max i p r y ?  + p 
In 

min Cvixyw + v 

CRS where p = 0 where v= 0 
VRS where p free where v free 
NIRS where p 5 0 where v 2 0 
NDRS where p 2 0 where v 5 0 

DMUnC'" is not included in the constraints of C:,,pry, - ~ ~ , v i x ,  + ,u 5 
0 ( j GI, ) (C::, vix, - z:, lpryri  + v 2 0 ( . j  6 I, )). However, other peer 
DMUs (( j 4 I, ) are included. 

The above models are used in Zhu (2001) in measuring quality of life and 
Zhu (2004) in evaluating purchasing bids. 

4.4. BENCHMARKING MODELS IN DEAFRONTIER 
SOFTWARE 

Zhu (2002) describes how these benchmarking models can be solved in 
Microsoft@ Excel ,and Excel Solver. Here, we demonstrate how these 
benchmarking models can be solved using the DEAFrontier software. 

To run the variable-benchmark models presented in Table 4.1, we need to 
set up the data sheets. Store the benchmarks in a sheet named "Benchmarks" 
and the DMUs under evaluation in a sheet named "DMUs". The format for 
these two sheets is the same as that shown in Figure 1-10. Then select the 
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Variable Benchmark Model menu item. You will be prompted with a form 
for selecting the model orientation and the frontier type as shown in Figure 
4-3. Note that if you select a frontier type other than CRS, the results may be 
infeasible. The benchmarking results are reported in the sheet 
"Benchmarking Results". 

Figure 4-3. Variable Benchmark Models in DEAFrontier 

To run the fixed-benchmark models presented in Table 4-3, we store the 
benchmarks in a sheet named "Benchmarks" and the DMUs under 
evaluation in a sheet named "DMUs ". Then select the Fixed-Benchmark 
Model menu item. You will be prompted with a form for selecting the model 
orientation and the frontier type. The results are reported in the "Efficiency 
Report" sheet. If the benchmarks are not properly selected, you will have 
infeasible results and need to adjust the benchmarks. 

4.5. APPLICATION TO BANK BRANCHES 

In the financial services industry worldwide, the traditional face-to-face 
customer contacts are being replaced by electronic points of contact to 
reduce the time and cost of processing an application for various products. 
To best respond to this new marketplace, the CBANK identified a need to 
conduct research into the design and delivery of financial services by the 
most efficient and effective means while meeting internal operational 
performance goals. CBANK created a set of 12 e-business branches 
(thereafter, e-branches') using a new banking concept intended to create 
customer convenience with more efficient platforms for performing 

' We code these e-branches as e l ,  e2, ..., e l 2  
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transactions. The e-branches are aimed at increasing the speed of service 
delivery and decreasing costs in significant proportions through branch 
operation automation via Internet, ATMs, telephone banking and other 
electronic means. From a business perspective, these e-branches are a result 
of application of technology toward the automation of business transactions 
and workflows (Kalakota and Whinston, 1997). 

I c - t e r  r e i s t i 3  
(e-branches) 

Happier bankers 

Lower costsflmproved profits 
Productivity 

Figure 4-4. The effect of e-business activities on banking performance 

Figure 4-4 presents the impact of e-business on banking performance. 
Based upon Harvey (1996), sales effectiveness/customer satisfaction leads to 
better relationships with a bank branch's current clients who are inclined to 
bring more of their business to it. This increases market share, as does the 
influx of new customers who hear about the branch's legendary levels of 
service. Increased share means that more transactions are being processed, 
presumably with the same amount of fixed cost. That, in turn, lowers unit 
cost and increases revenues, both of which lead to improved productivity 
and higher earnings. More earnings result in increases in the bonus pool, 
higher merit increases, and a higher stock price, which benefits all 
shareholders and the workforce. This leads to happier banks. We should not 
forget that the reverse of the cycle is also true. If a bank branch does not 
provide the level of service that people want, it will lose customers to the 
competition. Since the e-branches are in a new form of business and banking 
is done in very different ways, uncertainty surrounds the development of this 
new delivery model. 

Performing a benchmarking study is extremely critical to the CBANK in 
undertaking the e-business activities and to examine whether the e-branches 
enhance the productivity and sales effectiveness while reducing 
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expenditures. i.e., the CBANK wants to examine whether the e-business 
activities have a positive impact on the business cycle presented in Figure 3. 
Clearly productivity in this case is characterized by a number of measures 
including, labor, information technology investment, transactions, and 
others. 

We develop two DEA inputs: FTE (full time equivalent) counts which 
include sales, service, support and other staff, and operating expenses which 
include spending on stationary, communications, shortage & losses, business 
development, employee training, advertising & publications, computer costs, 
and others. 

Table 4-3. Transactions and Processing Time 
I Processing Time I 

There are two types of transactions: sales and service. We select seven 
transactions (DEA outputs) presented in Table 4-3 that account for over 90% 
of the volume of sales and service related work carried out. 

4.5.1 Identification of Benchmark frontier 

This section identifies the best practice frontier of traditional bank 
branches in each quarter from 1995 to 1996~. The identified best-practice in 
each quarter is later used as the benchmark frontier to evaluate the quarterly 
performance of e-branches. 

Table 4-3 reports the minimum and maximum process times for the seven 
transactions. The minimum and maximum process times are used as lower 
and upper bounds for output multipliers in the multiplier models to develop 
the following weight restrictions. 

Tran, Tran, 
1.475 I - I 5.929, 1 1.271 5 - I 47.568, 

Tran, Tran, 



Chapter 4. Benchmarking Models 

Tran, Tran, 
14.345 I - I 52.325,30.346 I - I 116.278, 

Tran, Tran, 

Tran, Tran, 
7.812 I - I 51.049, 8.576 I - I 53.667 

Tran, Tran, 

There are about 1200 traditional branches within the CBANK. We will 
identify the efficient ones in each quarter to use as a benchmark data set. 
Both CRS and VRS multiplier models in Table 1-2 with the above AR 
restrictions are applied to identify the quarterly best-practice frontier. 

4.5.2 Benchmarking the e-branches against the traditional 
branches 

We benchmark the 12 branches (e-branches) against the identified best- 
practice of traditional branches in each quarter from 1995 to 1996. The last 
quarter of 1996 is regarded as the "turning point", since the e-branches were 
created during the last quarter of 1996. Note that the best-practice of 
traditional branches was changing quarterly. Thus, we here capture a 
dynamic picture of the performance change of these 12 e-branches. 

The results from the CRS variable-benchmark model (4.1) indicate a 
dramatic performance change from the third quarter to the fourth quarter in 
1995 when the automation is implemented: all the e-branches outperform the 
best-practice of traditional branches. However, the performance of the e- 
branches decline into 1996. Based upon the optimal value to model (4.1) we 
classify the e-branches into four categories with respect to the performance 
change during 1996 (see Figure 4-5): 

The current study uses the real data from 1995 to 1996, since the CBANK had just started 
the service re-designing for the 12 branches. After that period, the CBANK had stopped 
the re-designing of these branches. 
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CRS Variable-benchmark 

. . . 

CRS Variable-benchmark 1 

I CRS Variable-benchmark 

CRS Variable-benchmark 

Figure 4-5. Representative performance change patterns when the e-branches are 
benchmarked against the traditional branches 
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(i) branches, el ,  e3, and e6 where the performance improves over 
the first three quarters of 1996 and then declines; 

(ii) branches e2, e5, e7, and e l2  where the performance improves 
from 9641 to 9642, then declines from 9642 to 9643, and then 
improves from 9643 to 9 6 ~ 4 ~ ;  

(iii) branches e4, e8, e9 and e l0  where performance improves from 
96Q 1 to 9642 and then declines; 

(iv) branches e l  1 where the performance declines from 96Q1 to 
96Q2, and then improves. 

Only 5 e-branches, in the second quarter of 1996, and 3 e-branches in the 
third quarter of 1996 outperformed the best-practice. i.e., the optimal value 
to model (4.1) - 6 y  is greater than one. The majority of the e-branches 
did not show performance improvement compared to the best-practice of 
traditional branches. 

Recall that model (4.1) assumes CRS, i.e., scale inefficiency is not 
allowed. We therefore turn to VRS models. Similar results are obtained. This 
indicates that scale is not a factor related to the productivity in the e- 
branches. 

Under the case of VRS (models (4.4) and (4.5)), no infeasibility occurs, 
because most of the e-branches are under-performing units compared to the 
benchmark, this indicates that most of the e-branches are of Case V in Figure 
4-2. 

4.5.3 Benchmarking within e-branches 

The previous analysis indicates that there was no productivity gain as a 
result of branch automation when the performance of e-branches is 
compared to the best-practice of traditional branches. Recall that the 12 e- 
branches were re-engineered from 12 existing traditional branches which 
were under-performing units compared to the best-practice in the first three 
quarters in 1995. Thus, it might be difficult for the newly established e- 
branches to close the performance gap between the best-practice and their 
predecessors. Therefore, we next study the performance change within the 
12 branches. i.e., we compare the e-branches to the best-practice of these 12 
branches before the automation. 

First, we compare the e-branches in each quarter of 1996 to the best- 
practice of e-branches in each quarter of 1995~. The results from models 
(4.1), (4.4) and (4.5) show that (i) when the best-practice of the e-branch 

9641 stands for the first quarter of 1996. 
The "e-branches" in 1995 are referred to the 12 branches before the automation. 
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predecessors in the first quarter of 1995 is used as the benchmark, most of 
the e-branches outperform the benchmark, although the performance of most 
e-branches declines into the last quarter of 1996, and (ii) under the 
assumption of VRS, two e-branch moved from Case I1 into Case IV 
described in Figure 4-2, indicating a productivity decline and most of the e- 
branches can be categorized by Case 111 in Figure 4-2. Only one e-branch in 
the second quarter of 1996 is of Case 1, representing the best scenario with 
lowest costs and highest performance. 

Overall, the performance of e-branches declines as the benchmark is 
changed from the first quarter to the last quarter of 1995~. 

Next, we assume each branch in each quarter of 1995 represents a branch. 
Since automation happened during the last quarter of 1995, we exclude the 
branches in that quarter from the identification of best-practice. Thus, we 
have 12 (branches) x 3 (quarters in 1995) = 36 branches. We then 
benchmark the e-branches in the last quarter of 1995 and in each quarter of 
1996 against the best practice of these 36 branches. 

In these 36 branches, eight branches, namely, e l  -95Q 1, e l  -95Q2, e3- 
95Q1, e5-95Q2, e6-95Q2, e5-95Q3, e6-95Q3, and e10-95Q3, are best- 
practice branches. These eight branches are used as benchmarks in model 
(4). In model (9), we select e5-95Q3, e695Q3, and e10-95Q3 as three fixed 
benchmarks, since they represent the best-practice right before the 
establishment of e-branches. 

Tables 4-4 and 4-5 report the benchmarking scores from models (4.1) and 
(4.6) respectively. These are optimal values to models (4) and (9). A larger 
value indicates a better performance. For example, under 96Q1 of Table 4-4, 
el  has a score of 2.1658 when e l  is compared to the best-practice of the 
traditional branches in the first quarter of 1996. This indicates that el  in the 
first quarter of 1996 outperformed the traditional branches. For e2, the 
corresponding benchmarking score is 0.3942, indicating that e2 was 
dominated by the traditional branches. 

Overall, the performance of these e-branches declines from the first 
quarter to the last quarter of 1996. 

When the variable-benchmark model is used, the benchmarking 
performance of e3, e6 and e9 constantly declines. The performance of e l  

However, as pointed by one reviewer, since the conversion to e-branches took place during 
the last quarter of 1995, this particular quarter may be tainted with the effects of the 
conversion. Also, not all the branches are converted in the same day. As a result, quarter 
totals include a mix of new and traditional branches. On the other hand, it is possible that 
these branches were already producing at a higher level during 1995, and therefore there 
were no noticeable changes once e-branch conversion took over. The one quarter 
performance jump can be due to the novelty aspect as customers would come and check 
things out. 
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which outperforms the best-practice improves during the first three quarters 
and then declines. Note that only one branch (el 1)'s performance declines, 
outperform the best-practice, and then declines. The remaining 7 branches 
show a performance improvement from the first to the second quarter of 
1996 and then show a constant performance decline with respect to the best- 
practice. 

When the fixed-benchmark model is used, as expected the benchmarking 
scores decrease, implying a worse performance with respect to the best- 
practice. The performance change of e l  and e l  1 remains the same patterns 
as those under the variable-benchmark model. The benchmarking 
performance of e3, e4, e6 and e8 constantly declines. The remaining 6 
branches show a performance improvement from the first to the second 
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quarter of 1996 and then show a constant performance decline with respect 
to the best-practice. 

Finally, we note that an additional factor may contribute to the dramatic 
performance improvement when the CBANK launched the e-branches in the 
last quarter of 1995. There were some additional staff employed by the e- 
branches that were not reported as they were under the balance sheet of the 
head office and not paid for by the e-branches. The CBANK phased out 
these unreported staff over the first two periods (the last quarter of 1995 and 
the first quarter of 1996). Thus, the number of staff in the last quarter of 
1995 and the first quarter of 1996 was understated. As a result, the resulting 
benchmarking scores should be decreased in the last quarter of 1995 and the 
first quarter of 1996. Such adjustment indicates that the performance change 
of e-branches does not move in a favorable direction. 

The above analysis indicates that the e-business activities (establishing the 
e-branches) do not lead to an increased productivity. This empirical finding 
helps the CBANK to further examine its current e-business options. 

4.6. CONCLUSIONS 

To aid the CBANK in undertaking e-business activities, the current study 
is directed at evaluating and benchmarking branch bank performance. Two 
DEA-based benchmarking models are developed to study the change in 
performance that branches undergo when moving from the old to the new 
structure where transactions are automated. The study reveals that e- 
branches (new structure) did not exhibit productivity gain when compared to 
both the best-practice of traditional branches and e-branches' predecessors. 
This finding allows the bank to examine its business options, and gain an 
understanding of what does not work well in terms of the makeup of new 
branches. This further can point to weaknesses and strengths in e-branch 
operations. The current study provides tools needed to monitor the 
performance change and further facilitates the development of the best 
strategic option for the organization with regard to branch makeup. 
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Chapter 5 

FACTOR SELECTION ISSUES IN BANK 
BRANCH PERFORMANCE 

5.1. INTRODUCTION 

Although many studies and applications have demonstrated the 
effectiveness of DEA, it remains that for large-scale problems, with many 
different factors or variables available, at least two impediments to effective 
implementation may still exist. First, it is recognized that a DEA analysis 
entails explicitly specifying a set of factors to be used in the model, and 
classified as to which will constitute outputs or results, and which are inputs 
or impacts. In many settings, however, it can be problematic to define the 
most appropriate of those factors to be integrated into the analysis (and their 
status as to input or output); as with conventional statistical analyses, many 
choices can exist. A second major element involves implementation, and has 
to do with management's own perceptions as to what constitutes good versus 
poor performance. If a methodology fails to uncover what management feels 
is best or worst practice, that methodology is unlikely to succeed as the 
measurement tool of choice. This is particularly the case in those settings 
such as banks, where established procedures are in place to formally track 
the activities of the DMUs (e.g., branches). 

In this chapter we examine how expert knowledge in the form of 
classification information can be incorporated within the DEA structure, to 
enhance performance measurement. It must be said initially that 
management perceptions as to good versus poor performance may or may 
not be enlightened. "Expert knowledge" may be nothing more than 
uninformed opinion or bias, and as such should not be brought to bear on 
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performance evaluation. In many cases, however, expeert opinion is in fact 
grounded in a solid knowledge of the situation at hand. 

Consider the example involving measuring the relative efficiencies of 
highway maintenance crews as discussed in Cook et al. (1990) and Cook and 
Zhu (2003). In the early stages of the development of the DEA model there, 
district geotechnical staff and maintenance supervisors were consulted 
regarding the work load of maintenance crews in the study area. From those 
discussions, a choice was made regarding appropriate inputs and outputs. 

In the preliminary analysis no provision was made for winter versus 
summer maintenance, with the result that maintenance crews (patrols) in the 
'snow belt' tended to all receive very low efficiency scores. It was 
management's conviction, however, that a number of those crews were in 
their words, efficient, arguing that the greater effort by those crews in the 
form of more frequent use of snow removal equipment, and application of 
road salting, needed to be taken into account. With this, it was realized that 
an output measure accounting for the winter factor was necessary. When this 
modification was incorporated, it indeed did occur that certain crews were, 
under the initial model, being unduly penalized in the absence of a proper 
definition of factors. 

This example serves to demonstrate that management opinion may not 
necessarily be given in the form of explicit identification of inputloutput 
factors, but rather is often expressed in a more global 'sense' of DMUs being 
efficient versus inefficient. In many circumstances, this form of expression 
of expertise can be a valuable input to the performance measurement 
exercise. 

Section 5.2 presents the problem setting for a particular DEA analysis 
undertaken in a major Canadian bank. With this setting as a backdrop, the 
remainder of the chapter sets out to describe a DEA model augmented by 
branch classification information. We argue that the latter is a form of expert 
knowledge that should be accounted for in any DEA analysis for such a 
performance measurement situation. In Section 5.3 we review various 
discriminant models that are applied in the aforementioned first stage. 
Section 5.4 discusses the broad structure of the expert-enhanced DEA 
model. As discussed above, we view the modeling of performance 
measurement as a two-stage process. In the first stage, a classification or 
discriminant model is used to designate the status (output or input) for each 
variable; in the second, the DEA analysis is performed, based on the variable 
designations chosen. In this first set of experiments, all variables are 
assumed to be flexible as to their input versus output status. An extensive 
simulation experiment is conducted in Section 5.5, using data supplied on 
200 bank branches, and classification data provided by branch consultants. 
Section 5.6 utilizes a particular discriminant model, and adds the feature that 
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certain of the variables are inflexible (i.e. are locked in from the beginning as 
inputs or as outputs). Outcomes from this resulting second set of 
experiments are presented. 

5.2. THE PROBLEM SETTING 

The current chapter documents a case analysis of performance 
measurement of branches within a major Canadian bank. The distinguishing 
feature of this application, in comparison to others in a similar setting, is the 
presence of an existing performance measurement system. As with many 
banks, this particular one employs branch consultants who closely monitor 
branch operations by collecting detailed time study information on each 
process. This leads to estimates of processing times that help consultants to 
classify branches into various categories as to their efficiency status. This 
existing procedure for classifying branches is inexact and not transparent. It 
combines both quantitative information based on time studies, as well as 
demographic (customer-base) data. Specifically, consultants will attempt to 
evaluate branches based upon their potential to perform. An example 
demographic parameter would be to percent of high value customers in their 
customer base. A large percentage of high value customers generally implies 
a potential for a higher than normal level of product sales, (e.g. mutual 
funds) in that branch. Such factors are part of the rationale for a final 
classification. 

Attempts to apply conventional DEA principles here met with some 
implementation difficulties. Essentially, the frontier branches arising from 
the DEA analysis in many instances do not coincide with the classification 
identified by branch consultants. In a pure operational efficiency sense, DEA 
results are an accurate portrayal of branch performance, at least from the 
perspective of technical efficiency. In a pragmatic sense, however, the 
analysis appears to be failing to capture those elements, many qualitative, 
that branch consultants take into account. 

Table 5-1. DEA Variables 
Variable I Description 
FTETOT I The sum of all full time employees (sales and service 

I positions) 
I RSP I The number of retirement savings olans sold I " .  

LOANTOT 
MOPC A 0  
MDPMTRF 
MWnMT TPn 

The total of all loans and mortgages 
The total of accounts opened 
The number of deposits and transfers 
The number nfwiihrlrawals and ~tndntes  
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Data for six operational variables were supplied for the study, as 
presented in Table 5- 1. 

These variables capture the business activity of branches. One difficulty 
of applying conventional DEA in this situation is defining the (input versus 
output) status of each of the supplied variables. One can claim that a variable 
such as total withdrawals and updates should be considered as an output in 
that it is a part of the branch's workload. However, if the strategy of the bank 
is sales oriented, then this variable may, in fact, create a deterrent to sales 
generation, thus representing a type of environmental input. Other variables 
such as mortgages and loans are clearly outputs, and no dispute exists as to 
their status. 

This performance measurement setting thus presents the challenge of 
combining two forms of data-quantitative data on a set of supplied variables, 
and qualitative data in the form of a classification of branches supplied by 
bank consultants. Appendix I presents a sample selected from a set of 200 
branches that have been classified as high or low in terms of performance. 
Since the current approach to performance measurement (and the qualitative 
factors that lead to that approach) appears in the form of a classification of 
the branches, the methodology proposed herein attempts to capture that 
information as well as the data provided in Table 5-1. As indicated above, 
we propose a two stage approach to performance measurement. In the first 
stage the current classification information is used to aid in designating the 
status (input versus output) of variables to be used in the DEA analysis. In 
the second stage, the resulting inputs and outputs are used to perform a DEA 
analysis leading to branch performance measures. To facilitate stage one, 
various discriminant tools are examined in the following section. 

These variables capture the business activity of branches. One difficulty 
of applying conventional DEA in this situation is defining the (input versus 
output) status of each of the supplied variables. Arguably one can claim that 
a variable such as total withdrawals and updates should be considered as an 
output in that it is a part of the branch's workload. However, if the strategy 
of the bank is sales oriented, then this variable may, in fact, create a deterrent 
to sales generation, thus representing a type of environmental input. Other 
variables such as mortgages and loans are clearly outputs, and no dispute 
exists as to their status. 

This performance measurement setting thus presents the challenge of 
combining two forms of data-quantitative data on a set of supplied variables, 
and qualitative data in the form of a classification of branches supplied by 
bank consultants. Appendix I presents a sample selected from a set of 200 
branches that have been classified as high or low in terms of performance. 
Since the current approach to performance measurement (and the qualitative 
factors that lead to that approach) appears in the form of a classification of 
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the branches, the methodology proposed herein attempts to capture that 
information as well as the data provided in Table 5-1. As indicated above, 
we propose a two stage approach to performance measurement. In the first 
stage the current classification information is used to aid in designating the 
status (input versus output) of variables to be used in the DEA analysis. In 
the second stage, the resulting inputs and outputs are used to perform a DEA 
analysis leading to branch performance measures. To facilitate stage one, 
various discriminant tools are examined in the following section. 

5.3. DISCRIMINANT MODELS 

As indicated above, the aim of this chapter is to demonstrate the use of 
discriminant tools to provide a link between expert knowledge in the form of 
classification information, and conventional quantitative data, thereby 
providing a format for both data sources in the conventional DEA structure. 
To facilitate the discussion in later sections, we provide here a brief review 
of some of the standard discriminant models that have been applied to our 
data. Specifically, we examine logistic regression (LR), multiple 
discriminant analysis (MDA), goal programming (GP), and integer goal 
programming (IGP). 

5.3.1 Logistic Regression 

The logistic regression (LR) technique, Kleinbaum (1994), analyzes the 
relationship between a categorical dependent (or response) variable, and a 
set of independent (or explanatory) variables. A principal model within LR 
is the Logit model, which has only two categories in the response variable - 
event A or non-A. 

To place the problem in a general framework, let R denote the random 
response variable of interest (in the present setting, the response corresponds 
to the categorization of n bank branches as high or low performers). For each 
branch k = 1, ..., n, let 2, = be a Q-dimensional vector of variables. 

Here, the by are the multipliers (regression coefficients) of the Q 
variables, z,, , and Pk denotes the probability that branch k will be classified 
as a high performer. The probability of the non-event (branch is a low 
performer) is then: 
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exp ( C %  q=l 'I z 4k ) 
E(Rk=O) =1- = I - P , .  

[ 1  +exp (CV q=l b Y z qk 11 

Therefore, we can state that 

E(Rk = 1) I E(Rk = 0) = P, l(1- P , )  =exp (xS=, bqzqk) . 
The fraction P, l ( 1 - 4 )  is called the odds ratio. Now, take the natural 

log of the odds ratio 

with limp,,,, Prob(Rk = 1) = 1 and limp,,,+, Prob(Rk = 1) = 0 .  L is 
called the logit, and hence the name logit model. Here Pq denotes the 
population regression coefficient of which bq is an estimate. 

5.3.2 Multiple Discriminant Analysis 

The basic purpose of multiple discriminant analysis (MDA) is to estimate 
the relationship between a single non-metric (categorical) dependent variable 
(groups), and a set of metric independent variables (predictors). MDA, 
which can classify two or more groups, identifies the areas where the 
greatest difference exists between the groups, derives a discriminant 
weighting coefficient for each variable to reflect these differences, and then 
assigns each individual to a group, using the weights and each individual's 
ratings on the characteristics. The ultimate goal in MDA is to predict to 
which group a new observation belongs. 

MDA is based on centroids and groups. It involves deriving the linear 
combination of the two (or more) independent variables that will 
discriminate best between the a priori defined groups. This is achieved by 
the statistical decision rule of maximizing the between-group variance, 
relative to the within-group variance. This relationship is expressed as the 
ratio of between-group to within-group variance. If the variance between is 
large relative to the variance within the groups, we say that the discriminant 
function separates the groups well. 

The test for the statistical significance of the discriminant function is a 
generalized measure of the distance between the groups centroids. This is 
done by comparing the distribution of the discriminant scores for the two 
groups. If the overlap in the distribution is small, the discriminant function 
separates the groups well. 
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5.3.3 Goal Programming Models 

Applications of linear goal programming-based approaches in 
discriminating between two groups of observations, have appeared in 
numerous publications, e.g. Mignona and Glover (1995). With GP we seek a 
hyperplane to separate two groups of points in the best possible way, 
regardless of whether or not they can be completely separated. See Glover 
(1990). 

Assume that the n bank branches have been grouped into two categories 
Gl,G2, where Gl represents branches classified as low performers, and G2, 
those considered as high performers. Freed and Glover (1986) present 
several variations of a goal programming model for discriminating between 
two groups. Stated in simple terms, the GP model is 

min z kkak 
k=l 

subject to: 

Here, the ar, are goal 

y=l 

ak 2 0, Vk; T,by unrestricted in sign. 

achievement variables, and T is a variable 
representing the threshold against which branch performance is compared. 

The goal is to minimize the weighted sum of deviations. In problems 
where it is especially important to correctly classify certain observations, 
those observations can be weighted by increasing the appropriate hk values 
in the objective function. 

5.3.4 IGP Models 

The integer programming formulation, where the objective is to minimize 
the number of misclassified points, can be stated as follows: 

min C y ,  
k=l  

subject to 
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q=l 

yk& {O,l), T, bq unrestricted in sign, 

where M is a large positive number, and the yk are binary variables used to 
count the number of violations. 

5.4. EMBEDDING EXPERT KNOWLEDGE IN THE 
ADDITIVE DEA MODEL 

Consider the situation in which management has provided an expert 
opinion in the form of a classification of DMUs into two principal groups - 
call them good and poor performers. We now wish to apply the principles of 
DEA to derive a measure of performance for each member of an entire set of 
DMUs, but in a way that embeds this classification information into the 
model structure. If one were to develop an expert system, an appropriate 
question to ask here would be 'what functional relationship among the 
available variables (e.g., sales, staff size, deposits, etc.), would provide a 
classification of the DMUs that most closely resemble management's 
classification?' Any expert system works essentially in this way. The 
assumption must be, of course, that this form of information does in fact 
constitute expertise, and that we actually do wish to create a model that can 
come as close as possible to replicating the expert's view of performance. 

In the context of DEA, an analogous interpretation of this idea is to pose 
the question as 'which variables should serve as outputs and which as inputs, 
such that the DEA analysis produces performance measures that are 
clustered in a way that best imitates management's classification?' Such a 
DEA model will then be a form of expert system performance measurement 
tool. The most basic method for embedding expert opinion into the DEA 
structure is a two-stage process. In the first stage, a classification model is 
applied to aid in choosing which variables to designate as outputs and which 
as inputs. In the second stage, the DEA model is applied to derive a 
performance measure for each DMU. The hypothesis is that the DEA scores, 
so derived, will be consistent with management's opinions. Specifically, 
when ranked, the scores will provide a clustering of the sample DMUs into 
two groups that imitate the groupings provided by the experts. In this 
chapter we set out to test this hypothesis. 

Discriminant techniques are particularly helpful in variable selection in 
this context as they: 

use the branch consultant's knowledge in terms of branch 
discrimination; and 
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do not depend upon prescribed variable orientations 
Some parameters are often not analyzed in a DEA analysis (e.g. 

environmental data, demography, fixed inputs . . . ), but may well have been 
part of management's mental model in classifying the branches. 
Discriminant techniques can assist in extracting classification knowledge, 
and use this information to select appropriate variables, by orienting them to 
produce results generally consistent with management's perceptions. In this 
way, the resulting DEA model incorporates a broad range of factors, both 
explicit, and implicit. 

Each discriminant technique (see discussion in the subsection to follow) 
computes a discriminant function (x i / ,  c, ) = y, , where each variable has a 
coefficient (or weight). Here, y, can be a probability (i.e., logistic 
regression), or a scalar (i.e., goal programming). The nature of yi is not 
particularly important, in that it is used only as a classification measure, 
based on a threshold (or cutoff value). This threshold determines if the 
observation i with the score y, belongs to group 1 or 2 (with two groups 
cases). 

The principal objective of the experiment carried out in this chapter is to 
provide an improved DEA model that utilizes branch consultants' judgment. 
We reiterate that in our particular case this judgment, or knowledge, is 
represented by the classification of a set of bank branches into two groups ... 
high and low performers. While the particular problem setting herein 
classifies branches via expert opinion, the same idea applies in situations 
where classification can arise in other ways (e.g. bankrupt versus non- 
bankrupt firms). The basic hypothesis is that the sign of a discriminant 
function coefficient can be used to determine if the corresponding variable 
should be considered as an input, or an output in a DEA model. This 
approach can be very useful when a DEA problem has flexible variables 
(variables that could be either inputs or outputs). 

One can put forward at least three reservations concerning this approach: 

1 .  Is the current application one in which there is flexibility concerning 
the status (output or input) of some of the candidate variables? 

In many applications, it is the case that variable status is well defined. 
There is generally no dispute, for example, as to the (input) status of branch 
staffin bank branch performance analysis. It has, however, been recognized 
in previous applications (see, e.g., the highway maintenance application of 
Cook et a1.(1991)), that it can be difficult to decide on the status of certain 
factors. For example, is the road surface condition variable in the highway 
maintenance problem, an environmental input variable that influences the 
amount of maintenance resources that need to be applied to the road 
network, or a discretionary output that reflects the quality of earlier 
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maintenance work done? In a bank setting, should one consider back office 
work (filing, etc.) as an output, reflecting the work carried out by the branch, 
or as an input that deters staff from performing perhaps more important 
duties? We, therefore, contend that there is sufficient scope for flexibility in 
many applications, including the current one, as to variable status. 

2. Should the branch consultants' knowledge base, pertaining to branch 
performance, be viewed as a level of expertise that is worthy of 
incorporation into a measurement model? 

There is no question that in some settings, management opinion as to 
performance status of a DMU can be misdirected. This may result when 
management is focused on only one component of an operation, and fails to 
take full consideration of all aspects of performance. We argue, however, 
that in the problem setting considered herein, branch consultant knowledge 
must be treated as being more than opinion. Rather, it should be seen as 
expert knowledge, on par with the type of expertise modeled in any expert 
system. Evaluation of branch performance by internal consultants is a 
common practice in most major banks. Typically, micro-level work-studies 
are conducted within a sample of branches, to establish some form of 
standards. There is usually, however, no transparent definition of the 
mechanisms whereby the performance status of the branch is derived. This is 
generally due to the attempt by the consultant to merge any computed 
quantitative evaluation with qualitative factors that capture the environment 
or context within which the branch is compelled to conduct its business. This 
context can include the demographic makeup of the customer base, such as 
the financial profile of the average customer, age, ethnic makeup, and so on. 

In most banks, there is seldom a single and definitive quantitative 
measure available as to the performance status of branches. Rather, the 
practice appears to be to classify branches into two or more groups on the 
basis of perceived levels of productivity. Arguably, incorporation of such 
information into a performance measurement model can serve to provide a 
more accurate representation of branch efficiency. As well, any model that 
builds on such information is more likely to succeed in being accepted 
internally. 

3.  There is no clear reason why the central tendency focus of 
discriminant models should lend itself to aid in variable selection for 
@ontier-based tools such as DEA. 

This position is difficult to dispute. It is the purpose of the experiments 
conducted herein, however, to provide evidence that, despite the obvious 
logic in this contention, these (central tendency) tools can, in certain 
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situations, improve DEA performance in the sense of creating scores that 
reflect the expert's view. 

The branch consultant's knowledge in the present setting is represented 
by a data set in which 200 bank branches are organized into two groups: 100 
high performing and 100 low performing branches. A sample of this data is 
provided in the appendix. For each branch, data have been provided as 
discussed previously. 

We do not attempt, in this particular instance, to reduce the number of 
variables by using a pre-screening process such as factor analysis or other 
statistical means. We are assuming that the branch consultants have selected 
the variables on which they wish to apply strategies, and that all of these 
variables have been deemed as important, and should, therefore, be retained. 
However, in many settings, such pre-screening would be essential. We 
assume here, as well, that all variables are flexible, and can be deemed as 
either inputs or outputs. This assumption is removed in the next section. 

5.4.1 Linking Discriminant Techniques and the Additive 
DEA Model 

In the additive DEA model of Charnes et al. (1985), the objective is to 
maximize the production of outputs for the minimum amount of inputs. This 
model has the advantage that the objective function is a summation of inputs 
and outputs (x Outputs- z Inputs). Recall that the formulation of the 
additive model is expressed by: 

max pY, - vX,, 
subject to: 

Thus, we can better understand the hypothesis stating that the selection of 
inputs and outputs can be based on the sign of the discriminant analysis 
coefficients. To see this, consider the logistic regression (LR) technique 
discussed earlier. Using the LR model of (5.1) the associated discriminating 
rule ca? be stated as follows: 

If P, I f',, then DMU, EG,, else DMU, E G, where P, is the LR 
threshold (usually 0.5). 

The LR function can be restated as 
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and LR rule can be divided into two inequalities 

k I I?,., DMU, E GI, (5.3a) 

k 2 P,, DMU, €G2 (5.3b) 

Note that the formulae (5.3a) and (5.4b) resemble those of the linear goal 
programming discriminant model discussed earlier. In that case, the logistic 
regression threshold plays the role of the goal programming threshold. Let us 
define the function p as the following linear combination: 

n 

Then, we can restate discriminant equations (5.3a) and (5.3b) 

1 
2 Rr , DMU, E G2 

[ + exp(-u,)l 
or equivalently as 

Notice that - In(1 / P, - 1) is the Cutoff Value 'T' for the LR model, 
when the function is linearized. 

In contrast with the linear goal programming model, the LR model does 
not use a large value M to re-classify the observations on the wrong side of 
the hyperplane. Therefore, we can say that the final formulation (5.4a),(5.4b) 
is similar to the linear goal programming model with the following 
assumptions: 

In solving LR model (5.1) (or GP model (5.2)), let Q, denote those 
variables q = 1, ...,Q for which b, < 0, and Q2 those for which b, > 0.  As 
well, use the notation 

p, =by, q&Q,, V, =- bq, 9&Q2. 

Y,, = zyk PQ~, xyk = zqk q ~ Q 2 .  

Then, the expression for u, = xf=, b,zqk can be represented by 
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in vector notation. 
Comparing this to the format for the additive DEA model given above, 

one can immediately see the rationale for choosing as outputs Yk, those 
variables in 2, which are assigned positive coefficients, and as inputs 
Xk , those that receive negative coefficients. 

In conclusion, with the additive DEA model it appears that the signs of 
the discriminant function (e.g., LR) coefficients can aid in determining the 
appropriate orientation of the variables: a positive coefficient indicates an 
output, and a negative coefficient, an input. 

We do not concern ourselves here with significance of variables in the 
usual sense, as we assume all variables are to be retained. 

5.4.2 Data transformation 

A new data set has been included in this study to be used with goal 
programming and integer linear programming computations. This data set is 
a transformation of the original data set that has been provided by the bank. 
It is a projection onto an arbitrary positive interval (100,200), resulting in 
every observation being measured on the same scale. This projection avoids 
the ill-conditioned matrix phenomenon when using goal programming or 
integer goal programming. The projected data set has been used in the 
experiment to compare the results produced by these two discriminant 
techniques. 

5.4.3 DEA measures 

The DEA software used for the experiments is IDEAS V5.1. This 
software computes different efficiency scores depending on the model 
(additive, input, output, CRS, VRS). This study uses IOTA and DELTA 
measures computed. IOTA is a Ratio Measure, while DELTA is a Distance 
Measure. 

Delta is a weighted aggregation of the differences between the observed 
and the projected points. If the observed point and the projected point are the 
same (efficient DMU), Delta will be zero. Delta is optimized for additive 
models. 
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5.5. THE SIMULATION EXPERIMENT 

5.5.1 Methodology 

We wish to test the claim that selecting the inputs and the outputs in a 
manner consistent with expert judgment, can actually improve the predictive 
capability of DEA models. The demonstration's aim will be to compare the 
DEA models thus improved with those not constructed with our method. The 
methodology consists of: (1) determining an average performance of the 
improved DEA models and, (2) comparing this average performance with 
the set of other DEA model's performances. The possible number of DEA 
models for a given type corresponds to the set of the possible combinations 
of variables; in our case, there are 728 DEA models (3 - 1). (It is noted that 
although in the current setting, only the 2 6  - 1 = 63 full variable 
combinations are of interest, we display results for all combinations here). 

The performance measure of quality that will be used to assess the expert 
DEA model, will be that model's ability to classify branches according to 
their DEA scores. A DEA model i will be considered as superior to model j, 
if model i properly classifies (consistent with management's judgment) more 
branches than is true of model j. 

The average performance computation will be based on the use of a 
statistical methodology. Its principle is to calculate a performance that is the 
average of at least 10 similar experiments' performances. These experiments 
are similar as they all use the same initial data set. Each experiment builds a 
predictive model by using 90% of this initial data set and then testing this 
model on the 10% left. These subsets are created randomly, and the result of 
each predictive model indicates the performance of the corresponding 
experiment. 

These experiments will also enable us to compare different techniques 
that help to define the inputs and outputs (i.e. LR, GP, IGP, MDA). 

Therefore, the methodology used for this experiment is divided into two 
phases: 

The analysis phase, composed of five sequential stages, creates 10 
predictive models using 10 analysis samples; 

The predictive phase tests these predictive models on 10 holdout 
samples. 

5.5.2 Estimating the Predictive Model 

The Random Sampling Stage (1) creates (randomly) 10 analysis and 10 
holdout samples, out of the initial branch data set. These samples are used by 
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the discriminant techniques through the remaining stages. The analysis 
samples have 180 observations each (90% of the branch data set), and the 
holdout samples have 20 observations each (10% of the branch data set). In 
each sample, half of its observations are classified as efficient, and the other 
half as inefficient to respect the initial proportions. 

During the Discriminant Techniques Stage (2), the selected tools (LR, 
GP, IGP, MDA) are applied to the analysis samples. The signs of the 
coefficients for each discriminant function found, determine a combination 
number used to retrieve a DEA score in the Matching DEA Scores Stage. 
See Stage 4 below. 

The DEA Combinatorial Process Stage (3) computes the DEA measure 
for every inputloutput combination (728 combinations) of each scenario. 
This process creates 10 sorted classification tables summarizing, for each 
combination, the best threshold and the number of properly classified 
observations. These classification tables are used in step (4) to find specific 
results indexed by a combination number obtained in step (2). 

The Matching DEA Scores Stage (4) builds other tables summarizing 
DEA scores by technique. It also ranks the results according to a position 
within the DEA classification table. 

The Classzjication Summary Table Stage (5) is the final stage before the 
interpretation of the analysis stage. It consolidates and summarizes the 
scores by averaging the results to obtain an average performance. 

Finally, the DEA Predictive ClassiJication Stage (6) (see next subsection) 
computes DEA scores on the holdout samples and classifies the 

200 observations by using the thresholds found in the analysis process 
and computed on only 180 observations. During this stage, similar 
classification tables are created. Unlike other statistical experiments that 
would use only the holdout sample, here we are using the entire data set. 

Table 5-2 summarizes the classification results for each discriminant 
technique. Each row indicates the average classification results. The first 
row, for example, displays the results computed when using logistic 
regression coefficient signs to determine inputs and outputs. The first 
column displays the average performance of the DEA models using these 
variable combinations to classify branches according to their DEA scores. 
The second column indicates the percentage of branches that are 
misclassified. The third column shows the average rank of this score within 
the DEA Classification Tables. The final column displays the number of 
properly classified DMUs in the holdout sample of 20 units. For example, 
the DEA Score of 136, in the first row, means that when using the logistic 
regression coefficients and the Delta measure (additive DEA score), 136 
branches out of 180 are properly classified on average, meaning that 24.4% 
of the branches are misclassified. This result is, on average, in the 78.5th 



108 Cook and Zhu 

position(out of 728) within the DEA Classification Table. The last row 
shows the best results; in this case it indicates that determining inputs and 
outputs with goal programming is the best method for computing DEA 
scores in terms of classifying the branches in the best manner (the best 
results are underlined). It is noted that rescaling the original data gives the 
same results when using goal programming. 

Table 5-2. Summarized DEA classification table (additive modellanalysis stage) 
Average results I Prop. Class (180) I %not class. I Ranking out of 728 

I I I 

I I I 

Inputdoutputs (GP) 1145.5 1 - 19.2 1 - 50 

Inputs/outputs (LR) 

Inputs/outputs (IGP) 1 128 1 28.9 1 149.5 
1 I I 

136 

GP (data resealed) 

I I I 

Inputdoutputs (MDA) 1 124 1 31.1 1 197 

24.4 

145.5 

IGP (data rescaled) 

Best results 1 145.5 1 19.2 1 50 

78.5 

5.5.3 Testing the predictive model 

19.2 

134.5 

The DEA Predictive Classification Stage is the second part of the 
methodology. The principle is to use the same combinations of inputs and 
outputs, and the same thresholds as those computed in the analysis part. This 
predictive process is divided into three steps. 

Step 1: The DEA Process computes the DEA scores for each possible 
combination of inputs and outputs (728 combinations). Note that we do not 
compute DEA scores on just the holdout samples, but on the entire data set 
composed of 200 branches. By using the thresholds and the coefficients 
computed in the previous part, we create 10 DEA classification tables. 

Step 2: The Matching DEA Scores Process is similar to the one 
applied during the analysis part. It consists of building one table per 
discriminant technique, indicating for each scenario the classification score 
that corresponds to the combination of inputs and outputs computed during 
the analysis phase. 

Step 3: The classification Summary Tables Process is the final stage 
that summarizes the measures for the 10 scenarios and the discriminant 
techniques into one table. 

- 50 

25.3 83 
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Table 5-3 shows the classification results obtained at the end of this 
process. Each row indicates the average classification results. The first row 
displays the results computed when using logistic regression coefficient 
signs to determine inputs and outputs. For example, the score of 160.5, in the 
second row, means that when using goal programming coefficients and the 
Delta measure (additive DEA score), 160.5 branches out of 200 are properly 
classified on average, which is similar to saying that 19.8% of the branches 
are misclassified. This result is, on average, in the 46.5th position (out of 
728) within the DEA Classification Table. The final two columns present the 
outcomes from the holdout sample of 20 DMUs. For example, using GP to 
select variables for the DEA analysis, the resulting DEA model properly 
classifies approximately 16 out of the 20 hold out branches. Again, it would 
appear that goal programming is the best technique for selecting variables 
for computing DEA scores, in that it classifies the branches in the best 
manner (the best results are underlined). Specifically, goal programming 
appears to be a favorable vehicle for incorporating expert opinions into the 
DEA framework. 

5.6. VARIABLES WITH IMPOSED INPUT AND 
OUTPUT STATUS 

The branch consultant knowledge used for these experiments is in the 
form of a classification of branches into two groups: the high and low 
performing branches. One can also take into account another type of 
information, namely predefined variable orientations. Indeed, in many cases, 
the branch consultants, when classifying branches, already know which 
variables are definitely inputs and which are outputs, versus those that can be 
considered as either inputs or outputs. It is important to consider this kind of 
information during the analysis. 

In our case, the branch consultants were requested to specify which 
variables they would consider as inputs and which as outputs. They defined 

With IGP rescaled 
With MDA 
Best results 

76 
76 
46.5 

149.5 
149.5 
160.5 

25.3 
25.3 
19.8 

13.7 
13 
16.3 

31.5 
35.0 
18.5 



110 Cook and Zhu 

FTETOT as being an input and RSP and LOANTOT as being outputs. They 
displayed no strong opinion about the remaining variables. We refer to these 
as flexible variables. 

Table 5-4. Variable predefined orientations 
Variable I Orientation I Description 
FTETOT I Input I The sum of all full-time employees (sales/service 

I positions 
RSP I Output I The number of retirement savings plans sold 

Therefore, this type of information can be incorporated into the models 
by matching the signs of the coefficients according to their predefined 
orientations. For instance, FTETOT is defined as an input, which means that 
its associated coefficient, within any discriminant model, should be negative. 
Similarly, an output variable indicates a positive coefficient. 

There is no convenient mechanism for adding this kind of constraint to 
models such as logistic regression or multiple discriminant analysis, whereas 
this can be done with goal programming models. Fortunately, as discovered 
earlier, goal programming provides results that are approximately on par 
with logistic regression. Hence, there is no sacrifice in discriminant power, 
by resorting to goal programming as the tool of choice. Therefore, adding 
sign restriction constraints to the previous goal programming structure (5.2) 
results in the following formulation: 

LOANTOT 
MOPCAO 
MDPMTRF 
MWDMUPD 

min hkak 
k=l  

subject to: 

Output 
Flexible 
Flexible 
Flexible 

by 2 0, q&Q-, 

where Q+ is that subset of factors q in (1, ...Q) which are to be designated 
as outputs, and Q- , those designated as inputs, In the current setting 

Q+ = {RSP,LOANTOT) Q- = (FTETOT). 

The total of all loans/mortgages 
The total of accounts opened 
The number of depositsltransfers 
The number of withdrawalshpdates 



Chapter 5. Factor Selection Issues in Bank Branch Performance 111 

The principle is to carry out the same experiments as those of the 
previous sections, but with three main differences: 

We use only one discriminant technique, goal programming, to 
determine the orientation of the flexible variables. 

Additional constraints are imposed in the model to take into account 
the fact that RST and LOANTOT are outputs, and that FTETOT is an input. 

The number of possible inputloutput combinations is reduced with 
three variable orientations now known; there are now 27 combinations. 

According to the branch consultant strategy, some input and output 
combinations will not be possible even if they are included in the 27 
remaining cases. Indeed, if one looks at Table 5-5, it can be seen that the 
first row indicates the combination #I35 that corresponds to the following 
variable combinations: one input (FTETOT), two outputs (RSP and 

Table 5-5. Additive DEA classification table for scenario #I 
Combination nos. 
Out of 728 

135 
115 
109 

InputIOutput 
Combination 

1 223 3 
1 221 3 
1221 1 

DEA 
Threshold 

239 
7561 
7711 

Nos. Of 
branches Prop. 
Class 
151 
150 
149 

Nos. Of Non 
Prop. Class 
Branches 
29 
30 
3 1 
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LOANTOT), with the other variables are not considered for the analysis. 
Recall that the strategy is to keep all variables within the analysis scope to be 
able later on to reduce inputs or increase outputs of the inefficient branches 
to bring them to the efficient frontier. Therefore, the ranking will be based 
on the remaining combinations. 

Table 5-5 displays for one of the ten scenarios (i.e. scenario #I), the input 
and output combinations and the classification results for each of the 27 
possible combinations. The values in this table are sorted, in descending 
order, according to the number of properly classified branches. The best 
DEA model (in terms of classification capability) is in first position, and the 
worst is in last position. Similar tables have been obtained for the other 
scenarios, but have not been displayed here. Each row of this table specifies: 

Its input and output combination number. 
Its input and output combination description. A value of 1 defines an 

input, a value of 2 an output, and a value of 3 that the variable is not 
included in the analysis. For instance, combination #lo9 indicates 

The computed DEA threshold to discriminate the branches. 
The number of properly classified branches (out of 180), using this 
input and output combination, and this DEA threshold; 
The number of non-properly classified branches. 

It is noted that combination #109, the goal programming optimal 
combination, ranks in 3rd place out of the 27 combinations considered. In 
addition, if we consider that, in accordance with bank consultants' strategy, 
we want to keep every variable in the analysis, combination #I09 is, in fact, 
in second position. Indeed, combination #I35 should be excluded from the 
analysis set since the remaining flexible variables are not included in the 
analysis (they are neither inputs nor outputs). 

The goal programming model presented above has been applied to each 
of the ten scenarios. The objective of this process is to determine 10 input 
and output combinations that will be used to find the corresponding DEA 
classification tables computed previously. 

Table 5-6 displays summaries of the experiments of the additive oriented 
DEA model. The ten-fold cross validation methodology has been used to 



Chapter 5. Factor Selection Issues in Bank Branch Performance 113 

compute an average performance for the restricted models. The table has 10 
rows, one for each subset of 180 branches. Each subset is used in the goal 
programming restricted model to find the inputloutput combination. In that 
case, combination #I09 is chosen for every scenario (it could be different for 
some of them). Each row, then, indicates the number of branches properly 
classified, and the percentage of branches not properly classified, when 
using the DEA scores computed by the model, (additive or input), that 
corresponds to the inputs and outputs defined by combination #109. The last 
column displays the ranking of each scenario, within the 27 sorted possible 
combinations (Table 5-5). Notice that the ranking does not exclude the 
scenarios with variables excluded (such as the scenario #135). 

In conclusion, restrictions imposed on the goal programming model 
multipliers, to express variable orientations predefined by bank consultants, 
provides better results, on average, than is true of the unrestricted DEA 
version. Recall that the average performance of the additive experiment gave 
145.5 branches properly classified while the average restricted result is 147.1 
branches properly classified. 

5.7. THE INPUT-ORIENTED MODEL 

We now examine the incorporation of classification data into the input- 
oriented radial model of Charnes et al. (1978). Recalling that the linearized 
form of this model is given by 



max pT< 

subject to: 

Cook and Zhu 

pTyj - v T x j  10 ,  all j 

pr,vi 2 0, all r, i, 
It is noted that one can equally write the objective function in the form 

max ,uT% -vTx(, ,  since vTX ,  is a constant by virtue of the first 
constraint in the above model. 

One can immediately see the connection with discriminant analysis here, 
wherein we designate what will be an output versus an input according to the 
signs of the coefficients of those variables in a discriminant model. 

A simulation experiment identical to that described above was applied to 
the radial (input-oriented) model. Table 5-7 is analogous to the earlier Table 
5-2. 

Table 5-7. Summarized DEA Cla 
Discriminant 
Technique used 

Inputs and Outputs selected with 
LR coefficient signs 

Inputs and Outputs selected with 
GP coefficient signs 

Inputs and Outputs selected with 
GP coefficient signs (Data 
Rescaled) 

Inputs and Outputs selected with 
ILP coefficient signs 

Inputs and Outputs selected with 
ILP coefficient signs (Data 
Rescaled) 

Inputs and Outputs selected with 
MDA coefficient signs 

Best Results 

Bcation Table (I 
Y of properly 
classified 
DMUs out of 
180 using DEA 
scores 
162 

156 

156 

146 

159 

144.5 

162 

1t1Analy sis) 
% of not 
properly 
classified D m s  

Position # out of 
728 sorted DEA 
combinations 
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In this case the LR model performs slightly better than the GP model as 
per Table 5-2 

The DEA Predictive Classification Stage is the second part of the 
methodology. The principle is to use the same combinations of inputs and 
outputs, and the same thresholds as those computed in the analysis part. This 
predictive process is divided into three steps. 

Table 5-8. Summarized DEA Clac 
Discriminant 
Technique used 

Inputs and Outputs selected with 
LR coefficient signs 

Inputs and Outputs selected with 
GP coefficient signs 

Inputs and Outputs selected with 
GP coefficient signs (Data 
Rescaled) 

Inputs and Outputs selected with 
ILP coefficient signs 

Inputs and Outputs selected with 
ILP coefficient signs (Data 
Rescaled) 

Inputs and Outputs selected with 
MDA coefficient signs 
Best Results 

fication Table (11 
# of properly 
classified 
DMUs out of 
180 using DEA 
scores 
182.5 

ueredictive) 
%of not 
properly 
classified DMUs 

Position # out of 
728 sorted DEA 
combinations 

Table 5-8 shows the classification results obtained at the end of this 
process. Each row indicates the average classification results. The first row 
displays the results computed when using logistic regression coefficient 
signs to determine inputs and outputs. For example, the score of 182.5, in the 
second row, means that when using logistic regression coefficients and the 
Theta measure (input-oriented DEA score), 182.5 branches out of 200 are 
properly classified on average, which is similar to saying that 8.8% of the 
branches are misclassified. This result is, on average, in the 26.5th position 
(out of 728) within the DEA Classification Table. Here, it would appear that 
logistic regression is the best technique for selecting variables for computing 
DEA scores, in that it classifies the branches in the best manner (the best 
results are underlined). It should be pointed out, however, that goal 
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programming appears to be nearly as favorable a vehicle for incorporating 
expert opinions into the DEA framework. 

Table 5-9 displays the best classification scores of the additive and input- 
oriented DEA model experiments, at the end of the analysis stages. It is 
useful to note that the input-oriented model gives better classification results 
than those of the additive model. It is clear, however, that both models 
perform very well when using our theory to select variables. Indeed, if we 
look at the additive DEA model, the best classification score ranks at the 5oth 
position within the 728 combinations, versus position 35 for the input- 
oriented model. 

Table 5-9. Comparison of Analysis Stage Results 
Comparison of the best DEA Classification Scores for the Additive and Input Oriented 
~ o d k l s  
at the end of the Analysis stages 

From this comparative table, we can say that for either model, when 
utilizing the variables from the best discriminant tool, the results outperform 
those corresponding to most of the random combinations of inputs and 
outputs. 

Additive DEA 
Model 

Input DEA Model 

Table 5-10. Comparison of Predictive Stage Results 
# of propedy classified % of non properly Position #within 728 

Position #within 728 
possible combinations 

# of propedy 
classified branches 
out of 180 

branches out of 200 classified branches possible combinations 
Additive 160.5 19.8% 46.5 

% of non properly 
classified branches 

145.5 

162 

DEA Model 
Invut DEA 182.5 

Table 5-10 displays the best classification scores of the additive and 
input-oriented DEA model experiments, at the end of the predictive stage. 
Here again, we can see that the classification results are impressive. 

19.2% 

10% 

Performance of Holdout Sample 
The models computed during the predictive stage have been applied to 

the entire set of 200 branches, instead of simply on the holdout sample of 20 
branches. Due to the relative efficiency nature of DEA, the desire was to 

50 

35.5 
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compare the improved DEA model with the basic one. However, to 
demonstrate the effectiveness of the idea, the results for the 20 branches in 
the 10 experiments were extracted and are displayed in Table 5- 1 1. 

Table 5-11. Classification of Holdout Samples Using Input DEA Models and Goal 
Programming Coefficient Signs to Select Inputs and Outputs 
Holdout Samples Threshold # of properly classified %of Not Properly 

DMUs Out Of 20 Using Classified DMUs - 
DEA Scores 

1 0.59213 16 20.0% 
2 0.58852 16 20.0% 
3 0.5661 17 15.0% 
4 0.56224 16 20.0% 
5 0.6749 17 15.0% 
6 0.60775 17 15.0% 
7 0.59785 15 25.0% 
8 0.59826 18 10.0% 
9 0.60775 19 5.0% 
10 0.4578 16 20.0% 
Average 16.7 16.5% 

The results show that on average 83.5% of the holdout DMUs are 
properly classified in the input-oriented model. 

Imposed Input and Output Status 
As in the case of the additive model, the radial input-oriented model was 

examined when a subset of the available variables is already preclassified as 
inputs or outputs. Following the same analysis as conducted previously, 
Table 5-12 displays the results. 

The format of this table is the same as described earlier. In conclusion, 
restrictions imposed on the goal programming model multipliers, to express 
variable orientations predefined by bank consultants, provides better results, 
on average, than is true of the unrestricted DEA version. Recall that the 
average performance of the input-oriented experiment gave 156 branches 
properly classified while the average restricted result is 164.5 branches 
properly classified. 

5.8. GP CONSTRAINT - ENHANCED DEA MODEL 

The model structures discussed above, build expert opinion into theJirst 
stage of the analysis, where classification models are applied to decide 
variable designation (inputs and output). In the second stage, a standard 
DEA model is used to derive performance scores for the DMUs. It can be 
argued that the performance measures can be enhanced by re-introducing the 
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expert's classification information directly into the second stage DEA 
structure itself. Specifically, we permit the expert to intervene in this stage, 
by imposing constraints on the DEA model that capture hisfher decisions. 
The hypothesis is that by integrating this additional knowledge into the 
model, the results will be more consistent with expert heuristics. 

Table 5-12. Input DEA Classification Table for Scenario #1 
Combination Invut & DEA # of propedy # of non properly 
# out of 728 O;tput Threshold classified branches classified branches 

Combination out of 180 using 
DEA scores 

135 12233 0.20576 179 1 

The approach will be to compare the results arising from this enhanced 
model, on which additional constraints have been imposed, with those from 
a comparable non-restricted model. Again, let G1 be the set of the high 
performing branches of the analysis sample (90 branches) and G2 be the set 
of 90 low performing branches. The DEA model is applied on the entire data 
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set of 200 branches, but we impose classification restrictions on a subset of 
the data set (1 80 branches). 

Reconsider problem (5.6), but where we desire to impose additional goal 
programming constraints to discriminate between the branches of the two 
groups G, and G2 , according to their respective DEA scores. Here, the 
DEA measure is defined by the ratio: uTq) / vTx,.  Consider then, the 
following integer goal programming model. 

min yi 

subject to: 

T unrestricted 
Let M, fi, and be the optimal values derived in this model. 
This model attempts, through the first two constraint sets (on G, and 

G2 ) to properly classify the members of G, and G, . The variables yi 
record the number of misclassified branches. 

This formulation is clearly nonlinear, and in real situations, with large 
data sets, deriving a solution can be computationally challenging. It can be 
important to avoid adding such nonlinear restrictions into the input oriented 
model. The purpose of the experiment herein is to compare three 
approaches: 
(1) The non-restricted input oriented model, expressed in its linear version; 
(2) The input oriented model, with nonlinear goal programming constraints 

added. The results computed by this enhanced DEA model takes into 
account expert opinion, expressed in a ratio form; 

(3) The input oriented model, with linear goal programming constraints 
added. Indeed, with this experiment, we wish to demonstrate that this 
can be a good approximation of the nonlinear version (i.e. ratio 
constraints). The performance of this DEA model will be compared with 
the two other cases, to determine if it can be used as a replacement for 
the nonlinear version, and if it is providing better results than a non- 
restricted model. 
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5.8.1 Imposing Nonlinear Goal Programming Constraints 
in an Input Oriented DEA Model 

The nonlinear problem presented above was solved, and the optimal 
values derived were inserted into the goal constraints, thereby transforming 
them into a linear form as follows (this holds, since the optimal values are 
now scalars): 

,uTy 2 ( F  + E - M ~ ~ ) v ~ x ,  i  E G, = {I ..go} 

p T ~ ~ ( F - ~ + ~ y i ) ~ T ~ ,  i~G~={91 . .180}  

These constraints are then added to the linear form of the input-oriented 
model: 

Table 5-1. 

Properly 
Classified 
Branches 

Properly 
Classified 

max ,uTY, 

subject to : 

vTx0 = 1 

p'y - v T x 5 0  

p T ~ t ( F + ~ - ~ j i ) v T x  i~G,={1. .90} 

p T ~ 5 ( ~ - ~ + ~ ~ i ) ~ T ~  i ~ ~ ~ = { 9 1 . . 1 8 0 )  

Summarize1 
Jnrestrictec 

0) 
44 

This three-stage process, applied to the bank data set, is similar to the 
previous experiment, and Table 5-13 summarizes the results of the ten 
restricted DEA models compared to the unrestricted DEA model. The last 
column demonstrates that, on average, the nonlinear restricted version of the 
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DEA model is properly classifying 189.9 branches out of 200 branches. If 
we compare this average performance with the unrestricted version, we 
recognize that it is doing better, both in terms of classification, and in terms 
of overall benchmarking. 

5.8.2 Imposing Linear Goal Programming Constraints in 
an Input Oriented DEA Model 

This case assumes that the following linear goal programming model can 
be used in place of the nonlinear formulation. Notice that the third set of 
constraints indicates that every DEA score must not exceed 1. In fact, even if 
we used the net profit oriented form as an approximation to the ratio form 
we still need to keep the original requirements of the input oriented model. 
Hence, we have imposed the DEA constraints into the goal programming 
model, to respect the nature of the DEA scores: 

min C yi 
subject to : 

pry  - v T x  -Myi 5 T - E  G2 =(91..180) (5.9) 

pTy  I v T x  

pT t a, vT 2 a, yi . (0,l) 

T unrestricted 
~ e t ~ ,  f i  and be the optimal values derived in this model, and 

consider the constrained DEA model 

max pT q, 
subject to : 

vTx0  = 1 

p T Y - v T X I 0  
(5.10) 

p T ~ - v T ~ 2 ? + a - ~ j i  ~ E G ,  ={1..90} 

Again, this process is similar to the one used with the additive 
formulation. The final stage computes the DEA model, and classifies the 
scores for each of the ten versions. Table 5-14 summarizes the results for the 
unrestricted version, and the ten restricted models. The last column is the 
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average of the ten restricted results, and gives an estimate of the performance 
we can have with this approximation. We can see that 188.8 out of 200 
branches are properly classified, while only 171 branches are properly 
classified with the unrestricted version. This average performance is very 
close to the nonlinear restricted performance (i.e. 189.9). Therefore, we can 
conclude that instead of using a nonlinear form for restricting an input 
oriented model, one can use its linear approximation, and get close results. 

Table 5-1 

7 
Threshold 
# Prop 
Classified 
Branches 
# non 
Prop 
Classified 
Branches 

5.9. SUMMARY 

.esults for the Input Restricted Experiment (Lin 

This chapter has examined the embedding of expert knowledge within the 
DEA model structure. The principal form that such information will take is a 
classification of a subset of DMUs into two or more groups. We examine 
only the case of two groups or classes here. It has been demonstrated that 
considering such information can result in DEA scores that are more in line 
with management's view of performance. 

Modifications of this idea can be executed, such as the imposition of sign 
restrictions on factor multipliers, arising from locking in such factors as 
either inputs/outputs. Finally, the DEA analysis can be further enhanced by 
requiring that those DMUs classified by management, obey that 
classification to the extent possible within the wider DEA analysis. 
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Chapter 6 

MULTICOMPONENT EFFICIENCY 
MEASUREMENT IN BANKING 

6.1. INTRODUCTION 

Banks have evolved over time from their traditional role as reactive 
monetary intermediaries, and service providers, toward a more general and 
proactive function as universal financial agents with a distinct sales culture. 
This new status has resulted in the introduction of a broad range of financial 
products to the market place. Under the Canadian Bank Act of 1991, it 
became legal for an institution to engage in a broad range of financial 
activities. Technology has contributed as well to the changes that banks are 
undergoing; a range of convenient customer access points has emerged such 
as ATMs (Automatic Teller Machines), debit cards, telephone- and PC 
banking, to name a few. 

Banks generate profits from two main sources -- (1) interest income, 
which captures the spread realized on loans and traditional activities, and (2) 
non-interest income from fees and financial services activities. While 
historically interest income was the principal source of profits for the bank, 
the importance of non-interest income has grown significantly over time. It 
is interesting to note that the profitability ratio, that is the profit as a 
percentage of assets, has increased dramatically since 1991. Specifically, for 
the period 1980-1990, the ratio ranged from 0.24% to 0.79%, with an 
average of 0.43%; the corresponding figures for the period 1991-1995 are 
0.59% to 1.90% with an average of 1.20%. This dramatic change has been 
due in part to the revised regulations in the Bank Act, and partially to 
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improved access to financial services, coupled with a more active sales 
orientation. 

Performance measurement, using tools such as Data Envelopment 
Analysis (DEA), as proposed by Charnes et al. (1978), has tended to 
concentrate on achieving a single measure for each member of a set of 
decision making units (DMUs). In most applications, a single measure of 
production or profit efficiency provided by the DEA methodology has been 
an adequate and useful means of comparing units and identifying best 
performance. This has been particularly true in the case of banks, where the 
primary candidates for DMUs are branches, and in their traditional setting, 
product and prices have tended to be undifferentiated. Numerous studies of 
bank-branch efficiency using DEA have been conducted over the past 15 
years - see, for instance, Charnes et al. (1990), Oral and Yolalan (1990), 
Schaffnit et al. (1997), Sherman and Gold (1985), and Sherman and Ladino 
(1995). 

There is now a desire to create value-added customer segments by 
identifying their specific needs. The new challenge is to optimize resource 
allocation, with most of the industry now allocating 60-80% of its human 
capital to customers and markets that represent less than 20% of its customer 
base. There is a growing need to view performance in a more dis-aggregated 
sense, paying specific attention to different components of the operation. 
These components include different classes of products or sales activities, 
such as mutual funds and mortgages, and different elements of service. By 
measuring a branch's performance on each of a set of such components, 
particular areas of strength and weakness can be identified and addressed, 
where necessary. 

In this chapter we present models for deriving aggregate measures of 
bank-branch performance, with accompanying component measures that 
make up that aggregate value. The technical difficulty surrounding the 
development of an appropriate model has to do with the presence of shared 
resources on the input side, and mechanisms for allocating such resources to 
the individual components. 

The idea of measuring efficiency relative to certain subprocesses or 
components of a DMU is not new. Fare and Grosskopf (l996), for example, 
look at a multistage process wherein intermediate products or outputs at one 
stage, can be both final products and inputs to later stages of production. 
Those authors are not explicitly interested in obtaining measures of 
efficiency at each stage, but rather are concerned with overall efficiency 
measurement, whereby the network structure of the intermediate activity 
explicitly enters into the model description. Hence, they are able to provide a 
better representation of the technology than would a 'black box' input and 
final output model. Another example is due to FLe and Primont (1984) and 
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involves the evaluation of efficiency of a set of multiplant firms as DMUs, 
while at the same time measuring the efficiency of plants within firms. 

These applications of multicomponent efficiency measurement do not 
involve shared resources as does the situation examined herein. The work of 
Beasley (1995) on separating teaching and research, most closely compares 
to the present application, although we show herein that our treatment of 
shared resources leads to a linear rather than a nonlinear model. Section 6.2 
modifies the conventional radial projection DEA model for bank-branch 
performance by providing a methodology for splitting shared inputs among 
the identified components. For development purposes, we concentrate on 
two specific components, namely service-specific and product-specific sales 
activities. The model structure used is based on the original CRS model of 
Charnes et al. (1978). An application is examined in Section 6.3. In Section 
6.4 we present an additive form of the multi-component model. Discussion 
and conclusions follow in Section 6.5. 

6.2. A MULTICOMPONENT PERFORMANCE 
MEASUREMENT MODEL 

With the increased emphasis on sales and the differentiation of products 
and customer segments, there is a need to provide a performance 
measurement tool with component-based information as part of the 
aggregate efficiency score. 

6.2.1 Multiple Functions and Shared Resources 

While one may wish to measure the performance of several components 
of the DMU, we will, for purposes of development in this chapter, assume 
that transactions can be separated into exactly two distinct classes: service 
and sales. It should be emphasized that this split is not always transparent; 
the opening of a mortgage loan would generally be classified as a "sales" 
transaction, although there are "service" activities that must be performed 
from time to time pertaining to that loan, such as loan renewal. Thus, a 
particular transaction may contain both sales and service components. Care 
should, therefore, be exercised in clearly delineating those activities that 
belong to each function. Furthermore, one would generally need to separate 
those sales activities that are volume related (and pertain to specific 
products), from those that involve the "selling" part of the sales activities. 
The latter would include reviewing customer portfolios, answering customer 
requests on various products, and so on. The former would involve the 
transaction tasks performed after the customer has chosen a particular 
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product. In summary, the selling aspect of sales does not relate to specific 
sales products while the transaction part of sales is product-specific. In this 
section we consider only those sales activities that are product or volume 
specific. We take up the non-volume related activities in a later section. 

For notational purposes, let (Y,!, Y,?) denote the sets of service and sales 
transactions, respectively, i.e. the two sets of outputs are 

On the input side, this split is more complex. Some resources can be 
designated as dedicated service inputs, some as dedicated to sales, and still 
others are shared by the two functions. If, for example, branch staff are 
classified as Sales, Service, and Support, we can, for illustrative purposes, 
assume that Support staff are shared by the two functions while the other two 
classes are dedicated. In some branches this distinction may be less clear 
than in others. Technology resources may as well be classified as shared. 

A schematic of the production process for a particular DMU is given in 
Figure 6- 1. 

Xi' 
Service 

I Branch j I 
xi" - \ 

X j" Sales 

Figure 6-1. Production Process for a DMUj with Shared Resources 

Here, x;, X; and X; denote 1,,12 and I.s-dimensional vectors of 
service dedicated-, sales dedicated-, and shared inputs, respectively. Some 
portion a, (0 < ol, 51) of the shared resource x;. is allocated to the service 
function of DMU j, with the remainder (1 - ai) being allocated to sales. In 
the model to be developed herein, ai is a decision variable to be set by the 
DMU. At least two difficulties arise in attempting to capture a measure of 
performance of the DMU on both service and sales functions within some 
overall efficiency measure. First, if one attempts to derive an overall 
measure of performance that somehow incorporates sales and service 
components, the importance of the components of X "  relative to one 
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another, and relative to the dedicated resources X' and x2 (as reflected in 
the v -vectors vl, v2 and v" ), may be different when considering the impact 
of X s  on Y1 as compared to its impact on y2. For example, consider the 
simple case of one staff type for each dedicated class ( X' = no. service staff, 
X 2 =  no. sales staff), and two resources, support staff and available 
technology, as shared inputs. One may argue that in evaluating service 
efficiency, technology is more important than support staff. As an example, 
a constraint such as v; 22v: might be imposed. On the other hand, if 
technology such as ATMs play a minor role in sales, then a constraint such 
as v; 10 .3~:  may be an accurate reflection of the importance of the two 
shared resources relative to one another. Clearly, these constraints are 
infeasible if imposed simultaneously. Moreover, even if this issue could be 
resolved, there would be no clear way of separating the resulting aggregate 
measure into separate sales and service indicators. 

x; 
Service 

X: / (1-ct)X; Sales 

Figure 6-2. Splitting Shared Resources 

A second difficulty arises if instead of developing an aggregate measure, 
one attempts to derive separate measures of performance relative to sales and 
service, with the intention of combining these separate measures into an 
aggregate score after the fact. The problem here is that the shared resources 
X" would need to be apportioned to these two functions in some manner 
consistent with their usage in creating the outputs of the functions. With any 
shared resources, however, branches do not generally maintain a record of 
the usage split at the function level. Consequently, a mechanism is needed 
to split shared resources across functions in some equitable manner. To 
motivate the development, reconsider Figure 6-1, but with the shared 
resources X;': allocated to the two functions according to proportionality 
variables, ai as depicted in Figure The issue pf how ai should be 
derived is discussed below. Let ... a,,") denote the column 
vector of proportionality variables, denote the column vector 
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(a,~:~, a, xi j,. . .aI x: )? . Further, we let (1 - a) X; denote the column 
vector ( ( 1 - a ~ ) x ~ , , ( 1 - a ~ ) x ~ , ,  ,..., ( ~ - a , ~ ) x ; ~ , ~  1' . 

6.2.2 The Aggregate Performance Measure 

From Figure 6-2 one can argue that since the total bundles of outputs Y,! 
and Y,? are produced from the inputs X),X,: and XJ, a measure of 
aggregate performance eq can be represented by: 

For this representation, the vectors of multipliers u h n d  v' would be 
determined in a DEA manner to be discussed below. The rationale for 
allowing for the possibility of different vectors v" and v" for the shared 
service and sales resources, respectively, is that the relative importance of 
the components of X V n  generating Y' may be different than their 
importance in generating Y2. This was discussed earlier. In this manner, we 
avoid the possibility of infeasibilities created by possibly conflicting 
restrictions on the multipliers vs. There is yet another rationale for 
permitting v" and vs2 to be different multiplier vectors. It can be argued 
that normally in a DEA analysis there is no clear connection between subsets 
of outputs and subsets of inputs. In this event, it is certainly the case that vs' 
and vS2 should be the same vectors since they pertain to the same inputs (for 
example, support staff). When a direct link can be made between such 
subsets of input and output bundles, however, one might then attempt to 
impose some form of linking constraints as discussed in earlier literature. 
We do this in the model discussed below. Such constraints may only be 
feasible if v"' and v " ~  are, in fact, permitted to be different vectors. 

6.2.3 Function-Specific Performance Measures 

From ey , performance measures for DMU j that capture service and 
sales efficiency would appear to be appropriately represented by e)  and e: , 
respectively, as defined by: 

and 



Chapter 6. Multicomponent EfJiciency Measurement in Banking 131 

Property 6.1 The aggregate performance measure eg is a convex 
combination of the service and sales measures. 

Specifically ey =bje:, + where p is the portion of all inputs 
utilized in ef. (applied to component), i.e. 

[v'x,; + VY1 (ax; )] 
p. = 

I [v1x,; + v.l (ax;) + v. ((1 - a ) ~ ; )  + v2x? ]  ' 

The aggregate measure is, therefore, a weighted average of the 
performance across the various functions of the organization, as one would 
intuitively expect. From this property it is seen that a DMU will be deemed 
efficient, if and only if it is efficient in both service and sales components. 
Again we point to the importance of separate vectors v"',vS2 being 
permitted in the aggregate measure (6.1). If v"l and v " ~  are forced to be the 
same in (6.1), yet are permitted to be different in (6.2) and (6.3), then no 
connection between the aggregate and function-specific measures, as per 
Property 1, can be made. 

6.2.4 Derivation of eg,ei, ef 

The defined measures are based upon proportionality variables a which 
will be treated as DMU-specific variables. Thus, it will be at the discretion 
of each DMU j to allocate XJ across the two functions. Furthermore, the 
model will make the necessary provisions to ensure that all three measures 
are appropriately scaled, specifically they will not exceed unity. 

Consider the following mathematical programming model: 
max e: 

subject to : 

e; 5 1 VJ 

1 e j  51, V J  

2 el < I, V J  

O i l q  ill, V i  

t d , ~ ~ ) ~ Q l  

(vl, v2, v"2 , v2) e 0, 

u ~ , u , ~ , v ~ , v ~ , v ~ , v ~  26, Vi, j 
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In this formulation, the objective is to maximize the aggregate efficiency 
rating for each DMU "ow, while ensuring that the function level ratings (for 
sales and service) do not exceed 1. We replace E by 6 here to denote the 
fact that an absolute lower bound 6 may be in effect. The sets R, and R2 
are assurance regions (see Thompson et al. 1990) defined by any restrictions 
imposed on the multipliers. Similar work was done by Beasley and Wong 
(1990). The set 0, may, for example, contain ratio constraints on the 
components pi and ,u; (the output multipliers), dictated by ranges on 
transaction processing times. The region R2 would be defined by any 
restrictions expressing the relative importance of the various inputs 
pertaining to their impacts on outputs. More will be said regarding such 
assurance regions later. In general, (6.4) is a constrained version of the 
original model of Charnes et al. (1978) wherein linking constraints that 
connect output and input bundles are present. 

6.2.5 An Alternative Formulation 

Model (6.4) can be reduced to a non-ratio format in the usual manner of 
Charnes and Cooper (1962), yielding: 

e: = m ax p'yI1 + ,u2yI2 
subject to: 

V'X; + v.'~ (ax: ) + vS2 ((1 - a)X: ) + v2 X: = 1 

Since ai is a decision variable, this problem is clearly nonlinear. If we 
make the change of variables v*' =avS1 and v"' = (1 -a )vS2 ,  then problem 
(6.5) reduces to the following form: 
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subject to: 

(p1,,u2)~R1,(~1,V11,052,~2)~fi2 

, U ~ , , U ~ , V ~ ' , V ~ ~  26 

qsl 2 q 6 ,  qsz 2(1 -ai)6 
The form of a, depends upon how SZ2 is structured. Clearly, if i-2, is 

the full real space, as is the case when no additional restrictions are imposed 
on the input multipliers, then (6.6) is a linear programming problem whose 
solution will immediately yield a solution to the nonlinear model (6.5). In 
the case that R2 is a proper subset of the real space, defined by restrictions 
on the input multipliers, then (6.6) may or may not be linear. We consider 
various types of restrictions on the vectors v ,  and their impact on the 
linearity of a , ,  hence model formulation (6.6). Again, we point out that this 
model is similar to that developed by Beasley (1995) for analyzing the 
efficiency of universities in terms of teaching and research. In that case the 
same vector v" was used for both functions (teaching and research), rather 
than allowing for different multipliers for vectors on the two components. 
As a result, Beasley's model does not have an LP equivalent. 

6.2.6 Types of Constraints in 0, 

1. Absolute bounds on the components of (v', v2, v"' ,vSZ). 
In the case of upper and lower bounds of the form 6,s v1! 5 6,, where 

e = l,2, s,, s,, , then R, will consist of linear restrictions since, for example, 
6,s v: 5 6, becomes ai6, 5 qS' 5 a& . 

2. Share of total virtual input occupied by a particular subset of 
inputs. 

Here, we might have constraints of the form 
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Again, such constraints are linear and do not result in nonlinear 
restrictions in a, . 

3. Ratio constraints 
Restrictions of the cone-ratio variety, see Charnes et al. (1990), may 

result in nonlinearities in a,, depending upon which components of the v - 
vectors are compared. Specifically, cone-ratio restrictions that do not 
involve v"l or vS2 will result in linear constraints in a,, for instance the 
cone-ratio restriction vl: / v i  2c can be rewritten as the linear constraint 

I vil 2cv2  Ratio constraints on the multipliers of the shared resources will 
render hi nonlinear; for example, restrictions of the form 

,,:'I 

'I - 2 c, 
v!l 

12 

are transformed to 

in order to take account of the sharing of resources between sales and service 
activities. 

6.2.7 Special Cases 

The extent to which both shared and dedicated resources exist can vary 
from one situation to another. There can be special circumstances where, for 
example, there are no dedicated resources and all resources are shared. This 
does not change the general structure of the constrained DEA model (6.4), 
nor the requirement that component measures must fall out of the results. 
One special case is worth noting, namely, when no shared resources are 
present, and only resources dedicated to the separate components are 
involved. In this situation, (6.4) is completely separable in the sense that one 
can derive the individual component measures el: and elf by two separate 
DEA analyses; one for sales and one for service. The overall aggregate 
measure eff is then a convex combination of these two measures. 

In the following section an application of this multi-component model to 
a set of bank branches is provided. Due to the presence of ratio constraints 
of this latter type in the example, the resulting model is nonlinear. In a 
practical setting with a large number of bank branches to evaluate, solving a 
quadratic programming problem for each would probably prove to be 
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problematic. A linear relaxation of this nonlinear model is discussed, and 
outputs from the example are presented. Such a relaxation would prove to be 
more tractable in the situation where many DMUs are present. 

6.3. AN APPLICATION 

The model presented herein evolved from an earlier conventional DEA 
study of branch efficiency in a major Canadian bank. A total of 
approximately 1300 branches was involved, with the aim of the study being 
to identify benchmark branches for purposes of establishing cost targets. 
While data on several hundred different transactions is available from bank 
records, thirteen of the major ones (some grouped) account for 
approximately 80% of branch workload, and were used as outputs in the 
analysis. The only inputs considered in that study were personnel counts. 
Time studies were conducted previously on a small sample of typical 
branches, and provide ranges on unit processing times for all transactions. 
These ranges were the basis for the cone-ratio constraints on output 
multipliers for the DEA runs performed. One result of the aforementioned 
study was that members of the set of branches identified as being efficient, 
were those that were primarily service oriented units-specifically those 
with low levels of activity on the sales side while being very efficient in 
terms of routine counter transactions. The clear desire of the organization 
was a methodology that could provide a measure of performance on both 
components as well as an overall efficiency score. In this way one can 
identify not only those branches that are underperforming, but also the 
component that is weakest. The model discussed in Section 2 was applied to 
a dataset of 20 branches out of the full set of bank branches. These were all 
chosen from one district. For purposes of illustration only, a subset of 
transaction types was chosen as outputs, and only personnel counts were 
used as inputs. The chosen input- and output measures used are summarized 
in Table 6- 1. 

Table 6-1. Input- and Output measuresused in an application of the model 
Inputs Outputs 
FSE # service staff MDP # counter level deposits 
FSA # sales staff MTR # transfers between accounts 
FSU # support staff RSP # retirement savings plan openings 
FOT # other staff MOR # mortgage accounts opened 

The relevant data for a one year period is displayed in Table 6-2. To 
provide for a realistic picture of branch performance, a number of 
restrictions were imposed: 
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Table 6-2. Branch Data for a selection of 20 bmk branches 
service outputs sales outputs inputs shared inputs 

DMU MDP 
0 1 2.873 
02 3.093 
03 1.857 
04 8.532 
05 4.304 
06 4.340 
07 4.640 
08 6.821 
09 4.709 
10 0.015 
11 8.532 
12 5.312 
13 3.643 
14 4.878 
15 4.109 
16 4.950 
17 6.389 
18 2.939 
19 6.184 

MTR 
1 A98 
1.226 
0.865 
3.290 
1.777 
0.110 
1.493 
3.243 
2.599 
0.037 
4.332 
2.7 18 
2.115 
3.010 
1.993 
2.950 
2.415 
1.377 
1.975 

RSP 
03.6 
05.9 
03.7 
04.8 
07.9 
00.5 
08.7 
07.4 
06.5 
00.6 
09.7 
03.5 
08.4 
05.9 
06.0 
05.3 
12.3 
09.0 
02.7 

MOR 
04.2 
09.7 
04.9 
12.2 
16.8 
00.9 
05.2 
11.0 
06.3 
02.9 
07.2 
03.5 
06.4 
06.0 
06.2 
04.7 
07.8 
04.3 
04.3 

FSE 
0.455 
0.942 
0.510 
1.239 
1.015 
0.883 
0.594 
0.815 
0.862 
0.000 
0.972 
0.035 
1.317 
0.610 
0.5 11 
0.719 
1.485 
0.528 
0.743 

FSU 
0.17 
1.88 
0.47 
1.13 
4.48 
3.61 
2.86 
2.99 
0.92 
5.45 
0.12 
0.42 
2.59 
0.54 
1.96 
1.17 
5.03 
0.39 
0.83 

FOT 
0.73 
1 .oo 
1.01 
0.10 
0.12 
0.33 
0.21 
0.16 
1.21 
1.55 
0.14 
0.3 1 
0.17 
0.12 
0.01 
0.49 
0.26 
0.13 
0.56 

Type I :  Ratio constraints on multipliers 
Ratio constraints of the form a l p q  /pv2 I b on output multipliers were 

imposed to reflect processing times. Ratio constraints on the shared input 
multipliers were applied to reflect the relative importance of the two inputs 
(support and other staff) that are split between sales and service. 

Type 2: Limitations on ai 
It is generally the case that some bounds need to be imposed on the 

fraction ai of shared resource i being allocated to service activities. For 
illustrative purposes the range 1 / 3 <ai I 2 / 3 was chosen. 

Type 3: Constraints on the ratios of total service inputs to total inputs. 
Here constraints are imposed to restrict the portion of virtual inputs being 

allocated to the service component. Recalling the definition of Pj in 
Property 1 ,  restrictions were imposed on the range over which Pi could 
vary. For present purposes the limits 1 / 3 1 Pi 1 2  / 3 were applied. While 
the same limits were used for all branches j in the example herein, it may be 
the case that different ranges would apply to different classes of branches. 
Large urban branches may allocate different mixes of resources to sales than 
small or mid-size branches. 
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6.3.1 Model Relaxation 

The model presented in the previous section is nonlinear in the presence 
of ratio constraints (Type 1) on shared input multipliers. Specifically, when 
we impose constraints a I vfl l v: 5 b, these take the form 

a, v;'a2 a2 
in the presence of the transformation discussed in Section 3.  To render 

the model more tractable, various linear relaxations are possible. One 
approach attempted was iterative. Specifically, in the first stage all ai are 
assumed to be equal for any given branch (i.e., ai = d ,  a single variable), 
and the resulting linear problem was solved to determine a starting solution. 
This yields an optimal solution (pi,;,,, v; , , ,~* ) . Fixing p = pil) and v = vilJ , 
the second stage derives a best set of 4 (3) relative to the constants p(?) 
and v;,); In subsequent stages one alternately fixes either a*(n)  or the pair 
(pin,,v(,,), and optimizes (6.4) on the other. One of the difficulties 
encountered with this method was that many iterations were required in 
order to converge to a solution that was reasonably close to the optimum. 

An alternative and somewhat more practical method was investigated. 
This amounted to choosing a grid of points in each ai range. In the present 
case, each of the two ai ranged from 0.25 to 0.75 and the grid of 5 values 
0.25, 0.35, 0.45, 0.65, 0.75 was used. Recall that a 1  is the percent of 
"support staff' allocated to service transactions and that a, represents the 
split of "other staff'. This resulted in 5x5=25 different combinations for 
( a 1 , a 2 >  . 

Given the relatively small sample of DMUs in this particular example (20 
DMUs), the problem can easily be treated directly in its nonlinear form, and 
was solved using a standard spreadsheet solver. 

6.3.2 Results 

A proper evaluation of data such as that in Table 6-2 is complicated by 
the fact that the sales component is a two-level process as discussed earlier. 
The ranges for average processing times, as reflected in the cone-ratio 
constraints imposed upon the output multipliers, pertain only to the second 
of these two levels, namely the transaction part of sales. These average 
times do not account for the level of effort required to transact the sale. This 
effort would involve activities such as interaction with customers, review of 
portfolios, etc. To compensate for the understated values of the pi 
components, one must either scale up these values, or adjust (downward) the 
resources (inputs) allotted to the sales component. The latter option 
becomes problematic in that the portion of sales resources not allocated to 
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the transaction part of sales is left as unassigned inputs (i.e., they appear to 
not contribute to any of the outputs). In the present situation, the former 
option of scaling up the sales output multipliers was chosen. The scaling 
factor y , defined as the ratio of the "Total Sales effort" to the "Transaction 
effort" was based on an estimate provided by the organization. The ranges 
provided for pu j ,  namely a l p u j  < b, were replaced by scaled ranges 
ya 5 p,j 5 yb . The resulting aggregate, service and sales efficiency scores 
are displayed in Table 6.3. It is noted that only one of the branches (#1 I), is 
efficient in the aggregate sense, that is in both sales and service. Clearly, 
branches may be efficient in one component only, such as is the case for 
branches #12 and #18. The respective a, and a, values are also shown. 

Table 6-3. Efficiency Scores and Optimal Split of Shared Resources 
DMU Aggregate Service Sales aI a 2  

a 1 2 
ek ek ek 

0 1 0.47972 0.52172 0.45354 0.72676 0.75000 
02 0.40499 0.17158 0.52749 0.75000 0.25000 
03 0.41946 0.23 162 0.50145 0.75000 0.25000 
04 0.74913 0.51905 0.91297 0.75000 0.64929 
05 0.54472 0.17250 0.54472 0.75000 0.75000 
06 0.14925 0.17663 0.03273 0.75000 0.66891 
07 0.47257 0.28014 0.55697 0.75000 0.75000 
08 0.58236 0.38787 0.70302 0.36427 0.29968 
09 0.41 178 0.36773 0.43 157 0.25000 0.55019 
10 0.07307 0.00570 0.09894 0.26281 0.68108 
11 1 1 1 0.75000 0.66891 
12 0.57384 1 0.29015 0.75000 0.74959 
13 0.40464 0.17685 0.53991 0.53334 0.75000 
14 0.70675 0.71811 0.70001 0.53334 0.75000 
15 0.49252 0.36720 0.55537 0.75000 0.75000 
16 0.44784 0.46087 0.43869 0.25000 0.54547 
17 0.36581 0.19350 0.45445 0.25000 0.72687 
18 0.85924 0.46010 1 0.25000 0.72687 
19 0.49243 0.52389 0.37181 0.72682 0.72188 
20 0.21444 0:26296 0.18235 0.72676 0.72224 
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6.4. MEASURING MULTI COMPONENT 
EFFICIENCY - AN ADDITIVE MODEL 

6.4.1 Addressing Some Shortcomings 

The model described above, when applied within the organization, did 
help to point to areas where inefficiency existed within branches, and aided 
in setting targets for improvements. Two suggestions from management for 
enhancement of performance measurement arose from this application. 

6.4.1.1 Non-Volume Related Activities 

The first issue has to do with the characterization of those activities 
surrounding the sales function. The sales function within the bank 
environment can be viewed as consisting of two sets of activities. The first 
set, and those examined in the previous sections, would be classified as 
volume-related activities. These activities consist of those tasks linked 
directly to sales products, after the decision to purchase has been made. 
These would include the filing of documents, preparation of certificates, etc. 
Such tasks are characterized by known time estimates, arrived at in the same 
manner as is the case for service transactions. 

The second set, the non-volume-related activities, may not be directly 
linked to any specific product. Such activities would include responding to 
customer queries, routine tasks such as reproduction of forms, reviewing 
customer portfolios, carrying out computer searches, and so on. Support 
costs for print materials, computer expenses, etc. would, as well, fall into this 
category. 

6.4.1.2 Providing a Fair Balance Between Sales and Service 
Performance Measures 

The model of the previous section, because of the form of the objective 
function, will often produce component measures e,; and ej  that differ from 
each other in an unreasonable way. Essentially, the model, in setting out to 
maximize the aggregate score e; will do so by maximizing one of the two 
component measures at the expense of the other. A suggestion raised by 
management was to attempt to derive measures with the idea of showing 
both sales and service performance in the best light. To address the above 
two concerns, an additive form of the DEA model was adopted. 
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6.4.2 The General Additive Model 

In the next subsection we develop a dual-component DEA model for 
evaluating both sales and transaction functions within bank branches. For 
purposes of that development, the Pareto-Koopmans, or additive model 
structure is exploited. While the additive model is seldom the structure of 
choice in most DEA analyses (one generally utilizes one of the radial 
models), it is demonstrated that it's structure is, in fact, a general framework 
containing the radial models as special cases. Specifically, any of the 
standard models are obtainable by way of constrained versions of the 
additive model. For development purposes herein, it is convenient to 
approach the standard models from this angle, rather than in the more 
conventional way. 

It is instructive to examine both dual and primal forms of the additive 
model: 

The Dual 

i r 

subject to: 

It is noted that we have chosen lower bounds on the multipliers (6.1~) 
and (6.7d) that are DMU-specific. This is usually referred to as the units 
invariant form of the model. The "dual" of (6.7a) is the model: 

The primal 

i r 

subject to : 

If we adopt the notation 
2 ei = ~-s;Ix~,,,$~ = I + S ~ I Y ~  (6.9) 
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and let 9, = 1 - ei,Fr = 4r - 1, model (6.8a)-(6.8e) becomes 
max Ce+C& (6.10a) 

i r 

subject to: 

This format is a particularly convenient way to view the additive model, 
as it exhibits an immediate connection to other models. This form is related 
to the "Russell Measure" as discussed in Fare and Love11 (1978). There, the 
objective function takes the form 

r 1 

r 

where 1,R are the numbers of inputs and outputs, respectively. Cooper et al. 
(1999) discuss several variations on the additive model, as does Thrall 
(1996). 

It is immediately clear that one can adopt a purely input oriented 
variation on the additive model concept, by setting $v  = 0 for all r, and 
replacing constraints (6. lob) and (6.10~) by 

C AjYrj ' Yro 
.i 

This type of structure is discussed in Zieschang (1984). In the section to 
follow we focus attention on the input oriented model. Futhermore, if we 
restrict the gi further by requiring that they all be equal, then we have a 
structure equivalent to the standard input oriented radial model of Charnes, 
Cooper and Rhodes (1978) (or at least Banker et al. (1984)). 

In the case that the input oriented approach is to be taken, in which case 
(6.1 la) and (6.1 1b) replace (6.10b) and (6.10~) in the primal problem 
(6.10a), the equivalent modification to the dual problem (6.7a) is to replace 
the lower bound on pr (constraint (6.7~) by pr 2 0. As with the Russell 
measure, an appropriate measure of performance in the input oriented 
additive model is 
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i=l i=l 

It is noted that in the restricted case where 8, = 8 for all i (the BCC 
radial model), R, = 8. In any event, it will be the case that 0 5 5 1, with 
R, = 1 if all 8, = 0; for example, in this case the pair (Yo,  X ) is on the 
frontier or an extension. 

Stated formally then, the pure input version of (6.10a)-(6.10e) is: 

i 

subject to : 

Thus, the additive model can be viewed as a flexible mechanism for 
capturing different aspects of efficiency. Admittedly, restricted versions of 
the model can fail to be comprehensive in the sense discussed by Cooper et 
al. (1999). Obviously, it will be true that restricting attention to the input side 
of the problem, for example, can mean that improper envelopment can 
occur, as is well known in the radial models. 

6.4.3 An Additive Model for Sales and Service Components 

The notation of the previous section will be used in the current model, 
but with the one addition, namely, to use two output multipliers ,u2' for the 
per unit processing times for volume-related and ,uZ2 for non-volume related 
portions of the sales outputs Y,?. We also chose in this second analysis to 
use the VRS DEA model, hence defined output variables ,u: and ,u: for 
service and sales components. 

An alternative to optimizing the aggregate efficiency measure as in the 
previous sections, is to attempt to optimize, in some manner, both the service 
measure 
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and sales measure' 

One approach is to minimize the maximum inefficiency, for example, we 
solve the goal programming problem. 

min d  

subject to : 

el@ I d ,  e2" l d 

In attempting to reduce the maximum inefficiency (d), the model has the 
tendency to equalize the sales and service performance measures if 
feasibility permits. In some respects this could be justified insofar as one can 
argue that a branch will, or should, give equal importance to all components 
of its business. It must be pointed out that additional restrictions may be 
imposed on the multipliers in (6.16) (e.g., assurance regions as per 
Thompson et al. (1990)). For example, the components of p1 would be 
related to one another through limits arising from branch time studies. For 
model development purposes in this section, however, we avoid applying 
specific additional restrictions. This permits us to obtain primal and dual 
efficiency measurement models, not tied to application-specific situations. 
The inclusion of these in the models is examined in the next section dealing 
with the application of the tools in a specific setting. 

1 2  
'1n the context of the VRS structure, we let p(, , pf, denote service and sales variables, 

respectively. 
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Formally, the dual form of the proposed model is given by (6.17). 
min d 

subject to : 

-V'X; -vJ1(aX;) +&,I i- ,u1: + d d2 0 

V'X; + vS'(aX;) - ,LL~ 0, Vj, 

-v2X,' -vS2((1 -a)x;) + p 2 1 ~ , 2  
+p22q2 + d 2 0  

v 2 x ;  +vj2((1 - a ) X ; ) - p 2 1 ~ 2  .I 

- p 2 2 ~ ;  - 'Ll: 2 0, Vj7 

v,! d2 1 /(x,' . I  Il I), Vi E I,, 

V; >l/(x?. I I2 [),Vi €I2, 

~ : ~ > l / ( x ~ . / I , ~ [ ) ,  V ~ E I , ~ ,  

V ~ ~ ~ I / ( X [ . ~ ~ I ) ,  ViEI,,  

,u;>O, V ~ E R ,  

2 0 ,  V ~ E  R, 

p y 2 0 ,  Vr€R,  

Note that we have introduced the lower bounds 1 /xl:. I I, 1, etc., to force 

O1d 11. Here, I I, I denotes the cardinality of the input set I,. 
To deal with the nonlinearity created by the products av" '  and 

(1 - a2vs2, introduce the change of variables T" = av" , and 7"' = (1- 
a ) v X  . 

Then, replace the two constraints v 2 l (  1 I 1) and v;' 
t 1 /(xi, 1 11, I )  by av;' > a l/(x;i. 1 I,s 1) and (1 - a ) vJ2 2 1 /(xi, 1 I,s 1 )  - 
a 1  /(xi, 1 I,. 1) . 

It is the case that constraints will be imposed on the a,; 
specifically, the percent of any resource that can be allocated to the service 
component will be required to be within some interval, namely 

Lf. Ia, I L;. 
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Model (6.17) can now be rewritten in the form: 

subject to : 
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The dual of this problem is given by 

C s , ! l ( x ;  1 I ,  ~ ) + x s : l ( x i ~  I I ,  1) 
i d ,  id, 

subject to : 

C A ~ X ;  - A ~ + , x l ~  + s: 0 ,  i E 11, 
.i 

C ~ X ;  - A , ' + ~ X ~ ~  +s;'5OY i E I r ,  
.i 

- - - - 
Letting of1 = sl1 1 xi',, ei2 = s,? 1 x i ,  o ~ ~ ~ I  = S; 1 x:), OiS2 = s;, I x iJ ,  problem 

(6.19) can be written as 
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subject to : 

A;+l+ /Zn:, = 1, 

- ~ ~ / I I , I + @ ~ / I I , I + ~ , ) - ~ ; ~ O ,  
- - 

y; ,y,? ,A; ,~,6i1,6i220.  

It can be seen that (6.20) is a direct generalization of (6.13). The 
equivalent of the R, measure given in (6.12) is Z,, = 1 - e,. 

It must be noted, of course that e, =e, (the objective function value of 
(6.18)) is the maximum of the two components el0, e2(, , as per (6.2) and 
(6.3). the separate sales and service measures would fall out as part of the 
analysis. 

6.5. APPLICATION TO BANK BRANCHES 

To demonstrate the application of the additive structure, we again examine 
data on a sample of branches, with somewhat different outputs. Data on 
twenty branches is displayed in Table 6.4. The outputs chosen were: 

Service: 
TOTEMU - total number of menu account transactions 
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VISA - number of Visa cash advances 
CAD - number of commercial deposit transactions 

Sales: 
RSP - number of RSP account openings 
MORT - number of mortgages transacted 
BPL - number of variable rate consumer loans transacted 

In the current example, inputs were restricted to personnel only. We have 
not included other operating expenses such as computers, rent, etc. 
Specifically, the inputs were: 

Service: FSE -total number of full time equivalent service staff 
Sales: FSA -total number of full time equivalent sales staff 
Shared: FSU - total number of full time equivalent support staff 

FST -total number of full time equivalent "other" staff. 

Table 6-4. Sales and Service Outputs and Inputs 
Transit #TOTMENU VISA CAD RSP MORT BPL FSE FSA FSU FOT 
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As discussed earlier, in applying the models described herein, attention 
was paid to multiplier restrictions that reflect the relative weights to be 
placed on the various outputs. Specifically, the components of p' and p2' 
have been constrained in a ratio sense to obey time limits on branch 
transactions. For example, the specified time interval for a commercial 
deposit transaction is (in minutes) (1.2, 3.6); that for a VISA cash advance is 
(0.8, 2.5). To reflect these limits in the multiplierspi and A, we require 
0.8 < 1 1 - ,,, -2p/p3 i e. Similar restrictions have been applied to the components 

of p to accommodate the time limits on the transaction portion of sales 
outputs. 

Table 6-5. Results from Model 

No such detailed information was obtainable on the non-volume portion 
of the sales component. From interviews with branch consultants, it has been 
estimated that 30% to 50% of the sales effort lies with the non-volume 
activity, and the remainder is the transaction or volume-related work. In 

22 2 general, this would imply that $ I p yjlp21y~ I 1  for each branch k. To 
simplify matters, we choose here to take a more restricted view, and 

Var 

a, 

constrain the ratio for each product i to be in this range. Specifically, 
22 21 $ I p ~ y ~ l p , ? ' y ~  I 1, implying that $I pi /pi I 1 . 

Table 6-4 displays the data on all inputs and outputs for a sample of 20 
branches of the bank. The result from applying model (6. 18), (augmented by 
the multiplier restrictions discussed above), are shown in Table 6-5. Recall 

17 
0.25 

18 
0.75 

19 
0.75 

20 
0.25 

Average 
40.16% 

SDev. 
21.62% 



150 Cook and Zhu 

that d represents the maximum inefficiency associated with the two 
components (sales and service). The corresponding efficiency measures e,s 
(sales) and e, (service) are displayed. It is noted that d = 1 - min{e, ,e,). 
As noted earlier, this model tends to force e,, and e ,  together, and in a large 
percentage of the cases, the two measures are equal. 

We have not directly addressed the issue of an aggregate measure of 
efficiency which should be some combination of the two separate measures. 
Arguably, this aggregate measure e, should be some average of the 
component scores. A reasonable candidate for this might be of the form 
e, = pe, + (1 - p ) e ,  where P is the proportion of total resources 
consumed by the service component (dedicated service inputs together with 
shared inputs). 

In the application of model (6.1 8), the splitting variables a, and a, have 
each been restricted to the range .25 I a I .75. This range would need to be 
established by branch consultants in much the same manner that ranges on 
output multiplies might be set by way of time study estimates. 

6.6. CONCLUSIONS 

This chapter has examined model structures for dealing with multi- 
component efficiency measurement in a banking environment. The 
conventional DEA approach, as applied in bank related studies, has tended to 
concentrate on a single measure of performance for the DMU. Very often, 
however, there are multiple components or sub units within the DMU whose 
individual performance is required. The model provided herein provides a 
mechanism for developing multi-component measures. 
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Chapter 7 

DEA AND MULTICRITERIA DECISION 
MODELING 

7.1. INTRODUCTION 

Many real world problems involve evaluating a set of alternatives or 
choices when multiple criteria need to be considered. The general DEA 
model is an example of a special type of multiple criteria decision model 
(MCDM) framework, wherein both outputs and inputs are present. A 
number of the chapters that follow examine various types of problems, all of 
which fall within the generic MCDM framework. Typically, such problems 
can involve both quantitative and qualitative data. In the current chapter we 
examine the usage of the DEA methodology to tackle such problems. 

A linear composite index is a simple, straightforward and intuitive means 
for evaluating alternatives in the presence of multiple criteria. In notational 
terms, if vU represents the score or evaluation of alternative i with respect 
to criterion j and W, is the weight or importance associated with criterion 
j ,  then the linear composite index is given by R, = x j W j v i j .  If, for 
example, the alternatives are proposed capital projects to be undertaken by 
an organization, then the {R~}, provide a basis for judging which projects 
should be initiated and which should not. 

This type of approach has been adopted in the past in several research 
areas and contexts. See, for example, the expectancy-value class of attitude 
models in Fishbein (1961) and Rosenberg (1956), the composite criterion 
model proposed by Srinivasan and Shocker (1973), and investigated by 
Parker and Srinivasan (1976), and additive utility function examined in 
Keeney and Raiffa (1976), and Hwang and Yoon (1981). The Analytic 
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Hierarchy Process (Saaty, 1980) is another well known example of the use of 
linear composite indices for evaluating alternatives. In this setting, the 
parameters (vqIi j  and (w,} are the normalized principal eigenvectors of 
appropriate ratio-scale matrices which represent pairwise comparisons of 
criteria importance and alternatives' relative standings with respect to each 
criterion. 

In the usual setting, the criteria j are quantitative or numerical. 
Specifically, each alternative i is assigned a cardinal value vi j .  For 
example, the vij might be cost figures. Even when a criterion is inherently 
qualitative, such as the flavor of a product expressed on a ten point scale, the 
scale values vij are treated as if they were numerical in the same sense as 
cost data. (See, for example, the AHP model of Saaty (1980)). Korhonen and 
Wallenius (1990) examine the use of qualitative data in a linear decision 
model context. AHP techniques are used to estimate the linear coefficients of 
this model. 

There are two major weaknesses with traditional approaches to MCDM. 
First, as indicated above, qualitative data in the form of rank positions is 
commonly treated as if it possessed quantitative meaning. Second, these 
frameworks do not have a convenient mechanism for handling 
simultaneously, a mix of qualitative and quantitative factors. 

The models presented herein for dealing with MCDM structures is based 
on the DEA ideas of Charnes et al. (1978). Full details are provided in Cook 
and Kress (1991; 1994). In Section 7.2 we present brief descriptions of a 
number of case examples of problems involving multiple criteria. Section 
7.3 develops the relevant model structures for tackling such problems. 
Section 7.4 extends such structures to the situation where some alternatives 
may be examined only in terms of proper subsets of the full set of criteria. 
Section 7.5 presents concluding remarks. 

7.2. CASE EXAMPLES 

7.2.1 Evaluating Capital Construction Projects 

Many real world problems involve prioritizing a set of available 
alternatives, generally for the purpose of isolating a best or most desirable 
subset. A common example and possibly the most familiar one is that 
involving the ranking and selection of a set of fundable projects in a 
constrained budget situation. While any number of real world problem 
situations can be cited, we use two site specific project prioritization 
examples to illustrate the model presented later. 
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Prioritizing capital construction projects in a hydroelectric utility company 
The annual capital construction program in a large hydroelectric 

company spans a broad range of initiatives - construction of new buildings, 
installation of power lines, upgrading of generating stations, and so on. 
These initiatives address many different needs and must be evaluated along 
several dimensions. The relevant dimensions include: 

installation cost - this factor varies widely from project to project 
and may be a single-year or multiple-year value. 
operating cost - this is an estimate of the ongoing cost of 
maintaining or operating the project or structure; 
environmental impact - this factor is intended to capture the overall 
contribution to or detraction from the environment (air quality, 
ground water damage, and so on); 
contribution to new energy sources and supply - some initiatives 
such as the installation of power lines can improve energy 
availability; 
impact on existing or ongoing initiatives - certain projects may have 
an effect on existing programs, either in a positive or negative sense; 
senior management support - this factor needs to be considered as it 
can influence the ongoing maintenance of the outcome from the 
project. 

The first two criteria are clearly quantitative in the sense that a monetary 
figure, perhaps estimated, can be supplied for each initiative considered. The 
latter four criteria would, however, in most cases be considered as 
qualitative. A criterion for which precise quantitative (numerical) values can 
be obtained is called a cardinal criterion. A criterion which is qualitative in 
nature and according to which only a rank ordering of preferences can be 
obtained, is called an ordinal criterion. Specifically, in terms of a factor such 
as senior management support, one can only rank order or categorize the 
initiatives. For example, in the case of the hydroelectric company examined, 
five rank positions or categories are allowed for each ordinal criterion. In 
their terminology, these categories are designated 

1. extremely importantlvalued; 
2. very importantlvalued; 
3.  average irnportancelvalued; 
4. minor importancelvalued; 
5. not importantlvalued. 

Therefore, each potential project is assigned a rank position from 1 to 5. 
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Having ranked the projects according to each criterion, the next step is to 
prioritize the criteria themselves. While in some environments the criteria 
may only be ordinally ranked (see Cook and Kress, 1991), in other cases 
numerical criteria weights are specified. The latter practice is common in 
situations where multiple criteria decision making is a recurring exercise. In 
a case such as the present one where prioritizing of a capital construction 
program is an annual exercise, it is very common for management-specified 
weights to be available. Furthermore, such weights are closely scrutinized 
and are re-evaluated on an ongoing basis as situations and priorities evolve. 

What is also an important consideration in such decision making 
environments is the clearness or preciseness with which projects can be 
categorized in the case of an ordinal criterion. It may, for example, be easier 
to distinguish or discriminate between projects relative to environmental 
impact (criterion 3) than is the case for a criterion such as the impact on 
existing programs (criterion 5). This means that one would like to attach 
more relevance to the rank positioning in the case of the former criterion 
than in the latter. While existing composite index models do not directly 
account for criteria clearness, the methodology proposed herein contains 
such a facility. 

Rehabilitation and system expansion decisions in highway network 
management 

Transportation and highway departments everywhere are responsible for 
the management of the various highway networks under their jurisdictions. 
Highway capital expenditures fall into two general categories, namely 
rehabilitation of existing pavement and construction of new links (system 
expansion). 

Many models exist which attempt to address the rehabilitation side of the 
highway management problem. These formal models have all attempted to 
view the problem of resource allocation as a single criteria problem, using an 
aggregate measure such as the PC1 (Pavement Condition Index). Linear 
programming models, Markov models and various ranking procedures are 
some examples of the model structures used. 

In regard to system expansion initiatives less formal attempts have been 
made. Although it has long been recognized that multiple criteria should be 
considered, final decisions on initiatives to be funded have generally been 
made in terms of some single factor such as 'capacity', deemed to be the 
most important. 

In a recent study by the transportation department under consideration, a 
number of different factors or criteria were cited as being pertinent to 
decisions on priorities for funding. This realization has therefore raised the 
question as to how these various factors can be incorporated into a priority 
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setting framework. The model described later has been tested on a large 
sample of data. 

In the case of rehabilitation the set of criteria identified in the study are: 

PC1 (pavement condition index); 
Present traffic; 
Predicted future traffic; 
Percent commercial vehicles; 
Accident level; 
Vehicle operating costs; 
Rider disruption. 

In all but the last two criteria, numerical data is available. Since roads 
can only be ranked according to rider disruption, and since data on vehicle 
operating costs can be difficult to obtain, the latter two criteria are ordinal. 
For system expansion at least four major factors have been identified which 
should enter the priority setting exercise: 

Level of service (service is measured in six categories: 
A,B,C,D,E,F); 
Volume/capacity ratio; 
Accident prevention; 
Long run operating cost. 

Here again some criteria are ordinal, while others are numerical. 
In the case of both rehabilitation and system expansion there is general 

agreement regarding the relative importance of criteria. Specifically, it is 
believed that PC1 is more important that the percent of commercial vehicles, 
which is more important than rider disruption, and so on. There is a further 
concern and belief that some criteria are 'clearer' than others. For example, 
it is easier to distinguish between the importance of the various rehabilitation 
sections on the basis of rider disruption than is the case for vehicle operating 
cost. The multidimensional nature of the problem is evident, as is the fact 
that both numerical and ordinal data are involved. 

In the sections to follow we propose an extension to the usual composite 
index methodology. The main feature of this extension is that it is able to 
accommodate both ordinal and cardinal criteria. At the same time, it derives 
weights corresponding to the different rank positions or categories 
mentioned above, and addresses directly the issue of criteria clearness (or 
fuzziness). The ultimate outcome from the model is a logical means of 
deriving an aggregate or composite index for each alternative, hence a 
prioritization of the complete set of alternatives. 
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7.2.2 Selecting Automated Test Equipment at Northern 
Telecom 

Northern Telecom (now called Nortel) had by the early 1990s established 
itself as a major player in the worldwide manufacture of digital switching 
equipment and related products that comprise the heart of telephone 
networks around the world. In 1990, discussion began between management 
and engineers in three divisions of Northern Telecom, involving the 
development of a new generation of circuit board testing equipment called 
Automated Test Equipment (ATE). New test equipment that was both 
efficient and flexible was needed to accommodate rapid changes in circuit 
design and customer demands for increasingly high levels of operating 
reliability. 

In the past, test equipment had been developed in-house by one division, 
then bought and modified by other divisions for their needs. All three 
divisions produced different mixes of products and circuit boards. 
Maturation of the telecommunication industry towards common 
communication standards, however, has presented the opportunity for the 
organization to seek commonality of equipment between divisions, and to 
explore co-development with suppliers as well as off-the-shelf purchase of 
new equipment. 

The emerging vision of the ATE is that of a system comprised of a 
sophisticated combination of hardware and software offering flexibility in 
the types and volumes of circuit packs that it could interface, and the 
conditions that could be simulated to test each board. It was felt that any 
specifications should be presented in a very loose fashion, and be of a 
qualitative rather than strictly quantitative nature. This would encourage 
individual prospective suppliers to exercise creativity in the deployment of 
their organization's unique capabilities. For example, the organization was 
interested in incorporating artificial intelligence software into the design. To 
operationalize this into a specification, a description was provided as to what 
this software would do, where it would be used and the user interface. 
Individual vendors would respond with what they believed they could offer 
in the way of making this vision a reality. Thus, two vendors could have two 
different designs but with equal merit. By allowing suppliers to promote 
their own unique technical capabilities, it was believed that the overall 
design would be improved in the long run. Northern Telecom, therefore, 
realized that they would have to be flexible in the definition and evaluation 
of design criteria. 

In evaluating vendors, experience in the telephone industry and 
familiarity with ATE technology were highly valued. These two general 
criteria were used to informally reduce a field of many potential suppliers 
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down to a manageable set, each member of which would be asked to submit 
proposals for participation in a co- development relationship. All three 
divisions had preferred vendors that they felt should be considered, but all 
agreed that invited vendors should have some experience in the industry to 
facilitate communication between technical personnel. Northern Telecom 
believed it could bring extensive skills and experience to any relationship, 
but required that all potential vendors have familiarity with the building of 
integrated test systems. 

Six alternatives were considered; three involved in-house development, 
and three with other companies. Each organization submitted detailed 
information about their approach to each specification. In addition, they 
were asked to cost their proposals as best they could, given the preliminary 
nature of the discussions. Each of the three divisions involved in the ATE 
team then evaluated the information received. To establish a common value 
system, the evaluation team had developed a decision matrix which 
accommodated most of the issues of interest to all three of the divisions. A 
total of 40 criteria covered the spectrum of issues deemed important by the 
three divisions. 

The decision matrix in Table 7-1 spells out the "rating" of each supplier 
along each criterion. A 5-point Likert scale was used to specify the level of 
importance in each case. 

The methodology available at that time for combining outcomes across 
the criteria involved the supplying of "weights" as shown. 

To derive an overall rating for each of the six alternatives (vendors), a 
weighted total score was computed. For alternative No. 1, for example, the 
rating (on a one to five scale) for criterion No. 1 is 4, for criterion No. 2 is 5, 
etc. The criteria weights are: criterion No. 1 - 8; criterion No. 2 - 10; . .. . 
Thus, the overall score for alternative No. 1 is 8 x 4 + 10 x 5 + = 869. 
The overall scores resulting from the data of Table 7-1 are 

Vendor # Rating 
1 869 
2 876 
3 1213 
4 1360 
5 1103 
6 1059 

Therefore, the relative ranking of the vendors 
applying this weighting method to the data 
N o . 4 > N o . 3 > N o . 5 >  N o . 6 > N o . 2 > N o . l .  

that one achieves by 
of Table 7-1 are 
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Table 7-1. Evaluation Matrix 
Evaluation Supplier 

Criteria # Weights 1 2 3 4 5 6  

Note: The specific nature of the criteria are not specified for reasons of confidentiality. 

This "supplied weighting" approach is one that is commonly adopted in 
such multiple criteria problems. While this approach is simple to understand, 
it possesses at least two major weaknesses. First, one is forced to specify 
explicitly the numerical sizes of weights, using some arbitrarily chosen 
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scale. This exercise is very much at the whim of the decision maker(s), even 
when it is based on the very best advice and information from the relevant 
players at the time. In the case at hand, the weights were arrived at through a 
process which, although democratic and consensus seeking in nature, 
resulted in widely varying opinions as to what the relative sizes of the 
weights should be. In this regard, the extent to which the weights reflect a 
true "consensus" may be less than satisfactory. 

The second, and even more disturbing aspect of the methodology used to 
rank the vendors, has to do with the treatment of the 5 point ordinal scale on 
which vendors are ranked as if it were a cardinal (interval) scale. 
Specifically, the overall score for a vendor was taken as a weighted sum of 
the rank positions which that vendor achieved. This, however, is generally 
not the intention of these rank positions. For example, in stating that vendor 
A is preferred to vendor B, and B is preferred to C (according to some 
criterion), and assigning them rank positions 4, 3 and 2 respectively, should 
not carry with it the connotation that "A is twice as importance as C" (i.e. 
having a rating of 4 versus a rating of 2). The numbers 4, 3 and 2 should be 
interpreted as rank positions only, and not as absolute worths of A,B and C 
according to the criterion in question. 

In the section to follow, we present an alternative approach for achieving 
a prioritization of the vendors, where only ordinal or ranking data is 
available. The approach makes use of the ordinal scales only in that sense, as 
distinct from the above described procedure which explicitly uses the 
numbered rating data. Furthermore, the approach does not require that the 
decision maker explicitly specify criteria weights, but rather that only the 
relative importance of the criteria be given. 

7.2.3 Country Risk Evaluation 

Country risk evaluation is an important component of the investment and 
capital budgeting decisions of international investors. The increased 
internationalization of investment in recent decades has raised the exposure 
of investors to the risks associated with events in many different countries. 
Consequently, substantial resources are now being devoted to country risk 
analysis by international investors who realize the importance of identifying, 
evaluating, and managing the uniquely international risks they face. For 
many international investors, profits and opportunities for growth have 
increasingly come to depend on how effectively they cope with international 
uncertainties. 

In response to increased internationalization of investment, formal 
country risk evaluation is becoming "firmly established as one of the 
essential international business functions" (Ting, 1988). For example, 
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country risk assessment units have been established by most large financial 
institutions and by more than one-third of the companies contacted in a 
recent survey (Kobrin, 1986). However, typically the unit's approach is 
neither formal nor analytical, and may often involve no more than a checklist 
or the outline of a country study. Few companies appear to have developed a 
systematic method of assessing the uniquely international risks facing their 
various projects. 

While assessing and quantifying the impact of the country risks facing a 
MNCs (Multinational Corporations) operations presents a formidable 
problem, it is an essential component of a MNCs capital budgeting 
decisions. For example, to determine either the appropriate risk-adjusted 
discount rate to use or how to correctly adjust expected cash flows, it is 
necessary to evaluate and quantify the relevant country risk factors, and to 
monitor their changes over time (see Ang and Lai (1990), and Goddard 
(1990)). Then capital budgeting decisions can directly utilize comparable 
evaluations of country risk, and minimize the subjective component of the 
risk assessment process. Further, a formal, analytical approach facilitates 
testing to determine which approach and what factors have been the most 
successful in correctly assessing the importance of the various risk criteria 
(see Blask, 1978; Ting, 1988). 

There are two broad categories of risk faced by international investors: 
"macrosociopolitica1" risks and "micro" risks. The potential impact of both 
macro- and micro-risks vary among specific projects, firms and industries. 
The extent to which a MNC's projects are vulnerable to these risks depends 
as much, if not more, on the specific nature of the project as on the condition 
of the host country. For this reason it is clearly inappropriate to adopt a 
single country risk measure for all MNCs, or for all projects of a particular 
MNC, in a specific country (this point is the central theme of Ting (1988) 
and, as he notes, the most common criticism of country risk-rating services). 

The value of a project's "assets in place" are largely independent of the 
MNC's future investment strategy and of the project's future ownership 
structure. The value of a project's "real options" however follows from the 
MNC's discretionary exercise of options to exploit positive NPV investment 
opportunities. These real options are largely firm specific (requiring, for 
example, the MNC's idiosyncratic technical skills or manufacturing 
processes) and hence their value is highly dependent on both the MNC's 
future investment strategy and on the project's future ownership structure. 
Therefore, Phillips-Patrick (1989, 1990) argues that a project whose value 
consists primarily of "assets in place" is subject to greater country risk than a 
project whose value consists mainly of "real options." 

Currently, the most popular quantitative approach to country risk 
evaluation applies fixed (often equal) weights to the risk variables or criteria 
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employed. The approach developed in this chapter allows investors to rank 
the risk criteria themselves, according to both their importance and their 
relative clarity. This approach recognizes that the rankings of the criteria 
will, in general, vary from one investor to another, reflecting the 
heterogeneous nature of their projects. Since the investors' projects possess 
heterogeneous sensitivities to the various types of risk, they will, in general, 
rank the various criteria (risks) differently. This allows each investor to 
determine a different optimal set of criteria weights and hence, to obtain a 
different rating (and hence, ranking) of the riskiness of the countries 
evaluated, dependent upon the specific nature of their investment project. 

Cook and Hebner (1993), examine 14 criteria for evaluating risk. Data 
obtained from the Japanese Bond Research Institute was used as the basis for 
ranking 100 countries in terms of investment risk. The specific criteria 
employed were: 

i) 4' - social stability rating for country i . 
ii) Fj2 - political stability rating for country i . 
iii) Fj3 - consistency of policies rating for country i 
iv) Fj4 - industrialization rating for country i . 
v) Fj5 - economic problems rating. 

vi) F6 - fiscal policy rating. 
vii) Fj' - monetary policy rating. 
viii) F8 - growth potential. 
ix) F,' - susceptibility to war. 
x) F , 1 °  - international standing. 
xi) F" - balance of payments. 
xii) ci2 - debt servicing capacity. 
xiii) < I 3  - foreign investment policy. 
xiv) < I 4  - foreign exchange policy. 

In the section to follow a model structure is presented that can be utilized 
to tackle practical MCDM problems of the type discussed above. For further 
details on this model, see Cook and Kress (1996). 

7.3. THE MODEL 

Suppose N alternatives (for example, projects) are to be evaluated 
relative to a set of K, ordinal and K2 cardinal criteria. Denote these two 
sets of criteria as ORD and CARD, respectively. Thus, 

K, =I ORD I and K, = I CARD[. 
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For the k -th cardinal criterion, let ak(i) denote the value or worth 
associated with alternative i . As in the AHP caseN(Saaty (1980)), there is no 
loss of generality in assuming that the { ~ , ( i ) } , = ~  are normalized, that is 
x : a k  ( i )  = 1. Let Wk denote the supplied weight or importance 
associated with criterion k . Again without loss of generality, we assume 

Kl +K2 C Wk = l .  (7.1) 
k=l 

Now, in the case that only cardinal criteria are present, the composite 
index or aggregate rating corresponding to alternative i  is given by 
CkecAm Wkak ( i) .  Since the {ak (i)l i  are normalized, the term &ak ( i )  is 
the proportion of Wk credited to the i  -th alternative. 

For ordinal criteria k ,  there are no specified a,(i) - values. What is 
supplied is the rank position of the i -th alternative on the k -th criterion. In 
that regard, define 

[I if alternative i is ranked in t-th position 

dk,(i)  = { on criterion k, 

10 otherwise. 
To see how a composite index should be defined when both ordinal and 

cardinal criteria are present, we argue as follows: 

w; = s w , ,  (7.2) 

where 6 is a scaling parameter to be determined by the model below. Thus, 
the W; are simply scaled versions of the Wk . For ordinal criterion k , let wk, 
denote the value or worth associated with rank position & on criterion k 
(see Cook and Kress, 1991). For consistency, the wkY -values should take on 
the same role for ordinal criteria as the ak(i) assume for cardinal criteria. 
More to the point, if the rank position occupied by the i-th alternative 
relative to criterion k is denoted by t i ,  then wk, is analogous to ak(i)  . 
Note that 

( = I  

Clearly then, to carry the composite index idea over to the ordinal setting 
it is reasonable to impose the constraint 

since 
N 

X u k  ( i )  = 1 for any k E CARD. 
i=l  
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Here, 

With these ideas in place, we extend the definition of a composite index 
to the mixed ordinallcardinal case. 

Definition 7.1: In the presence of both ordinal and cardinal 
mixed criteria composite index for an alternative is given by 

criteria, the 

(7.4) 

It is noted than an ordinal criterion contributes 

e = ~  e=i 

to the index Ri . A cardinal criterion contributes 8Wkak(i ) .  
To facilitate the discussion below, we introduce a change of variables 

x,, = OW,, , for k E ORD . (7.5) 
The composite index is then rewritten as 

where 

due to (7.3). 
The issue now arises as to how to determine an appropriate set of x,, 

values as well as an appropriate scaling parameter 8 .  First we discuss 
constraints that the x,, should satisfy, and describe how the criteria 
fuzziness concept can be incorporated into the x,, derivation process. 

Rank position discrimination 

For any criterion k the importance to be associated with the L  -th rank 
position should exceed that of the ( L  + 1) st. Therefore, it should be true that 
x,, > x,,,, . More particularly, define G,, to be a positive function, and 
impose the constraints x,, - x,,,, 2 G,,  for all k,  L  . The Gk, should reflect 
two phenomena. First, the relative worths x,, of the successive rank 
positions ( L  = 1,2, ..., L) may not be equally spaced. That is, it may be 
desirable to have larger gaps (x, ,  -x , ,+ , )  between some pairs of rank 
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positions & and & + 1 than between other pairs. It may, for example, be 
desirable to distinguish more clearly between the first and second rank 
positions than between the ninth and tenth positions. Second, in addition to 
accounting for the relative gaps between rank positions, the G,, should 
embody a lower bound on the absolute gaps as well. To accommodate both 
aspects, represent G,, in a product form G,, = g p , .  The g, are supplied 
parameters which are to capture the lower bounds on the relative gaps 
x,, - x,,,, . If, for example, we wished to distinguish less and less between 
rank positions as &increases, then the g, would be chosen as a decreasing 
sequence. The u, are decision variables to be determined by the model (see 
below). As will be discussed below, these variables will be used to reflect 
criteria clearness. The product g p ,  provides, then, the minimum absolute 
discrimination between consecutive rank positions for an ordinal criterion 
k .  

Criteria clearness 

The u, provide a convenient means of capturing criteria clearness. In 
particular, if criterion k, is clearer than criterion k , ,  we impose the 
constraint u,, > uk2 (or ukI - uk2 - z 2 0,  where z is a small positive 
scalar). Thus, smaller u, values correspond to fuzzier criteria, meaning that 
for any rank position !,GkI, is larger than Gk2,. Hence, the minimum 
amount of discrimination between consecutive rank positions & and & + 1 is 
greater for clear criteria than for fuzzy criteria. 

Having established certain restrictions to which the x,, should adhere, a 
reasonable approach for deriving a composite index for an alternative i is to 
find a set of x,, (and 8 )  that meet these restrictions, but that also show 
alternative i in the most favorable light. This philosophy was introduced by 
Charnes, Cooper and Rhodes (1978) in the context of developing efficiency 
measures for a set of decision making units (DMUs). In the present setting, 
the alternatives or projects would represent the decision making units. Using 
this argument, an appropriate mixed-criteria composite index can then be 
derived for an alternative 4 by solving the linear programming problem: 

subject to 

xkP - xke+, - gruk 2 0, k E ORD, & = 1, ..., L - 1, (7.9) 
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xKL - gLuk > 0, k E ORD, 
L 

C M,,x,, - 8 = 0, k E ORD, 

We, therefore, find variables xk,,8 and u, which yield the highest 
possible index Ri for the alternative i, in question, subject to these 
variables abiding bjr a set of natural restrictions. This problem is solved for 
each one of the N alternatives. Constraints (7.9) provide for the lower limit 
restraints discussed earlier. Constraints (7.11) incorporate the fuzziness 
facility. In this notation, u (  .= u, if criterion k is ranked j -th in terms of 
clearness. Constraing (7.10j)n simply (7.6) rewritten. In order to bound the 
problem, constraints (7.8) impose an upper limit on each composite index. 
Clearly, any bound could be imposed here, but since normalization to unity 
was used on the raw data (a,(i) and W,), it is natural to use an upper limit 
of 1. 

We have used the notation Rio(z) to denote the fact that the solution 
obtained will generally depend on the value of z chosen. Clearly, as is true 
in the data envelopment analysis context, a different set of (x,,, 8, u ,) can 
arise for each alternative i .  While this inherent property of flexible 
weighting parameters is theoretically sound, it has raised some objections 
from practitioners who have found difficulty in accepting the principle that 
one DMU is viewed in a different perspective than other DMUs. In the 
engineering context, for example, productivity measurement is based on 
finding a common set of standards or multipliers, hence the idea of flexible 
weights does not arise. 

Thus, while the idea of weight flexibility is appealing in that it helps to 
show each alternative in its best light, practical considerations may dictate 
that a common set of weights be determined. In the general DEA context, the 
idea of a common set of weights has been examined by Roll et al. (1991). 

In the following section it is shown that the n -problem structure of 
model (7.7)-(7.12) can be replaced by a single-problem structure. This 
structure which yields a single set of weights is shown to be equivalent, in a 
certain sense, to the original n -problem model. 
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7.3.1 The Modified Model 

The model of Section 7.3 possesses a number of important properties 
as spelled out by the theorems below. In the presence of these properties it 
will be shown that the basic model can be replaced by a simple modified 
version to affect a ranking of the alternatives. 

Theorem 7.1. The optimal rating scores R[*(z) of (7.7) are monotonic non- 
increasing in z. 

Proof: This follows from the fact that increasing values of z further 
constrain the linear programming model. Q.E.D. 

Theorem 7.2. If z,* is the maximum value of z for which Ri(z) = 1, and if 
z,, = rnax, {z:}, then problem (7.7)-(7.12) is feasible if and only if 
z I z,,, . 

Proof: Suppose thye exists a value 2 > z,,,, for which (7.7)-(7.12) is 
feasible, and that i,,, 0, uk is a feasible solution for that 2 .  By definition of 
z,,, Ri < 1 for all i .  Let i be a small parameter, and let {ik,) be a non 
negative solution to the set of linear systems of inequalities. 

It is easily seen that a solution for (7.14a)-(7.14b) always exists. 
Specifically, define: 

?kt  = i k t  + E k t ,  - A e = e + i ,  
where 2 is small enough such that Ri I 1, for all i. Clearly, {fk,), 6 also 
constitutes a feasible solution for (7.7)-(7.12) since 
(a) Ri I I, for all i, by definition. 

- - A * , .  

(b) 'kt -' kt+,= 'kl +&kt! - 'kl!+l - 'kP+l ' 'kt - 'kt+,, since 'kt ' 'kP+Ie 

(c) CM~,?~,  -6 = CM,,;~, +CM,,$, -6-E =ZM,,~~,  -6= O. 
By choosing large enough to drive at least one of the R, up to 1, we 

have a feasible solution with at least one of the Ri = 1, that is Ri,, ( 2 )  = I, in 
contradiction to the maximality of zInax. Q . E . ~ .  

Theorem 7.3. If R,*(z*) = 1, for all z 5 z* 



Chapter 7. DEA and Multicriteria Decision Modeling 169 

Proof: This follows from Theorem 7.1. Q.E.D. 

Theorem 7.4. At optimality, at least one of the constraints of (7.8) is 
binding. 
Proof: The value of z is restricted by the constraints in (7.8) (the problem 
Max z, subject to (7.9)-(7.12) is unbounded). If all hold at strict inequality 
(LHS strictly less than l), then it means that z can be increased, in 
contradiction to its maximality. Q.E.D. 

From the above theorems and observations, it is clear that different 
values of the parameter z can lead to different solutions. The larger the 
value of z chosen, the greater become the gaps between the importance 
values x,, assigned to consecutive rank positions on ordinal criteria. As 
indicated earlier, z is a minimum measure of discrimination between such 
rank positions. It is also true that the larger the value chosen for Z ,  the more 
constrained the feasible region becomes, and the fewer will be the number of 
alternatives achieving a rating of 1. (See Theorem 7.1). 

There are two compelling arguments for using the largest possible value 
of z(i.e., z,,,) in deriving ratings for the alternatives (that is, in solving 
(7.7)-(7.12)). First, there is the issue of discrimination as raised in the 
preceeding discussion. Since the intention of the model is to assign worths or 
values to the chosen rank positions L = 1, I, ..., L, it is reasonable to 
differentiate between these positions to the greatest extent possible. The 
value z,, accomplishes this goal. Second, from Theorem 7.3, any 
alternative that achieves the rating status of 1 for z,,, will retain this status 
for all smaller z-values. Such alternatives are in this sense, then, truly 
deserving of a$rst-place status as compared to alternatives that were in first 
place for smaller values of z but lost this status for larger values. Hence, 
those alternatives i with R,(z,,) = 1 are the real winners in the ultimate 
ranking scheme. 

We, therefore, propose a modified version of model (7.7) through (7.12) 
which finds the maximum value of the parameter z for which a feasible 
solution exists. Specifically, we solve the problem 

max z 
(7.15) 

subject to constraints (15.8)-(15.12), 

where z is treated as a variable rather than as constant in constraints (7.1 1). 
Again, we point out that in solving such a problem we are finding a solution 
(a set of variables (xk,,6,uk)) which possesses the highest degree of 
discrimination between criteria on the basis of clearness, hence the greatest 
discrimination between rank positions L . 

It has been found that in many cases there are alternate optima to this 
problem. While there is no clear indication that any one solution to such a 
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problem is preferred over any other, it can be argued that a solution which 
makes as many of the Rias large as possible would be highly desirable. 
Consequently, the objective function of (7.2) can be replaced by 

N 

max M Z + ~ R , ,  (7.16) 
i=l 

where M is a large positive number. 
In this manner, the largest degree of discrimination between criteria and 

rank positions is achieved ( z  is maximized) and the total of the composite 
indices is maximized at the same time. It must, of course, be pointed out that 
because of the existence of alternate optima, certain alternatives may be 
ranked in first place using one solution, while others may possibly occupy 
first place if a different solution is used. (7.16) does provide an opportunity, 
however, to find a solution with as many first place alternatives as possible. 

To illustrate the modified model, consider the following numerical 
example based on the capital construction problem described in Section 7.2. 

Example: The following criteria weights approximately reflect the 
priorities set by an electrical utility company. 

(1) Initial cost = 0.12 
(2) Operating cost = 0.08. 
(3) Environmental impact = 0.20 
(4) Contribution to new sources = 0.15 
(5) Impact on existing activities = 0.10 
(6) Management support = 0.35. 

The ratings of 10 proposed projects along each of the six factors are 
given in Table 7-2. 

It is noted that the numerical values for the first two criteria are in fact 
figures which have been obtained by subtracting the actual costs from a 
value larger than the maximum cost in each criterion. 
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When the modified model of this section was applied, the resulting 
composite indices and rankings obtained were as shown in Table 7-3. In a 
second run of the model, the weights on criteria 1 and 3 are interchanged. 
The results are displayed in Table 7-4. 

From a comparison of the two tables we can see that a number of the 
alternatives are still ranked at the same level. Alternatives 4 and 8, for 
example, retain their 100% status. This is reasonable since in the case of 
alternative 4, say, less importance is now attached to its fifth place standing 
on the third criterion. Thus, the 100% rating is even more justified after the 
change in weights than before. Alternative No. 6 went from a sixth place 
standing to a third place standing due primarily to a heavier weight being 
shifted to criterion No. 1 where alternative 6 is a top performer. 

A third analysis was performed in which criterion No. 4 was removed 
from the problem and its weight equally distributed over the remaining five 
factors. The resulting output is shown in Table 7-5. 

Note that a dramatic shift in the rank position of project No. 9 has 
occurred (it went from a ranking of 3 in Table 7-3 to a ranking of 9 in Table 
7-5). This can be partially explained by the fact that a criterion on which this 

Table 7-3. Composite indices and rankings of alternatives 
Rankings 
4 
8 

Alternative 
1 
3 

Composite indices ( O h )  

79.9 
71.3. 



172 Cook and Zhu 

project was ranked in first place has been removed. Hence, the strength of 
this positioning has been lost. 

In the above analyses, model (7.15) was used since the desire was to 
prioritize all projects in term of the same optimal solution. It is worth 
pointing out that if model (7.7)-(7.12) is applied somewhat different results 
arise. Applying the original criteria weights, the comparable results to those 
of Table 7-3 are shown in Table 7-6. 

Table 7-5. Results with fourth criterion removed 

Since these indices arise as a result of finding a best set of weights for 
each alternative (using the optimal z from (7.16)) each rating will be at least 
as large as before. Clearly, since each alternative now has its rating 
maximized, the sum of ratings will 'truly' be maximized as opposed to 
attempting to maximize this sum in (7.16). Notice that the relative 
positioning of alternatives is roughly the same (but not exactly) as was the 
case in Table 7-3. Note also that in addition to the two alternatives with a 
previous rating of 100% retaining that rating, a third alternative has moved 
from 95.5% to 100%. 

In summary, it must be said that while one can get a somewhat different 
picture of the relative positioning of the alternatives from the two models, 

Table 7-6 Revised Composite Indices 

Rankings 
5 
8 

Alternative 
1 
2 

Alternative 
1 
2 
3 
4 
5 
6 

Composite indices (%) 
84.1 
69.0 

Composite indices ( O h )  

82.5 
71.2 
67.7 
100.0 
84.3 
78.2 

Rankings 
5 
8 
9 
1 
4 
6 
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the many examples run have shown that the differences are minor. The 
advantage that (7.16) has over (7.7)-(7.12) is that a single set of 'best' 
weights is found, hence having more managerial appeal. 

7.3.2 Implementation Issues 

In the two site-specific situations examined, a number of implementation 
issues deserve mention. 

Prioritization versus resource allocation 

This tool is designed as a means of rank ordering a set of alternatives (for 
example, projects). In a limited budget framework, the projects to be 
'funded' are then selected by starting with the top ranked alternative and 
moving down the list until available resources are exhausted. The 
assumption is that each project is in a 'go - no go' situation; i.e., either it is 
funded 100% or not at all. 

While in the capital construction project situation under consideration 
this is generally the case, there are settings where partial funding is an 
option. The issue as to how to use the ratings Ri to decide what portion of a 
project to fund is, however, an open question. One suggestion in the case of 
AHP (Saaty, 1980) is that the level of funding should be proportional to the 
weighted rating the project receives. It is generally the practitioners' view, 
however, that such an approach makes no sense in that the Ri are really only 
relative measures. Thus, the problem of resource allocation, where projects 
can be partially funded, seems to be an unresolved issue. 

Non-comparable subsets ofprojects 
A major problem arising in the highway project ranking problem is one 

involving 'non-comparable' projects. Specifically, rehabilitation projects 
must be evaluated in terms of one set of criteria, while system expansion 
projects are to be rated relative to a different set of factors. Admittedly, some 
criteria such as job creation are common to both sets of projects. However, 
the cost of any project in the latter category generally far exceeds that for 
alternatives in the former category. 

Having recognized this non-comparability issue, the organization is now 
attempting to gain a better understanding as to the appropriate criteria to use 
to bring the two categories of projects into a common light. 

Rank reversal 
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The model, like other tools such as AHP, does exhibit the rank reversal 
phenomenon in certain situations. Recall that this means that the relative 
ranking of two alternatives can be reversed if a third alternative is removed 
from the set being evaluated. In a large number of examples examined, 
however, rank reversal occurred only a small percentage of the time and in 
situations where pairs of alternatives are ranked very closely (e.g., 
R, = 0.79 and R, = 0.78). In the two site-specific applications under study 
no serious rank reversal situation occurred. 

7.4. EVALUATION RELATIVE TO PARTIAL 
CRITERIA 

In the previous sections it was assumed that any given alternative i could 
be evaluated (assigned a rank position) in terms of each member k of the full 
set of criteria K . In many decision environments, however, this requirement 
is not pertinent. Consider, for example, the case where in ranking projects in 
an electric utility company, one may be considering alternatives such as 
construction of power lines, additions and modifications to nuclear reactors, 
upgrades to buildings, maintenance of office facilities, and so on. In such a 
varied set of alternatives, criteria such as "impact on environment," or, 
"contribution to technological advancement" may apply to some options 
(e.g., reactor construction), but may be entirely inapplicable to others such as 
building maintenance. In a completely different setting, consider one of the 
principal application areas of data envelopment analysis, namely the 
evaluation of productivity of a set of bank branches. See, for example, 
Sherman and Gold (1985) and Oral and Yolalan (1990). The traditional 
settings examined to date and cited in the literature, view banks at a given 
point in time and assume each branch can be evaluated in terms of the same 
criteria (inputs and outputs). If we want to compare, however, the new full 
service type of banking environment to the traditional branches, problems 
arise. The new style banks now offer services such as life and property 
insurance policies, mutual fund investment options, and so on, that are not 
available in some (conventional) branches. The comparison of old and new 
as a single set will then need to consider the partial criteria issue. 

The problems associated with comparing a set of alternatives (projects, 
bank branches, etc.) when some criteria are relevant to certain members of 
the set but not to others, revolve around the interpretation of missing data 
and how to account for it. One ad hoc approach to this has been to generate 
synthetic data by using, for example, an average value for a criterion, where 
the average is over those alternatives for which that criterion is relevant. In 
the case of the bank branches, for instance, this would mean looking at the 



Chapter 7. DEA and Multicriteria Decision Modeling 175 

average of insurance sales for the new style branches, and then crediting 
each of the old style branches with that average value. In assessing projects, 
one option clearly is to fully penalize an alternative for "failing to perform" 
on a given dimension. Being fully penalized may mean being credited with 
the worst possible rank position on the given criterion, or being assigned no 
rank at all. This latter is the basis for the aggressive model to follow. On the 
other hand, if one argues that an alternative should not be penalized for not 
being eligible to be ranked on a given criterion, then a more benevolent 
action should be taken. 

We now consider the general case in which an alternative i can be 
evaluated in terms of only a subset Ki K of the criteria. The manner in 
which the set of N alternatives is to be evaluated in this partial criteria case 
depends upon the assumptions one makes regarding fair comparison. We 
present three approaches to the evaluation: 

Aggressive evaluation 
One point of view regarding evaluation of the N alternatives is to adopt 

the original full criteria model ((7.7)-(7.13)), and replace the term x:=, x:, dkl ( i )  w ,  by xkEKi xr=, dkl (i) wkl . In this case when a criterion 

kc, is not part of the pertinent set Ki for alternative i ,  , a credit of 0 is given. 

That is dkol(io) = 0 for all I .  This approach subscribes to the concept that 

part of any alternative's worth (e.g., the worth of a project to an 
organization) is the benefit wkl derived from each criterion. Hence, the fact 

that the project cannot compete in terms of a particular criterion k only 
serves to put that project at a disadvantage v i s -h i s  other projects which do 
obtain a rank position on k . Thus, projects must compete aggressively (or at 
least are evaluated aggressively) with no compensation for failure to achieve 
a standing relative to certain criteria. 

Clearly, this approach rewards those alternatives for which the cardinality 
I K, I of Ki is large, and penalizes those for which the cardinality is small. 

While the approach has the advantage of treating all alternatives on an 
equal footing, it could be judged as being unfairly harsh in situations where 
criteria are simply inapplicable. In a situation, for example, where 
environmental impact is one of the factors used for evaluation, the 
1 + L scale may, in some circumstances, be interpreted as "good" to "bad." 
Thus, a rating of 1 = 1 means that an alternative has a very positive effect 
vis-A-vis environmental benefits, while 1 = Lmay imply a very negative 
impact. An alternative (e.g., building maintenance) which is neutral should, 
if given a rank at all, be rated somewhere in the middle of the scale. Hence, 
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the manner in which scales are defined can influence the applicability of the 
standard model in the partial criteria case. 

Average performance evaluation 
To avoid the potential problems created by cardinality differences among 

the sets K,, as cited in the previous model, an approach which utilizes an 

average performance per pertinent criterion can be adopted. Specifically, 

we replace ~ ~ l ~ ~ l d k l ( i ) w k l i n  (7.7) and (7.8) by 

xkeKi x:l dkl (i)wkl I 1 Ki I . In a certain sense, this model is a natural 

extension of (7.7)-(7.13). That is, if in the full criteria case (i.e., I K, (= N 

for all i )  we replace x k=l xL I=I dkl ( i )  wkl by C k = ~  C /=I  dkl ( i )  wk1 I N , we 

get an equivalent formulation. This formulation avoids the size differences in 
the K, , but does penalize the alternative i whose criteria set Ki contains 

low ranked criteria versus an alternative that may be evaluated in terms of a 
similar number, but of higher ranked criteria. As with the previous model, 
there may be circumstances where this is a desirable property, and others 
where it is not. 

Benevolent evaluation: performance relalive to the ideal 
In the case where we want to evaluate alternatives in the fairest possible 

(i.e., most benevolent) way, it can be argued that such an evaluation should 
not penalize an alternative for failing to be considered in terms of a large 
portion of the criteria, nor for failing to be evaluated relative to the most 
important criteria. This approach would then advocate evaluating an 
alternative in terms of only those criteria k on which it receives a ranking 1 . 
Only the importance of these "pertinent" criteria relative to one another 
would then come into play, and the standing of these criteria vis-A-vis the 
complementary set (the set on which i is not evaluated) would not enter the 
picture. 

One means of accomplishing the aforementioned benevolent approach is 
to compare each alternative i to the best possible or ideal performance for 
that alternative. In the notation of the earlier model, the ideal alternative 
would receive a rating of 

Clearly, any alternative i which ranks lower than first place (1 > 1) on 
any criterion k will score worse than this ideal, hence Ri I Rid,,, . Thus, the 
measure 
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is azeasonable and convenient way of expressing the performance level of 
i . R, is similar in some respects to an industrial productivity measure where 
we compare actual to standard performance, although it could be argued that 
Rs,,,,, is probably something less than Rideal. For our purposes, Rideal 
represents the only tangible (and, in principle, achievable) measure that can 
be used as a backdrop against which to evaluate alternatives. 

With this concept as a basis, and proceeding in a manner analogous to 
problem (7.7)-(7.13), consider the following N problems: 

subject to 

In this ratio formulation, the numerator in (7.18) represents the actual 
performance of alternative i ,  with the denominator being the theoretical or 
best possible performance. It is noted that in this formulation constraints 
(7.18) are redundant, and can, therefore, be removed from the problem. 
Unlike the linear problem, this formulation having a fractional objective 
function, is nonlinear, and in general can be difficult to solve. By way of a 
transformation, however, this problem can be converted to a linear format. 
Specifically, let 

- 
and define the variables Gkl = rowkl, ii, , = zpk,  C = z,v and F = z,F. 
Problem (7.7)-(7.13) (in the absence of constraints (7.18)) can then be 
written in the form: 

L 

$ = max $ = x x dkl (i,)Gkl 
k€Ki,, /=I 

subject to 
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Note that this formulation is somewhat more elaborate that (7.7)-(7.13). 
The reader is referred to Cook et al. (1996). 

Lemma 7.1: There exists an optimal solution to problem (7.17)-(7.18) in 
which wk, 5 1. 

k+, 

Proof: For any feasible solution W = (wkl) to (7.17)-(7. la), c W is also a 

feasible solution for any c 2 1. Hence, we may impose a bounding 

constraint xkr4 wkl -< 8 in (7.17)-(7.18) for some 8, and still have an 

equivalent problem. Furthermore, for z small enough we may, with no loss 
of generality, arbitrarily choose 8 = 1 . Hence, the result. Q.E.D. 

,* -* -* - *  * 
Lemma 7.2: There exists an optimal solution wkl,uk,v , F , z, to (7,19)- 
(7.26) in which z,: = 1 . 

Proof: Due to Lemma 7.1 and the definition of zO , we have 

To yield maximum flexibility in the problem, it is optimal to force zO to 
its lower limit (the problem is the least restricted in this case). Hence zl: = 1. 

Q.E.D. 

Theorem 7.5: In the special case where all Ki = K and 1 K (= K, problem 
(7.19)-(7.26) is equivalent to problem (7.7)-(7.13) if an (N+l ) s t  
alternative, the ideal alternative, is added to the latter. 
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Proof: From Lemma 7.2 rl: = 1, hence 

wi1 = Gil, U; = ii;, v = G * ,  F* = . Furthermore, constraint (7.20) may be 

replaced by xK wkl L 1 ,  the upper limit on the rating for the ideal 
k=l 

alternative. Since constraints (7.8) are redundant in the presence of this 
inequality, the result follows. Q.E.D. 

By virtue of Theorem 7.5, problem (7.17)-(7.18) can be written in the 
form: 

I. 

ki = max Ri,, = C C dk, (c) wk, 

subject to 

Common set of weights 
As with problem (7.7)-(7.13), (7.27)-(7.28) will generally yield a 

different set of weights wk, for each alternative i, being evaluated. Along 
the lines of the previous section, a common set of weights can be derived by 
solving the problem: 

* 
z = max z (7.29) 
subject to 

This problem is clearly bounded since every criterion k can be assumed 
to lie in at lease one subset Ki , hence wk, I 1 for all k . Thus, z will 
achieve an optimum. The final ratings to be assigned to any alternative i is 
given by 

where the wi1 are the optimal variables from problem (7.29)-(7.30). 
Model (7.17)-(7.18) (hence model (7.29)-(7.30)) has the advantage that it 

provides a fair evaluation to an alternative i , regardless of the status of those 
criteria Ki that pertain to that alternative. Specifically, an alternative is not 
penalized for or given an unfair advantage because of the nature of its 
particular criteria. This very property may in certain circumstances, 
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however, be seen as a weakness of the approach. If in a project rating 
situation, for example, the contribution of projects to a specific management 
goal is a key element in deciding on the set of choices to be funded, then the 
model of this section may not be appropriate. On the other hand, if projects 
from different departments are to be fairly assessed so that all contenders 
have an opportunity to compete, then it may be desirable not to have criteria 
not pertinent to an alternative, affect how that alternative is rated in a relative 
sense. 

7.5. CONCLUSIONS 

This chapter has examined MCDM problems in the context of DEA. A 
multicriteria composite index model is presented which can accommodate 
both qualitative and quantitative data. Various example problem settings are 
given. The chapter also extends the methodology to handle situations where 
some alternatives may be evaluated only in terms of a proper subset of the 
full set of criteria. The proposed approach is based on examining 
performance of an alternative relative to an ideal status for that alternative. 
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Chapter 8 

MODELING RANK ORDER DATA 

8.1. INTRODUCTION 

In a wide range of problem settings to which DEA can be applied, 
particularly in not-for-profit cases, qualitative factors are often present. In 
some situations such factors may be legitimately "quantifiable," but very 
often such quantification is superficially forced, as a modeling convenience. 
Typically, a qualitative factor such as management competence, for 
example, is captured either on a Likert scale, or is represented by some 
quantitative surrogate such as plant downtime or percentage sick days by 
employees. 

It can be the case as well, that purely quantitative variables may be such 
that accurate data is not available, hence figures provided are often rough 
estimates of the actual data values. In a number of studies of bank and bank 
branch efficiency, for example, discretionary inputs such as "percentage of 
high value customers" in the customer base, can be an important influence 
variable vis-A-vis performance. It reflects investment potential on the part of 
the customer. See Cook, Hababou and Tuenter (2000) and Cook and 
Hababou (2001). This variable is, however, generated from disposable 
income of the customer, for which accurate data is seldom available. For 
existing branches, a surrogate for such a variable is the level of investment 
of the customer. For new (planned) branches, the level of investment that 
would be created can be predicted from income demographics for the 
customer base for that branch. Such income data is, however, often 
unreliable. 
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In situations such as those described, the "datayy for certain influence 
factors (inputs and outputs) might better be represented as rank positions in 
an ordinal, rather than numerical sense. Refer again to the management 
competence example. In certain circumstances, the information available 
may permit one only to put each DMU into one of L categories or groups 
(e.g. 'high9, 'medium' and 'low' competence). In other cases, one may be 
able to provide a complete rank ordering of the DMUs on such a factor. 

This chapter examines the modeling of qualitative data in the DEA 
structure. The following Section 8.2 discusses two practical problem settings 
in which qualitative data occurs naturally. In the first, we examine a problem 
of R&D project ranking and selection, where various non-quantifiable 
factors need to be considered. In the context of DEA, the projects represent 
the decision making units. This example is adopted from Cook et al. (1996). 
In the second example, due to Kim et al. (1999), and Zhu (2003), a mix of 
ordinal and numerical factors are evaluated. Section 3 examines the radial 
projection DEA model in the context of ordinal data. Section 4 discusses the 
application of this ordinal DEA model to the two presented problems. In 
Section 5, various settings involving ordinal data are discussed. Conclusions 
and further directions are presented in Section 6.  

8.2. PROBLEM SETTINGS INVOLVING ORDINAL 
DATA 

8.2.1 Ordinal Data in R&D Project Selection 

Consider the problem of selecting R&D projects in a major public utility 
corporation with a large research and development branch. Research 
activities are housed within several different divisions, for example, thermal, 
nuclear, electrical, and so on. In a budget constrained environment in which 
such an organization finds itself, it becomes necessary to make choices 
among a set of potential research initiatives or projects that are in 
competition for the limited resources. To evaluate the impact of funding (or 
not funding) any given research initiative, two major considerations 
generally must be made. First, the initiative must be viewed in terms of more 
than one factor or criterion. Second, some or all of the criteria that enter the 
evaluation may be qualitative in nature. Even when clearly quantitative 
factors are involved, such as long term savings to the organization, it may be 
extremely difficult to obtain even a crude estimate of the value of that factor. 
The most that one can do in many such situations is to classify the project 
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(according to this factor) on some scale (high/medium/low or say a 5-point 
scale). 

Let us assume that for each qualitative criterion, each initiative is rated 
on a 5-point scale, where the particular point on the scale is chosen through a 
consensus on the part of executives within the organization. Table 8-1 
presents an illustration of how the data might appear for 10 projects, 3 
qualitative output criteria (benefits), identified as 1, 2, and 3, and 3 
qualitative input criteria (cost of resources), identified as 43 ,  and 6.  In the 
actual setting examined, a number of potential benefit and cost criteria were 
considered as displayed in Tables 8-2 and 8-3. 

We use the convention that for both outputs and inputs, a rating of 1 is 
"best", and 5 "worst". For outputs, this means that a DMU ranked at position 
1 generates more output than is true of a DMU in position 2, and so on. For 
inputs, a DMU in position 1 consumes less input than one in position 2. 

Table 8-1. Ratings by Criteria 
Pro-iect No. Outputs Inputs 

Regardless of the manner in which such a scale rating is arrived at, the 
conventional DEA model is capable only of treating the information as if it 
has cardinal meaning (e.g. something which receives a score of 4 is 
evaluated as being twice as important as something that scores 2). There are 
a number of problems with this approach. First and foremost, the projects' 
original data in the case of some criteria may take the form of an ordinal 
ranking of the projects. Specifically, the most that can be said about two 
projects i and j is that i is preferred to j. In other cases it may only be 
possible to classify projects as say 'high', 'medium' or 'low' in importance 
on certain criteria. When projects are rated on, say, a 5-point scale, it is 
generally understood that this scale merely provides a relative positioning of 
the projects. In a number of agencies investigated (for example, hydro 
electric and telecommunications companies), 5-point scales are common for 
evaluating alternatives in terms of qualitative data, and are often 
accompanied by interpretations such as: 
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1 = Extremely important 
2 = Very important 
3 = Important 
4 = Low in importance 
5 = Not important, 

which are easily understood by management. While it is true that market 
researchers often treat such scales in a numerical (i.e. cardinal) sense, no one 
seriously believes that an 'extremely important' classification for a project 
should be interpreted literally as meaning that this project rates three times 
better than one which is only classified as 'important.' The key message here 
is that many, if not all criteria, used to evaluate R&D projects are qualitative 
in nature, and should be treated as such. The model presented in the 
following sections extends the DEA idea to an ordinal setting, hence 
accommodating this very practical consideration. 

Table 8-2. Potential Benefits 
Criteria Sub-criteria or Interpretation 
1. Enhancement of energy efficiency -development of high yield technologies 

-initiatives which will reduce energy demand 

2. Enhancement of 
diversification/alternative energy 
sources 

3. $Saved internal to organization 

4. Impact on environment 

5. Enhancement to internal technical 
capability and research profile 

6.  Enhancement to research profile as 
viewed by the external community 

7. Economic impact on external 
community 

-development of technologies for utilizing residues 
-initiatives which provide or strive for new energy 
sources 
-provide for flexibility in or adaptability of existing 
and new facilities 
-cost reduction devices 
-new technology to replace obsolete equipment 
-reduction of emissions into water and atmosphere 
-reduction of risk of nuclear accidents 
- provides training and develops expertise 
-provides technical resources (software, equipment, 
etc.) 
-builds linkages to external research community. 
-impact on research status among other utility 
companies 
-impact on profile abroad 
-job creation outside organization 

-$ savings to public and industry created by energy 
efficiency devices 

8. Impact on nuclear performance -influence on nuclear station maintenance, etc. 
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Table 8-3. Potential Costs 
Criteria Sub-criteria or Interpretation 

1. Technical expertise available internally 
2. Technical expertise available externally consultants 

other research centres 
3. Technology available equipment 

software 

8.2.2 Efficiency Performance of Korean Telephone Offices 

Kim et al. (1999) examine 33 telephone offices in Korea and use the 
following factors to develop performance measures. 

Inputs 
(1) manpower 
(2) operating costs 
(3) number of telephone lines 

outputs 
(1) local revenues 
(2) long distance revenues 
(3) international revenues 
(4) operationlmaintenance level 
(5) customer satisfaction. 

All inputs and outputs (1),(2),(3) are quantitative, and can be used in the 
DEA framework in the usual way. Output #4 is, however, ordinal and 
provides a complete ranking of the 33 DMUs. Output #5 is a categorization 
of the DMUs on a 5-point Likert scale. Table 8-4 displays the data. 

In the section to follow the conventional DEA structure is adapted to 
accommodate variables measured on an ordinal scale. 

8.3. MODELING ORDINAL DATA 

The above problems typify situations in which pure ordinal data, or a mix 
of ordinal and numerical data, are involved in the performance measurement 
exercise. There appear to be two general approaches in the literature to the 
handling of ordinallqualitative data within the DEA framework. The first 
effort was presented in Cook et al. (1993), (1996). The general approach 
given below leads ultimately to their model. The second and related effort is 
that due to Cooper et al. (1999), under the title imprecise data. Again, using 
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the general structure given below, one arrives at their model. Rather than 
adopting, outright, one or the other of these approaches, let us cast the 
ordinal data problem in a general DEA format. Specifically, consider the 
situation in which a set of N decision making units (DMUs), k=l,. . .N are to 
be evaluated in terms of R1 numerical outputs, R2 ordinal outputs, Il 
numerical inputs, and I2 ordinal inputs. Let Y: = (y : k ) ,  Y = (y : k )  denote 
the RI- dimensional and R2-dimensional vectors of outputs, respectively. 

Table 8-4. Data for Telephone Offices 

33 109 1.35 . . 10.6 3.43 L 

Similarly, let X i  = ( x : ~  ) and X: = (xi ) be the 1,-dimensional and 12- 
dimensional vectors of inputs, respectively. 

In the situation where all factors are quantitative, the conventional radial 
projection model for measuring DMU efficiency is expressed by the ratio of 
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weighted outputs to weighted inputs. Adopting the general variable returns 
to scale (VRS) model of Banker, Charnes and Cooper (1984), and stating it 
in ratio form, the efficiency of DMU "o" follows from the solution of: 

subject to: 

1 2  ,u ,, p , , o,! , of2 > 8, all r, i 

Problem (8.1) is convertible to the linear programming format: 

e o = m a x p o +  C p 1 y L - t  C P:Y;  
rsRl rsR2 

subject to 

C of x;() + C o,2 x; = I  
i d l  i d 2  

C u: x i  - C uI2 x i  <O,allk 
rs l ,  !s I2  

1 2  
P , , P , , of , ui2 L & , all r, i, 

whose dual is given by 

subject to 
1 + I 

CAkyrk - s r  =Y,,,  r E RI 
k=l 

4, s :, s ; 2 0, all k,r, i , 8 unrestricted 

For the problem settings described in the previous section, precise values 
for outputs in Rz and inputs in I2 are not available. Cooper et al. (1999), 
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(2001), and Zhu (2003) refer to this as an example of imprecise DEA or 
IDEA. To place the problem in a general framework, assume that for each 
ordinal factor ( r ~  R2, i~ 12), a DMU k can be assigned to one of L rank 
positions, where L < N. As discussed earlier, L=5, is an example of an 
appropriate number of rank positions in many practical situations. We point 
out that in certain application settings, different ordinal factors may have 
different L-values associated with them. For example, in the problem 
described in subsection 2.2, 'customer satisfaction,' y5 is measured on a 5- 
point scale, while 'operation/maintenance level,' y4 provides for a full 
ranking of all 33 DMUs (L=33). For exposition purposes, we assume a 
common L-value throughout. We demonstrate later that this provides no loss 
of generality. 

In the development below it is assumed that a "full ranking" of all DMUs 
is available for each ordinal factor. That is, each DMU is assumed to occupy 
a rank position on each ordinal factor, as opposed to there being only a 
partial ranking of the DMUs on some factor. In Section 5 we discuss a 
situation where such partial ranking does occur. 

One can view the allocation of a DMU to a rank position ! on an output r, 
for example, as having assigned that DMU an output value or worth y f  (!). 
The implementation of the DEA model (8.1) (and (8.2)) thus involves 
determining two things: 

(1) multiplier values p :, vi2 for outputs r E R2 and inputs i E 12; 
(2) rank position values ( f? ), r E RZ, and x ( ! ), i E 12, all ! . 

Cooper et al. (1999) use a similar format to the one presented here, and 
approach this problem in a two-stage manner. Their approach for handing 
imprecise data first derives appropriate values (in our notation) for the 
y: (!) and x: (!) (i.e., they resolve item (2) above). These values having 
now been quantified, the conventional DEA model (8.2) can be solved. In 
this section we show that the problem can be reduced to the standard VRS 
model by considering items (1) and (2) simultaneously. Further mention of 
IDEA appears later. 

To facilitate development herein, define the L-dimensional unit vectors 
Yi+ = ( ~ r k ( ' ) > , ~ ~ ~  ' i k  = ( 6 f i  

1 if DMU k is ranked in ! th position on output r 
Yrk ( >= otherwise 

1 if DMU kisranked in ! th position on input i 
' i k ( f ? ) =  otherwise 
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For example, if a 5-point scale is used, and if DMU # I  is ranked in L = 

31d place on ordinal output r=5, then y,, (3) =1, y,, (L ) = 0, for all other rank 
positions L . Thus, y t, is assigned the value y : (3), the worth to be credited 
to the 3'd rank position on output factor 5. It is noted that y:k can be 
represented in the form 

~ : k  =Y:(' k !=:I Y: (') yrk ('1, 
where Lrk is the rank position occupied by DMU k on output r. Hence, 
model (8.2) can be rewritten in the more representative format. 

In (8.3) we use the notation Y to denote the set of permissible worth 
vectors. We discuss this set below. 

It must be noted that the same infinitesimal s is applied here for the 
various input and output multipliers, which may, in fact, be measured on 
scales that are very different from another. If two inputs are, for example, 

1 xi,, representing 'labor hours', and xf2, representing 'available computer 
technology', the scales would clearly be incompatible. Hence, the likely 
sizes of the corresponding multipliers u,!, , v; may be similarly different. 
Thrall (1996) has suggested a mechanism for correcting for such scale 
incompatibility, by applying a penalty vector G to augment s ,  thereby 
creating differential lower bounds on the various ui , pr . Proper choice of G 
can effectively bring all factors to some form of common scale or unit. For 
simplicity of presentation we will assume the cardinal scales for all r E R , , 
i c I 1  are similar in dimension, and that G is the unit vector. The more 
general case would proceed in an analogous fashion. 

Permissible Worth Vectors 
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The values or worths {y : ( ! )}, {x f ( ! )}, attached to the ordinal rank 
positions for outputs r and inputs i, respectively, must satisfy the minimal 
requirement that it is more important to be ranked in P'" position than in the 
(! +l)'[ position on any such ordinal factor. Specifically, y :(!) > y : (! + 1) 
and x f (!) < x f  (! + 1) . That is, for outputs, one places a higher weight on 
being ranked in ! th place than in (!+I)" place. For inputs, the opposite is 
true. A set of linear conditions that produce this realization is defined by the 
set Y , where 

Arguably, E could be made dependent upon ! (i.e. replace E by E,).  It 
can be shown, however, that all results discussed below would still follow. 
For convenience, we, therefore, assume a common value for E . 

We now demonstrate that the nonlinear problem (8.3) can be written as a 
linear programming problem. 

Theorem 8.1 
Problem (8.3), in the presence of the permissible worth space Y, can be 
expressed as a linear programming problem. 

Proof: In (8.3), make the change of variables 
w;, = :Y;(e),  W; = U ; X ; ( ~ )  

It is noted that in Y , the expressions 

Y:(!)-Y:(f+l>> E,Y:(L)L E 

can be replaced by 

P : Y : ( ~ ) -  P fY:(!+l)> P ;  E ,  P : j , :m> P f E ,  

which becomes 

4, - w f . , + l > P f  E ,w:LLP:E .  
A similar conversion holds for the x ( ! ). 

Problem (8.3) now becomes 

subject to 
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1 w,- w;,,, 3 p: E ,  !=I, ... L-I, allr  E R2 
1 w, 2 p: & , a l l r  E R2 
2 2 2 w ,?+~ - w i P  >ui E ,  .[=I ,... L-1,alii E I2 
2 wil>v; ~ , a l l i  E I2 

pi, uf ? ~ , a l l r  E R1,i E 1 ,  

p:, v; > & , all r E R2, i E 12 
Problem (8.4) is clearly in linear programming problem format. 

We state without proof the following theorem. 

Theorem 8.2 
At the optimal solution to (8.4), p : = q2 = E for all r E R2, i E 12. 

Problem (8.4) can then be expressed in the form: 
L 

e 0 = m a x p o  + + p; Y; + C C w : , y , m  
re/<, rsR2 ?=I 

subject to 
L 

C v,!x;,, + C + wi6,(!)=1 
i d 2  I=1 

K +  Y:, + 2 5 w : t ~ r k ( t ) -  
rsRl  rsR2 !=I 

+ v:x;, - 2 w i 6 ,  (!)<O,allk 
isll is12 P=1 

-w) ,  +w:,+[ <-  E', !=I, ... L-1, al l rER2 

- w f ,  1- E', allr  €R2 

- W ~ ~ + , + W ~ ~ < - E ~ , ! = ~  ,..., L - l , a l l i ~ I ~  
2 - wil 5 - E', all i E I2 

1 I p r ,  vi > & , r  € R I , i  E 11 
It can be shown that (8.5) is equivalent to the standard VRS model. First 

we form the dual of (8.5). 
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subject to: 

N 
2 6.. ( L )  8 - cAk 6, ( L )  - a, = 0 

k=l 1 
N 

Si, ( I )  8 - C/Z. 6, (1) + a; - a: = 0 
k=l ! 

B unrestricted. 

Here, we use { il, ) as the standard dual variables associated with the N 
ratio constraints, and the variables {a,:, a:,) are the dual variables 
associated with the rank order constraints defined by Y . The slack variables 
s: , s correspond to the lower bound restrictions on pf., u; . 

Now, perform simple row operations on (8.5') by replacing the L t h  
constraint by the sum of the first L constraints. That is, the second constraint 
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(for those r E R2 and i E 12) is replaced by the sum of the first two 
constraints, constraint 3 by the sum of the first three, and so on. Letting 

problem (8.5') can be rewritten as: 

min 6 - E  EST- E 1 s;- 
r s R l  i s l l  

subject to 

0 unrestricted in sign. 
The dual of (8.6') has the VRS format: 

subject to 

EU,~X:, + :! 2 , , (el= I 
r s l l  r s I 2 = I  

(8.6) 
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which is a form of the VRS model. The slight difference between (8.6) and 
the conventional VRS model of Banker et al. (1984), is the presence of a 
different E (i.e., E 2, relating to the multipliers w t, , w ;!, than is true for the 
multipliers p L ,  v; . It is observed that in (8.6') the common L-value can 
easily be replaced by criteria specific values (e.g. L, for output criterion r). 
The model structure remains the same, as does that of model (8.6). Of 
course, since the intention is to have an infinitesimal lower bound on 
multipliers (i.e., E >0), one can, from the start, restrict 

and 

This leads to a form of (8.6) where all multipliers have the same 
infinitesimal lower bounds, making (8.6) precisely a VRS model in the 
spirit of Banker et a. (1984). 

It is interesting to note that the IDEA approach of Cooper et a1 (1999) 
essentially involves tackling problem (8.2) by first attributing values to the 
imprecise data (rank positions), and second, optimizing (in the DEA 
structure) to arrive at optimal multipliers. The Cook et a1 (1993), (1996) 
approach to (8.2) is somewhat the reverse of this. It amounts ultimately to 
attributing values to the multipliers, and then letting the DEA optimization 
derive the values for the rank positions. Thus, these seemingly quite different 
approaches would appear to arrive at approximately the same final point. 

Criteria Importance 

The presence of ordinal data factors results in the need to impute values 
y : ( & ), x ( & ) to outputs and inputs, respectively, for DMUs that are ranked 
at positions & on an L-point Likert or ordinal scale. Specifically, all DMUs 
ranked at that position will be credited with the same "amount" y: ( & )  of 
output r (r E R2) and x j? ( .! ) of input i (i E 12). 

A consequence of the change of variables undertaken above, to bring 
about linearization of the otherwise nonlinear terms, e.g., w :, = p : y 2 ( .e ), 
is that at the optimum, all p : = E 2, u; = E 2. Thus, all of the ordinal criteria 
are relegated to the status of being of equal importance. Arguably, in many 
situations, one may wish to view the relative importance of these ordinal 
criteria (as captured by the p :, of ) in the same spirit as we have viewed 
the data values {y 2, }. That is, there may be sufficient information to be able 
to rank these criteria. Specifically, suppose that the R2 output criteria can be 
grouped into LI  categories and the I2 input criteria into Lz categories. 

Now, replace the variables ,u : by p 2(m), and of by u 2(n), and restrict: 
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p2(m) - ,U2(m+l) > E  , m=1, ... LI-1 
p2  (L,) > E  

and 
v2(n) - v2(n+l)?&, n=1, ..., L2-1 

u ~ ( L ~ ) > E .  

Letting m, denote the rank position occupied by output r E R2, and ni the 
rank position occupied by input i E 12, we define the change of variables 

The corresponding version of model (8.4) would see the lower bound 
restrictions p : , vi2)& replaced by the above constraints on p (m) and v 
(n). Again, arguing that at the optimum in (8.4), these variables will be 
forced to their lowest levels, the resulting values of the ,U 2(m), o '(n) will be 

, u ~  (m) = (L1+1 -m)&, 02(n) = (L2+l-n)~ . 
This implies that the lower bound restrictions on w , w % become 

We now apply the above concepts to the data for the two problem 
settings discussed earlier. 

8.4. SOLUTIONS TO APPLICATIONS 

8.4.1 R&D Project Efficiency Evaluation 

When model (8.6') is applied to the data of Table 8-1, the efficiency 
scores obtained are as shown in Table 8-5. 

Table 8-5. Efficiency Scores (Non-ranked Criteria) 
Project I 1 1 2  1 3  1 4  1 5  1 6  1 7  1 8  1 9  1 10 
Score 10.76 10.73 11.00 10.67 11.00 10.82 10.67 10.67 10.55 10.37 

Here, projects 3 and 5 turn out to be 'efficient', while all other projects 
are rated well below 100%. In this particular analysis, E was chosen as 0.03. 
In another run (not shown here) where E = 0.01 was used, projects 3, 5 and 
6 received ratings of 1.00, while all others obtained somewhat higher scores 
than those shown in Table 8-5. When a very small value of E ( E  =0.001) 
was used, all except one of the projects was rated as efficient. 
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Clearly this example demonstrates the same degree of dependence on the 
choice of E as is true in the standard DEA model. See Ali and Seiford 
(1993). 

From the data in Table 8-1 it might appear that only project 3 should be 
efficient since 3 dominates project 5 in all factors except for input 5 where 
project 3 rates fourth while project 5 rates fifth. As is characteristic of the 
standard ratio DEA model, a single factor can produce such an outcome. In 
the present case this situation occurs because w :, = 0.03 while w = 0.5 1. 
Consequently, project 5 is accorded an 'efficient' status by permitting the 
gap between w j, and w:, to be (perhaps unfairly) very large. Actually, the 
set of multipliers which render project 5 efficient also constitute an optimal 
solution for project 3. 
If we further constrain the model by implementing criteria importance 
conditions as defined in the previous section, the relative positioning of 
some projects change as shown in Table 8-6. 

Table 8-6. Efficiency Scores (Ranked Criteria) 
Project I 1 1 2  1 3  1 4  1 5  1 6  1 7  1 8  1 9  1 10 
Score 1 0.71 1 0.72 1 1.00 1 0.60 1 1.00 1 0.80 1 0.62 1 0.63 1 0.50 1 0.35 

Hence, criteria importance restrictions can have an impact on the 
efficiency status of the projects. 

8.4.2 Evaluation of Telephone Office Efficiency 

The data of Table 8-4 has been evaluated using Model (8.6'). Both CRS 
and VRS models were applied, the results of which are presented in Table 8- 
7. 

Initially, in applying DEA in this application, no attempt was made to 
impose constraints on multipliers. Under the CRS structure, approximately 
half of the offices (17 of the 33) are declared efficient. With the VRS model, 
the number of efficient units climbs to 25 out of 33. When criteria 
importance is introduced, the efficiency status (efficient versus inefficient) 
changes for some units. As well, the relative sizes of efficiency scores 
change. Note, for example, that the relative positions of offices 10 and 11 are 
reversed under the constrained VRS model versus those assumed in the 
unconstrained model. As well, only 15 of the offices (rather than 25) are 
rated as being efficient. 



Chapter 8. Modeling Rank Order Data 199 

Table 8-7. Efficiency Scores 
1 DMU# I CRS Score I VRS Score I VRS Score-constrained 

8.5. DISCUSSION 

We have examined in this chapter the issue of performance measurement 
in the presence of qualitative data. The methodology presented herein 
demonstrates that when the idea of rank position data is introduced within 
the DEA structure, the resulting model can be transformed to a version of the 
conventional VRS model. This implies that all of the output results from 
standard DEA models apply. The CRS and VRS scores achieved using the 
model (8.6') are close to those obtained using the alternative IDEA structure 
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of Cooper et al. (1999). This hints at the potential equivalence of the two 
approaches. 

An important observation regarding radial projection, both here and in the 
IDEA approach of Cooper et al. (2001), is that one assumes that a (1- 0 )  x 
100% reduction in a rank order position 1br an inefficient DMU, results in a 
legitimate (projected) rank order position. Of course, since radial projection 
treats all scales as continuous, not discrete, it would rarely be the case that 
projected points on the frontier would in fact correspond to discrete (Likert 
scale) positions. Hence, efficiency scores obtained by model (8.6') really 
represent lower bounds (on 0 ) ,  and would in practice need to be adjusted 
upward to bring the projected positions to points that are allowable in Likert 
scale sense. We do not pursue herein how such adjustments would be made, 
but point to this as an interesting direction for future research. 
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Chapter 9 

RESOURCE ALLOCATION IN AN R&D 
DEPARTMENT 

9.1. INTRODUCTION 

This chapter examines a model for aiding in resource allocation in a 
research and development setting. A particular organization investigated was 
the former Ontario Hydro. The models presented herein were designed using 
that setting as a framework; a framework that typifies a number of R&D 
situations. The basic problem involves allocating an annual research budget 
among a set of program areas and across various departments involved in 
those program areas, such that the overall benefit to the organization is as 
high as possible. While the problem of defining appropriate research areas is 
an important issue for management to consider, it will be assumed for 
purposes of the present discussion that these areas have already been 
decided. 

The problem of resource allocation in regard to R & D departments has 
been approached primarily from the point of view of "projects" or "research 
options." Most of the models for assessing options assume multiple criteria 
or factors are involved. Utility approaches to the multidimensional problem 
have been examined by Geoffrion et a1 (1976), Hoe1 and Lin (1971) and 
Souder (1967 & 1973). Another class of approaches involves mathematical 
programming models such as those of Gear and Lockett (1972), and Charnes 
and Steadry (1964). Cook and Roll (1988) approach the problem of R & D 
project selection from the perspective of the past productivity of the 
organizations or operating units proposing the projects. Oral et a1 (1991) 
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examine project prioritization from the point of view of data envelopment 
analysis. 

In these approaches, it is assumed that data pertaining to each criterion 
appears in quantitative form. A few authors have concentrated on modelling 
in an environment in which only ordinal data can be obtained. See, for 
example, Bernardo (1977), and Cook and Seiford (1982). Lootsma et. al. 
(1986) present a method for deriving criteria weights based upon subjective 
judgments of executives, and then suggest allocating an available budget 
based on the best aggregate benefit to cost ratio. Here, the aggregate benefit 
for a project is the weighted total score obtained by that project on a set of 
ordinal factors. 

All of these models assume that the problem is "zero-one," in the sense 
that a project or option is to be funded or not funded. They do not address the 
issue of partial allocation of resources to an initiative. Saaty (1980) suggests 
a method for doing this by basing the level of funding for an initiative on the 
rating that the initiative received in a weighted sense relative to the other 
initiatives being evaluated. Specifically, if on a 100 point scale one research 
option ranked at 85% while another ranked at 75%, Saaty's proposal calls 
for splitting the budget by directly using these two subjective ratings. 

Other than this method suggested by Saaty (1980), no definitive resource 
allocation model in a qualitative datdmultiple criteria environment presently 
exists. In the sections to follow, various issues pertaining to the resource 
allocation problem are discussed. A number of possible methods for 
allocating the research budget are presented, and a suggested approach is 
given. 

9.2. CRITERIA FOR EVALUATING RESEARCH 
IMPACT 

In a large research organization such as Ontario Hydro resource 
allocation must in general be viewed from a macro, i.e., program, point of 
view. Effects of shifts in budget allotments cannot normally be translated 
into impacts at a specific project level, but rather must be evaluated in terms 
of overall influences. Furthermore, impacts must be measured in terms of 
various factors or criteria. Specifically, various types of benefits are derived 
from the research in a given program (impacts on the environment, savings 
to the organization, ...). At the same time the capability of the department to 
carry out research, even if financial resources are not a constraint, may be 
influenced by the availability of certain liquid resources such as technical 
expertise, equipment, etc. 
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In Appendix A, a suggested set of criteria for evaluating the research 
program of a particular organization is given. A notable feature of some, if 
not all, of these factors is that they are generally measurable only on an 
ordinal scale. That is, if a research initiative is viewed in terms of a factor 
such as "dollars saved by the organization," it is very likely that the most 
accurate information one can expect a manager to supply regarding the 
impact that budget changes would have on this initiative, will be of the form 
"the effect is high, medium or low." Alternatively, one might adopt a 5-point 
rating scale where the levels are defined as 

1 - the research has a very high impact in 
terms of this criterion 

2 - has a high impact 
3 - has a medium impact 
4 - has a low impact 
5 - has almost no impact. 

Such a scale is common in many situations where qualitative factors must be 
evaluated. 

9.3. INFORMATION REQUIREMENTS FROM 
MANAGEMENT 

The resource allocation problem, as presented, has to do with finding the 
most advantageous way in which to partition the total research budget across 
a set of research areas. The problem must be viewed at this macro level of 
"research areas," rather than at the micro "specific project" level. Thus, the 
problem is not one of project selection, as will be discussed in the next 
chapter, but rather is one of "should $X or $Y be allocated to a given area?' 
In this context, the resource allocation problem must be viewed as a zero 
sum game - whatever additional budget any one research area receives, this 
will be at the expense of other areas. 

Stated in simple terms, the resource allocation problem is: 

"Given an existing research budget allocation to a set of research areas, 
can an improvement (in total benefit derived by the organization) come 
about by moving funds from one area to another?" 

The answer to this question, in equally simplistic terms, is that this 
reallocation of research funds should be carried out if the net loss to the 
research area incurring the budget cut (and the loss to the organization at 
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large) is less than the net gain to the area experiencing the budget increase. 
Clearly then, the key ingredient needed to be able to answer this question is 
information regarding the marginal net losses and gains associated with 
budget changes. 

In the section to follow, a model is presented for helping management to 
evaluate the impact of such budget shuffles. This model requires, as input 
data, managements' opinions as to the marginal effects, in terms of each 
criterion, that are likely to be created by budget modifications. The simplest 
way to view budget modifications is in terms of some basic monetary unit. 
While the size of this basic unit must ultimately be decided by management, 
it is assumed for illustrative purposes herein that a basic unit of $100,000 is 
to be used. 

As a starting point, suppose that management supplies information to the 
following questions: 

1. For each research area how would you rate, on a five point scale, the 
impact of a budget cut of one basic monetary unit? Make this judgment for 
each of the criteria (Appendix A). 
2. What is the effect of a $2 unit cut? 
3. What is the effect of a $1 unit increase? 
4. What is the effect of a $2 unit increase? 

It must be noted at this point that the above questions regarding a $2 
increase or decrease can be posed in at least two ways. The first is that given 
above: "What is the effect of a $2 unit change?' Alternatively, the question 
could be presented as: "What is the effect of a second $1 unit change given 
that a $1 unit change has already taken place?" While at present it is not 
clear why we distinguish between these two information solicitation modes, 
this will become more apparent later. For purposes of the development in 
this and the next section, we assume the questions as originally posed are 
appropriate. 

Table 9-1. Response Matrix 
l~ctions 
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Responses to these questions can be recorded in the form of a matrix for 
each research area. The entries inside this response matrix are numbers from 
the 5-point scale discussed earlier. Table 9-1 illustrates such responses. The 
"1" in the upper left hand corner of the matrix, for example, would mean that 
a $2 unit budget cut to research area p is rated as having a very high 
detrimental effect on that research area in regard to benefit P, . 

The process whereby ratings such as these can be derived is an important 
management issue. It is advisable to create the table in a cccolumn- wise" 
fashion. Thus, for each criterion, the decision maker would first need to 
establish the impact, on a 5-point scale, that a $1 unit budget increase or 
decrease would entail. Using this as a bench mark, a $2 unit change in either 
direction would then be evaluated, and so on. This approach of working in a 
column allows for comparison of a budget change of one size to a budget 
change of another size. Evaluating a single budget change across all criteria 
first (i.e., "row wise") is a much more difficult task. 

It must be emphasized that the particular set of criteria to be used is not 
an issue here (these must be decided by management), nor is the number of 
possible actions (-$2, -$I, +$I, +$2). The latter can be expanded to any 
number of incremental budget changes desired. Furthermore, it may be 
desirable to think in terms of % changes to research area budgets, rather than 
specific $ amounts. This matter will be discussed later. What is at issue here 
is the need to think in terms of marginal impacts if budget modifications are 
made. It is information of this type which will drive the model discussed in 
the next sections. 

9.4. MODELLING RESOURCE ALLOCATION - THE 
BASIC IDEA 

The basic approach recommended for allocating the research budget 
among a set of research areas consists of four steps: 

Step I :  Obtain rating information of the type presented in Table 9-1 for 
each research area; 

Step 2: Determine, using a multiple criteria model (various models are 
described in the next subsection), a rating Ri for each research area p and 
budget change v. This rating will be a percentage 1 loo%, and will 
represent the relative impact of that budget change on that area. This impact 
can be positive (if v > 0 ) or negative (if v < 0); 

Step 3: Arrange the R; values from lowest to highest; 
Step 4: Make budget reallocations according to the relative sizes of the 

R; . 
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The mechanics of Steps 2 and 4 will be described in the following 
sections. Various techniques are proposed there for using the qualitative data 
of Step 1, and arriving at a set of weights w,,(p,v). These weights 
represent the worth or value of being ranked in the 1 th rank position, on the 
1 to 5 scale, relative to criterion k. The w,, ( p ,  v) ' for each research area 
p and budget level change v are combined to provide an overall rating Ri .  

To illustrate Steps 3 and 4, suppose that there are only 3 research areas, 
and let the R i  values be as given in the following table. 

Table 9-2. R i  Values 

Arranging these values from highest to lowest we have: 

R ;~  = -88 

Research 
Area p 
1 
2 
3 

The idea is that we can shift an amount of funds v = $1 from any 
research area p, to an area p2 provided the corresponding R:' < R;:'. 
For example, the negative benefit or damage associated with a $2 unit 
decrease in the budget of area 3 is rated at &-2 = .65. On the other hand, a 
$2 unit increase in the budget of area 1 is rated at R ;~  = .88. Thus, a shift of 
$2 from area 3 to area 1 produces a net gain in benefits to the organization. 
We define the gain index for the movement of $2 units between research 
areas 3 and 1 as 

1 
We use the notation WkP only fkom this point on. 

Budget Change V 

- $2 
.83 
.79 
.65 

- $1 
.76 
.72 
.81 

+ $1 
.61 
.70 
.56 

+ $2 
.88 
.72 
.58 
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Clearly, any movement of funds that results in a positive gain index will 
improve the overall benefit of the research budget to the organization. 

The problem to be solved, therefore, is to find a set of gain indices GiIP2 
which represent the best improvement in overall research impact to the 
organization. In a later section we present a possible function f for defining 
the GilP2 , and a heuristic method for deriving an appropriate optimal set of 
GiP2 values is discussed. 

It is pointed out that Steps 1-4 represent a reallocation of the budget 
relative to a current budget split. Once this reallocation has been completed, - - 

management may decide to repeat the entire exercise, beginning with the re- 
specification of perceived marginal changes in benefits relative to the newly 
created budget split. As many cycles could be carried out as felt necessary 
by management. 

9.5. DEVELOPING THE RATINGS Ri 

The Ri  are to represent a prioritization of the overall benefits associated 
with various budget changes that could be applied to the set of research areas 
under consideration. For purposes of the discussion in this section, we will 
cast the problem in a somewhat more generic setting than that of the 
previous sections. That is, suppose there are N items or alternatives (budget 
changes, projects, products, etc.) to be ranked. Each of these is to be 
evaluated in terms of K ordinal or qualitative criteria. In the example 
described earlier (Section 4), each (budget change, research area) pair 
constitutes an alternative. Thus, in that setting N was equal to 3 x 4 = 12. 

For illustrative purposes, consider the situation in which six alternatives, 
e.g., budget changes, applied to research areas are to be evaluated in terms of 
three criteria - (1) safety benefits, (2) environmental benefits, and (3) long 
term returns (profitability). Suppose that for each criterion the six 
alternatives can only be evaluated in an ordinal sense, say on a 5-point scale. 

In the case of safety, for example, alternative 1 ranks last or 5th, 
alternative 2 ranks 3rd, ... etc. Table 9-3 displays the evaluations for all 
alternatives on all criteria. 

The problem at hand is to prioritize or rank the six alternatives from most 
to least preferred, utilizing the preference data provided. At least two 
complicating issues must be addressed, however, if such a prioritization is to 
be achieved. First, the standing or importance of a given alternative may be 
very different on some criteria than on others. Alternative #I ,  for example, 
ranks 1st on criterion 2, but last (5th) on criterion 1. On the other hand, 
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alternative #3 ranks 1st on criterion 1 but 3rd on criterion 2. Which 
alternative should be ranked highest? This question raises a second issue of 
criteria importance. If criterion 1 is much more important than criterion 2, 
how should this be factored into the analysis? In some cases it may be 
possible to supply reasonably representative weights, while in other 
instances it may only be possible to rank the criteria. How should an ordinal 
ranking of criteria be dealt with? 

9.5.1 Conventional Approach 

Table 9-3. Rankings of Alternatives by Criteria 

The problem of how to combine multiple attribute data is a familiar 
problem of utility theory. Essentially, we want to develop an overall utility 
function which can reduce the problem to one involving a common 
quantitative unit of measurement. 

A crude, but often utilized procedure for obtaining a prioritization of 
alternatives in such situations is to begin with a given set of criteria weights 
w,, w2, w3. Using these "known" values, a weighted rank is obtained for 
each alternative. These weighted ranks are then arranged from lowest to 
highest to achieve the desired prioritization of the alternatives. Suppose, for 
example, that safety is given an importance weight of w, = 10, environment 
a weight w, = 7 and profitability a weight w3 = 5. The weighted rank R, 
for alternative # 1 would then be 

R, = l O x 5 + 7 x 1 + 5 x 2 = 6 7 .  
The corresponding value R, for alternative #2 is 

R, = l O x 3 + 7 x 4 + 5 x 5 = 8 3 .  
For this set of weights, alternative #I  comes out at a lower value than #2, 

meaning that project #1 should be given a higher priority than #2 '. 

Alternative 
1 
2 
3 
4 
5 
6 

2 
Since a rank of 1 means "most important," and 5 means "least important," the project with 

the lowest weighted rank will be given the highest priority. Clearly, if we reversed the scale (5 
is best, 1 is worst), the opposite interpretations would be given to R, and 4. 

Criteria 
I 
5 
3 
1 
2 
2 
4 

2 
1 
4 
3 
3 
2 
5 

3 
2 
5 
4 
4 
2 
1 
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There are two basic operational shortcomings with this crude approach: 

1 .  The method requires that the analyst be able to choose, in some manner 
and using some scale, a set of weights reflecting the absolute importance of 
the criteria. While in some instances criteria weights may have evolved over 
time and are a "given", in other cases the weight assignment exercise is ad 
hoc, hence very much at the whim of the decision maker. Even when such 
assignments are based on the very best advice and information from the 
relevant players at the time, the scales and values chosen are, in the final 
analysis, arbitrary. Furthermore, the values chosen often arise from a set of 
widely varying opinions solicited from experts, executives, etc. The final 
"consensus" may be less than satisfactory. 

2. A second, and even more disturbing aspect of this methodology is the fact 
that the rank positions of the alternatives, which are only intended as relative 
(ordinal scale) priorities, are being treated as if they were absolute cardinal 
(interval scale) values. Ranking alternative 3 in 1st place on the safety 
criterion, and alternative 4 in 2nd place, for example, is not meant to imply 
that alternative 3 should be valued as being twice as important as alternative 
4 relative to this criterion. These rank positions express relative priorities 
only, not absolute worths. 

9.5.2 A Proper Evaluation of Ordinal Data 

Therefore, there are generally two sets of "unknowns" in such an 
environment - the v, ,  expressing the "value" of the different rank 
positions 1 = 1, ..., L, and the wk expressing the importance of the K 
criteria. 

With this notation, if an alternative ranks in the elh category or position 
on the kth criterion, it will be given a credit of wkv, for this criterion. 
Recall that in the above example, alternative #1 received a total credit or 
value of 

Rl = w , x 5 + w 2 x 1 + w 3 x 2 .  
Thus, for criterion 1, the credit was w, x 5. The suggestion is that the 

credit should be wlv,, where v, and w, are to be determined. As a general 
setup, let us use a single variable, with a double subscript, wk, in place of 
the product wkv,. In this case the restrictions specified in (a) and (b) above 
become 

W k ~  > Wkl+l  (9.1) 

Wk, > Wk+le, (9.2) 

for all ! and k.  
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Clearly, there are an infinite number of combinations of weights w,, 
satisfying these conditions. What is required is a procedure for selecting an 
"appropriate" set. Whatever this set is, it will immediately dictate the 
"rating" which each alternative will receive, and therefore the final rank 
ordering of the alternatives. For example, in the case of alternative #1 in the 
above, Rl is given by 

R, = wl, + w,, + w,,, (9.3) 

since this alternative ranked fifth on criterion 1, first on criterion 2 and 
second on criterion 3. 

One approach for deriving a set of worths w,, is to use a philosophy 
similar to the Data Envelopment Analysis (DEA) method as proposed by 
Charnes et a1 (1978). This approach strives to find for each of a set of 
alternatives (budget shifts) a best or highest possible rating subject to certain 
constraints on the weights w,,. In the present case, this would amount to 
maximizing Ri for each area p and budget shiR v. Proceeding in this 
fashion, a set of multipliers w,, would be determined corresponding to each 
(p, v )  pair. Cook and Kress (1991) present a modified version of this model 
wherein a single set of multipliers can be derived. We adopt this latter 
approach here. Stated in basic and general terms, the model for deriving the 
w,, takes the form 

max z (9.4a) 
subject to 

Ri I 10096, for all p, v (9.4b) 
wk, -w,+,, - gk t ( z )  2 0, for all ! k = 1 ,..., K -1 (9 .4~)  
w,, - g,, ( z )  2 0, for all ! (9.4d) 
wkC - wk,+, - hk,(z) 2 0, for all k, ! = 1, ... L - 1 (9.4e) 
wkL - hkL ( z )  2 0, for all k, (9.40 

where k is the set of criteria under consideration, L is the number of rank 
positions for evaluating impacts ( L =5 in the present example), and g,, ( z )  
and hk,(z) are discriminating functions (see Cook & Kress (1991)). 

The constraints (9.4b) restrict the aggregate rating of each budget shift v 
per program p to not exceed 100%. Constraints (9.4~) and (9.4d) specify 
that the extent to which one discriminates between criteria of consecutive 
importance ( k  and k + 1 )  should be at least some amount g,,(z). 
Constraints (9.4e) and (9.40 specify this same discrimination vis-a-vis rank 
position !! and & + I .  Finally, the objective of maximizing the 
discrimination parameter z is intended to uncover a set of weights w,, that 
provide some form of maximum discrimination between consecutive rank 
positions and between criteria of decreasing importance k. 
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The theoretical properties and rationale for such a model is provided in 
Cook and Kress (1991). 

Later in the chapter a full example is given illustrating the output from 
this model. 

9.5.3 Multiple Voters and Levels of Credibility 

It is useful to view the structure of the research division in terms of 
research areas and departments. Viewed in matrix format, each department is 
involved in research in one or more of the areas. Thus, we can view the 
matrix as consisting of 0s and 1s. There is a 1 in the (d ,p )  slot of the 
matrix if department d allocates part of its budget to work on area p .  
Otherwise, there is a 0 in the slot. 

In the process of gathering management opinions as to the impacts of 
budget changes, it must be assumed that each "voter," say a department 
manager, will provide a set of information as described in the previous 
sections. The problem arises as to how to aggregate the opinions of say, six 
department managers. At least two complicating factors must be considered. 
First, for any given research area p only a subset Vp of the voters may 
provide an opinion (Vp 1 6). Second, because a given voter may have more 
knowledge of a research area than some other voter may have, it is necessary 
to consider the "credibility" of the opinions expressed. 

To illustrate the ideas to be discussed, consider the simple example where 
there are 2 departments, 2 research areas, 1 criterion and 2 proposed budget 
changes. Furthermore, suppose that any manager's competence or credibility 
is graded at one of three possible levels: 

Dept. 

Level 1 - highly competent 
Level 2 - competent 
Level 3 - low competence 
Let the credibility matrix be 

Research Area p 
1 2 3 ... 10 
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Research Area 

2 2 

Thus, department manager #1 has full knowledge of area 1 (credibility 
level I), but has poor knowledge of area #2 (credibility level 3). Suppose the 
responses for the two managers are: 

Manager #1 

That is, manager #1 believes that a budget change A1 (e.g. a $100,000 
increase) to research area 1 would have an impact relative to criterion 1 
equal to "2" on a 5-point scale, and so on. Manager #2, however, rates the 
impact as a "1 ," (that is, helshe believes it to have more impact.) 

The problem is to compile or aggregate the opinions of the managers into 
one overall set of responses. 

The approach suggested determines weights to be used in combining 
managers opinions. These weights are then applied to the individual ratings 
to get a weighted median. We introduce the following notation: 
P = index for the research area under consideration 
c = index for the criterion under consideration 
j = index for the budget change under consideration 
d = index for the department under consideration 

'5 = a constant representing the number of 
managers who voted on research area p 

LP = set of competence levels of managers 

Program 
1 

2 

Manager #2 

Program 
1 

2 

A Budget 
A1 
A2 
A1 
A2 

d 
rpck 

Criterion 1 
2 
1 
3 
2 

A Budget 
A1 
A2 
A1 
A2 

d 
rpck 

Criterion 1 
1 
1 
2 
2 
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who vote on research area p. 
= the rating which department manager d gives 
to budget change v concerning criterion c and 
research area p 
= a decision variable describing the worth of an 
opinion with 
lth ranked competence level (l = 1,2,3) that a 
department manager 
gives regarding a research area. 

Using arguments similar to those of the previous sections we can derive 
an appropriate set of multipliers W, , W2, W, by solving the following pre- 
emptive linear programming problem. 

subject to 

w, - w2 - g, (z) 2 0 

w*-W,-g,(z) 2 0  

w, + w2 + w3 = c 
where M is a large constant, V is the set of all budget changes (note some 
members of V are negative changes and some are positive), g,(.) is a 
discriminating function, and C is some scaling constant. The variables in 
this LP problem are rpcv , W, , and z. 

Here, the notation lpd denotes the credibility level for department 
manager d when voting on program p. For example, referring to the 
credibility matrix above, I?,, = 3. That is, manager #1 is not very familiar 
with program #2 and is rated as having low competence or reliability in 
terms of hislher vote. Hence, the rating level is 3. 

Suppose that g,(z) = z for all f ,  then it can be shown that the solution 
to this problem is such that W3* = z*, Wi = 2z*, y* = 3z*. That is, the y* 
are a type of Kendall score (Kendall (1962)). This being the case, it is not 
necessary to solve the above problem to find the appropriate median ratings 
rpcv. If, for example, C = 6, then y* = 3, W2* = 2, F* = 1, (Kendall 
scores) and the "weighted" median of the (r;,ld will yield the required 

rpcv. 
This approach then permits us to aggregate managers' opinions into an 

overall consensus set of ratings. 
In this section the problem of evaluating the relative impacts of various 

budget modifications at the program level has been examined. We now look 
at the issue of deriving a best set of budget adjustments. 
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9.6. BUILDING REALLOCATION 

Earlier the idea of a gain index was presented, specifically 
= f (RLV, RI;). 

Since the R," are relative ratings rather than numerical quantities (such 
as monetary impacts) there is no clear definition for the function f .  Since 
the R,"arise from a linear model (hence, are a form of linear or additive 
utility) a reasonable definition for f is: 

G;i2 = f (R,;",RY) = R." - RrV 
1 12 12 11 (9.6) 

That is, f is the net gain or improvement in the rating by moving 
resources v from area i, to area i, . This idea is used below. 

At this point it is necessary to distinguish two cases pertaining to the 
manner in which monetary units shift between areas: 

Case I: Monetary Shifts with no Splitting 
In this case it is assumed that if v monetary units are moved from area 

p,, that same v unit is moved to one and only one other area p, (the v 
units cannot be split across a set of areas). The following zero-one integer 
programming problem can be used to determine an optimal set of budget 
shifts: 

subject to 

C ~ x ; , , ,  i I for all p, 

x xip2 + x xilp 6 1, for all p (9.7d) 

$ 1 ~ 2  = O  or I 
Here, 

I if v monetary units are moved from areap, to areap, 

= {O otherwise 
Constraint (9.7b) ensures that at most one level of resources (v) leaves 

any area p, and requires that if this happens then this amount go to exactly 
one other area p,. Constraint (9.7~) guarantees that any amount v entering 
an area p, can come from exactly one source p,. Constraint (9.7d) 
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prohibits resources from both entering and leaving any given research area 
P. 

This integer programming problem can be viewed as a generalization of a 
multilevel linear assignment problem with the set of matrices { G ~ I P Z ) Y E M  
constituting the levels. The generalization arises from the fact that what will 
constitute the origins and destinations will come about as a result of the 
optimization process rather than being known beforehand. That is, if 
resources leave an area p,, and go to an area p,, then p, will, by 
definition, be an origin and p, a destination. If one knew in advance which 
areas were origins, which destinations and which neither, then constraint 
(9.7d) could be ignored and (9.7a),(9.7b),(9.7~),(9.7d) would be solved as a 
standard linear assignment problem. 

The situation is further complicated by at least two possibilities which 
may arise: 

1. It may be beneficial to move resources in either direction between 
two areas. Specifically, there can exist pairs of areas (p,,  p,) for which 
Gil,  > 0 and Gizp, > 0 as well. This can be the case, for example, if 
two areas are such that gaining resources in each is highly beneficial, 
while losses in resources from either has little impact; 

2. A program p, can be an origin relative to some areas p, (it is 
beneficial to move resources from p, to p,), but a destination relative 
to other areas p,. 

In the particular problem under investigation, a conventional zero-one 
integer programming algorithm was used. 

Case 11: Monetary Shifts with Splitting 
In this case it is assumed that when v, monetary units leave p,, these v, 

units can be split among several other areas p,. Similarly, the v, units that 
enter any area p, can come from several areas p,. 

In this situation, the issue arises as to how to measure the net loss (gain) 
per unit of resources leaving (entering). If, for example, v, = 3 monetary 
units, rated as R:] in terms of loss to area pJ, and if 1 of those units is 
moved to area p, and the other 2 units to p,, how should the gains and 
losses be evaluated? If we were to argue that the loss per unit to area p, is 
R;]/3 (or in general R; lv), there arises a scaling problem in the sense that 
the maximum value of hil is 100%. So, if v is large then the loss per unit to 
area p, is very small (hence unimportant), and it will always appear 
beneficial to move a large amount of resources out of an area and split that 
amount among as many other areas as possible. There is an additivity (or 
divisibility) problem here. 
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There is no clear resolution to this problem, and we therefore do not 
presume to be able to provide the definitive answer. We do offer, however, 
one possible approach below. In describing this approach, however, it is 
necessary to return to the issue of how information is solicited from 
management. Recall that the point was made earlier that the methods used to 
elicit information from management can take different forms. Clearly, we 
get different outcomes in terms of the Ri: depending upon the approach used 
to gather the information. 

If splitting is permitted, it is reasonable to use the second form of 
information elicitation mentioned earlier. That is if v =$3, for example, then 
three different ratings R:!, R:!, R:, are obtained using managements 
responses to the questions 

- What is the impact of the 1 st $1 change? 
- What is the impact of the 2nd $1 change? 
- What is the impact of the 3rd $ change? 

Furthermore, define Xi, = x:=, R;, . So 

R;, = R;) , R;, = R;! + R;,, R;, = R;, + R;, + R;! 
Hence, R;, is the "total" impact of a $v resource shift. Using this 

definition, the implied average impact per monetary unit is RL,lv. This 
average value is used below in the model for deriving optimal resource 
shifts. 

With this in mind, we generalize the definition of the Gif12 to 
-I7, 

- R ,  ; c 2  GVI% - 
PlP2 (9.8) 

"1 v2- 

G i z  is then the average net benefit of each monetary unit moving from 
area p, to area p, if p, loses v, units in total and p, gains v, units in 
total. Define the integer variables x;!;; = number of monetary units flowing 
directly from area p, to area p, where v, leaves PI and V, enters p,. 
Define also the variables 

1 if v, monetary units leave p, 

Y: = {O otherwise 

1 if v, monetary units enter p, 

otherwise 

An optimal set of budget shifts can then be derived from the following 
linear integer programming model: 
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max C C 77 Gvl? xV1? 
P112 P112 

(9.9a) 
PI Pz "I 

subject to 

7 x x;~;~ = V, y;, for all p, , v, (9.9b) 
Pz "2 x x x;:; = v,z; for all p2, v2 (9 .9~)  
PI "1 

~ y ; l + ~ z :  2 1  forallp, (9.9d) 
"I "2 

CCV~Y;~ -7',7)& = 0 (9.9e) 
PI "1 Pz "2 

x;l;z 2 0 and integer 

Constraint (9.9d) ensures that resources can either flow into or out of any 
given area (but not both) and in only one amount v. Hence, for any p, at 
most one variable in the set {yil ,zg1), is positive. Given this, constraints 
(9.9b) and (9.9~) balance the flows in and out of areas. Finally, constraint 
(9.9e) guarantees the equality of total resources leaving all areas with total 
resources entering all areas. 

9.7. APPLICATION 

A particular organization examined involved 9 departments with 5 
program areas. Total existing budgets for those areas are: 

p, - $3.5 million 
p, - 7.3 million 
p, - 4.6 million 
p, - 9.3 million 
p, - 8.2 million 

Information was gathered from the 9 department heads involving: 

(a) the ratings of the impacts of budget changes vis-a-vis four criteria. In 
this particular case a three point rating system was used (as opposed to a 5- 
point scale). The data provided shows the perceived impacts of decreasing a 
budget by $0.5 million, $1 million or $2 million, and increases of these same 
amounts. It is noted that this data was collected with the intention of 
applying the restricted model (9.7a)-(9.7e). 

(b) prioritization of the 4 goals. 



220 Cook and Zhu 

Table 9-4 presents the ratings of the various goals by the 9 voters. A 
consensus model (Cook and Seiford (1978)) was used to aggregate these into 
a single ranking (Goal 1 > Goal 2 > Goal 4 > Goal 3). In Table 9-5 the 
aggregated or median of the 9 voters opinions as to the impacts of budget 
shifts is given. Applying model (9.4a)-(9.4f) the rating of the various budget 
shifts for the different programs were obtained, and appear in Table 9-6. In 
the application of the restricted model (9.7a)-(9.7e) (no splitting of monetary 
shifts) there are three alternative optima as shown in Table 9-7. 

Table 9-4. Ratings of Goals by Voters (5-point Scale) 
Goal 

Voter G 1 G2 
a 1 1 
b 2 3 
C 1 2 
d 1 2 
e 3 3 
f 2 2 
g 3 1 
h 1 2 
1 1 3 

Table 9-5. Budget Change Impacts 
Budget Goal 

Program change 1 2 3 4 P3 
+2 - - - -  

P 1 
($5.5 million) 

($3 million) +1 3 2 2  3 
+.5 3 2 3 3 
-.5 3 2 3 2 
-1 3 1 2  1 
-2 3 1 2  1 P4 

P2 +2 - - - -  ($5.4 million) 
($6.6 million) +1 3 2 3 2 

+1 3 2 3  2 
+.5 3 3 3 3 
-.5 3 3 3 2 
-1 2 2 3  2 P5 
-2 1 1 3 1 ($10.4 million) 

An additional set of data was collected to be used for the general model 
(9.9a)-(9.9e). We do not bother to present the detailed data here, but do point 
out that the optimal budget shifts arising from this (as shown in Table 9-8) 
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are quite different from those of the restricted model. It is noted that 
complete matching does not need to occur in this model. For example, two 
programs each lost $2, while three programs gain, with some gains being in 
smaller amounts (in two of the three cases). 

Note that an optimal ranking of the goals when these 9 opinions are 
combined is Goal 1 > Goal 2 > Goal 4 > Goal 3. That is, the goals G1, 
G2, G3, G4 are ranked 1,2,4,3 respectively. A consensus ranking method 
was used to derive this overall ranking. 

Table 9-6. Aggregate Ratings for Program Budget Combination 
Alternative Rating 

P2B6 100.0 -2-2 62.57 

Notation: 
P2B6 - Program #2 & Budget change #6 (i.e. - $2) 
P3B2 - Program #3 & Budget Change #2 (i.e., +$I) 
Note: 
* $2 moving from P5 to P3 
** $2 from PI to P4. 

Table 9-7. Alternate Optimal Solutions 
Scenario # Solution 1 Solution 2 Solution 3 
1 $1 from P5 3 P3 - - 

$0.5 from P2 3 P4 
2 $2 from P5 3 P3 $1 from P5 3 P3 $2 from P1 3 P3 

$2 from PI 2 P4 $2 from P1 3 P4 $2 from P5 3 P4 

3 $2 from P5 3 P4 $2 h m  P5 3 P3 $1 from P5 3 P3 
$1 from P2 3 P3 $0.5 from P2 3 P4 $0.5 from P2 3 P4 
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Table 9-8. Optimal Solution - Splitting Allowed 
Program # $ leaving $ entering Final Budgets 
1 $0.5 $4 

9.8. CONLUDING COMMENTS 

We have presented a model for evaluating budget shifts among a set of 
programs or research areas, where the impact data are ordinal. Such data is 
typical of this environment insofar as impacts on broad general research 
initiatives are difficult to quantify. In the process of making budget shifts 
among research areas, there are implied impacts on the sizes of the budgets 
held by the departments. If, for example, a department derives its entire 
budget as a result of research carried out in one area, then losses or gains in 
that area may have immediate severe consequences vis-a-vis that funding. 
On the other hand, if a department carries out research in a number of areas, 
some of which are down graded (budgets reduced) while others are 
upgraded, there may be no effect on that department's hnding at all. 

It may be possible to minimize budget change impacts at the department 
level (either by budget increases that can cause staff shortages, or decreases 
that may lead to staff layoffs) using a goal programming approach. Possible 
goals may be (a) to retain department budgets at current levels, (b) avoid 
layoffs in departments where staff may need to interact with other 
departments, (c) avoid increased staff needs of a type that is difficult to 
acquire, and so on. While these department-level impacts have not been 
addressed here, they are by no means trivial considerations. They are, 
however, a second level issue worthy of later study. 
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APPENDIX A: BENEFITS 

Criteria Sub-criteria or Interpretation 
1 .Enhancement of energy - development of high yield technologies 
efficiency 

- initiatives which will reduce energy demand 
- development of technologies for utilizing residues 

2. Enhancement of - initiatives which provide or strive 
diversification/altemative for new energy sources 
energy sources - provide for flexibility in or adaptability 

of existing and new facilities 

3. $ Saved internal to organization - cost reduction devices 
- new technology to replace obsolete equipment 

4. Impact on environment 

5. Enhancement to internal 
technical capability & 
research profde 

6.  Enhancement to research 

Profile as viewed by the 
external community 

7. Economic impact on 
external community 

8. Impact on nuclear 
performance 

- reduction of emissions into water 
and atmosphere 
- reduction ofrisk of nuclear accidents 

- provides training & develops expertise 
- provides technical resources 
(software, equipment, etc.) 
- builds linkages to external research 
community. 

- impact on research status among other utility 
companies 

- impact on profile abroad 

-job creation outside organization 
- $ savings to public & industry 
created by energy efficiency devices 

- influence on nuclear 
station maintenance, etc. 
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RESOURCE CONSTRAINED DEA 

10.1. INTRODUCTION 

In certain performance measurement situations it is required to select a 
subset of alternatives from a given set of choices, and in a resource- 
constrained environment. When both multiple outputs and inputs are 
involved, the DEA model structure offers the opportunity to make choices 
based upon optimizing aggregate output relative to aggregate input. 

In this chapter we examine two examples of such resource-constrained 
settings. The first involves choosing from a set of projects, a subset which is 
to be implemented. Each project is expected to make use of input resources 
of various types, to produce a set of outputs. In essence, our approach treats 
each subset of the projects that could feasibly be selected within the resource 
constraints as a single, composite project. These composite projects are then 
evaluated, by data envelopment analysis, against a 'production technology' 
defined by the available projects. In fact, evaluation and selection are 
combined in a single model by placing the data envelopment analysis model 
within a mixed-binary linear programming framework. This model is 
illustrated using Oral, Kettani and Lang's (1991) data on 37 R&D projects. 

The second application involves selecting a set of best or preferred sites 
for planned retail facilities. Again, the model is concerned with choices in a 
resource-constrained setting. 
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10.2. PROJECT PRIORITIZATION: A RESOURCE- 
CONSTRAINED DEA APPROACH 

10.2.1 Introduction 

The application discussed here falls firmly into the multi-criteria decision 
making arena. It involves the selection, from a larger set of proposals, of a 
subset of projects to be undertaken. Individual projects are expected to 
produce benefits under a number of headings and, in so doing, will make use 
of resources under a number of headings. It is desired to establish a subset of 
projects that can be justified to all concerned as making the best use of the 
available resources. 

This prioritization problem, in various forms, has received substantial 
attention over the past several decades. See Martino (1995). Our approach to 
the problem has its origins in Bunch et al. (1989) but is specifically related to 
that of Oral, Kettani and Lang (OKL) (1991). OKL's point of departure is 
identical to ours: the CCR DEA model. 

In the interest of fairness to each of the proposed projects, OKL 
erect a rather complex multi-stage collective evaluation and selection model 
on this foundation. Our approach, which combines evaluation and selection 
in a single stage, remains substantially faithful to CCR DEA, and is 
somewhat less complex. 

10.2.2 Modelling Preliminaries 

A set P(= {I ... k... I P I)) of project proposals is to be evaluated over a set 
0(= {1 ... j... I 0 I)) of outputs and a set I(= {I ... i... I I I)) of inputs. Project 
k is characterized by the magnitudes of its outputs y,,. (2 0) to be produced 
and its inputs xki (2 0) to be consumed. There is a limit Lion the quantity of 
input i available to the set of projects as a whole, and we assume that at 
least one project satisfies these limits. It is desired to select a subset of 
projects, s* c P, which can be justified as making the best use of the 
available resources. 

It is assumed that all the projects are, in principle, supportable; all would 
be undertaken in the absence of the resource constraints. It is also assumed 
that the projects are neither synergistic nor interfering, in the sense that, if 
both projects a and P were selected, the outputs thus produced would be 
the sum of their respective outputs and similarly for the inputs used. 

If some function, 8, = 8(xk ,,..., xki., ..., yke, ..., yki ,...) were available, 
such that it were possible to arrive at an 'objective' evaluation 0, of each 
project, a net benefit say, this could be used to rank the projects. Further, s* 
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could be obtained in a relatively straightforward manner. A natural 
representation for this situation might be as a binary knapsack problem along 
the following lines: 

subiect to 

Difficulties arise because of the non-availability of 6 ,  or there might at 
least be disagreement among the various interested parties concerning its 
form and detail. 

A DEA-based approach circumvents these difficulties by allowing each 
project proposal to evaluate itself, relative to all the projects under 
consideration. Essentially, each project k is allowed to rate itself as highly 
as possible via a kind of benefitlcost ratio: 

by choosing the weights u,,. and vki to be applied to its outputs and inputs, 
respectively. The only restriction imposed is that no project p is allowed to 
receive a rating greater than 1 with those weights. This self-evaluation is 
achieved by solving the following linear program on behalf of each project 
k ,  as per Charnes et al. (1978). (Also see Charnes et al. (1991) for a formal 
treatment of situations where one or more of xki, y,,. might be zero.): 

hk = xjEo 
subject to 

While self-evaluation in this way is entirely notional, there is an implicit 
fairness in the process. The ratings achieved depend only on the data for 
each project relative to the data for the other projects. 

The values of hk might now be used to rank the projects, but the problem 
of how to select a subset to support within the resource constraints persists. 
It is tempting to simply replace 6, by hk in the binary knapsack problem of 
(10.1). However, this would, in general, be misguided, as the following 
example indicates. Imagine the situation where there are a number of 
projects, each with a single output and a single input. Three of the projects, 
A, B and C, have the following values for x,,, y,, and h ,respectively: 
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It can easily be seen that from the viewpoint of the knapsack model, 
project A is inferior to a combination of projects B and C. However, the 
latter combination is obviously inferior to A, in terms of the quantity of 
output produced per unit of input, and should never be chosen in preference 
to A. 

Clearly, while h, may provide a meaningful ranking of the projects, to 
the limits of the discrimination available given an upper limit of 1, it is not 
appropriate to treat these values additively as in (10.1). In order to retain the 
apparent flexibility and fairness offered by a DEA-based approach, we 
combine evaluation and selection into a single prioritization model, as 
described in the following section. 

Before proceeding, however, it is worth pointing out that our proposed 
model attempts to draw a compromise between what might be regarded as 
two opposing views of optimal selection in this context. One view is the 
traditional benefitlcost ratio approach to evaluating a set of choices (e.g. 
projects). This approach concentrates on the output per unit of input; project 
a is thus preferred to project P if the benefitlcost ratio of the former 
exceeds the latter. No direct consideration of budget limitations on the inputs 
is given at the evaluation stage; these must, somehow, be considered at the 
selection stage. 

An alternative view is that typified by the usual mathematical 
programming approach where benefitlcost ratios are not a direct 
consideration; rather, satisfying budget constraints on the input resources 
while maximizing some measure of total output (benefit) is the goal. Said 
another way, if two groups of projects both meet the resource constraints 
(perhaps more than one such constraint), and yield equal aggregate benefits, 
we would be indifferent as far as the desirability of these two groups was 
concerned. From the benefitlcost viewpoint, however, the group with the 
smaller cost would be preferred. So, on the one hand (the benefitlcost 
approach), resources have a value and the less used, the better. On the other 
hand (the mathematical programming approach), we essentially assume 
resources have no value, except when we try to exceed their budgetary 
limits. What we propose herein is an approach to evaluation and selection 
that tries to capture both of these aspects. 
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10.2.3 A Prioritization Model 

Given that the individual projects are independent, neither synergistic nor 
interfering, any subset s of the set P of projects can be thought of as a 
single, composite project. The outputs of this composite project are the 
combined-by-addition outputs of its constituent projects; similarly for its 
inputs X,si. The focus of interest now, of course, is an evaluation of each 
composite project relative to the set of all such composite projects. This 
latter set we will call n(P) and is essentially the so-called power set of P 
(Halmos (1960)) (excluding the empty set 4 ) .  The individual projects 
constituting the highest rated composite(s), satisfying the resource 
constraints, are then candidates for selection. Thus, noting that 

?,j=C kas Y 4 and X,si = C kE,s xki , equation (1 0.2) becomes: 

subject to 

u.!~, v,si 2 0 j E 0, i E I 
As the number of elements (composite projects) in n(P) is 2"' - 1 , 

which is large even for relatively modest I P 1, (10.3) does not represent a 
practical proposition. However, as a first step toward practicality, the 
number of " I " constraints in (10.3) can be reduced from 2"' - 1 to IPI . 

Imagine dividing the " 5 I' constraints in (10.3) into two groups: the first 
group is associated with the singleton subsets of P i.e. {I), (2) ... {I P I), 
while the second group is associated with the non-singleton subsets e.g. 
{1,2), {1,3), etc. (10.3) can then be written as: 

m a  hs = C u,vy,j s E n(P) 
subject to 

u,!~, v ,  2 0 j E 0, i E I 
where P' = {{I), {2) ... {I P 1)) , the set of all singleton subsets of P . 

It is evident that any constraint in the second group of " I " constraints is 
an additive combination of two or more constraints in the first group. Thus, 
if the constraints in the first group are satisfied, then, so must any constraint 
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in the second group. Therefore, the second group contains only redundant 
constraints and can be removed. The basic prioritization model for 
composite projects thus becomes: 

max h. = C ,€* % j ~ ,  s E l-w') 

We now restrict the scope of the index s in the objective function of 
(10.5) by recognizing that, in this context, interest would be restricted to a 
particular subset of n ( P ) .  This subset Scan  be characterized by the 
following two conditions: 

Condition (a): For all s E S, the constraints on all resources are satisfied: 

Condition (b): For all s E S ,  no project can be added without violating 
Condition (a): 

V p  E P - s, 3i E I such that xki > Li . 
Condition (a) is an obvious requirement while Condition (b) follows from 

the observation that all projects are supportable. Any composite project to 
which a further project could be added without violating Condition a) would 
be so augmented. Thus, the proposal is to look only at those composites that 
absorb at least one of the resources up to its usable limit; i.e. any amount of 
that resource left over is not sufficient to permit inclusion of another project. 
Then, within that subset of composites, one finds the composite whose 
aggregate benefit to aggregate cost ratio is maximized. 

Rather than generating the set S explicitly, and subsequently evaluating 
each of its members via (10.5), we do so implicitly by placing (10.5) within 
a mixed-binary non-linear programming framework (10.6), below. Here, ck 
is 1 if project k is included in the composite s *, and 0 otherwise. 
Optimization now takes place over c, , u j  and vi . 
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subject to 

Before going on to linearize (10.6), some explanation is in order. The 
model now seeks the best evaluated subset satisfying Conditions (a) and (b), 
above. Obviously, Condition (a) translates directly into the constraints: 

where li is the slack in resource i . Condition (b) is a little more difficult but 
is implemented by the constraints: 

( I - c k ) x k i + M c k + M d k i 2 1 i + 1 / M  k ~ P , i s I  

The effect here is to require that at least one of the resource slacks, li , be 
too small to allow another project into s* . For a given s E S, consider the 
first of these constraints for some k E S, i.e. c, = I .  The constraint is 
obviously satisfied because of the positive multiple of M on the left hand 
side. Now, consider the situation for some k g s, i.e. c, = 0 ,  and xki I l i .  
The corresponding first constraint can be satisfied by setting dki = 1 ,  thus 
achieving a positive multiple of M on the left hand side. However, the effect 
of the second constraint is to ensure that at least one of the variables 
d,, , d,, ... d,,,, remains at zero. Hence, 3i E I such that xki 2 li + 1 / M as 
required. 

While software capable of solving (1 0.6) is available, it can be linearized 
to bring it within the capability of more readily available mixed-binary linear 
programming software. This linearization involves the following changes of 
variables: a,,. = ckuj and bki = ckvi . 

Model (10.6) now becomes: 
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vi < bki + M(1- ck)l 
M >> 0 

where the two sets of constraints highlighted by the vertical bars serve to 
connect the new variables a,,. , bki to the original variables ck , uj and vi . 

Before applying this model in the next section, it is important to note that 
the fairness in evaluation implicit in (10.2) is retained in our prioritization 
model. Each project proposal thus has an equal right to participate in the 
definition of the 'production technology' as well as to combine with other 
projects to be evaluated against said technology and to be selected. This 
process depends only on the data for the projects relative to each other and 
on the available resources. 

subject to c(kep,kI) bkixki = ' 
~ j e o U , j Y N - ~ l E l v i X p i i o  P E P  

Cke , , ckxk i+ l i<Li  ~ E I  

( I - c k ) x k i + M c k + M d k i 2 1 i + l / M  k ~ P , i ~ 1  (10.7) 

xiel d  1 - 1  k  E P  

c k , d k i ~ ( 0 , 1 )  k ~ P , i d  

10.2.4 An Application 

a, 2 0  

a,<Mck 

OKL (1991) demonstrate their approach to collective evaluation and 
selection in an application relating to the Turkish iron and steel industry. 
Here, 37 projects are available, each of which is predicted to provide 
benefits under five headings: 

direct economic contribution to the iron and steel sector through 
improved quality and productivity, cost reductions, etc. 

~ E P ,  ~ E O  
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indirect economic contribution to sectors depending on the iron and steel 
sector through better quality, lower prices, etc. 
technological contribution through better use of imported technology, 
etc. 
scientrJic contribution in the sense of better use of existing scientific 
knowledge, advancing the body of scientific knowledge, etc. 
social contribution in terms of job creation, better working conditions, 
higher living standards, etc. 

In achieving benefits under these headings, each project would require a 
budget allocation from a single monetary resource. The data for the projects 
are shown in Table 10- 1. 

The total resource available to the selected projects is 1000.00 units. The 
average resource requirement over the 37 projects is 67.99. It could therefore 
be expected that s  * would contain in the order of 15 projects. 

On solving (10.7), using AMPLICPLEX, with the data summarized in 
Table 10-1, s  * =  { l ,6 ,  14, 15, 16, 17, 18,23,26,27,31,32,34,35,36,37) 
with a collective rating (h,y)  of 0.700 and a total resource use of 962.8 units. 
For purposes of comparison, OKL's selected subset is identical except our 
projects 6 and 32 are replaced by 21 and 29, with a resource use of 964.7. 
We thus agree on 14 of the 16 projects selected. Their selected subset has a 
collective rating of 0.690 when evaluated by (10.5). 

It should be emphasized that the weights uj,vi do not reflect any a 
priori judgments concerning their absolute or relative values. If it is 
considered important to reflect such judgments within the prioritization 
process, further constraints can be added in the manner of Thompson et al.'s 
(1986) 'assurance region' extension to the CCR DEA model. In general, we 
can consider (10.7) as augmented with a possibly empty set of constraints 
AR(u,,, v i )s .  These represent any restrictions on the weights and their inter- 
relationships that the decision maker(s) deem appropriate. 

By way of sensitivity analysis for our solution to OKL's problem, we 
have experimented with various forms of assurance region augmentation to 
(1 0.7). As an illustration, AR(uj,  vi )s of the form: 

u,, 2 uj, 2 u,, 2 u,, 2 u ,I 5 ' 
where j', ..., j5, a permutation of the integers (1, ..., 51, reflect weak 
orderings of the weights u j .  Taking all such weak orderings into account 
identifies a robust 'core' of 13 projects (1, 14, 16, 17, 18,23, 26, 27, 31, 34, 
35, 36, 37) which is invariably selected. It also identifies a 'margin' of 6 
projects (6, 11, 15,21,29,32) which are selected in various groups of 2 or 3 
according to the specific ordering imposed on the weights. 
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Table 10-1. Data on 37 research and development projects relating to their expected 

10.3. CHOICE OF DEA MODEL 

The choice of the CCR DEA model as the basis for our prioritization 
model implies that its underlying empirical 'reference technology' or 
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'production possibility set' is suitable to our purposes. See, for example, 
Grosskopf (1 986) and Maindiratta (1 990). 

An (empirical) production possibility set is a declaration of the totality of 
potential production possibilities that might plausibly be observed. In our 
case, this is based on the evidence of the finite collection of production 
possibilities that are to be observed. In a situation where there is a set 
D = {I ... d... I D I} of decision making units (DMUs) where DMU d has 
produced a vector of outputs Y, = (Y, ,... Yq...Y,,,,) from a vector of 
inputs X, = (X, ,... X ,... XdI,,), then the CCR production possibility set, 
T~~~ (D) , can be represented as: 

We then identify the set D of DMUs in (10.8) with our set of composite 
projects n(P) , where the latter obviously contains the individual projects as 
the singleton subsets of P .  It can then be immediately observed that 
T~'~(II(P)) contains non-negatively scaled versions of all projects, 
individual and composite. This is implicit in (10.3), above, which is the 
starting point for our prioritization model. 

The argument behind the derivation of model (10.5) from (10.3) can now 
be seen. Imagine the set of inputloutput vectors corresponding to the 
composites in n(P) divided into two subsets: those associated with the IPI 
singleton subsets {I}, (21, ... {I PI} (i.e. the individual projects themselves), 
and the remainder associated with the non-singleton subsets (i.e. the 
composites). 

We can therefore write the vector (x A p X p y x  ,.,, P) APYP) in 

where P ' = {{I), 121, ... {I PI}]. Now, with the convention that an index q 
identifying a composite in (10.9) also identifies the subset of projects 
comprising that composite, any Av # 0 in (10.9) can be set to zero by the 
algorithm: 

This follows from the way that inputloutput vectors corresponding to 
composites are constructed, i.e., by addition of the inputloutput vectors of 
the projects themselves. Repeated application of the above algorithm for all 
4 # 0 would serve to drive all Avto zero. TCCR(n(p)) is essentially 
equivalent to T~~~ (P) . The latter is thus capable of representing the former. 

A key feature of the CCR reference technology, by virtue of the 
unbounded (from above) multipliers 4, is that constant returns to scale are 
assumed. We regard this as appropriate here for two main reasons. Firstly, 
there seems little merit in rewarding projects for being relatively efficient 
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technically but at an inappropriate scale. See Banker et al. (1984) in terms of 
their proposed conversion of inputs into outputs. Secondly, the effect of the 
resource constraints will ensure that the composites in Swill operate at a 
similar scale, subject only to the granularity inevitable in combining discrete 
projects. 

However, if it were required to take scale aspects into account, this would 
typically be done via the Banker, Charnes and Cooper (BCC) (1984) 
production possibility set, TBCC (I~(P)) . This differs from T~~~ (ll(~)) in 

that, as well as the lower bounds on the multipliers Ap , there is a 'convexity' 

constraint in the form of A = 1 on their sum. It can easily be seen 
P € ~ ( P )  p 

that and TBCC (I~(P)) and TBCC (P) are not equivalent; the composite 
project equivalent to the sum of all the individual projects is in the former, 
by definition, but not in the latter. 

Importantly, Kao (1998) shows that TBCC(II(p)) is equivalent to the 
Koopmans production possibility set (see Grosskopf (1986)) T ~ ~ ~ ~ ~ ~ ~ "  (p) 
which, itself, differs from T"~(P) by the incorporation of upper bounds 
/2, 5 1 on the multipliers. It is a straightforward matter to modify (10.5) and, 
hence, (1 0.6) and (1 0.7), to implement TKoopman"" (P) rather than, TCCR (P) , 
if desired. 

10.4. SELECTING SITES FOR NEW FACILITIES 

10.4.1 Introduction 

Site selection for facilities is an important problem that has been studied 
extensively and reported on widely in the literature. Among the numerous 
applications are location of facilities such as fire stations, ambulance depots, 
and police stations. See, for example Savas (1969). These applications are 
aimed primarily at minimizing the distances between supply and demand 
centers. A related class of site selection problems pertains to coverage; an 
example is the deployment of health care clinics in rural areas (Eaton et al. 
(1982), and Calvo et al. (1973)). Here, the objective is to choose sites for 
clinics so as to optimize some function of total output (e.g. patients served), 
and generally in a resource constrained setting. In this situation, travel 
distance (or time) by the consumer is not directly an objective, but may be 
imposed in the form of a constraint. 

Many existing site selection models tend to view situations from a uni- 
dimensional perspective. In Eaton et al. (1982) , for example, total patients 
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served is the output of interest as opposed to defining different classes of 
outputs-outpatient clients, critical care patients, expectant mothers, etc. In 
this multi-output situation, one type of patient may impose different resource 
requirements than another type. As a result, this multi-dimensional setting is 
complicated by the fact that often there is no well defined rate of substitution 
between the different output types. One generally cannot say, for instance, 
that the resource requirements for one outpatient is equal to one-third the 
requirements for a critical care in-patient. Therefore, the multi-output setting 
cannot be converted to a single output situation. On the resource or input 
side, a similar situation can prevail. Different classes of inputs (e.g., staff 
types, equipment, physical facilities) may exist, for which there is not a 
common rate of exchange. Specialized equipment (e.g. for radiation 
treatments) will be used for only certain patient types. 

As a departure from the uni-dimensional philosophy of traditional set 
covering approaches to site selection, a number of authors, including Fisher 
and Rushton (1979), have advocated the development of analytical 
techniques for handling the multi-criteria nature of the problem. One such 
multi-criteria methodology is the data envelopment analysis (DEA) 
technique. Thompson et a1 (1986) presented one of the earliest DEA 
applications involving the evaluation of sites for a high-energy physics lab in 
Texas. Later, Desai and Storbeck (1990) looked at the concept of relative 
spacial efficiency when two measures of access are involved, namely total 
travel distance and least number of people not covered. Balakrishnan et al. 
(1994) apply a two stage technique to choosing sites for retail outlets. In the 
first stage, a set of location-covering scenarios or configurations is 
generated, with each configuration satisfying given adequacy requirements. 
Then, in the second stage, viewing a configuration from a multi-criteria 
standpoint, DEA is applied to generate a score for that configuration. 
Athanassopoulos and Storbeck (1995) provide a comparative evaluation of 
DEA and the free disposal hull (FDH) method in the context of site 
selection. Again, they generate a candidate set of configurations of units, and 
then treat those configurations as the decision making units. 

In the current section we demonstrate how DEA can be used to select 
sites for facilities in a resource constrained setting. As a practical setting for 
the model development, we examine the problem of selecting sites for new 
branches of a retail housewares and hardware store chain. We present a 
variation of the DEA model for choosing a best subset of a set of potential 
sites. This variation builds on the model of Section 10.2. This model is used 
to do a detailed case analysis of the selection of sites for retail stores. 
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10.4.2 Site Selection for a Retail Store Chain 

A certain national chain of stores sells a wide range of houseware and 
hardware products. Products can generally be classified into a few major 
groups: (a) self-service housewares, (b) self-service hardware, (c) counter 
sales of automotive parts, (d) counter sales of electronic devices (televisions, 
stereos, VCRs, etc.), (e) furniture and appliance sales. The chain also 
operates a catalogue shopping arm. The company currently operates a set of 
15 stores across the country, and wishes to select a set of new locations to 
expand its operation. 

In selecting a location for a store, it can be argued that the merits of this 
location would be judged relative to the outputs generated (e.g., sales of the 
different classes of products) versus the inputs consumed (resources needed 
to support the facility). In simplistic terms, it is the profitability of the 
location that would determine its relative desirability. The difficulty which 
can arise in a setting such as this is that one type of product can place 
different demands on resources than another type. For example, self service 
products require little staff involvement, versus sales of furniture and 
appliances or even automotive parts where product knowledge is a 
prerequisite on the part of the sales person. Thus, it is necessary to have a 
forecast of sales potential in different product classes as opposed to simply a 
forecast of aggregate sales. 

While it is the case that for each potential location, a forecast of 
aggregate sales dollars is needed, some caution must be taken in obtaining 
this forecast. Arguably, one could develop a forecast for each stock keeping 
unit (SKU) within a class, either in the form of monetary sales or units of the 
product. This could be done in the form of a regression model with 
independent variables such as population size, customer demographics, etc. 
For the stores in question, however, each class of products contained a large 
number of SKUs. Moreover, sales figures for a sample of SKUs examined 
showed a high degree of variability across the stores, and poor fits result 
from any of the models attempted. 

Forecasting in this situation, for a large class of items, resembles the 
problem of developing aggregate production forecasts for workforce 
planning purposes in manufacturing. Essentially, one converts a collection of 
products into a single pseudo-product, representing the production hours 
consumed in each period. One then projects into the future, obtaining a 
forecast of upcoming labor needs. The analogy to aggregate planning in the 
current setting, would be to view net monetary sales (sales revenue less, 
product cost), as the output for a product class. It would then appear that it is 
net dollar sales that one should attempt to forecast for any new proposed 
location. Here, however, net sales is highly variable among the existing 
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locations, and appears to have little correlation to any of the logical predictor 
variables (population size, customer demographics, etc.) This may be due, in 
large part, to the fact that the selling price charged for an individual SKU can 
vary widely from one store location to another, due to promotions offered at 
the store level, discounts obtained when the product was purchased, etc. As 
well, the proportional mix of SKU volumes within a class can vary between 
stores. An examination of the average price per unit of product in a class 
(across the analysis sample of stores) showed a high degree of variability, 
thus contributing to the high variance in total sales revenue. 

For aggregate sales planning purposes, the most predictable variable was 
the total units of products sold. As will be seen in a later section, this 
variable is highly correlated to certain predictor variables that are available 
for the proposed locations. Hence, it is this variable which we forecast. It is 
notable that if operational efficiency were at issue here, it is precisely this 
total units variable that one would choose to represent outputs, since it 
reflects staff workload. Workload is more a function of the number of 
transactions than of the profitability of those transactions. In our case, 
however, it is profitability, or return on investment, that is more correctly the 
issue in evaluating potential locations. Clearly one can represent aggregate 
net dollar sales as the product of total units sold and average profit per unit. 
Specifically, if y,  is the forecast of total demand (in units) for product 
group r at site k, and if pr is the average net sales (selling priceless cost) 
per unit of roduct in that group, then the expected aggregate net sales from 
site k is f rE ,  pr&. Here R denotes the set of product groups. However, 
as discussed above, since the average price, (hence, average net sales), is 
highly variable from one location to another, pr is not explicitly available, 
although bounds are obtainable. It is this feature of the revenue function 
which points to DEA as a model structure for selecting sites. We discuss this 
below. On the input side there are two types of factors to be considered in 
terms of servicing customer demand (the outputs).The first type of input or 
influence is the resources available. This could be viewed in various ways, 
but the two most logical forms of resource are: 

1. Initial capital outlay (construction and/or redecorating expenses), 
which is influenced by the size of the facility; 

2. Annual operating expenses, including salaries, utilities, rental, etc. 
Obviously, one could separate salaries in the form of total FTE staff 

numbers, but staff mix becomes an issue and is a function of the product mix 
problems discussed earlier. 

A second level of influence factors are those that pertain to customer 
demographics, as well as those involving the influence of competition. To an 
extent these factors are part of the forecasting model for aggregate unit sales, 
although, for reasons to be discussed in a later section, the regression model 
may not include all such variables. For this reason, certain 
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(nondiscretionary) factors may be included in the DEA model, rather than 
directly within the forecasting model. 

Again, in notational terms if xi, denotes the amount of input or factor i 
available at store location k ,  and vi denotes the price or value associated 
with one unit of input xi,, then the total resources dedicated to location k is xiEI vix, .  Here I denotes the set of all inputs. This expression is 
somewhat less transparent than is true of weighted outputs Ere, & yrk , in 
that we are mixing economic and non-economic factors on the input side. (In 
the application to be discussed, a single nondiscretionary variable, level of 
competition, is added on the input side.) Thus, it is useful to view the vi 
merely as multipliers, and not directly as prices in the same sense that the pr 
can be interpreted. 

10.4.3 A DEA Based Model 

Consider the situation where K ,  existing facilities are in place, and let 
{y , ) , , ,  denote the R -component vector of outputs produced by facility k. 
Let denote the I -component vector of inputs. In the site selection 
situation, yrk would denote the number of units sold of product group r at 
store k.  Similarity, x, represents resource type i consumed by k ,  or is a 
nondiscretionary variable, depending on the value of i. 

Suppose that K ,  potential sites are being considered as locations for new 
stores, and assume that a forecast is available for the numbers of units 
{y , ) , ,  of product in groups r E R. In the section to follow we discuss the 
development of such forecasts. On the input side, the competition variable 
xlk for any location k is non-discretionary (i.e., it is a given value). The 
other two inputs x,, = operating budget, and x,, = capital outlay when 
establishing the store at the site, are at the discretion of the company. Thus, 
these latter two are decision variables. If a store is to be established at 
location k ,  the values assigned to x,, and x,,, will clearly influence the 
performance ratio of the store. Normall , the performance score for a site k 
would be expressed as xr A y r k l t i d  v ix , ,  computed relative to all 
other existing facilities, as well as newly created ones. In our case, however, 
with both discretionary in uts (DI) and nondiscretiona inputs (NDI), a 
proper form of the ratio is [kpEg p,.Yrk - xi.,,, V i x i k ~ i ~ t E D ,  v ixik .  

In a resource constrained setting the problem of interest is how to choose 
that subset S of the potential new sites { K ,  + I, K ,  + 2, ... , K l  + K , }  which 
will yield the greatest aggregate benefit to the organization, while not 
violating these resource limits. This idea is similar to the problem of project 
prioritization discussed in the previous sections as per Cook and Green 
(2000). The important difference here is that, unlike the project selection 
problem where the x, wereJixed resource requirements (if a project is to be 
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implemented), the xi, in the current setting are decision variables that can 
take on values to be determined by the organization. 

We let I, I denote that subset of (discretionary) inputs for which 
bounds are to be imposed. In the site selection problem, I, would generally 
consist of the two resource inputs - operating and capital expenditures. 
Correspondingly, 7, denotes the compliment of I,. As well, let K, denote 
the existing set of DMUs {I, ... , K,), and K,, the set of potential new sites 
{K, + I, ... , K,). For any subset S, we represent the performance measure 
of S as the solution to the optimization problem: 

subject to 

keS  

xik 2 L,, i E I,, k E S (10.10e) 
xi, 2 0 , i e I i ; p r , v i  >E, r7 (10.10f) 

As discussed in Cook and Green (2000), when composites of DMUs ( S  
is a composite) are being considered, the appropriate production technology 
is that provided by the CRS model of Charnes et al. (1985). Essentially one 
needs to assume that for any DMU, multiples of that DMU are also in the 
production possibility set. Recall, that the primal problem for CRS allows 
any 4 2 0, whereas for the VRS model of Bank t al. (1984), one must 
operate within the convex hull of existing DMUs (ylj = I), meaning that 
composites may be beyond the bounds of the production possibility set. 
Hence, for composite considerations, CRS is the appropriate technology. 
Moreover, since the stores considered in the application herein, are of a 
relatively comparable size, non-constant returns to scale were deemed to be 
a non-issue. 

Here, the lower bound 8, in (10.10~) is to be selected by management. It 
may, for example, be decided that the minimum performance level for any 
new site k E S must be at least 8, = 80%. The upper limit of 8, for every 
store k e S may be taken as any value less than unity. We do not choose 
8, = 1, as this would permit a yet to be established facility to have an 
arbitrarily small level of each resource (> L,), possibly rendering all 
existing DMUs inefficient. As well, since output figures (total units of 
products by class) are estimates, their actuals may, in fact, exceed these 
levels, potentially putting proposed sites beyond the frontier of known 
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performance. We therefore propose that only known facilities should define 
the production frontier. 

Restrictions (10.10d) provide for limits Ci on the amount of resource 
available of input type i. Obviously, a limit on any nondiscretionary input 
may not have meaning. Constraints (1 0.10e) impose minimum requirements 
L,, on resource commitments xik for established new sites (those where 
stores are to be placed). In the case of capital , Li may be dictated by the 
minimum size facility that would be considered. 

It should be pointed out at this stage that optimization of a ratio of 
aggregate output to aggregate input may result in only one site being 
selected, that is, the cardinality of S may be 1. In most instances this would 
mean that the constraints on resources Ci would play little or no role in the 
optimization process (except in the rare circumstance that some particular 
site required extensive resource input). The idea, however, is to select sites 
in a manner which makes the best use of available resources. This means 
that any set of sites S to which an additional site could be added, without 
violating the resource constraints, would be so augmented. 

To ensure consideration is given only to subsets of sites to which no 
additional sites can be added, we first replace (10.10d) by the equivalent 
expression 

where s, is the slack variable corresponding to constraint i E I ,  in (10.10d). 
Next, to implicitly allow for consideration of all possible subsets S ,  we 

introduce binary decision variables d, where 
1 if a store is to be located at k 

d k  = {  0 otherwise; 

We now replace yrk by dkyrk, and the decision variable x, by dkxik. 
Thus, any given subset of sites S corresponds to a particular set of positive 
dk variables. 

Finally, to ensure that no additional site can be added to a set S under 
consideration, it is necessary to require that at least one of the slack variables 
in (10.1 1) be too small to allow for enough of the corresponding resource to 
be committed to any new site. Specifically, any feasible set of sites S must 
be such that for at lease one input i, there is not sufficient resource si 
remaining (after the allocation to sites in S is made), to support any 
additional site from the complement of S .  To accomplish this, introduce 
binary variables r;., , i E I,, and k E K, , and add the constraints 
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We can see from (10.12), that since any site k E S has dk = 1, the 
constraints will be clearly satisfied for all i. For k E S,dk = 0, meaning 
that either visi I viLi - 1/M or I;, = 1. Constraint (10.13) permits only at 
most I Il I -1 of these binary variable qk to be unity, meaning that for any 
non-selected site k, at least one of the inputs i must have a (weighted) 
slack visi strictly less than the (weighted) lower bound viLi. 

For any given {d,}  and { x , )  (i.e, if these variables were fixed), it is 
noted that the resulting linear fractional programming problem (10.10)- 
(10.13) could be replaced by a linear programming equivalent. Since this 
non-fractional equivalent of (1 0.10)-(10.13) holds regardless of the values of 
dk and x,  (assuming they are not all zeros), then, the above problem can be 
converted to the form 

subject to c cdkv ix ik  = 1 
keK2 i d l  

CKYA - zvixik 5 (4 k E K, 
reR iel 

zdk&yrk - zdkvixik - % c d k v i x i k  ' k € K, 
reR lei, i d l  

zdkPryrk - z dkvixik - q x d k v i x i k  ' k € K2 
reR ie& i l l  c dkvix, + visi = v,C,, i E II 
keK2 

dkxik 2 dkLi, ~ E I , ~ E &  (10.14) 

To facilitate writing this as a mixed binary linear problem, we first make 
the observation that if we add the constraints 

xi, I Mdk,k  E K,,i E II (10.15) 

then, for i E I , ,  the product dkxik can be replaced by x, wherever it 
appears. Next we make the changes of variables 
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ei=visi , i d , , k ~ K ,  
To connect a, with pr and dk,  yet avoid defining the transformation 

explicitly as (nonlinear) constraints, we impose the restrictions 
0 I ark I Mdk 

ark I pr I ark + M(1- d,). 
From this, we see that dk = 0 a ark = 0 and pr 2 0. If dk = 1 then 

k = ark . 
Similarly, the definition of bik implies 

0 I bik I Mdk 
bik I Vi I bik + M(1- dk) .  

Finally, in replacing vix, by c, , for i E I,, we ultimately compute xik 
as cik/vi, after the problem is solved. As well, slacks si are determined 
from eil vi . 

We note that condition (10.15) becomes (after multiplying through by 

Vi 

cik I Mbik,i E I l k  E K2 (10.16) 
With the above change of variables and linking constraints, the required 

mixed integer formulation of our site selection problem is: x [C ~rkyrk - x bikxik I 
k s K l  r s R  iei ,  

subject to 
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10.4.4 An Application 

The application to which we apply the model developed above pertains to 
the selection of prospective sites for a set of new home building stores, as 
described in Section 1. The data in Table 10-2 corresponds to the existing 
fifteen such stores. Associated with each store is the annual operating budget 
in units of $1,000. So, for example, the annual cost of operating store #1 is 
$750,000. To permit consideration of the capital cost associated with 
existing locations, the most practical approach seemed to be to combine its 
impact with operating cost. In this particular organization, the capital outlay 
for any given store was either borrowed funds or was viewed as such. Hence, 
interest and amortized principal (25 year amortization period) have been 
added to what would normally be considered as operating expenditures, 
namely salaries, wages, taxes, insurance, and all utilities. The figures 
displayed in the last column of Table 10-2 include the interest and annual 
principal consideration pertaining to the capital costs of stores currently 
operating. It must be noted that in some instances (e.g. stores 3 , 7  and 9), the 
initial borrowed funds for construction have been repaid. In these cases the 
operating cost figures have been increased to reflect what the real (current) 
costs in annual interest and principal would be if those expenses were still in 
effect. For stores with ongoing capital costs, all figures have been adjusted to 
reflect current rates. 

As discussed earlier, aggregate sales revenue among the 15 existing 
stores was found to be highly variable. This is due primarily to the wide 
variation in net profit per unit of any given product, but is, as well, a 
function of the fact that the proportional distribution of SKU sales volumes 
is somewhat variable from store to store. This latter aspect can likely be 
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attributed to customer taste and level of affluence. The most predictable 
variable appears to be aggregate units sold, when the large numbers of SKUs 
were combined. We have chosen here to divide total sales volumes into two 
major classes, namely: Class 1 - furniture and appliances, where a high 
degree of floor sales effort is required; and Class 2 - all other sales (generally 
necessitating minimal floor staff involvement). These two sales figures 
appear as columns 1 and 2 in Table 10-2. 

Columns 3,4, and 5 in Table 10-2 are demographic factors. Competition 
records the number of direct competitors within a two-mile radius of the 
store in question. These competitors are retail establishments that sell a large 
proportion of the product lines carried by the store in question. Hence, store 
#1 has 3 direct competitors in the same vicinity. Column 4 displays the 
number of single family dwellings per thousand persons in the metropolitan 
area where a store is located. This variable was chosen as a surrogate for 
disposable income, the rationale being that homeowners may reflect a higher 
level of affluence than non-homeowners, and are, thus, more likely to 
purchase higher value items. Column 5 provides figures for total population 
(in thousands) in the store vicinity. Since most of the stores are located in 
smaller cities and towns, the vicinity is generally defined as the entire city. 
In the case of stores 1, 4, and 6, however, which are all located in the same 
large city, the "vicinity" in each case is a two-mile radius of the store. 

In formulating a predictive model, the correlation matrix provides some 
insight into the connections among the variables of Table 10-2. It is noted 
that housing and population are highly correlated (.769), hence the product 
"Popsing" of these (total houses in the store vicinity) was computed; the 
revised correlation matrix is displayed in Table 10-3. Arguably, although 
competition is not highly correlated to sales, it would appear to be 
appropriate to include it in the analysis. The resulting regression model is 
given by: 

Sales 1 = 41.5 + .05 (5.93) House + .73 (.99) Comp 
The t-values are shown in brackets. It is noted that the competition 

variable is not only insignificant, but, as well, assumes the incorrect sign (it 
is negatively correlated to sales as per Table 10-3). This is very likely caused 
by the relatively low correlation between competition and Sales 1, versus the 
higher correlation between Popsing and Comp. 

A plausibly more appropriate model for forecasting sales is to base the 
latter on total housing alone, namely 

Sales 1 = 30.96 + 0.054 (5.58) Popsing 
The total housing variable has a t-value of 5.58, and the overall R2 value 

is 79.5%. This model has been used to generate the Sales 1 figures of Table 
10-3, for the six potential locations. 

Correspondingly, the forecasting model for Sales 2 is give by 
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Sales 2 = 47.46 + 0.038 (3.45) Popsing 
which has an R' -value of 66.2%. Again the predicted Sales 2 values for the 
six proposed locations are displayed in Table 10-4. 

Table 10-2. Data on Existing Stores 
Outputs Inputs(Predictors) 
FurnIAppl Other 

Store Sales1 Sales 2 Competition # Single homes Total Pop. Annual 
(100 units) (1000 (1 00) Vicinity Operating Cost 

units) 
(1000) ($1,000) 

1 2 3 4 5 6 
1 58 73 3 15 20 750 
2 2 1 46 4 7 15 490 
3 49 55 3 13 22 680 
4 63 68 2 17 30 620 
5 57 70 2 15 25 730 
6 62 65 1 18 23 860 
7 4 1 52 3 10 18 520 
8 35 46 3 8 12 390 
9 39 49 3 9 11 490 
10 29 45 4 7 12 420 
11 33 40 4 6 14 550 
12 48 65 2 14 28 730 
13 52 68 1 18 20 880 
14 65 65 1 20 43 960 
15 5 1 72 2 17 18 820 

Table 10-3. Correlation Matrix 
Comp Single POP sales1 sales 2 Popsing 

Cornp 1 
Single -0.45557 1 
POP 0.014427 0.768513 1 
sales1 -0.35883 0.928864 0.764681 1 
sales1 -0.46301 0.907664 0.607424 0.859388 1 
Popsing -0.507 0.870882 0.970757 0.891511 0.814325 1 

Table 10-4. Data on Potential Sites 
Predicted 

Site # Sales 1 Sales 2 Competition # Single Population 
(100 units) (1000 units) 

1 54 64 3 
2 44 57 4 
3 74 78 2 
4 36 5 1 5 
5 78 81 1 

homes 
17 25 
12 20 
20 40 
8 12 
25 35 
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The DEA Analysis 
For the DEA analysis, Sales 1 and Sales 2 were the outputs used, with 

annual operating expenditure (which includes annualized capital outlay), and 
competition being the inputs. 

As discussed earlier, competition should be seen as a nondiscretionary 
input, and was treated as such in the analysis. Arguably, in a resource 
allocation setting such as this, one should only be concerned with the 
profitability of the various sites, hence nondiscretionary variables should not 
really be a consideration in the DEA analysis. However, it can be claimed 
that if the competition variable had been kept as part of the forecasting 
model as discussed above, it is likely that the estimated sales figures would 
have been different from those currently available. Specifically, it can be 
argued that those sites with a high competition may have overstated sales 
figures, and those with low competition, are possibly understated. Thus, if 
the DEA score is presented as in (10.10a), we indirectly make the 
nondiscretionary variable part of the forecast. 

As indicated above, the capital cost component has been included as part 
of the annual operating budget, hence the DEA analysis provides for a single 
discretionary input. This avoids, at the same time, undesirable weight 
differences (the exchange rates) that might occur if separate operating and 
capital inputs were used. 

The problem of the high variability in net sales revenues described 
earlier, is addressed here by way of an analysis of average prices across the 
15 stores for the two classes of products. The ranges of average prices were: 

Sales 1 + ($355, $521) 
Sales 2 -+ ($5.75, $9.35) 

Given that Sales 1 figures in Tables 10-2 and 10-4 are expressed in 
hundreds of units and, those for Sales 2 are in thousands of units, these two 
ranges lead to the assurance region restrictions 

or more appropriately the pair of constraints 

P2 - 9Pl 5 0 
,u;! - 3 . 8 ~ ~  2 0. 

Clearly, other restrictions can be imposed here. For example, although 
the model given in the previous section has no specific provision for the 
extent of coverage provided by the selected sites, various modelling 
restrictions can facilitate this. One example would be to impose the 
constraint xkeK dk L N, where N is a lower limit on the number of sites 
to be selected. Such a condition is easily implemented in the optimization 
model, and can permit management to evaluate various scenarios. 
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In this particular application, the lower and upper limits on the efficiency 
of any composite of sites were chosen as 6, = 80% and 6,= 98%, 
respectively. Recall that with the constant returns to scale model, composites 
of proposed store sites legitimately fall within the production technology. 
Hence, these composites are evaluated against the existing CRS frontier as if 
they were actual operating units. This means that if sites 1 and 5, for 
example, were combined as a single entity, and considered as a DMU, the 
efficiency score would be 84.3%. While the objective was to obtain a single 
best selection of the available six sites, as described in Table 10-4, 
management was interested in looking at a range of options, since certain 
coverage issues were also at stake. 

Table 10-5. Feasible Combinations of Sites, and Their Corresponding Efficiency Scores 
Proposed Sites 
1 2 3 4 5 6 

Efficiency 
d, d, d, d, d, d, score (./,I 
x x 84.3 

Table 10-5 presents the outcomes for all possible combinations of the 6 
sites where the available annual operating budget is $2,250,000. (Any 
combinations not shown were not feasible). It would appear that the best 
combination of sites is combination # I  0 which composes sites 1,3 and 6, 
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with an overall score of 96.8%. Few 2-site solutions are feasible, with the 
best being sites 3 and 5, yielding an overall score of 87.6%. 

10.5. EXTENTIONS TO THE SELECTION MODEL 

The previous sections have presented a basic prioritization model, (10.7) 
+ AR(uj,vi). In the present section, some useful extensions will be 
sketched out in the context of prioritizing highway safety retrofit projects. 
We point out, however, that these extensions can have analogous 
interpretations in other problem settings such as the site selection example. 
In this context, the projects comprise specific sections of highway that are 
being considered for improvement from the viewpoint of accident potential 
or hazard. It is advantageous to use this alternative application setting, which 
itself instigated our work, as this will not only lend some perspective on the 
breadth of applicability of our basic model, but will also serve as an example 
of the necessity for, and ease of, its extension. These extensions will relax 
the assumptions concerning the independence of the projects and in so doing 
will exploit the binary structure in (10.7) to model details such as mutual 
exclusion/inclusion within subsets of projects. 

Identifying hazardous sections of highway and prioritizing measures to 
improve them, in terms of reducing potential accidents, is a major 
consideration in all highway departments. A significant literature exists on 
the characterization of hazardous locations. The subject of interest here 
consists of two inter-related aspects. Firstly, there is a concern with the 
prediction of accident rates and their severity in terms of explanatory factors 
such as traffic levels, road geometrics and so on. This research has focused 
on the use of multiple regression as a mechanism for obtaining appropriate 
predictions (Head 1959). A second component of research in the road safety 
and accident analysis arena involves accident reduction factors; specifically 
the improvement in safety that will be achieved if a segment of highway 
network is modified in some way . See, for example, Persaud et al. (1992). 
This corpus of work, together with appropriate expert judgment, enables the 
prediction of benefits achievable consequent on the allocation of retrofit 
funds to specific project proposals. 

With regard to prioritizing identified hazardous locations for treatment, 
the practice in most jurisdictions has been to rank these locations by either 
total accident frequency (e.g. using the total number of accidents on the road 
section over the past 3 years), or accident rate (e.g. accidents per million 
vehicle kilometers). A number of jurisdictions have recognized the multi- 
criteria nature of the prioritization problem. Thus, in looking at accident 
reductions, total accidents should properly be broken down into different 
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severity classes such as fatal, major injury, minor injury, and property 
damage. In Kentucky, for instance, numerical weights are applied to various 
accident types to reflect costs to the public. Troxel (1993) discusses a 
number of severity models for combining fatal and injury accidents into an 
overall figure. There are, of course, different views in different jurisdictions 
of what the weights on different accident types should be. Persaud et 
a1.(1992) present a multi-criteria methodology for determining appropriate 
weights to attach to different classes of accident in evaluating the relative 
importance of a set of retrofit measures. Further to these considerations, 
benefits can go beyond accident reduction and may also include improved 
road serviceability and traffic flow. 

Thus, on the benefit (or output) side, the prioritization problem is clearly 
multi-dimensional. On the cost (or input) side, the multi-dimensional nature 
is also apparent. Obviously, the monetary expenditure required to implement 
a particular safety improvement, vis a vis the overall retrofit budget for the 
planning period, is the primary input at issue. Other factors may also 
impinge: availability of labour, plant, materials, and design office time, for 
example. 

In this multi-output/multi-input setting, a model of the form dealt with in 
the previous sections, i.e (10.7) + AR(ui, v i )  , clearly has potential as a tool 
for assisting in the selection of a subset of projects from a larger collection 
of proposals. However, hitherto, we have assumed that projects are 
essentially independent, an assumption which now must be modified. 

While in many prioritization settings the issue to be addressed is whether 
or not to undertake a given project, in the highway safety project 
prioritization problem there is at least one additional dimension; namely, the 
treatment or design choice. Specifically, there can be alternative ways to take 
corrective action at a particular hazardous site. For example, run off road 
accidents may be preventable or can be reduced either through shoulder 
upgrading (paving or widening), installation of guard rails, or even 
corrections to the geometry of the roadway. Each option has different 
associated outputs in terms of reductions in the various accident types and 
roadway serviceability as well as different calls on resources. Thus, there is a 
mutually exclusive set of treatments that may be applied for each hazardous 
site being considered. Model (10.7) can be easily modified to cater for this 
situation. Firstly, denote the set of distinct hazardous sites under 
consideration as Q and the set of (mutually exclusive) treatments being 
considered as T. The index set of all project variants under consideration 
thus becomes the cartesian product of sets Q and T: 

P = Q X T .  
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Subscripts referring to this index set, such as k and p , are now ordered 
pairs (g, t )  where q E Q and t E T . To ensure that no more than one 
project variant at a site q is selected, the following constraints are needed: 

C lET ~ ( ~ , t )  < 1 for q Q 
A second practical modeling requirement is that of specifying 

commonality of treatment, whereby a group of potential project sites in some 
geographic area should receive the same treatment. If, for example, shoulder 
widening is applied in a particular location to prevent accidents, it would 
normally be the case that this treatment would be implemented throughout 
the surrounding area. Thus, if A (subset o fQ)  is a set of sites to be so 
considered, we proceed as follows: 

1. define binary variables g,, for t E T , 
2. include the constraint xtET gAt < 1 

3. include the constraints 

C(a,t) = ~ A I  U E A , ~ E T  
or 

'(a,() ' g ~ t  U E A , ~ E T  
The first set of constraints in 3 implies that all (or none) of the sites in A 

be selected and treated identically, whereas the second version allows some 
of the sites to remain untreated. 

10.6. CONCLUSING COMMENTS 

In this chapter we have introduced the concept of selection within the 
DEA framework. This binary choice version of the DEA methodology opens 
a number of avenues for identifying specific groups of DMUs with certain 
desirable properties. An example of the use of this methodology for 
identifying core business components in a multi-plant firm environment is 
given in Cook and Green (2004), and as discussed in Chapter 11. Further 
research in this area is encouraged. 
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MULTICOMPONENT EFFICIENCY 
Measurement and Core Business Identification in Multiplant 
Firms 

11.1. INTRODUCTION 

The DEA model, developed by Charnes, Cooper and Rhodes (1978), 
provides a constant return to scale (CRS) methodology for evaluating the 
performance of a set of comparable decision making units (DMUs). In the 
usual setting, each DMU is evaluated in terms of a set of outputs that 
represent its accomplishments, and a set of inputs that represent the 
resources or circumstances at its disposal. 

In some application areas, it has been recognized that the DMU may 
perform different types of functions. In such situations, it is desirable to 
derive a measure of performance, not only at the level of the DMU, but, as 
well, at the level of the particular function within the DMU. Cook and Roll 
(1993) were the first to examine the idea of partial efficiency measures, 
where the separate components of the DMU possess their own bundles of 
outputs and inputs. These bundles were assumed to be mutually exclusive of 
one another. Beasley (1995) examined both teaching and research 
components within a set of universities in the UK, and presented a nonlinear 
programming model for measuring DMU performance. A similar situation is 
encountered in Cook et al. (2001; 2000), where sales and service 
components are evaluated within a set of bank branches. They discuss linear 
models for providing both overall performance of a branch, as well as 
separate component performance measures. In that context, as with Beasley 
(1995) the input is a shared resource to be allocated to two production units. 
The complicating feature in each of these problem settings, that was not 
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present in Cook and Roll (1993), is the presence of shared resources. The 
existence of shared resources means that the usual DEA structure must be 
modified to provide for a splitting of those resources among the various 
components. 

In the current chapter we examine a set of manufacturing plants operating 
under a single corporate umbrella, with the objective of identifying how well 
each plant performs in each of its components thus identifying what might 
be considered each plant's a core business. Here, each component consists of 
a group of products selected from the totality of products offered, according 
to the specific interests of the corporate decision maker. Unlike the 
aforementioned dual-component applications (e.g., sales and service 
components in a bank branch), these components may overlap. Examples are 
(1) those products made from rolled steel of given dimensions; (2) those 
products servicing the automotive industry, ... , etc. This setting is clearly 
similar to those discussed above in that product groups are functions of the 
business, and, as will be seen, there are resources that are shared among 
those components. The models proposed here represent a departure from the 
earlier work of Beasley (1995) and Cook et a1.(1993; 2001; 2002), in two 
respects. First, we examine the extension of the earlier models to a multi- 
component (two or more) setting. Second, using' this multi-component 
structure as a point of departure, we develop models for identifiing the most 
appropriate product groupings for each plant (DMU). 

Section 11.2 presents the problem setting in more detail. In Section 11.3, 
extensions of the models of Cook et al. (2000; 2001) and Beasley (1995) are 
presented. Multiple, and potentially overlapping components are considered. 
These models are appropriate where the issue is one of identifying overall 
performance, as well as isolating particular areas (components) where the 
plant can be improved. Section 11.4 extends this idea to those situations 
wherein the organization wishes to identify the segment of the business that 
is performing best in any given DMU. In this way, the core business of each 
plant can be isolated, thus aiding the company in any reorganization 
initiatives designed to capitalize on the strengths of each location. Section 
11.5 discusses the application of these models in the plant setting described 
earlier. Conclusions are given in Section 11.6. 

11.2. MULTICOMPONENT EFFICIENCY 
MEASUREMENT AND CORE BUSINESS 
IDENTIFICATION 

In this chapter we examine multi-component efficiency measurement 
from two perspectives. In thefirst situation, we make the assumption that the 
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purpose of the performance assessment exercise is to determine an aggregate 
measure of efficiency, as well as measures for each of the separate 
components. Such evaluation will aid management in identifying the extent 
to which overall performance can be improved. As well, for specific 
business areas, the measures can point to those that are doing well, as well as 
those that require attention. Section 1 1.3 addresses this setting. 

In the second situation, it is assumed that the organization wishes to go 
beyond simply identifying the level of performance of specific subunits of 
the business. Rather, it is desirable to identify the area(s) where DMUs are 
performing best, hence defining what might reasonably be regarded as each 
DMU's core business. A given DMU may then wish to focus its energies on 
this selected part of the operation, while de-emphasizing, or in some cases, 
even abandoning those portions of the business where it performs at a less 
than satisfactory level. This development is undertaken in Section 1 1.4. 

To illustrate these ideas we examine a company with several plants that 
operate in the rolled steel industry. The company manufactures steel 
products, both of the finished variety that are sold on the open market, and 
semi-finished items that are custom-ordered, and sold to other 
manufacturers. These latter products can, for example, be items such as slit 
steel, used by other firms that manufacture steel doors and door frames. 
Other products, such as cylindrical bearings, are further along the value 
chain, and are purchased by companies that manufacture such consumer 
products as lawn mowers, or outboard motors for boats. Anticipating the 
detail given in Section 11.5, it is convenient to view the company's 
operations in terms of nine distinct products, and in conventional DEA terms 
each of these products would be considered an output. However, corporate 
management as well as being interested in the overall efficiency of each 
plant, is also interested in performance with respect to four overlapping 
groupings of these nine products. In what follows we will refer to a defined 
group of products, variously and interchangeably, as a component, subunit or 
segment. In some cases products are grouped to represent a particular market 
segment, e.g., automotive manufacturers who source certain products from 
the company. In other cases they are grouped to represent an internally 
meaningful segment of the operation, e.g., all products both semi-finished 
and finished, but pertaining to a certain size or quality of steel, or products 
made on particular machines. 

In the section to follow, we present model structures for evaluating both 
the aggregate performance of each of a set of DMUs, as well as the 
performance of the separate subunits or components within a DMU's 
operation. For purposes of this development, we utilize the problem setting 
discussed herein as a backdrop. 
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11.3. MULTICOMPONENT MODEL STRUCTURES 

The conventional model structure for evaluating the relative efficiency of 
each member of a set of DMUs is the DEA model of Charnes et al. (1978). 
Specifically, given an output vector Y, = (y,, , y,, ..., y, ), and input vector 
Xk = (x,,, x ~ ~ ,  ... , xlk), for each of a set of n DMUs k = 1 ,... ,n, the 
constant returns to scale model is given by 

max P O K I  l voxo 7 

subject to 
Y I v ,  X 5 1 all k, (11.1) 

Po 7 vo E. 
The structure in (1 1.1) presumes that one desires to measure the overall 

efficiency (e.g., operational efficiency) of each DMU, without consideration 
for the performance of subunits that may exist within the DMU. In the 
problem setting presented herein, we wish to provide for a more detailed 
performance evaluation, i.e., at the level of these subunits. 

113.1 Multi-component Efficiency Measurement with 
Shared Inputs: Non-overlapping Subunits 

Our point of departure for the discussion in this section, is the model 
structures of Cook et al. (2000), (see also Cook and Hababou (2001)). There, 
the authors examine the problem of providing separate efficiency measures 
for both sales and service components of a set of bank branches for a major 
Canadian bank. Adopting the notation of Cook et al. (2000), and extending 
their model structure to "T" components, we have: 

Parameters: 

= the R -dimensional vector of outputs included in the t th component of 
DMU k. 

R = set of all outputs 
R' = set of outputs generated by the t th component. 

XL = the I -dimensional vector of inputs dedicated to the t th component of 
DMU k. 

I = set of all inputs. 
I' = set of inputs dedicated to the t th component. 

X: = the I" -dimensional vector of inputs shared among the T components of 
DMU k. 

I" set of shared inputs. 
G, U,! = lower, upper limits on the portion of the i th shared resource, 

that can be assigned to the t th component of a DMU. 
T = set of all components. 
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Decision Variables: 

P; = vector of multipliers applied to outputs Y t  9' 

"$1 
= vector of multipliers applied to inputs X, . 

"0 
= vector of multipliers applied to that portion of shared inputs X: that 
are assigned to component t. 

4 = vector representing the proportion of shared inputs X: allocated to 
the t th component. 

In the two-component problem addressed in Cook et al. (2000), the 
principal area of difficulty was the presence of shared inputs X:. 
Specifically, there are certain resources such as branch expenditure on 
computer technology and general branch staff, that are shared across the two 
components of the business. There is no well defined split of these resources 
across different functions, and the basic problem has to do with the 
allocation of these inputs among the components. To facilitate this, and at 
the same time extend the idea to the general case of T components, a 
decision vector a: is introduced that permits the DMU k in question to 
apportion X: among the T competing components. In Cook et al. (2000), 
this is done in a manner that optimizes the aggregate performance measure 
(of DMU "o") given by: 

e: = C P~:Y,~::~C ( v l X  + "if ( 4 x :  ))I 
The component-specific performance measures e: are given by: 

It is pointed out that the notation aftx1: represents the vector 
(alt,x:,, c&x:~, ... , altIIY x$ ) of shared inputs allocated to component t by 
DMU "0". 

In the discussion below, we distinguish between optimal performance 
measures and performance measures for a DMU k, evaluated in terms of the 
multipliers for a DMU "o" currently being considered. (Doyle and Green 
(1994) use the term cross-evaluation in this instance). For this purpose, we 
adopt the notation sr, 2: to denote the measures for DMU k that represent 
their optimal performance, while el, ei denote performance relative to 
multipliers arising from the optimization of (some other) DMU "0". 

The multi-component DEA model is given by: 

gz = max ef: (1 1.4a) 

subject to 
e: I 1, all t, k 

L', 5 aI:, I U,! all t, i E IS, (1 1 . 4 ~ )  
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I I 
,q,,v~,,v:' 2 & ,  all t. (1 1.4e) 

Here, the objective (1 1.4a) maximizes the overall performance measure 
for the DMU "o", in the spirit of the original DEA model of Charnes et al. 
(1978). Correspondingly, we restrict each component measure e: by an 
upper bound of 1 in (1 1.4b). A permissible range on the proportion of the 
i th shared resource that can be allocated to the t th component by any DMU 
is given by (1 1.4~). Constraints (1 1.4d) specify that the proportional splits of 
any input i across the T components sum to unity. Finally, constraints 
(1 1.4e) restrict multipliers to be strictly greater than zero. 

The limits L:, U,! , on the proportions of the various inputs i to 
components t would need to be specified by the user. Such limits might 
generally arise from any information available at the plants regarding 
standard amounts of inputs i per unit of product in components t .  

From the above discussion it is clear that problem (1 1.4) is a restricted 
version of problem (1 1.1). Specifically, any feasible solution to (1 1.4) is also 
feasible for (1 1.1). Problem (1 1.4) only permits multipliers which identify 
each component of the plant as a bona fide sub-DMU whose performance 
measure is captured at the same time as that of the entire plant. Problem 
(1 1.1), however, is focused purely at the plant level, with no recognition 
whatever of subunits. 
Definition 11.1: A DMU "0" is said to be efzcient if its aggregate score 
g", 1. 
Definition 11.2: A DMU "o" is said to be efzcient in its t th component if 
g:, = I .  
Theorem 11.1: In model (11.4), the resulting aggregate performance 
measure g: for any DMU k, does not exceed unity, i.e., g z  1 . 

Pro08 
If we define 

p; = [v:,Xi + v;:l(a;x,")]/x (vl:x; + v:'(a[;X,")), 
tsT 

then, the aggregate measure (in terms of the (&,, v,  ) multipliers), is given 
by 

Hence, e," is a convex combination of the component measures, and as 
such e," I I .  Q.E.D 

Theorem 11.2: In model (1 1.4), a DMU is efficient if and only if it is 
efficient in each of its components. 

Pro08 
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Case 1 : Assume all component measures ;: =l.  

By definition, 

from Theorem 1 1 . l ,  and since C, fl; = 1, it follows that 2: = 1. 

Case 2: Assume 2; = 1. Then, if any c?: 4, it must be the case that 

as well, in contradiction. Q.E.D. 
We now examine multi-component performance measurement when 

overlaps can occur. 

11.3.2 Multi-component Efficiency Measurement with 
Overlapping Subunits 

The models presented above presume a set of subunits that are mutually 
exclusive. Arguably, in the bank branch setting of Cook and Hababou 
(2001), and Cook et al. (2000), sales and service components meet the 
mutual exclusivity requirement. In many settings this restriction may not 
hold, however, as is the case with the business components described later. 

In the case where mutual exclusivity prevails, it is sufficient to subdivide 
a shared input among the set of components. That is, a:i represents the 
portion of input i assigned to component t. It is not necessary to address 
how this portion ati is distributed among the outputs comprising component 
t. In case there is overlap among the components due to the existence of 
common outputs, the manner in which the proportions {a~i)~=, behave, is no 
longer clear. It is, for example, not true that xtsT a,!,i = 1, due to the 
overlap. 

In recognition of the overlap problem, we need to be more exacting as to 
how the shared input i is assigned to outputs rs%. Specifically, we define 
variables a, ,  that denote the proportion of shared input x,";~ (the i th 
component of vector X,";) that is allocated to output yo,. As well, let 
L;,U,!, denote lower and upper bounds, respectively, on a,,, and impose 
the constraint 

The proportion a:i of input i allocated to component t is then the sum 
of the proportions a,, of i allocated to those outputs comprising t, i.e. 
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For brevity in modelling, we henceforth denote the feasible set of 
a = ( a ' )  by 

A, = {a. = (al ; )  : ( 1 )  a<;, = C all,,.; 
re~1' 

all, 2 0, all i E IS, all t). 

The multi-component DEA model is then given by: 

Max e:, (1 1 Sa)  
subject to 
ei 5 1, all t, k, (1 1 Sb) 

q , ~  ?,Y (1 1 Sc)  
pll , v, , v:' 2 E, all t. (1 1 Sd) 

It is noted that the objective function (11.5a) credits the DMU for 

producing an output y:,. as many times as that output appears as a member 

of a component's output set. For example, an output yo,, contained in both 
1 2 components t = 1 and t = 2, (i.e., yllr, = y,,, ), would appear in (1 1 Sa)  

1 
twice7 as Pllr,Yllr, and 

We point out, however, that, as in the case of non-overlapping subunits, it 
is also true here that problem (1 1.5) is simply a restricted version of problem 
(1 1.1), if we view the inputs X in (1 1.1) as all being shared inputs. This is 
captured by the following theorem. 

Theorem 11.3: 
Any feasible solution to problem (1 1.5) is feasible to (1 1 .I). 

ProoJ Define the R-dimensional multiplier vector U' = (u:) by 

p: if product r is in component t 

0 otherwise 

and let U = C U' . Letting Y denote the R-dimensional vector of all 

outputs as used in (1 1. I), it follows that 
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IET 

Similarly, one can replace the set of inputs {Xi} by the I -dimensional 
vector X(l) = (x', X 2 ,  ... , xT), and replace the set of "shared resource" 
vectors a'X" by the sum of these component shares to get X".  Let 
X = (X(l),  X"), the full vector of all inputs. Then, as with the output side, 
one can express the denominator of the performance measure as 

[v ' x '  + v* (a'X.s)] = VX, 
IET 

where V is defined in terms of the v', v"' in a manner analogous to the 
definition of U in terms of {p'}. Hence e: in (1 1.5) can be written as 

e(: = UYl VX. 

Since it is true that each component measure e; I 1, then it must also be 
true that the aggregate score e," I1 as well. Thus, any feasible solution to 
(1 1.5) is also feasible for (I 1.1). 

Q.E.D. 
Hence, the overlap of the components does not lead to inconsistencies in 

regard to problem (1 1.1). Defining the aggregate measure in this manner 
results in the following theorem. The Proof is analogous to those of 
Theorems 1 1.1 and 1 1.2, and is, therefore, omitted. 

Theorem 11.4 
(a) The aggregate measure of efficiency given by (1 1 Sa) does not exceed 
unity. 
(b) A DMU will be aggregate-efficient, (the objective function (1 1.5a) 
will equal unity), if and only if it is efficient in each component measure. 

Model (1 1 S),  thus, allows one to examine the performance of a DMU in 
each business area. As well, it provides an overall or aggregate measure of 
performance across all business components. 

Because the orientation of model (1 1.5) is toward evaluation of the DMU 
at an aggregate level, with component measures arising only as a by-product, 
it can be argued that the individual subunits of the business may not be 
shown in their most favorable light. In some cases, the strategic intent of the 
organization might be to identify the core business for each DMU, the 
purpose being to focus the attention of the DMU toward the areas of the 
business at which it performs best. In the section to follow, we present model 
structures wherein the intention is to choose a core business component on 
behalf of each DMU. It should be pointed out that the identification of a core 
business component will not necessarily imply the immediate termination of 
all activities at a plant that are not included in that component. Rather, a 
DMU would initially continue to service all existing activities, possibly 
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phasing out non-core activities as these are redistributed to where they are 
best accomplished over some time horizon. 

11.4. MODELLING SELECTION OF CORE BUSINESS 
COMPONENTS 

A typical problem setting would be one where each of a set of plants for 
a given company produces a full product line, for sale and distribution to 
customers. There can be a number of reasons why it is cost effective for a 
certain product line, for example, to be manufactured in particular locations, 
but not in others. Certain manufactured items may, for instance, require 
specialized and expensive equipment that the company might prefer to make 
available in only one location. Alternatively, certain customers (e.g. farmers) 
may be highly concentrated in one geographical area, meaning that a plant 
close to that concentration should produce products related to that customer 
group. As well, simple economies of scale may dictate that the production 
for a product be concentrated in only a few plants, or even a single plant. 

The problem then is to identify which collection of products or product 
lines should be handled by any given plant, thus defining that plant's core 
business. 

The conventional DEA model does not readily lend itself to resource 
allocation (i.e. allocation of shared inputs). The DEA approach focuses 
attention on the performance of a particular DMU "o". If the objective is to 
allocate components to DMUs (plants), and to divide shared resources 
among products (and thus among components), one needs to view this 
allocation process from the perspective of the entire collection of DMUs, 
simultaneously rather than from the conventional DEA perspective, i.e. 
iteratively, one DMU at a time. 

To facilitate the allocation of components to DMUs, define the bivalent 
variables {d;);, , for each DMU k, 

1 if component t is assigned to DMU k, 
d; = 

0 otherwise. 
The aggregate performance (ratio) measure for the collection of DMUs, 

given an allocation defined by a chosen set of d; values, can be expressed 
as : 

The optimal assignment of components to DMUs, as defined by the d:, 
is arguably that for which the ratio of aggregate output to aggregate input is 
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maximized. The set of di for which this maximum occurs can be 
determined by solving the fractional programming problem: 

m a x x  [x d:,ufC]lx [x d;(vfX: + v'(aLX;))] (1 1.6a) 
k 1 k 1 

subject to 

p'Y,'l(vfX; +vs'(a:Xi)) 5 1 ,  all k , t  (1 1.6b) 

(=A0, (1 1 .6~)  x dl > 1, all k, 

x d: > 1, all t, 
k 

p', V' , vet 2 E, all t, d; & (0, I}, all k, t. (1 1.60 

Constraints (11.6b) restrict the ratio of outputs to inputs in any 
component to not exceed unity. (1 1 .6~ )  requires that the resource splitting 
variables satisfy conditions as defined earlier in A. . Constraints (1 1.6d) 
force each plant k to support at least one product group or component. 
Similarly, (1 1.6e) stipulates that each component must be produced at one or 
more of the plants. 

It is conceivable that at the optimum, certain plants may be chosen to 
support several product groups, while other plants may service only one 
group. 

Model (1 1.6a)-(11.6f), assigns multipliers p' , v', v"' to each component 
t in each DMU k. While it is not the purpose of the model to measure the 
efficiency of the entire operation of each plant, the supplied (common set of) 
multipliers do in fact provide the basis for an efficiency score for each plant 
and the aggregate across all plants, should one want to extract these. That 
aggregate score clearly includes the contribution rendered by both core and 
non-core components of the plant. Admittedly, the set of multipliers is 
derived in a manner designed to display core components in their best light, 
and by implication, non-core components in a light less than best. Hence, 
non-core components may be represented in a disadvantageous manner. One 
might argue that this is appropriate since, over time, such non-core 
components will, in any event, be phased out. Thus, their estimated 
performance (by that stage) will be a non-issue. At the same time, the model 
does, in fact, recognize their existence, and the bounds [L;,U;] 
appropriately force the allocation of shared resources across all components 
(both core and non-core). Thus, choice of these bounds by management 
affirms the continuing presence of non-core components in the operation. 
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Thus, the real purpose of the model is to single out those components of 
each plant on which that plant exhibits its best performance. It is these core 
components whose aggregate performance we wish to capture. 

The implication of this is that when a set of plants exhibit inefficiency, it 
is often desirable to strive for specialization. The questions that management 
would like to answer are: 

(1) In what parts of the operation should each plant specialize? 
(2) If plant operations were reorganized to implement such 

specialization, what would be the anticipated performance of the 
resulting operation? 

(3) How would each reorganized (future) plant perform? 

Question I :  The purpose of the model is to extract those components at 
each plant that appear to be the ones in which the plant should specialize. 

Question 2: While the model yields an aggregate performance across all 
core components in all plants, there is an implied measure of performance 
for each plant on a portion (core business portion) of that plant's operation. 
Specifically, using {&):,, for each k, the model yields a measure of 
performance for that subset of components in terms of the inputs that those 
components utilize, and the outputs generated by those components. This 
measure captures how the (reduced) plant would perform if non-core 
business elements were not present. 

Question 3: In a reorganized structure, the essence of the model is that 
each plant would concentrate only on its core business activities. It is argued 
that if each plant were to scale up its operation such as to come to full 
capacity in its resource utilization, then it is hypothesized that the resulting 
output generated would be scaled up by the same factor. 

To solve problem (1 1.6a)-(11.60, it can be shown that it is representable 
as a mixed integer linear programming problem. This is given by the 
following theorem. 

Theorem 11.5 
Problem (1 1.6a)-(11.60 can be represented as a mixed integer (binary) 

linear problem. 

Proof: Problem (1 1.6a)-(11.60 is equivalent to the mixed binary 
nonlinear programming model: 

m a x y  C d&'c 

subject to 
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x d: > 1, all k, 

x d: 2 1, all t ,  
k 

p', v ' ,  v"' >E, all t ,  di E (0, I}, all k, t .  (1 1.7g) 

Make the change of variables: 

-.sf - V d f a f ,  V S f  = d: $1 v - k ,v: = div', U; = dip'. 
It is noted that we can replace an expression such as vi = div' by the 

constraint set 

vi 5 Mdi , 
' I  v 2 v k ,  

V' 5 vi + M(1- di) ,  
where M is a large positive number. Specifically, if di = 0, then vi = 0; 
if d: = 1,  then vi = v' .  A similar set of constraints can be imposed to 
replace the nonlinear expressions u; = dip', and vi' = diu"'. Problem 
(1 1.7a)-(11.7g) can then be written as the mixed binary linear programming 
model 
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k I tT  

subject to 

x [u:Y,' - (v: X: + v t  Xi)] I 0, all k, 
1cT 

v: 5 Mdi, all t, 

vt 2 v:, all t, 

v t  I v: + M(l- d:), all t, 

u: 5 Md: , all t, 

,ut 2 u:, all t, 

,ut 5 u: + M(l- d:), all t, 

v t  5 Md:, all t, 

vt 2 v",' all t, 

V' 5 v",t M(l-  d:), all k, t, 

x d: 2 1, all k, 

d t  2 1, all t, 
k 

vft 2 E a t ,  all i, t, 

,u:,v,' 2 E, all i,r, t, 

u:,,v:~ 2 0, all i,r, k, 

0:; 2 0 ,  all r , t , i=l, . . ,  I', 

d${O,l), all k,t. 

This completes the proof. 
QED 

There are clearly variations of this model where, for example, it may be 
pertinent for certain product groupings or components to be manufactured in 
only certain plants that are perhaps in the best possible position to handle 
them. This might be due to equipment capability, proximity of the market, 
and so on. Thus, for a given component t , ,  we might require that 
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dp = 0, k&Kt", where Kt" is the set of allowable plants for manufacturing 
component to, and KtO is its compliment. 

In the section to follow, this model is used to allocate business 
components to ten plants within the company under study. 

11.5. APPLICATION OF CORE BUSINESS SELECTION 
MODEL TO A SET OF PLANTS 

In the problem studied, 10 plants currently operate under a single 
corporate umbrella, producing a variety of steel products including bearings, 
pipes and sheet steel of various sizes. Clearly, some of these products are of 
the finished goods variety (e.g. pipes), while others are semi-finished, 
becoming components in other manufactured items (bearings), or are sold to 
other plants for further manufacturing (sheet steel). 

As indicated earlier, it is convenient to view each plant's business as 
consisting of various components. While it is the case that there can be a 
large number of products to consider (e.g. different sizes of circular 
bearings), here items have been grouped by management under a few major 
categories. For purposes of this study we present the operation of any plant 
as consisting of four (overlapping) components, defined by their outputs y:, 
the number of units of output r in the t th component: 

Component #I : 

All solid bearings ( y i )  

Circular bearings (automotive) (y i )  
Sheet steel I 4 feet in length (y : ) .  

Component #2: 

Solid bearings (automotive) y:) 

Steel pipes I 8 feet in length yl )  

Sheet steel 4 feet to 8 feet in length ( y ; )  
Component #3: 

Steel pipes > 8 feet in length (y: )  

Sheet steel > 8 feet in length (y i )  
Component #4: 

Circular bearings (automotive) ( y f  ) 
Circular bearing (non-auto) ( y ; )  
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All solid bearings ( y i )  

Sheet steel I 4 feet in length ( y : )  

Table 1 1-1 displays the data for all outputs for the 10 plants considered. 

Table 11-1. Outputs for Four Components 
plant Y: Y: Y: Y: Y: ~ 3 2  Y: Y: ~f ~ 2 4  ~ 3 4  ~ 4 4  
1 50 30 70 30 60 50 40 80 30 50 50 70 

The resources committed to the production of these product lines can be 
grouped under four headings, namely 

Shop labour ( x , )  
0 Machine labour ( x , )  

Steel splitting equipment (x , )  
Lathes ( x , )  

Shop labour and machine labour are measured in full time equivalent 
(FTE) staff. Both equipment variables are expressed in hundreds of hours of 
capacity available per month. Given the manner in which the four 
components have been defined, with the inherent overlap of products, all 
four of these inputs should be viewed as shared resources. 

Table 11-2 shows the amounts of the four resources corresponding to 
each plant. 

The connection between the shared inputs and the product outputs ( y : )  
is quite complex, and must be reflected through the a,,. If a given input 
such as lathes (x , )  does not impact on a particular output such as sheet steel 
(5 4feet)  ( y : )  then that particular variable a is set to zero. Figure 11-1 
shows the input-to-output impact matrix. 

In the figure, an "x" denotes the fact that the particular input contributes 
to the output shown. It must be noted as well, that when we have a product 
common to two or more components, the corresponding variables air must 
be equated. For example, since sheet steel I 4 feet is part of both 

1 4  components 1 and 4 (i.e., y3 = y ,  ), then a,,, = a ,,,, . 
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Table 11-2. Shared Resources 
DMU X, X, X, X, 
1 30 15 100 150 

Input 

X X -  x - - - -  X X X -  
x2 

- - 
X3 

X - X X X X - - - X  

X X -  x - - - -  
x4 

X X X -  

Figure 11-1. Input Versus Output Impact Matrix 

For solution purposes we have restricted each air to lie in the range .1 to 
.4. This means that for each shared input i, at least 10% and not more than 
40% of that input would be dedicated to any given output r. Although the 
decision on such bounds was difficult for management to pin down, the .l-.4 
range was deemed reasonable. As well, we impose both upper and lower 
limits on the numbers of plants to which any given component can be 
assigned. Specifically, we require for each component t : 

1 5 z d ;  54. 
k 

Hence, at least one plant, and no more than four plants can be assigned 
component t .  

Efficiency Results 
Table 11-3 displays the optimal component assignment to plants. In 

summary: 

Component #1 -+ Plants 5,7,10 
Component #2 ---+ Plants 6,s  



Component #3 --+ Plants 1,3,9 
Component #4 + Plants 2,4 
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Table 11-3. Assignment of Components to Plants 
DMU T, T, T, 

Table 11-4. Decomposition of DMU Efficiency 
Assignment of components topartial efficiencies of component 
olants 

DMU T2 T3 T4 T2 T3 Aggregate 
efficiency 

1 0 0 1 0 0.51 0.68 1.00 1.00 0.93 

The overall efficiency score corresponding to this assignment is 96.6% 
(the value of objective function (1 1.7a)). Specifically, if plants are evaluated 
only on their core business components, their performance will be such that 
if viewed as a single entity, the aggregate score is 96.6%. Table 11-4 
displays both the current aggregate efficiencies for the 10 plants, as well as a 
decomposition of these scores into component efficiencies. For example, 
Plant #3 currently displays an overall performance score of 75%. This is 
composed of partial efficiency scores of 52%, 61%, 90% and 76% for 
components 1, 2, 3 and 4, respectively. Recall that the measure of partial 
efficiency for a DMU k in its t th component is given by 

It is noted, as well, that with the recommended component-to-plant 
assignments, plant #3 would be expected to have an efficiency of 90% (up 
from 75%), if it could ultimately phase out non-productive portions of its 
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operation, and move its full emphasis to that part of the business defined by 
component #3. It must be emphasized that the component t ,  assigned to a 
plant may not be the one whose partial efficiency is highest for that plant. 
Notice, for example, that component #2 is assigned to plant #6, with a partial 
efficiency of 79%, yet component #3 actually performs better within that 
plant (at a partial efficiency of 83%). This can occur because rather than 
minimizing a sum of efficiency ratios, we are optimizing the ratio of 
aggregate output (across all plants), to aggregate input. 

11.6. DISCUSSION 

This chapter has examined the problem of identifying core business 
components for each of a set of comparable decision making units. In the 
context of a set of manufacturing plants, a modified version of the DEA 
model of Charnes et al. (1978) has been developed and demonstrated. Unlike 
conventional applications of DEA where the scope of the business (bundle of 
products produced) is assumed to remain fixed, the approach herein is 
intended to aid in making decisions pertaining to functional specialization in 
plants. An important by-product of the core-business selection process is the 
evaluation of efficiency of each component of the business as well as of the 
overall DMU. The result, as demonstrated by Table 11-4, is an efficiency 
profile that management can utilize in deciding where to aim for 
improvements and, as well, which components to de-emphasize or phase out. 

We do not attempt to address issues relating to plant reorganization 
toward specialization. Rather, the model can aid management in choosing 
those (core) business activities to place within each plant. The logistics of 
restructuring and any change management considerations are beyond the 
scope of the current chapter. 

One of the potential shortcomings of the model given here is the apparent 
absence of consideration of distribution costs on the input side. Specifically, 
in some settings, the choice of a particular plant as the location out of which 
a given component of the business will be operated, has distributional 
consequences. For example, manufacturing auto parts in a location remote 
from automobile plants (the customer) may be more costly than having them 
manufactured at a less efficient, but closer-to-market facility. In the 
application discussed herein, this issue was not highlighted as a major 
concern. Presumably, in situations where distribution is a major issue, one 
would need to augment the input bundle to include a provision for 
distribution costs. 
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Chapter 12 

IMPLEMENTATION OF ROBOTICS 
Identzfiing EfJicient Implementors 

12.1. INTRODUCTION 

One significant component of the factory of the future is the industrial 
robot.' Statistics from various countries show significant growth in the 
number of robots and plants using robots since 1980. It is becoming 
increasingly important to understand which firms are doing an adequate job 
of implementing robotics, and why they have been successful. Determining 
factors that lead to better robotics implementation is complicated by the 
difficulty in determining project success. Performance is often defined in 
terms of multiple criteria, and the levels for each should be interpreted in 
relation to similar applications in firms with similar or competing interests. 
This presents a complex situation in which to identify the more or less 
successful implementers. It is only after the better performers are identified 
that one can weigh the merits of various robotics implementations. 

This chapter introduces a model of implementation efficiency which 
utilizes DEA methodology to rank implementation performance in the 
presence of multiple criteria. The source data are from a field study of 
robotic applications in 30 companies. Three conditions believed to influence 
implementation efficiency are tested, illustrating how DEA ratings can be 
used to study the implementation of new technology. 

I A robot is defined as a programmable multifunctional manipulator designed to 
move parts, tools or specialized devices through variable programmed motions for 
the performance of a variety of tasks. 
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12.2. A MODEL OF IMPLEMENTATION EFFICIENCY 

12.2.1 Background 

In the research on technological innovation, the primary focus has been 
on the decision phase, that is, the stages leading up to the organization's 
choice to adopt new technology. The later stages of the adoption process, 
during which the innovation is actually implemented, have generally 
received much less attention. There are a number of reasons for this: 

The implementation events are contingent upon a great many 
factors, including those related to: 

-the technology's characteristics, such as its physical 
complexity and its state of development; 
- the innovation's requirements for skills and expertise beyond 
those already within the organization; 
- the organizational restructuring needed to accommodate the 
new technology; 
- the availability of necessary skills and resources; 
- the organization's history and culture for change. 

Even with identical prior conditions and implementation objectives, 
implementation processes may vary considerably among adopting 
organizations (i.e., equi-finality). (Leonard-Barton, 1988). 
Conversely, the same innovation may be adopted by different 
organizations to fulfill widely divergent objectives. 

These conditions limit the comparability of implementations, even where 
similar technologies are adopted. As a result, it is difficult to form a clear 
picture of the critical conditions that lead to successful technology 
implementation. Moreover, determining a project's "success" may pose 
serious problems. This is especially true for projects with multiple 
objectives. First, a new process technology's impact can be subtle and 
widespread, extending well beyond the altered operation. For example, the 
installation of a robotic system may reduce labour costs for the specific 
application as intended, but increase material costs (because of the need for 
more consistent inputs) and indirect costs (because higher skills in 
programming and maintenance may be required). Additionally, the adoption 
of advanced equipment may affect worker attitudes, impact sales or even 
accompany a complete shift in corporate capabilities. Second, few firms 
gather comprehensive information about completed projects, with post- 
audits done poorly, if at all. As a result, there are usually scant data about the 
new technology's actual performance against the criteria - such as improved 
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efficiency or enhanced profitability - by which the project was initially 
justified. 

Under these circumstances, investigators have to use the best information 
that is generally available to compare relative success among 
implementation projects. This means that some surrogates of inputs and 
initial conditions have to be used and that outcomes have to be judged on a 
broader basis, with multiple criteria reflecting the many objectives managers 
have for their particular projects. In examining the implementation of one 
type of technology - computerized information systems - Pinto and Slevin 
(1988) propose three criteria for assessing project outcomes: technical 
validity (whether the technology works as intended), organizational validity 
(whether clients or users are satisfied with the outcomes) and organizational 
effectiveness (whether the organization achieved overall positive benefits). 

Most new technology projects can be assessed for their technical and 
organizational validity; however, measuring organizational effectiveness is 
much more difficult. It is difficult to attribute the organization-wide net 
benefits of a process technology improvement, including changes in profits 
or market share, image enhancement, etc., even within a firm that conducted 
intensive, multi-year post-audits. It is virtually impossible to do so within 
those firms that conducted little or no follow-up work (which are the 
majority). Without the ability to gauge a project's organizational 
effectiveness, the measurement of the relative success of a technology 
implementation is based almost exclusively on operational measure of 
technical validity and organizational validity. 

Comparing outcomes is also complicated by the differences among 
projects and the initial conditions at each site. Any comparison of relative 
project success must control for those conditions that would be expected to 
impact eventual results. Two dominant conditions that often vary from site 
to site are the project's technical design and the initial availability of critical 
technical skills and resources. Most process technologies are at least in part 
unique, since they must be modified to suit the particular requirements of 
each plant's operations; in some cases, they may be virtually custom-made 
for each application. The levels of modification impose different challenges, 
with differing levels of system complexity and differing dependence on 
newly developed hardware and software. Sites also vary in their access to 
experienced personnel who would have the technical and management 
expertise. It is only appropriate that comparisons of outcomes should be 
made relative to these input conditions. The DEA methodology 
accomplishes the requirements of comparing projects with differing initial 
conditions and with various goals by using multiple constraints or input 
conditions to determine relative success (or efficiency) ratings of comparable 
projects on the basis of numerous outcome measures. 
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12.2.2 Assessing the Implementation of Industrial Robotic 
Systems 

To demonstrate the comparison of similar implementations, we use a 
group of projects that installed robotic systems in industrial plants. In each 
case, the system was the plant's first use of robots. Information on each 
implementation is taken from project records, interviews with a number of 
managers at each site and direct observations of the systems in action. 

Few of the 3 1 plants had any detailed records about actual costs for their 
projects, either for their system's initial installation or for their subsequent 
operation. Costs of purchased equipment and services were the only 
expenditures that all sites could report, even though all of the plants incurred 
other costs - for modifications, training, plant preparation and management 
time - that were usually substantial but rarely captured. In some cases, the 
non-capital startup costs were estimated to have been very high and 
continued for several months following system installation. Cost, then, 
provided little indication of the inputs actually required to complete these 
projects. 

The project outcomes were equally difficult to judge on the traditional 
basis of efficiency improvement. For example, 14 of the 31 projects were 
welding applications; with these projects, the main benefits included not 
only reduced cost but improved weld quality plus the automation of 
hazardous operations (where, for instance, the increased automotive use of 
galvanized metal introduced new problems with dangerous fumes in 
welding). Moreover, in many different applications, robotic systems failed to 
reduce labour costs as expected, because the robots were found to require 
constant monitoring. Despite the lack of clear economic advantage in many 
projects, almost all of the systems became routinized. With some smaller 
firms, the robot systems were clearly inefficient compared to the direct costs 
of doing the same work manually, but the firm managers believed that the 
improved consistency and the enhanced image gained by adopting robots 
made up for the higher costs. 

Given these conditions, measures that indicated the projects' technical 
and organizational validity were judged to be most appropriate for gauging 
outcomes, rather than comparing financial benefits. Objective measures of 
how well the system worked, both initially and in routine use, were bsed to 
indicate its technical validity. Subjective measures (managers' opinions) of 
how well the system achieved expectations indicated organizational validity. 
More specifically, technical validity was gauged by: 

startup duration, the length of time from system installation until the 
completion of debugging; 
uptime, the proportion of the scheduled running time that the system 
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was capable of operating once in routine use. 
Organizational validity was judged by: 

management satisfaction, the perceived degree to which the project 
met expectations. 

Management satisfaction reflected multiple opinions wherever possible, 
with the mean score being used as the measure. 

Conditions under which the projects were carried out varied considerably 
from site to site. Some of the firms that adopted robots were small plants 
with limited technical resources and experience with programmable 
equipment; others were large plants, with highly competent technical staff 
and considerable experience using and maintaining other forms of 
programmable equipment. A measure of previous technical experience with 
similar technologies was developed to differentiate these conditions in each 
plant. Additionally, the systems themselves varied widely in characteristics 
that were likely to affect implementation ease. Some systems were relatively 
simple, consisting of a single robot interacting with one other piece of 
automated equipment; other systems contained up to twelve robots that 
interacted with several other machines. Some systems were designed to 
perform a single task while others had to be programmed to carry out 
numerous different operations, or perform similar operations on a wide 
variety of different work-piece designs. These design elements were scaled 
and combined to form a measure of each system's complexity. 

The systems also varied in the degree to which they employed newly 
developed technology. Some systems employed proven, "off the shelf' 
robots, controllers and other components while others required specially - 
prepared grippers, part-handling mechanisms and other machines. Since 
newly developed manufacturing equipment tends to face more startup 
problems and failures, a measure of this facet of each system was devised to 
control for this condition. 

Appendix 1 contains a brief description of each of the input and outcome 
measures. Some of these measures are interval; others are only ordinal. For 
some of the measures, the derived values form distinctly non-linear patterns, 
while others have limited variability. These conditions severely limit the 
usefulness of least-squares-based analytical techniques. Fortunately, the 
DEA methodology can deal with these problematic measurements. 

12.2.3 The Model Structure 

A robotics project can be viewed as a Decision Making Unit, in much the 
same manner as one would view a factory, government department, etc. It 
utilizes resources or inputs, and produces outputs or results. Comparison of a 
project to an operating unit is a useful paradigm, if one considers the manner 
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in which the productivity standing of a factory would be measured. In such 
an industrial setting, efficiency or productivity is generally approached from 
an engineering perspective. This approach is based upon production 
standards. Such standards specify the best (minimal) amount of each input 
needed to produce one unit of output, and the productivity rating of the 
DMU is generally given by the ratio of standard or required inputs to actual 
inputs consumed. 

While productivity standards can be derived in an engineering 
environment, such is not the case in the project setting. Outputs or outcomes 
are not reducible to a common unit of measurement such as hours or dollars, 
and inputs are not purely economic, but rather characterize the environment 
or circumstances surrounding the implementation. Thus, an alternative to the 
absolute approach to efficiency measurement offered by the conventional 
engineering method, is a relative efficiency model (DEA). For our purposes 
here we adopt the constant returns to scale version of the DEA model. 

There are several important reasons why this method is particularly well 
suited to the implementation efficiency problem at hand. First, factors such 
as technical complexity of the new system and its use of new technology 
form an important part of the picture, yet are not easily reducible to 
economic units for purposes of setting standards. Therefore, as indicated, the 
conventional approaches are not applicable here. At the same time, scale 
measurements of these factors are available, allowing for a relative 
comparison of the projects. Second, the method possesses certain 
characteristics which render it a valuable tool in the context of the present 
problem. These characteristics are: 

1.The model can provide a clear discrimination among the projects, 
hence separating them into various rank classes; 
2.It can help in pointing to reasons for apparent inefficiencies, 
therefore aiding in either verifying or disproving popular belief vis- A- 
vis influences on implementation success; 
3.The model makes allowance for any special circumstances 
prevailing in some project settings (e.g., low versus high degree of 
technical or management experience); and 
4.Its structure is such that one can evaluate parameters that are not 
directly included in the model, yet which may have an important 
impact on implementation efficiency (e.g., number of employees in 
plant, urgency of the project, etc.). 

This approach for determining weights for each DMU can be justified by 
arguing that since non-economic factors are present, there is no "correct set" 
of weights that apply to all projects. The importance, for example, of the 
complexity factor to projects in large plants may be different than to those in 
small plants. Thus, rather than having to try to assign some set of common 



Chapter 12. Implementation of Robotics 28 1 

weights to inputs and outputs, the model itself chooses weights that are 
appropriate for each project. 

In the sections to follow, we elaborate on the problem setting and the 
outcomes resulting from the DEA analysis. 

12.3. THE DATA 

The DEA evaluation of implementation efficiency was applied to data 
collected on 31 robotics projects at 30 different sites implemented during the 
period 1980 to 1986, as detailed in McCutcheon (1988). In each case, the 
project was the plant's first use of robotic technology. In one case, two 
projects were installed simultaneously and independently. Data were 
collected by onsite interviews, conducted primarily with process or 
manufacturing engineering managers. The distribution of the plant sizes, 
industrial sectors and uses for the robots are shown in Appendix 2. 

The projects involved wide ranges of plant sizes, robot applications, 
system complexity levels and outcomes. Although it was anticipated that 
only successful projects would be found, two of the 3 1 projects studied had 
been abandoned and several were considered by their implementers to be 
partial failures. 

Although arc welding applications and vehicle component manufacturing 
appear to dominate the sample, these categories in fact included widely 
varied projects. The vehicle component applications ranged from light 
stampings for automobiles to heavy welded sections for off-road equipment 
and military vehicles. While 42% of the surveyed systems were used for arc 
welding, these applications ranged from simple systems used in job shops to 
extremely complex systems dedicated to mass production. 

The site studies resulted in the collection of data on a wide range of 
factors. For purposes of measuring implementation efficiency, six direct 
factors (3 outcomes and 3 influence variables as described earlier) were 
selected for use in the DEA model. In addition, three control variables were 
chosen to be used for further analysis. Appendix 1 contains a detailed 
description of these 9 variables. A table of the numerical values for the 31 
sites investigated is contained in Appendix 3. 
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12.4. ANALYSIS OF EFFICIENCY 

12.4.1 Preparing the Model for DEA Analysis 

The implementation efficiency model described in section 2 was applied 
to the 31 projects. The effect of DEA analysis on the model is illustrated in 
Figure 1. Part of the input to this model is a set of limits on each of the three 
input and three output variables. The choice of limits is rather arbitrary. For 
purposes here, the limits on all inputs and on the output variable MSAT were 
set very wide based on the belief that there may be a high degree of 
uncertainty or ambiguity regarding these variables. 

STIME and UPTIME were regarded as the variables whose data was 
perhaps the most reliable, and whose importance weights should be 
subjected to the tightest control. 

12.4.2 Outcome from the Overall Analysis 

The DEA model was run for the 31 sites, and an efficiency rating was 
obtained for each. Table 12-1 displays the results. In this case 7 of the 31 
projects obtained an efficiency score of 1 .OO or loo%, meaning that they are 
not dominated by other more efficient sites. The remaining 24 projects 
obtained ratings at a lower level, indicating that each is dominated by some 
other efficient site or combination of sites. As an example, compare sites #5 
and #30. Site 5 had outputs that were higher than those for #30 (#5 took less 
time to put the project in place, its system is serviceable more often, and 
management satisfaction is higher than is true for #30). On the other side, the 
influences or inputs for #30 are more favorable than for #5 (meaning that 
#30 should have actually had better outputs than those of #5). 

The outcomes in Table 12-1 demonstrate a wide range of ratings, 
meaning that the DEA model has been able to discriminate clearly among 
the implementation sites. Moreover, through arguments similar to that of the 
previous paragraph, one can detect, in many cases, clear reasons why some 
sites score low on the efficiency scale. 
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INPUTS OUTCOMES 

I RANKING OF 
tMPLEMENT1NG I 

Figure 12-1. Implementation Efficiency Model 

Table 12-1. DEA Efficiency Ratings for 31 Sites 
Robotics DEA 
Project Rating 
1 62.9% 
2 81.1% 
3 70.9% 
4 52.4% 
5 100.0% 
6 64.1% 
7 52.3% 
8 82.2% 
9 69.0% 
10 54.9% 
11 69.5% 
12 100.0% 
13 65.0% 
14 65.2% 
15 5 1.6% 

Robotics DEA 
Project Rating 
16 66.6% 
17 69.0% 
18 100.0% 
19 52.2% 
20 64.4% 
2 1 100.0% 
22 100.0% 
23 69.3% 
24 93.0% 
25 100.0% 
26 58.6% 
27 87.8% 
28 100.0% 
29 57.2% 
30 58.7% 
31 89.4% 
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12.4.3 Using the Control Parameters 

Three additional parameters - plant size, the use of supplier 
management techniques, and the project's perceived urgency - were 
examined for their impacts on implementation efficiency. Each parameter 
was expected to influence results. Comparing the initial efficiency ratings 
against those derived by including each of these parameters shows how 
rankings would be affected if the parameter were to be considered an input. 

Size has been found repeatedly to correlate with organizational 
innovativeness, with larger organizations tending to adopt more innovations. 
(Ettlie and Rubenstein, 1987). However, as pointed out by Rogers, size is 
most likely a surrogate for other factors, such as organization structure or the 
availability of slack resources, that have a more direct influence. (Rogers. 
1983). During the implementation phase, plant size may have two effects: 
larger plants may have more sophisticated staff (reflected in the measure for 
previous experience with similar technologies) and more sophisticated 
infrastructures, which should lead to better results; (Gerwin. 1988), at the 
same time, larger plants may have more mechanistic managerial 
relationships which may impede implementation efficiency. 

The use of a wide range of supplier management techniques for 
controlling technical innovation projects conducted largely by vendors has 
been shown to reduce system startup problems significantly. (Wood and 
Elgie, 1976). Including a measure of each plant's supplier management 
methods in the analysis provides an indication of their impact on overall 
implementation results. 

The urgency associated with getting these robotic systems into routine 
use varied considerably from project to project. In some cases, the new 
systems were seen as essential for assuring the plant's continued survival, 
whereas in others, the systems had no special urgency, being viewed in part 
as experimental, undertaken as learning opportunities. Perceived urgency has 
been shown to have an influence on the initial stages of innovation adoption 
decisions. (Ettlie and Vallenga, 1979). Urgency was included here to see if it 
had a discernible impact on the project's implementation stage as well. 

To gain some insight into the influence of a parameter such as supplier 
management, the 3 1 project sites were separated into two groups. Those sites 
with a supplier management rating between 0 and 8 (low) were separated 
from those with a rating higher than 8 (high). A DEA analysis was then 
applied to each of these groups separately. Table 12-2 shows the outcomes. 
Column #I displays the original ratings prior to the split off analysis (same 
ratings as in Table 12-1). Column #2 presents the new ratings for those 
projects in the low supplier management group (15 projects), while column 
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#3 shows the revised ratings for the high supplier management group (16 
projects). 

Table 12-2. Evaluation o f  Supplier Management 
Robotics Project IDEA Rating Low Sup Mgt. Group High Sup Mgt. Group 

3 1 89.4% 89.8% 
I ~ e a n  Score 80.3% 8 1.4% 

It is noted that the rating for a project in any subgroup analysis is always 
at least as high as is the value for that project when the entire group is under 
consideration. For example, the rating for project #I increased from 62.9% 
to 72.7% when the low supplier management group was split off for a 
separate analysis. The reason for this is that the project (#I) is being 
compared to a smaller group in the latter case. 

Table 12-3 presents summary statistics, specifically the arithmetic means, 
for the two subgroups; before and after the split. 
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When members of the low supplier management group were being 
evaluated relative to all 3 1 projects, the average rating for this subgroup of 
15 sites was 71.6%. When this subgroup of 15 was split off for separate 
analysis, the average rating grew to 80.3%. The corresponding figures for 
the high group were 77.0% and 81.4%. 

Table 12-3. Average Eficiency Ratings o f  Low and High Supplier Management Groups 
Suvvlier Management - - - 

Analysis Group [LOW Scoring High Scoring 
Before h 1.6% 77.0% 
After 180.3% 81.4% 
Change in Average Score 8.7% 4.4% 

At least three important observations can be made regarding the high 
versus the low supplier management group. First, it is observed that the low 
group has a worse performance standing on average than is true of the high 
group (71.6% versus 77.0%). The second observation is that the low group's 
average increases by 8.7% (80.3-71.6), while the high group average 
increases only by 4.4%. It can be argued that the original efficiency gap of 
28.4% (100% - 71. 6%) for this low scoring group is closed by 8.7% due to 
the removal of high supplier management sites. Thus the size of the gap 
removed representing the change in the average score in Table 12-3 is a 
reflection of how one group suppressed the scores of the other. Since the 
reduction in the high scoring group efficiency gap (4.4%) is less than that of 
the low scoring group (8.7%), the high scoring group had more of an effect 
on keeping the low scoring group's rankings low than vice versa. The third 
observation is that there were more top performers in the high group than in 
the low, prior to the split off. Specifically, in the set of seven sites which 
achieved an efficiency score of 100%,five of these were in the high supplier 
management group, while two only were in the low supplier management 
group. 

Hence, it can be said that for the particular sites in question, a high 
degree of supplier management appears to have a positive influence on 
implementation efficiency. 

Tables 12-4 and 12-5 present summary statistics similar to those of Table 
12-3 for plant size and urgency, showing the arithmetic means before and 
after being split into two subgroups. 

Here again, the group with the smaller sites has the higher average rating 
(when compared to the larger sites), contains the majority of the top 
performers, and views the opposing (larger sites) group as presenting little or 
no effect on their scoring. For the large plants, quite the opposite is true. The 
average rating is very low (69.7%), two top performers only are present, and 
an enormous effect is removed when the group of smaller plants is 
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eliminated from the comparison set. That is, given that the eficiency gap of 
30.3% (100%-69.7%) is closed by 15.9% (85.6%-69.7%), one can argue that 
this gap is explained by the opposing group's presence (or lack of presence). 

Table 12-4. Average Efficiency Ratings of Small and Large Sites 
Plant Size 
I 

Analysis Group Ismall Large 
k0-200 Employees) ( ~ b o v e  200 Employees) 

Before 179.5% 69.7% 

Table 12-5. Average Efficiency Ratings of Low and High Urgency Sites 

After 
Change in Average Score 

Analysis Group  LOW Scoring High Scoring 
Before 173.3% 77.2% 

80.0% 85.6% 
.5% 15.9% 

The outcomes for the urgency parameter are somewhat difficult to 
interpret. First, it should be noted that the scale values for this parameter 
ranged for 1-4, which may not provide a measure with sufficient variability. 
Furthermore, an attempt to split the 31 sites into two relatively equal sized 
groups failed. There were 22 low urgency (i.e., those 1 2 on the 1-5 scale), 
and only 9 high urgency (i.e., > 2 on the 1-5 scale) sites. 

The fact that the average rating in the low urgency class did not change 
from before to after the split off is due to the fact that, while not all of the top 
performers lie in the low urgency class, those top performers against which 
the low urgency sites are measured are only those in the low group. That is, 
none of the low urgency sites are being compared to the two top performers 
that fall in the high urgency group. 

On the other hand, since the average rating for the high urgency group 
does change (moves from 77.2% to 91.5%), clearly a number of the 
members of this group were being evaluated against top performing low 
urgency sites. Note, for example, that prior to the split off, the high urgency 
site #2 had a rating of 81%. When the split off occurred (the low urgency 
group was removed), its rating climbed to 100%. 

While most of the top performers fall in the low urgency class, it is true 
that the worse performers also occupy this class (e.g., sites #4,7, 15 and 19). 
Thus, the low urgency group is very heterogeneous. The high urgency group 
is less so. Little else can be concluded about the urgency impact on 
implementation efficiency. 

After 
Change in Average Score 

73.3% 91.5% 
0% 14.3% 
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12.5. DISCUSSION AND SUMMARY 

Each of the plants had its own set of criteria for judging the success of its 
project. Some projects were designed specifically to reduce labour costs; 
others were economical means to reduce workplace hazards; still others were 
viewed, at least in part, as experiments in flexible technology applications. 
On these bases, the projects had limited comparability. However, at a 
fundamental level, all projects were expected to meet common criteria of 
technical success and organizational acceptance. 

Using measures for these common criteria, the DEA methodology 
provides a means of ranking the projects according to their outcomes. The 
analysis using DEA has two advantages. 'First, it indicates the relative 
achievements of the plants, given the widely differing conditions they faced 
in implementing their first systems involving robots. Moreover, it allows this 
comparison in an environment where the data made parametric analytic tools 
inappropriate. DEA has a major advantage in allowing the use of data as 
they are found in the real world. 

Second, the model was capable of showing the impact of particular 
conditions on relative implementation efficiency. One of these conditions, 
management's perception of the project's urgency, had results which proved 
difficult to interpret. However, the other two, plant size and the use of 
supplier management techniques, proved to be conditions that had to be 
taken into account when assessing the relative efficiencies of the plants. 
When comparing the implementation efficiency of plants, managers must 
judge them relative to plants of similar size and supplier management 
capability. Interestingly, in the short term, good supplier management is 
within the project manager's ability to influence, while plant size is a factor 
usually determined by the firm's top management. Therefore, managers 
assessing relative project performance may choose to disregard the former 
factor while considering the latter as a basis of comparison. 

Advanced manufacturing projects such as the introduction of robotic 
systems into individual plants will continue to be evaluated using traditional 
financial measures such as return on investment. Unfortunately, as often 
noted, these metrics will not always capture the full impact of new 
technology on a plant's competitiveness. Inevitable errors in the forecasting 
of cash flows and parameters such as discount rates will produce 
comparisons of planned to actual performance that are difficult to interpret. 
As noted by Kaplan and Johnson (1987) traditional cost accounting systems 
are struggling to furnish better information needed to evaluate projects. 
There will always be a need to have a common financial measure such as 
ROI to compare proposed projects competing for scarce resources. This 
should not be confused with the need for effective post-project assessments 
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of project performance that contribute to organizations learning about how to 
implement better. 

We would recommend that project gatekeepers or evaluators expand the 
number and variety of types of measures for evaluating advanced 
manufacturing project performance. Tools, such as DEA, facilitate the 
resolution of the resulting "messy" evaluation task. The ability to parse the 
effect of controllable factors such as supplier relationships versus less 
controllable factors such as plant size, leads to fairer assessments of 
individual project leaders and their team members. Consistent project 
evaluation techniques would provide metrics for a corporate wide database 
of innovation aimed at speeding transfer of best practices between plants in 
large companies. (Johnston and Leenders, 1990). Post project audits can be 
made more precise in their identification as to which operating and 
organizational policies should be changed to facilitate project 
implementation. In addition, private and public agencies responsible for 
evaluating research output from diverse projects can more consistently rank 
projects under their control. 

Given the problems in comparing various new technology 
implementations, the DEA technique provides an effective means of judging 
project outcomes. Its ability to use widely differing forms of data as 
indicators in inputs and outputs helps to overcome the inherent difficulties 
with such comparisons. In addition, using a database such as the one here, 
managers can determine the appropriateness of considering certain factors in 
judging project results. In this way, projects can be compared relative to 
others that faced similar conditions, providing potentially fairer 
comparisons. 
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Chapter 12. Implementation of Robotics 

APPENDIX 1: VARIABLES IN IMPLEMENTATION 
EFFICIENCY MODEL 

Three initial conditions at the start of a project: 
SYSTEM COMPLEXITY (COMPLX): A count of four components of 

robotic systems, summed to created an absolute scale of overall system 
complexity. The four components are: 

the number of machines controlled by the central controller 
the number of unique part numbers that require distinct 
programming 
the number of robots 
the number of discrete operations performed by robots in a cycle 
(e.g., lift, load, perform one weld) 

PREVIOUS EXPERIENCE WITH TECHNOLOGY (PREVEXP): This 
variable captures the expertise of the production department relevant to the 
new system. It is a summed score of four 5-point measures that were scaled 
for; 

number of system-years operating programmable equipment 
maintenance capabilities with programmable equipment 
number of system-years of experience with systems powered by the 
same method 
maintenance expertise with similar mechanical systems. 

NOVELTY OF THE APPLICATION (NEWAPP): was based on 5-point 
scales for each major component; each scale reflecting the component's 
innovativeness ranging from the purchase of a standardized off the shelf 
equipment to the development of a customized component. 

Three outcomes at the end of the project: 

START UP TIME (STIME): the number of weeks required to take the 
technology from physical installation to the point where it was routinized 
into normal production. Routinization was determined by either the point of 
official hand over of the technology to day to day operations or the date of 
the last major modification. 

UPTIME (UPTIME): an estimate of the percentage of the total 
production time available for operation in which the technology was in 
service. 
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MANAGEMENT SATISFACTION (MSAT): a perceptual measure on a 
5 point scale from very dissatisfied to highly satisfied with the degree to 
which the project met expectations. 

Control Parameters: 

SUPPLIER MANAGEMENT (SUPMGT): This is a measure which rates 
the project teams efforts to manage their system suppliers. It has 7 
categories: 

use of written specifications for the work to be done 
requirements that the vendor provide adequate documentation prior 
to the system's final installation 
continual contact during the equipment development stages (e.g., 
weekly or bi-weekly meetings or telephone calls) 
visit(s) to vendor's plants while equipment was being built 
requirements for pre-tests under plant conditions 
prior assessment of vendor's financial strength 
prior assessment of vendor's technical capability 

Each category was scored 0 (not carried out), 1 (carried out, but only for 
this special project) or 2 (carried out; routine procedure for the plant or for 
the project manager). 

PLANT SIZE (PLTEMP): this variable records the number of employees 
within the plant when the system was implemented. 

URGENCY: (URGENCY) this measure is on a 5-point scale, based on 
the reporting manager's assessment of the urgency connected with the 
project. 
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APPENDIX 2: SITE DEMOGRAPHICS 

Plant Size 
Number of Employees at the time 
of the project 

up to 100 
101 - 250 
251 - 500 
more than 500 

Robot System Applications 
Primary use of the robot(s) 
Arc welding 
Part handling 
Machine loading/unloading 
Assembly 
Spot welding 
Soldering 
Palletizing 
Toolhandling 
Adhesive application 

Industry Sector 
Industrial sector served by 
the project 
Vehicle assembly 
Vehicle component manufacture 
Heavy engineered equipment 
Metalworking job shop 
Electronics component assembly 
Appliance assembly 
Construction materials 
Plumbing fixtures and supplies 
Other commercial/iidustrial 
products 
Pharmaceutical laboratory work 

Number of 
sites 
5 
11 
8 
7 

Number of projects 
13 
6 
5 
2 
1 
1 
1 
1 
1 

Number of 
projects 
2 
11 
I 
2 
2 
1 
1 
3 
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APPENDIX 3: DATA MATRIX OF VARIABLES AND 
PROJECTS 

Robotics 
ProjectInputs 
NEWPREVCOM-MSAT 
APP EXP PLX 

1 11 11 39 4 
2 4 20 27 2 
3 14 6 39 4 
4 13 18 33 4 
5 11 4 38 5 
6 11 9 40 4 
7 16 16 42 3 
8 10 9 36 3 
9 8 12 34 4 
10 9 19 34 3.5 
11 5 18 39 5 
12 4 15 14 4 
13 11 18 34 5 
14 13 16 38 4 
15 16 13 42 3 
16 1 5 1 1 2 8  1 
17 1 5 1 1 2 8 3  
18 2 11 31 4 
19 17 14 42 4 
20 9 12 36 2 
21 2 11 22 4 
22 8 16 2 2 
23 19 4 34 3 
24 11 4 38 3 
25 5 6 25 4 
26 15 14 35 2 
27 3 11 34 3 
28 10 4 25 5 
29 5 18 36 4 
30 10 16 32 2 
31 9 4 2 8 4  

Control 
Outputs Parameters 

UP- S- URGENCYPL SUP- 
TIME TIME TEMPMGT 
78 197 2 160 4 
95 184 3 3500 10 
85 175 2 76 7 
78 150 1 300 7 
90 188 3 350 10 
78 176 1 245 13 
85 194 1 300 5 
97 180 2 160 13 
80 188 4 1200 12 
78 176 2.5 500 11 
100 176 2 300 10 
78 144 3 200 9 
95 176 3 1700 11 
99 199 1 40 12 
78 188 1 120 7 
65 184 3 1100 8 
78 188 3 1100 8 
90 188 1 120 18 
78 196 2 200 8 
78 190 1 520 10 
78 185 2 120 13 
78 135 1 600 10 
78 100 1 200 6 
80 195 2 75 4 
65 152 1 200 8 
83 189 2 500 11 
80 179 1 150 5 
78 198 2 60 8 
78 145 2 80 5 
78 165 1 450 10 
40 174 3 280 7 



Chapter 13 

SETTING PERFORMANCE TARGETS FOR NEW 
DMUS 

13.1. INTRODUCTION 

A problem of considerable interest to many organizations, and to be 
examined herein, involves the setting ofperformance targets for a yet to be 
created decision making unit. Typically, such a problem arises in site 
selection decisions for new facilities. Consider, for example, the selection of 
a site for a health care facility (clinic, hospital, etc.). Suppose that estimates 
for the demand for various types of services - for example, geriatric care, 
prenatal services, emergency provisions, and so on - have already been 
established. That is, the outputs yq are given values, or at least can be 
estimated. An issue affecting the design of the facility is that involving the 
inputs. While some inputs are given values, such as the demographics of the 
population where the facility is to be located, other factors may be less 
certain. More to the point, the resources, such as staffing needs, required in 
order to be able to deliver those services are at the discretion of the 
organization. One approach to addressing the resources side of the problem 
is to set as targets those staffing levels which would ultimately result in an 
efficiency score for the new facility that is at or above some acceptable level. 
Stated in DEA terms, the resource targeting problem is one in which the 
outputs (services) are given or known, while some of the target inputs 
(staffing, operating budgets, etc.) are values to be chosen in such a way that 
the relative efficiency rating meets some desired standard. Hence some 
inputs are discretionary while others may be nondiscretionary. 
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In other situations, the roles of outputs and inputs may be reversed. In the 
site selection exercise for a retail establishment, the costs or igput parameters 
may be known, or can be estimated - size of facility, staff makeup, operating 
budget, etc. The problem in this case becomes one of setting output targets, 
such as sales of various products or services, that will result in an overall 
performance measure, i.e., efficiency score, that meets some acceptable 
standard. An example might be the positioning of a new branch of a bank. If 
in a given setting, the approximate cost or input values are known, the bank 
may want to establish sales targets for the branch for various loans, 
investment sales in GICs and RRSPs, etc. These targets, which would result 
in an efficiency rating at or above some level, can then be compared to 
estimated outputs to see if the proposed site is desirable and can meet 
expectations. Viewed from this perspective, the output target problem is 
pertinent to the marketing of new products and/or the establishment of new 
sales territories. 

13.2. THE PERFORMANCE TARGET PROBLEM 
WITH NO RESOURCE BOUNDS 

13.2.1 The Input Target Problem 

For a given set of n decision making units, for example, health care 
facilities, let {y,.}:=, be the set of given outputs and {x,.J;=,, the set of 
inputs for facility j. The input oriented DEA model presented earlier can be 
utilized to derive an efficiency score for each DMU j .  Specifically, we 
adopt the BCC model (L-P version) for purposes of discussion here: Model 
(13.1) is the dual and (13.2) the primal form of the model. 

subject to 

p,. , vi 2 0, all r, i, w unrestricted. 

and 
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min 8 
subject to 

Aj 2 0, 8 unrestricted 
Consider now the problem of selecting a site for a new (n + 1) st facility, 

the performance of which must ultimately be judged against the other 
existing DMUs. For present purposes, we assume that the demand for 
services, for example, the outputs { y , + , ) ~ = ,  are given values. Suppose, 
however, that the inputs are not immediately available, and that the problem 
at hand is to set target values {xin+,)~=,  for these inputs, such that the 
resulting efficiency rating 8 for this new facility is at least some acceptable 
level 8 .  To an extent, this problem addresses a feasibility issue. 
Specifically, the setting of an eflciency performance Jloor value of 8 
permits one to determine the maximum inputs x,,, (for example, operating 
expenses, staff levels, capital costs, etc.) that are allowable if the facility is to 
meet that value. If the actual estimated input requirements exceed the 
maximum limits, then presumably the venture would not meet the feasibility 
specifications. 

Viewing the input target problem from the perspective of problem (1 3.2), 
the requirement is to find an input vector ( x,,+, , .. . , x,,,) so that the solution 
to (13.2) with j,, = n + 1, gives an optimal 8 value in excess of 8, that is 
we want 6(= mine) 2 8. In addition to the constraints given, additional 
restrictions may be imposed on the For example, there may be 
minimum or maximum levels x,+, which some of the components x,,, 
must obey. This case is addressed in Section 13.3. 

Clearly, if the x,,, represent resource requirements, such as staffing, 
then the larger their values, the more likely it will be that the outputs y,. can 
be delivered. Thus, the larger the inputs the more flexibility the facility will 
have in conducting its operation. 

To get a clear picture of the input target problem, consider a simple 
example of 2 DMUs, each producing a single unit of output and consuming 
2 inputs in amounts: 



Input 

2 12 1 
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We wish to find appropriate values x,, , x,, for a new DMU #3. Assume 
that an efficiency score of at least 0 = 80% is to be achieved by the new 
DMU. Figure 13.1 illustrates the situation. 

Figure 13-1. Isoquant for 2-D Problem 

Points A and B show the positioning of the inputs for the two DMUs; the 
line segment AB is the only legitimate facet, and represents the efficient 
frontier. The portion of the cone enclosed by the two rays out of the origin 
and projected through A and B and lying behind the frontier represents that 
area where properly enveloped DMUs can lie (for example, at point E). A 
point such as E', outside the cone would be improperly enveloped. The line 
segment CD represents all po_ssible properly enveloped DMUs that wguld 
have an efficiency score of 0 = 80%. That is, OAIOC = OBIOD = 6 = 

0.80. 
It is noted that as with the line segment AB, any points on the vertical 

line out of A (for example, point A') and on the horizontal line out of B (for 
example, point B') will have efficiency scores 0 of 100%. Any improperly 
enveloped DMUs such as E' will be measured against these two frontier 
extensions, and will show positive slack in one of the second set of 
constraints in (13.2). Hence, any input target point (x,,,x2,) that has 
positive slacks will be improperly enveloped (for example, E ). All slacks 
must be zero if the point is to be properly enveloped. 
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In this simple case it is clear that any point inside the area ACDB is a 
candidate for the input target point (x,, , x,, ). 

The problem is then to derive a set of target inputs { x ~ ~ + ~ } ~ ~  such that the 
resulting DMU will have an efficiency score 8 2 8, and will be as close as 
possible to being properly enveloped. We consider first the case where no 
additional restrictions such as upper and lower bounds are imposed on the 
{x,+,}~=~. This means that inputs can be reduced or increased as much as 
desirable without hitting any bounds. 

13.2.2 Unimpeded Movement of Inputs 

The problem to be solved is one of finding a set of target inputs &n+l}:=l 

that is maximal in some sense, such that the efficiency score 8* 2 0 at the 
optimum of (13.2). The difficulty with dealing directly with this problem is 
that one has an optimization problem (min 6 ) within a larger optimization 
problem (max some function of the x,+, ). An alternative to this approach is 
to reverse the problem, i.e., find a minimal set of x,+, while ensuring that 
6 I 8. To this end, consider the following nonlinear problem: 

I 

min a + sC si 
i=l 

subject to 
C ~ - X ~ , , + ~  2 O,i=l, ..., I 

The nonline 'ty arises from the product of 6' and xi,+,. 
The term 6 E si in (13.3) guarantees that out of all alternate optima, any 

properly enveloped point .. , x ~ + ~ )  will be chosen over an improperly 
enveloped point. In terms of the simple example above, the point will be 
chosen from within the area ACDB. 

Lemma 13.1. 
~t any optimum ( a * ,  A*, x:+, , e* ) of (13.31, e* = 8. 
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Proof: 
If there exists an optimal solution to (13.3) for which 8* < e then there 

is a scaler y > 0 such that the xin+, values iin+, = xi;+, - y_ are feasible 
in the second set of constraints in (13.3), when 8 = 8. Since all 
iin+, < xi;+, , then & = a* - y is feasible in the first set of constraints, 
meaning that a* cannot be optimal. This contradicts the assumption on a*, 
and the result follows. 

Q.E.D. 
From this lemma it follows that constraint 8 5 8 may be removed and 

8 replaced by in the second set of constraints, thus reducing the problem 
to a linear format. The next theorem follows immediately, and the proof is 
omitted. 

Theorem 13.1: 
If (xrn+,, ... , x ; ~ + , )  is an optimal target input vector in the sense of 

problem (l3.3), and if xij, and yrj(, are set equgl to and 
respectively in problem (l3.2), then the optimum 8 in problem (13.2) is 
given by 6 = 8. 

It is noted that at the optimum of (l3.3), all si = 0. 
From a technical efficiency standpoint, every point on CD is equally 

desirable in that they all produce a score of 8 = 6. Problem (13.3) is merely 
a vehicle for generating a feasible solution. From an economic or 
effectiveness standpoint, one would arguably wish to choose a least cost 
combination on CD if prices were known. Specifically, if jc.}:=, were the 
costs of the inputs, it would be appropriate to choose { x ~ , + , } ~ = ~  according to 
the optimization problem 

I 

min cixin+, 
i=l 

subject to 
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The first set of constraints in (13.3) guarantee that only properly 
enveloped points are considered. 

For the simple example presented earlier, point C will be the optimum to 
problem (1 3.3), whereas the optimum for (1 3.4) would depend upon the 
prices ci. 

13.3. RESTRICTED INPUT SPACE 

If additional restrictions Y are imposed on the x,+, (for example, Y is 
not the full space R' ), the nature of the feasible space as per Figure 13.1 can 
change significantly. We consider two types of restrictions - upper bounds 
and lower bounds on the xi,+,. 

13.3.1 Upper Bounds on the xi,+, 

In the case that upper bounds xi,, are imposed on the allowable input 
targets, then Y is defined as 

This definition allows, of course, for the case that some xl;+, may be m. 
A finite upper bound x1!',+, may, for example, exist for some input i, if the 
organization simply imposes a limit on a particular resource (for example, in 
the case of a bank, the number of back office staff may not be permitted to 
exceed some level within any branch of the type being considered.) 
Alternatively, the maximum rent that might be paid in a particular location 
would in general be bounded. 

If the additional constraints (13.5) are appended to (13.3), and if 8 
is feasible, then an appropjate set of target inputs can be derived. If 8 is 
not feasible then t o  8 < 8 will be feasible either. In this case, the lowest 
efficiency score 8 allowable for thg n + 1 st DMU will be some value 
strictly larger than 8. To determine 8 ,  set all restricted x,,, at their upper 
bounds x,!L+, and let all unrestricted variables be assigned a large value M. 
Call these values y,,,. Then, solve the minimization problem 

i = 1  

subject to 
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(1 3.6) 

To visualize the problem, a revised version of Figure 13-1 is shown as 
Figure 13-2, where an upper bound on has been imposed. Depending 
upon the positioning of the bound, 8 = 8 may or may not be feasible. Since 
the bounding plane shown as the vertical line out pf x,,, does noJ interact 
the bounding CD, then the optimal solution 8 wi!l exceed 8.  In this 
illustrative case, the optimum will occur at point F and 8 = ONOF. 

Figure 13-2. Imposed Upper Bound on Input 1 

In general, with upper bounds, the optimum set of target inputs is given 
by 

- 
i i n + l  = X in+l - sf*, (1 3.7) 

where x,,,, is either an imposed upper bound xi,, or equals M. s: is the 
slack in the i th constraint of the first set of restrictions in (13.6). 

Clearly, problem (13.6) will be feasible provided at least one point on the 
efficient frontier satisfies the constraints. In the example of Figure 13-2 this 
means that the upper bounding plane cannot be to the left of the segment 
AA . In this case 8 would exceed I. 
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13.3.2 Upper Bounds on the x,,+, 

In the case that lower bounds xf;+, are imposed on some of the input 
variables, Y is defined by 

I 
= {xfn+l ... ,xI,,+I )&R I XI,+, 2 xf;+l 1. (13.8) 

Again, it is noted that some lower bounds may be zero. The feasible 
region might now appear as in Figure 13-3, Figure 13-4 or Figure 13-5; these 
figures represent 3 possible situations regarding the degree of restrictiveness 
of the lower bounds. In Figure 13-3, where we require x,, 2 x,,, a portion 
GB of the efficient frontier AB is in Y. This means that if we solve 
problem (13.3) with (1 3 3) imposed, then a set of target inputs will be found 
for which the projected point will be on GB. In this particular example the 
target input point will be at H. A DMU at H can be projected unimpeded 
directly to G. Any point between I and H would first project to the IG 
segment where input 1 would become nondiscretionary, and the projection 
would then be vertical (with only input2 as discretionary now) to point G. 
This would result in a 6' smaller than 6'. 

Figure 13-3. Lower Bound where (b* = 1 
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Figure 13-4. Lower Bound where 1 < 4* I $ 

Irput 1 

Figure 13-5. Lower Bounds where @* > $ 

Clearly, any point on HD will suffice as a target input point. 
In the case that lower bounds do not provide for access to the fiontier 

proper, as is the situation described by Figures 13-4 and 13-5, then 
projection can take place only on to an extension of the frontier. In the 
example shown here, projection will be onto the extension BB . In Figure 
13-4 the target input would be D, and itsqrojection would be back to J, then 
down to J ' .  Point D has a 8 value of 8 .  As above, any point on ID other 
than D will have a B value less than 8. 
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Figure 13-5 is a situation where 8 will be strictly less than B for any 
feasible point. In this simple example, K will be the target point and its 
projection will be to K . 

To formalize these ideas, let 5 denote the set of efficient (and properly 
enveloped) DMUs. We are now interested in those members 5, of 6 that 
are input boundary points. A DMU j, is an input boundary point if there 
exists an input such that x I xi,",. for all j  = 1 ,..., n. That is, the 
minimum of the xi,, across ali D M ~ S  j  occurs in DMU jo. Frontier 
extensions can emanate only from boundary points. Note in Figures 13-3, 
13-4, 13-5 that both A and B are boundary points. That is, the minimum 
amount of input 1 is consumed by point A; the minimum of input 2 is 
consumed by point B. Thus, 5, = 5 = {A,  B} for this example. The lower 
limit F~~ on input 1 exempts point A from consideration, however, as a 
point from which a boundary extension can emanate. Therefore, only point B 
is of interest in terms of generating a surface for projections. In general, let r, denote the subset of boundary points in c,, from which frontier 
extensions can emanate. Specifically, F ,  consists of those DMUs j, 
wherein the minimum component x. . 2 j?ijon+l. 

To derive a target input point, expand each member o f 2 ,  out 
into the feasible region (defined by Y ). Specifically, solve the J linear 
programming problems: 

min 4, 
subject to 
4.x.. 2 zint l , i= 1 ,..., I J !I (1 3.9) 
(,j 2 0, 

where 7 = { j  I j ~c , } .  Let f; denote the solution to (13.9) for a particular 
j d .  Define (* = min . -{(,;I, and let j,, be such that (* = 4,;. If 
(* = 1, then DMU j  is &sible to Y and a portion of the efficient frontier 
is expanded as in Figure 13-3. In this case, solve (13.3) with (13.8) imposed 
to derive target inputs. If 1 < (" I i, we have the situation described by 
Figure 13-4, and the target input point is given by (xi,,+,, ... , x,,,) where 
x,,, = xqo IB. If (' > ) as described by Figure 13-5, the target input point 
is given by xi,,+, = (*xv0. In this case the optimal 8* = 1 is strictly less 

8' 
than 8. 

13.4. NONDISCRETIONARY VARIABLES 

The discussion of the previous two sections centres around derjving a set 
of target inputs designed to achieve a given level of performance 8 if such a 
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level is feasible. In the case where restrictive lower bounds are imgosed on 
inputs it may not be possible to reach the floor performance score 8. 

In the presence of a nondiscretionary input i,, there is no choice 
regarding positioning in the i, dimension. Refer again to Figures 13-3, 13-4, 
and 13-5. If x, is a nondiscretionary variable then the target input point must 
be located directly on the vertical line out of xi3. In the case of Figure 13-3, 
this point will be at H '  which is horizontally opposite H_ (the line H '  H is 
parallel to the horizontal axis), if an efficiency rating of 6 is to be achieved. 
Here, the projection is to point G on the frontier. The point H '  is derived in 
general by modifying problem (13.3). Specifically, replace the set of inputs I 
by two subsets I, and In,, representing the discretionary and 
nondiscretionary inputs, respectively. The second set of constraints in (13.3) 
is replaced by two sets of restrictions 

6 x i , + , - ~ ~ . x . .  .I 11 -si = 0 , i = l ,  ..., I, (13.10) 
j=1 

n 

x,+, -c Axii -si = 0,i = I,, ,,..., I ,  (13.11) 
.j=l 

The first set of constraints in (13.3) is replaced by 
a - 2 0, i = 1, ... ,I, (13.12) 

and the objective function becomes 
4 1  

mina + EX si. 
.j=l 

Note that 6 is set to in (13.10). Assume that the inputs are 
renumbered so that the first I, are the discretionary inputs, and so on. 

In the case that no portion of the efficient frontier is exposed, we proceed 
as in Section 13.3, except that when 0 < 4* I i, the expression 
xin+, = xiio18- holds only for the discretionary variables i = 1, ... ,I,. The 
other inputs are fixed at their nondiscretionary positions. This produces the 
point D ' in Figure 13.4. 

In the situation that q$* > i, the target inputs are located at K as was the 
case previously. 

13.4.1 Uncertainty in the Nondiscretionary Variable 

The above assumes that the value xi ,+, for a nondiscretionary variable 
can be explicitly determined (for exampie, the demographic makeup of the 
population). If this value is under estimated, (for example, if the true value is 
iln+,) however, then the use of 8 = 6 to choose the values of the 
discretionary variables xi,+, will not yield a projection on to the frontier 
(Figure 13-6). In this illustration where the projection is only to G , it is 
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clear that a smaller value of B then is needed in order to project the 
selected x ~ ~ + ~  onto the frontier. Obviously, if the vahe of xjOn+, is over 
estimated, then the projection of the using B = B will go below the 
frontier. This means only that larger values of the x ~ ~ + ~  could have been 
used. That is, the chosen actually provides a higher efficiency then 
desired. 

Figure 13-6. Under Estimation of Value of thc Nondiscretionary Variable 

To provide for the eventuality that the chosen value of the 
nondiscretionary variable may be under estimated, the following logic could 
be used: choose a set of target inputs for the discretionary variables such that 
if (1) the estimated value xk+, of x ; , ~ + ~  occurs, then an efficiency of B = 1 
results, but if (3 a higher value x ~ , ~ + ~  + P of xiOnil occurs, the resulting 
efficiency 6' 2 6'. We propose solving the following linear problem in the 
case of a single discretionary variable: 

i#i,) 

subject to 
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In this problem we determine the maximum amount P by which xi 
may increase from the estimated point xcn+,. Essentially, we are allo&ng 
for the maximal flexibility in the outcome of the uncontrollable variable 
xion+, . To ensure that aproper facet of the frontier is chosen in the selection 
of each of the two sets of multipliers {4} and {A;}, the term 
- E ( C ~ ~ ~ ~  x ~ ~ + ~ )  is appended to the objective function. This forces the x,,, 
as low as possible. In the figure, this would mean choosing x,,+, at a point 
H'  as opposed to some higher point M. Of course, in this case since there is 
only one facet on the frontier, then such a point M would not actually arise, 
but could if other factors were present. 

In the case of multiple nondiscretionary variables, there is no clear 
definition of maximal flexibility. Potential objectives might be to maximize 
the total deviation, i.e. 

or maximize the minimum deviation, i.e., 
max y  
subject to 

y - f l  <O, i= Id+ l  ,..., I, (13.17) 
and subject to the other constraints in ( 1  3.13). 
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13.5. CONCLUSIONS 

In this chapter we have examined the problem of setting input targets for 
new facilities when outputs are assumed to be known values. This problem is 
common in many retail settings where site location issues are involved. Both 
discretionary and nondiscretionary inputs are examined. All of the 
arguments here, regarding input targets, apply equally to the case where 
target outputs are at issue. In cases where standard size facilities are to be 
built, for example chain stores of a certain configuration, the required target 
market for the product mix becomes the focus of management. It is the 
output oriented model that would be the pertinent structure in this case. The 
development is straightforward, and is therefore omitted. 
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Chapter 14 

AGGREGATING PREFERENCE RANKINGS 

14.1. INTRODUCTION 

In a preferential election each voter selects a subset of k candidates from 
a ballot of m choices, and rank orders these k candidates from most to least 
preferred. Such a voting format is common in municipal elections, where a 
number of candidates are required to fill various positions. This same 
structure appears in other prioritization settings, such as the ranking of 
projects, products in a consumer survey, etc. We shall utilize the preferential 
voting example for discussion purposes throughout the chapter. 

A problem of interest for over 200 years has to do with the aggregation 
of votes from preferential ballots. Borda (1781) proposed the "Method of 
Marks" as a means of deriving a consensus of opinions. This method 
amounts to determining the average of the ranks assigned by voters to each 
candidate, with the winning candidate being the one with the lowest average. 
An equivalent version of this model was later presented by Kendall (1962). 
Cook and Seiford (1982) have extended the Kendall model using an 
l2  distance approach. Other distance based models have been advanced by 
Armstrong et al. (1977), Blin (1976), Cook and Seiford (1978), Cook and 
Kress (1984), Kemeny and Snell (1962), and others. In these distance 
models the voter ranks all of the alternatives or candidates. 

Other models for aggregating preferential votes have arisen from 
parliamentary settings. The so-called American system, English system and 
West Australian system are examples of such models, as discussed in 
Keesey (1974). In some of these models the winning (first place) candidate 
is determined purely in terms of the maximum number vi, of the first place 
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votes. Here, vij denotes the number of jth place votes earned by candidate 
i .  Ties are often broken (among candidates with the same number of first 
place votes) by utilizing 2nd place votes, 3"d place votes, etc. Under the 
American system, for example, the nominee having the least number of first 
choices is dropped. Those ballots on which that candidate was ranked first 
are now destroyed. The second choice votes received by the remaining 
candidates are now added to the first choices received by each. A nominee is 
declared elected if the total of his first and second place votes constitutes a 
majority - otherwise the candidate with the fewest number of first and 
second place votes is dropped, and the process is repeated by bringing third 
place votes into consideration. 

Existing preferential voting models are arguably deficient in that they fail 
to provide a fair overall assessment of a candidate's standing --- a composite 
or aggregate evaluation of his first place, second place, third place standings, 
etc. The problem is one of how to combine the jthplace votes, for 
j = 1,2, ... k, in some rational manner. 

In Ssction 14.2 a model is presented which utilized a composite index 
z, = ,, w,v, of the j th  place standings of candidate i . The objective of 
the model is to derive multipliers wj  (the level of importance attached to 
jthplace votes) which will accord a candidate a fair assessment of his 
standing. This is accomplished by allowing for flexibility in the assignment 
of weights from one candidate to another. Since this process may result in 
several candidates being tied for first place, the model also provides for 
maximum discrimination among such candidates. This robustness property 
is a principal feature of the model. 

The procedure used to derive the w j  , hence the index zi,  is analogous to 
the DEA method of Charnes, Cooper and Rhodes (1978). The usual DEA 
model possesses two important characteristics which could prove 
undesirable in the preference ranking setting. First, it is necessary to solve k 
problems; one for each decision making unit. Second, a number of units will 
commonly end up being tied for first place, i.e. will be on the efficient 
frontier. In Section 14.3 it is shown that the special properties of our 
composite index model eliminates both of these characteristics. Specifically, 
it is shown that only 1 problem, not kproblems, needs to be solved to 
determine a winning candidate. Moreover, it is demonstrated that in most 
cases only one candidate will end up in the first place. Hence, ties for first 
place will generally be broken, and an ordinal ranking of the k best 
candidates emerges. It is also shown that a certain special case of this model 
is equivalent to Borda's method of marks for deriving a consensus among a 
set of ordinal rankings. 

Examples and geometric interpretations are provided. 
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14.2. A FAIR MODEL FOR AGGREGATING 
PREFERENTIAL VOTES 

In the preferential voting framework each candidate i = 1,2, ..., rn 
receives some number vi, of first place votes, vi, of second place votes, . . ., 
v, of k th place votes. The problem is to utilize these votes in a reasonable 
manner to obtain an overall desirability index zi for each candidate. 

For any given set of weights or multipliers wj ,  we define the desirability 
index for candidate i by 

j=1 

Clearly, any preset values wjare likely to favor some candidates while 
discriminating against others. In Borda's model, for example, the wj are the 
numbers, 1,2,3 ,..., n . Moreover, the weights are the same for each 
candidate. What is required is a set of multipliers which provides the fairest 
possible treatment for each candidate. Specifically, we wish to determine a 
set of multipliers {w)) for candidate i, which maximizes zi,, . To achieve 
this, we solve the problem 

zl: = max C wjvb, 
j=1 

subject to 

where is some subset of !Rk . 
In the context of preferential voting, the feasibility set cD should be 

characterized by at least two types of constraints. First, zi should be 
bounded above, i.e. zio 5 8 for some 8. Without such a {arameter 8 ,  
problem (14.2) would be unbounded. Moreover, it is necessary to define 
some best attainable performance level (8 )  that any candidate can achieve. 
As a convention, we set 8 = 1 or 100%. As will become apparent, the final 
rank ordering of the candidates is independent of the choice of 8. 

The second set of constraints has to do with the priority attached to the 
j th versus ( j  + 1)'" place votes. It is clear that any reasonable aggregation 
scheme should be constrained by wj  > wj+, . More generally, we define a 
function d (j, E) : d : N X R+ + R+, i.e. d (j, s) is a non-negative 
function defined on the Cartesian product of the space of positive integers 
N = {l,2, ..., K )  and the positive real line R+ . Moreover, d (j, E) is 
restricted to be non-decreasing i n s .  We impose the constraints 
w j  - w,,, 2 d (j, E) . This lower limit d (j, 6) on the gap between the 
importance attached to the j th versus ( j  + 1) st place standing is referred to 
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as the discrimination intensity function. The parameter E is called the 
discriminating factor. 

Problem (14.2) then becomes: 
k 

4 ( E )  = max wjv, 
j=1 

subject to 

This problem is now solved for each candidate i, = 1,2, ..., m. 
Note that by defining a single "input" variable w,and input data 

quantities U, = 1, i = 1, ..., m, problem (14.3) is equivalent to the well 
known DEA-AR model. See Thompson et a1 (1986, 1989). The constraints 
w . - w . 2 (d, E )  represent the assurance region (AR). 

I j + l  
To illustrate this problem, consider the case of four candidates, where 

two of these are to be elected from a preferential ballot. Let the 1" and 2"d 
place standings be given as follows: 

# Votes 
Candidate i 

Figure 14-1 shows the positioning of the four candidates in the (v,,, v,,) 
space. These are referred to as R,, 4 ,  R,, R4 . 

If problem (14.3) is now solved for each of the four candidates, the 
constraint space appears as in Figure 14.2. In this diagram we have set 

d ( j , ~ ) r O .  Candidate #1 has an optimum either at point 

the rating for candidate #1 iszr = 1.0. Similarly, candidate #2 has its 
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optimum at the point A where zi = 1.0, and candidate #3 at point B 

* 3 
where 23 = 1 .O. Candidate #4 has its optimum at point C, where z, = -. 

8 
Referring back to Figure 14-1, if the points representing candidates #l 

and #2 (i.e. R1 & R 2 )  are joined, the resulting line segment has a slope 
given by the ratio of the w,, w, coordinates of point A in Figure 14.2. We 
refer to the set of line segments joining points R2 - R1- R3as the 
desirability frontier, in that candidates i on this boundary have achieved the 
highest attainable index zi = 1.0. In fact, the desirability rating for 
candidate #4 is given by the ratio of the line segment or range from the 
origin 0 to R4 to the line segment 0 to R4'. 

Figure 14-1. Desirability Frontier 

Two important points must be emphasized here. First, different 
multipliers (w,, w,) were used for the different candidates. Point A in 
Figure 14-2 defines the importance attached to first and second place votes 
in evaluating the standing of candidate #2. Point B is used to evaluate 
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candidate #3. Points A and B are both optimal for candidate #1, and C is 
optimal for candidate #4. 

Figure 14-2. Feasiblc Weight Space for E = 0 

Second, if d ( j , ~ )  = E and E increases from its 0-level, the optimal 
points for certain candidates can change. Figure 14-3 shows the shape of the 
feasible region when E = 1/27. Here, the optimum for candidate #2, for 
example, is located at E. The resulting different coefficients of E, versus 
those of A, lead to a redefinition of the desirability frontier. See line segment 
Rl -  R2' in Figure 14-4. Now, candidate #2 no longer has an index of 
zq = 1, meaning that the number of possible first place candidates has been 
reduced from three to two. 

Clearly, the value of the discriminating factor E influences the ranking 
of the candidates, in the sense that it discriminates among candidates on the 
frontier. In the section to follow we examine the impact of this factor. 
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Figure 14-3. Feasible Weight Space for E = 1/27 

Figure 14-4. Adjusted Desirability Frontier 



318 Cook and Zhu 

14.3. A MODEL FOR RANKING THE CANDIDATES 

In model (14.3), for any given value of E , one or more candidates i will 
achieve the maximum attainable desirability index z, ( E )  = 1. In this section 
we show that there is a maximum value for E for which this problem has a 
solution, and demonstrate that the derivation of this value can lead to an 
ordinal ranking of the candidates. First a number of properties of (14.3) and 
z, ( E )  are presented. 

Property 14.1: 
For any io, z,,, ( E )  is a monotonic non-increasing function of E . 
Proof: 
From the monotonicity of d ( j ,  E )  , it is clear that the feasibility region 

in (14.2, 14.3), for a given E , contains the corresponding region for E '  , if 
E '  > E . Therefore, the objective function cannot increase. 

Q.E.D. 

Corollary 14.1: 
If z,,, ( E , )  = 1 then z, ( F )  = 1 for all E I E, . 

Proof: 
This follows from Property 14.1 and the i, -th constraint in (14.3). For a 

given function d ( j ,  E )  , define I, = (i; zi (0) = I) . We assume that 
d ( j , ~ )  is defined such that I, f 0. For any i d ,  let E.' be the largest 
value of E such that z, ( E )  = 1, and let EL, = Max, I&,*}.  Clearly &Lax 

may be a ,  for example when d ( j ,  E )  = 0 for all j and E . 
Q.E.D. 

Property 14.2: 
E:,, is the largest value of E for which there exists a feasible solution for 

(14.3). 

Proof: 
Without loss of generality we can assume that E:,, < oo. Let 

E > E,:,, and suppose that there exists a feasible solution w = (w,, ..., wk) 
for (14.3). Then, by the definition of EL,, we must have that zi(&) < 1 for 
all i, ..., m . The dual of (14.3) is 

subject to 
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m 

C xivij + yj-I - Y,, " Vioj, j = 2...k, 
i=l 

xi,yi 20. 
From complementary slackness it' follows that at optimality, 

x; = ... = x i  = 0. This implies that at least one of the constraints in (14.4) 
is violated, in contradiction. We conclude that the problem of determining 
the desirability index for each alternative applies only for E in the closed 
interval 0 E,,, , which is the feasible range of E . L *  I 

Q.E.D. 

Theorem 14.1: 
There exists an alternative if, such that zi0 ( E )  > zi ( E )  , i = 1, . . ., m, 

Proof: * * 
Let alternative i, be such that = E,, . Hence, zi0 ( E )  = 1, for all 

values of E in the feasible range. Pick any alternative i such that z i ( & )  < 1 
for E,: < E I E:,, . We conclude that there exists a nonempty set S of 
alternatives such that for all feasible values of the discriminating factors E , 
the alternatives if, in S are superior, in terms of the desirability index, to all 
other alternatives. 

Q.E.D. 

Consider the problem 
max E 

subject to 

Property 14.3: 
At optimality, at least one of the constrainls in (14.5b) holds at equality, 

that is there exists a candidate if, such that w,,v,~ = 1 .  
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Proof: 
This follows directly from the proof of Property 14.2. 

Q.E.D. 

It follows from Property 14.3 and Theorem 14.1 that the solution to 
(14.5) yielgs all the winning candidate(s). Specifically, the candidates i for 
which , wivg = 1 at E,,,, , dominate all other candidates in that they 
possess thd=highest level of robustness in terms of the range of E . For the 
case d ( j , ~ )  = E , in a random sample of 60 problems, each with 20 voters 
and 10 candidates, 93% of the cases yielded a single first place candidate. 

Having derived the first-place candidate i, , the io th constraint in (14.5b) 
can now be eliminated and (14.5) resolved. That candidate i, with x w,~v, , ,~  = 1 will hold second place, and the process is repeated. 

The following theorem characterizes the nature of the wj differentials 
v i s - h i s  the discrimination intensity function. 

Theorem 14.2: 
In optimality, all the constraints in (14.5~) and (14.5d) hold as equalities. 

Proof: 
Let I, = { i ; ~ w ; v ,  = 1) and, without loss of generality, assume that 

vi, > 0  for all i E I,. Suppose that an optimal solution of (14.2) is such that 
w , ~  - ws+, - d(s,&) = S > 0 ,  for some s .  Define 

Clearly, 

W .  - W .  
J .I+, ' - d ( j , ~ L , ) 2 0 ,  with wi -w;+, - d ( s , ~ , ~ , ) = O .  

It follows that ( w ' , ~ : , )  is also an optimal solution for (14.2). For w' , 
all the constraints in (14.5b) are strict. But, according to Property 14.3 this is 
impossible. Q.E.D. 

Corollary 14.2: 
Problem (14.5) is equivalent to 

max E 

subject to 
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Proof: 
From Theorem 14.2, the wj can be recursively expressed as sums of the 

4 1 ,  E). Q.E.D. 

The ease with which problem (14.5) can be solved depends very much on 
the form of the d(j, E) function. If d is a linear function, for example, then 
(14.5) will be a linear problem. Such would be the case say 
where d ( j , ~ )  = a,,&, a set of scalars. Special cases of this 

is a monotonic increasing sequence 
(larger gaps increases); (iii) {a,,} is a decreasing 
sequence (smaller gaps as j increases). 

An important subclass of discrimination intensity functions is that for 
which d( j, E) = g( j)h(&), where h ( ~ )  is strictly monotonic increasing in 
E . The linear examples of the previous paragraph fall into this category. For 
this subclass, problems (14.5) and (14.6) have closed-form solutions. 
Specifically, problem (14.6) becomes: 

max E 

subject to 

E 2 0, and 

A winning candidate i is, therefore, the one for which this minimum is 
attained. Due to the monotonicity of h, it is sufficient to find the candidate 
i for which 

is maximized. 

Special cases: 

(1) Exponentially decreasing intensity of discrimination values: 
g(j) = e-".'. The maximum of (14.8) then becomes: 

k 1 - e-a(k-j+l) 

rnaX i x ( eaj - 1 )Vij. 
j=l 
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The candidate i, for which the above maximum is attained, is the 
winner. 

(2) Constant intensity of discrimination values: g ( j )  = 1. In this case, 
k 

the winner is a candidate with the maximum value of , (k - j + l)v,. 14 

This is, of course, the well-known Borda method of marks. 
Consequently, Borda's (and Kendall's 1962) model for deriving a consensus 
among a set of voter rankings is a special case of our model when g( j )  = a 
constant. 

Example: 
Consider the case of 20 voters, each of whom is asked to rank 4 out of 6 

candidates on a ballot. Let the outcome from the vote be as shown in matrix 
v. 

Standing 1 

For example, candidate "a" receives 3 first, 3 second, 4 third and 3 
fourth-place votes. Specifically, v,, = 3, v,, = 3, v,, = 4, v,, = 3 .  

Case 1: d ( j , & )  = E 3 b is the winner, E,:,, = 0.0233. (This is the 
BordaKendall winner.) 

Case 2: d( j ,& )  = E / j 3 d is the winner, &iaX = 0.0577. 
Case 3: d ( j , ~ )  = E / j !  a c is the winner, E,,, = 0.0808. 

In Case 1 the discrimination intensity is evenly distributed among the 
rank positions; therefore the fact that candidate b had the largest number of 
votes for rank positions 1, 2 and 3 played a major role in determining 
himlher as the winner. In Case 3 on the other hand, the discrimination 
intensity function is exponentially decreasing in j ,  which implies that the 
first place vote has a relatively very large weight while the fourth position 
has very little weight in determining the winner. Although candidate d 
received more total votes (16) than candidate c (13), the fact that d's 
advantage was concentrated in the fourth position while in the third position 
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c had a slight advantage on d, (in positions 1 and 2 they had identical 
scores) plays a key role in determining c as a winner for the 
d ( j , ~ )  = EI  j! case. 

14.4. CROSS EVALUATION 

The above analysis, as provided by problem (14.5), might be criticized as 
running counter to the objective of providing the fairest possible treatment of 
each candidate. The principal conclusion is that for discrimination intensity 
functions of the form d(j,&) = E , this problem is equivalent to applying the 
Borda-Kendall count technique. 

While in some situations it may be desirable to have a common 
(imposed) set of weights, clearly the flexibility to choose the most favorable 
standing for each candidate can be compromised. Specifically, adopting a 
starting point of fairness in evaluation inherent in (14.3) is compromised by 
a commitment to discrimination via (14.5). 

Before proposing an alternative to the approach given above, we rewrite 
problem (14.3). Specifically, we make the change of variables 

and (14.3) becomes, by virtue of Theorem 14.2 and Corollary 14.2: 
k 

Zii = Maximize yiV, 
]=I 

Subject to: 
k 

z,=Ey,vqjSl f o r q = 1 , 2  ..., rn.(14.9b) 
./=I 

The relationship between weights w.. and W.. is given by 

x=l 

One interpretation of the Cook and Kress (CK) method is to examine it in 
terms of "who" is choosing the weights. While candidates in general do not 
choose their own weights in (14.3), it may appear that the winner does 
choose hislher own weights. The winner in (14.3) effectively does so by 
establishing a desirability of 1.0 with the weights: 

where h(~,,,,,) = 1 1 n, 

The other candidates are then ranked using these weights. CK's 
procedure, in a sense, yields the winner and the winner's weights are used to 
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rank order the other candidates. Thus, candidates are ranked according to 
how they are cross-evaluated (Sexton et al. 1986; Oral et al. 1991) by the 
winner(s), P. 

In order to retain the essence of CK's approach, i.e. (14.9(a)-(b)), but still 
discriminate between candidates, we are now motivated to investigate how 
the idea of cross-evaluation, by all candidates, within this model can be used 
to arrive at an overall rating of each candidate. 

When model (14.9) is solved for candidate i ,  as well as obtaining Zii, 
we are also provided with values Z,, which can be thought of as 
evaluations of q's desirability from i's point of view - within this modeling 
framework. The values obtained in a complete run of the model can be 
organized in a matrix Z in which the values across a row i(Zi,) represent 
how candidate i rates all candidates and values down column i ( Z i )  
represent how candidate i is rated by all candidates. Thus, the matrix can'be 
regarded as the summary of a self- and peer-rating process in which on- 
diagonal elements represent self-ratings and off-diagonal elements represent 
peer-ratings. Such a matrix, for the example in Table 14-1, is shown in Table 
14-1 

Table 14-1. Votes achieved by candidates a-f 
Candidate 1 2 3 4 

Table 14-2. A cross-evaluation matrix for the example of Table 14-1 
a b c d e f 

a 0.8 13 1 .O 0.813 1 .O 0.688 0.688 
b 0.667 1 .O 0.786 0.714 0.35 0.475 
c 0.5 0.667 1 .O 0.95 0.0 0.167 
d 0.5 0.667 0.8 13 1 .O 0.0 0.167 
e 0.813 1 .O 0.813 1 .O 0.688 0.688 
f 0.813 1 .O 0.813 1 .O 0.688 0.688 

The problem now is to arrive at an overall rating for each candidate, 
consistent with the self- and peer-ratings in Z, which can then be used to 
rank the candidates. Our first inclination is to follow Sexton et al. (1986) and 
regard the column averages of Z as suitable overall ratings. In essence, each 
candidate is being allowed equal right to interpret the voter's preferences, 
(i.e. all the candidates' standings) as manifested i n Z ,  rather than just the 
winner(s) according to CK's approach. Thus, each candidate is being 
accorded a weight of I/m in determining any candidate's overall rating. 
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Applying this idea to the cross-evaluation matrix in Table 14-1, the column 
averages and corresponding ranking is as follows: 

d(.944) >b(.899) >c(.840) >a(.684) >f(.479) >e(.402). 
However, consider the situation if there were two extra candidates, g 

and h say, each receiving one third-place vote. The cross-evaluation matrix 
for this situation is given in Table 14-1. (To reflect the fact that the electorate 
is finite, with twenty voters, we have deducted one third place vote from 
each of candidates, e and f.) 

Table 14-3. A cross-evaluation matrix for the example of Table 14-1 after appending two 
extra candidates 

*A cross-evaluation matrix for the example of Table 14-1 after appending two extra - - - 
candidates, g and h, who each receive one third-place vote. The standings of candidates e and 
f have each been reduced by one third-place vote to reflect the finite electorate of twenty 
voters. 

It can be seen that the order of the candidates is now: 
b(.917) >d(.877) >c(.826) a(.692) >f(.484) >e(.409) g=h(.041); there 

has been a reversal in the positions of candidates b and d consequent on the 
introduction of the two lowly rated candidates g and h. The 'principle of the 
independence of irrelevant alternatives' (e.g. Arrow, 1951), has been 
contravened. However, French (1986) suggests, echoing many other 
commentators, that this principle is 

"...arguably the most controversial assumption within social choice 
theory, not to say within decision theory...". 

For our own part, we must be concerned by a rank reversal provoked by a 
very lowly rated candidate, such as in the example above, but this concern 
would not necessarily extend to all contexts. In the turbulence following in 
the wake of the exit from the scene (or entry to the scene) of a highly rated 
candidate, we perhaps should not be surprised to see some change in the 
order of the candidates. 

In order to mitigate the effect observed above, we may relax the 
assumption that each candidate be accorded a weight of llm in the 
establishment of the overall ratings. Instead, we suggest that each candidate 
applies a weight in proportion to hislher overall rating rather than uniformly 
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llm i.e. a form of 'weighted voting' (Tideman, 1976). Thus if @is the row 
vector of final ratings, we now solve: 

i=l 

to obtain candidate i's overall rating, Bi . 
For the cross-evaluation matrices of Tables 14.3 and 14.4 we now obtain: 

d(.928) >b(.852) >c(.847) >a(.643) >f(.411) >e(.310) and 
d(.926) >b(.854) ~ ( 3 4 6 )  >a(.644) >f(.412) >e(.312) >g =h(.022) 

respectively. The previous rank reversal does not now occur and, perhaps 
more important, the overall ratings are scarcely changed between the two 
situations. 

In order to solve (14.10), we proceed iteratively as follows: 

Initially we set @Old as (1,1,. . .,I) SO 1 / @;Id is 1 / m , and the first 
iteration gives the vector of simple column averages of Z . This is then 
refined in subsequent iterations. The algorithm in (14.1 1) is essentially the 
"Power Method" for the principal eigenvalueleigenvector of Z . While this 
method is not particularly efficient as a means of obtaining principal 
eigenvalueleigenvectors of arbitrary matrices, it works very well for cross- 
evaluation matrices, converging to 3 decimal places in about five iterations. 

The resemblance of (14.11) to the Power Method is not surprising, or 
course, since (14.10) can be rewritten as: 

whereupon @can be seen as the left-hand eigenvector of 2 ,  scaled to an 
eigenvalue of ZB,. Our proposal can now be seen to be reminiscent of 
Wei's rating method (Wei, 1952; but see Cook and Kress, 1992), and also 
Saaty's "Analytic Hierarchy Process" (Saaty, 1977; 1994), which both use 
the principal eigenvector of a matrix as representing an overall rating. Of 
course, the meanings of the matrices and the manner of their determination 
in these two cases, are somewhat different from our cross-evaluation matrix. 
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14.5. CONCLUSION 

The problem of aggregating votes in a preferential election has been a 
subject of study for over 200 years. In this chapter a model is presented 
which aggregates votes into an overall index, in a way that allows each 
candidate to be assessed in a fair manner. The model amounts to 
determining, for each candidate i , the best set of weights wj  to apply to j th 
place standings vij for that candidate. We define a discrimination intensity 
function d(j,s) which specifies the minimum amount by which the 
multipliers wjand w,,, must differ. It is shown that for a certain general 
subclass of these functions, the winning candidate can be obtained by a 
closed-form expression. Furthermore, it is shown that for the special case in 
which all consecutive pairs of weights deviate by the same amount 
(d(k,s) = d(j,s)) , our model is equivalent to the well-known models of 
Borda and Kendall. 
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Chapter 15 

RANKING PLAYERS IN ROUND ROBIN 
TOURNAMENTS 

15.1. INTRODUCTION 

In a round robin tournament, each of n players competes with every 
other player exactly once, with each match resulting in a decision (no 
draws). The problem of rank ordering the players based upon the results 
from the competition has been studied by numerous authors. These include 
Ali et. al. (1986), Goddard (1983), Kendall (1962), Wei (1952), Cook et a1 
(1988a; 1988b; 1988c; 1990; 1992), Moon (1968), and others. The player 
ranking problem is very often approached in a 2-stage fashion. In stage one, 
a player's performance is used to arrive at a rating for that player. Stage two 
then takes that set of ratings and creates an ordinal ranking. The necessity of 
stage two arises due to the presence of ties in the ratings of stage one, and, 
therefore, is concerned primarily with algorithms for breaking such ties (see 
e.g. Goddard (1983)). It is the stage one problem with which we concern 
ourselves herein. 

Tournament ranking theory has been applied in many areas including the 
problem of prioritizing transportation projects. In Cook et. al. (1988) such a 
model has been developed within the Ministry of Transportation, Ontario, 
Canada. In this context, projects are rated across multiple dimensions, and 
evaluated using a concordance model of the ELECTRE type (Roy 1968). 
The result of this analysis is a binary preference matrix with a structure 
similar to that of tournament. Since the ultimate desire is to rank order the 
projects based on this binary matrix, a tournament algorithm is applied at 
this stage. 
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In section 2 of this chapter, we begin by examining strict tournaments, 
that is where matches between players always result in a win. We briefly 
review some of the existing player rating models, and explore possible 
weaknesses which these models may exhibit. From these observations, we 
then establish a set of criteria which should be adhered to in developing a 
rating based on the outcomes of a tournament. In particular, these criteria 
call for a consideration of strength of a player j in accounting for the worth 
of a win of i over j .  Specifically, we consider not only the immediate or 
1st generation wins, but also 2nd generation wins, 3rd generation wins, ... , 
etc. A tournament rating model is then presented which takes account of the 
strength factor. We briefly discuss the geometric interpretation of the model 
in terms of the Data Envelopment Analysis (DEA) constructs of Charnes, 
Cooper & Rhodes (1978) and others. An illustrative example is included. 
Finally, we present an enumeration algorithm for obtaining r n I h  generation 
scores. 

In section 3 we extend these ideas to the case of weak tournaments. 
Section 4 examines the ranking of players in multiple tournaments, and 
Section 5 looks at cases where only partial tournaments may exist. 
Conclusions are presented in Section 6. 

15.2. A MODEL FOR RATING PLAYERS 

Existing Rating Methods 
A number of approaches have been suggested in the literature for rating 

n players, using as the basis for the ratings, the adjacency matrix A = (aij). 
Recall that aV = 1 if player i defeats player j ,  and aV = 0 otherwise. The 
concept in these approaches is to develop a set of scores from the elements 
of A. We briefly review some of these methods: 

1. Row-Sum or Kendall Scores (Kendall (1962)). This approach amounts 
to computing the sum of the elements a,, in each row i of A, and using this 
as the rating for that player. This technique counts only direct wins, and 
makes no attempt to measure the strength of players. 

2. Row-Sum Scores of a Higher Power AP of A (Wei (1952)). Here, a 
win against a stronger player is awarded a higher score than one against a 
weaker player, that is, the strength of the opponent is a major factor in 
determining the score of the player. However, the number of wins which a 
player achieves is not directly taken into account. 

3. Row-Sum of p-Connectivity Matrices (Goddard (1983)). The rth 
stage p -connectivity matrix (p,;)  is defined by 
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The concept here is to continue to generate higher powers Pr until the 
row sums of Pr are no longer tied. This method is somewhat between the 
previous two methods, but also fails to take account of player strength in a 
reasonable manner. 

Criteria for Rating Players 
Each of the aforementioned methods exhibits both strengths and 

weaknesses vis-a-vis the attainment of a reasonable rating of the players. 
The following is a proposed set of criteria which any player rating method 
should adhere to: 

The direct scores or wins of each player should be taken into account. 
Ratings should be based on the strength of the defeated opponents. 
The method should rate each player relative to the others in the fairest 

or best possible way (give each player his "best shot".) 

The Model 
The model we propose for rating players is based on determining a set of 

weights 0 I W; I 1 such that the above criteria are observed. The approach 
looks at the entire range of wins of a player i over players j ,  not only in 
the immediate sense ( i  beats j ), but in the more remote or mth generation 
senses ( i  beats k who beats j ) .  We give the following definitions. 

Definition 15.1: The digraph G(T)  of tournament T is that graph 
whose set of nodes V consists of the n players, and whose edges E 
represent the outcomes (wins and losses) of the competition. 

Definition 15.2(a): The mth Generation Score (MGS) of player i is the 
number of nodes j for which there is a Hamiltonian path of length m in 
G(T)  that originates in node i and terminates in node j. 

In this definition, a Hamiltonian path i - i, - i, , ... i,,, of length m is an 
acyclic path. Since no cycles can be present then the path consists of m + 1 
dSfferent players. 

Definition 15.2(b): The Weighted mth Generation Score (WMGS) of 
player i is the number of different Hamiltonian paths of length m which 
originate in node i. 

It is noted that the difference between these two concepts is that if k 
different Hamiltonian paths of length m originate in i and terminate in j ,  



332 Cook and Zhu 

then the contribution of player j to player i is 1 under Definition 15.2(a), 
whereas the contribution is k under Definition l5.2(b). 

Definition 15.3: The mth generation adjacency matrix A(m) = (a,(m)) 
is that matrix in which a,. (m)  = 1 if there is an m -arc Hamiltonian path 
leading from i to j, and aii(m) = 0 otherwise. 

The weighted adjacency matrix A"(m) is defined in the same manner 
except that a;(m) is the number of paths from i to j. 

It is noted that the mth generation score for player i is the ith row sum of 
A(m). Hence, 

Similarly, 
n 

a: (m)  = a; (m). 
./=I 

In the following we assume that the unweighted score ai,(m) will be 
used as the measure of mth order power or strength, rather than the 
weighted version, although clearly a case could be made for either of these. 
In order to formulate our model, it is necessary to make some assumptions: 

Assumption 15.1: The score of each player is a linear combination of the 
mfh generation scores, m = 1,2, ... , n - 1. That is, each generation score 
contributes to the evaluation of the player. 

Definition 15.4: The weighted total rating for player i is the sum 

m=l 

where the ai (m)  are the weights to be assigned to the MGS values of player 
1. 

Assumption 15.2: The coefficients ai(m)  are monotonically 
decreasing. That is, the closer the generation, the more important is the 
score. 

This assumption means that the scores from closer generations bear at 
least as much relevance as do those from more distant generations. 

Assumption 15.3: Each player i should be given the opportunity to 
choose the best possible set of weights ai (m), in the sense of rendering the 
rating for player i as high as possible. 
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By defining W; in this manner (15.2), criteria (1) and (2) are covered. 
Specifically, the strength of a player i is measured by the number of mih 
generation wins over players j. Assumption 3 is aimed at addressing 
criterion (3). 

With the aforementioned in mind, we consider the following model for 
each player i, : 

n-l 

subject to 
n-l 

This model is solved n times, corresponding to the n players i,. For 
each player, the best possible set of ai ( m )  is chosen. The only restrictions 
imposed on the choice of weights i re  (1) that they be monotonically 
decreasing ( 1 5 . 3 ~ ) ~  as per assumption 15.3, and (2) in the spirit of DEA, that 
no player rating W; (including F0, the one being maximized) exceed some 
fixed constant. For consistency, this constant is chosen as 1. 

It is noted that since a different set of a ( m )  is allowable for each player, 
(15.3a-c) can be formulated as 

i=l ,,=I m=l 

subject to 

Model (15.4a)-(15.4~) can, therefore, be solved once to determine the set 
of n weights W ; ,  by virtue of the problem's separability. 

15.2.1 Obtaining m th- Generation (Weighted m th- 
Generation) Scores 

The weighted mih generation adjacency matrix A'"(m) records the 
number of acyclic paths between each pair of points in the network of 
players. It is noted that if one simply takes the mih power Am of the 
tournament matrix, the ijih element gives the total number of m -arc paths 
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between i and j. Unfortunately, paths with cycles are contained in this 
number. 

An Enumeration Algorithm 
In the general case, it is necessary to employ some algorithm for 

obtaining the acyclic paths needed in order to obtain A1"((m. We suggest a 
simple implicit enumeration procedure as one of many possible approaches. 
It is noted that once A1"(m) is determined, the unweighted matrix A(m) is 
found by setting all nonzero entries equal to 1. 

The Algorithm: 
1. For each player i, all 1st generation paths (i + j )  are obtainable 

from the adjacency matrix A =  (av). That is, if, aU = I, then 
i + j is a 1st generation path starting at node i and ending at node 
j .  Label node j with the set G = {1,2, ... , n} \ {i, j}. So G is the 
set of nodes available for use in generation 2. 

2. For each (rn - l)lh generation path (io + i, + ... + im-,), 
determine the set G = {1,2 ,... , n} \ {i,,i ,,... , i,-,} of nodes 
available to be used in generation m. If G is empty or = 0, 
for all j&G, go to the next (m - I)" generation path. If ai,,,-,j = 1, 
create the rnIh generation path i, + i,,+ ... + i,-, + J and 
revise the set G to = G \ { j}. Go to the next element of G and 
continue until all of its available nodes have been considered. 

3. Having created all mth generation paths, for each pair of players i 
and j ,  count the number of paths leading from i to j in rn steps. 
This becomes a,;'(rn), the ij" element of A1"((m. If m = n - 1, 
stop. Otherwise set m - 1 = m and go to step 2. 

Example: 
Consider the 5-player tournament whose adjacency matrix is given by 

Figure 15-1 shows the first-generation paths. Figure 15-2 shows the 
second-, third-, and fourth-generation paths starting with player 2. 
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Figure 15-1. First-generation paths 

Note that using the second generation node 1, only nodes 4 and 5 are 
allowable next (third) generation nodes. The second, third, and fourth 
generations out of nodes 1, 3, 4 and 5 would be determined in the same 
manner. 

Now, to get the (2,5) entry (e.g.) of A(3), we simply accumulate the 
number of paths arriving at node 5 at the third stage (=2),  i.e., paths 
2 + 3 + 1 + 5  a n d 2 + 3 + 4 + 5 .  
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Figure 15-2. Second-, third-, and fourth-generation paths 

For this tournament the mih generation matrices are 

15.3. WEAK RANKING OF PLAYERS 

The previous section viewed each competition in the tournament as one 
where a direct or strict win/loss occurs. In the case where ties or draws are 
permitted the theory must be extended. To facilitate this extension, we 
introduce a broader definition of the pairwise comparison matrix to include 
ties or draws: 

Definition 15.5: A weak tournament is a pairwise comparison matrix 
A = (a,) where 



Chapter 15. Ranking Players in Round Robin Tournaments 

1 if player i defeats player j ,  

112 if players i and j tie, and (1) 

0 otherwise. 

Consider the weak tournament given by 

Definition 15.6: The graph G,, of a weak tournament is a graph whose 
set of nodes V consists of the n players and whose edges E represent the 
outcomes (wins, draws and losses) from the competition. 

The graph G,, corresponding to the above weak tournament is shown in 
Figure 15-3. 

4 =  

Figure 15-3. Graph G,,, 

a b c d e f  
a 0 0 1 112 112 1 
b 1 0  1 / 2 1  1 0  
C 0 112 0 0 112 0 
d 112 0 1 0 112 112 
e 112 0 112 112 0 1 
f 0 1  1 1 1 2 0 0  

Clearly G,, can consist of both directed (win or loss) and undirected 
(draw) edges. 
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The model to be presented in this section again takes account not only of 
immediate outcomes of player i versus player j, but outcomes in the more 
remote or mIh generation sense ( i  beats k who beats j ) .  In this context, it 
is, therefore, necessary to look atpaths from i to j in G,,. 

Definition 15.6: The set of nodes il 2 i, 2 ... 2 i, in G,, form a simple 
path of length k - 1 if and only if i,, i,, ... , i, are distinct, i.e. contain no 
cycles. 

Here, the notation il 2 i, means that either il defeats or ties with i,. 
As an example of a simple path, consider the aforementioned 6-player 

weak tournament given by 4. The set of nodes or players a,c,b,d,e, for 
instance, constitutes a simple path of length 4 in that a 2 c 2 b 2 d 2 e, 
and no cycles exist. The path a 2 c 2 b 2 a is not a simple path in that a 
cycle is present. 

In a regular tournament (one containing no ties), the graph G contains 
only directed arcs, in that all preferences are strict, that is, each match 
produces a win. If a simple path of length m exists between two players i 
and j, player i is said to have an mIh generation or mth order win over j. 
In a weak tournament, however, a simple path may contain both directed and 
undirected arcs. The concept of a generation in the pure directed graph sense 
is then no longer sufficient to characterize the nature of this path. The 
number of undirected arcs present in the path must also be accounted for. 
The following definition addresses this phenomenon. 

Definition 15.7: A simple path in a graph G,, is said to be of type 
(m, k) if and only if it is of length rn and the number of undirected edges in 
it is k, where k I m. 

In order to evaluate the overall rating or rank position of a player, we 
wish to measure the numbers of wins of various types and orders. For this 
purpose, the mth generation, k" order scores will be utilized. 

Definition 15.8: The mth generation kth order score (MKS) of player i 
is the number of players j for which there is a simple path of type (m, k) in 
G,, that originates in node i and terminates in node j. 

In 4 above, the 2nd generation 1st order score (m = 2, k = 1) for 
player a is 5 since a has a second order win over each of b, c, d, e and f ,  
and in each case there is a path of length 2 with exactly one pair of players in 
the three that tie in their match. For example, player a defeats player c who 
ties with player b. Thus a has a second generation first order win over b. 
A similar result is true for player a versus c, d, e and f .  



Chapter 15. Ranking Players in Round Robin Tournaments 339 

Definition 15.9: The weighted mlh generation kzh order score (WMKS) 
of player i is the number of different simple paths of type (m, k) which 
originate in node i. It is noted that since a number of different paths can 
connect two players i and j ,  WMKS 2 MKS. 

The Model 
Let a,'" (m, k) denote the number of distinct simple paths emanating from 

node i (i.e., aj"(m, k) is the WMKS of i). Let a, (m, k) denote the MKS 
of i. In the next section an algorithm is given for generating the WMKS and 
MKS scores. 

In the model to be presented herein we wish to assign each player i a 
score or rating which reflects hislher composite wins in a mth generation 
sense. As well, we adopt the DEA framework for incorporating these 
multiple generations. In scoring a player, therefore, we make the following 
assumptions: 

Assumption 15.4: The composite score or rating of each player is a 
linear combination of the WMKS. That is, each generation-order pair 
contributes its score to the evaluation of the player, i.e. 

n-1 m 

= ai(m, k)ay(m, k), 

where ai (m, k)  is the weight to be assigned to the WMKS value of player 
i. The model presented below provides a mechanism for generating these 
weights. 

It is clear that some dominance relations must be imposed on the weights 
ai(m,k). First, it is natural to assume that within a given generation-value 
m, the smaller the order k the larger the weight ai(m, k). Since a tie is 
usually considered 'as half a win, a reasonable requirement may be to 
constrain the ratio of two consecutive weights by the scores ratio of their 
corresponding paths, that is 

For example, if m = 3 (3rd generation scores), then the weight of a 1st 
order score (one tied preference) should be at least as large as (3-.5)/(3- 
1)=1.25 times the weight of a 2nd order score, where among the three 
relations in each of the corresponding paths, two are ties. Note that for a 
given k , the right hand side of (15.6) is monotonic decreasing in m, which 
means that as the generation gets higher the information in the corresponding 
scores becomes fuzzier, and, therefore, the relation between two consecutive 
weights is less discriminant. On the other hand, this lower bound increases, 
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for a fixed m, as k increases. This property reflects the marginal increasing 
value of a strict preference when these types of preferences become scarce. 

Second, the rationale for the decreasing monotonicity, for a fixed k, of 
the right hand side of (15.6), coupled with the dominance relation in the 
strict case, imply that for any k I m 

a, (m, k)  2 a, (m + 1, k). (15.7) 

The above discussion is summarized in Assumption 15.5 below: 

Assumption 15.5: For any mth generation kIh order score, the 
corresponding weights must satisfy the following two conditions: 

(a) (m - (k + 1)/2)a,(m, k)  - (m - k/2)ai (m, k + 1) 2 0 (15.8) 

( b )  ai(m, k) 2 a i (m  + 1, k). 

Under these two assumptions, let us apply the convention that weights 
should be chosen such that no composite score is higher than 1. Adopting the 
DEA approach, the following linear programming model can be utilized to 
derive for each player i,, the best set of multipliers or weights ai0 (m, k) to 
apply to the aj" (m, k). 

Here, a l (m ,  k)  can denote either the MKS or WMKS: 

,. . ... 
max yo = a, (m, k)a:(m, k) 

subject to 

(m - (k + 1)/2)ai,, (m, k)  - (m - k/2)aio (m, k + 1) 2 0 
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Example: Consider the weak preference matrix 4. 

The WMKS values aj"(m, k) are given by: 

Table 15-1. WMKS Values for 4 
Alternative 

rn k a b c d e 
1 0 2 2 2 - 3 

1 1 1 - - 
2 0 2 2 3 - 4 

1 2 1 2 - 1 

It is noted that player d had no wins, hence obtains a zero score for all 
rn and k, therefore ranking in last place. 

Notice also that no scores are recorded in this example for 
a1"(2, 2), a" (3,2), a1"(3,3), aIv((4, 2), abV(4, 3), and a1"(4, 4). Taking this 
observation into consideration, we can reduce the number of constraints in 
(15.9~)-(15.9e) to account only for relevant weights, that is, weights that 
apply to nonzero scores. 

For example, the constraint 1 .5ai0 (3,2) - 2ai0 (3.3) 2 0 may be omitted. 

The modified problem (1 5.9~)-(15.9e) was solved with the data in Table 
15-1, and for various values of the parameter L whose largest feasible value 
is .05. Table 15-2 summarizes the optimal composite scores for each player, 
and Figure 15-4 provides a graphical representation of these results. 
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Figure 15-4. Optimal Composite Scores 

For any alternative i, the composite score is a non-increasing piece- 
wise linear function of L. In this example we note that for small values of 
L(L I .032), c is rated higher than a, whereas for L > .032, a is rated 
higher than c. In any event, the tie between a and c is broken. Therefore, 
the overall ranking of the players is either e > c > a > b > d or 
e > a > c > b > d, depending on whether higher order scores are accorded 
a low versus high value. 

15.3.1 Obtaining WMKS 

The WMKS matrix A'"(m, k) = (a;(m, k)), comprising the data of the 
previous problem, records the number of acyclic paths between each pair of 
points in the network of players. Once this matrix is determined, the WMKS 



Chapter 15. Ranking Players in Round Robin Tournaments 343 

value for each player i is obtained by summing the elements of the ith row 
of the matrix. To avoid cycles, and to distinguish m -arc paths with various 
numbers of ties, an algorithm is required. While various approaches are 
possible, we suggest a simple enumeration procedure. It is noted that once 
A1"(m, k )  is determined, the unweighted matrix A(m,k) is found by 
setting all nonzero entries to 1. 

In the algorithm to follow, it is necessary to keep track of both the length 
m of the path and the number of ties. The latter will be recorded using flag 
variables qoil ,,,,,,,, = # tied players in path i, + . - + im . 

An Enumeration Algorithm 
(i) Set q = 0 for all players i .  
(ii) For each player i ,  all 1st generation paths (i + j )  are 

obtainable from the adjacency matrix A =  ( a g ) .  That is, if 
a,,. = 1 or 112 then i + j is a 1st generation path starting at node i 
and ending at node j .  Label node j with the set 
G = {1,2, ... , n} \ { i ,  j ) .  So G is the set of nodes available for use in 
generation 2. If aii = 112 set qi = q + 1 .  Otherwise FJ,. = 4. 

(iii) For each ( m  - 1 ) l h  generation path (i, + il + ... + im-,), 
determine the set G = {1,2, ... , n} \ {i,, i,, ... , i,,,-,) of nodes available 
to be used in generation m. If G is empty or a,,,,-lj = 0 for all j sG ,  go 
to the next ( m  - 1)" generation path. If a,,,-, = 1,  create the mlh 
gzneration path i, + i,,+ ... + in,-, + j and revise the set G to 

G = G \ {A. Set [ . . .  i ,,,- ]j = qoil,..i ,,,- + ~f a,,,_, = 112 set 
F . . . = F . . + 1 .  Go to the next element of G, and continue until 

b114,-1 
all of its available nodes have been considered. 

(iv) Having created all mth generation paths for each pair of players 
i and j ,  count the number of paths leading from i to j in m steps, 
and having k tied players. This becomes a;(m, k ) ,  the ij" element of 
A'" (m,  k ) .  

If m = n - 1, stop. Otherwise set m - 1 = m and go to step (iii). 

Example: Consider the 5-player tournament whose adjacency matrix is 
given by 
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Figure 15-5 m Generation, kih Order Paths for Player 2 

Figure 15-5 illustrates how the algorithm is applied to obtain mih 
generation, kIh order paths for a given player (player 2). For example, there 
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is a 3rd 
(2+3+ 
well (2  + 

generation, Oih order path from player 2 to player 5 
1 + 5). There is a 3rd generation, 2nd order path from 2 to 5 as 
1 + 4 + 5). 

~ s a m ~ l e  m" generation, k" order matrix is: 
I 1 2 3 4 5  

The corresponding WMKS values a,?(& 1) (row sums) are: 
a: (2,l) = 5 
a; (2,1)=3 
a: (2,l) = 3 
a: (2,l) = 3 
a; (2,l) = 0 

15.4. MULTIPLE TOURNAMENTS 

In the case where data from multiple tournaments are available the 
problem of rating players becomes more complex. Not only is there the fact 
that not all players compete in all tournaments, but there is also an issue of 
tournament difficulty. In the present subsection we will consider only the 
case of complete tournaments, i.e., where all players compete in each 
tournament. Tournament difficulty (or importance), which we do wish to 
look at here, can be viewed from at least two perspectives. First, tournament 
difficulty may be player dependent-competing against better players makes 
a tournament more difficult than would be true of one with lesser 
competitors. Second, the importance of a tournament may in some cases be 
viewed from a prestige standpoint. Wins in an internationally recognized 
tournament may be seen as being more important than those in lower profile 
matches. Thus, the issue of difficulty or importance can involve several 
considerations. While we do not propose to delve into the matter of how 
relative importance should be decided, we do wish to look at how one should 
evaluate players when the relative importance has been expressed. 

Consider then the case of T tournaments which can be arranged in order 
of difficulty. Without loss of generality we assume 

that is tournament T, is the most difficult followed by T,, ..., and so on. 
This being the case, we assume that a player is awarded more credit or 
weight for a win over a given player in a more difficult tournament TI than 
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in a less difficult tournament q2 (i.e., where q, > .) In that regard, let w, 
be a variable (whose value is to be determined) that expresses the level of 
dzficulty of tournament T, . 

In the case of multiple tournaments, several approaches can be taken to 
arrive at a ranking of the players. Here, our approach advocates finding a set 
of m th generation multipliers {at (m)) ,  for each tournament t = 1, ... , T 
together with a set of tournament difficulty multipliers (w,), through the 
following multi tournament generalization of problem (1 5.3a)-(15.3~): 

T M 

q = rnax w,at(m)a,! (m)  
" ~ a ' ( m ) I , ~ w l  ,=I m=l 

0 ' 

subject to 
T M  

w,at(m)a; (m)  5 l , i  = 1 ,..., n 

Here, we again provide each player with the opportunity to choose not 
only the most favorable weights a l ( m )  on the m generations, but also to 
weight the importance of the tournaments (while respecting the constraints) 
in a manner that makes hislher rating q as high as possible. 

Problem (I  5.1 O), unlike problem (I 5P3a-c), is nonlinear in the presence of 
products of variables, i.e., w,al(m). Generally, such nonlinearities would 
render the problem very difficult to solve, but in the present case an 
equivalent linear formulation is at hand. 

A Linear Representation 

An equivalent linear representation of problem (PT) can be accomplished 
through a simple change of variables. Specifically, define 

dm = wtal(m>, (15.1 1) 
and replace the second, third, and fourth constraints by the equivalent 
constraints 
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w ,a t (M)  2 E W , , ~  = 1, ..., T 
Now, rewrite problem (15.10) in the form 

T M 

subject to 

Since all w, are strictly positive, then an optimal solution to the LP 
problem (1 5.12) immediately yields an optimum to (1 5.10) in the usual way. 

Common Weights Across Tournaments 
In the above model a different set of multipliers a1(m)  arises for each 

tournament T,. If it is desired to obtain a single (common) set a(m) that 
applies to all tournaments, then one would need to solve the n quadratic 
problems (1 5.10) where we replace at (rn) by a(m). Unfortunately, in this 
case, the linearization procedure presented above doesn't work. 

15.5. PARTIAL TOURNAMENTS 

In the previous section it was assumed that each of n players 
participated in the same set of T tournaments. Here we examine a 
generalization of this idea. Assume each player i&{l, ... ,n)  competes in 
some subset Ki {T,, T, ,  ... , T, } of the T tournaments. Further, it is 
assumed that any tournament where i competes is complete in the sense that 
each player in that tournament has exactly one match with each of the other 
players in the tournament. So, each of these tournaments is round robin in 
the usual sense. Finally, we assume for simplicity that the number of 
generations M  that is used to capture player strength is common across all 
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tournaments. As will be pointed out later, this assumption can be removed 
without changing the general approach. 

The problem with attempting to model player performance in the partial 
tournament setting using (15.10) is that a player i, who competes in only a 
small subset K, of tournaments will tend to be dominated by a player i l ,  
where Kil is a much larger set; i.e., < , simply because of the 
numbers of matches played in the two case;. Hence, this formulation fails to 
account for the differential numbers of matches Ki played. To accomplish 
this we propose the following generalization of (15.10) 

C,&Ki, C:, wlaf(m)al.(m) 
W = max 

I" @'(mM1vO C , , ,  

subject to 

I 1 , i  = 1, ..., n 
C '&Ki w' 

M 

C a' (m)al! (m) i l , i  = 1 ,... ,n,t&K, 
m=l 

a f ( m ) - a t ( m + 1 ) 2 ~ , m = 1  ,..., M - 1 , t = 1 ,  ..., T 

Problem (1 5.13), a fractional linear problem, therefore accounts for 
tournament participation by way of normalization. In this manner, players 
can be properly compared regardless of the number of tournaments in which 
each is involved. 

Following the earlier change of variables 4, = a' (m)w,, and letting 
vI = ri, w1 and ptm = r,,, P,, problem (15.13) is equivalent to the linear 
programming problem 

subject to 
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v,. 2 &Ti" 

In solving problem (15.13) we may impose a restriction of the form 
w, < O for some chosen scaler (3. Since E is an infinitesimal, we 

may V?ith no loss of generality choose O = 1. The maximum value of yo 
for O > 1 is only greater than f l  at O = I by an amount of the order of E.  

That is, 
yo ( O  > I) = y" (0) + O(&). 

Thus, from a practical oint of view, problem (15.13) is equivalent to a 
problem with a constraint 5 w, < I added. 

Thus, we may augment prb$lem (15.14) by the additional restriction 
z, 2 1 (15.15) 

Again, given a solution (r,', p*, v*) to (l5.l5), then w: = < and 
af*(m) = & is a solution to (15.13). It is noted that at the o$imum 

* ", 
T(, = Ti,, - 

15.6. CONCLUSIONS 

This chapter has examined the application of the DEA model to the 
problem of ranking players in a tournament. Tournament theory has a long 
history with many different methodologies having been applied to the player 
ranking issue. These previous methods have generally been rating-based or 
have involved maximum-likelihood concepts. The advantage of the DEA 
approach is the maximum fairness principle that it embodies. It also offers 
the opportunity to directly address extensions to the original tournament 
structures, namely, those pertaining to multiple matches and partial 
participation in those matches. 
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Chapter 16 

CONTEXT-DEPENDENT DEA 
Models and Extension 

16.1. INTRODUCTION 

DEA identifies efficient DMUs from a given set of DMUs. It is well 
known that adding or deleting an inefficient DMU or a set of inefficient 
DMUs does not alter the efficiencies of the existing DMUs and the efficient 
frontier. The inefficiency scores change only if the efficient frontier is 
altered. i.e., the performance of DMUs depends only on the identified 
efficient frontier. In contrast, researchers of the consumer choice theory 
point out that consumer choice is often influenced by the context. e.g., a 
circle appears large when surrounded by small circles and small when 
surrounded by larger ones. Similarly, a product may appear attractive against 
a background of less attractive alternatives and unattractive when compared 
to more attractive alternatives (Simonson and Tversky, 1992). 

Considering this influence within the framework of DEA, one could ask 
"what is the relative attractiveness of a particular DMU when compared to 
others?" As in Tversky and Simonson (1993), one agrees that the relative 
attractiveness of DMU, compared to DM%, say DMU, (or a group of 
DMUs). Relative attractiveness depends on the evaluation context 
constructed from alternative options (or DMUs). 

In fact, a set of DMUs can be divided into different levels of efficient 
frontiers. If we remove the (original) efficient frontier, then the remaining 
(inefficient) DMUs will form a new second-level efficient frontier. If we 
remove this new second-level efficient frontier, a third-level efficient 
frontier is formed, and so on, until no DMU is left. Each such efficient 
frontier provides an evaluation context for measuring the relative 
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attractiveness. e.g., the second-level efficient frontier serves as the 
evaluation context for measuring the relative attractiveness of the DMUs 
located on the first-level (original) efficient frontier. On the other hand, we 
can measure the performance of DMUs on the third-level efficient frontier 
with respect to the first or second level efficient frontier. 

In this way, we obtain a context-dependent DEA where the relative 
attractiveness is obtained when DMUs having worse performance are chosen 
as the evaluation context, and the relative progress is obtained when DMUs 
having better performance are chosen as the evaluation context. The 
presence or absence (or the shape) of the evaluation context (efficient 
frontier) affects the relative attractiveness or progress of DMUs on a 
different level of efficient frontier. When DMUs in a specific level are 
viewed as having equal performance, the attractiveness measure or the 
progress measure allows us to differentiate the "equal performance" based 
upon the same specific evaluation context (or third option). 

Note that different inputloutput measures play different roles in the 
evaluation of a DMU's performance. Customers may make trade-offs among 
different measures of a product. For example, suppose we want to buy a dot- 
matrix printer and we may, given the price, make tradeoffs amongst the 
speed, print quality, and input buffer (memory) which are some of the most 
important features that distinguish 24-pin dot-matrix printers. We may not 
consider the printer memory feature to be very vital, because dot-matrix 
printers only use memory as a buffer space to download fonts. Thus, we give 
more consideration to speed and print quality. Perhaps, the printer is simply 
used to print long program codes or data-base listings, so that speed 
outweighs print quality. 

Therefore, in measuring the relative attractiveness and progress, 
incorporation of value judgment is also very important. The current chapter 
uses the result of Zhu (2002) to develop a context-dependent DEA with 
value judgment. The method is applied to measure the relative attractiveness 
of a set of printers that is studied by Doyle and Green (1991). The 
application demonstrates that the context-dependent DEA helps practitioners 
to produce finer evaluation of efficiency in practical problems. 

The rest of the chapter is organized as follows. The next section 
presents the context-dependent DEA. We then incorporate the value 
judgment into the context-dependent DEA. The method is applied to a set of 
32 printers. Conclusions are provided in the last section. 
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16.2. CONTEXT-DEPENDENT DEA 

Our model formulation below uses a vector notion for inputs and 
outputs where DMU, (j = 1, 2, ..., n) produces a vector of outputs 
y, = (y,, ..., Y,~,) by using a vector of inputs xi = (x,, ,..., x,) . 

L e t J  = {DMU,,, j = 1 ,..., n} be the set of all n DMUs. We 
interactively define J'+' = J' - E' where E' = {DMU, E J' ( 
#*(l,k) = I ) ,  and 4*(l,k) is the optimal value to the following linear 
programming problem: 

subject to 

where (xk , yk ) represents the input and output vector of DMUk , and 
j E F(J') means DMU, E J', i.e., F(.) represents the correspondence 
from a DMU set to the corresponding subscript index set. 

When I=1, model (I) becomes the original output-oriented CCR model 
and DMUs in set EL define the first-level efficient frontier. When I = 2, 
model (1) gives the second-level efficient frontier after the exclusion of the 
first-level efficient DMUs. And so on. In this manner, we identify several 
levels of efficient frontiers. We call E' the Ith-level efficient frontier. The 
following algorithm accomplishes the identification of these efficient 
frontiers by model (I). 

Step 1: Set I = 1. Evaluate the entire set of DMUs, J ' ,  by model (16.1) 
to obtain the first-level efficient DMUs, set E' (the first-level efficient 
frontier). 
Step 2: Exclude the efficient DMUs from future DEA runs. 
5"' = J' - E' . (If J'" = 0 then stop.) 
Step 3: Evaluate the new subset of "inefficient" DMUs, J'" , by model 
(1) to obtain a new set of efficient DMUs E'" (the new efficient 
frontier). 
Step 4: Let I = I + 1. Go to step 2. 
Stopping rule: J'" = 0 ,  the algorithm stops. 

There exists an input-oriented version of model (16.1). However, the 
input-oriented version of model (16.1) yields the same stratification of the 
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whole set of DMUs. Figure 16.1 plots the three levels of efficient frontiers of 
10 DMUs with two outputs and one single input of one (see Table 16.1). 

0 1 2 3 4 5 6 7 
Output I 

Figure 16-1. Efficient Frontiers 

Table 16-1. Sample DMUs 
DMU 1 2 3 4 5 6 7 8 9 10 
Output 1 6 5 2 5.5 4.75 3 1 4 3 1 
Output2 2 3.5 5 1.5 2.5 3.5 4 1 3 3.5 

Now, based upon these evaluation contexts E' (I = 1, ..., L), we can 
obtain the relative attractiveness measure by the following context- 
dependent DEA. 

C2i(d)= max Q , ( d )  d = I ,  ..., L-Z,, 
a , . a c l ( d )  

subject to 

p i j x i  5 x , ;  
j c F ( ~ ' ~ + " )  
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where DMU, = (x ,  , yq ) is from a specific level EL , $ E { 1, ..., L-1 }. We 
have (i) 0: ( d )  < 1 for each d = 1 ,..., L - 1. , and (ii) 0, (d  + 1) < 0; ( d )  . 

1 
Definition 16.1: A l ( d )  z - is called the (output-oriented) d-degree 

0; (4 
attractiveness of DMU, from a specific level EL 

Suppose, e.g., each DMU in the first-level efficient frontier represents an 
option, or product. Customers usually compare a specific DMU in Elo with 
other alternatives that are currently in the same level as well as with relevant 
alternatives that serve as evaluation contexts. The relevant alternatives are 
those DMUs, say, in the second or third level efficient frontier, etc.. Given 
the alternatives (evaluation contexts), model (16.2) enables us to select the 
best option - the most attractive one. 

In model (16.2), each efficient frontier of represents an evaluation 
context for measuring the relative attractiveness of DMUs in Elo . Note that 
A; ( d )  is the reciprocal of the optimal value to (16.2), therefore A; ( d )  >I. 
The larger the value of A; ( d )  , the more attractive the DMU, is, because 
this DMU, makes itself more distinctive from the evaluation context 
E ' O ' ~  . We are able to rank the DMUs in E'" based upon their attractiveness 
scores and identify the best one. 

To obtain the progress measure for a specific DMU, E E ~ J  , 11, E (2, ..., 
L}, we use the following context-dependent DEA. 

P , * ( ~ ) =  max Pq(g) g=l ,  ..., 1"-1 
ai.pq(fi) 

subject to 

C+, < x,; 
j s ~ ( & " )  

We have (i) P,* ( g )  > 1 for each g = 1, . . ., 11, -1, and (ii) 
pq* ( g  + 1) > p,* (9) - 

Definition 16.2: The optimal value to (16.3), i.e., P , * ( ~ ) ,  is called the 
(output-oriented) g-degree progress of DMU, from a 
specific level Elo . 

Each efficient frontier, El"-\ contains a possible target for a specific 
DMU in Elo to improve its performance. The progress here is a level-by- 
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level improvement. For a larger f';(g), more progress is expected for 
DMU, . Thus, a smaller value of P, ( g )  is preferred. 

16.3. CONTEXT-DEPENDENT DEA WITH VALUE 
JUDGMENT 

In the previous section, both attractiveness and progress are measured 
radially with respect to different levels of efficient frontiers. The 
measurement does not require a priori information on the importance of the 
attributes (input/output) that feature the performance of DMUs. However 
different attributes play different roles in the evaluation of a DMU's overall 
performance. Therefore, we introduce value judgment into the context- 
dependent DEA. 

Incorporating Value Judgment into Attractiveness Measure 

In order to incorporate such a priori information into our measures of 
attractiveness and progress, we first s ecify a set of weights related to the s 
outputs, u, (r = 1, ..., s) such that u, =l .  Based upon Zhu (1996), we E 
develop the following linear programming problem for DMU, = (x ,  , y,) 
= (x,, ,..., x,,, yly ,..., yay,) in E', , lo €{I ,  ..., L-1): 

a; ( d )  = max u , ~ ; ( d )  d = 1 ,..., L - 1, 
A p q m  ,.=I 

subject to 

- 1 
Definition 16.4: J,*(d) = - is called the (output-oriented) value 

@; (4 
judgment (VJ) d-degree attractiveness of DMU, from a 

specific level E'. . 
- 

Obviously, x,* ( d )  > I .  The larger the z; ( d )  is, the more attractive the 
DMU, appears under the weights u, (r = 1 ,  ..., s). We now can rank DMUs 



Chapter 16. Context-Dependent DEA 357 

in the same level by their VJ attractiveness scores incorporated with the 
preferences over outputs. 

If one wishes to prioritize the options (DMUs) with higher values of the 
r, th output, then one can increase the value of the corresponding weight u, . 
These user-specified weights reflect the relative degree of desirability of t6e 
corresponding outputs. For example, if one prefers a printer with faster 
printing speed to one with higher print quality, then one may specify a larger 
weight for the speed (output). The constraints of <Di(d) 51 (r = 1, ..., s) 
ensure that in an attempt to make itself as distinctive as possible, DMU, is 
not allowed to decrease some of its outputs to achieve higher levels of other 
preferred outputs. 

Consider DMUs, 1, 2 and 3 in Table 16.1 and select the second-level 
efficient frontier as the evaluation background, i.e., we consider the VJ first 
degree attractiveness. 

Case I: If let u, ~ u ,  = 0.5, i.e., the preference over thatwo outputs is 
equal, then we have Al* (I) = 1 .O787, 2,: (1) = 1.20 19 and z3* (1) = 1.1429. 
Thus, DMU2 is the most attractive one; 

Case 11: If let u, = 0.98 anhu ,  = 0.02, i.e., wejrefer the first output, 
then we have A,* (1) =1.0949, z2* (1) =1.0077 and z3* (1) = 1.0050. Thus, 
DMUl is the most attractive one; 

Case 111: 1f-z~~ = 0.02 and z& = 0.98, i.e., we prefer the second output, 
then we have 4 (1) =1.0030, A, (1) = 1.0081 and x3* (1) = 1.2595. Thus, 
DMU3 is the most attractive one. 

It can be seen that different weight combinations lead to different 
attractiveness scores. - 

Note that I,* (d) (or <Di (d) ) is an overall attractiveness of DMU, in 

terms of outputs while keeping the inputs at their current levels. On the other 
1 

hand, each individual optimal value of - , (r = 1, . . ., S) measures the 
@: (4 

attractiveness of DMU, in terms of each output dimension. Note that 

1 zq* (d) is not equal to u,.~:(d), where A:(d) = - 
r=l q d )  

Definition 16.5: For DMU, EE'" , 4 €12, ..., L), the optimal value 
- 1 
zqr*(d) - is called the (output-oriented) value 

(4 
judgment (VJ) d-degree output-specific attractiveness 
measure. 
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Consider case I of VJ first degree attractiveness. When u, = u, = 0.5, 
we have (i) A: (1) = 1.1710, A; (1) = 1 for DMUI; (ii) A: (1) = 1.0526, 
A; (1) =1.4006 for DMU2; and (iii) A: (1) = 1, A;(l) = 1.3333 for DMU3. 
Thus, DMUl is the most attractive one in terms of the first output, whereas 
DMU2 is the most attractive one in terms of the second output. 

Let @; (d)yrq = yrq - S; ( d )  (r = 1, . . ., S) in (4). Since @; ( d )  I 1, 
s,'(d) 2 0, model (4) is equivalent to the following linear programming 
problem: 

u, where Dr = -, i.e., u, is normalized by the corresponding output 
Yr, 

quantity. s,'(d) in (5) can be regarded as the maximum possible output 

reduction to a specific efficient frontier EL+" Therefore, the output-specific 
attractiveness measure characterizes the difference between DMU, E E'" 

and E'"'~ in terms of a specific output. 
With the output-specific (or input-specific) attractiveness measures, one 

can further identify which outputs (inputs) play important roles in 
distinguishing a DMU7s performance. On the other hand, if @!*(d)  = 1, 
then other DMUs in or their combinations can also produce the 
amount of the r, th output of DMU, , i.e., DMU, does not exhibit better 
performance with respect to this specific output dimension. Therefore, 
DMU, should improve its performance on the r,th output to distinguish 
itself in the future. 

Incorporating Value Judgment into Progress Measure 

Similar to the development in the previous section, we can define the 
output-oriented value judgment (VJ) progress measure: 
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s - 
q * ( g ) =  max z u , ~ ; ( g )  g = l ,  ..., l o - 1  

.tiJ', ( R )  ,=, 

- 
Definition 16.6: The optimal value q * ( g )  is called the (output-oriented) 

value judgment (VJ) g-degree progress of DMU, in a 
specific level Elo . 

- 
The larger the ( g )  is, the greater the amount of progress is expected 

for DMU, . Here the user-specified weights reflect the relative degree of 
desirability of improvement on the individual output levels. 

16.4. INPUT-ORIENTED CONTEXT-DEPENDENT DEA 

Here we provide the input-oriented context-dependent DEA. Consider 
the following linear programming problem for DMU, = ( x , , y , )  in a 
specific level E'" , I,, E (1, ..., L-1 ): 

H I  ( d )  = min H,  ( d )  d  = 1, ..., L - lcl 

Note that dividing each side of the constraint of (A.l) by H, ( d )  gives: 
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1 
Therefore (A. 1) is equivalent to (2), and we have (i) H; ( d )  = - 

a; (4 
for DMU, E Elo , 1, E { 1, ..., L- 1 }, (ii) H,' ( d )  > 1 for each d = 1,. . . , L - 1, , 

and H; (d  + 1) > Hi ( d )  . 
Definition 16.7: H* ( d )  is called (input-oriented) d-degree attractiveness of 

D ~ U ,  from a specific level E" . 

The bigger the Hi(d )  is, the more attractive the DMU, is. Model 
(A.l) determines the relative attractiveness score for DMU, when outputs 
are fixed at their current levels. To measure the progress of DMU, E EL , 
1, E (2, ..., L}, we develop 

G;(g)=minG,(g) g=l ,  ..., l o -1  

s.t. C 4 x i  5Gq(/3)xq; 
, ~ G F ( E / O - ~ )  

(16.8) 
C Ajyj Y,; 

j s ~ ( E ' ~ - ~ )  

1 
We have (i) G; ( g )  = - for DMU, E Elo , 1, E {2, ..., L}, (ii) 

pq* (24 

1 
Definition 16.8: ~ ; ( g )  = - is called (input-oriented) g-degree 

G; (s) 
progress of DMU, from a specific level Elo. 

Obviously M; ( g )  > 1. For a larger M; ( g )  , more progress is expected. 
Next, we develop the following linear programming problem for 
DMU, = ( x q ,  y,) = (x,, ,..., xmq,y,, ,... , Y.~,) in Eli1, 1, ~ { l ,  ..., L-I}: 
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m 

where wi (i = 1, ..., rn) such that wi = 1 are user-specified weights 
i= l  

reflecting the preference over the input improvements. 
- 

Definition 16.9: The optimal value 7?,* (d) is called (input-oriented) value 
judgment (VJ) d-degree attractiveness of DMU, in a 
specific level E'" 

To measure the (input-oriented) value judgment progress, we have 

- 1 
Definition 16.10: The optimal value &fi(g) = (A) ,  is the (input- 

G, (g) 
oriented) value judgment (VJ) g-degree progress of 

DMU, from a specific level E" . 
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16.5. CONTEXT-DEPENDENT DEA MODELS IN 
DEAFRONTIER SOFTWARE 

Here, we demonstrate how these context-dependent DEA models can be 
solved using the DEAFrontier software. The context-dependent DEA 
consists of three functions: (i) Obtain levels, (ii) Calculate context-depend 
DEA models, and (iii) Unprotect the sheets containing the levels (see Figure 
16-2). 

Figure 16-2. Context-dependent D E A  Menu 

The first function is the stratification model (16.1). It generates all the 
efficient frontiers - levels (Figure 16-3). This function will first delete any 
sheet with a name starting with "Level" and then generate a set of new 
sheets named as "Leveli(Frontier)" where i indicates the level and Frontier 
represents the frontier type. For example, Levell(CRS) means the first level 
CRS frontier. The "level" sheets are protected for use in the context- 
dependent DEA. However, they can be unprotected by using the "Unprotect 
the sheets" menu item. The format of these level sheets must not be modified. 
Otherwise, the context-dependent DEA will not run properly and accurately. 

Figure 16-3. Obtain Levels 
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Once the efficient frontiers are obtained, the context-dependent DEA can 
be calculated using the "Context-dependent DEA" submenu item as shown 
in Figure 16-4; 

Figure 16-4. [Please provide a caption for this figure] 

In Figure 16-4, if one does not wish to specify the weights in model 
(16.4), for example, then the regular context-dependent DEA model (16.2) is 
calculated. 

The results are reported in the "Context Dependent Result" sheet for the 
regular context-dependent DEA models, and "Context Dependent VJ" for 
the models with value judgments. In this sheet, the context-dependent scores 
are the optimal values to the context-dependent models described in this 
chapter. To obtain the attractiveness or progress scores, one has to adjust the 
context-dependent scores based upon Definitions 16.1-16.10. 
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16.6. APPLICATION 

Doyle and Green (1991) benchmarked 37 computer printers using DEA. 
We revisit their data set by using the newly developed context-dependent 
DEA. In order to keep the results consistent and comparable with Doyle and 
Green (1991), we choose price (in US dollars) as the single input. The 
following features/measures are chosen as outputs: (1) input buffer; (2) mean 
time between failure (MTBF); (3) SO-column throughput; (4) graphics 
throughput; (5) sound level and (6) print quality (see Table 16-2). 

Table 16-2. Data for the 32 Printers 
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There are two kinds of input buffers: standard and optional. Because 
some printers have zero values for either the standard or optional input 
buffer, we combine the two scores to give a composite input buffer score so 
that all scores are positive. The larger the buffer, the more output a computer 
can transmit to the printer and the sooner the computer is freed for other 
uses. As stated in Stewart (1988), MTBF (in hours) is a significant 
specification of a manufacturer's rating of the durability of a printer. The 
current study does not have access to the MTBF of the following 5 printers: 
Star Micronics NB24-15, Toshiba P341SL, IBM Proprinter XL24, Star 
Micronics NB-15 and Toshiba P35 1SX. 

The third and fourth outputs are measures of printing speed in characters 
per second (cps) which is the document length in bytes divided by the 
number of seconds to print it. (Higher numbers signify faster performance.) 
The fifth output is a measure of the noise level (in dBA) where lower 
numbers are preferable. Based upon Seiford and Zhu (2002), because it is an 
output measure, we subtract each number from 100 to obtain an adjusted 
score for the DEA analysis. The last output is a combined quality score for 
text and graphics quality scores where larger numbers indicate a higher 
quality. Note that the last four outputs are among the test criteria used by 
Stewart (1988). Also, based upon Stewart (1988), printers 1 to 13 are in the 
low price category ($499-$999), printers 14 to 23 are in the middle price 
category ($1000-$1499), printers 24 to 30 are in the high price category 
($1500-$1999) and printers 3 1 and 32 are in the deluxe price category 
($2000-$2499). 

By using the DEA model (16.1), we obtain five levels of efficient 
frontiers. They are, 

E' = {DA4UiIj= 1,2,3,5,  19,20,26) 

E2 = {DMUilj =4 ,7 ,  10, 11, 12, 15) 

E3 = { D W i I j = 6 , 8 , 9 ,  13,22,27,30,31) 

E4 = { D W i I j =  14, 16, 17, 18,21,23,25,28,29,32) 

E5 = {DMU, 1 j = 24) 

It can be seen from the original DEA (CCR) model, seven printers in E' 
are efficient. This result is slightly different from that of Doyle and Green 
(1991), partly because we treat one of the outputs, sound level, in a different 
way. Note that three of the six "outstanding buys" selected by Stewart 
(1998), namely, DMUl (Epson LQ-500), DMU20 (Okidata Microline 393) 
and DMU26 (Hewlett-Packard RW480) are in the first-level efficient 
frontier and the remaining three, namely, DMU4 (Copal WH6700), DMU11 
(Fujitsu DL3400) and DMU3 1 (Fujitsu DL5600) are in the second-level and 
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third-level efficient frontier, respectively. We next discuss the 13 printers in 
E' and E' in detail. 

1 2 Table 16-3. Attractiveness and progress scores for the 13 printers in E and E 
I Background (Eff~cient frontier) I 

Printer 
Name 

Epson LQ-500 
NEC P2200 

1.18545Q 1.314060 1.597160 Okidata 
Hewlett- 1.46755@ 1.540228 2.122240 

first-degree* * first-degree second-degree 
Copal WH 1.163120 1 SO4320 1.727180 
Panasonic KX- 1.131170 1.282820 1.536040 

ALPS 1.278680 1.412350 1.606460 

Seikosha SL- 
Epson LQ-850 
ALPS P2400C 

DMU 
No. 

1 
2 

*The number to the right of each score indicates the ranking pcsition. 
* * This represents progress. 

2nd-level 3rd-level 4th-level 
first-degree second-degree third-degree 

1.500920 1 1.854460 1 2.320720 
1.500920 1 1.78060@ 1 2.306220 

3 
5 
19 

Fujitsu 
NEC P7 
Evson LQ- 

First, by using (16.2) we consider the attractiveness and progress of the 
fourteen printers when different efficient frontiers are chosen as evaluation 
contexts. Table 3 gives the results. 

The number to the right of each score indicates the ranking position by 
the attractiveness measure. (O represents the top-rank position.) Note that 
DMU19 (ALPS P2400C) and DMU4 (Copal WH 6700) are the most 
attractive printers in the first and second levels, respectively, no matter 
which evaluation context is chosen. Also, DMUl (Epson LQ-500) and 
DMUll (Fujitsu DL3400) have the second and third ranking positions, 
respectively. 

In fact, for DMUs that are not located on the first or last level of efficient 
frontier, we can characterize their performance by their attractiveness and 
progress as shown in Figure 16-5 where the solid circle represents the DMU 
being evaluated. The most desirable category is the Low Progress - High 
Attractiveness (LH) and the least desirable category is the High Progress - 
Low Attractiveness (HL). A high progress indicates that the DMU needs to 
improve its outputs substantially, and a high attractiveness indicates that the 
DMU does not have any close competitors. For example, for the printers in 
E 2 ,  we may categorize (i) Copal WH 6700 (DMU4) and Fujitsu DL3400 

1.516990 
1.330460 
2.571750 

11 
12 

15 

1.854876 
1.592080 
3.429360 

- - . - -  - 

2.28781@ 
1.839558 
3.577690 

1.030200 
1.195570 
1.222958 

1.366540 
1.29240@ 

1.187638 

1.675636 
1.57736@ 
1.386228 
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(DMU11) as LH, (ii) Panasonic KX-P1524 (DMU7) as LL, (iii) ALPS 
ALQ324 (DMUIO) as HH, and (iv) NEC P7 (DMU12), Epson LQ-1050 
(DMU 1 5) as HL. 

Figure 16-5. Attractiveness - Progress 

Next, we consider DMU19 (ALPS P2400C). Note that this printer has the 
largest input buffer, 256k (the average value of the others is 40k). Thus, the 
massive input buffer is likely to lead to the large attractiveness score for that 
printer, and consequently, the attractiveness measure for DMU19 may be 
biased. Therefore, we need to define some weights, u, (r = 1 ,  ..., 6) to 
construct the output-oriented VJ attractiveness score by using model (16.4). 

Stewart (1998) writes: 
' ilmong low-price units, the Epson LQ-500 ($499), 

the Copal Write Hand 6700 ($795), and the Fujitsu 
DL3400 ($995) each offer bargain hunters good 
combinations of speed and quality. " 

Thus, if we prefer speed and quality, we specify the following weights 
where more weight is put on 80-column throughout, graphics throughout and 
print quality which characterize speed and quality. 
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Tables 16-4 and 16-5 report the VJ (first-degree) attractiveness scores for 
the printers in E' and E' , respectively. 

1 2 Table 16-4. VJ attractiveness scores for the seven printers in E when E is chosen as the 
evaluation context 

*The number to the right of each score indicates the ranking position 

3 Table 16-5. VJ attractiveness scores for the seven printers in E' when E is chosen as the 
evaluation context 

*The number to the right of each score indicates the ranking position. 

It can be seen that DMUl (Epson LQ-500) and DMUll (Fujitsu 
DL3400) are the top-ranked printers in E' and E2,  respectively. Note that 
DMUll  (Fujitsu DL3400) is the top-ranked unit among the inefficient 
DMUs by the CCR model (see Figure 2). This observation strengthens the 
conclusion that these two printers are the best ones. 

However, DMU4 (Copal WH6700) which is ranked highly by the CCR 
model does not have a large attractiveness score. When calculating the VJ 
attractiveness score for DMU4, model (4) identifies DMUS and DMU9 as 
the referent DMUs. (The associated optimal lambda values are 0.013 and 
0.824, respectively.) Thus, the unattractiveness of DMU4 is due to the 
presence of DMU8 and DMU9. Note that DMU4, DMU8 and DMU9 are all 
in the low price category. Hence, DMU8 (Brother M-1724L) and DMU9 
(Citizen Tribute 224) could be the potential competitors for DMU4 (Copal 
WH6700). 

It can also be seen that DMU26 (Hewlett-Packard RW480) has a small 
attractiveness score of 1.0433 1 although it achieves a top rating in terms of 
text and graphics quality. Note that our VJ attractiveness measure is based 
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on the situation where inputs are fixed at current levels. Model (16.4) 
identifies DMU7 (Panasonic KX-P1524) as the referent printer. If we 
examine the original data for the two printers, 

Printer DMU Price Input MTBF 80-column Graphics Sound Print 
name No. buffer throughput throughput level quality 
Panasonic 7 899 45 4000 107 850 75 7 
KX-P1524 
Hewlett- 26 1695 36 20000 191 542 69 15 
Packard 

we observe that the price of DMU26 almost doubles that of DMU7. Note 
that DMU7 is in the low price category and DMU26 is in the high price 
category. However DMU26 does not have a higher value of graphics 
throughput, and consequently, the presence of DMU7 makes DMU26 less 
attractive. DMU7 may be a better alternative for DMU26 if one's budget is 
restricted. In other words, in terms of the price and the printers in E 2 ,  
DMU26 (Hewlett-Packard RW480) is not attractive among the seven 
printers in E' . This result is consistent with the statement in Stewart (1988, 
p124): "If you're willing to pay the price, you can definitely find speed and 
quality in one unit (Hewlett-Packard RW480)". Finally, note that DMU19 
dropped to the sixth position in terms of attractiveness ranking. 

If quality alone is the consideration, then we choose the following 
weights: 

Weight-2: up= 0.005 (r = 1, ..., 5) and u6= 0.975 

From the last column of Table 5, we see that the most attractive printer is 
DMU7 (Panasonic KX-P1524), followed by the DMUll (Fujitsu DL3400) 
which were suggested by Stewart (1988) for quality consideration. 

If we prefer 80-column throughout and quality, we specify the following 
weights: 

In this case, DMU20 (Okidata Microline 393) is the most unattractive 
printer among the seven printers in E' (see last column in Table 16-4). 
Stewart (1988) stated "The Okidata Microline 393 ($1399) looks more like a 
high-price unit in terms of 80-column throughout and quality". In fact, 
DMUs 11 is in the reference set under model (1 6.4), i.e., this DMU serves as 
the evaluation context when measuring the VJ attractiveness of DMU20. In 
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terms of the price, DMU20 obviously does not have the advantage in 80- 
column throughout and quality. 

Referent Printers Fujitsu DL3400 (DMUI 1) 
Hewlett-Packard 26 1 1.468 1 1 1 1.258 
RW480 
Referent Printer Fujitsu DL3400 (DMUI 1) 

1 
Table 16-6. Output-specific attractiveness scores for the printers in E 

Finally, we illustrate how to identify which of the six features (outputs) 
of each printer in E' exhibits the leading performance with respect to the 
printers in E2 .  That is, based upon E2 and the first-degree attractiveness, 
we determine, for a printer in E l ,  (a) the "superior" features that other 
printers may have difficulties to catch up, and (b) the "noninferior" features 
for which other printers or their combinations also achieve the same 
performance level. This analysis provides the manufacturers with 
information on (i) which features of a printer should be improved to gain a 
competitive edge, and (ii) the referent printers in E2 may be viewed as 
potential competitors. 

Let us assume equal weights in model (16.4), i.e., u, = 1 / 6 , r = 1, . . ., 6. 
Table 16.6 reports the six output-specific attractiveness measures along with 
the referent printers. (The DEAFrontier software provides the information by 
Output Changes in the "Context Dependent VJ" sheet.)' It can be seen that 
four printers in E2 appear in the reference set, of which three are 
outstanding buys, and in particular, Fujitsu DL3400 (DMU11) almost 
appears in every reference set. The two outstanding buys in E ' ,  namely 

' The scores in Table 16.6 are reciprocals to the "Output Changes" in the "Context Dependent 
VJ" sheet based upon Definition 16.5. 

Printer name 

Epson LQ-500 

Graphics 
throughput 
1.177 

DMU 
No. 
1 

Sound 
level 
1.509 

Print 
quality 
1.424 

Input 
buffer 
1 

MTBF 

1 

80-column 
throughput 
1.379 
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Okidata Microline 393 (DMU20) and Hewlett-Packard RW480 (DMU26), 
which are in the highldeluxe price category, do not exhibit good 
performance in terms of output-specific attractiveness measures. For 
instance, DMU20, which is the winner (middle price) in graphics tests, only 
has 1.1 85 on its graphics throughput, and 1.0 on all other features. DMU26 
exhibits good performance only on MTBF and print quality. However, 
Epson LQ-850 (DMU5) exhibits a good performance based upon many of 
the output-specific attractive measures. This indicates that if no preference is 
given to specific output features, this printer may be a good choice in the 
presence of the outstanding buy, DMUl1 (Fujitsu DL3400). 

16.7. CONCLUSIONS 

Context-dependent DEA is developed to measure the attractiveness and 
progress of DMUs with respect to a given evaluation context. Different 
strata of efficient frontiers rather than the traditional first-level efficient 
frontier are used as evaluation contexts. In the original DEA, adding or 
deleting inefficient DMUs does not alter the efficiencies of the existing 
DMUs and the efficient frontier whereas under the context-dependent DEA, 
such action changes the performance of both efficient and inefficient DMUs. 
i.e., the context-dependent DEA performance depends on not only the 
efficient frontier, but also the inefficient DMUs. This change makes DEA 
more versatile and allows DEA to locally and globally identify better 
options. Value judgment is incorporated into the context-dependent DEA 
through a specific set of weights reflecting the preferences over various 
output (or input) measures. In particular, the attractiveness measure can be 
used to (i) identify DMUs that have outstanding performance and (ii) 
differentiate the performance of DEA efficient DMUs. 

The application of comparing computer printers illustrates that in-depth 
information can be obtained by the context-dependent DEA when compared 
to the results obtained from the original DEA method. Context-dependent 
DEA identifies the most attractive printer among the outstanding buys 
located at two different levels of efficient frontiers. It also identifies the most 
attractive printer in terms of individual features, e.g., speed and quality. The 
method uncovers better options and prescribes possible improvement when a 
specific printer is rated as inefficient by the original DEA model. With a 
restricted budget, the DEA-efficient printers may not necessarily be the best 
choice. In our application, we are able to identify better alternatives. In 
addition, with a sensitivity analysis of weights, one could determine 
allowable weight ranges to be specified by users or experts. 
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Chapter 17 

EVALUATING POWER PLANT EFFICIENCY 
Hierarchical Models 

17.1. INTRODUCTION 

In many problem settings that potentially lend themselves to analyses via 
DEA, there are identifiable groups or clusters of DMUs, whose impacts 
should be captured in the analysis. One form of grouping has been examined 
by Banker et. al. (1986), where the idea of categorical variables was 
discussed. Such variables allow for a comparison of any DMU with those in 
its own category and in those categories below it. Categorical variables 
generally apply in those situations where there is a natural nesting of the 
groups of DMUs. For example, in evaluating a set of banks, if the banks are 
arranged in increasing order according to the sizes of the towns or cities in 
which they are located, then categorical variables can be used to represent 
this size component, and banks in a given population category will be 
compared only to DMUs in this same category and to those in smaller 
population categories. 

In many situations, however, where there is a grouping phenomenon 
present, categorical variables do not provide an appropriate structure for 
analysis. Consider the problem of evaluating DMUs such as hospitals in 
different parts of the country. Here, grouping may take several forms. First, 
in countries such as Canada or the United States, there may be jurisdictional 
considerations, e.g., state or provincial regulations can have budgetary or 
legislation implications for the hospitals. In Canada, for example, health care 
is under provincial rather than federal jurisdiction. Second, there may be 
different categories of medical units - extended care facilities, convalescent 
units, surgical units, and so on. Clearly, these DMUs do not form anything 
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resembling a homogeneous set, making it necessary to address the group 
elements of the problem. At least two issues must be examined in the context 
of such problems: 

Issue 1 : There are both DMU (e.g., hospital) level factors and group (e.g., 
all extended care facilities versus all surgical facilities) level factors which 
should be dealt with in their proper settings; 

Issue 2: We want not only to identify a measure of efficiency for each 
individual DMU (hospital), but also for each identified group of units. How 
do hospitals (as a group) in one jurisdiction compare, in an efficiency sense, 
to those in another jurisdiction? Do extended care facilities perform 
differently than surgical facilities? 

In the following sections we examine the problem of efficiency 
evaluation when grouping of DMUs is a consideration. The discussion is 
based on the articles by Cook et al. (1998) and Cook and Green (2004). In 
Section 17.2 we present a problem setting where both individual DMU and 
group evaluation arise. The case illustrates two types of grouping - 
hierarchical grouping and grouping on levels. Section 17.3 presents 
appropriate model structures for evaluating group and individual DMU 
efficiency in a hierarchy. In particular we discuss a procedure for adjusting 
ratings of DMUs at any given level in a hierarchy to reflect ratings of groups 
of those units at levels higher up in the structure. In Section 17.4 we examine 
efficiency within groups on a level and develop a procedure for combining 
different efficiency ratings for a given DMU. In Section 17.5 the models are 
illustrated through an analysis of the application discussed in section 17.2. In 
Section 17.6 the power plant evaluation problem is re-examined using the 
multicomponent concepts presented in Chapter 6. This arises from the need 
to deal with output shared among power units within a grouping. Section 
17.7 illustrates the concepts using data similar to that found in Section 17.5. 
Conclusions and further directions follow in Section 17.8. 

17.2. HIERARCHICAL STRUCTURES: POWER 
PLANTS 

Ontario Hydro (now called Ontario Power Generation) is a crown 
corporation supplying electric power to both domestic and foreign markets 
in the northern USA. Two classes of power units or plants are managed 
under Hydro's jurisdiction - nuclear and thermal. While the number of 
nuclear units is relatively small, a total of 40 such units of varying ages, 
capacities, fuel types and so on are operated by the corporation. These latter 
will be the setting for the analysis of section 17.5. 
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The standard measure of productivity used by management is the ratio of 
total annual expenditure (operating, maintenance and administration) to total 
energy produced, in megawatt hours per year. While it is the case that the 
total power production is a principal output of the operation, and is certainly 
the most convenient and readily available indicator of productive capability, 
management is interested in other, related indicators as well. What may be 
missing in this simplistic measure of productivity is a consideration of those 
factors that reflect management's skill. To a great extent, a power unit's 
efficiency measure should reflect the quality of maintenance that keeps it 
operating, and the abilities of management in charge of that maintenance. At 
least two types of other outputs should be considered, namely outages and 
deratings. 

An outage is a situation in which a unit is shut down, hence it is not 
generating electric power. Types of outages include: 

planned outage, which is scheduled downtime (usually for major 
overhauls); 

maintenance outage, a form of scheduled down time, but for more 
minor, i.e., routine maintenance; 

forced outage, which is unscheduled and generally caused by 
equipment failure, environmental requirements, or other unforeseen 
incidents. There is generally some prior warning for this type of 
shutdown, and some delay is possible; 

sudden outage, which is a forced outage with no prior warning. 

While it can be argued that operating hours essentially capture all forms 
of outages, it must be recognized that there is a difference between taking a 
unit out of service on a scheduled basis at non peak times, versus sudden 
brownouts or blackouts. The latter ignite public opinion, interrupt business 
operations, and generally reflect negatively on the organization. Thus, such 
outages should play a direct role in any measure of efficiency. 

A derating is a reduction in unit capacity, where the operation may, for a 
number of reasons, operate at only a fraction (e.g., 75% or 50%) of its 
available (full) capacity. Breakdowns in coal belts, pulverizers or rollers (of 
which there are several operating in any plant) is a primary cause of such 
forced deratings. Environmental restructions, in particular SO, emissions, 
can limit the extent to which a plant can operate at full capacity. 
Furthermore, such restrictions will often apply to a group of units (e.g., at a 
given geographical location). 

As with outages, there are several forms of deratings, some of which are 
beyond the control of management and which have nothing to do with 
maintenance quality (e.g., grid or transmission network load restrictions), 
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while others are a clear reflection of maintenance quality, such as equipment 
failures. 

As with outputs, inputs should include several factors. In addition to 
expenditures, factors such as plant age and available but not operating time 
(ABNOT) should play a role as well. The latter factor (ABNOT) is the time 
during which the plant is able to operate, but for reasons beyond 
managements control (such as SO, restrictions), the plant is not running. 

Grouping is a natural phenomenon here. Plants can be grouped by size or 
capacity, by geographical location, and so on. It is this necessity to view 
problems from a grouping and hierarchical perspective that we examine 
herein. 

17.3. MODELS FOR EVALUATING PLANT 
HIERARCHIES 

The power plant application discussed in the previous section provides an 
example of what might be termed apure hierarchy. The basic DMU is the 
power unit. These 40 units are naturally clustered into 8 plants. 

17.3.1 The Two-Level Hierarchy 

For simplicity of presentation in this subsection we assume there are only 
two levels in the hierarchy. Let the level 1 (power units) vectors of inputs 
and outputs be denoted X(l),Y(l)respectively, with v(l),p(l) 
representing the appropriate multipliers in the input orientation version of 
the CCR (Charnes et al. 1978) model. 

In the normal case where we are interested only in a level 1 (power unit) 
analysis of efficiency, the "multiplier" form of the CCR model is: 

subject to : 

vT(1)X0 (1) = 1 

where J is the set of DMUs under consideration. Suppose, however, that we 
want, in addition, to evaluate the relative efficiencies of the 8 plants into 
which the 40 units are grouped. Clearly, one approach might be simply to 
evaluate each DMU relative to the entire set of 40 units as indicated above, 
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(hence J would represent the entire set of power units), and use the average 
of the ratings for those units within any plant as representative of the 
standing of that plant. While it is difficult to argue that such an approach is 
wrong, it does possess some undesirable aspects. First, those factors that 
apply at the group level (level 2) are not represented (or at least not 
represented appropriately) in level 1. Second, and as indicated above, it 
would seem more appropriate at level 1 to evaluate a DMU relative to those 
DMUs in the same group only. In this case, J in (17.1~) above would refer 
to those units in a specific plant, whereupon, those factors which distinguish 
the groups (plants) can be omitted from the level 1 evaluation, and can more 
properly be applied at level 2. If this is done, then averaging within a plant 
does not help at all to understand the relative standings of the level 2 DMUs. 

An alternative approach for evaluating efficiency at both levels 1 and 2, 
is to treat the level 2 groups themselves as decision making units, using a 
combination of the group-specific factors, and factors which emerge from 
level 1. The use of level 1 factors at level 2 may involve some form of 
aggregation as will be discussed in the next section. 

For notational purposes define 

K - the number of groups of level 1 DMUs, hence K is the number of 
DMUs at level 2; 

k - a subscript representing a DMU at level 2; 
jk - a subscript representing a level 1 DMU that belongs to group k; 
qlk (I), X , (I) - level 1 outputs and inputs; E' Yk (2), ~ ~ ( 2 )  - those level 2 outputs and inputs that are aggregates of 

factors that are used to evaluate level 1 DMUs; 
~,2(2), ~ i ( 2 )  - those outputs and inputs used at level 2 that distinguish 

the K groups, and which were not used at level 1. 

Let v(l),p(l) and v(2),p(2) denote the level 2 multipliers to be 
associated with Xj(2), Y,' (2) and X: (2), q2 (2) respectively. It is noted 
that v(l),p(l) are the same multipliers as used in level 1, as will be 
explained below. 

In performing the analysis within a general model framework we make 
the following assumptions: 

(a) When the "DMU" under consideration is a level 1 unit, we want to 
ensure that it is evaluated only relative to those units in the same group, 
hence DMUs in other groups should be excluded or disengaged from the 
constraint set; 

(b) Level 2 DMUs (groups) should not interfere with, hence should be 
disengaged from, level 1 analyses; 

(c) Level 1 DMUs should be included or engaged in the analysis of level 
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2 units. 

Assumption (c) above is invoked with the argument that multipliers 
v(l),,u(l) when applied at level 2 should also be feasible when applied to 
any level 1 units within the groups under consideration. Specifically, since 
the efficiency of a given group i at level 2 should be related to the 
efficiencies of that group's members, then the multipliers v(l) ,  ~ ( 1 )  should 
be such that when applied to each member of the group, the ratio for that 
member should not exceed unity. 

To accommodate the above considerations we propose the following 
general model. When applied to a level 2 DMU, the model would take the 
form: 

max e, = ,uT ( l )~ , '  ( 2 )  + ,uT(2)~;  (2 )  (17.2a) 

subject to : 
(17.2b) 

v T ( l ) X ~ ( 2 ) + v T ( 2 ) X ~ ( 2 ) +  Mw(2)=1 

When applied to a level 1 DMU, the model would take the form 

max eo = vT (I)& ( 1 )  (1 7.2at) 

subject to : 

vT( l )Xo( l )+ ~ w , ( l ) = l  

Here M denotes a large positive number. In (17.2d), J ,  denotes the 
index set of level 1 DMUs in group k (plant k ). The notation Yb(2) in 
(17.2a) denotes the type 1 output (an aggregate of level 1 outputs) used at the 
second level and for a particular DMU k = "0.". In (17.2at) the notation 
Yo(l)  denotes the output at level 1 fbr a particular DMU and group 
( j, , k )  = " 0. " The variables w, (1) ,  w(2) are introduced to include or 
exclude certain DMUs from the analysis. In reference to the above 
discussion, these are referred to as engagement variables. It is noted that in 
(17.2bt), wo(l) refers to the particular level 2 groups k ="O" in which the 
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DMU under evaluation lies at the time. So, for example, all DMUs in a 
particular group k will be assigned the same variable wo(l) .  

In reference to assumptions (a), (b) above, we prove the following 
theorem: 

Theorem 17.1: In the evaluation of any level 1 DMU jk,,&k,, only DMUs 
within the same group (k , )  as that DMU will be engaged. All other level 1 
groups and all level 2 DMUs are disengaged. 

Proof: Only the particular group k ="Ow in which the level 1 DMU under 
consideration lies, has its engagement variable (wo(l ) )  involved in 
constraint (17.2b'). This variable will be forced to zero, otherwise the 
objective function value of (17.2a') will equal zero. Furthermore, since all 
other engagement variables are free to assume the most favorable values 
possible (from the perspective of the DMU under evaluation), then all wk (1) 
(except for wo(l))  and w(2)  will assume values large enough to render 
redundant all constraints in (17.2c), as well as all constraints in (17.2d) 
corresponding to those Jk , k + " 0. " Since constraints (1 7.2e) are also 
redundant, the result follows. 

QED 

From this theorem it follows as well that when a level 2 DMU is under 
evaluation, the engagement variable w(2)  will be forced to zero (hence 
engaging all level 2 DMUs). By virtue of constraints (17.2e), all wk( l )  = 0 
as well, hence engaging all level 1 DMUs, thereby verifying assumption (c). 

17.3.2 Efficiency Adjustments in a Hierarchy 

In Section 17.5 we present an analysis of the efficiencies of power plants 
and groups of plants. One issue that arises in such multi level analyses has to 
do with adjustments in DMU efficiencies at one level to account for scores 
assigned at a higher level. Specifically, the scores achieved by individual 
DMUs (e.g., level 1) are measured only against others in the same group. To 
adjust these to reflect the standings of the groups themselves, it is necessary 
to merge the scores at these two levels in some reasonable manner. We 
describe a three step procedure to bring about the desired adjusted ratings. 

Step I :  (Remove inter-group noise) 
Scale the level 1 ratings by dividing each rating ekik in group k by the 

average of the group k ratings. Specifically, define 
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Ljk = e k j k / ~ k  where a, = ( eh I J k  I 
i k ~ J k  

where I J ,  1 denotes the cardinality of J,. Since the level 2 ratings are 
intended to account for any inter-group differences, this transformation is 
intended to remove any differences (noise) among the groups that are not 
level 2 - related. See Property 17.2 below and explanation following it. 

Step 2: (Introduce level 2 adjustment) 
Adjust the scaled ratings fbk by multiplying them by the level 2 (group) 

ratings e,.  That is, define 

ITkik = fkk Xek. 

Step 3: (Adjust to [O,l]  scale) 
Further adjust the step 2 ratings gkjk to ensure that the maximum level 1 

rating is unity. Specifically, we want to adjust the gkjk ratings to the form 

h,, = g , x R  
where R is such that h,, I I, and maxk,ik {hwk} = 1. Hence 

R = mink,,,k {lkkik 1. 
The final adjusted ratings therefore have two important properties: 

Property 17.1: All level 1 ratings hkjk I 1, with at least one h, , = 1. 
Property 17.2: The averages of the ratings i;, within the K groups are 

- 
h k, - Ckj such that -=- - -. 
hk2  Ck, 

The latter property captures the fact that the final adjusted ratings not 
only represent the standing of DMUs (e.g., power units) within their own 
group k (plant), but also reflect their standing relative to DMUs in other 
groups. That is, if the rating e,, of one group k, is, for example, only 80% 
of the rating ek2 of another group k,, then the averages for the DMUs in the 
two groups, namely hkl and hk2, have this same property. 

17.3.3 The Multi level Hierarchy 

The model (17.2a)-(17.2g) can be generalized to the case of an L-level 
hierarchy. We assume that the outputs and inputs used at any level C are 
aggregates of C - 1 level factors together with any additional factors that 
distinguish the groups at the C th level. We introduce the following notation: 

C - subscript representing a level in an L-level hierarchy; 
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K, - the number of DMUs at the & th level; 
k, - a subscript representing a DMU at level I; 
jkt - a subscript representing a DMU at level & -1 that lies within a 

group k, (that is, within a DMU k, at the next level up in the hierarchy); 
Jk - the subset of DMUs jk at level & - 1 that lie within group k,; 
, ( - 1 ,  X i  ( - 1 )  - those outputs and inputs used at level 

C -1 that are aggregates of factors used for analysis of DMUs at lower 
levels m I C - 2. The subscript k, refers to the particular & - 1 level group 
(i.e. & th level DMU), and jkc to a DMU within that group; 

Y:;~: (& - I), (I  - 1) - those outputs and inputs at level & - 1 that 
distinguish the DM& at that level, and which were not used at any lower 
level; 

wke ( C  - 1) - denotes the engagement variables applicable at level I - 1. 
These distinguish the groups at this level. 

w(L) - denotes the engagement variable applicable at level L. 

The model, when applied at the & - 1 level then takes the form: 
P - 1  

max e, = z pT (m)Y: (1 - 1) 
m=l 

subject to : 
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where Ikt is comprised of those sets of DMUs at level ! - 2 that make up 
the k, th set at level t - 1. 

As with the 2-level problem discussed earlier, the engagement variables 
wkt (! - 1) act to include or exclude sets of DMUs as the analysis proceeds. 
With regard to adjustments to ratings, a similar procedure could be applied 
here by starting at the top level L in the hierarchy to bring about alterations 
to the ratings at level L-1. Then, apply these adjusted ratings to alter the L-2 
level ratings, and so on. 

In this subsection we have examined the problem of evaluating DMUs 
and groups of DMUs which appear in the form of a hierarchy. In the 
following subsection this idea is extended to look at the alternative 
groupings of DMUs on the same level. 

17.4. GROUPING ON LEVELS 

The power plant application discussed above is a prime example of a 
pure hierarchy in that DMUs are grouped at each level according to a single 
attribute - in this case a jurisdictional or geographical attribute. In Section 
17.5 we analyze the efficiency of the set of power plants and groupings 
thereof. In this case, the problem of efficiency evaluation seems to invite a 2- 
level analysis, in that plants can be grouped by a number of different 
attributes - capacity, geographical location, fuel type and so on. All these 
factors can be judged as level 2 attributes, although admittedly one can 
conceive of very complex mixes of these. One could, for example, group 
plants at the second level according to geographical location, then at a 3rd 
level group locations by capacity, assuming, of course, that only one 
capacity of plants exists at a given location. In the present example, this is 
not exactly the case. Of course, if at the third level we attempted to group by 
capacity, regardless of the location, then the hierarchical structure is 
destroyed. Groups at one level would be broken apart when going to the next 
level. 

In the following subsection we will consider grouping only at one level 
(level 2 in the case of the power plants), and according to multiple attributes. 
If we wish to have plants at level 1 evaluated strictly within the groups that 
will form the DMUs at level 2, it would appear that multi attribute grouping 
implies simply replicating model (17.2a)-(17.2g) as many times as there are 
attributes. Suppose, for example, that we wish to group plants in two ways: 
(1) geographical and (2) according to capacity. The most practical approach 
would appear to be to run this model once for each type of grouping. This 
would lead to two sets of efficiency ratings. While an elaborate model with 
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engagement variables can easily be formulated, there would seem to be no 
practical advantage in doing so. 

17.4.1 Deriving an Aggregate Rating 

The issue of grouping on a level according to a number of different 
attributes gives rise to the problem of how to derive some form of overall 
rating for a DMU. Suppose, for example, that plants are grouped by 
geographical location. A given plant j, when evaluated in a DEA manner, 
will be compared to other plants within the same group (at the same 
location). The number of other plants in that group and the efficiencies of 
those other plants will, of course, influence the score that j receives. When 
evaluated according to some other grouping attribute such as capacity, plant 
j will, in all likelihood, receive a different score. The problem then is how 
to view the aggregate or overall standing of j ,  given the different ratings for 
j that arise out of this multi attribute analysis. 

One approach to this problem of deriving an overall efficiency measure is 
to introduce an importance multiplier on the i th attribute. To formalize this, 
assume there are I attributes, hence I different grouping types, and let eij 
denote the efficiency rating received by DMU j when viewed in terms of 
the grouping created by the i th attribute. Let ai denote the weight or 
importance to be accorded attribute id. The ai may either be supplied 
weights or may need to be determined (discussed below). Using these 
multipliers, we define the aggregate efficiency of DMU j to be: 

is1 

In the event that the ai are decision variables, there may or may not be 
information available as to appropriate values for these variables. In any 
event, and in the spirit of general DEA, one approach to deriving an 
aggregate rating for DMU j ,  is to determine {a,) through the optimization 
procedure 

I 

e;o = max e,, = m a x x  a e . .  
1 YO (17.4a) 

i=l 

subject to: 
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where cD defines the available information on the {a,). Constraints (17.4b) 
bound the problem by requiring that the aggregate efficiency for each DMU 
not exceed 1. 

One minimal set of restrictions on the a, might be an ordinal ranking of 
the attributes. Suppose, for example, that the set of attributes consist of: 

(b) geographical location, 
(c) capacity, 
( 4  age, 
(e) fuel type used. 

Furthermore, assume that these attributes can be prioritized in order of 
importance to the organization (the utility company). With no loss of 
generality, assume that the most important attribute is geographical location, 
followed by capacity, then age, and finally fuel type. In notational terms, this 
would imply that a, > a2 > a3 > a,. Introducing an infinitesimal E ,  0 may 
then be defined in this case by 

@={"=(a  ,,..., CZ1)I~,-a,+, 2 & , i = 1 ,  ..., I-l;Cl, 2 E )  (17.4d) 

The idea of ordinal relations among multipliers in DEA was discussed in 
Ali, Cook & Seiford [I9911 and Golany [1988]. A somewhat similar 
structure appears in Cook, Kress and Seiford [I9961 in the context of 
incorporating ordinal data within the DEA framework. Clearly, problem 
(17.4a)-(17.4d) is a set of J linear problems with each yielding a best or 
most efficient aggregate evaluation for the DMU j ,  under consideration. 
One possible drawback to this approach is the fact that a different set of 
{a,) will arise from each of the J optimizations. This, of course, can be a 
general criticism of the DEA approach. 

17.4.2 A Common Set of Multipliers 

If it is desirable to obtain a single or common set of multipliers {a,), one 
approach to use in this particular instance is to determine the largest value of 
E for which a feasible set of a, exists. Specifically, solve the single 
optimization problem: 

E* = m a x ~  (4e) 
subject to (17.4b)-(17.4d) 

The set of a, that are optimal in this problem provide a means of 
evaluating all DMUs on a common basis. The essence of this approach is 
that the minimum extent to which we distinguish or discriminate between the 
importance measures (a,) attached to the various criteria is maximized. 
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17.4.3 Multiple Rankings of Attributes 

In the above it is assumed that an overall single rank ordering of the 
attributes in I  is at hand. This ordering is intended to express the relative 
importance of the various grouping mechanisms (geographical location, 
capacity, etc.). In some situations it may be necessary to ask the question 
"importance in what sense?" If environmental considerations are paramount, 
the above rank ordering which places geographical location first in 
importance may be appropriate. On the other hand, if new technology for 
powering the plants (new fuel types, e.g.,) is an issue, then the attribute 'fuel 
type' used may rank in first place. Therefore, multiple rankings of the 
attributes may be in order. 

To formalize this concept, assume that Q ranking vehicles or 
mechanisms are to be considered. Let a: denote the importance or weight 
to be given to attribute i d  when viewed from the perspective of ranking 
vehicle q&Q. Furthermore, let the decision variable fly represent the 
weight to be given to vehicle q. While various types of restrictions could be 
imposed on the py, we assume here that only positivity constraints are 
imposed, i.e. Py 2 E for all q. If a rank ordering on the I$ is now 
imposed relative to each q, then Q feasible regions {o~)%, would be 
defined. Specifically, define 

ay = {aY = (aP,a: ,..., a:)al -a,?+, 2 &,I = 1 ,..., I-1;a: 2 E ) ,  (17.40 

where aI'f denotes the e th ranked attribute from the point of view of the 
q th ranking vehicle. Following the logic of problem (17.4a)-(17.4c), an 
aggregate efficiency rating for DMU j,, could then be determined by 
solving the J problems: 

e 1 

e,;,, = maxe,, = m a x x  pya7eVe, (17.5a) 
y=l i=l 

subject to: 

py >&,q=l ,  ..., Q (17.5d) 

Problem (17.5a)-(17.5d), unlike the earlier single ranking vehicle 
formulation, is nonlinear with the product of the fly and a;. This 
formulation can be transformed to an equivalent linear structure, however, 
through a simple change of variables. That is, define 

syi = pya,:', 
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and note that the constraints a; -a:+ 2 E and a; 2 E can be replaced 
(through multiplication by Pq on both sides of the inequality) by 
Sqil -Sqi,+, 2&P and Sqil 2 64. Problem (17.5a)-(17.5d) is then 

q : 
equivalent to the linear problem: 

0 I 

subject to: 

That is, given an optimal solution (d,;,P,*) to (17.6a)-(17.6d), then 
a? = di;lP,* and constitute an optimal solution to (17.4f)-(17.4j), due to 
the fact that all Si;, are strictly positive. 

In certain situations the ranking vehicles referred to above may take the 
form of opinions offered by a set of Q voters (e.g. managers). That is, the 
relative importance of the I grouping attributes may be a matter of opinion, 
hence model (17.5a)-(17.5d) (and therefore (17.6a)-(17.6d)) is intended to 
derive a rating which takes into consideration the various opinions 
(rankings) offered. 

Clearly the earlier comments regarding a common set of weights applies 
in the present situation as well. 

In the following section an application is presented which illustrates 
some of the model structures presented in this and the previous section. 

17.5. EFFICIENCY ANALYSIS OF POWER PLANTS: AN 
EXAMPLE 

Earlier a description was given of a problem setting involving thermo 
generating plants, wherein it was argued that efficiency should be viewed in 
terms of a set of outputs and inputs. Table 17-1 shows the number of thermal 
units operating at each of 8 locations, two of which (Plant 4(1) and Plant 
7(1)) are each broken down into two groups for a total of 10 groupings. 
Given also are the construction dates, fuel types and capacities in megawatt 
hours. 

In the analyses of the plants, two levels were examined, namely, the 
individual power unit level (level 1) and a second level where plants are 
grouped in various ways. Two forms of analyses were carried out: 
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(1) a hierarchical analysis at the two levels, where plants are grouped in 
level 2 by location; 

(2) analysis of efficiency on a level where, with different types of 
grouping, it is necessary to deal with several ratings for a given 
DMU. 

Table 17-1. Thermal Plants 
Fuel 

Location # units Age Range Utilized Size (MWH) 
Plant 1 8 1971-72 U.S. Bit. Coal 

& Western Cdn. Coal 500 
Plant 2 8 1968 U.S. Bit. Coal 300 
Plant 3 4 1970 U.S. Bit Coal 500 
Plant 4 (1) 1 1964-66 U.S. Bit Coal 100 
Plant 4 (2) 2 1974-75 Liquid Bit 150 
Plant 5 4 1974 Oil 500 
Plant 6 1 1978 Lignite Bit. Coal 200 
Plant 7 (1) 4 1956 GasICoal 100 
Plant 7 (2) 4 1960 GasICoal 200 
Plant 8 4 1952 US. Bit. Coal 50 

Table 17-2 displays the raw data for the 40 plants under analysis.' Shown 
are three outputs and two inputs. These outputs and inputs are defined as 
follows: 

Outputs 

OPER - a function of equivalent full capacity operating hours. This 
factor accounts for the fact that when operating at less than 100% capacity 
(e.g. if the unit is derated to 50% capacity), the operating hours during this 
period are prorated. To bring the scale of values for the units of 
measurement within the range of the scales used for other factors, we apply a 
scaling factor of $, i.e. OPER = $ x full capacity operating hours. 

OUT - a function of the number of forced and sudden outages. 
OUT=N-K(# forced outages + # sudden outages). Sudden and 

forced outages, as unscheduled shutdowns of operations, are often 
consequences of equipment failure. Again, to bring scales into line we 
arbitrarily choose N=200, K=10. 

'1t is pointed out that this is sanitized data for illustration purposes only. It in no way reflects 
the actual operating positions of the various plants. 
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Table 17-2. Outputs and Inputs for Unit Level Analyses 
Group Unit Outputs Inputs 

(OPER OUT EQDER IMAINT OCCUP 
Plant 1 

Plant 2 

Plant 3 

Plant 4(l) 

Plant 4(2) 

Plant 5 

Plant 6 
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Table 17-2 continued 

Group Unit Outputs Inputs 

Plant 7(1) 

840 
4 80 90 100 810 

Plant 7(2) 1 520 120 100 28 1 750 
2 100 850 
3 
4 1;: ir i:: 770 825 

Plant 8 

EQDER - a function of forced deratings caused by equipment failure. 
EQDER = N-K (# equipment related deratings), with N=200 and 

K=10 as above. 

Since on the output side, any measure used must be such that bigger is 
better, one cannot directly take outages as an output. To achieve the bigger is 
better condition, we subtract outages from some constant to create a proper 
scale measure. The value 200 has been chosen arbitrarily, but at the same 
time to yield "OUT" values that are in line with the scales used for other 
factors. Some sensitivity analyses were done relative to this parameter (200), 
and the particular value chosen was found to have very little effect on the 
final relative efficiency outcomes. 

Inputs 

MAINT - the total maintenance expenditure (labor + materials) in 
thousands of dollars. 

Clearly, we could separate this into monetary inputs, but for purposes 
here we aggregate the two amounts into one figure. 

OCCUP - a function of total occupied hours, that is 
OCCUP = & (Total hours available - available but not operating 

hours). 
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In evaluating the ten level 2 DMUs (where, for example, the group of 
plants at Plant 1 is taken as a DMU), the averages of the level 1 DMUs make 
up the first three outputs and the first two inputs. For example, the average 
of the ten Plant 1 operating hours figures is 582. In addition to these 
aggregated figures, two further outputs, ENDER (a factor for environmental 
deratings) and planned capacity were used for the level 2 analyses. As well, 
a third input, average year of construction, was utilized. The data for the 
level 2 analyses is shown in Table 17-3. 

17.5.1 Hierarchical Analysis 

Table 17-3. Group Level Data 

Table 17-4 displays the outcomes from the hierarchical analysis. Here, 
power units have been grouped by location (Plant 1, Plant 2, .. . , Plant 8), 
and have been analyzed using the hierarchical DEA model (17.2a)-(17.2g) 
and (17.2a'),(17.2b')). The 10 group ratings are shown under column (3). 
Column (4) provides the "within group" ratings of individual power units, 
i.e., those ratings achieved when units are compared only to the members of 
their own group. To obtain ratings whereby all 40 DMUs can be compared 
on a common basis, the suggested three-stage adjustment developed earlier 
has been applied to the column 4 figures. The resulting adjusted values are 
shown in column 5. 

Inputs 
Maint. Occup Yr. const. 
381 818 71 
317 801 68 
455 795 70 
190 810 65 
350 815 75 
348 717 74 
348 800 78 
263 808 56 
266 799 58 

Group 
Plant 1 
Plant 2 
Plant 3 
Plant4(1) 
Plant4(2) 
Plant 5 
Plant 6 
Plant 7(l) 
Plant7(2) 
Plant 8 493 128 110 135 50 152 780 52 

Outputs 
Oper. Out. Eqder Ender Cap 
582 130 126 125 500 
606 106 100 147 300 
569 103 108 121 500 
430 105 140 111 100 
420 105 100 125 150 
605 140 125 141 500 
480 95 125 117 200 
305 80 115 110 100 
458 103 125 116 200 
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Table 17-4. Efficiency Scores - Hierarchical Analysis (Grouped by Location) 
(1) (2) (3) (4) (5) (1) (2) (3) (4) (5) 

17.5.2 Hierarchical Analysis 

Group Unit Group Unit Adjusted 
Ratings Ratings Unit 

Ratings 

Plant 1 1 100.0 70.8 70.8 
2 99.1 99.1 
3 86.0 86.0 
4 100.0 100.0 
5 100.0 100.0 
6 71.1 71.1 
7 76.1 76.1 
8 98.7 98.7 

Plant 2 1 100.0 82.0 80.2 
2 89.1 87.1 
3 80.7 78.9 
4 88.5 86.5 
5 95.1 93.0 
6 100.0 97.8 
7 82.4 80.5 
8 100.0 97.8 

Plant 3 1 100.0 100.0 94.9 
2 86.1 81.7 
3 83.7 79.4 
4 100.0 94.9 

In the above analyses, power units were grouped by location (e.g., the 8 
Plant 1 units formed one group). The within groups analyses resulted in the 
ratings shown in column 4 of Table 17-4. Two other types of groupings were 
then evaluated - by fuel type and by capacity. Table 17-5 specifies the 
memberships of the groups. When the within group analyses were carried 
out on the power units under these alternative groupings, ratings of units 
changed to reflect group membership. Table 17-6 displays power unit ratings 
under the different membership scenarios (columns (2),(3),(4)). The location 
scenario has been replicated here (from Table 17-4). To combine the three 
ratings for each power unit, model (17.4a)-(17.4d) and model (17.4e) with 
(17.4b)-(17.4d) were applied. The outcomes from these models are displayed 
under columns (5) and (6)  respectively. In both instances the set of 
(17.4d) is defined such that capacity is rated to be of highest importance, 
followed by location, then by fuel type, i.e., 

Group Unit Group Unit Adjusted 
Ratings Ratings Unit 

Ratings 

Plant4(1) 1 100.0 100.0 87.7 
Plant 4(2) 1 80.6 100.0 70.7 

2 100.0 70.7 
Plant 5 1 100.0 100.0 90.2 

2 93.5 84.3 
3 100.0 90.2 
4 95.7 86.3 

Plant 6 1 87.5 100.0 76.8 
Plant 7(1) 1 87.1 100.0 76.4 

2 100.0 76.4 
3 100.0 76.4 
4 100.0 76.4 

Plant 7(2) 1 93.9 100.0 90.5 
2 84.5 76.4 
3 100.0 90.5 
4 79.6 72.0 

Plant 8 1 100.0 100.0 89.7 
2 100.0 89.7 
3 100.0 89.7 
4 90.9 81.6 

Capacity > location > fuel. 
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Although multiple rankings of attributes could clearly be applied to this 
example, such an analysis was not carried out here. 

Table 17-5. Plant Groupings by Capacity and Plant Groupings by Fuel Type 
Group Capacity Units Included 

Group 1 500 MWH Plant 1, Plant 3, Plant 5 

Group 2 200-300 MWH Plant 2, Plant 6, Plant 7(2) 

Group 3 < 200 MWH Plant 4(1), Plant 4(2), Plant 7(1), Plant 8 

Group Fuel Type Units Included 

Group 1 U.S. Bit. Coal Plant 1, Plant 2, Plant 3, Plant 4(1), Plant 8 

Group 2 GasICoal Plant 7(1), Plant 7(2) 

Group 3 Liquid Bit. Coal Plant 4(2) 

Group4 Oil Plant 5 

Group 5 Liqnite Bit Coal Plant 6 

Table 17-6. Power Unit Ratings Under Different Groupings 

(1) (2) (3) (4) (5) (6) 
Grouping by 

Plant Unit Location Capacity Fuel Aggregate Aggregate 
(District Wts.) (Common 

Wts.) 
70.8 68.8 69.6 69.8 69.6 
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(1) (2) (3) (4) (5) (6) 
Grouping by 

Plant Unit Location Capacity Fuel Aggregate Aggregate 
(District Wts.) (Common 

Wts.) 

7(1) 1 100.0 80.5 72.3 90.2 85.6 

17.6. SIMULTANEOUS EVALUATION ACROSS LEVELS 

The model discussed above evaluates efficiencies at various levels in a 
hierarchy in a multi-stage fashion. Specifically, in stage 1, performance 
measures for power units within each plant are computed relative to their 
peers (within that plant's subset of units). In stage 2, the plants, at Level 2, 
are treated as DMUs, and requisite efficiency scores are computed there. 
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Level 1 scores (for the power units) are then adjusted to reflect differences in 
efficiencies among the plants. In the hierarchical structure, DMUs at Level 
n have 2 types of inputs and outputs: (1) those consisting of aggregates of 
the corresponding factors at Level n - 1, and (2) additional measures that 
apply only at Level n. 

In the current section we approach efficiency measurement at the various 
levels in this hierarchical structure by considering all levels simultaneously, 
and by directing the optimization at the highest level in the hierarchy. In the 
two-level setting, this means treating the plants at Level 2 as the DMUs, with 
the power units at Level 1 viewed as components of the DMUs. The 
complicating feature of this approach is the presence of plant-specific output 
factors which must be apportioned across the components in an equitable 
manner. The ideas used here are similar to those applied in Chapter 6 
involving multi component efficiency in banking. 

There appear to be at least two disadvantages of the two-stage approach 
discussed above. First, the measure applied (as suggested by the power 
authority) is simply related to the frequency of environmental deratings per 
year, as opposed to some function of the level of the SO, above or below 
the threshold. Arguably, it is the quantity of environmental damage that one 
may wish to capture as an output from the plant. Second, since the 
environmental variable only applies at the plant level, it is then the case in 
the hierarchical model that each power unit within that plant is equally 
penalized. Clearly, however, an individual power unit in a plant may 
contribute more or less toward the production of hazardous materials (e.g. 
SO,) than is true for some other power unit. A power unit that is, for 
example, shut down for maintenance during peak pollution periods would 
not likely contribute as much to pollution accumulation as other units that 
were operating at full capacity during that time. 

In this section, we present an augmented version of the DEA model that 
views both levels in the hierarchy simultaneously, generating performance 
measures for each plant and for the power units within those plants. Level 2 
(plant level) variables are allocated across the level 1 power units. This is 
done in a manner consistent with any imposed constraints on the proportions 
of the output assigned to the various power units, and with the objective of 
maximizing the performance measure of the level 2(plant) unit under 
consideration at any stage in the DEA model. 

Consider the situation in which there are K power plants, with Jk 
power units within plant k. We define: 

Y,, = (ykq,,J - the R, - dimensional vector of outputs generated by 
power unit jk m plant k .  

Xkjk = (xkijk) - the I - dimensional vector of inputs consumed by power 
unit jk in plant k .  
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Y, = (ykr2s) - the R, - dimensional vector of outputs generated by plant 
k. 

Let v, p, p,y denote vectors of multipliers associated with Xkik , YMk and 
Y, respectively. 

It is noted that in the current application, plant level (level 2) factors 
appear only on the output side. In the previous model, year of construction 
was taken as a level 2 input, but turned out to be relatively insignificant. 
While the model structure herein is easily extended to include both inputs 
and outputs, we restrict our attention only to such factors on the output side. 

To facilitate model development, define the R,-dimentional decision 
k k k vectors ajk = (arzjk), where arzj is the proportion of output y,,, allocated 

to power unit jk .  As well, let kk7xk denote the aggregates of the output 
vectors {Ykk ) jk and input vectors { X , ,  respectively. That is 

yk = y k 7 x k  = x4k. 

In this particular problem setting, aggregates derived in this manner make 
logical sense, although in some settings, sums of outputs may not be 
relevant. 

The proportion atjk of output ykrPy to be allocated to power unit jk ,  
may fall within certain logical bounds. Arguably, in the case that a given 
output r, , is, for example, SO, emissions, the relative shares of this output 
allocated to two given units jk,, jk2 could depend on a number of factors. 
These would include fuel types used, capacities in megawatt hours, 
operating hours, frequency of equipment failure deratings, etc. Since fuel 
type and capacity are fixed for units within the same plant, one can assume 
that atjk is a function of factors such as operating hours. Reasonable 
bounds might take the form: 

L.jk 5 la:  1 5 U,jk 
Here, we assume that power unit # 1  in plant k is taken as a standard, and 

other units jk are compared to #l .  Ljk and Ujk represent lower and upper 
limits respectively on the ratio of the proportions of output r, assigned to 
power units #1 and # jk .  

In the present two-level structure as described earlier, the plant (k )  level 
performance measure (for any given set of multipliers ( p ,  ,us, v )  ) is given 
by: 

ek = [ p ~ ,  + ,L~,~Y,]/ V X ,  (17.7) 
Here, we distinguish between Y,, the aggregate of level 1 (power unit) 

outputs, and Y,, the plant level (level 2) outputs that are to be allocated to 
the respective level 1 units. We can view Y, as a form of shared output 
(that is, shared among the power units). The corresponding jp power unit 
performance ratio is given by: 
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We use here the notation ak ySk to denote the R, -dimensional vector 
k k k P  cot,,,,^^^,^ ,a2, ,k~k2,s  ,- 9 ~ R z , , k ~ k R 2 ' s l  

Property 17.3: The aggregate performance measure ek of (17.7) is a 
convex combination of the Jk  power unit measures { e , ;k }k , ,  defined in 
(17.8). 
Property 17.4: A power plant k is efficient (ek = 1) if and only if each 
power unit jk within the plant is efficient (ek = 1). 

We now propose the following two-level variant of the standard CCR 
model: 

max eO 

subject to: 
k e I 1  all k,  

Problem (17.9) is nonlinear in two respects. First ek and e i  are linear 
fractional functionals. Second e:; involves the product of variables ,uS9a;,, . 
However, it can be shown that (17.9) is equivalent to a linear programming 
formulation, as given by the following theorem. 

Theorem 17.2: 
Problem (17.9) can be represented as a linear programming problem. 

Proof: 
First it is noted that from Property (17.4), the constraints ek I 1  are 

redundant, and can be removed from the problem. Make the change of 
variables 

- k 
y k ~ ~ , , ~  - p.s9 ' 

It is noted that the constraint set 

L., 5 a:,jk/a;l Ujk 
becomes 
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which, with multiplication through by p,Yr, , becomes 

As well, the convexity restriction 

can be replaced by 

Following the standard conversion of Charnes and Cooper (1962) the 
linear fractional programming mode1 (17.9) becomes 

max pYO +p,YY,:, 

subject to : 

v x ,  = 1, 
(17.10) 

pY4jk + y,;k~h - vXhk 5 0 all k, J*, 

Clearly, problem (1 7.10) satisfies the necessary linearity property. 
QED 

From the optimal solution of (l7.lO), one can compute &:2,jk from 
..k ~k A 

a 5 j k  = ~ r ~ , j J ~ . s r ~  

In the following section, we apply model (17.10) to evaluate efficiencies 
of a set of power plants and corresponding power units. 

17.7. ANALYSIS OF EFFICIENCY: AN EXAMPLE 

Considering again the data of Table 17-2, we can view the power plants 
(level 2 in the hierarchy) as aggregates of the units that comprise those 
plants. In this regard, the aggregates of all level 2 outputs and inputs can 
serve as level 2 factors. (As discussed previously, such aggregation may not 
be relevant in all cases, although it is so in this instance). In addition, there 
are factors that pertain primarily to the plant level only. The best example of 
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such a factor in this situation is SO, emissions. The total environmental 
damage caused by a plant can be measured by the level (density of 
particulates) of SO, above some tolerable threshold, and multiplied by the 
number of hours that this phenomenon prevails during the year. Again, this 
factor falls into the more is worse category, as is true of the level 1 outputs, 
and was subtracted fiom the worst case value. 

17.7.1 Proportional split of plant-level outputs 

In the process of solving (17.10), the yik - variables (that give rise to the 
a .  - variables) are intended to split the shared output (SO,) across the 

.I! 
units in a plant, in a way that is most fair for that plant. If a particular power 
unit jkl in a plant is experiencing a higher degree of outages and equipment- 
related deratings than is true of the other units in that plant, then jkl should 
arguably be penalized with a smaller proportion of the environmental 
damage due to SO,. 

Unfortunately, the data is too coarse to be able to detect when a power 
unit was simultaneously experiencing equipment-related deratings, and 
environmental (SO,) deratings. Clearly, if a power unit jkl was shut down 
for some reason on a given day when SO, emissions were high, the 
corresponding ajk, should be set to 0. To capture this idea we have imposed 
assurance region constraints, as per Thompson et al. (1992), of the form: 

Ljk 5 a;,jkla;, 5 Ujk 9 

where we have numbered that power unit 1 as the unit whose total OUT + 
EQDER is lowest. (This is the power unit whose total number of hours of 
outage + equipment deratings is highest). The argument is that for plant 
k,a:, should be the lowest proportion among all units for that plant. We 
have then chosen Ljk = 1 for all units j,. Since it is unclear what the 
precise relationship is concerning the timing of non-environmental deratings 
and outages (as discussed above), we have chosen here to set all Ujk equal 
to one another. We experimented with different values, and found that while 
the efficiency ratings of the various power units within a plant tended to 
decrease as Uik is lowered, their order (relative to one another) was quite 
stable. Table 17-7 displays the plant-level and associated power unit-level 
efficiency scores. 

The advantage of viewing efficiency in this manner is that not only can 
one evaluate the performance of plants, but at the same time can uncover the 
extent to which each of the subunits (power units) within the plant is 
contributing to that performance. This permits management to identify 
which power units in a plant are under-performing, and which units could 
serve as benchmarks within that plant. Following Properties 17.3 and 17.4, it 
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is noted that for efficient plants such as 4,5 and 6 ,  all power units within 
these are efficient as well. 

Table 17-7. Power Plant & Power Unit Ratings 
Unit Plant Unit Plant 

Plant Unit Rating Rating Plant Unit Rating Rating 
1 1 .64 333  4(1) 

17.8. CONCLUSIONS 

This chapter has presented DEA-based models for evaluating the 
efficiency of a set of power plants, and corresponding power units as a 
hierarchical structure. In the earlier part of the chapter, hierarchical 
efficiency was viewed as a multi-stage process. In Section 17.7 however, 
hierearchical efficiency measurement is viewed at all levels simultaneously. 
This is accomplished by first defining the decision making units (DMUs), as 
the units at the highest level in the hierarchy (power plants in the current 
application). The elements lower down in the hierarchy are then viewed as 
components of the top level DMUs, and as such, have their efficiency 
evaluated as well. 

A complicating feature of this latter structure is the presence of outputs at 
any level in the hierarchy that must be allocated among the components at 
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the next stage down in that hierarchy. In the setting herein, this is 
accomplished by defining variables which provide for a split of such (plant- 
level) outputs among the power units within each plant. We demonstrate that 
this resulting non-linear model can be converted to a linear programming 
problem. 

The developed models have been applied to 40 power generating units 
organized under 8 plants. Sulphur dioxide (SO,) emissions are generally 
regarded as a plant-level output which we wish to allocate to the power units 
under each plant. This allocation in practice could be a function of various 
factors including the percent downtime for scheduled maintenance, etc. The 
outcome of the efficiency evaluation is given in Table 17-7. 

The application of DEA principles to hierarchical structures is an 
important area for research. Many organizational structures tend to exhibit 
such a profile. The ideas herein can potentially lend themselves to other 
areas of study, for example, supply chains. The ideas are also somewhat 
related, as well, to the concepts presented by Fare and Grosskopf (1996) 
regarding intermediate products, as well as structures studied in the network 
DEA model of Fare and Grosskopf (2000). 
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this agreement. By opening the accompanying software packet, you acknowledge 
that you have read and accepted the following terms and conditions. If you do not 
agree and do not want to be bounded by such terms and conditions, do not install or 
use the software "DEAFrontier". 

License: The copyright to the software in the CD-ROM (the "DEAFrontier") is 
owned by Joe Zhu. The "DEAFrontier" is protected by the United States copyright 
laws and international treaty provisions. No part of the DEAFrontier may be 
reproduced, stored in a retrieval systems, distributed (including but not limited to 
over the Internet), modified, decompiled, reverse engineered, reconfigured, 
transmitted, or transcribed, in any form or by any means without the permission of 
the author. The DEAFrontier may not, under any circumstances, be reproduced for 
sale. This license allows you to use the DEAFrontier for educational and research 
purposes only, not for commercial purposes. You may only (i) make one copy of the 
DEAFrontier for backup or archival purposes, or (ii) transfer the DEAFrontier to a 
single hard disk, provided that you keep the original for backup or archival 
purposes. You may not (i) rent or lease the DEAFrontier, (ii) copy or reproduce the 
DEAFrontier through a LAN or other network system or through any computer 
subscriber system, or (iii) modify, adapt, or create derivative works based upon the 
DEAFrontier. You may be held legally responsible for any copying or copyright 
infringement which is caused by your failure to abide by the above terms and 
conditions. 

Limited Warranty: The warranty for the media on which the DEAFrontier is 
provided is for thirty (30) days from the original purchase and valid only if the 
packaging for the DEAFrontier was purchased unopened. If the Publisher receives 
notification within the warranty period of defects in materials or workmanship, the 
Publisher will replace the defective software media. The Publisher and the author 
provide no other warranties, expressed or implied, including without limitation 
implied warranties of merchantability and fitness for a particular purpose, and shall 
not be liable for any damages, including direct, special, indirect, incidental, 
consequential, or otherwise. The Publisher does not warrant that the functions 
contained in the DEAFrontier will meet your requirements or that the operation of 
the DEAFrontier will be error-free. 

DEAFrontier Installation Instructions 
The CD-ROM contains the DEAFrontier* which is a DEA Add-In for Microsoft 
Excel. This software "DEAFrontier" requires Excel 97 or later versions. Please read 
Chapter 1 for installation instructions. 
*May not work on a Macintosh 




