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Preface

Life is about decisions. Decisions, no matter if made by a group or an individ-

ual, usually involve several conflicting objectives. The observation that real

world problems have to be solved optimally according to criteria, which pro-

hibit an “ideal” solution – optimal for each decision-maker under each of the

criteria considered – has led to the development of multicriteria optimization.

From its first roots, which where laid by Pareto at the end of the 19th cen-

tury the discipline has prospered and grown, especially during the last three

decades. Today, many decision support systems incorporate methods to deal

with conflicting objectives. The foundation for such systems is a mathematical

theory of optimization under multiple objectives.

Fully aware of the fact that there have been excellent textbooks on the

topic before, I do not claim that this is a better text, but it has a consider-

ably different focus. Some of the available books develop the mathematical

background in great depth, such as Sawaragi et al. (1985); Göpfert and Nehse

(1990); Jahn (1986). Others focus on a specific structure of the problems cov-

ered as Zeleny (1974); Steuer (1985); Miettinen (1999) or on methodology Yu

(1985); Chankong and Haimes (1983); Hwang and Masud (1979). Finally there

is the area of multicriteria decision aiding Roy (1996); Vincke (1992); Keeney

and Raiffa (1993), the main goal of which is to help decision makers find the

final solution (among many “optimal” ones) eventually to be implemented.

With this book, which is based on lectures I taught from winter semester

1998/99 to winter semester 1999/2000 at the University of Kaiserslautern, I

intend to give an introduction to and overview of this fascinating field of math-

ematics. I tried to present theoretical questions such as existence of solutions

as well as methodological issues and hope the reader finds the balance not too

heavily on one side. The text is accompanied by exercises, which hopefully

help to deepen students’ understanding of the topic.
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The decision to design these courses as an introduction to multicriteria

optimization lead to certain decisions concerning the contents and material

contained. The text covers optimization of real valued functions only. And

even with this restriction interesting topics such as duality or stability have

been excluded. However, other material, which has not been covered in earlier

textbooks has found its way into the text. Most of this material is based on

research of the last 15 years, that is after the publication of most of the books

mentioned above. This applies to the whole of Chapters 6 and 7, and some of

the material in earlier chapters.

As the book is based on my own lectures, it is well suitable for a mathe-

matically oriented course on multicriteria optimization. The material can be

covered in the order in which it is presented, which follows the structure of

my own courses. But it is equally possible to start with Chapter 1, the basic

results of Chapters 2 and 3, and emphasize the multicriteria linear program-

ming part. Another possibility might be to pick out Chapters 1, 6, and 7 for a

course on multicriteria combinatorial optimization. The exercises at the end

of each Chapter provide possibilities to practice as well as some outlooks to

more general settings, when appropriate.

Even as an introductory text I assume that the reader is somehow famil-

iar with results from some other fields of optimization. The required back-

ground on these can be found in Bazaraa et al. (1990); Dantzig (1998) for

linear programming, Mangasarian (1969); Bazaraa et al. (1993) for nonlinear

programming, Hiriart-Uruty and Lemaréchal (1993); Rockafellar (1970) for

convex analysis, Nemhauser and Wolsey (1999); Papadimitriou and Steiglitz

(1982) for combinatorial optimization. Some results from these fields will be

used throughout the text, most from the sources just mentioned. These are

generally stated without proof. Accepting these theorems as they are, the text

is self-contained.

I am indebted to the many researchers in the field, on whose work the

lectures and and this text are based. Also, I would like to thank the students

who followed my class, they contributed with their questions and comments,

and my colleagues at the University of Kaiserslautern and elsewhere for their

cooperation and support. Special thanks go to Horst W. Hamacher, Kathrin

Klamroth, Stefan Nickel, Anita Schöbel, and Margaret M. Wiecek. Last but

not least my gratitude goes to Stefan Zimmermann, whose diligence and apti-

tude in preparing the manuscript was enormous. Without him the book would

not have come into existence by now.



Preface vii

Preface to the Second Edition

Much has happened in multicriteria optimization since the publication of the

first edition of this book. Too much in fact for all the contributions in the

field to be reflected in this new edition, which – after all – is intended to

be a textbook for a course on multicriteria optimization. Areas which have

seen particularly strong growth are multiobjective combinatorial optimization

and heuristics for multicriteria optimization problems. I have tried to give

an indication of these new developments by adding “Notes” sections to all

chapters but one. These sections contain many references to the literature

for the interested reader. As a consequence the bibliography has more than

doubled compared to the first edition. Still, heuristics feature only in the very

last section and metaheuristics are not even mentioned.

There are a number of other changes to the organization of the book.

Linear and combinatorial multicriteria optimization is now spread over five

chapters, which seems appropriate for material that covers roughly half the

pages. It also reflects the way in which I have usually taught multicriteria

optimization, namely a course on general topics, containing material of the

first five chapters, and a course on linear and combinatorial problems, i.e. the

second half of the book. I have therefore tried to make the second part self

contained by giving a brief revision of major definitions.

Some reorganization and rewriting has taken place within the chapters.

There is now a section on optimality conditions, previously distributed over

several chapters. Topics closely related to the weighted sum method have been

collected in Chapter 3. Chapter 4 has been extended to include several scalar-

ization techniques not mentioned in the first edition. Much of the material on

linear programming has been rewritten, and scalarization of multiobjective

integer programs has been added in Chapter 8.

Of course, I have done my best to eliminate errors contained in the first

edition. I am grateful to all students and colleagues who made me aware of

them, especially Dagmar Tenfelde-Podehl and Kathrin Klamroth, who used

the book for their own courses. There will still be mistakes in this text, and I

welcome any suggestions for improvement. Otherwise, I hope that you approve

of the changes and find the book useful.

Auckland, March 2005 Matthias Ehrgott



Notation

These are some guidlines concerning the notation I have used in the book.

In general, calligraphic capitals denote sets, latin capitals denote matrices (or

some combinatorial objects) and small latin or greek letters denote elements of

sets, variables, functions, parameters, or indices. Superscripts indicate entities

(such as particular vectors), subscripts indicate components of a vector or

matrix. Due to a limited supply of alphabetical symbols, I have reused some

for several purposes. Their usage should be clear form the context, nevertheless

I apologize for any confusion that may arise.

The following table summarizes the most commonly used symbols.



x Notation

Notation Explanation

X feasible set of an optimization problem

Y := f(X ) feasible set in objective space

C cone

x = (x1, . . . , xn) variable vector, variables

y = (y1, . . . , yp) vector of objective function values

f = (f1, . . . , fp) vector of objective functions

g = (g1, . . . , gm) vector of constraint functions

A ∈ R(m×n) constraint matrix of an LP

C ∈ R(p×n) objective matrix of an MOLP

b ∈ Rm right hand side vector of an (MO)LP

yI ideal point

yN nadir point

yU utopian point

λ ∈ Rp vector of weights

y1 < y2 y1
k < y2

k for k = 1, . . . , p

y1 � y2 y1
k ≤ y2

k for k = 1, . . . , p

y1 ≤ y2 y1 � y2 but y1 �= y2

Rp
> {y ∈ Rp : y > 0}

Rp
≥ {y ∈ Rp : y ≥ 0}

Rp

�
{y ∈ Rp : y � 0}
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1

Introduction

In this book, we understand the solution of a decision problem as to choose

“good” or “best” among a set of “alternatives,” where we assume the exis-

tence of certain criteria, according to which the quality of the alternatives is

measured. In this introductory chapter, we shall first give some examples and

distinguish different types of decision problems. Informally, we shall under-

stand optimization problems as mathematical models of decision problems.

We introduce the concepts of decision (or variable) and criterion (or objec-

tive) space and mention different notions of optimality. Relations and cones

are used to formally define optimization problems, and a classification scheme

is introduced.

1.1 Optimization with Multiple Criteria

Let us consider the following three examples of decision problems.

Example 1.1. We want to buy a new car and have identified four models we

like: a VW Golf, an Opel Astra, a Ford Focus and a Toyota Corolla. The

decision will be made according to price, petrol consumption, and power.

We prefer a cheap and powerful car with low petrol consumption. In this

case, we face a decision problem with four alternatives and three criteria. The

characteristics of the four cars are shown in Table 1.1 (data are invented).

How do we decide, which of the four cars is the “best” alternative, when

the most powerful car is also the one with the highest petrol consumption, so

that we cannot buy a car that is cheap as well as powerful and fuel efficient.

However, we observe that with any one of the three criteria alone the choice

is easy. ��
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Table 1.1. Criteria and alternatives in Example 1.1.

Alternatives

VW Opel Ford Toyota

Price (1,000 Euros) 16.2 14.9 14.0 15.2

Criteria Consumption
(

l
100km

)
7.2 7.0 7.5 8.2

Power (kW) 66.0 62.0 55.0 71.0

Example 1.2. For the construction of a water dam an electricity provider is

interested in maximizing storage capacity while at the same time minimizing

water loss due to evaporation and construction cost. A decision must be made

on man months used for construction as well as mean radius of the lake, and

also it must respect certain constraints such as minimal strength of the dam.

Here, the set of alternatives (possible dam designs) allows infinitely many

different choices. The criteria are functions of the decision variables to be

maximized or minimized. The criteria are clearly in conflict: A dam with big

storage capacity will certainly not involve small construction cost, for instance.

��

Example 1.3. As a third example, we consider a mathematical problem with

two criteria and one decision variable. The criteria or objective functions,

which we want to minimize simultaneously over the nonnegative real line, are

f1(x) =
√

x + 1 and f2(x) = x2 − 4x + 5 = (x − 2)2 + 1, (1.1)

plotted in Figure 1.1. We want to solve the optimization problem

“ min
x≥0

”(f1(x), f2(x)). (1.2)

The question is, what are the “minima” and the “minimizers” in this

problem? Note that again, for each function individually the corresponding

optimization problem is easy: x1 = 0 and x2 = 2 are the (unique) minimizers

of f1 and f2 on x ∈ R : x ≥ 0, respectively. ��

The first two examples allow a first distinction of decision problems. Those

decision problems with a countable number of alternatives are called discrete,

others continuous. In this book, we will be concerned with both continuous

and discrete problems.

Comparing Examples 1.1 and 1.3, another distinguishing feature of deci-

sion problems becomes apparent: In Example 1.1 the alternatives are explicitly
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Fig. 1.1. Objective functions of Example 1.3.

given, whereas in 1.3 the alternatives are implicitly described by constraints

(x ≥ 0). Thus, we may distinguish the following types of decision problems,

based on the description of the set of alternatives.

• Problems with finitely many alternatives that are explicitly known. The

goal is to select a most preferred one. Multicriteria decision aid deals with

such problems. We will only have one short section on such problems in

this book (Section 8.2).

• Discrete problems where the set of alternatives is described by constraints

in the form of mathematical functions. These problems will be covered in

Chapters 8 to 10.2.

• Continuous problems. The set of alternatives is generally given through

constraints. These are the objects of interest in Chapters 2.

Historically, the first reference to address such situations of conflicting

objectives is usually attributed to Pareto (1896) who wrote (the quote is from

the 1906 English edition of his book, emphasis added by the author):

We will say that the members of a collectivity enjoy maximum ophe-

limity in a certain position when it is impossible to find a way of mov-

ing from that position very slightly in such a manner that the ophe-

limity enjoyed by each of the individuals of that collectivity increases

or decreases. That is to say, any small displacement in departing from

that position necessarily has the effect of increasing the ophelimity
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which certain individuals enjoy, and decreasing that which others en-

joy, of being agreeable to some and disagreeable to others.

Applying this concept in our examples, we see that in Example 1.1 all

alternatives enjoy “maximum ophelimity,” in Example 1.3 all x in [0, 2], where

one of the functions is increasing, the other decreasing. In honor of Pareto,

these alternatives are today often called Pareto optimal solutions of multiple

criteria optimization problems. We will not use that notation, however, and

refer to efficient solutions instead (see 2.1 for a formal definition). Large parts

of this book are devoted to the discussion of the mathematics of efficiency.

1.2 Decision Space and Objective (Criterion) Space

In this section, we informally introduce the fundamental notions of decision

(or variable) and criterion (or objective) space, in which the alternatives and

their images under the objective function mappings are contained.

Let us consider Example 1.1 again, where – for the moment – we consider

price and petrol consumption only for the moment. We can illustrate the

criterion values in a two-dimensional coordinate system.

13 14 15 16 17
6

7

8

9

...........................................................
...............

........

......

......

......

......

......

.............................

....................... Consumption
(

l
100km

)

Price (1,000 Euros)

••
•

•Toyota

Opel

Ford
VW

Fig. 1.2. Criterion space in Example 1.1.

From Figure 1.2 it is easy to see that Opel and Ford are the efficient

choices. For both there is no alternative that is both cheaper and consumes

less petrol. In addition, both Toyota and VW are more expensive and consume

more petrol than Opel.

We call X = {VW, Opel, Ford, Toyota} the feasible set, or the set of

alternatives of the decision problem. The space, of which the feasible set X is

a subset, is called the decision space.
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If we denote price by f1 and petrol consumption by f2, then the mappings

fi : X → R are criteria or objective functions and the optimization problem

can be stated mathematically as in Example 1.3:

“ min
x∈X

”(f1(x), f2(x)). (1.3)

The image of X under f = (f1, f2) is denoted by Y := f(X ) := {y ∈ R2 :

y = f(x) for some x ∈ X} and referred to as the image of the feasible set, or

the feasible set in criterion space. The space from which the criterion values

are taken is called the criterion space.

In Example 1.3 the feasible set is

X = {x ∈ R : x ≥ 0} (1.4)

and the objective functions are

f1(x) =
√

1 + x and f2(x) = x2 − 4x + 5. (1.5)

The decision space is R because X ⊂ R. The criterion space is R2, as

f(X ) ⊂ R2. To obtain the image of the feasible set in criterion space we

substitute y1 for f1(x) and y2 for f2(x) to get x = (y1)
2 − 1 (solving y1 =√

1 + x for x). Therefore we obtain y2 = ((y1)
2 − 1)2 + 4 − 4(y1)

2 + 5 =

(y1)
4 − 6(y1)

2 + 10. The graph of this function (shown in Figure 1.3) is the

analogue of Figure 1.2 for Example 1.1. Note that x ≥ 0 translates to y1 ≥ 1,

so that Y := f(X ) is the part of the graph to the right of the vertical line

y1 = 1.

Computing the minimum of y2 as a function of y1, we see that the efficient

solutions x ∈ [0, 2] found before correspond to values of y1 = f1(x) in [1,
√

3]

and y2 = f2(x) ∈ [1, 5]. These points on the graph of y2(y1) with 1 ≤ y1 ≤
√

3

(and 1 ≤ y2 ≤ 5) will be called nondominated points.

In Figure 1.4 we can see how depicting the feasible set Y in criterion space

can help identify nondominated points and – taking inverse images – efficient

solutions. The right angle attached to the efficient point (ŷ1, ŷ2) illustrates

that there is no other point y ∈ f(X ), y 	= ŷ such that y1 ≤ ŷ1 and y2 ≤ ŷ2.

This is true for the image under f of any x ∈ [0, 2]. This observation confirms

the definition of nondominated points as the image of the set of efficient points

under the objective function mapping.

In the examples, we have seen that we will often have many efficient solu-

tions of a multicriteria optimization problem. Can we consider these as “op-

timal decisions,” in an application context such as, e.g. the dam construction

problem of Example 1.2. Or, in the car selection problem, do we have to buy

all four cars after all? Obviously, a final choice has to be made among efficient
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Fig. 1.3. Criterion space in Example 1.3.
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Fig. 1.4. Nondominated points in Example 1.3.

solutions. This aspect of decision making, the support of decision makers in

the selection of a final solution from a set of mathematically “equally optimal”

solutions, is often referred to as multicriteria decision aid (MCDA), see e.g.

the textbooks of Roy (1996), Vincke (1992), or Keeney and Raiffa (1993).

Although finding efficient solutions is the most common form of multicri-

teria optimization, the field is not limited to that concept. There are other
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possibilities to cope with multiple conflicting objectives, as we shall see in the

following section.

1.3 Notions of Optimality

Up to now we have written the minimization in multicriteria optimization

problems in quotation marks –

“ min ”(f1(x), . . . , fp(x))

subject to x ∈ X (1.6)

– for good reason, since we can easily associate different interpretations with

the “ min.” In this and the following sections we discuss what minimization

means.

The fundamental importance of efficiency (Pareto optimality) is based on

the observation that any x which is not efficient cannot represent a most

preferred alternative for a decision maker, because there exists at least one

other feasible solution x′ ∈ X such that fk(x′) ≤ fk(x) for all k = 1, . . . , p,

where strict inequality holds at least once, i.e., x′ should clearly be preferred to

x. So for all definitions of optimality we deal with in this text, the relationship

with efficiency will always be a topic which needs to be and will be discussed.

Some other notions of optimality are informally presented now.

We can imagine situations in which there is a ranking among the objec-

tives. In Example 1.1, price might be more important than petrol consump-

tion, this in turn more important than power. This means that even an ex-

tremely good value for petrol consumption cannot compensate for a slightly

higher price. Then the criterion vectors (f1(x), f2(x), f3(x)) are compared

lexicographically (see Table 1.2 for a definition of the lexicographic order and

Section 5.1 for more on lexicographic optimization) and we would want to

solve

lexmin
x∈X

(f1(x), f2(x), f3(x)). (1.7)

In Example 1.1 we should choose the Ford because for this ranking of

objectives it is the unique optimal solution (the cheapest).

Let us assume that in Example 1.3 the objective functions measure some

negative impacts of a decision (environmental pollution, etc.) to be minimized.

We might not want to accept a high value of one criterion for a low value of

the other. It is then appropriate to minimize the worst of both objectives.

Accordingly we would solve
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min
x≥0

max
i=1,2

fi(x). (1.8)

This problem is illustrated in Figure 1.5, where the solid line shows the

maximum of f1 and f2. The optimal solution of the problem is obtained for

x ≈ 1.285, see Figure 1.5.
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Fig. 1.5. Min-max solution of Example 1.3.

In both examples, we got unique optimal solutions, and there are no in-

comparable values. And indeed, in the min-max example one could think of

this problem as a single objective optimization problem. However, both have

to be considered as multicriteria problems, because the multiple objectives

are in the formulation of the problems. Thus, in order to define the meaning

of “min,” we have to define how objective function vectors (f1(x), . . . , fp(x))

have to be compared for different alternatives x ∈ X . The different possibili-

ties to do that arise from the fact that for p ≥ 2 there is no canonical order on

Rp as there is on R. Therefore weaker definitions of orders have to be used.

1.4 Orders and Cones

In this section we will first introduce binary relations and some of their proper-

ties to define several classes of orders. The second main topic is cones, defining
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sets of nonnegative elements of Rp. We will prove the equivalence of properties

of orders and geometrical properties of cones. An indication of the relation-

ship between orders and cones has already been shown in Figure 1.4, where we

used a cone (the negative orthant of R2) to confirm that ŷ is nondominated.

Let S be any set. A binary relation on S is a subset R of S × S. We

introduce some properties of binary relations.

Definition 1.4. A binary relation R on S is called

• reflexive if (s, s) ∈ R for all s ∈ S,

• irreflexive if (s, s) /∈ R for all s ∈ S,

• symmetric if (s1, s2) ∈ R =⇒ (s2, s1) ∈ R for all s1, s2 ∈ S,

• asymmetric if (s1, s2) ∈ R =⇒ (s2, s1) /∈ R for all s1, s2 ∈ S,

• antisymmetric if (s1, s2) ∈ R and (s2, s1) ∈ R =⇒ s1 = s2 for all s1, s2 ∈
S,

• transitive if (s1, s2) ∈ R and (s2, s3) ∈ R =⇒ (s1, s3) ∈ R for all

s1, s2, s3 ∈ S,

• negatively transitive if (s1, s2) /∈ R and (s2, s3) /∈ R =⇒ (s1, s3) /∈ R for

all s1, s2, s3 ∈ S,

• connected if (s1, s2) ∈ R or (s2, s1) ∈ R for all s1, s2 ∈ S with s1 	= s2,

• strongly connected (or total) if (s1, s2) ∈ R or (s2, s1) ∈ R for all s1, s2 ∈
S.

Definition 1.5. A binary relation R on a set S is

• an equivalence relation if it is reflexive, symmetric, and transitive,

• a preorder (quasi-order) if it is reflexive and transitive.

Instead of (s1, s2) ∈ R we shall also write s1Rs2. In the case of R being a

preorder the pair (S,R) is called a preordered set. In the context of (pre)orders

yet another notation for the relation R is convenient. We shall write s1 � s2

as shorthand for (s1, s2) ∈ R and s1 	� s2 for (s1, s2) 	∈ R and indiscrimi-

nately refer to the relation R or the relation �. This notation can be read as

“preferred to.”

Given any preorder �, two other relations are closely associated with �.

We define them as follows:

s1 ≺ s2 :⇐⇒ s1 � s2 and s2 	� s1, (1.9)

s1 ∼ s2 :⇐⇒ s1 � s2 and s2 � s1. (1.10)

Actually, ≺ and ∼ can be seen as the strict preference and equivalence (or

indifference) relation, respectively, associated with the preference defined by

preorder �.
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Proposition 1.6. Let � be a preorder on S. Then relation ≺ defined in (1.9)

is irreflexive and transitive and relation ∼ defined in (1.10) is an equivalence

relation.

Proof. We consider ∼ first. This relation is reflexive because � is. Furthermore

∼ is symmetric by definition. Now let s1, s2, s3 ∈ S be such that s1 ∼ s2 and

s2 ∼ s3. Then using transitivity of �

s1 � s2 � s3 =⇒ s1 � s3

s3 � s2 � s1 =⇒ s3 � s1

}
=⇒ s1 ∼ s3. (1.11)

For ≺, note that ≺ is irreflexive by definition. Suppose there are s1, s2, s3 ∈
S such that s1 ≺ s2 and s2 ≺ s3. Then s1 � s2 � s3 and from transitivity

of �, s1 � s3. To show that s1 ≺ s3, assume s3 � s1. But since s1 � s2 we

get s3 � s2 from transitivity of �. This contradiction implies s3 � s1, i.e.,

s1 ≺ s3. ��

Another easily seen result concerns asymmetry and irreflexivity of binary

relations.

Proposition 1.7. An asymmetric binary relation is irreflexive. A transitive,

irreflexive binary relation is asymmetric.

Proof. The proof is left to the reader, see Exercise 1.4 ��

Definition 1.8. A binary relation � on S is

• a total preorder if it is reflexive, transitive and connected,

• a total order if it is an antisymmetric total preorder,

• a strict weak order if it is asymmetric and negatively transitive.

From total preorders, strict weak orders can be obtained and vice versa,

as Proposition 1.9 shows.

Proposition 1.9. If � is a total preorder on S, then the associated relation

≺ is a strict weak order. If ≺ is a strict weak order on S, then � defined by

s1 � s2 ⇐⇒ either s1 ≺ s2 or (s1 ⊀ s2 and s2 ⊀ s1) (1.12)

is a total preorder.

Proof. Let � be a total preorder on S. Then ≺ is irreflexive and transitive

by Proposition 1.6 and hence asymmetric by Proposition 1.7. For negative

transitivity we show that s1 ⊀ s2, s2 ⊀ s3 implies s1 ⊀ s3 for all s1, s2, s3 ∈ S.

So let s1, s2, s3 ∈ S such that s1 ⊀ s2 and s2 ⊀ s3 and assume s1 ≺ s3. From
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s1 ⊀ s2 we have s2 ≺ s1 or s2 � s1 because � is conected. In both cases it

follows that s2 ≺ s3, contradicting the assumption.

Let ≺ be a strict weak order on S. The relation � is reflexive by definition.

For transitivity consider the following cases for s1, s2, s3 ∈ S with s1 � s2 and

s2 � s3:

1. s1 ≺ s2, s2 ⊀ s3 and s3 ⊀ s2. Then s1 ≺ s3, because otherwise s1 ⊀ s3

and s3 ⊀ s2 imply s1 ⊀ s2, a contradiction.

2. s1 ⊀ s2, s2 ⊀ s1 and s2 ≺ s3. Then s1 ≺ s3 because otherwise s1 ⊀ s3

and s2 ⊀ s1 imply s2 ⊀ s3, again a contradiction.

3. s1 ⊀ s2, s2 ⊀ s1, s2 ⊀ s3, s3 ⊀ s2. Then s1 ⊀ s3 and s3 ⊀ s1 (from

negative transitivity) imply s1 � s3.

4. s1 ≺ s2 and s2 ≺ s3. We get s2 ⊀ s1 from asymmetry and from s1 ≺ s2.

Thus, if s1 ⊀ s3, negative transitivity implies s2 ⊀ s3, a contradiction.

In all cases we can conclude s1 � s3, as desired. Finally, for connectedness let

s1, s2 ∈ S, s1 	= s2. Then s1 ≺ s2 or s2 ≺ s1 or (s1 ⊀ s2 and s2 ⊀ s1) and

therefore s1 � s2 or s2 � s1. ��

The most important classes of relations in multicriteria optimization –

partial orders and strict partial orders – are introduced now.

Definition 1.10. A binary relation � is called

• partial order if it is reflexive, transitive and antisymmetric,

• strict partial order if it is asymmetric and transitive (or, equivalently, if

it is irreflexive and transitive).

Throughout this book, we use several orders on the Euclidian space Rp

which we define now. Please note that these notations are not unique in mul-

ticriteria optimization literature and always check definitions when consulting

another source. Let y1, y2 ∈ Rp, and if y1 	= y2 let k∗ := min{k : y1
k 	= y2

k}.
We shall use the notations and names given in Table 1.2 for the most common

((strict) partial) orders on Rp appearing in this text.

With the (weak, strict) componentwise orders, we define subsets of Rp as

follows:

• Rp
�

:= {y ∈ Rp : y � 0}, the nonnegative orthant of Rp;

• Rp
≥ := {y ∈ Rp : y ≥ 0} = Rp

�
\ {0};

• Rp
> := {y ∈ Rp : y > 0} = int Rp

�
, the positive orthant of Rp.

Note that for p = 1 we have R≥ = R>.

We can now proceed to show how the definition of a set of nonnegative

elements in Rp (R2 for purposes of illustration) can be used to derive a geo-

metric interpretation of properties of orders. These equivalent views on orders
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Table 1.2. Some orders on Rp.

Notation Definition Name

y1 � y2 y1
k ≤ y2

k k = 1, . . . , p weak componentwise order

y1 ≤ y2 y1
k ≤ y2

k k = 1, . . . , p; y1 �= y2 componentwise order

y1 < y2 y1
k < y2

k k = 1, . . . , p strict componentwise order

y1 ≤lex y2 y1
k∗ < y2

k∗ or y1 = y2 lexicographic order

y1 ≤MO y max
k=1,...,p

y1
k ≤ max

k=1,...,n
y2

k max-order

will be extremely useful in multicriteria optimization. But first we need the

definition of a cone.

Definition 1.11. A subset C ⊆ Rp is called a cone, if αd ∈ C for all d ∈ C
and for all α ∈ R, α > 0.

Example 1.12. The left drawing in Figure 1.6 shows the cone C = {d ∈ R2 :

dk ≥ 0, k = 1, 2} = R2
�

. This is the cone of nonnegative elements of the weak

componentwise order. The right drawing shows a smaller cone C ⊂ R2
�

.
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Fig. 1.6. Illustration of two cones.

��

For the following discussion it will be useful to have the operations of the

multiplication of a set with a scalar and the sum of two sets. Let S,S1,S2 ⊂ Rp

and α ∈ R. We denote by
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αS := {αs : s ∈ S}, (1.13)

especially −S = {−s : s ∈ S}. Furthermore, the (algebraic, Minkowski) sum

of S1 and S2 is

S1 + S2 := {s1 + s2 : s1 ∈ S1, s
2 ∈ S2}. (1.14)

If S1 = {s} is a singleton, we also write s + S2 instead of {s}+ S2. Note that

these are just simplified notations that do not involve any set arithmetic, e.g.

2S 	= S + S in general.

This is also the appropriate place to introduce some further notation used

throughout the book. For S ⊆ Rn or S ⊆ Rp

• int(S) is the interior of S,

• ri(S) is the relative interior of S,

• bd(S) is the boundary of S,

• cl(S) = int(S) ∪ bd(S) is the closure of S,

• conv(S) is the convex hull of S.

The parentheses might be omitted for simplification of expressions when the

argument is clear.

Definition 1.13. A cone C in Rp is called

• nontrivial or proper if C 	= ∅ and C 	= Rn,

• convex if αd1 + (1 − α)d2 ∈ C for all d1, d2 ∈ C and for all 0 < α < 1,

• pointed if for d ∈ C, d 	= 0, −d /∈ C, i.e., C ∩ (−C) ⊆ {0}.

Due to the definition of a cone, C is convex if for all d1, d2 ∈ C we have

d1 + d2 ∈ C, too: αd1 ∈ C and (1 − α)d2 ∈ C because C is a cone. Therefore,

closedness of C under addition is sufficient for convexity. Then, using the

algebraic sum, we can say that C ⊂ Rp is a convex cone if αC ⊆ C for all

α > 0 and C + C ⊆ C. We will only consider nontrivial cones throughout the

book.

Given an order relation R on Rp, we can define a set

CR := {y2 − y1 : y1Ry2}, (1.15)

which we would like to interpret as the set of nonnegative elements of Rp

according to R. We will now prove some relationships between the properties

of R and CR.

Proposition 1.14. Let R be compatible with scalar multiplication, i.e., for

all (y1, y2) ∈ R and all α ∈ R> it holds that (αy1, αy2) ∈ R. Then CR defined

in (1.15) is a cone.
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Proof. Let d ∈ CR. Then d = y2 − y1 for some y1, y2 ∈ Rp with (y1, y2) ∈ R.

Thus (αy1, αy2) ∈ R for all α > 0. Hence αd = α(y2 − y1) = αy2 − αy1 ∈ CR
for all α > 0. ��

Example 1.15. Let us consider the weak componentwise order on Rp. Here

y1 � y2 if and only if y1
k ≤ y2

k for all k = 1, . . . , p or y2
k − y1

k ≥ 0 for all

k = 1, . . . , p. Therefore C� = {d ∈ Rp : dk ≥ 0, k = 1, . . . , p} = Rp
�

. ��

It is interesting to consider the definition (1.15) with y1 ∈ Rp fixed, i.e.,

CR(y1) = {y2 − y1 : y1Ry2}. If R is an order relation, y1 + CR(y1) is the set

of elements of Rp that y1 is preferred to or that are dominated by y1.

A natural question to ask is: Under what conditions is CR(y) the same for

all y ∈ Rp? In order to answer that question, we need another assumption on

order relation R. R is said to be compatible with addition if (y1+z, y2+z) ∈ R
for all z ∈ Rp and all (y1, y2) ∈ R.

Lemma 1.16. If R is compatible with addition and d ∈ CR then 0Rd.

Proof. Let d ∈ CR. Then there are y1, y2 ∈ Rp with y1Ry2 such that d =

y2− y1. Using z = −y1, compatibility with addition implies (y1 + z)R(y2 + z)

or 0Rd. ��

Lemma 1.16 means that if R is compatible with addition, the sets CR(y),

y ∈ Rp, do not depend on y. In this book, we will be mainly concerned with

this case. For relations that are compatible with addition, we obtain further

results.

Theorem 1.17. Let R be a binary relation on Rp which is compatible with

scalar multiplication and addition. Then the following statements hold.

1. 0 ∈ CR if and only if R is reflexive.

2. CR is pointed if and only if R is antisymmetric.

3. CR is convex if and only if R is transitive.

Proof. 1. Let R be reflexive and let y ∈ Rp. Then yRy and y − y = 0 ∈ CR.

Let 0 ∈ CR. Then there is some y ∈ Rp with yRy. Now let y′ ∈ Rp. Then

y′ = y + z for some z ∈ Rp. Since yRy and R is compatible with addition

we get y′Ry′.

2. Let R be antisymmetric and let d ∈ CR such that −d ∈ CR, too. Then

there are y1, y2 ∈ Rp such that y1Ry2 and d = y1−y1 as well as y3, y4 ∈ Rp

such that y3Ry4 and −d = y4−y3. Thus, y2−y1 = y3−y4 and there must

be y ∈ Rp such that y2 = y3 + y and y1 = y4 + y. Therefore compatibility

with addition implies y2Ry1. Antisymmetry of R now yields y2 = y1 and

therefore d = 0, i.e., CR is pointed.
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Let y1, y2 ∈ Rp with y1Ry2 and y2Ry1. Thus, d = y2 − y1 ∈ CR and

−d = y1 − y2 ∈ CR. If CR is pointed we know that {d,−d} ⊂ C implies

d = 0 and therefore y1 = y2, i.e., R is antisymmetric.

3. Let R be transitive and let d1, d2 ∈ CR. Since R is compatible with scalar

multiplication, CR is a cone and we only need to show d1 + d2 ∈ CR. By

Lemma 1.16 we have 0Rd1 and 0Rd2. Compatibility with addition implies

d1R(d1 + d2), transitivity yields 0R(d1 + d2), from which d1 + d2 ∈ CR.

Let CR be convex and let y1, y2, y3 ∈ Rp be such that y1Ry2 and y2Ry3.

Then d1 = y2 − y1 ∈ CR and d2 = y3 − y2 ∈ CR. Because CR is convex,

d1 + d2 = y3 − y1 ∈ CR. By Lemma 1.16 we get 0R(y3 − y1) and by

compatibility with addition y1Ry3. ��

Example 1.18. 1. The weak componentwise order � is compatible with ad-

dition and scalar multiplication. C� = Rp

�
contains 0, is pointed, and

convex.

2. The max-order≤MO is compatible with scalar multiplication, but not with

addition (e.g. (-3,2) ≤MO (3,1), but this relation is reversed when adding

(0,3)). Furthermore, ≤MO is reflexive, transitive, but not antisymmetric

(e.g. (1,0) ≤MO (1,1) and (1,1) ≤MO (1,0)).

��

We have defined cone CR given relation R. We can also use a cone to define

an order relation. Let C be a cone. Define RC by

y1RCy2 ⇐⇒ y2 − y1 ∈ C. (1.16)

Proposition 1.19. Let C be a cone. Then RC defined in (1.16) is compatible

with scalar multiplication and addition in Rp.

Proof. Let y1, y2 ∈ Rp be such that y1RCy2. Then d = y2 − y1 ∈ C. Because

C is a cone αd = α(y2 − y1) = αy2 − αy1 ∈ C. Thus αy1RCαy2 for all α > 0.

Furthermore, (y2 +z)− (y1 +z) ∈ C and (y1 +z)RC(y2 +z) for all z ∈ Rp. ��

Theorem 1.20. Let C be a cone and let RC be as defined in (1.16). Then the

following statements hold.

1. RC is reflexive if and only if 0 ∈ C.

2. RC is antisymmetric if and only if C is pointed.

3. RC is transitive if and only if C is convex.

Proof. 1. Let 0 ∈ C and y ∈ Rp. Thus, y − y ∈ C and yRCy for all y ∈ Rp.

Let RC be reflexive. Then we have yRCy for all y ∈ Rp, i.e., y−y = 0 ∈ C.
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2. Let d ∈ C and −d ∈ C. Thus 0RCd and 0RC−d. Adding d to the latter re-

lation, compatibility with addition yields dRC0. Then asymmetry implies

d = 0.

Let y1, y2 ∈ Rp be such that y1RCy2 and y2RCy1. Thus, d = y2 − y1 and

−d = y1 − y2 ∈ C. Since C is pointed, d = 0, i.e. y1 = y2.

3. Let y1, y2, y3 ∈ Rp such that y1RCy2 and y2RCy3. Therefore d1 = y2 −
y1 ∈ C and d2 = y3 − y2 ∈ C. Because C is convex, d1 + d2 = y3 − y1 ∈ C
and y1RCy3.

If d1, d2 ∈ C we have 0RCd1 and 0RCd2. Because RC is compatible with

addition, we get d1RC(d1+d2). By transitivity 0RC(d1+d2) and d1 +d2 ∈
C. ��

Note that Theorem 1.20 does not need the assumption of compatibility

with addition since it is a consequence of the definition of RC . The rela-

tionships between cones and binary relations are further investigated in the

exercises.

With Theorems 1.17 and 1.20 we have shown equivalence of some par-

tial orders and pointed convex cones containing 0. Since (partial) orders can

be used to define “minimization,” these results make it possible to analyze

multicriteria optimization problems geometrically.

1.5 Classification of Multicriteria Optimization Problems

By the choice of an order � on Rp, we can finally define the meaning of “ min”

in the problem formulation

“min
x∈X

”f(x) = “min
x∈X

”(f1(x), . . . , fp(x)). (1.17)

The different interpretations of “min” pertaining to different orders are

the foundation of a classification of multicriteria optimization problems. We

only briefly mention it here. A more detailed development can be found in

Ehrgott (1997) and Ehrgott (1998).

With the multiple objective functions we can evaluate objective value vec-

tors (f1(x), . . . , fp(x)). However, we have seen that these vectors y = f(x), x ∈
X , are not always compared in objective space, i.e., Rp, directly.

In Example 1.3 we have formulated the optimization problem

min
x∈X

max
i=1,2

fi(x). (1.18)

That is, we have used a mapping θ : R2 → R from objective space R2 to

R, where the min in (1.18) is actually defined by the canonical order on R.
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In general, the objective function vectors are mapped from Rp to an ordered

space, e.g. (RP ,�), where comparisons are made using the order relation �.

This mapping is called the model map.

With the model map, we can now summarize the elements of a multicriteria

optimization problem (MOP). These are

• the feasible set X ,

• the objective function vector f = (f1, . . . , fp) : X −→ Rp,

• the objective space Rp,

• the ordered set (RP ,�),

• the model map θ.

Feasible set, objective function vector f , and objective space are the data

of the MOP. The model map provides the link between objective space and

ordered set, in which, finally, the meaning of the minimization is defined. Thus

with the three main aspects data, model map, and ordered set the classifica-

tion (X , f, Rp)/θ/(RP ,�) completely describes a multicriteria optimization

problem.

Example 1.21. Let us look at a problem of finding efficient solutions,

min
x≥0

(
√

x + 1, x2 − 4x + 1). (1.19)

Here X = {x : x ≥ 0} = R� is the feasible set, f = (f1, f2) =

(
√

x + 1, x2 − 4x + 1) is the objective function vector, and Rp = R2 is the

objective space defining the data. Because we compare objective function vec-

tors componentwise, the model map is given by θ(y) = y and denoted id, the

identity mapping, henceforth. The ordered set is then (RP ,�) = (R2,≤). The

problem (1.19) is classified as

(R�, f, R2)/id/(R2,≤). (1.20)

��

Example 1.22. If we have a ranking of objectives as described in the second

example in Section 1.3, we compare objective vectors lexicographically. Let

y1, y2 ∈ Rp. Then y1 ≤lex y2 if there is some k∗, 1 ≤ k∗ ≤ p such that y1
k =

y2
k k = 1, . . . , k∗ − 1 and y1

k∗ < y2
k∗ or y1 = y2. In the car selection Example

1.1, X = {VW, Opel, Ford, Toyota} is the set of alternatives (feasible set),

f1 is price, f2 is petrol consumption, and f3 is power. We define θ(y) =

(y1, y2,−y3) (note that more power is preferred to less). The problem is then

classified as

(X , f, R3)/θ/(R3,≤lex) (1.21)

��
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Lexicographic optimality is one of the concepts we cover in Chapter 5.

At the end of this chapter, we formally define optimal solutions and opti-

mal values of multicriteria optimization problems.

Definition 1.23. A feasible solution x∗ ∈ X is called an optimal solution of a

multicriteria optimization problem (X , f, Rp)/θ/(RP ,�) if there is no x ∈ X ,

x 	= x∗ such that

θ(f(x)) � θ(f(x∗)). (1.22)

For an optimal solution x∗, θ(f(x∗)) is called an optimal value of the MOP.

The set of optimal solutions is denoted by Opt((X , f, Rp)/θ/(RP ,�)). The set

of optimal values is Val((X , f, Rp)/θ/(RP ,�)).

Some comments on this definition are necessary. First, since we are often

dealing with orders which are not total, a positive definition of optimality,

like θ(f(x∗)) � θ(f(x)) for all x ∈ X , is not possible in general. Second,

for specific choices of θ and (RP ,�), specific names for optimal solutions

and values are commonly used, such as efficient solutions or lexicographically

optimal solutions.

In the following chapters we will introduce shorthand notations for optimal

sets, usually X with an index identifying the problem class, such as XE := {x ∈
X : there is no x′ ∈ X with f(x′) ≤ f(x)} for the set of efficient solutions.

We now check the definition 1.23 with Examples 1.21 and 1.22.

Example 1.24. With the problem (R�, f, R2)/id/(R2,≤) the optimality def-

inition reads: There is no x ∈ X , x 	= x∗, such that f(x) ≤ f(x∗), i.e.,

fk(x) ≤ fk(x∗) for all k = 1, . . . , p, and f(x) 	= f(x∗). This is indeed effi-

ciency as we know it. ��

Example 1.25. For (X , f, R3)/θ/(R3,≤lex) with θ(y) = (y1, y2,−y3), x∗ ∈ X
is an optimal solution if there is no x ∈ X , x 	= x∗, such that

(f1(x), f2(x),−f3(x)) ≤lex (f1(x
∗), f2(x

∗),−f3(x
∗)). (1.23)

��

Quite often, we will discuss multicriteria optimization problems in the

sense of efficiency or lexicographic optimality in general, not referring to spe-

cific problem data, and derive results which are independent of problem data.

For this purpose it is convenient to introduce classes of multicriteria optimiza-

tion problems.
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Definition 1.26. A multicriteria optimization class (MCO class) is the set of

all MOPs with the same model map and ordered set and is denoted by

•/θ/(RP ,�). (1.24)

For instance, •/id/(Rp,≤) will denote the class of all MOPs, where opti-

mality is understood in the sense of efficiency.

1.6 Notes

Roy (1990) portrays multicriteria decision making and multicriteria decision

aid as complementary fundamental attitudes for addressing decision mak-

ing problems. Multicriteria decision making includes areas such as multiat-

tribute utility theory (Keeney and Raiffa, 1993) and multicriteria optimiza-

tion (Ehrgott and Gandibleux, 2002b). Multicriteria decision aid, on the other

hand, includes research on the elicitation of preferences from decision mak-

ers, structuring the decision process, and other more “subjective” aspects.

The reader is referred to Figueira et al. (2005) for a collection of up-to-date

surveys on both multicriteria decision making and aid.

Yu (1974) calls {CR(y1) : y1 ∈ Y} a structure of domination. Results

on structures of domination can also be found in Sawaragi et al. (1985). If

CR(y1) is independent of y1, the domination structure is called constant. A

cone therefore implies a constant domination structure.

In terms of the relationships between orders and cones, Noghin (1997)

performs a similar analysis to Theorems 1.17 and 1.20. He calls a relation R a

cone order, if there exists a cone C such that y1Ry2 if and only if y2 − y1 ∈ C.

He proves that R is irreflexive, transitive, compatible with addition and scalar

multiplication if and only if R is a cone relation with a pointed convex cone

C not containing 0.
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Exercises

1.1. Consider the problem

“ min ”(f1(x), f2(x)) subject to x ∈ [−1, 1],

where

f1(x) =
√

5 − x2, f2(x) =
x

2
.

Illustrate the problem in decision and objective space and determine the

the nondominated set YN := {y ∈ Y : there is no y′ ∈ Y with y′ ≤ y} and

the efficient set XE := {x ∈ X : f(x) ∈ YN}.

1.2. Consider the following binary relations on Rp (see Table 1.2):

y1 � y2 ⇐⇒ y1
k ≤ y2

k k = 1, . . . , p;

y1 ≤ y2 ⇐⇒ y1 � y2 and y1 	= y2;

y1 < y2 ⇐⇒ y1
k < y2

k k = 1, . . . , p.

Which of the properties listed in Definition 1.4 do these relations have?

1.3. Solve the problem of Exercise 1.1 as max-ordering and lexicographic prob-

lems:

min
x∈[−1,1]

max
i=1,2

fi(x),

lexminx∈[−1,1] (f1(x), f2(x)) ,

lexminx∈[−1,1] (f2(x), f1(x)) .

Compare the optimal solutions with efficient solutions. What do you observe?

1.4. Prove the following statements.

1. An asymmetric relation is irreflexive.

2. A transitive and irreflexive relation is asymmetric.

3. A negatively transitive and asymmetric relation is transitive.

4. A transitive and connected relation is negatively transitive.

1.5. This exercise is about cones and orders.

1. Determine the cones related to the (strict and weak) componentwise order

and the lexicographic order on R2.

2. Find and illustrate C≤MO
(y) for y = 0, y = (2, 1) and y = (−1, 3).

3. Give an example of a non-convex cone C and list the properties of the

related order RC .
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1.6. A cone C is called acute, if there exists an open halfspace Ha = {x ∈ Rp :

〈x, a〉 > 0} such that cl(C) ⊂ Ha ∪{0}. Is a pointed cone always acute? What

about a convex cone?

1.7. Consider the order relations �,≤, <,≤lex, and ≤MO on Rp and determine

their relationships, i.e., statements of the form

y1Ray2 =⇒ y1Rby
2,

where Ra,Rb ∈ {�,≤, <,≤lex,≤MO}. What do these statements imply for

the related cones CR?

1.8. Let || || : Rp −→ R� be a norm. Define y1 ≤|| || y2 ⇐⇒ ||y1|| ≤ ||y2||. Is

≤|| || a partial order? Is it connected? Determine C≤|| ||
for some norm || || of

your choice.

1.9. A cone C in some vector space V is called generating if V = C−C (loosely

speaking, every v ∈ V can be written as the difference of two nonnegative

elements).

Consider V = C[0, 1], the vector space of all continuous functions f :

[0, 1] −→ R. Show that

C := {f ∈ C[0, 1] : f(x) ≥ 0 for all x ∈ [0, 1]}

is a cone that defines a partial order RC , and that C[0, 1] = C − C, i.e., for

all f ∈ C[0, 1] there are f1, f2 ∈ C such that f = f1 − f2. Can you give an

example of a cone C ⊂ Rp with C − C 	= Rp and find a relationship between

the cone property “generating” and a property of the order RC?

1.10. In this exercise, the relationships between cones and relations are further

developed.

1. Let R be a relation. Define CR as in (1.15). Define RCR as in (1.16) with

C = CR. Under what conditions is RCR = R, i.e., y1RCRy2 ⇐⇒ y1Ry2?

2. Let C be a cone. Define RC as in (1.16). Define CRC as in (1.15) with

R = RC . Is CRC = C always, i.e., d ∈ CRC ⇐⇒ d ∈ C?

1.11. Generalize the definition of RC for the case where C is an arbitrary set.

Derive relationships between properties of C and RC .
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Efficiency and Nondominance

This chapter covers the fundamental concepts of efficiency and nondominance.

We first present some fundamental properties of nondominated points and

several existence results for nondominated points and efficient solutions in

Section 2.1. Section 2.2 introduces ideal and nadir points as bounds on the

set of nondominated solutions. Then we briefly review weakly and strictly

efficient solutions in Section 2.3. The same section also includes a geometric

characterization of the three optimality concepts, with some extensions for the

case of weakly efficient solutions. Finally, in Section 2.4 we introduce several

definitions of properly efficient solutions, important subsets of efficient solu-

tions from a computational point of view and in applications, and investigate

their relationships.

Most of the material in this chapter can be found in the two books Göpfert

and Nehse (1990) and Sawaragi et al. (1985), where the results are presented

in more generality. We will also refer to the original publications for the main

results.

2.1 Efficient Solutions and Nondominated Points

In this chapter we consider multicriteria optimization problems of the class

•/id/(Rp,≤) :

min (f1(x), . . . , fp(x))

subject to x ∈ X .
(2.1)

The image of the feasible set X under the objective function mapping f

is denoted as Y := f(X ). Let us formally repeat the definition of efficient

solutions and nondominated points. Definition 2.1 also introduces the notion

of dominance.
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Definition 2.1. A feasible solution x̂ ∈ X is called efficient or Pareto optimal,

if there is no other x ∈ X such that f(x) ≤ f(x̂). If x̂ is efficient, f(x̂) is called

nondominated point. If x1, x2 ∈ X and f(x1) ≤ f(x2) we say x1 dominates

x2 and f(x1) dominates f(x2). The set of all efficient solutions x̂ ∈ X is

denoted XE and called the efficient set. The set of all nondominated points

ŷ = f(x̂) ∈ Y, where x̂ ∈ XE, is denoted YN and called the nondominated

set—.

We have to remark that these notations are not unique in literature, un-

fortunately. Some authors use Pareto optimal for what we call efficient and

efficient for what we call nondominated (e.g. this notation was used in the

first edition of this book). The term noninferior solution has also been used.

We will use the terms of Definition 2.1, but whenever consulting literature,

the reader should check the definitions the respective author adopts.

Several other, equivalent, definitions of efficiency are frequently used, and

we shall often refer to the one which is best suited in a given context. In

particular, x̂ is efficient if

1. there is no x ∈ X such that fk(x) ≤ fk(x̂) for k = 1, . . . , p and fi(x) <

fi(x̂) for some i ∈ {1, . . . , k};
2. there is no x ∈ X such that f(x) − f(x̂) ∈ −Rp

�
\ {0};

3. f(x) − f(x̂) ∈ Rp \
{
−Rp

�
\ {0}

}
for all x ∈ X ;

4. f(X ) ∩
(
f(x̂) − Rp

�

)
= {f(x̂)};

5. there is no f(x) ∈ f(X ) \ {f(x̂)} with f(x) ∈ f(x̂) − Rp

�
;

6. f(x) � f(x̂) for some x ∈ X implies f(x) = f(x̂).

With the exception of the last, these definitions can be illustrated graphi-

cally. Definition 2.1 and equivalent definitions 1., 4., and 5. consider f(x̂) and

check for images of feasible solutions to the left and below (in direction of

−Rp

�
) of that point. See the left part of Figure 2.1. In equivalent definitions

2. and 3., through f(x) − f(x̂), the set Y = f(X ) is translated so that the

origin coincides with f(x̂), and the intersection of the translated set Y with

the negative orthant is checked. This intersection contains only f(x̂) if x̂ is

efficient. See the right part of Figure 2.1.

The first questions we discuss are the existence and the properties of the

efficient set XE and the nondominated set YN . It is convenient to consider

YN first, and then use properties of f to derive results on XE . So let Y ⊂ Rp

be a set. According to our definitions, ŷ ∈ Y is nondominated, if there is no

y ∈ Y such that y ≤ ŷ.

First we show by means of an example that even for convex sets X and

Y the efficient set XE and the nondominated set set YN might be empty or



2.1 Efficient Solutions and Nondominated Points 25

0 1 2 3 4 5 6
0

1

2

3

4

5

6

...........................................................
...............

........

......

......

......

......

......

.............................

.......................

........................................................................

........................................................................

........................................................................

........................................................................

f(x)

f(x̂) f(X )

•

•

YN

YN

f(x̂) − R
p

�

Definitions 1., 4., and 5.

.
.

.

.

.

.

.
.

.

.

.

.

...........................................................
................

.......

......

......

......

......

......

.............................

.......................

f(x̂) − f(x̂)•

−R
p

�

f(X ) − f(x̂)

Definitions 2. and 3.

.
.

.

.

.

.

.

.

.

Fig. 2.1. Illustration of definitions of efficient solutions.

consist of isolated points. We will then proceed to prove some basic properties

of nondominated sets, before we present several existence theorems for efficient

solutions/nondominated points. Results on connectedness of YN and XE will

be given in Chapter 3.

Example 2.2 (Göpfert and Nehse (1990)). Consider a bicriterion optimization

problem with feasible set

X =

⎧⎪⎨
⎪⎩(x1, x2) ∈ R2

∣∣∣∣∣∣∣
−1 ≤ x1 ≤ 1,

−
√
−x2

1 + 1 < x2 ≤ 0 if −1 ≤ x1 ≤ 0,

−
√
−x2

1 + 1 ≤ x2 ≤ 0 if 0 < x1 ≤ 1

⎫⎪⎬
⎪⎭ (2.2)

and objective function

f(x1, x2) = (x1, x2). (2.3)

The feasible sets X in decision space and Y in criterion space (the latter

coincides with X in this example) are depicted in Figure 2.2.

Clearly, there are no nondominated points, and therefore the bicriterion

problem given by (2.2) and (2.3)does not have any efficient solutions: YN =

XE = ∅, even though X and Y are convex and f is continuous.

If we modify the problem slightly by letting

X =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩(x1, x2) ∈ R2

∣∣∣∣∣∣∣∣∣
−1 ≤ x1 ≤ 1,

x2 = 0 if x1 = −1,

−
√
−x2

1 + 1 < x2 ≤ 0 if −1 < x1 < 0,

−
√
−x2

1 + 1 ≤ x2 ≤ 0 if 0 ≤ x1 ≤ 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (2.4)
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Fig. 2.2. Feasible set of the original problem in Example 2.2.

YN = {(−1, 0), (0,−1)} is no longer empty (Figure 2.3), but consists of only

two disconnected points, which are “far apart” from one another in YN .
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Fig. 2.3. Feasible set of the modified problem in Example 2.2.

��

Example 2.2 shows that conditions for existence of efficient solutions and

nondominated points must be our first concern in the study of multicriteria

optimization. In multicriteria optimization, the “trick” of Example 2.2, to use

y = f(x) = x is quite useful, as it allows to identify decision and criterion

space and enables the study of both XE and YN at the same time. We will

often apply it in the examples to come.
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The following properties of nondominated sets are mainly proved as tools

for the proofs of theorems later in the text. However, they may well enhance

an intuitive understanding of the concept of nondominance. First we show

that nondominated points are located in the “lower left part” of Y: Adding

Rp
�

to Y does not change the nondominated set.

So let Y ⊂ Rp. Let YN = {y ∈ Y : there is no y′ ∈ Y such that y′ ≤ y}.
In particular YN ⊂ Y.

Proposition 2.3. YN =
(
Y + Rp

�

)
N

.

Proof. The result is trivial if Y = ∅, because Y + Rp
�

= ∅ and the nondomi-

nated subsets of both are empty, too.

So let Y 	= ∅. First, assume y ∈ (Y + Rp

�
)N , but y /∈ YN . There are two

possibilities. If y /∈ Y there is y′ ∈ Y and 0 	= d ∈ Rp
�

such that y = y′ + d .

Since y′ = y′ + 0 ∈ Y + Rp
�

we get y /∈ (Y + Rp
�

)N , a contradiction. If y ∈ Y
there is y′ ∈ Y such that y′ ≤ y. Let d = y−y′, which is in Rp

�
\{0}. Therefore

y = y′ + d and y /∈ (Y + Rp
�

)N , again contradicting the assumption. Hence in

either case y ∈ YN .

Second, assume y ∈ YN but y /∈ (Y+Rp
�

)N . Then there is some y′ ∈ Y+Rp
�

with y − y′ = d′ ∈ Rp

�
\ {0}. I.e. y′ = y′′ + d′′ with y′′ ∈ Y, d′′ ∈ Rp

�
and

therefore y = y′+d′ = y′′+(d′+d′′) = y′′+d with d = d′+d′′ ∈ Rp
�
\{0}. This

implies y /∈ YN , contradicting the assumption. Hence, y ∈ (Y + Rp

�
)N . ��

Proposition 2.3 is illustrated in Figure 2.4.

0 1 2 3 4 5 6 7 8
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Y

Y + R
p

�

Fig. 2.4. Nondominated points of Y and Y + Rp

�
are the same.
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A second result, which is intuitively clear, is that efficient points must

belong to the boundary of Y.

Proposition 2.4. YN ⊂ bd(Y).

Proof. Let y ∈ YN and suppose y /∈ bd(Y). Therefore y ∈ intY and there

exists an ε-neighbourhood B(y, ε) of y (with B(y, ε) := y + B(0, ε) ⊂ Y,

B(0, ε) is an open ball with radius ε centered at the origin). Let d 	= 0, d ∈ Rp
�

.

Then we can choose some α ∈ R, 0 < α < ε such that αd ∈ B(0, ε). Now,

y − αd ∈ Y with λd ∈ Rp

�
\ {0}, i.e. y /∈ YN . ��

From Propositions 2.3 and 2.4 we immediately get conditions for YN being

empty.

Corollary 2.5. If Y is open or if Y + Rp

�
is open YN = ∅.

The next results concern the nondominated set of the Minkowski sum of

two sets and of a set multiplied by a positive scalar.

Proposition 2.6. (Y1 + Y2)N ⊂ (Y1)N + (Y2)N .

Proof. Let y ∈ (Y1 + Y2)N . Then y = y1 + y2 for some y1 ∈ Y1, y
2 ∈ Y2.

Assuming y1 /∈ (Y1)N it follows that there must be some y′ ∈ Y1 and d ∈ Rp
≥

such that y1 = y′ + d and thus y = y′ + y2 + d with y′ + y2 ∈ Y1 +Y2 whence

y /∈ (Y1 + Y2)N , contradicting the assumption.

Analogously, y2 ∈ (Y2)N , i.e. y1 + y2 ∈ (Y1)N + (Y∈)N . ��

The inclusion (Y1)N + (Y2)N ⊂ (Y1 + Y2)N is not satisfied in general,

Exercise 2.1 asks for a counterexample.

Proposition 2.7. (αY)N = α(YN ), for α ∈ R, α > 0 .

Proof. The easy proof is left to the reader, see Exercise 2.4. ��

With these propositions we have some tools to facilitate working with non-

dominated sets. In order to prove existence results for nondominated points

we have to introduce another fundamental statement, Zorn’s Lemma.

Definition 2.8. Let (S,�) be a preordered set, i.e. � is reflexive and tran-

sitive. (S,�) is inductively ordered, if every totally ordered subset of (S,�)

has a lower bound. A totally ordered subset of (S,�) is also called a chain.

Theorem 2.9 (Zorn’s lemma). Let the preordered set (S,�) be inductively

ordered. Then S contains a minimal element, i.e. there is ŝ ∈ S such that s � ŝ

implies ŝ � s.
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Fig. 2.5. Y0 is a compact section of Y.

Theorem 2.10 (Borwein (1983)). Let Y be a nonempty set and suppose

there is some y0 ∈ Y such that the section Y0 = {y ∈ Y : y � y0} =

(y0 −Rp

�
)∩Y is compact (we say “Y contains a compact section”). Then YN

is nonempty.

Proof. The idea of the proof is as follows. We use the compactness of Y0

to show that every chain in Y0 has a lower bound. Thus Y0 is inductively

ordered, and by Zorn’s Lemma contains a minimal element ŷ. Showing that

ŷ is efficient in Y completes the proof.

Let Y0 be the compact section that exists by assumption and let YI =

{yi : i ∈ I}, where I is some index set, be a chain in Y0. We prove that

{yi : i ∈ I} has a lower bound. To that end let J := {J ⊂ I : |J | < ∞} be

the set of all finite subsets of index set I. For all J ∈ J finiteness of J and

YI being a chain in Y0 imply that yJ := inf{yi : i ∈ J} exists and yJ ∈ Y0.

Consider all sets Yi := (yi−Rp

�
)∩Y0, where i ∈ I. Obviously Yi ⊂ Y0 and Yi

is compact as a closed subset of the compact set Y0. Furthermore, if J ∈ J ,

i.e. J is finite, ∩i∈JYi 	= ∅ because it contains yJ . Finally, by compactness of

Y0 it follows that ∩i∈IYi 	= ∅, which means there is some

y′ ∈
⋂
i∈I

(
yi − Rp

�

)
∩ Y0. (2.5)

In terms of the componentwise order this means y′ � yi for all i ∈ I, or,

in other words, y′ ∈ Y0 is a lower bound of {yi : i ∈ I}, which is therefore

inductively ordered.
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We can now apply Zorn’s Lemma (Theorem 2.9) to conclude that Y0

contains a minimal element ŷ. It remains to be shown that ŷ ∈ YN . Assume

the contrary. Then there would be some y′′ ∈ Y with y′′ ≤ ŷ. For y′′ we have

y′′ ∈
(
ŷ − Rp

�

)
∩ Y ⊂

((
y0 − Rp

�

)
∩ Y − Rp

�

)
∩ Y

⊂
(
y0 − Rp

�

)
∩ Y − Rp

�
= Y0 − Rp

�
.

(2.6)

The first inclusion holds because ŷ ∈ Y0, the second is clear. Since y′′ ∈ Y
this implies y′′ ∈ Y0, so that y′′ ≤ ŷ contradicts minimality of ŷ in Y0. ��

Note that we have used the following fact about compact sets: If Y is

compact and (Yi), i ∈ I is a family of closed subsets of Y for some index

set I such that ∩n
k=1Yik

	= ∅ for all finite subsets of {i1, . . . , in} of I then

∩i∈IYi 	= ∅.
Another existence result does not use a compact section but a condition

on Y which is similar to the finite subcover property of compact sets: the Rp
�

-

semicompactness condition, which considers open covers with special sets.

Definition 2.11. A set Y ⊂ Rp is called Rp
�
-semicompact if every open cover

of Y of the form
{
(yi − Rp

�
)c : yi ∈ Y, i ∈ I

}
has a finite subcover. This means

that whenever Y ⊂ ∪i∈I(yi − Rp

�
)c there exist m ∈ N and {i1, . . . , im} ⊂ I

such that

Y ⊂
m⋃

k=1

(
yik − Rp

�

)c

. (2.7)

Here (yi −Rp

�
)c denotes the complement Rp \ (yi − Rp

�
) of yi − Rp

�
. Note

that these sets are always open.

Based on Zorn’s Lemma again, we can prove that Rp

�
-semicompactness

guarantees existence of efficient points.

Theorem 2.12 (Corley (1980)). If Y 	= ∅ is Rp

�
-semicompact then YN 	=

∅.

Proof. The main steps of the proof are the same as for Theorem 2.10. We show

that Y is inductively ordered and apply Zorn’s Lemma. First, we construct

an open cover of Y as in Definition 2.11 and derive a contradiction when we

assume that Y is not inductively ordered.

So assume Y is not inductively ordered. Then there is a totally ordered

subset (a chain) of Y, say Y ′ = {yi : i ∈ I} which has no lower bound.

Therefore ⋂
i∈I

((
yi − Rp

�

)
∩ Y
)

= ∅. (2.8)
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As seen in the proof of Theorem 2.10, any element in this intersection

would be a lower bound of Y ′. Then for each y ∈ Y there is some yi ∈ Y ′ such

that y /∈ yi − Rp
�

.

Since yi − Rp
�

is closed, {(yi − Rp
�

)c : i ∈ I} defines an open cover of

Y. Moreover, yi − Rp

�
⊂ yi′ − Rp

�
if and only if yi � yi′ and the sets of

the cover are totally ordered by inclusion because Y ′ is a chain. Also, Y is

Rp
�

-semicompact and there is a finite subcover of {(yi − Rp
�

)c : i ∈ I}.
Combining the last two observations, it follows that there is a minimal

set (with respect to inclusion) in the finite subcover and hence there exists a

single y∗ ∈ Y ′ such that Y ⊂ (y∗ − Rp
�

)c. This implies y∗ � yi for all i ∈ I
and y∗ /∈ Y, which is not possible. Therefore Y is inductively ordered.

Knowing that, we proceed as in the proof of Theorem 2.10 to conclude

YN 	= ∅. ��
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Fig. 2.6. Constructing a cover from a chain.

Although theoretically interesting, Theorem 2.12 gives a condition which

is usually not easy to check: Rp
�

-semicompactness. A weaker result is obtained

if we use the stronger assumption of Rp

�
-compactness.

Definition 2.13. A set Y ⊂ Rp is called Rp

�
-compact, if for all y ∈ Y the

section (y − Rp
�

) ∩ Y is compact.

Proposition 2.14. If Y is Rp
�
-compact then Y is Rp

�
-semicompact.
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Proof. Let {(yi − Rp

�
)c : yi ∈ Y, i ∈ I} be an open cover of Y. For arbitrary

yi′ ∈ Y take {(
yi − Rp

�

)c

: yi ∈ Y, i ∈ I, i 	= i′
}

. (2.9)

(2.9) defines an open cover of (yi′ − Rp

�
) ∩ Y, a compact set, since Y is

Rp

�
-compact. But compactness implies that the cover in (2.9) contains a finite

subcover of (yi′−Rp

�
)∩Y. This finite subcover together with (yi′−Rp

�
)c yields

a finite cover of Y, of the structure required for Rp
�

-semicompactness. ��

Corollary 2.15 (Hartley (1978)). If Y ⊂ Rp is nonempty and Rp
�
-

compact, then YN 	= ∅.

Proof. The result follows immediately from Theorem 2.12 and Proposition

2.14. ��

So far, we focused on existence of nondominated points. Let us now con-

sider existence of efficient solutions, i.e. conditions that guarantee XE 	= ∅,
which is an important issue when practical problems are considered. We can

use Theorem 2.12 and properties of f to get an existence result for XE . The-

orem 2.19 below is a multicriteria analogon to the well known result that a

lower semicontinuous function attains its minimum over a compact set.

Definition 2.16. A function f : Rn → Rp is Rp
�
-semicontinuous if

f−1
(
y − Rp

�

)
=
{
x ∈ Rn : y − f(x) ∈ Rp

�

}
(2.10)

is closed for all y ∈ Rp, i.e. the preimage of the translated negative orthant is

always closed.

Lemma 2.17 below establishes Rp
�

-semicontinuity as a proper generaliza-

tion of lower semicontinuity of scalar valued functions.

Lemma 2.17. A function f : Rn → Rp is Rp
�
-semicontinuous if and only

if the component functions fk : Rn → R are lower semicontinuous for all

k = 1, . . . , p.

The proof is left to the reader.

Proposition 2.18. Let X ⊂ Rn be nonempty and compact, f : Rn → Rp be

Rp

�
-semicontinuous. Then Y = f(X ) is Rp

�
-semicompact.
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Proof. Let {(yi − Rp

�
)c : yi ∈ Y, i ∈ I} be an open cover of Y. By Rp

�
-

semicontinuity of f, {f−1((yi − Rp

�
)c) : yi ∈ Y, i ∈ I} is an open cover of X .

Because X is compact there is a finite subcover in this open cover. The image

of this subcover is a finite subcover of Y whence Y is Rp
�

semicompact. ��

Theorem 2.19. Let X ⊂ Rn be a nonempty and compact set. Let f be Rp

�
-

semicontinuous. Then XE 	= ∅.

Proof. The result follows directly from Theorem 2.12 and Proposition 2.18.

��

Given a set Y ⊂ Rp with nonempty nondominated set YN 	= ∅, it is clear

that for any y ∈ Y \ YN there is some ŷ ∈ Y such that ŷ ≤ y. But is it

always guaranteed that a nondominated ŷ dominating y exists? It turns out

that under existence conditions for nondominated points this is true.

Definition 2.20. The nondominated set YN is said to be externally stable, if

for each y ∈ Y \ YN there is ŷ ∈ YN such that y ∈ ŷ + Rp

�
.

Theorem 2.21. Let Y ⊂ Rp

�
be nonempty and Rp

�
-compact. Then YN is

externally stable, i.e.

Y ⊂ YN + Rp

�
.

Proof. Let y ∈ Y. Define

Y ′ :=
(
y − Rp

�

)
∩ Y,

i.e. all points in Y dominating y. We need to show that Y ′ ∩ YN 	= ∅. To do

so it is enough to show that Y ′
N 	= ∅ and that Y ′

N ⊂ YN .

Y ′ is Rp
�

-compact since Y is (see Definition 2.13). Therefore Y ′
N 	= ∅ ac-

cording to Corollary 2.15.

Assume that y′ is not in YN , but y′ ∈ Y ′ (otherwise y′ is certainly not

contained in Y ′
N ). Thus y′ ∈ Y and there is some y′′ ∈ Y such that y′′ ≤ y′.

Therefore y′′ ≤ y′ ≤ y and y′′ ∈ Y ′. This implies y′ 	∈ Y ′
N . ��

2.2 Bounds on the Nondominated Set

In this section, we define the ideal and nadir points as lower and upper bounds

on nondominated points. These points give an indication of the range of the

values which nondominated points can attain. They are often used as reference

points in compromise programming (see Section 4.5) or in interactive methods

the aim of which is to find a most preferred solution for a decision maker.
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We assume that XE and YN are nonempty, and want to find real numbers

y
k
, yk, k = 1, . . . , p with y

k
≤ yi ≤ yi for all y ∈ YN , as shown in Figure 2.7.

An obvious possibility is to choose

y
k

:= min
y∈Y

yi, (2.11)

yk := max
y∈Y

yi. (2.12)

While the lower bound (2.11) is tight (there is always an efficient point

y ∈ YN with yk = y
k
), the upper bound (2.12) tends to be far away from

actual nondominated points. For this reason, the upper bound is defined as

the maximum over nondominated points only.

Definition 2.22. 1. The point yI = (yI
1 , . . . , yI

p) given by

yI
k := min

x∈X
fk(x) = min

y∈Y
yk (2.13)

is called the ideal point of the multicriteria optimization problem minx∈X

(f1(x), . . . , fp(x)).

2. The point yN = (yN
1 , . . . , yN

p ) given by

yN
k := max

x∈XE

fk(x) = max
y∈YN

yk (2.14)

is called the nadir point of the multicriteria optimization problem.

The ideal and nadir points for a nonconvex problem are shown in Figure

2.7.

Obviously, we have yI
k ≤ yk and yk ≤ yN

k for any y ∈ YN . Furthermore

yI and yN are tight lower and upper bounds on the efficient set. Since the

ideal point is found by solving p single objective optimization problems its

computation can be considered easy (from a multicriteria point of view). On

the other hand, computation of yN involves optimization over the efficient set,

a very difficult problem. No efficient method to determine yN for a general

MOP is known.

Due to the difficulty of computing yN , heuristics are often used. A basic

estimation of the nadir point uses pay-off tables. We describe the approach

now.

First, we solve p single objective problems minx∈X fk(x). Let the optimal

solutions be xk, k = 1, . . . , p, i.e. fk(xk) = minx∈X fk(x). Using these optimal

solutions compute the pay-off table shown in Table 2.1.

Finally, from the pay-off table, clearly yI
k = fk(xk), k = 1, . . . , p. We define

ỹN
i := max

k=1,...,p
fi(x

k), (2.15)
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Fig. 2.7. Efficient set, ideal, and nadir point.

Table 2.1. Pay-off table and ideal point.

x1 x2 · · · xp−1 xp

f1 yI
1 f1(x

2) · · · f1(x
p−1) f1(x

p)

f2 f2(x
1)

. . . · · · · · · f2(x
p)

...
...

...
. . .

...
...

fp−1 fp−1(x
1) · · · · · ·

. . . fp−1(x
p)

fp fp(x1) fp(x
2) · · · fp(x

p−1) yI
p

the largest element in row i, as an estimate for yN
i .

Although appealing at first glance, the problem with pay-off tables is

that ỹN may over- or under-estimate yN , when more than two objectives are

present, and when there are multiple optimal solutions of the single objective

problems minx∈X fk(x). The example below illustrates the phenomenon.

Example 2.23 (Korhonen et al. (1997)). Consider the multicriteria linear
programming problem
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min −11 x2 −11 x3 −12 x4 −9 x5 −9 x6 +9 x7

min −11 x1 −11 x3 −9 x4 −12 x5 −9 x6 +9 x7

min −11 x1 −11 x2 −9 x4 −9 x5 −12 x6 −12 x7

subject to x1 + x2 + x3 + x4 + x5 + x6 + x7 = 1

x � 0.

The image of the feasible set Y = f(X ) is illustrated in Figure 2.8.

-14 -12 -10 -8 -6 -4 -2 2 4 6 8 10 12

-18

-16

-14

-12

-10

-8

-6

-4

-2

2

−17

−15

−13

−11

−9

−7

−5

1

3

−3

−1


...............

........

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
............................

.......................

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

..........................

.......................

•

•

•

•

•
•

•

f(x1)

f(x2)

f(x3)

f(x4)

f(x5)

f(x6)

f(x7)

f1(x)

f2(x)f3(x)

......................................................................................................................................................................................................................
...................................................................................

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
.......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
...

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
.............................................................................................................................................................................................................................................................................................................................................................



..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
.

...................................................................................................................................................................................................................................................................................................................................................

........
........
........
........
........
........
........
........
........
........
........
........
........
........
............. .

....... ........ ..
...... ........ ...

..... ........ ....
.... ........ .....

... ........ ......
.. ........ .......

. ........ ........
........ ........

........ ........ .
....... ........ ...

..... ........ ....
.... ........ .....

... ........ ......
.. ........ .......

. ........ ........
........ ........

........ ........ .
....... ........ ..

...... ........ ...
..... ........ .....

... ........ ......
.. ........ .......

. ........ ........
........ ........ .

....... ........ ..
...... ........ ....

.... ........ .....
... ........ .

........
........

........
........

........
........

........
........

........
........

........
........

........
........

........
........

........
........

........
........

........
........

........
........

........
........

........
........

........
........

........
........

........
........

........
........

........
........

........
........

........
........

........
........

........
........

........
........

........
........

........
........

........
........

........
........

........
........

........
........

........
........

........
........

........
........

........
........

........

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........

Fig. 2.8. Feasible set in Example 2.23.

To check the pay-off table approach, we proceed as follows. Solving the

single objective problems, we get the solutions shown in Table 2.2, where ei

denotes the i-th unit vector.

The pay-off table is shown in Table 2.3, with two different choices of the

optimal solution of the third problem, namely x = e6 and x = e7.

We shall now show that the nadir point cannot be obtained from the pay-

off table. By solving appropriate weighted sum problems with positive weights,

it can be seen that xi = ei, i ∈ {1, . . . , 6} are (properly) efficient (cf. Chapter

3) The feasible solution x7 = e7 is obviously weakly efficient, as a minimizer

of one objective, but not efficient since x6 dominates x7.

For x = e1 ∈ XE we have f(x) = (0,−11,−11). For x = e2 ∈ XE we have

f(x) = (−11, 0,−11) and for x = e3 ∈ XE we have f(x) = (−11,−11, 0).
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Table 2.2. Single objectives and minimizers in Example 2.23.

Problem All optimal solutions

minx∈X f1(x) x4 = 1, xi = 0, i �= 4, i.e. x = e4

minx∈X f2(x) x5 = 1, xi = 0, i �= 5, i.e. x = e5

minx∈X f3(x) x6 = α, x7 = 1 − α, xi = 0, i �= 6, 7,

where α ∈ [0, 1], i.e. x = αe6 + (1 − α)e7

Table 2.3. Pay-off table in Example 2.23.

e4 e5 e6 e7

f1 -12 -9 -9 9

f2 -9 -12 -9 9

f3 -9 -9 -12 -12

Therefore yN
i ≥ 0, i = 1, 2, 3. But because no efficient solution can have

positive objective values in this example, the Nadir point is yN = (0, 0, 0).

For the values in the pay-off table, we observe that

• with x = e7 we overestimate yN
1 (arbitrarily far: replace +9 by M > 0

arbitrarily large), whereas

• with x = e6 we underestimate yN
1 severely (arbitrarily far, if we modify

the cost coefficients appropriately).

��

The reason for overestimation in Example 2.23 is, that x3 is only weakly

efficient. If we choose efficient solutions to determine xi, overestimation is of

course impossible. The presence of weakly efficient solutions is caused by the

multiple optimal solutions of minx∈X f3(x). In general, it is difficult to be sure

that the single objective optimizers are efficient.

The only case where yN can be determined is for p = 2. Here the worst

value for y2 is attained when y1 is minimal and vice versa, and by a two step

optimization process, we can eliminate weakly efficient choices in the pay-off

table.
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Algorithm 2.1 (Nadir point for p = 2.)

Input: Feasible set X and objective function f of an MOP.

Solve the single objective problems minx∈X f1(x) and minx∈X f2(x). De-

note the optimal objective values by yI
1 , y

I
2 .

Solve minx∈X f2(x) with the additional constraint f1(x) ≤ yI
1 .

Solve minx∈X f1(x) with the additional constraint f2(x) ≤ yI
2 .

Denote the optimal objective values by yN
2 , yN

1 , respectively.

Output: yN = (yN
1 , yN

2 ) is the nadir point, yI = (yI
1 , yI

2) is the ideal point.

It is easy to see from the definition of yN that the procedure indeed finds

yN . The optimal solutions of the constrained problems in the second step are

efficient. Unfortunately, this approach cannot be generalized to more than two

objectives, because if p > 2 we do not know, which objectives to fix in the

second step. Indeed, the reader can check, that in Example 8.5 of Section 8.1,

the Nadir point is yN = (11, 9, 11, 8), where yN
2 and yN

4 are determined by

efficient solutions, which are not optimal for any of the single objectives.

2.3 Weakly and Strictly Efficient Solutions

Nondominated points are defined by the componentwise order on Rp. When

we use the the weak and strict componentwise order instead, we obtain defini-

tions of strictly and weakly nondominated points, respectively. In this section,

we prove an existence result for weakly nondominated points and weakly effi-

cient solutions. We then give a geometric characterization of all three types of

efficiency and some further results on the structure of weakly efficient solutions

of convex multicriteria optimization problems.

Definition 2.24. A feasible solution x̂ ∈ X is called weakly efficient (weakly

Pareto optimal) if there is no x ∈ X such that f(x) < f(x̂), i.e. fk(x) < fk(x̂)

for all k = 1, . . . , p. The point ŷ = f(x̂) is then called weakly nondominated.

A feasible solution x̂ ∈ X is called strictly efficient (strictly Pareto optimal)

if there is no x ∈ X , x 	= x̂ such that f(x) � f(x̂). The weakly (strictly)

efficient and nondominated sets are denoted XwE(XsE) and YwE, respectively.

Some authors say that a weakly nondominated point is a nondominated

point with respect to int Rp
�

= Rp
>, a notation that is quite convenient in

the context of cone-efficiency and cone-nondominance. Because in this text
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we focus on the case of the nonnegative orthant we shall distinguish between

efficiency/nondominance and their weak counterparts.

From the definitions it is obvious that

YN ⊂ YwN (2.16)

and

XsE ⊂ XE ⊂ XwE . (2.17)

As in the case of efficiency, weak efficiency has several equivalent defini-

tions. We mention only two. A feasible solution x̂ ∈ X is weakly efficient if

and only if

1. there is no x ∈ X such that f(x̂) − f(x) ∈ int Rp

�
= Rp

>

2. (f(x̂) − Rp
>) ∩ Y = ∅.

It is also of interest that there is no such concept as strict nondominance

for sets Y ⊂ Rp. By definition, strict efficiency prohibits solutions x1, x2 with

f(x1) = f(x2), i.e. strict efficiency is the multicriteria analogon of unique

optimal solutions in scalar optimization:

x̂ ∈ XsE ⇐⇒ x̂ ∈ XE and |{x : f(x) = f(x̂)}| = 1. (2.18)

It is obvious that all existence results for YN imply existence of YwN as

well. However, we shall see that YwN can be nonempty, even if YN is empty.

Therefore, independent conditions for YwN to be nonempty are interesting.

We give a rather weak one here, another one is in Exercise 2.6. Note that the

proof does not require Zorn’s Lemma.

Theorem 2.25. Let Y ⊂ Rp be nonempty and compact. Then YwN 	= ∅.

Proof. Suppose YwN = ∅. Then for all y ∈ Y there is some y′ ∈ Y such that

y ∈ y′ + Rp
>. Taking the union over all y ∈ Y we obtain

Y ⊂
⋃
y′

(y′ + Rp
>). (2.19)

Because Rp
> is open, (2.19) defines an open cover of Y. By compactness of Y

there exists a finite subcover, i.e.

Y ⊂
k⋃

i=1

(yi + Rp
>). (2.20)

Choosing yi on the left hand side, this yields that for all i = 1, . . . , k there is

some 1 ≤ j ≤ k with yi ∈ yj +Rp
>. In other words, for all i there is some j such

that yj < yi. By transitivity of the strict componentwise order < and because

there are only finitely many yi there exist i∗, m, and a chain of inequalities

s.t. yi∗ < yi1 < . . . < yim < yi∗ , which is impossible. ��
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The essential difference as compared to the proofs of Theorems 2.10 and

2.12 is that in those theorems we deal with sets y−Rp
�

which are closed. Here,

we have sets y + Rp
> which are open. Note that y /∈ y + Rp

>.

Theorem 2.25 and continuity of f can now be used to prove existence of

weakly efficient solutions.

Corollary 2.26. Let X ⊂ Rn be nonempty and compact. Assume that f :

Rn → Rp is continuous. Then XwE 	= ∅.

Proof. The result follows from Theorem 2.19 and XE ⊂ XwE or from Theorem

2.25 and the fact that f(X ) is compact for compact X and continuous f . ��

As indicated earlier, the inclusion YN ⊂ YwN is in general strict. The

following example shows that YwN can be nonempty, even if YN is empty,

and also, of course, if Y is not compact. It also illustrates that YwN \ YN

might be a rather large set.

Example 2.27. Consider the set

Y =
{
(y1, y2) ∈ R2 : 0 < y1 < 1, 0 ≤ y2 ≤ 1

}
. (2.21)

Then YN = ∅ but YwN = (0, 1)×{0} = {y ∈ Y : 0 < y1 < y2, y2 = 0} (Figure

2.9).
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Fig. 2.9. YN is empty, YwN is not.

Let us now look at the closed square, i.e.

Y = {(y1, y2) ∈ R2 : 0 ≤ yi ≤ 1}. (2.22)

We have YN = {0} and YwN = {(y1, y2) ∈ Y : y1 = 0 or y2 = 0}. (Figure

2.10)

��
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Fig. 2.10. Nondominated and weakly nondominated points.

XE ,XsE and XwE can be characterized geometrically. To derive this char-

acterization, we introduce level sets and level curves of functions.

Definition 2.28. Let X ⊂ Rn, f : X → R, and x̂ ∈ X .

L≤(f(x̂)) = {x ∈ X : f(x) ≤ f(x̂)} (2.23)

is called the level set of f at x̂.

L=(f(x̂)) = {x ∈ X : f(x) = f(x̂)} (2.24)

is called the level curve of f at x̂.

L<(f(x̂)) = L≤(f(x̂)) \ L=(f(x̂))

= {x ∈ X : f(x) < f(x̂)} (2.25)

is called the strict level set of f at x̂.

Obviously L=(f(x̂)) ⊂ L≤(f(x̂)) and x ∈ L=(f(x̂)).

Example 2.29. We use an example with X = R2 for illustration purposes. Let

f(x1, x2) = x2
1 + x2

2. Let x̂ = (3, 4). Hence

L≤(f(x̂)) =
{
(x1, x2) ∈ R2 : x2

1 + x2
2 ≤ 25

}
, (2.26)

L=(f(x̂)) =
{
(x1, x2) ∈ R2 : x2

1 + x2
2 = 25

}
. (2.27)

The level set and level curve are illustrated in Figure 2.11, as disk and circle

in the x1-x2-plane, respectively.

��

For a multicriteria optimization problem we consider the level sets and

level curves of all objectives f1, . . . , fp at x̂. The following observation shows

how level sets can be used to decide efficiency of x̂.
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Fig. 2.11. Level set and level curve in Example 2.29.

Let us consider a bicriterion problem, and assume that we have determined

L≤(f1(x̂)) and L≤(f2(x̂)) for feasible solution x̂, as shown in Figure 2.12. We

shall assume that the level curves are the boundaries of the level sets and the

strict level sets are the interiors of the level sets.
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Fig. 2.12. Level sets and efficiency.

Can x̂ be efficient? The answer is no: It is possible to move into the interior

of the intersection of both level sets and thus find feasible solutions, which are

better with respect to both f1 and f2. In fact, x̂ is not even weakly efficient.

Thus, x̂ can only be (weakly) efficient if the intersection of strict level sets is
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empty or level sets intersect in level curves, respectively. We can now formulate

the characterization of (strict, weak) efficiency using level sets.

Theorem 2.30 (Ehrgott et al. (1997)). Let x̂ ∈ X be a feasible solution

and define ŷk := fk(x̂), k = 1, . . . , p. Then

1. x̂ is strictly efficient if and only if

p⋂
k=1

L≤(ŷk) = {x̂}. (2.28)

2. x̂ is efficient if and only if

p⋂
k=1

L≤(ŷk) =

p⋂
k=1

L=(ŷk). (2.29)

3. x̂ is weakly efficient if and only if

p⋂
k=1

L<(ŷk) = ∅. (2.30)

Proof. 1. x̂ is strictly efficient

⇐⇒ there is no x ∈ X , x 	= x̂ such that f(x) � f(x̂)

⇐⇒ there is no x ∈ X , x 	= x̂ such that fk(x) ≤ fk(x̂) for all k = 1, . . . , p

⇐⇒ there is no x ∈ X , x 	= x̂ such that x ∈ ∩p
k=1L≤(ŷk)

⇐⇒ ∩p
k=1L≤(ŷk) = {x̂}

2. x̂ is efficient

⇐⇒ there is no x ∈ X such that both fk(x) ≤ fk(x̂) for all k = 1, . . . , p

and fj(x) < fj(x̂) for some j

⇐⇒ there is no x ∈ X such that both x ∈ ∩p
k=1L≤(ŷq) and x ∈ L<(ŷj)

for some j

⇐⇒ ∩p
k=1L≤(ŷk) = ∩p

k=1L=(yk)

3. x̂ is weakly efficient

⇐⇒ there is no x ∈ X such that fk(x) < fk(x̂) for all k = 1, . . . , p

⇐⇒ there is no x ∈ X such that x ∈ ∩p
k=1L<(ŷq)

⇐⇒ ∩p
k=1L<(ŷk) = ∅. ��

Clearly, Theorem 2.30 is most useful when the level sets are available

graphically, i.e. when n ≤ 3. We illustrate the use of the geometric charac-

terization by means of an example with two variables. Exercises 2.8 – 2.11

show how the(strictly, weakly) efficient solutions can be described explicitly

for problems with one variable.
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Example 2.31. Consider three points in the Euclidean plane, x1 = (1, 1), x2 =

(1, 4), and x3 = (4, 4). The l22-location problem is to find a point x = (x1, x2) ∈
R2 such that the sum of weighted squared distances from x to the three points

xi, i = 1, 2, 3 is minimal. We consider a bicriterion l22-location problem, i.e.

two weights for each of the points xi are given through two weight vectors

w1 = (1, 1, 1) and w2 = (2, 1, 4).

The two objectives measuring weighted distances are given by

fk(x) =

3∑
i=1

wk
i ((xi

1 − x1)
2 + (xi

2 − x2)
2). (2.31)

Evaluating these functions we obtain

f1(x) = 2(1 − x1)
2 + (4 − x1)

2 + (1 − x2)
2 + 2(4 − x2)

2

= (x2
1 − 4x1 + x2

2 − 6x2) + 51

f2(x) = 3(1 − x1)
2 + 4(4 − x1)

2 + 2(1 − x2)
2 + 5(4 − x2)

2

= 7

(
x2

1 −
38

7
x1 + x2

2 −
44

7
x2

)
+ 149.

We want to know if x = (2, 2) is efficient. So we check the level sets and

level curves of f1 and f2 at (2, 2). The objective values are f1(2, 2) = 15 and

f2(2, 2) = 41.

The level set L=(f1(2, 2)) = {x ∈ R2 : f1(x) = 15} is given by

f1(x) = 15 ⇐⇒ 3(x2
1 − 4x1 + x2

2 − 6x2) + 51 = 15

⇐⇒ (x1 − 2)2 + (x2 − 3)2 = 1,

i.e. L=(f1(2, 2)) = {x ∈ R2 : (x1 − 2)2 + (x2 − 3)2 = 1}, a circle with center

(2, 3) and radius 1. Analogously, for f2 we have

f2(x) = 41 ⇐⇒ 7

(
x2

1 −
38

7
x1 + x2

2 −
44

7
x2

)
+ 149 = 41

⇐⇒
(

x1 −
19

7

)2

+

(
x2 −

22

7

)2

=
89

49
,

and L=(f2(2, 2)) =
{
x ∈ R2 : (x1 − 19/7)2 + (x2 − 22/7)2 = 89/49

}
, a cir-

cle around (19/7, 22/7) with radius
√

89/7.

In Figure 2.13 we see that ∩2
i=1L≤(fi(2, 2)) 	= ∩2

i=1L=(fi(2, 2)) because

the intersection of the discs has nonempty interior. Therefore, from Theorem

2.30 x = (2, 2) is not efficient. Note that in this case the level sets are simply

the whole discs, the level curves are the circles and the strict level sets are the

interiors of the discs.
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Let us now check x = (2, 3). We have f1(2, 3) = 12 and f2(2, 3) = 32.

Repeating the computations from above, we obtain

f1(x) = 12 ⇐⇒ (x1 − 2)2 + (x2 − 3)2 = 0,

whence L=(f1(2, 3)) = {x ∈ R2 : (x1 − 2)2 +(x2 − 3)2 = 0} = {(2, 3)}. For f2

f2(x) = 32 ⇐⇒
(

x1 −
19

7

)2

+

(
x2 −

22

7

)2

=
26

49

and L=(f2(2, 3)) =
{
x ∈ R2 : (x1 − 19/7)2 + (x2 − 22/7)2 = 26/49

}
, a circle

around (19/7, 22/7) with radius
√

26/7.

We have to check if L=(f1(2, 3))∩L=(f2(2, 3)) is the same as L≤(f1(2, 3))∩
L≤(f2(2, 3)). But for x = (2, 3) L=(f1(2, 3)) = {(2, 3)}, i.e. the level set

consists of only one point, which is on the boundary of L≤(f2(2, 3)). Thus

(2, 3) is efficient. In fact, it is even strictly efficient.
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L=(f1(2, 2)) is the circle around (2, 3) with radius 1.

L=(f1(2, 3)) is {(2, 3)}.
L=(f2(2, 2)) is the circle around (19/7, 22/7) with radius

√
89/7.

L=(f2(2, 3)) is the circle around (19/7, 22/7) with radius
√

26/7.

Fig. 2.13. Location problem of Example 2.31.

��

Theorem 2.30 shows that sometimes not all the criteria are needed to see

if a feasible solution x̂ is weakly or strictly efficient: Once the intersection of
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some level sets contains only x̂, or the intersection of some strict level sets is

empty, it will remain so when intersected with more (strict) level sets. This

observation leads us to investigating the question of how many objectives

are actually needed to determine if a feasible solution x̂ is (strictly, weakly)

efficient or not.

Let P ⊂ {1, . . . , p} and denote by fP := (fj : j ∈ P) the objective function

vector that only contains fj , j ∈ P .

Corollary 2.32. Let P ⊂ {1, . . . , p} be nonempty and let x̂ ∈ X . Then the

following statements hold.

1. If x̂ is a weakly efficient solution of (X , fP , R|P|)/id/(R|P|, <) it is also a

weakly efficient solution of (X , f, Rp)/id/(Rp, <).

2. If x̂ is a strictly efficient solution of (X , fP , R|P|)/id/(R|P|, �) it is also

a strictly efficient solution of (X , f, Rp)/id/(Rp, �).

Corollary 2.32 says that weak or strict efficiency of some solution x̂ for a

problem with a subset of the p objectives implies weak (strict) efficiency for

the problem with all objectives. Let us now investigate whether it is possible

to find all weakly (strictly) efficient solutions by solving only problems with

less than p objectives. For weakly efficient solutions this is possible for convex

functions..

For the rest of this section we suppose that X ⊂ Rn is a convex set and

that fk : Rn → R are convex functions. This implies that all level sets are con-

vex. Theorem 2.30 is then about intersections of convex sets. A fundamental

theorem on such intersections is known in convex analysis: Helly’s Theorem.

Theorem 2.33 (Helly (1923)). Let p > n and let C1, . . . , Cp ⊂ Rn be

convex sets. Then
p⋂

i=1

Ci 	= ∅

if and only if for all collections of n + 1 sets Ci1 , . . . , Cin+1

n+1⋂
j=1

Cij
	= ∅.

Equivalently stated, we can say that

p⋂
i=1

Ci = ∅

if and only if there is a subset of n + 1 sets Ci, {Ci1 , . . . , Cin+1
} such that



2.3 Weakly and Strictly Efficient Solutions 47

n+1⋂
j=1

Cij
= ∅.

In the multicriteria optimization context we will choose strict level sets as

Ci. Combining Theorem 2.30, Corollary 2.32 and Helly’s Theorem we imme-

diately obtain the following “reduction result” for weakly efficient solutions

of convex multicriteria optimization problems.

Proposition 2.34. Consider the multicriteria optimization problem (X , f,

Rp)/id/(Rp, <), where X ⊂ Rn is convex, fk : Rn → R, k = 1 . . . , p are

convex and p > n. Then x̂ ∈ X is weakly efficient if and only if there is a sub-

set P ⊂ {1, . . . , p}, 0 < |P| ≤ n + 1 such that x̂ is a weakly efficient solution

of (X , fP , R|P|)/id/(R|P|, <).

We shall adopt the notation XwE(f), XwE(fP), and XE(f), XE(fP) here

to refer to the (weakly) efficient sets of the problems with f and fP , to avoid

confusion. Proposition 2.34 is called a “reduction result”, because it shows

that the p-criteria problem (X , f, Rp)/id/(Rp, <) can be solved by solving

problems with at most n + 1 criteria (X , fP , R|P|)/id/(R|P|, <) at a time.

Indeed, we observe that the structure of XwE(f) is described by

XwE(f) =
⋃

P⊂{1,...,p}
|P|≤n+1

XwE

(
fP
)
. (2.32)

Investing some more effort, it is even possible to describe XwE(f) in terms

of efficient solutions of subproblems with at most n+1 objectives. The follow-

ing results show that on the right hand side of (2.32), XwE can be replaced

by XE .

Proposition 2.35 (Malivert and Boissard (1994)). When the objective

functions fk are convex functions and the feasible set X is convex we have

XwE(f) =
⋃

P⊂{1,...,p}
P�=∅

XE(fP). (2.33)

Proof. We prove both set inclusions by showing the contrapositive.

“⊃” Choose x ∈ X with x /∈ XwE(f). Consequently, there is some x′ ∈ X
with fk(x′) < fk(x) for all k = 1, . . . , p, which implies that x cannot be

in XE(fP) for any choice of P ⊂ {1, . . . , p}.
“⊂” We prove, by induction, that for each l = 1, . . . , p there is a subset

Pl of {1, . . . , p} of cardinality p − l and a feasible solution xl such that
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fi(x
l) ≤ fi(x) whenever i ∈ Pl and fi(x

l) < fi(x) otherwise. For p = l

this implies that x is not weakly efficient.

Choose x ∈ X with x /∈ ∪P⊂{1,...,p}XE(fP). In particular, x /∈ XE(f).

Thus letting P = {1, . . . , p}, there is some i1 ∈ P and some x1 ∈ X
such that fi1(x

1) < fi1(x) and fi(x
1) ≤ fi(x), i 	= i1. We now define

P1 := P \ {i1}.
Now for l ≥ 1 suppose we found Pl = {1, . . . , p} \ {i1, . . . , il} and xl ∈ X
such that fi(x

l) < fi(x) for all i ∈ {i1, . . . , il} and fi(x
l) ≤ fi(x) for

all i ∈ Pl. Since x /∈ XE(fPl) by assumption, there is some il+1 ∈ Pl

and x̃l+1 ∈ X such that fil+1
(x̃l+1) < fil+1

(x) and fi(x̃
l+1) ≤ fi(x) for

all i ∈ Pl. However, x̃l+1 itself does not suffice to prove the condition

for objectives fi, i ∈ {i1, . . . , il}. We exploit convexity here. Let xl+1 =

αxl + (1 − α)x̃l+1, where λ ∈ (0, 1). Then

fi(x
l+1) < fi(x) for all i ∈ {i1, . . . , il}, (2.34)

whenever (1 − α) is sufficiently small, due to the continuity of fi and

applying fi(x
l) < fi(x) from the induction hypothesis. Furthermore,

fil+1
(xl+1) ≤ αfil+1

(xl) + (1 − α)fil+1
(x̃l+1)

< αfil+1
(x) + (1 − α)fil+1

(x) (2.35)

= fil+1
(x)

by applying convexity for the first inequality and the induction hypothesis

as well as the choice of x̃l+1 for the second. Finally,

fi(x
l+1) ≤ fi(x) for all i ∈ Pl+1 = {1, . . . , p} \ {i1, . . . , il+1} (2.36)

follows from convexity and the choice of x̃l+1.

After p applications of this construction we have found xp such that

fi(x
p) < fi(x) for i = 1, . . . , p, i.e. x /∈ XwE(f). ��

The preliminary result of Proposition 2.35 can now be combined with

Helly’s Theorem to obtain the structure result for weakly efficient solutions

of convex multicriteria problems.

Theorem 2.36 (Malivert and Boissard (1994)). Assume that X is a

nonempty convex set and that the objective functions fk, k = 1, . . . , p are

convex functions. Then

XwE(f) =
⋃

P⊂{1,...,p}
1≤|P|≤n+1

XE(fP). (2.37)
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Proof. Of course we need only consider the case p > n + 1 and we only have

to prove “⊂”, because the other inclusion is an immediate consequence of

Proposition 2.35 and the fact that XE(fP) ⊂ XwE(fP).

So, again, choose x ∈ X , where x /∈ ∪1≤|P|≤n+1XE(fP) and let J ⊂
{1, . . . , p}, J 	= ∅, |J | ≤ n + 1 be any nonempty subset of at most n + 1

indices. By the assumption on x we know that x /∈ ∪I⊂JXE(fI). Then by

Proposition 2.35 x /∈ XwE(fJ ) and there is some xJ ∈ X such that

fj(x
J ) < fj(x) for all j ∈ J . (2.38)

For all indices i ∈ {1, . . . , p} we define

Ci = conv
{
xJ : J ⊂ {1, . . . , p}, J 	= ∅, |J | ≤ n + 1, i ∈ J

}
. (2.39)

By (2.38) it follows that fi(x
J ) < fi(x) for each J ⊂ {1, . . . , p}, 1 ≤ |J | ≤

n + 1 and each i ∈ J . Furthermore by convexity

fi(x
′) < fi(x) for all x′ ∈ Ci. (2.40)

When we look at some J , fixed for the moment, we know that ∩i∈J Ci ⊃
{xJ }, i.e. ∩i∈J Ci 	= ∅. Therefore we can apply Helly’s Theorem to conclude

that there is at least one x̂ ∈ ∩p
i=1Ci and (2.40) tells us fi(x̂) < fi(x), thus

x /∈ XwE(f). ��

With a reduction result like (2.32) and a structure result like Theorem

2.36 for weakly efficient solutions, we may ask if similar results are possible

for (strictly) efficient solutions. We give a counterexample to see that

XsE(f) =
⋃

P⊂{1,...,p}
|P|≤n+1

XsE

(
fP
)

does not hold for strictly efficient solutions.

Example 2.37 (Ehrgott and Nickel (2002)). Consider the MOP

min (x1, . . . , xn,−x1, . . . − xn)

subject to x ∈ [−1, 1]n.

x̂ = 0 is a strictly efficient solution. Consider subsets P ⊂ {1, . . . , p}
with |P| < p = 2n. If P is such that |P| = 2k and i ∈ P ⇔ 2i ∈ P then

x̂ ∈ XE(fP). However, for such subsets x̂ is not strictly efficient, because all

vectors ej, j /∈ P have the same objective function values for objectives in P
(ej denotes the i-th unit vector in Rn).

In any other case there is some i ≤ n such that either i ∈ P , 2i /∈ P or

2i ∈ P , i /∈ P . Thus either −ei or ei dominate x̂. ��
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This shows that strict efficiency of x̂ can only be confirmed using all p

objectives. Thus for a problem with n variables, a lower bound on the maximal

number of criteria needed to decide strict efficiency is 2n.

2.4 Proper Efficiency and Proper Nondominance

According to Definition 2.1, an efficient solution does not allow improvement

of one objective function while retaining the same values on the others. Im-

provement of some criterion can only be obtained at the expense of the deteri-

oration of at least one other criterion. These trade-offs among criteria can be

measured by computing the increase in objective fi, say, per unit decrease in

objective fj . In some situations such trade-offs can be unbounded. We give an

example below and introduce Geoffrion’s definition of efficient solutions with

bounded trade-offs, so called properly efficient solutions. Then some further

definitions of proper efficiency by Borwein, Benson, and Kuhn and Tucker are

presented. The results proved thereafter give an overview about the relation-

ships between the various types of proper efficiency.

Example 2.38. Let the feasible set in decision and objective space be given by

X = {(x1, x2) ∈ R2 : (x1 − 1)2 + (x2 − 1)2 ≤ 1, 0 ≤ x1, x2 ≤ 1},

and Y = X as shown in Figure 2.14.
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Fig. 2.14. Properly nondominated point ŷ.
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Clearly, YN = {(y1, y2) ∈ Y : (y1 − 1)2 + (y2 − 1)2 = 1}. We observe that

the closer ŷ is moved towards (1, 0), the larger an increase of y1 is necessary to

achieve a unit decrease in y2. In the limit, an infinite increase of y1 is needed

to obtain a unit decrease in y2. ��

Definition 2.39 (Geoffrion (1968)). A feasible solution x̂ ∈ X is called

properly efficient, if it is efficient and if there is a real number M > 0 such

that for all i and x ∈ X satisfying fi(x) < fi(x̂) there exists an index j such

that fj(x̂) < fj(x) such that

fi(x̂) − fi(x)

fj(x) − fj(x̂)
≤ M. (2.41)

The corresponding point ŷ = f(x̂) is called properly nondominated.

According to Definition 2.39 properly efficient solutions therefore are those

efficient solutions that have bounded trade-offs between the objectives.

Example 2.40. In Example 2.38 consider the solution x̂ = (1, 0). We show that

x̂ is not properly efficient. To do so, we have to prove that for all M > 0 there

is an index i ∈ {1, 2} and some x ∈ X with fi(x) < fi(x̂) such that

fi(x̂) − fi(x)

fj(x) − fj(x̂)
> M

for all j ∈ {1, 2} with fj(x) > fj(x̂).

Let i = 1 and choose xε with xε
1 = 1− ε, 0 < ε < 1 and xε

2 = 1−
√

1 − ε2,

i.e. xε is efficient because (xε
1 − 1)2 + (xε

2 − 1)2 = 1. Since xε ∈ X , xε
1 < x̂,

1

and xε
2 > x̂2 we have i = 1, j = 2. Thus

fi(x̂) − fi(x
ε)

fj(xε) − fj(x̂)
=

1 − (1 − ε)

1 −
√

1 − ε2
=

ε

1 −
√

1 − ε2

ε→0−→ ∞. (2.42)

��

The main results about properly efficient solutions show that they can be

obtained by minimizing a weighted sum of the objective functions where all

weights are positive. For convex problems optimality for the weighted sum

scalarization is a necessary and sufficient condition for proper efficiency. We

will prove these results in Section 3.2.

In the previous section we have given conditions for the existence of

nondominated points/efficient solutions. These imply, of course, existence of

weakly nondominated points/weakly efficient solutions. They do not guaran-

tee existence of properly nondominated points. This can be seen from the

following example.
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Example 2.41. Let Y = {y ∈ R2 : y1 < 0, y2 = 1/y1}. Then YN = Y, but

YpN = empty. To see this, take any ŷ ∈ YN and a sequence yk with yk
2 > ŷ2

and yk
1 → −∞ or yk

1 > ŷ1 and yk
2 → −∞. ��

As mentioned in the introduction of this section, Geoffrion is not the only

one to introduce properly efficient solutions. Before we can present the defini-

tions of Borwein and Benson, we have to introduce two cones related to sets

Y ⊂ Rp.

Definition 2.42. Let Y ⊂ Rp and y ∈ Y.

1. The tangent cone of Y at y ∈ Y is

TY(y) :=
{
d ∈ Rp : ∃{tk} ⊂ R, {yk} ⊂ Y s.t. yk → y, tk(yk − y) → d

}
.

(2.43)

2. The conical hull of Y is

cone(Y) = {αy : α ≥ 0, y ∈ Y} =
⋃
α≥0

αY. (2.44)

Note that the conditions yk → y and tk(yk − y) → d in the definition of

the tangent cone imply that tk → ∞. One could equivalently require yk → y

and (1/(tk))(yk − y) → d, whence tk → 0. Both definitions can be found in

the literature. Examples of the conical hull of a set Y and the tangent cone

of Y at a point y are shown in Figure 2.15. The tangent cone is translated

from the origin to the point y to illustrate where its name comes from: It is

the cone of all directions tangential to Y in y.

Proposition 2.43 on properties of tangent cones and conical hulls will be

helpful later.

Proposition 2.43. 1. The tangent cone TY(y) is a closed cone.

2. If Y is convex then TY(y) = cl(cone(Y − y)), which is a closed convex

cone.

Proof. 1. Note first that 0 ∈ TY(y) (take yk = y for all k) and TY(y) is

indeed a cone: For α > 0, d ∈ TY(y) we have αd ∈ TY(y). To see this,

just take αtk instead of tk when constructing the sequence tk.

To see that it is closed take a sequence {dl} ⊂ TY(y), y ∈ Y , with dl → d,

for some d ∈ Rp. Since dl ∈ TY(y), for all l there are sequences {yl,k},
{tl,k} as in the Definition 2.42. From the convergence we get that for fixed

l there is some kl s.t.
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Fig. 2.15. Conical hull and tangent cone.

∥∥tl,kl
(yl,kl − y) − dl

∥∥ ≤ 1

l
(2.45)

for all k ≥ kl. We fix the kl and observe that because of (2.45) if l → ∞
the sequence tl,kl

(yl,kl − y) → d, i.e. d ∈ TY(y).

2. Let Y be convex, y ∈ Y. By definition of closure and conical hull, it is

obvious that cl(cone(Y − y)) is a closed convex cone.

To see that TY(y) ⊂ cl(cone(Y − y)) let d ∈ TY(y). Then there are se-

quences {tk}, {yk} with tk(yk − y) → d. Since tk(yk − y) ∈ α(Y − y) for

some α > 0closedness implies d ∈ cl(cone(Y − y)).

For cl(cone(Y − y)) ⊂ TY(y) we know that TY(y) is closed and only show

cone(Y − y) ⊂ TY(y). Let d ∈ cone(Y − y), i.e. d = α(y′ − y) with

α ≥ 0, y′ ∈ Y. Now define yk := (1−1/k)y+(1/k)y′ ∈ Y and tk = αk ≥ 0.

Hence

tk(yk−y) = αk

((
k − 1

k
y +

1

k
y′

)
− y

)
= α((k−1)y+y′−ky) = α(y′−y).

So yk → y and tk(yk − y) → d implying d ∈ TY(y). ��

Definition 2.44. 1. (Borwein (1977)) A solution x̂ ∈ X is called properly

efficient (in Borwein’s sense) if

TY+R
p

�
(f(x̂)) ∩

(
−Rp

�

)
= {0}. (2.46)

2. (Benson (1979)) A solution x̂ ∈ X is called properly efficient if

cl
(
cone

(
Y + Rp

�
− f(x̂)

))
∩
(
−Rp

�

)
= {0}. (2.47)
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As we observed in Proposition 2.43 it is immediate from the definitions of

conical hulls and tangent cones that

TY+R
p

�
(f(x̂)) ⊂ cl

(
cone

(
Y + Rp

�
− f(x̂)

))
(2.48)

so that Benson’s definition is stronger than Borwein’s.

Theorem 2.45. 1. If x̂ is properly efficient in Benson’s sense, it is also

properly efficient in Borwein’s sense.

2. If X is convex and fk : Rn → R are convex then both definitions coincide.

Example 2.46. Consider X = {(x1, x2) : x2
1 + x2

2 ≤ 1} and, as usual,

f1(x) = x1, f2(x) = x2. Then (−1, 0) and (0,−1) are efficient, but not prop-

erly efficient in the sense of Borwein (and thus not in the sense of Benson).
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Fig. 2.16. Benson’s proper efficiency.

The tangent cone translated to the point y = (−1, 0) contains all directions

in which Y extends from y, including the limits, i.e. the tangents. The tangent

to the circle at (−1, 0) is a vertical line, and therefore

TY(−1, 0) = {(y1, y2) ∈ R2 : y1 ≥ 0}. (2.49)

The intersection with the nonpositive orthant is therefore not {0}:

TY(−1, 0) ∩ (−Rp
�

) = {(y1, y2) ∈ R2 : y1 = 0, y2 ≤ 0}, (2.50)
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indicated by the bold line in Figure 2.16. A similar interpretation applies to

(0,−1). ��

That convexity is indeed needed for Borwein’s definition to imply Benson’s

can be seen in Exercise 2.13. Definition 2.44 does not require x̂ to be efficient,

as does Definition 2.39. It is therefore legitimate to ask whether properly

efficient solutions in Benson’s or Borwein’s sense are always efficient.

Proposition 2.47. If x̂ is properly efficient in Borwein’s sense, then x̂ is

efficient.

Proof. The proof is left to the reader as Exercise 2.12. ��

Benson’s and Borwein’s definitions of proper efficiency are not restricted to

the componentwise order. In fact, in these definitions Rp
�

can be replaced by

an arbitrary closed convex cone C. They are therefore applicable in the more

general context of orders defined by cones. Geoffrion’s definition on the other

hand explicitly uses the componentwise order. Our next result shows that in

the case of C = Rp
�

the definitions of Geoffrion and Benson actually coincide,

so that Benson’s proper efficiency is a proper generalization of Geoffrion’s.

Theorem 2.48 (Benson (1979)). Feasible solution x̂ ∈ X is properly effi-

cient in Geoffrion’s sense (Definition 2.39) if and only if it is properly efficient

in Benson’s sense.

Proof. “=⇒” Suppose x̂ is efficient, but not properly efficient in Benson’s

sense. Then we know that a nonzero d ∈ cl(cone(Y +Rp

�
−f(x̂)))∩(−Rp

�
)

exists. Without loss of generality we may assume that d1 < −1, di ≤
0, i = 2, . . . , p (otherwise we can reorder the components of f and rescale

d). Consequently there are sequences {tk} ⊂ R>, {xk} ⊂ X , {rk} ⊂ Rp
�

such that tk(f(xk) + rk − f(x̂)) → d.

Choosing subsequences if necessary, we can assume that Q := {i ∈
{1, . . . , p} : fi(x

k) > fi(x̂)} is the same for all k and nonempty (since x̂ is

efficient). Now let M > 0. From convergence we get existence of k0 such

that for all k ≥ k0

f1(x
k) − f1(x̂) < − 1

2 · tk
(2.51)

and fi(x
k) − fi(x̂) ≤ 1

2 · Mtk
i = 2, . . . , p (2.52)

because tk → ∞. In particular, for i ∈ Q, we have

0 < fi(x
k) − fi(x̂) ≤ 1

2 · Mtk
∀ k ≥ k0 (2.53)
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and therefore, from (2.51) and (2.53)

f1(x̂) − f1(x
k)

fi(xk) − fi(x̂)
>

1
2·tk

1
2·Mtk

= M. (2.54)

Because M was chosen arbitrarily chosen, x̂ is not properly efficient in

Geoffrion’s sense.

“⇐=” Suppose x̂ is efficient, but not properly efficient in Geoffrion’s sense.

Let Mk > 0 be an unbounded sequence of positive real numbers. Without

loss of generality we assume that for all Mk there is an xk ∈ X such that

f1(x
k) < f1(x̂) and

f1(x̂) − f1(x
k)

fj(xk) − fj(x̂)
> Mk ∀ j ∈ {2, . . . , p} with fj(x

k) > fj(x̂). (2.55)

Again, choosing a subsequence if necessary, we can assume Q = {i ∈
{1, . . . , p} : fi(x

k) > fi(x̂)} is constant for all k and nonempty. We con-

struct appropriate sequences {tk}, {rk} such that the limit of tk(f(xk) +

rk − f(x̂)) converges to d ∈ cl(cone(f(X ) + Rp
�
− f(x̂))) ∩ (−Rp

�
).

Define tk := (f1(x̂) − f1(x
k))−1 which means tk > 0 for all k. Define

rk ∈ Rp

�
through

rk
i :=

{
0 i = 1, i ∈ Q
fi(x̂) − fi(x

k) otherwise.
(2.56)

With these sequences we compute

tk(fi(x
k) + rk

i − fi(x̂))

⎧⎨
⎩

= −1 i = 1

= 0 i 	= 1, i /∈ Q
∈ (0, M−1

k ) i ∈ Q.

(2.57)

This sequence converges due to the choice of Mk → ∞ to some d ∈
Rp, where di = lim

k→∞
tk(fi(x

k) + rk
i − fi(x̂)) for i = 1, . . . , p. Thus, from

(2.57) d1 = −1, di = 0, i 	= 1, i /∈ Q, di = 0, i ∈ Q. Because d =

(−1, 0, . . . , 0) ∈ cl(cone(f(X ) + Rp
�
− f(x̂))) ∩ (−Rp

�
), x̂ is not properly

efficient in Benson’s sense. ��

In multicriteria optimization, especially in applications, we will often en-

counter problems, where X is given implicitly by constraints, i.e.

X = {x ∈ Rn : (g1(x), . . . , gm(x)) ≤ 0}. (2.58)

For such constrained multicriteria optimization problems yet another defi-

nition of proper efficiency can be given. Let us assume that the objective
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functions fi, i = 1, . . . , p as well as the constraint functions gj, j = 1, . . . , m

are continuously differentiable. We consider the multiobjective programme

min f(x)

subject to g(x) � 0,
(2.59)

where f : Rn → Rp and g : Rn → Rp.

Definition 2.49 (Kuhn and Tucker (1951)). A feasible solution x̂ ∈ X
is called properly efficient (in Kuhn and Tucker’s sense) if it is efficient and

if there is no d ∈ Rn satisfying

〈∇fk(x̂), d〉 ≤ 0 ∀ k = 1, . . . , p (2.60)

〈∇fi(x̂), d〉 < 0 for some i ∈ {1, . . . , p} (2.61)

〈∇gj(x̂), d〉 ≤ 0 ∀ j ∈ J (x̂) = {j = 1, . . . , m : gj(x̂) = 0} (2.62)

The set J (x̂) is called the set of active indices. As for Geoffrion’s definition,

efficiency according to the componentwise order is implicitly assumed here,

and the definition is not applicable to orders derived from closed convex cones.

Intuitively, the existence of a vector d satisfying (2.60) – (2.62) means that

moving from x̂ in direction d no objective function increases (2.60), one strictly

decreases (2.61), and the feasible set is not left (2.62). Thus d is a feasible

direction of descent. Note that a slight movement in all directions is always

possible without violating any inactive constraint.

We prove equivalence of Kuhn and Tucker’s and Geoffrion’s definitions

under some constraint qualification. This constraint qualification of Defini-

tion 2.50 below means that the feasible set X has a local description as a

differentiable curve (at a feasible solution x̂): Every feasible direction d can

be written as the gradient of a feasible curve starting at x̂.

Definition 2.50. A differentiable MOP (2.59) satisfies the KT constraint

qualification at x̂ ∈ X if for any d ∈ Rn with 〈∇gj(x̂), h〉 ≤ 0 for all j ∈ J (x̂)

there is a real number t > 0, a function θ : [0, t] → Rn, and α > 0 such that

θ(0) = x̂, g(θ(t)) ≤ 0 for all t ∈ [0, t] and θ′(0) = αd.

Theorem 2.51 (Geoffrion (1968)). If a differentiable MOP satisfies the

KT constraint qualification at x̂ and x̂ is properly efficient in Geoffrion’s sense,

then it is properly efficient in Kuhn and Tucker’s sense.

Proof. Suppose x̂ is efficient, but not properly efficient according to Definition

2.49. Then there is some d ∈ Rn such that (without loss of generality, after

renumbering the objectives)



58 2 Efficiency and Nondominance

〈∇f1(x̂), d〉 < 0 (2.63)

〈∇fk(x̂), d〉 ≤ 0 ∀ k = 2, . . . , p (2.64)

〈∇gj(x̂), d〉 ≤ 0 ∀ j ∈ J (x̂). (2.65)

Using the function θ from the constraint qualification we take a sequence

tk → 0, and if necessary a subsequence such that

Q = {i : fi(θ(tk)) > fi(x̂)} (2.66)

is the same for all k. Since for i ∈ Q by the Taylor expansion of fi at θ(tk))

fi(θ(tk)) − fi(x̂) = tk〈∇fi(x̂), αd〉 + o(tk) > 0 (2.67)

and 〈∇fi(x̂), d〉 ≤ 0 it must be that

〈∇fi(x̂), αd〉 = 0 ∀ i ∈ Q. (2.68)

But since 〈∇f1(x̂), d〉 < 0 the latter implies

=⇒ f1(x̂) − f1(θ(tk))

fi(θ(tk)) − fi(x̂)
=

−〈∇f1(x̂), αd〉 + o(tk)
tk

〈∇fi(x̂), αd〉 + o(tk)
tk

→ ∞ (2.69)

whenever i ∈ Q. Hence x̂ is not properly efficient according to Geoffrion’s

definition. ��

The converse of Theorem 2.51 holds without the constraint qualification.

It turns out that this result is an immediate consequence of Theorem 3.25

(necessary conditions for Kuhn and Tucker’s proper efficiency) and Theorem

3.27 (sufficient conditions for Geoffrion’s proper efficiency). These results are

proved in Section 3.3. In Section 3.3 we shall also see that without constraint

qualification, Geoffrion’s proper efficiency does not necessarily imply proper

efficiency in Kuhn and Tucker’s sense.

Theorem 2.52. Let fk, gj : Rn → R be convex, continuously differentiable

functions and suppose x̂ is properly efficient in Kuhn and Tucker’s sense.

Then x̂ is properly efficient in Geoffrion’s sense.

Let us conclude the section by a summary of the definitions of proper effi-

ciency and their relationships. Figure 2.17 illustrates these (see also Sawaragi

et al. (1985)). The arrows indicate implications. Corresponding results and

the conditions under which the implications hold are mentioned alongside the

arrows. On the right of the picture, the orders and problem types for which

the respective definition is applicable are given.
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closed convex cone C
x ∈ X

C = R
p

�

x ∈ X

C = R
p

�

x ∈ X = {x ∈ R
n : g(x) ≤ 0}

Fig. 2.17. Relationships among definitions of proper efficiency for the case

C = Rp

�
.

In order to derive further results on proper efficiency and important prop-

erties of (weakly) efficient sets we have to investigate weighted sum scalariza-

tions in greater detail, i.e. the relationships between those types of solutions

and optimal solutions of single objective optimization problems

min
x∈X

p∑
k=1

λkfk(x),

where λ ∈ Rp
≥ is a vector of nonnegative weights of the objective functions.

This is the topic of Chapter 3.

2.5 Notes

As we have pointed out after the definition of efficient solutions and nondomi-

nated points (Definition 2.1) notation for efficient solutions and nondominated

points is not unique in the literature. Table 2.4 below gives an overview of

some of the notations used. Another term for efficient point is admissible

point (Arrow et al., 1953), but this is rarely used today. Although some au-

thors distinguish between the case that the decision space is Rn or a more

general vector space (Jahn) or the order is defined by Rp

�
or a more general

cone (Miettinen), most of these definitions use the same terms in decision and
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Table 2.4. Terminology for efficiency and nondominance.

Author Decision space Objective space

Sawaragi et al. (1985) efficient efficient

solution element

Chankong and Haimes (1983) noninferior noninferior

solution solution

Yu (1985) Pareto optimal Pareto optimal

point outcome

N-point N-point

Miettinen (1999) Pareto optimal Pareto optimal

decision vector criterion vector

efficient efficient

decision vector criterion vector

Deb (2001) Pareto optimal Pareto optimal

solution solution

Jahn (2004) Edgeworth-Pareto minimal

optimal point element

minimal minimal

solution element

Göpfert and Nehse (1990) Pareto optimal efficient

solution element

Steuer (1985) efficient nondominated

point criterion vector

criterion space, which might cause confusion and does not help distinguish

two very different things.

The condition of Rp
�

-compactness in Corollary 2.15 can be replaced by

Rp

�
-closedness and Rp

�
-boundedness, which are generalizations of closedness

and boundedness, see Exercises 2.4 and 2.5. For closed convex sets Y it can be

shown that the conditions of Theorem 2.10, Corollary 2.15 and Rp

�
-closedness

and Rp
�

-boundedness coincide, see for example Sawaragi et al. (1985, page 56).

Other existence results are known, which often use a more general setting
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than we adopt in this text. We refer, e.g.xs to Göpfert and Nehse (1990);

Sawaragi et al. (1985); Hazen and Morin (1983) or Henig (1986). A review of

existence results for nondominated and efficient sets is provided by Sonntag

and Zǎlinescu (2000).

We remark that all existence results presented in this Chapter are still

valid, if Rp

�
is replaced by a convex, pointed, nontrivial, closed cone C with

the proofs unchanged. Furthermore, the closedness assumption for C is not

required if (y − cl C) is used instead of (y − C) everywhere. In Exercises 2.2

and 2.7 nondominance with respect to a cone is formally defined, and the

reader is asked to check some of the results about efficient sets in this more

general context.

Similarly, Theorem 2.21 is valid for any nonempty, closed, convex cone C.

In fact, C-compactness can be replaced by C-closedness and C-boundedness,

see Sawaragi et al. (1985) for more details. External stability of YN has

been shown for closed convex Y by Luc (1989). More results can be found

in Hirschberger (2002). A counterpart to the external stability is internal sta-

bility of a set. A set Y is called internally stable with respect to C, if y−y′ 	∈ C
for all y, y′ ∈ Y. Obviously, nondominated sets are always internally stable.

The computation of the nadir point is difficult, because it amounts to

solving an optimization problem over the efficient set of a multicriteria opti-

mization problem, see Yamamoto (2002) for a survey on that topic. Never-

theless, interactive methods often assume that the ideal and nadir point are

known (see Miettinen (1999)[Part II, Chapter 5] for an overview on interac-

tive methods). A discussion of heuristics and exact methods to compute nadir

points and implications for interactive methods can be found in Ehrgott and

Tenfelde-Podehl (2003).

For reduction results on the number of criteria to determine (strict, weak)

efficiency of a feasible solution x̂, we remark that the case of efficiency is

much more difficult than either strict or weak efficiency. Ehrgott and Nickel

(2002) show that a reduction result is true for strictly quasi-convex problems

with n = 2 variables. For the general case of n > 2 neither a proof nor a

counterexample is known.

In addition to the definitions of proper efficiency mentioned here, the fol-

lowing authors define properly efficient solutions Klinger (1967), Wierzbicki

(1980) and Henig (1982). Borwein and Zhuang (1991, 1993) define super effi-

cient solutions. Henig (1982) gives two definitions that generalize the defini-

tions of Borwein and Benson (Definition 2.44) but that coincide with these in

the case C = Rp

�
discussed in this book.
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Exercises

2.1. Give a counterexample to the converse inclusion in Proposition 2.6.

2.2. Given a cone C ⊂ Rp and the induced order ≤C , ŷ ∈ Y is said to be

C-nondominated if there is no y ∈ Y, y 	= ŷ such that y ∈ ŷ − C. The set

of C-nondominated points is denoted YCN . Let C1, C2 be two cones in Rp and

assume C1 ⊂ C2. Prove that if ŷ is C2-nondominated it is also C1-nondominated.

Illustrate this “larger cone – fewer nondominated points” result graphically.

2.3. Prove that (αY)N = α(YE) where Y ⊂ Rp is a nonempty set and α is a

positive real number.

2.4. Let Y ⊂ Rp be a convex set. The recession cone (or asymptotic cone)

Y∞ of Y, is defined as

Y∞ := {d ∈ Rp : ∃ y s.t. y + αd ∈ Y ∀ α > 0},

i.e. the set of directions in which Y extends infinitely.

1. Show that Y is bounded if and only if Y∞ = {0}.
2. Let Y = {(y1, y2) ∈ R2 : y2 ≥ y2

1}. Determine Y∞.

2.5. A set Y ⊂ Rp is called Rp
�

-closed, if Y + Rp
+ is closed and Rp

�
-bounded,

if Y∞ ∩ (−Rp
�

) = {0}. Give examples of sets Y ⊂ R2 that are

1. R2
�

-compact, R2
�

-bounded, but not R2
�

-closed,

2. R2
�

-bounded, R2
�

-closed, but not R2
�

-compact.

2.6. Prove the following existence result for weakly nondominated points. Let

∅ 	= Y ⊂ Rp be Rp
�

-compact. Show that YwN 	= ∅. Do not use Corollary 2.15

nor the fact that YN ⊂ YwN .

2.7. Recall the definition of C-nondominance from Exercise 2.2: ŷ ∈ Y is C-

nondominated if there is no y ∈ Y such that ŷ ∈ y+C. Verify that Proposition

2.3 is still true if C is a pointed, convex cone. Give examples that the inclusion

YCN ⊂ (Y +C)CN is not true when C is not pointed and when C is not convex.

2.8. Let [a, b] ⊂ R be a compact interval. Suppose that all fk : R → R are

convex, k = 1, . . . , p. Let

xm
k = min

{
x ∈ [a, b] : fk(x) = min

x∈[a,b]
fk(x)

}

and
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xM
k = max

{
x ∈ [a, b] : fk(x) = min

x∈[a,b]
fk(x)

}
.

Using Theorem 2.30 show that

XE =

[
min

k=1,...,p
xM

k , max
k=1,...,p

xm
k

]
∪
[

max
k=1,...,p

xm
k , min

k=1,...,p
xM

k

]

XwE =

[
min

k=1,...,p
xm

k , max
k=1,...,p

xM
k

]
.

2.9. Use the result of Exercise 2.8 to give an example of a multicriteria opti-

mization problem with X ⊂ R where XsE ⊂ XE ⊂ XwE , with strict inclusions.

Use two or three objective functions.

2.10 (Hirschberger (2002)). Let Y = {y ∈ R2 : y1 < 0, y2 = 1/y1}. Show

that YN = Y but YpN = ∅.

2.11. Let X = {x ∈ R : x ≥ 0} and f1(x) = ex,

f2(x) =

{
1

x+1 0 ≤ x ≤ 5

(x − 5)2 + 1
6 x ≥ 5.

Using the result of Exercise 2.8, determine XE . Which of these solutions are

strictly efficient? Can you prove a sufficient condition on f for x ∈ R to be

a strictly efficient solution of minx∈X⊂R f(x)? Derive a conjecture from the

example and try to prove it.

2.12. Show that if x̂ is properly efficient in the sense of Borwein, then x̂ is

efficient.

2.13 (Benson (1979)). Consider the following example:

X =
{
(x1, x2) ∈ R2 : x1 + x2 ≥ 0

}
∪
{
(x1, x2) ∈ R2 : x1 ≥ 1

}
∪
{
(x1, x2) ∈ R2 : x2 ≥ 1

}
with f1(x) = x1, f2(x) = x2. Show that x = 0 is properly efficient in the sense

of Borwein, but not in the sense of Benson.

2.14. Consider an MOP minx∈X f(x) with p objectives. Add a new objective

fp+1. Is the efficient set of the new problem bigger or smaller than that of the

original problem or does it remain unchanged?

2.15. The following definition of an ideal point was given by Balbás et al.

(1998). Let minx∈X (f1(x), . . . , fp(x)) be a multicriteria optimization problem.

A point y ∈ Rp is called an ideal point if there exists a closed, convex, pointed

cone C ⊆ Rp such that Y ⊂ y + C. If in addition y ∈ Y, y is a proper ideal

point.
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1. Show that the ideal point yI (Section 2.2) is ideal in Balbas’ sense. Which

cone C is used?

2. For the MOP with

X = {x ∈ R2 : x1 + x2 ≥ 1, −x1 + x2 ≥ 0, x1, x2 ≥ 0}

and f1(x) = x1, f2(x) = x2, determine YN and the set of all ideal points.

3. Give an example of a problem where ideal points exist, but at most finitely

many of them are proper ideal points. Can you find an example with no

proper ideal points?

2.16. Prove formally that Algorithm 2.1 is correct, i.e. that it finds the nadir

point for bicriterion problems.



3

The Weighted Sum Method and Related Topics

In this chapter we will investigate to what extent an MOP

min
x∈X

(f1(x), . . . , fp(x)) (3.1)

of the Pareto class

(X , f, Rp)/id/(Rp,≤)

can be solved (i.e. its efficient solutions be found) by solving single objective

problem problems of the type

min
x∈X

p∑
k=1

λkfk(x), (3.2)

which in terms of the classification of Section 1.5 is written as

(X , f, Rp)/〈λ, ·〉/(R,≤), (3.3)

where 〈λ, ·〉 denotes the scalar product in Rp. We call the single objective (or

scalar) optimization problem (3.2) a weighted sum scalarization of the MOP

(3.1).

As in the previous chapter, we will usually look at the objective space Y
first and prove results on the relationships between (weakly, properly) non-

dominated points and values
∑p

k=1 λkyk. From those, we can derive results

on the relationships between X(w,p)E and optimal solutions of (3.2).

We use these results to prove Fritz-John and Kuhn-Tucker type optimality

conditions for (weakly, properly) efficient solutions (Section 3.3). Finally, we

investigate conditions that guarantee that nondominated and efficient sets are

connected (Section 3.4).

Let Y ⊂ Rp. For a fixed λ ∈ Rp

�
we denote by
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S(λ,Y) :=

{
ŷ ∈ Y : 〈λ, ŷ〉 = min

y∈Y
〈λ, y〉

}
(3.4)

the set of optimal points of Y with respect to λ.

Figure 3.1 gives an example of a set S(λ,Y) consisting of two points y1

and y2. These points are the intersection points of a line {y ∈ Rp : 〈λ, y〉 = ĉ.

Obviously, y1 and y2 are nondominated. Considering c as a parameter, and

the family of lines {y ∈ Rp : 〈λ, y〉 = c}, we see that in Figure 3.1 ĉ is chosen

as the smallest value of c such that the intersection of the line with Y is

nonempty.
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Fig. 3.1. A set S(λ,Y).

Graphically, to find ĉ we can start with a large value of the parameter

c and translate the line in parallel towards the origin as much as possible

while keeping a nonempty intersection with Y. Analytically, this means finding

elements of S(λ,Y). The obvious questions are:

1. Does this process always yield nondominated points? (Is S(λ,Y) ⊂ YN?)

and

2. if so, can all nondominated points be detected this way? (Is YN ⊂
∪λ∈R

p

≥
S(λ,Y)?)

Note that due to the definition of nondominated points, we have to con-

sider nonnegative weighting vectors λ ∈ Rp
≥ only. However, the distinction

between nonnegative and positive weights turns out to be essential. Therefore

we distinguish optimal points of Y with respect to nonnegative and strictly

positive weights, and define
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S(Y) :=
⋃

λ∈R
p
>

S(λ,Y) =
⋃

{λ>0:
∑p

k=1
λk=1}

S(λ,Y) (3.5)

and S0(Y) :=
⋃

λ∈R
p

≥

S(λ,Y) =
⋃

{λ≥0:
∑p

k=1
λk=1}

S(λ,Y). (3.6)

Clearly, the assumption
∑p

k=1 λk = 1 can always be made. It just normal-

izes the weights, but does not change S(λ,Y). It will thus be convenient to

have the notation

Λ :=

{
λ ∈ Rp

�
:

p∑
k=1

λk = 1

}

Λ0 := riΛ =

{
λ ∈ Rp

�
:

p∑
k=1

λk = 1

}
.

It is also evident that using λ = 0 does not make sense, as S(0,Y) = Y.

We exclude this case henceforth. Finally,

S(Y) ⊂ S0(Y) (3.7)

follows directly from the definition. The results in the following two sections

extend (3.7) by including links with efficient sets.

In many of the results of this chapter we will need some convexity as-

sumptions. However, requiring Y to be convex is usually too restrictive a

requirement. After all, we are looking for nondominated points, which, bear-

ing Proposition 2.3 in mind are located in the “south-west” of Y. Hence, we

define Rp
�

-convexity.

Definition 3.1. A set Y ∈ Rp is called Rp
�
-convex, if Y + Rp

�
is convex.

Every convex set Y is clearly Rp

�
-convex. The set Y of Figure 3.1 is neither

convex nor Rp
�

-convex. Figure 2.4 shows a nonconvex set Y which is Rp
�

-

convex.

A fundamental result about convex sets is that nonintersecting convex sets

can be separated by a hyperplane.

Theorem 3.2. Let Y1,Y2 ⊂ Rp be nonempty convex sets. There exists some

y∗ ∈ Rp such that

inf
y∈Y1

〈y, y∗〉 ≥ sup
y∈Y2

〈y, y∗〉 (3.8)

and sup
y∈Y1

〈y, y∗〉 > inf
y∈Y2

〈y, y∗〉 (3.9)
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if and only if ri(Y1)∩ri(Y2) = ∅. In this case Y1 and Y2 are said to be properly

separated by a hyperplane with normal y∗.

Recall that ri(Yi) is the relative interior of Yi, i.e. the interior in the space

of appropriate dimension dim(Yi) ≤ p. A proof of Theorem 3.2 can be found

in Rockafellar (1970, p. 97).
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Fig. 3.2. Properly separated sets Y1 and Y2.

We will also use the following separation theorem.

Theorem 3.3. Let Y ⊂ Rp be a nonempty, closed, convex set and let y0 ∈
Rp \ Y. Then there exists a y∗ ∈ Rp \ {0} and α ∈ R such that

〈y∗, y0〉 < α < 〈y∗, y〉

for all y ∈ Y.

We will derive results on efficient solutions x ∈ X of a multicriteria opti-

mization problem from results on nondominated points y ∈ Y. This is done

as follows. For results that are valid for any set Y we obtain analogous results

simply by invoking the fact that efficient solutions are preimages of nondom-

inated points. For results that are only valid under some conditions on Y
(usually Rp

�
-convexity) , appropriate assumptions on X and f are required.

To ensure Rp

�
-convexity of Y the assumption of convexity of X and all objec-

tive functions fk.

3.1 Weighted Sum Scalarization and (Weak) Efficiency

In this section, we show that optimal solutions of the weighted sum problem

(3.2) with positive (nonnegative) weights are always (weakly) efficient and

that under convexity assumptions all (weakly) efficient solutions are optimal

solutions of scalarized problems with positive (nonnegative) weights.
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Theorem 3.4. For any set Y ⊂ Rp we have S0(Y) ⊂ YwN .

Proof. Let λ ∈ Rp
≥ and ŷ ∈ S(λ,Y). Then

p∑
k=1

λk ŷk ≤
p∑

k=1

λkyk for all y ∈ Y.

Suppose that ŷ /∈ YwN . Then there is some y′ ∈ Y with y′
k < ŷk, k =

1, . . . , p. Thus,
p∑

k=1

λky′
k <

p∑
k=1

λkŷk,

because at least one of the weights λk must be positive. This contradiction

implies the result. ��

For Rp

�
-convex sets we can prove the converse inclusion.

Theorem 3.5. If Y is Rp

�
-convex, then YwN = S(Y).

Proof. Due to Theorem 3.4 we only have to show YwN ⊂ S(Y). We first

observe that YwN ⊂ (Y + Rp
>)wN (The proof of this fact is the same as that

of Proposition 2.3, replacing Rp
�

by Rp
>).

Therefore, if ŷ ∈ YwN , we have

(YwN + Rp
> − ŷ) ∩ (−Rp

>) = ∅.

This means that the intersection of the relative interiors of the two convex

sets Y+Rp
>− ŷ and −Rp

> is empty. By Theorem 3.2 there is some λ ∈ Rp \{0}
such that

〈λ, y + d − ŷ〉 ≥ 0 ≥ 〈λ,−d′〉 (3.10)

for all y ∈ Y, d ∈ Rp
>, d′ ∈ Rp

>.

Since 〈λ,−d′〉 ≤ 0 for all d′ ∈ Rp
> we can choose d′ = ek + εe – where ek

is the k-th unit vector, e = (1, . . . , 1) ∈ Rp is a vector of all ones, and ε > 0

is arbitrarily small – to see that λk ≥ 0, k = 1, . . . , p. On the other hand,

choosing d = εe in 〈λ, y + d − ŷ〉 ≥ 0 implies

〈λ, y〉 + ε〈λ, e〉 ≥ 〈λ, ŷ〉 (3.11)

for all y ∈ Y and thus

〈λ, y〉 > 〈λ, ŷ〉. (3.12)

Therefore λ ∈ Rp
≥ and ŷ ∈ S(λ,Y) ⊂ S(Y). ��
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With Theorems 3.4 and 3.5 we have the first extension of inclusion (3.7),

namely

S(Y) ⊂ S(Y) ⊂ YwN (3.13)

in general and

S(Y) ⊂ S(Y) = YwN (3.14)

for R�-convex sets.

Next we relate S(Y) and S(Y) to YN .

Theorem 3.6. Let Y ⊂ Rp. Then S(Y) ⊂ YN .

Proof. Let ŷ ∈ S(Y). Then there is some λ ∈ Rp
> satisfying

∑p
k=1 λkŷk ≤∑p

k=1 λkyk for all y ∈ Y.

Suppose ŷ /∈ YN . Hence there must be y′ ∈ Y with y′ ≤ y. Multiplying

componentwise by the weights gives λky′
k ≤ λkŷk for all k = 1, . . . , p and strict

inequality for one k. This strict inequality together with the fact that all λk

are positive implies
∑p

k=1 λky′
k <

∑p
k=1 λkŷk, contradicting ŷ ∈ S(Y). ��

Corollary 3.7. YN ⊂ S(Y) if Y is an Rp

�
-convex set.

Proof. This result is an immediate consequence of Theorem 3.5 since YN ⊂
YwN = S(Y). ��

Theorem 3.6 and Corollary 3.7 yield

S(Y) ⊂ YN ; S(Y) ⊂ YwN (3.15)

in general and

S(Y) ⊂ YN ⊂ S(Y) = YwN (3.16)

for Rp

�
-convex sets.

Theorem 3.6 can be extended by the following proposition.

Proposition 3.8. If ŷ is the unique element of S(λ,Y) for some λ ∈ Rp
≥ then

ŷ ∈ YN .

Proof. The easy proof is left to the reader, see Exercise 3.2.

In Exercise 3.3 the reader is asked for examples where the inclusions in

(3.15) and (3.16) are strict, demonstrating that these are the strongest rela-

tionship between weighted sum optimal points and (weakly) nondominated

points that can be proved for general and Rp

�
-convex sets, without additional

assumptions, like the uniqueness of Proposition 3.8

Let us now summarize the analogies of the results of this section in terms of

the decision space, i.e. (weakly) efficient solutions of multicriteria optimization

problems.
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Proposition 3.9. Suppose that x̂ is an optimal solution of the weighted sum

optimization problem

min
x∈X

p∑
k=1

λkfk(x). (3.17)

with λ ∈ Rp
≥. Then the following statements hold.

1. If λ ∈ Rp
≥ then x̂ ∈ XwE .

2. If λ ∈ Rp
> then x̂ ∈ XE .

3. If λ ∈ Rp
≥ and x̂ is a unique optimal solution of (3.17) then x̂ ∈ XsE .

Proof. The assertions follow directly from Theorem 3.4, Theorem 3.6, and

Proposition 3.8 with the uniqueness of x̂, respectively. ��

Proposition 3.10. Let X be a convex set, and let fk be convex functions,

k = 1, . . . , p. If x̂ ∈ XwE there is some λ ∈ Rp
≥ such that x̂ is an optimal

solution of (3.17).

The proof follows from Theorem 3.5. Note that there is no distinction

between XwE and XE here, an observation that we shall regrettably have

to make for almost all methods to find efficient solutions. This problem is

caused by the (possibly) strict inclusions in (3.16). Therefore the examples

of Exercise 3.3 and the usual trick of identifying decision and objective space

should convince the reader that this problem cannot be avoided.

At the end of this section, we point out that Exercises 3.4 and 3.7 show

how to generalize the weighted sum scalarization for nondominated points

with respect to a convex and pointed cone C.

Remembering that YpN ⊂ YN , we continue our investigations by looking

at relationships between YpN and S(Y).

3.2 Weighted Sum Scalarization and Proper Efficiency

Here we will establish the relationships between properly nondominated points

(in Benson’s or Geoffrion’s sense) and optimal points of weighted sum scalar-

izations with positive weights. The main result shows that these points coin-

cide for convex sets. A deeper result shows that in this situation the difference

between nondominated and properly nondominated points is small: The set

of properly nondominated points is dense in the nondominated set.

From now on we denote the set of properly efficient points in Geoffrion’s

sense by YpE .. Note that due to Theorem 2.48 Geoffrion’s and Benson’s defi-

nitions are equivalent for efficiency defined by Rp
�

.
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Unless otherwise stated, XpN will denote the set of properly efficient so-

lutions of a multicriteria optimization problem in Geoffrion’s sense. Our first

result shows that an optimal solution of (3.2) is a properly efficient solution

of (3.1) if λ > 0.

Theorem 3.11 (Geoffrion (1968)). Let λk > 0, k = 1, . . . , p with∑p
k=1 λk = 1 be positive weights. If x̂ is an optimal solution of (3.2) then

x̂ is a properly efficient solution of (3.1)

Proof. Let x̂ be an optimal solution of (3.2). To show that x̂ is efficient suppose

there exists some x′ ∈ X with f(x′) ≤ f(x̂). Positivity of the weights λk and

fi(x
′) < fi(x̂) for some i ∈ {1, . . . , p} imply the contradiction

p∑
k=1

λkfk(x′) <

p∑
k=1

λkfk(x̂). (3.18)

To show that x̂ is properly efficient, we choose an appropriately large

number M such that assuming there is a trade-off bigger than M yields a

contradiction to optimality of x̂ for the weighted sum problem. Let

M := (p − 1)max
i,j

λj

λi
. (3.19)

Suppose that x̂ is not properly efficient. Then there exist i ∈ {1, . . . , p}
and x ∈ X such that fi(x) < fi(x̂) and fi(x̂) − fi(x) > M(fj(x) − fj(x̂)) for

all j ∈ {1, . . . , p} such that fj(x̂) < fj(x). Therefore

fi(x̂) − fi(x) >
p − 1

λi
λj(fj(x) − fj(x̂)) (3.20)

for all j 	= i by the choice of M (note that the inequality is trivially true

if fj(x̂) > fj(x)). Multiplying each of these inequalities by λi/(p − 1) and

summing them over j 	= i yields

λi(fi(x̂) − fi(x)) >
∑
j �=i

λj(fj(x) − fj(x̂))

⇒ λifi(x̂) − λifi(x) >
∑
j �=i

λjfj(x) −
∑
j �=i

λjfj(x̂)

⇒ λifi(x̂) +
∑
j �=i

λjfj(x̂) > λifi(x) +
∑
j �=i

λjfj(x)

⇒
p∑

i=1

λifi(x̂) >

p∑
i=1

λifi(x),

contradicting optimality of x̂ for (3.2). Thus x̂ is properly efficient. ��
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Theorem 3.11 immediately yields S(Y) ⊂ YpE , strengthening the left part

of (3.15).

Corollary 3.12. Let Y ⊂ Rp. Then S(Y) ⊂ YpN .

Now that we have a sufficient condition for proper nondominance and

proper efficiency, the natural question is, whether this condition is also nec-

essary. In general it is not. We shall illustrate this graphically.
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Fig. 3.3. Properly nondominated ŷ ∈ YN .

In Figure 3.3, the feasible set in objective space for a nonconvex problem is

shown (Y is not R�-convex). Since all objective vectors y = (f1(x), . . . , fp(x)),

which attain the same value c =
∑p

k=1 λkfk(x) of the weighted sum objec-

tive, are located on a straight line, the minimization problem (3.4) amounts to

pushing this line towards the origin, until the intersects Y only on the bound-

ary of Y. In Figure 3.3 this is illustrated for two weighting vectors (λ1, λ2)

and (λ′
1, λ

′
2), that lead to the nondominated points y and y′. It is obvious that

the third point ŷ ∈ YN is properly nondominated, but none of its preimages x

under f can be an optimal solution of (3.2) for any choice of (λ1, . . . , λp) ∈ Rp
>.

The converse of Theorem 3.11 and Corollary 3.12 can be shown for Rp
�

-

convex sets. We shall give a prove in objective space using Benson’s definition

and a proof in decision space that uses Geoffrion’s definition.
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Theorem 3.13. If Y is Rp

�
-convex then YpE ⊂ S(Y).

Proof. Let ŷ ∈ YpE , i.e.

cl(cone(Y + Rp
�
− ŷ)) ∩ (−Rp

�
) = {0}. (3.21)

By definition, cl(cone(Y + Rp
�
− ŷ)) is a closed convex cone.

The idea of the proof is that if there exists a λ ∈ Rp
> such that

〈λ, d〉 ≥ 0 for all d ∈ cl(cone(Y + R� − y∗)) =: K (3.22)

we get, in particular,

〈λ, y − y∗〉 ≥ 0 for all y ∈ Y, (3.23)

i.e. 〈λ, y〉 ≥ 〈λ, ŷ〉 for all y ∈ Y and thus ŷ ∈ S(Y). This is true, because

Y − ŷ ⊂ cl(cone(Y + Rp
�
− ŷ)). We now prove the existence of λ ∈ Rp

�
with

property (3.22).

Assume no such λ exists. Both Rp
> and

K◦ := {µ ∈ Rp : 〈µ, d〉 ≥ 0 for all d ∈ K} (3.24)

are convex sets and because of our assumption have nonintersecting relative

interiors. Therefore we can apply Theorem 3.2 to get some nonzero y∗ ∈ Rp
≥

and β ∈ R such that

〈y∗, µ〉 ≤ β for all µ ∈ Rp
> (3.25)

〈y∗, µ〉 ≥ β for all µ ∈ K◦. (3.26)

Using µ′ = αµ for some arbitrary but fixed µ ∈ K◦ and letting α → ∞ in

(3.26) we get β = 0. Therefore

〈y∗, µ〉 ≤ 0 for all µ ∈ Rp
>. (3.27)

Selecting µ = εe + ek = (ε, . . . , ε, 1, ε, . . . , ε) and letting ε → 0 in (3.27) we

obtain y∗
k ≤ 0 for all k = 1, . . . , p, i.e.

y∗ ∈ −Rp
≥. (3.28)

Let

K◦◦ := {y ∈ Rp : 〈y, µ〉 ≥ 0 for all µ ∈ K◦}. (3.29)

According to (3.27), y∗ ∈ K◦◦. Once we have shown that K◦◦ ⊂ clK = K we

know that

y∗ ∈ K. (3.30)
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Finally (3.28) and (3.30) imply that y∗ ∈ K ∩ (−Rp

�
) with y∗ 	= 0 contra-

dicting the proper nondominance conditions (3.21). Therefore the desired λ

satisfying (3.22) exists.

To complete the proof, we have to show that K◦◦ ⊂ clK = K. Let y ∈
Rp, y /∈ K. Using Theorem 3.3 to separate {y} and K we get y∗ ∈ Rp, y∗ 	= 0

and α ∈ R with 〈d, y∗〉 > α for all d ∈ K and 〈y, y∗〉 < α. Then 0 ∈ K implies

α < 0 and therefore 〈y, y∗〉 < 0. Taking d = αd′ for some arbitrary but fixed d′

and letting α → ∞ we get 〈d, y∗〉 ≥ 0 for all d ∈ K, i.e y∗ ∈ K◦. So 〈y, y∗〉 < 0

implies y /∈ K◦◦. Hence K◦◦ ⊂ K. ��

The properties of and relationships among K,K◦, and K◦◦ we have used

here are true for cones K in general, not just for the one used above. See

Exercise 3.6 for more details. Let us now illustrate Theorem 3.13.

Example 3.14. Consider the set Y = {(y1, y2) : y2
1 + y2

2 ≤ 1}. Here

YN = {(y1, y2) : y2
1 + y2

2 = 1, y1 ≤ 0, y2 ≤ 0}, (3.31)

YpN = YN \ {(−1, 0), (0,−1)}. (3.32)
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Fig. 3.4. Sets YN and YpN .

All properly nondominated points ŷ are optimal points of weighted sum

scalarizations (indeed, the weights correspond to the normals of the tangents

to the circle at ŷ). The two boundary points of YN are not properly nondom-

inated. But (−1, 0) and (0,−1) are unique optimal solutions of

min
y∈Y

λ1y1 + λ2y2 (3.33)

for λ = (1, 0) and λ = (0, 1), respectively, and therefore belong to the non-

dominated set YN , see Proposition 3.8. ��
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Theorem 3.15 (Geoffrion (1968)). Let X ⊂ Rn be convex and assume

fk : X → R are convex for k = 1, . . . , p. Then x̂ ∈ X is properly efficient

if and only if x̂ is an optimal solution of (3.2), with strictly positive weights

λk, k = 1, . . . , p.

Proof. Due to Theorem 3.11 we only have to prove necessity of the condition.

Let x̂ ∈ X be properly efficient. Then, by definition, there exists a number

M > 0 such that for all i = 1, . . . , p the system

fi(x) < fi(x̂)

fi(x) + Mfj(x) < fi(x̂) + Mfj(x̂) for all j 	= i
(3.34)

has no solution. To see that, simply rearrange the inequalities in (2.41).
A property of convex functions, which we state as Theorem 3.16 below

implies that for the ith such system there exist λi
k ≥ 0, k = 1, . . . , p with∑p

k=1 λi
k = 1 such that for all x ∈ X the following inequalities holds.

λi
ifi(x) +

∑
k �=i

λi
k(fi(x) + Mfk(x)) ≥ λi

ifi(x̂) +
∑
k �=i

λi
k(fi(x̂) + Mfk(x̂))

⇔ λi
ifi(x) +

∑
k �=i

λi
kfi(x) + M

∑
j �=i

λi
jfk(x) ≥ λi

ifi(x̂) +
∑
k �=i

λi
kfi(x̂) + M

∑
k �=i

λi
jfk(x̂)

⇒
p∑

k=1

λi
kfi(x) + M

∑
k �=i

λi
kfk(x) ≥

p∑
k=1

λi
kfi(x̂) + M

∑
k �=i

λi
kfj(x̂)

⇔ fi(x) + M
∑
k �=i

λi
kfk(x) ≥ fi(x̂) + M

∑
k �=i

λi
kfk(x̂)

We have such an inequality for each i = 1, . . . , p and now simply sum over

i to obtain

p∑
i=1

fi(x) + M

p∑
i=1

∑
k �=i

λi
kfk(x) ≥

p∑
i=1

fi(x̂) + M

p∑
k=1

∑
k �=i

λi
jfk(x̂)

⇒
p∑

k=1

⎛
⎝1 + M

∑
i�=k

λi
k

⎞
⎠ fk(x) ≥

p∑
k=1

⎛
⎝1 + M

∑
i�=k

λi
k

⎞
⎠ fk(x∗)

for all x ∈ X .

We can now normalize the values (1 + M
∑

k �=i λi
k), so that they sum up

to one to obtain positive λi, i = 1, . . . , p for which x̂ is optimal in (3.2). ��

The theorem, which we have used, is the following. For a proof we refer to

Mangasarian (1969, p. 65).
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Theorem 3.16. Let X ⊂ Rn be a convex set, let hk : Rn → R be convex

functions, k = 1, . . . , p. Then, if the system hk(x) < 0, k = 1, . . . , p has no

solution x ∈ X , there exist λk ≥ 0,
∑p

k=1 λk = 1 such that all x ∈ X satisfy

p∑
k=1

λkhk(x) ≥ 0. (3.35)

With these results on proper nondominance and proper efficiency we can

extend (3.15) and (3.16) as follows:

S(Y) ⊂ YpE ⊂ YE and S(Y) ⊂ YwE (3.36)

holds for general sets, whereas for Rp
�

-convex sets

S(Y) = YpE ⊂ YE ⊂ YwE = S(Y). (3.37)

A closer inspection of the inclusions reveals that the gap between YwE and

YE might be quite large, even in the convex cases (see Example 2.27 for an

illustration). This is not possible for the gap between YpE and YE .

Theorem 3.17 (Hartley (1978)). If Y 	= ∅ is Rp
�
-closed and Rp

�
-convex,

the following inclusions hold:

S(Y) ⊂ YN ⊂ clS(Y) = clYpN . (3.38)

Proof. The only inclusion we have to show is YN ⊂ clS(Y). Since YN =

(Y + Rp
�

)N and S(Y) = S(Y + Rp
�

), we only prove it for a closed convex set

Y. Without loss of generality we shall also assume that ŷ = 0 ∈ YN .

The proof proceeds in two steps: First we show the result for compact Y,

applying a minimax theorem to the scalar product on two compact convex

sets. We shall then prove the general case by reduction to the compact case.

Case 1: Y is compact and convex.

Choose d ∈ Rp
> and C(ε) := εd + Rp

�
for 0 < ε ∈ R. If ε is sufficiently

small, C(ε) ∩ B(0, 1) is nonempty. Thus, both Y and C(ε) ∩ B(0, 1) are

nonempty, convex, and compact.

Applying the Sion-Kakutani minimax theorem (Theorem 3.18 below) to

Φ = 〈·, ·〉 with C = C(ε) ∩ B(0, 1) and D = Y we get the existence of

y(ε) ∈ Y and λ(ε) ∈ C(ε) ∩ B(0, 1) such that

〈λ, y(ε)〉 ≤ 〈λ(ε), y(ε)〉 ≤ 〈λ(ε), y〉 for all y ∈ Y, for all λ ∈ C(ε) ∩ B(0, 1)

(3.39)

From (3.39) using 0 ∈ Y we obtain 〈λ, y(ε)〉 ≤ 0 for all λ ∈ C(ε)∩B(0, 1).

Because Y is compact there exists a sequence εk → 0 such that yk :=

y(εk) → y′ ∈ Y for k → ∞.
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Fig. 3.5. Illustration of the first case in the proof of Theorem 3.17.

Furthermore, for each λ ∈ Rp
> ∩ B(0, 1) there is some ε′ > 0 such that

λ ∈ C(ε) ∩ B(0, 1) for all ε ≤ ε′ and therefore 〈λ, yk〉 ≤ 0 when k is large

enough. The convergence yk → y′ then implies 〈λ, ŷ〉 ≤ 0 for all λ ∈ Rp
>.

This implies y′ ∈ −Rp

�
. Thus, y′ � 0 but since ŷ = 0 ∈ YN we must have

y′ = 0.

Next we show that y′ = ŷ = 0 ∈ clS(Y). To this end let λk :=

λ(εk)/‖λ(εk)‖ ∈ Rp
> ∩ bdB(0, 1), where λ(εk) is the λ associated with

εk and y(εk) to satisfy (3.39). Therefore we have

〈λk, y(εk)〉 ≤ 〈λk, y〉 for all y ∈ Y, (3.40)

i.e. yk = y(εk) ⊂ S(λk,Y) ⊂ S(Y). Since y′ = lim yk this implies ŷ = y′ ∈
clS(Y).

Case 2: Y is closed and convex (but not necessarily compact).

Again let ŷ = 0 ∈ YN . Y ∩ B(0, 1) is nonempty, convex, and compact and

0 ∈ (Y ∩B(0, 1))N . Case 1 yields the existence of λk ∈ Rp
>, ‖λk‖ = 1, and

yk ∈ S(λk ,Y ∩ B(0, 1)) with yk → 0. We show that yk ∈ S(λk,Y), which

completes the proof.

Note that for k large enough yk ∈ intB (since yk → 0) and suppose

y′ ∈ Y exists with 〈λk, y′〉 < 〈λk, yk〉. Then αy′ + (1 − α)yk ∈ Y ∩B(0, 1)

for sufficiently small α (see Figure 3.6).

This implies

〈λk, αy′ + (1 − α)yk〉 = α〈λk, y′〉 + (1 − α)〈λk, yk〉 < 〈λk, yk〉, (3.41)

contradicting yk ∈ S(λk ,Y). ��

The Sion-Kakutani minimax theorem that we used is stated for complete-

ness. For a proof we refer to Stoer and Witzgall (1970, p. 232).
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Fig. 3.6. Illustration of the second case in the proof of Theorem 3.17.

Theorem 3.18 (Sion-Kakutani minimax theorem). Let C,D ⊂ Rp be

nonempty, compact, convex sets and Φ : C ×D → R be a continuous mapping

such that Φ(·, d) is convex for all d ∈ D and Φ(c, ·) is concave for all c ∈ C.

Then

max
d∈D

min
c∈C

Φ(c, d) = min
c∈C

max
d∈D

Φ(c, d). (3.42)

Although Theorem 3.17 shows that YN ⊂ clYpN , the inclusion clYpN ⊂
YN is not always satisfied.

Example 3.19 (Arrow et al. (1953)).

Consider the set Y ′ = {(y1, y2, y3) : (y1−1)2 +(y2−1)2 = 1, y1 ≤ 1, y2 ≤
1, y3 = 1} and define

Y := conv (Y ′ ∪ {(1, 0, 0)}) , (3.43)

shown from different angles in Figure 3.7.

Y is closed and convex. Note that ŷ = (1, 0, 1) /∈ YN because (1, 0, 0) ≤ ŷ.

From Theorem 3.13 we know YpN = S(Y). We show that all y′ ∈ Y ′ with

y′
1 < 1, y′

2 < 1 are properly efficient.

Let y′ = (1 − cos θ, 1 − sin θ, 1) for 0 < θ < π/2 and λ = (1 −
α)(cos θ, sin θ, 0) + α(0, 0, 1) with 0 < α < 1 so that λ ∈ Rp

>.

We compute 〈λ, y − y′〉 for y = (1 − cos θ′, 1 − sin θ′, 1), 0 ≤ θ′ ≤ π/2:

〈λ, y − y′〉 = (1 − α) [cos θ(cos θ − cos θ′) + sin θ(sin θ − sin θ′)]

= (1 − α)(1 − (cos θ cos θ′ + sin θ sin θ′)) (3.44)

= (1 − α)(1 − cos(θ − θ′)) ≥ 0.
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Fig. 3.7. The set Y in Example 3.19.

Furthermore, for y = (1, 0, 0) we get

〈λ, (1, 0, 0) − y′〉 = (1 − α)
[
cos2 θ − sin θ(1 − sin θ)

]
− α

= (1 − α)(1 − sin θ) − α > 0 (3.45)

for small α. So by taking convex combinations of (3.44) and (3.45) we get

〈λ, y − y〉 ≥ 0 for all y ∈ Y and thus y′ ∈ S(Y). In addition, for θ → 0 we get

y′ → ŷ which is therefore in clS(Y). ��

3.3 Optimality Conditions

In this section we prove necessary and sufficient conditions for weak and proper

efficiency of solutions of a multicriteria optimization problem. These results

follow along the lines of Karush-Kuhn-Tucker optimality conditions known

from single objective nonlinear programming. We use the results to prove the

yet missing link in Figure 2.17 and we give an example that shows that Kuhn

and Tucker’s and Geoffrion’s definitions of properly efficient solutions do not

always coincide.

We recall the Karush-Kuhn-Tucker necessary and sufficient optimality con-

ditions in single objective nonlinear programming, see e.g. Bazaraa et al.

(1993).

Theorem 3.20. Let f, gj : Rn → R be continuously differentiable functions

and consider the single objective optimization problem

min{f(x) : gj(x) � 0, j = 1, . . . , m}. (3.46)

Denote X := {x ∈ Rn : gj(x) ≤ 0, j = {1, . . . , m}}.
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• If x̂ ∈ X is a (locally) optimal solution of (3.46) there is some µ̂ ∈ Rm
�

such that

∇f(x̂) +

m∑
j=1

µ̂j∇gj(x̂) = 0, (3.47)

m∑
j=1

µ̂jgj(x̂) = 0. (3.48)

• If f, gj are convex and there are x̂ ∈ X and µ̂ ∈ Rm
�

such that (3.47) and

(3.48) hold then x̂ is a locally, thus globally, optimal solution of (3.46).

We start with conditions for weak efficiency.

Theorem 3.21. Suppose that the KT constraint qualification (see Definition

2.50) is satisfied at x̂ ∈ X . If x̂ is weakly efficient there exist λ̂ ∈ Rp
≥ and

µ̂ ∈ Rm
�

such that

p∑
k=1

λ̂k∇fk(x̂) +

m∑
j=1

µ̂j∇gj(x̂) = 0 (3.49)

m∑
j=1

µ̂jgj(x̂) = 0 (3.50)

λ̂ ≥ 0 (3.51)

λ̂ � 0 (3.52)

Proof. Let x̂ ∈ XwE . We first show that there can be no d ∈ Rn such that

〈∇fk(x̂), d〉 < 0 for all k = 1, . . . , p (3.53)

〈∇gj(x̂), d〉 < 0 for all j ∈ J (x̂) := {j : gj(x̂) = 0}. (3.54)

We then apply Motzkin’s theorem of the alternative (Theorem 3.22) to obtain

the multipliers λ̂k and µ̂j .

Suppose that such a d ∈ Rn exists. From the KT constraint qualification

there is a continuously differentiable function θ : [0, t] → Rn such that θ(0) =

x̂, g(θ(t)) ≤ 0 for all t ∈ [0, t], and θ′(0) = αd with α > 0. Thus,

fk(θ(t)) = fk(x̂) + t〈∇fk(x̂), αd〉 + o(t) (3.55)

and using 〈∇fk(x̂), d〉 < 0 it follows that fk(θ(t)) < fk(x̂), k = 1, . . . , p for t

sufficiently small, which contradicts x̂ ∈ XwE .

It remains to show that (3.53) and (3.54) imply the conditions of (3.49)

– (3.52). This is achieved by using matrices B = (∇fk(x̂))k=1,...,p, C =
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(∇gj(x̂))j∈J (x̂), D = 0 with l = |J (x̂)| in Theorem 3.22. Then, since (3.53)

and (3.54) have no solution d ∈ Rn, according to Theorem 3.22 there must be

y1 =: λ̂, y2 =: µ̂, and y3 such that BT y1 + CT y2 = 0 with y1 ≥ 0 and y2 � 0,

i.e.
p∑

k=1

λ̂k∇fk(x̂) +
m∑

j=J (x̂)

µ̂j∇gj(x̂) = 0.

We complete the proof by setting µ̂j = 0 for j ∈ {1, . . . , m} \ J (x̂). ��

Theorem 3.22 (Motzkin’s theorem of the alternative). Let B, C, D be

p × n, l × n and o × n matrices, respectively. Then either

Bx < 0, Cx � 0, Dx = 0

has a solution x ∈ Rn or

BT y1 + CT y2 + DT y3 = 0, y1 ≥ 0, y2 � 0 (3.56)

has a solution y1 ∈ Rp, y2 ∈ Rl, y3 ∈ Ro, but never both.

A proof of Theorem 3.22 can be found in (Mangasarian, 1969, p.28).

For convex functions, we also have a sufficient condition for weakly efficient

solutions.

Corollary 3.23. Under the assumptions of Theorem 3.21 and the additional

assumption that all functions fk and gj are convex (3.49) – (3.52) with λ̂ ≥ 0

and µ̂ � 0 in Theorem 3.21 are sufficient for x̂ to be weakly efficient.

Proof. By the second part of Theorem 3.20 and Theorem 3.21, (3.49) – (3.52)

imply that x̂ is an optimal solution of the single objective optimization prob-

lem

min
x∈X

p∑
k=1

λ̂kfk(x).

Since λ̂ ∈ R≥ this implies that x̂ ∈ XwE according to the first statement of

Proposition 3.9. ��

Next, we prove similar conditions for properly efficient solutions in Kuhn

and Tucker’s sense and in Geoffrion’s sense.

Kuhn and Tucker’s definition of proper efficiency (Definition 2.49) is based

on the system of inequalities (3.57) – (3.59)

〈∇fk(x̂), d〉 ≤ 0 ∀ k = 1, . . . , p (3.57)

〈∇fi(x̂), d〉 < 0 for some i ∈ {1, . . . , p} (3.58)

〈∇gj(x̂), d〉 ≤ 0 ∀ j ∈ J (x̂) = {j = 1, . . . , m : gj(x̂) = 0} (3.59)
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having no solution. We apply Tucker’s theorem of the alternative, given below,

to show that a dual system of inequalities then has a solution. This system

yields a necessary condition for proper efficiency in Kuhn and Tucker’s sense.

Theorem 3.24 (Tucker’s theorem of the alternative). Let B, C and D

be p × n, l × n and o × n matrices. Then either

Bx ≤ 0, Cx � 0, Dx = 0 (3.60)

has a solution x ∈ Rn or

BT y1 + CT y2 + DT y3 = 0, y1 > 0, y2 � 0 (3.61)

has a solution y1 ∈ Rp, y2 ∈ Rl, y3 ∈ Ro, but never both.

A proof of Theorem 3.24 can be found in Mangasarian (1969, p.29).

Theorem 3.25. If x̂ is properly efficient in Kuhn and Tucker’s sense there

exist λ̂ ∈ Rp, µ̂ ∈ Rm such that

p∑
k=1

λ̂k∇fk(x̂) +

m∑
j=1

µ̂j∇gj(x̂) = 0 (3.62)

m∑
j=1

µ̂jgj(x̂) = 0 (3.63)

λ̂ > 0 (3.64)

µ̂ � 0. (3.65)

Proof. Because x̂ is properly efficient in Kuhn and Tucker’s sense there is no

d ∈ Rn satisfying (3.57) – (3.59).

We apply Theorem 3.24 to the matrices

B = (∇fk(x̂))k=1,...,p

C = (∇gj(x̂))j∈J (x̂)

D = 0

with l = |J(x̂)|. Since (3.57) – (3.59) do not have a solution d ∈ Rn we obtain

y1 =: λ̂, y2 =: µ̂ and y3 with λ̂k > 0 for k = 1, . . . , p, µ̂j ≥ 0 for j ∈ J (x̂)

satisfying

p∑
k=1

λ̂k∇fk(x̂) +
∑

j∈J (x̂)

µ̂j∇gj(x̂) = 0. (3.66)

Letting µ̂j = 0 for all j ∈ {1, . . . , m} \ J (x̂), the proof is complete. ��
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With Theorem 3.25 providing necessary conditions for Kuhn-Tucker proper

efficiency and Theorem 2.51, which shows that Geoffrion’s proper efficiency

implies Kuhn and Tucker’s under the constraint qualification we obtain Corol-

lary 3.26 as an immediate consequence.

Corollary 3.26. If x̂ is properly efficient in Geoffrion’s sense and the KT

constraint qualification is satisfied at x̂ then (3.62) – (3.65) are satisfied.

For the missing link in the relationships of proper efficiency definitions we

use the single objective Karush-Kuhn-Tucker sufficient optimality conditions

of Theorem 3.20 and apply them to the weighted sum problem. We obtain

the following theorem.

Theorem 3.27. Assume that fk, gj : Rn → R are convex, continuously dif-

ferentiable functions. Suppose that there are x̂ ∈ X , λ̂ ∈ Rp and µ̂ ∈ Rm

satisfying (3.62) – (3.65). Then x̂ is properly efficient in the sense of Geof-

frion.

Proof. Let f(x) :=
∑p

k=1 λ̂k∇fk(x), which is a convex function. By the second

part of Theorem 3.20 x̂ is an optimal solution of minx∈X
∑p

k=1 λ̂kfk(x). Since

λ̂k > 0 for k = 1, . . . , p Theorem 3.15 yields that x̂ is properly efficient in the

sense of Geoffrion. ��

We can derive two corollaries, the first one shows that for convex prob-

lems proper efficiency in Kuhn and Tucker’s sense implies proper efficiency in

Geoffrion’s sense.

Corollary 3.28. (See Theorem 2.52) Let fk, gj : Rn → R be convex, continu-

ously differentiable functions and suppose x̂ is properly efficient in Kuhn and

Tucker’s sense. Then x̂ is properly efficient in Geoffrion’s sense.

Proof. The result follows from Theorem 3.25 and Theorem 3.27. ��

The second corollary provides sufficient conditions for proper efficiency

in Kuhn and Tucker’s sense. It follows immediately from Theorems 3.27 and

2.51.

Corollary 3.29. If, in addition to the assumptions of Theorem 3.27 the KT

constraint qualification is satisfied at x̂, (3.62) – (3.65) are sufficient for x̂ to

be properly efficient in Kuhn and Tucker’s sense.

We close the section by examples showing that Geoffrion’s and Kuhn-

Tucker’s definitions are different in general.
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Example 3.30 (Geoffrion (1968)). In the following problem, x̂ = 0 is prop-

erly efficient according to Kuhn and Tucker’s definition, but not according to

Geoffrion’s definition. Consider

min f(x) = (f1(x), f2(x)) = (−x2, x3)

subject to x ∈ X = {x ∈ R : x ≥ 0}.

Figure 3.8 shows graphs of the objective functions and the feasible set in

objective space, Y = f(X ) as graph of y2(y1) = (−y1)
3
2 . The only constraint

is given by g(x) = −x ≤ 0.
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Fig. 3.8. Objective functions in Example 3.30.

To see that Definition 2.49 is satisfied compute

∇f(x) = (−2x, 3x2) ∇f1(x̂) = (0, 0)

∇g(x) = −1 ∇g(x̂) = −1

and choose λ̂ = (1, 1), µ̂ = 0 which satisfies (3.62) – (3.65).

To see that Definition 2.39 is not satisfied, let ε > 0 and compute the

trade-off
f1(x̂) − f1(ε)

f2(ε) − f2(x̂)
=

0 + ε2

ε3 − 0
=

1

ε

ε→0
−−→ ∞.

��

The reader is asked to come up with an example, where a feasible solution

x̂ is properly efficient in Geoffrion’s sense, but not in Kuhn and Tucker’s sense,

see Exercise 3.5.

We have shown necessary and sufficient conditions for weakly and strictly

efficient solutions. Why are there none for efficient solutions? The answer is
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that the ones that can be proved are included in the above results. Observe

that, because XE ⊂ XwE , the necessary condition of Theorem 3.21 holds for

efficient solutions, too. On the other hand, because S(Y) = XpE ⊂ XE for

convex problems, the sufficient condition of Theorem 3.27 are sufficient for x̂

to be efficient, too. Note that the essential difference between the conditions

for weak and proper efficiency is λ̂ ≥ 0 versus λ̂ > 0. We can therefore not

expect any further results of this type for efficient solutions. This is pretty

much the same situation we have encountered in Sections 3.1 and 3.2, where

for convex problems we have been able to characterize weakly nondominated

and properly nondominated points through weighted sum scalarization with

λ ≥ 0 and λ > 0, respectively.

3.4 Connectedness of Efficient and Nondominated Sets

We have discussed existence of nondominated points and efficient solutions

and we have seen how the different concepts of efficiency relate to weighted

sum scalarization. In this section, we use scalarizations to prove a topological

property of the efficient and nondominated sets, connectedness. Connected-

ness is an important property, when it comes to determining these sets. If

YN or XE is connected, the whole nondominated or efficient set can possibly

be explored starting from a single nondominated/efficient point using local

search ideas. Connectedness will also make the task of selecting a final com-

promise solution from among the set of efficient solutions XE easier, as there

are no “gaps” in the efficient set.

In Figure 3.9 two sets Y are shown, one of which has a connected non-

dominated set and one of which has not.

Apparently, connectedness cannot be expected, when Y is not Rp

�
-convex.

Definition 3.31. A set S ⊂ Rp is called not connected if it can be written as

S = S1∪S2, with S1,S2 	= ∅, clS1∩S2 = S1∩clS2 = ∅. Equivalently, S is not

connected if there exist open sets O1,O2 such that S ⊂ O1 ∪O2, S ∩O1 	= ∅,
S ∩ O2 	= ∅, S ∩ O1 ∩ O2 = ∅. Otherwise, S is called connected.

In the proofs of the following theorems, we use some facts about connected

sets which we state without proof here.

Lemma 3.32. 1. If S is connected and S ⊂ U ⊂ clS then U is connected.

2. If {Si : i ∈ I} is a family of connected sets with ∩i∈ISi 	= ∅ then ∪i∈ISi

is connected.

We derive a preliminary result, considering S(λ,Y) and S(Y). From The-

orem 3.17 we know S(Y) ⊂ YN ⊂ clS(Y) for Rp
�

-convex sets Y. We prove
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Fig. 3.9. Connectedness of YN .

connectedness of S(Y) in the case that Y is compact, which implies the con-

nectedness of YN with Lemma 3.32.

Proposition 3.33. If Y is compact and convex then S(Y) is connected.

Proof. Suppose S(Y) is not connected. Then we have open sets Y1,Y2 such

that Yi ∩S(Y) 	= ∅ for i = 1, 2, Y1 ∩Y2 ∩ S(Y) = ∅, and S(Y) ⊂ Y1 ∪Y2. Let

Li := {λ ∈ Rp
> : S(λ,Y) ∩ Yi 	= ∅}, i = 1, 2. (3.67)

Because S(λ,Y) is convex and every convex set is connected, we know that

S(λ,Y) is connected. Therefore

Li = {λ ∈ Rp
> : S(λ,Y) ⊂ Yi}, i = 1, 2 (3.68)

and L1 ∩ L2 = ∅. But since Yi ∩ S(Y) 	= ∅ we also have Li ∩ Rp
> 	= ∅ for

i = 1, 2. From S(Y) ⊂ Y1 ∪ Y2 it follows that Rp
> ⊂ L1 ∪ L2 (in fact, these

sets are equal). By Lemma 3.34 below the sets Li are open, which implies the

absurd statement that Rp

�
is not connected. ��

Lemma 3.34. The sets Li = {λ ∈ Rp
> : S(Y) ⊂ Yi} in the proof of Proposi-

tion 3.33 are open.

Proof. We will show the Lemma for L1, which by symmetry is enough. If L1

is not open there must be λ̂ ∈ L1 and {λk, k ≥ 1} ⊂ Rp
> \ L1 = L2 such that

λk → λ̂.

Let yk ∈ S(λk,Y), k ≥ 1. Since Y is compact, we can assume (taking

a subsequence if necessary) that yk → ŷ ∈ Y and ŷ ∈ S(λ̂,Y). Note that
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otherwise there would be y′ ∈ Y such that 〈λ̂, y′〉 < 〈λ̂, ŷ〉 and by continuity

of the scalar product, we would have 〈λk, y′〉 < 〈λk, yk〉 for sufficiently large

k, contradicting yk ∈ S(λk,Y).)

Now we have yk ∈ S(λk,Y) ⊂ (Y2 ∩ S(Y)) and Y1 ∩ Y2 ∩ S(Y) = ∅ so

yk ∈ Yc
1 for each k ≥ 1. Since Yc

1 is closed, ŷ = lim yk ∈ Yc
1 , i.e. ŷ /∈ Y1

contradicting λ̂ ∈ L1. ��

Theorem 3.35 (Naccache (1978)). If Y is closed, convex, and Rp
�
-

compact then YN is connected.

Proof. We will first construct compact and convex sets Y(α), α ∈ R, for which

Proposition 3.33 is applicable. We apply Theorem 3.17 to get that Y(α)N ⊂
clS(Y(α)) and apply Lemma 3.32 to see that sets Y(α)N are connected. It is

then easy to derive the claim of the theorem by showing YN = ∪α≥α̂Y(α)N

for some α̂ with∩α≥α̂Y(α)N 	= ∅ and applying Lemma 3.32 again.

To construct Y(α) choose d ∈ Rp
> and define y(α) = αd, α ∈ R. We claim

that for all y ∈ Rp there is a real number α > 0 such that y ∈ y(α) − Rp (see

Figure 3.10).
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Fig. 3.10. The claim in the proof of Theorem 3.35.

To see this, observe that if it were not true there would be no d′ ∈ Rp

�

such that y = αd − d′, or y − αd = −d′. Thus, we would have two nonempty

convex sets {y − αd : α > 0} and −Rp
�

which can be separated according to

Theorem 3.2. Doing so provides some y∗ ∈ Rp \ {0} with

〈y∗, y − αd〉 ≥ 0 for all α > 0, (3.69)

〈y∗,−d′〉 ≤ 0 for all d′ ∈ Rp
�

. (3.70)
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Hence 〈y∗, d′〉 ≥ 0 for all d′ ∈ Rp

�
, in particular 〈y∗, d〉 > 0 because d ∈ Rp

>.

But then 〈λ, y − αd〉 < 0 for α sufficiently large, a contradiction to (3.69).

With the claim proved, we can choose y ∈ YN and appropriate α̂ > 0 such

that y ∈ y(α̂) − Rp

�
, which means that (y(α̂) − Rp

�
) ∩ YN 	= ∅. We define

Y(α) :=
[(

y(α) − Rp

�

)
∩ Y
]
. (3.71)

With this notation, the claim above implies in particular that

YN =
⋃

α≥α̂

Y (α)N . (3.72)

Because Y(α) is convex and compact (Y is Rp
�

-compact) we can apply

Theorem 3.17 to get

S(Y(α)) ⊂ Y(α)N ⊂ YαpN .

Thus, Proposition 3.33 and the first part of Lemma 3.32 imply that Y(α)N is

connected.

Observing that Y(α)N ⊃ Y(α̂)N for α > α̂, i.e. ∩α≥α̂Y(α)N = Y(α̂)N 	= ∅
we have expressed YN as a union of a family of connected sets with nonempty

intersection (see Figure 3.11. The second part of Lemma 3.32 proves that YN

is connected. ��
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Fig. 3.11. Finding the sets E(α) in the proof of Theorem 3.35.

With Theorem 3.35 we have a criterion for connectedness in the objective

space. What about the decision space? If we assume convexity of f , it is
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possible to show that XwE is connected. Let X ⊂ Rn be convex and compact

and fk : Rn → R be convex. We will use Theorem 3.5 (YwN = S(Y)) and the

following fact:

Lemma 3.36. Let f : Rn → R be convex on the closed convex X . Then the

set {x̂ ∈ X : f(x̂) = inf
x∈X

f(x)} is closed and convex.

We also need a theorem providing a result on connectedness of preimages

of sets, taken from Warburton (1983), where a proof can be found.

Theorem 3.37. Let V ⊂ Rn,W ⊂ Rp, and assume that V is compact and

W is connected. Furthermore, let g : V × W → R be continuous. Denote by

X (w) = argmin{g(v, w) : v ∈ V}. If X (w) is connected for all w ∈ W then

∪w∈WX (w) is connected.

Theorem 3.38. Let X be a compact convex set and assume that fk : Rn →
R, k = 1, . . . , p are convex. Then XwE is connected.

Proof. Since the objective functions fk are continuous and X is compact,

Y = f(X ) is compact. Using Theorem 3.5 we have YwN = S(Y). In terms of

f and X this means

XwP =
⋃

λ∈R≥

{x̂ :
∑p

k=1 λkfk(x̂) ≤∑p
k=1 λkfk(x) for all x ∈ X}

=:
⋃

λ∈R≥

X (λ).
(3.73)

Noting that 〈f(·), ·〉 : X × R≥ → R is continuous, that Rp
≥ is connected,

that X is compact, and that by Lemma 3.36 X (λ) is nonempty and convex

(hence connected) we can apply Theorem 3.37 to get that XwE is connected.

��

We remark that the proof works in the same way to see that XpE is con-

nected under the same assumptions. This is true, because as in (3.73), we can

write

XpE =
⋃

λ∈R
p
>

X (λ). (3.74)

and as we observed, X (λ) is connected (convex), and of course Rp
> is con-

nected.

To derive a connectedness result for XE we need an additional Lemma.

Lemma 3.39. Let f : X ⊂ Rn −→ Rp be a continuous function and let

Ỹ ⊂ Rp be such that f−1(cl Ỹ) ⊂ X . Then

f−1(cl Ỹ) = cl(f−1(Ỹ)). (3.75)
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Theorem 3.40. Let X ⊂ Rn be a convex and compact set. Assume that all

objective functions fk are convex. Then XE is connected.

Proof. Because X is compact and convex and fk are convex and continuous,

Y = f(X ) is also compact and convex. Thus, from Theorem 3.17

S(Y) ⊂ YN ⊂ clS(Y). (3.76)

Therefore, taking preimages and applying Theorem 3.13 and Corollary

3.12 (YpN = S(Y)) we get

XpE ⊂ XE ⊂ f−1 (clS(Y)) . (3.77)

We apply Lemma 3.39 to Ỹ = S(Y) to get f−1(clS(Y)) = cl(f−1(S(Y))) =

clXpE and obtain

XpE ⊂ XE ⊂ clXpE . (3.78)

The result now follows from Lemma 3.32. ��

For once deriving results on Y from results on X , we note the consequences

of Theorem 3.38 and Theorem 3.40 for YwN ,YN , and YpE .

Corollary 3.41. If X is a convex, compact set and fk : Rn → R, k = 1, . . . , p

are convex functions then YwN , YN , and YpN are connected

Proof. The image of a connected set under a continuous mapping is connected.

��

That a relaxation of convexity, namely quasi-convexity, is not sufficient to

prove connectedness of XE can be seen from Exercise 3.11

3.5 Notes

Equations (3.37) and (3.38) imply

YpE ⊂ YN ⊂ clYpN

for Rp

�
-convex and Rp

�
-closed sets. Results of this type are called Arrow-

Barankin-Blackwell theorems, after the first theorem of this type for closed

convex sets, proved by Arrow et al. (1953). This has been generalized to orders

defined by closed cones C. Hirschberger (2002) shows that the convexity is not

essential and the result remains true if calY is closed and YpN 	= ∅.
The necessary and sufficient conditions for proper efficiency in Kuhn and

Tucker’s sense go back to Kuhn and Tucker (1951). Fritz-John type necessary
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conditions for efficiency have been proved in Da Cuhna and Polak (1967). All

of the conditions we have mentioned here are first order conditions. There is

of course also literature on second order necessary and sufficient conditions for

efficiency. For this type of conditions it is usually assumed that the objective

functions fk, k = 1, . . . , p and the constraint functions gj , j = 1, . . . , m of the

MOP are twice continuously differentiable.

Several necessary and sufficient second-order conditions for the MOP are

developed by Wang (1991). Cambini et al. (1997) establish second order con-

ditions for MOPs with general convex cones while Cambini (1998) develops

second order conditions for MOPs with the componentwise order. Aghezzaf

(1999) and Aghezzaf and Hachimi (1999) develop second-order necessary con-

ditions. Recent works include Bolintinéanu and El Maghri (1998), Bigi and

Castellani (2000), Jimenez and Novo (2002).

There is some literature on the connectedness of nondominated sets. Bitran

and Magnanti (1979) show YN and YpN are connected if Y is compact and

convex. Luc (1989) proves connectedness results for calY wN if Y is C-compact

and convex. Danilidis et al. (1997) consider problems with three objectives,

and Hirschberger (2002) shows that the convexity is not essential: if calC and

Y are closed, YN and YpN are connected. YwN is connected if in addition YN

is nonempty.
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Exercises

3.1. Prove that if Y is closed then clS(Y) ⊂ S0(Y). Hint: Choose sequences

λk, yk such that yk ∈ Opt(λk,Y) and show that λk → λ̂ and yk → ŷ with

ŷ ∈ Opt(λ̂,Y), λ̂ ≥ 0.

3.2. Prove Proposition 3.8, i.e. show that if ŷ is the unique element of

Opt(λ,Y) for some λ ∈ Rp
≥ then ŷ ∈ YN .

3.3. Give one example of a set Y ∈ R2 for each of the following situations:

1. S0(Y) ⊂ YwN with strict inclusion.

2. S(Y) ⊂ YN ⊂ S0(Y) with both inclusions strict,

3. S(Y) ∪ S′
0(Y) = Y = S0(Y), where

S′
0(Y) =

{
y′ ∈ Y : y′ is the unique element of Opt(λ,Y), λ ∈ Rp

≥

}
.

3.4. Let Y =
{
(y1, y2) : y2

1 + y2
2 ≤ 1

}
and C =

{
(y1, y2) = y2 ≤ 1

2y1

}
.

1. Show that ŷ = (−1, 0) is properly nondominated in Benson’s sense, i.e.

(cl(cone(Y + C − ŷ))) ∩ (−C) = {0}.

2. Show that ŷ ∈ Opt(λ,Y) for some λ /∈ Rp
> and verify that this λ ∈ Cs◦,

where

Cs◦ = {µ ∈ Rp : 〈µ, d〉 > 0 for all d ∈ C}.

This result shows that proper nondominance is related to weighted sum scalar-

ization with weighting vectors in Cs◦.

3.5 (Tamura and Arai (1982)). Let

X =
{
(x1, x2) ∈ R2 : −x1 ≤ 0, −x2 ≤ 0, (x1 − 1)3 + x2 ≤ 0

}
f1(x) = −3x1 − 2x2 + 3

f2(x) = −x1 − 3x2 + 1.

Graph X and Y = f(X ). Show that x̂ = (1, 0) is properly efficient in Ge-

offrion’s sense, but not in Kuhn-Tucker’s sense. (You may equivalently use

Benson’s instead of Geoffrion’s definition.)

3.6. Let C ⊂ Rp be a cone. The polar cone C◦ of C is defined as follows:

C◦ := {y ∈ Rp : 〈y, d〉 ≥ 0for all d ∈ C \ {0}} .

Prove the following:
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1. C◦ is a closed convex cone containing 0.

2. C ⊂ (C◦)◦ =: C◦◦.

3. C1 ⊂ C2 ⇒ C◦
2 ⊂ C◦

1 .

4. C◦ = (C◦◦)◦.

3.7. This exercise is about comparing weighted sum scalarizations with weight-

ing vectors from polar cones and C-nondominance. Let C be a convex pointed

cone and λ ∈ C◦ and define

OptC(λ,Y) :=

{
ŷ ∈ Y : 〈λ, ŷ〉 = min

y∈Y
〈λ, y〉

}
.

1. Show that

SC◦(Y) :=
⋃

λ∈C◦\{0}

Opt(λ,Y) ⊂ YCwN ,

where ŷ ∈ YCwN if (Y + int C − ŷ) ∩ (− int C) = ∅
2. Let Cs◦ be as in Exercise 3.6. Show

SCs◦(Y) :=
⋃

λ∈Cs◦

Opt(λ,Y) ⊂ YCN .

Hint: Look at the proofs of Theorems 3.4 and 3.7, respectively.

3.8 (Wiecek (1995)). Consider the problem

min
[
(x1 − 2)2 + (x2 − 1)2, x2

1 + (x2 − 3)2
]

s.t. g1(x) = x2
1 − x2 ≤ 0

g2(x) = x1 + x2 − 2 ≤ 0

g3(x) = −x1 ≤ 0

Use the conditions of Theorem 3.25 to find at least one candidate for a properly

efficient solution x̂ (in the sense of Kuhn and Tucker). Try to determine all

candidates.

3.9. Prove that x̂ ∈ X is efficient if and only if the optimal value of the

optimization problem

min

p∑
k=1

fk(x)

subject to fk(x) ≤ fk(x̂)

x ∈ X

is
∑p

k=1 fk(x0).
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3.10. Use Karush-Kuhn-Tucker conditions for single objective optimization

(see Theorem 3.20) and Exercise 3.9 to derive optimality conditions for effi-

cient solutions.

3.11. A function f : Rn → R is called quasi-convex if f(αx1 + (1 − α)x2) ≤
max{f(x1), f(x2)} for all α ∈ (0, 1). It is well known that f is quasi-convex if

and only if L≤(f(x)) is convex for all x (this is a nice exercise on level sets).

Give an Example of a multicriteria optimization problem with X ⊂ R
convex, fk : R → R quasi-convex such that XE is not connected. Hint: Mono-

tone increasing or decreasing functions are quasi-convex, in particular those

with horizontal parts in the graph.



4

Scalarization Techniques

The traditional approach to solving multicriteria optimization problems of the

Pareto class is by scalarization, which involves formulating a single objective

optimization problem that is related to the MOP

min
x∈X

(f1(x), . . . , fp(x)) (4.1)

by means of a real-valued scalarizing function typically being a function of

the objective functions of the MOP (4.1), auxiliary scalar or vector variables,

and/or scalar or vector parameters. Sometimes the feasible set of the MOP

is additionally restricted by new constraint functions related to the objective

functions of the MOP and/or the new variables introduced.

In Chapter 3 we introduced the “simplest” method to solve multicriteria

problems, the weighted sum method, where we solve

min
x∈X

p∑
k=1

λkfk(x). (4.2)

The weighted sum problem (4.2) uses the vector of weights λ ∈ Rp
≥ as a

parameter. We have seen that the method enables computation of the properly

efficient and weakly efficient solutions for convex problems by varying λ. The

following Theorem summarizes the results.

Theorem 4.1. 1. Let x̂ ∈ X be an optimal solution of (4.2). The following

statements hold.

• If λ > 0 then x̂ ∈ XpE.

• If λ ≥ 0 then x̂ ∈ XwE.

• If λ ≥ 0 and x̂ is a unique optimal solution of (4.2) then x̂ ∈ XsE .

2. Let X be a convex set and fk, k = 1, . . . , p be convex functions. Then the

following statements hold.
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• If x̂ ∈ XpE then there is some λ > 0 such that x̂ is an optimal solution

of (4.2).

• If x̂ ∈ XwE then there is some λ ≥ 0 such that x̂ is an optimal solution

of (4.2).

For nonconvex problems, however, it may work poorly. Consider the fol-

lowing example.

Example 4.2. Let X = {x ∈ R2
�

: x2
1 + x2

2 ≥ 1} and f(x) = x. In this case

XE = {x ∈ X : x2
1 + x2

2 = 1}, yet x̂1 = (1, 0) and x̂2 = (1, 0) are the only

feasible solutions that are optimal solutions of (4.2) for any λ ≥ 0.
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Fig. 4.1. The weighted sum method fails for nonconvex problems.

��

In this chapter we introduce some other scalarization methods, which are

also applicable when Y is not Rp

�
-convex.

4.1 The ε-Constraint Method

Besides the weighted sum approach, the ε-constraint method is probably the

best known technique to solve multicriteria optimization problems. There is no

aggregation of criteria, instead only one of the original objectives is minimized,

while the others are transformed to constraints. It was introduced byHaimes

et al. (1971), and an extensive discussion can be found in Chankong and

Haimes (1983).

We substitute the multicriteria optimization problem (4.1) by the ε-

constraint problem
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min
x∈X

fj(x)

subject to fk(x) ≤ εk k = 1, . . . , p k 	= j,

(4.3)

where ε ∈ Rp. The component εj is irrelevant for (4.3), but the convention to

include it will be convenient later.

Figure 4.2 illustrates a bicriterion problem, where an upper bound con-

straint is put on f1(x). The optimal values of (4.3) problem with j = 2 for

two values of ε1 are indicated. These show that the constraints fk(x) ≤ εk

might or might not be active at an optimal solution of (4.3).
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Fig. 4.2. Optimal solutions of ε-constraint problems (4.3).

To justify the approach we show that optimal solutions of (4.3) problems

are at least weakly efficient. A necessary and sufficient condition for efficiency

shows that this method works for general problems, no convexity assumption

is needed. We will also prove a result relating (4.3) to the weighted sum

problem (4.2).

Proposition 4.3. Let x̂ be an optimal solution of (4.3) for some j. Then x̂

is weakly efficient.

Proof. Assume x̂ /∈ XwE . Then there is an x ∈ X such that fk(x) < fk(x̂) for

all k = 1, . . . , p. In particular, fj(x) < fj(x̂). Since fk(x) < fk(x̂) ≤ εk for

k 	= j, the solution x is feasible for (4.3). This is a contradiction to x̂ being an

optimal solution of (4.3). ��
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In order to strengthen Proposition 4.3 to obtain efficiency we require the

optimal solution of (4.3) to be unique. Note the similarity to Theorem 3.4

and Proposition 3.8 for the weighted sum scalarization.

Proposition 4.4. Let x̂ be a unique optimal solution of (4.3) for some j.

Then x̂ ∈ XsE (and therefore x̂ ∈ XE).

Proof. Assume there is some x ∈ X with fk(x) ≤ fk(x̂) ≤ εk for all k 	= j. If

in addition fj(x) ≤ fj(x̂) we must have fj(x) = fj(x̂) because x̂ is an optimal

solution of (4.3). So x is an optimal solution of (4.3). Thus, uniqueness of the

optimal solution implies x = x̂ and x̂ ∈ XsE . ��

In general, efficiency of x̂ is related to x̂ being an optimal solution of (4.3)

for all j = 1, . . . , p with the same ε used in all of these problems.

Theorem 4.5. The feasible solution x̂ ∈ X is efficient if and only if there

exists an ε̂ ∈ Rp such that x̂ is an optimal solution of (4.3) for all j = 1, . . . , p.

Proof. “=⇒” Let ε̂ = f(x̂). Assume x̂ is not an optimal solution of (4.3)

for some j. Then there must be some x ∈ X with fj(x) < fj(x̂) and

fk(x) ≤ ε̂k = fk(x̂) for all k 	= j, that is, x̂ /∈ XE .

“⇐=” Suppose x̂ /∈ XE . Then there is an index j ∈ {1, . . . , p} and a feasible

solution x ∈ X such that fj(x) < fj(x̂) and fk(x) ≤ fk(x̂) for k 	= j.

Therefore x̂ cannot be an optimal solution of (4.3) for any ε for which it

is feasible. Note that any such ε must have fk(x̂) ≤ εk for k 	= j. ��

Theorem 4.5 shows that with appropriate choices of ε all efficient solu-

tions can be found. However, as the proof shows, these εj values are equal

to the actual objective values of the efficient solution one would like to find.

A confirmation or check of efficiency is obtained rather than the discovery of

efficient solutions.

We denote by

Ej := {ε ∈ Rp : {x ∈ X : fk(x) ≤ εk, k 	= j} 	= ∅}

the set of right hand sides for which (4.3) is feasible and by

Xj(ε) := {x ∈ X : x is an optimal solution of (4.3)}

for ε ∈ Ej the set of optimal solutions of (4.3). From Theorem 4.5 and Propo-

sition 4.3 we have that for each ε ∈ ∩p
j=1Ej

p⋂
j=1

Xj(ε) ⊂ XE ⊂ Xj(ε) ⊂ XwE (4.4)
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for all j = 1, . . . , p (cf. (3.37) for weighted sum scalarization).

Our last result in this section provides a link between the weighted sum

method and the ε-constraint method.

Theorem 4.6 (Chankong and Haimes (1983)).

1. Suppose x̂ is an optimal solution of minx∈X
∑p

k=1 λkfk(x). If λj > 0 there

exists ε̂ such that x̂ is an optimal solution of (4.3), too.

2. Suppose X is a convex set and fk : Rn → R are convex functions. If x̂ is

an optimal solution of (4.3) for some j, there exists λ̂ ∈ Rp
≥ such that x̂

is optimal for minx∈X
∑p

k=1 λ̂kfk(x).

Proof. 1. As in the previous proof we show that we can set ε̂ = f(x̂). From

optimality of x̂ for a weighted sum problem we have

p∑
k=1

λk(fk(x) − fk(x̂)) ≥ 0

for all x ∈ X . Suppose x̂ is not optimal for (4.3) with right hand sides ε̂.

The contradiction follows from the fact that for any x′ ∈ X with fj(x
′) <

fj(x̂) and fk(x′) ≤ fk(x̂) for k 	= j

λj(fj(x
′) − fj(x̂)) +

∑
k �=j

λk(fk(x0) − fk(x̂)) < 0 (4.5)

because λj > 0.

2. Suppose x̂ solves (4.3) optimally. Then there is no x ∈ X satisfying fj(x) <

fj(x̂) and fk(x) ≤ fk(x̂) ≤ εk for k 	= j. Using convexity of fk we apply

Theorem 3.16 to conclude that there must be some λ̂ ∈ Rp
≥ such that∑p

k=1 λ̂k(fk(x) − fk(x̂)) ≥ 0 for all x ∈ X . Since λ̂ ∈ Rp
≥ we get

p∑
k=1

λ̂kfk(x) ≥
p∑

k=1

λ̂kfk(x̂) (4.6)

for all x ∈ X . Therefore λ̂ is the desired weighting vector. ��

A further result in this regard, showing when an optimal solution of the

weighted sum problem is also an optimal solution of the (4.3) problem for all

j = 1, . . . , p is given as Exercise 4.1.

4.2 The Hybrid Method

It is possible to combine the weighted sum method with the ε-constraint

method. In that case, the scalarized problem to be solved has a weighted sum
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objective and constraints on all objectives. Let x0 be an arbitrary feasible

point for an MOP. Consider the following problem:

min

p∑
k=1

λkfk(x)

subject to fk(x) ≤ fk(x0) k = 1, . . . , p

x ∈ X

(4.7)

where λ ∈ Rp
≥.

Theorem 4.7. Guddat et al. (1985) Let λ ∈ Rp
>. A feasible solution x0 ∈ X

is an optimal solution of problem (4.7) if and only if x0 ∈ XE .

Proof. Let x0 ∈ X be efficient. Then there is no x ∈ X such that f(x) ≤ f(x0).

Thus any feasible solution of (4.7) satisfies f(x) = f(x0) and is an optimal

solution.

Let x0 be an optimal solution of (4.7). If there were an x ∈ X such that

f(x) ≤ f(x0) the positive weights would imply

p∑
k=1

λkfk(x) <

p∑
k=1

λkfk(x0).

Thus x0 is efficient. ��

4.3 The Elastic Constraint Method

For the ε-constraint method we have no results on properly efficient solutions.

In addition, the scalarized problem (4.3) may be hard to solve in practice due

to the added constraints fk(x) ≤ εk. In order to address this problem we can

“relax” these constraints by allowing them to be violated and penalizing any

violation in the objective function. Ehrgott and Ryan (2002) used this idea

to develop the e;elastic constraint scalarization

min fj(x) +
∑
k �=j

µksk

subject to fk(x) − sk ≤ εk k 	= j

sk ≥ 0 k 	= j

x ∈ X ,

(4.8)

where µk ≥ 0, k 	= j. The feasible set of (4.8) in x variables is X , i.e. the

feasible set of the original multicriteria optimization problem (4.1).
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Fig. 4.3. Feasible set and objective function of Problem (4.8).

Note that if (x̂, ŝ) is an optimal solution of (4.8), then we may without

loss of generality assume that ŝk = max{0, εk − fk(x̂)}.
In Figure 4.3 (4.8) for j = 2 is illustrated for the bicriterion problem of

Example 4.2. The vertical dotted line marks the value ε1 = 0.5. The dotted

curve shows the objective function of (4.8) as a function of component y1

of nondominated points YN . The idea of the method is that, by penalizing

violations of the constraint f1(x) ≤ ε1, a minimum is attained with the con-

straint active. As can be seen here, the minimum of (4.8) will be attained at

x = (0.5, 0.5).

We obtain the following results:

Proposition 4.8. Let (x̂, ŝ) be an optimal solution of (4.8) with µ � 0. Then

x̂ ∈ XwE .

Proof. Suppose x̂ is not weakly efficient. Then there is some x ∈ X such that

fk(x) < fk(x̂), k = 1, . . . , p. Then (x, ŝ) is feasible for (4.8) with an objective

value that is smaller than that of (x̂, ŝ). ��

Under additional assumptions we get stronger results.

Proposition 4.9. If x̂ is unique in an optimal solution of (4.8), then x̂ ∈ XsE

is a strictly efficient solution of the MOP.

Proof. Assume that x ∈ X is such that fk(x) ≤ fk(x̂), k = 1, . . . , p. Then

(x, ŝ) is a feasible solution of (4.8). Since the objective function value of (x, ŝ)

is not worse than that of (x̂, ŝ), uniqueness of x̂ implies that x = x̂. ��
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The following example shows that even if µ > 0 an optimal solution of

(4.8) may be just weakly efficient.

Example 4.10. Consider

X =
{
(x1, x2) ∈ R2

� : (x1 − 1)2 + (x2 − 1)2 ≤ 1
}

+ R2
�

and f(x) = x. Let ε1 > 1. Then (x̂1, x̂2, ŝ1) = (x̂1, 0, 0) is an optimal solution

of (4.8) with j = 2 for all 1 ≤ x̂1 ≤ ε1. If x̂1 > 1 this solution is weakly

efficient, but not efficient. This result is independent of the choice of µ. ��

The problem here is the possible existence of weakly efficient solutions that

satisfy the constraints fk(x) ≤ εk for all k 	= j. If, however, all εk are chosen in

such a way that no merely weakly efficient solution satisfies the ε-constraints,

an optimal solution of (4.8) with µ > 0 will yield an efficient solution.

We now turn to the problem of showing that (properly) efficient solutions

are optimal solutions of (4.8) for appropriate choices of k, ε, and µ. The fol-

lowing corollary follows immediately from Theorem 4.5 by choosing ε = f(x̂),

ŝ = 0 and µk = ∞ for all k = 1, . . . , p.

Corollary 4.11. Let x̂ ∈ XE . Then there exist ε, µ � 0 and ŝ such that (x̂, ŝ)

is an optimal solution of (4.8) for all j ∈ {1, . . . , p}.

A more careful analysis shows that for properly efficient solutions, we can

do without the infinite penalties.

Theorem 4.12. Let YN be externally stable. Let x̂ ∈ XpE be properly efficient.

Then, for every j ∈ {1, . . . , p} there are ε, ŝ, µj with µj
k < ∞ for all k 	= j

such that (x̂, ŝ) is an optimal solution of (4.3) for all µ ∈ Rp−1, µ � µj.

Proof. We choose εk := fk(x̂), k = 1, . . . , p. Thus, we can choose ŝ = 0. Let

j ∈ {1, . . . , p}. Because x̂ is properly efficient there is M > 0 such that for

all x ∈ X with fj(x) < fj(x̂) there is k 	= j such that fk(x̂) < fk(x) and
fj(x̂)−fj(x)
fk(x)−fk(x̂) < M.

We define µj by µj
k := max(M, 0) for all k 	= j.

Let x ∈ X and s ∈ R be such that sk = max{0, fk(x) − εk} =

max{0, fk(x) − fk(x̂)} for all k 	= j, i.e. the smallest possible value it can

take. We need to show that

fj(x) +
∑
k �=j

µksk ≥ fj(x̂) +
∑
k �=j

µkŝk = fk(x̂). (4.9)

First, we prove that we can assume x ∈ XE in (4.9). Otherwise there is

x′ ∈ XE with f(x′) ≤ f(x) (because YN is externally stable, see Definition
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2.20) and s′ with s′k = max{0, fk(x
′) − εk}. Since s′ � s we get that fj(x

′) +∑
k �=j µks′k ≤ fk(x) +

∑
k �=j µksk for any µ � 0.

Now let x ∈ XE . We consider the case fj(x) ≥ fj(x̂). Then

fj(x) +
∑
k �=j

µksk > fk(x̂) + 0 = fj(x̂) +
∑
k �=j

µj
kŝk

for any µ ≥ 0.

Now consider the case fj(x) < fj(x̂) and let I(x) := {k 	= j : fk(x) >

fk(x̂)}. As both x̂ and x are efficient, I(x) 	= ∅. Furthermore, we can assume

sk = 0 for all k 	∈ I(x), k 	= j. Let k′ ∈ I(x). Then

fj(x) +
∑
k �=j

µksk ≥ fj(x) +
∑
k �=j

µj
ksk

≥ fj(x) +
∑

k∈I(x)

fj(x̂) − fj(x)

fk(x) − fk(x̂)
sk

≥ fj(x) +
fj(x̂) − fj(x)

fk′(x) − fk′(x̂)
sk′

= fj(x) +
fj(x̂) − fj(x)

fk′(x) − fk′(x̂)
(fk′(x) − fk′(x̂))

= fj(x̂) = fj(x̂) +
∑
k �=j

µkŝk.

This follows from µk ≥ µj
k, the definition of µj

k, nonnegativity of all terms,

sk = fk(x) − fk(x̂) for k ∈ I(x) and ŝ = 0. ��

We can also see, that for x ∈ XE \XpE finite values of µ are not sufficient.

Example 4.13. Let p = 2 and X = {x ∈ R2 : (x1 − 1)2 + (x2 − 1)2 ≤ 1} with

f(x) = x. Then (1, 0) and (0, 1) are efficient, but not properly efficient. The

scalarization

min x2 + µs

subject to x1 − s ≤ 0

x ∈ X

is equivalent to (has the same optimal solution x as)

min{x2 + µx1 : (x1 − 1)2 + (x2 − 1)2 = 1}.

It is easy to see that the unique optimal solution is given by x1 = 1−
√

1 − 1
µ+1

and it is necessary that µ → ∞ to get x1 → 0.

Note, however, that in order to obtain (0, 1), we can also consider
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min x1 + µs

subject to x2 − s ≤ 1

x ∈ X .

It is clear that x1 = 0, x2 = 1, s = 0 is an optimal solution of this problem for

any µ ≥ 0. ��

It is worth noting that in the elastic constraint method ε-constraints of

(4.3) are relaxed in a manner similar to penalty function methods in nonlinear

programming. This may help solving the scalarized problem in practice.

4.4 Benson’s Method

The method and results described in this section are from Benson (1978). The

idea is to choose some initial feasible solution x0 ∈ X and, if it is not itself

efficient, produce a dominating solution that is. To do so nonnegative deviation

variables lk = fk(x0) − fk(x) are introduced, and their sum maximized. This

results in an x dominating x0, if one exists, and the objective ensures that it

is efficient, pushing x as far from x0 as possible.

The substitute problem (4.10) for given x0 is

max

p∑
k=1

lk

subject to fk(x0) − lk − fk(x) = 0 k = 1, . . . , p

l � 0

x ∈ X .

(4.10)

An illustration in objective space (Figure 4.4) demonstrates the idea. The

initial feasible, but dominated, point f(x0) has values greater than the efficient

point f(x̂). Maximizing the total deviation l̂1 + l̂2, the intention is to find a

dominating solution, which is efficient.

First of all, solving (4.10) is a check for efficiency of the initial solution x0

itself. We will see this result again later, when we deal with linear problems

in Chapter 6.

Theorem 4.14. The feasible solution x0 ∈ X is efficient if and only if the

optimal objective value of (4.10) is 0.

Proof. Let (x, l) be a feasible solution of (4.10). Because of the nonnegativity

constraint lk ≥ 0 for k = 1, . . . , p and the definition of lk as fk(x0)− fk(x) we

have
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Fig. 4.4. Illustration of Benson’s problem (4.10).

p∑
k=1

lk = 0 ⇐⇒ lk = 0 k = 1, . . . , p

⇐⇒ fk(x0) = fk(x) k = 1, . . . , p

Thus, if the optimal value is 0, and x ∈ X is such that f(x) � f(x0) it

must hold that f(x) = f(x0), i.e. x0 is efficient. If, on the other hand, x0 is

efficient, the feasible set of (4.10) consists of those (x, l) for which x ∈ X and

f(x) = f(x0) and thus l = 0. ��

That the initial solution x0 is efficient cannot be expected in general. The

strength of the method lies in the fact that whenever problem (4.10) has a

finite optimal solution value, the optimal solution is efficient. Under convexity

assumptions, we can even show that when the objective function of (4.8) is

unbounded, no properly efficient solutions exist. From an application point

of view, this constitutes a pathological situation: all efficient solutions will

have unbounded trade-offs. However, this can only happen in situations where

existence of efficient solutions is not guaranteed in general.

Proposition 4.15. If problem (4.10) has an optimal solution (x̂, l̂) (and the

optimal objective value is finite) then x̂ ∈ XE.

Proof. Suppose x̂ /∈ XE . Then there is some x′ ∈ X such that fk(x′) ≤ fk(x̂)

for all k = 1, . . . , p and fj(x
′) < fj(x̂) for at least one j. We define l′ :=

f(x0) − f(x′). Then (x′, l′) is feasible for (4.10) because
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l′k = fk(x0) − fk(x′) ≥ fk(x0) − fk(x̂) = l̂k ≥ 0. (4.11)

Furthermore,
∑p

k=1 l′k >
∑p

k=1 l̂k as l′j > l̂j . This is impossible because

(x̂, l̂) is an optimal solution of (4.10). ��

The question of what happens if (4.10) is unbounded can be answered

under convexity assumptions.

Theorem 4.16 (Benson (1978)). Assume that the functions fk, k =

1, . . . , p are convex and that X ⊂ Rn is a convex set. If (4.10) has no fi-

nite optimal objective value then XpE = ∅.

Proof. Since (4.10) is unbounded, for every real number M ≥ 0 we can find

xM ∈ X such that l = f(x0) − f(xM ) ≥ 0 and

p∑
k=1

lk =

p∑
k=1

(fk(x0) − fk(xM )) > M. (4.12)

Assume that x̂ is properly efficient in Geoffrion’s sense. From Theorem

3.15 we know that there are weights λk > 0 for k = 1, . . . , p such that x̂

is an optimal solution of minx∈X
∑p

k=1 λkfk(x). Therefore
∑p

k=1 λk(fk(x) −
fk(x̂)) ≥ 0 for all x ∈ X , and in particular

p∑
k=1

λk(fk(x0) − fk(x̂)) ≥ 0. (4.13)

We define λ̂ := min{λ1, . . . , λp} > 0 and for some arbitrary, but fixed

M ′ ≥ 0 let M := M ′/λ̂. From (4.12) we know that for this M there is some

xM ∈ X satisfying fk(x0) − fk(xM ) ≥ 0 for all k = 1, . . . , p and

λ̂

p∑
k=1

(fk(x0) − fk(xM )) > λ̂M =
M ′

λ̂
· λ̂ = M ′. (4.14)

This implies that

M ′ <

p∑
k=1

λ̂(fk(x0) − fk(xM )) ≤
p∑

k=1

λk(fk(x0) − fk(xM )) (4.15)

is true for all M ′ ≥ 0 because of the definition of λ̂ and because M ′ was chosen

arbitrarily. We can therefore use M ′ =
∑p

k=1 λk(fk(x0) − fk(x̂)) to get

p∑
k=1

λk(fk(x0) − fk(x̂)) <

p∑
k=1

λk(fk(x0) − fk(xM )), (4.16)

i.e.
∑p

k=1 λkfk(xM ) <
∑p

k=1 λkfk(x̂), contradicting optimality of x̂ for the

weighted sum problem. ��
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Recalling that YN ⊂ clYpN if in addition to convexity Y = f(X ) is Rp

�
-

closed (Theorem 3.17) we can strengthen Theorem 4.16 to emptiness of XE .

Corollary 4.17. Assume X ⊂ Rn is convex, fk : Rn → R are convex for

k = 1, . . . , p and f(X ) is Rp

�
-closed. If (4.10) is unbounded then XE = ∅.

Proof. From Theorem 3.17 we know that YN ⊂ cl S(Y) = clYpN . From The-

orem 4.16 YpN = ∅ whence clYpE = ∅ and YN = ∅. Thus XE = ∅. ��

Example 4.18 (Wiecek (1995)). Consider the multicriteria optimization prob-

lem with a single variable

min
(
x2 − 4, (x − 1)4

)
subject to − x − 100 ≤ 0.

Benson’s problem (4.10) in this case is

max l1 + l2

subject to − x − 100 ≤ 0

(x0)2 − 4 − l1 − x2 + 4 = 0

(x0 − 1)4 − l2 − (x − 1)4 = 0

l � 0.

We solve the problem for two choices of x0. First, consider x0 = 0. We

obtain

max l1 + l2 (4.17)

subject to − x − 100 ≤ 0 (4.18)

x2 + l1 = 0 (4.19)

1 − l2 − (x − 1)4 = 0 (4.20)

l1, l2 � 0 (4.21)

From (4.19) and (4.21) l1 = 0 and x = 0. Then (4.20) and (4.21) imply

l2 = 0. Therefore x = 0, l = (0, 0) is the only feasible solution of (4.10) with

x0 = 0 and Theorem 4.14 implies that x0 = 0 ∈ XE .

The (strictly, weakly) efficient sets for this problem here are all equal to

[0, 1] (use the result in Exercise 2.8 to verify this). Therefore let us try (4.10)

with an initial solution x0 = 2, to see if x0 /∈ XE can be confirmed, and to

find a dominating efficient solution.

The problem becomes



110 4 Scalarization Techniques

max l1 + l2

subject to − x − 100 ≤ 0

−x2 + 4 − l1 = 0

1 − (x − 1)4 − l2 = 0

l1, l2 � 0.

From the constraints we deduce 0 ≤ l1 ≤ 4 and 0 ≤ l2 ≤ 1. Therefore

the optimal objective value is bounded, and according to Proposition 4.15 an

optimal solution of (4.10) with x0 = 2 is efficient. Because x = 0, l1 = 4, l2 = 0

is feasible for (4.10), the optimal objective value is nonzero. Theorem 4.14

implies that x0 = 2 is not efficient. The (unique) optimal solution of the

problem is x̂ ≈ 0.410.
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Fig. 4.5. Objective functions in Example 4.18.
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4.5 Compromise Solutions – Approximation of the Ideal

Point

The best possible outcome of a multicriteria problem would be the ideal point

yI (see Definition 2.22). Yet when the objectives are conflicting the ideal values

are impossible to obtain. However, the ideal point can serve as a reference

point, with the goal to seek for solutions as close as possible to the ideal

point. This is the basic idea of compromise programming.

Given a distance measure

d : Rp × Rp → R�, (4.22)

the compromise programming problem is given by

min
x∈X

d(f(x), yI). (4.23)

In this text, we will only consider metrics derived from norms as distance

measures, i.e. d(y1, y2) = ‖y1 − y2‖. In particular for y1, y2, y3 ∈ Y: d is

symmetric d(y1, y2) = d(y2, y1), satisfies the triangle inequality d(y1, y2) ≤
d(y1, y3) + d(y3, y2), and d(y1, y2) = 0 if and only if y1 = y2.

The compromise programming problem (4.23) has a nice interpretation

in terms of the level sets {y ∈ Rp : ‖y − yI‖ ≤ c}. These sets contain all

points of distance c or less to the ideal point yI . Therefore the goal of the

compromise programming problem is to find the smallest value c such that the

intersection of the corresponding level set with Y = f(X ) is nonempty. Figure

4.6 illustrates this perspective for the l1 distance ‖y1−y2‖1 :=
∑p

k=1 |y1
k−y2

k|,
the l∞ distance ‖y1 − y2‖∞ := maxp

k=1 |y1
k − y2

k|, and a distance measure d

derived from a norm γ with asymmetric level sets.

Whether an optimal solution of problem (4.23) is efficient depends on

properties of the distance measure d, and therefore on properties of norm ‖·‖,
from which d is derived.

Definition 4.19. 1. A norm ‖ · ‖ : Rp → R� is called monotone, if ‖y1‖ ≤
‖y2‖ holds for all y1, y2 ∈ Rp with |y1

k| ≤ |y2
k|, k = 1, . . . , p and moreover

‖y1‖ < ‖y2‖ if |y1
k| < |y2

k|, k = 1, . . . , p.

2. A norm ‖ · ‖ is called strictly monotone, if ‖y1‖ < ‖y2‖ holds whenever

|y1
k| ≤ |y2

k|, k = 1, . . . , p and |y1
j | 	= |y2

j | for some j.

With definition 4.19 we can prove the following basic results.

Theorem 4.20. 1. If ‖·‖ is monotone and x̂ is an optimal solution of (4.23)

then x̂ is weakly efficient. If x̂ is a unique optimal solution of (4.23) then

x̂ is efficient.
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Fig. 4.6. Level Sets {y : ‖y − yI‖ ≤ c} for different norms.

2. If ‖ · ‖ is strictly monotone and x̂ is an optimal solution of (4.23) then x̂

is efficient.

Proof. 1. Suppose x̂ is an optimal solution of (4.23) and x̂ /∈ XwE . Then

there is some x′ ∈ X such that f(x′) < f(x̂). Therefore 0 ≤ fk(x′)− yI
k <

fk(x̂) − y0
k for k = 1, . . . , p and

‖f(x′) − yI‖ < ‖f(x̂) − y0‖, (4.24)

a contradiction.

Now assume that x̂ is a unique optimal solution of (4.23) and that x̂ /∈ XE .

Then there is some x′ ∈ X such that f(x′) ≤ f(x̂). Therefore 0 ≤ fk(x)−
yI

k ≤ fk(x̂) − yI
k for k = 1, . . . , p with one strict inequality, and

‖f(x) − yI‖ ≤ ‖f(x̂) − yI‖. (4.25)

From optimality of x̂ equality must hold, which contradicts the uniqueness

of x̂.

2. Suppose x̂ is an optimal solution of (4.23) and x̂ /∈ XE . Then there are

x′ ∈ X and j ∈ {1, . . . , p} such that fk(x′) ≤ fk(x̂) for k = 1, . . . , p and

fj(x
′) < fj(x̂). Therefore 0 ≤ fk(x) − yI

k ≤ fk(x̂) − yI
k for all k = 1, . . . , p

and 0 ≤ fj(x) − yI
j < fj(x̂) − yI

j . Again the contradiction

‖f(x) − y0‖ < ‖f(x̂) − y0‖ (4.26)

follows. ��



4.5 Compromise Solutions – Approximation of the Ideal Point 113

The most important class of norms is the class of lp-norms ‖ · ‖ = ‖ · ‖p,

i.e.

‖y‖p =

(
p∑

k=1

|yk|p
) 1

p

(4.27)

for 1 ≤ p ≤ ∞. The lp norm ‖ ‖p is strictly monotone for 1 ≤ p < ∞ and

monotone for p = ∞. The special cases p = 1 with ‖y‖ =
∑p

k=1 |yk| and

p = ∞ with ‖y‖ = maxp
k=1 |yk| are of major importance.

As long as we just minimize the distance between a feasible point in objec-

tive space and the ideal point, we will find one (weakly) efficient solution for

each choice of a norm. The results can be strengthened if we allow weights in

the norms. From now on we only consider lp-norms. The weighted compromise

programming problems are

min
x∈X

(
p∑

k=1

λk(fk(x) − yI
k)p

) 1
p

(4.28)

for general p, and

min
x∈X

max
k=1,...,p

λk(fk(x) − yI
k), (4.29)

for p = ∞.

Here we assume, as usual, that the vector of weights λ ∈ Rp
≥ is nonnegative

and nonzero. Note that the functions ‖ · ‖λ
p

: Rp → R� are not necessarily

norms if some of the weights λk are zero. It is also of interest to observe that

for p = 1 (4.28) can be written as

min
x∈X

p∑
k=1

(λkfk(x) − yI
k) = min

x∈X

(
p∑

k=1

λkfk(x)

)
−

p∑
k=1

λkyI
k.

Hence weighted sum scalarization can be seen as a special case of weighted

compromise programming. We can therefore exclude this case from now on.

The emphasis on the distinction between 1 < p < ∞ and p = ∞ is justified

for two reasons: The latter is the most interesting case, and the most widely

used, and the results are often different from those for p < ∞.

For (4.28) and (4.29) we can prove some basic statements analogous to

Theorem 4.20.

Theorem 4.21. An optimal solution x̂ of (4.28) with p < ∞ is efficient if

one of the following conditions holds.

1. x̂ is a unique optimal solution of (4.28).
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2. λk > 0 for all k = 1, . . . , p.

Proof. Assume x̂ is a minimizer of (4.28) but x̂ /∈ XE . Then there is some

x′ ∈ X dominating x̂.

1. In this case, x′ must also be an optimal solution of (4.28), which due to

x 	= x̂ is impossible.

2. From λ > 0 we have 0 < λk(fk(x) − yI
k) ≤ λk(fk(x̂) − yI

k) for all k =

1, . . . , p with strict inequality for some k. Taking power p and summing up

preserves strict inequality, which contradicts x̂ being an optimal solution

of (4.28). ��

Proposition 4.22. Let λ > 0 be a strictly positive weight vector. Then the

following statements hold.

1. If x̂ is an optimal solution of (4.29) then x̂ ∈ XwE.

2. If YN is externally stable (see Definition 2.20) and (4.29) has an optimal

solution then at least one of its optimal solutions is efficient.

3. If (4.29) has a unique optimal solution x̂, then x̂ ∈ XE.

Proof. 1. The proof is standard and left out. See the proofs of Theorems 4.20

and 4.21.

2. Assume that (4.29) has optimal solutions, but none of them is is efficient.

Let x̂ be an optimal solution of (4.29). Because YN is externally stable

there must be an x ∈ XE with f(x) ≤ f(x̂). Then λk(fk(x) − yI
k) ≤

λk(fk(x̂) − yI
k) for k = 1, . . . , p, which means x is optimal for (4.29), too.

3. This part can be shown as usual. If YN is externally stable it follows

directly from the second statement. ��

Actually, all the results we proved so far remain valid, if the ideal point

yI is replaced by any other reference point yR, as long as this reference point

is chosen to satisfy yR � yI .

Definition 4.23. A point yU := yI
i − ε, where ε ∈ Rp

> has small positive

components is called a utopia point.

Note that not even minimizing the single objectives independently of one

another will yield the utopia values: fk(x) > yU
k for all feasible solutions x ∈ X

and all k = 1, . . . , p. The advantage of using utopia points instead of ideal

points will become clear from the following theorems. The first complements

Proposition 4.22 by a necessary and sufficient condition for weak efficiency.

Theorem 4.24 (Choo and Atkins (1983)). A feasible solution x̂ ∈ X is

weakly efficient if and only if there is a weight vector λ > 0 such that x̂ is an

optimal solution of the problem
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min
x∈X

max
k=1,...,p

λk(fk(x) − yU
k ). (4.30)

Proof. “⇐=” The proof of sufficiency is the same standard proof as that of

the first part of Proposition 4.22.

“=⇒” We define appropriate weights and show that they do the job. Let

λk := 1/(fk(x̂) − yU
k ). These weights are positive and finite. Suppose x̂ is

not optimal for (4.30). Then there is a feasible x ∈ X such that

max
k=1,...,p

λk(fk(x) − yU
k ) < max

k=1,...,p

1

fk(x̂) − yU
k

(fk(x̂) − yU
k ) = 1

and therefore

λk(fk(x) − yU
k ) < 1 for all k = 1, . . . , p.

Dividing by λk we get fk(x) − yU
k < fk(x̂) − yU

k for all k = 1, . . . , p and

thus f(x) < f(x̂), contradicting x̂ ∈ XwE . ��

With Theorem 4.24 we have a complete characterization of weakly efficient

solutions for general, nonconvex problems. However, as for the ε-constraint

method, we have to accept the drawback that in practice the result will only

be useful as a check for weak efficiency, because f(x̂) is needed to define the

weights to prove optimality of x̂. It should also be noted that if yU is replaced

by yI in Theorem 4.24 then not even

YpN ⊂
⋃

λ∈R
p
>

{
ŷ : max

k=1,...,p
λk|ŷk − yI

k| ≤ max
k=1,...,p

λk|yk − yI
k| for all y ∈ Y

}

is true, see Exercise 4.8.

We are now able to prove the main result of this section. It is the formal

extension of the main result on the weighted sum scalarization in Chapter 3.

We have noted earlier that (4.28) contains the weighted sum problem as a

special case (setting p = 1). For this special case we have seen in Theorem

3.17 that for Rp
�

-convex and Rp
�

-bounded Y

S(Y) ⊂ YpN ⊂ YN ⊂ cl(S(Y)).

For the general problem (4.28) we can therefore expect more general re-

sults, when convexity is relaxed. Theorem 4.25 is this generalization. Before

we can prove the theorem, we have to introduce some notation to enhance

readability of the proof.

Let
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Λ :=

{
λ ∈ Rp

�
:

p∑
k=1

λk = 1

}

Λ0 := riΛ =

{
λ ∈ Rp

�
:

p∑
k=1

λk = 1

}
.

For λ ∈ Λ and y ∈ Y we shall write

λ � y = (λ1y1, . . . , λpyp).

Furthermore, in analogy to Opt(λ,Y) and S(Y), the set of best approxi-

mations of yI for a certain weight λ and norm ‖ ‖p is denoted by

A(λ, p,Y) :=

{
ŷ ∈ Y :

∥∥λ � (ŷ − yU )
∥∥

p
= min

y∈Y

∥∥w � (y − yU )
∥∥

p

}
(4.31)

A(Y) :=
⋃

λ∈Λ0

⋃
1≤p<∞

A(λ, p,Y). (4.32)

From Theorem 4.21 and Theorem 4.24 we already know that

A(Y) ⊂ YN ⊂ YwN =
⋃

λ∈Λ0

A(λ,∞,Y). (4.33)

The main result will show that this can be strengthened to

A(Y) ⊂ YpE ⊂ YE ⊂ cl(A(Y)) (4.34)

for Rp
�

-closed sets Y, a complete analogy to Theorem 3.17 for nonconvex sets.

In the proof of Theorem 4.25 some of the essential arguments are based

on the following properties of lp-norms:

(P1) ‖y‖∞ ≤ ‖y‖p for all 1 ≤ p < ∞ and all y ∈ Rp,

(P2) ‖y‖p → ‖y‖∞ as p → ∞ holds for any y ∈ Rp,

(P3) ‖ · ‖p is strictly monotone for all 1 ≤ p < ∞.

Theorem 4.25 (Sawaragi et al. (1985)). If Y is Rp
�
-closed then

A(Y) ⊂ YpN ⊂ YN ⊂ cl(A(Y)).

Proof. The proof is divided into two main parts, corresponding to the two

inclusions A(Y) ⊂ YpN and YN ⊂ cl(A(Y)).

Part 1: A(Y) ⊂ YpN . Let ŷ ∈ A(Y). By definition of A(Y) there is a positive

weight vector λ ∈ Λ0 and some p ∈ [1,∞) such that∥∥λ � (ŷ − yU )‖p ≤ ‖λ � (y − yU )
∥∥

p
(4.35)
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for all y ∈ Y. Let us assume that ŷ /∈ YpN , which according to Benson’s

definition 2.44 means that there are sequences {βk} ⊂ R, {yk} ⊂ Y, and

{dk} ⊂ Rp
�

with βk > 0 and

βk(yk + dk − ŷ) → −d for some d ∈ Rp
≥. (4.36)

We distinguish the two cases {βk} bounded and {βk} unbounded and use

(4.36) to construct a point ỹ, respectively a sequence yk, which do not

satisfy (4.35).

{βk} bounded: In this case we can assume, without less of generality,

that βk converges to some number β0 ≥ 0 (taking a subsequence, if

necessary). If β0 = 0 the fact yk + dk − ŷ ≥ yU − ŷ implies

βk(yk + dk − ŷ) ≥ βk(yU − ŷ). (4.37)

Because the left hand side term in (4.37) converges to −d, and the

right hand side term to 0, we get −d ≥ 0, a contradiction.

If, on the other hand, β0 > 0 we have that yk + dk − ŷ → (−d)/β0,

which is nonzero, and yk + dk → ŷ − d/β0. Since yk + dk ∈ Y + Rp
�

and this set is closed, it must be that the limit ŷ − d/β0 ∈ Y + Rp

�
.

From this observation we conclude that there is some ỹ ∈ Y such that

ŷ ≥ ỹ. Positive weights and strict monotonicity of the lp-norm finally

yield ‖λ � (ŷ − yU )‖p > ‖λ � (ỹ − yU )‖p.

{βk} unbounded: Taking subsequences if necessary, we can here assume

βk → ∞, which by the convergence in (4.36) gives yk + dk − ŷ → 0.

Because ŷk > yU
k for all k = 1, . . . , p we can find a sufficiently large

β′ > 0 so that

0 ≤ ŷ − d

β
− yU < ŷ − yU (4.38)

for all β > β′. We use strict monotonicity of the norm and λ > 0 to

obtain ∥∥∥∥λ �
(

ŷ − d

β
− yU

)∥∥∥∥
p

<
∥∥λ � (ŷ − yU )

∥∥
p

(4.39)

for all β > β′. Since βk → ∞ we will have βk > β′ for all k ≥ k0 with

a sufficiently large k0. Therefore∥∥λ � (yk + dk − yU )
∥∥

p
=
∥∥∥λ � (yk + dk − ŷ + d

βk
+ ŷ − d

βk
− yU )

∥∥∥
p

≤
∥∥λ � (yk + dk − ŷ)

∥∥
p
+

‖λ
d‖p

βk
+∥∥∥λ �

(
ŷ − d

βk
− yU

)∥∥∥
p

.

(4.40)
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We know that the first term on the right hand side of the inequality

of (4.40) converges to 0. The sequence βk being unbounded implies

the second term converges to 0, too. Thus from (4.40) and (4.39)

lim
k→∞

∥∥λ � (yk + dk − yU )
∥∥

p
≤ lim

k→∞

∥∥∥λ �
(
ŷ − d

βk
− yU

)∥∥∥
p

<
∥∥λ � (ŷ − yU )

∥∥
p
.

(4.41)

But since yk + dk − yU � yk − yU ≥ 0, applying monotonicity of the

norm once more, (4.41) implies lim
k→∞

‖λ�(yk−yU )‖p < ‖λ�(ŷ−yU )‖p.

Part 2: YN ⊂ cl(A(Y)). We prove this part by showing that for all ŷ ∈ YN

and for all ε > 0 there is some yε ∈ A(Y) in an ε-neighbourhood of ŷ.

Then, taking the closure of A(Y), the result follows. The ε-neighbourhood

is defined according to the l∞-norm.

I.e. let ŷ ∈ YN and let ε > 0. We show that there is some yε ∈ A(Y) with

‖yε − ŷ‖∞ = maxk=1,...,p |yε
k − ŷk| < ε.

First we proof an auxiliary claim: For each ε > 0 there is y′ > ŷ such that

‖y − ŷ‖∞ < ε for all y in the section (y′ − Rp
�

) ∩ Y, see Figure 4.7. To

see this, assume that for some ε > 0 there is no such y′. Then there must

be a sequence {ŷk} ⊂ Rp with ŷk ≥ ŷ, ŷk → ŷ such that for all k there is

yk ∈ (ŷk − Rp
�

) ∩ Y with ‖yk − ŷ‖ ≥ ε.

•
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ŷ
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p
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Fig. 4.7. ε-neighbourhoods of nondominated points in the l∞-norm.

Because Y+Rp

�
is closed and Y ⊂ yU +R�, i.e. Y is bounded below we can

assume without loss of generality that yk → y′′+d′′, where y′′ ∈ Y, d′′ � 0

and ‖y′′+d′′−ŷ‖∞ ≥ ε. On the other hand y′′+d′′ ∈ (ŷ−Rp
�

)∩(Y+Rp
�

) =

{ŷ} (since ŷ ∈ YN ), a contradiction.
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For y′ from the claim we know yU ≤ ŷ < y′ and thus there is some λ ∈ Λ0,

and β > 0 such that y′ − yU = β(1/λ1, . . . , 1/λp). Hence

λk(ŷk − yU
k ) < λk(y′

k − yU
k ) = β (4.42)

for all k = 1, . . . , p and

‖λ � (ŷ − yU )‖∞ < β. (4.43)

Choose y(p) ∈ A(λ, p,Y). Note that A(λ, p,Y) is nonempty because Y +

Rp

�
is closed. We obtain

‖λ � (y(p) − yU )‖∞ ≤ ‖λ � (y(p) − yU )‖p

≤ ‖λ � (ŷ − yU )‖p

→ ‖λ � (ŷ − yU )‖∞ < β,

(4.44)

where we have used (P1), the definition of A(λ, p,Y), and (P2), respec-

tively.

This means we have ‖λ� (y(p)− yU )‖∞ ≤ β, if p is sufficiently large. By

the definition of the l∞-norm

yk(p) − yU
k ≤ β

λk
= y′

k − yU
k for all k = 1, . . . , p, (4.45)

i.e. y(p) ≤ y′ or y(p) ∈ (y′ − Rp
�

) ∩ Y and therefore, using the auxiliary

claim, we can choose yε := y(p) for sufficiently large p. ��

We know that if Y + Rp
�

is convex, p = 1 will always work for y(p) ∈
A(λ, p,Y) and that p = ∞ can be chosen for arbitrary sets. The proof of

the second part of the theorem suggests that, if Y is not R�-convex, p has

to be bigger than one. The value of p seems to be related to the degree of

nonconvexity of Y. An Example, where 1 < p < ∞ can be chosen to generate

YN by solving (4.28) is given in Exercise 4.7.

At the end of this section we have two examples. The first one shows that

the inclusion clA(Y) ⊂ YN may not be true. In the second we solve the

problem from Example 4.18 by the compromise programming method.

Example 4.26. Let Y := {y ∈ R2 : y2
1 +(y2−1)2 ≤ 1}∪{y ∈ R2 : y1 ≥ 0, y2 ≥

−1}. Here the efficient set is YN = {y ∈ Y : y2
1 + (y2 − 1)2 = 1, y2 ≤ 1; y1 >

−1} ∪ {(0,−1)}, see Figure 4.8.

Therefore 0 /∈ YN but 0 ∈ clA(Y). Note that the efficient points with

y2 < 1 and y1 < 0 are all generated as optimal solutions of (4.28) with any

choice of yU < (−1,−1) for appropriate λ and p. ��
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Fig. 4.8. clA(Y) may contain dominated points.

Example 4.27. We apply the compromise programming method to the prob-

lem of Example 4.18:

min(x2 − 4, (x − 1)4)

subject to − x − 100 ≤ 0.

Let λ = (0.5, 0.5) and p = 2. The ideal point is yI = (−4, 0) and we

choose yU = (−5,−1). So (4.28) with p = 2 and yU as reference point is

min

√
1

2
(x2 − 4 + 5)2 +

1

2
((x − 1)4 + 1)2

subject to − x − 100 ≤ 0.
(4.46)

Observing that the compromise programming objective is convex, that

the problem is in fact unconstrained, and that the derivative of the objective

function in (4.46) is zero if and only if the derivative of the term under the

root is zero we set

φ(x) =
1

2
(x2 + 1)2 +

1

2
((x − 1)4 + 1)2

and compute

φ′(x) = (x2 + 1)2x + ((x − 1)4 + 1) · 4(x − 1)3

= 2x3 + 2x + 4(x − 1)7 + 4(x − 1)3

From φ′(x) = 0 we obtain x̂ ≈ 0.40563 as unique minimizer. Theorem 4.21

confirms that x̂ ∈ XE . ��
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4.6 The Achievement Function Method

A certain class of real-valued functions sr : Rp → R, referred to as achievement

functions, can be used to scalarize the MOP (4.1). The scalarized problem is

given by

min sR(f(x))

subject to x ∈ X .
(4.47)

Similar to distance functions discussed in Section 4.5 above, certain prop-

erties of achievement functions guarantee that problem (4.47) yields (weakly)

efficient solutions.

Definition 4.28. An achievement function sR : Rp → R is said to be

1. increasing if for y1, y2 ∈ Rp, y1 � y2 then sR(y1) ≤ sR(y2),

2. strictly increasing if for y1, y2 ∈ Rp, y1 < y2 then sR(y1) < sR(y2),

3. strongly increasing if for y1, y2 ∈ Rp, y1 ≤ y2 then sR(y1) < sR(y2).

Theorem 4.29 (Wierzbicki (1986a,b)).

1. Let an achievement function sR be increasing. If x̂ ∈ X is a unique optimal

solution of problem (4.47) then x̂ ∈ XsE .

2. Let an achievement function sR be strictly increasing. If x̂ ∈ X is an

optimal solution of problem (4.47) then x̂ ∈ XwE.

3. Let an achievement function sR be strongly increasing. If x̂ ∈ X is an

optimal solution of problem (4.47) then x̂ ∈ XE.

We omit the proof, as it is very similar to the proofs of Theorems 4.20,

4.21 and Proposition 4.22, see Exercise 4.11.

Among many achievement functions satisfying the above properties we

mention the strictly increasing function

sR(y) = max
k=1,...,p

{λk(yk − yR
k )}

and the strongly increasing functions

sR(y) = max
k=1,...,p

{λk(yk − yR
k )} + ρ1

p∑
k=1

λk(yk − yR
k )

sR(y) = −‖y − yR‖2 + ρ2‖(y − yR)+‖2,

where yR ∈ Rp is a reference point, λ ∈ Rp
> is a vector of positive weights,

ρ1 > 0 and sufficiently small, ρ2 > 1 is a penalty parameter, and (y − yR)+ is

a vector with components max{0, yk − rk} (Wierzbicki, 1986a,b).
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4.7 Notes

In Guddat et al. (1985), Theorem 4.7 is also generalized for scalarizations in

the form of problem (4.7) with an objective function being strictly increasing

on Rp (cf. Definition 4.28). See also Exercise 4.10.

The formulation of the scalarized problem of Benson’s method (4.10) has

been used by Ecker and Hegner (1978) and Ecker and Kouada (1975) in mul-

tiobjective linear programming earlier. In fact, already Charnes and Cooper

(1961) have formulated the problem and proved Theorem 4.14.

Some discussion of compromise programming that covers several aspects

we neglected here can be found in Yu (1985). Two further remarks on the

proof of Theorem 4.25 are in order. First, the statement remains true, if

yI is chosen as reference point. However, the proof needs modification (we

have used y > yU in both parts). We refer to Sawaragi et al. (1985) for

this extension. Second, we remark that the definition of the lp-norms has

never been used. Therefore the theorem is valid for any family of norms with

properties (P1) – (P3). This fact has been used by several researchers to justify

methods for generation of efficient solutions, e.g. Choo and Atkins (1983).

Other norms used for compromise programming are include the augmented

l∞-norm in Steuer and Choo (1983); Steuer (1985) and the modified l∞-norm

by Kaliszewski (1987).

There are many more scalarization methods available in the literature than

we can present here. They can roughly be classified as follows.

Weighting methods These include weighted sum method (Chapter 3), the

weighted t-th power method White (1988), and the weighted quadratic

method Tind and Wiecek (1999)

Constraint methods We have discussed the ε-constraint method (Section 4.1),

the hybrid method (Section 4.2), the elastic constraint method (Section

4.3) and Benson’s method (Section 4.4). See also Exercises 4.1, 4.2 and

4.10 for more.

Reference point methods The most important in this category are the com-

promise programming method of Section 4.5 and the (more general)

achievement function method (Section 4.6). But goal programming (see

e.g. Tamiz and Jones (1996)) and the weighted geometric mean approach

of Lootsma et al. (1995) also fit in this category.

Direction based methods There is a wide variety of direction based meth-

ods, including the reference direction approach Korhonen and Wallenius

(1988), the Pascoletti-Serafini method Pascoletti and Serafini (1984) and

the gauge-based technique of Klamroth et al. (2002).
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Of course, some methods can be associated with several of these categories.

A survey with the most important results can be found in Ehrgott and Wiecek

(2005).
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Exercises

4.1. Suppose x̂ is the unique optimal solution of

min
x∈X

p∑
k=1

λifi(x)

with λ ∈ Rp
≥. Then there exists some ε̂ ∈ Rp such that x̂ is an optimal solution

of (4.3) for all j = 1, . . . , p.

4.2 (Corley (1980)). Show that x̂ ∈ XE if and only if there are λ ∈ Rp
>

and ε ∈ Rp such that x̂ is an optimal solution of

min
x∈X

p∑
k=1

λkfk(x)

subject to f(x) ≤ ε.

(4.48)

4.3. Show, by choosing the parameters µ and ε in (4.8) appropriately, that

both the weighted sum problem (4.2) and the ε-constraint problem (4.3) are

special cases of (4.8).

4.4. Consider the following bicriterion optimization problem.

min −6x1 − 4x2

min −x1

s.t. x1 + x2 ≤ 100

2x1 + x2 ≤ 150

x1, x2 ≥ 0.

Use ε = 0 and solve the ε-constraint problem (4.3) with j = 1. Check if

the optimal solution x̂ of P1(0) is efficient using Benson’s test (4.10).

4.5. Consider min
x∈X

(f1(x), . . . , fp(x)) and assume 0 < minx∈X fk(x) for all

k = 1, . . . , p. Prove that x ∈ XwE if and only if x is an optimal solution of

min
x∈X

max
k=1,...,p

λkfk(x)

for some λ ∈ Rp
>.

4.6. Find an efficient solution of the problem of Exercise 4.4 using the compro-

mise programming method. Use λ = (1/2, 1/2) and find an optimal solution

of (4.28) for p = 1, 2,∞.
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4.7. Consider finding a compromise solution by maximizing the distance to

the nadir point.

1. Let ‖ · ‖ be a norm. Show that an optimal solution of the problem

max
x∈X

||f(x) − yN ||

subject to fk(x) ≤ yn
k k = 1, . . . , p

(4.49)

is weakly efficient. Give a condition under which an optimal solution of

(4.49) is efficient.

2. Another possibility is to solve

max
x∈X

min
k=1,...,p

|fk(x) − yN
k |

subject tofk(x) ≤ yn
k , k = 1, . . . , p.

(4.50)

Prove that an optimal solution of (4.50) is weakly efficient.

4.8. Let Y = {y ∈ R2 : y1 + y2 ≥ 1, 0 ≤ y1 ≤ 1}. Show that ŷ = (0, 1) ∈ YpN

according to Benson’s definition, but that there is no λ ∈ Λ0 such that ŷ ∈
A(λ,∞,Y), if yI is used as reference point in (4.28).

4.9. Let Y =
{
(y1, y2) ∈ R2

�
: y2

1 + y2
2 ≥ 1

}
. Verify that there is 1 < p < ∞

such that

YN =
⋃

λ∈Λ0

A(λ, p,Y).

Choose either yI or yU in the definition of A(λ, p,Y) and Nλ
p .

4.10 (Soland (1979)). A function s : Rp → R is called strongly increasing, if

for y1, y2 ∈ Rp with y1 ≤ y2 the inequality s(y1) < s(y2) holds (see Definition

4.28).

Consider the following single objective optimization problem, where ε ∈

Rp and f : Rn → Rp.

min s(f(x))

subject to x ∈ X
f(x) ≤ ε.

(4.51)

Let s be strongly increasing. Prove that x ∈ XE if and only if there is

ε ∈ Rp such that x is an optimal solution of (4.51) with finite objective value.

4.11. Prove Theorem 4.29.
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4.12. An achievement function sR : R → R is called order representing if sR

is strictly increasing (Definition 4.28) for any yR ∈ Rp and in addition

{y ∈ Rp : sR(y) < 0} = yR − Rp
>

holds for all yR ∈ Rp. Which of the functions

sR(y) = d(y, yR) = ‖y − yR‖,
sR(y) = max

k=1,...,p
{λk(yk − yR

k )},

sR(y) = max
k=1,...,p

{λk(yk − yR
k )} + ρ1

p∑
k=1

λk(yk − yR
k )

sR(y) = −‖y − yR‖2 + ρ2‖(y − yR)+‖2

is order representing?

4.13. Show that Benson’s problem (4.10), the weighted sum scalarization (4.2)

with λ ∈ Rp
>, the compromise programming problem (4.28) with 1 ≤ p < ∞

and λ ∈ Rp
>, and Corley’s problem (4.48) (see Exercise 4.2) can all be seen

as special cases of (4.51).
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Other Definitions of Optimality –

Nonscalarizing Methods

The concept of efficiency and its variants are by far the most important defi-

nitions of optimality in multicriteria optimization. Their extensive coverage in

Chapters 2 to 4 reflects this fact. But as we have seen in Chapter 1 with the dis-

cussion of orders and the classification of multicriteria problems this is not the

end of the story. Other choices of orders and model maps give rise to different

classes of multicriteria optimization problems. In this chapter we shall discuss

some of these. Specifically we address lexicographic optimality, max-ordering

optimality, and finally a combination of the two, lexicographic max-ordering

optimality. Lexicographic max-ordering defines a class of problems with many

interesting features. Of particular interest will be the relationships between

optimal solutions of these problems and efficient solutions. In this way they

can be seen as nonscalarizing methods for finding efficient solutions. We do

not study these problems out of curiosity about their theory, however.

Lexicographic optimization problems arise naturally when conflicting ob-

jectives exist in a decision problem but for reasons outside the control of the

decision maker the objectives have to be considered in a hierarchical manner.

Weber et al. (2002) describe the optimization of water resources planning

for Lake Verbano (Lago Maggiore) in northern Italy. The goal is to deter-

mine an optimal policy for the management of the water supply over some

planning horizon. The objectives are to maximize flood protection, minimize

supply shortage for irrigation, and maximization of electricity generation. This

order of objectives is prescribed by law, so that the problem indeed has a lex-

icographic nature. The actual formulation of the problem is via stochastic

dynamic programming, which is beyond the scope of this book, and we omit

it.

A common application of max-ordering problems is location planning.

Ehrgott (2002) describes the problem of locating rescue helicopters in South

Tyrol, Italy. The objective in this problem is to minimize the distance be-
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tween potential accident sites and the closest helicopter location. In order

to minimize worst case response times in an emergency, the problem can be

formulated as follows. Let xh = (xh
1 , xh

2 ), h ∈ H denote variables that define

helicopter locations and (ak
1 , ak

2), k ∈ 1, . . . , p the potential emergency sites.

Optimal helicopter locations are found by solving

min
x∈R2|H|

max
k∈1,...,p

fk(x)

where fk(x) is defined as

fk(x) = min
h∈H

wk||xh − ak||2.

Georgiadis et al. (2002) describe the problem of picking routes and asso-

ciated route bandwidth in a computer network so that bandwidth request is

satisfied and the network is in a balanced state, i.e. the bandwidth allocation

results in an even spreading of the load to various links of the network. They

formulate this problem as a lexicographic max-ordering network flow prob-

lem. Variables xij denote the load on links ij. Let Cij(xij)be a function that

describes the link cost and b(i) be the bandwidth demand at a node of the

network. Then the balanced bandwidth allocation problem is

min sort(Cij(xij))

subject to
∑

j

xij −
∑

j

xji = b(i), i ∈ N

xij ≥ 0.

These examples should give an indication that the lexicographic, max-

ordering, and lexicographic max-ordering classes are very relevant for practical

applications.

Before we start our investigations, we state one general assumption.

Throughout this chapter we shall assume that the single objective optimiza-

tion problems minx∈X fk(x) have optimal solutions for k = 1, . . . , p and that

XE 	= ∅, unless stated otherwise.

5.1 Lexicographic Optimality

In lexicographic optimization we consider the lexicographic order when com-

paring objective vectors in criterion space. As for efficiency, the model map

is the identity map, so in terms of classification we deal with problems of

the class (•/id/(Rp, <lex)). An optimal solution x̂ of such a problem is called

lexicographically optimal and f(x̂) is a lexicographically minimal vector in

Y = f(X ).
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We can also write the lexicographic optimization problem with a “lexmin”

operator as:

lexmin
x∈X

(f1(x), . . . , fp(x)). (5.1)

Definition 5.1. A feasible solution x̂ ∈ X is lexicographically optimal or a

lexicographic solution if there is no x ∈ X such that f(x) <lex f(x̂).

Recall that y1 <lex y2 if y1
q < y2

q where q = min{k : y1
k 	= y2

k} and

that the lexicographic order is total. Therefore, in addition to Definition 5.1,

which is a “negative” definition of optimality, we can state that x̂ ∈ X is

lexicographically optimal, if

f(x̂) ≤lex f(x) for all x ∈ X .

First, we establish the relationship between lexicographically optimal so-

lutions and efficient solutions.

Lemma 5.2. Let x̂ ∈ X be such that f(x̂) ≤lex f(x) for all x ∈ X . Then

x̂ ∈ XE.

Proof. Suppose that x̂ is not efficient. Then there is an x ∈ X such that

f(x) ≤ f(x̂). So for some k ∈ {1, . . . , p} we have fk(x) < fk(x̂). Defining

q := min{k : fk(x) < fk(x̂)} we get that fk(x) = fk(x̂) for k = 1, . . . , q −
1 and fq(x) < fq(x̂). Therefore f(x) <lex f(x̂) contradicting lexicographic

optimality of x̂. ��

While the essential feature of efficiency is the existence of tradeoff between

objectives, lexicographic optimality implies a ranking of the objectives in the

sense that optimization of fk is only considered once optimality for objectives

{1, . . . , k − 1} has been established. That means objective 1 has the highest

priority, and only in the case of multiple optimal solutions objectives f2 and

further objectives are considered. This priority ranking implies the absence

of tradeoffs between criteria. An improvement in an objective fk can never

compensate the deterioration of any fi, i < k.

The hierarchy among criteria allows us to solve lexicographic optimization

problems sequentially, minimizing one objective fk at a time and using optimal

objective values of fi, i < k as constraints, as shown in Algorithm 5.1.

Algorithm 5.1 (Lexicographic Optimization)

Input: Feasible set X and objective functions f .

Initialization: Define X1 := X and k := 1.
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Solve the single objective optimization problem

min
x∈Xk

fk(x). (5.2)

While k ≤ p do

If (5.2) has a unique optimal solution x̂k, STOP, x̂k is the unique

optimal solution of the lexicographic optimization problem.

If (5.2) is unbounded, STOP, the lexicographic optimization problem is

unbounded.

If k = p, STOP, the set of optimal solutions of the lexicographic opti-

mization problem is{
x ∈ Xp : fp(x) = min

x∈Xp

fp(x)

}
.

Let Xk+1 := {x ∈ Xk : fk(x) = minx∈Xk
fk(x)} and let k := k + 1.

End while.

Output: Set of lexicographically optimal solutions.

In applications of lexicographic optimization, it will often be reasonable

to assume that all objectives are bounded over the feasible set X . However,

Algorithm 5.1 will also give a correct solution if fk is unbounded over X , but

bounded over Xk. Note that, if a problem minx∈Xk
fk(x) is unbounded, it is

not possible to define Xk+1.

We consider problem (5.2) to justify correctness of Algorithm 5.1.

Proposition 5.3. If x̂ is a unique optimal solution of (5.2) with k < p, or

if x̂ is an optimal solution of (5.2) with k = p then f(x̂) ≤lex f(x) for all

x ∈ X .

Proof. Consider k < p in the first, and k = p in the second case. Suppose

there is an x ∈ X with f(x) <lex f(x̂). By definition of the problem (5.2) in

iteration i and its feasible set Xi as optimal solutions of (5.2) in iteration i−1

we cannot have that fi(x) < fi(x̂) for any i ≤ k − 1. Therefore fi(x) = fi(x̂)

for i = 1, . . . , k − 1. Thus, fj(x) < fj(x̂) must hold for some k ≤ j ≤ p. If

k < p this means that either x̂ is not optimal for (5.2) or has has at least two

optimal solutions in iteration k, contradicting the assumption. If k = p, we

must have f(x) = f(x̂) contradicting f(x) <lex f(x̂). ��

Note also, that if x̂ is a unique optimal solution of a problem (5.2) then

x̂ ∈ XsE . To see this, consider x ∈ X such that fk(x) ≤ fk(x̂) for all k =

1, . . . , p, which due to x̂ being efficient can only hold with f(x) = f(x̂), and

thus by uniqueness of x̂ implies x = x̂.
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Proposition 5.4. If x is a unique optimal solution of (5.2) for some k ∈
{1, . . . , p}, then x ∈ XsE.

Up to now we have used the ranking of the objectives given by the in-

dices, i.e. f(x) = (f1(x), f2(x), . . . , fp(x)). There is no reason to stick with

that order. Indeed, we may well choose another ranking of the objectives and

apply lexicographic optimization. To deal with this, we look at all possible

permutations of the indices (1, . . . , p). Let π : {1, . . . , p} → {1, . . . , p} be a

permutation and consider the permutation (fπ(1), . . . , fπ(p)) of the objective

functions. We also use π to denote the model map

π : Rp → Rp, y  → (yπ(1), . . . , yπ(p))

that defines this permutation of components in the objective function vector.

We shall naturally use π(y) and π(f) to denote the permutation of y and f . As

in Lemma 5.2 we can show that optimal solutions of (X , f, Rp)/π/(Rp, <lex)

are efficient. We denote by Π the set of all permutations of {1, . . . , p} and by

XΠ :=
⋃

π∈Π

Opt (X , f, Rp)/π/(Rp, <lex)

the set of solutions which are lexicographically optimal for any problem

(X , f, Rp)/π/(Rp, <lex) with π ∈ Π .

Definition 5.5. A feasible solution x̂ ∈ X is a global lexicographic solution

if there is a π ∈ Π such that π(f(x̂)) ≤lex π(f(x)) for all x ∈ X .

Then we have .

Proposition 5.6. XΠ ⊂ XE.

Example 5.7. It is quite obvious that the inclusion in Proposition 5.6 is strict

in general. Let X = [0, 1] and f1(x) = x, f2(x) = 1 − x.

Clearly XE = X . The optimal solution of ([0, 1], f, R2)/id/(R2, <lex) is

x̂ = 0, the optimal solution of ([0, 1], f, R2)/π/(R2, <lex), where π(y1, y2) =

(y2, y1) is x̂ = 1. Therefore XΠ = {0, 1} 	= XE .

Moreover, because of the uniqueness of both lexicographically optimal

solutions in this example XΠ ⊂ XsE , and again the inclusion is strict, as

XE = XsE . ��

Note that finding XΠ is usually computationally very expensive. It involves

solving |Π | = p! lexicographic problems, which, using Algorithm 5.1, amounts

to p · p! single objective problems. However, if X is a finite set, finding XΠ

can be done in time polynomial in |X | and p, as we shall see in Section 8.2.
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5.2 Max-Ordering Optimality

The second problem class we consider is •/ max/(R,≤). Problems of this class

can be written as follows

min
x∈X

max
k=1,...,p

fk(x), (5.3)

and are called max-ordering optimization problems. Let XMO denote the set

of optimal solutions of a max-ordering problem. We encountered such min-

max problems in Chapter 4, as special cases of compromise programming

problems, when the l∞-norm is used as distance measure. From these results

we easily establish the relationships with efficiency.

Definition 5.8. A feasible solution x̂ ∈ X is max-ordering optimal or a

max-ordering solution if there is no x ∈ X such that maxk=1,...,p fk(x) <

maxk=1,...,p fk(x̂).

Proposition 5.9. An optimal solution of the max-ordering problem (5.3) is

weakly efficient but not necessarily efficient.

Proof. The easy proof and example are left to the reader as Exercise (5.2) ��

From Proposition 5.9 we know that XMO ⊂ XwE . By our general assump-

tion that minx∈X fk(x) exists for all k = 1, . . . , p the max-ordering optimiza-

tion problem is bounded. Let yU < yI be a utopian point. Observe that the

efficient set XE of the multicriteria optimization problems with objectives

(f1, . . . , fp) and (f1 − yU
1 , . . . , fp − yU

p ) is the same. This is true because the

subtraction of constants affects only Y – Y and YN are translated by yU –

not X . The following result has already been shown as Theorem 4.24:

Proposition 5.10. A feasible solution x̂ ∈ X is weakly efficient if and only

if there is some λ ∈ Rp
> such that x̂ is an optimal solution of

min
x∈X

max
k=1,...,p

λk(fk(x) − yU
k ).

Therefore XwE can be determined through the solution of max-ordering

problems. Obviously, results concerning efficiency optimality must be weaker.

Yet we can show that at least one optimal solution of the max-ordering prob-

lem is efficient.

Proposition 5.11. Suppose that YN is externally stable, and that a max-

ordering solution exists. Then XMO ∩ XE 	= ∅. If there is y ∈ Y such that

f(x) = y for all x ∈ XMO then XMO ⊂ XE.
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Proof. Let x̂ ∈ XMO and suppose x̂ /∈ XE . Then, because of external stability

of YN , there is some x ∈ XE such that f(x) ≤ f(x̂). Thus maxk=1,...,p fk(x) ≤
maxk=1,...,p fk(x̂). Since x̂ is max-ordering optimal, equality must hold, and

x ∈ XMO, too. The second part follows from uniqueness of f(x) for all x ∈
XMO. ��

We will come back to this result in Section 5.3, where we strengthen max-

ordering optimality by combining it with lexicographic optimality in a way

that guarantees that all optimal solutions are also efficient. We shall then see

how to find part of the intersection XMO ∩ XE .

Next, we show that the max-ordering problem (5.3) can be solved as a

single objective optimization problem, and that max-ordering solutions have

a geometric characterization similar to the one given for efficient solutions in

Theorem 2.30.

If we introduce a variable z to stand for maxk=1,...,p fk(x) we can rewrite

(5.3) as

min z

subject to fk(x) ≤ z k = 1, . . . , p

x ∈ X .

(5.4)

Reformulation (5.4) indicates that max-ordering solutions can be charac-

terized through level sets Lk
≤(z) = {x ∈ X : fk(x) ≤ z}. This geometric

characterization is given in Proposition 5.12.

Proposition 5.12. A feasible solution x̂ ∈ X is max-ordering optimal, i.e.

x̂ ∈ XMO, if and only if

p⋂
k=1

Lp
≤

(
max

k=1,...,p
fk(x̂)

)
	= ∅ (5.5)

and for all z < max
k=1,...,p

fk(x̂) it holds that ∩p
k=1Lk

≤(z) = ∅.

In the following we show a case for which the max-ordering problem can

be solved easily and give lower and upper bounds for the general case. Let yI

be the ideal point of the multicriteria optimization problem defined by X and

f and let xk, k = 1, . . . , p be such that yI
k = fk(xk).

In the max-ordering problem only the worst objective value is considered

for each feasible point x. It may happen that there is an objective fk which

is worst for each x ∈ X : fk(x) > fi(x) for all i 	= k. In this case the objec-

tive function fk is considerably worse than the others, and the max-ordering

problem is “easy” to solve, by simply minimizing that objective.
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More precisely, note that for each k = 1, . . . , p we have

yI
k = fk(xk) = min

x∈X
fk(x) ≤ min

x∈X
max

i=1,...,p
fi(x) ≤ max

i=1,...,p
fi(x

k). (5.6)

Proposition 5.13. If for some xk with fk(xk) = yI
k it holds that that fi(x

k) ≤
yI

k for all i = 1, . . . , p then xk ∈ XMO and the optimal objective value of the

max-ordering problem is yI
k.

Proof. The assumption fi(x
k) ≤ yI

k for all i = 1, . . . , p implies

max
i=1,...,k

fi(x
k) ≤ yI

k.

Therefore (5.6) holds with equalities, i.e.

fk(xk) = yI
k = min

x∈X
max

i=1,...,p
fi(x).

��

If the condition of Proposition 5.13 does not apply inequality (5.6) can

be used to obtain lower and upper bounds on the optimal value of the max-

ordering problem. Taking the maximum over k on the left we obtain

max
k=1,...,p

fk(xk) ≤ min
x∈X

max
i=1,...,p

fi(x).

Now taking first the minimum over all optimal solutions xk of the single

objective problem minx∈X fk(x) and then the minimum over all k ∈ {1, . . . , p}
on the right we get

max
k=1,...,p

fk(xk) ≤ min
x∈X

max
i=1,...,p

fi(x) ≤ min
k=1,...,p

min
xk∈Xk

max
i=1,...,p

fi(x
k) (5.7)

where X k = {x ∈ X : fk(x) = minx∈X fk(x)}.
Another lower bound is derived from consideration of minimizing weighted

sums of the objectives. Let the set of weights Λ be defined as usual, namely

Λ =

{
λ ∈ Rp

�
:

p∑
k=1

λk = 1

}
.

We obtain the following result.

Proposition 5.14.

max
λ∈Λ

min
x∈X

p∑
k=1

λkfk(x) ≤ min
x∈X

max
k=1,...,p

fk(x).
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Proof. For each x ∈ X and each λ ∈ Λ it holds that

p∑
k=1

λkfk(x) ≤
p∑

k=1

λk max
i=1,...,p

fi(x) ≤ max
i=1,...,p

fi(x). (5.8)

Taking minima over x ∈ X on both sides yields that for each λ ∈ Λ

min
x∈X

p∑
k=1

λkfk(x) ≤ min
x∈X

max
i=1,...,p

fi(x). (5.9)

Since the right hand side in (5.9) is independent of λ the result follows. ��

Note that by much the same argument, taking first a maximum over λ ∈ Λ

on the left and then the minimum over x ∈ X on both sides of (5.8), it follows

also that

min
x∈X

max
λ∈Λ

p∑
k=1

λkfk(x) ≤ min
x∈X

max
k=1,...,p

fk(x), (5.10)

for a similar lower bound.

We will not go into any further detail of max-ordering optimization here,

and continue with a stronger version of it.

5.3 Lexicographic Max-Ordering Optimization

As we have seen, an optimal solution of a max-ordering optimization prob-

lem is not necessarily efficient, because the max-ordering optimality concept

considers only one of the p objective values at each x ∈ X , namely the worst.

A straightforward idea is to extend this to consider the second worst objec-

tive, the third worst objective, etc. in the case that the max-ordering problem

has several optimal solutions. This approach is similar to lexicographic opti-

mization and considers a ranking of the objective values f1(x), . . . , fp(x). The

difference is that the ranking is from worst to best value and thus depends on

x.

We call the result lexicographic max-ordering optimality, because it is a

combination of max-ordering and lexicographic optimality, where the lexico-

graphic order is applied to a nonincreasingly ordered sequence of the objec-

tives.

Definition 5.15. 1. For y ∈ Rp let sort(y) := (sort1(y), . . . , sortp(y)) such

that sort1(y) ≥ . . . ≥ sortp(y) be a function that reorders the components

of y in a nonincreasing way.
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2. A feasible solution x̂ ∈ X is called a lexicographic max-ordering solution

(lex-MO solution) if

sort(f(x̂)) ≤lex sort(f(x)) for all x ∈ X . (5.11)

A lexicographic max-ordering optimization problem can be written as

min
x∈X

sort(θ(f(x))). (5.12)

According to this definition we apply a mapping sort : Rp → Rp to the

objective vectors f(x), which reorders the components, and apply the lexi-

cographic order to compare reordered objective vectors. In case of ties, i.e.

equal components of f(x), we assume that the order is given by the index of

objective functions.

This means that sort is used as model map and the lexicographic order

for comparison. Thus a lexicographic max-ordering problem is denoted, in the

classification of Section 1.5, by

(X , f, Rp)/ sort/(Rp, <lex). (5.13)

The set of optimal solutions will be denoted by Xlex-MO and its image in

objective space by YlexMO = f(Xlex-MO). Because the lexicographic order is

total, it is clear that there is only one optimal value, i.e.

| sort(Ylex-MO)| = |{sort(f(x)) : x ∈ Xlex-MO}| = 1. (5.14)

This unique optimal value may, however, be attained for several x ∈ X . There

might even be several y ∈ Ylex-MO, which after resorting are equal to this

unique optimal value.

In this section we will show that lexicographic max-ordering can be used to

find the efficient set. We will see how lexicographic max-ordering problems can

be solved when X is convex and the objective functions are convex functions.

And finally we establish an axiomatic characterization of lexicographic max-

ordering, which identifies in which situations a multicriteria problem must be

considered as belonging to the lex-MO class.

That lexicographic max-ordering really extends max-ordering is shown

next.

Theorem 5.16. The following relationship between lex-MO solutions, effi-

cient solutions, and max-ordering solutions holds.

Xlex-MO ⊂ XE ∩ XMO (5.15)

and Xlex-MO = XE ∩ XMO if f(x) is the same for all x ∈ XMO.
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Proof. Let x ∈ Xlex-MO. First, assume that x /∈ XE . Then we can find x′ ∈
X such that f(x′) ≤ f(x). Reordering the components of f(x′) and f(x)

nonincreasingly it follows that sort(f(x′)) ≤lex sort(f(x)) and sort(f(x′)) 	=
sort(f(x)) because f(x′) 	= f(x). This is a contradiction to x ∈ Xlex-MO.

Second, assume that x /∈ XMO. In this case we can find x′ ∈ X such that

maxk=1,...,p fk(x′) < maxk=1,...,p fk(x). But with the definition of sort this is

the same as sort1(f(x′)) < sort1(f(x)), which clearly implies sort(f(x′)) <lex

sort(f(x)) and thus again contradicts x ∈ Xlex-MO.

The equality follows from (5.15) and from Proposition 5.11. ��

Inclusion (5.15) in Theorem 5.16 indicates that the intersection of the effi-

cient set and XMO does in general not only contain just the lex-MO solutions.

Example 5.17 shows that this is indeed the case.

Example 5.17. Consider problem data with feasible set X = {a, b, c, d, e, f},
for which the objective function values are explicitly given as shown in Table

5.1.

Table 5.1. Feasible solutions and objective values in Example 5.17.

x f(x) sort f(x)

a (1,3,8,2,4) (8,4,3,2,1)

b (4,3,8,1,1) (8,4,3,1,1)

c (7,5,4,6,1) (7,6,5,4,1)

d (3,7,4,6,5) (7,6,5,4,3)

e (4,7,5,6,5) (7,6,5,5,4)

f (5,6,7,3,8) (8,7,6,5,3)

The sorted objective vectors are also shown for convenience. It is easily

seen that XMO = {c, d, e}, that XE = {a, b, c, d, f}, and that Xlex-MO = {c}.
Therefore Xlex-MO ⊂ XMO∩XPar, but the inclusion is strict. Note that lexico-

graphically optimal solutions with respect to all permutations are {a, b, c, d},
so that XΠ ⊂ XPar and Xlex-MO ⊂ XΠ and both of these inclusions are strict.

The relationship between these sets is illustrated in Figure 5.1 ��

It is important to note that lex-MO solutions are not necessarily lexico-

graphically optimal, because although sort defines a permutation of f(x), it

is one which depends on x, see Example 5.7, where Xlex-MO = {0.5} and

XΠ = {0, 1}.



138 5 Other Definitions of Optimality – Nonscalarizing Methods

a

b

c

d

ef

Xlex-MO

XMO

XΠ

XE

...............
.......
......
......
......
..........

..............................................................

........................................................................

. . . . .
. .

..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..

..
..

...
..............

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...... . . . . . .

. . . . . . . . . . .

........ ........ .....
... .....

.....
......
........
.......
.
......
..
......
..
......
..
......
..
......
..
......
..
......
..
.......
.
.......
.
........

........
........

...............
.........................................................

........
........
........
........
........
........
........
........
........
................................ ........ ........

....... ....... ....... ....... ....... .......

..................... .....................
.................

....
...........
..........

........
.......
......

......
......
......
...

......
......
......
...

........
.........

....
............

.........
.....................

...............................................................
.....................

.....................

.....................

.....................

.....................

.....................
.....................

..................... .....................

........................ ........................

Fig. 5.1. Relationships between optimal solutions according to different

MCO classes.

We have shown that lexicographic max-ordering solutions are efficient. If

the preimage of some y ∈ Ylex-MO is a singleton, it follows that the lex-MO

solution is even strictly efficient.

Corollary 5.18. All x̂ ∈ Xlex-MO for which {x : f(x) = f(x̂)} is a singleton

are strictly efficient.

Next we show that Xlex-MO is invariant under permutations and strictly

increasing mappings. Let τ : R → R be a function. By abuse of notation let

τ(f) denote (τ ◦ f1, . . . , τ ◦ fp).

Proposition 5.19. Let X ⊂ Rn and f : Rn → Rp.

1. Let π ∈ Π be a permutation. Then the Xlex-MO sets of the lex-MO problems

lexminx∈X sort(π(f(x))) and lexminx∈X sort(f(x)) are the same.

2. Let τ : R → R be strictly increasing. Then the Xlex-MO sets of the lex-

MO problems lexminx∈X sort(τ(f(x))) and lexminx∈X sort(f(x)) are the

same.

Proof. 1. The first statement is obvious because sort(f1(x), . . . , fp(x)) =

sort(fπ(1)(x), . . . , fπ(p)(x)) for all π ∈ Π .

2. By the strict monotonicity of τ we know that

fi(x) < fi(x
′) ⇐⇒ τ(fi(x)) < τ(fi(x

′))

and therefore

sort(f(x)) <lex sort(f(x′)) ⇐⇒ sort(τ(f(x))) <lex sort(τ(f(x′))).

��
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We will now prove that XE can be identified by solving lex-MO problems

with positive weights λ for the objective functions. Theorem 5.20 strengthens

the result of Proposition 5.10, and the corresponding results of Section 4.5,

which allow only a characterization of weakly efficient solutions. Here the lex-

icographic extension of max-ordering guarantees that only efficient solutions

will be found – and not just weakly efficient ones. Let yU be a utopia point.

Theorem 5.20. A feasible solution x̂ ∈ X is efficient if and only if there

exists some λ ∈ Rp
> such that x̂ is an optimal solution of the lex-MO opti-

mization problem

lexmin
x∈X

sort(λ � (f(x) − yU )).

Proof. “⇐=” Let x̂ ∈ X be an optimal solution of the lex-MO optimization

problem

lexmin
x∈X

sort(λ � (f(x) − yU ))

and assume that x̂ /∈ XE . For any x ∈ X with f(x) ≤ f(x̂) we also have

λ � (f(x) − yU ) ≤ λ � (f(x̂) − yU ).

Note that all λk are positive. Therefore

sort(λ � (f(x) − yU )) <lex sort(λ � (f(x̂) − yU )),

a contradiction.

“=⇒” Let x̂ ∈ XE . As in Theorem 4.24 define λk := 1/(fk(x̂) − yU
k ). Thus,

λk(fk(x̂) − yU
k ) = 1 for all k = 1, . . . , p. Now let x ∈ X be such that

f(x) 	= f(x̂). Because x̂ ∈ XE we must have fk(x) > fk(x̂) for at least one

objective fk. This implies λk(fk(x) − yU
k ) > 1 and

sort(λ � (f(x) − yU )) >lex (1, . . . , 1) = sort(λ � (f(x̂) − yU )).

��

Let us discuss the solution of lex-MO problems now. Could we apply a

procedure like the lexicographic method? First we would have to solve the

max-ordering problem. Then fix the value of the worst objective, solve the

max-ordering problem for the remaining p− 1 objectives and so on. Unfortu-

nately, we do not know which objective will be the worst, and there may be

several max-ordering solutions x with the worst value obtained for different

objectives. In Example 5.17 we have f1(c) = 7, f2(d) = f2(e) = 7 for the three

max-ordering solutions {c, d, e}, yet only c is a lex-MO solution. Taking into

account all possible combinations would mean p! sequences of the objectives,

which would be computationally prohibitive in general.
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There are exceptions, however. In Chapter 8.2, we shall see that lex-MO

problems are easily solved, when X is a finite set. The other exception is

convexity. Under this additional assumption on X and f , we can show that

there is one objective fk such that

fk(x) = min
x∈X

max
i=1,...,p

fi(x) (5.16)

for all x ∈ XMO. We now present some results that have been proved by

Behringer (1977a).

Let X be a convex set and let fk : Rn → R, k = 1, . . . , p be convex

functions. We use XMO to denote the set of all optimal solutions of the max-

ordering problem and Xlex-MO for the optimal solutions of the lex-MO prob-

lem, and some further notation to facilitate readability of proofs. Let

zMO := min
x∈X

max
k=1,...,p

fk(x),

Ai :=

{
x ∈ X : fi(x) = max

k=1,...,p
fk(x)

}
,

Li :=

{
x ∈ Ai : fi(x) = min

x∈Ai

fi(x)

}
.

Example 5.21. In Figure 5.2 the maximum of three functions f1, f2, f3 of one

variable is shown as a bold line. The sets A1 and A2 are indicated by bold

lines on the x-axis, A3 is in between A1 and A2.

In Figure 5.2 all three sets Ai are nonempty. Minimizing fi over Ai, we

get L1 = {3},L2 = {1 −
√

3}, and L3 = [1 −
√

3, 1]. ��
Note that maxk=1,...,p fk(x) is a convex function and therefore continuous.

Hence if X is compact, XMO 	= ∅ and compact again. Then, iteratively, we get

that Xlex-MO 	= ∅ and compact.

Lemma 5.22. If all fk are convex functions and X is a convex set then XMO

is convex.

Proof. Assume that XMO 	= ∅. Because all fk are convex, the function

sort1(x) := maxk=1,...,p fk(x) is convex. Thus,

XMO = {x ∈ X : sort1(f(x)) = zMO}
= {x ∈ X : sort1(f(x)) ≤ zMO}

=

p⋂
k=1

{x ∈ X : fi(x) ≤ zMO}

=

p⋂
k=1

Lk
≤(zMO)

is convex as an intersection of p convex level sets. ��
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Fig. 5.2. The sets Ai for three convex functions.

Theorem 5.23 (Behringer (1977a)). Let X ⊂ Rn be a convex set and

let fk be convex functions. Furthermore, suppose XMO 	= ∅. Then there is an

index k ∈ {1, . . . , p} such that fk(x) = zMO for all x ∈ XMO.

Proof. Let x̂ ∈ XMO. Then for some j ∈ {1, . . . , p}, fj(x̂) = zMO and in

particular fj(x̂) ≥ fi(x̂) for all i = 1, . . . , p.

Suppose there is no k ∈ {1, . . . , p} with fk(x) = fj(x̂) for all x ∈ XMO.

Then for each k ∈ {1, . . . , p} we must have some xk ∈ XMO such that fk(xk) <

fj(x̂) and fi(x
k) ≤ fj(x̂) for i = 1, . . . , p. Note that xk ∈ XMO does not allow

fi(x
k) > fj(x̂).

Let x∗ :=
∑p

k=1 αkxk with αk > 0,
∑p

k=1 αk = 1 be a strict convex com-

bination of these xk. Then x∗ ∈ XMO, because of convexity of XMO (Lemma

5.22) but

fi(x
∗) ≤

p∑
k=1

αkfk(xk) < fj(x̂), (5.17)

because fk(xk) < fj(x̂) holds for all fk. (5.17) contradicts x̂ ∈ XMO. ��



142 5 Other Definitions of Optimality – Nonscalarizing Methods

Theorem 5.23 says that zMO is attained for all x ∈ XMO for at least one

objective. The index k in 5.23 is called a common index. Having established

the existence of a common index, we address the problem of finding one. The

answer is given by Theorems 5.24 and 5.25.

Theorem 5.24. Under the assumptions of Theorem 5.23, k is a common

index if and only if XMO = Lk.

Proof. “=⇒” Let k be a common index. To show XMO = Lk, we prove both

inclusions. First let x ∈ XMO. Then fk(x) = zMO, because k is a common

index. Thus x ∈ Lk and consequently XMO ⊂ Lk.

Let x ∈ Lk. Then by definition of Lk

fk(x′) ≥ fk(x) for all x′ ∈ Ak. (5.18)

Assume that x /∈ XMO. Then maxi=1,...,p fi(x) > zMO. Since we assume

XMO to be nonempty, there is some x̂ ∈ XMO and since k is a common

index, fk(x̂) = maxi=1,...,p fi(x̂) = zMO and in particular x̂ ∈ Ak. Because

x /∈ XMO it must hold that maxi=1,...,p fi(x) > zMO = fk(x̂). Applying

(5.18) to x′ = x̂, and using that Lk ⊂ Ak, we get

fk(x̂) ≥ fk(x) = max
i=1,...,p

fi(x) > fk(x̂). (5.19)

As this is impossible, we conclude x ∈ XMO and therefore Lk ⊂ XMO.

“⇐=” Let x ∈ Lk = XMO. Then fk(x) = maxi=1,...,p fi(x) by definition of

Lk and maxi=1,...,p fi(x) = minx∈X maxi=1,...,p fi(x) by definition of XMO.

Therefore k is a common index. ��

The following theorem gives criteria for k to be a common index. These

criteria use the sets Li. First observe that, if Li is empty, i cannot be a

common index, as fi has no minimum over Ai. This happens in particular if

Ai is empty, i.e. if there is no feasible solution x for which fi(x) ≥ fj(x) for

all j 	= i. Then, among all nonempty Li only those with the smallest value of

minx∈Ai
need to be considered for common indices. The main part of Theorem

5.25 below shows how to identify the common indices among those.

Theorem 5.25 (Behringer (1977a)). Suppose the assumptions of Theo-

rem 5.23 are satisfied. Then the following statements hold.

1. If Li = ∅ then i is not a common index.

2. Let J := {i ∈ {1, . . . , p} : Li 	= ∅} and mi := minx∈Ai
fi(x). Define

m := mini∈J mi. If mi > m then i is not a common index.

3. Let J ∗ := {i ∈ J : mi = m}. Then Lk = ∪j∈J ∗Lj if and only if k ∈ J ∗

is a common index.
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Proof. 1. From Theorem 5.24 i is a common index if and only if XMO = Li.

But XMO is nonempty, whereas Li is empty.

2. Suppose that mi > mj and that i is a common index. Then Li = XMO 	= ∅.
Let x0 ∈ XMO and x̂ ∈ Lj 	= ∅. Then

zMO = max
l=1,...,p

fl(x
0) = fi(x

0) = mi > mj = fj(x̂) = max
i=1,...,p

fi(x̂),

an impossibility.

3. We prove necessity and sufficiency of the condition separately.

“⇐=” Let k ∈ J ∗ be a common index. Obviously Lk ⊆ ∪j∈J ∗Lj , so it

remains to show that ∪∗
j∈JLj ⊆ Lk. So let x ∈ ∪j∈J ∗Lj . Then x ∈ Lj

for some j ∈ J ∗ and

fj(x) = max
i=1,...,p

fi(x) = min
x∈Aj

fj(x) = mj = m. (5.20)

From Theorem 5.24 Lk = XMO, i.e.

fk(x̂) = mk = m = max
i=1,...,p

fi(x̂) = zMO (5.21)

for all x̂ ∈ Lk. Putting (5.20) and (5.21) together, we see that fj(x) =

zMO and therefore x ∈ XMO and x ∈ Lk.

“=⇒” Now suppose we have Lk = ∪i∈J ∗Li for some k ∈ J ∗. Since

XMO 	= ∅ we know that a common index k̂ exists and that XMO = Lk̂.

From the first and second part of this Theorem, we know that k̂ ∈ J ∗.

Finally from necessity Lk̂ = ∪i∈J ∗Li. Altogether we have

XMO = Lk̂ =
⋃

i∈J∗

Li = Lk (5.22)

and by Theorem 5.24 k is a common index. ��

Part 3 actually says that common indices are defined by maximal sets

Lk, k ∈ J . In Example 5.21, none of the sets Li is empty. But 1 is not a

common index, because of the second statement. While m2 = m3 the second

statement confirms that 3 is the only common index.

With Theorem 5.25 we have a method to find a common index, which will

be used as a subroutine in the algorithm to solve lexicographic max-ordering

problems for convex data.

Algorithm 5.2 (Finding a common index.)

Input: Feasible set X and objective function f .

Find J := {i ∈ {1, . . . , p} : Li 	= ∅} by subdividing the feasible set into sets

Ai, and solving the single objective optimization problems minx∈Ai
fi(x).
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Choose one optimal solution xi ∈ Li for each i ∈ J and determine J ∗ :=

{i ∈ J : fi(x
i) ≤ fj(x

j) for all j ∈ J }.
Ĵ := {i ∈ J ∗ : Lj ⊂ Li for all j ∈ calJ∗} is the set of all common indices.

Output: Ĵ .

The idea of solving lexicographic max-ordering problems that we outlined

above can now be formalized. It consists of repeatedly solving max-ordering

problems, identifying common indices, and reducing the set of objectives that

still have to be considered.

Algorithm 5.3 (Lexicographic max-ordering.)

Input: Feasible set X and objective function f .

Initialization: Set X ′ := X , Q := {1, . . . , p}, and f ′ := f .

While |Q| > 1 do

Solve the max-ordering problem minx∈X ′ maxk∈Q f ′(x) and find the set

X ′
MO of all max-ordering solutions.

Apply Algorithm 5.2 to find a common index k.

Let X ′ := X ′
MO, Q := Q \ {k}, and f ′ := f \ fk.

End while.

If |Q| = 1 let Xlex-MO = X ′
MO and STOP.

Output: Xlex-MO.

At the end of this chapter we study some properties of lex-MO solutions

in the framework of multicriteria optimization classes. Recall that a multicri-

teria optimization class is the set of all multicriteria optimization problems

with the same model map and ordered set. The properties are that, if only

one objective is present, the problem should reduce to a single objective op-

timization problem, that optimal solutions should be max-ordering optimal,

and a reduction property. The reduction property states that, if the values of

some objective functions at some optimal solution are known, then the set of

optimal solutions of the original problem which attain these values should be

equal to the set of optimal solutions of a problem with a restricted feasible set

where the known objective values are included as constraints. These results

are from Ehrgott (1997) and Ehrgott (1998).

Recall that we denote the set of optimal solutions of a multicriteria opti-

mization problem (X , f, Rp)/θ/(RP ,�) by

Opt((X , f, Rp)/θ/(RP ,�)).
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Definition 5.26. 1. An MCO class •/θ/(RP ,�) satisfies the normalization

property if θ = id and (RP ,�) = (R, <) whenever f : RnR.

2. An MCO class •/θ/(RP ,�) satisfies the regularity property if Opt((X , f,

Rp)/θ/(RP ,�)) ⊂ XMO for all X and f .

The normalization property means that for optimization problems with

a single objective function the optimal solutions according to MCO class

•/θ/(RP ,�) are exactly the optimal solutions of the single objective opti-

mization problem minx∈X f(x). All MCO classes discussed in this book have

this property.

The regularity property means that an optimal solution according to MCO

class •/θ/(RP ,�) must also be an optimal solution of the max-ordering prob-

lem minx∈X maxk=1,...,p fk(x).

The third property requires some more preparation. Let X ⊂ Rn be a

feasible set and f : Rn → Rp be a vector valued objective function and let

Q ⊂ {1, . . . , p}. Furthermore, let {y1, . . . , yp} ⊂ R be such that there is at

least one x ∈ Opt((X , f, Rp)/θ/(RP ,�)) such that {fk(x) : k = 1, . . . , p} =

{yk : k = 1, . . . , p} (these sets are understood as multisets and may contain

multiple copies of some elements). The reduced problem RP(Q)

(XQ, fQ, R|Q|)/θ/(RP ,�)

is defined by the feasible set

XQ := {x ∈ X : {fk(x) : k ∈ {1, . . . , p} \ Q} = {yk : k ∈ {1, . . . , p} \ Q}} .

and the objective function

fQ = (fk : k ∈ Q).

We denote the complement of Q by Q̄ := {1, . . . , p} \ Q.

Definition 5.27. An MCO class satisfies the reduction property, if for all

data (X , f, Rp), for all q ≤ p, and for all y as above

Opt
(
(XQ, f, R|Q|)/θ/(RP ,�)

)
=

=
{
x ∈ Opt ((X , f, Rp)/θ/(Rp,�)) : {fk(x) : k ∈ Q̄} = {yk : k ∈ Q̄}

}
.

Proposition 5.28. The lex-MO class satisfies the normalization, regularity

and reduction properties.

Proof. 1. The normalization property is obvious because sort(f(x)) = f(x)

and <lex is < if p = 1.
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2. The regularity property follows from Theorem 5.16 which states that

Xlex-MO ⊂ XMO.

3. We write Opt and Opt(RP(Q)) for the sets of lex-MO solutions of the

original and reduced problems, respectively. Let

Opt∗ := {x ∈ Opt : {fk(x) : k ∈ Q̄} = {yk : k ∈ Q̄}}.

We have to show Opt(RP(Q)) = Opt∗. By the choice of y, Opt∗ is

nonempty.

First note that for all x ∈ Opt∗ and for all x′ ∈ XQ we have

sort(f(x)) ≤lex sort(f(x′)). (5.23)

since XQ ⊂ X . Moreover, {fk(x) : k ∈ Q̄} = {fk(x′) : k ∈ Q̄} by the

definition of XQ and Opt∗, and therefore

sort(f Q̄(x)) = sort(f Q̄(x′)) = sort(yQ̄). (5.24)

Let x ∈ Opt∗ and assume that x is not optimal for RP(Q). Then there is

some x̂ ∈ XQ such that sort fQ(x̂) <lex sort fQ(x). Together with (5.24)

this implies sort(f(x̂)) <lex sort(f(x)), a contradiction to (5.23).

Let x′ ∈ Opt(RP(Q)). Since Opt∗ ⊂ Opt(RP(Q)) and {sort(fQ(x))} :

x ∈ Opt(RP(Q)) is a singleton we must have that {fk(x′) : k ∈ Q} =

{yk : k ∈ Q} and thus (5.24) implies sort(f(x′)) = sort(y) and therefore

x′ ∈ Opt∗. ��

It will be left to the reader as Exercise 5.5 to determine which of the other

MCO classes considered so far satisfy the regularity and reduction property.

5.4 Notes

Lexicographic optimization plays an important role in goal programming, see

e.g. Romero (2001). It is more often encountered in linear and combinatorial

optimization than in nonlinear programming.

Max-ordering optimization models can be found in many areas of opti-

mization. Usually (5.3) is reformulated as the single objective optimization

problem 5.4.

For lex-MO optimization we have seen that convexity is important to ob-

tain a reasonable algorithm to solve (5.12). In this context, we remark that for

Lemma 5.22 to Theorem 5.25 to be true it is sufficient that fk are lower semi-

continuous and strictly quasiconvex. Naturally, if further assumptions hold,

better results can be expected. An algorithm for the linear case is given in
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Marchi and Oviedo (1992) and location problems in the plane (where X ⊂ R2)

are dealt with in Ehrgott et al. (1999).

Lex-MO optimality implies the absence of any preference between the

objectives: Behringer (1977b) calls it “optimality under complete ignorance”.

It is therefore an approach that treats all objectives in an equitable way,

and indeed if an efficient solution x exists such that f1(x) = · · · = fp(x)

then such an x ∈ Xlex-MO. This leads to the idea of equitable solutions of

multicriteria optimization problems, investigated in more detail in Kostreva

and Ogryczak (1999). Lex-MO optimality can be considered as an “extreme”

case of equitable optimality.

Galperin (1992) considers yet another multicriteria optimization class, in-

troducing the balance space approach. While Ehrgott et al. (1997) show that

it is in some sense equivalent to the efficiency approach because it has led to

some interesting research. The balance space approach is also closely related

to max-ordering optimality, see Ehrgott and Galperin (2002).
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Exercises

5.1. Solve the following lexicographic optimization problem with linear objec-

tives and linear constraints

min f1(x) = −x1 + x2 − x3

min f2(x) = x2

min f3(x) = −x1 − 2x2x

subject to x1 + x2 ≤ 1

x1 − x2 + x3 ≤ 4

x1, x2, x3 ≥ 0.

What happens if you reverse the order of objective functions?

5.2. Prove that an optimal solution x̂ of the max-ordering problem

min
x∈X

max
k=1,...,p

fk(x)

is weakly efficient. Give an example that shows that x̂ is not necessarily effi-

cient.

5.3. Find an optimal solution of the max-ordering optimization problem

min max (x1 + x2 + x3,−x1 + x2,−x2 + 2x3)

subject to x1 + x2 ≥ 1

x1 − x2 + x3 ≥ 4

x1, x2, x3 ≥ 0.

Is the optimal solution you found efficient?

5.4. Let Y ⊂ Rp. Show that y1 ≤ y2 implies y1 <lex y2, maxk=1,...,p y1
k ≤ y2

k,

and sort(y1) <lex sort(y2). What about the converse?

5.5. Find out which of the multicriteria optimization classes •/ id /(Rp,≤),

•/λ/(R, <), •/π/(Rp, <lex), and •/ max/(R, <) satisfy the regularity and re-

duction property.

5.6. Construct an example of an MCO class that does not have the normaliza-

tion property. I.e. define a model map θ : Rp → RP and an ordering such that

the problem of finding optimal solutions according to this MCO class is not

the same as solving the single objective optimization problem minx∈X f(x).
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5.7. Find a lexicographic max-ordering solution of the optimization problems

in Exercises 6.2 and 6.7.

5.8. Show that if there exists an x ∈ XE with f1(x) = f2(x) = . . . = fp(x)

then x ∈ Xlex-MO.



6

Introdcution to Multicriteria Linear

Programming

This chapter commences the second part of this book, in which we focus on

multicriteria problems with linear and combinatorial structures, i.e. multiob-

jective linear programming and multiobjective combinatorial optimization.

We give an example from the design of radiotherapy treatment plans to

show that multiobjective linear programming has important applications. We

repeat the main definitions of multicriteria optimization and summarize the

main results from linear programming to make this part of the book self-

contained. We apply some of the general results proved in Chapters 2 and 3

and show how to use parametric linear programming to solve linear programs

with two objectives. We also prove the main theorem of linear programming,

which states that all efficient solutions are properly efficient. Adding the con-

vexity of linear problems this means that all efficient solutions can be charac-

terized by weighted sum scalarization.

Example 6.1. The goal of radiation therapy in the treatment of cancer is to

destroy a tumour by damaging the DNA of cancerous cells, thereby rendering

them incapable of reproduction. This is done by focusing intensity modulated

beams on the patient from a number of beam directions. Intensity modulation

is achieved by a mechanical device called multileaf collimator. It essentially

allows subdividing beams into sub-beams in a rectangular grid pattern so that

intensity of each individual sub-beam can be decided separately. Given the

beam directions, an intensity map defines the intensity of radiation of each

sub-beam of all beam directions. The intensity map has to be determined

according to a treatment prescription, which can take the form of lower and

upper bounds on the radiation dose delivered to the tumour as well as upper

bounds on the radiation dose delivered to critical structures (such as healthy

organs) and normal tissue.
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Radiation dose distribution in the body depends on intensity of radiation

beams in a linear fashion. Let x ∈ Rn be a vector describing an intensity map,

where n is the total number of sub-beams. The patient body is discretized into

m dose points according to magnetic resonance imaging (MRI) or computed

tomography (CT) scans. The dose delivered to the dose points is then Ax,

where A is a m×n matrix. Assuming that we have l critical structures, we can

partition the rows of A according to the set of dose points in the tumour T , in

a critical structure Si, i = 1, . . . , l, or in normal tissue N and form submatrices

AT , ASi
, AN accordingly. Let lT denote the prescribed tumouricidal dose, uT

be an upper bound on the dose in the tumour, uSi
be upper bounds on the

dose in critical structure i, and uN be an upper bound on the dose in normal

tissue. We assume that these bounds apply to every dose point in the tumour,

critical structure, and normal tissue, respectively.

Ideally, we would like to design a treatment that delivers a uniform dose

of lT to the tumour and no dose at all to critical structures and normal tissue.

Since this is usually physically impossible we have to accept some underdosing

zT in the tumour or overdosing zCi
, i = 1, . . . , l and zN in critical structures

and normal tissue. Naturally, the values of zT , zS1
, . . . , zCl

should be kept as

small as possible.

We can therefore describe the problem via the following multiobjective

optimization problem Holder (2004), where e is a vector of ones of appropriate

dimension.

min (zT , zS1
, . . . , zSl

, zN )

subject to AT x + zT e ≥ lT
AT x ≤ uT

ASi
x − zSi

e ≤ uSi
i = 1, . . . , l

ANx − zNe ≤ uN

zSi
≥ −uSi

i = 1, . . . , l

zN ≥ 0

x � 0.

In this model, the goal is to find efficient solutions (x, z) ∈ Rn+l+2 such

that the maximal underdosing of any tumour dose point and the maximal

overdosing of any critical structure and any normal tissue dose point is simul-

taneously minimized. ��

6.1 Notation and Definitions

A multiobjective linear program (MOLP) is a special case of the multiobjec-

tive program
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min (f1(x), . . . , fk(x))

subject to gj(x) ≤ 0 j = 1, . . . , m

that arises if all objective functions and constraints are linear. Thus, the ob-

jective functions are

fk(x) = cT
k x k = 1, . . . , p,

where ck ∈ Rn. The constraints gj(x) ≤ 0 are summarily written in matrix

form and as equality constraints

Ax = b.

As usual in linear programming we restrict the variables to the nonnegative

orthant of Rn : x � 0. Recall that we use the notation

y1 < y2 if y1
k < y2

k k = 1, . . . , p

y1 � y2 if y1
k ≤ y2

k k = 1, . . . , p

y1 ≥ y2 if y1 � y2, y1 	= y2

and

Rp
> := {y ∈ Rp : y > 0}

Rp
> := {y ∈ Rp : y ≥ 0}

Rp
> := {y ∈ Rp : y � 0}.

A multiobjective linear program is then the following optimization problem

min Cx

subject to Ax = b

x � 0

(6.1)

with a p × n objective or criteria matrix C consisting of the rows cT
k , k =

1, . . . , p. The feasible set in decision space is X = {x ∈ Rn : Ax = b, x � 0}
defined by the m × n constraint matrix A and the right hand side vector

b ∈ Rm. The feasible set in decision space is X = {x ∈ Rn : Ax = b, x � 0}.
The feasible set in objective space is Y = CX = {Cx : x ∈ X}.

In terms of the classification of Section 1.5 we can write the MOLP (6.1)

as (X , C, Rp)/id/(Rp,≤). We shall make the following basic assumption. Let

Xk :=
{
x̂ ∈ X : cT

k x̂ ≤ cT
k x for all x ∈ X

}
be the set of optimal solutions of the LP with the k-th objective function. We

assume that
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∩p
k=1Xk = ∅. (6.2)

Assumption (6.2) guarantees that there is no feasible solution that minimizes

all p objectives at the same time, i.e. the MOLP (6.1) is a true multiobjective

problem. In other words yI 	∈ Y.

Definition 6.2. Let x̂ ∈ X be a feasible solution of the MOLP (6.1) and let

ŷ = Cx̂.

1. x̂ is called weakly efficient if there is no x ∈ X such that Cx < Cx̂; ŷ = Cx̂

is called weakly nondominated.

2. x̂ is called efficient if there is no x ∈ X such that Cx ≤ Cx̂; ŷ = Cx̂ is

called nondominated.

3. x̂ is called properly efficient if it is efficient and if there exists a real

number M > 0 such that for all i and x with cT
i x < cT

i x̂ there is an index

j and M > 0 such that cT
j x > cT

j x̂ and

cT
i x̂ − cT

i x

cT
j x − cT

j x̂
≤ M.

Let us consider an example to illustrate efficient solutions and nondomi-

nated points.

Example 6.3 (Steuer (1985)). This MOLP has two objectives, two con-

straints, and two variables so that we can graphically illustrate it in decision

and objective space. It is

min 3x1 + x2

min −x1 − 2x2

subject to x2 ≤ 3

3x1 − x2 ≤ 6

x � 0.

Figures 6.1 and 6.2 show the feasible sets X and Y. The extreme points of

X and of Y are labeled.

In Figure 6.2, point y1 is dominated: All points in (y1−Rp

�
)∩Y, illustrated

by the right angle attached to y1, dominate it. On the other hand, y2 is

nondominated, as the right angle attached to it does not contain any point of

Y except y2 itself. ��

Let us now summarize some consequences of results proved in Chapters 2

and 3.

Lemma 6.4. The feasible sets X in decision space and Y in objective space

of the MOLP 6.1 are convex and closed.
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Fig. 6.1. Feasible set and objective contours in Example 6.3.
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Fig. 6.2. Feasible set in objective space in Example 6.3.

Theorem 6.5. 1. If Y 	= ∅ and there is some y ∈ Rp such that Y ⊂ y + Rp

�

(i.e. Y is bounded from below) then YN 	= ∅.
2. S(Y) = YpN ⊂ YN ⊂ clS(Y), where S(Y) = {ŷ ∈ Y : There is λ >

0 such that λT ŷ < λT y for all y ∈ Y}.
3. If there is some y ∈ Rp such that Y ⊂ y + Rp

�
then YN is connected.

4. If X is bounded then XwE and XE are connected.

Proof. 1. This follows from Theorem 2.10. Boundedness of Y implies com-

pactness of all sections (y0 − Rp

�
) ∩ Y, y0 ∈ Y, because Y is closed.

2. This follows from Theorem 3.17 and convexity of Y.
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3. This follows from the first observation, noting that with convexity the

assumptions of Theorem 3.35 are satisfied.

4. Boundedness of X implies that X is compact. With convexity of X and

the objective functions, Theorems 3.38 and 3.40 apply. ��

A strengthened version of the second statement is of fundamental impor-

tance for multiobjective linear programming and we shall prove it shortly.

To that end let us consider the solution of the weighted sum scalarization of

MOLP.

Let λ ∈ Rp
≥. The weighted sum linear program, which we often refer to as

LP(λ), is

min λT Cx

subject to Ax = b

x � 0.

Theorem 6.6. Let x̂ ∈ X be an optimal solution of the weighted sum LP

(6.3).

1. If λ ≥ 0 then x̂ is weakly efficient.

2. If λ > 0 then x̂ is efficient.

Proof. 1. Suppose that x ∈ X strictly dominates x̂, i.e.

cT
k x < cT

k x k = 1, . . . , p. (6.3)

Thus,

λkcT
k x ≤ λkcT

k x k = 1, . . . , p (6.4)

with strict inequality holding at least once since λ 	= 0. Summing over k

we have λT Cx < λT Cx̂, a contradiction.

2. In this case we have “≤” instead of “<” in (6.3), with one strict inequal-

ity. Then, because λ > 0, (6.4) holds, too, and λT Cx < λT Cx̂ gives a

contradiction once again. ��

Theorem 6.6 gives a way to find efficient solutions of (6.1). Graphically,

this is very similar to the graphic method of solving LPs with two variables,

we just apply it in criterion space of an MOLP with two objectives. In fact, we

find nondominated points graphically and the efficient solutions of the MOLP

are the preimages of YN under the linear mapping C.

Example 6.7. Figure 6.3 shows the same set Y as Figure 6.2. Some level curves

of weighted sum objectives {
y ∈ Rp : λT y = γ

}
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Fig. 6.3. Level Sets of the objective of a weighted sum LP.

are shown. Nondominated points are identified by moving these lines in paral-

lel to the left and downward, as this decreases the level γ in accordance with

minimizing λT Cx (note that y = Cx).

Clearly, with λ1 all points on the line between Cx1 and Cx2 are identified

as nondominated, with λ2 all points on the line connecting Cx2 and Cx3, and

with λ3 the single point Cx3. The two line segments together constitute the

whole set YN . ��

The following observations about Example 6.7 turn out to be important.

• A single nondominated point can be identified by many different weighting

vectors λ.

• A single weighting vector λ can identify many nondominated points.

• The linearity of the constraints and objectives appears to make it possible

to find all nondominated points with (only a finite number of) weighting

vectors, because X and Y are polyhedra.

The reader should keep these in mind for what follows. We shall elaborate

on the last point now. In order to do so, we need duality of linear programming.

Let
min cT x

subject to Ax = b

x � 0

(6.5)

be a single objective linear program (LP). For every LP (6.5) a dual linear

program is defined as
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max bT u

subject to AT u � c

u ∈ Rm.

(6.6)

Let us denote by U := {u ∈ Rm : AT u ≤ c} the feasible set of the dual linear

program (6.6). The relationship between the primal and dual linear programs

are stated in Theorem 6.8, which can be found in every textbook on linear

programming, e.g. Dantzig and Thapa (2003).

Theorem 6.8 (Linear Programming Duality).

1. (Weak duality). Let x ∈ X and u ∈ U be feasible solutions of (6.5) and

(6.6), respectively. Then

bT u ≤ cT x.

2. If (6.5) is unbounded then (6.6) is infeasible and vice versa.

3. It is possible that both (6.5) and (6.6) are infeasible.

4. (Strong duality). If both (6.5) and (6.6) are feasible, i.e. X 	= ∅ and U 	= ∅,
then

min
x∈X

cT x = max
u∈U

bT u

and bT û = cT x̂ for any optimal solution x̂ ∈ X of (6.5) and any optimal

solution û ∈ U of (6.6).

We are now ready to prove the fundamental result of multiobjective linear

programming, which we do in several steps.

Lemma 6.9. A feasible solution x0 ∈ X is efficient if and only if the linear

program
max eT z

subject to Ax = b

Cx + Iz = Cx0

x, z � 0,

(6.7)

where eT = (1, . . . , 1) ∈ Rp and I is the p× p identity matrix, has an optimal

solution (x̂, ẑ) with ẑ = 0.

Proof. This is in fact Theorem 4.14 applied to the MOLP (6.1). Let (x, z) ∈
X × Rp

�
be a feasible solution of (6.7). Then Cx + Iy = Cx0 and therefore

z = Cx0−Cx � 0 by the nonnegativity of z. If x̂ in an optimal solution (x̂, ẑ)

is efficient there is no x ∈ X such that Cx � Cx̂, so we must have ẑ = 0. On

the other hand, if x̂ is not efficient there must be x ∈ X such that Cx ≤ Cx0.

But then there is a z with zk > 0 for at least one k, contradicting optimality

of (x̂, 0). Note that (6.7) is always feasible. ��
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Lemma 6.10. A feasible solution x0 ∈ X is efficient if and only if the linear

program
min uT b + wT Cx0

subject to uT A + wT C � 0

w � e

u ∈ Rm

(6.8)

has an optimal solution (û, ŵ) with ûT b + ŵT Cx0 = 0.

Proof. Note that (6.8) is the dual of (6.7). Therefore (x̂, ẑ) is an optimal

solution of the LP (6.7) if and only if the LP (6.8) has an optimal solution

(û, ŵ) such that eT ẑ = ûT b + ŵT Cx0 = 0. ��

With Lemma 6.10 we can now prove that all efficient solutions of an MOLP

(6.1) can be found by solving a weighted sum LP (6.3). In the proof, we

consider an efficient solution x0 and construct an appropriate weight λ ∈ Rp
>

such that x0 is an efficient solution of the weighted sum LP(λ) (6.3).

Theorem 6.11 (Isermann (1974)). A feasible solution x0 ∈ X is an ef-

ficient solution of the MOLP (6.1) if and only if there exists a λ ∈ Rp
> such

that

λT Cx0 ≤ λT Cx (6.9)

for all x ∈ X .

Proof. “⇐=” We know from Theorem 6.6 that an optimal solution of a

weighted sum LP with positive weights is efficient.

“=⇒” Let x0 ∈ XE . From Lemma 6.10 it follows that the LP (6.8) has an

optimal solution (û, ŵ) such that

ûT b = −ŵT Cx0. (6.10)

It is easy to see that this same û is also an optimal solution of the LP

min
{
uT b : uT A � −ŵT C

}
, (6.11)

which is just (6.8) with w = ŵ fixed. Therefore, an optimal solution of

the dual of (6.11)

max
{
−ŵT Cx : Ax = b, x � 0

}
(6.12)

exists. Since by weak duality uT b ≥ −ŵT Cx for all feasible solutions u of

(6.11) and for all feasible solutions x of (6.12) and we already know that

ûT b = −ŵT Cx0 from (6.10), it follows that x0 is an optimal solution of

(6.12). Finally, we note that (6.12) is equivalent to



160 6 Introdcution to Multicriteria Linear Programming

min
{
ŵT Cx : Ax = b, x � 0

}
and that, from the constraints in (6.8), ŵ � e > 0. Therefore x0 is an

optimal solution of the weighted sum LP (6.3) with λ = ŵ as weighting

vector. ��

Applying the second statement of Theorem 6.5 we have just proved that

XE = XpE

and

S(Y) = YN = YpN

hold for multiobjective linear programs. Therefore, every efficient solution

is properly efficient and we can find all efficient solutions by weighted sum

scalarization.

Regarding the first statement of Theorem 6.5 we have the following condi-

tion for the existence of efficient solutions, respectively nondominated points.

Proposition 6.12. Let x0 ∈ X . Then the LP (6.7) is feasible and the follow-

ing statements hold.

1. If (x̂, ẑ) is an optimal solution of (6.7) then x̂ is an efficient solution of

the MOLP 6.1.

2. If (6.7) is unbounded then XE = ∅.

The proof is left to the reader, see Exercise 6.3.

6.2 The Simplex Method and Biobjective Linear

Programs

The purpose of this section is to review the Simplex method for linear pro-

gramming and to extend it to the case of multiobjective linear programs with

two objective functions. For more details and proofs we refer once more to

textbooks on linear programming such as Dantzig and Thapa (2003), Dantzig

(1998), or Padberg (1999). We repeat the formulation of a linear program

from (6.5):

min
{
cT x : Ax = b, x � 0

}
, (6.13)

where c ∈ Rn and A is an m×n matrix. We will always assume that rankA =

m and that b � 0.

A nonsingular m × m submatrix AB of A is called basis matrix, where B
is the set of indices of the columns of A defining AB. B is called a basis. Let
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N := {1, . . . , n} \ B be the set of nonbasic column indices. A variable xi and

an index i are called basic if i ∈ B, nonbasic otherwise.

With the notion of a basis it is possible to split A, c, and x into a basic and

nonbasic part, using B and N as index sets, i.e. A = (AB, AN ), cT = (cT
B , cT

N ),

and x = (xT
B , xT

N )T . This allows us to rewrite the constraints Ax = b as

(AB, AN )(xT
B , xT

N )T = b.

Since AB is invertible we get

xB = A−1
B (b − ANxN ) . (6.14)

Setting xN = 0 in (6.14) we obtain xB = A−1
B b. (xB, 0) is called a basic solution

of the LP (6.13). If in addition xB � 0 it is called a basic feasible solution or

BFS for short. The basis B is also called feasible.

We can compute the objective function value of x = (xT
B , xT

N )T as follows

(cT
B , cT

N )(xT
B , xT

N )T = cT
BxB + cT

NxN

= cT
BA−1

B b +
(
cT
N − cT

BA−1
B AN

)
xN .

(6.15)

The vector c̄T = cT − cT
BA−1

B A is called vector of reduced costs. Note that

writing c̄ = (c̄B, c̄N ) we always have c̄B = 0.

Let (xB, 0) be a basic feasible solution. From (6.15) it is clear that if there

is some s ∈ N such that c̄s < 0 the value of cT x decreases if xs increases from

0. Recomputing xB as in (6.14) ensures that the constraints Ax = b will still

be satisfied. The increase of xs must therefore be limited by the nonnegativity

xB � 0. Let Ã := A−1
B A and b̃ := A−1

B b.

Consider (6.14) for a basic variable xj , j ∈ B, i.e.

xj = b̃j − Ãjsxs ≥ 0, (6.16)

where Ãjs is the element of Ã in row j and column s. If Ãjs ≤ 0 then (6.16) is

true for any xs ≥ 0, i.e. the objective value is unbounded. Otherwise xs must

be chosen so that xs ≤ b̃j/Ãjs for all j ∈ B. The largest feasible value of xs

to retain a feasible solution is then

xs = min

{
b̃j

Ãjs

: j ∈ B, Ãjs > 0

}
. (6.17)

At this value, one basic variable xj , j ∈ B, will become zero, blocking any

further increase of xs. Let r ∈ B be an index for which the minimum in (6.17)

is attained. Variable xs is called entering variable, xr is called leaving variable.

The new basis B′ = (B \ {r}) ∪ {s} defines a basic feasible solution (xB′ , 0)

with a better objective value than (xB, 0) as long as b̃j > 0, which we shall

assume for the moment. We discuss this after Algorithm 6.1.

Theorem 6.13 below justifies the Simplex method of linear programming.
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Theorem 6.13. 1. If the LP (6.13) is feasible, i.e. if X 	= ∅, then a basic

feasible solution exists.

2. If, furthermore, the objective function cT x is bounded from below on X ,

then an optimal basic feasible solution exists.

3. A basic feasible solution (xB, 0) is optimal if c̄N � 0.

If (xB, 0) is an optimal BFS then B is called optimal basis.

Let B be a basis and (xB, 0) be a basic feasible solution of the LP (6.13).

Starting from this basis and BFS the Simplex algorithm finds an optimal basis

and an optimal BFS.

Algorithm 6.1 (Simplex algorithm for linear programming.)

Input: Basis B and BFS (xB, 0).

While {i ∈ N : c̄i < 0} 	= ∅
Choose s ∈ {i ∈ N : c̄i < 0}.
If Ãjs ≤ 0 for all j ∈ B, STOP, the LP (6.13) is unbounded.

Otherwise choose r ∈ argmin
{
j ∈ B :

b̃j

Ãsj
, Ãsj > 0

}
.

Let B := (B \ {r}) ∪ {s} and update Ã := A−1
B A and b̃ := A−1

B b.

End while.

Output: Optimal basis B and optimal basic feasible solution (xB, 0).

Assuming that b̃r > 0 in every iteration, the algorithm terminates after

finitely many iterations with an optimal solution or the conclusion that the LP

is unbounded. This is because the value of xs in the new basis is positive and

so the objective value has decreased by c̄sxs and there are at most n!
m!(n−m)!

feasible bases.

On the other hand, if b̃r = 0, i.e. xr = 0, the new basis will have xs = 0.

In fact, both bases define the same BFS. Bases containing a variable at value

0 are called degenerate. It is then possible that the Simplex algorithm iterates

between a sequence of degenerate bases without terminating. Rules to avoid

this can be found in linear programming textbooks. From now on we shall

assume that the LPs we consider are nondegenerate, but in Example 7.11 we

will demonstrate why degeneracy is problematic.

Lemma 6.14. Let the LP be nondegenerate and let B be an optimal basis.

Then c̄N � 0.

The proof of this result is left as Exercise 6.4.

In what follows we will use the tableau notation for the Simplex algo-

rithm. A Simplex tableau summarizes the information in any iteration of the

algorithm in a tabular form:
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c̄ −cT
BxB

B Ã b̃

The first row contains the reduced cost vector c̄ and the negative value

of the objective at the current basis. The second “row” contains the basic

indices as well as the constraint matrix and right hand side at the current

basis. One iteration consists in the determination of an entering and a leaving

variable, xs and xr, and the update of Ã and b̃. This is called a pivot and is

done by Gaussian elimination to convert column s of Ã into a unit column

with Ãrs = 1. Ãrs is called the pivot element.

Algorithm 6.1 is initialized with a feasible basis. To find one, an auxiliary

linear program is solved:

min eT z

subject to Ax + z = b

x, z � 0.

(6.18)

The LP (6.18) is always feasible and (x, z) = (0, b) is a basic feasible

solution, because b � 0 by general assumption.

Proposition 6.15. The LP (6.13) is feasible, i.e. X 	= ∅, if and only if the

auxiliary LP (6.18) has an optimal solution (x̂, ẑ) with ẑ = 0.

If x̂ in an optimal solution of (6.18) is not a BFS of the original LP, it can

always be easily converted into one.

This proposition concludes our summary of the algebra of linear program-

ming, which we use to construct the multicriteria Simplex algorithm. Let us

now consider the geometry.

Let a ∈ Rn and b ∈ R. The set

Ha,b := {x ∈ Rn : aT x = b} (6.19)

is a hyperplane. A hyperplane defines a halfspace

Ha,b := {x ∈ Rn : aT x ≤ b}.

Let X ⊂ Rn be a nonempty set. A hyperplane Ha,b is called supporting

hyperplane of X at x̂ if x̂ ∈ X ∩Ha,b and X ⊂ Ha,b. We also say Ha,b supports

X at x̂.

Let X be the intersection of finitely many halfspaces. Then X is called

polyhedron. For example, the feasible set X = {x ∈ Rn : Ax = b, x � 0} of

an LP is a polyhedron. A polyhedron X is called a polytope if X is bounded.
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x ∈ X is an extreme point of X if x = αx1 + (1 − α)x2 with x1, x2 ∈ X and

0 ≤ α ≤ 1 implies that x1 = x2 = x.

Let X 	= ∅ be a polyhedron written X = {x : Ax � b}. If d ∈ Rn is such

that Ad � 0, then d is called a ray of X . A ray is called an extreme ray if there

are no rays d1, d2, d1 	= αd2 for all α ∈ R>, such that r = (1/2)(r1 + r2).

Lemma 6.16. Let X be a polyhedron and d ∈ Rn be a ray of X . Then x+αd ∈
X for all α ≥ 0. The set {d : Ad � 0} is a convex cone.

The dimension of a polyhedron X , dimX , is the maximal number of

affinely independent points of X , minus 1. Let Ha,b be a supporting hyper-

plane of polyhedron X . Then F = X ∩ H is called a face of X . A face F of

polyhedron X is itself a polyhedron, thus dimF is defined. We consider only

faces F with ∅ 	= F 	= X . These are called proper faces. With the definitions

given so far an extreme point is a face of dimension 0. A face of dimension 1

is called an edge of X . A facet is a face of dimension dimX − 1. Note that all

proper faces of X belong to the boundary of X .

The algebra and geometry of linear programming are related through the

following theorem.

Theorem 6.17. 1. A basic feasible solution (xB, 0) of a linear program

(6.13) is an an extreme point of the feasible set X . However, several fea-

sible bases may define the same basic feasible solution and therefore the

same extreme point (in case of degeneracy).

2. If X 	= ∅ and the LP (6.13) is bounded, the set of all optimal solutions of

the LP is either X itself or a face of X .

3. For each extreme point x̂ of X there exists a cost vector c ∈ Rn such that

x̂ is an optimal solution of min{cT x : x ∈ X}.

This concludes our review of single objective linear programming and we

are now in a position to extend the Simplex algorithm 6.1 to deal with LPs

with two objective functions. This extension is objective row parametric linear

programming.

Let us consider a biobjective linear program

min
(
(c1)T x, (c2)T x

)
subject to Ax = b

x � 0.

(6.20)

From Theorem 6.11 we know that finding the efficient solutions of (6.20) is

equivalent to solving the LP

min
{
λ1(c

1)T x + λ2(c
2)T x : Ax = b, x � 0

}
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for all λ ∈ R2
>. Without loss of generality (dividing the objective function by

λ1 + λ2) we can assume that (λ1, λ2) = (λ, 1 − λ). We define the parametric

objective function

c(λ) := λc1 + (1 − λ)c2.

Thus we need to solve

min
{
c(λ)T x : Ax = b, x � 0

}
, (6.21)

which is a parametric linear program. We need to determine which values of

λ are relevant. To this end consider a feasible basis B and the reduced cost

vector c(λ) of the parametric objective,

c̄(λ) = λc̄1 + (1 − λ)c̄2. (6.22)

Suppose B̂ is an optimal basis for the LP (6.21) for some λ = λ̂. The

optimality criterion of Theorem 6.13 with Lemma 6.14 implies that c̄(λ) � 0.

Two cases need to be distinguished.

The first case is c̄2 ≥ 0. Then from (6.22) c̄(λ) � 0 for all λ < λ̂ and B̂ is

an optimal basis for all 0 ≤ λ ≤ λ̂. Otherwise there is at least one i ∈ N such

that c̄2
i < 0. Therefore there is a value of λ < λ̂ such that c̄(λ)i = 0, i.e.

λc̄1
i + (1 − λ)c̄2

i = 0

λ(c̄1
i − c̄2

i ) + c̄2
i = 0

λ =
−c̄2

i

c̄1
i − c̄2

i

.

Define I = {i ∈ N : c̄2
i < 0, c̄1

i ≥ 0} and

λ′ := max
i∈I

−c̄2
i

c̄1
i − c̄2

i

. (6.23)

Basis B̂ is optimal for the parametric LP (6.21) for all λ ∈ [λ′, λ̂]. As soon as

λ ≤ λ′ new bases become optimal. Therefore an entering variable xs has to

be chosen, where the maximum in (6.23) is attained for i = s.

The above means that we can solve (6.21) by first solving it with λ = 1 (we

assume that LP(1) has an optimal solution, what to do otherwise is discussed

in the next chapter) and then iteratively finding entering variables and new λ

values according to (6.23) until c̄2 � 0. This procedure is stated as Algorithm

6.2. Note that if B is an optimal basis of LP(1) then it is not an optimal basis

of LP(0), due to our basic assumption. Thus I 	= ∅ initially.
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Algorithm 6.2 (Parametric Simplex for biobjective LPs.)

Input: Data A, b, C for a biobjective LP.

Phase I: Solve the auxiliary LP (6.18) using the Simplex algorithm 6.1. If

the optimal value is positive, STOP, X = ∅. Otherwise let B be an optimal

basis.

Phase II: Solve the LP (6.21) for λ = 1 starting from basis B found in

Phase I yielding an optimal basis B̂. Compute Ã and b̃.

Phase III: While I = {i ∈ N : c̄2
i < 0, c̄1

i ≥ 0} 	= ∅.
λ := max

i∈I

−c̄2
i

c̄1
i
−c̄2

i

.

s ∈ argmin
{

i ∈ I :
−c̄2

i

c̄1
i
−c̄2

i

}
.

r ∈ argmin
{

j ∈ B :
b̃j

Ãsj
, Ãsj > 0

}
.

Let B := (B \ {r}) ∪ {s} and update Ã and b̃.

End while.

Output: Sequence of λ-values and sequence of optimal BFSs.

In every iteration, to determine a new optimal basis, an index s, at which

the critical value λ′ of (6.23) is attained, is chosen as pivot column (entering

variable xs). The pivot row (leaving variable xr) is chosen by the usual

quotient rule. We pivot xs into the basis. Proceeding in this way, we generate

a sequence of critical λ values 1 = λ1 > . . . > λl = 0 and optimal bases

B1, . . . ,Bl−1 which define optimal BFSs of (6.21) for all λ: Bi is an optimal

basis of (6.21) for all λ ∈ [λi, λi+1], i = 1, . . . , l.

Example 6.18 (Steuer (1985)). We solve the parametric linear program re-

sulting from the biobjective LP of Example 6.3 with slack variables x3, x4.

min (4λ − 1)x1 + (3λ − 2)x2

subject to x2 + x3 = 3

3x1 − x2 + x4 = 6

x � 0.

We show the Simplex tableaus with both reduced cost vectors c̄1 and c̄2.

An optimal basis for λ = 1 is obviously given by B = {3, 4} and an optimal

basic feasible solution is x = (0, 0, 3, 6). We can therefore start with Phase

III. Apart from the tableau we show the computation of I and λ′ in every

iteration. Pivot elements in the tableaus are indicated by a square frame.

Iteration 1:
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c̄1 3 1 0 0 0

c̄2 -1 -2 0 0 0

x3 0 1 1 0 3

x4 3 -1 0 1 6

λ = 1, c̄(λ) = (3, 1, 0, 0), B1 = {3, 4}, x1 = (0, 0, 3, 6)

I = {1, 2}, λ′ = max
{

1
3+1 , 2

1+2

}
= 2

3

s = 2, r = 3

Iteration 2:

c̄1 3 0 -1 0 -3

c̄2 -1 0 2 0 6

x2 0 1 1 0 3

x4 3 0 1 1 9

λ = 2/3, c̄(λ) = (5/3, 0, 0, 0), B2 = {2, 4}, x2 = (0, 3, 0, 9)

I = {1}, λ′ = max
{

1
3+1

}
= 1

4

s = 1, r = 4

Iteration 3:

c̄1 0 0 -2 -1 -12

c̄2 0 0 7/3 1/3 9

x2 0 1 1 0 3

x1 1 0 1/3 1/3 3

λ = 1/4, c̄(λ) = (0, 0, 5/4, 0), B3 = {1, 2}, x3 = (3, 3, 0, 0)

I = ∅.
The algorithm STOPS and returns the values λ1 = 1, λ2 = 2/3, λ3 =

1/4, λ4 = 0 and the basic feasible solutions x1, x2, x3.

Note that in each iteration c̄(λ) can be calculated with the previous value

λ and the new λ′ and both indicate optimality, as predicted by (6.23). To

summarize, we have the following results.

• Basis B1 = (3, 4) and BFS x1 = (0, 0, 3, 6) are optimal for λ ∈ [2/3, 1].

• Basis B2 = (2, 4) and BFS x2 = (0, 3, 0, 9) are optimal for λ ∈ [1/4, 2/3],

and

• Basis B3 = (1, 2) and BFS x3 = (3, 3, 0, 0) are optimal for λ ∈ [0, 1/4].

The (negative of the) objective vectors of the three basic feasible solutions

are also shown in the Simplex tableaus, they are Cx1 = (0, 0), Cx2 = (3,−6),

and Cx3 = (12,−9).
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The two critical values λ = 2/3 and λ = 1/4 that induce basis changes

correspond to weighting vectors (2/3, 1/3) and (1/4, 3/4). Note that the con-

tour lines in decision space defined by these vectors are parallel to the edges

between x1 and x2 respectively x2 and x3 in Figure 6.4 because

2

3
(3x1 + x2) +

1

3
(−x1 − 2x2) =

5

3
x1

1

4
(3x1 + x2) +

3

4
(−x1 − 2x2) = −5

4
x2.

Thus these two vertical and horizontal lines are also geometrically identified

as optimal solutions of the weighted sum problems.
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Fig. 6.4. Feasible set and efficient set in Example 6.18.

��

In the sequence 1 = λ1 > λ2 > . . . > λl = 0 an optimal basic feasible

solution xi is always an optimal solution of (6.21) for all λ ∈ [λi+1, λi]. There-

fore, for each λi, 2 ≤ i ≤ l − 1 we have two optimal basic feasible solutions

xi and xi−1. In Figure 6.4 this means that the level curves c(λ)T x = γ are

parallel to the face of X defined by xi and xi−1. Therefore, linearity implies

that every feasible solution on the edge between these extreme points is an

optimal solution of (6.21) with λ = λi. This edge is conv(xi, xi−1), a face of X .

In particular, it follows that the subset of XE , which consists of the efficient

BFSs found by Algorithm 6.2 and the edges connecting them is connected.

Of course the image of this set is also a connected subset of YN due to the

continuity of the linear map C.

Now reconsidering what we have actually done by solving (6.21), Theorem

6.11 shows that we have solved a bicriteria linear program in some sense: For
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Fig. 6.5. Objective space and nondominated set in Example 6.18.

all λ ∈ (0, 1) we have found an optimal solution of LP(λ). However, there is

no guarantee that all efficient solutions can be reconstructed from the bases

B1, . . . ,Bl−1. Imagine an extension of Example 6.3 with a third variable x3

and constraints 0 ≤ x3 ≤ 1, but otherwise unchanged. Thus, X is now three-

dimensional and XE consists of two two-dimensional faces of X , but Y and

YN are unchanged. Algorithm 6.2 may then yield the same bases as before, i.e.

it finds a path through XE that traces YN but not all bases defining efficient

solutions. This issue will be discussed in the next chapter. Thus, Algorithm

6.2 finds, for each y ∈ YN an x ∈ XE with Cx = y.

It may also be the case that for the initial LP with objective c(1) an optimal

BFS has been found that is a weakly efficient rather than an efficient solution

of the biobjective LP. This problem can be avoided if a second LP is solved

initially. In this LP the second objective is minimized under a constraint that

the first retains its optimal value (that is, a lexicographic LP is solved):

min(c2)T x

subject to (c1)T x = ĉ

x ∈ X ,

where ĉ = min{(c1)T x : Ax = b, x � 0}. For the subsequent iterations of

Algorithm 6.2 the additional constraint is dropped again.

In the next chapter we generalize these observations to linear programs

with p objectives. We devise a method to identify an initial efficient BFS, if

one exists, and a method to pivot among efficient bases.
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Exercises

6.1. Prove that for the MOLP min{Cx : Ax = b, x � 0} both X and Y are

closed and convex.

6.2. Give an example of an MOLP with p = 2 objectives such that an optimal

solution of the weighted sum LP(λ) with λ ≥ 0 but λi = 0 for i = 1 or i = 2

is weakly efficient, but not efficient.

6.3. Prove Proposition 6.12. Let x0 ∈ X . Then the LP (6.7) is feasible and

the following statements hold.

1. If (x̂, ẑ) is an optimal solution of (6.7) then x̂ is an efficient solution of

the MOLP 6.1.

2. If (6.7) is unbounded then XE = ∅.

6.4. Let the LP {min cT x : Ax = b, x � 0} be nondegenerate and let B a

feasible basis. Show that c̄N � 0 if B is an optimal basis.

6.5. Prove Proposition 6.15, i.e. show that X 	= ∅ if and only if the auxiliary

LP (6.18) has optimal value zero.

6.6. Consider the parametric linear program

min λ(−2x1 + x2) + (1 − λ)(−4x1 − 3x2)

subject to x1 + 2x2 ≤ 10

x1 ≤ 5

x1, x2 ≥ 0.

Solve the problem with Algorithm 6.2. Determine XE as well as YE and illus-

trate the results graphically.

6.7. This exercise is about the structure of XE . Give examples of MOLPs with

the following properties.

1. XE is a singleton, although X is full dimensional, i.e dimX = n.

2. X 	= ∅ but XE = ∅.
3. It is possible that some objectives are unbounded, yet XE 	= ∅. Show this

behaviour for the MOLP

min x1 + 2x2

min − 2x2

subject to −x1 + x2 ≤ 3

x1 + x2 ≥ 3

x1, x2 ≥ 0.

What can you say about XE in this case?
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A Multiobjective Simplex Method

An MOLP with two objectives can be conveniently solved using the paramet-

ric Simplex method presented in Algorithm 6.2. With three or more objec-

tives, however, this is no longer possible because we deal with at least two

parameters in the objective function c(λ).

7.1 Algebra of Multiobjective Linear Programming

In this section we consider the general MOLP

min Cx

subject to Ax = b

x � 0.

(7.1)

For λ ∈ Rp
> we denote by LP(λ) the weighted sum linear program

min
{
λT Cx : Ax = b, x � 0

}
. (7.2)

We use the notation C̄ = C − CBA−1
B A for the reduced cost matrix with

respect to basis B and R := C̄N for the nonbasic part of the reduced cost

matrix. Note that C̄B = 0 according to (6.15) and is therefore uninterest-

ing. Proofs in this section will make use of Theorem 6.11. These results are

multicriteria analogies of well known linear programming results, or necessary

extensions to cope with the increased complexity of multiobjective compared

to single objective linear programming.

Lemma 7.1. If XE 	= ∅ then X has an efficient basic feasible solution.

Proof. By Theorem 6.11 there is some λ ∈ Rp
> such that minx∈X λT Cx has

an optimal solution. But by Theorem 6.13 the LP(λ) minx∈X λT Cx has a

optimal basic feasible solution solution, which is an efficient solution of the

MOLP by Theorem 6.6. ��
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Lemma 7.1 justifies the definition of an efficient basis.

Definition 7.2. A feasible basis B is called efficient basis if B is an optimal

basis of LP(λ) for some λ ∈ Rp
>.

We now look at pivoting among efficient bases. We say that a pivot is a

feasible pivot if the solution obtained after the pivot step is feasible, even if

the pivot element Ãrs < 0.

Definition 7.3. Two bases B and B̂ are called adjacent if one can be obtained

from the other by a single pivot step.

Definition 7.4. 1. Let B be an efficient basis. Variable xj , j ∈ N is called

efficient nonbasic variable at B if there exists a λ ∈ Rp
> such that λT R � 0

and λT rj = 0, where rj is the column of R corresponding to variable xj .

2. Let B be an efficient basis and let xj be an efficient nonbasic variable. Then

a feasible pivot from B with xj entering the basis is called an efficient pivot

with respect to B and xj.

The system λT R � 0, λT rj = 0 is the general form of the equations we

used to compute the critical λ values in parametric linear programming that

were used to derive (6.23): We chose s such that c̄(λ) ≥ 0, c̄(λ)s = 0.

Proposition 7.5. Let B be an efficient basis. There exists an efficient non-

basic variable at B.

Proof. Because B is an efficient basis there exists λ > 0 such that λT R � 0.

Thus the set L := {λ > 0 : λT R � 0} is not empty. We have to show that

there is λ ∈ L and j ∈ N such that λT rj = 0.

First we observe that there is no column r of R such that r ≤ 0. There

also must be at least one column with positive and negative elements, because

of the general assumption (6.2). Now let λ∗ ∈ L. In particular λ∗T � 0. Let

λ′ ∈ Rp
> be such that I := {i ∈ N : λ′T rj < 0} 	= ∅. Such a λ must exist,

because R contains at least one negative entry.

We define φ : R → R|N | by

φi(t) := (tλ∗T + (1 − t)λ′T )ri, i ∈ N .

Thus, φ(0) = λ′T R and φ(1) = λ∗T R � 0. For each i ∈ N \ I we have that

φi(t) ≥ 0 for all t ∈ [0, 1]. For all i ∈ I there exists some ti ∈ [0, 1] such that

φi(t)

⎧⎨
⎩

< 0, t ∈ [0, ti)

= 0, t = ti
≥ 0, t ∈ [ti, 1].

With t∗ := max{ti : i ∈ I} we have that φi(t
∗) � 0 and φi(t

∗) = 0 for some

i ∈ I. Thus λ̂ := tλ∗ + (1 − t)λ′ ∈ L and the proof is complete. ��
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Example 7.6. It might appear that any nonbasic variable such that rj contains

positive and negative entries is an efficient nonbasic variable. This is not the

case, as the following example shows. Let

R =

(
−4 1

−2 1

)
.

Then there is no λ ∈ R2
> such that λT R � 0 and λT r2 = 0. The latter equation

means λ2 = 2λ1. Then λT r1 ≥ 0 would require −2λ2 ≥ 0, an impossibility.

��

Lemma 7.7. Let B be an efficient basis and xj be an efficient nonbasic vari-

able. Then any efficient pivot from B leads to an adjacent efficient basis B̂.

Proof. Let xj be the entering variable at basis B. Because xj is an efficient

nonbasic variable, we have λ ∈ Rp
> with λT R � 0 and λT rj = 0. Thus xj

is a nonbasic variable with reduced cost 0 in LP(λ). This means that the

reduced costs of LP(λ) do not change after a pivot with xj entering. Let B̂
be the resulting basis with any feasible pivot and entering variable xj . Then

λT R � 0 and λT rj = 0 at B̂, i.e. B̂ is an optimal basis for LP(λ) and therefore

an adjacent efficient basis. ��

We need a method to check whether a nonbasic variable xj at an efficient

basis B is efficient. This can be done by performing a test that consists in

solving an LP.

Theorem 7.8 (Evans and Steuer (1973)). Let B be an efficient basis and

let xj be a nonbasic variable. Variable xj is an efficient nonbasic variable if

and only if the LP

max etv

subject to Rz − rjδ + Iv = 0

z, δ, v � 0

(7.3)

has an optimal value of 0.

Proof. By Definition 7.4 xj is an efficient nonbasic variable if the LP

min 0T λ = 0

subject to RT λ � 0

(rj)T λ = 0

Iλ � e

λ � 0

(7.4)
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has an optimal objective value of 0, i.e. if it is feasible. The first two

constraints of (7.4) together are equivalent to RT λ � 0, (rj)T λ ≤ 0, or

RT λ � 0, (−rj)T λ ≥ 0, which gives the LP

min 0T λ = 0

subject to RT λ � 0

−(rj)T λ ≥ 0

Iλ � e

λ � 0.

(7.5)

The dual of (7.5) is

max eT v

subject to Rz − rjδ + Iv + It = 0

z, δ, v, t � 0.

(7.6)

Since an optimal solution of (7.6) will always contain t at value zero, this

is equivalent to
max eT v

subject to Rz − rjδ + Iv = 0

z, δ, v � 0,

which is (7.3). ��

It is important to note that the test problem (7.3) is always feasible since

(z, δ, v) = 0 can be chosen. The proof also 7.8 also shows that (7.3) can only

have either an optimal solution with v = 0 (the objective value of (7.4) is

zero), or be unbounded. With this observation we conclude that

• xj is an efficient nonbasic variable if and only if (7.3) is bounded and has

optimal value 0,

• xj is an “inefficient” nonbasic variable if and only if (7.3) is unbounded.

The Simplex algorithm works by moving along adjacent bases until an

optimal one is found. We want to make use of this principle to identify all

efficient bases, i.e. we want to move from efficient basis to efficient basis.

Therefore we must prove that it is indeed possible to restrict ourselves to

adjacent bases only, i.e. that the efficient bases are connected in terms of

adjacency.

Definition 7.9. Two efficient bases B and B̂ are called connected if one can

be obtained from the other by performing only efficient pivots.

We prove that all efficient bases are connected using parametric program-

ming. Note that single objective optimal pivots (i.e. the entering variable is
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xs with c̄s = 0) as well as parametric pivots are efficient pivots (one of the

two reduced costs is negative, the other positive) according to (6.23). These

cases are also covered by Proposition 7.5. Theorem 7.10 is the foundation for

the multicriteria Simplex algorithm. We present a proof by Steuer (1985).

Theorem 7.10 (Steuer (1985)). All efficient bases are connected.

Proof. Let B and B̂ be two efficient bases. Let λ, λ̂ ∈ Rp
> be the positive

weighting vectors for which B and B̂ are optimal bases for LP(λ) and LP(λ̂),

respectively. We consider the parametric LP with objective function

c(Φ) = Φλ̂T C + (1 − Φ)λT C (7.7)

with Φ ∈ [0, 1].

Let B̂ be the first basis (for Φ = 1). After several parametric programming

or optimal pivots we get a basis B̃ which is optimal for LP(λ). Since λ∗ =

Φλ̂ + (1 − Φ)λ ∈ Rp
> for all Φ ∈ [0, 1] all intermediate bases are optimal for

LP(λ∗) for some λ∗ ∈ Rp
>, i.e. they are efficient bases. All parametric and

optimal pivots are efficient pivots as explained above. If B̃ = B we are done.

Otherwise B can be obtained from B̃ by efficient pivots (i.e. optimal pivots

for LP(λ)), because both B and B̃ are optimal bases for this LP. ��
It is now possible to explain why the nontriviality assumption is necessary.

Without it, the existence of efficient nonbasic variables is not guaranteed, and

therefore Theorem 7.10 may fail. Example 7.11 also demonstrates a problem

with degenerate MOLPs.

Example 7.11 (Steuer (2002)). We want to solve the following MOLP

min − 2x2 + x3

min −x1 + 2x2 + x3

subject to x2 + 4x3 ≤ 8

x1 + x2 ≤ 8

x1, x2, x3 ≥ 0.

We introduce slack variables x4, x5 to write the LP in equality form. It is

clear that both objective functions are minimized at the same solution, x̂ =

(0, 4, 0, 0, 0). Thus XE = {x̂}. Because the only nonzero variable at x̂ is x̂2 =

2, there are four different bases that define the same efficient basic feasible

solution, namely {1, 2}, {2, 3}, {2, 4}, and {2, 5} (the problem is degenerate).

Below we show the Simplex tableaus for these four bases.

c̄1 0 0 7 2 0 16

c̄2 0 0 8 9
4 - 1

4 16

x1 1 0 -1 - 1
4

1
4 0

x2 0 1 4 1 0 8
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c̄1 7 0 0 1
4

7
4 16

c̄2 8 0 0 1
4

7
4 16

x3 -1 0 1 1
4 - 1

4 0

x2 4 1 0 0 1 8

c̄1 8 0 -1 0 2 16

c̄2 9 0 -1 0 2 16

x4 -4 0 4 1 -1 0

x2 4 1 0 0 1 8

c̄1 0 0 7 2 0 16

c̄2 1 0 7 2 0 16

x2 0 1 4 1 0 8

x5 4 0 -4 -1 1 0

Bases {1, 2} and {2, 4} are not efficient according to Definition 7.2 because

R contains columns that do not have positive entries. This is due to degener-

acy, which makes the negative reduced cost values possible, despite the BFS

being efficient/optimal.

Furthermore, bases {2, 3} and {2, 5} are efficient. The definition is satisfied

for all λ ∈ R2
>. However, for these bases R has no negative entries at all, hence

no efficient nonbasic variable according to Definition 7.3 exist. The example

therefore shows, that the assumption (6.2) is necessary to guarantee existence

of efficient nonbasic variables, and the validity of Theorem 7.10. ��

From Theorem 7.8 we know that we must consider negative pivot elements,

i.e. Ãrj < 0. What happens if nonbasic variable xj is efficient and column j of

Ã contains no positive elements at all? Then the increase of xj is unbounded,

a fact that indicated an unbounded LP in the single objective case. However,

since λT rj = 0 this is not the case in the multiobjective LP. Rather, unbound-

edness of XE is detected in direction d given by the vector with components

−b̃i/Ãij , i ∈ B, xj = 1. Of course, this is not a feasible pivot, as it does not

lead to another basis.

The results so far allow us to move from efficient basis to efficient basis. To

formulate a multiobjective Simplex algorithm we now need an efficient basis

to start with.

For the MOLP

min{Cx : Ax = b, x � 0}

one and only one of the following cases can occur:
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• The MOLP is infeasible, i.e. X = ∅,
• it is feasible (X 	= ∅) but has no efficient solutions (XE = ∅), or

• it is feasible and has efficient solutions, i.e. XE 	= ∅.
The multicriteria Simplex algorithm deals with these situations in three

phases as follows.

Phase I: Determine an initial basic feasible solution or stop with the con-

clusion that X = ∅. This phase does not involve the objective function

matrix C, and the usual auxiliary LP (6.18) can be used.

Phase II: Determine an initial efficient efficient basis or stop with the con-

clusion that XE = ∅.
Phase III: Pivot among efficient bases to determine all efficient bases and

directions of unboundedness of XE .

In Phase II, the solution of a weighted sum LP(λ) with λ > 0 will yield an

efficient basis, provided LP(λ) is bounded. If we do not know that in advance it

is necessary to come up with a procedure that either concludes that XE = ∅ or

returns an appropriate λ for which LP(λ) has an optimal solution. Assuming

that X 	= ∅ Phase I returns a basic feasible solution x0 ∈ X , which may or

may not be efficient. We proceed in two steps: First, the auxiliary LP (6.8)

is solved to check whether XE = ∅. Proposition 6.12 and duality imply that

XE 	= ∅ if and only if (6.8) has an optimal solution. In this case the optimal

solution of (6.8) returns an appropriate weighting vector ŵ, analogously to

the argument we have used in the proof of Theorem 6.11.

From Proposition 6.12 the MOLP min{Cx : Ax = b, x � 0} has an efficient

solution if and only if the LP 7.8

max
{
eT z : Ax = b, Cx + Iz = Cx0, x, z � 0

}
(7.8)

has an optimal solution. Moreover x̂ in an optimal solution of (6.7) is efficient.

However, we do not know if x̂ is a basic feasible solution of the MOLP and

we can in general not choose x̂ to start Phase III of the algorithm.

Instead we apply linear programming duality (Theorem 6.8): (7.8) has an

optimal solution if and only if its dual (7.9)

min
{
uT b + wT Cx0 : uT A + wT C � 0, w � e

}
(7.9)

has an optimal solution (û, ŵ) with ûT b + ŵT Cx0 = eT ẑ. Then û is also an

optimal solution of the LP (7.10)

min
{
uT b : uT A, � −ŵTC

}
(7.10)

which is just (7.9) for w = ŵ fixed. As in the proof of Theorem 6.11 the

dual of (7.10) has an optimal solution, and therefore an optimal basic feasible
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solution, which is efficient. The dual of (7.10) is equivalent to the weighted

sum LP(ŵ)

min
{
ŵT Cx : Ax = b, x � 0.

}
It follows that the LPs (7.9) and LP(ŵ) are the necessary tools in Phase

II. If (7.9) is infeasible, XE = ∅. Otherwise an optimal solution of (7.9) yields

an appropriate weighting vector λ = ŵ for which LP(λ) has an optimal basic

feasible solution, which is an initial efficient basic feasible solution of the

MOLP.

In the following description of the multiobjective Simplex algorithm, which

finds all efficient bases and all efficient basic feasible solutions, we need to store

a list L1 of efficient bases to be processed and a list of efficient bases L2 for

output, as well as a list EN of efficient nonbasic variables.

Algorithm 7.1 (Multicriteria Simplex algorithm.)

Input: Data A, b, C of an MOLP.

Initialization: Set L1 := ∅, L2 := ∅.
Phase I: Solve the LP min{eT z : Ax + Iz = b, x, z � 0}. If the optimal value

of this LP is nonzero, STOP, X = ∅. Otherwise let x0 be a basic feasible

solution x0 of the MOLP.

Phase II: Solve the LP min{uT b + wT Cx0 : uT A + wT C � 0, w � e}. If this

problem is infeasible, STOP, XE = ∅. Otherwise let (û, ŵ) be an optimal

solution.

Find an optimal basis B of the LP min{ŵT Cx : Ax = b, x � 0}.
L1 := {B}, L2 := ∅.

Phase III:

While L1 	= ∅
Choose B in L1, set L1 := L1 \ {B}, L2 := L2 ∪ {B}.
Compute Ã, b̃, and R according to B.

EN := N .

For all j ∈ N .

Solve the LP max{eT v : Ry − rjδ + Iv = 0; y, δ, v � 0}.
If this LP is unboundedEN := EN \ {j}.

End for

For all j ∈ EN .

For all i ∈ B.

If B′ = (B \ {i}) ∪ {j} is feasible and B′ 	∈ L1 ∪ L2

then L1 := L1 ∪ B′.

End for.

End for.
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End while.

Output: L2.

We have formulated the algorithm only using bases. It is clear that efficient

basic feasible solutions can be computed form the list L2 after completion of

the algorithm, or during the algorithm. It is of course necessary to update Ã

and b̃ when moving from one basis to the next. Since this has been described in

Algorithm 6.1, we omitted details. It is also possible to get directions in which

XE is unbounded. As mentioned before, these are characterized by columns

of Ã that do not contain positive entries.

Is Algorithm 7.1 an efficient algorithm? While we only introduce computa-

tional complexity in Section 8.1 we comment on the performance of multicrite-

ria Simplex algorithms here. Because the (single objective) Simplex algorithm

may require an exponential number of pivot steps (in terms of problem size

m, n, p, see e.g. Dantzig and Thapa (1997) for a famous example), the same

is true for our multicriteria Simplex algorithm.

The question, whether a polynomial time algorithm for multicriteria linear

programming (e.g. a generalization of Karmarkar’s interior point algorithm

Karmarkar (1984)) is possible depends on the number of efficient extreme

points. Unfortunately, it is easy to construct examples with exponentially

many.

Example 7.12. Consider a multicriteria linear program, the feasible set of

which is a hypercube in Rn, i.e. X = [0, 1]n and which has objectives to

minimize xi as well as −xi. Formally,

min xi i = 1, . . . , n

min −xi i = 1, . . . , n

subject to xi ≤ 1 i = 1, . . . , n

−xi ≤ 1 i = 1, . . . , n.

This problem has n variables, m = 2n constraints and p = 2n objective

functions. It is obvious, that all 2n extreme points of the feasible set are

efficient. ��
Some investigations show that the average number of efficient extreme

points can be huge. Benson (1998c) reports on such numerical tests. Results on

three problem classes (with inequality constraints) with 10 random examples

each are summarized in Table 7.1.

However, Küfer (1998) did a probabilistic analysis and found that the

expected number of efficient extreme points for a certain family of randomly

generated MOLPs is polynomial in n, m, and p.
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Table 7.1. Number of efficient extreme points.

n m Q Number of efficient extreme points

30 25 4 7,245.9 on average

50 50 4 83,780.6 on average

60 50 4 more than 200,000 in each problem

We close this section with an example for the multicriteria Simplex algo-

rithm.

Example 7.13 (Wiecek (1995)). We solve an MOLP with three objectives,

three variables, and three constraints:

min −x1 −2x2

min −x1 +2x3

min x1 −x3

subject to x1 +x2 ≤ 1

x2 ≤ 2

x1 −x2 +x3 ≤ 4.

Slack variables x4, x5, x6 are introduced to write the constraints in equality

form Ax = b.

Phase I: It is clear that B = {4, 5, 6} is a feasible basis and x0 = (0, 0, 0, 1, 2, 4)

is a basic feasible solution.

Phase II: We solve (7.9) with x0 from Phase I:

min u1 + 2u2 + 4u3

subject to uT

⎛
⎝1 1 0 1 0 0

0 1 0 0 1 0

1 −1 1 0 0 1

⎞
⎠+ wT

⎛
⎝−1 −2 0 0 0 0

−1 0 2 0 0 0

1 0 −1 0 0 0

⎞
⎠ � 0

w � e

The w component of the optimal solution is ŵ = (1, 1, 1).

We now solve min{ŵT Cx : x ∈ X}. x0 is an initial basic feasible solution

for this problem. An optimal basis is B1 = {2, 5, 6} with optimal basic fea-

sible solution x1 = (0, 1, 0, 0, 1, 5). Therefore we initialize L1 = {{2, 5, 6}}
and move to Phase III.

Phase III:

Iteration 1: We choose basis B1 = {2, 5, 6} and set L1 = ∅, L2 =

{{2, 5, 6}}. The tableau for this basis is given below.
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c̄1 1 0 0 2 0 0 2

c̄2 -1 0 2 0 0 0 0

c̄3 1 0 -1 0 0 0 0

x2 1 1 0 1 0 0 1

x5 -1 0 0 -1 1 0 1

x6 2 0 1 1 0 1 5

EN := {1, 3, 4}.
The LP to check if x1 is an efficient nonbasic variable is given in tableu

form, where the objective coefficients of 1 for variables v have been

eliminated by subtracting all constraint rows from the objective row

to obtain a basic feasible solution with basic variables v = 0. This LP

does have an optimal solution that is found after only one pivot. Pivot

elements are highlighted by square frames.

1 1 2 -1 0 0 0 0

1 0 2 -1 1 0 0 0

-1 2 0 1 0 1 0 0

1 -1 0 -1 0 0 1 0

The LP to check if variable x3 is an efficient nonbasic variable is shown

below. The problem has an optimal solution, proved by performing the

indicated pivot.

1 1 2 -1 0 0 0 0

1 0 2 0 1 0 0 0

-1 2 0 -2 0 1 0 0

1 -1 0 1 0 0 1 0

Finally, we check nonbasic variable x4. In the tableau displayed be-

low, column three indicates that the LP is unbounded, and x4 is not

efficient.

1 1 2 -2 0 0 0 0

1 0 2 -2 1 0 0 0

-1 2 0 0 0 1 0 0

1 -1 0 0 0 0 1 0

As a result of these checks we have that EN = {1, 3}. Checking in the

tableau for B1 = {2, 5, 6}, we find that the feasible pivots are 1) x1

enters and x2 leaves, giving basis B2 = {1, 5, 6} and 2) x3 enters and

x6 leaves, yielding basis B3 = {2, 3, 5}.
L1 := {{1, 5, 6}, {2, 3, 5}}.
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Iteration 2: Choose B2 = {1, 5, 6} with BFS x2 = (1, 0, 0, 0, 2, 3).

L1 = {{2, 3, 5}}, L2 = {{2, 5, 6}, {2, 3, 5}}.
The tableau for the basis is as follows.

c̄1 0 -1 0 1 0 0 1

c̄2 0 1 2 1 0 0 1

c̄3 0 -1 -1 -1 0 0 -1

x2 1 1 0 1 0 0 1

x5 0 1 0 0 1 0 2

x6 0 -2 1 -1 0 1 3

EN = {2, 3, 4}.
If x2 enters the basis, x1 leaves, which leads to basis (2, 5, 6) which is

the previous one. Therefore x2 need not be checked.

The tableau for checking x3 is displayed below. After one pivot column

3 shows that the LP is unbounded and x3 is not efficient.

-1 1 1 -1 0 0 0 0

-1 0 1 0 1 0 0 0

1 2 1 -2 0 1 0 0

-1 -1 -1 1 0 0 1 0

We check nonbasic variable x4. One iteration is again enough to ex-

hibit unboundedness, and x4, too, is not efficient.

-1 1 1 -1 0 0 0 0

-1 0 1 -1 1 0 0 0

1 2 1 -1 0 1 0 0

-1 -1 -1 1 0 0 1 0

These checks show that there are no new bases and BFSs to add,

therefore EN = ∅ and we proceed to the next iteration.

Iteration 3: We choose B3 = {2, 3, 5} with BFS x3 = (0, 1, 5, 0, 1, 0).

L1 = ∅, L2 = {{2, 5, 6}, {1, 5, 6}, {2, 3, 5}}.
The tableau for the basis is shown below.

c̄1 1 0 0 2 0 0 2

c̄2 -5 0 0 -2 0 -2 -10

c̄3 3 0 0 1 0 1 5

x2 1 1 0 1 0 0 1

x5 -1 0 0 -1 1 0 1

x3 2 0 1 1 0 1 5

EN = {1, 4, 6}.
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We test nonbasic variable x1. After one pivot column 4 in the tableau

shows that the LP is unbounded.

-1 1 -1 1 0 0 0 0

1 2 0 -1 1 0 0 0

-5 -2 -2 5 0 1 0 0

3 1 1 -3 0 0 1 0

The test of nonbasic variable x4 yields the following tableau, and again

one pivot is enough to determine unboundedness.

-1 1 -1 -1 0 0 0 0

1 2 0 -2 1 0 0 0

-5 -2 -2 2 0 1 0 0

3 1 1 -1 0 0 1 0

Since EN = ∅ the iteration is finished.

Iteration 4: Since L1 = ∅ the algorithm terminates.

Output: List of efficient bases B1 = {2, 5, 6},B2 = {1, 5, 6},B3 = {2, 3, 5}.

During the course of the algorithm, we identified three efficient bases and

three corresponding efficient basic feasible solutions. Their adjacency structure

is shown in Figure 7.1. A line indicates that bases are adjacent. Note that bases

{1, 5, 6} and {2, 3, 5} are not adjacent, because at least two pivots are needed

to obtain one from the other. They are, however, connected via basis {2, 5, 6}

{2, 5, 6}

{1, 5, 6}

{2, 3, 5}

x1

x2

x3

.........
.........
.........
.........
.........
.........
.........
.........
.........
........

.........................................................................................

Fig. 7.1. Adjacency of efficient bases and corresponding BFSs.

The problem is displayed in decision space in Figure 7.2. The efficient set

consists of the edges connecting x1 and x2 and x1 and x3.

��

In the following section we study the geometry of multiobjective linear

programming. Amongst other things we shall see, how the results from the
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x0

x1

x2

x3

x4

x5

−c1

−c2

−c3

x1

x2

x3

XE

x0 = (0, 0, 0)

x1 = (0, 1, 0)

x2 = (1, 0, 0)

x3 = (0, 1, 5)

x4 = (1, 0, 3)

x5 = (0, 0, 4)

Fig. 7.2. Feasible and efficient set in Example 7.13.

multicriteria Simplex algorithm (i.e. the list of efficient bases and their adja-

cency structure) is exploited to identify the maximal efficient faces.

7.2 The Geometry of Multiobjective Linear

Programming

First we observe that efficient BFS correspond to extreme points of XE .

Lemma 7.14. 1. Let B be an efficient basis and (xB, 0) be the corresponding

basic feasible solution. Then (xB, 0) is an extreme point of XE .

2. Let x ∈ XE be an extreme point. Then there is an efficient basis B such

that x = (xB, 0).

Proof. This result follows from Theorem 6.11, the definition of an efficient

basis and the single objective counterpart in Theorem 6.17. ��

Note that, as in the single objective case, several efficient bases might

identify the same efficient extreme point, if the MOLP is degenerate.

If (xB , 0) and (xB̂, 0) are the efficient basic feasible solutions defined by

adjacent efficient bases B and B̂, we see from the proof of Lemma 7.7 that
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both (xB, 0) and (xB̂, 0) are optimal solutions of the same LP(λ). Therefore,

due to linearity, the edge conv((xB , 0), (xB̂, 0)) is contained in XE .

Lemma 7.15. Let B and B̂ be optimal bases for LP(λ). Then the edge

conv((xB , 0), (xB̂, 0)) is contained in XE .

We also have to take care of efficient unbounded edges: XE may contain

some unbounded edges E = {x : x = xi +µdj , µ ≥ 0}, where dj is an extreme

ray and xi is an extreme point of X . This can happen even if the LP(λ)

is bounded if c(λ) is parallel to dj . An unbounded edge always starts at an

extreme point, which must therefore be efficient.

Let B be an efficient basis associated with that extreme point. Then the un-

bounded efficient edge is detected by an efficient nonbasic variable, in which

the column Ãj contains only nonpositive elements, showing that X is un-

bounded in that direction. Because λT rj = 0 this does not constitute un-

boundedness of the objective function.

Definition 7.16. Let F ⊂ X be a face of X . F is called efficient face, if

F ⊂ XE. It is called maximal efficient face, if there is no efficient face F ′ of

higher dimension with F ⊂ F ′.

Lemma 7.17. If there is a λ ∈ Rp
> such that λT Cx = γ is constant for all

x ∈ X then XE = X . Otherwise

XE ⊂
T⋃

t=1

Ft, (7.11)

where {Ft : t = 1, . . . , T} is the set of all proper faces of X and T is the

number of proper faces of X .

Proof. The first case is obvious, because if λT Cx = γ for all x ∈ X then the

whole feasible set is optimal for this particular LP(λ). Then from Theorem

6.6 X ⊂ XE .

The second part follows from the fact that optimal solutions of LP(λ) are

on the boundary of X (Theorem 6.17) and, once more, Theorem 6.11. Of

course bdX = ∪T
t=1Ft. ��

Thus, in order to describe the complete efficient set XE , we need to identify

the maximally efficient faces of X . We will need the representation of a point x

in a face F as a convex combination of the extreme points and a nonnegative

combination of the extreme rays of F . This result is know as Minkowski’s

theorem. A proof can be found in Nemhauser and Wolsey (1999, Chapter I.4,

Theorem 4.8).
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Theorem 7.18 (Minkowski’s Theorem). Let X be a polyhedron and x ∈
X . Let x1, . . . , xk be the extreme points and let d1, . . . , dl be the extreme rays of

X , then there are nonnegative real numbers αi, i = 1, . . . , k and µj , j = 1, . . . , l

such that 0 ≤ αi ≤ 1, i = 1, . . . , k,
∑k

i=1 αi = 1, and

x =

k∑
i=1

αix
i +

l∑
j=1

µjd
j . (7.12)

Furthermore, if x ∈ riX the numbers αi and µj can be chosen to be positive.

Example 7.19. Consider the polyhedron X defined as follows:

X := {x ∈ R2 : x � 0, 2x1 + x2 ≥ 2,−x1 + x2 ≤ 2}

shown in Figure 7.3. Clearly, X has two extreme points x1 = (0, 2) and x2 =

(1, 0). The two extreme rays are d1 = (1, 1) and d2 = (1, 0).
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Fig. 7.3. A polyhedron with extreme points and extreme rays.

The point x = (2, 1) ∈ riX can be written as

x =
1

4

(
0

2

)
+

3

4

(
1

0

)
+

1

2

(
1

1

)
+

3

4

(
1

0

)
=

(
2

1

)
.

��

Suppose that ∅ 	= XE 	= X . Using Minkowski’s theorem, applied to a face

F , we prove that the whole face is efficient if and only if it contains an efficient

solution in its relative interior.

Theorem 7.20. A face F ⊂ X is an efficient face if and only if it has an

efficient solution x̂ in its relative interior.
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Proof. “=⇒” If F is an efficient face all its relative interior points are efficient

by definition.

“⇐=” Let x̂ ∈ XE belong to the relative interior of F . We show that there is

a λ̂ ∈ Rp
> such that the whole face F is optimal for LP(λ̂).

First, by Theorem 6.11 we can find a λ̂ ∈ Rp
> such that x̂ is an optimal

solution of LP(λ̂). In particular LP(λ̂) is bounded. Therefore

λ̂T Cxi ≥ λ̂T Cx̂ (7.13)

for all extreme points xi, i = 1, . . . , k of F and

λ̂T Cdj ≥ 0 (7.14)

for all extreme rays dj , j = 1, . . . , l of F . Note that whenever λ̂T Cdj < 0

for some extreme ray dj LP(λ̂) will be unbounded. Assume there is an

extreme point xi, i ∈ {1, . . . , k} which is not optimal for LP(λ̂), i.e.

λ̂T Cxi > λ̂T Cx0. (7.15)

Then from Theorem 7.18 there are positive αi and µj such that with (7.12)

x̂ =
∑k

i=1 αix
i +
∑l

j=1 µjd
j and

λ̂T Cx̂ =
k∑

i=1

αiλ̂
T Cxi +

l∑
j=1

µj λ̂
T Cdj

>
k∑

i=1

αiλ̂
T Cx0 = λ̂T Cx̂.

(7.16)

We have used positivity of αi, nonnegativity of µi, (7.13), (7.14), and

(7.15) for the inequality, and
∑k

i=1 αi = 1 for the second equality. The

impossibility (7.16) means that

λ̂T Cxi = λ0T
Cx0. (7.17)

for all extreme points xi, which are thus optimal solutions of LP(λ̂). To

complete the proof, consider (7.16) again, using (7.17) this time to get

that λ0T
Cdj = 0 for all extreme rays dj , because µj > 0 since x̂ is a

relative interior point of F . ��

We state to further results about efficient edges and efficient faces, which

we leave as exercises for the reader, see Exercises 7.5 and 7.6.

Proposition 7.21. Assume that the MOLP is not degenerate. Let x1 and x2

be efficient extreme points of X and assume that the corresponding bases are

adjacent (i.e. one can be obtained from the other by an efficient pivot). Then

conv(x1, x2) is an efficient edge.
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Theorem 7.22. A face F of X is efficient if and only if there is a λ > 0 such

that all extreme points of F are optimal solutions of LP(λ) and λT d = 0 for

all extreme rays of F .

With Theorem 7.20 and Lemma 7.17 we know that XE is the union of

maximally efficient faces, each of which is the set of optimal solutions of

LP(λ), for some λ ∈ Rp
>. If we combine this with the fact that the set of

efficient extreme points is connected by efficient edges, (as follows again from

Theorem 7.10 and Theorem 7.20, see also page 185) we get the connectedness

result for the efficient set of multicriteria linear programs.

Theorem 7.23. XE is connected and, therefore, YN is connected.

Proof. The result for XE follows from Theorem 7.10 and Lemma 7.17 together

with Theorem 7.20. Thus, YN is connected because XE is and C is linear, i.e.

continuous. ��

Example 7.24. Figure 7.4 shows the feasible set of a biobjective LP, with the

two maximal efficient faces indicated by bold lines.
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c1 = (0, 1,−2)

c2 = (0,−2, 1)

Fig. 7.4. XE in Example 7.24.
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To check that XE is correct we can use Theorem 6.11, i.e x ∈ XE if and only

if there is c(λ) = λc1 + (1− λ)c2 such that x is an optimal solution of LP(λ),

and apply it graphically in this case. The negative gradient of the objective

c(λ) for different values of λ can be used to graphically determine the optimal

faces. In this example, XE has a 2-dimensional face and a 1-dimensional face

as the only maximal efficient faces. However, the three edges of the efficient

triangle and the four efficient extreme points are not maximal efficient faces.

The example clearly shows that – even for linear multicriteria optimization

problems – the efficient set is in general not convex. ��

In the proof of Theorem 7.20 we have seen that for each efficient face F
there exists a λ ∈ Rp

> such that F is the set of optimal solutions of LP(λ).

Suppose we know efficient face F , how can we find all λ with that property?

Essentially, we want to subdivide the set Λ = {λ ∈ Rp
> :
∑p

k=1 λk = 1} into

regions that correspond to those weighting vectors λ, which make a certain

face efficient. That is, for each efficient face F we want to find ΛF ⊂ Λ such

that F is optimal for LP(λ) for all λ ∈ ΛF .

Let us first assume that X is nonempty and bounded, so that in particular

XE is nonempty. Let F be an efficient face, and xi, i = 1, . . . , k be the set

of all extreme points of F . Because F is an efficient face, from the proof of

Theorem 7.20 there is some λF ∈ Λ such that F = conv(x1, . . . , xk) is optimal

for LP(λF ). In particular, x1, . . . , xk are optimal solutions of LP(λF).

Hence we can apply the optimality condition for linear programs. Let Ri

be the reduced cost matrix of a basis associated with xi. Then xi is optimal if

and only if λT Ri � 0 (note that we assume nondegeneracy here, see Lemma

6.14). Therefore, the face F is optimal if and only if λT Ri � 0, i = 1, . . . , k.

Proposition 7.25. The set of all λ for which efficient face F is the optimal

solution set of LP(λ) is defined by the linear system

λT e = 1

λT Ri � 0 i = 1, . . . , k

λ � 0,

where Ri is the reduced cost matrix of a basis associated with extreme point

xi of F .

Example 7.26. Let us consider the efficient face conv(x1, x2) in Example 7.13.

Extreme point x1 corresponds to basis {2, 5, 6} with

R1 =

⎛
⎝ 1 0 2

−1 2 0

1 −1 0

⎞
⎠
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and extreme point x2 corresponds to basis {1, 5, 6}

R2 =

⎛
⎝−1 0 1

1 2 1

−1 −1 −1

⎞
⎠ .

The linear system of Proposition 7.25 is λT R1 � 0, λT R2 � 0, λT e =

1, λ ≥ 0, which we write as

λ1 − λ2 + λ3 ≥ 0

2λ2 − λ3 ≥ 0

2λ1 ≥ 0

−λ1 + λ2 − λ3 ≥ 0

2λ2 − λ3 ≥ 0

λ1 + λ2 − λ3 ≥ 0

λ1 + λ2 + λ3 = 1

λ1, λ2, λ3 ≥ 0

or

λ1 − λ2 + λ3 = 0

2λ2 − λ3 ≥ 0

λ1 + λ2 − λ3 ≥ 0

λ1 + λ2 + λ3 = 1

λ1, λ2, λ3 ≥ 0.

Eliminating λ3 we obtain λ2 = 0.5, 0 ≤ λ1 ≤ 0.5. Proceeding in the

same way for the efficient face conv(x1, x2) and the efficient extreme points,

we obtain the subdivision of Λ depicted in Figure 7.5. For the efficient ex-

treme points xi there are two-dimensional regions, for the edges, there are

line segments that yield the respective face as optimal solutions of LP(λ).
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Fig. 7.5. Weights to obtain efficient faces in Example 7.13.

��

If X is unbounded, it may happen that XE contains unbounded efficient

faces . In this case an efficient face F contains unbounded edges, i.e. we must
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take care of extreme rays in the linear system of Proposition 7.25. We extend it

by λtCdj = 0 for the extreme rays d1, . . . , dl of face F . The proof of Theorem

7.20 shows that this condition has to be satisfied.

If there is some λ ∈ Λ such that LP(λ) is unbounded, there is, in addition

to the sets ΛF ⊂ Λ for all efficient faces F , a subset Λ0 ⊂= {λ ∈ Λ :

LP(λ) is unbounded}. This set is the remainder of Λ, which is not associated

with any of the efficient faces. Note that this case can only occur if there is a

λ > 0 and an extreme ray d of X such that λT Cd < 0.

Let us finally turn to the determination of maximal efficient faces. The

method we present is from Isermann (1977). Let B be an efficient basis and

let N f ⊂ N be the set of nonbasic variables, which allow feasible pivots. Let

J ⊂ N f . Then we have the following proposition.

Proposition 7.27. All variables in J are efficient nonbasic variables if and

only if the LP
max eT v

subject to Rz − RJ δ + Iv = e

z, δ, v � 0

(7.18)

has an optimal solution. Here RJ denotes the columns of R pertaining to

variables in J .

Proof. The proof is similar to the proof of Theorem 7.8 and is left to the

reader, see Exercise 7.1. ��

Let us call J ⊂ N f a maximal set of efficient nonbasic variables , if there is

no J ′ ⊂ N f such that J ⊂ J ′ and (7.18) has an optimal solution for J ′. Now

let Bτ , τ = 1, . . . , t be the efficient bases and J τ,ρ, τ = 1, . . . , t, ρ = 1, . . . , r

be all maximal index sets of efficient nonbasic variables at efficient basis Bτ .

Furthermore, let Eν = (Bτ , dν), ν = 1, . . . , v denote unbounded efficient edges,

where dν is an extreme ray of X .

We define Qτ,ρ := Bτ ∪ J τ,ρ. Qτ,ρ contains bases adjacent to Bτ , and

the convex hull of the extreme points associated with all bases found in Qτ,ρ

plus the conical hull of any unbounded edges attached to any of these bases

constitutes a candidate for an efficient face.

As we are only interested in identifying maximal efficient faces, we select a

minimal number of index sets representing all Qτ,ρ, i.e. we choose index sets

U1, . . . ,Uo with the following properties:

1. For each Qτ,ρ there is a set Us such that Qτ,ρ ⊂ Us.

2. For each Us there is a set Qτ,ρ such that Us = Qτ,ρ.

3. There are no two sets Us,Us′

with s 	= s′ and Us ⊂ Us′

.
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Now we determine which extreme points and which unbounded edges are

associated with bases in the sets Us. For s ∈ {1, . . . , o} let

Is
b := {τ ∈ {1, . . . , t} : Bτ ⊂ Us} ,

Is
u := {ν ∈ {1, . . . , v} : Bτ ⊂ Us}

and define

Xs =

⎧⎨
⎩x ∈ X : x =

∑
τ∈Is

b

ατxτ +
∑
ν∈Is

u

µνdν ,
∑
τ∈Is

b

ατ = 1, ατ ≥ 0, µν ≥ 0

⎫⎬
⎭ .

(7.19)

The sets Xs are faces of X and efficient (Theorem 7.28) and in fact they are

the maximal efficient faces (Theorem 7.29), if the MOLP is not degenerate.

Theorem 7.28 (Isermann (1977)). Xs ⊂ XE for s = 1, . . . , o.

Proof. By definition of Us there is a set Qτ,ρ such that Qτ,ρ = Us. Therefore

the linear program (7.18) with J = Qτ,ρ \ Bτ in Proposition 7.27 has an

optimal solution. Thus, the dual of this LP

min eT λ

subject to RT λ � 0

(−RJ)T λ � 0

λ � e

has an optimal solution λ̂. But the constraints of the LP above are the opti-

mality conditions for LP (λ), where in particular (RJ)T λ = 0. Therefore all

x ∈ Xs are optimal solutions of LP(λ̂) and Xs ⊂ XE . ��
Theorem 7.29 (Isermann (1977)). If x ∈ XE there is an s ∈ {1, . . . , o}
such that x ∈ Xs.

Proof. Let x ∈ XE . Then x is contained in a maximal efficient face F , which is

optimal for some LP(λ). Let Ib be the index set of efficient bases corresponding

to the extreme points of F and Iu be the index set of extreme rays of face F .

Then, according to (7.12), x can be written as

x =
∑
i∈Ib

αix
i +
∑
j∈Iu

µjd
j .

We choose any extreme point xi of F and let Bi be a corresponding basis.

Furthermore, we let J 0 := {∪τ∈Ib
Bτ} \ Bi. Because all Bτ are efficient, J 0 is

a set of efficient nonbasic variables at Bi.

Therefore (7.18) has an optimal solution and there exists a maximal index

set of efficient nonbasic variables J with J 0 ⊂ J . During the further con-

struction of index sets, none of the indices of extreme points in J 0 is lost, and

Bi ∪ J 0 ⊂ Us for some s. Therefore x ∈ Xs for some s ∈ {1, . . . , o}. ��
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The proofs show that if all efficient bases are nondegenerate, Xs are exactly

the maximal efficient faces of X . Otherwise some Xs may not be maximal,

because there is a choice of bases representing an efficient extreme point, and

the maximal sets of efficient nonbasic variables need not be the same for all

of them.

Example 7.30. We apply this method to Example 7.13. X does not contain

unbounded edges. The computation of the index sets is summarized in Table

7.2.

Table 7.2. Criteria and alternatives in Example 7.30.

Efficient basis Bτ Maximal index set J τ,ρ Qτ,ρ

B1 = {2, 5, 6} J 1,1 = {1} Q1,1 = {1, 2, 5, 6}
J 1,2 = {3} Q1,2 = {3, 2, 5, 6}

B2 = {1, 5, 6} J 2,1 = {2} Q2,1 = {1, 2, 5, 6}

B3 = {2, 3, 5} J 3,1 = {6} Q3,1 = {2, 3, 5, 6}

The sets Us are U1 = {1, 2, 5, 6} and U2 = {2, 3, 5, 6} and checking, which

bases are contained in these sets, we get I1
b = {1, 2} and I2

b = {1, 3}. From

(7.19) we get

X1 = {x = α1x
1 + α2x

2 : α1 + α2 = 1, αi ≥ 0} = conv(x1, x2),

X2 = {x = α1x
1 + α2x

3 : α1 + α2 = 1, αi ≥ 0} = conv(x1, x3),

and confirm XE = X1 ∪ X2, as expected. ��

7.3 Notes

A number of multicriteria Simplex algorithms have been published. Their gen-

eral structure follows the three phase scheme presented above. For pivoting

among efficient bases it is necessary to identify efficient nonbasic variables.

Other than those of Theorems 7.8 and 7.27 tests for nonbasic variable ef-

ficiency have been proposed by Ecker and Kouada (1978) and Zionts and

Wallenius (1980). An alternative method to find an initial efficient extreme

point is given in Benson (1981). Several proofs of the connectedness result of

Theorem 7.10 are known, see e.g. Zeleny (1974), Yu and Zeleny (1975), and

Isermann (1977). More on connectedness of efficient basic feasible solutions

for degenerate MOLPs can be found in Schechter and Steuer (2005).
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Algorithms based on the Simplex method are proposed by Armand (1993);

Armand and Malivert (1991), Evans and Steuer (1973), Ecker et al. (1980);

Ecker and Kouada (1978), Isermann (1977), Gal (1977), Philip (1972, 1977),

Schönfeld (1964), Strijbosch et al. (1991), Yu and Zeleny (1975, 1976), Zeleny

(1974). The algorithm by Steuer (1985) is implemented in the ADBASE Steuer

(2000) code.

While all these algorithms identify efficient bases and extreme points, an

algorithm by Sayin (1996) a top-down approach instead, that starts by finding

the highest dimensional efficient faces first and then proceeds down to extreme

points (zero dimensional faces).

In Proposition 7.25 we have shown how to decompose the weight space Λ to

identify those weighting vectors that have an efficient face as optimal solutions

of LP(λ). Such a partition can be attempted with respect to efficient bases of

the MOLP or with respect to extreme points of XE or YN . Benson and Sun

(2000) investigates the decomposition of the weight space according to the

extreme points of YN .

Interior point methods have revolutionized linear programming since the

1980’s. However, they are not easily adaptable to multiobjective linear pro-

gramming. Most methods proposed in the literature find one efficient solution,

and involve the the elicitation of the decision makers preferences in an inter-

active fashion, see the work of Arbel (1997) and references therein. The only

interior point method that is not interactive is Abhyankar et al. (1990).

The observation that the feasible set in objective space Y is usually of

much smaller dimension than X has lead to a stream of research work on

solving MOLPs in objective space. Publications on this topic include Dauer

and Liu (1990); Dauer and Saleh (1990); Dauer (1993); Dauer and Gallagher

(1990) and Benson (1998c,a,b).
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Exercises

7.1 (Isermann (1977)). Let J ⊂ N be an index set of nonbasic variables

at efficient basis B. Show that each variable xj , j ∈ J is efficient if and only

if the linear program

max eT v

subject to Rz − RJ δ + Iv = e

z, δ, v � 0

has an optimal solution. Here RJ is the part of R pertaining to variables

xj , j ∈ J . Hint: Use the definition of efficient nonbasic variable and look at

the dual of the above LP.

7.2. A basis B is called weakly efficient, if B is an optimal basis of LP(λ) for

some λ ∈ Rp
≥. A feasible pivot with nonbasic variable xj entering the basis

is called weakly efficient if the basis obtained is weakly efficient. Prove the

following theorem.

Let xj be nonbasic at weakly efficient basis B. Then all feasible pivots with

xj as entering variable are weakly efficient if and only if the linear program

max v

subject to Rz − rjδ + ev � 0

z, δ, v � 0

has an optimal objective value of zero.

7.3. Solve the MOLP

min −3x1 − x2

min x1 − 2x2

subject to 3x1 + 2x2 ≥ 6

x1 ≤ 10

x2 ≤ 3

x1, x2 ≥ 0

using the multicriteria Simplex algorithm 7.1.

7.4. Determine, for each efficient extreme point xi of the MOLP in Exercise

7.3, the set of all λ for which xi is an optimal solution of LP(λ) and determine

all maximal efficient faces.

7.5. Assume that the MOLP is not degenerate. Let x1 and x2 be efficient

extreme points of X and assume that the corresponding bases are adjacent

(i.e. one can be obtained from the other by an efficient pivot). Show that

conv(x1, x2) is an efficient edge.
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7.6. Prove that a face F of X is efficient if and only if there is a λ > 0 such

that all extreme points of F are optimal solutions of LP(λ) and λT d = 0 for

all extreme rays of F .

7.7. Let X = {x ∈ Rn : Ax = b, x � 0} and consider the MOLP minx∈X Cx.

An improving direction d direction at x0 ∈ X is a vector d ∈ Rn such that

Cd ≤ 0 and there is some t > 0 such that x0 + τd ∈ X for all τ ∈ [0, t].

Let D := {d ∈ Rn : Cd ≤ 0} and x0 ∈ X . Prove that x0 ∈ XE if and only

if (x0 + D)∩X = {x0}, i.e. if there is no improving direction at x0. Illustrate

the result for the problem of Exercise 7.3.
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Multiobjective Combinatorial Optimization

The multicriteria optimization problems we have discussed up to now had a

continuous feasible set described by constraints. In the remaining chapters of

the book we will be concerned with discrete problems, in which the feasible set

is a finite set. These are known as multiobjective discrete and combinatorial

optimization problems. They arise naturally in many applications as we shall

see in Example 8.1 below when variables are used to model yes/no decisions or

objects that are not divisible. In many cases such problems can be understood

as optimization problems on some combinatorial structure.

Example 8.1. An important problem in airline operations is the so-called

“pairings” or “tours of duty” problem. Let {1, . . . , m} be a set of flights an

airline intends to operate. In order to assign the necessary crew to all of these

flights this set of flights has to be partitioned into sets of flights that can

be operated in sequence by a crew member. Such a sequence of flight has

to satisfy quite complex contractual and legal rules. Any sequence of flights

that meets all rules is called a pairing or tour of duty. Operating it causes a

cost, which consists of pay for the crew member and other costs such as hotel

overnights, crew flying as passengers on certain flights, etc. The goal of the

airline is to operate all scheduled flights at minimum cost, and it will therefore

try to choose the set of pairings that allows to operate the scheduled flights

at minimum cost, making sure that each flight is contained in one pairing. In

general the number of legal pairings is huge.

However, disruptions caused by bad weather, mechanical problems etc.

may occur during operation. These disruptions may result in missed connec-

tions and inevitably lead to additional costs caused by delays. An airline will

therefore also be interested in selecting pairings that are robust in the sense

that they are less susceptible to disruptions. This objective is in conflict with

minimization of cost, because it favours longer breaks between flights to make



198 8 Multiobjective Combinatorial Optimization

it possible to compensate earlier delays. Longer breaks, on the other hand,

increase cost due to unproductive time.

We can formulate this problem as follows. Let

xi =

{
1 if ToD i is selected

0 otherwise.

Furthermore, let ci be a measure for the cost of ToD i and ri be a measure of

the possible delay caused by operating ToD i. We need to solve the bicriterion

optimization problem

min

n∑
i=1

cixi

min
n∑

i=1

rixi

subject to

n∑
i=1

ajixi, = 1 j = 1, . . . , m

x ∈ {0, 1}n.

This is a bicriterion integer programming problem. Note that there are

finitely many feasible solutions. More details about this problem can be found

in Ehrgott and Ryan (2002). ��

In this chapter we will give an introduction to multiobjective discrete op-

timization, including computational complexity, a general scalarization model

for multiobjective integer programs, and solution algorithms for the case that

the feasible set is explicitly given.

8.1 Basics

Combinatorial optimization problems have a finite set of feasible solutions.

This has significant impact on the way we deal with these problems, both in

theory and solution techniques. We shall first introduce combinatorial opti-

mization problems and the multicriteria optimization classes we consider in

the following chapters. Some basic observations show that in a multicriteria

context combinatorial optimization is quite different from the general or linear

optimization framework we have considered in earlier chapters of this text. In

particular, we give a brief introduction to the concepts of computational com-

plexity, such as NP-completeness and #P-completeness. In the subsequent

chapters we prove results on computational complexity. These chapters fea-

ture some selected combinatorial problems, which are chosen to illustrate one
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or more solution strategies. Thus, the reader can acquire an overview of avail-

able techniques for multicriteria combinatorial optimization. For a broader

survey of the field we refer to a recent bibliographies Ehrgott and Gandibleux

(2000) and Ehrgott and Gandibleux (2002a).

Let E be a finite set E := {e1, . . . , en} and let c : E → Z be a cost

function on the elements of E , which assumes integer values. A combinatorial

optimization problem is given by a feasible set

X ⊂ 2E

defined as a subset of the power set of E and an objective function f : X → Z
to be minimized. It can therefore be written in the common notation

min
x∈X

f(x).

Note that x ∈ X denotes a subset of E , x ⊂ E . We consider two types of

objectives:

f(x) =
∑
e∈x

c(e)

and f(x) = max
e∈x

c(e).

The problem

min
x∈X

∑
e∈x

c(e) (8.1)

is called sum problem and the problem

min
x∈X

max
e∈x

c(e) (8.2)

is called bottleneck problem.

Combinatorial problems are integer (in particular binary) linear program-

ming problems. Defining x ∈ {0, 1}n by

xi :=

{
1 if ei ∈ x

0 otherwise
(8.3)

for i = 1, . . . , n we can identify subsets x ⊂ E and binary vectors. Defining

ci := c(ei) problems (8.1) and (8.2) then read

min
x∈X

n∑
i=1

cixi

and
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min
x∈X

n
max
i=1

cixi,

respectively.

On the other hand, binary linear programs

min cT x

subject to Ax = b

x ∈ {0, 1}n

are combinatorial problems. We will also consider general integer programs,

where x ∈ {0, 1}n is replaced by x ∈ Zn, x � 0. We shall usually assume that

the feasible set is bounded, and therefore finite.

We use the example of the spanning tree problem in this introductory

section to illustrate our definitions.

Definition 8.2. Let G = (V , E) be a graph with vertex set V = {v1, . . . , vm}
and edge set E = {e1, . . . , en}, where ej = [vi1 , vi2 ] is an unordered pair of

vertices. A spanning tree of G is a subset T of m − 1 edges, such that each

vertex v ∈ V is the endpoint of an edge of T and T is connected.

Example 8.3. Let G = (V , E) be a graph and c : E → Z be a cost function on

the edge set E . With

T := {T ⊂ E : T defines a spanning tree of G}

the problem of finding a spanning tree of minimal total cost is

min
T∈T

∑
e∈T

c(e).

��

Since a (spanning) tree T is also a graph, we will write E(T ) and V(T ) for

the sets of edges and vertices of T , respectively. Then T = (E(T ),V(T )). We

adopt this notation for other subgraphs later.

An instance of a combinatorial optimization problem is given by a specific

set E and a specific cost function. The size of an instance is the length of the

input needed to code the data of the instance, usually measured by |E| = n.

Of course, in multicriteria optimization we use a vector-valued rather than

a scalar-valued cost function, i.e.

c : E → Zp

consists of the scalar-valued component functions

ck : E → Z, k = 1, . . . , p.
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Fig. 8.1. A graph (V, E) with edge costs c(e) ∈ Z4.

Example 8.4. Continuing with spanning trees, the graph of Figure 8.1 de-

fines an instance of a spanning tree problem with four objectives fk(T ) =∑
e∈T ck(e), or fk(T ) = maxe∈T ck(e).

��

At this stage, we have to mention the classes of multicriteria optimization

problems (see Section 1.5) we consider in the following chapters. As before,

most space will be devoted to efficient solutions, but occasionally we will also

consider max-ordering and lexicographic max-ordering problems as well as

lexicographic optimization problems.

Recall that a multiobjective optimization problem is identified by data,

model map, and ordered set and written as

(X , f, Rp)/θ/(RP ,�), (8.4)

where X , f, Rp are feasible set, objectives and objective space. For specific

problems, X will be replaced by other letters to emphasize the combinatorial

structure of the problem (such as T for the spanning tree problem). The

vector valued function f = (f1, . . . , fp) will be composed of sum or bottleneck

functions. We will explicitly note the number of sum and bottleneck functions

by writing, e.g. 3-
∑

2-max instead of f for a problem with three sum and two

bottleneck objectives. θ : f(X ) → RP is the model map, and RP is ordered

by means of the order relation �. For combinatorial optimization problems

Rp and RP will usually be replaced by Zp and ZP , respectively.

Recall that a feasible solution x̂ is called an optimal solution of (8.4) if

there is no x ∈ X , x 	= x̂ such that

θ(f(x)) � θ(f(x̂)). (8.5)
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With the general definition of optimal solutions and optimal values of mul-

ticriteria optimization problems (see Definition 1.23) solving a multicriteria

combinatorial optimization problem is to find, for each y ∈ Val, one element

x of Opt. This corresponds to finding one optimal solution in the single ob-

jective case. For efficient solutions we will more formally define this later, see

Definition 8.7.

Example 8.5. (T , 4-
∑

, Z4)/ id /(Z4,≤) denotes a spanning tree problem of

the Pareto class with four sum objectives. The graph of Figure 8.1 has 16

spanning trees shown with their objective function vectors in Figure 8.2.
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Fig. 8.2. All spanning trees of the graph of Figure 8.1.

It turns out that all spanning trees are efficient, i.e. TE = T . What about

optimal solutions according to other MCO classes?

For the max-ordering problem (T , 4-
∑

, Z4)/ max /(Z, <) the unique op-

timal solution is T13 with f(T13) = (6, 7, 7, 7), so that TMO = {T13}.
Next we consider lexicographic optimization problems (T , 4-

∑
, Z4)/π/

(Z4, <lex), where π ∈ Π is a permutation of {1, . . . , 4} (see Section 5.1 for

notational details). For all permutations that put f1 first, we obtain T6 with

f(T6) = (4, 7, 9, 6). For permutations with f2 first we obtain T1 with f(T1) =

(11, 3, 8, 5) or T5 with f(T5) = (7, 3, 9, 6), depending on the permutation. For



8.1 Basics 203

permutations with f3 first we obtain T4 with f(T4) = (5, 8, 6, 8) or T12 with

f(T12) = (8, 4, 6, 8), again depending on the permutation. For all permutations

with f4 first we obtain T3 with f(T3) = (7, 7, 10, 2) or T15 with f(T15 =

(6, 8, 11, 2). Thus TΠ = {T1, T3, T4, T5, T6, T12, T15}.
For the lex-MO problem (T , 4-

∑
, Z4)/ sort /(Z4, <lex), we obviously get

TlexMO = {T13} again. In this example, the unique lex-MO solution is not

lexicographically optimal for any permutation of the objectives. ��

Example 8.5 illustrates (once again) that the optimal sets for a multicrite-

ria optimization with the same data, but solved according to different problem

classes intersect, see Chapter 5 for more details.

When we discuss the solution of multicriteria combinatorial optimization

problems it is trivial, yet important, to note that X , thus also Y = f(X )

are finite. Consequently, whatever MCO class we consider, there always exist

optimal solutions: Opt((X , f, Zp)/θ/ZP ,�) is never empty.

This seems to make these problems easier. However, we will need com-

pletely new methods. We illustrate this with an example that shows that

the scalarization with weighted sums does not identify all efficient solutions

of multiobjective discrete optimization problems. The reason for this is that

combinatorial are problems nonconvex and we cannot expect to find all effi-

cient solutions by weighted sum scalarization.

Example 8.6. Consider the multiobjective integer programming problem given

by X = {x ∈ Z2 : 2x1+3x2 ≥ 11, x1 ≤ 4, x2 ≤ 4} and f1(x) = x1, f2(x) = x2.

Figure 8.3 shows the feasible set X as the integer grid points in the shaded

feasible set of the LP relaxation of the problem, where x ∈ Z2 is replaced by

x ∈ R2.

The efficient set is XE = {(0, 4), (1, 3), (3, 2), (4, 1)} but there is no λ > 0

such that (3, 2) is the optimal solution of a weighted sum problem. Note that

this solution is not efficient for the LP relaxation of this problem. It is also

worth mentioning that x = (0, 4) is an efficient solution of the integer problem,

but only a weakly efficient solution of the MOLP. ��

Another particularity of combinatorial problems is that the distinction

between efficient and properly efficient solutions vanishes. Recall that x̂ ∈ X is

properly efficient (in the sense of Geoffrion, see Definition 2.39) if x̂ is efficient

and if there is a positive number M > 0 such that for all i ∈ {1, . . . , p} and

x ∈ X with fi(x) < fi(x̂) there is some j ∈ {1, . . . , p} such that fj(x) > fj(x̂)

and

fi(x̂) − fi(x)

fj(x) − fj(x̂)
≤ M.
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Fig. 8.3. Illustration of Example 8.6.

Because Y is a finite set and all objective function values are integers, there are

only finitely many integer values for each objective. Therefore the denominator

is never less than one and the trade off ratio is always bounded, so that the

required M exists.

The above thoughts suggest to introduce some new definitions of (subsets

of) efficient solutions and nondominated points, some of which are due to

Hansen (1979).

Definition 8.7. Let (X , f, Zp)/ id /(Zp,≤) be a multiobjective optimization

problem of the Pareto class and XE be the efficient set and YN be the non-

dominated set.

1. Let x ∈ XE. If there is some λ ∈ Rp
> such that x ∈ XE is an optimal

solution of minx∈X λT f(x) then x is called a supported efficient solution

and y = f(x) is called supported nondominated point. The sets of all sup-

ported efficient solutions and supported nondominated points are denoted

XsE and YsN , respectively. Otherwise x and y are called nonsupported,

the notations are XnE and YnN .

2. x1 and x2 are called equivalent if f(x1) = f(x2). A complete set of effi-

cient solutions is any subset X ′ ⊂ X such that f(X ) = YN . A minimal

complete set is a complete set without any equivalent solutions. XE is also

called the maximal complete set.
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3. If x is a supported efficient solution and y = f(x) is an extreme point of

convY then x is called an extreme supported efficient solution. y is an

extreme nondominated point.

In Figure 8.3 all three supported efficient solutions (0, 4), (1, 3), and (4, 1)

are extreme supported solutions.

Let us now introduce the main definitions to deal with computational

complexity of multiobjective combinatorial optimization problems. This de-

scription is a very brief and informal summary. For an in depth introduction

to computational complexity we refer to Garey and Johnson (1979). Compu-

tational complexity is a theory of “how difficult” it is to answer a decision

problem DP , where a decision problem is a question that has either a yes or

no answer. This difficulty is measured by the number of operations an algo-

rithm needs to find the correct answer to the decision problem in the worst

case.

To do this we use the “big O” notation. In this notation, the running time

of an algorithm is O(g(n)) if there is a constant c, such that the number of

operations performed by the algorithm is less than or equal to cg(n) for all

instances of the decision problem, where g is some function and n is the size

of the instance.

Optimization and decision problems are closely related. Let (X , f, Z)/ id /

(Z, <) be a combinatorial optimization problem. The decision version of the

optimization problem is the following question.

Given a constant b ∈ Z, does there exist x ∈ X such that f(x) ≤ b?

A decision problem belongs to the class P of problems, if there exists a

deterministic algorithm that answers the decision problem and needs O(p(n))

operations, where p is a polynomial in n.

Example 8.8. Let G = (V , E) be a graph and c : E → Z. The decision version

of the minimum spanning tree problem is: Given b ∈ Z, does there exist a

spanning tree T of G such that
∑

e∈T c(e) ≤ b?

Since a spanning tree with minimal total edge weights can be found by

Kruskal’s algorithm (Kruskal, 1956) in O(m2) operations the problem is in

class P . Here m is the number of vertices of G. ��

An algorithm is called polynomial time algorithm if there is a a polynomial

p such that the running time of the algorithm is O(p(n)). If there is no such

polynomial the algorithm is said to be exponential. We will see that algo-

rithms to solve multicriteria combinatorial optimization problems are often

exponential.
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Obviously all (decision versions of) combinatorial optimization problems

for which an optimal solution can be found with a polynomial time algorithm

belong to the class P of problems.

A decision problem belongs to the class NP if there is a nondeterministic

polynomial time algorithm that solves the decision problem. Essentially this

means that is possible to “guess” a solution, or, for the decision version of

an optimization problem, given x it is possible to check whether x ∈ X and

f(x) ≤ b in polynomial time. Clearly, P ⊂ NP.

Now let DP1 and DP2 be two decision problems. A polynomial time trans-

formation of DP1 to DP2 is a polynomial time algorithm A that constructs

an instance I2 of DP2 from an instance I1 of DP1 with the property that x1

yields a “yes” answer for the instance I1 if and only if A(x1) yields a “yes”

answer for the instance of DP2. We write DP1 ∝ DP2. DP1 and DP2 are

equivalent if DP1 ∝ DP2 and DP2 ∝ DP1.

A decision problem DP is NP-complete if DP ∈ NP and DP ′ ∝ DP

for all DP ′ ∈ NP . Note that ∝ is transitive. Transitivity means that NP-

completeness of DP follows if DP ′ ∝ DP for one DP ′ ∈ NP . Losely speaking,

showing DP ′ ∝ DP actually means that DP ′ is a special case of DP , so DP

is at least as difficult as DP ′. A problem is called NP-hard if DP ′ ∝ DP for

all DP ′ ∈ NP but it is not known if DP ∈ NP (e.g. optimization problems).

Example 8.9. The travelling salesperson problem is an example of a NP-hard

problem. Given n cities and distances cij between all pairs (i, j) of cities,

is there a tour that visits each city exactly once, returning to the starting

point, with total length at most b? The decision version of the problem is

NP-complete. ��

With each decision problem DP we we can associate the counting problem

CP : How many “yes” answers does the decision problems have. Specifically

for the decision version of an optimization problem:

Given b ∈ Z, how many x ∈ X satisfy f(x) ≤ b?

A counting problem belongs to the class #P if there exists a nondeter-

ministic algorithm that correctly “guesses” the answer to the counting prob-

lem and such that the longest computation that confirms a “yes” answer is

bounded by a polynomial in the size of the instance.

A counting problem is #P-complete, if it is in #P and for all CP ′ ∈ #P
there is a parsimonious transformation such that CP ′ ∝p CP . ∝p denotes

a parsimonious transformation , which is a polynomial time transformation

that preserves the number of “yes” answers to decision problems.

Example 8.10. • Counting the spanning trees of a graph is “easy”, i.e. this

counting problem belongs to #P , but it is not #P-complete. The number
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of spanning trees of G is the determinant of AAT , where A is the node-edge

incidence matrix of G, with a direction arbitrarily assigned to the edges,

see e.g. Thulasiraman and Swamy (1992).

• Counting the perfect matchings of a bipartite graph is #P-complete, see

Valiant (1979a). ��

Note that even if a combinatorial optimization problem can be solved in

polynomial time its counting version may be #P-complete. This is the case for

the matching problem on bipartite graphs. Sometimes such problems are called

“decision easy, counting hard” problems. In Welsh (1993) some examples are

given.

To prove NP- and #P-completeness of multiobjective combinatorial prob-

lems we need the following problems later on.

• Knapsack: Given a ∈ Zn and b ∈ Z, does there exist x ∈ {0, 1}n such

that aT x = b?

• Partition: Given c ∈ Zn with
∑n

i=1 ci = 2C, does there exist S ⊆
{1, . . . , n} such that

∑
i∈S ci =

∑
i/∈S ci?

Both problems are NP-complete (Karp, 1972), the transformation used

in the proofs are parsimonious, so they are also #P-complete (Welsh, 1993).

Lemma 8.11. The problem 0-1 Knapsack: Does there exist x ∈ {0, 1}n such

that (a1)T x ≤ b1 and (a2)T x ≥ b2, where a1, a2 ∈ Zn and b1, b2 ∈ Z are given?

is NP-complete and #P-complete.

Proof. With b1
i := b2

i := ai for i = 1, . . . , n and b1 := b2 := b we have

a parsimonious transformation Knapsack ∝ 0-1 Knapsack. Therefore the

result follows. ��

Now consider a multiobjective combinatorial optimization problem (X , f,

Zp)/θ/(ZP , �). The related decision problem is then defined as

Given constants b1, . . . , bP ∈ Z, does there exist a feasible solution x ∈ X such

that θ(f(x)) � (b1, . . . , bP ) or θ(f(x)) = (b1, . . . , bP )?

The related counting problem is

Given b1, . . . , bP ∈ Z, how many x ∈ X satisfy θ(f(x)) � (b1, . . . , bP ) or

θ(f(x)) = (b1, . . . , bP )?

With these definitions we can deal with NP- and #P-completeness of

MOCO problems. As a first example we consider the problem

min
n∑

i=1

ck
i xi k = 1, . . . , p

subject to xi ∈ {0, 1} i = 1, . . . , n.
(8.6)
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Note that for a single objective (p = 1) the solution is the empty set if all ci

are nonnegative or the set of all elements with negative cost. We call (8.6) the

unconstrained multiobjective combinatorial optimization problem Umoco.

Proposition 8.12. The unconstrained multiobjective combinatorial optimiza-

tion problem (8.6) is NP- and #P-complete even for p = 2.

Proof. The decision version of (8.6) is: Given c1, c2 ∈ Zn and d1, d2 ∈ Z, does

there exist x ∈ {0, 1}n such that
∑n

i=1 c1
i xi ≤ d1 and

∑n
i=1 c2

i xi ≤ d2?

We show 0-1 Knapsack ∝p Umoco. Let c1 := a1, d1 := b1, c
2 :=

−a2, d2 := −b2. It is obvious that

n∑
i=1

c1
i xi ≤ d1 ⇐⇒ (a1)T x ≤ b1,

n∑
i=1

c2
i xi ≤ d2 ⇐⇒ (a2)T x ≥ b2.

The transformation is parsimonious. ��

The final definition concerns problems for which exponential algorithms

may be necessary.

Definition 8.13. A MOCO problem (X , f, Zp)/θ/(ZP ,�) is called intrac-

table, if the size of Val (X , f, Zp)/θ/(ZP ,�) (the set of optimal values) can

be exponential in the size of an instance.

For an intractable MOCO problem there is no polynomial p with the car-

dinality of the set of optimal values of order O(p(n)) and therefore no chance

to find all optimal solutions in an efficient manner, i.e. by a polynomial time

algorithm. Unfortunately, MOCO problems of the Pareto class are usually

intractable. We illustrate this with the unconstrained MOCO problem.

Proposition 8.14. The unconstrained MOCO problem is intractable.

Proof. We define an instance in which all feasible solutions are efficient and

have different objective function vectors. Since there are 2n feasible solutions,

we get |YN | = 2n, demonstrating the claim.

Let ck
i := (−1)k2i−1. Then

Y = YN =

{(
0

0

)
,

(
−1

1

)
, . . . ,

(
−2n + 1

2n − 1

)}
.

��

In the next section we will discuss very special multiobjective combinato-

rial optimization problem where X = E .
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8.2 Problems with Explicitely Given Feasible Set

In combinatorial optimization problems the feasible set is usually given by

constraint functions such as in X = {x ∈ Zn : Ax = b, x � 0} or by a certain

combinatorial structure such as X = {T ⊂ E : T defines a spanning tree of

graph G}. We may, however, consider the most basic case that X = E . Solving

a multicriteria optimization problem (E , f, Zp)/θ/(ZP ,�) means finding the

minimal elements of Y = {f(e1), . . . , f(en)} according to order �. Since

we consider f to be a sum or maximum as defined in (8.1) and (8.2), f is

identical to c and the problem reduces to finding the minimal columns of the

matrix Y := (c(e1), . . . , c(en)), the columns of which are the cost vectors of

the elements ei of E , according to order �. Below we present algorithms for

the different MCO classes mentioned in Chapter 5 for problems with explicitly

given finite set. Pairwise comparison of the columns will always give an answer,

but not necessarily the most efficient. Column i of Y is denoted yi.

The algorithm to find efficient solutions by pairwise comparison is shown

as Algorithm 8.1.

Algorithm 8.1 (Efficient solutions for explicit feasible sets.)

Input: Y

Initialization: XE := E
For i := 1 to n − 1 do

For j := i + 1 to n do

if yi ≤ yj then XE := XE \ {ej} if yj ≤ yi then XE := XE \ {ei}
End for

End for

Output: XE

Algorithm 8.1 needs O(n2p) operations. Kung et al. (1975) prove the fol-

lowing result using a divide and conquer strategy.

Theorem 8.15 (Kung et al. (1975)). (E , c, Zp)/ id /(Zp,≤) can be solved

in O(n log n) time if p ∈ {1, 2, 3}. If p ≥ 4 it can be solved in O(n(log n)p−2)

time.

Due to p in the exponent in Theorem 8.15 algorithm of Kung et al. (1975)

is faster than the straightforward Algorithm 8.1 only for a small number of

objectives, p ≤ 5. For arbitrary p, however, its worst case running time is

exponential in p.
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Max-ordering problems (E , c, Zp)/ max /(Z, <) are even easier to solve. We

have to find the maximal entries in the columns of Y , and look for the smallest

of these maxima, which can be done in O(np) time.

We present two algorithms for the solution of lexicographic max-ordering

problems (E , c, Zp)/ sort /(Zp, <lex). These are taken from Ehrgott (1998).

The first is based on sorting and lexicographic comparison of the columns of

Y .

Algorithm 8.2 (Lex-MO solutions for explicit feasible sets I.)

Input: Y

For i := 1 to n do yi := sort(yj)

α := 1, i := 1

While i ≤ n do

if yi <lex yα then α := i i := i + 1

End While Xlex−MO := {ei : yi = yα}
Output: Xlex−MO

Algorithm 8.2 runs in O(np log p) time, i.e. it’s worst case performance is

bounded by the sorting of the n vectors yi. Another approach is to first find

the maxima of the columns, delete all columns where the maximum is greater

than the smallest maximum and continue with a smaller matrix.

Algorithm 8.3 (Lex-MO solutions for explicit feasible sets II.)

Input: Y

s := 1

For i := 1, . . . , n do Qi := {1, . . . , p}
XlexMO := E

While |XlexMO | > 1 and s ≤ p

For all ei ∈ XlexMO do

Mi := max
k∈Qi

yki

Ii := argmax{yki : k ∈ Qi}
Qi := Qi \ Ii

End for

M∗ := min
i=1,...,n

Mi

XlexMO := XlexMO \ {ej : Mj > M∗}
For all ej ∈ XlexMO do yj := (ykj : k ∈ Qi)

Y := (yj : ej ∈ XlexMO)

s := s + 1
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End while

Output: XlexMO

Algorithm 8.3 needs O(np2) operations, more than Algorithm 8.2 in the

worst case, but is often faster, in case the matrix Y becomes smaller quickly.

Example 8.16. Consider X = E = {e1, . . . , e5} with the following matrix

Y =

⎛
⎜⎜⎜⎜⎜⎝

5 1 7 4 4

4 4 3 5 2

7 3 1 6 1

3 5 2 1 1

2 1 2 3 5

⎞
⎟⎟⎟⎟⎟⎠ .

Applying Algorithm 8.2 we first sort the columns of Y to get

Y =

⎛
⎜⎜⎜⎜⎜⎝

7 5 7 6 5

5 4 3 5 4

4 3 2 4 2

3 1 2 3 1

2 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎠

and the lexicographically minimal column yields XlexMO = {e5}.
With Algorithm 8.3 we proceed as follows: In the first iteration M1 =

7, M2 = 5, M3 = 7, M4 = 6, M5 = 5. Therefore Q1 = {1, 2, 4, 5},Q2 =

{1, 2, 3, 5},Q3 = {2, 3, 4, 5},Q4 = {1, 2, 4, 5},Q5 = {1, 2, 3, 4}. Since M∗ = 5

we delete e1, e3, e4 from XlexMO and XlexMO := {e2, e5}. The updated matrix

Y is

Y =

⎛
⎜⎜⎝

1 4

4 2

3 1

1 1

⎞
⎟⎟⎠ .

In the second iteration M2 = M5 = 4 and Q2 = {1, 3, 5},Q5 = {2, 3, 4}.
Thus, XlexMO remains unchanged. The new matrix Y is

Y =

⎛
⎝1 2

3 1

1 1

⎞
⎠ .

Finally M2 = 3, M5 = 2 with Q2 = {1, 5},Q5 = {3, 4} and XlexMO =

{e2, e5} \ {e2} = {e5}. The algorithm stops with the correct solution. ��
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Finally, we give an algorithm for lexicographic optimization problems with

explicitly given feasible set. The algorithm finds lexicographically optimal

solutions for all permutations of objectives, i.e it solves (E , Y, Zp)/π/(Zp, <lex)

for all π ∈ Π. To do this efficiently it is impossible to simply consider the p!

permutations in turn. The algorithm is based on the following result, which

shows that some ei can be excluded as candidates for lexicographically optimal

solutions.

Proposition 8.17 (Hamacher et al. (1999)). For i ∈ {1, . . . , n} let

M(i) := {k ∈ {1, . . . , p} : yki = minj=1,...,n vkj} and J (i) := {j : M(i) ⊆
M(j)}. The following assertions hold.

1. If M(i) = ∅ then ei /∈ XΠ .

2. If J (i) = {i} then ei ∈ XΠ .

3. If {i} ⊂ J (i) then ei ∈ XΠ if and only if there is a permutation π of

{1, . . . , p} \M(i) such that (yπ(k)i : k ∈ {1, . . . , p} \M(i) is lexicographi-

cally minimal.

Note that the sets J (i) are defined to have {i} ⊂ J (i) always.

Proof. 1. Let l ∈ {1, . . . , p} and let π ∈ Π be such that l = π(1). Because

M(i) = ∅ there is some j 	= i with ylj < yli. Therefore yπ(1)j < yπ(1)i and

(yπ(k)j : k = 1, . . . , p) <lex (yπ(k)i : k = 1, . . . , p), i.e. ei /∈ XΠ .

2. Let π ∈ Π and mi ∈ N be such that {π−1(l) : l ∈ M(i)} = {1, . . . , mi}.
Then (yπ(k)i : k ∈ {1, . . . , p}) <lex (yπ(k)j : k ∈ {1, . . . , p}) for all j 	= i,

because otherwise M(i) ⊆ M(j) for some j 	= i. Therefore ei ∈ XΠ .

3. For all j ∈ J (i) and for all k ∈ M(i) we have yki = ykj . Therefore ei ∈ XΠ

if and only if there is a permutation of objectives in {1, . . . , p}\M(i) such

that (yπ(k)i : k ∈ {1, . . . , p}\M(i)) is lexicographically minimal in the set

{(yπ(k)j : k ∈ {1, . . . , p} \M(i), j ∈ J (i)}. ��

The algorithm to solve (E , Y, Zp/Π/(Zp, <lex) can now be stated.

Algorithm 8.4 (Lexicographic solutions for explicit feasible sets.)

Input: Y

L := {1, . . . , n}
For all i ∈ L do

M(i) := {k ∈ {1, . . . , p} : yki = minj=1,...,n ykj}
If M(i) = ∅ then L := L \ {i}

End for.

XΠ := ∅
1: For all i ∈ L do
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J := L, Q := {1, . . . , p}
2: For all j ∈ J do M(j) := {k ∈ Q : ykj = min{ykl : l ∈ J }}
If M(i) = ∅ then

L := L \ {i}
Goto 1 with next i

End if

J (i) := {j ∈ J : M(i) ⊆ M(j)}
If J (i) = {i} then

XΠ := XΠ ∪ {ei}
Goto 1 with next i

J := J (i)

Q := Q \M(i)

Goto 2

Output: XΠ(Q)

Example 8.18. As an example we use E = {e1, . . . , e5} and the matrix

Y =

⎛
⎜⎜⎜⎜⎜⎝

5 1 7 4 4

4 4 3 5 2

7 3 1 6 1

3 5 2 1 1

2 1 2 3 5

⎞
⎟⎟⎟⎟⎟⎠

once again. The steps of the algorithm are summarized below.

First, L = {1, 2, 3, 4, 5} and M(1) = ∅,M(2) = {1, 5},M(3) = {3},
M(4) = {4},M(5) = {2, 3, 4} are computed. e1 is deleted, so that L =

{2, 3, 4, 5} and XΠ is set to ∅.
The checking of i ∈ L is as follows.
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i = 2 : J = {2, 3, 4, 5},Q = {1, . . . , 5}
J (2) = {2},XΠ = {e2}

i = 3 : J = {2, 3, 4, 5},Q = {1, . . . , 5}
J (3) = {3, 5}
J = {3, 5}, Q = {1, 2, 4, 5}

M(3) = {5},M(5) = {1, 2, 4}
J (3) = {3},XΠ = {e2, e3}

i = 4 : J = {2, 3, 4, 5},Q = {1, . . . , 5}
J (4) = {4, 5}
J = {4, 5}, Q = {1, 2, 3, 5}

M(4) = {1, 5},M(5) = {1, 2, 3}
J (4) = {4},XΠ = {e2, e3, e4}

i = 5 : J = {2, 3, 4, 5},Q = {1, . . . , 5}
J (5) = {5},XΠ = {e2, e3, e4, e5}

��
The running time of Algorithm 8.4 is O(p2n log n). The inner loop takes

O(pn log n) operations (one sorting instead of searching minima several times).

The loop is carried out at most p times, because at least one element of Q is

removed in each iteration.

8.3 Scalarization of Multiobjective Integer Programs

In the previous section we have shown how to solve combinatorial optimiza-

tion problems in the special case that X = E . We will now turn to find efficient

solutions of multiobjective integer programming problems using scalarization

techniques. The following is from Ehrgott (2005). We have introduced a num-

ber of such techniques in Chapters 3 and 4.

A multiobjective integer program is the following optimization problem

min Cx

subject to Ax = b

x � 0

x ∈ Zn,

(8.7)

where C is a p × n matrix of integers, A is a m × n matrix of integers, and

b ∈ Zn.

Ideally, the scalarized single-objective version of (8.7) should have the

following properties.

1. The scalarized problem is not harder to solve than (8.7) with p = 1. In

particular, if (8.7) with a single objective is solvable in polynomial time,

the scalarization of MOIP is not NP-hard.
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2. An optimal solution of the scalarization is an efficient solution of (8.7).

3. Every efficient solution of (8.7) is an efficient solution of the scalarized

problem with appropriately selected parameters.

4. Since the constraints and objectives of (8.7) are linear, the objective and

constraints of the scalarized problem are linear.

We review some scalarization techniques and state which of these proper-

ties they have.

The weighted sum scalarization

min

{
p∑

k=1

λk(ck)T x : x ∈ X
}

(8.8)

with λk > 0 for all k = 1, . . . , p has properties 1, 2, and 4. Unfortunately

Example 8.6 shows that there are efficient solutions which cannot be found

by solving weighted sum problems.

The ε-constraint method

min
{
(cj)T x : x ∈ X , (ck)T x ≤ εk, k 	= j

}
(8.9)

has properties 2, 3, and 4 (see Theorem 4.5). Unfortunately the constraints

on objective values usually make the problem NP-hard, even if minx∈X cT x

is polynomially solvable, e.g. for the shortest path problem, see Garey and

Johnson (1979).

Given x0 ∈ X Benson’s scalarization (Section 4.4) is

max

{
p∑

k=1

zk : Cx0 − z − Cx = 0, x ∈ X , z � 0

}
(8.10)

which is actually equivalent to

min

{
p∑

k=1

(ck)T x : Cx � Cx0, x ∈ X
}

. (8.11)

The same comments as for the ε-constraint method apply.

The achievement function approach citepWierzbickiMakowskiWessels00

has been briefly mentioned in Section 4.6. We consider the following form

min

{
p

max
k=1

νk

(
(ck)T x − ρk

)
+ γ

p∑
k=1

λk

(
(ck)T x − ρk

)
: x ∈ X

}
, (8.12)

where ρ ∈ Rp is a reference point, ν ∈ Rp
> is a vector of positive weights,

γ > 0. It is easily seen that if γ > 0 an optimal solution x̂ is efficient. Also,

all efficient solutions can be found, see Theorem 4.29. In order to solve the



216 8 Multiobjective Combinatorial Optimization

scalarization using integer programming techniques, it is necessary to refor-

mulate the problem using an additional variable and constraints to linearize

the max term of the objective function:

min
x∈calX

{
z + γ

p∑
k=1

λk

(
(ck)T x − ρk

)
: z ≥ νk

(
(ck)T x − ρk

)
, k = 1, . . . , p

}
.

(8.13)

The author is not aware of a direct proof of NP-completeness, but the

presence of the min max component and the constraints in the reformulation

strongly suggests that (8.13) is NP-hard.

Finally, we mention the (weighted) max-ordering problem, which we have

described as a nonscalarizing method in Chapter 5.

min

{
p

max
k=1

νk(ck)T x : x ∈ X
}

. (8.14)

An optimal solution of this problem is at least weakly efficient and all

efficient solutions can be found (see Theorem 5.10), however, 8.14 is again

NP-hard, see Chung et al. (1993) for the max-ordering version of the uncon-

strained problem Umoco (8.6).

This review indicates that the scalarization techniques we have mentioned

in this book either do not allow us to find all efficient solutions of (8.7) or lead

to scalarized problems that are NP-hard. We can formalize that some more

if we consider only scalarizations that only use the maximum and the sum of

linear terms (like all of the above). The maximum can be linearized using a

variable z as before. We assume that no other new variables are introduced.

Let ρ ∈ Rp be a reference point, let λ, ν ∈ Rp
�

be vectors of weights, and

let ε ∈ Rp be a vector of right hand sides. We formulate the following general

scalarized problem.

min
x∈X

p
max
k=1

νk

(
(ck)T x − ρk

)
+

p∑
k=1

λk

(
(ck)T x − ρk

)
subject to ckx ≤ εk, k = 1, . . . , p.

(8.15)

In Table 8.1 we show which settings of the parameters ρ, ν, λ, ε yield the

scalarizations discussed above. These settings are either given as specific values

or as a set from which a parameter is to be chosen.

Additional scalarizations included in (8.15) are the compromise program-

ming method minx∈X ||Cx − yI || for the l1 and l∞ norms (Section 4.5) and

the hybrid method of Guddat et al. (1985),

min

{
p∑

k=1

λk(ck)T x : x ∈ X , (ck)T x ≤ εk, k = 1, . . . , p

}
,
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Table 8.1. Parameters in (8.15) and resulting scalarizations.

Equation ρ ν λ ε

(8.8) 0 0 λ ∈ Rp
> εk = ∞ k = 1, . . . , p

(8.9) 0 0 λj = 1; λk = 0 k �= j εj = ∞; εk ∈ R k �= j

(8.10) 0 0 λk = 1 k = 1, . . . , p εk = ckx0 k = 1, . . . , p

(8.12) ρ ∈ Rp ν ∈ Rp
> λk = γ k = 1, . . . , p εk = ∞ k = 1, . . . , p

(8.14) 0 ν ∈ Rp
> 0 εk = ∞ k = 1, . . . , p

which generalizes the reformulation (8.11) of Benson’s method.

We have the following result.

Proposition 8.19. The general linear scalarization (8.15) is NP-hard.

Proof. We show that (8.15) includes the binary knapsack problem max{cx :

ax ≤ b, x ∈ {0, 1}n} as special case. To do that, we choose X = {0, 1}n, p =

2, ν = ρ = 0, λ1 = 1, λ2 = 0, c1 = −c ≤ 0, c2 = a ≥ 0, and ε1 = ∞, ε2 = b > 0.

The rest follows from considering the decision versions of (8.15) and the binary

knapsack problem together with Lemma 8.11 ��

In order to linearize the max term in the objective, we introduce a new

variable z and reformulate (8.15) as

min z +
p∑

k=1

λk

(
(ck)T x − ρk

)
subject to (ck)T x ≤ εk, k = 1, . . . , p

νk

(
(ck)T x − ρk

)
≤ z, k = 1, . . . , p

x ∈ X
z ∈ R.

(8.16)

Note that variable z is an unrestricted real variable, i.e. it can attain

negative or positive values or be zero.

Since we have observed before that for many parameter settings, in which

the constraints on objective functions are present (8.16) is NP-hard (and may

be very hard to solve computationally) a good idea seems to be to apply La-

grangian relaxation of those complicating constraints on objective functions.

Using multipliers πk for constraints νk(ckx− ρk) ≤ z and π′
k for ckx ≤ εk the

resulting problem is
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min
z∈R,x∈X

z

(
1 −

p∑
k=1

πk

)
−

p∑
k=1

(πkνkρk + π′
kεk + λkρk)

+

p∑
k=1

(πkνk + π′
k + λk)(ck)T x. (8.17)

For fixed π, π′, λ, ν, ρ, this problem is of the form

min
z∈R,x∈X

z(1 − α) − β +

p∑
k=1

ωk(ck)T x, (8.18)

where α and β are constants. Thus the optimal solution of (8.18) is obviously

unbounded if α > 1, otherwise it is attained as optimal solution of a problem

min
x∈X

p∑
k=1

ωkckx,

i.e. a weighted sum problem. In addition, if α < 1, the optimal value of z is

equal to zero. We have thus shown:

Theorem 8.20. Solving a scalarization of the MOIP (8.7) of the general form

(8.15) by Lagrangian duality yields a supported efficient solution.

With Proposition 8.19 and Theorem 8.20 we have shown that a general

scalarization that uses maximum and sum terms of the objectives of (8.7)

only and is able to find all efficient solutions is NP-hard. In addition, if we

want to overcome that problem by using Lagrangian relaxation we end up with

scalarized problems that are equivalent to the weighted sum problem and thus

cannot identify all efficient solutions. This is a strong argument for the use of

methods other than pure scalarization to solve multiobjective combinatorial

optimization problems. We will study such methods in the remaining chapters

of the book.

8.4 Notes

It is worth mentioning that in quite a few publications on solution methods

for multiobjective combinatorial optimization problems it is not mentioned

whether algorithms find a complete set of efficient solutions, maximal, mini-

mal, or otherwise. Most often, extreme supported efficient solutions are found

as well as nonsupported solutions, excluding equivalent ones. Finding nonex-

treme supported solutions and equivalent solutions is inevitably an enumera-

tion problem, because either the objective vectors or their weighted sum are

the same than some other solution.
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There has also been a major research effort in heuristic methods for multi-

objective combinatorial optimization. Apart from the very last section this

is beyond the scope of the book. A survey can be found in Ehrgott and

Gandibleux (2004).
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Exercises

8.1. Prove that for ν > 0 and α > 0 an optimal solution of the problem

min
x∈X

(
max

k=1,...,p
νk((ck)T x − yI

k) + α

p∑
k=1

((ck)T x − yI
k)

)
(8.19)

is efficient. Why is α > 0 necessary to obtain that result? Can you prove the

converse, i.e. for every x̂ ∈ XE , there are ν ∈ Rp, µ ≥ 0 and α ∈ R, α ≥ 0 such

that x̂ is an optimal solution of (8.19)?

8.2. For the following problem types, give examples with two objective func-

tions that show that unsupported efficient solutions can exist.

• The bicriterion shortest path problem.

• The bicriterion spanning tree problem.

• The bicriterion assignment problem.

Make these examples as small as possible.
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Multiobjective Versions of Polynomially

Solvable Problems

9.1 Algorithms for the Shortest Path Problem

This section is about the shortest path problem with multiple objectives. Let

G = (V ,A) be a directed graph (or digraph) with |V| = m nodes (or vertices)

and |E| = n arcs. Let c : A → Zp be a cost function on the arcs. In this section

we consider the problems of finding efficient paths from a specified node s to

another specified node t, or from node s to all other nodes of G with sum

objectives. We will not discuss the problem of finding efficient paths between

all pairs of nodes. This problem can always be solved by solving m shortest

path problems with fixed starting node s and has not been addressed in the

multicriteria literature as a distinct problem.

We show that the problem with fixed s and t is difficult in terms of finding

and counting efficient solutions and that it is intractable. The algorithms we

present are generalizations of the well known label-setting and label-correcting

algorithms for single objective shortest path problems. At the end of this sec-

tion we present a ranking algorithm for the biobjective shortest path problem.

We present a generalization of this algorithm that can be used as a prototype

to solve any MOCO problem.

Definition 9.1. Let G = (V ,A) be a directed graph. Let V = {v1, . . . , vm} and

A = {a1, . . . , an} where ai = (vj1 , vj2) is an ordered pair of vertices.

1. A path P is a sequence of nodes and arcs (vi1 , ai1 , vi2 , . . . , vir−1
, air−1

, vir
)

such that either ail
= (vil

, vil+1
) or ail

= (vil+1
, vil

). In a directed path

only the former is possible.

2. A simple path is a path without repetition of vertices. A simple directed

path is a directed path without repetition of vertices.

3. A cycle C is a simple path together with the arc (vir
, vi1) or (vi1 , vir

). A

directed cycle is a directed simple path together with the arc (vir
, vi1)
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We will often identify a (directed) path by its sequence of vertices (vi1 , . . . ,

vir
). Let s, t ∈ V be two vertices and let P denote the set of all directed paths

with v1 = s and vr = t. Let c : A → Zp be a cost function. The multiobjective

shortest path problem is to find all efficient directed paths from s to t, i.e.

min
P∈P

{∑
a∈P

c(a)

}
. (9.1)

Theorem 9.2 (Serafini (1986)). The bicriterion shortest path problem

(9.1) is NP-complete and #P-complete in acyclic digraphs.

Proof. The decision version of (9.1) is: Given b ∈ Z2, G = (V ,A), and s, t ∈
V does there exist a path P from s to t in G such that

∑
a∈P c(a) � k.

This problem is clearly in NP . We give a parsimonious transformation 0-1

Knapsack ∝p (P , 2-
∑

, Z2)/ id /(Z2,≤). Given an instance a1, a2, b1, b2 of 0-

1 Knapsack we construct an instance of the shortest path problem as follows.

Let

V := {v0, . . . , vn},
s := v0,

t := vn,

A := {(vi−1, vi) : i = 1, . . . , n} ∪ {(vi−1, vi)
′ : i = 1, . . . , n},

c1(a) :=

{
a1

i if a = (vi−1, vi)

0 if a = (vi−1, vi)
′,

c2(a) :=

{
0 if a = (vi−1, vi)

a2
i if a = (vi−1, vi)

′.

The graph defined here is shown in Figure 9.1.

• • • •

(a1
1, 0) (a1

2, 0)

(0, a2
1) (0, a2

2)

v0 v1 v2 vn

Fig. 9.1. Graph in the proof of Theorem 9.2.

Let P ∈ P be a path from s to t. Then
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f1(P ) =
∑
a∈P

c1(a) ≤ b1 (9.2)

and f2(p) =
∑
a∈P

c2(a) ≤
n∑

i=1

a2
i − b2 (9.3)

if and only if there exists x ∈ {0, 1}n such that (a1)T x ≤ b1 and (a2)T (e−x) ≤∑n
i=1 a2

i − b2, where e = (1, . . . , 1) ∈ Rn. This is true if and only if there is

x ∈ {0, 1}n such that (a1)T x ≤ b1 and (a2)T x ≥ b2. Indeed, x is defined by

xi = 1 if and only if (vi−1, vi) ∈ P . The number of paths satisfying (9.2) and

(9.3) is the same as the number of knapsack solutions. ��

To demonstrate intractability, we need an example with an exponential

number of efficient paths, which have incomparable objective function vectors.

Theorem 9.3 (Hansen (1979)). The multicriteria shortest path problem

(9.1) is intractable, even for p = 2.

Proof. We construct an instance where |YN | is exponential in n. Let V =

{v1, . . . , vn}, where n is odd, and define three sets of arcs as shown in Table

9.1. The graph with arc-weights alongside the arcs is shown in Figure 9.2.

Table 9.1. Arcs and their costs in Theorem 9.3.

Arcs Costs

a = (vi, vi+2), i = 1, 3, . . . , n − 2 c(a) =
(
2

i−1

2 , 0
)

a = (vi, vi+1), i = 1, 3, . . . , n − 2 c(a) =
(
0, 2

i−1

2

)
a = (vi+1, vi+2), i = 1, 3, . . . , n − 2 c(a) = (0, 0)

• • • • • • • •

(1, 0) (2, 0) (2
n−1

2 , 0)

(0, 1) (0, 0) (0, 2) (0, 0) (0, 2
n−1

2 ) (0, 0)

. . .
v1 v2 v3 v4 v5 vn−2 vn−1 vn

Fig. 9.2. A graph with exponentially many efficient paths.

Consider any path P from v1 to vn and observe that
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∑
a∈P

(c1(a) + c2(a)) =
n−2∑

i=1,3,5,...

2
i−1

2 =

n−3

2∑
i=0

2i = 2
n−1

2 − 1

and that for each z ∈ {0, . . . , 2
n−1

2 − 1} there is a path P from v1 to vn with∑
a∈P c1(a) = z. Therefore all 2

n−1

2 paths are efficient and |YN | = 2
n−1

2 . ��

To find paths a straightforward approach is to generalize single objective

shortest path algorithms. Let us first assume that no negative cycles exist, i.e.

for all cycles C in G, and for all k = 1, . . . , p∑
a∈C

ck(a) ≥ 0. (9.4)

and that this inequality is strict for at least one k.

Under this assumption, an efficient path will be simple, i.e. never visit

any node more than once, because including a cycle increase the total cost

of the path for at least one objective, whereas none of the other objectives is

improved.

Proposition 9.4. Let G = (V ,A) be a graph that satisfies the assumption

above. Let P be an efficient path from s to t. Then P contains only efficient

paths from s to intermediate nodes on the path.

Proof. Let Pst be an efficient path from s to t. Assume Psi is a sub-path from

s to node vi and this path is not efficient. Then there is a path P ′
si 	= Psi with

f(P ′
si) ≤ f(Psi).

Therefore P ′
si together with Pit, the sub-path of P from i to t is a path

from s to t with f(P ′
si ∪ Pit) = f(P ′

si) + f(Pit) < f(Psi) + f(Pit) = f(Pst),

contradicting efficiency of Pst. ��

Actually, the proof of Proposition 9.4 is still valid if the path Psi is replaced

by any subpath Puv between nodes of the efficient path Pst. This is stated as

a corollary.

Corollary 9.5. Under the assumption of Proposition 9.4 let Pst be an efficient

path from s to t. Then any subpath Puv from u to v, where u and v are vertices

on Pst is an efficient path from u to v.

It is important to note that although an efficient path is always composed

of efficient sub-paths between vertices along the path it is in general not true

that compositions of efficient paths yield efficient paths again.

Example 9.6. In the graph of Figure 9.3 paths P13 = (1, 3) and P34 = (3, 4)

are efficient, but their composition is not, because it is dominated by the path

(1, 4) from node 1 to node 4.

��
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1

2

3

4

(0, 10) (0, 10)

(1, 9) (1, 9)

(1, 15)

Fig. 9.3. Combining efficient paths.

Depending on whether negative weights may or may not occur in the

underlying graph, label setting or label correcting algorithms can be designed

to solve multicriteria shortest path problems. These algorithms will use sets of

labels for each node rather than a single label, as the single objective labeling

algorithms do. We present a label setting algorithm proposed by Martins

(1984), which works under the stronger assumption that ck(ai) ≥ 0 for all k

and all arcs ai.

Let vi be a node of G. A label of vi is a p + 3 tuple (c1, . . . , cp, vj , l, k)

where vj 	= vi is a node of G, l is the number of a label of node vj , and k is

the number of the label at node vi. Thus, a label is a vector made up of a

p-dimensional cost component, a node predecessor label, identifying the node

from which the label was obtained, a further label indicating from which of

the several labels of the predecessor it was computed, and a label number at

the current node. We denote by T L a list of temporary labels, which is kept

in lexicographic order, and a list PL of permanent labels, which will identify

efficient paths.

Algorithm 9.1 (Multiobjective label setting algorithm.)

Input: A digraph G = (V ,A) with p arc costs.

Initialization: Create label L = (0, . . . , 0, 0, 0, 1) at node s and let T L := {L}.
While T L 	= ∅ do

Let label L = (c1, . . . , cp, vh, l, k) of node vi be the lexicographically

smallest label in T L.

Remove L from T L and add it to PL.

For all vj ∈ V such that (vi, vj) ∈ A do

Create label L′ = (c1 + c1(vi, vj), . . . , c
p + cp(vi, vj), vi, k, t) as the

next label at node vj and add it to T L.
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Delete all temporary labels of node vj dominated by L′, delete L′ if

it is dominated by another label of node vj .

End for.

End while.

Use the predecessor labels in the permanent labels to recover all efficient

paths from s to other nodes of G.

Output: All efficient paths from node s to all other nodes of G.

To prove the correctness of Algorithm 9.1 we have to show that all efficient

paths from s to any other node will be found, and that no permanent label

defines a dominated path. The following lemma is useful.

Lemma 9.7. If P1 and P2 are two paths between nodes s and t and f(P1) ≤
f(P2) then f(P1) <lex f(P2).

The proof of this Lemma is an easy exercise, see Exercise 9.1.

Theorem 9.8. At termination of Algorithm 9.1, the permanent labels at each

node vi define the set of efficient paths from node s to node vi.

Proof. 1. First we show that if a label is made permanent, it defines an

efficient path. So let L = (c1, . . . , cp, vh, l, k) be the label of node vi

which is lexicographically smallest in T L. Let the corresponding path

be (s, . . . , vj , . . . , vh, vi). Assume there is an efficient path Psi from s to vi

with f(Psi) ≤ c. Then from Lemma 9.7 f(Psi) <lex (c1, . . . , cp). Assume

that vj is the last node both paths have in common.

Because all arc costs are nonnegative, it follows that for all nodes vl be-

tween vj and vi on path Psi it holds that f(Psl) � f(Psi) and therefore

f(P1l) <lex c. Therefore, all nodes on path Pji have labels that must have

been found and made permanent before L has been made permanent. Fi-

nally, that label would either not have been created at all or been deleted

from T L before being made permanent. This contradiction means that

only efficient paths are found by the algorithm.

2. Now we need to show that all efficient paths are found, i.e. for each efficient

path from s to a node vi a permanent label is created. So suppose there

is an efficient path Psi from s to some node vi that has not been found.

This is only possible if either the label L corresponding to this path has

been found, but not made permanent, or if it has never been found.

The only way for a label in T L not to be made permanent is deletion due

to domination. As the path Psi is efficient this is impossible. Note that if
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a label is never deleted, it will eventually be lexicographically minimal in

T L.

So we may assume that L was never included in T L. Let vi−1 be the node

just before vi along path Psi. According to Proposition 9.4 path Ps,i−1

from s to vi−1 is efficient. Since L has not been found, either the label L′

corresponding to Ps,i−1 has not been found, or was not made permanent.

Repeating this argument backwards along the path, we see that for the

first node v1 	= s on Psi, the label corresponding to the path from s to

v1, which is (c1(s, v1), . . . , c
p(s, v1), s, 1, 1) has not been found, which is

impossible, because it is created in the first iteration. This contradiction

completes the proof. ��

Example 9.9 (Martins (1984)). We apply algorithm 9.1 to the graph of Figure

9.4 with s = 1 and t = 6.
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Fig. 9.4. Example graph for Algorithm 9.1.

The eleven iterations of Algorithm 9.1 are shown in Figure 9.5. Labels

at nodes have a subscript, the iteration in which they are generated, and a

superscript, the iteration in which they are chosen as permanent. Deleted dom-

inated labels are crossed out. Arcs shown indicate directions of labeling with

the respective iteration number alongside the arc. Initially (0, . . . , 0, 0, 0, 1) is

set as label for node 1. In the first iteration it is selected and marked perma-

nent. Note that in iterations 8 and 11 only labels at node 6 are identified as

permanent, and no new labels are created.
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Fig. 9.5. The eleven iterations of 9.1 in Example 9.9.

Backtracking the predecessor labels, we obtain the efficient paths (1, 3, 5, 6)

and (1, 2, 4, 6) from node 1 to node 6. Efficient paths to other nodes are ob-

tained using permanent labels at these nodes. ��

Let us remark on the difference between single and multiple objective label

setting algorithms. When only interested in finding an optimal path from

node s to some other node t, the single objective label correcting algorithm

can be stopped once a label at node t is made permanent. Due to the possible

existence of multiple efficient paths between a pair of nodes this is not possible

for the multiobjective label setting algorithm. It will only stop once all efficient

paths to all nodes are found.

To see that Algorithm 9.1 may not work when negative weights are al-

lowed for the objectives the reader is asked to come up with an example in

Exercise 9.2. If negative cycles are present, the whole problem becomes rather

pathologic. Let C be a directed cycle, and assume there is a cost function ck

such that
∑

a∈C ck(a) < 0. We may distinguish two cases. There might be

another cost function cj with
∑

a∈C cj(a) > 0. Then for each pair of nodes

for which a path containing any of the nodes of C exists, there is an infinite

number of efficient paths: each move around the cycle decreases objective fk

while increasing fj . If
∑

a∈C cj(a) ≤ 0 for all j 	= k, then there is no efficient

path at all. In both cases Algorithm 9.1 would have an infinite loop.
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This behaviour makes it clear that for digraphs with negative cost arcs

it is important to have an algorithm which can detect negative cycles, and

which either stops reporting the fact or produces the set of efficient paths.

We present a label correcting algorithm for this purpose. Algorithm 9.2 is

from Corley and Moon (1985). Like 9.1 it finds efficient paths from s to all

other nodes. Here, L(i, k) denotes the set of labels of node vi in iteration k.

Algorithm 9.2 (Multiobjective label correcting algorithm.)

Input: A digraph G = (V ,A) with p arc costs.

Initialization: Set dii := (0, . . . , 0) for i = 1, . . . , n.

Set dij := (∞, . . . ,∞) if vi 	= vj and (vi, vj) /∈ A.

Set dij := (c1(vi, vj), . . . , c
p(vi, vj)) otherwise.

Set L(i, 1) := {d1i}, i = 1, . . . , n.

For k := 1 to n − 1 do

For i := 1 to n do

L(i, k + 1) := min
n⋃

j=1

{
dji + lkj : lkj ∈ L(j, k)

}
End for.

If L(i, k + 1) = L(i, k) for all i = 1, . . . , n then

If k = n − 1 then STOP, a negative cycle exists.

STOP

End for.

Output: All efficient paths from node v1 to all other nodes.

Algorithm 9.2 is in fact a generalization of Ford and Bellman’s single

objective label correcting method (Bellman, 1958).

Theorem 9.10. At termination of Algorithm 9.2 for all vi ∈ V either a neg-

ative cycle is detected, or L(i, k) is equal to the nondominated set of the mul-

tiobjective shortest path problem with s = v1 and t = vi.

Proof. We show that L(i, k) is the set of objective vectors of efficient paths

from node 1 to node i containing at most k arcs and that the termination

criteria are correct.

The proof of the first claim is by induction on k. For k = 1 the claim is

obviously true. Clearly, labels in L(i, k) pertain to paths with at most k arcs.

Suppose the claim is true for k = r and assume that there is a node vt, such

that L(t, r + 1) is not the set of objective vectors of efficient paths from v1 to

vt with no more than r + 1 arcs. This could occur for two reasons.
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1. There is an efficient path P from v1 to vt with no more than r + 1 arcs

and objective vector f(P ) /∈ L(t, r + 1). In this case there exists a node

vs ∈ {vi : (vi, vt) ∈ A} such that f(P ) = dst + f(P ′), where f(P ′) is the

cost of a path from v1 to vs with at most r arcs. Analogous to the proof

of Proposition 9.4, we see that the path from v1 to vs is efficient (with

at most r arcs), and from the induction hypothesis its objective vector

f(P ′) ∈ L(s, r). Since P is an efficient path and f(P ′) ∈ L(s, r) Step 2

implies f(P ) ∈ L(t, r + 1), a contradiction.

2. L(t, r + 1) contains a vector u, which is not the cost of an efficient path

from v1 to vt with at most r + 1 arcs, but the weight of a (dominated)

path with at most r + 1 arcs. Then there is an efficient path P from v1

to vt with at most r + 1 edges such that f(P ) ≤ u. But then again, as

in Proposition 9.4, the sub-paths of P are efficient (with at most r arcs)

and the induction hypothesis implies that f(P ) ∈ L(t, r + 1). But then

u /∈ L(t, r + 1).

Consider termination in iteration k = n − 1 with at least one label set

changed, i.e. L(i, n) 	= L(i, n − 1) for some i. Since any simple path from v1

to vi can only contain n− 1 arcs and because of the correctness of the labels,

this implies that there is an efficient path from 1 to i with a negative cost

component.

Termination with L(i, k) = L(i, k + 1) for all i = 1, . . . , n implies that

no path with k + 1 arcs dominates a path with at most k arcs, and paths

with more arcs can only get worse. This implies also that no negative cycles

exist. ��

As far as complexity of the algorithm is concerned, we see that there are

at most n iterations, where labels for n nodes are computed. The crucial

part is the size of label sets. The minima can be computed by Algorithm

8.1 or the method of Kung et al. (1975), if p is small. However, in the worst

case exponential running time can be encountered, because the problem is

intractable. Below, we show an application of the algorithm in an example.

Example 9.11. We apply Algorithm 9.2 to the graph of Figure 9.6.

We initialize the distance matrix
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Fig. 9.6. Example graph for Algorithm 9.2.
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.

The main iterations of the algorithm are most easily visualized with illus-

trations (Figures 9.7 – 9.9) showing only arcs of paths with at most k arcs in

iteration k.

At this stage L(i, 3) = L(i, 2) for all nodes i and , the algorithm stops.

The actual paths are found by backtracking using additional labels as in

Algorithm 9.1. There is one efficient path (1, 2) to node 2, and two each to

nodes 3 and 4, (1, 3) and (1, 2, 3), and (1, 2, 4) and (1, 3, 4), respectively. ��

In the bicriterion case, another approach was proposed by Climaco and

Martins (1982). It is for the problem of finding the efficient simple directed

paths between two nodes s and t. Let G = (V ,A) be a directed graph and

c : A → Z2 be a cost function.

The method starts by finding lexicographically shortest paths. For the

two possible permutations of the two objectives a lexicographic optimization

problem is solved, i.e.
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Fig. 9.7. Initialization, labels L(i, 1).
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Fig. 9.8. First iteration, labels L(i, 2).

lexmin
P∈P

(∑
a∈P

c1(a),
∑
a∈P

)
c2(a) (9.5)

and

lexmin
P∈P

(∑
a∈P

c2(a),
∑
a∈P

)
c2(a). (9.6)

We denote the values of the optimal solutions of (9.5) (c∗1, ĉ2) and of (9.6)

by (c∗2, ĉ1), respectively. Lexicographically optimal paths are denoted P 1,2 and

P 2,1. Problems (9.5) and (9.6) can be solved using variants of the label setting

or label correcting algorithms (Algorithms 9.1 and 9.2). Exercise 9.4 asks the

reader to describe these variants.
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Fig. 9.9. Second iteration, labels L(i, 3).

In fact, the vectors (c∗1, c
∗
2) and (ĉ1, ĉ2) define the ideal and nadir points of

the bicriterion shortest path problem, see Section 2.2. Also remember that

XΠ ⊂ XE , i.e. lexicographically optimal solutions are efficient (5.6).

Lemma 9.12. If P ∈ XE then c∗1 ≤∑a∈P c1(a) ≤ ĉ1 and c∗2 ≤∑a∈P c2(a) ≤
ĉ2.

Proof. The lower bounds are trivial. Suppose there is an efficient path P such

that
∑

a∈P c2(a) > ĉ2. From Proposition 5.6 we know that lexicographically

optimal paths are efficient. Let P 1,2 be a lexicographically optimal path for

permutation (1, 2). Then( ∑
a∈P 1,2

c1(a),
∑

a∈P 1,2

c2(a)

)
= (c∗1, ĉ2) ≤

(∑
a∈P

c1(a),
∑
a∈P

c2(a)

)
,

which is clearly impossible if P is efficient.

The result for P 2,1 is proven analogously. ��

The idea of the method is to start with a lexicographically optimal path,

e.g. P 1,2, which is both an optimal path for the first objective and efficient.

Then the second best path for the first objective is constructed, then the third

best etc. until P2,1 is reached. Throughout this process we need to ensure that

all paths are efficient.

Let

P+ :=

{
P ∈ P :

∑
a∈P

c1(a) ≥ c∗1

}
.
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P+ = {P 1, . . . , P s} is a finite set and can be ordered such that c∗1 =

c1(P 1) ≤ c1(P 2) ≤ . . . ≤ c1(P s). Let P+
1 , . . . ,P+

l be a partition of P+ into

subsets of paths with equal first weight. Denote by P ri the ith path of subset

P+
r . Then f1(P

ri) = f1(P
rj) for all P ri, P rj ∈ P+

r and f1(P
ri) < f1(P

tj if

and only if r < j.

Proposition 9.13. Path P ri is efficient if and only if

1. f2(P
ri) = min

P∈P+
r

f2(P ) and

2. min
P∈P+

r

f2(P ) < f2(P
tj) for all P tj ∈ P+

t with t < r.

Proof. “=⇒” Assume P ri is a path with f2(P
ri) > minP∈P+

r
f2(P ). Then

(f1(P
ri), f2(P

ri)) ≥ (f1(P
rj), f2(P

rj)) for all P rj ∈ P+
r because f1(P

rj)

= f1(P
ri). Therefore P ri is not efficient.

Assume there is an index t < r and a path P tj ∈ P+
t such that f2(P

ri) =

minP∈P+
r

f2(P ) ≥ f2(P
tj). Since t < r we know that f1(P

tj) < f1(P
ri)

and again P ri cannot be efficient.

“⇐=” Assume P ri is not efficient. Then there is an efficient path P such that

(f1(P
ri), f2(P

ri)) > (f1(P ), f2(P )). Since P ∈ P+
t for some t we have two

cases. Either f1(P
ri) = f (P ) and t = r, whence f2(P

ri) > f2(P ) and the

first condition is violated, or f1(P
ri) > f1(P ), i.e. r > t and the second

condition is violated. ��

As a consequence of Proposition 9.13, an algorithm to find “k-best” paths

together with a routine checking Proposition 9.13 yield an algorithm for the

bicriterion shortest path problem. Can it be efficient? Not in general, of course,

because of the intractability we have shown in Theorem 9.3. For an example

illustrating the approach see Exercise 9.5.

It should be noted that the “k-best shortest path problem” is NP-hard

(not known to be in NP , however), see Garey and Johnson (1979). For fixed

k it is polynomially solvable (see e.g. Eppstein (1998)), but unfortunately, in

the case here, k might be very large and its value is not known in advance

(we would have to choose k equal to the number of efficient solutions).

It is possible to generalize the idea of Martin’s algorithm for any number

of objectives, and for any multiobjective combinatorial optimization problem.

Note, that we have not use any specifics of the shortest path problem in

the above description. This is best done in the framework of the level sets

introduced in Section 2.3.

Let b ∈ Rp. Level sets and curves of objectives fk at level bk have been

defined in Definition 2.28 as
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L≤(bk) = {x ∈ X > fk(x) ≤ bk},
L+(bk) = {x ∈ X > fk(x) = bk}.

In Theorem 2.30 we have shown that x̂ ∈ X is efficient if and only if

p⋂
k=1

L≤(fk(x̂)) =

p⋂
k=1

L=(fk(x̂)).

We will use this result to derive an algorithm based on ranking the feasible

solutions with respect to one objective function (without loss of generality we

choose k = 1) and checking the intersection with other level sets to confirm

efficiency.

Let X (b)E := {x ∈ XE : fk(x) ≤ bk}. The goal of the algorithm is to find

X (b)E . Choosing b = yN , the nadir point, this includes finding the efficient

set.

Let L = {x1, . . . , xr} ⊂ L≤(b1) be the r best solutions of minx∈X f1(x),

i.e. f1(x
1) ≤ f1(x

2) ≤ . . . ≤ f1(x
r) and f1(x) ≥ f1(x

r) for all x ∈ X \ L.

Furthermore denote LE ⊂ L the efficient set of L. LE = {xi1 , . . . , xit} is a set

of potentially efficient solutions of the multiobjective optimization problem.

However, there might exist solution x ∈ X \ L that dominate some x ∈ LE .

Once we have found the r + 1 best solution x of minx ∈ Xf1(x) that also

satisfies fk(x) ≤ bk for k = 2, . . . , p we know that f1(x
i1) ≤ . . . ≤ f1(x

it) ≤
f1(x) and therefore {xi1 , . . . , xit , x} ⊂ L≤(f1(x)). Letting imax be the largest

index in {i1, . . . , it} such that f1(x
imax ) < f1(x) we have two possibilities.

If there is some j ∈ {i1, . . . , imax} such that fk(xj) ≤ fk(x) for all k =

2, . . . p then xj dominates x and x is not efficient.

Otherwise f(x) is incomparable with all f(xj), j = i1, . . . , imax. Then let

xj ∈ {ximax+1, . . . , xit} and let f ′ := (f2, . . . , fp). We compare f ′(xj) with

f ′(x) and distinguish the following cases.

• If f ′(xj) ≤ f ′(x) then x is not efficient.

• If f ′(x) ≤ f ′(xj) then xj is not efficient.

• If f ′(x) = f ′(xj) then x and xj are possibly efficient.

• Otherwise f ′(x) and f ′(xj) are incomparable. If this is the case for all

xj ∈ {ximax+1, . . . , xit} then x is possibly efficient.

Thus we need an algorithm to find r-best solutions of a combinatorial

optimization problem minx∈X f1(x). With that algorithm we can formulate

the following level set algorithm for multiobjective combinatorial optimization

(Ehrgott and Tenfelde-Podehl, 2002).
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Algorithm 9.3 (Level set algorithm.)

Input: An instance of a MOCO problem, b ∈ Zp.

Find an optimal solution x1 of minx∈X f1(x).

If f1(x
1) > b1 STOP, X (b)E = ∅.

r := 2,X (b)E := {x1}.
While r ≤ |X |

Find the rth best solution xr for minx∈X f1(x).

If f1(x
r) > b1, STOP.

If f(xr) > bk for some k ∈ {2, . . . , p} then r := r + 1.

Else

For all x ∈ X (b)E do

If xr dominates x then X (b)E := X (b)E \ {x}.
Else if x dominates xr then r := r + 1.

Else if f(xr) = f(x) then X (b)E := X (b)E ∪{xr} and r := r+1.

X (b)E := X (b)E ∪ {xr} and r := r + 1.

End while.

Output: X (b)E

In order to have the most efficient algorithm it is desirable to rank as few

solutions as possible. A rule of thumb is to choose that objective for ranking

which has the smallest range of objective values, i.e. the k for which yN
k − yI

k

is minimal.

9.2 The Minimum Spanning Tree Problem

In this chapter we consider first the problem of finding efficient spanning trees

of a graph G = (V , E), i.e. minT∈T f(T ), where the components fk of f are

some functions. In other words (T , p-
∑

, Zp)/ id /(Zp,≤). T denotes the set

of spanning trees of G. First we prove some basic facts about edges of efficient

spanning trees first stated in Corley (1985) and Hamacher and Ruhe (1994).

Theorem 9.14 (Hamacher and Ruhe (1994)). Let T be an efficient span-

ning tree of G.

1. Let e ∈ E(T ) be an edge of T . Let (V(T1), E(T1)) and (V(T2), E(T2)) be

the two connected components of G \ {e}. Let C(e) := {f = (vi, vj) ∈
E : vi ∈ V(T1), vj ∈ V(T2)} be the cut defined by deleting e. Then c(e) ∈
min{c(f) : f ∈ C(e)}.
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2. Let f ∈ E \ E(T ) and let P (f) be the unique path in T connecting the end

nodes of f . Then c(f) ≤ c(e) does not hold for any e ∈ P (f).

Proof. In both cases we can define E(T ′) = (E(T )\{e})∪{f} for any f ∈ C(e),

respectively e ∈ P (f), to obtain a new tree T ′ = (V , E(T ′)). Since f(T ′) =

f(T ) − c(e) + c(f) we have that c(f) < c(e) for some f ∈ C(e) or e ∈ P (f)

contradicts T being efficient. ��

Figures 9.10 and 9.11 illustrate the construction of T ′.

e

T1 T2

edges in C(e)

Fig. 9.10. Minimal edges in cuts ...

�

� � � �

Fig. 9.11. ... and cycles.

The converse of Theorem 9.14 is not true, as shown in Example 9.15.

Example 9.15. The graph of Figure 9.12 has eight spanning trees, seven of

which are efficient. We consider T0 = {[1, 2], [1, 3], [3, 4]}, which is dominated,

e.g. by T = {[1, 2], [2, 3], [2, 4]}).
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Fig. 9.12. The converse of Theorem 9.14 does not hold.

Consider first e = [3, 4]. The cut obtained by deleting e contains edges

[2, 4] and [3, 4] and e satisfies c(e) ∈ min{c([2, 4]), c([3, 4])}.
With f = [2, 3] we have P (f) = {[1, 2], [1, 3]} and there is no e ∈ P (f)

with c([2, 3]) < c(e). ��

Nevertheless, Theorem 9.14 is a justification for a multiobjective version

of Prim’s algorithm Prim (1957). It maintains a list of potential subtrees of ef-

ficient trees starting with all edges the costs of which costs are nondominated.

In each iteration it extends these subtrees by adding adjacent edges which

have nondominated costs in the set of all edges connecting the current tree

with the yet to be connected nodes. Because the condition of Theorem 9.14

is only necessary, but not sufficient, a dominance check among the resulting

(sub)trees is necessary.

Algorithm 9.4 (Prim’s spanning tree algorithm.)

Input: A graph G = (V , E) with p edge costs.

T1 := argmin{c(e1), . . . , c(en)}
For k := 2 to n − 1 do

Tk := {E(T ) ∪ {ej} : T ∈ Tk−1, ej ∈ argmin{c(e) = c([vi, vj ]) : vi ∈
V(T ), vj ∈ V \ V(T )}}
Tk := argmin{f(T ) : T ∈ Tk}

End for

Output: Tn−1, all efficient spanning trees of G.
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Example 9.16. We apply Algorithm 9.4 to the graph of Figure 9.13, with the

edge costs displayed alongside the edges.

�

�

�

�

� �� � � � 	 �

� �
 � � 
 � �

� 	� �

Fig. 9.13. Example graph for Algorithm 9.4.

The steps of the algorithm are summarized and illustrated below. T1 =

{{[2, 3]}, {[2, 4]}}. Edges connecting the one edge subtrees with the remaining

nodes are shown in Figure 9.14. Broken lines show possible extensions of trees

in T1.

�

�


 �

�

�




Fig. 9.14. Possible extensions of trees in T1.
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Three of these are efficient subtrees, so

T2 = {{[2, 3], [2, 4]}, {[2, 3], [3, 4]}, {[2, 4], [1, 2]}}.

Their objective vectors are
(
2
2

)
,
(
5
1

)
and

(
1
6

)
, respectively. Possible extensions

of trees in T2 are shown in Figure 9.15.

1

2

3

4 1

2

3

4 1

2

3

4

Fig. 9.15. Possible extensions of trees in T2.

For each tree in T2 only one of the possible extensions is efficient, so that

T3 = {{[2, 3], [2, 4], [1, 3]}, {[1, 3], [2, 3], [3, 4]}, {[2, 4], [1, 2], [1, 3]}}

is the set of efficient trees TE of G and YN = {
(
3
5

)
,
(
6
4

)
,
(
2
9

)
}. ��

The worst case performance of Algorithm 9.4 is dominated by the domina-

tion test in Step 2 and depends on the size of the sets of objective vectors we

might have to compare. We shall see later that the multicriteria spanning tree

problem is intractable, and therefore an exponential worst case performance

applies.

The greedy approach to the problem is very similar to the approach of

Algorithm 9.4, which is in fact only a particular implementation of a greedy

strategy for spanning trees. The greedy algorithm starts with a “cheapest”

edge and adds “cheapest” available edges as long as the result does not con-

tain a cycle. To clarify what “cheapest” means, recall that the set of edges

{e1, . . . , en} is partially ordered by the componentwise order on their cost

vectors. We extend the partial order to a total order in the following way.

Definition 9.17. A topological order of {e1, . . . , en}, partially ordered the

componentwise order on the set of cost vectors {c(e1), . . . , c(en)} is a total

order � of {e1, . . . , em} such that c(ei) ≤ c(ej) implies ei � ej.
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The topological order explains what we termed a “cheapest” edge – a

minimal edge according to a topological order. Note that for a given partial

order several topological orders may exist. Using topological orders, we can

apply the greedy algorithm to construct spanning trees. Unfortunately there

are topological orders for which the result is not an efficient tree.

Example 9.18. Consider the graph of Figure 9.16.

1

2

4

3

(
3
0

) (
4
4

)

(
1
1

) (
2
2

)(
2
2

)
(
0
3

)

Fig. 9.16. Example for the greedy algorithm.

The partial order on the edge costs is given by c([1, 4]) ≤ c([2, 4]) =

c([3, 4]) ≤ c([2, 3]), c([1, 2]) ≤ c([2, 3]), and c([1, 3]) ≤ c([2, 3]). Therefore

[1, 4] � [3, 4] � [2, 4] � [1, 3] � [1, 2] � [2, 3]

is a topological order. The incomparabilities among weight vectors are resolved

by the topological order and � preserves the componentwise order of weights.

The greedy algorithm applied to this example yields the tree {[1, 4], [3, 4],

[2, 4]} with objective vector
(
5
5

)
which is dominated by

(
4
4

)
, the objective vector

of T = {[1, 2], [1, 3], [1, 4]}. ��

Despite Example 2.38 each efficient spanning tree can be identified using

an appropriate topological order.

Theorem 9.19 (Serafini (1986)). Let T be an efficient spanning tree. Then

there exists a topological order of the edges of G such that the greedy algorithm

applied to this order yields T .

Proof. Define a digraph D, where V(D) = E(G) = {e1, . . . , en} and (ei, ej) ∈
A(D) if and only if c(ei) ≤ c(ej). D is acyclic, because “≤” is a partial
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order. Let T be a spanning tree of G and define Ē := E \ E(T ). Let a new

digraph DT be defined by V(DT ) = E(G) and A(DT ) = A(D) ∪ {(e, f) : e ∈
C(f) ∩ E(T ), f ∈ Ē}, where C(f) is the unique cycle generated by adding f

to T , i.e. C(f) = P (f) ∪ {f}. If DT is acyclic, it represents a partial order

preserving ≤ (because A(D) ⊂ A(DT )) and any topological order if its nodes

has the required property. Note that due to the additional arcs only the edges

of T can be chosen by the greedy algorithm.

1

2

4

3

e12

e14

e13

e24

e34

e23

T

DT

Fig. 9.17. Finding DT for the graph of Figure 9.16 and T as shown.

So it remains to be shown that DT is acyclic. Suppose DT contains a cy-

cle. Since D is acyclic the cycle contains one of the additional arcs. Because

D is transitively closed by its definition (i.e. (e, f) ∈ AD, (f, g) ∈ A(D im-

plies (e, g) ∈ AD) we can assume that the cycle consists alternatingly of arcs

(fi, ei+1) of AD and new arcs (ei, fi). Thus it can be written as a sequence

(e1, f1, e2, f2, . . . , ek, fk, e1)

of nodes of DT and without loss of generality we may assume it is the smallest

cycle containing e1. Now construct a new spanning tree T ′ with E(T ′) =

(E(T ) ∪ {fi : i = 1′ . . . , k}) \ {ei : i = 1′ . . . , k}. But since c(fi) < c(ei+1) and

c(fk) < c(e1) we get f(T ′) < f(T ), a contradiction. ��
Corollary 9.20. Let T be an efficient spanning tree of G. Then T contains

an edge e ∈ argmin{c(e) : e ∈ E}. We call such an edge a minimal edge.

Proof. Consider a topological order such that the greedy algorithm finds T .

Then T contains the (unique) minimal edge e according to this topological

order. But e can only be chosen such that c(e) ∈ min{c(e) : e ∈ E}, i.e. as a

minimal edge. ��
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Due to Theorem 9.19 the greedy algorithm can be used in principle to find

all efficient spanning trees of G, but the problem of identifying the appropriate

topological orders remains to be solved.

Theorem 9.14 may hint to another idea for solving the problem, namely

neighbourhood search. The idea is to generate one efficient spanning tree T

(e.g. a lexicographically optimal one, or an minimal spanning tree for the sum

of costs c̄(e) =
∑p

k=1 ck(e)) and perform exchanges of edges to search for other

efficient spanning trees in the “neighbourhood” of T .

Let T1 and T2 be spanning trees. We say T1 and T2 are adjacent, or neigh-

bours, if they have m − 2 edges in common (m is the number of nodes of

G). Let E(T1) \ E(T2) = {e} and E(T2) \ E(T1) = {f}. One would consider

only exchanges of edges such that c(e)− c(f) has positive as well as negative

components, because efficient trees must have incomparable objective vectors.

Does such an approach work? To answer this question, we represent adjacency

among efficient spanning trees by a graph.

Definition 9.21. The Pareto graph P(G) is a graph defined as follows.

V(P(G)) consists of the efficient spanning trees of G, and (T1, T2) ∈ E(P(G))

if T1 and T2 are adjacent.

Then the neighbourhood search based on exchanges of edges can be used

to find all efficient spanning trees if and only if P(G) is connected.

Example 9.22. For the first example in Section 8.1, P(G) is connected, because

all spanning trees are efficient. For the graph G in Figure 9.13 the efficient

spanning trees are T1 = {[2, 3], [3, 4], [1, 3]}, T2 = {[1, 3], [2, 3], [2, 4]} and T3 =

{[2, 4], [1, 2], [1, 3]} and P(G), shown in Figure 9.18 is connected.

T1 T2 T3

Fig. 9.18. Connected Pareto graph of the graph in Figure 9.13.

��

However, this connectedness result is not true in general.

Example 9.23 (Ehrgott and Klamroth (1997)). Consider graph G of Figure

9.19.
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Fig. 9.19. Graph G has nonadjacent efficient spanning trees.

All efficient spanning trees of G contain all edges of zero cost and in addi-

tion exactly one of the three edges [sij , si+1], j = 1, 2, 3 connecting the nodes

si, i = 2, 3, 4 to nodes on their left. The twelve efficient spanning trees are

listed in Table 9.2, where the zero cost edges are omitted.

Table 9.2. Efficient spanning trees of graph G in Figure 9.19.

Efficient tree Edges Objective vector

T1 [s13, s2][s22, s3][s31, s4] (1,28)

T2 [s13, s2][s22, s3][s33, s4] (2,24)

T3 [s13, s2][s23, s3][s31, s4] (8,22)

T4 [s13, s2][s23, s3][s33, s4] (9,18)

T5 [s13, s2][s21, s3][s33, s4] (12,17)

T6 [s11, s2][s23, s3][s33, s4] (17,16)

T7 [s11, s2][s21, s3][s33, s4] (20,15)

T8 [s12, s2][s22, s3][s32, s4] (27,14)

T9 [s13, s2][s23, s3][s31, s4] (28,9)

T10 [s13, s2][s21, s3][s32, s4] (31,8)

T11 [s11, s2][s23, s3][s32, s4] (36,7)

T12 [s11, s2][s21, s3][s32, s4] (39,6)
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Spanning tree T8 is the only efficient tree containing edge [s12, s2] and

at least one of the other two nonzero cost edges is different from any other

efficient spanning tree. P(G) is not connected, it has T8 as an isolated node.

��

The bad news for neighbourhood search is not only that there are examples

of graphs with nonconnected Pareto graphs. Moreover, every graph can be

extended in such a way that the extended graph has a nonconnected Pareto

graph. We only state the result here, for details and the (rather technical)

proof the reader is referred to the original paper.

Theorem 9.24 (Ehrgott and Klamroth (1997)). For any graph G there

exists a graph G∗ containing G as a subgraph such that P(G∗) is not connected.

Despite Theorem 9.24, some classes of graphs might have connected Pareto

graphs, see Exercise 9.8 for a simple example. Another possibility to guarantee

this is restriction to a subset of efficient solutions. We will see in the next

section why P(G) is connected in Example 9.22. At the end of our discussion

of the spanning tree problem we prove intractability and NP-completeness of

the problem.

Proposition 9.25 (Hamacher and Ruhe (1994)). The bicriterion span-

ning tree problem (T , 2-
∑

, Z2)/ id /(Z2,≤) is intractable.

Proof. We consider G = Kn, the complete graph on n nodes and edges

{e1, . . . , em}, where m = n(n − 1)/2. G contains nn−2 spanning trees. We

show that it is possible that |Yeff| = nn−2.

For ei define c1(ei) = 2i−1, c2(ei) = 2m − 2i−1 which implies c1(ei) +

c2(ei) = 2m and thus c1(T ) + c2(T ) = (n − 1)2m for all T ∈ T . Furthermore,

c1(T1) 	= c1(T2) for all pairs of spanning trees T1, T2 ∈ T with T1 	= T2.

Therefore all spanning trees have pairwise incomparable weights and are

thus efficient. All weights being different, we know that |YN | = |T | = nn−2.

��

The proof of Proposition 9.25 actually shows a more general statement. A

multiobjective combinatorial optimization problem (X , 2-
∑

, Z1)/ id /(Z2, <)

with the additional property that |x| = γ is the same for all feasible solutions

x ∈ X is intractable if |X | is exponential in |E|.
The multicriteria spanning tree problem is also NP-complete.

Proposition 9.26 (Camerini et al. (1984)). (T , 2-
∑

, Z2)/ id /(Z2,≤) is

NP-complete.
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Proof. The decision version of (T , 2-
∑

, Z2)/ id /(Z2,≤) is: Given G and

b1, b2 ∈ Z, does there exist a spanning tree T of G such that
∑

e∈T c1(e) ≤ b1

and
∑

e∈T c2(e) ≤ b2?

We prove a reduction Knapsack ∝ (T , 2-
∑

, Z2)/ id /(Z2,≤). From an in-

stance (a1, . . . , an, b) ∈ Zn+1 of Knapsack, we construct the graph of Figure

9.20.
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Fig. 9.20. Showing NP-completeness of the biobjective spanning tree prob-

lem.

G is defined as follows:

V := {v1, . . . , vn+2}
E := {[vi, vn+1], [vi, vn+2] : i = 1, . . . , n} ∪ {[vn+1, vn+2]}.

The costs are given by c([vi, vn+1]) :=
(
ai

0

)
, c([vi, vn+2]) :=

(
0
ai

)
, and

c([vn+1, vn+2]) =
(
0
0

)
. Furthermore b1 := b and b2 :=

∑n
i=1 ai − b.

Any x ∈ {0, 1}n uniquely corresponds to a spanning tree T of G, which

contains [vn+1, vn+2] and the other edges of which are defined by xi = 1 if

and only if [vi, vn+1] ∈ T and xi = 0 if and only if [vi, vn+2] ∈ T . Then

∑
e∈T

c1(e) ≤ b1 ⇐⇒
n∑

i=1

aixi ≤ b

∑
e∈T

c2(e) ≤ b2 ⇐⇒
n∑

i=1

aixi ≥ b.

Note that there may exist spanning trees T satisfying
∑

e∈T c1(e) ≤ b1 and∑
e∈T c2(e) ≤ b2 not containing (vn+1, vn+2). In this case, one of the edges

could be replaced by (vn+1, vn+2). However, it means that the transformation

is not parsimonious. ��
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#P-completeness of the multicriteria spanning tree problem is still open.

It does not follow from intractability, because counting the spanning trees of

a graph is easy, a formula was discovered by Kirchhoff (1847).

9.3 Matroids

Spanning trees of a graph are just one example of a general combinatorial

structure called matroid. In the remaining part of this section, we study mul-

ticriteria problems on matroids. Those results on spanning trees, for which the

graphical view was inessential remain valid for matroids. That concerns every-

thing we presented about the greedy algorithm. And of course intractability

and NP-completeness are valid for the more general problem. It does, how-

ever, not include Algorithm 9.4 and Theorem 9.14.

Definition 9.27. Let E = {e1, . . . , en} be a finite set and X ⊂ 2E .

1. J = (E ,X ) is called independence system, if X 	= ∅ and if x1 ∈ X , x2 ⊂ x1

implies x2 ∈ X . x ∈ X is called an independent set.

2. Let (E ,X ) be an independence system. An independent set x ∈ X is called

maximal, if x ∪ {e} /∈ X for all e ∈ E \ x. A maximal independent set x̂

is called maximum, if |x| ≤ |x̂| for all independent subsets x ∈ X . We let

m(x̂) := max{|x| : x ⊆ x̂, x ∈ X} for x̂ ⊂ E and call it the rank of x̂.

3. M = (E ,X ) is called matroid, if it is an independence system and if for

any T ⊂ E and maximal independent set x ⊂ T we have |x| = m(T ). (or

if, equivalently, whenever x, x′ ∈ X , |x′| = |x| + 1 there is some e ∈ x′

such that x ∪ {e} ∈ X ).

The following example lists the matroids we will encounter in this section.

Example 9.28. 1. Let E = {x1, . . . , xn : xi ∈ Rn}. X is the set of all subsets

of linear independent vectors of E . M = (E ,X ) is called matric matroid.

2. Let E = {e1, . . . , en}. X = {x ⊂ E : |x| ≤ k}. M = (E ,X ) is called

uniform matroid.

3. Let E = E(G) be the edge set of a graph G. X is the set of all subsets

x ⊂ E that do not contain a cycle. M = (E ,X ) is called graphic matroid.

4. E = ∪n
i=1Ei, where Ei ∩Ej = ∅ for all i, j with i 	= j and x ∈ X if and only

if |x∩ Ei| ≤ 1 for i = 1, . . . , n. M = (E ,X ) is called partition matroid. ��

A maximal independent subset of E is called basis of M. Thus, bases in

Example 9.28 are

1. bases of the linear space spanned by x1, . . . , xn,
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2. all subsets of E containing exactly k elements,

3. the spanning trees of G,

4. and subsets consisting of exactly one member of each Ei,

respectively. All bases of M have the same cardinality, which is one of many

equivalent characterizations of matroids. For more about matroid theory we

refer the reader to Oxley (1992). Most interesting for us is the following char-

acterization in terms of optimal solutions of a combinatorial optimization

problem associated with a matroid, see e.g. (Nemhauser and Wolsey, 1999, p.

667).

Theorem 9.29. Let (E ,X ) be an independence system. Let c : E → Z+ be a

weight function. Then (E ,X ) is a matroid if and only if the greedy algorithm

finds a maximal independent set of minimal total weight for any choice of c.

In particular, Theorem 9.29 says why the greedy algorithm works for the

spanning tree problem.

Now, let M = (E ,X ) be a matroid. We denote the set of bases of M by

B. We will discuss the problem (B, p-
∑

, Zp)/ id /(Zp,≤) of finding efficient

matroid bases and the max-ordering problem (B, p-
∑

, Zp)/ max /(Z, <). First

we show that they are both NP-complete, using a different example than that

of spanning trees already given.

Theorem 9.30. The problems of finding all efficient matroid bases and the

max-ordering matroid basis problem are are NP-hard.

Proof. We will show the result for the special case where M = (E ,X ) is

a uniform matroid. Actually, for efficiency the result already follows from

Proposition 9.26.

Consider the following decision problem

k-Partition: Given a set E = {e1, . . . , en} and integer numbers c(ei) ≥
0,
∑n

i=1 c(ei) = 2C. Does there exist a subset S ⊂ E , |S| = k such that∑
ei∈B c(ei) = C?

The problem is NP-complete, because solving it for k = 1, . . . , n would

yield a solution of Partition, a problem which is NP-complete (see page 207

and (Garey and Johnson, 1979, p. 223)). Given an instance of k-Partition

define costs on the elements ei of E as follows.

c1(ei) = c +
2C

k
− c(ei)

c2(ei) = c + c(ei),

where c̄ > maxn
i=1 c(ei).
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Let b1 := b2 := kc + C. Let S ⊂ E with |S| = k be a basis of the

uniform matroid M = (E ,X ). Then (c1(S), c2(S)) ≤ (b1, b2) if and only if

max{c1(S), c2(S)} ≤ b1 = b2, so that both claims will be proved at the same

time.

Furthermore

f1(S) ≤ b1 = C + kc ⇐⇒ kc + 2C −
∑
ei∈S

c(ei) ≤ C + kc

⇐⇒
∑
ei∈S

c(ei) ≥ C,

f2(S) ≤ b2 = C + kc ⇐⇒ kc +
∑
ei∈S

c(ei) ≤ kc + 2C

⇐⇒
∑
ei∈S

c(ei) ≤ C.

Therefore these conditions are satisfied if and only if S solves k-Partition.

��

In Section 8.1 we have shown that solving scalarizations of combinatorial

problems using weighted sums is not useful for finding efficient solutions. Here,

we will investigate how weighted sum problems can be used to solve max-

ordering matroid problems

min
B∈B

p
max
k=1

∑
e∈B

ck(e). (9.7)

Later on we will also see that they can be used to solve lexicographic

problems and investigate in greater detail their limited effectiveness for finding

efficient solutions.

For λ ∈ Rp
> define c̄(e) =

p∑
k=1

λkck(e).

For the objective value of a basis B in the single objective matroid opti-

mization problem

min
B∈B

∑
e∈B

c̄(e) (9.8)

we have ∑
e∈B

c̄(e) =
∑
e∈B

p∑
k=1

λkck(e) =

p∑
k=1

λk

∑
e∈B

ck(e)

≤
(

p∑
k=1

λk

)
p

max
k=1

(∑
e∈B

ck(e)

)
=

p
max
k=1

(∑
e∈B

ck(e)

)
(9.9)

We apply (9.9) to an optimal solution B̂ of the max-ordering matroid

problem (9.7) to get
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min
B∈B

∑
e∈B

c̄(e) ≤
∑

e∈B∗

c̄(e) ≤ p
max
k=1

(∑
e∈B∗

ck(e)

)
.

If we now apply a ranking of the solutions of the weighted sum problem

(9.8), we get a sequence {B1, . . . , Br} ⊂ B of bases such that∑
e∈B1

c̄(e) ≤
∑
e∈B2

c̄(e) ≤ . . . ≤
∑

e∈Br

c̄(e)

and obtain the following result, relating the weighted sum (9.8) and max-

ordering (9.7) problems.

Proposition 9.31. Let r be the smallest index such that

c∗ := min
l=1,...,r−1

{
max

k=1,...,p

∑
e∈Bl

ck(e)

}
≤
∑

e∈Br

c̄(e). (9.10)

Then any B∗ ∈ B with maxk=1,...,p

∑
e∈B∗ ck(e) = c∗ is an optimal solution

of (9.7). In particular, {B1, . . . , Br−1} contains a max-ordering solution.

Proof. From the choice of B1, . . . , Br, (9.10), and (9.9) it follows that

p
max
k=1

∑
e∈B∗

ck(e) ≤
∑

e∈Br

c̄(e) ≤
∑
e∈B

c̄(e) ≤ p
max
k=1

∑
e∈B

ck(e).

for all B ∈ B \ {B1, . . . , Br}. ��
It is possible that the condition of Proposition 9.31 is not satisfied, even if

r = |B|. The choice of λ is crucial for the success of the ranking approach to

max-ordering problems. No general rule for generating a scalarizing vector λ

that guarantees the existence of r as in Proposition 9.31 is known. The reader

is asked to check the result on an example in Exercise 9.9.

Now let us consider efficiency again. From the general discussion of the

weighted sum method in Chapter 3, we know that efficient solutions are found.

Lemma 9.32. Let B be an optimal solution of the weighted sum problem

(9.8). Then B is efficient.

In Definition 8.7 we introduced the term supported efficient solutions for

optimal solutions of weighted sum problems. . Among supported efficient bases

we distinguish those for which f(B) is an extreme point of conv(Y) and those

which are not. The former are called extreme efficient bases.

An important difference between extreme efficient bases and all efficient

bases is the following. Let P(M) be the Pareto graph of matroid M, where

the nodes are the efficient bases and there exists an edge between two bases

B1 and B2 if |B1 \B2| = |B2 \B1| = 1. This is just the obvious generalization

of the Pareto graph P(G) we introduced for the spanning tree problem in

Definition 9.21.
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Theorem 9.33 (Ehrgott (1996)). The subgraph of P(M) generated by the

extreme efficient bases is connected.

The proof is rather lengthy and omitted here, it can be found in Ehrgott

(1997) and Ehrgott (1996).

Theorem 9.33 also explains, why P(G) is connected in Example 9.22. All

three efficient spanning trees are extreme efficient spanning trees, see Exercise

9.6.

Example 9.34. We consider a partition matroid for E = {1, . . . , 6} = {1, 5, 6}∪
{3} ∪ {2, 4}. A basis is a subset of E consisting of exactly one element of the

three given sets. The costs are

c(1) =

(
1

5

)
, c(2) =

(
1

4

)
, c(3) =

(
1

1

)
, c(4) =

(
3

1

)
, c(5) =

(
4

1

)
, c(6) =

(
2

2

)
.

The matroid has six bases, four of which are (extreme) efficient ones. The

graph of all bases (solid lines) and efficient bases is shown in Figure 9.21.

Edges of P(M) are shown as broken lines.

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

Fig. 9.21. Pareto graph in Example 9.34.

��

Another interesting fact is that lexicographically optimal bases are extreme

efficient bases if ck(e) ≥ 0 for all k = 1, . . . , p and all e ∈ E .
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Proposition 9.35 (Hamacher and Ruhe (1994)). Let Bπ be a lexico-

graphically optimal basis for minB∈B lexmin π(f(x). Then there exists λ ∈ Rp
>

such that Bπ is an optimal solution of minB∈B
∑

e∈B

∑p
k=1 λkck(e).

Proof. Without loss of generality we assume π = id. Let λ1 := 1−ε(1−εp−1),

λk := εk−1(1 − ε) where ε = 1/(2M) with M > maxk=1,...,p maxB∈B fk(B)

and M > 1. Then

p∑
k=1

λk = 1 − ε + εp +

p∑
k=2

εk−1(1 − ε)

= 1 − ε + εp +

p−1∑
k=1

εk −
p∑

k=2

εk

= 1 − ε + εp + ε − εp = 1.

Now let B be any not lexicographically minimal basis and i := min{k :

fk(Bπ) < fk(B)}. Assume i ≥ 2. Then

p∑
k=1

λkfk(Bπ) −
p∑

k=1

λkfk(B)

= λi (fi(Bπ) − fi(B))︸ ︷︷ ︸
≤−1

+

p∑
k=i+1

λk (fk(Bπ) − fk(B))︸ ︷︷ ︸
≤M

≤ εi−1(1 − ε)(−1) +

p∑
k=i+1

εk−1(1 − ε)M

≤ εi−1(1 − ε)(−1) + (1 − ε)εi 1 − εp−1

1 − ε
M

= εi−1(ε − 1) + εi−1
(
1 − εp−1

) M

2M

= εi−1

(
ε − 1 +

1

2
− 1

2
εp−1

)
< 0

since ε < 1/2. A similar calculation shows the result in case i = 1. ��

As a final comment, we remark that both Proposition 9.31 and Proposition

9.35 are valid for any multiobjective combinatorial optimization problem, as

we never used the fact that the feasible solutions are bases of a matroid.

Therefore, for general MOCO problems, max-ordering optimal solutions and

lexicographically optimal solutions can be found by the weighted sum method.
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9.4 The Assignment Problem and the Two Phase

Method

In this section, we show that the multicriteria assignment problem is NP-

complete, #P-complete, and intractable. We present an algorithm to find all

efficient solutions in the bicriterion case, which might of course need exponen-

tial time.

The multicriteria assignment problem can be formulated as a 0-1 program-

ming problem.

min
n∑

i=1

n∑
j=1

ck
ijxij k = 1, . . . , p (9.11)

subject to

n∑
i=1

xij = 1; j = 1, . . . , n (9.12)

n∑
j=1

xij = 1; i = 1, . . . , n (9.13)

xij ∈ {0, 1}; i, j = 1, . . . , n (9.14)

In addition to the 0-1 programming formulation (9.11) – (9.14) we can also

formulate it as an optimization problem on graphs, revealing the combinatorial

structure. We assume that all ck
ij ∈ Z�.

Definition 9.36. 1. A complete bipartite graph G = Kn,n on n nodes is

defined by the node set V = L ∪ R, where L = {v1, . . . vn} and R =

{v′1, . . . , v′n} and edge set E = {[vi, v
′
j ] : vi ∈ L, v′j ∈ R}.

2. A matching is subset M ⊂ E of the edges of a graph G such that no

two edges of M have a node in common. A matching is called perfect if

|M | = n.

Let c : E → Zp be a cost function on the edges of a complete bipartite

graph Kn,n and f(x) =
∑

e∈x c(e). The bicriterion assignment problem (9.11)

– (9.14) is to find the efficient matchings of Kn,n according to objective func-

tion f . The cost coefficients ck
ij of the p objective functions are represented

by p matrices C1, . . . , Cp and fk(x) =
∑n

i=1

∑n
j=1 ck

ijxij denotes the kth ob-

jective function. The set of all feasible assignments (perfect matchings) will

be denoted by M, for matchings.

Theorem 9.37. The biobjective assignment problem (9.11) – (9.14) is NP-

complete, #P-complete, and intractable.
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Proof. 1. First we show NP-completeness. This part of the proof is from

Serafini (1986). We provide a reduction from Equi-Partition, which is

NP-complete according to (Garey and Johnson, 1979, p. 223). The Equi-

Partition problem is defined as follows. Given (c1, . . . , c2n) ∈ Z2n with∑2n
i=1 ci = 2C, does there exist a subset S ⊂ {1, . . . , 2n}, |S| = n, such

that
∑

i∈S ci =
∑

i/∈S ci = C?

For the reduction we use (c1, . . . , c2n) to construct an instance of the

bicriterion assignment problem. Let ĉ > maxi=1,...,2n ci. We define V =

L ∪ R := {l1, . . . , l2n} ∪ {r1, . . . , r2n} as node set of a complete bipartite

graph K2n,2n and choose costs

c([li, rj ]) :=

{
(ĉ + ci, ĉ − ci) if j is odd

(ĉ, ĉ) if j is even.

Then there exists a subset S ⊂ {1, . . . , 2n} with
∑

i∈S ci = C if and only

if there is a perfect matching M with
∑

[li,rj]∈M c1([li, rj ]) ≤ 2nĉ+C and∑
([li,rj])∈M c2([li, rj ]) ≤ 2nĉ − C.

Because this transformation is not parsimonious, it does not prove #P-

completeness.

2. The proof of #P-completeness and intractability is based on counting

perfect matchings. Valiant (1979b) showed that counting the number of

perfect matchings of a bipartite graph is #P-complete. Therefore, we have

to find an instance of the problem where all perfect matchings are efficient.

Let {e1, . . . , en2} be the edges of Kn,n. Choosing c(ei) = (2i−1, 2n2 −2i−1)

for all i = 1, . . . , n2 we get, as in Proposition 9.25 that all feasible solutions

have incomparable objective vectors. Thus, a matching is perfect if and

only if it is efficient. For intractability, note that there are n! perfect

matchings in a complete bipartite graph. ��

The first part of the proof is from Serafini (1986). For an independent

proof of the second, we refer to Neumayer (1994).

Let us now discuss the solution of multiobjective assignment problems. We

restrict this discussion to the biobjective case. For more than two objectives,

no algorithm is known. With a single objective it is well known that the

problem can be solved as a linear program because total unimodularity of the

constraint matrix guarantees an optimal solution of the LP to be integral.

It can be solved very efficiently with the Hungarian method Papadimitriou

and Steiglitz (1982). This appealing property cannot be fully exploited in

the multicriteria case. It would only be possible to find optimal solutions of

weighted sum scalarizations this way. However, the following example shows

that there may exist efficient points in the interior of conv(Y).
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Example 9.38 (Ulungu and Teghem (1994)). The problem is defined by two

cost matrices C1 and C2

C1 := (c1
ij) =

⎛
⎜⎜⎝

5 1 4 7

6 2 2 6

2 8 4 4

3 5 7 1

⎞
⎟⎟⎠ , C2 := (c2

ij) =

⎛
⎜⎜⎝

3 6 4 2

1 3 8 3

5 2 2 3

4 2 3 5

⎞
⎟⎟⎠ .

The 24 feasible assignments can be represented by their cost vectors in

objective space as shown in Figure 9.22.
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◦

•
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•
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f(x1,2)

f(x4)

f(x3)
f(x10)

f(x7)

f(x2,1)

f(x5)

f(x6)

f(x8)

f(x9)

Fig. 9.22. Example 9.38: Feasible set in objective space.

The problem has six efficient solutions, four of which are supported (see

Definition 8.7). x6 and x7 are nonsupported, their objective vectors f(x6)

and f(x7) are in the interior of the convex hull of Y. All of the supported

solutions are extreme solutions, they define extreme points of convY. Note

that supported efficient solutions can be found solving weighted sum prob-
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lems with weight vector corresponding to a normal to the line connecting two

“consecutive” extreme nondominated points.

x1,2 and x2,1 are the lexicographically optimal solutions. There are also

two weakly efficient solutions, indicated by the points above and to the right

of f(x3). (The numbering of solutions is according to the order in which they

are generated by the algorithm described later, see Example 9.40). ��

Definition 9.39. The nondominated frontier of a multicriteria combinatorial

optimization problem is the nondominated set of conv(Y).

With p = 2, the efficient frontier is a piecewise linear curve, as seen in

Figure 9.22. For the bicriterion assignment the efficient frontier actually con-

sists of the efficient set of the MOLP defined by the linear relaxation of the

combinatorial problem. However, this is due to the fact that any weighted

sum scalarization of (9.11) – (9.14) has an integer optimal solution, it does

not hold for general MOIPs (8.7).

We will now present the two-phase method of Ulungu and Teghem (1994)

to solve the biobjective assignment problem. It exploits the unimodularity

property as far as possible. In Phase 1 it finds the supported efficient assign-

ments. In Phase 2 it then proceeds to find the nonsupported efficient solutions

in the interior of conv(Y). To that end it searches regions of conv(Y), where

nondominated points can possibly be found. These are the triangles defined

by “consecutive” points of YN on the efficient frontier, as shown in Figure

9.22.

Phase 1 starts with the computation of both lexicographically optimal

solutions. This is done by solving two single objective assignment problems.

These are added to a list of efficient solutions, maintained in order of increasing

value of f1(x). The main part of the algorithm is formulated recursively. Given

two consecutive solutions from the list, a weighted sum problem is formulated

and solved. If new efficient solutions are found they are added to the list. The

recursion stops if no further efficient solutions are found.

Algorithm 9.5 (Assignment problem Phase 1 algorithm.)

Input: Cost matrices C1, C2.

Solve the assignment problem with cost matrix C1.

Let x̂1 be an optimal solution.

Find an optimal solution x1,2 of the assignment problem with cost matrix

f2(x̂
1)C1 + C2.

Solve the assignment problem with cost matrix C2.

Let x̂2 be an optimal solution.
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Find an optimal solution x2,1 of the assignment problem with cost matrix

C1 + f1(x̂
2)C2.

XsE = {x1,2, x2,1}.
SolveRecursion(x1,2, x2,1,XsE)

Output: XsE

Algorithm 9.6 (Solve recursion.)

Input: xr, xs ∈ XsE with f1(x
r) < f1(x

s).

λ1 := (f2(x
r) − f2(xs)), λ2 := (f1(x

s) − f2(x
r)).

Compute the set R of all optimal solutions of the assignment problem with

cost matrix λ1C
1 + λ2C

2.

XsE := XsE ∪R.

If λ1f1(x) + λ2f2(x) < λ1f1(x
r) + λ2f2(x

r) for some x ∈ R then

Let xt1 ∈ argmin{f1(x) : x ∈ R}
Let xt2 ∈ argmin{f2(x) : x ∈ R}
SolveRecursion(xr, xt1 ,XsE)

SolveRecursion(xt2, xs,XsE)

End if

The lexicographic solutions are found by first solving an assignment prob-

lem with a single objective. In case an optimal solution, which is weakly

efficient, is found, a second single objective problem is solved – with weights

that guarantee that a lexicographic solution is then found.

It is easy to see that (λ1, λ2) as defined in Algorithm 9.6 defines a normal

to the line segment connecting f(xr) and f(xs) (see Exercise 9.12). The single

objective assignment problems can be solved very efficiently using the Hungar-

ian method, see e.g. Papadimitriou and Steiglitz (1982). However, all optimal

solutions have to be found, as they may have different objective vectors, i.e.

define different nondominated points, with the same weighted sum objective

value. An algorithm to do that is given in Fukuda and Matsui (1992). Note

that the condition of the “if” statement in Algorithm 9.6 holds for either all or

no x ∈ R. At termination of Algorithm 9.5 we can write XsE = {x1, . . . , xt}
and assume that f1(x

i) ≤ f1(x
i+1) and therefore f2(x

i) ≥ f2(x
i+1) for all

i = 1, . . . , t − 1. There will always exist λ ∈ R2
> such that both xi and xi+1

are optimal solutions of the weighted sum problem with weight λ.

We now analyze the solution of the weighted sum assignment problems in

some greater detail. The following cases may occur for the set R.
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1. R∩{xr , xs} = ∅. In this case there must be an assignment x with f1(x
r) <

f1(x) < f1(x
s) and f2(x

s) < f2(x) < f2(x
r) as well as λ1f1(x)+λ2f2(x) <

λ1f1(x
r)+ λ2f2(x

r). This situation is shown in Figure 9.23. New solution

xt1 and xt2 coincide if the weighted sum problem has a unique optimal

solution. It is then necessary to solve two new weighted sum problems

with weights corresponding to the normal between xr and xt1 as well as

xt2 and xs.

•
f(xr

)

•
f(xs

)

•
f(xt1)

•
f(xt2)

•f(x), x ∈ R

Fig. 9.23. New supported efficient solutions defining new extreme points.

2. {xr, xs} ⊂ R. This includes the case of equality. Then all solutions of R
except xr and xs are new supported efficient solutions. However, λ1f1(x)+

λ2f2(x) = λ1f1(x
r) + λ2f2(x) for all x ∈ R, so that there is no need to

solve any further weighted sum problem.

•
f(xr

)

•f(xs
)

•
f(x), x ∈ R

Fig. 9.24. A new supported efficient solution on conv{f(xr), f(xs)}.
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Algorithm 9.5 determines all supported efficient solutions. Note that if

only one optimal solution of the weighted sum problems is computed, there

can be no guarantee that all efficient solutions for which f(x) is on a line

between two extreme supported efficient solutions are found.

Now let XsE = {x1, . . . , xt} be the result of Algorithm 9.5, ordered as

before. Phase 2 determines efficient solutions with f1(x
i) < f1(x) < f1(x

i+1)

and f2(x
i) > f2(x) > f2(x

i+1) and also λ1f1(x) + λ2f2(x) > λ1f1(x
j) +

λ2f2(x
j), j ∈ {i, i + 1}, where λ defines a normal to the line between f(xi)

and f(xi+1).
In order to find these solutions we will fix some variables to 1. We are

interested in finding lower bounds on the value of f1(x), f2(x), or λ1f1(x) +
λ2f2(x) after fixing a variable. So let C be a cost matrix and let x be a feasible
solution of the assignment problem

min

{
n∑

i=1

n∑
j=1

cijxij :

n∑
i=1

xij = 1, j = 1, . . . , n;

n∑
j=1

xij = 1, i = 1, . . . , n; x � 0

}
.

(9.15)

The dual of the linear program (9.15) is

max

⎧⎨
⎩

n∑
i=1

ui +
n∑

j=1

vj : ui + vj ≤ cij , i, j = 1, . . . , n

⎫⎬
⎭ . (9.16)

C will be either C1 or C2 or λ1C
1 + λ2C

2 in the algorithm for Phase 2.

Let x be an assignment and let C̄ be a matrix of reduced costs associated

with x. This can be the reduced cost matrix of a basis for which x is a basic

feasible solution in the LP (9.15) or defined by c̄ij = cij−ui−vj with u, v ∈ Rn

such that c̄ij = 0 for all i, j with xij = 1 (from the dual (9.16), this is used in

the Hungarian method). Let us assume we want to impose xi∗j∗ = 1, where

that variable is 0 in x. This can be done by continuing the Hungarian method

or the simplex algorithm to restore feasibility. We can derive lower bounds on

the value of f(x) after fixing a variable, depending on whether x is an optimal

solution of (9.15) or not.

1. If x is optimal, we can choose C̄ so that c̄i
ij ≥ 0 for all i, j. Now for

solution x there must be ik, jk such that xikj∗ = xi∗jk
= 1. Thus, after

fixing xi∗j∗ = 1 and restoring feasibility, one variable in row ik and one

variable in column jk other than xikj∗ and xi∗jk
will be equal to 1.

• If these two variables are one and the same we will have xikjk
= 1 and

the objective function will increase by at least c̄ikjk
.

• Otherwise there will be an increase of at least

γ = min
j �=j∗

c̄ikj + min
i�=i∗

c̄ijk
.
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Therefore a lower bound on the objective value after fixing a variable is

α = f(x) + c̄i∗j∗ + min{c̄ikjk
, γ}. (9.17)

2. If x is not optimal then C̄ has at least one negative entry. Hence, the lower

bound is computed from the minimal entries in all rows and columns of

C̄ and we obtain

α = f(x) + c̄i∗j∗ + max

⎧⎨
⎩∑

i�=i∗

min
j �=j∗

c̄ij ,
∑
j �=j∗

min
i�=i∗

c̄ij

⎫⎬
⎭ . (9.18)

Let λ > 0 be such that supported efficient solutions xi and xi+1 are op-

timal solutions of the weighted sum assignment problem and let C̄ be a re-

duced cost matrix for an optimal solution of that problem. Any unsupported

efficient solution x with f(x) in the triangle defined by f(xi), f(xi+1), and

(f1(x
i+1), f2(x

i)) is not an optimal solution of the weighted sum problem.

Such a solution can be obtained by choosing (i∗, j∗) ∈ L := {(i, j) : c̄ij > 0}
and forcing xi∗,j∗ = 1. After restoring feasibility we obtain an assignment x′

with λ1f1(x
′) + λ2f2(x

′) > λ1f1(x
i) + λ2f2(x

i). x′ is a candidate for a new

efficient solution. The best assignment with xi∗,j∗ = 1 can be found by re-

optimizing, i.e. solving a smaller assignment problem. We can perform three

tests to determine whether f(x′) is in the triangle. These tests are for the

value of objectives λ1f1 + λ2f2, f1, and f2, respectively.

Test 1: Let αi be the lower bound (9.17) obtained from a reduced cost matrix

for the weighted sum LP with respect to xi and let αi+1 be that obtained

from a reduced cost matrix with respect to xi+1. Define α∗ = max{α1, α2}.
Then f(x′) is not in the triangle if

α∗ ≥ λ1f1(x
i+1) + λ2f2(x

i).

With Test 1 we check, if f(x′) is in the hatched area of Figure 9.25.

Test 2: This tests checks the objective value for f1. If xi = x1,2 is a lexico-

graphically optimal solution then let α be defined by (9.17) with reduced

cost matrix of C1 for xi. Otherwise let it be defined by (9.18). Then f(x′)

is not in the triangle if

α ≥ f1(x
i+1). (9.19)

The test determines if f(x′) is in the hatched area in Figure 9.26.

Test 3: Finally, this test checks objective f2. It is analogous to Test 2, only

that α is computed from a reduced cost matrix of C2 for xi+1. Then f(x′)

is not in the triangle if
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•
f(xi

)

•
f(xi+1

)

Fig. 9.25. Test 1 for the weighted sum of objectives.

•
f(xi

)

•
f(xi+1

)

Fig. 9.26. Test 2 for objective function 1.

α ≥ f2(x
i). (9.20)

This test checks, if f(x′) in the hatched area of Figure 9.27.

Note that the bigger f1 or f2 get, the more negative elements appear in

the reduced cost matrices C̄1 respectively C̄2 and the more inefficient Tests

2 and 3 are. Since the tests apply to any feasible solution x′ obtained from

fixing xi∗j∗ = 1 we can apply them to exclude variables from L.

During the course of the algorithm it may be necessary to fix more than

one variable to find all efficient solutions. This is done in a depth-first search

to avoid redundancies.

Let again xi, xi+1 ∈ XsE as before. In Phase 2, a set P of potentially

efficient assignments with f(x) in the triangle defined by f(xi), f(xi+1), and
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•
f(xi

)

•
f(xi+1

)

Fig. 9.27. Test 3 for objective function 2.

(f1(x
i+1), f2(x

i)) is maintained. Solutions in P are also numbered in increas-

ing order of f1(x). Initially, P = ∅. New solutions, which are optimal solutions

of assignment problems, where one or more variables from the list L have been

fixed to one are added to this list. They may be removed again if they are

proved to be dominated. At termination, P is the set of nonsupported efficient

solutions in the triangle. Let P = {x1, . . . , xs} at some stage of the algorithm

and define

γ :=
s−1
max
j=1

{λ1f1(x
j+1) + λ2f2(x

j)}.

Then any feasible assignment with λ1f1(x)+λ2f2(x) bigger than the upper

bound

max{γ, λ1f1(x
1) + λ2f2(x

i), λ1f1(x
i+1) + λ2f2(x

s)} (9.21)

is dominated. This upper bound has been proposed in Tuyttens et al. (2000).

Finally we need to describe the procedure for fixing variables. This is

done using the pairs (i, j) in L in a depth first strategy. We assume that

L = {(i, j)1, . . . , (i, j)l}. (i, j) ∈ L is selected, Tests 1 – 3 are performed, if

any of them fails, (i, j) is removed from the list. Otherwise, the weighted sum

assignment problem is solved with xij = 1 and the upper bound (9.21) is

checked. If the resulting assignment x′ is potentially efficient, it is added to

P and the upper bound (9.21) is updated. The next pair from L is chosen

and that variable fixed in addition to the ones already fixed, if these pairs are

compatible (e.g. it is not possible to impose x15 = 1 and x13 = 1, so (1, 5) and

(1, 3) are incompatible). This procedure stops and backtracks when there is no

pair in L left or the bound (9.21) is violated. Note that fixing more variables

can only increase the objective value. Whenever an assignment dominating

any x ∈ P is found, P is updated.
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Phase 2 is now summarized in Algorithm 9.7.

Algorithm 9.7 (Assignment problem Phase 2 algorithm.)

Input: XsE, C1 and C2.

XE := XsE . For all xi, xi+1 ∈ XsE do

Find an optimal solution x̃ of the assignment problem with cost matrix

Cλ = (f2(x
i) − f2(x

i+1))C1 + (f1(x
i+1) − f1(x

i))C2.

Let C̄λ be a reduced cost matrix of Cλ for x̃.

Let C̄1 be a reduced cost matrix of C1 for xi.

Let C̄2 be a reduced cost matrix of C2 for x2.

L := {(i, j) : c̄ij > 0}.
P = ∅
Compute upper bound u according to (9.21)

If u > λ1f1(x
i) + λ2f2(x

i+1) then

For all (i, j) ∈ L do

If Tests 1 – 3 fail then L := L \ {i, j}.
End for.

If L 	= ∅ then

For all (i, j) ∈ L do

Impose((i, j), ∅)
End for.

End if.

End if. XE = XE ∪ P
End for.

Output: XE .

Algorithm 9.8 (Impose.)

Input: (k, l),L′

(L′ is a list of variables already assigned 1.) Find all optimal solutions of

the assignment problem with cost matrix Cλ and xij = 1 for all (i, j) ∈
L′ ∪ {i, j}.
L′ = L′ ∪ {(k, l}.
If λ1f1(x) + λ2f2(x) ≤ u then

If f(x) is in the triangle and f(x) is not dominated then

P := P ∪ {x}.
Remove dominated solutions from P.

Compute u according to (9.21).

End if.

For all (i, j) ∈ L \ L′ do
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If the pair (i, j) is compatible with L′ then

Impose((i, j),L′)

L′ := L′ \ {k, l}
End if.

End for

End if

Example 9.40. We solve the problem already introduced in Example 9.38,

where

C1 :=

⎛
⎜⎜⎝

5 1 4 7

6 2 2 6

2 8 4 4

3 5 7 1

⎞
⎟⎟⎠ , C2 :=

⎛
⎜⎜⎝

3 6 4 2

1 3 8 3

5 2 2 3

4 2 3 5

⎞
⎟⎟⎠ .

Phase 1 (Algorithm 9.5) first finds lexicographically optimal assignments

x1,2 and x2,1. The former is defined by

x12 = x23 = x31 = x44 = 1, f(x1,2) =

(
6

24

)
,

the latter by

x14 = x21 = x33 = x42 = 1, f(x2,1) =

(
22

7

)
.

XsE is initialized with {x1,2, x2,1}.
The recursion solves the following problems.

1. For f(x) between f(x1,2) and f(x2,1). λ1 = 24−7 = 17, λ2 = 22−6 = 16.

Solving the weighted sum assignment problem yields x3 with

x11 = x22 = x33 = x44 = 1, f(x3) =

(
12

13

)
.

XsE = {x1,2, x3, x2,1}
2. For f(x) between f(x1,2) and f(x3). λ1 = 24 − 13 = 11, λ2 = 12 − 6 = 6.

Solving the weighted sum assignment problem yields x4 with

x13 = x22 = x31 = x44 = 1, f(x4) =

(
9

17

)
.

XsE = {x1,2, x4, x3, x2,1}
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3. For f(x) between f(x1,2) and f(x4). λ1 = 24 − 17 = 7, λ2 = 9 − 6 = 3.

The weighted sum assignment problem has optimal solutions x1,2 and x4.

4. For f(x) between f(x4) and f(x3). λ1 = 17 − 13 = 4, λ2 = 12 − 9 = 3.

The weighted sum assignment problem has optimal solutions x4 and x3.

5. For f(x) between f(x3) and f(x2,1. λ1 = 13 − 7 = 6, λ2 = 22 − 12 = 10.

The weighted sum assignment problem has optimal solutions x3 and x2,1.

In Phase 2 we investigate the three triangles defined by the four supported

efficient solutions.

1. Checking x1,2, x4. For λ1 = 7, λ2 = 3

C̄λ =

⎛
⎜⎜⎝

9 0 0 20

12 0 0 18

0 43 0 8

11 29 31 0

⎞
⎟⎟⎠ .

is a reduced cost matrix for both optimal solutions of the weighted sum

assignment problem. Thus we have

L = {(3, 4), (1, 1), (4, 1), (2, 1), (2, 4), (1, 4), (4, 2), (4, 3), (3, 2)}.

We perform Test 1 and eliminate pairs (2, 4), (1, 4), (4, 2), (4, 3), and (3, 2)

are eliminated. Test 2 (with a reduced cost matrix of C1 for x1,2) elimi-

nates (3, 4), (1, 1), (4, 1), and (2, 1) and now L = ∅.
2. Checking x4, x3. For λ1 = 4, λ2 = 3

C̄ =

⎛
⎜⎜⎝

0 0 0 6

3 0 9 10

0 22 0 3

4 13 18 0

⎞
⎟⎟⎠ .

is a reduced cost matrix for both optimal solutions of the weighted sum

assignment problem. Thus we have

L = {(2, 1), (3, 4), (4, 1), (1, 4), (2, 3), (2, 4), (4, 2), (4, 3), (3, 2)}.

Test 1 eliminates (2, 4), (4, 2), (4, 3), and (3, 2). To perform Test 2 we can

use

C̄ =

⎛
⎜⎜⎝

1 −3 0 4

4 0 0 4

0 6 20 2

2 4 6 0

⎞
⎟⎟⎠ ,
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as reduced cost matrix of C1 for x4. (2, 1) and (1, 4) are eliminated.

Test 3 does not lead to any further eliminations. We are left with

L = {(3, 4), (4, 1)(2, 3)}. Imposing either x34 = 1 or x41 = 1 yields so-

lution x5 defined by

x13 = x22 = x34 = x41 = 1, f(x5) =

(
13

14

)
,

which is dominated by x3. The same is true for imposing both at the same

time. Imposing x23 = 1 gives x1,2. Imposing x23 = 1 together with one or

two of the other pairs leads to x6 with

x12 = x23 = x34 = x41 = 1, f(x6) =

(
10

17

)
,

which is dominated by x4. Thus, no potentially efficient solutions are

found.

3. Checking x3, x2,1. For λ1 = 6, λ2 = 10

C̄ =

⎛
⎜⎜⎝

0 10 4 0

0 0 46 18

18 28 0 8

4 0 18 0

⎞
⎟⎟⎠ .

is a reduced cost matrix for both optimal solutions of the weighted sum

assignment problem. Thus we have

L = {(1, 2), (1, 3), (2, 3), (2, 4), (3, 1), (3, 2), (3, 4), (4, 1), (4, 3)}.

Test 1 does not eliminate any pairs, neither does Test 2. Test 3 with a

reduced cost matrix of C2 for x2,1 does eliminate (1, 2), (3, 1), and (2, 3).

So L = {(1, 3), (2, 4), (3, 2), (3, 4), (4, 1), (4, 3)}.
We consider imposing all single pairs first. Forcing x13 = 1 or x34 = 1

yields solution x7 with

x13 = x21 = x34 = x42 = 1, f(x7) =

(
19

10

)
.

Forcing x24 = 1 or x43 = 1 yields solution x8 with

x11 = x24 = x33 = x42 = 1, f(x8) =

(
20

10

)

or x9 with

x11 = x22 = x34 = x43 = 1, f(x9) =

(
18

12

)
.
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x8 is and x9 are both dominated by x7.

Forcing x32 = 1 also yields a dominated solution.

Forcing x41 = 1 yields solution x10 with

x14 = x22 = x33 = x41 = 1, f(x10) =

(
16

11

)
.

We have two potentially efficient solutions and update P = {x10, x7}
With these we can update the upper bound from 6 × 22 + 10 × 13 = 262

(from f2(x
3) and f1(x

2,1)) to max{6×16+10×13, 6×19+10×11, 6×22+

10 × 10} = 232 according to (9.21). Imposing any two pairs at the same

time yields either a solution already found before, a solution dominated

by one of the existing solutions, or a solution that violates the new upper

bound. For example, if x24 = x32 = 1 then C̄ implies that the weighted

sum objective will increase by at least 18 + 28 = 46. Since the value at

x3 and x2,1 is 202, the new solution will have a value greater than 232.

��

9.5 Notes

There is a rich literature on multicriteria shortest path problems. Here are

some additional references to those cited in Section 9.1. NP-completeness of

the max-ordering problem is mentioned in Murthy and Her (1992), Warburton

(1987) describes an approximation algorithm. A variety of algorithms based

on dynamic programming (e.g. Henig (1985); Kostreva and Wiecek (1993);

Sniedovich (1988)), label setting (Hansen, 1979; Martins, 1984) and label cor-

recting methods (e.g. Brumbaugh-Smith and Shier (1989); Mote et al. (1991);

Skriver and Andersen (2000)) are available with computational experiments

(Brumbaugh-Smith and Shier, 1989; Huarng et al., 1996; Skriver and Ander-

sen, 2000) comparing different methods.

The level set algorithm 9.3 requires algorithms to rank feasible solutions,

i.e. to find k-best solutions of combinatorial optimization problems are nec-

essary. Such algorithms are known for a number of problems. The largest

amount of research on ranking solutions is available for the shortest path

problem. Algorithms by Azevedo et al. (1993) Martins et al. (1999a), and

Eppstein (1998) are very efficient. Ranking algorithms for simple paths are

e.g. proposed by Carraresi and Sodini (1983) and Martins et al. (1999b). Sev-

eral methods are also known for the minimum spanning tree problem. We

mention papers by Gabow (1977) and Katoh et al. (1981). Algorithms for

ranking matroid bases are found in Hamacher and Queyranne (1985) and
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Ehrgott (1996). Chegireddy and H.W. (1987) present an algorithm to find

k-best perfect matchings, Brucker and Hamacher (1989) discuss k-best solu-

tions for polynomially solvable scheduling problems, and an algorithm to rank

(integer) network flows is presented in Hamacher (1995).

In Section 9.3 we have indicated that ranking algorithms can also be used

to solve max-ordering problems. An algorithm that problems with two objec-

tives is given in Ehrgott and Skriver (2003).

Algorithms other than those cited in Section 9.2 to find efficient trees range

from minimizing weighted sums (Punnen and Nair, 1996; Schweigert, 1990)

to approximation (Hamacher and Ruhe, 1994) and genetic algorithms (Zhou

and Gen, 1999). The complexity status of a variety of multiobjective spanning

tree problems, involving other than the typical sum and bottleneck objectives

is studied in Camerini et al. (1984); Dell’Amico and Maffioli (1996, 2000).

The assignment problem is among the first MOCO problems studied

(Dathe, 1978). We have explained the two-phase method for the assignment

problem. This algorithmic template has also been applied to other prob-

lems. These include Lee and Pulat (1993); Sedeño-Noda and González-Mart́ın

(2001) for integer network flow, Ulungu (1993); Visée et al. (1998) for knap-

sack, and Ramos et al. (1998) for spanning tree problems. While Algorithm 9.5

for Phase 1 can be used essentially unchanged, problem specific modifications

for the Phase 2 algorithm are always necessary. It is interesting to observe that

the ranking algorithms can also be used in the two phase method. Finding

unsupported efficient solutions is the same as finding non-optimal, or k-best,

solutions of particular weighted sum problems.
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Exercises

9.1. Prove Lemma 9.7.

9.2. Find an example of a digraph with negative weights, but no negative

cycles (i.e.
∑

a∈C wq(a) ≥ 0 for all q and all cyclesC) for which the label

setting Algorithm 9.1 constructs a dominated path from node 1 to some other

node i.

9.3. Apply the label correcting Algorithm 9.2 to the graph of Example 9.9.

9.4. 1. Modify the label setting and label correcting algorithms (Algorithms

9.1 and 9.2 so that they find a lexicographically minimal path from s to

t, i.e. a path P such that

(
∑
a∈P

c1(a), . . . ,
∑
a∈P

cp(a)) ≤lex (
∑
a∈P ′

c1(a), . . . ,
∑
a∈P ′

cp(a))

for all s-t paths P ′.

2. Is it possible to use a modified label setting algorithm to solve the max-

ordering shortest path problem

min
P∈P

max
k=1,...,p

∑
a∈P

ck(a)

in directed graphs with nonnegative weights ck(a) ≥ 0 for all k and all a?

Write down such a modified algorithm and either give an argument that

it works (like the correctness proof for the label setting algorithm) or give

an example to show that it does not work.

9.5. Illustrate the ranking approach to the bicriterion shortest path problem

(with s = 1 and t = 6) for the following graph. The double arrow on arc (3, 4)

indicates that there is an arc in both directions, with the same cost both ways.
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9.6. Show that all efficient spanning trees of the graph in Figure 9.13 are

extreme efficient spanning trees (see also Example 9.22.

9.7. Kruskal’s algorithm (Kruskal, 1956) for the (single objective) spanning

tree problem works as follows:

• E(T ) := ∅
• For i = 1 to m − 1 do

E(T ) := E(T ) ∪ argmin{c(e) : E(T ) ∪ e does not contain a cycle }.

Formulate a multiobjective version of this algorithm and apply it to the graphs

of Figure 9.12 and Figure 9.16.

9.8. Show that if G is a 1-tree (i.e. a tree plus an additional edge, or a graph

with exactly one cycle), the Pareto graph P(G) defined for the spanning tree

problem is always connected. Can you identify other classes of graphs for

which this is true?

9.9. Use Proposition 9.31 to find max-ordering spanning trees in the graph

of Figure 8.1. Try λ = (1/4, 1/4, 1/4, 1/4) and λ with λi = 1 for some i ∈
{1, . . . , 4}, λj = 0, i 	= j.

9.10. Solve the bicriterion assignment problem with cost matrices

C1 =

⎛
⎝2 1 0

0 2 1

2 0 3

⎞
⎠ C2 =

⎛
⎝ 0 1 2

2 0 2

2 2 0

⎞
⎠

by the two phase method with Algorithms 9.5 and 9.7. There are two sup-

ported and two unsupported efficient solutions.

9.11. Explain why the Phase 1 algorithm can be modified so that in Step 1

instead of lexicographically optimal solutions, solutions of minx∈X f1(x) and

minx∈X f2(x), which may be only weakly efficient, are computed. In which

way would you have to modify the algorithm to guarantee that all efficient

solutions are found?

9.12. Show that λ1 = f2(x
i)−f2(x

i+1), λ2 = f1(x
i+1−f1(x

i) defines a normal

to the line connecting f(xi) and f(xi+1), where xi and xi+1 are two optimal

solutions of the weighted sum problem with objective λ1f1(x) + λ2f2(x).
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Multiobjective Versions of Some NP-Hard

Problems

10.1 The Knapsack Problem and Branch and Bound

As for the assignment problem in the previous section, we consider only finding

efficient solutions. And we also restrict ourselves to the bicriterion case. The

bicriterion knapsack problem is the binary integer program

max f1(x) =

n∑
i=1

c1
i xi (10.1)

max f2(x) =
n∑

i=1

c2
i xi (10.2)

subject to
∑

wixi ≤ W (10.3)

xi ∈ {0, 1}; j = 1, . . . , n. (10.4)

The problem is obviously NP-hard, as a counterpart of an NP-hard single

objective problem (see Lemma 8.11). Whether the problem is #P-complete

or intractable is yet unknown.

We will present a branch and bound algorithm. To avoid trivial solutions

and to have a meaningful problem we make some basic assumptions on the

parameters of the knapsack problem. We assume that all values ck
i , all weights

wi as well as the capacity W are nonnegative. Furthermore, no single weight

exceeds capacity, i.e. wi ≤ W for all i = 1, . . . , n, but the total weight of all

items is bigger than W,
∑n

i=1 wi > W.

For the solution of knapsack problems the value to weight ratios ck
i /wi

are of essential importance. In the single objective linear knapsack problem

(where xi ∈ {0, 1} is replaced by 0 ≤ xi ≤ 1),
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max
n∑

i=1

cixi

subject to

n∑
i=1

wixi ≤ W

xi ≤ 1 i = 1, . . . , n

xi ≥ 0 i = 1, . . . , n

they are used to easily find an optimal solution.

Assume that items 1, . . . , n are ordered such that

c1

w1
≥ c2

w2
≥ . . . ≥ cn

wn
. (10.5)

Let i∗ := min{i :
∑i

j=1 wj > W} be the smallest index such that the

weight of items 1 to i exceeds the total capacity. Item i∗ is called the critical

item. The solution of the continuous knapsack problem is simply given by

taking all items 1 to i∗ − 1 and a fraction of the critical item, that is xi = 1

for i = 1, . . . , i∗ − 1 and

xi∗ =

(
W −

i∗−1∑
i=1

wi

)
wj∗

.

Good algorithms for the single objective problem use this fact and focus on

optimization of items around i∗, see e.g. Martello and Toth (1990); Pisinger

(1997); Kellerer et al. (2004). Ideas of such algorithms have been adapted to

the bicriterion case by Ulungu and Teghem (1997).

The two criteria induce two different sequences of value to weight ratios.

Let Ok be the ordering (10.5) according to ck
i /wi, k = 1, 2. Let rk

i be the

rank or position of item i in order Ok and let O be the order according to

increasing values of (r1
i + r2

i )/2, the average rank of an item.

The branch and bound method will create partial solutions by assigning

zeros and ones to subsets of variables denoted B0 and B1, respectively. These

partial solutions constitute nodes of the search tree. Variables not assigned

either zero or one are called free variables for a partial solution and define a

set F ⊆ {1, . . . , n} such that {1, . . . , n} = B1 ∪ B0 ∪ F . A solution formed by

assigning all free variables a value is called completion of a partial solution.

Variables of a partial solution will be assigned a value according to the order

O. It is convenient to number the items in that order so that we will have

B1 ∪ B0 = {1, . . . , l − 1},F = {l, . . . , n}

for some l. Furthermore we shall denote rk the index of the first variable in

F according to order Ok, for k = 1, 2.
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Vector valued bounds will be used to fathom a node of the tree when

no completion of the partial solution (B1,B0) can possibly yield an efficient

solution. A lower bound (z1, z2) at a partial solution is simply given by the

value of the variables which have already been assigned value 1,

(z1, z2) =

⎛
⎝∑

i∈B1

c1
i ,
∑
j∈B1

c2
i

⎞
⎠ . (10.6)

For the computation of upper bounds we define

W := W −
∑
i∈B1

wi ≥ 0,

the remaining free capacity of the knapsack after fixing variables in B1. Fur-

thermore, we denote

sk := max

⎧⎨
⎩lk ∈ F :

lk∑
jk=rk

wjk
< W

⎫⎬
⎭

to be the last item that can be chosen to be added to a partial solution

according to Ok. Thus, sk + 1 is in fact the critical item in order Ok, taking

the already fixed variables in B0 and B1 into account.

The upper bound for each objective value at a partial solution is computed

according to the rule of Martello and Toth (1990).

zk = zk +

sk∑
jk=rk

ck
jk

+ max

{[
W k

ck
sk+2

wsk+2

]
,

[
ck
sk+1 − (wsk+1 − W k)

ck
sk

wsk

]}
,

(10.7)

where W k = W−∑sk

jk=rk
wjk

. The bound can be justified from the observation

that xsk+1
cannot assume fractional values. Therefore it must be either zero or

one. It is computed from the value of the already assigned variables (zk), plus

the value of those items that fit entirely, in order Ok, plus the maximum term.

The first term in the maximum in (10.7) comes from setting xsk+1
= 0 and

filling remaining capacity with xsk+2
, while the second means setting xsk+1

= 1

and removing part of xsk
to satisfy the capacity of the knapsack. Another way

of computing an upper bound using (10.7) is indicated in Exercise 10.1.

Given a partial solution, an assignment of zeros and ones to the free vari-

ables is sought, to find potentially efficient solutions of the whole problem.

This problem related to the partial solution (B1,B0) is again a bicriterion

knapsack problem:
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max
∑
i∈F

c1
i xi +

∑
i∈B1

c1
i

max
∑
i∈F

c2
i xi +

∑
i∈B1

c2
i

subject to
∑
i∈F

wixi ≤ W

xi ∈ {0, 1}.

We now have all prerequisites to formulate the algorithm. The algorithm

pursues a depth first strategy. That is, movement down a branch of the search

tree, and therefore having more variables fixed in B1 or B0, is preferred to

investigating partial solutions with fewer fixed variables. Successors of a node

in a tree (branching) are distinguished by different sizes of B1 and B0. Actually,

the tree can be drawn so that the sets B1 of successors of a node will be become

smaller, as variables are moved from B1 to B0, see Figure 10.1. The idea is

that by fixing many variables first according to their value to weight ratios, a

good feasible solution is obtained fast, so that many branches of the tree can

be fathomed early.

Throughout, we keep a list L of potentially nondominated points identified

so far (note that due to maximization y1 dominating y2 means y1 > y2 here),

and a list of nodes N still to be processed.

The list N is maintained as a last-in-first-out queue. Nodes are fathomed

if the bounds show that they can only lead to dominated solutions, if they

have been completely investigated (they represent a complete solution), or if

no further succeeding node can be constructed.

When a node is fathomed, the algorithm backtracks and creates a new

node by moving the last item of B1 to B0, removing all items after this new

item from B0. If, however, the last item in B1 was n then the algorithm chooses

the smallest v such that all items {v, . . . , n} were in B1, removes them all, and

defines B0 to be all previous elements of B0 up to v − 1 and to include v.

When a node is not fathomed, the algorithm proceeds deeper down the

tree in that it creates a new successor node. This may again be done in two

ways. If B1 allows addition of the first item l of F , as many items as possible

are included in B1, according to order O, i.e. as they appear in F . If, on the

other hand, the remaining capacity W does not allow item l to be added to

B1, the first possible item r of F , which can be added to B1 is sought and

item r is added to B1. Of course all items i, . . . , r − 1 must be added to B0.

Since the current node has not been fathomed such an r must exist.
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Algorithm 10.1 (Branch and bound for the knapsack problem.)

Input: Values c1
i and c2

i , weights wi for i = 1, . . . , n and capacity W.

Initialization: Create root node N0 as follows.

Set B1 := ∅, B0 := ∅, F := {1, . . . , n},
Set z :=

(
0
0

)
, z :=

(
∞
∞

)
, L := ∅, N := {N0}.

While N 	= ∅
Choose the last node N ∈ N .

Compute W and z.

Add z to L if it is not dominated.

Compute z.

If {i ∈ F : wi ≤ W} = ∅ or z is dominated by some y ∈ L
Fathom node N . N := N \ {N}.
Create a new node N ′ as follows.

Let t := max{i : i ∈ B1}.
If t < n do

B1 := B1\{t}, B0 := (B0∩{1, . . . , t−1})∪{t}, F := {t+1, . . . , n}
End if.

If t = n do

Let u be min{j : {j, j + 1, . . . , t − 1, t} ⊂ B1}.
Let v be max{j : | ∈ B1 \ {u, . . . , t}}.
B1 := B1\{v, u, u+1, . . . , t−1, t}, B0 := (B0∩{1, . . . , v−1})∪{v},
F := {v + 1, . . . , n}

End if. N := N ∪ {N}
If set B1 of N ′ is smaller than B1 of predecessor nodes of N , which

are not predecessors of N ′ then fathom these nodes.

If no new node can be created (B1 = ∅), STOP.

Otherwise

Create a new node N ′ as follows.

Let s := max

{
t ∈ F :

t∑
j=1

wj < W

}
according to order O.

If wl > W let s := l − 1.

If s ≥ l do

B1 := B1 ∪ {i, . . . , s} , B0 := B0, F := F \ {i, . . . , s}.
End if

If s = i − 1 do

Let r := min{j : j ∈ F , wj < W} according to order O.

B1 := B1 ∪ {r}, B0 := B0 ∪ {i, . . . , r − 1}, F := F \ {i, . . . , r}
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End if

N := N ∪ {N}
End otherwise.

End while.

Output: All efficient solutions.

We illustrate Algorithm 10.1 with an example also used in Ulungu and

Teghem (1997). Following the iterations along the branch and bound tree of

Figure 10.1 will make clear how the algorithm works.

Example 10.1 (Ulungu and Teghem (1997)). We consider the problem

max 11x1 + 5x2 + 7x3 + 13x4 + 3x5

max 9x1 + 2x2 + 16x3 + 5x4 + 4x5

subject to 4x1 + 2x2 + 8x3 + 7x4 + 5x5 ≤ 16

xj ∈ {0, 1}, j = 1, . . . , 5

The orders are

O1 = {x1, x2, x4, x3, x5}
O2 = {x1, x3, x2, x5, x4}
O = {x1, x2, x3, x4, x5}.

First, node N0 is created with B1 = ∅, B0 = ∅, F = {1, 2, 3, 4, 5} and the

bounds are initialized as z =
(
0
0

)
, z =

(
∞
∞

)
and L := ∅, N = {N0}

1. Node N0 is selected and a new node N1 is created with B1 = {1, 2, 3},
B0 = ∅, F = {4, 5}. Thus N = {N0, N1}.

2. Node N1 is selected. We compute W = 2, z = z =
(
23
27

)
and add this to L.

L = {
(
23
27

)
}.

Since {j ∈ F : wj < W} = ∅, node N1 is fathomed and we create node

N2. Sincet = 3 we get B1 = {1, 2}, B0 = {3}, F = {4, 5}.
N = {N0, N2}.

3. Node N2 is selected. We compute W = 10, z =
(
16
11

)
, check that {j ∈ F :

wj < W} = {4, 5} 	= ∅. The upper bound is z =
(
29
18

)
.

Node N3 is created with s = 4 and B1 = {1, 2, 4}, B0 = {3}, F = {5}.
N = {N0, N2, N3}

4. N3 is selected. W = 3 and z = z =
(
29
16

)
is added to L so that L =

{
(
23
27

)
,
(
29
16

)
}. Since {j ∈ F : wj < W} = ∅ node N3 is fathomed.

Node N4 is created with t = 4, B1 = {1, 2}, B0 = {3, 4}, and F = {5}.
N = {N0, N2, N4}.
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5. We select N4 and compute W = 10, z =
(
16
11

)
and z =

(
16+3
11+4

)
=
(
19
15

)
. z is

dominated, so node N4 fathomed.

Node N5 is created with t = 2, B1 = {1}, B0 = {2}, and F = {3, 4, 5}.
B1 at N5 is smaller than B1 at node N2 and N2 is fathomed.

N = {N0, N5}.
6. Node N5 is selected. At this node W = 12, z = 119. Since {j ∈ F : wj <

W} 	= ∅, z =
(
27
27

)
is not dominated.

Node N6 is created with s = 3, B1 = {1, 3}, B0 = {2}, and F = {4, 5}.
N = {N0, N5, N6}.

7. Select N6. W = 4 and z = z =
(
18
25

)
Because {j ∈ F : wj < W} = ∅ node

N6 is fathomed.

We create N7 with t = 3, B1 = {1}, B0 = {2, 3}, F = {4, 5}.
N = {N0, N5, N7}.

8. Select N7. W = 12, z =
(
11
9

)
. {j ∈ F : wj < W} 	= ∅. Upper bound

z =
(
27
18

)
is not dominated.

We create N8 with s = 5, B1 = {1, 4, 5}, B0 = {2, 3}, and F = ∅.
N = {N0, N5, N7, N8}

9. Node N8 is selected. W = 0 and z = z =
(
27
18

)
is added to L to give

L = {
(
23
27

)
,
(
29
16

)
,
(
27
18

)
}. Since obviously {j ∈ F : wj < W} = ∅ node N8

fathomed.

Node N9 is created with t = 5, u = 4, v = 1, and B1 = ∅, B0 = {1},
F = {2, 3, 4, 5}.
B1 at N9 is smaller than B1 at N7 and N5 so that N5, N7 are fathomed.

N = {N0, N9}.
10. Select N9. W = 16, z =

(
0
0

)
. To compute z use s1 = 4, s2 = 5 so that

z =

(
0 + 5 + 13 + max{[7 3

5 ], [7 − (8 − 7)13
7 ]}

0 + 16 + 2 + 4 + max{[0], [5 − (7 − 1)4
5 ]}

)
=

(
23

22

)
.

The upper bound z is dominated, N9 is fathomed. Because B1 = ∅ at N9,

N0 can be fathomed. Thus N = ∅ and the algorithm stops.

Graphically, the solution process can be depicted as in Figure 10.1. Each

node shows the node number and the sets B1 and B0. L is shown for a node

whenever it is updated at that node.

There are three efficient solutions, x1 with x1 = x2 = x3 = 1, x2 with

x1 = x2 = x4 = 1, and x3 with x1 = x4 = x5 = 1. ��

Algorithm 10.1 finds a complete set of efficient solutions. If no duplicates of

nondominated points are kept in L it will be a minimal complete set, otherwise

the maximal complete set.
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N0

∅
∅

N1

1, 2, 3

∅

N2

1, 2

3

N5

1

2

N9

∅
1

N3

1, 2, 4

3

N4

1, 2

3, 4

N6

1, 3

2

N7

1

2, 3

N8

1, 4, 5

2, 3

L =
{(

23
27

)}

L =
{(

23
27

)
,
(
29
16

)}

L =
{(

23
27

)
,
(
29
16

)
,
(
27
18

)}
Fig. 10.1. Branch and bound tree in Example 10.1.
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10.2 The Travelling Salesperson Problem and Heuristics

The travelling salesperson problem (TSP) consists in finding a shortest tour

through n cities. Given a distance matrix C = (cij), find a cyclic permutation

π of {1, . . . , n} such that π(n) = 1 and
∑n

i=1 ciπ(i) is minimal. It can also be

formulated as an optimization problem on a complete graph. Let Kn = (V , E)

be a graph and C : E → R� be a cost (or distance) function on the edges. The

TSP is to find a simple cycle that visits every vertex exactly once and has

the smallest possible total cost (distance). Such cycles are called Hamiltonian

cycles, and we shall use the notation HC.

In the multicriteria case we have p distance matrices Ck, k = 1, . . . , p

and the problem is to find cyclic permutations of {1, . . . , n} that minimize

(f1(π), . . . , fp(π)), where fk(π) =
∑n

i=1 ck
iπ(i). The problem is NP-hard for

one objective, so also in the multicriteria case. #P-completeness is open, but

we can prove intractability.

Proposition 10.2 (Emelichev and Perepelitsa (1992)). The multicri-

teria TSP is intractable, even if p = 2.

Proof. We consider the TSP on the graph G = Kn with edge set {e1, . . . ,

en(n−1)/2} and assign the costs c(ei) = (2i, 2n2 − 2i). As shown earlier (Theo-

rem 9.37) all feasible solutions have incomparable weights. Because there are

(n − 1)! feasible solutions, the claim follows. ��

Methods for finding efficient solutions usually imply solving many single

objective TSPs, i.e. NP-hard problems. The TSP is therefore well suited to

establish and exemplify results on approximation algorithms for multiobjec-

tive combinatorial optimization problems. The results discussed in this section

have been obtained in Ehrgott (2000).

To illustrate the idea of approximation algorithms, we first review briefly

approximation algorithms for single objective combinatorial optimization

problems minx∈X f(x).

Let x ∈ X be any feasible solution and x̂ ∈ X be an optimal solution. Then

R(x, x̂) := f(x)/f(x̂) ≥ 1 is called the performance ratio of x with respect to

x̂.

A polynomial time algorithm A for the problem is called an r(n)-appro-

ximation algorithm, if R(A(I), x̂) ≤ r(|I|) for all instances I of the problem,

where A(I) is the solution found by A, |I| denotes the size of the problem

instance and r : N → [1,∞] is a function. r(n) ≡ 1 means that the problem

is solvable in polynomial time by algorithm A. Note that R(x, x̂) = � is

equivalent to

f(x) − f(x̂)

f(x̂)
= � − 1.
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We will investigate if it is possible to find one solution that is a good

approximation for all efficient solutions of a multiobjective combinatorial op-

timization problem. In order to generalize the definition of approximation

ratios, we will use norms. Let ‖ · ‖ : Rp → R� be a norm. We say that ‖ · ‖
is monotone, if for y1, y2 ∈ Rp with |y1

k| ≤ |y2
k| for all k = 1, . . . , p we have

‖y1‖ ≤ ‖y2‖ (see Definition 4.19).

Now consider a multiobjective combinatorial optimization problem.

Definition 10.3. Let x ∈ X , and x̂ ∈ XE.

1. The performance ratio R1 of x with respect to x∗ is

R1(x, x̂) :=
| ‖f(x)‖ − ‖f(x̂)‖ |

‖f(x̂)‖ .

Algorithm A that finds a feasible solution of the MOCO problem is an

r1(n)-approximation algorithm if

R1(A(I), x̂) ≤ r1(|I|)

for all instances I of the problem and for all efficient solutions of that

instance of the MOCO problem.

2. The performance ratio R2 of x with respect to x̂ is

R2(x, x̂) :=
| ‖f(x) − f(x∗)‖ |

‖f(x∗)‖ .

Algorithm A that finds a feasible solution of the MOCO problem is an

r2(n)-approximation algorithm if

R2(A(I), x̂) ≤ r2(|I|)

for all instances I of the problem and for all efficient solutions of that

instance of the MOCO problem.

We have some general results on approximation of efficient solutions.

Corollary 10.4. An r(n)-approximation algorithm according to R2 is an

r(n)-approximation algorithm according to R1.

Proof. If R2(x, x̂) ≤ � then also R1(x, x̂) ≤ �. ��

Since we actually compare the norms of the objective vectors of a heuristic

solution x and efficient solutions x̂, a straightforward idea is to use a feasible

solution whose objective vector has minimal norm as an approximate solution.

This approach gives a performance ratio of at most 1.
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Theorem 10.5. Let xn ∈ X be such that ‖f(xn)‖ = minx∈X ‖f(x)‖ and let

x̂ be efficient. Then

R1(x
n, x̂) ≤ 1.

Proof.

R1(x
n, x̂) =

| ‖f(xn)‖ − ‖f(x̂)‖ |
‖f(x̂)‖ =

‖f(x̂)‖ − ‖f(xn)‖
‖f(x̂)‖ ≤ 1.

��

Note that there always exists some xn with minimal norm ‖f(xn)‖, which

is also efficient optimal. This can be seen from Theorem 4.20, using yU = 0

as reference point, which is possible because distances cp
ij are nonnegative.

With Theorem 10.5 two questions arise: Is the bound tight and can xn be

computed efficiently? The answer to the first question is given by an example.

Example 10.6. Let E = {e1, e2, e3, 34} and X = {x ⊂ E : |x| = 2}. The costs

of all e ∈ E are c(e1) = (M, 0), c(e2) = (0, M), c(e3) = c(e4) = (1, 1), where

M is a large number.

The efficient solutions are {e1, e3}, {e1, e4}, {e2, e3}, {e2, e4}, and {e3, e4}.
The solution with minimal norm is xn = {e3, e4}. Computing performance

ratios we obtain

R1({e3, e4}, {e1, e3}) =
| ‖(2, 2)‖ − ‖(M + 1, 1)‖ |

‖(M + 1, 1)‖ → 1

as M → ∞ and

R2({e3, e4}, {e1, e3}) =
| ‖(2, 2) − (M + 1, 1)‖ |

‖(M + 1, 1)‖ → 1

as M → ∞. This example shows that the bound of 1 for the approximation

ratio cannot be improved in general. ��

For the second question, we can state two sufficient conditions which guar-

antee the existence of polynomial time algorithms to compute xn.

Proposition 10.7. The problem minx∈X ‖f(x)‖ can be solved in polynomial

time if one of the two conditions below is satisfied.

1. (X , 1-
∑

, Z)/ id /(Z, <) can be solved in polynomial time and ‖ · ‖ = ‖ ‖1.

2. (X , 1-max, Z)/ id /(Z, <) can be solved in polynomial time and ‖ · ‖ =

‖ · ‖∞.
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Proof. 1. In the first case,

min
x∈X

‖f(x)‖ = min
x∈X

p∑
k=1

fk(x)

= min
x∈X

p∑
k=1

∑
e∈x

ck(e)

= min
x∈X

∑
e∈x

p∑
k=1

ck(e)

= min
x∈X

∑
e∈x

ĉ(e)

where ĉ(e) =
∑p

k=1 ck(e).

2. In the second case,

min
x∈X

‖f(x)‖ = min
x∈X

max
k=1,...,p

fk(x)

= min
x∈X

max
k=1,...,p

max
e∈x

ck(e)

= min
x∈X

max
e∈x

max
k=1,...,p

ck(e)

= min
x∈X

max
e∈x

ĉ(e),

where ĉ(e) = maxp
k=1 ck(e).

Under the assumptions of the proposition, these problems are solvable in

polynomial time. ��

After these general results on approximability, we turn attention to the

multicriteria TSP again. We consider two well known heuristic methods for the

single objective problem, and analyze their performance for the multiobjective

TSP. To apply these methods, we have to assume that the distances satisfy

the triangle inequality and are symmetric, i.e. ck
ij ≤ ck

il + ck
lj and ck

ij = ck
ji for

all i, j, k, l.

The first heuristic generalizes the tree heuristic, which generates a tour

from a spanning tree via an Eulerian tour. A Eulerian tour of a graph G is

an alternating sequence of nodes and edges with identical first and last node,

which contains each edge of G exactly once. It is well known that a graph G
is Eulerian (i.e. has a Eulerian tour) if and only if each node has even degree,

see e.g. (Papadimitriou and Steiglitz, 1982, p. 412) for a proof.

Algorithm 10.2 (Tree heuristic for the TSP.)

Input: Distance matrices Ck, k = 1, . . . , p.

Find ST ∈ argmin{‖f(T )‖ : T is a spanning tree of Kn}.
Define G := (V(Kn), E), where E consists of two copies of every e ∈ E(ST )

Find a Eulerian tour embedded in G, and the corresponding TSP tour HC

by eliminating duplicate nodes in the Eulerian tour.
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Output: A TSP tour HC.

Note that the graph G, which has two copies of each edge of the span-

ning tree ST is Eulerian because each node is incident to an even number of

edges. From the Eulerian tour a TSP tour HC can be constructed through

“shortcuts”. This is where the triangle inequality for the cost functions is

important.

Example 10.8. We apply the algorithm to a TSP with three objectives. The

distance matrices are

C1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

− 1 6 5 5 5

1 − 5 4 6 4

6 5 − 5 6 1

5 4 5 − 6 8

5 6 6 6 − 2

5 4 1 8 2 −

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

C2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

− 57 55 24 19 46

57 − 151 126 121 137

55 151 − 121 90 117

24 126 121 − 34 61

19 121 90 34 − 27

46 137 117 61 27 −

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

C3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

− 39 173 6 249 45

39 − 354 348 430 25

173 354 − 511 76 404

6 348 511 − 251 39

249 430 76 251 − 328

45 25 404 39 328 −

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Using either the l2- or the l1-norm, we get the tree of Figure 10.2 with

objective vector f(ST ) = (23, 272, 339). Its l1-norm is 634, the l2-norm is

435.24. So G is the graph shown in Figure 10.3.

One possible TSP tour HC, (1, 2, 4, 3, 5, 6, 1) is indicated by the broken

lines. The objective function value is f(HC) = (18, 467, 1879) and HC is

indeed efficient, which can be verified in this small example by complete enu-

meration. ��

The multicriteria tree heuristic has the theoretically best performance ratio

of 1.

Proposition 10.9. Algorithm 10.2 is a 1-approximation algorithm according

to performance ratio R1.
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� �

� �

�

�

Fig. 10.2. Minimum norm spanning tree ST of K6.

� �

� 	




�

Fig. 10.3. G is obtained by duplicating all edges of ST .

Proof. Let HC be the tour found by Algorithm 10.2 and let ĤC be an efficient

tour. We show that

−‖f(ĤC)‖ ≤ ‖f(HC)‖ − ‖f(ĤC)‖ ≤ ‖f(ĤC)‖. (10.8)

The left inequality is trivial. To prove the right hand one, we first apply

the the triangle inequality, which gives
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f(HC) ≤ 2f(ST ) = f(G).

From monotonicity of the norm ‖ · ‖ we now conclude

‖f(C)‖ ≤ 2‖f(ST )‖. (10.9)

By the choice of ST and since deleting an edge from ĤC gives a spanning

tree we also have

‖f(ST )‖ ≤ ‖f(ĤC)‖. (10.10)

Combining (10.9) and (10.10) we conclude

‖f(HC)‖ ≤ 2‖f(ĤC)‖.

��

We can improve Algorithm 10.2 by adding copies of fewer edges in ST

when creating G. All we need is to add as many edges as necessary to be sure

that all edges in G have even degree. Thus, we get a multiobjective version of

Christofides’ algorithm (Papadimitriou and Steiglitz, 1982).

Algorithm 10.3 (Christofides’ heuristic for the TSP.)

Input: Distance matrices Ck, k = 1, . . . , p.

Find ST ∈ argmin{‖f(T )‖ : T is a spanning tree of Kn}.
Let G∗ = (V∗, E∗), where V∗ = {v : v has odd degree in ST }, and E∗ =

{[u, v] : u, v ∈ V∗}.
Find PM ∈ argmin{‖f(M)‖ : M is a perfect matching in G∗}.
G = (V , E(ST ) ∪ E(PM)).

Find a Eulerian tour of G, and the embedded TSP tour HC.

Output: A TSP tour HC.

Instead of duplicating all edges of ST only additional edges between those

nodes that have odd degree in ST are added. There is always an even number

of nodes with odd degree in a spanning tree (because the sum of the degrees

of all nodes is even). Therefore G∗ is a complete graph on an even number of

nodes. Thus G∗ has a perfect matching with |V∗|/2 edges.

Example 10.10. We apply Algorithm 10.3 to the instance presented in Ex-

ample 10.8. With the same spanning tree of minimal norm as before (Figure

10.2) nodes 2, 4, 5, and 6 have odd degree. The (unique) perfect matching with
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� �

� �

�

�

Fig. 10.4. Eulerian graph G obtained by Algorithm 10.3.

minimal norm for both the l1 and l2 norm is PM = {[2, 6], [4, 5]}. We get G
as shown in Figure 10.4.

A TSP tour that can be extracted from G is (1, 2, 6, 3, 5, 4, 1) with objective

function values (23, 459, 801), which is also an efficient TSP tour. ��

The Christofides’ heuristic has a performance ratio of 1/2 in the single

objective case. This can no longer hold for multiple criteria. But it should not

come as a surprise, that it also has the performance ratio 1.

Proposition 10.11. Algorithm 10.3 is a 1-approximation algorithm for the

multicriteria TSP according to performance ratio R1.

Proof. Let HC be the TSP tour found by Algorithm 10.3 and let ĤC be an

efficient TSP tour. We show (10.8) again.

Let {i1, . . . , i2m} be the odd degree nodes in ST in the order they appear

in ĤC, i.e.

ĤC = (α0, i1, α1, i2, . . . , α2m−1, i2m, α2m),

where αi are sequences of other nodes.

M1 = {[i1, i2], [i3, i4], . . . , [i2m−1, i2m]} and M2 = {[i2, i3], . . . , [i2m, i1]} are

two perfect matchings on the nodes {i1, . . . , i2m}. By the triangle inequality we

get f(ĤC) ≥ f(M1) + f(M2) and by definition of PM ‖f(Mi)‖ ≥ ‖f(PM)‖
for i = 1, 2. Therefore

‖f(ĤC)‖ ≥ ‖f(M1) + f(M2)‖
≥ max{‖f(M1)‖, ‖f(M2)‖} ≥ ‖f(PM)‖. (10.11)
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On the other hand

‖f(C)‖ ≤ ‖f(G)‖ = ‖f(ST ) + f(PM)‖
≤ ‖f(ST )‖ + ‖f(PM)‖. (10.12)

Putting (10.11) and (10.12) together we obtain

‖f(HC)‖ ≤ ‖f(ST )‖+ ‖f(PM)‖ ≤ ‖f(ST )‖+ ‖f(ĤC)‖ ≤ 2‖f(ĤC‖,

because, as in the proof of Proposition 10.11,

‖f(ĤC)‖ ≥ ‖f(ST )‖.

��

Note that if p = 1, ‖f(x)‖ = f(x), and (10.11) can be strengthened to

f(ĤC) ≥ 2f(PM) which gives f(HC) ≤ 3f(ĤC) and R1(HC, ĤC) = 1/2.

The reason why no better result is obtained in the multicriteria case is the

maximum of ‖f(M1)‖ and ‖f(M2‖. We cannot replace this by the sum of the

two terms in general.

To prove the approximation result for approximation ratio R2, we restrict

ourselves to lp-norms

‖y‖p =

(
p∑

k=1

|yk|p
) 1

p

.

Theorem 10.12 (Ehrgott (2000)). Algorithms 10.2 and 10.3 are (2p+1)
1
p -

approximation algorithms according to performance ratio R2.

Proof. Let HC be the TSP tour found by either Algorithm 10.2 or Algorithm

10.3 and let ĤC be an efficient TSP tour.
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‖f(HC) − f(ĤC)‖
‖f(ĤC)‖

=

(
p∑

k=1

|fk(HC) − fk(ĤC)|p
) 1

p

(
p∑

k=1

(fk(ĤC))p
) 1

p

≤

(
p∑

k=1

((fk(HC))p + (fk(ĤC))p)

) 1
p

(
p∑

k=1

(fk(ĤC))p
) 1

p

(10.13)

=

(
‖f(HC)‖p + ‖f(ĤC)‖p

‖f(ĤC)‖p

) 1
p

≤
(

2p‖f(ĤC)‖p + ‖f(ĤC)‖p

‖f(ĤC)‖p

) 1
p

(10.14)

= (2p + 1)
1
p (10.15)

For inequality (10.13) we used the crude estimate(
p∑

k=1

|y1
k − y2

k|p
) 1

p

≤
(

p∑
k=1

((y1
k)p + (y2

k)p)

) 1
p

.

Inequality (10.14) follows from the fact ‖f(HC)‖ ≤ 2‖f(ĤC)‖ from the

proofs of Proposition (10.9) and 10.11, which are true for any monotone norm.

��

Even though the theoretical bounds for Algorithms 10.2 and 10.3 are the

same, 10.3 will often yield better results in practice, see Exercise 10.4, which

continues Examples 10.8 and 10.10. A more detailed analysis of Algorithms

10.2 and 10.3 can be found in Ehrgott (2000). For instance, the bound of

Theorem 10.12 can be improved, when the l1-norm is used. The reader is

asked to obtain this better bound in Exercise 10.3

10.3 Notes

References on multiobjective versions of NP-hard combinatorial optimization

problems are fewer than for polynomially solvable ones.

The most popular is the knapsack problem. Apart from the branch and

bound algorithm presented here algorithms based on dynamic programming

are known (e.g. Eben-Chaime (1996); Klamroth and Wiecek (2000)). Heuris-

tics and metaheuristics to approximate XE are found in Gandibleux and
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Fréville (2000); Hansen (1998); Safer and Orlin (1995); Salman et al. (1999).

Metaheuristics have also been used to solve multi-constraint knapsack prob-

lems (Jaszkiewicz, 2001; Zitzler and Thiele, 1999).

Some further references on the TSP are Fischer and Richter (1982); Hansen

(2000); Melamed and Sigal (1997). A few references must suffice to indicate

that other problems have also been addressed, e.g. set partitioning prob-

lems in Ehrgott and Ryan (2002) and location problems in Fernández and

Puerto (2003). For scheduling problems there is a vast amount of literature,

see T’Kindt and Billaut (2002) and in Chapter 8 of Ehrgott and Gandibleux

(2002b).
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Exercises

10.1. Let x1 and x2 be two optimal solutions of the weighted sum knapsack

problem

min λ

n∑
i=1

c1
i xi + (1 − λ)

n∑
i=1

c2
i xi

xi ∈ {0, 1}; i = 1, . . . , n

with 0 < λ < 1. Let xMT ∈ [0, 1]n be a vector which attains the Martello-

Toth bound (10.7) for this single objective knapsack problem. Show that

(
∑n

i=1 c1
i x

MT
i ,

∑
i = 1nc2

i x
MT
i ) is an upper bound for all efficient solutions of

the bicriterion knapsack problem with
∑n

i=1 c1
i x

1
i ≤

∑
i=1 c1

i xi ≤
∑n

i=1 c1
i x

2
i

and
∑n

i=1 c2
i x

2
i ≤∑i=1 c2

i xi ≤
∑n

i=1 c2
i x

1
i .

10.2. Solve the following bicriterion knapsack problem using Algorithm 10.1.

max 10x1 + 3x2 + 6x3 + 8x4 + 2x5

max 12x1 + 9x2 + 11x3 + 5x4 + 6x5

subject to 4x1 + 5x2 + 2x3 + 5x4 + 6x5 ≤ 17

xj ∈ {0, 1}, j = 1, . . . , 5.

10.3. Compute the approximation ratio r2(n) of Algorithms 10.2 and 10.3

explicitly when the l1-norm or the l∞-norm is used. For the l1 norm you

should obtain a better result than that of Theorem 10.12.

10.4. To see that the Christofides’ heuristic (Algorithm 10.3) may yield much

better results than the tree algorithm in practice, despite their having the

same worst case approximation ratios, compute the actual deviations of all

possible heuristic TSP tours from the efficient TSP tours. See Figures 10.3

and 10.4. There are seven efficient solutions.
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Schöbel, A., 43

Serafini, P., 222, 241, 254

Sherali, H., 80

Shetty, C., 80

Soland, R., 125

Soncini-Sessa, R., 127

Steiglitz, K., 254, 257, 282, 285

Stephan T., 235

Steuer, R., 35, 154, 166, 173, 175

Stoer, J., 78

Swamy, M., 207

Tammer, K., 102, 216

Tamura, K., 93

Tanino, T., 23, 58, 116

Teghem, J., 255, 256, 262, 272, 276

Tenfelde-Podehl, D., 235

Thapa, M., 160, 179

Thulasiraman, K., 207

Toth, P., 272, 273

Tucker, A., 57

Tuyttens, D., 262

Ulungu, E., 255, 256, 272, 276

Valiant, L., 207, 254

Van Nieuwenhuyse, K., 262

Vincke, P., 6

Warburton, A., 90

Weber, E., 127

Welsh, D., 207

Wendler, K., 102, 216

Wessels, J., 215

Wiecek, M., 43, 94, 109, 180

Wierzbicki, A., 121, 215

Wismer, D., 98

Witzgall, C., 78

Wolsey, L., 185, 248



Subject Index

Bold face page numbers indicate definitions.

<, 12

≤, 12

≤MO, 12

≤lex, 12, 17

�, 12

Rp

�
-bounded, 60, 62

Rp

�
-closed, 60, 62, 116

Rp

�
-compact, 31, 62, 88

Rp

�
-convex, 67, 68–70, 74

Rp

�
-semicompact, 30, 31, 32

Rp

�
-semicontinuous, 32

≺, 9

�, 9

∝, 206

∝p, 206

∼, 9

zMO, 140

fP , 46, 145

A(λ, p,Y), 116, 125

A(Y), 116

Cs◦, 93

K◦, 74

K◦◦, 74

RC , 15

S(Y), 67–91, 93, 115

S0(Y), 67–93

TY(y), 52

XQ, 145

XE, 24

Xlex-MO, 136

XMO, 132

XΠ , 131

Y(α), 88

YN , 24

YpN , 71

YwN , 40

Ylex-MO, 136

achievement function, 121, 121, 215

increasing, 121

strictly increasing, 121

strongly increasing, 121

achievement function approach, 121

active index, 57

acyclic digraph, 222, 241

adjacent, 172

bases of LP, 172

efficient basis, 173

spanning trees, 243

algorithm

approximation algorithm, 279, 280

branch and bound, 274

Christofides’ heuristic, 285, 287, 290

complexity, 205

depth first strategy, 274

exponential, 205, 230, 240, 253

greedy strategy, 240



316 Subject Index

Hungarian method, 254

knapsack, 274

label correcting, 229, 269

label setting, 225–227, 269

level set, 235

polynomial time, 205, 209–211, 214,

281

tree heuristic, 282, 287

two phase method, 256

worst case running time, 205

alternatives, 1–8

antisymmetric, 9

approximation, 279–288

approximation ratio, 290

assignment problem, 253–267

#P-complete, 253

NP-complete, 253

intractable, 253

asymmetric, 9

backtracking

branch and bound, 274

paths, 228, 231

bases

connected efficient bases, 174

basic feasible solution, 161, 164

efficient, 171

optimal, 168

basic solution, 161

basis, 160, 247

initial efficient, 178

supported efficient, 250

weakly efficient, 195

basis matrix, 160

Benson’s method, 106, 217

Benson’s problem, 124, 215

BFS, 161

binary relation, 8–11, 20

antisymmetric, 9

asymmetric, 9, 10, 11

compatible with scalar multiplication,

13

connected, 9

irreflexive, 9, 10, 11

negatively transitive, 9

reflexive, 9

strongly connected, 9

symmetric, 9

transitive, 9, 10, 11

bipartite graph, 253

bottleneck problem, 199

boundary, 13, 28

branch and bound, 277

backtracking, 274

depth first, 274

fathom, 274

Christofides’ heuristic, 286

class #P , 206

class NP , 206

class P , 205

classification, 65, 128, 136

closed convex set, 77, 78

combinatorial optimization problem,

197–288

instance, 200

size of an instance, 200

common index, 143

criteria for, 142

existence, 142

compact interval, 62

compact section, 29

compact set, 30, 39

compact, convex set, 90

complement, 30

complete bipartite graph, 253

complete set

maximal, 204

minimal, 204

compromise programming, 111–120,

132, 216

method, 124, 126

weighted problem, 113

computational complexity, 205–208

cone, 8, 15, 20

cone(Y), 52

acute, 21

closed, convex, 61

closed, convex, pointed, 63

convex, 13, 14, 15



Subject Index 317

convex, pointed, 71

nontrivial, 13

nontrivial, convex, pointed, closed, 61

pointed, 13, 14, 15

polar, 93

proper, 13

recession cone, 62

tangent cone, 52

conical hull, 52

cone(Y), 52

connected, 9, 86, 174

extreme efficient bases, 251

Pareto graph, 243

connectedness

efficient bases, 175

linear program, 188

of YN , 92

of YN and XE, 86–91

constraint

from objectives, 98

inactive, 57

KT qualification, 81

problem, 56

qualification, 57

constraint qualification, 57

convex function, 46–49, 54, 62, 71, 76,

84, 90–91, 101, 108, 140

convex hull, 13

convex set, 88

Corley’s method, 124, 126

counting problem, 206, 207

criteria, 1–8

conflicting, 2, 7

vectors, 7

criteria matrix, 153

criterion space, 4, 5

critical item, 272

critical value, 166

cycle, 221

directed, 221

decision, 1

optimal, 5, 7

decision maker, 6

decision problem, 205, 207

decision space, 4

deviation variable, 106

differentiable curve, 57

dimension, 164

distance matrix, 279

distance measure, 111

divide and conquer, 209

dominating solution, 106, 109

domination, 24

edge, 164

efficiency

test for, 260–261

efficient, 24, 43, 68–71, 125

ε-constraint method, 100

C-efficient, 94

basic feasible solution, 171

basis, 250

Benson’s method, 107

compromise programming, 111, 113,

114

edge, 188

extreme point, 193

graphic illustration, 24

perfect matching, 253

properly efficient, 51, 53

spanning tree, 251

unbounded edge, 178

efficient basic feasible solution, 183

efficient basis, 172, 174, 183, 191, 192,

195

adjacent, 191

initial, 177

efficient edge

unbounded, 191

efficient extreme point, 174, 195

average number, 179

expected number, 179

efficient face, 185, 186, 189

maximal, 185

unbounded, 190

efficient nonbasic variable, 172, 173,

174, 193

index set of, 192

maximal set of, 191



318 Subject Index

efficient path, 224, 233

composition, 224

simple, 224

with at most k arcs, 229

efficient pivot, 172, 173

efficient point

existence, 28

efficient set, 20, 24, 23–58

connectedness, 86

empty, 25

efficient solution, 8, 18, 20, 23–58

assignment, 259

characterization

geometric, 43

characterization by lex-MO solution,

139

elastic constraint, 104

existence, 32–61

finite problem, 209

knapsack, 271–277

lexicographic solution, 129

matroid, 248–252

of a linear program, 158–193

spanning tree, 236–247

elastic constraint method, 102

entering variable, 166, 173

ε-constraint

method, 98, 115, 215

problem, 99, 124

Equi-Partition, 254

equivalence relation, 9

Eulerian graph, 282

Eulerian tour, 282

externally stable, 33

extreme efficient

spanning tree, 270

extreme point, 164, 185

efficient, 193

initial, 177

extreme ray, 164, 185, 191, 192

face, 164

facet, 164

fathom, 275

feasible direction, 57

feasible pivot, 172, 173, 191

feasible set, 4

finite, 203

in objective space, 153

of a linear program, 153

feasible solution

finite set, 198

finite problem, 214

efficient solution, 209

lex-MO solution, 210

lexicographic solution, 212

max-ordering solution, 210

finite subcover, 30–32, 39

free variables, 272

global lexicographic solution, 131

greedy algorithm, 240, 241, 243, 248

halfspace, 21

Helly’s theorem, 46–48

heuristic method, 282

Hungarian method, 254, 257

hybrid method, 101

hyperplane, 67, 163

supporting, 163

ideal point, 33, 34, 63, 111, 133, 233

proper, 63

identity map, 17, 128

identity matrix, 158

independence system, 247

independent set, 247

maximal, 247, 248

maximum, 247

inductively ordered set, 28, 30, 31

inefficient nonbasic variable, 174

interior, 13

relative interior, 13

intractable, 208

assignment problem, 253

shortest path problem, 223

spanning tree problem, 245

TSP, 279

irreflexive, 9

isolated node, 245



Subject Index 319

0-1 Knapsack, 207, 208, 222

Knapsack, 207, 246

knapsack problem, 207, 217, 271–277

NP-hard, 271

bicriterion, 271

optimal solution, 272

upper bound, 290

value to weight ratio, 271

k-Partition, 248

label correcting algorithm, 229

label setting algorithm, 225

Lagrangian relaxation, 217

leaving variable, 166

level curve, 41, 41, 44, 234

level set, 41, 41, 44, 133, 234

convex, 46

strict, 41

lex-MO problem, 201

lex-MO solution, 135

finite problem, 210

lexicographic

comparison, 7

optimization, 128–131

lexicographic max-ordering, 135

lexicographic max-ordering solution,

136

lexicographic problem, 20, 201

lexicographic solution, 129

global, 131

lexicographically optimal

bases, 251

lexicographically optimal solution, 18,

128–131, 252

finite problem, 212

path, 231, 233

linear program

biobjective, 169

dual, 159, 177

feasible, 162

parametric, 165, 170

linear programming

algebra, 163

binary, 199, 253

geometry, 163

integer, 199

optimality criterion, 165

parametric, 164–169

local search, 86

location problem, 44

lower bound

max-ordering, 135

lower bound, 28

knapsack, 273

max-ordering, 134

on efficient set, 34

lower semicontinuous, 32, 146

LP(λ), 171–193

matching, 253

matroid, 247, 247–252

efficient solution, 248–252

graphic, 247

matric, 247

partition, 247, 251

uniform, 247

matroid problem

NP-complete, 248

max-ordering optimal, 132–135

max-ordering optimization, 132–135

max-ordering problem, 20, 140, 201, 216

matroid, 249, 250

max-ordering problemNP-complete,

248

max-ordering solution, 132, 252

finite problem, 210

geometric characterization, 133

spanning tree, 270

maximal efficient face, 189, 191, 192

MCO class, 19, 201

lex-MO class, 145

normalization property, 145

reduction property, 145

regularity property, 145

relationships, 137

MCOP, 17

data, 17

feasible set, 17

model map, 17

objective function vector, 17



320 Subject Index

objective space, 17

ordered set, 17

metric, 111

minimal edge, 237, 242

minimal element, 28

minimal set, 31

minimax theorem, 79

model map, 17

monotone norm, 111

multicriteria decision aid, 6

multicriteria optimization class, 19

multicriteria optimization problem

classification, 16

multicriteria Simplex algorithm, 176,

178, 195

multiobjective problem

differentiable, 57

nadir point, 33, 34, 36, 38, 61, 125, 233

estimate, 35

negative cycle, 224, 228, 229, 269

negative weight, 229

negatively transitive, 9

neighbourhood search, 86, 243, 245

neighbours, 243

nonbasic variable

weakly efficient, 195

nonconvex problem, 73

nonconvex set, 116

nonconvexity

degree of, 119

nondominated, 24

C-nondominated, 62

nondominated frontier, 256

nondominated point, 5, 23–58

existence, 61

nondominated set, 20, 24, 23–58

connectedness, 86

properties, 27–28

norm, 21

l∞-norm, 119

lp-norm, 113, 122

monotone, 113

properties, 116

strictly monotone, 116

monotone, 111, 280

strictly monotone, 111

normalization property, 145

not connected, 86

NP-complete, 206

assignment problem, 253

CMOP, 207

matroid problems, 248

shortest path problem, 222

spanning tree problem, 245

TSP, 279

NP-hard, 206

knapsack, 271

#P-complete, 206

assignment problem, 253

CMOP, 207

shortest path problem, 222

objective space, 4

open cover, 30, 32, 39

ophelimity, 3

optimal solution, 18

existence for combinatorial problems,

203

global, 81

linear knapsack, 272

local, 81

optimal value, 18

optimality condition, 189

Karush-Kuhn-Tucker, 84

optimality criterion, 165

optimization over the efficient set, 61

optimization problem

continuous, 2

discrete, 2

order, 8, 20

antisymmetric, 14, 15

canonical, 8, 17

componentwise order, 12, 240

lexicographic, 135

lexicographic order, 12, 136

max-order, 12

partial order, 11, 21

preorder, 9

quasi-order, 9



Subject Index 321

reflexive, 14, 15

strict componentwise order, 12

strict partial order, 11

strict weak order, 10

topological, 240

total, 136

total order, 10

total preorder, 10

transitive, 14, 15, 39

weak componentwise order, 12

Pareto class, 63, 65

Pareto graph, 243, 243, 250, 270

Pareto optimal, 24

Pareto optimal solution, 4

parsimonious transformation, 206, 222

partial solution, 272, 273

completion, 272

Partition, 207, 248

path, 221

directed, 221

simple, 221

simple directed, 221

pay-off table, 34–36

perfect matching, 253, 285, 286

#P-complete, 254

counting, 207, 254

performance ratio, 279, 280, 281, 283,

287

permutation

cyclic, 279

of objectives, 137

pivot column, 166

pivot element, 166

pivot row, 166

pivot step

exponential number, 179

polar cone, 93, 94

polyhedron, 163

polynomial time algorithm, 179

polynomial time transformation, 206

polytope, 163

power set, 199

predecessor, 275

preordered set, 9, 28

Prim’s algorithm, 238

properly efficient, 36, 50–59, 61, 65,

71–85, 93

Benson, 53, 55, 56, 63, 74, 125

Borwein, 53, 63

combinatorial problem, 203

Geoffrion, 51, 55–57, 84, 85, 108

Kuhn-Tucker, 57, 57, 58, 83–85

properly efficient set

dense in XE, 71

properly efficient solution, 61, 104

properly nondominated, 50–59, 61

Geoffrion, 51

quasi-convex, 91, 95

rank, 247

of a set, 247

ranking

of items, 272

of matroid bases, 250

of objectives, 7, 17, 129

of paths, 234, 269

of solutions, 235

ray, 164

recession cone, 62

reduced cost, 161, 173

reduced cost matrix, 171

nonbasic part, 171

reduced problem, 145

reduction property, 145

reduction result, 47, 61

reference point, 33, 111, 114, 216

reflexive, 9

regularity property, 145

relative interior, 68

of a polyhedron, 186

root node, 275

scalarization

ε-constraint, 215

ε-constraint method, 98

achievement function approach, 121,

215

Benson’s method, 106, 215



322 Subject Index

compromise programming, 111

elastic constraint method, 102

hybrid method, 101, 216

of MOIP, 214–218

weighted sum, 215

second-order necessary condition, 92

separation, 88

proper, 68

theorem, 68

set of optimal solutions, 18, 144

set of optimal values, 18

shortest path problem, 221–234

#P-complete, 222

NP-complete, 222

k-best, 234

intractable, 223

simple path, 224

Simplex algorithm

multicriteria, 176, 178

parametric, 165

Simplex method, 194

Simplex tableau, 166

Sion-Kakutani minimax theorem, 77, 79

slack variable, 180

sort(y), 135

spanning tree, 200, 282, 285

dominated, 238

efficient, 236–247

spanning tree problem, 200, 202,

236–248, 251

NP-complete, 245

counting problem, 206, 247

decision problem, 205

efficient solution, 203

instance, 201

intractable, 245

lex-MO solution, 203

lexicographically optimal solution,

203

max-ordering solution, 203

strictly efficient, 38, 38–50, 63, 109

lex-MO solution, 138

lexicographic solution, 130

strictly efficient solution

geometric characterization, 43

strictly increasing, 125

strictly monotone norm, 111

strictly quasiconvex, 146

strongly connected, 9

substitute problem, 106

sum problem, 199

supported efficient

basis, 250

supported efficient solution, 204, 218

extreme, 205

supported nondominated point, 204

extreme, 205

symmetric, 9

tangent cone, 52, 52, 54

theorem of the alternative

Motzkin, 81

Tucker, 83

topological order, 240, 242

total unimodularity, 254, 256

totally orderd set, 28

trade-off, 50, 72

transitive, 9

travelling salesperson problem, 206,

279–288

1-tree, 270

tree heuristic, 283

triangle inequality, 111, 282

TSP, 279–288

NP-complete, 279

intractable, 279

Umoco, 208, 216

unbounded edge, 185

unique optimal solution, 8, 39, 100, 111,

113, 114, 130

upper bound

knapsack problem, 273

max-ordering, 134

on efficient set, 34

utopia point, 114, 139

weak efficiency

of max-ordering solution, 132



Subject Index 323

weakly efficient, 36, 38, 38–49, 71, 99,

125

compromise programming, 111, 114

weakly efficient set

nonempty, 40

structure, 47

weakly efficient solution

characterization

by compromise programming, 115

by max-ordering, 132

geometric, 43

weakly nondominated, 38

weight function, 199

vector valued, 200

weighted distance, 44

weighted sum

problem, 101, 215, 249

scalarization, 51, 65–91, 101, 113, 126

weighted sum problem, 256

weighting vector, 189

Zorn’s lemma, 28, 30, 39




