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Preface

This collection of formulas constitutes a compendium of mathematics for eco-
nomics and business. It contains the most important formulas, statements and
algorithms in this significant subfield of modern mathematics and addresses
primarily students of economics or business at universities, colleges and trade
schools. But people dealing with practical or applied problems will also find
this collection to be an efficient and easy-to-use work of reference.

First the book treats mathematical symbols and constants, sets and state-
ments, number systems and their arithmetic as well as fundamentals of com-
binatorics. The chapter on sequences and series is followed by mathematics of
finance, the representation of functions of one and several independent vari-
ables, their differential and integral calculus and by differential and difference
equations. In each case special emphasis is placed on applications and models
in economics.

The chapter on linear algebra deals with matrices, vectors, determinants and
systems of linear equations. This is followed by the representation of struc-
tures and algorithms of linear programming. Finally, the reader finds formu-
las on descriptive statistics (data analysis, ratios, inventory and time series
analysis), on probability theory (events, probabilities, random variables and
distributions) and on inductive statistics (point and interval estimates, tests).
Some important tables complete the work.

The present manual arose as a result of many years’ teaching for students
of economic faculties at the Institutes of Technology of Dresden and Chem-
nitz, Germany. Moreover, the authors could take advantage of experience and
suggestions of numerous colleagues. For critical reading of the manuscript we
feel obliged to thank Dr M. Richter and Dr K. Eppler. Our special thank is
due to M. Schoenherr, Dr U. Wuerker and Dr J. Rudl, who contributed to
technical preparation of the book.

After successful use by German readers it is a great pleasure for us to present
this collection of formulas to the English auditorium. The translation is based
on the fifth German edition. We are greatly obliged to Springer-Verlag for
giving us the opportunity to publish this book in English.

The second English edition of this book was very popular both with students
and with practitioners. Thus it was rapidly out of print. So we are very
pleased to present this third, carefully checked edition.

Finally we would like to emphasize that remarks and criticism are always
welcome.

Chemnitz / Dresden, Bernd Luderer
August 2006 Volker Nollau
Klaus Vetters
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Mathematical Symbols and Constants

Notations and symbols

N — set of natural numbers

Ny — set of natural numbers inclusively zero

/4 — set of integer numbers

Q — set of rational numbers

R — set of real numbers

R* — set of nonnegative real numbers

R" — set of n-tuples of real numbers (n-dimensional vectors)
C — set of complex numbers

& — nonnegative number y (square root) such that y? =z, x >0
WVx — nonnegative number y (n-th root) such y"=x, x >0
i T; — sum of the numbers xz;: 1 +220+ ...+ 2,

i=1

IT = — product of the numbers z;: =1 -22-... 2,

flrﬁl - 1-2-...-n (n factorial)

min{a,b} — minimum of the numbers a and b: a for a < b, b for a > b

max{a,b} — maximum of the numbers a and b: a for a > b, b for a <b

[x] — smallest integer y such that y > = (rounding up)

|z] — greatest integer y such that y <2 (rounding down)

sgn x — signum: 1 for x >0, 0 forx =0, —1 for z <0

|| — absolute value of the real number z: z for x > 0 and —z
forz <0

(a,b) — open interval, i.e.a <z < b

[a, b] — closed interval, i.e. a < a <b

(a,b] — half-open interval closed from the right, i.e. a<x<b

[a,b) — half-open interval open at the right, i.e. a<z <b

<, > — less or equal; greater or equal

def

— equality by definition
— the left-hand side is defined by the right-hand side



2 Mathematical symbols and constants

+, F — first plus, then minus; first minus, then plus

\ — for all; for any ...

3 — there exists. . .; there is (at least one)...

pPAq — conjunction; p and ¢

pVyq — disjunction; p or ¢q

p=q — implication; from p it follows ¢

pE=q — equivalence; p is equivalent to ¢

-p — negation; not p

aeM — a is an element of the set M

ag¢ M — a is not an element of the set M

(Z) — binomial coefficient

ACB — A subset of B

1] — empty set

-1l — norm (of a vector, matrix,. ..)

rank (A) — rank of the matrix A

det A, |A] — determinant of the matrix A

0ij — Kronecker’s symbol: 1 for ¢ = j and 0 for ¢ # j

lim a, — limit of the sequence {a,} for n tending to infinity
n—oo

lim f(x) — limit of the function f at the point z

T—To

lilm f(x) — limit from the right (right-hand limit) at the point zq
xrlTo

liTm f(x) — limit from the left (left-hand limit) at the point xg
r|To

Ue (z*) — e-neighbourhood of the point x*

@) = [f@)]" = £b) - f(a)

Mathematical constants

m=3.141592653 589793 ...
e=2.718281828459045 ...

1° = 0.017453292520 ... =

180
17 =0.000290 888209 ...
1”7 =0.000004 848 137 . ..



Sets and Propositions

Notion of a set

set M — collection of well-defined, different objects
elements — objects of a set

a € M <= a belongs to the set M
a ¢ M <= a does not belong to the set M

description — 1. by enumeration of the elements: M = {a,b,c,...}
2. by characterizing the properties of elements with
the help of a sentence form: M = {z € 2] A(z) true}

empty set — the set which does not contain any element; notation: ()

disjoint sets — sets without common elements: M NN =

Relations between sets

Set inclusion (subset)

MCN < (Vz:ze€M = z€N)
MCNAN@BzeN:z¢ M)

M subset of N (inclusion)

M proper subset of N

PM)={X|X Cc M} — power set, set of all subsets
of the set M

Properties:

McM — reflexivity

MCNANNCP = MCP — transitivity

0cM VM — 0 is a subset of any set

e Other notation of a subset: M C N (proper subset: M C N).

Equality of sets

M=N << (Vz:ze€M < z€N) - equality
Properties:

MCNANCM < M=N — order property
M=M — reflexivity
M=N — N=M —  symmetry

M=NANN=P = M=P — transitivity



4 Sets and propositions

Operations with sets

MNN={z|lze MAze€ N}

intersection of the sets M and N;

contains all elements belonging both
to M and to N (1)

MUN ={x|ze MVzecN} — union of the sets M and N; contains

all elements belonging either to M or
to N (or to both of them) (2)

difference of the sets M und N; con-
tains all elements of M not belonging
to N (3)

complement to M with respect to £2;
contains all elements of {2 not be-

longing to M, where {2 is some given
basic set and M C 2 (4)

M\N={z|lze MANx¢ N}

CoM=M=02\M

(3) (4)

e Sets M, N for which M NN = (M, N having no elements in common)
are called disjoint.

e Operations with sets are also called connections between sets.

Multiple connections

n
M; =M UMU...UM, ={z|3iec{l,...,n}:z € M;}
i=1

1=

n
M, =MiNnMsn...NM, ={z|Vie{l,...,n}:z € M}
=1

1=

De Morgan’s laws

MUN=MnNN, MNN=MUN (two sets)

(n sets)

s
=
Il
iD=
£
iDs
£
Il
iCs
£
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Rules for operations with sets

Union and intersection

UNNM)
NUP) =
NNP)=

U (
U (
U (
N(NUP) =

=M MN(NUM)=M
(MUN)UP MN(NNP)=(MNN)NP
(MUN)N(MUP)

(MNN)U(MNP)

Union, intersection and difference

M\ (M\ N)

=MnNN
M\ (NUP) =
M\ (NNP)=
(MUN)\ P =
(MAN)\ P =

(MA\N)N(M\P)
(MA\N)U(M\P)
(M\ P)U(N\ P)
(MA\P)N(N\P)

MNN=0 < M\N=M

Union, intersection and difference in connection with inclusion

MCN
MCN =
MCN =
MCN —

MNN=M <~ MUN=N
MUPCNUP

MNPCNNP

M\N =1

Union, intersection and complement

Ifboth M C 2 and N C {2, then the following relations hold (all complements
taken with respect to £2):

=10
MUM =

=10
MnOM=10

MUN=MNN MNN=MUN De Morgan’s laws, s. p. 4

(M) =M

MCN < NCM



6 Sets and propositions

Product set and mappings

Product set
(x,y) - ordered pair; combination of the elements z € X,y € Y
in consideration of their order
(,y)=(z,w) <= =2z AN y=w — equality of two ordered pairs
XxY=A{(z,y)|lre XAyeY} — product set, Cartesian product,
cross or direct product

Cross product of n sets

HXi:XlXX2X...XXn:{(Il,...,SCn)|Vi€{1,...,71}Il’iGXZ'}

i=1

XxXx...xX=X"; RxRx...xR=R"
~ ~ - ~ ~ -
n times n times
e The elements of X1 X ... x X, i.e. (x1,...,2,), are called n-tuples, for

n = 2 pairs, for n = 3 triples; especially R? denotes all pairs, R" all n-tuples
of real numbers (vectors with n components).

Mappings (relations)

ACX xY —  mapping from X to Y; subset of
the cross product of the sets X
and Y

Dy={zeX|3y: (x,y) € A} —  domain of A

Wa={yeY|3z:(z,y) € A} — rangeof A

AL ={(y,2)| (z,y) € A} —  reciprocal mapping; mapping in-

verse to the mapping A

e Let (x,y) € A. Then y is an element associated with the element z. A
mapping A from X to Y is called single-valued if for any element xz € X there
is only one element y € Y associated with x. A single-valued mapping is called
a function f. The mapping rule is denoted by y= f(z). If both the mapping
A and the inverse mapping A~! (inverse function f~1!) are single-valued, then
A (and f, resp.) are called one-to-one mapping (function).

Linear mapping

FfOz + py) = Af(z) + uf(y) — defining property of a linear mapping
(function), A, u € R

e The composition h(z) = g(f(x)) of two linear mappings (e.g. f: R" — R™
and g: R™ — RP) is again a linear mapping (h: R" — RP) denoted by
h=gof.
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Propositional calculus
Sentences and sentence forms

sentence p — statement which expresses some proposition p
having the truth value “true” (¢) or “false” (f)

sentence form p(x) — sentence depending on a variable z; only after
substitution of a concrete name of x a truth
value results

e The determination of a truth value of a sentence form p(z) can also take
place by means of the universal quantifier V (Vx: p(z); in words: “for all =
the sentence p(z) expresses a true proposition”) or the existential quantifier
3 (Jz: p(z); in words: “there is an x for which p(z) is true”).

Compound propositions

e The combination of propositions leads to new proposition defined with the
help of truth tables. Compound propositions are unary relations (negation),
dyadic relations (see the following table) or polyadic relations consisting of
the operators =, A, V, =, <=-.

e A tautology is always true, a contradiction is always false (independent of
the truth value of the partial sentences).

Unary Relation (truth table)

negation —p (not p) p P
tf
ot

Dyadic relations (truth table)

Relation read P t t f f

q Lt f ot f
conjunction p and ¢ pAgq t f f f
disjunction porgq pVyq t t t f
implication p implies ¢ p=q t f t t
equivalence p equivalent to g pE=q t f f t



8 Sets and propositions

e The implication (“from p it follows ¢”) is also denoted as proposition in
“if. .., then...” form, p is called the premise (assumption), ¢ is the conclusion

(assertion).

e The premise p is sufficient for the conclusion g, g is necessary for p. Other

formulations for the equivalence are: “then and only then if ...

only if... (iff)”.

Tautologies of propositional calculus

pV-p

—(pA-p)
—(mp)=>p
“(p=4q) <= (PA—q)
~(pAq) = —pV g
~(pVa) = pA-g

(p=q) <= (ng= —p)

(p=)N(g=r1)]= (p=7)

PA(p=q) =¢q

gN(—p=—q)=p

[(P1 Vp2) A (p1 = @) A (p2 = q)] = ¢

Method of complete induction

”

law of excluded middle
(excluded third)

law of contradiction
negation of the negation
negation of the implication
De Morgan’s law

De Morgan’s law

law of contraposition

law of transitivity

rule of detachment
principle of indirect proof

distinction of cases

Problem: A proposition A(n) depending on a natural number n has to be

proved for any n.

Basis of the induction: The validity of the proposition A(n) is shown for

some initial value (usually n =0 or n = 1).

Induction hypothesis: It is assumed that A(n) is true for n = k.

Induction step: Using the induction hypothesis, the validity of A(n) is

proved for n = k + 1.

or “if and



Number Systems and their Arithmetic

Natural, integer, rational, and real numbers
Natural numbers: IN = {1,2,3,...}, Ny =4{0,1,2,3,...}

divisor — a natural number m € IN is called a di-
visor of n € IN if there exists a natural
number £ € IN such that n =m - k

prime number — a number n € IN with n > 1 and the
only divisors 1 and n

greatest common divisor — g.c.d.(n,m) = max{k € IN such that
k divides n and m}

least common multiple - lec.m.(n,m) = min{k € IN such that
n and m divide k}

e Every number n € IN, n > 1, can be written as a product of prime powers:

n=pt-py*-...-pt p; prime numbers, r; natural numbers

Integers: Z=1{...,-3,—-2,—1,0,1,2,3,...}

Rational numbers: Q= {"" |m € Z, n € N}
e The decimal representation of a rational number is finite or periodic. Every
number with a finite or periodic decimal representation is a rational number.

Real numbers: R

e The real numbers arise by “extending” Q by nonperiodic decimal numbers
with infinitely many digits.

k .
r= . 19 - g-adic representation
j=—o00
g =2 dual g =38: octal g = 10: decimal representation

Conversion decimal — g-adic

1. Decompose the positive decimal number z: x =n +zg, n € N, zg € R
2. Convert the integer part n via iterated division by g:
qo =n, qi-1=4q;-g+7rj, 0<r;<g, 7=12,...
3. Convert the non-integer part xo via iterated multiplication by g:
g-xj_1 =8 +xj, 0<z; <1, j=12...

4. Result: @ = (rg...rar1.5182...)4



10 Number systems and their arithmetic

Conversion g-adic — decimal (by means of » Horner’s scheme)
x=(rg...19m1.5182...Sp)g = (- . ((rkg + Th=1)g + Th—2)g + ... +12)g + 71

(- ((sp/g+ sp-1)/9+8p2)/g+ ... +51)/g

Calculation with real numbers

Elementary laws

a+b=b+a — commutative laws
a-b=b-a

(a+b)+c=a+(b+c¢) — associative laws

(a-b)y-c=a-(b-c)

a+b)-c=a-c+b-c — distributive laws

(a+b)(c+d) = ac+be+ ad + bd — multiplying out of brackets

Z = Z. ¢ — extension of a fraction (b, c # 0)
-c
Z O Z — reduction of a fraction (b, ¢ # 0)
-c
a b axbd ~addition/subtraction of fractions
c ¢ with equal denominator (¢ # 0)
@, b a-d*b-c ~addition/subtraction of arbitrary
cd  c-d fractions (¢,d # 0)
Z . ccl = Zc(‘; — multiplication of fractions (b, d # 0)
b_a c_ad — division of fractions (b, ¢,d # 0)
S b'd b-c i
Definitions
a;=a1+as+...+a, — sum of elements of a sequence
i=1
[Tai=a1-az2 ... ay — product of elements of a sequence

@
Il
—



Rules of operation

n n—1
D0 = ) Qg1
=1 =0

Absolute values

Definition

. z for >0
x|l =
—x for <0

Rules of operation and properties

|z| =z -sgnz
[z =0 <= 2=0
|-yl = |2] - [y|

Triangular inequalities:
|z +yl < |2 + |y

121 = 1yl < o+l

SET

Absolute values

n n—1
H a; = H Ai+1
i=1 =0

for y #0

(equality holds if and only if sgnz = sgny)

(equality holds if and only if sgnz = —sgny)

11

(absolute) value of the number



12 Number systems and their arithmetic

Factorial and binomial coefficients

Definitions
nl=1-2-...-n — factorial (n € IN)
n—=1)-...-n—k—+1
(Z) _n (n 1> 5 (nk: +1) — binomial coefficient (k,n € IN,
TeTee k < n; read: “binomial n k” or
“n choose k”)
n! . i
or <n
(Z) ={ kl(n—k)! - — extended definition for k,n €Ny
0 for k>n with 0!'=1

O O A O A O

Pascals’s triangle:

N
7
n=0: 1 \E"/ /q)
2
n=1: 1 1 %
v
n=2: 1 2 1 &
n=3: 1 3 3 1
n=4: 1 4 6 4 1
n=>5: 1 5 10 10 5 1
Properties

< > ( ’f) ~ symmetry property
() (")
() (") s (P = () - st shcres

m

() (2~ () 7o)+ () (5) = (37)
> (1) -

e The definition of the binomal coefficient is also used for n € IR. In this
case, the addition property and the addition theorems are valid either.

( ) — addition property



Equations

Transformation of expressions
(a4 b)? = a® & 2ab + b?
(a+b)(a—b) =a?— b2

(a £b)3 = a® £ 3a%b + 3ab® £ b°

n__ pn

a = a" ' £ a"2h+ 0" 32 +

a—2>b

22 +br+c= x—i—b 2+c—b2
N 2 4

Binomial theorem

(a+b)" = kzijo (Z) an—kpk

—a"+ (M) a . " ) a o,
1 n—1

Transformation of equations

Equations 13

(binomial formulas)

(a+£0b)(a® Fab+b?) =a®>+ b3

a2t
a#b,n=23,...

(completion of the square)

neN

Two terms remain equal if the same rule of operation is applied to both of

them.

a=b = a+c=0b+c, ceR

a=b = a—c=b-—c, ceR

a=b = c-a=c-b, ceR

a:b,a;«é0:>czc, celR
a b

a=b = a" =", neN

a=5b for

2:b2
“ :>{ab for

Solving of equations

sgna = sgnb
sgna = —sgnb

If an equation contains variables, then for some values of these variables it
can be true and for other values false. The determination of one or all values
of the variables for which a given equation is true is denoted as solving of

the equation.
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z=-"! for a#0

a

ax+b=0 = x arbitrary for a=b6=0
no solution for a=0,b#0

(r—a)(x—b)=0 = xz=a or x=b
(x—a)(ly—b)=0 = (x=a and y arbitrary) or

(x arbitrary and y =b)
Quadratic equation for real x :

22 +pr+qg=0 —

2
x = —]2) + \/p —q for p?>4q (two different solutions)
p

4
z=-, for p?=4q (one real double solution)
no solution for p? < 4q
Inequalities

Rules of operation

r<y Ny<z = x<z (z,y,z,u,v € R)
<y — crtz<y+z
r<y AN z>0 = x-z2<Y-%
r<y AN 2<0 - T-zZ2>Y-z
O<z<y ANO<u<w = z-u<y-v

1 1
O<ax<y == >

r oy
z u r rH+u wu

< ANy>0ANv>0 = +
v Y Yy +v v

Bernoulli’s inequality
1+z)">1+nx for z>-1, neN

Cauchy-Schwarz inequality

> wiys < (Z 9512) : (Z yi2>
i=1 i=1

=1



Finite sums
Arithmetic series:
apy1 =ar +d

Geometric series:

ag+1 = ¢ - Qg

Special finite sums

sum

1+2+43+...4+n
14345+...+(2n—1)
24+4+6+...+2n

124224324 ...
12 +32 4524 ...
22442462 +...
134234334 ...
134334534 ...
22+ 43+6%+. ..

+n?

+ (2n — 1)?
+ (2n)?
+n3
+(2n—1)3
+ (2n)3

1+z+a2+...+a"

sinz +sin2x + ..

cosSx + cos2x + ..

.+ sinnx

.+ cosnx

Powers and roots

Powers and roots

n(n+1)
(n+1)(2n+1)
(4n? —1)

&n
An
an(n+1)(2n+1)
in?(n+1)?

n?(2n% — 1)
2n2(n +1)2
|
1
o1 (z #1)
cos & —cos(n+ 3)x
2sin ¥

2
sin(n + yx) —sin %

: xr
2sin 5

Powers with integer exponents (¢ € R; n € N; p,q € Z)

Powers with positive exponent:

Powers with negative exponent:

a*=a-a-...
- ~ -

n factors

a "= aln (a #0)

- a, a® =1

15
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Rules of operation

aP - qd = gPt4 af - bP = (a - b)P (aP)? = (a?)P = aP?
a? a? a\P

— P4 —
ad @ br _(b) (2,67 0)

Roots, powers with real exponents (a,b € R;a>0,b>0; m,n € N)

n-th root: u= {a — ur=a, u>0
Rules of operation
Ya- Vb= a-b azva (a>0,b>0)

¥/ fa= 3/ Ya= " Yam = (ga)" (a=0)

. . 1 m
Powers with rational exponent: a» = {/a, an = Yam
Powers with real exponent: a® = lim a%, qr € Q, lim gp, ==
k—oo k—oo

e For powers with real exponents the same rules of operation as for powers
with integer exponents are true.

Logarithms

Logarithm to the base a: = =log,u <= a* =u, (a>0,a# 1, u>0)

Base a =10: log;qu =Igu — DBriggsian logarithm

Base a =e: logou =Inu — natural logarithm
Rules of operation
u
log, (u-v) =log, u + log, v log, ( ) = log, u — log, v
v

log, v’ = v -log, u logy, u = (a,b,u,v>0; a,b#1)
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Complex numbers

i i2=-1 — imaginary unit

z=a+bi, a,beR — Cartesian form of the complex number
zeC

z=r(cosp+ising) =rel® — polar (trigonometric) form of the com-

plex number z € C (Euler’s relation)

Re z=a=rcosp — real part of z

Im z=b=rsinep — imaginary part of z

|2| = Va2 + b2 =r — absolute value of z

arg z = @ — argument of z

z=a—bi — complex number conjugate to z = a+0bi

Special complex numbers

ol0 — 1 eilg — ; (1 + 3 i) imaginary axis

- - z=a+bi

+i +i 1
e 2=4i, e 4= _V201=£i)
2 r b
: ¥

: +1 1 .

eI — —1, e 6 = N (\/3 + 1) 0 a real axis

Transformation Cartesian — polar form

Given a, b = 1 =+a2+ b2,

. . a .
@ is the solution of cosp =, singp=
r

Transformation polar — Cartesian form

Given r, ¢ = a=71"-cos¢y, b=r-sing
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Rules of operation

Given z = a, + by 1 = r(cos o +isinpy) = rkei%, k=1,2.

Z1 :l:ZQ = (a1 :l:ag)+(b1:|:b2)l
21+ 22 = (arag — b1ba) + (arbs + agby) i

21+ 20 = 1172 [cos(p1 + p2) + i sin(p1 + @2)] = riro el(P1+e2)

= leos(or — @) + i sin(r — o) = 11
22 T2 T2

2 _ 212 _ aras + b1be + (agby — a1bs)i (a2 +b2 > 0)

29 |22|2 al + b3
1 z
. = 2 =

Solution of 2™ = a (taking of the root)

Representing the number a in the polar form a = reiw, the n solutions

located at the circle around the origin with radius /r are

o+ 2km
1
zp=1Yre n | k=0,1,...,n—1.
The angles between the real axis and the radiant of these numbers are
©+ 2km

n

Intersection of the unit circle

In the figure the unit circle |z| = 1 i 23 e 22
is divided into 6 segments by the ;
solutions of the equation

25 =1

0 Z4e +
yielding the points
0 i i2m
zZ1 =¢e", 2o =€ 3, Z3 =€ 3,
. . . —i Z5 e 26
oy — ir 4w _js5mw 1
4=€", Zz=€3, 2Z=0€3

*21



Combinatorial Analysis

Permutations

e For n given elements an arbitrary arrangement of all elements is called a
permutation. If among the n elements there are p groups of the same elements,
then one speaks about permutations with repetition. Let the number of ele-
ments in the i-th group be n;, where it is assumed that n; +na+...+n, =n.

without repetition with repetition

n!

. Pn n =

number o.f different P, = nl D T gl -y
permutations

ni+ng+...+np =n

The permutations of 1,2,3,4 (n = 4):

12314 2134 3124 4123

1243 2143 3142 4132

1324 2314 3214 4213 Al — 24
1342 2341 3241 4231 T
1423 2413 3412 4312

1432 2431 3421 4321

The permutations of 1,2,3 with repetition (n =4, n1 =1, na =2, n3 =1)
1223 2123 2231 3122 Al
1232 2132 2312 3212 1'2;1|:12
1322 2213 2321 3221
Arrangements

e Given n different elements and k places, an arbitrary assignment of the
elements to the places is called an arrangement (without repetition); this
corresponds to a sampling of k£ out of n elements taking into account the
order, 1 < k < n. If any of the n elements occurs arbitrarily often so that
it can be chosen several times, then one speaks about arrangements with
repetition.

without repetition with repetition
n!
. \% k _
number of different n (n—k)! VTI: ok
arrangements
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The arrangements of 1,2,3,4 to 2 places (n =4, k = 2):

1
1
1

LENEUCR )
N DN DN
s

1
3
4

w w w

1 1
2 2 =12
4 3

The arrangements of 1,2,3,4 to 2 places with repetition (n =4, k = 2):

[ENEGCR N
N DN NN
[ENEUCRN N
W W ww
=~ W N
= R
[ENEUCR NG

1
1
1
1

Combinations

e If there are chosen k out of n different elements, where 1 < k < n and
one does not take into account the order, then one speaks about a
combination (without repetition). If any of the n different elements occurs
several times, then one speaks about a combination with repetition.

without repetition with repetition
ck=("
number of different n =\ k n+k—1
. ct =
combinations n k
1<k<n

The combinations of 1,2,3,4 to 2 places (n =4, k = 2):
23 3 4
4
2 4 (2) =6

The combinations of 1,2,3,4 to 2 places with repetition (n =4, k = 2):

1
1
1

=N

33 4 4

2 2
2 3 34 442-1\
2 4 ( 2 )_10

— == =
=W N =



Sequences and Series

Sequences of numbers

A mapping a : K — R, K C N, is called a sequence (of numbers) and
denoted by {a,}. For K = N it consists of the elements (terms) a, = a(n),
n =1,2,... The sequence is said to be finite or infinite depending on whether

the set K is finite or infinite.

Notions

explicit sequence

recursive sequence
bounded sequence
increasing sequence

strictly increasing sequence
decreasing sequence
strictly decreasing sequence

convergent sequence
(to the limit g)

divergent sequence

properly divergent sequence
(to the improper limit
+00 and —oo, resp.)

improperly divergent sequence

null sequence

alternating sequence

arithmetic sequence

geometric sequence

formation rule a,, = a(n) given
1 = A(Qny A1, -y Qi)
FCeR: |a,| <C VneK
ant1 > an VnelN

ant1 > an VnelN

ant1 < ap, VnelN

ant1 < ap, YVnelN

The number g is called limit of the
sequence {a,} if to any number £>0
there exists an index n(e) such that
lan,—g| < € for all n > n(e). Notation:

lim a, =g or a, — g for n — oco.
n—oo

sequence not having a limit

sequence for which to any number ¢
there is an index n(c) such that a,, >c
(an < ¢, resp.) for all n > n(c)

sequence which does neither converge
nor improperly diverge
sequence tending to the limit g =0

sequence the terms of which are alter-
natingly positive and negative

ant1 —an =d Vn € N, d=const

a
ntl = q Vn € N, a, # 0, g =const

2%
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e A number a is called a limit point of the sequence {a,} if to any number
€ > 0 there are infinitely many elements a,, such that |a, — a| < e.

Convergence theorems

e A sequence can have at most one limit.

e A monotone sequence converges if and only if it is bounded.

e A bounded sequence has at least one limit point.

e If ¢ is a limit point of the sequence {a,}, then {a,} has a subsequence
converging to a.

Convergence properties

Let lim a, =a, lim b, =0 and a,0 € R. Then:

n—oo

lim (aan,+Bb,)=caa+5b lim a,b, = ab
lim " = if b,by £0 lim |a,| = |a
lim a, = {/a for a,a, >0, k=1,2,...
. 1
lim (a1 +4...4a,) =a A<a,<B — A<a<B
n—oo N

Limits of special sequences
1

lim =0 im ' =1, aeR
n—oo N n—oo N + «

. " . \"

lim ¥YA=1 for A>0 lim 1+ =e
n—oo n—oo n

1\" 1 A\ "

lim (1 ) = lim <1+ > =), AeR

n—oo n e n—oo n

Sequences of functions

Sequences of the form {f,}, n € IN, the terms f, of which are real-valued
functions defined on an interval D C R are called function sequences. All
values € D for which the sequence {f,(x)} has a limit form the domain
of convergence of the function sequence (it will be assumed that it coincides
with D).

e The limit function f of the sequence of functions {f,} is defined by

flz) = nll_)Irolo fu(z), z€D.
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Uniform convergence

e The function sequence { f,}, n € N, converges uniformly in D to the limit
function f if for any real number € > 0 there is a number n(e) independent
of = such that for all n > n(e) and all z € D one has: |f(z) — fo(z)] <e.

e The function sequence {f,}, n € N, is uniformly convergent in the interval
D C R if and only if for any real number £ > 0 there exists a number n(e)
independent of x such that for all n > n(e) and all m € IN one has:

| fram(z) — fu(z)| < e for all z € D Cauchy condition

Infinite series

51 = ai
a1+a2+a3+...:§ak partial sums: §2. = a1t a
= sn:a1+a2++an
e The infinite series i ay, is called convergent if the sequence {s, } of partial
sums converges. The kli:nllit s of the sequence {s,} of partial sums is called the
sum of the series (provided it exists): nhngo Sp=8= kf: ag
- =1

o0

e If the sequence {s,} of partial sums diverges, then the series Y ay, is said
k=1

to be divergent.

Criteria of convergence for alternating series

o0

The series Y. a,, is called alternating if the sign changes from term to term.
n=1

An alternating series is convergent if for its terms a,, one has

Leibniz’s alternating
an| > |a forn=1,2,...and lim |a,|=0. .
jan = lansa ' TLHOO| | series test
Criteria of convergence for series of nonnegative terms
A series of nonnegative terms a,, converges if and only if the sequence {s, }
of its partial sums is bounded above.

Let 0<a, <b,,n=1,2,...

(oo} (oo}
If > b, is convergent, then Y a, is also convergent. compari-

1 -1
" " son test

o0 o0
If > a, is divergent, then > b, is also divergent.

n=1 n=1
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An+41

a
If " <gn=1,2,..., withO<g<1or lim <1,
(275 n—oo  dp
o0
then the series Y a, converges;
n=1 ratio test
a a
if "' >1,n=1,2...0r lim "7 >1, then it
Qn, n—0oo  Op
diverges.

If Ja, <A, n=12,...with0O<A<1lor

o0
lim {/a, <1, then the series ) a, converges;

n— 00 n—1

Cauchy’s
. . root test
if /a, >1,n=1,2,...0r lim a, > 1,

n—oo

then it diverges.

Series of arbitrary terms

o -
. : necessary criterion
e If the series > a, converges, then lim a, =0 Y

=1 n—oo of convergence

o0

e The series Y a, is convergent if and only if for every real number £ > 0
n=1

there is a number n(e) € N such that for all n > n(e) and for any number

m € IN one has:

|an + Gng1 + oo F Qnpm| < € Cauchy condition

(oo} (oo}
e A series Y a, is said to be absolutely convergent if the series > |ay|
n=1 n=1
converges.

oo
e The series > a, is convergent if it is absolutely convergent.
n=1

Transformation of series

e If finitely many terms of a series are removed or added, then the conver-
gence behaviour does not change.
e Convergent series remain convergent if they are termwise added, subtracted
or multiplied by a constant ¢ € R:

o0 o0 o0 o0
apn=a, Y, b,=b = > (antb,)=axb, > ca,=c-a
n=1 n=1 n=1 n=1

e In an absolutely convergent series the order of the terms can be arbitrarily

changed. In doing so, the series is still convergent and the sum remains the
same.



Function and power series

Sums of special series

1 1 (71)n+1
1- ...=1In2
2+3:F + n + n
T T
ot 4t T o —
) 1+1 +(*1)”+1+ m
375 ap—1 Ty
-y S A
4¥ .. on T g
v el vty _
22 32 nz2 6
11 (—1)n+t 2
1-— . -
g2 Py Tt 12
T _
3252 7 (2n—1)2 8
T 1
ottt T e
- Lyl LDt
T T o T T
Loty ! b=t
1-3 3.5 77 2n-1D@2n+1) T2
Lo b b o
1.2 23 77 an+1) T
Ly by b 28
1-3 24 777 " nn+2) T 4

Function and power series

Function series

25

An infinite series the terms of which are functions is called function series:

fi@)+ fo(z)+... = kil fr(x) partial sums: s, (z) = i
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e The intersection of all domains of definition of the functions fi is the
domain D of the function series. This series is called convergent for some
value x € D if the sequence {s,(z)} of partial sums converges to a limit
s(z), otherwise it is called divergent. All € D for which the function series
converges form the domain of convergence of the function series (it is assumed
that the latter is equal to D).

e The limit function of the sequence {s,} is the function s: D — R defined
by the relation

lim s, (x) = 5(z) = 3 fiu(®)

o0
e The function series Y, fr(x) is said to be uniformly convergent in D if the
k=1

sequence {s,} of partial sums converges uniformly » function sequences.

Weierstrass comparison test

o0
The function series Y f,(z) converges uniformly in D if there exists a
n=1

o0
convergent series Y ap such that VneN and VzeD: |f,(z)| < an.

n=1
e If all functions f,, n €N, are continuous at the point xy and if the series
o0
> fu(z) is uniformly convergent in D, then the limit function s(z) is also
n=1

continuous at zg.

Power series

Function series the terms of which are of the form f,(z) = an(x — xo)",
n € Ny, are called power series with centre at xy. After the transformation
T = x — xg one gets power series with centre at zero, this is assumed in the
following. In its domain of convergence the power series is a function s:

o0
s(x) =ap+ a1z +ax®> +...= Y apa"
n=0

If this power series is neither divergent for all x # 0 nor convergent for all
x, then there exists one and only one number r > 0 called the radius of
convergence such that the power series converges for |z| < r and diverges for
|z| > r. For |x| = r a general statement cannot be made. (We agree to set
r = 0 if the power series converges only for x = 0 and to set r = oo if it
converges for all z € R.)
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Determination of the domain of convergence

a
Let b, = " land ¢, = ’{/|an|. Then:
An+41
{bn} is convergent = r= lim b,
n—oo
{bn} is properly divergent to +o0 = r =00
{en} is convergent to zero = r =00
. 1
{en} is convergent to ¢ # 0 = r=
c
{cn} is properly divergent to +o0 = r=0

Properties of power series (radius of convergence r > 0)

e A power series is absolutely convergent for every number x € (—r,r). It
converges uniformly in any closed interval I C (—r, 7).

e The sum s(z) of a power series is arbitrarily often differentiable in the
interval (—r,7). The derivatives can be obtained by termwise differentiation.
e In [0,¢] and [t, 0], resp., with |[t| < r the power series can also be integrated
termwise:

¢ t’n+1
na,z” 1 and /s dx—Zann+1
0

18

s(x) = i anz” = §'(x) =

n=0

3
Il
—

oo oo
e If the power series Y anz”™ and > b,z™ converge in the same interval
n=0 n=0
(—v,v) and have the same sums there, then the two power series are identical:
n=>b, Yn=0,1,...

Taylor series

If the function f: D—1R, D CR is arbitrarily often differentiable at x¢€ D,
then the following power series is said to be the Taylor series formed at the
point xq:

i‘i F (o)

al (x—x0)", fOz) = f(z) Taylor series
n=0 .

o If f is arbitrarily often differentiable in a neighbourhood U of the point z¢
and if the remainder in » Taylor’s formula converges to zero for all z € U,
then the Taylor series has a radius of convergence r > 0 and for x satisfying
|z — zo| < r one has:

0o £ (g
f(x)zzf (zo)

ol (x — x0)" Taylor expansion
n=0 .
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Tables of power series

Domain of convergence: |z| <1

function
(1+az)”

V14 zx

NN,

power series, Taylor series

Domain of convergence: |z| < 1

function
1
(L4 )
1
1+
1
(14 2)?
1
(14 2)3
1
Vit z
1
I+

arcsinx

arccos™

arctanx

(> 0)

-1 —1)(a—2
ltapy @1 o ala—1@=2) 5
2! 3!

1 1-1 1-1-3 1-1-3-5
1 B 2 3 44
Tt T o Tay6" T2.4.6.8"
1 1-2 1-2-5 1-2-5-8
1+ x— %+ s — ..
3 3-6 3:6-9 3-6-9-12
power series, Taylor series
liaeroz(onrl)ina(a+1)(a+2)x3i“.

2! 3!

l—ax4+a?2—a3+zt -2+ ...
1—2x 4322 — 423 + 52 — 62 £ ...

1
172(2~3:vf3-4:r2+4~5x375~6x4j:...)

(a>0)

L, LB, 135 5 103057
2" T 94" To.4.6" T2.4.6.87 T
1 1.4, 1-4-7 . 1-4:-7-10

17 2 3 4 .
37T 3.6" T3.6.07 T3.6.9.12° T
1 1. 13 -(2n—1

T+ 4 3 5 3 (” )

23" Yo 5" T Tou an@nr )

T 1 4 B 1-3-...-(2n—-1)
2 2.3 2440020 (2n+ 1)
1
2n+1

1 1 1
T — 35(:3 + 55(15 — 7957 +.. .4+ (=1D)" 2ntl

2ty

2n+1 _

...



Fourier series 29

Domain of convergence: |z| < oo

function power series, Taylor series
: L s 15 14 n 1 2n+1
sin x T g +5!x o +...4+(-1) (20 +1), +...
1 2 1 4 1 6 n 1 2n
cos T 172!x +4!x ~a® +...+(-1) (2n)!x +...
N R U 1,
e +1!x+2!x +...+n!x +...
i Ina Ina 9 In"a ,
a® 1+ T+ i+ ...+ x4 ...
1! 2! n!
: L g 15 1 2n+1
sinh x x+3!x +5!x +...+(2n+1)!x + ...
Lo 14 L oon
cosh x 1+2!x +4!x +...+(2n)!x +...
Domain of convergence: —1 < x <1
function power series, Taylor series
1 2 1 3 1 4 n+11 n
In(1+ x) T - +3x — 4t +...4+(-1) " +...

Fourier series

Series of the form

> kmx kmx
= b:. si
s(x) = ap + ]; (ak cos + b sin l >

are called trigonometric series or Fourier series. To represent a given function
f(z) by a Fourier series, it is necessary that f(x) is a periodic function, i.e.
flx 4+ 20) = f(x), and that the so-called Fourier coefficients a, by are equal
to

a

1 1 1
OZZZ/f(x)dx, ak:l/f(x)cosmlm dz, bk:l/f(m)sinmlmdx.

Symmetric functions

f even function, i.e. f(—z) = f(z) = by =0 for k=1,2,...
f odd function, i.e. f(—z) = —f(x) = ar=0 for k=0,1,2,..
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Table of some Fourier series

The functions are defined on an interval of the length 27 and continued with
the period 27.

{x for —wT<ax<m

Y=10 for z=x
sinz sin2x sin3x
=2 — +...
<1 2 + 3 >
y_{x for -7 <z <7
o 3
77—z for § <z <7
_ 4 (sinx sin3x+sin5x
BE AL 32 52 T
y=lz| for —m<z<nm

T 4 cosx+cos3x+cos5x+
2 0r 12 32 52

—a for —mT<2x<0 ‘
Yy = a for O<z<mw 0 o -
0 for z=0,7

1+3+5

_da <sin33 sin3z sinbzx >
N

y = |sinz| for —r <z <7

2 4 0052x+cos4m+cos6m+ 0
B 1-3 3-5 5.7 7 —

T



Mathematics of Finance

Simple interest

Notations
D - interest rate per conversion period (in percent)
t - time in units that correspond to the rate, moment
Ky - opening capital, original principal, present value
K, - amount, capital at the moment ¢
Zy - simple interest earned in the term ¢
. B . . p
7 interest rate: : = |,
T - number of days

e The most frequently period considered is the year, but a half-year, quarter,
month etc. can be used either. The number of days per year or month differs

from country to country. Usual usances are

the actual number of days. In what follows, in all formulas containing the
quantity T' the underlying period is the year with 360 days, each month

30 act act
60’ 360  act’

having 30 days (i.e., the first usance is used).

Basic interest formulas

T:3O~(m27m1)+d27d1

p

Zy = Ky -

T 100
Ko-i-T Ko-pn-T

Ty = 0°1? __ Bo-p
100 -

Ko = 00 Zt:.Zt

p-t i1

_100- Z;

p= Kot

‘ Zy

7 =
Ko-t

,_100-2 _ 7,

Ko’p _Kol

t=Kp-i-t

360 100 -360

number of days for which interest is
paid; mq1, ms — months; dy, ds — days

simple interest

simple interest on a day basis

capital (at t = 0)

interest rate (in percent)

interest rate

term, time

where act means
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Capital at the moment ¢

T
Ki=Ko(l1+i-t)= Ky <1 + - 360) — amount, capital at the mo-

ment ¢
K K
Ky = b= ) K T — present value
L+i-t 141 44
K,— K K, — K .
i = Kot % =360 Ko - TO — interest rate
t Kn - KO t ti
= — term, time
Ko-i ’
K,— K
T =360 - Ko 0 — number of days for which
01

interest is paid

Periodical payments

e Dividing the original period into m parts of length 7}1 and assuming periodi-
cal payments of size r at the beginning (annuity due) and at the end (ordinary
annuity ), respectively, of each payment interval, the following amount results:

1
R=r <m + m;r . z) — annuity due
m—1 . .
R=r{m+ 9 i — ordinary annuity

Especially m = 12 (monthly payments and annual interest):

R =r(12+ 6,57) — annuity due; R = (124 5,5¢) — ordinary annuity

Different methods for computing interest

Let t; = D; M,Y; be day, month and year of the i-th date (i = 1: begin, i = 2:
end); let ¢ = to — t1 describe the actual number of days between begin and
end; let T; denote the number of days in the "broken’ year ¢; basis ¢ = 365
oder 366.

method formula
30/360 t:[360-(YQ—H)+3O~(M2—M1>+D2—Dﬂ /360
act/360 t=(ty — tl)/360

T1 T2
t= Yo—-Y -1
basis 1 + 2 ! + basis 2

*

act/act

* If the term considered lies within one year, only the first summand remains.
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Compound interest

When considering several conversion periods, one speaks about compound
interest if interest earned is added to the capital (usually at the end of every
conversion period) and yields again interest.

Notations
P rate of interest (in percent) per period
number of conversion periods
Ky opening capital, present value
K, capital after n periods, amount, final value
i (nominal) interest rate per conversion period: i = 1€0
q accumulation factor (for 1 period): ¢ =1+14
q" accumulation factor (for n periods)
m number of parts of the period
d discount factor
s im interest rates belonging to each of the m parts of the period
) intensity of interest

Conversion table of basic quantities

P i q d )
. d 5
D D 100 100(g-1) 100, " 100(c" - 1)
p d 5
—1 —1
! 100 ! q 1—d ¢
p . 1 5
1 1
g 100 T I 1-d ‘
—1
d p v q d 1—ed
100+ p 1+74 q
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Basic formulas

K, =Ko-(1+i)"=Ko-q"
K, K,
(L+i)» v

_ 100 ( ¢/ B g
p= K,

log K,, — log K
n =

Ko =

log ¢
69
n~
p
Kn:KOQIqQQn
1+4
r=1 —1 ) ~100(z—
P OO(I—H" > 00(i—r)

compound amount formula

present value at compound interest,
amount at time £t =0

rate of interest (in percent)

term, time

approximate formula for the time
within which a capital doubles

final value under changing rates of in-

terest pj, j=1,...,n (with ¢; = 1p0jo)

real rate of interest considering a rate
of inflation r

Mixed, partly simple and partly compound interest

Ki = Ko(1 +it)(1 +4)N(1 +ity) — capital after time ¢

e Here N denotes the integral number of conversion periods, and t1,ts are
the lengths of parts of the conversion period where simple interest is paid.

e To simplify calculations, in mathematics of finance usually the compound
amount formula with noninteger exponent is used instead of the formula of
mixed interest, i.e. K; = Ko(1 +i)!, where t = t; + N + t2.

Anticipative interest (discount)

In this case the rate of interest is determined as part of the final value (»

discount factor p. 33).

K -Ko K- K

d
K K-t

(discount) rate of interest under antici-
patice compounding

final value

present value
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More frequently compounding
Kym= Ko - (1 + ;l)nm amount after n years when interest
rate is converted m times per year

relative rate per period

’Lm—m

im= %1+i—1 equivalent rate per period

o = (1 +ip)™ —1

effective rate of interest per year

Peff = 100 |(1 + P )" — 1} — effective rate of interest per year (in
100m
percent)

e Instead of one year one can take any other period as the original one.

e Compounding interest m times per year with the equivalent rate per
period i,, leads to the same final value as compounding once per year with
the nominal rate i; compounding interest m times per year with the relative
rate per period i,, leads to that (greater) final value, which results when
compounding once per year with the effective rate iqg.

Continuous compounding

Kpoo=Kp-e"™ — amount at continuous compounding

0 =1In(1+1) —  intensity of interest (equivalent to the interest
rate )

i=ed—1 — nominal rate (equivalent to the intensity 4)

Average date of payment
Problem: At which date of pay- Ki o K Ky

| | |
T T —>

ment t,, equivalently the total debt 0 t to e th
K1+ Ko+...+ Kj has to be payed?

liabilities to pay

simple interest:

Ki+Ko+...+ Ky — K K K
tm = 1+ A2t ‘+ k O, where Ky = 1 +...+ k
7 1+ ity 1+ ity
compound interest:
In(K1+ ...+ Ki) — In K| K K
m:n( 1+...+Kp)—In 0 where Ko= 1 4 B
Ing q" q'

continuous compounding:
o ln(K1 + ... +Kk> —ano

m 5 , where Ko= Kije %% 4. + Kpe 0t
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Annuities
Notations
P - rate of interest
n - term, number of payment intervals or rent periods
R - periodic rent, size of each payment
q - accumulation factor: ¢ =1+ ¢,

Basic formulas
Basic assumption: Conversion and rent periods are equal to each other.

n_1
Ff}ue =R-q- ¢ 1 - amount of an annuity due, final value
q-—
R n—1
P,(}ue = ¢ . present value of an annuity due
q q—
-1
F,?rd -Rr.1 1 — amount of an ordinary annuity, final value
q-—
R q¢q"—1
P,?rd = - 1 1 — present value of an ordinary annuity
q q—
pdue T4 - t value of tuit ts at
o= present value of a perpetuity, payments a
q the beginning of each period
R
Pé)ord = L — present value of a perpetuity, interest used
q- as earned
1 -1 1 R
n= -log (Fr?rd 4 + 1> = -log d - term
logg R log g R — P*d(q — 1)

Factors describing the amount of 1 per period

due ordinary
amount of 1 .o qt—1 _q" =1
per period S| =4 g—1 n| = qg—1
present worth .. q" —1 q" -1
of 1 iod In| = gn-1 U = gn
per perio " tg—1) q*(¢—1)

Conversion period > rent period

If m periodic payments (rents) are made per conversion period, then in the
above formulas the payments R are to be understood as R =r (m + m; 1. z)
(annuities due) and R = r (m + ™5 ! z) (ordinary annuities), resp. These
amounts R arise at the end of the conversion period, so with respect to R
one always has to use formulas belonging to ordinary annuities.
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Basic quantities

@, - present value of 1 per period (ordinary annuity)

'dn| — present value of 1 per period (annuity due)

Sp| final value (amount) of 1 per period (ordinary annuity)

8, final value (amount) of 1 per period (annuity due)

Uog| ~ present value of 1 per period (perpetuity, interest used as earned)
doo‘ — present value of 1 per period (perpetuity, payments at the begin-

ning of each period)

Factors for amount and present value

111 I ¢ —1
Wl T gt T T T e T -
i 1+ by Ly ! -t
a = =
n| q ¢ qnt " qg—1)
n
—1
S| T l+g+¢+...+¢"1 = qq—1
.. " -1
5, = ¢t +C+. " = 4,y
111 B 1
ool ¢ttt B qg—1
. 1 q
| = 1+q+q2+.. = i1
Conversion table
Cl,n| an‘ Sn‘ Sn| qn
a a G *n| Sl q" -1
nl nl 1+i5n‘ q(1+ds |) qm
i a i il & ¢" 1
n| @] | L+is,| L+ds, qd
" l—da, g1 di,) n| q i
; 90y, | Qy| . ; " —1
n| 1—ian‘ 1—d&n| q n| n| d
. 1 1 , . .
q 1+zsn‘ 1—|—dsn| q

lfian‘ lfdan|
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Dynamic annuities

Arithmetically increasing dynamic annuity

Cash flows (increases proportional to the rent R with factor 4):

R R(1+46)  R(1+(n—1)5) R R(1+9) R(14(n—1)4)
0 1 n—1 n 0 1 2 n
R n_q
plue — [q"—1+(5<q —n)]
qg—1 qg—1

R n—1
due _ n _ q _
B = g —1) {q Hé(q—l nﬂ

Ford = r [q”—1+6<q _1—71)]

q—1 q—1

R " —1

=l e ()

q"(q—1) q—1

R 1) R 1)
due __ q ord __
Fa _q—1(1+q—1>’ Foo _q—1<1+q—1)

Geometrically increasing dynamic annuity

R Rb RV Rb! R Rb Rp™—1

|
T T T T > T T T >

0 1 2 "n—1 n 0 1 2 n

S

100 ©Of succeeding terms is characterized by

The constant quotient b = 1 +
the rate of increase s.

qn_bn

Flt = Re-" . bia F' = Rag’,  b=g
R n_ pn

pdue - qnq'qq_ba b# g; pdue = Rp, b=gq

n _pn

Ford = R~qq_b7 b# g; FOd = Rng"', b=g¢q
R ¢ -0 Rn

pord = . btg prd = TN b=g
VA q
R R

Pg}le = e b<gq; ngd = b<gq

q—0



Amortization calculus 39

Amortization calculus

Notations
p — interest rate (in percent)
n  — number of repayment periods
S ‘ S
7 interest rate: ¢ = ),
q — accumulation factor: g =1+1
So — loan, original debt
Sr — outstanding principal after k periods

Tr — payoff in the k-th period
Zj, — interest in the k-th period
A — total payment in the k-th period

Kinds of amortization
S

o Constant payoffs: repayments constant: T, =T = 0, interest decreasing
n

e (Constant annuities: total payments constant: Ay = A = const, interest
decreasing, payoffs increasing

o Amortization of a debt due at the end of the payback period: A, = Sy - 1,
k=1,....n—1; A, =50 -(1+1)

e In an amortization schedule all relevant quantities (interest, payoffs, total
payment, outstanding principal, etc.) are clearly arranged in a table.

Basic formula for the total payment

A =T+ Z - total payment (annuity) consisting of payoff
and interest

Constant payoffs (conversion period = payment period)

S
T = 0 payoff in the k-th period

n

E—1Y\ . . . .
Zp=50-11- i interest in the k-th period
n

So . . .
A= "[1—(n—k+1)i total payment in the k-th period

n

outstanding principal after k periods

Sk250~<1—k>
n

p— 0? l:(n n 1)an‘ - <q q 1 _ nl):| — present value of all
n q (¢—1) q— interest payments
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Constant annuities (conversion period = payment period)

"g—1
A=5- a"(q { ) — (total) payment, annuity
qn —
A(g" -1
So = (g ) — original debt
q*(q—1)
Ty =Tig" ' = (A~ Sp-i)gF! —  payoff, repayment
k k
—1 —1
Sy, = Soq" yy = So—T} e — outstanding principal
qg—1 qg—1
Zy = Soi —T1(¢" ' —1)= A —Ty¢" ' — interest
1 . .
n= [logA —log(A — Soz)] — length of payback period,
log q

period of full repayment

More frequently payments

In every period m constant annuities A are payed.

A
Am) = Y payment at the end of each period
m+ "
A
Am) = 1. payment at the beginning of each period
m+ m;‘ 1

Especially: Monthly payments, conversion period = 1 year (m = 12)

A
Amon = 194 5,50 — payment at the end of every month
A A t at the beginning of th
= —  payment at the be of eve o
mon = 4o 6,5 paymen ginning very mon

Amortization with agio

In an amortization with additional agio (redemption premium) of « percent
on the payoff the quantity Tx has to be replaced by Ty =Ty - (1 + 130) =
Ty - fo. When considering amortization by constant annuities with included
agio, the quantities S, = Sy - fo (fictitious debt), i, = fz (fictitious rate of

@
interest) and g, = 1+ 44, resp., are to be used in the above formulas.
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Price calculus

Notations
P — price, quotation (in percent)
Knom — nominal capital or value
K eal — real capital, market value
n — (remaining) term, payback period
D, Peoff — nominal (effective, resp.) rate of interest
bn,nom; b, yea] — Dresent worth of 1 per period (ordinary annuity)
a=C—100 — agio for price above par
d=100-C — disagio for price below par
R — return at the end of the payback period
g =1+ ﬁ%{g — accumulation factor (effective interest rate)

Price formulas

Kreal

P =100-
Kpom

b -
P=100. "™ —100. ;!
n,N0M ) 1

1
P = Oo{n p

n Peff

1 o — 1
pP= -(p~qeH +R)

og Geff — 1

P=100-p (peg) "

o) 0 )

price as quotient of real and
nominal capital

price of a debt repayed by
constant annuities

price of a debt repayed by
constant payoffs

price of a debt due at the
end of the payback period

price of a perpetuity

simple yield-to-maturity;

= approximate effective interest rate of a debt due at the end of the
payback period (price above and below par, resp.)

e Securities, shares (or stocks) are evaluated at the market by the price.
For given price C' in general the effective rate of interest (yield-to-maturity,
redemption yield) can be obtained from the above equations by solving (ap-

proximately) a polynomial equation of higher degree (» p. 44).
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Investment analysis

Multi-period capital budgeting techniques (discounted cash flow methods) are
methods for estimating investment profitability. The most known are: capital
(or net present) value method, method of internal rate of return, annuity
method. Future income and expenses are prognostic values.

Notations
I - income at moment k
By - expenses, investments at moment k
C - net income, cash flow at moment k: Cy = I, — Ej
K - present value of income
Kg - present value of expenses
C - net present value, capital value of the investment
n - number of periods
D - conventional (or minimum acceptable) rate of interest
q - accumulation factor: ¢ = 1+ ,f,
Capital value method
no I .
Kr=5% & — present value of income; sum of all present
k=04 values of future income
L
Kg=> : — present value of expenses; sum of all present
k=0 4 values of future expenses

n ()
c=53 : = K;—Kpg — capital value of net income, net present value
k=0 9

e For C = 0 the investment corresponds to the given conventional rate of
interest p, for C' > 0 its maturity yield is higher. If several possibilities of
investments are for selection, then that with the highest net present value is
preferred.

Method of internal rate of return

The internal rate of return (yield-to-maturity) is that quantity for which the
net present value of the investment is equal to zero. If several investments
are possible, then that with the highest internal rate of return is chosen.

Annuity method

g @1 : :

W= 01 — annuity (or capital recovery) factor
qn —

A =K;-Fu —  income annuity

A=Kg- -Fy —  expenses annuity

Ap=A;—A —  net income (profit) annuity

e For A; = A the maturity yield of the investment is equal to p, for A; > A
the maturity yield is higher than the conventional rate of interest p.
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Depreciations

Depreciations describe the reduction in value of capital goods or items of
equipment. The difference between original value (cost price, production
costs) and depreciation yields the book-value.

n - term of utilization (in years)

A - original value

Wy, - depreciation (write-down) in the k-th year

Ry, - book-value after k years (R,, — remainder, final value)

Linear (straight-line) depreciation

A - Rn . .
WE =W = — annual depreciation
n

Rr=A-Fk-w - book-value after k years

Arithmetically degressive depreciation (reduction by d each year)

wpy=wy —(k—1)-d —  depreciation in the k-th year
—(A—
d=2."" ( Bn) — amount of reduction
n(n—1)
Sum-of-the-years digits method (as a special case): w, =d
wy=Mm—-k+1)-d —  depreciation in the k-th year
2-(A—R,)

= - amount of reduction
nn+1)

Geometrically degressive (double-declining balance) depreciation
(reduction by s percent of the last year’s book value in each year)

k

Rp,=A- (1 _ 0 ) - book-value after k years

100

o B .
s=100-(1— A - rate of depreciation

S s \ k-1
w = A- . (1 - ) - depreciation in the k-th year
100 100

Transition from degressive to linear depreciation

Under the assumption R, = 0 it makes sense to write down geometrically
degressive until the year [k] with k = n+1— 1‘20 and after that to write
down linearly.
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Numerical methods for the determination of zeros

Task: Find a zero z* of the continuous function f(x); let & be the accuracy
bound for stopping the iteration process.

Table of values

For chosen values z find the corresponding function values f(x). Then one
obtains a rough survey on the graph of the function and the location of zeros.

Interval bisection
Given z, with f(xr) < 0 and zg with f(zgr) > 0.

1. Calculate zy; = 3 (z1, 4+ 2g) and f(z).
2. If | f(zar)] < €, then stop and take xps as an approximation of z*.

3. If f(zar) < 0, then set zp := xp (g unchanged), if f(zas) > 0, then
set g := xp (zr unchanged), go to 1.

Method of false position (linear interpolation, regula falsi)
Given z, with f(xr) < 0 and zg with f(zgr) > 0.

TR — X[,
f(zr) — f(ar)
2. If | f(zs)| < &, then stop and take xzg as an approximation of z*.

3. If f(zs) < 0, then set zp, := xg (xr unchanged), if f(zps) > 0, then set
xR :=xg (xy unchanged), go to 1.

fxr) and f(zs).

1. Calculate x5 = z, —

e For f(z1) > 0, f(zr) < 0 the methods can be adapted in an obvious way.

Newton’s method
Given zg € U(z*); let the function f be differentiable.

f (@)

frae)

2. If | f(xg+1)| < €, then stop and take 41 as an approximation of z*.
3.8et k:=k+1, goto 1.

1. Calculate g1 =z —

o If f/(x) = 0 for some k, then restart the iteration process with another
starting point xg.
e Other stopping rule: |z, —zg| <& or |zpr1 — x| < e.

Descartes’ rule of signs. The number of positive zeros of the polynomial
n
> arx® is equal to w or w—2, w—4, ..., where w is the number of changes

k=0
in sign of the coefficients ay, (not considering zeros).
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Basic notions

A real function f of one independent variable 2 € R is a mapping (rule of
assignment) y = f(x) which relates to every number z of the domain Dy C R
one and only one number y € R. Notation: f: Dy — RR.

range - Wy={yeR |3z e Dy withy= f(z)}

one-to-one function — for any y € W, there is one and only one = €
Dy such that y = f(x)

inverse function, — if f is a one-to-one mapping, then the map-

reciprocal function ping y — x with y = f(z) is also a one-to-one
mapping called the inverse function to f; no-
tation f~1: Wy —R

Growth (monotony), symmetry, periodicity

increasing function -

~

1 x9) V1,22 € Dy, 1 < 22

decreasing function -

~

1 x9) V1,22 € Dy, 1 < 22

strictly increasing function  —

S~

) < S
) = f(

z1) < f(z2) V1,22 € Dy, 21 < 22
) > f(

strictly decreasing function

|
[y

x9) V1,22 € Dy, 1 < 22

(
(
(
(1
(=
(=
(

even function - f(=z)=f(z) Vz € (—a,a)N Dy, a>0
odd function - f(-z)=—f(x)Vze(—a,a) N D¢, a>0
periodic function (period p) - f(x+p) = f(z) Yz,x+p € Dy

e c-neighbourhood of the point z* (= set of all points having a distance from
x* smaller than ¢): U (z*)={zeR : [z —z*| <e}, >0

Boundedness

bounded from above function — I K: f(x) < K Va € Dy
bounded from below function — I K: f(x) > K Va € Dy
bounded function - 3K:|f(x)|] <K Yz € Dy
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Extrema
supremum — smallest upper bound K; sup f(z)
IGDf
infimum — largest lower bound K; inf f(z)
ZGDf

global maximum point - 2*€ Dy such that f(z*) > f(z) Vo € Dy

global maximum — f(z*) = max f(z)
€Dy
local maximum point  — z* € Dy such that f(z*) > f(z) Vz €
Df M UE(SL’*>

global minimum point - z*€ Dy such that f(z*) < f(z) Vo € Dy

global minimum — f(z*) = min f(z)
z€Dy
local minimum point — a* € Dy such that f(z*) < f(z) Vae
DN U-(x*)

Curvature properties

convex function — a1+ (1= Nx2) < Af(x1) + (1= N) f(22)
strictly convex function —  f(Azy + (1 — Nxa) < Af(z1) + (1 = \) f(z2)
concave function — fOx1+ (1= Na2) > Af(21) + (1= N) f(z2)
strictly concave function — f(Azy + (1 — N)aa) > Af(x1) + (1 — A) f(z2)

e The inequalities are true for any z1,22 € Dy and arbitrary numbers
A € (0,1). Under convexity and concavity the inequalities hold also for A =0
and A = 1.

Representation of real functions
Zero — anumber zg € Dy satisfying f(zo)=0

graph of a function — visualization of the points (z,y) =
(z, f(z)) associated with f in the
plane R?, using a Cartesian system of
co-ordinates in general

Cartesian co-ordinate system — system in the plane consisting of two
co-ordinate axes orthogonal to each
other; horizontal axis (of abszissae)
usually z, vertical axis (of ordinates-)
usually y; the axes are provided with
(possibly different) scales
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Linear functions

Let a,b, X € R.
linear function — y = f(z) = ax
affine linear - y=f(z)=azx+b
function

Properties of linear functions

flar +x2) = f(21) + f(22) fAz) = Af(z) f(0)=0

Properties of affine linear functions

fa) = flaz) _ f(—b

T1 — T a

):o, a0 7)<

e Affine linear functions are often simply denoted as linear functions.
e In an z,y-system of co-ordinates with uniformly scaled axes the graph of
a linear or affine linear function is a straight line.

Quadratic functions y = f(z) = az®+bx +c (a #0)

Discriminant: D = p? — 4q
b

with p= |, ¢= ¢
a a

Zeros

1
D>0: 12 = 5 (fp + \/D) two real zeros

D=0: T =To = 7129 one double zero

D<0: no zero
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Extremal points

a>0: one minimum point Xpin = —

CRLSHLVIS

a < 0: onemaximum point Tpa.x = —

e For a >0 (a < 0) the function f is strictly convex (concave) and the graph
D

of f is a parabola opened above (below) with vertex <—129, _a4 )

Power functions

Power functions y = ™, n € IN

Even and odd power functions
Domain: D;=1R
Range: Wy =R ifnodd;, Wy= R" if n even

e If n is even, then y = 2™ provides an even function, for odd n the function
y = 2™ is an odd function (» S. 45).
e The function 2° =1 is a constant.

General power functions y =z, a € R, ¢ >0

Yy Yy
a<0 a=1

A

General power function y = x®
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Domain: Dy =R"' ifa>0; D;={z|z>0} ifa<0
Range: W;=R" ifa>0; W;={y|ly>0} ifa<0

e For a= 71L the function y = T = {/x is said to be a root function. It is
the inverse function to the function y = ™ (for = > 0).

e For special values of o the domain Dy is wider: Dy = R" (e. g. for a = 7117
n odd) or Dy = R\{0} (e.g. for a = —n, n € N).

e Due to e4(x) = a = const power functions are CES-functions » elasticity
(p. 68).

Polynomials

Functions y = p,(z): R — R of the kind
pn(®) = apa™ + ap_12" '+ ...+ a1z +ag, an#0, a; €R, neNg

are called entire rational functions or polynomials of degree n.
e According to the fundamental theorem of algebra every polynomial of
degree n can be represented in the form

product

Pn(@) = an(@ —21)(@ = 22) . (¥ = T 1)@ = 2n) representation

The numbers z; are the real or complex zeros of the polynomial. Complex
zeros always occur pairwise in conjugate complex form. The zero z; is a zero
of order p if the factor (z — x;) in the product representation occurs p times.
Function values of a polynomial as well as the values of its derivatives can be
calculated as follows:

bp—1:=an, bi:=a;41+abit1, i=n-—2,...,0, pu(a)=ap+ aby

Cn—2:=bp_1, ¢i:=biy1+acit1, i=n-—3,...,0, pl(a)=0by+ acy

Horner’s scheme

(07%% Ap—1 Ap—2 N a9 al ap
a — ab,—1 aby,_2 o abs aby  abg
bnfl bn72 bn73 cee bl bO pn(a)
a — QACp_—2 aCp_—3 N acy aco
Cn_2 Cn_3 Cn_4 . co P, (a)

The following relation holds:

pn(x) = pnla) + (x —a) - (bp_12" L+ bp_oa™ 2+ - + b1z + by)
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Fractional rational functions, partial fraction decomposition

Functions of the kind y = r(z),

_ Pm(T)  @ma™ + Q1™+ a1z +ag

B m 0, b, 0
Qn(l’) bpx™ + bn—lxn_l bt bz 4 by , a 7é 7&

r(z)
are called fractional rational functions, especially proper rational functions
for m < n and improper rational functions for m > n.

e An improper fractional rational function can be rewritten in the form
r(z) = p(x) + s(x) by means of polynomial division, where p(z) is a polyno-
mial (asymptote) and s(z) is a proper fractional rational function (» product
representation of a polynomial).

zeros of r(x) —  all zeros of the polynomial in the numerator, which
are not zeros of the denominator

poles of r(x) — all zeros of the polynomial in the denominator, which
are not zeros of the numerator as well as all com-
mon zeros of the numerator and the denominator,
the multiplicity of which in the numerator is less then
its mutiplicity in the denominator

gaps of r(z) — all common zeros of the polynomials in the numera-
tor and the denominator, the multiplicity of which in
the numerator is greater or equal to its mutliplicity
in the denominator

Partial fraction decomposition of proper fractional rational functions

1. Representation of the denominator polynomial g, (z) as a product of lin-
ear and quadratic polynomials with real coefficients, where the quadratic
polynomials have conjugate complex zeros:

(@)= (x—a)(x—-0)P... (22 +cx+d)7...

2. Trial solution

() Ay n A I Ao n By n B

r(z) =

xr—a (z—a)? (x—a)* x—b (z—0)2
n " Bﬁ n Cix + Dy C,YSL‘—FD,Y
ot a2 e ay T

3. Determination of the (real) coefficients A;, B;,C;, D;, ... :
a) Find the least common denominator and
b) multiply by the least common denominator.
c¢) The substitution of x = a,z =0, ... yields Ay, Bg, ...

d) The comparison of coefficients leads to linear equations for the
remaining unknown coefficients.
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Exponential functions

y=a” - exponential function, a € R, a>0
a - base
x - exponent

Special case a = e:

y = e” =exp(x) - exponential function to the base e
Domain: D;=R
Range: Wy =R"={y|y >0}
e The inverse function of the exponential function y = a® is the logarithmic
function y = log,  (» p. 52).
e Rules of operation » powers (p. 15)

e The growth of an exponential function with a > 1 is stronger as the growth
of any power function y = 2.

| Y 1Yy
f(z)=a” f(z)=a”
1 a>1 1 a<l
/ i \\»
0 x 0 T
increasing decreasing
exponential function exponential function

Negative power

Using the transformation

1 xT
a‘w:(>, a >0,
a

the function values for negative (positive) powers can be obtained via func-
tion values with positive (negative) powers.

Basea, 0 <a<1
Using the rule
1
a " =0b" with b= ,
a

an exponential function to the base a, 0 < a < 1, can be transformed into
an exponential function to the base b, b > 1.
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Logarithmic functions

y=log,x — logarithmic function, a¢€R, a>1
x — argument
a — base

Special case a =e:

y=Inz — function of the natural logarithm

Special case a = 10:

y=lgz — function of the decimal (Briggsian) logarithm

Domain: D;=R"={zr€R |z >0}
Range: W =R

e The value y = log, = is defined by the relation x = a¥.
e Rules of operation » logarithms (p. 15).

LY

log, =
e The inverse function of the log-
. . . ; a>1
arithmic function y = log, z is
the exponential function (» p.
51). Using the same scale on both
the x- and the y-axis, the graph T d
x

of the function y = a® is ob-
tained as reflection of the graph
of y = log, x with respect to the
bisectrix y = x.

logarithmic function,
increasing

Basea, 0<a<1

Using the rule
) 1
log, z = —log,z with b=
a

a logarithmic function to the base a, 0 < a < 1, can be transformed into a
logarithmic function to the base b, b > 1.
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Trigonometric functions

Due to the intercept theorems in congruent
triangles the relations between sides are equal.
In right-angled triangles these relations are
uniquely defined by one of the non-right an-

gles. By definition ¢ a
. a b

simr= , cosx= |, T

c c

b

a b
tanz = cotr =

b a

For angles x between 7 and 27 the line segments a, b are provided with signs

according to their location in a Cartesian co-ordinate system.

Translation and reflection properties

sin (5 +) =sin (5 — 2) =cosx sin(m+x)=—sinx

cos (5 +x)=—cos (§— 2)=—sinz cos(m+xz)=—cosz

tan (§ +z)=—tan (] —2)=—cotx tan(m+) =tan z

cot (7 +z)=—cot (7 —2)=—tanz cot(m+z)=cotx

sin (% +2) =—cosx cos (% 4+z) =sinz

tan (% +2) =— cot x cot (% +2) =—tanz
Periodicity

sin(x + 27) = sinx cos(z + 2m) = cosx

tan(z 4+ 7) = tanz cot(x + m) = cotx
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Special function values

Radian measure 0 5
Measure in degree 0° 30°
sin x 0 ;
cosx 1 ; V3
tanzx 0 é V3
cotx — V3

s T s

4 3 2
45° 60° 90°
3V2 3V/3 1
2V2 2 0

1 V3 -

1 3V3 0

Transformation of trigonometric functions (0 <z < 7)

sinx cosT tanx cotx
tanz 1
sin x — V1 —cos2z
V1 + tan? z V1 + cot?z
1 cotx
cos T \/1 —sin?z —
V1 + tan? z V1 + cot?z
sinx V1 —cos?z 1
tanx _
\/1 _sin22 cos T cotx
\/1 —sin’z cosx 1
cotx . -
sin x V1 —cos2z tanz
sin x Ccos T
sin?z 4 cos?x = 1, tanx = (cosz#£0), cotx= (sinxz#£0)
cos T sinx

Addition theorems
sin(z + y) =sinx cosy £ cosx siny

tan(z + y) tanx £+ tany
an(x =
Y 1 Ftanztany

Double-angle formulas

. . 2tanx
sin2x=2sinx cos = 9
1+ tan®x
2tanx 2

1 —tan®x - cotr—tanx

cos(z £ y)=coszcosy Fsinzsiny

cotzcoty F1

cot(z ty)=
( v) coty £ cotx
1—tan?zx
cos 2z =cos? x—sin? = )
1+ tan®x

cot?z—1 _cotr—tanz

cot 2z = =
2cotx 2
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Half-angle formulas (for 0 < z < )

LT 1—cosx T 1 —cosx sinx 1 —cosx
sin = tan = = = .

2 2 2 1+ cosx 1+ cosx sinx

T 1+ cosx T 1+ cosx sinx 1+ cosx
cos = cot = = = .

2 2 2 1 —cosx 1—cosx sinx

Powers of trigonometric functions

1 1
sin®z = 2(1 — cos 2x) cos’z = 2(1 + cos 2x)
.3 1 . . 3 1
sin® ¢ = 4(3511&95 — sin 3x) cos® x = 4(3 cos + cos 3z)
.4 1 4
sin® z = 8(374c052x+cos4x) cos* x = 8(3+4cos2x+cos4x)

Inverse trigonometric functions

e The inverse trigonometric functions are also denoted as arctrigonometric
or cyclometric functions. For example, from the relation z = siny we get the
function y = arcsinz (arc sine or inverse sine).

arccot x
arctan x
,,,,,,,,, e e
2
Domains and ranges
inverse trigonometric function domain range

. T T
Yy = arcsinx —-1<x<1 —2§y§2
Y = arccosx -1<x<1 0<y<m
m T
y = arctanx —00 < x <00 —2<y<2

y = arccot x —oco < T <00 O<y<m



56 Functions of one independent variable

Hyperbolic functions

1
y =sinhxz = 2(6“" —e™®) — hyperbolic sine, Dy =R, Wy =R
1, .
y = coshx = 2(61 +e™%) — hyperbolic cosine, Dy =R, W; = [1,0)
e’ —e7”
= tanhz = — h bolic t t,Df=R, Wr=(-1,1
y = tanh z P yperbolic tangent, D¢ , Wr=(-1,1)
xr —XT
y = cothzx = ¢ i te i — hyperbolic cotangent
efL — e—fl/

Dy =R\{0}, Wy = (=00, =1) U (1, 0)

Area-hyperbolic functions

The inverse functions to hyperbolic sine, tangent, cotangent and to the right
part of hyperbolic cosine are called the area-hyperbolic functions.

y = arsinh x — area-hyperbolic sine, Dy =R, Wy =R

y = arcoshx — area-hyperbolic cosine,
Df = [1700)7 Wf = [0,00)

y = artanh x — are-hyperbolic tangent,
Dy=(-1,1), W; =R

y = arcothz — area-hyperbolic cotangent,
Dy = (_OO’ _1) U (L OO), Wy = ]R\{O}




Some economic functions 57

Some economic functions

Notation
T - quantity of a good (in units)
P — price of a good (in units of money per unit of quantity)
E - national income, national product (in units of money

per unit of time)

Microeconomic and macroeconomic functions

r = x(p)
p = p()
Up)=z(p) p

() = Kg(cx)
kg(x) = Iif
k() = F0 1

S(E) = E — C(E)

demand function (price-response function); in
general decreasing; x — quantity demanded
and sold, resp.

supply function, in general increasing; x —
quantity supplied

turnover function (return function, revenue
function); dependend on price p

cost function as the sum of fixed and quantity
(or employment) dependent variable share of
the costs

total) average costs; costs per unit
( g ; P

average fixed costs; fixed costs per unit

average variable costs; variable costs per unit

profit (operating profit)

(total) contribution margin
average profit; profit per unit

(macroeconomic) consumption function, ex-
penses for consumer goods; in general increas-
ing (E — see above)

(macroeconomic) savings function
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e The value of the average function f(z) = f (l_w) belonging to the function f
is equal to the ascent of the ray running from the origin to the point (z, f(z)).
It describes that share of the function value which belongs to one unit of x.

e A point z satisfying the equation G(z) =0, i.e. U(x) = K(x), is called the
break-even point. Apart from trivial cases, its determination (break-even anal-
ysis) is usually accomplished by means of numerical approximation methods.

e The profit per unit is equal to the difference of price per unit and costs per
unit: g(z) = p(x) — k(x). The contribution margin per unit is the difference
of price and variable costs per unit.

Logistic function (saturation process)

a
y:f(t):Hb_e_ct, . F(t)
1+b

a, b,c>0

This function satisfies the relations oy (t)= ‘ZI =p(a—y) and ¢y =py(a—1y) (»
differential equations), where p — proportionality factor, y — impulse factor,
(a—y) — brake factor.

e The rate of increase p¢(t) is at an arbitrary moment ¢ directly proportional
to the distance from the level of saturation a. The increase of the function f
is proportional to the product of impulse and brake factor.

Stock function (“saw-tooth function”)

Y
S
= t) = S — -t
y=ft)=iS— -t s

(i—1T <t<iT,

T>0,i=1,2,...
t
e At the moments T, i = 0,1,2,..., the warehouse is filled up, while in

the intervals [(i — 1)T, ¢T) the delivery takes place with constant in time
intensity.



Some economic functions 59

Gompertz-Makeham’s function (mortality law)
y=ft)=a-b'-c", abceR, d>0

e This function satisfies the relation 3y’ = p(t)y (» differential equations)
with proportionality factor (mortality intensity) p(t) = p1 + ps - d* = In |b] +
In|c|-Ind - dt. The reduction in the number of quicks of a population within
the interval [t,t+ d¢t] is proportional to the number of still living persons
y=f(t) at the age of ¢.

Trend function with periodic fluctuations

y=f(t)=a+bt+c-sindt,
a,b,e,de R

*
d

e The linear trend function a + bt is overlapped by the periodic function
sin dt describing (annual) seasonal fluctuations.

Continuous (exponential) growth

The function
y=f(t)=ao-q*

describes the time-dependent growth behaviour (population, money stock
etc.); ap — initial value at the moment ¢ = 0, « — growth intensity.

Generalized exponential growth

y=ft)=a+b-q",
a,b>0, ¢g>1

/
e Both the function and its rate of change (rate of increase) p(t) = Y (»
Y

p. 68) are increasing; moreover tlim 07(t) =1Ing.
—00
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Cobb-Douglas production function (one input factor)

The isoelastic (i.e. having a constant elasticity » p. 68) function
xr=f(ry=c-r* c,a>0

describes the connection between the factor input r of a production (in units
of quantity) and the output (produce; in may be different units of quantity;
> p. 114).

Limitational production function (one input factor)

a-r if r<r¢

f— = b
r=J) {b it r>p W00

e The mentioned production functions arise from production functions in-
volving several input factors by keeping all but one factor fixed (partial factor
variation).
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Limit of a function

If {z,} is an arbitrary sequence of points converging to the point xy such

that x, € Dy, then the number a € R is called the limit of the function f

at the point xg if lim f(z,)=a. Notation: lim f(z)=a (or f(z) — a for
n—oo T—x0

T — Zp).

e If in addition to the above conditions the restricting requirement z,, > xg

(zn < xo) is true, then one speaks about the limit from the right (from the

left). Notation: 1ilm flz)=a (liTm f(z) = a). For the existence of the limit
xlxo T |To

of a function the limits from the right and the left must agree.

e If the sequence { f(x,)} fails to converge, then the function f is said to have

no limit at the point xg. If the function values increase (decrease) without

any bound (improper limit), then the notation lim f(x) = co (resp. —c0)
T—x0

is used.

Rules of operation for limits

If both the limits lim f(x) =a and lim g(z) = b exist, then:

Jim (f(z) £9(z)) = axb, Jim (f(z) - g(2)) =a-b,
L f) _a
xhﬂrgo o)~ b if g(x)#0, b#£0.

L’Hospital’s rules for g and
oo

Let f and g be differentiable in a neighbourhood of zg, let exist
/ = K (as finite or infinite value), and let g¢'(z) # 0,

)
g'(x)
lim f(z) =0, lim g(z) =0 or lim |[f(z)] = lim |g(x)] = oo. Then
T—x0 T—xT0 T—xT0 T—T0
the relation lim ) = K holds.
T—x0

e The case r — +o00 is possible as well.

e Terms of the form 0 - co or co—oo can be transformed into the form 8 or

. Expressions of the kind 0°, co” or 1°° can be rewritten in the form 0 - oo
by means of the transformation f(z)9(*) = e9(@)In /(@)
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Important limits

1
lim =0, lim e” = oo, lim e* =0,
rz—+oo I r—00 T— —00
lim 2" =00 (n>1), lim Inxz=o0, limlnz = —o0,
T—00 T—00 z|0
xn
lim =0 (a¢€eR, a>0, neN), lim ¢" =0 (0<¢<1),
r—00 T T—00
« xr
lim ¢* =00 (¢ > 1), lim (lJr ) =e” (e€R)
xr—00 T— 00 X
Continuity

A function f : Dy — IR is called continuous at the point o € Dy if

lim f(z) = f(zo).

r—xQ
e Alternative formulation: f is continuous at the point xq if to any (arbitrarily
small) number & > 0 there exists a number ¢ >0 such that |f(z)— f(zo)| <e
if |z —mzo| <4.

e If a function is continuous Vx € Dy, then it is said to be continuous.

Kinds of discontinuity

finite jump - lim f(z) # lim f(x)

zlT0 zTxo
infinite jump — one of the two one-sided limits is infinite
pole — | lim f(z)| = | lim f(z)| = o0

x]xo zTxo
pole of order p € N — point xg for which the limit lim (x — x0)? f(z)
T—x0

exists, is finite and different from zero

gap = removable —  lim f(z) = a exists, but f is not defined for
. . . T—Tg

discontinuity @ =z or f(wo) #a

e A fractional rational function has poles at the zeros of its denominator pro-
vided that at these points the numerator is different from zero (» fractional
rational functions, p. 50).

Properties of continuous functions

e If the functions f and g are continuous on their domains D; and D,,
respectively, then the functions f + g, f — g, f g and ! (the latter for
g(x) # 0) are continuous on Dy N Dy. !
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e If the function f is continuous on the closed interval [a, b], then it attains
its greatest value fax and its smallest value fu;, on this interval. Every
number between fii, and fiax is attained as a function value at least once.

Rules of operation for limits of continuous functions

If f is continuous, then lim f(g(x)) = f ( lim g(x))

T—x0 T—x0

Special cases:

lim (f(z))" = ( Tim f(x))n, lim af@ — a<w‘i“£of(w)), a0

T—x( T—x0 T—x0

lim lnf(x)ln(llm f(x)), if f(z)>0

Differentiation

Difference and differential quotient

Ay _ flz+ Az) — f(x)

Ar Az = tan

flz+Azx)
dy _ o, flet+de)—f@) _
dz Az—0 Azx

If the latter limit exists, then the function

f is called differentiable at the point x. In f(z)
this case, it is also continuous there. If f is
differentiable Yz € Dy, then it is referred to
as differentiable on Dy.

d
The limit is called differential quotient or derivative and denoted by dy (or
x
d A
i, y'(x), f'(x)). The difference quotient z describes the angular coeffi-

cient of the secant through the points (z, f(z)) and (z+ Az, f(x+ Ax)). The
differential quotient is the angular coefficient of the tangent to the graph of
f at the point (z, f(x)).
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Rules of differentiation

constant factor
sum rule
product rule

quotient rule

especially:

chain rule

differentiation by
means of the
inverse function

logarithmic
differentiation

implicit function

general exponential
function

function

y=f(z) given
as F(z,y) =0

u(@)"@ (u(z)>0)

derivative
a-u'(x), a — real

u'(z) £ (x)

[v(z)]?
v'(z)
[v(z)]?
, , dy dy dz
w(2)v(z) <dx T dz dx)

e Differentiation by means of the inverse function and logarithmic differen-
tiation are used if the inverse function or the function In f(x) can be differ-
entiated in an “easier” way as the original functions.



Derivatives of elementary functions

arccot x

cosh x

coth x

arcoshz

arcothzx

n/an—1

2*(lnx 4+ 1)

a*Ina

S

sinh x

1 —coth®x

Va2 —1

22 -1

sinx

CoOsT

tanx

cotzx

arcsin x

arccos™

arctanz

sinh z

tanh z

arsinhx

artanhx

Differentiation

CoS X
—sinz
1+ tan?x = 5
cos? x
—1—cot?z=— |
sin“ x
V1-—22
V1— 22

1+ 22

cosh x

1 — tanh®x

V1 + 22

1— 22

65
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Differential

For a function f which is differentiable at the point zg one has

Ay = Af(xo) = f(xo + Ax) — f(x0) = f'(20) - Az 4 o(Az),

A
where the relation lim o(Ax)

Am o, = 0 holds. Here o(+) (“small 0”) is the Landau

order symbol.

The expression

dy = df(zo) = f'(w0) - Az

or

dy = f'(xo) - da

Ay
occurring in this relation is called the
differential of the function f at the
point xg. It describes the main part of 70 2ot Az o

the increase of the function value when
changing the argument xoy by Az:

Af(xo) = f'(x0) - Az .

Economic interpretation of the first derivative

e In economic applications the first derivative if often called the marginal
function. It describes approximately the increase of the function value when
changing the independent variable x by one unit, i.e. Az = 1 ( » differential).
The background is the economic notion of the marginal function decribing
the increase of the function value when changing x by one unit:

Af(x) = flz+1) = f(x).

e The investigation of economic problems by means of marginal functions is
usually denoted as marginal analysis. In doing so, the units of measure of
the quantities involved are very important:

unit of measure of f/ = unit of measure of f / unit of measure of x
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Which units of measure do economic functions and their marginal

functions have?

u.q. — unit(s) of quantity, u.m. — unit(s) of money, u.t. — unit of time

function

f(x)

costs

costs per unit

turnover
(quantity-
dependent)

turnover
(price-
dependent)

production
function

average return

profit

profit per unit

consumption
function
savings  func-
tion

f

u.am.
u.q.

u.m.
u.q.

u.1m.

u.t.

u.1m.
u.t.

xT

u.g.

u.q.

u.q.

u.m.
u.q.

u.q.?

u.q.®

u.q.

u.q.

u.1m.

u.t.

u.m.
u.t.

unit of measure of marginal function

f'(x)

marginal costs
marginal costs per
unit

marginal turnover

marginal turnover

marginal  produc-
tivity (marginal
return)

marginal average
return

marginal profit

marginal profit per
unit

marginal consump-
tion ratio (marginal
propensity to con-
sume)
marginal
ratio

saving
(marginal
propensity to save)

unit

of f’

u.1m.

u.q.

u.m./u.q.
u.q.

u.1m.

u.q.

u.m.
u.m./u.q.

uw.q.M
u.q.(2)

uw.q.M /u.q.(?)
w.q.?

u.m./u.q.

u.m./u.q.
u.q.

100 %

100 %
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Rates of change and elasticities

Notions
A
xx — average relative change of x (z # 0)
A Az) —
£(I) = flat Ax) f(@) — average relative change of f (differ-
t t ence quotient)
A 1
Ry(x) = i(x) . — average rate of change of f at the
v flz) point x
A
E¢(z) = i(x) . f(x ) — average elasticity of f at the point x
x x
o _ @) it 2
of(z) = lim Ry(z) = rate of change of f at the point z;
Ar=0 (@) rate of increase, growth rate
s _ @) - ,
ef(z) = AhrnOEf(x) =z- @) (point) elasticity of f at the point x

e The average elasticity and the elasticity are independent of the chosen units
of measure for x and f(z) (dimensionless quantity). The elasticity describes

approximately the change of f(z) in percent (relative change) if = increases
by 1%.

o If y = f(t) describes the growth (change) of an economic quantity in de-
pendence on time ¢, then gf(t) describes the approximate percentage change
of f(t) per unit of time at the moment ¢.

e A function f is called (at the point x)

elastic if |ep(z)] >1 f(z) changes relatively stronger
than z,

proportionally elastic if |ef(x)] =1 approximately equal relative

(1-elastic) changes of x and f(x),

inelastic if |ep(z)] <1 f(z) changes relatively less

strong than z,

completely inelastic if ef(z)=0 in linear approximation there
is no change of f(z) when z
changes.
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Rules of operation for elasticities and rates of change

rule elasticity rate of change
constant  ecf(x) = ef(x) (c€R) ocp(z) = pof(z) (ceR)
factor

sum Ef+gla) = f(x)aff(f))ii((?fg(z) Of+9(x) = f(x)gf(f))jz;((?)gg(x)
product  ep4(z) = ef(x) +e4(x) org(x) = o07(x) + 0g(x)
quotient € () = egp(z) —e4(x) er () = of(x) — 04(x)

Eomposite €fog(w) = €r(g(x)) - gg(x)  0rog(x) = g(x)os(9(x))0y(x)
unction

i W= v !
mverse Er—1\Yy = 0r-1(Y =
function ! er(x) ! er(z) - f(z)

Elasticity of the average function

f(x)

ef(z) =¢ef(z) =1 f — average function (f(z) = .

,x#0)

e If, in particular, U(p) = p-x(p) describes the turnover and z(p) the demand,
then due to U(p) = x(p) the price elasticity of demand is always less by one
than the price elasticity of turnover.

General Amoroso-Robinson equation
F'@) = f(z) - ep(x) = f(2) - (1 +e5())

Special Amoroso-Robinson equation

v =e (14 )

T — price,

y = N(z) — demand,

N~! — function inverse to NN,
U()=2-N(z)=V(y) =y - N~(y) — turnover,
V' — marginal turnover,

en(x) — price elasticity of demand
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Mean value theorems

Mean value theorem of differential calculus
Let the function f be continuous on [a,b] and differentiable on (a,b). Then

f(0) = f(a)
b

AR

there is (at least) one number £ € (a,b) such that

Generalized mean value theorem of differential calculus

Let the functions f and g be continuous on the interval [a, b] and differentiable
on (a,b). Moreover, let ¢'(xz) # 0 for any « € (a,b). Then there exists (at

f) = fla) _ f'(©)

least) one number ¢ € (a,b) such that o(b) — gla) = ()

Higher derivatives and Taylor expansion

Higher derivatives

The function f is called n times differentiable if the derivatives f', f" := (f'),
7= (Y, o, f0) = (f DY exist; £ is said to be the n-th derivative
or the derivative of n-th order of f (n = 1,2,...). In this context f(© is
understood as f.

Taylor’s theorem

Let the function f be n + 1 times differentiable in a neighbourhood U (zo)
of the point x¢. Furthermore, let « € U.(xo). Then there exists a number £
(“mean value”) located between zy and x such that

(o)

1@ =t + TV @z 1 TS g
f)(x " flt) (e _
ST e+ e,

where the last term, called the remainder in Lagrange’s form, describes the
error made if f(z) is replaced by the indicated polynomial of degree n.

e Another notation (expansion at x instead of zy using the mean value x+(h,
0 < ¢ < 1) is given by the formula

P, F@) e IO, f @)

hn+1
1 2! n! (n+1)!

fle+h)=f(@)+
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e MacLaurin’s form of the Taylor formula (z¢ =0, mean value (x, 0<({<1):

PO, 0,

1! 2! n!

f(n) (0) n + f(n+1)(<-x) xn-{-l

T )

Taylor formulas of elementary functions (with expansion at the point

10:0)

function

CoS T

In(1 + z)

1
1+

(1+z)”

Taylor polynomial

1 x? 2 "
+ x4+ o1 + 31 +.. 4 !
1 Ina In"a ,
+ 1 x+... nl x
3 2n—1
T nel T
Ty Fe DT oy,
SC2 SC4 I,Zn
1-— 1"
o Ty T DT o
z? 28 "
_ -1 n—1
z—, + 3 F...o+(-1) "

Approximation formulas

remainder

Cx
€ anrl

(n+1)!

a%®(lna)"*!
(n+1)!

n+1

cos(x
(2n +1)!

2n+1

(="

cos(x
(2n +2)!

(71)n+1 2n+2

" xn—i—l
(—1) (14 Cz)ntl
(~1y

n+1
1+ cayi2”

(nil) (1+ng)0‘*nflxn+1

For “small” z, i.e. for |z| < 1, the first summands of the Taylor polynomials
with 29 = 0 (linear and quadratic approximation, resp.) yield approximations
which are sufficiently exact in many applications. In the table one can find
the tolerance limits a, for which in case |z| < a the error made is € < 0,001
(» Taylor series).
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Table of approximation functions

function and its approximation

~1—=x
1+=x
1 T
Vi+z n
siner ~ x
tanz ~ x

a*~1+zxzlna

Vtaomlt
n
1+2)*=1+azx

2
cosr~1—

ef~1l+4+=x

In(l+2z)~z

tolerance limit a
0,031
0,036y/n (z > 0)

0,181
0,143

0,044 - (Ina) =1

0,394

0,044

0,045

Description of function features by means of derivatives

Monotony

Let the function f be defined and differentiable on the interval [a, b]. Then

V€ [a,b]

fi@)=0

fl(x) >0 Vaelab
flx) <0 Vaelab
flx) >0 Vaelab
fix) <0

V€ [a,b]

=

=

f is constant on [a, b]

f is increasing on [a, b]

f is decreasing on [a, ]

f is strictly increasing on [a, b]

f is strictly decreasing on [a, ]

e The inverse proposition to the last two statements holds only in a weakened
form: if f strictly increases (decreases) on [a, b], then one has only f'(z) > 0

(resp. f'(x) < 0).
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Necessary condition for an extremum

If the function f has a (local or global) extremum at the point zg € (a,b)
and if f is differentiable at this point, then f’(x0) =0. Every point xg
satisfying this equation is called a stationary point of the function f.

e The above statement applies only to points where f is differentiable.

Boundary points of the domain as well as points where f fails to be dif-
ferentiable (breaks) can be extreme points either.

Sufficient conditions for extrema

If the function f is n times differentiable in (a,b) C Dy, then f has an
extremum at the point z¢ € (a,b) if the following relations are satisfied,

where n is even: /() = f"(x0) = ... = fP V(xo) =0, f(x0) #0.
For f(")(z4) <0 the point xq yields a maximum, for f((zq) >0 a minimum.
e Especially:

f(xo) =0 A f"(z0) <0 = f has a local maximum at x,

f(xo) =0 A f"(z0) >0 = f has a local minimum at xg.

e If f is continuously differentiable at the boundary points a, b, one has

f'(a) <0 (f'(a) >0) == f has a local maximum (minimum) at a,
f/(b) >0 (f'(b)<0) == f hasalocal maximum (minimum) at b.

o If f is differentiable in the neighbourhood Ug(xo) = {z||x—xzo| < €}, € > 0,
of a stationary point zy and the sign of f’ changes at this point, then zg is
an extreme point which is a maximum point if f'(z) > 0 for x < xo and
f'(z) <0 for & > x¢. If the sign of the derivative changes from the negative
to the positive, we deal with a local minimum.

e If in U.(zo) the sign of f’ remains constant, then the function f has no
extremum at xg. In this case we have a horizontal inflection point.
Growth

e If on the interval [a, b] the conditions f'(z) > 0 and f”(x) > 0 are fulfilled,
then the function f growths progressively, while for f'(z) > 0 and f”(x) <0
the growth is said to be degressively.
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Curvature properties of a function

Let the function f be twice differentiable in (a,b). Then

f convex in (a,b) < f"(x) >0 Vz € (a,b)
= fly) - f@) = (y—=2)f'(x) Vao,ye(ab)
f strict convex — f"(x)>0 Vze/ (a,d)
in (avb) g f(y)ff(x)>(y*x)f/(x) Vx,ye(a,b),:r#y
f concave in (a,b) < f"(x) <0 Vz € (a,b)
= fly) - f@) <@y—2)f(x) Vo,ye(ab)

f strict convex — f"(x)<0 Vze (a,b)
in (avb) — f(y)ff(x)<(y*x)f/(x) Vx,yG(a,b),:r;éy

Curvature

The limit of the change A« of the angle a between the direction of a curve
and the z-axis in relation to the covered arc-length As for As — 0 is called
the curvature of a curve:

A«
C=1 .
Alﬁlo As
presentation of the curve curvature C'
1
Cartesian form y = f(z) f"(x) "
(L4 (f'(2))?)

parametric form z = z(t), y = y(¢)

e The curvature C of a curve is equal to the reciprocal of the radius of the
circle which contacts the curve y = f(z) at the point P(z, f(x)).

e The curvature C is nonnegative if the curve is convex and nonpositive if
it is concave.
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Necessary condition for an inflection point

If the function f is twice diffentiable in the interval (a,b) and has a point of
inflection at x,, (point between intervals of convexity and concavity), then

f(zw) = 0.

Sufficient condition for an inflection point

If f is three times continuously differentiable at (a,b), then sufficient for x,,
with f”(x,) = 0 to be a point of reflection is the validity of the relation

f"(@w) # 0.

Investigation of economic functions, profit maximization

Notations
flx) = /(@) — average function
x
f(z) — marginal function
K(z) = Ky(z)+ Ky — total costs = variable costs + fixed costs
K
k(x) = (z) —  total costs per unit
x
K,
ky(z) = (z) — variable costs per unit
x
G(z) =U(x) — K(x) — profit = turnover — costs
G
g(x) = () — profit per unit
x

e Due to f(1)=f(1), a function and its average function have the same value
for x=1.

Average function and marginal function
flx)y=0 = f'(z)=f(x) (necessary optimality condition)

e An average function may have an extremum only at a point where it is
equal to its marginal function.

In particular: K (zm) = kv(2m) = Ky min
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e At the point z,, of minimal average variable costs the marginal costs and
the variable costs per unit are equal (short-term bottom price, lower price
limit).

K/(Stl’o) = k(l’o) = kmin

e For minimal total costs per unit the marginal costs and the average costs
must be equal to each other (optimum costs; long-term bottom price).

Profit maximization in the polypoly and monopoly

Solve the extreme value problem G(z) = U(z)—K(x) =p-z—K(x) — max.
Let its solution be z*.

e In the polypoly (perfect competition) the market price p of a good is
a constant from the viewpoint of suppliers. In the monopoly (of supply) a
(decreasing) underlying price-response function p = p(x) is assumed to be
the total market demand function.

Polypoly; maximization of total profit
K'(z*) = p, K"(z*)>0 (sufficient maximum
condition)

e A polypolistic supplier obtains maximal profit by that volume of supply
z* for which the marginal costs are equal to the market price. A maximum
can exist only in the case if * is located within the convex domain of the
cost function.

Polypoly; maximization of the profit per unit

9 (o) =k (20)=0, ¢"(x0)=—k"(20)<0 (sufficient maximum
condition)

e The maximal profit per unit is located at the point where average costs
are minimal (optimum costs).

Polypoly; linear total cost function, capacity limit xg

¥ =z

e The profit maximum lies at the capacity limit. It is positive provided that
the break-even point (see p. 58) lies in (0, zp).

e The minimum of costs per unit and the maximum of profit per unit are
both located at the capacity limit.
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Monopoly; maximization of total profit

K'(z*)=U'(z*), G"(z*)<0 (sufficient maximum
condition)

e At a point of maximal profit marginal turnover and marginal costs are
equal to each other (Cournot’s point).

Monopoly; maximization of profit per unit

P'(2) = K'(2), 9"'(%) <0 (sufficient maximum
condition)

e Maximal profit per unit is achieved at the point & where the ascents of the
price-response function and the average cost function are equal.

Optimal lot size (optimal order size)

¢s — set-up costs (u.m.) per lot

¢; — inventory costs (u.m. per u.q. and
u.t.)

d — demand, inventory  decreases
(u.q./u.t.)

r — production rate, addition to stocks
(u.q./u.t.)

T — length of a period (u.t.)

x — (unknown) lot size (u.q.)

u.m., u.q., u.t. — units of money, quantity and time, resp.

e The rate of inventory decreases d as well as the rate of additions to stock
¢ > d are assumed to be constant. (For ¢ = d from a “theoretical point of
view” a stock is not needed.)

e It is to find that lot size x* for which the total costs per period consisting
of set-up and inventory costs will be minimal. The greater the production lot,
the lower the relative set-up costs, but the higher the inventory costs (related
to the average stock).

e The relevant quantities for the underlying model can be found in the
following table.
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Relevant quantities

to = . — production time of a lot
r
Ty = 2 — length of a production and inventory cycle
d . .
lmax = [ 1 — x — maximal inventory level
T
- d
l= <1 — > o — average stock
r 2
D=d-T — total demand in [0, T
D dT
n= = — number of lots to be produced in [0, T
x x
D .
Cs(z) = -cs — total set-up costs in [0, 7T
x
d\ =z . .
Crlz)=(1- o e T — total inventory costs in [0, T]
r
C(z) = Cs(x) + Cr(x) — total period costs

Optimal lot size formulas

= 2dcg
Va9

t
e If the whole addition to stocks takes place immediately at the beginning

of the inventory cycle (r — 00), then lmax = x (“saw-tooth curve”, » p. 58),
where

¥ = \/2ch lot size formula of Harris and Wilson
Cr

e When buying and storing a commodity being continuously used in a pro-
duction process, one obtains a similarly structured problem of optimal
order size: fixed order costs suggest a few, but large orders, while stock-
dependent inventory costs suggest more, but smaller orders.
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Indefinite integral

Every function F : (a,b) — R satisfying the relation F'(x) = f(z) for all
x € (a,b) is called a primitive of the function f : (a,b) — R. The set of all
primitives {F + C'| C € R} is said to be the indefinite integral of f on (a,b);

C' is the integration constant. Notation: /f(x) dz = F(x)+C.

Integration rules

constant factor /)\f(x) dz = /\/f(x) dz, AeR
sum, difference /[f(x) +g(z)]dx = /f(x) dz + /g(x) dz

integration by /u(x)v'(x) dz = u(z)v(z) — /u’(x)v(a?) dx

parts
integration by /f x)dx = /f z=g(x)
substitution
(change of variable)

!/

special case / g ((x)) dz =In|g(z)[ + C, g(x) #0
x

f2) =] !
linear substitu- /f (ax +b)d F(ax +b) + C, a,b e R,
tion

(F is a primitive of 1) a#0

Integration of fractional rational functions

/ U™ + Q1™ a1z + ao
bpx™ 4+ b1z 4+ ...+ bix + by

Polynom division and partial fraction decomposition lead to integrals over
polynomials and special partial fractions. The partial fractions can be inte-
grated by the use of formulas from the » table of indefinite integrals. The
most important are (assumptions: z —a # 0, k > 1, p? < 4q):
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d
/ . =ln|z—a|+C
r—a

dzx 1
/(m—a)’f :7(k—1)(x—a)k—1 +C

d 2 2
/ ) . = arctan TP +C
P pr+q  \/aq - p? Vg — p?

Ax + B A 1 dx
dz = 7 In(2? B—- A
/x2+px+q T 9 n(x +px+q)+< 9 p)/x2+px+q

Definite integral

The area A located between the inter-
val [a,b] of the z-axis and the graph of
the bounded function f can approximately
be calculated by summands of the form

Z f( )Ax ™) with Axl(-n) = 332(”)—33(”)1

i—

and ZASL’Z- =b—a. e 1€n) n b g

i=1

Passing to the limit for n — oo and Ax(") — 0, under certain assumptions

one obtains the definite (Riemann) mtegml of the function f on the interval
b

[a, b], which is equal to the area A: / flx)de =A
a

Properties and rules of operation

|t

/f — [ sy

/am 2+ ga dxf/ e dxi/b () do
[ n@ae=a [ @ vem

[ swar= [“swars [ s
S/ablf(a:)ldx, a<b

x) dz
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First mean value theorem of integral calculus

If f is continuous on [a, b], then there exists at least one & € [a, b] such that
b
[ t@de=@-ar©.

Generalized first mean value theorem of integral calculus

If f is continuous on [a, b], ¢ is integrable on [a, b] and either g(z) > 0 for all
x € [a,b] or g(x) <0 for all x € [a,b], then there exists at least one & € [a, ]
such that

b b
[ H@g@rdz = 1) [ gta)ds
If f is continuous on [a,b], then /T f(t)dt is differentiable for « € [a,],
where F(z) = /r fit)dt = F'(x) = f(z).

Fundamental theorem of calculus

If f is continuous on [a,b] and F is a primitive of f on [a,b], then
b

/ f(x)dx = F(b) — F(a).

Tables of indefinite integrals

Fundamental integrals (The integration constant is omitted.)

power functions

xn+1

/J;"dx: (neZ,n# -1, x#0 for n<0)
xa-&-l

/xadx: (aeR, a# -1, 2>0)

/;dx:1n|x| (x #0)
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exponential and logarithmic functions

/amdx:a (eeR,a>0,a#1)

Ina
“dr =e”

Inzdr=zlhz — =z (x >0)

— —

trigonometric functions
sinxdxr = —cosx

cosxdx =sinx

tanzdz = —In|cos x| (x#(?k—&—l)g)

— — — —

cot zdz = In|sin z| (x # km)
inverse trigonometric functions

/arcsinacdx =z arcsinz + /1 — 22 (Jlx] <1)
/arccosxdx =z arccosz — /1 — 22 (Jlx] <1)

/arctanxdx = zarctanz — _ In(1 4 2?)

1
2
1 2
arccot x do = x arccot x + 5 In(1 + z*)

rational functions

/ dx ;
= arctanx
1+ 22

dx 1+x
[ w1 (12l < 1)

dx rz—1
[ =m0 (1] > 1)



irrational functions
/ dx .
= arcsinx
V1 — g2
dx
=In(z+vVz2+1
/ V14 22 ( \/ )

dx 0
/\/x271:ln(33+\/33 1)

hyperbolic functions

sinh x dx = cosh x
coshx dr = sinhx
tanh x dx = Incosh x

cothxz dz = In |sinh z|

— — — —

area-hyperbolic functions

/arsinhx dz = x arsinhz — \/1 + x2
/arcoshx dx = x arcoshx — \/:v2 -1
/artanhx dz = rartanhz + _ In(1 — 2?)

In(z? — 1)

l\DD—‘M,_.

/ arcothz dz = z arcothz +

Integrals of rational functions

n . (az+Db)tt
/(ax—i—b) dz = a(n+1)

d 1
/ S In |ax + b]
ar+b a

Tables of indefinite integrals

([ <1)

(| > 1)

(x >1)
(] < 1)

([ > 1)

83
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axr+b ax bf —ag
dx = + In|fx+g
fr+yg f I? | |

dz B 1 a B f .
/(aw+b)(fx+g)ag—bf (/ax+bdx /f:c+gd)

/ dz _ 1 / dx
(x+a)(z+b)(z+c) (b—a)(c—a)] z+a

1 dx 1 dx
Jr(a—b)(c—b)/nc—i—bJr (a—c)(b—c)/x—i—c

2 2ax +b ,
V4dac — b2 arctan 4ac — b? for b*<4ac
1 ) 9
In(1- et ) —In(1+ oz +0 )| for 4ac < b?
Vo? — dac V? — dac Vb2 — dac

/ dx
(ax? 4 bx + ¢)n !

B 2ax + b (4n —2)a / dz
-~ n(4ac—b2)(az? + bz + )" n(dac —b2) | (az? +bx +c)n

/ rdr
(ax? 4 bx + ¢)nt!

B bx + 2¢ (2n —1)b / dx
- n(b?2 —4dac)(az? +bx + ) n(b? —4dac) | (az? +bx +c)n

arctan ~ for the sign +
a
1
/a;:l:x? = is with S = N anJ_ri for the sign — and |z| < |a]
1
(a#0) 5 In " ta for the sign — and |z| > |a]
T—a

/ dx _ T n 2n —1 / dx
(a2 £ 22)"+1  2na2(a?2 £ 22)"  2na? (a? £ z2)"

1 + )2 1 2
/ dz =+ In (a 7) + arctan Tty a

ad £ 23 6a?  a?Fax+a2  ¢2/3 av/3
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Integrals of irrational functions

/\/(ax—i-b)"dx:a( 2

2+ n) Ve +0)m+2 (n#-2)

L [Vazr+b— Vb
/ dz Vb [ Vaz +b+ Vb

zvax +b 9 P
arctan for b<0
V—b —b

/\/ax+bdx=2\/ax+b+b/ dr
T xvax +b

for b>0

1
/\/a2 —x?dz = 9 (95\/&2 — 224 a? arcsinx)
a

/x\/aQ—xde:—l\/(a2_m2>3

3

dx . T
= arcsin
Va2 — 22 a

d
\/C;z —xng :_\/GQ_xQ

/\/x2+a2dx: ; (CU\/I2+a2+a21n (1'+\/I2+a2))
/x\/$2+a2dx= :13\/(x2+a2)3

/\/ de_ ) zln(x+\/x2+a2>
2 +a

rdx

Va2 + a2

/\/l’Q—CLQd.'L‘: ; (x\/xQ—aQ—thl (x—i— \/332_&2))

= a2+ a?

/x\/x2 —a?dz = é\/(ﬂ —a2)3

85
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/\/xQdaiaQ = (z+ Va2 - a?)

d
\/;jja2 :\/xz_a2

x
/\/ax2+bx+c
1
y IH‘Q\/G\/GI2+I)I+C+2(1:L'+Z)’ for a >0
a

1 2 b
- arcsin 07t for a <0, 4ac < b?

V—a Vb2 — dac

rdx 1\/ 2 bt /
= azx x4 c—
Var2 +br+c¢ a 2a ) Vax? +br+c

2 b 4 —b2
/\/ax2+bx+cd ar+ \/x2+bx+ + ac / dz
4a Vaz? +bx +c¢

Integrals of trigonometric functions

. 1
/ sinaxdxr = — cosax
a

1 1
sinazder = "z — sin 2ax
2 a

1 _ n—1 _
sin” ax dx = sin ! ax cos ax + sin"2axdr (n€N)
na n

1 n -
a"sinaxdr = — 2" cosax + 2"t cosax dx (n e IN)
a a

/
/
/
[ e = b5
/
/
/

e (n>1)

n —1
" azx

sin"ar  a(n—1)sin” ez  n—1

dx cos ax n—2 / dx
sin

cosax dr = sm ar

1
cos? ax dx = 2$L‘+ da sin 2ax
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1 -1
/cos axdr = sin ax cos" "t ax + " /008”72 ax dz
na n
/ 1 n 3 n / n—1 .
" cosardr =  x2"sinax — T sin ax dx
a a
/ dz 1 ’t (ax+7r)‘
n [tan
cos ax 2 4
dz 1 sin ax dx
= -2 >1
/ cosmar n—1 |:CL cos"lax +(n )/ cosn—2 ax] (n>1)
/ o
sin ax cosax dx = sin” ax
2a
b —-b
/smaxcosbxdx = _co;((zi—b))x - COQS((Z b))x (la| # 10])
/tanaxdx =— 1n|coscwc|
1 n—1 n—2
tan" ax dz = tan"” " ax — [ tan"" “axdx (n#1)
aln—1)
/Cot ardz = 1n|sina33|
n 1 n—1 n—2
cot" axdr = — cot"tax — [ cot" "% axdx (n#1)
aln—1)
Integrals of exponential and logarithmic functions
1
/e‘“” de = e
a
/x”e‘“" dz = x”e‘”” _n /x"ile‘” dz
a
/lnaxdx =xzlnar — =z
/ln”x 1 I+
T n+1
m—+1 1
/ g™ In"rde = m:_nlx) - mT—Li— L /xmlnnflxdx (m#—1, n#-1)
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Improper integrals

Let the function f have a pole at the point = b, and let f be bounded and
integrable on any interval [a,b — £] such that 0 < ¢ < b — a. If the integral
of f on [a,b— €] has a limit for £ — 0, then this limit is called the improper
integral of f on [a,]:

b—e
/ flz)dx = hm f(z)da (integrand unbounded)

e If x =a is a pole of f, then analogously:
b b
/ f(z)dz = lim / f(z)dx (integrand unbounded)
a e—=+0 Jote

e If x = c is a pole in the interior of [a, b], then the improper integral of f
on [a,b] is the sum of the improper integrals of f on [a, | and [c, b].

e Let the function f be defined for x > a and integrable on any interval
[a,b]. If the limit of the integrals of f on [a,b] exists for b — oo, then it is
called the improper integral of f on [a,00) (analogously for a — —o0):

o b b b
| r@de=tim [ p@an [ pede= g [ f)de

(interval unbounded)

Parameter integrals

If for a <z <b, ¢ <t < d the function f(z,t) is integrable with respect to
b

z on [a,b] for fixed t, then F(t) = [ f(z,t)dz is a function of ¢ denoted as
a

parameter integral (with parameter t).

e If f is partially differentiable with respect to ¢t and the partial derivative
f+ is continuous, then the function F is differentiable (with respect to t), and
the following relation holds:

b
Fy =" :/a WY 4o

e If ¢ and 1 are two differentiable functions for ¢ < ¢ < d and if f(x,t) is
partially differentiable with respect to ¢ having a continuous partial derivative
in the domain defined by p(t) < x < ¥(t), ¢ < t < d, then the parameter
integral of f with boundaries ¢(t) and 1 (t) is differentiable with respect to ¢
for ¢ <t < d, where
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P(t)
F(t)= (f) f(z,t)dz =
_ V(1) G £

@(t)

dz + f(9(8), ) () = F((t), (1)

e Special case: F(z) =

f©ds = Fl(z)= f(x)

Economic applications of integral calculus

Total profit

Olx) = / “[e©) — k(o)) de

k(x) — marginal costs for x units of quantity;
e(x) — marginal turnover for  units of quantity

Consumer’s surplus (for the equilibrium point (zg, po))
Zo

Kgr(zg) = E* — Ey = / pn(x)de —xo - po
0

pN : ¢ — p(x) — decreasing demand function, py = pn (o),
Ey = x¢ - po — actual total turnover,
x4

E* = pn (z) dx — theoretically possible total turnover
0

e Consumer’s surplus is the difference between theoretically possible and
actual total turnover. It is (from consumer’s point of view) a measure for the
profitability of a buy at the equilibrium point (but not before).

Producer’s surplus (for the equilibrium point (xg,po))
zo
Pr(z9) =FEo — E* =1 - po — / pa(x)de
0

pa ¢ — pa(x) — increasing supply function,

pn & — pn(z) — decreasing demand function,

pa(zo) = pn(x0) =: po defines the market equilibrium point;
FEy, E* — actual and theoretically possible total turnover, resp.

e Producer’s surplus is the difference between actual and theoretically pos-
sible total turnover. It is (from producer’s point of view) a measure for the
profitability of a sale at the equilibrium point (but not before).
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Continuous cash flow

K(t) — time-dependent quantity of payment,
R(t) = K'(t) — time-dependent cash flow,
a — continuous rate of interest (intensity)

to
Ky 10 = / R(t)dt — volume of payment in the time in-
t terval [tl, tg]

K, 14)(t0) / e—at-to) R R(t)dt - present value at to < t;

R
K, 1) (to) =~ e (e7*" —e™*"?) — present value for R(t) = R = const
e
o0
Ky, (to) = / e (=t R(¢) dt — present value of a non-restricted in
t time cash flow R(t) (“perpetuity”)
R
Ky, (to) = e~ (ti—to) — present value of a constant cash flow
a

R(t) = R non-restricted in time

Growth processes
Let some economical characteristic y = f(¢) > 0 be described by the following
features, where the initial value f(0) = yo is given:

e the absolute growth in a time interval [0,¢] is proportional to the length
of the interval and the initial value:

c
= y=f(t)= 2752 + Yo (¢ — factor of proportionality)

e the rate of growth f((t)) is constant, i.e. /(( ))

— y = f(t) = yoet (v — intensity of growth)
special case: continuous compounding of a capital

- K, = Koe® (K:=K(t) — capital at the moment ¢; K
— opening capital; 0 - intensity of interest)

e the rate of growth is equal to some specified integrable function (), i.e.
@) _ (t):
FOBNMAE

— oy = f(t) = yoelo 1Dz = et

1t
where 7 = ; / v(z) dz is the average intensity of growth in [0, ¢t].
0



Differential Equations

General form of an n-th order ordinary differential equation

F(z,y,y/,... 7y(”)) =0 - implicit form
y™ = f(x,y,y,...,y"Y) - explicit form

e Every n-times continuously differentiable function y(z) satisfying the dif-
ferential equation for all x, a < a < b is called a (special) solution of the
differential equation in the interval [a, b]. The set of all solutions of a differ-
ential equation or a system of differential equations is said to be the general
solution.

e If at the point z = a additional conditions are imposed on the solution, then
an initial value problem is given. If additional conditions are to be observed
at the points a and b, then one speaks about a boundary value problem.

First-order differential equations

y' = f(x,y) or P(x,y)+Q(z,y)y’' =0 or P(zx,y)dr+Q(z,y)dy =0

e Assigning to every point in the z,y-plane the tangential direction of the
solution curves given by f(x,y) one obtains the direction field. The curves of
the direction field having equal directions are the isoclines.

Separable differential equations

If a differential equation is of the form
y =r(x)s(y) or Plx)+Qy)y =0 or Pz)de+ Qy)dy =0,

then it can always be rewritten in the form R(z)dx = S(y)dy by means

dy

of separation of variables. This means the substitution of y" by and re-

x
arrangement of the equation. After “formal integration” one thus gets the
general solution:

[R(@)dz = [S(y)dy = o) =) +C

First-order linear differential equations

r(z) #Z 0: inhomogeneous differential equation

/ —
v +a(@y = (@) r(z) = 0: homogeneous differential equation
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e The general solution is the sum of the general solution y;, of the associated
homogeneous differential equation and a special solution y, of the inhomoge-
neous differential equation:

y(x) = yn(z) + ys(x)

General solution of the homogeneous differential equation
The general solution yp(z) of ¥’ + a(x)y = 0 is obtained by separation of
variables from which one gets the result

yn(x) = Ce= Jal@)dz, C = const

Special solution of the inhomogeneous differential equation

A special solution ys(z) of ¢y + a(z)y = r(x) can be obtained by setting
ys(z) = C(z)e™ S 9@ 9= (yariation of constants). In doing so, for the function
C(z) one gets

O(z) = [r(x)e) *@dw g

Linear differential equations of n-th order

an(2)y™ + ...+ ar(2)y’ + ao(z)y = r(z), an(z) 0

r(x) # 0 — inhomogeneous differential equation,
r(z) = 0 — homogeneous differential eqquation

e The general solution of the inhomogeneous differential equation is the sum
of the general solution y;, of the associated homogeneous differential equation
and a special solution y of the inhomogeneous differential equation:

y(z) = yn(z) + ys(z)

General solution of the homogeneous differential equation

If all coefficient functions aj are continuous, then there exist n functions yy,
k=1,...,n (fundamental system of functions) such that the general solution
yn(z) of the associated homogeneous differential equation has the following
form:

yn(x) = Cry1(x) + Coyz(z) + ... 4+ Cpyn(x)

e The functions y1,...,y, form a fundamental system if and only if each of
these functions yy is a solution of the homogeneous differential equation and
if there is at least one point x¢g € R for which Wronski’s determinant
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y1(x) Yo () Yn()

vi(z)  yhlo) v, (x)
Wiz) = : : - :

W @) @) Ly (@)

is different from zero. They can be obtained by solving the following n initial
value problems (k=1,...,n):

an(x)y,(cn) + ...+ a1 (x)y, +ao(z)yr =0,

) 0, i#k—1
(4) ’ :
To) = 1=0,1,...,n—1
i (@0) {1, i=k—1

e (Lowering of the order). If a special solution § of the homogeneous dif-
ferential equation of the n-th order is known, then the substitution y(z) =
§(z) [ z(x) dz leads from the linear (homogeneous or inhomogeneous) differ-
ential equation of the n-th order to an equation of the (n — 1)-th order.

Special solution of the inhomogeneous differential equation

If {y1,...,yn} is a fundamental system, then using the approach
ys(x) = Cr(x)y1(x) + ... + Cp(@)yn(x) variation of constants
one gets a special solution of the inhomogeneous differential equation by

determining the derivatives of the functions C4,...,C,, as solutions of the
linear system of equations

ynCp + yCy + ...+ ynCl, = 0
yicy o+ yCy + ...+ ynCl = 0

(n=1) o (n=1) e (- _ 7(2)

Al 1t Y 2 t  Yn n an(@)
Now the functions C1, ..., C, can be calculated by integration.

Euler’s differential equation

If in the general linear differential equation of n-th order the coefficient func-
tions are of the form ax(x) = arz®, ax € R, k =0,1,...,n, then one obtains

anz™y™ + ..+ ayzy + aoy = 7(x)
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e The substitution # = e¢ (inverse transformation ¢ = Inx) leads to a
linear differential equation with constant coefficients for the function y(§).
Its characteristic equation is

apAA=1)...A=n+1)+...Fa XA —=1)+aA+a =0
Linear differential equations with constant coefficients

any(n)+'.'+a1y/+a0:’r’(x), ag,...,a, € R

e The general solution is the sum of the general solution of the associated ho-
mogeneous differential equation and any special solution of the inhomogeous
differential equation:

y(x) = yn(z) + ys()

General solution of the homogeneous differential equation

The n functions yi of the fundamental system are determined by setting
y = e (the trial solution). Let the n values Ay be the zeros of the char-
acteristic polynomial, i.e. solutions of the characteristic equation

ap A"+ ... +aA+ayg=0

The n functions of the fundamental system associated with the n zeros Ay
of the characteristic equation can be determined according to the following
table:

kind of order of functions of the
the zero the zero fundamental system
simple e
A, real \ N L
p-fold eMkT perk® . xPT e T
A L b simple e sin bx, e** cos bx
E=aQa 1
conjugate €™ sin bx, re® sinbx, ..., 2P~ 1e® sin bz,
complex p-fold _ 4 i un
e cosbx, xe® cosbzx, ..., xP~ e cosbx

The general solution y; of the homogeneous differential equation is

yn(z) = Cryr(x) + Coya(x) + ... + Cryn(x)
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Special solution of the inhomogeneous differential equation

If the inhomogeneity r has a simple structure, then ys can be determined by
means of an approach described in the following table:

r(z)

Apxe™+ ...+ Ajx+ Ay bpx™ + ...+ b1z + by

AeOLCL’
Asinwz
Bcoswz

Asinwx + B coswz

combination of
these functions

trial solution
Ys()

an&fL’

asinwx + bcoswzx

corresponding
bination of different
trial solutions

com-

trial solution in the
case of resonance

If a summand of the
trial solution solves
the homogeneous
differential equation,
then the trial solution
is multiplied by z so
many times until no
summand is a solution
of the homogeneous
differential equation.

The above rule can
be applied only to
that part of the set-
up which contains the
case of resonance.

First-order linear systems with constant coefficients

y;1, = ap1y1 +

Vector notation

yY=Ay+r with
Y1 vi

y=| |,y =1":
Yn y;z

a11y1  +

+ a1pyn +
r1(z)
r= : s
()

r1(x)
a;; €R
Tn(2)
ail QA1n
A=
Qan1 QAnn

e The general solution has the form y(z) = y,(z) + y,(x), where y, is
the general solution of the homogeneous system y’ = Ay and y, is a special
solution of the inhomogeneous system y’ = Ay+r.
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General solution of the homogeneous system

Case 1 A is diagonalizable and has only real eigenvalues A\, kK =1,...,n
(multiple eigenvalues are counted multiply); let v be the corresponding real
eigenvectors. Then the general solution of the homogeneous system is

yn(x) = Cleklwvl + ..+ Cne)‘”“'vn

Case 2 A is diagonalizable and has conjugate complex eigenvalues A\ =
a + Bi, Ag+1 = a — i with corresponding eigenvectors vy = a + bi, vy =
a — bi. Then in the general solution y,, the terms with indices k, k + 1 are to
be replaced as follows:

y,(x) = ...+ Cre*®(a cos fr—bsin fx)+ Crr1e** (asin fx+bcos fzx)+. ..

Case 3 A fails to be diagonalizable; let V' be the matrix describing the
similarity transformation from the matrix A to the Jordan normal form.
Paying attention to the dimensions nj of the Jordan blocks J(Ag, ng), k =
1,...,s, the matrix V can be written column-wise:

V = (V11,- s Vlngs - Oklse- vy Oknps---sVsly- 3 Usn, )

Then the general solution of the homogeneous system is

T
yn(@) = ...+ Crie* vy + Croes® {yvm JF'UkZ} +...
e gre—l T
+ Cknke kT |:(nk B 1)|’Uk1 + ...+ 1"Uk,nk—1 + vknk:| + ...
Calculation of the eigenvectors vy : (A= E)vg; =0

Calculation of the principal vectors vi; : (A — A\gE)vy; = v j—1, where
j=2,...,ng

If complex eigenvalues occur, then one has to act as in Case 2.

Special solution of the inhomogeneous system

A special solution can be obtained by variation of constants or an trial so-
lution (» table p. 95), where in all components all parts of r(x) are to
be considered. Under resonance, the original ansatz has to be enlarged with
ansatz functions multiplied by =x.



Difference Equations

First-order linear difference equations

Ay = a(n)y + b(n) (*)

A function y = f(n), Dy C Ny, is called a solution of the difference equation
() if Af(n) = a(n)f(n) +b(n) ¥Yn € Dy, where Ay = y(n+ 1) —y(n) =
fin+1) = f(n).

o If {a(n)} and {b(n)} are sequences of real numbers, then (x) has the
solution

v = 5 = - T )+ 1+ 5 60 T fa)+ 1)+ b= 1)

Here f(0) = yo € R can be chosen arbitrarily, while

ﬁ[a(k)+1] ;:{ [1“<0)+1]'---'[a(n—1)+1] 1£Zz(1)2
k=0
I oty + 1 ::{ ol ol =

l=k+1

In the special case a(n) = a = const, b(n) = b = const the solution of the
difference equation (*) has the form

y0~1:[[a(k)+1] if bn)=b=0
k=0

y=f(n)= yola +1)" if a(n)=a,bn)=0

if a(n)=a#0, b(n)=b

Yyo+b-n if a(n)=0,b(n)=0b
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Economic models

y(n) — national income, n =0,1,2,...

¢(n) — consumption, n=0,1,2,...
s(n) — sum of savings, n=0,1,2,...
i(n) — investments, n=20,1,2,...

Growth of national income according to Boulding
Model assumptions:
y(n) = c(n) +i(n), c(n) = a+ By(n), Ay(n) = vi(n)

«a — part of consumption independent of income, « >0
B — factor of proportionality for income dependent consumption, 0< 3 < 1

~v — multiple of investments by which the national income changes, v > 0

Ay(n) =~v(1 = Py(n) —ay, n=0,1,2,... Boulding’s model

Solution: y=f(n)= 1fﬁ+ (yo— 1045) (T4+y(1=-0)"

e Under the assumption y(0) = yo > ¢(0) the function y = f(n) is strictly
increasing.

Growth of national income according to Harrod
Model assumptions:
s(n) = ay(n), i(n) = BAy(n), i(n) = s(n)

ay(n) — saved part of national income, 0 < a <1

I6] — factor of proportionality between investments and increase of
national income, (>0, f# «

Harrod’s model

(0%

Ay(n) = zu(n), y(0) =yo, n=12,...

This model has the solution: y=f(n)=yo- (a>
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Ezekid’s cobweb model

Assumptions:
d(n) =a—pp(n), dn)=n d(n) — demand,
qgn+1) =~ 4+ dp(n) p(n) — price
a>0,8>0,v>0,6>0 q(n) — supply

It is assumed that supply and demand are in equilibrium.

_a—7v d B B cobweb
Apl) = (1 ¥ ﬁ) pn), p(O) =po,  m—l2.. 0w
Solution: = (n)_a—7+< _a—*y) (_5)"
' V=P = a5 T\ T 546 ) U
e The quantity p(n) oscillates around the constant value p* = ;;g For

& > 3 the solution diverges, for 6 < 3 the solution converges to the equilibrium
price p*.

| od lcd c(n+1)
d(n) d(n)
c(n+1) &
d(1) (1) %
y‘ c(2) d(2)
o C
o a(0) Co
| | | - | | | -
p(1) p*  p(0) p(1) p(0) p(2)
Convergence Divergence

Linear second-order difference equations
An equation of the form
A?y + aAy + by = ¢(n), a,b,ce R (%)

is called a linear second-order difference equation with constant coefficients.

The term A2 f(n) := f(n+2)—2f(n+1)+ f(n) is the second-order difference.
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e If ¢(n) =0Vn =0,1,2,..., then the equation is called homogeneous,
otherwise it is called inhomogeneous.

e A function f with Dy C {0,1,2,...} is said to be a solution of the equation
(%) if A% f(n) +aAf(n) +bf(n)=c(n) Vn € Dy.

e The general solution of the linear inhomogeneous difference equation ()
is the sum of the general solution of the associated homogeneous difference
equation A%y + aAy + by = 0 and any special solution of (x).

General solution of the second-order homogeneous difference equa-
tion

Consider the characteristic equation A2 +aX+b=0.

1
Its solution is determined from the formula A; > = —; + 2\/a2 — 4b. De-

pending on the discrimant D = a? — 4b it can have two real, one real double
or two conjugate complex solutions. To represent the general solution of the
homogeneous difference equation associated with () one has to distinguish
between three cases, where C, Cy are arbitrary real constants.

1 1
Casel D>0: )\1:2<—a+\/D), AQZZ(—a—\/D)
Solution: y=f(n)=C1(1+ A)" 4+ Co(1+ Ao)™
Case2 D=0: )\1:)\2::)\:—; (a #2)
Solution: y=f(n)=Ci(1+ )"+ Con(1+ \)"

Case3 D<O0: a:=—"2 B:= -D
Solution:
y = f(n) = C1[(1+a)* + B2 cospn + Ca[(1+a)® + §°]% sinpn

g

+a (a#—-1) and = (a=-1).

™
where tany = 9
General solution of the second-order inhomogeneous difference
equation

The general solution of the inhomogeneous equation is the sum of the general
solution of the homogeneous equation and a special solution of the inhomo-
geneous equation (k). The latter can be obtained e. g. by means of the ansatz
method, where the corresponding ansatz functions depend on the concrete
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structure of the right-hand side ¢(n). The unknown coefficients involved are
determined by comparison of coefficients.

right-hand side trial solution
c(n) = agnf 4+ ... +a1in+ap C(n) = Agnf + ...+ Ain + A
¢(n) = acoswn + bsinwn C(n) = Acoswn + Bsinwn

(a0 or f#w; see Case 3 on p. 100)

Economic models

y(n) — national income ¢(n) — consumption

i(n) — private investments H - public expenditure

Model assumptions (n =0,1,2,...)

y(n)=c(n) +i(n) + H the national income splits up into con-
sumption, private investments and public
expenditure

c(n)=a1y(n — 1) 0 < a7 < 1; the consumption is proportional

(multiplicator «q) to the national income of
the previous period

i(n)=azfc(n) —c(n —1)] @z > 0; the private investments are propor-
tional (accelerator az) to the increase of the
consumption

Samuelson’s multiplicator-accelerator model
A2y +(2—a) —aja)Ay+ (1 —ay)y=H

Solution for H

Q< o < 1: y= f(n) + (alag)g(Cl cos pn + Cs sin pn)

:1—Oél

e The solution f oscillates
with decreasing amplitude

around the limit .
—a
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Linear difference equations of n-th order with constant coefficients

Yktn + n1Yktn—1 + - + a1ykt1 + aoyr = c(k) (keN) (1)
e A linear difference equation of the form (1) with constant coefficients
a; €R,i=0,1,...,n—1, is of n-th order if ag # 0.

e The difference equation of n-th order (1) has exactly one solution yi = f(k)
if the initial values for n successive values k are given.

o If f1(k), fa(k),..., fu(k) are arbitrary solutions of the homogeneous linear
difference equation

Yktn + Qn_1Yktn—-1 + ... + a1Yp+1 + aoyr = 0, (2)

then the linear combination

f(k) = nfik) + yafa(k) + ... + v fu(k) (3)
17

with (arbitrary) constants v; € R, i =

homogeneous difference equation (2).

e If the n solutions fi(k), fa(k),..., fu(k) of (2) form a fundamental sys-
[O) L0000 fal0)

tem, loe. | oo # 0, then (3) is the general
filn=1) fa(n=1) ... fa(n-1)

solution of the homogeneous difference equation (2).

...,n, is also a solution of the

o If y; s is a special solution of the inhomogeneous linear difference equation
(1) and yg,p is the general solution of the associated homogeneous linear
difference equation (2), then for the general solution of the inhomogeneous
linear difference equation (1) the representation yr = yr,n + yr,s holds.

General solution of the n-th order homogeneous difference equation

Solve the characteristic equation — A" + AN P4+ +ad+ay =0.

Let its solutions be Aq1,...,A,. Then the fundamental system consists of n
linearly independent solutions fi(k),..., fn(k), whose structure depends on
the kind of the solutions of the characteristic equation (analogously to »
second-order difference equations, p. 100).

Special solution of the n-th order inhomogeneous difference equa-
tion

To find a special solution of the inhomogeneous difference equation (1), in
many cases the ansatz method is successful, where the ansatz function is cho-
sen in such a way that it corresponds to the right-hand side with respect to
structure (» second-order difference equation, p. 100). The unknown coeffi-
cients contained are determined by substituting the ansatz function into (1)
and making a comparison of coefficients.



Differential Calculus for Functions of Several
Variables

Basic notions

Functions in R"

A one-to-one mapping assigning to any vector & = (z1,22,...,2,)' € Dy C
R™ areal number f(x) = f(x1,x2,...,x,) is called a real function of several
(real) variables; notation: f : Dy — R, Dy C R".

Dy
Wy

{xeR" |qyeR:y=f(x)}
{yeR |z e Dy:y= f(x)}

domain

range

Graphic representation

Functions y = f(x1,22) of two independent variables x1, 22 can be visualized
in a three-dimensional representation by a (x1, 22, y)-system of co-ordinates.

The set of points (x1,x2,y)
forms a surface provided that
the function f is continuous.
The set of points (x1,z2)
such that f(z1,22) = C =
const is called a height line
or level line of the function
f to the height (level) C.
These lines are located in the
1, Ta-plane.

Point sets of the space R"

Let & and y be points of the space R™ having the co-ordinates (x1,...,x,)
and (y1,...,Yn), respectively. These points can be identified with the fixed
vectors € = (21,...,2,) and y = (y1,...,yn) ' directed to them.
n
x|l =] > a2 — Euclidian norm of the vector x,
=1 also denoted by |z| » vectors, p. 115
n
Izl = > |=i] — sum norm of the vector x
i=1
lz|leo = max || — maximum norm of the vector x
1=

.....

|z —yll — distance of the points x,y € R"
Us(@)={yeR" ||y — | <}

e-neighbourhood of the point @, e >0



104 Differential calculus for functions of several variables

e For the norms introduced above the inequalities ||| o0 < |l]|2 < ||x||1 are
valid; ||| denotes an arbitrary norm, usually the Euclidian norm ||z||2.

e A point x is called an interior point of the set M C IR"™ if there exists
a neighbourhood U, (x) contained in M. The set of all interior points of M
is called the interior of M and denoted by int M. A point x is called an
accumulation point of the set M if every neighbourhood U, (x) contains points
of M different from x.

e A set M is said to be open if int M = M, it is called closed if it contains
any of its accumulation points.

o A set M C R" is called bounded if there exists a number C such that
lz]| < C for all x € M.

Limit and continuity

Sequences of points

A point sequence {xi} C R" is a mapping from IN to R". The components
(k)

of the elements xj of the sequence are denoted by z;, i =1,...,n.
z= lim &, < lim |y —x||=0 - convergence of the point se-
k—oo k—o0 ..
quence {xr} to the limit

point x

e A point sequence {xy} converges to the limit point « if and only if any
sequence {xi(k)}, i1=1,...,n, converges to the i-th component z; of x.

Continuity

A number a € R is called the limit of the function f at the point x if for
any point sequence {xy} converging to xo such that x; # x¢ and i € Dy
the relation klim f(zx) = a is true. Notation: :chnal: f(x) = a.

—00 —&o

e A function f is called continuous at the point &y € Dy if it has a limit at xg
(i. e. if for any point sequence converging to x( the sequence of corresponding
function values converges to one and the same value) and this value is equal
to the function value at xq:
lim f(z)= f(zo) <= lim f(xy) = f(zo) V {zk} with xp — xo
r—Io k—oo

e Equivalent formulation: f is continuous at the point xq if, for any number
e > 0, there exists a number ¢ > 0 such that |f(x) — f(zo)| < € provided
that ||z — x| < 4.

e If a function f is continuous for all £ € Dy, then it is called continuous
on Df.
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e If the functions f and g are continuous on their domains Dy and D,
respectively, then the functions f+g, f-g, and / are continuous on DN Dy,

the latter being continuous only for values & with g(x) # 0.

Homogeneous functions

FOz1, .. ) =AY f(x1,...,2n) VA0

— f homogeneous of degree ao > 0

flxe, .oz, xn) = XY f(z,. .0, 2,) VA0
— f partially homogeneous of degree o; > 0

a = 1: linearly homogeneous
« > 1: superlinearly homogeneous
«a < 1: sublinearly homogeneous

e For linearly homogeneous functions a proportional increase of variables
causes a proportional increase of the function value. This is the reason why
these functions are also called CES (= constant elasticity of substitution)
functions.

Differentiation of functions of several variables

Notion of differentiability

The function f: Dy — R, Dy C R", is called (totally) differentiable at the
point xg if there exists a vector g(ao) such that

lim fzo + Az) — f(xo) — g(z0) ' Az —0

e If such a vector g(xo) exists, then it is called the gradient and denoted by
Vf(xo) or grad f(xo). The function f is said to be differentiable on Dy if it
is differentiable at all points « € Dy.

Partial derivatives
If for f: Dy — R, Dy C R", at the point o = (29,...,29)7 there exists

0 0 0 0 0 0 0
o ) flal, .. iy o) + Ay, ad g, xh) — f(al, ..., 1)
the limit lim
Ax; —0 AIZ

)

then it is called the (first-order) partial derivative of the function f with
af dy

respect to the variable z; at the point &y and is denoted by P P
L | X=T¢ xr;

S (@0), Or Oy, f.
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e If the function f has partial derivatives with respect to all variables at
every point ® € Dy, then f is called partially differentiable. In the case if
all partial derivatives are continuous functions, f is said to be continuously
partially differentiable.

e When calculating the partial derivatives, all variables to which we do
not differentiate are considered as constant. Then the corresponding rules
of differentiation for functions of one variable (especially the rules for the
differentiation of a constant summand and a constant factor, » p. 64, 65)
are to be applied.

Gradient

If the function f : Dy — R, Dy C R", is continuously partially differentiable
on Dy, then it is also totally differentiable there, where the gradient is the
column vector formed from the partial derivatives:

 f(a) = af (x) of (x) T ~ gradient of the function f at the
RN R point x (also denoted by gradf(x))

e If the function f is totally differentiable, then for the directional derivative

(which exists in this case for arbitrary directions » € R™), the representation
f'(z;7) = Vf(x) r holds, and Vf(x) is the direction of steepest ascent of
f at the point x.

e The gradient V f (o) is orthogonal to the level line of f to the level f(xg),
so that (for n = 2) the tangent to the level line or (for n > 2) the tangential
(hyper)plane to the set {x| f(x) = f(xo)} at the point &y has the equation
Vf(xo)" (x — x9) = 0. Directional derivatives in tangential direction to a
level line (for n = 2) have the value zero, so that in linear approximation the
function value is constant in these directions.

Chain rule

Let the functions ux = gr(z1,...,2n), &k = 1,...,m of n variables as well
as the function f of m variables be totally differentiable at the points
x = (z1,...,2,)" and w = (uq,...,um)", respectively. Then the compos-

ite function F(z1,...,2,) = f(g1(x1,.- s Zn)y- .y gm(T1,...,2,)) is totally
differentiable at the point x, where
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VE(z)=G'(z)"Vf(u) =

le (.’13) axlgl(m) axlgm(m) fu1 (u)

Fon@)  \Owa1(@) ... egm(@)) \fum (W)
OF(x) 7% 8f( 2. 09k

3:132- - =1 auk 6951

(x) — componentwise notation

Special case m =n =2; function f(u,v) with u = u(z,y), v = v(x,y):

8f_8f.8u+8f.8v 8f_8f.8u+8f.8v
dr  Ou dx Ov Ox dy Ou 9y Ov Oy

e The matrix G’(z) is called the functional matriz or Jacobian matriz of
the system of functions {g1,...,gm}-

Higher partial derivatives

The partial derivatives are again functions and thus have (under suitable
assumptions) partial derivatives.

2
g f(gw) = foia; (x) = 88 <8(];(33)) — second-order partial
2,0 Ly Li derivatives
3 2
o f(=@) = foiz;en(T) = g (8 f(ac)) —  third-order partial
0x;0x 0z, Oxj \ Ox;0z; derivatives

Schwarz’s theorem (on commutativity of differentiation). If the partial
derivatives fy;z; and f;,;, are continuous in a neighbourhood of the point @,

then the following relations hold:  fy,z, (%) = fa,z,(T) .

e Generalization: If the partial derivatives of k-th order exist and are contin-
uous, then the order of differentiation does not play any role when calculating
the partial derivatives.

Hessian matrix

Joro(®) forzs (@) o form, (@) Hessian matrix of the

Hy(x) = Jrow1 (®)  frges(®) oo foge,(x) | twice partially differ-

e R entiable function f at
Sanar (@) fonzs(®) oo fo,2,(X) the point x

e Under the assumptions of Schwarz’s theorem the Hessian matrix is sym-
metric.
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Total differential

If the function f: Dy — R, Dy C R", is totally differentiable at the point
xo (» p. 105), then the following relation holds:

Af(xo) = f(xo+ Ax) — f(z0) = V f(o) " Azo(]| Ax||)

of[|Az[]) _

Here o(-) is Landau’s symbol with the property lim = 0.

ax—0 |[Az|
The total differential of the function f at the point xg

of

Vf(zo)' Az = o Oy,

. (zo) dayy

(iL‘o)dSL‘l—l—...—l—

describes the main increase of the function value if the increment of the n
components of the independent variables is da;, i = 1,...,n (linear approxi-
mation); dz; — differentials, Az; — (small) finite increments:

of

1 0x;

Af(x) ~ (x) - Az,

-

2

Equation of the tangent plane

If the function f : Dy — R, Dy C R", is differentiable at the point ¢, then
its graph possesses a tangent (hyper)plane at (o, f(xo)) (linear approxima-
tion), which has the equation

(70) (55a) =0 o vt ssstate o

Partial elasticities

If the function f : Dy — R, Dy C R", is partially differentiable, then the di-
mensionless quantity € ., () (partial elasticity) describes approximately the
relative increase of the function value dependent from the relative increment
of the i-th component z;:

x; t-th partial elasticity of the

€rai(®) = fa; (m)f(ag) function f at the point x
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Relations involving partial elasticities

of(x)

i=1 8.’1’;1

Euler’s homogeneity relation;

=a- f(xh e 7~7Jn> - f homogeneous of degree a

sum of partial elasticities
= degree of homogeneity

Eflvll (w) thln (w)
e(x) = €foa(T) o Efaa,(T) ~ matrix of elasticities of the
R T functions fl7"'7fm
Ef7n7$1 (w> et Efwwl'n (w)

e The quantities €y, ., (x) are called direct elasticities for i = j and cross
elasticities for i # j.

Unconstrained extreme value problems

Given a sufficiently often (partially) differentiable function f : Dy — R,
D; c R"™. Find » local extreme points x¢ of f (p. 46); assume that x¢ is
an interior point of Dy.

Necessary conditions for extrema

xo local extreme point = Vf(xg)=0 <= f;,(xo) =0, i=1,...,n
xo local minimum point = V f(x¢)=0 A H(xo) positive semidefinite

xo local maximum point = V f(x¢)=0 A H(xo) negative semidefinite

e Points &y with V f(xzg) = 0 are called stationary points of the function
f. If in any neighbourhood of the stationary point x( there are points x, y
such that f(z) < f(xo) < f(y), then x¢ is said to be a saddle point of the
function f. A saddle point fails to be an extreme point.

e Boundary points of Dy and points where the function f is nondifferentiable
are to be considered separately (e. g. by analysing the function values of points
in a neighbourhood of x(). For the notion of (semi-) definiteness of a matrix
> p. 121.

Sufficient conditions for extrema

Vf(xo) =0 A Hjy(xo) positive definite = @ local minimum point
Vf(xo) =0 A Hj(xo) negative definite = x( local maximum point
Vf(xo) =0 A Hjy(xo) indefinite = =z saddle point
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Special case n = 2

f(m) = f(SC],I’Q):
V@) =0 AN A>0 A fyz,(Xg) >0 = x( local minimum point
V@) =0 A A>0 A foz,(@g) <0 = x( local maximum point

Vil®g)=0 AN A<0 = x saddle point

Here A = det Hf(%0) = fur21(20) * frows (®0) — [frras(®0)]?. For A =0 a
statement concerning the kind of the stationary point &y cannot be made.

Constrained extrem value problems

Given the once or twice continuously (partially) differentiable functions f :
D—MR,g:D—R,i=1,....m<n, DCR" and let x = (z1,...,7,) .
Find the local extreme points of the constrained extreme value problem

f(x) — max / min ©)

g1(®) =0, ..., gm(®)=0
e Theset G={x € D|gi(x) =0,...,9m(x) = 0} is called the set of feasible
points of problem (C).
e Let the regularity condition rank G’ = m be satisfied, where the m x
n-matrix G’ denotes the » functional matrix of the system of functions

{g1,.-.,9m}, and the m linearly independent columns of G’ are numbered
by i1,...,%mn, the remaining columns being ¢,,11,...,%,.

Elimination method

1. Eliminate the variables z;,, j=1,...,m, from the constraints g;(x) =0,
i=1,...,m, of the problem (C): i, = Gi; (Ti, 1. Ti,) -

2. Substitute x;;, j=1,...,m, in the function f: f(x)= f(zs, .\, .., Ti,)

3. Find the stationary points of f (having n — m components) and deter-
mine the kind of extremum (» conditions on p. 109).

4. Calculate the remaining m components z;,, j = 1,...,m, according to
1. in order to obtain stationary points of (C).

e All statements concerning the kind of extrema of f remain in force with
respect to problem (C).
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Lagrange’s method of multipliers

1. Assign to any constraint g;(x) = 0 one (for the time being unknown)
Lagrange multiplier \; e R, i =1,...,m.

2. Write down the Lagrange function associated with (C), where A =
()\1, ey )\m>TZ

m

Lz, A) = f(x) + X2 Aigi() .

=1

3. Find the stationary points (g, Ag) of the function L(x, A) with respect
to variables & and A from the (generally speaking, nonlinear) system
of equations

L, (x,A) =0, i=1,...,n; Ly (x,A\)=gi(x)=0, i=1,....,m

The points xg are then stationary for (C).

4. If the nxn-matrix V24 L(xo, Ao) (2-part of the Hessian of L) is positive
definite over the set T={z€R" |Vgi(xo)'2=0,i=1,...,m}, i.e.

2'VieL(xg, o)z >0 VzeT, 2#0,

then x( yields a local minimum point for (C). In case of negative defi-
niteness of V2,4 L(xo, Ao), To is a local maximum point.

Economic interpretation of Lagrange multipliers

Let the extreme point @ of the (perturbed) problem

f(x) — max / min;

C
gi(x) —b; =0, i=1,...,m (Cp)

be unique for b = bg, and let Ag = (A\},...,A%)T be the vector of La-
grange multipliers associated with xg. Let, in addition, the regularity con-
dition rank G’ = m (see p. 110) be fulfilled. Finally, let f*(b) denote the
optimal value of problem (C,) depending on the vector of the right-hand
side b= (b1,...,b,)". Then

af*

=)
abl (b0> - )‘17

i.e., =AY describes (approximately) the influence of the i-th component of
the right-hand side on the change of the optimal value of problem (Cy).
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Least squares method

Given the pairs (x;,v;), 4 =1,...,N
(x; — points of measurement or time,
y; — measured values). Find a trend
(or ansatz) function y = f(z,a) ap-
proximating the measured values as
good as possible, where the vector a =
(a1,...,apr) contains the M parame-
ters of the ansatz function to be deter-
mined in an optimal manner.

N
e The symbols [z;] = > z are denoted as Gaussian brackets.
i=1

error sum of squares to be

2 .
(f(zi,a)—y;)” — min  — minimized

n
I
M=

.
Il
_

Of(x;,a) necessary conditions of minima
| (f(wi, @) — i) - daj 0 - (normal equations), j=1,2,..., M

s

?

e The minimum conditions result from the relations g f = 0 and depend on
J

the concrete form of the ansatz function f. More general ansatz functions of

the kind f(x,a) with = (z1,...,7,)" lead to analogous equations.

Some types of ansatz functions

f(x,a1,a2) = a1 + azx — linear function
f(z,a1,a2,a3) = a1 + asw + azz? — quadratic function
M
flz,a) = Zl a; - g;(z) — generalized linear function
]:

e In the above cases a linear system of normal equations is obtained:

linear ansatz function quadratic ansatz function
N a N+ ay-[z;] +as-[22] = [y]
ai - +az - T = |y
1 bl = o ar- o] +az-[2?) + a3 - [27] = [z
ai - |x;| +ag - |x7| = Y
vl e i =l w2 ke ) 4 s ) = P
Explicit solution for linear ansatz functions
2] - [yl = [wiyi] - ] _ N [wiy] =[] - [yd]

ay = N - [$2] o [$2]2 )

?
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Simplifications

e By means of the transformation #; = z; — \ [2;] the system of normal

equations can be simplified since in this case [z}] = 0.

e For the exponential ansatz y = f(z) = a; - €*2” the transformation
T(y) =Iny leads (for f(z) > 0) to a linear system of normal equations.

e Tor the logistic function f(x) = a-(1+be~*)~! (a,b,c > 0) with known
a the transformation § = be™ = YV =In" ¥ =1Inb— cx leads to a
linear system of normal equations, when setting a; = Inb, as = —c.

Propagation of errors

The propagation of errors investigates the influence of errors of the indepen-
dent variables of a function on the result of function value calculation.

Notation
exact values — Y, T1,..., 2y withy=f(x)=Ff(a1,...,2,)
approximate values  — ¢,Z1,...,&,, where §=f(Z) = f(Z1,...,Tn)
absolute errors - dy=9—y, o, =T;,—x;, 1=1,....n

absolute error bounds — |dy| < Ay, |dz;| < Az;, i=1,...,n

. oy Oy )
relative errors , , i=1,...,n
Yy X
é A ox; Ax;
relative error bounds - ’ y’ < y, "< Ydi=1,...,n
y = Wl T |7 |l

e If the function f is totally differentiable, then for the propagation of the
errors dx; of the independent variables onto the absolute error of the function
f one has:

Ay ~ 01(@) Az + ...+ 01(@) Ax,
or1 Oz,
—bound for the absolute error of f()
Ay |z of(®)| Ax Tn Of(&)| Az,
- . NN D .
yl 1§ O | =l g Orn | |zl

—bound for the relative error of f (&)
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Economic applications

Cobb-Douglas production function
y=f(x)=c-af* -x3? ... -z x; — input of the i-th factor

(¢c,ai,x2; > 0) y — output

e The Cobb-Douglas function is » homogeneous of degree r = a1 +...4+ay.
Due to the relation f,,(z) = 7 f(x), i.e. €f4,(x) = a;, the factor powers a;
are also referred to as (partial) production elasticities.

Marginal rate of substitution

When considering the » level line to a production function y = f(x1,...,zy)
with respect to the level yg (isoquant), one can ask the question by how many
units the variable x; has (approximately) to be changed in order to substitute
one unit of the k-th input factor under equal output and unchanged values
of the remaining variables. Under certain assumptions an implicit function
xp = p(x;) is defined ( » implicit function), the derivative of which is denoted
as the marginal rate of substitution:

) = — S () marginal rate of substitution
)= fur () (of the factor k by the factor 7)

Sensitivity of the price of a call option

The Black-Scholes formula Pean = P-®(dy) — S - e - ®(dy)

with d; = ml/T {ln g +T- (1 + 022 )} and dy = dy — ov/T describes the price

P.an of a call option on a share in dependence on the inputs P (actual price of
the underlying share), S (strike price), i (riskless rate of interest, continuously
compounded), T' (remaining term of the option), o2 (variance per period of
the share yield), where @ is the distribution function of the standardized

22

normal distribution and ¢ its density: p(z) = \/1% ceT 2,

The change of the call price under a change Ax; of the i-th input (while
keeping the remaining inputs fixed) can be estimated with the help of the

P,
partial differential a;a_dl - Ax;, where e. g.
aPCa R .
A= GPH =@(dy;) >0 — Delta; sensitivity of the call price w.r.t.
a change of share price P
P
A= acau =P-p(dy)- VT >0 - Lambda; sensitivity of the call price
o

w.r.t. a change of volatility o
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Vectors
ai
a= ;
an
1 0
0 1
€] = . 5 € = 5 5 €n =
0 0

. . . 1 . .
e The space R" is the space of n-dimensional vectors; IR* — numerical axis,

vector of dimension n
with components a;

basic vectors of the
— co-ordinate system,
unit vectors

R? - plane, R® — (three-dimensional) space.

Rules of operation

al /\a1
Aa = )\ =
an Aay,
ai b1 a; by
axb=| || :|= :
an by, a, £ b,
al b1
a-b= . = Z aib;
an, by, =
a-b=a'b with a' = (ay,...,a,)

axb= (a2b3 — a3b2)61
+(asb1 — a1bz)es + (ai1bes — azbi)es

%

n
la| =VaTa = /> a?
i=1

multiplication \a

by a real

number A (A>1)
a

addition,

subtraction

a

scalar product

other notation for the scalar
product; a' is the vector
transposed to a

vector product (or cross
product) for a,b € R?

modulus of the vector a

e Fora=(ay,...,a,)" € R" the relation @ = a;e; + ...+ a,e, holds.
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Properties of the scalar product and the modulus
a'b=b"a a’(\b)=Xa'b, NeR
a'(b+c)=a'b+a'c |[Aa| = |A| - |a b

a'b=la|-|b|-cosp (a,bcR* R’ sce figure)

a

la+b| < |a| + |b] triangular inequality

laTh| < |a| - |b] Cauchy-Schwarz inequality
Linear combination of vectors
If the vector b is the sum of the vectors ay, ..., a,, € R"™ multiplied by scalar
coefficients A1, ..., Ay € R, 1. €.

b:)\la1+...+)\mam, (*)
then b is called a linear combination of the vectors ai, ..., an,.

e Ifin (x) the relations \y +Xo+...+ A\, = laswellas \; > 0,i=1,...,m,

hold, then b is called a convex linear combination of ai,...,apn,.
e Ifin (x) the relation Ay + A2 + ...+ Ay = 1 holds, but \;, i =1,...,m,
are arbitrary scalars, then b is called an affine combination of ai,...,an.

e Ifin (x) the relations A; > 0,4 =1,...,m, hold, then b is called a conical
linear combination of ai,..., Q.

Linear dependence

The m vectors ay,...,a, € R"™ are said to be linearly dependent if there
exist numbers Aq,..., A, not all zero such that

Aaq + ...+ \pa,, =0.

Otherwise the vectors a1, ..., a,, are linearly independent.
e The maximal number of linearly independent vectors in R" is n.

e If the vectors ay,...,a, € R" are linearly independent, then they form a
basis of the space R", i.e., any vector a € R" can be uniquely represented
in the form

a=XMNai+...+ \,a,.
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Equations of straight lines and planes
Straight lines in R?
Az +By+C=0

y=mx+n, m=tana — explicit form

y—y1 =m(zx—=z1) — point-slope form b

Y=Y _ Y2—u1 @
B a

two-point form

general form 1Y

xr — T X9 — I

xr=x1+ ANx2 — 1) two-point form in parametric representation

—0 <A< 0
with &, = (x1>7 €Ty = (352); cf. the two-
n Y2
point form of a straight line in R* on p. 117
y : .
+ b= 1 — Intercept equation
a
mo — mq intersection angle bet- I
tan = - . 2
14+ mimsg ween two lines [1, lo
. l
Ii|ll2: mp =mg —  parallelism !
1 .
l1 Lils: mg=— — orthogonality
miy

Straight lines in R?

point-slope (parametric) form: given a point Py (zo, Yo, 20) of the straight
line ! with fixed vector ¢ and a direction vector a = (as, ay, a)’

_ by PO Aa
T =10+ \a flzrril_)o_ y _ o 1 )\Zm ¢
—00 < A< . Yy="Yo Y o
wise: z=2zo +Aa, T
0

two-point form: given two points P;(z1,y1,21) and Pa(z2,y2, 22) of the
straight line [ with fixed vectors 1 and -

r=x1+A(T2—21) nc:ripo— T ii\\ 2 : )
0 < A\ < 00 : Yy=un (Y2 3/1
wise: z=2z1 +A(z2 — 21)
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Planes in R?

parametric form: given a point Py(xo, Yo, 20) of the plane with fixed vec-
tor xo and two direction vectors a = (az, ay,a)", b= (by,b,,b.)"

T =xo+ Aa + pub compo- = = xg+ Aay + ub,
—0 <A< 0 nent- Yy = yo +Aay + uby
—00 < < 00 wise: z =29+ Aa, +pub, g
o) ‘$

0
normal (vector) to the plane x = xg + Aa + ub:

n=axb

normal form of the equation of the plane (containing
the point P)

n-x=D with D=n-xy, n=(4,B,C)"

componentwise: Ax+ By+Cz=D n

Hesse’s normal form

cx—D
n-x —0
n|

. Ax+By+Cz—D
componentwise: =
VA2 + B2 + (C?

distance vector d between the plane n - x = D and
the point P with fixed vector p
n-p—D

d =
nfz2 "

shortest (signed) distance § between the P
plane n - & = D and the point P with d
fixed vector p

6:n-p—D
n|
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Matrices

A (m,n)-matriz A is a rectangular scheme of m - n real numbers (elements)
aij,i: 1,...,m;j: 1,...,7’L:

ail e Aln

A= 0 =y =1, m
Aml  --- Gmn j=1...,n

i — row index, j — column index; a (m,1)-matrix is called a column vector

and a (1,n)-matrix is called a row vector.

e The row rank of A is the maximal number of linearly independent row
vectors, the column rank is the maximal number of linearly independent
column vectors.

e The following relation is true: row rank = column rank, i.e. rank (A) =
row rank = column rank.

Rules of operation

A=B < a;;=0b;Vij —  identity

AA (AA)i; = Aayj — multiplication by a real number
A+tB: (A+B);; =a;; £b;; — addition, subtraction

AT (AT = aji —  transposition

A-B: (A-B),;= i1 airbr;  —  multiplication

Assumption: A and B are conformable, i.e., A is an (m,p)-matrix and
B is a (p, n)-matrix; the product matrix AB is of the type (m,n).

Falk scheme for b by b
multiplication of matrices : : : B
bp1 bpj bpn
aill . aip
p
A aan QGip e cy=3 awb; C=A-B

am1 N Amp
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Rules of operation (A, 1 € R; O = (a;;) with a;; = 0 V4, j — null matrix)

A+B=B+A (A+B)+C=A+(B+C)
(A+ B)C = AC + BC A(B+C)=AB+ AC
(AT = (A+B)T=A"+B'

A+ u)A=)A+pA (M)B = A\(AB) = A(AB)
(AB)C = A(BC) AO=0

(AB)T =BT AT AT =xAT

Special matrices

quadratic matrix — equal numbers of rows and columns
identity matrix I — quadratic matrix with a; =1, a;; =0 for i#j
diagonal matrix D — quadratic matrix with d;; = 0 for ¢ # j,
notation: D = diag(d;) with d; = d;;
symmetric matrix — quadratic matrix with AT = A
regular matrix — quadratic matrix with det A # 0
singular matrix — quadratic matrix with det A =0
inverse (matrix) to A — matrix A~! with AA™! =
orthogonal matrix — regular matrix with AAT =1
positive definite matrix — symmetric matrix with " Az > 0
Ve #0,xeR"
positive semidefinite m. — symmetric matrix with x Az >0 VxeR"
negative definite matrix — symmetric matrix with T Az < 0
Ve #0,xeR"

negative semidefinite m. symmetric matrix with T Az <0 VxcR"

Properties of special regular matrices

I"=1 detT =1 ‘=71
AI=TA=A A'A=T (A H1t=A
(A HT =) (AB)"'=B'A™! det(A™h) = !
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Inverse matrix

A is the submatrix obtained from A by removing the i-th row and the
k-th column (» algorithms at p. 126)

Criteria of definiteness

e The real symmetric (n,n)-matrix A = (a;;) is positive definite if and only
if any of its n minors in principal position is positive:

............ >0 for k=1,...,n.

e The real symmetric (n, n)-matrix A = (a;;) is negative definite if and only
if the sequence of the n minors in principal position has alternating signs
starting with minus (or equivalent: if — A is positive definite):

(=DF| >0 for k=1,...,n.

e A real symmetric matrix is positive definite (positive semidefinite, negative
definite, negative semidefinite) if and only if all its eigenvalues (» eigenvalue
problems, p. 126) are positive (nonnegative, negative, nonpositive).

Determinants

The determinant D of a quadratic (n,n)-matrix A is the recursively defined
number

a11 ... Qin
D =detA = :aﬂ(—l)“‘l detA21++am(fl)’+" detAm,

anl -+ . Apn

where A;j is the submatrix obtained from A by removing the i-th row and
the k-th column. The determinant of a (1, 1)-matrix is defined as the value of
its unique element. The calculation of a determinant according to the above
definition is said to be the Laplace expansion with respect to the i-th row.

e The same value D is obtained via expansion with respect to an arbitrary
row or column, especially to the k-th column:
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a11 ... Qin
D=detA = = alj(—1)1+j det A1j+. . .+anj(—1)”+j det An]‘ .

Anl - -. Qpn

Special cases (Sarrus’ rule)

n=2: n=3:
a1 a12 a3 ai; a2
ailr a2 N X X 7
>< a21 G22 423 421 A22
az; a2 / X X \
/ N az1 az2 azz aszr as2
— + VAR A VI NN
- - - + 4+ o+
det A = aj1a20 — a12a21 det A = 11022033 + @12023031 + 113021032

—a13022031 — 111023032 — 112021433

Properties of n-th order determinants
e A determinant changes its sign if two rows or two columns of the associated
matrix are exchanged.

e If two rows (columns) of a matrix are equal to each other, then the value
of its determinant is zero.

e The value of a determinant remains unchanged when adding the multiple
of a row (column) of the associated matrix to another row (column) of this
matrix.

e If a row (column) of a matrix is multiplied by a number, then the value of
its determinant is multiplied by this number.

e The following relations are valid:
det A=det A", det(A - B) = det A - det B,
det(AA) = A\ det A (A — real).

Systems of linear equations

The system of linear equations

aijlry +...+ alnxn:bl
Az =0 componentwise: ..., (%)
A1 X1+ -+ G T = b,

is called homogeneous if b = 0 (componentwise: b; = 0 Vi = 1,...,m)
and inhomogeneous if b # 0 (componentwise: b; # 0 for at least one i €
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{1,...,m}). If (%) is consistent (i.e., it has a solution), then the set of all
solutions is said to be the general solution.

e The system (%) is consistent if and only if rank (A) = rank (A, b).

e In the case m = n the system (%) has a unique solution if and only if
det A # 0.

e The homogeneous system Ax = 0 has always the trivial solution & = 0.

e For m = n the homogeneous system Axz = 0 has nontrivial solutions if
and only if det A = 0.

e If x; is the general solution of the homogeneous system Ax = 0 and x4
is a special solution of the inhomogeneous system (x), then for the general
solution x of the inhomogeneous system () the following representation is
valid:

T =X+ Ts

Gaussian elimination

Elimination

In this phase, from the system of linear equations Axz = b with A being a
(m,n)-matrix at every step a (suitable) variable as well as a (suitable) row
is successively eliminated until the method terminates since further suitable
variables or further suitable rows cannot be found. In order to calculate the
values of the eliminated variables later on, the eliminated row is “marked”.

Algorithm (described for the first elimination step)

1. Find a matrix element apq # 0. If a;; = 0 for all elements of the
matrix, then terminate the elimination. The variable x, is the unknown
to be eliminated, the row p is the row to be eliminated, a,q is called the
pivot element.

2. Generation of zeros in column g:

Subtract the " -fold of row p from all rows i, i # p:

Gpq
. a; ‘ .
aij::aijfalqam—, j=1,....,n; i=1,....,p—1Lp+1,....m
Pq
~ a;
b; :=b; — qup, i=1,....,p—Lp+1,....m
Gpq

3. Remove the row p from the system of equations and mark it.

4. If the remaining system of equations contains only one row, then the
eliminitaion terminates.
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Checking consistency
Consider the remaining system Az = b.

Casel A=0,b # 0 = The system of equations (x) is inconsistent.

Case 2 A =0,b=0= The system of equations (*) is consistent.
Delete the remaining system.

Case3 A+#0 = The system of equations (x) is consistent. The
remaining system consists of only one row.
Add this row to the rows marked in the pro-
cess of elimination.

Back substitution

The marked equations form a system with triangular matrix (in every equa-
tion the variables eliminated in the previous equations fail to occur).

Case 1 n—1 elimination steps; then () has a unique solution the compo-
nents of which are calculated step by step from the last to the first equation
of the system by substituting the variables already known and solving the
equation under review with respect to the only unknown contained.

Case 2 k < n—1 elimination steps; then (*) has infinitely many solutions.
A representation of all solutions is obtained by resolving the last equation
with respect to one variable and considering the remaining n — k variables
of this equation as parameters. Now the representations for the k eliminated
variables depending on these parameters are obtained step by step from the
last but one to the first equation analogously to Case 1.

Modifications of the Gaussian elimination

e If the considered system of equations is consistent, then by renumbering
of rows and columns it can be achieved that first a1; and, after k steps,
the element @1 541 (i.e., the diagonal elements) can be chosen as the pivot
elements. In this case, after the process of Gaussian elimination the system
of equations has the form

Rxp + Sxy = c,

where R is a right upper triangle matrix (xp — basic variables, &y — nonbasic
variables). The term Sz may fail to occur (in this case, there is a unique
solution). By an additional generation of zeros above the diagonal it can
be achieved that R = D (diagonal matrix) or R = I. In this case, back
substitution is not necessary.

e The » exchange method (p. 125) is another variant of the Gaussian
elimination.
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Cramer’s rule

If A is a regular matrix, then the solution & = (z1,...,7,)" of Az = b is:
. 1 b1 a ... a
det Ay, ail aik—1 01 a1 k41 in
Tp= with Ap=1 ... k=1,...,n.
k det A k ) )
apl -« Qnk—1 by Un k+1 - - Gnn

Exchange method

system of affine linear functions vector representation

Y1 = anzri + + amxTn + ai
...................................... y=Ax+a

Ym = aAm1T1 + + GmnZn + am

Yi - dependent variable, basic variable (i = 1,...,m)

T - independent variable, nonbasic variable (k =1,...,n)
a; =0 - function y; is a linear function

a=0 - the system of functions is called homogeneous

Exchange of a basic variable by a nonbasic variable

The basic variable y,, is exchanged by the nonbasic variable x,.

Assumption: a,, # 0. The element a,, is called the pivot.

old scheme new scheme

xp = Axy + a with xp = Bxy + b with

g = (Y1, Ym) " T = (Y1, Yp—1:Tgs Ypi1s - > Ym) |

CUN = (:'517-"7m1'7,)—r wN = (”11/‘17'''7mq—17yp7‘cr:q-’r17'"7',1;71)—r

! !
STk .. T ... 1 RO 7 T |

Yi = cee Qi ooes Qg ... Q4 Y = bzkbquz

— Yp=  ...0Qpk --. Qpg --- Gp — Tg= ...bpp .. bpg ... by

auxil. row ... by ... x ... by
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Rules of exchange

1
(A1) by, =
pq toq
(A2) bpk:ziapk for k=1,....g—1,q4+1,....n bp::7ap
Apq pq
(A3) big = Qiq fori=1,...,p—1,p+1,...,m
Qpq

(A4) big = ai +bpi - aiq fori=1,....p—1,p+1,....,m;
k=1,...,9—1,q+1,...,n

bi :=a; + by - aiq fori=1,....,p—1,p+1,...,m

e The auxiliary row serves for simplification when using rule (A4).

Inverse matrix

If A is a regular matrix, then the complete exchange y < @ in the homoge-
neous system of functions y = Ax is always possible. The result is * = By
with B = A™":

x . Yy
y: A xr = 14_1

With the help of the Gaussian elimination the matrix A~! can be calulated
according to the following scheme:

(A|T) — (I1A™Y)

e This means: Write down the original matrix A and the identity matrix I
and apply the Gaussian elimination in such a way that A turns into I. Then
at the ride-hand side there arises the inverse matrix A=!.

Eigenvalue problems for matrices

A number X € C is called an eigenvalue of the quadratic (n,n)-matrix A if
there exists a vector r # 0 such that:

Ar = \r COMPONENtWISE: oot

A vector r belonging to the eigenvalue A and satisfying the above equation
is called an eigenvector of A. It is a solution of the homogeneous system of
linear equations (A — AIx = 0.
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Properties of eigenvalues

o If r1,..., 7y are eigenvectors belonging to the eigenvalue A, then
r=o17r1+...+orr

is also an eigenvector belonging to A provided that not all «; are equal to

Zero.

e A number A is an eigenvalue of the matrix A if and only if
Prn(A) :=det(A — M) =0.

The polynomial p,,(A) of n-th order is called the characteristic polynomial of
the matrix A. The multiplicity of the zero A of the characteristic polynomial
is denoted as the algebraic multiplicity of the eigenvalue \.

e The number of linearly independent eigenvectors belonging to the eigen-
value A is

n —rank (A — A1)
and is called the geometric multiplicity of the eigenvalue \. It is not greater
than the algebraic multiplicity of the eigenvalue A.

oIf);, 7 =1,...,k, are pairwise different eigenvaluesand r;,j =1,...,k, are
the eigenvectors belonging to them, then the latter are linearly independent.

e A (n,n) diagonal matrix D = diag(d;) has the eigenvalues \; = d;, j =
1,...,n.

e The eigenvalues of a real symmetric matrix are always real numbers. Every
of its eigenvectors can be represented in real form. Eigenvectors belonging to
different eigenvalues are orthogonal to each other.

Matrix models

Input-output analysis

r=(r;) r; — total expense of raw material ¢
e = (ex) ex — produced quantity of product k
A = (ai) a;; — expense of raw material ¢ for one unit of

quantity of product k

r=A-e direct input-output analysis

e=A""'.r inverse input-output analysis (assumption:
A regular)



128 Linear algebra

Composite input-output analysis

r=(r;) r; — total expense of raw material 4
e = (eg) er — produced quantity of final product k
Z = (zj) zjr — expense of intermediate product j for one unit

of quantity of final product &

A = (ai;) a;; — expense of raw material ¢ for one unit of quan-
tity of intermediate product j

r=A-Z-e

Leontief’s model

x = (x;) x; — gross output of product ¢
y=(yi) y; — mnet output of product 7
A = (aiy) a;; — consumption of product i for the production

of one unit of quantity of product j
y=x— Az
z=I-A)"1ly Assumption: I — A regular matrix

Transition model of market research

m = (m;) m; — market share of product i at moment T,
0<m; <1, m~+...+4my,=1

z=(z) z; — market share of product ¢ at moment T+ k - AT,
k=1,2,..., 0<%z <1, z1+...+2z,=1
s =(s;) s; — market share of product i in stationary (time

invariant) market distribution; 0 < s; < 1,
S1+...+s5,=1

A = (aij) a;; — part of buyers of product ¢ at moment T' who will
buy the product j at moment 7'+ AT 0 < a;; < 1,

,j=1,...,n, Y a;;=1 for i=1,...,n
j=1
z=(A"Tm

A is the matrix of buyers’ fluctuation and s a nontrivial solution of the
linear homogeneous system (A" — I)s = 0 with s; + ...+ s, = 1.
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Normal form of a linear programming problem

The problem to find a vector =* = (z},23,...,2%)  such that its components
satisfy the conditions
Q1121 + Q12 + ...+ QaT, < Q)

Qr1T1 + QpaT2 + .o+ QppTy <

Griz1 + Piexe + ... + Bipnxn > (1
ﬁslxl + ﬁs?xQ ..
Y1121 + Y12T2 -t YT =M

Y1x1 + Y22 + ... F YenTn = N

and a given objective function z(x) = cTac—i—co =c1x1+Cxo+...+cprntcg
attains its smallest value (minimum problem) or its greatest value (mazimum
problem) under all vectors © = (x1,22,...,2,)' fulfilling these conditions is
called a linear programming (or optimization) problem. The conditions posed
above are called the constraints or the restrictions of the problem. A vector
x = (z1,...,2,) satisfying all constraints is said to be feasible. A variable
x; for which the relation a; > 0 (non-negativity requirement) fails to occur
among the constraints is referred to as a free or unrestricted variable.

e A linear programming problem is in normal form if it is a maximum or a
minimum problem and, except for the inequalities z; > 0,7 =1,...,n, there
are no further inequalities to be fulfilled:

z=cle+cy — min / max; Axr=a, x>0 normal form

Transformation into normal form

Transform inequalities into equalities by slack variables s;:

Q11 + Qpoxs + ...+ ainx, < o =
Q1T+ . @y + 8 = s5; >0
Bix1 + Bioxo + ...+ Binxn > Bi =

Bi1z1 + ... + BinTn — 8i = Bi, 820
Remove unrestricted variables by substitution:
r; free = z;:=u;—v;, u; >0, v;>0
Transform a maximum problem into a minimum problem or vice versa:
)T

z=c'x+cy — min = z:=—2z=(-¢c) x—cy — max

z=c'x+cy — max E z:=—z=(—¢)'®— ¢y — min
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Simplex method

In order to perform the necessary transformations of the system of equations
one can either use the » Gaussian elimination (p. 123) or the » exchange
method (p. 125).

Basic representation

In the system of equations Az = a, z—c' x = ¢y (where A is a (m, n)-matrix,

z,c € R", a € R™, ¢y € R) from each row a variable z; is eliminated.
From the normal form one gets the following relations when combining the
eliminated variables (basic variables) to the vector p and the remaining
variables (nonbasic variables) to the vector x y:

Gaussian elimination Exchange method
z — max z — min
Irgp+ Bxy = b acB:BacN-i-l;
z+d xy = do z = cZTacN—i—czo
zp 20, zy > 0 g >0, zxy >0
table: table:
B, --- TB,, Z TN, --.- TN, _, = TN, --- ZN,_,, 1
1 0 b1 oo bimem b1 = b ... bimm b
10 bmi - bnem b T, = bmi - bmn—m bm
0 ... 0 1 di ... dp—m do = dy ... dym do

The z-column is usually omitted.

e If Ax = a has already the form ITxp + Bxy = a, then the following
relations hold: b:l;:a, do=dy :cg a+co, B= -B, d'= —&T :c;'éB—cJ—'\—,,
where ¢ = (¢, cy)-

e A basic representation with b; > 0 and b; > 0,7 =1,...,m, respectively,
is called a feasible basic representation or a simplex table.

Optimality criterion (simplex criterion)

From a simplex table satisfying the conditions d; > 0 and d; > 0,1 =
1,...,n —m, resp. (such a simplex table is called an optimal simplex table),
one can read off the optimal solution of the linear programming problem:

do resp. xp=0b, x3;=0, 2" =dp.
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Simplex method

Starting from a simplex table by means of the following algorithm one ei-
ther gets an optimal simplex table or one recognizes that the programming
problem is unsolvable.

Gaussian elimination Exchange method

1. Choose an element dg, ¢g=1,..., 1. Choose an element (fq, q=1,...,

n—m, such that d, <0. The ¢g-th col-
umn is the pivot column. The vari-
able z, will be the new basic vari-
able. If there does not exist such an
element » optimality criterion.

2. Consider all positive column ele-
ments b;q > 0. Choose among them
an element b,, satisfying

by b
= min .

bpg  biga>0 big
The p-th row is the pivot row. The
variable zp, is excluded from the
basis, the element b,, is the pivot.
If there does not exist a positive col-
umn element b;q, then the problem
is unsolvable since z — oo.

3. Divide row p by b,, and gener-
ate zeros in column xy, (except for
position p) by means of » Gaus-
sian elimination. This leads to a
new simplex table. Go to Step 1.

n — m, such that d, < 0. The ¢-th
column is the pivot column. If there
does not exist such an element »
optimality criterion.

2. Find all negative elements b;, <0
of the pivot column. Choose among
them an element b,, satisfying

The p-th row is the pivot row, the
element by, is the pivot. If there
does not exist a negative element

biq, then the programming problem
is unsolvable since z — —o0.

3. Make an exchange of variables
rp, <= xn, by means of the »
exchange method. This leads to a
new simplex table. Go to Step 1.

o If at every iteration b, > 0 resp. b~p > 0, then the simplex method is finite.

e If in the optimal simplex table there is an element d, with d;, = 0 resp.
Jq with Jq = 0, then continuing the algorithm by Steps 2 and 3, one again
gets an optimal simplex table. The corresponding optimal solution can be
different from the former one.

o If the vectors V), ..., x®) are optimal solutions, then the convezr linear
k
combination x* = M + ...+ Mz® with S A\ = 1and \; > 0, i =

i=1
1,...,k, is also an optimal solution.
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Dual simplex method

Dual simplex table

A basic representation with d; > 0 resp. d~j >0,j=1,...,n—m, is called a

dual simplex table.

e Starting from a dual simplex table by means of the following algorithm one
either obtains an optimal simplex table or one recognizes that the underlying

programming problem is unsolvable.

Gaussian elimination

1. Find an element b, p =
1,...,m, such that b, <0. Row p
is the pivot row. The variable g,
is excluded from the basis. If such
an element does not exist » opti-
mality criterion.

2. Choose among all negative row
elements b,; < 0 an element by,
with

The variable zy, will be the new
basic variable, the element b,, is
the pivot. If in the p-th row there
does not exist a negative element
bpj, then the programming prob-
lem is unsolvable since feasible vec-
tors fail to exist.

3. Dividing row p by by, and gen-
erating zeros in column zy, (ex-
cept for position p) by means of
the » Gaussian elimination a new
dual simplex table is obtained. Go
to Step 1.

Exchange method

1. Find an element Bp, p =
1,...,m, such that Bp < 0. The p-
th row is the pivot row. If there
does not exist such an element »
optimality criterion.

2. Choose among all positive ele-
ments b,; > 0 of the pivot row a
bpq with

d, . d;
% = min 7
bpq by >0 bpj

The g-th column is the pivot col-
umn, the element l;pq is the pivot.
If there does not exist a posi-
tive element l;pj, then the program-
ming problem fails to have feasible
vectors.

3. Exchanging the variables
rp, <= wn, by means of the
» exchange method a new dual
simplex table is obtained. Go to
Step 1.
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Generation of an initial simplex table

Starting from the » normal form of a linear programming problem with the
property a > 0 the following algorithm leads either to a simplex table or
shows the unsolvability of the linear programming problem. If necessary, the
assumption a > 0 can be ensured via multiplying the corresponding rows of

the system of equations Ax = a by the factor —1.

Gaussian elimination

1. Add an artificial variable y; to
the left-hand side in all equations .
In doing so, the following equations
arise:

Iy+Ax =a, where vy = (y;)

2. Complete the table by the ob-
jective function z — e¢'x = cq
and by the auziliary function h =
m

> (—ya):

i=1

n

h+ Z OrTr = 0o
k=1

with

o = > (—aik), do= > (—a;)
i=1 i=1
The table obtained
y z h x =
I 00 A a
o’ 10 —c... —cp, ¢
0" 01 61 ... 6, &

is a simplex table of the auxiliary
problem

NgE

h =

(—¥i) — max
i=1

+
ol

Y T=a

Exchange method

1. Rewrite the constraints in the
form 0 = — Ax + a and replace the
zeros on the left-hand side by arti-
ficial variables y;. Then one gets

y = —Axz+a, where y= (y;)

2. Complete the table by the objec-
tive function z = ¢" & + ¢ and by

m
Z Yi:

i=1

the auxiliary function h =

o =Y (~aw), =3 a
=1 i=1
The table obtained
x
y= —-A a
z= cl Co
h= 61 ...0, b0

is a simplex table of the auxiliary
problem

or

Il
A

B:

Y; — min
K2

y:—Am+a, -’13207 yZO
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Gaussian elimination Exchange method
3. Solve the auxiliary problem by 3. Solve the auxiliary problem by
the simplex method. The optimal the simplex method. The optimal
table of the auxiliary problem has table of the auxiliary problem has
the form the form
zp Yyp 2 h N yy =
1 Ny Yy 1
1 B =
1 yB -
1 =
1 h= ho
1 ho

The z- and the h-column are usu-
ally omitted.

Case 1 In the case hg < 0 resp. ho > 0 the original problem is unsolvable,
since it fails to have feasible vectors.

Case 2 Ifhg=0and hy =0, respectively, and if not any artificial variable
is a basic variable, then after deleting the yy-columns and the auxiliary
objective function one obtains a simplex table of the original problem.

Case 3 If hy = 0 and hy = 0, respectively, but there are still artificial
variables in the basis, these variables can be made to basic ones by an ex-
change yp <= xy. If, in doing so, a table occurs in which the exchange
cannot be continued, then in this table one can remove the rows y 5 = as well
as the yy-columns and the auxiliary objective function. After that one has
a simplex table of the original problem.

e Remark to Step 1: In rows ¢ with a; > 0 already possessing a basic variable
x, artificial variables need not be introduced. In this case the quantities dy
and &y, resp., are to be replaced by 3 (—a), 6 has to be replaced by S (—a;)
and by by > a;, resp. (summation only over those rows ¢ in which artificial

variables occur).
e Remark to Step 3: The y-columns can be removed immediately.

e The combination of Phase 1 (generation of an initial simplex table) and
Phase 2 (simplex method) is usually denoted as the two-phase method.
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Duality

Basic version of a linear programming problem

T

2(x) = ¢"x — max w(u) =a' v — min
Ax <a = ATu>c
x>0 u>0

Generalized version of a linear programming problem

z(x,y) = clx+ dT'y — max w(u,v) = a’u+b"v— min
Arx+ By <a ATu+CTv>ec
Cx+Dy=0b B'u+D'v=d
x >0, y free u >0, v free

primal problem dual problem
Properties

e The dual to the dual problem is the primal problem.

o Weak duality theorem. If the vectors x and (z,y)', resp., are primal
feasible and w resp. (u,v) " are dual feasible, then z(z) < w(u) and z(x, y) <
w(u, v), respectively.

e Strong duality theorem. If the vectors x* resp. (z*,y*)' are primal fea-
sible and u* resp. (u*,v*)" are dual feasible, and if z(z*) = w(u*) resp.
2(x*,y*) = w(u*,v*), then x* resp. (x*,y*)" is an optimal solution of the
primal problem and w* resp. (u*,v*)" is a dual optimal solution.

e A primal feasible solution * resp. (z*,y*)" is an optimal solution of the
primal problem if and only if there exists a dual feasible solution u* resp.
(u*,v*) T such that z(z*) = w(u*) resp. z(z*, y*) = w(u*,v*).

e If both the primal and the dual problem have feasible solutions, then both
problems have also optimal solutions, where z* = w*.

e If the primal (dual) problem has feasible solutions and if the dual (primal)
problem is unsolvable, since it fails to have feasible solutions, then the primal
(dual) problem is unsolvable due to z — +o00 (w — —00).

e Complementarity theorem (for the basic version). A primal feasible so-
lution x* is an optimal solution of the primal problem if and only if there
exists a dual feasible solution u* such that for all components of the vec-
tors *, Az* — a, u* and A" u* — ¢ the following relations (complementary
slackness conditions) are fulfilled:

=0 if (ATu*—¢); >0 (Az* —a); =0 if ul >0

?

=0 if (Az"—-a); >0 (ATu* —¢); =0 if >0

i

Sox Sux
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Shadow prices

If the primal problem (basic version) represents a production planning model
with profit vector ¢ and resource vector a, and if u* = (uj,...,u})" is
the optimal solution of the corresponding dual problem, then under certain
assumptions the following assertion is true: an increase of the resource a; by
one unit implies the growth of the maximal profit by u; units (shadow prices).

Transportation problem

Statement of the problem

From m stockhouses A; with stocks a; >0, i=1,...,m, n consumers B; with
demand b; >0, j=1,...,n, are to be supplied. Knowing the transportation
costs which are linear with respect to the quantities of delivery having the
price coefficients c;;, the total transportation costs are to be minimized.

Mathematical model (transportation problem)

m n
z = Z Z CijT;; — min;

H
\ |
—

subject to Zx”fal, i=1,...,m

e The (m,n)-matrix X = (z;;) of quantities of a good to be delivered from
A; to Bj is called a feasible solution (transportation plan) if it satisfies the
constraints.

e The transportation problem is solvable if and only if

MS

n
Z saturation condition

.
Il
-

e An ordered set {(ig, ji)}7-, of double indices is said to be a cycle if

ihp1 =ip for k=1,3,...,20—1,
jk—i-l:jk fOI‘ k:2,4,...,21—2, j2l:j1

e If, by adding further double indices, the index set J+(X)={(4, ) | z;; >0}
can be extended to a set Jg(X) not containing a cycle and consisting of
exactly m+mn —1 elements, then the feasible solution X is called a basic
solution.
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Transportation algorithm

Starting point: basic solution X

1. Find numbers u;, ¢ = 1,...,m, and v;, 7 = 1,...,n, such that
U; + V5 = G5 V(Z,] € Js(X) If Wij = Cij — U — Vj > 0 for
t=1,...,mand 5 =1,...,n, then X is optimal.

2. Choose (p,q) with wpy < 0 and find, starting from (i1, j1) := (p, q),
a cycle Z in the set Jg(X) U {(p,q)}

3. Determine a new solution X by setting z;; := x;; + (—1)k+1.’177~5 for
(i,7) € Z, where z,s := min{z;,, | (ix,jx) € Z,k = 2,4,...,21}.
The new solution X is a basic solution associated with the double
index set Jg(X) := Js(X) U{(p,¢)} \ {(r,s)}. Go to Step 1.

Tabular representation of the transportation algorithm

The iterations of the transportation algorithm can be represented in the
following tabular form by placing only the variables x;; € X (boxed) with
(1,7) € Js(X) and only the variables w;; with (7, 7) ¢ Js(X). The remaining
variables z;j, (i,7) ¢ Js(X), and w;j, (i,7) € Js(X), not occurring in the
table are automatically equal to zero. The cycle for the considered example
is indicated by an rectangle.

U1 Vg e Vg e U,
Uy w11 T12 T1q Wim
U2 w21 w22 N T2q N Tom
Up .’L‘pl :I,‘pQ e wpq < O e wpm
um .’L‘ml wm2 “ee wmq e wmn

A cycle with four elements

The values of u;,v;, w;; can be found starting with u; = 0 and proceeding
by following the boxes (cf. the table):

vy = c12 (due to w12 = 0), vg = c14 (due to wig = 0), uz = czqg — v4 (due to
waq = 0), Vm = Cam — Uz (due to woy, =0), Up = ..., U1 = ..., Uy = ... etc.
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Suppose that in the table at p. 137 wpy < 0 and xpe < 14 (so that in this
example s = Zp2). Then the next table will be computed as follows:

fUl U2 “ee ’Uq “ee Um
up Wi Tig - T1q cee o Wim
17/2 ’lz)2’1 1D22 e .’L‘Qq e Tom
Up Tpl Wp2 e Tpq e Wpm,
,am Tm1 wmQ e wmq e wmn

The values are Tpo =0, Tpg = Tp2, Ti2 = Ti2 + Tp2, Tig = T1iqg — Tp2-

The quantities 4;, U;, w;; can be calculated in the same way as above, begin-
ning with @; = 0.

Rules for finding an initial basic solution

North-West corner rule

Assign to the nord west corner the maximal possible quantity of the good.
Remove the empty stockhouse or the consumer saturated and repeat the step.
Only in the last step both the stockhouse and the consumer are removed.

Rule of minimal costs

Assign to the cheapest transportation route the maximal possible quantity
of the good. Remove the empty stockhouse or the consumer saturated and
repeat the step. Only in the last step both the stockhouse and the consumer
are removed.

Vogel’s rule

For each row and column, find the difference between the maximal and min-
imal cost price coefficient. In that row or column, which is determined by
the greatest of these differences, assign to the cheapest transportation route
the maximal possible quantity of the good. Remove the empty stockhouse or
the consumer saturated and repeat the step, beginning with correcting the
differences. Only in the last step both the stockhouse and the consumer are
removed.
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Basic notions

Basis of a statistical analysis is a set (statistical mass) of objects (statistical
unit), for which one (in the univariate case) or several (in the multivariate
case) characters are tested. The results which can occur in observing a char-
acter are called the character values.

A character is said to be discrete if it has finite or countably many character
values. It is referred to as continuous if the character values can take any
value from an interval. The character values z1,...,z, concretely observed
are called the sample values, and (x1,...,x,) is a sample of size n. When
ordering the sample values, the ordered sample x(1) < x2) < ... < z(y) is
obtained, where Zmin =2 (1), Tmax =T (n)-

Univariate data analysis

Discrete character

Given: k character values ai,...,a; such that a; < ... < ax and a sample
(z1,...,2p) of size n
H,(a;) — absolute frequency of a;; number of sample
values with character value a;, 7 =1,...,k
hn(a;) = | Hy(aj) — relative frequency of a;;

k
Oghn(aj)glv ]:kaa Zhn(aj):]‘
j=1

XJ: H,(a;) — absolute cumulative frequency, j =1,...,k
i=1
i hn(a;) — relative cumulative frequency, j =1,...,k
i=1
F,(x)= > hyp(aj) — empirical distribution function (—oo<z<o0)
jia, <
Continuous character
Given: sample (21, ..., xy) of size n and a grouping in classes K; = [z, %),
7=1....m
x5 — lower class bound of the j-th class
Tju — upper class bound of the j-th class
uj = 3(zj1+x;u) — class mark of the j-th class
H; — j-th absolute class frequency; number of
sample values belonging to the class K
h; = }LHj — j-th relative class frequency
F,(xr)= >, h; — empirical distribution function (—oco < z < 00)
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Statistical parameters

Means

n
_ 1
xn—nzxi
=1

&= /w12 ... 2y (2 >0)

Measures of dispersion

Q

R= Tmax — Lmin -

n
st= 1 Zl(xi — y)? -
=

82 = nil Zl(u] — .’L‘(n)>2Hj -
J:

2 _ .2 b2

Ch §% =1 —
S

V= —
Tn

B {l’(n+1) nodd

— arithmetic mean (average) for
non-classified data

— arithmetic mean for classified
data

— empirical median

— geometric mean

range of variation

empirical variance for non-classified
data

empirical variance for classified data

empirical standard deviation

Sheppard’s correction (for constant
class length b)

coefficient of variation (x, # 0)

mean absolute deviation from the me-
dian .’E(n)

mean absolute deviation from the
mean o,

eN
— g-quantile (0 < g <1)

-quantiles
o _ | 2l Fomen] g
! Z(|ng)+1) otherwise

In particular:
Zos = T(n);  To2s — lower

quartile; To.75 — upper quartile
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Empirical skewness

23 (@i — an)® n 22 (05 = 2)*H;
— i=1 _ Jj=
g1 = . 3 91 = 3
1 L 2 m
<";(I o) > (i 2 (1 fﬂ(n))QHj)
j=
(non-classified data) (classified data)

Empirical kurtosis

71L > (i xn)4 71L Z (uj — x(n))4H]
. =1 —3 _ J=1 -3
g2 = " 2 g2 = 9
(711 z;(xl - In)Q) (711 Zl(uj — x(n))2H3>
=
(non-classified data) (classified data)

Moments of order r (for non-classified data)

n
1 L
my = E x — empirical initial moment
n
i=1
1 n
Qo = . E (x; —ap)" — empirical central moment
i=1
. . N n—1
e In particular, one has mqi = x,, s = s2.
n

Bivariate data analysis

Given: sample (21,¥1), . .-, (Zn,yn) With respect to two characters z und y

Empirical values

n
1
Ty = E T; — mean with respect to character x
n
=1

1« .
Yp = n z; Yi - mean with respect to character y
i



142 Descriptive statistics

Empirical values

empirical variance

with  respect to
character x

1 n
1 (Z y? —nyi) — empirical
n— :

1 ) .
50 = _— z:(yZ Yp) = ' variance
i=1 i=1 with  respect to
character y
1 n
Soy = 4 (xi—xn)(Yi—Yy) — empirical covariance
i=1
1 n
= (Z TiYi nxnyn)
i=1
s
= i (=1 <rg <1) — empirical coefficient

of correlation

Byy =7 — empirical coefficient
of determination

Linear regression

The coefficients @ and b are referred to as empirical (linear) regression
n

coefficients if the condition S [y; — (@ + bx;)]2 = miz? M lyi — (a + bx;))?
i=1 ab =1

is satisfied.

y=a+br — empirical regression line (linear regression function)
2
. - S Say s
a=vy, —bxn, b= ") =Ty 5
s2 s2

— empirical residual variance
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Quadratic regression

The coefficients a, b and é are called empirical (quadratic) regression
n ~

coefficients if they satisfy the condition >~ (y; — (a + bx; + ¢z?))? =
i=1

n
min S (yi — (a + bxz; + cx?))? They are the solution of the following
ab,c ;=7
system of equations:

.n n n
a-n + b w o+ Y a? = Dy
i=1 i=1 i=1
L .n 9 L n
adYw + b x? + ed ol = Y iy
=1 =1 1=1 1=1
L .n L n
ay i + b)Y a} + exai = Yajy
=1 =1 1=1 1=1
Y =a+ bz + éx? — empirical (quadratic) regres-

sion function

1 ¢ - 2
32 — Z [yl —(a+ bx; + éxf) — empirical residual variance
i=1

Exponential regression

The coefficients @ and b satisfying the condition S (In y; — (In a4bx;))? =

n
i=1

n
migl > (Iny; — (Ina+bx;))? are called empirical (exponential) regression
ab =1

coefficients (where it is assumed that y; > 0, i =1,...,n).

y = Ge’” - empirical (exponential) regression function

-

(i — xp)(Iny; — }L 21nyi)

~ » 7 1
a=e =1 s b:l

o

(i — p)?

=1
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Ratios
Given a basket of goods W consisting of n goods. Let the good i have the
price p; and the amount ¢;, i =1,...,n.
Notations
Wi =p; - q — value of good @

S Wi=> piqi — total value of the basket of goods W
i=1 i=1

Dirs Dit — price of good 7 in the basic period and in the given
period, resp. (= basic and actual price, resp.)

Qir DZW. @it — amount of good 7 in the basic and in the given
period, resp. (= basic and actual quantity, resp.)

Indices

mV = _" = Pit - dit — (dynamical) measure of value of good i
Wi Pir - Qir

n n
Z Wi Z PitGit value index of the basket of goods W;
I, = — = =1 — sales index (sale oriented) or consumer
S Wir Y pirgir expenditure index (consumer oriented)
i=1 i=1
n
Z Pitqit
Izia’p ==t — Paasche’s price index
> Pirdit
i=1
n
Z Pitqit
et =1 — Paasche’s quantum index
> Pitdir
i=1
n
Z PitQir
ITLjS’p = ’:1 — Laspeyres’ price index
Z Dirqir
i=1
n
Z Pirqit
Ik?s’q = =1 — Laspeyres’ quantum index

n
Pir4ir
=

?
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e Paasche’s indices describe the average relative change of a component (price
or quantity) by means of weights (quantities or prices) of the given period.

e Laspeyres’ indices describe the average relative change of a component
(price or quantity) by means of weights (quantities or prices) of the basic
period.

Drobisch’s indices

The goods from a basket of goods are called commensurable with respect
to quantities if they are measured by the same sizes. For such goods the
following indices are defined.

n n
2 Pit * Git Z Dir * Qir Drobisch’s price index (p, >0);
Iff?)’p = Zzln / Zzln = " _ it describes the change of aver-
> it > Gir Pr age prices
i=1 i=1

NgE!

~ Drobisch’s structure index re-
lated to basic prices

1

n
Z qit
i=1

.
Il

Dro,str,r
IT t

n
Dir - Qit Z Dir * Qir
i=1
/Z e
Z qir
i=1

n n
_Z Pit - Git Z Dit ~ Gir
IB;O’S“J = Zzln /Z_ln — Drobisch’s structure index re-
; ; ated to actual prices
> Git > Gir lated to actual pri
i=1 i=1

e Drobisch’s structure indices are statistical parameters formed from ficti-
tious and nominal average prices.

Inventory analysis

A statistical mass considered within the period (¢4, tg) under review is called
a population of period data (stock). It is said to be closed if the stock before
t4 and after tg is equal to zero, otherwise it is said to be open. A statistical
mass occurring only at certain moments is called a period-based population
(e. g. accession mass, replacement mass).

Notations
B, — stock (in units of quantity) at moment ¢;, t4 <t; <tg
By or B — initial and final stock at moment ¢4 and tg, resp.
Z; — accession mass (in units) in the time interval (¢;_1, ;]

A; — replacement mass (in units) in the time interval (¢;_1, ;]
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Stocktaking
Bj=Ba+Zy - Ay -
J
Z() = ; Zi -
J
Ag = 2 Ai -

Average stocks

1 m
Z = Zi -
2>
A=t iA- -
7mi:1 Z
1 m
B= . ;ijl(tj —tj-1) -

m—1
1 Bo(tl — to) Bj
tm — to 2 + ;

stock mass at moment ¢; with:

sum of accession masses

sum of replacement masses

average accession rate (with respect
to m time intervals)

average replacement rate (with re-
spect to m time intervals)

average stock for m time intervals
(if the measurement of the stock is
possible at all moments of changes)

: (thrl - tjfl) + Bm(tm - tmfl)

2 2

average stock for m time intervals (if
the measurement of B; is possible at
all moments ;)

In the case t;—t;_1 =const Vj one has:

m—1

1 1 [ By B,,
ERED S T R S N
Jj= j=1

Average length of stay
B — B —
v= (tm = to) = (tm = to) —  closed stock
A m Z m
(m) (m)
2B(t,, — to) 2B(ty, — to)
= = open stock
Ay + Zm) An-1) + Z(m-1)

the second formula holds if accession and replacement occur at the

moment t,,
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Time series analysis

By a time series y; = y(t), t = t1,t2,..., an ordered in time sequence of
values of a quantitatively observable character is understood.

Additive and multiplicative model
yt) =T@)+ Z(t)+ S(t)+ R(t) resp. y(t)=T() - Z(t)-S(t)- R(¢)

T(t) — trend component Z(t) — cyclic component

S(t) — seasonal component R(t) — stochastic component

Trend behaviour

T(t)=a+0bt —  linear trend
T(t)=a+0bt+ct> — quadratic trend
Tt)=a-b ~  exponential trend

e The exponential trend T'(t) = a- b can be reduced by the transformations

T*(t) = InT(¢),
a* =lIna,

b* =1Inbd
to the linear case T*(t) = a* + b*t.

Least squares method

This method serves for the estimation of the linear trend T'(t) = a + bt and
the quadratic trend T'(t) = a + bt + ct?, respectively (see p. 112).

Moving average methods

These methods serve for the estimation of the trend component by means of
n observation values y1,. .., Yn.

m odd
TWL;»l = ;(y1 +ya+ ...+ Ym)
Tm;»?) = 7}1(y2-i—yg—l—...-i—ym_;,_l)

Tn7m71 = ;(yn—m—i-l .t yn)
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m even

Tgl-u = é(%zn +y2+ ...+ Ym+ ;ym—&-l)

Tng = é(%yz FyYs+ ...+ Ymy1 + éym+2)

Tnf’; = é(éynfm + .o+ Yn—1+ éyn)

Seasonal adjustment

For trend adjusted time series (without cyclic components) with given period
p and k observations per period the equations

yszsj—i—rij (i=1,...,k;5=1,...,p)

provide an additive time series model with seasonal components s; the esti-
mations of which are denoted by 5;.

k
* 1 * - .
y_j:kaij, j=1...,p — period mean
i=1
12
y = Y — total mean
p z_; !
=
i =y5—y * — seasonal indices
yikl S1, yik2_827 9 yikp_sp
.................................. — seasonally adjusted time series
Yr1 — 51, Ypo — S2, s Yrp — Sp
Exponential smoothing
For a time series y1,...,y: (in general, without trend) one obtains the fore-

casting §y41 = ayr +a(l —a)yi—1 +a(l —a)?y;_2+... for the moment ¢ +1
in a recursive way via g1 = ay: + (1 — @) with 1 = y; and a smoothing
factor a (0 < a < 1).

Impact of the smoothing factor « a large a small
consideration of “older” values little strong
consideration of “newer” values strong little

smoothing of the time series little strong
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Random events and their probabilities

A trial is an attempt (observation, experiment) the result of which is un-
certain within the scope of some possibilities and which is, at least in ideas,
arbitrarily often reproducible when remaining unchanged the external condi-
tions characterizing the attempt.
The set {2 of possible results w of a trial is called the sample space (space of
events, basic space). A random event A is a subset of 2 (“A happens” <
w € A is the result of the trial).

Basic notions

A:=0\A

ANB =10

«~— ACBABCA -

simple events

sure event = event that always happens

impossible event = event that never happens

event A implies event B

identity of two events

event that happens if A or B (or both) happen
(union)

event that happens if A and B happen simultaneously
(intersection)

event that happens if A happens but B does not
happen (difference)

event that happens if A does not happen (comple-
mentary event to A)

A and B are disjoint (non-intersecting, incompatible)

Properties of events

AuR =1 ANN=A

Aup=A ANO=90
AU(BUC)=(AuB)uC ANn(BNC)=(AnB)NnC
AUuB=BUA ANB=BnNA
AUB=ANB ANB=AUB

AUA= 1 ANA=10

ACAUB ANBCA

AN(BUC)=(ANnB)U(ANCQC)

AU(BNC)=(AUB)N(AUC)
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Field of events

o0
U A, — the event that at least one of the events A,, happens
n=1

oo

(| A, — the event that any of the events A,, happens (simultaneously)
n=1

o0 o0 o0 o0

N A, = U Ax, U 4. =N 4. - De Morgan’s laws
n=1 n=1 n=1 n=1

o A field of events is a set € of events occurring in the result of a trial
satisfying the following conditions:

()NRee Pec¢
(2)Aec¢ = Aec¢

(3)A1,A2,...€€ — UAnE(’S

n=1
o A subset {A1,As,...,A,} of a field of events is called a complete system

ofevents if |J A; =2 and A;NA; =0 (i #j) (i-e., in the result of a trial
i=1
there always happens exactly one of the events A;).

Relative frequency

If an event A € € happens m times under n independent repetitions of a
m

trial, then h,(A) =  is called the relative frequency of A.
n

Properties of the relative frequency
0 < hn(A) <1, ha(2) =1,  ha(0) =0, ha(A) =1 — hy(A)
hn(AUB) = hp(A) + hyn(B) — hn(AN B)
hn(AU B) = hy,(A) + ho(B) if ANB=1
ACB = hy(A) < hy(B)

Classical definition of the probability

If the sample space 2 = {wy,woa,...,wy} is finite, then for an event A the
quantity
number of w; with w; € A number of cases favourable for A
P(A4) = =
k number of all possible cases
is the classical probability of A.

The simple events {w; } are equally probable (equally possible), i.e. P({w;}) =

1
. i=1,...,k (“Laplace’s field of events”).
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Properties of the classical probability
0<P(4) <1, P(2) =1, P(0) =0, P(A)=1-P(A)
P(AUB)=P(A)+P(B) —P(ANB), ACB = P(A) <P(B)
P(AUB)=P(A)+P(B) if ANB=10

Axiomatic definition of the probability

Axiom 1: Any random event A € € has a probability P(A) satisfying
the relation 0 < P(A) < 1.

Axiom 2: The probability of the certain event is equal to one: P(£2) = 1.

Axiom 3: The probability of the event that there happens exactly one
of two mutually disjoint events A € € and B € € is equal to the sum of
the probabilities of A and B, i.e. P(AUB) = P(A) 4 P(B) provided that
ANB=0.

Axiom 3’: The probability of the event that there happens exactly one

of the pairwise disjoint events Ay, As, ... is equal to the sum of the prob-

abilities of Ai, i = 1,2, ey i.e. P( Al) = Z P(AZ) if Az N Aj = @,
=1 i=1

7

i # j (o-additivity).

Rules of operation for probabilities
P(0) = 0, P(AU B) = P(A) + P(B) — P(AN B)
P(A) = 1 — P(A), P(A\ B) = P(A) — P(AN B)
AC B=P(A) <P(B)
P(A UAsU...UA) =S P(A)— Y P4y, NAy)
i=1 1<iy<iz<n

+ > P(A;, NA;, NA,) — ...+ (=1)"TP(A1NA2N...NA,)

1<iy <ia<iz<n

Conditional probabilities

P(AN B)

For two events A and B with P(B) # 0, the expression P(A| B) = P(B)

denotes the conditional probability of A with respect to B.
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Properties

P(A|B)=1 if BCA P(A|B)=0 if ANB=1
_ P4 . _

P<A|B)7P(B) if ACB P(A|B)=1—-P(A|B)

P(A; U Az | B) = P(A; | B) + P(Ay | B) if AyN Ay =0

Multiplication theorem:
P(ANB)=P(B)-P(A|B)=P(A)-P(B|A)

General multiplication theorem:

P(A1Nn...NA,)

=P(A1) -P(A3| A1) - P(A3|A1NAs)-...-P(A, | AN ...NA,q)

o If {Ay,...,A,} is a complete system of events, then the following two
formulas hold true.

Total probability formula

P(B) = ;1 P(A,)P(B| A;)

2

Bayes’ formula

P(4;)P(B[A4;)

P(4;[B)=
;P(Ai)P(B‘Ai)

, j=1...,n

Here P(A;), ..., P(A,) are called the priori probabilities, while the quanti-
ties P(A1| B), ..., P(A, | B) are the posteriori probabilities.

Independence

Two events A, B are called independent if P(AN B) = P(A) - P(B) (multi-
plication theorem for independent events). As a corollary one gets

P(ANB)=P(A)-P(B) <= P(A|B)=P(A) for P(B)>0

The n events Aq,..., A, are said to be pairwise independent if every two of
these events are independent, i.e. P(4; N A;) = P(4;) - P(4;) for i # j, and
completely independent if for any k € {2,...,n} and an arbitrary selection of
kevents A, ..., A, 1 <i1 <igs<...<ir<mn,onehas:P(4; N...NA; )=
P(4;,)-...-P(4;).
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Random variables and their distributions

A random wvariable is a real-valued mapping X : 2 — IR defined on the
sample space {2 such that for all z € R one has {w € 2: X(w) < z} € €,
i.e., {X < z} is an event. The function Fx : z — Fx(z) € [0,1] defined
by Fx(z) := P(X < z), —00 < & < o0, is called the distribution function
(distribution) of X.

Properties of the distribution function

lim Fx(z)=0 lim Fx(z)=1
Fx(zo) < Fx(x1) if xo < 21 (Fx is monotonously non-decreasing)
lhi?(} Fx(z+h) = Fx(z) (Fx is continuous on the right)

P(X = zo) = Fx(zo0) — lhl?é Fx(xo+ h)

P(zo < X <z1) = Fx(21) — Fx(z0)

Pro < X < q) :E%Fx(m +h) —E%Fx(xo +h)
P(xog < X <x1) = Fx (1) —%%FX(:EO +h)

P(X > o) = 1 — Fx/(x0)

A random variable X is called discrete (discretely distributed; see below)
if its distribution function F'x is a step function (i.e. piecewise constant);
it is called continuous (continuously distributed) if Fx is differentiable (i.e.
dFX (.’L‘)

exists) » p. 155.
x

Discrete distributions

If a discrete random variable X takes the values x1,z2,...,2, (21 < ... <
Zp) TESP. T1,%2,... (11 < my < ...), i.e. if I’E%Fx(xk + h) # Fx(xy) for
k=1,2,..., then

Tl xr1 T2 ...

with Pk = 1
P(X =xr) p1 p2 ... Ek:

is called the distribution table of X; pr = P(X = xi) are the individual
probabilities of X, and x1,xo,... are the jump points of Fx.
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Notations

EX = Zxkpk
k
Var (X) = ;(mk — EX)ka
= Zk:xipk — (EX)?
ox = \/Var (X)

X (BX#0)

EX
pr =E(X —EX)" =5 (zr — EX)"pi
k
Ny = M3
(12)9
4
- ~3
7 ()2

Special discrete distributions

individual
probabilities py

discrete uniform Pk =
distribution (k=1,...,n)

binomial distri- *

bution (0<p<1,

n € IN) (k=0,...,n)
hypergeometric * (M) (N—M)
. . . k n—k %k k

distribution PE = N
(M <N,n<N) (n)
geometric distri- * pr = (1 — p)k_lp
bution (0<p<1) (k=1,2,...)

. Ce DU
Poisson distri- k= e
bution (\ > 0) %=$i2 )

n
Pk = (k) pk(l p)n—k
np

expected value
(assumption: Y |z |pr < 00)
k

variance (dispersion)

(assumption: Y zipy < 00)
K
standard deviation

coefficient of variation

r-th central moment
(r=2,3,...)

skewness

€excess

1 1—p
P p?
A A

*P(X =k)=pr; " max{0,n— (N — M)} <k <min{M,n}.
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Recursion formulas (pr+1 = f(pr))

—k
binomial distribution: " P Pk
k+1 1-—p
geometric distribution: (1-p)- px
h tric distributi n—k M-k
ergeometric distribution: . .
YPers k+1 N—M-n+k+1 7"
Poi distributi A
oisson distribution: .
k41 Pk

Binomial approximation (of the hypergeometric distribution)

GG (e ko

dm e (o
_ . M(N)_

M=M(N), A;Lﬂéo N =P

GO () & !
e Consequently, for “large” N one has i ~ < )p (1—=p)" ",

M
where p = N

Poisson approximation (of the binomial distribution)

)\k
lim (7)p*(1—p)"* =" e k=0,1,..., with

p=p(n), lim n-p(n)=X\= const

n—oo

)\k
e For “large” n one thus has <Z)pk(1—p)"_k ~ il e, where A=n-p.
Continuous distributions
dFr
The first derivative fx(z) = c)l((x) = F%(z) of the distribution function
x

Fx of a continuous random variable X is called the density (probability density
function) of X, i.e.

Fx() :_f Fx(t) dt.
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Notations
EX = [ azfx(z)dz — expected value of X (ass.: [ |z]fx(z)dz<oo)

oo oo

Var (X) = [ (z —EX)*fx(z)dz = [ 2?fx(z)dz — (EX)?
— variance (dispersion; ass.: [ 2?fx(z)dz < o0)
ox = +/Var (X) — standard deviation
X (BX #0) - coefficient of variati
EX coefficient of variation
pr =EX —EX)" = [ (2 —EX) fx(z)dx
— r-th central moment (r =2,3,...)
3 Ha
= — skewness = -3 - excess
T (e T (w2

Special continuous distributions

Uniform distribution

1 i
if a<x<b
fe)=4 b=a
0 otherwise )
EX _ a + b b _ a . ,,,,,,,,,,,,,,,,,,,,,,,,,,,
2
(b — a)? . -
X) =
Var (X) 19 a b

Exponential distribution

0 if <0
f(x){)\e“’ if 2>0
1
EX =
A

1
Var (X) = )2
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Normal distribution, N (u, 02?)-distribution (—oco < u < oo, o > 0)

A

L _@-w? !

f(LU) = V2mo? -e 202 V2ro?

(o0 <z < 00)

EX =u
Var (X) = o?

p—o p pto

Standardized normal distribution
1 2
) = ce 2 EX =0, Var (X) =1
f@= ()

Logarithmic normal distribution

0 if <0
= 1 nr—p 2
(@) Jono? e_1 262) if >0
To‘x
2 A
EX = ettt % e(’;*w
V2mro?

Var (X) = e2#to” (e"2 — 1)

EX—ox EX EX+oy

Weibull distribution (¢ >0, b>0, —00 < ¢ < o0)

0 if z<¢
-

; (Igc)b_l G LTI

EX:c+a~F(b';;1)

Var (X)=a® [I" ("}?) =12 (*}1)]

¢ EX—ox EX EX40x
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Beta distribution (p >0, ¢ > 0)

P11 —x)at

fo<z<l
f(z) = B(p,q)
0 otherwise
Ex= ?
p+q
Var (X) = pa

(r+q2+q+1)

t-distribution with m degrees of freedom (m > 3)

_ m+1

fla)= é;?(l%) <1+ fj) 2 (=00 < 7 < o0)

EX =0, Var(X)= m’f )
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F-distribution with (m,n) degrees of freedom (m >1, n>1)

0 if <0
f(=) r(m

r(y)r(
EX—T:2 (n>3),
Var (X) = 324 . m(n—2)>2

(n>5)

x2-distribution with m degrees of freedom (m > 1)

0 if <0 i
)= 14— 0.15
)=yt © it 2>0
251 (77) 0.10
EX =m 0.05
Var (X) = 2m
Random vectors
If X1, X5, ..., X, are random variables (over one and the same sample space
), then X = (Xq,...,X,,) is called a random vector, and X1, ..., X, are its
components. The function Fx : Fx(x1,...,2,) = P(X1 < 21,..., X, < xp)
with (z1,...,2,) € R" is said to be the distribution function of X.
Properties
lim  Fx(z1,...,2,...,2,) =0, i=1,...,n,
lim Fx(z1,...,2,) =1
xr1 — 00

Ty — OO

lhi%FX(xl,...7xi+h,...,mn) =Fx(z1,..., % ...,2n), t=1,....n
Fx,(x)= lm Fx(T1,...,%i—1,Z,Tit1,...,Tn), i=1,....,n

I (marginal distribution functions)
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Independence

X1,..., X, are called independent if for any (z1,...,2,) € R" one has
Fx(l’l,...7$n> = FX1($1> 'FX2(.'I;2> .. 'FXn(xn>

Two-dimensional random vectors

e The vector X = (X1, X») is called continuous (continuously distributed) if
there exists a density (function) fx such that the representation Fix (z1,z2) =

xr1 o aZF
[ | fx(ti,t2) dtidts, (21, 22) € R? holds, i.e. x (@1, 22) = fx (21, 72).
50 —00 85618552

The random variables X; (with density fx,) and Xo (with density fx,) are
independent if fx(x1,22) = fx,(x1) - fx,(x2) for all (z1,22) € R2.

o X = (X,Xy) is called discrete (discretely distributed) with individual
probabilities p;; = P(X; = xgi), Xo = xgj)) if X; and X, are discretely
distributed with individual probabilities p; = P(X; = xgi)), 1=1,2,... and
q; = P(Xs = xéj)), j=1,2,..., respectively. The random variables X; and
Xy are independent if p;; = p; - q; for all ¢,5 =1,2,...

First moments of two-dimensional random vectors

expected value discrete continuous
EX1 szgi)pij f f Slex(.’L‘1,3;‘2>d$L’1d.'L‘2
g —00 —00
EX» ZZxéj)pij | [ zofx(z1,22) dzrdas
g —00 —00

Second moments of two-dimensional random vectors

variances discrete continuous

Var (X1) = 02 ) o0
. Xlz Y@ -EX1)?%py [ [ (21-EX1)fx (@1, 72) dzidas

=EX1—-EX1)* 7@

38

Var (X») = 0%, ) 2 >
ZZ(xQ _EXQ) pij (CEQ—EXQ) fX (xl,xg)d:mdxg
i

=E(Xo—-EX5)? 3

g8
§ =8
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covariance:

cov <X17X2> = E(X1 - EX1>(X2 - EXQ) = E(X1X2> — EX1 . EXQ

> Z(x(f) - EXl)(xéj) —EXo)pi; — discrete distribution
i g
| [ (#1—-EX1)(22—EX,) fx (21, 22) dzidzs — continuous distribution

Correlation

cov (X1, Xo) _ cov (X1, Xo)

= correlation coefficient
/Var (X1)Var (X») TX,0X,

PX1Xs =

e The correlation coefficient describes the (linear) interdependence between
the components X; and X5 of a random vector X = (X1, X32).

o —1<px,x, <1
o If px,x, =0, then X7, Xy are called uncorrelated.

e If X7, X5 are independent, then they are uncorrelated.

Two-dimensional normal distribution

1
Ix(z1,22) =
( ) 2%0102\/1 — p?
1 (w1 —m)* 2p(x1 —m)(x2 —p2) (22— f12)*
% o 2(1-p?) o? 0102 o3

density of the two-dimensional normal distribution with —oo < 1, us < 00;
01 >0,00>0, —-1<p<l; —c0o<T,T2 <O

Moments: -

/ \
EX1:M17EX2:M27 ‘/’f \“\\
Var (X1) = 07, g

Var (X3) = 03,
cov (X1, X2) = poi0oa

il
s
"y
BN
S
e
ety
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Sums of two independent random variables

e If X; and X are independent discrete random Variables with probabilities
pi =P(Xy=2"), i=1,2,..., and ¢; = P(Xy=2"), j =1,2,..., then

P(X1+Xo=y) = > Diq;-

i, a:gw-ﬁ—xgj):y

If, in particular, 2\ =4, i=1,2,... and 2 = j, j=1,2,..., then

k
P(X1+Xo=k) =Y. P(X; =) P(Xa=k—1i), k=1,2,...
=1

e If X7, X5 are independent continuous random variables with densities fx,
and fx,, then Y = X; + X5 is a continuous random variable with density

f fX1 fXQ( )dLE

e In general, the relation E(X;+ X2) = EX;+EX> is true. Moreover, under
independence one has Var (X7 + X3) = Var (X7) + Var (X3).

Examples of sums of independent random variables

e If X; and X, are binomially distributed with (n1,p) and (ng,p), resp.,
then the sum X; + X5 is binomially distributed with (ni + n2, p).

e If X; and X5 are Poisson distributed with A1 and Ao, resp., then the sum
X1 + X5 is Poisson distributed with A1 + As.

e If X; and X, are normally distributed with (1, 0%3) and (u2, 03), resp., then
the linear combination a;3X; + a9 Xs is normally distributed with (a1 +
Qs iz, a30? +ada3), where a,as € R.

o If X; and X, are y2-distributed with m and n degrees of freedom, resp.,
then the sum X; 4+ X» is x?-distributed with m + n degrees of freedom.

Products of two independent random variables

o If X1, X5 are independent discrete random variables with probabilities
p; = P(Xlzxgl)), i=1,2,...,and ¢ = P(Xo=u3 )), j=1,2,..., then

P(X;-Xy=y) = > Diq;-
(1) ( j) =y

e If X7, X5 are independent continuous random variables with densities fx,
and fx,, resp., then Y = X;- X5 is a continuous random variable with density

dx

x|

f @it (V)
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Sample

By a mathematical sample of size n chosen from a parent population Mx
one understands a n-dimensional random vector X = (X;,...,X,,) the com-
ponents of which are independent and distributed like X. Every realization
x = (x1,...,2,) of X is called a concrete sample.

Point estimates

Task: To obtain suitable approximation values for unknown parameters 6 of
a distribution or for functions g : § — ¢(#) one uses estimates.

A sample function t,=T,(x) depending on a concrete sample & =(x1, ..., Z,)
and used for the estimation of € is called an estimating value (estimator) for
0; notation: ¢, = (x) = 0. The sample function T,, = T,,(X) = (X)) of the
corresponding mathematical sample X is called a point estimate or estimating
Sfunction.

Properties of point estimates
e T, is called unbiased for g(9) if ET,, = g().

o (Ty)n=1,2,... is called asymptotically unbiased for g(0) if lim ET,, =g(0).

o (T)n=1,2,... is called (weakly) consistent for g(0) if the relation
lim P(|T,, — g(0)| < &) =1 holds (¢ > 0 arbitrary).

Estimators for expected value and variance

parameter .
. ki
to be estimated estimator remarks
n
expected value - 1 . .
4= EX f=an= E 1 x; (arithmetic) mean
i
variance 52 _ g2 _ 1 i(x _EX)? application only if
0? = Var (X) o op 4 - ¢ EX is known
1=
1 n
52 = s% = 01 E (z; — ,)*> empirical variance
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Further estimators

probabilities of - hn(A) is the relative

= h,(A
an event p=P(4) P n(4) frequency of A
covariance N - .
oxy —cov (X, Y) oxy =, Z; (x;—2n)(yi—y,) empirical covariance
correlation . Oxy empirical correla-
coefficient pxy pxy = \/sggs%, tion coefficient

Maximum likelihood method for the construction of point estimates

Assumption: A distribution function F' is known except for the parameter
0= (0,...,0,) cOCR?

e The function 0 — L(0;x) = p(0;21) - ... p(0;2,) = ﬁ p(0; ;) is
i=1

called the likelihood function belonging to the sample € = (21, ...,2,),

where
(0:21) = density fx(x;), if X is continuous

PAP5%i) =\ individual probability P(X = z;) if X is discrete.

e The quantity @ = 8(x) = (1,...,0,) such that L(0;x) > L(8;x) for
all @ € © is said to be a maximum likelihood estimator for 6.

e If L is differentiable with respect to @, then 6(x) is a solution of

0ln L(6;
n39( ) =0, j=1,...,p (maximum likelihood equations).
J

Method of moments

Assumption: A distribution function F' is known except for the parameter
0= (01,...,0,) c©CR?

This method for construction of point estimates is based on the relations
between the parameters 61, ..., 0, and the central moments p, (r =2,3,...)

as well as the expected value p of the distribution function F'. By replacing
n

1 1
uw by i = " lel and p, by fir = n Zl(xl — i) resp. in these relations
1= 1=
and solving the related equations, one obtains the moment-estimates 6, =
T;(ml,ﬁlg,...7mp) for 0j7j:17"'7p'
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Confidence interval estimates

Task: To assess the accuracy of the estimate of an unknown parameter 6 of
a distribution one has to construct intervals, so-called confidence intervals,
which cover 6 by a large probability.

e A random interval I(X) = [g,(X); go(X)] with g, (X) < go(X) for the
parameter § depending on the mathematical sample X = (X1,...,X,,)
such that

P(gu(X) <0 < go(X)) >c=1—a

is called a two-sided confidence interval for 6 to the confidence level €
(0<e<).

e For a realization  of X the interval I(x) = [g.(x); go(x)] is called a
concrete confidence interval for 6.

o If g, = —00 or g, = 400, then [—00; g,(X)] and [g,(X); 00|, resp., are
said to be one-sided confidence intervals with

PO <go(X))>e and P(0>g,(X))>e.

One-sided confidence intervals for parameters of the normal distri-
bution

for the expected value u :
o2 known: (foo; Tp + 21—a jn} or [xn — Zl—a \‘/Tn; +oo)

o2 unknown: (foo;a?n +t—11—a jn} or {xn —th—11-a \/Sn; +oo)

for the variance o2 :
L o*2 L o¥2
1 known: [O; " 28 } or n2 y ; oo
Xn;a Xn;lfa
—1).52 —1)-52
1 unknown: 0; (n 9 ):s or (n2 ):s ; oo
anl;a Xn—1;1—a
n 1 n
Here z,, = 2 =, z:(gcZ —p? st = 1 Z( — xp)?%; for the

quantiles zq, tmsq, Xon.q See tables 1b, 2, 6 on p. 172ff
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Two-sided confidence intervals for parameters of the normal distri-
bution

for expected value p :
9 o o
o“ known: Ty — Z1_< Ty + 210
Fn F
9 5 5
o“ unknown: Tp — tp—1;1—9 \/n; Tn + tn—1;1—9

vn

for variance o2 :

© known:

1 unknown:

n

1 & 1 R
Here z,, = . i_zlxi, §*2 = " Z(xl —p)? s% = S ;(xl — x,)?. For

= =1 =
the quantiles zq, tmq, an’q see tables 1b, 2, 6 on p. 1721f.

Asymptotic confidence interval for probability p = P(A)

to the confidence level e =1 — o

1 22 x(n—x 22
[9us 9] = T+ qu\/ ( )Jr A

@
Here g =1 — o while x describes how often the random event A occurs in
n trials.
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Statistical tests

Task: Statistical tests serve for the verification of so-called statistical hy-
potheses concerning the (completely or partially) unknown distributions F'
by means of corresponding samples.

Assumption: F = Fy, 6 €6
o Null hypothesis Hy : 0 € O (C O);
o Alternative hypothesis Hy : 0 € ©1 (C ©\ Oy)

e A hypothesis is called simple if Hy : 0 = 6, i.e. ©g = {6y}, otherwise it is
called composite.

o A two-sided statement of the problem or two-sided test (problem) is dealt
with if Hy : 8 = 0y and Hy : 0 # 0y (i.e. > 0y and 6 < 0y). A one-sided
statement of the problem is considered if either Hy : 6 < 0y and H;y : 0 > 6
or Hy:60 >0y and Hy : 0 < 6.

Significance test

1. Formulation of a null hypothesis Hy (and an alternative hypothesis
H; if necessary).

2. Construction of a test statistic T = T(X1,...,X,) for a mathematical
sample. (In this case the distribution of T' must be known if Hy is true.)

3. Choice of a critical region K* (part of the range of the test statistic
T being as large as possible so that the probability p* for the case that
T takes values from K* is not greater than the significance level a (0 <
a < 1) if Hy is true; usually: o = 0.05; 0.01; 0.001).

4. Decision rule: If for some concrete sample (x1,...,z,) the value ¢ of
the test statistic T (i.e. t = T(z1,...,2,)) isin K* (i.e. t € K*), then
Hy is rejected in favour of H7. In the other case there is no objection to
Hy.

Decision structure

decision real (unknown) situation
Hj is true Hj is not true
Hy is rejected error of first kind right decision
Hy is not rejected right decision error of second kind

with P(error of first kind) < a.
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Significance tests under normal distribution

One-sample problems: Let « = (z1,...,x,) be a sample of size n chosen

from a normally distributed parent population with expected value u and

variance o2.

hypotheses assump-  realization ¢ distribution critical
Hy Hq tions of the test of T region
variable T’

Gauss test

a) | = fo, 4 7 o |t] = z1-4
2
g Tn — HO
< : >
b) < po, p>po oy , Vno N0 t>21-a
¢) 1> po, p < po t< —21-qa

simple t-test

a) 1= fio, p 7 fo [t > tn-1,1-3
2
g Tn — Mo tm.
b) u < t> 10
) 1= o, o> po unknown v (m=n-—1) = 'n-lil-a
) i > po, < o t< —th-11-a
t>x2,
a) o?=o03, 0’#0} b 5
vV t< Xn; g
L n - *2
2.2 2. 2 2
b) o0?<ag, 0° >0 Known o2 X5, 12> Xnia-a
0
c) 02>03, 0?<o} t < X%;a
chi-squared test
of variances
2
t 2> anl;lfg‘
a) o?=o03, 0’#0} vVots X?zfl;fj
n—1)-s X2
b) 02<o?. o2>g2 H ( m t> 2 .
) 0" x0qp, O >0'0 unknown O_g ( :nfl) —Xn—l,l—a
c) o%>0}, 0°< o} t < X%_ha

a) two-sided, b) and ¢) one-sided problems



Significance tests under normal distribution 169

Two-sample problems: x = (z1,...,%,,) and ' = (2},..., ;) are sam-
ples of size n; and ne, resp., chosen from two normally distributed parent
populations with expected values p; and po and variances of and o3, resp.
(T — test statistic):

hypotheses realization distribution critical
Hy H, of T of T region

Difference method (assumptions: &, ’ dependent samples, n; =ns=mn,
D=X—X"e€N(up,0%), up = p1—p2, 05 unknown)

a) MD:()a:U'D?éO d ¢ _distributi |t‘ > tnflglfg
-daistripution
b) pp <0, up>0 Vn me t>th 11—«
SD m=n-—1
C) ,LLDEO,,LLD<O t S _tn—l;l—a

Double t-test (assumptions: z, z’ independent samples, X € N(u1,07?),
X"€N(u2,03), of = 03)

a) H1 =2, 11 7é,u2 T(1)—T(2) < |t‘ > tm;lf‘;

b) p1 <piy pa > o N tm-distribution t2tmi-a
nin

C) M1 ZM27M1<M2 X\/nll"”f? m:n1+n272 t S_tm;l—a

(sg s. below) (m=ni+na—2)
Welch-Test (assumptions: @, &’ independent samples, X € N(u1,0%),
X'€N(p2,03), of # 03)

approximately

tm-distribution It] > tiii_a
Ta) — T mA -

a) 1 =iz, 1 7 12

b) p1 < pa, 1 > o 1 t2>tmi—a

52 s2 c? (1-¢)*
C) p1 > pz, p1 < fi2 S {”1—1 tonp1 t <—tm1-a
c = sf/nl

s3/n1+s3/n2

F-Test (x, ' independent samples, X € N(u1,0?), X' € N(p2,03),
11, p2 unknown)

2_ 2 2., 2
a) 01=02,01 7é0—2 le,mz-distrib. t§§m17m2§1—3 or
s1/s3 (m1=n1—1) b= Fmamast—g
2 2 2 2 mo =ng — 1
b) 0f <o3,01>03 ( ) t>Fony mail—a
c) oi>03,07 <03 s3/s% Finy m,-distrib. t>Frymiii—a

a) two-sided, b) and c) one-sided problems; here ng,z(y and s2 denote sample
size, arithmetic mean and empirical variance, resp., of the k-th sample, k= 1,2,
while d and s% are the arithmetic mean and the empirical variance of the difference
series d; =x; —x}, i=1,2,...,n formed from the values of the dependent samples.

Furthermore s, = v/ [(n1 — 1)s2 + (n2 — 1)s2](n1 +ns — 2)~1.
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Table 1a Distribution function ¢(z) of the standardized normal distribu-
tion

T 0.00 0.01 0.02 0.03 0.04
0.0 .500000 .503989 507978 .511966 .515953
0.1 539828 543795 547758 501717 .555670
0.2 .579260 .583166 .5b87064 .590954 .594835
0.3 617911 621720 .625516 .629300 633072
0.4 .655422 659097 662757 .666402 .670031
0.5 .691462 694974 .698468 701944 .705401
0.6 725747 729069 732371 735653 738914
0.7 .758036 761148 764238 767305 770350
0.8 788145 791030 .793892 796731 .799546
0.9 .815940 .818589 .821214 .823814 .826391
1.0 .841345 .843752 .846136 .848495 .850830
1.1 .864334 .866500 .868643 870762 872857
1.2 .884930 .886861 .888768 .890651 .892512
1.3 903200 .904902 906582 908241 909877
1.4 919243 920730 922196 923641 .925066
1.5 933193 934478 935745 936992 .938220
1.6 945201 946301 947384 .948449 .949497
1.7 955435 956367 957284 958185 959070
1.8 .964070 964852 965620 966375 967116
1.9 971283 971933 972571 973197 973810
2.0 977250 977784 978308 978822 979325
2.1 982136 982571 .982997 983414 983823
2.2 .986097 .986447 986791 987126 987455
2.3 989276 989556 989830 990097 990358
24 .991802 992024 .992240 992451 .992656
2.5 993790 993963 994132 994297 .994457
2.6 995339 995473 .995604 995731 995855
2.7 996533 996636 996736 996833 996928
2.8 997445 997523 997599 997673 997744
2.9 998134 998193 .998250 .998305 .998359
3.0 .998650 998694 998736 998777 998817

z 0.0 0.1 0.2 0.3 0.4



Table 1 a
tion

0.0
0.1
0.2
0.3
0.4

0.5
0.6
0.7
0.8
0.9

1.0
1.1
1.2
1.3
1.4

1.5
1.6
1.7
1.8
1.9

2.0
2.1
2.2
2.3
24

2.5
2.6
2.7
2.8
2.9

3.0
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Distribution function @(z) of the standardized normal distribu-

0.05

.519938
.559618
.598706
.636831
.673645

.708840
742154
773373
.802338
.828944

.853141
.874928
.894350
911492
926471

939429
950529
959941
967843
974412

979818
.984222
987776
1990613
992857

1994614
995975
997020
997814
1998411

998856

0.5

0.06

.523922
.563559
.602568
.640576
677242

712260
745373
776373
.805105
831472

.855428
876976
.896165
913085
927855

.940620
951543
960796
968557
975002

980301
984614
.988089
990863
993053

994766
996093
997110
997882
998462

998893

0.6

0.07

527903
567495
.606420
.644309
.680822

715661
748571
779350
.807850
833977

.857690
.879000
.897958
914657
929219

941792
.952540
961636
969258
975581

980774
.984997
988396
991106
993244

994915
996207
997197
997948
998511

998930

0.7

0.08

531881
571424
.610261
.648027
.684386

719043
751748
782305
.810570
.836457

.859929
.881000
899727
916207
930563

.942947
953521
962462
.969946
976148

981237
985371
988696
1991344
993431

995060
996319
997282
998012
998559

998965

0.8

0.09

.535856
575345
.614092
.651732
.687933

722405
.754903
785236
.813267
.838913

.862143
882977
901475
917736
931888

.944083
.954486
963273
970621
976705

981691
985738
988989
991576
1993613

995201
.996427
997365
998074
998605

998999

0.9
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Table 1b  Quantiles z, of the standardized normal distribution

q

0.5
0.55
0.6
0.65
0.7

0.75
0.8
0.85
0.9

Table 2

COOO\]@CH»&OD[\D»—A%

Zq q Zq q Zq
0 0.91 1.34076 0.975 1.95996
0.12566 0.92 1.40507 0.98 2.05375
0.25335 0.93 1.47579 0.985 2.17009
0.38532 0.94 1.55478 0.99 2.32635
0.52440 0.95 1.64485 0.995 2.57583
0.67449 0.955 1.69540 0.99865 3.00000
0.84162 0.96 1.75069 0.999 3.09023
1.03644 0.965 1.81191 0.9995 3.29053
1.28155 0.97 1.88080 0.999767 3.50000

Quantiles t,,., of the t—distribution

0.9 0.95 0.975 0.99 0.995 0.999 0.9995
3.08 6.31 12.71 31.82 63.7 318.3 636.6
1.89 2.92 4.30 6.96 9.92 22.33 31.6
1.64 2.35 3.18 4.54 5.84 10.21 12.9
1.53 2.13 2.78 3.75 4.60 717 8.61
1.48 2.02 2.57 3.36 4.03 5.89 6.87
1.44 1.94 2.45 3.14 3.71 5.21 5.96
1.41 1.89 2.36 3.00 3.50 4.79 5.41
1.40 1.86 2.31 2.90 3.36 4.50 5.04
1.38 1.83 2.26 2.82 3.25 4.30 4.78
1.37 1.81 2.23 2.76 3.17 4.14 4.59
1.36 1.80 2.20 2.72 3.11 4.02 4.44
1.36 1.78 2.18 2.68 3.05 3.93 4.32
1.35 1.77 2.16 2.65 3.01 3.85 4.22
1.35 1.76 2.14 2.62 2.98 3.79 4.14
1.34 1.75 2.13 2.60 2.95 3.73 4.07
1.34 1.75 2.12 2.58 2.92 3.69 4.01
1.33 1.74 2.11 2.57 2.90 3.65 3.97
1.33 1.73 2.10 2.55 2.88 3.61 3.92
1.33 1.73 2.09 2.54 2.86 3.58 3.88
1.33 1.72 2.09 2.53 2.85 3.55 3.85
1.32 1.72 2.08 2.52 2.83 3.53 3.82
1.32 1.72 2.07 2.51 2.82 3.50 3.79
1.32 1.71 2.07 2.50 2.81 3.48 3.77
1.32 1.71 2.06 2.49 2.80 3.47 3.75
1.32 1.71 2.06 2.49 2.79 3.45 3.73
1.31 1.71 2.06 2.48 2.78 3.43 3.71
1.31 1.70 2.05 2.47 2.77 3.42 3.69
1.31 1.70 2.05 2.46 2.76 3.41 3.67
1.31 1.70 2.05 2.46 2.76 3.40 3.66
1.31 1.70 2.04 2.46 2.75 3.39 3.65
1.30 1.68 2.02 2.42 2.70 3.31 3.55
1.30 1.67 2.00 2.39 2.66 3.23 3.46
1.29 1.66 1.98 2.36 2.62 3.16 3.37

1.28 1.64 1.96 2.33 2.58 3.09 3.29
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Table 3 Probability density ¢(x) of the standardized normal distribution

0,0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1,0
1,1
1,2
1,3
1,4
1,5
1,6
1,7
1,8
1,9

2,0
2,1
2,2
2,3
2,4
2,5
2,6
2,7
2,8
2,9

3,0
3,1
3,2
3,3
3.4
3,5
3,6
3,7
3,8
3,9

0,3989
3970
3910
3814
3683
3521
3332
3123
2897
2661

0,2420
2179
1942
1714
1497
1295
1109
0940
0790
0656

0,0540
0440
0355
0283
0224
0175
0136
0104
0079
0060

0,0044
0033
0024
0017
0012
0009
0006
0004
0003
0002

3989
3965
3902
3802
3668
3503
3312
3101
2874
2637

2396
2155
1919
1691
1476
1276
1092
0925
0775
0644

0529
0431
0347
0277
0219
0171
0132
0101
0077
0058

0043
0032
0023
0017
0012
0008
0006
0004
0003
0002

3989
3961
3894
3790
3653
3485
3292
3079
2850
2613

2371
2131
1895
1669
1456
1257
1074
0909
0761
0632

0519
0422
0339
0270
0213
0167
0129
0099
0075
0056

0042
0031
0022
0016
0012
0008
0006
0004
0003
0002

3

3988
3956
3885
3778
3637
3467
3271
3056
2827
2589

2347
2107
1872
1647
1435
1238
1057
0893
0748
0620

0508
0413
0332
0264
0208
0163
0126
0096
0073
0055

0040
0030
0022
0016
0011
0008
0005
0004
0003
0002

4

3986
3951
3876
3765
3621
3448
3251
3034
2803
2565

2323
2083
1849
1626
1415
1219
1040
0878
0734
0608

0498
0404
0325
0258
0203
0158
0122
0093
0071
0053

0039
0029
0021
0015
0011
0008
0005
0004
0003
0002

5

3984
3945
3867
3752
3605
3429
3230
3011
2780
2541

2299
2059
1826
1604
1394
1200
1023
0863
0721
0596

0488
0396
0317
0252
0198
0154
0119
0091
0069
0051

0038
0028
0020
0015
0010
0007
0005
0004
0002
0002

6

3982
3939
3857
3739
3589
3410
3209
2989
2756
2516

2275
2036
1804
1582
1374
1182
1006
0848
0707
0584

0478
0387
0310
0246
0194
0151
0116
0088
0067
0050

0037
0027
0020
0014
0010
0007
0005
0003
0002
0002

7

3980
3932
3847
3725
3572
3391
3187
2966
2732
2492

2251
2012
1781
1561
1354
1163
0989
0833
0694
0573

0468
0379
0303
0241
0189
0147
0113
0086
0065
0048

0036
0026
0019
0014
0010
0007
0005
0003
0002
0002

8

3977
3925
3836
3712
3555
3372
3166
2943
2709
2468

2227
1989
1758
1539
1334
1145
0973
0818
0681
0562

0459
0371
0297
0235
0184
0143
0110
0084
0063
0047

0035
0025
0018
0013
0009
0007
0005
0003
0002
0001

9

3973
3918
3825
3697
3538
3352
3144
2920
2685
2444

2203
1965
1736
1518
1315
1127
0957
0804
0669
0551

0449
0363
0290
0229
0180
0139
0107
0081
0061
0046

0034
0025
0018
0013
0009
0006
0004
0003
0002
0001
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Table 4a

[ V)
PODO DO DO DD DD = = = e A
TR W OO0 U W OO0 UL W = S

1

161
18.5
10.1
7.71
4.68
5.99
5.59
5.32
5.12
4.96

4.84
4.75
4.67
4.60
4.54

4.49
4.45
4.41
4.38
4.35

4.32
4.30
4.28
4.26
4.24

Quantiles Fiy, m,;q of the F-distribution for ¢ = 0.95

2

200
19.0
9.55
6.94
4.64

5.14
4.74
4.46
4.26
4.10

3.98
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6.00
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3.02
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2.59
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19.4
8.79
5.96
4.36

4.06
3.64
3.35
3.14
2.98

2.85
2.75
2.67
2.60
2.54

2.49
2.45
2.41
2.38
2.35

2.32
2.30
2.27
2.25
2.24

10

2.22
2.20
2.19
2.18
2.16

2.14
2.12
2.11
2.09
2.08

2.06
2.05
2.04
2.03
2.03

2.01
1.99
1.98
1.97
1.95
1.93
1.91
1.89
1.88
1.85
1.84
1.83
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N)
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26
27
28
29
30

32
34
36
38
40

42
44
46
48
50

55
60
65
70
80

100
125
150
200
400
1000

12

244
19.4
8.74
5.91
4.68

4.00
3.57
3.28
3.07
2.91

2.79
2.69
2.60
2.53
2.48

2.42
2.38
2.34
2.31
2.28

2.25
2.23
2.20
2.18
2.16

12

2.15
2.13
2.12
2.10
2.09

2.07
2.05
2.03
2.02
2.00

1.99
1.98
1.97
1.96
1.95

1.93
1.92
1.90
1.89
1.88

1.85
1.83
1.82
1.80
1.78
1.76

1.75

Quantiles of the F-distribution

Quantiles Fiy, m,:q of the F-distribution for ¢ = 0.95

14

245
19.4
8.71
5.87
4.64

3.96
3.53
3.24
3.03
2.86

2.74
2.64
2.55
2.48
2.42

2.37
2.33
2.29
2.26
2.22

2.20
2.17
2.15
2.13
2.11

14

2.09
2.08
2.06
2.05
2.04

2.01
1.99
1.98
1.96
1.95

1.94
1.92
1.91
1.90
1.89

1.88
1.86
1.85
1.84
1.82

1.79
1.77
1.76
1.74
1.72
1.70

1.69

16

246
19.4
8.69
5.84
4.60

3.92
3.49
3.20
2.99
2.83

2.70
2.60
2.51
2.44
2.38

2.33
2.29
2.25
2.21
2.18

2.16
2.13
2.11
2.09
2.07

16

2.05
2.04
2.02
2.01
1.99

1.97
1.95
1.93
1.92
1.90

1.89
1.88
1.87
1.86
1.85

1.83
1.82
1.80
1.79
1.77

1.75
1.73
1.71
1.69
1.67
1.65

1.64

20

248
19.4
8.66
5.80
4.56

3.87
3.44
3.15
2.93
2.77

2.65
2.54
2.46
2.39
2.33

2.28
2.23
2.19
2.15
2.12

2.10
2.07
2.05
2.03
2.01

20

1.99
1.97
1.96
1.94
1.93

1.91
1.89
1.87
1.85
1.84

1.83
1.81
1.80
1.79
1.78

1.76
1.75
1.73
1.72
1.70

1.68
1.66
1.64
1.62
1.60
1.58

1.57

30

250
19.5
8.62
5.75
4.50

3.81
3.38
3.08
2.86
2.70

2.57
2.47
2.38
231
2.25

2.19
2.15
2.11
2.07
2.04

2.01
1.98
1.96
1.94
1.92

30

1.90
1.88
1.87
1.85
1.84

1.82
1.80
1.78
1.76
1.74

1.73
1.72
1.71
1.70
1.69

1.67
1.65
1.63
1.62
1.60

1.57
1.55
1.53
1.52
1.49
1.47

1.46

50

252
19.5
8.58
5.70
4.44

3.75
3.32
3.02
2.80
2.64

2.51
2.40
2.31
2.24
2.18

2.12
2.08
2.04
2.00
1.97

1.94
1.91
1.88
1.86
1.84

50

1.82
1.81
1.79
1.77
1.76

1.74
1.71
1.69
1.68
1.66

1.65
1.63
1.62
1.61
1.60

1.58
1.56
1.54
1.53
1.51

1.48
1.45
1.44
1.41
1.38
1.36

1.35

75

253
19.5
8.56
5.68
4.42

3.72
3.29
3.00
2.77
2.61

2.47
2.36
2.28
2.21
2.14

2.09
2.04
2.00
1.96
1.93

1.90
1.87
1.84
1.82
1.80

75

1.78
1.76
1.75
1.73
1.72

1.69
1.67
1.65
1.63
1.61

1.60
1.58
1.57
1.56
1.55

1.53
1.51
1.49
1.48
1.45

1.42
1.40
1.38
1.35
1.32
1.30

1.28

100

253
19.5
8.55
5.66
4.41

3.71
3.27
2.97
2.76
2.59

2.46
2.35
2.26
2.19
2.12

2.07
2.02
1.98
1.94
1.91

1.88
1.85
1.82
1.80
1.78

100

1.76
1.74
1.73
1.71
1.70

1.67
1.65
1.62
1.61
1.59

1.57
1.56
1.55
1.54
1.52

1.50
1.48
1.46
1.45
1.43

1.39
1.36
1.34
1.32
1.28
1.26

1.24

500

254
19.5
8.53
5.64
4.37

3.68
3.24
2.94
2.72
2.55

2.42
2.31
2.22
2.14
2.08

2.02
1.97
1.93
1.89
1.86

1.82
1.80
1.77
1.75
1.73

500

1.71
1.68
1.67
1.65
1.64

1.61
1.59
1.56
1.54
1.53

1.51
1.49
1.48
1.47
1.46

1.43
1.41
1.39
1.37
1.35

1.31
1.27
1.25
1.22
1.17
1.13

1.11

175

254
19.5
8.53
5.63
4.36

3.67
3.23
2.93
2.71
2.54

2.40
2.30
2.21
2.13
2.07

2.01
1.96
1.92
1.88
1.84

1.81
1.78
1.76
1.73
1.71

1.69
1.67
1.65
1.64
1.62

1.59
1.57
1.55
1.53
1.51

1.49
1.48
1.46
1.45
1.44

1.41
1.39
1.37
1.35
1.32

1.28
1.25
1.22
1.19
1.13
1.08

1.00
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Table 4b  Quantiles Fi,, m,; ¢ of the F-distribution for ¢ = 0.99
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5.81
5.26
4.85

4.54
4.30
4.10
3.94
3.80

3.69
3.59
3.51
3.43
3.37

3.31
3.26
3.21
3.17
3.13

10

3.09
3.06
3.03
3.00
2.98

2.93
2.89
2.86
2.83
2.80

2.78
2.75
2.73
2.71
2.70

2.66
2.63
2.61
2.59
2.55

2.50
2.47
2.44
2.41
2.37
2.34

2.32



Quantiles of the F-distribution

Table 4b  Quantiles Fy,, m,; ¢ of the F-distribution for ¢ = 0.99

N
= /

26
27
28
29
30

32
34
36
38
40

42
44
46
48
50

55
60
65

80

100
125
150
200
400
1000

12

6106
99.4
27.1
14.4
9.89

7.72
6.47
5.67
5.11
4.71

4.40
4.16
3.96
3.80
3.67

3.55
3.46
3.37
3.30
3.23

3.17
3.12
3.07
3.03
2.99

12

2.96
2.93
2.90
2.87
2.84

2.80
2.76
2.72
2.69
2.66

2.64
2.62
2.60
2.58
2.56

2.53
2.50
2.47
2.45
2.42

2.37
2.33
2.31
2.27
2.23
2.20

2.18

14

6143
99.4
26.9
14.3
9.77

7.60
6.36
5.56
5.00
4.60

4.29
4.05
3.86
3.70
3.56

3.45
3.35
3.27
3.19
3.13

3.07
3.02
2.97
2.93
2.89

14

2.86
2.82
2.80
2.77
2.74

2.70
2.66
2.62
2.59
2.56

2.54
2.52
2.50
2.48
2.46

2.42
2.39
2.37
2.35
2.31

2.27
2.23
2.20
2.17
2.13
2.10

2.08

16

6170
99.4
26.8
14.2
9.68

7.52
6.27
5.48
4.92
4.52

4.21
3.97
3.78
3.62
3.49

3.37
3.27
3.19
3.12
3.05

2.99
2.94
2.89
2.85
2.81

16

2.78
2.75
2.72
2.69
2.66

2.62
2.58
2.54
2.51
2.48

2.46
2.44
2.42
2.40
2.38

2.34
2.31
2.29
2.27
2.23

2.19
2.15
2.12
2.09
2.04
2.02

2.00

20

6209
99.4
26.7
14.0
9.55

7.40
6.16
5.36
4.81
4.41

4.10
3.86
3.66
3.51
3.37

3.26
3.16
3.08
3.00
2.94

2.88
2.83
2.78
2.74
2.70

20

2.66
2.63
2.60
2.57
2.55

2.50
2.46
2.43
2.40
2.37

2.34
2.32
2.30
2.28
2.26

2.23
2.20
2.18
2.15
2.12

2.07
2.03
2.00
1.97
1.92
1.90

1.88

30

6261
99.5
26.5
13.8
9.38

7.23
5.99
5.20
4.65
4.25

3.94
3.70
3.51
3.35
3.21

3.10
3.00
2.92
2.84
2.78

2.72
2.67
2.62
2.58
2.54

30

2.50
2.47
2.44
241
2.39

2.34
2.30
2.26
2.23
2.20

2.18
2.15
2.13
2.12
2.10

2.06
2.03
2.00
1.98
1.94

1.89
1.85
1.83
1.79
1.74
1.72

1.70

50

6302
99.5
26.4
13.7
9.24

7.09
5.86
5.07
4.52
4.12

3.81
3.57
3.38
3.22
3.08

2.97
2.87
2.78
2.71
2.64

2.58
2.53
2.48
2.44
2.40

50

2.36
2.33
2.30
2.27
2.25

2.20
2.16
2.12
2.09
2.06

2.03
2.01
1.99
1.97
1.95

1.91
1.88
1.85
1.83
1.79

1.74
1.69
1.67
1.63
1.58
1.54

1.52

75

6324
99.5
26.3
13.6
9.17

7.02
5.79
5.00
4.45
4.05

3.74
3.49
3.31
3.15
3.01

2.90
2.80
2.71
2.64
2.57

2.51
2.46
2.41
2.37
2.33

75

2.29
2.25
2.23
2.20
2.17

2.12
2.08
2.04
2.01
1.98

1.98
1.93
1.91
1.89
1.87

1.83
1.79
1.76
1.74
1.70

1.65
1.60
1.57
1.53
1.48
1.44

1.42

100

6334
99.5
26.2
13.6
9.13

6.99
5.75
4.96
4.42
4.01

3.71
3.47
3.27
3.11
2.98

2.86
2.76
2.68
2.60
2.54

2.48
2.42
2.37
2.33
2.29

100

2.25
2.22
2.19
2.16
2.13

2.08
2.04
2.00
1.97
1.94

1.91
1.89
1.86
1.84
1.82

1.78
1.75
1.72
1.70
1.65

1.60
1.55
1.52
1.48
1.42
1.38

1.36

500

6360
99.5
26.1
13.5
9.04

6.90
5.67
4.88
4.33
3.93

3.62
3.38
3.19
3.03
2.89

2.78
2.68
2.59
2.51
2.44

2.38
2.33
2.28
2.24
2.19

500

2.16
2.12
2.09
2.06
2.03

1.98
1.94
1.90
1.86
1.83

1.80
1.78
1.76
1.73
1.71

1.67
1.63
1.60
1.57
1.53

1.47
1.41
1.38
1.33
1.25
1.19

1.15

177

6366
99.5
26.1
13.5
9.02

6.88
5.65
4.86
4.31
3.91

3.60
3.36
3.17
3.00
2.87

2.75
2.65
2.57
2.49
2.42

2.36
231
2.26
2.21
2.17

2.13
2.10
2.06
2.03
2.01

1.96
1.91
1.87
1.84
1.80

1.78
1.75
1.73
1.70
1.68

1.64
1.60
1.57
1.54
1.49

1.43
1.37
1.33
1.28
1.19
1.11

1.00
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Table 5
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Inductive statistics

0,1

0,904837
0,090484
0,004524
0,000151
0,000004

0,8
0,449329
0,359463
0,143785
0,038343
0,007669
0,001227
0,000164
0,000019
0,000002

Probabilities py = A

0,2

0,818731
0,163746
0,016375
0,001091
0,000055
0,000002

0,9
0, 406570
0,365913
0,164661
0,049398
0,011115
0,002001
0,000300
0,000039
0,000004

k
k!

0,3

0,740818
0,222245
0,033337
0,003334
0,000250
0,000015
0,000001

1,0
0,367879
0,367879
0,183940
0,061313
0,015328
0,003066
0,000511
0,000073
0,000009
0,000001

0,4

0,670320
0,268128
0,053626
0,007150
0,000715
0,000057
0,000004

1,5

0,223130
0,334695
0,251021
0,125510
0,047067
0,014120
0,003530
0,000756
0,000142
0,000024
0,000004

0,5

0,606531
0,303265
0,075816
0,012636
0,001580
0,000158
0,000013
0,000001

2,0
0,135335
0,270671
0,270671
0,180447
0,090224
0,036089
0,012030
0,003437
0,000859
0,000191
0,000038
0,000007
0,000001

e~ of the Poisson distribution

0,6

0,548812
0,329287
0,098786
0,019757
0,002964
0,000356
0,000036
0,000003

2,5

0,082085
0,205212
0,256516
0,213763
0,133602
0,066801
0,027834
0,009941
0,003106
0,000863
0,000216
0,000049
0,000010
0,000002

0,7

0,496585
0,347610
0,121663
0,028388
0,004968
0,000696
0,000081
0,000008

3,0
0,049787
0,149361
0,224042
0,224042
0,168031
0,100819
0,050409
0,021604
0,008101
0,002701
0,000810
0,000221
0,000055
0,000013
0,000003
0,000001



Table 5

W40

0
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10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29

0,018316
0,073263
0,146525
0,195367
0,195367
0,156293
0,104196
0,059540
0,029770
0,013231

0,005292
0,001925
0,000642
0,000197
0,000056
0,000015
0,000004
0,000001

Probabilities py = A

5,0

0,006738
0,033690
0,084224
0,140374
0,175467
0,175467
0,146223
0,104445
0,065278
0,036266

0,018133
0,008242
0,003434
0,001321
0,000472
0,000157
0,000049
0,000014
0,000004
0,000001

Probabilities of the Poisson distribution 179

k
k!

6,0

0,002479
0,014873
0,044618
0,089235
0,133853
0,016623
0,160623
0,137677
0,103258
0,068838

0,041303
0,022529
0,011264
0,005199
0,002228
0,000891
0,000334
0,000118
0,000039
0,000012

0,000004
0,000001

7.0

0,000912
0,006383
0,022341
0,052129
0,091226
0,127717
0,149003
0,149003
0,130377
0,101405

0,070983
0,045171
0,026350
0,014188
0,007094
0,003311
0,001448
0,000596
0,000232
0,000085

0,000030
0,000010
0,000003
0,000001

8,0

0,000335
0,002684
0,010735
0,028626
0,057252
0,091604
0,122138
0,139587
0,139587
0,124077

0,099262
0,072190
0,048127
0,029616
0,016924
0,009026
0,004513
0,002124
0,000944
0,000397

0,000159
0,000061
0,000022
0,000008
0,000003
0,000001

e~ of the Poisson distribution

9,0

0,000123
0,001111
0,004998
0,014994
0,033737
0,060727
0,091090
0,117116
0,131756
0,131756

0,118580
0,097020
0,072765
0,050376
0,032384
0,019431
0,010930
0,005786
0,002893
0,001370

0,000617
0,000264
0,000108
0,000042
0,000016
0,000006
0,000002
0,000001

10,0

0,000045
0,000454
0,002270
0,007567
0,018917
0,037833
0,063055
0,090079
0,112599
0,125110

0,125110
0,113736
0,094780
0,072908
0,052077
0,034718
0,021699
0,012764
0,007091
0,003732

0,001866
0,000889
0,000404
0,000176
0,000073
0,000029
0,000011
0,000004
0,000001
0,000001
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Table 6

N 0.005

(1)
0.0100
0.0717
0.207
0.412
0.676
0.989
1.34
1.73
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13.79
20.71
27.99
35.53
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59.20
100 67.33
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(1)=0.00004;

0.01

(2)
0.020
0.115

0.025

(3)
0.051
0.216

0.05

(4)
0.103
0.352

0.297 0.484 0.711

0.554
0.872
1.24
1.65
2.09

2.56
3.05
3.57
4.11
4.66
5.23
5.81
6.41
7.01
7.63

8.26

8.90

9.54
10.20
10.86
11.52
12.20
12.88
13.56
14.26

14.95
22.16
29.71
37.48
45.44
53.54
61.75
70.06

(2)=0.00016;

0.831
1.24
1.69
2.18
2.70

3.25
3.82
4.40
5.01
5.63
6.26
6.91
7.56
8.23
8.91

9.59
10.28
10.98
11.69
12.40
13.12
13.84
14.57
15.31
16.05

16.79
24.43
32.36
40.48
48.76
57.15
65.65
74.22

1.15
1.64
2.17
2.73
3.33

3.94
4.57
5.23
5.89
6.57
7.26
7.96
8.67
9.39
10.12

10.85
11.59
12.34
13.09
13.85
14.61
15.38
16.15
16.93
17.71

18.49
26.51
34.76
43.19
51.74
60.39
69.13
77.93

(3)=0.00098;

0.1

(5)
0.21
0.58
1.06
1.61
2.20
2.83
3.49
4.17

4.87
5.58
6.30
7.04
7.79
8.55
9.31
10.09
10.86
11.65

12.44
13.24
14.04
14.85
15.66
16.47
17.29
18.11
18.94
19.77

20.60
29.05
37.69
46.46
55.33
64.28
73.29
82.36

0.9

2.71
4.61
6.25
7.78
9.24
10.64
12.02
13.36
14.68

15.99
17.28
18.55
19.81
21.06
22.31
23.54
24.77
25.99
27.20

28.41
29.62
30.81
32.01
33.20
34.38
35.56
36.74
37.92
39.09

40.26
51.81
63.17
74.40
85.53
96.58
107.57
118.50

Quantiles x3,., of the x*~distribution

0.95

3.84
5.99
7.81
9.49
11.07
12.59
14.07
15.51
16.92

18.31
19.68
21.03
22.36
23.68
25.00
26.30
27.59
28.87
30.14

31.41
32.67
33.92
35.17
36.42
37.65
38.89
40.11
41.34
42.56

43.77
55.76
67.51
79.08
90.53
101.88
113.15
124.34

(4)=0.0039;

0.975

5.02
7.38
9.35
11.14
12.83
14.45
16.01
17.53
19.02

20.48
21.92
23.34
24.74
26.12
27.49
28.85
30.19
31.53
32.85

34.17
35.48
36.78
38.08
39.36
40.65
41.92
43.19
44.46
45.72

46.98
59.34
71.42
83.30
95.02
106.63
118.14
129.56

0.99

6.63

9.21
11.34
13.28
15.09
16.81
18.48
20.09
21.67

23.21
24.73
26.22
27.69
29.14
30.58
32.00
33.41
34.81
36.19

37.57
38.93
40.29
41.64
42.98
44.31
45.64
46.96
48.28
49.59

50.89
63.69
76.16
88.38
100.43
112.33
124.12
135.81

(5)=0.0158

0.995

7.88
10.60
12.84
14.86
16.75
18.55
20.28
22.96
23.59

25.19
26.76
28.30
29.82
31.32
32.80
34.27
35.72
37.16
38.58

40.00
41.40
42.80
44.18
45.56
46.93
48.29
49.64
50.99
52.34

53.67
66.77
79.49
91.96
104.23
116.33
128.31
140.18
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absolute value, 11, 17
accession mass, 145
accumulation factor, 33
accumulation point, 104
addition

— of matrices, 119

— of vectors, 115

addition theorem, 54

affine combination, 116
agio, 40, 41

alternative hypothesis, 167
Amoroso-Robinson equation, 69
amortization, 39

amount, 31, 33

— of an annuity, 36

annuity due, 32, 36

annuity method, 42

ansatz function, 112

ansatz method, 100, 102
anticipative interest, 34
approximation, 108
arrangement, 19
asymptote, 50

average date of payment, 35
average function, 58, 69
average intensity of growth, 90
average length of stay, 146
average stock, 146

base, 51, 52

basic solution, 136

basic variable, 124, 125, 130
basic vector, 115

basis, 116

basket of goods, 144

Bayes’ formula, 152
Bernoulli’s inequality, 14
beta distribution, 158
binomial approximation, 155
binomial coefficient, 12
binomial distribution, 154, 155

binomial formula, 13
Black-Scholes formula, 114
book-value, 43

Boulding’s growth model, 98
boundary value problem, 91
boundedness, 45

break-even analysis, 58, 76

call option, 114

capital recovery factor, 42

capital value method, 42

Cartesian product, 6

cash flow, 90

Cauchy condition, 23, 24

Cauchy’s root test, 24
Cauchy-Schwarz inequality, 14, 116
CES function, 105

chain rule, 64

character, 139

characteristic polynomial, 127
x2-distribution, 159, 180

class bound, 139

class frequency, 139

co-ordinate system, 46

cobweb model, 99

coefficient of determination, 142
coefficient of variation, 140, 154, 156
combination, 19

comparison of coefficients, 101, 102
comparison test, 23

complement, 4

complementary slackness condition, 135
complete induction, 8

complete system of events, 150
completion of the square, 13
complex number, 17

compound amount formula, 34
compound proposition, 7
concavity, 46, 74

conclusion, 8

confidence interval, 165, 166
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confidence level, 165 differential, 66
conformable matrices, 119 — partial, 114
conjugate complex number, 17 — total, 108
conjunction, 7 differential equation, 91
consistent estimator, 163 — Euler’s, 93
consumer’s surplus, 89 — first-order, 91
consumption function, 57 — of n-th order, 92
continuity, 62, 104 — separable, 91
continuous compounding, 35 — with constant coefficients, 94
contradiction, 7 differential quotient, 63
contribution margin, 58 differentiation, 63, 64
convergence, 21, 26, 104 direction field, 91
— absolute, 24 directional derivative, 106
— uniform, 23 disagio, 41
conversion period, 31 discontinuity, 62
convexity, 46, 74 discount, 33, 34
correlation coefficient, 161 discriminant, 47
cost function, 57 disjoint sets, 4
costs per unit, 57 disjunction, 7
Cournot’s point, 77 dispersion, 140, 154, 156
covariance, 142, 161 distance, 103, 118
Cramer’s rule, 125 distribution, 153
criterion of convergence, 24, 26 — binomial, 155
critical region, 167, 169 — continuous, 155
cross elasticity, 109 — discrete, 153
cross product, 6, 115 — geometric, 154, 155
cumulative frequency, 139 — hypergeometric, 154, 155
curvature, 74 distribution function, 153, 159
cycle, 136 — empirical, 139

distribution table, 153
data analysis, 139, 141 divergence, 21, 23, 26
De Morgan’s laws, 4, 8, 150 domain, 6, 45, 103
debt due, 39, 41 domain of convergence, 22, 26
decimal representation of a number, 9 Drobisch’s index, 145
definiteness of a matrix, 120, 121 dual representation of a number, 9
delta, 114 duality, 135
density, 155, 160 dynamic annuities, 38
depreciation, 43
derivative, 63 effective interest rate, 35, 41
— higher, 70 eigenvalue, 96, 126
— partial, 105 eigenvector, 126
Descartes’ rule of signs, 44 elasticity, 68, 108
determinant, 121 element, 3
determination of zeros, 44 — of a matrix, 119
deviation, 140 elimination method, 110
diagonal matrix, 120 empirical coefficient of correlation, 142
difference equation equality of sets, 3
— first-order, 97 equation, 13
— of n-th order, 102 — characteristic, 94, 100, 102
— second-order, 99 — of the plane, 118
difference quotient, 63 — of the straight line, 47, 117
difference set, 4, 149 equivalence, 7

differentiability, 105 error bound, 113



estimator, 163

Euler’s differential equation, 93
Euler’s homogeneity relation, 109

Euler’s relation, 17

event, 149

— complementary, 149

— impossible, 149

— sure, 149

excess, 154, 156

exchange method, 125, 130
existential quantifier, 7
expected value, 154, 156
experiment, 149
exponential function, 51
exponential smoothing, 148
extremal point, 48
extreme value, 109, 110
extremum, 46, 73

Ezekid’s cobweb model, 99

F-distribution, 174-177
factorial, 12

fictitious debt, 40
fictitious rate of interest, 40
field of events, 150
fractional arithmetic, 10
frequency, 139, 150
function, 6, 45

— affine linear, 47

— area-hyperbolic, 56

— Cobb-Douglas, 60, 114
— concave, 46, 74

— continuous, 62, 104

— convex, 46, 74

— cyclometric, 55

— differentiable, 63, 105
— discontinuous, 62

— economic, 57

— elastic, 68

— entire rational, 49

— fractional rational, 50
— homogeneous, 105

— hyperbolic, 56

— implicit, 64

— inelastic, 68

— inverse, 45

— inverse trigonometric, 55
— linear, 6, 47

— logarithmic, 52

— logistic, 58

— monotone, 45, 72

— of several variables, 103
— partially differentiable, 106

Index

— proportionally elastic, 68
— quadratic, 47

— trigonometric, 53, 54
function sequence, 22
function series, 25
fundamental integral, 81

fundamental system, 92-94, 102
fundamental theorem of algebra, 49
fundamental theorem of calculus, 81

gap, 50, 62
Gaussian bracket, 112

Gaussian elimination, 123, 130
generalized mean value theorem, 70

gradient, 105

graph of a function, 46
greatest common divisor, 9
growth, 45, 73

— exponential, 59

growth model, 98

growth process, 90

growth rate, 68

Harrod’s growth model, 98
height line, 103, 106

Hesse’s normal form, 118
Hessian matrix, 107
horizontal inflection point, 73
Horner’s scheme, 49
hypothesis, 167, 169

identity matrix, 120
imaginary unit, 17
implication, 7

inclusion, 3

independence, 152, 160
individual probability, 153
inequality, 14

infimum, 46

initial value problem, 91
input-output analysis, 127
integral

— definite, 80

— indefinite, 79
integration rules, 79, 80
intensity of growth, 90
intensity of interest, 35
interest, 31

interior, 104

internal rate of return, 42
intersection, 4, 149

185

intersection angle between lines, 117

interval bisection, 44
inverse mapping, 6



186 Index

inverse matrix, 120, 121, 126
investment, 42

isocline, 91

isoquant, 114

jump point, 62, 153

kinds of amortization, 39
kurtosis, 141

L’Hospital’s rule, 61
Lagrange multiplier, 111
Lagrange’s method, 111
lambda, 114

Laplace’s expansion, 121
Laplace’s field of events, 150
Laspeyres’ index, 144
least common multiple, 9
least squares method, 112, 147
Leibniz’s alternating series test, 23
length of stay, 146
Leontief’s model, 128
level line, 103, 106
likelihood function, 164
limit, 104

— improper, 21, 61

— of a function, 61

— of a sequence, 21

— one-sided, 61

limit function, 22, 26
limit point, 21

linear (in)dependence, 116
linear combination, 116

— affine, 116

— convex, 116, 131

linear interpolation, 44
linear programming, 129
loan, 39

logarithm, 16, 52
logarithmic function, 52
lot size, 77

lowering of the order, 93

mapping, 6

marginal analysis, 66

marginal distribution function, 159
marginal function, 66

marginal rate of substitution, 114
matrix, 119, 120

— inverse, 120, 121, 126

— of buyers’ fluctuation, 128

— of elasticities, 109

maturity yield, 41, 42

maximum, 46, 73

maximum likelihood method, 164
mean, 140, 141

mean value theorem, 70, 81
measure of value, 144

median, 140

method of false position, 44
method of internal rate of return, 42
method of least squares, 112, 147
minimum, 46, 73

minor in principal position, 121
modulus, 115

moment, 141

— central, 154, 156

— first, 160

— second, 160

monopoly, 76

monotony, 45, 72

mortality law, 59

moving averages, 147
multiplication of matrices, 119
multiplication theorem, 152
multiplicator-accelerator model, 101
multiplicity, 127

negation, 7

neighbourhood, 73, 103

net present value, 42

Newton’s method, 44

nonbasic variable, 124, 125, 130
norm, 103

normal distribution, 157

— standardized, 157, 170-172

— two-dimensional, 161

normal form of a LP problem, 129
normal vector, 118

n-tuple, 6

null hypothesis, 167

null sequence, 21

number system, 9, 17
numerical method, 44

observation, 149
one-sample problem, 168
one-to-one function, 6, 45
optimal lot size, 77
optimal order size, 77
optimality criterion, 130
optimization, 129
ordered pair, 6

ordered sample, 139
ordinary annuity, 32, 36
original debt, 39
orthogonality, 117



outstanding principal, 39

Paasche’s index, 144
parabola, 48
parallelism, 117
parametric form

— of a plane, 118

— of a straight line, 117
partial differential, 114

partial fraction decomposition, 50

partial sum, 23, 26
Pascal’s triangle, 12
payment, 39

payoft, 39

period-based population, 145
periodic rent, 36

periodical payments, 32
periodicity, 45, 53
permutation, 19
perpetuity, 36, 41

pivot element, 123, 125, 131
point

— interior, 104

— stationary, 73, 109

point elasticity, 68

point estimate, 163

point sequence, 104
Poisson approximation, 155
Poisson distribution, 154, 155
polar form, 17

pole, 50, 62

polynomial, 49

— characteristic, 127
polynomial division, 50
polypoly, 76

posteriori probability, 152
power, 15, 48

power series, 26, 28

power set, 3

premise, 8

present value, 32, 34

— of a cash flow, 90

— of an annuity, 36

price, 41

price index, 144
price-response function, 57
primal problem, 135

prime number, 9

primitive, 79

principal vector, 96

priori probability, 152
probability

— classical definition of the, 150

Index

— conditional, 151

— total, 152

probability density, 155
producer’s surplus, 89
product representation, 49
product rule, 64

product set, 6

product sign, 10, 11
profit, 57

profit maximization, 76
propagation of errors, 113

quadratic equation, 14
quantile, 140, 172, 174-177, 180
quantum index, 144

quotation, 41

quotient rule, 64

radius of convergence, 26
random event, 149
random variable, 153, 159
range, 6, 45, 103

range of variation, 140
rank, 119

rate of change, 68

rate of growth, 90

rate of increase, 68

rate of interest, 31, 35

— equivalent, 35

— relative, 35

ratio, 144

ratio test, 24

reciprocal function, 45
reciprocal mapping, 6
recursion formula, 155
redemption premium, 40
redemption yield, 41
reflexivity, 3

regression, 142

regula falsi, 44
regularity condition, 110
remainder, 70, 71
removable discontinuity, 62
replacement mass, 145
residual variance, 142
resonance case, 95

root, 15, 48

rules of exchange, 126

saddle point, 110
sample, 139, 163

sample space, 149, 159
Sarrus’ rule, 122
saturation condition, 136

187
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saturation process, 58
savings function, 57
saw-tooth function, 58
scalar product, 115
Schwarz’s theorem, 107
seasonal adjustment, 148
seasonal component, 147
second-order difference, 99
sensitivity, 114

sentence, 7

separation of variables, 91
sequence of numbers, 21
series, 23

— absolutely convergent, 24
— alternating, 23

— uniformly convergent, 26
set, 3, 4

— bounded, 104

— closed, 104

— empty, 3

— open, 104

set inclusion, 3

shadow price, 136
Sheppard’s correction, 140
o—additivity, 151
significance test, 167, 168
simple event, 149

simplex method, 130

— dual, 132

skewness, 141, 154, 156
slack variable, 129
smoothing factor, 148
solution

— of a difference equation, 97
— of a differential equation, 91

— of a system of linear equations, 123

— of an equation, 13
standard deviation, 154, 156
— empirical, 140
statistical mass, 139
statistical parameter, 140
statistical test, 167
stock, 145

stock function, 58
subset, 3

sum

— finite, 15

— of a series, 23

— of independent random variables, 162

sum rule, 64
summation sign, 10, 11
supply function, 57
supremum, 46

symmetry, 3, 45

system

— of differential equations, 95
— of functions, 125

— of linear equations, 122

— of normal equations, 112

t-distribution, 172

table of values, 44
taking of the root, 18
tangent plane, 108
tautology, 7

Taylor expansion, 70, 71
Taylor series, 27—29
Taylor’s theorem, 70
test, 167

test statistic, 169

time series analysis, 147
transition model, 128
transitivity, 3
transportation problem, 136
transposition, 119

trend component, 147
trend function, 59, 112
trial, 149

triangular inequality, 11, 116
two-phase method, 134
two-sample problem, 169

unbiased, 163
uncorrelated, 161
union, 4, 149

unit vector, 115
universal quantifier, 7

value index, 144

variance, 154, 156, 160

— empirical, 140

variation of constants, 92, 93
vector, 115

— feasible, 129

— random, 159

vector product, 115

Weibull distribution, 157

Weierstrass comparison test, 26

write-down, 43
Wronski’s determinant, 92

yield-to-maturity, 41, 42

zero, 46, 47, 50
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