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Series Editors’ Foreword

The topics of control engineering and signal processing continue to flourish and de-
velop. In common with general scientific investigation, new ideas, concepts and inter-
pretations emerge quite spontaneously and these are then discussed, used, discarded or
subsumed into the prevailing subject paradigm. Sometimes these innovative concepts
coalesce into a new sub-discipline within the broad subject tapestry of control and
signal processing. This preliminary battle between old and new usually takes place at
conferences, through the Internet and in the journals of the discipline. After a little
more maturity has been acquired by the new concepts then archival publication as a
scientific or engineering monograph may occur.

A new concept in control and signal processing is known to have arrived when
sufficient material has developed for the topic to be taught as a specialised tutorial
workshop or as a course to undergraduates, graduates or industrial engineers. The
Advanced Textbooks in Control and Signal Processing Series is designed as a vehicle
for the systematic presentation of course material for both popular and innovative topics
in the discipline. It is hoped that prospective authors will welcome the opportunity to
publish a structured presentation of either existing subject areas or some of the newer
emerging control and signal processing technologies.

The authors Lorenzo Sciavicco and Bruno Siciliano declare that robotics is more
than fifteen years old and is a young subject! Yet, this textbook shows that a well-
established paradigm of classical robotics exists and the book provides an invaluable
presentation of the subject. The Series is fortunate in being able to welcome this text
as a second edition. Thus it is an updated text which has benefited from the authors’
teaching practice and an awareness of very recent developments in the field. Notable
in this sense is the inclusion of material on vision sensors and trajectory planning.

As a course textbook, the authors have explained how various chapters may be
drawn together to form a course. Further, the book is supported by a Solutions Manual.
Last, but not least we ought to mention three very substantial Appendices giving
useful supplementary material on the necessary mathematics, rigid body dynamics
and feedback control. A fine new addition to the Series!

M.J. Grimble and M.A. Johnson
Industrial Control Centre
Glasgow, Scotland, U.K.

December 1999
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Preface to the Second Edition

The subject matter of this textbook is to be considered well assessed in the classical
robotics literature, in spite of the fact that robotics is generally regarded as a young
science.

A key feature of the First Edition was recognized to be the blend of technological
and innovative aspects with the foundations of modelling and control of robot manip-
ulators. The purpose of this Second Edition with the new Publisher is to add some
material that was not covered before as well as to streamline and improve some of the
previous material.

The major additions regard Chapter 2 on kinematics; namely, the use of the unit
quaternion to describe manipulator’s end-effector orientation as an effective alternative
to Euler angles or angle and axis representations (Section 2.6), and the adoption of a
closed chain in the design of manipulator structures (Sections 2.8.3 and 2.9.2). Not
only are these topics analyzed in the framework of kinematics, but also their impact
on differential kinematics, statics, dynamics and control is illustrated. In particular,
different types of orientation error are discussed for inverse kinematics algorithms
(Section 3.7.3), and the concept of kineto-statics duality is extended to manipulators
having a closed chain (Section 3.8.3). Yet, the dynamic model of a parallelogram
arm (Section 4.3.3) clearly shows the potential of such design over the kinematically
equivalent two-link planar arm. Further, the problem of planning a trajectory in the
operational space is expanded to encompass the different descriptions of end-effector
orientation (Section 5.3.3), and the implications for operational space control are briefly
discussed (Section 6.6.3).

Another addition regards the presentation of the main features of vision sensors
(Section 8.3.4) which have lately been receiving quite a deal of attention not only in
research but also in the industrial community.

Finally, the bibliography has been updated with more reference texts in the in-
troduction (Chapter 1) as well as with those references that have been used in the
preparation of the new material (Chapters 2 to 8). New problems have been proposed
and the Solutions Manual accompanying the book has been integrated accordingly.

Naples, December 1999 Lorenzo Sciavicco and Bruno Siciliano®

° The authors have contributed equally to the work, and thus they are merely listed in alphabetical
order.
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The Solutions Manual for Modelling and Control of Robot Manipulators, Second
Edition (ISBN 1-85233-221-2S) by Bruno Siciliano and Luigi Villani can be requested
by textbook adopters from

Springer-Verlag London Ltd
Sweetapple House, Catteshall Road
Godalming, Surrey GU7 3DJ

UK

Tel: +44 (1483) 414113

Fax: +44 (1483) 415144

E-mail: postmaster @svl.co.uk
URL: www.springer.co.uk



Preface to the First Edition

In the last fifteen years, the field of robotics has stimulated an increasing interest in
a wide number of scholars, and thus literature has been conspicuous both in terms of
textbooks and monographs and in terms of specialized journals dedicated to robotics.
This strong interest is also to be attributed to the interdisciplinary character of robotics,
which is a science having roots in different areas. Cybernetics, mechanics, bioengi-
neering, electronics, information science, and automatic control science—to mention
the most important ones—are all cultural domains which undoubtedly have boosted
the development of robotics. This science, however, is to be considered quite young
yet.

Nowadays, writing a robotics book brings up a number of issues concerning the
choice of topics and style of presentation. Current literature features many texts which
can be grouped in scientific monographs on research themes, application-oriented
handbooks, and textbooks. As for the last, there are wide-ranging textbooks covering
a variety of topics with unavoidably limited depth and textbooks instead covering in
detail a reduced number of topics believed to be basic for robotics study. Among
these, mechanics and control are recognized to play a fundamental role, since these
disciplines regard the preliminary know-how required to realize robot manipulators
for industrial applications, i.e., the only domain so far where robotics has expressed
its level of a mature technology.

The goal of this work is to present the foundations of modelling and control of
robot manipulators where the fundamental, technological and innovative aspects are
merged on a uniform track in respect of a rigorous formalism.

Fundamental aspects are covered which regard kinematics, statics and dynamics
of manipulators, trajectory planning and motion control in free space. Technological
aspects include actuators, proprioceptive sensors, hardware/software control archi-
tectures and industrial robot control algorithms. Established research results with a
potential for application are presented, such as kinematic redundancy and singular-
ities, dynamic parameter identification, robust and adaptive control and interaction
control. These last aspects are not systematically developed in other textbooks, even
though they are recognized to be useful for applications. In the choice of the topics
treated and the relative weight between them, the authors hope not to have been biased
by their own research interests.

The book contents are organized into 9 chapters and 3 appendices.

In Chapter 1, the problems concerning the use of industrial robots are focused
in the general framework of robotics. The most common manipulation mechanical
structures are presented. Modelling and control topics are also introduced which are
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developed in the subsequent chapters.

In Chapter 2 kinematics is presented with a systematic and general approach which
refers to Denavit-Hartenberg convention. The direct kinematics equation is formulated
which relates joint space variables to operational space variables. This equation is
utilized to find manipulator workspace as well as to derive a kinematic calibration
technique. The inverse kinematics problem is also analyzed and closed-form solutions
are found for typical manipulation structures.

Differential kinematics is presented in Chapter 3. The relationship between joint
velocities and end-effector linear and angular velocities is described by the geomet-
ric Jacobian. The difference between geometric Jacobian and analytical Jacobian is
pointed out. The Jacobian constitutes a fundamental tool to characterize a manipulator,
since it allows finding singular configurations, analyzing redundancy and expressing
the relationship between forces and moments applied to the end effector and the result-
ing joint torques at equilibrium configurations (statics). Moreover, the Jacobian allows
formulating inverse kinematics algorithms that solve the inverse kinematics problem
even for manipulators not having a closed-form solution.

Chapter 4 deals with derivation of manipulator dynamics, which plays a fundamen-
tal role for motion simulation, manipulation structure analysis and control algorithm
synthesis. The dynamic model 1s obtained by explicitly taking into account the pres-
ence of actuators. Two approaches are considered; namely, one based on Lagrange
formulation, and the other based on Newton-Euler formulation. The former is con-
ceptually simpler and systematic, whereas the latter allows computation of dynamic
model in a recursive form. Notable properties of the dynamic model are presented,
including linearity in the parameters which is utilized to develop a model identification
technique. Finally, the transformations needed to express the dynamic model in the
operational space are illustrated.

As a premise to the motion control problem, in Chapter 5, trajectory planning
techniques are illustrated which regard the computation of interpolating polynomials
through a sequence of desired points. Both the case of point-to-point motion and that
of path motion are treated. Techniques are developed for generating trajectories both
in the joint and in the operational space, with a special concern to orientation for the
latter. Finally, a trajectory dynamic scaling technique is presented to keep the joint
torques within the maximum available limits at the actuators.

In Chapter 6 the problem of motion control in free space is treated. The distinction
between joint space decentralized and centralized control strategies is pointed out. With
reference to the former, the independent joint control technique is presented which is
typically used for industrial robot control. As a premise to centralized control, the
computed torque feedforward control technique is introduced. Advanced schemes are
then introduced including PD control with gravity compensation, inverse dynamics
control, robust control, and adaptive control. Centralized techniques are extended to
operational space control.

Interaction control of a manipulator in contact with the working environment is
tackled in Chapter 7. The concepts of mechanical compliance and impedance are
defined as a natural extension of operational space control schemes to the constrained
motion case. Force control schemes are then presented which are obtained by the
addition of an outer force feedback loop to a motion control scheme. The hybrid
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force/position control strategy is finally presented with reference to the formulation of
natural and artificial constraints describing an interaction task.

Chapter 8 is devoted to the presentation of actuators and sensors. After an illus-
tration of the general features of an actuating system, methods to control electric and
hydraulic servomotors are presented. A few proprioceptive sensors are then described,
including encoders, resolvers, tachometers, and force sensors.

In Chapter 9, the functional architecture of a robot control system is illustrated.
The characteristics of programming environments are presented with an emphasis
on teaching-by-showing and robot-oriented programming. A general model for the
hardware architecture of an industrial robot control system is finally discussed.

Appendix A is devoted to linear algebra and presents the fundamental notions on
matrices, vectors and related operations.

Appendix B recalls those basic concepts of rigid body mechanics which are pre-
liminary to the study of manipulator kinematics, statics and dynamics.

Finally, Appendix C illustrates the principles of feedback control of linear systems
and presents a general method based on Lyapunov theory for control of nonlinear
systems.

The book is the evolution of the lecture notes prepared for the course “Industrial
Robotics” taught by the first author in 1990 and 1991 and by the second author since
1992 at the University of Naples. The course is offered to Computer, Electronic and
Mechanical Engineering graduate students and is developed with a teaching commit-
ment of about 90 hours.

By a proper selection of topics, the book may be utilized to teach a course on
robotics fundamentals at a senior undergraduate level. The advised selection foresees
coverage of the following parts*: Chapter 1, Chapter 2, Chapter 4 (Sections 4.1 and
4.3), Chapter 5, Chapter 6 (Sections 6.1, 6.2, 6.3, and 6.4), Chapter 8, and Chapter 9.
The teaching commitment is of about 50 hours. In this case, the availability of an
industrial robot in the laboratory is strongly recommended to accompany class work
with training work.

From a pedagogical viewpoint, the various topics are presented in an instrumental
manner and are developed with a gradually increasing level of difficulty. Problems are
raised and proper tools are established to find engineering-oriented solutions. Each
chapter is introduced by a brief preamble providing the rationale and the objectives of
the subject matter. The topics needed for a proficient study of the text are presented
into three considerable appendices, whose purpose is to provide students of different
extraction with a homogeneous background. Mechanical Engineering students will
benefit from reading of the appendices on linear algebra and feedback control, whereas
Computer and Electronic Engineering students are advised to study the appendix on
rigid body mechanics.

The book contains more than 170 illustrations and more than 50 worked-out
examples and case studies throughout the text with frequent resort to simulation.

* Those parts that shall be covered only at a graduate level are marked with an asterisk in the
table of contents.
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The results of computer implementations of inverse kinematics algorithms, inverse
dynamics computation, trajectory planning techniques, motion and interaction control
algorithms are presented in much detail in order to facilitate the comprehension of the
theoretical development as well as to increase sensitivity to application in practical
problems. More than 80 problems are proposed and the book is accompanied by a
Solutions Manual that comes with a toolbox created in MATLAB® with Simulink®
to solve those problems requiring computer simulation. Special care has been devoted
to the selection of bibliographical references (more than 200) which are collected at
the end of each chapter.

Naples, July 1995 LS & BS

® MATLAB and Simulink are registered trademarks of The MathWorks Inc
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1. Introduction

Robotics is concerned with the study of those machines that can replace human beings
in the execution of a task, as regards both physical activity and decision making. The
goal of the introductory chapter is to point out the problems related to the use of
robots in industrial applications, with reference to the general framework of robotics.
A classification of the most common manipulator mechanical structures is presented.
Topics of modelling and control are introduced which will be examined in the following
chapters. The chapter ends with a list of references dealing with subjects both of specific
interest and of related interest to those covered by this textbook.

1.1 Robotics

Robotics has profound cultural roots. In the course of centuries, human beings have
constantly attempted to seek substitutes that would be able to mimic their behaviour
in the various instances of interaction with the surrounding environment. Several
motivations have inspired this continuous search referring to philosophical, economic,
social and scientific principles.

One of human beings’ greatest ambitions has been to give life to their artefacts. The
legend of the titan Prometheus, who molded humankind from clay, as well as that of
the giant Talus, the bronze slave forged by Hephaestus, testify how Greek mythology
was influenced by that ambition, which has been revisited in the tale of Frankenstein
in modern times.

So as the giant Talus was entrusted with the task of protecting the island of Crete
from invaders, in the Industrial Age a mechanical creature (automaton) has been
entrusted with the task of substituting a human being in subordinate labor duties.
This concept was introduced by the Czech playwright Karel Capek who wrote the
play Rossum’s Universal Robots (R.U.R.) in 1921. On that occasion he coined the
term robot—derived from the Slav robota that means executive labor—to denote the
automaton built by Rossum who ends up by rising against humankind in the science
fiction tale.

In the subsequent years, in view of the development of science fiction, the behaviour
conceived for the robot has often been conditioned by feelings. This has contributed
to render the robot more and more similar to its creator.

It was in the forties when the Russian Isaac Asimov, the well-known science
fiction writer, conceived the robot as an automaton of human appearance but devoid of
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2 Modelling and Control of Robot Manipulators

feelings. Its behaviour was dictated by a “positronic” brain programmed by a human
being in such a way as to satisfy certain rules of ethical conduct. The term robotics
was then introduced by Asimov as the symbol of the science devoted to the study of
robots which was based on the three fundamental laws:

1. A robot may not injure a human being or, through inaction, allow a human
being to come to harm.

2. A robot must obey the orders given by human beings, except when such orders
would conflict with the first law.

3. A robot must protect its own existence, as long as such protection does not
conflict with the first or second law.

These laws established rules of behaviour to consider as specifications for the design of
arobot, which since then has attained the connotation of an industrial product designed
by engineers or specialized technicians.

Science fiction has influenced common people that continue to imagine the robot
as a humanoid who can speak, walk, see, and hear, with an exterior very much like
that presented by the robots of the movie Star Wars.

According to a scientific interpretation of the science-fiction scenario, the robot is
seen as a machine that, independently of its exterior, is able to modify the environment
in which it operates. This is accomplished by carrying out actions that are conditioned
by certain rules of behaviour intrinsic in the machine as well as by some data the
robot acquires on its status and on the environment. In fact, robotics has recently been
defined as the science studying the intelligent connection of perception to action.

The robot’s capacity for action is provided by a mechanical system which is in
general constituted by a locomotion apparatus to move in the environment and by
a manipulation apparatus to operate on the objects present in the environment. The
realization of such a system refers to a scientific framework concerning the design of
articulated mechanical systems, choice of materials, and type of actuators that ensure
mobility to the structure.

The robot’s capacity for perception is provided by a sensory system which can
acquire data on the internal status of the mechanical system (proprioceptive sensors)
as well as on the external status of the environment (exteroceptive sensors). The
realization of such a system refers to a scientific framework concerning materials
science, signal conditioning, data processing, and information retrieval.

The robot’s capacity for connecting action to perception in an intelligent fashion
is provided by a control system which can decide the execution of the action in respect
of the constraints imposed by the mechanical system and the environment. The real-
ization of such a system refers to the scientific framework of cybernetics, concerning
artificial intelligence and expert systems, programming environments, computational
architectures, and motion control.

Therefore, it can be recognized that robotics is an interdisciplinary subject concern-
ing the cultural areas of mechanics, electronics, information theory, and automation
theory.

The above considerations point out both the conceptual and technological com-
plexity that influences development of robots endowed with good characteristics of
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autonomy. This is needed for the execution of missions in unstructured or scarcely
structured environments, i.e., when geometrical or physical description of the environ-
ment is not completely known a priori.

The expression advanced robotics usually refers to the science studying robots
with marked characteristics of autonomy, whose applications are conceived to solve
problems of operation in hostile environments (space, underwater, nuclear, military,
etc.) or to execute service missions (domestic applications, medical aids, assistance to
the disabled, agriculture, efc.).

Nowadays, advanced robotics is still in its infancy. It has indeed featured the
realization of prototypes only, because the associated technology is not yet mature.
The motivations urging an advance of knowledge in this field are multiple; they range
from the need for automata whenever human operators are not available or are not safe
(e.g., applications in hostile environments) to the opportunity of developing products
for potentially wide markets which are aimed at improving quality of life (e.g., service
robotics).

If a robot is assumed to operate in a strongly structured environment, the degree
of autonomy required for the automaton is radically decreased. The industrial environ-
ment, at least for a conspicuous number of significant applications, presents the above
characteristic. Industrial robotics is the discipline concerning robot design, control and
applications in industry, and its products are by now reaching the level of a mature
technology.

Industrial robots have gained a wide popularity as essential components for the
realization of automated manufacturing systems. Reduction of manufacturing costs,
increase of productivity, improvement of product quality standards and, last but not
least, the possibility of eliminating harmful or alienating tasks for the human operator
in a manufacturing system, represent the main factors that have determined spreading
of robotics technology in a wider and wider range of applications in manufacturing
industry.

In view of the above, it should be clear how an important chapter of robotics
science is constituted by industrial robotics, whose fundamentals are treated in this
textbook.

1.2 Industrial Robot

By its usual meaning, the term automation denotes a technology aimed at replacing
human beings with machines in a manufacturing process, as regards not only the
execution of physical operations but also the intelligent processing of information on
the status of the process. Automation is then the synthesis of industrial technologies
typical of the manufacturing process and computer technology allowing information
management. The three levels of automation one may refer to are: rigid automation,
programmable automation, and flexible automation.

Rigid automation deals with a factory context oriented to the mass manufacturing
of products of the same type. The need to manufacture large numbers of parts with high
productivity and quality standards demands the use of fixed operational sequences to
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be executed on the workpiece by special purpose machines.

Programmable automation deals with a factory context oriented to the manu-
facturing of low-to-medium batches of products of different types. A programmable
automated system allows easily changing the sequence of operations to be executed
on the workpieces in order to vary the range of products. The machines employed
are more versatile and are capable to manufacture different objects belonging to the
same group technology. The majority of the products available on the market today
are manufactured by programmable automated systems.

Flexible automation represents the evolution of programmable automation. Its goal
is to allow manufacturing of variable batches of different products by minimizing the
time lost for reprogramming the sequence of operations and the machines employed
to pass from one batch to the next. The realization of a flexible manufacturing system
demands a strong integration of computer technology with industrial technology.

The industrial robot is a machine with significant characteristics of versatility
and flexibility. According to the widely accepted definition of the Robot Institute of
America, a robot is a reprogrammable multifunctional manipulator designed to move
materials, parts, tools or specialized devices through variable programmed motions
for the performance of a variety of tasks. Such a definition, dating to 1980, reflects the
current status of robotics technology.

By virtue of its programmability, the industrial robot is a typical component of
programmable automated systems. Nonetheless, robots can be entrusted with tasks
both in rigid automated systems and in flexible automated systems. An industrial robot
is constituted by:

¢ A mechanical structure or manipulator that consists of a sequence of rigid
bodies (/inks) connected by means of articulations (joints); a manipulator is
characterized by an arm that ensures mobility, a wrist that confers dexterity,
and an end effector that performs the task required of the robot.

e Actuators that set the manipulator in motion through actuation of the joints;
the motors employed are typically electric and hydraulic, and occasionally
pneumatic.

e Sensors that measure the status of the manipulator (proprioceptive sensors)
and, if necessary, the status of the environment (exteroceptive sensors).

o A control system (computer) that enables control and supervision of manipu-
lator motion.

The essential feature that differentiates an industrial robot from a numerically
controlled machine tool is its enhanced versatility; this is endowed by the manipulator’s
end effector, which can be many a tool of different type, as well as by the large
workspace compared to manipulator encumbrance.

Industrial robots present three fundamental capacities that make them useful for a
manufacturing process: material handling, manipulation, and measurement.

In a manufacturing process, each object has to be transferred from one location
of the factory to another in order to be stored, manufactured, assembled, and packed.
During transfer, the physical characteristics of the object do not undergo any alteration.
The robot’s capacity to pick up an object, move it in space on predefined paths and
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release 1t makes the robot itself an ideal candidate for material handling operations.
Typical applications include:

e palletizing (placing objects on a pallet in an ordered way),
e warehouse loading and unloading,

¢ mill and machine tool tending,

e part sorting,

e packaging.

Manufacturing consists of transforming objects from raw material into finished
products; during this process, the part either changes its own physical characteristics
as aresult of machining or loses its identity as a result of an assembly of more parts. The
robot’s capacity to manipulate both objects and tools make it suitable to be employed
for manufacturing. Typical applications include:

e arc and spot welding,

e painting and coating,

e gluing and sealing,

e laser and water jet cutting,

¢ milling and drilling,

e casting and die spraying,

e deburring and grinding,

e screwing, wiring and fastening,

e assembly of mechanical and electrical groups,
e assembly of electronic boards.

Besides material handling and manipulation, in a manufacturing process it is
necessary to perform measurements to test product quality. The robot’s capacity to
explore the three-dimensional space together with the availability of measurements on
the manipulator’s status allow using a robot as a measuring device. Typical applications
include:

e object inspection,
e contour finding,
e detection of manufacturing imperfections.

The listed applications describe the current employment of robots as components
of industrial automation systems. They all refer to strongly structured working environ-
ments and thus they do not exhaust all the possible utilizations of robots for industrial
applications. The fall-outs of advanced robotics products may be of concern for indus-
trial robotics whenever one attempts to solve problems regarding the adaptation of the
robot to a changeable working environment.
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Figure 1.1 Cartesian manipulator and its workspace.

1.3 Manipulator Structures

The fundamental structure of a manipulator is the open kinematic chain. From a topo-
logical viewpoint, a kinematic chain is termed open when there is only one sequence
of links connecting the two ends of the chain. Alternatively, a manipulator contains a
closed kinematic chain when a sequence of links forms a loop.

Manipulator’s mobility is ensured by the presence of joints. The articulation be-
tween two consecutive links can be realized by means of either a prismatic or a revolute
joint. In an open kinematic chain, each prismatic or revolute joint provides the struc-
ture with a single degree of mobility. A prismatic joint realizes a relative translational
motion between the two links, whereas a revolute joint realizes a relative rotational
motion between the two links. Revolute joints are usually preferred to prismatic joints
in view of their compactness and reliability. On the other hand, in a closed kinematic
chain, the number of degrees of mobility is less than the number of joints in view of
the constraints imposed by the loop.

The degrees of mobility shall be properly distributed along the mechanical structure
in order to provide the degrees of freedom required for the execution of a given task.
Typically, each joint providing a degree of mobility is actuated. In the most general
case of a task consisting of arbitrarily positioning and orienting an object in the three-
dimensional space, six are the required degrees of freedom, three for positioning a
point on the object and three for orienting the object with respect to a reference
coordinate frame. If more degrees of mobility than degrees of freedom are available,
the manipulator is said to be kinematically redundant.

The workspace represents that portion of the environment the manipulator’s end
effector can access. Its shape and volume depend on the manipulator structure as well
as on the presence of mechanical joint limits.

The task required of the arm is to position the wrist which then is required to
orient the end effector; at least three degrees of mobility are then necessary in the
three-dimensional workspace. The type and sequence of the arm’s degrees of mobility,



Introduction 7

Figure 1.2 Gantry manipulator.

starting from the base joint, allows classifying manipulators as: Cartesian, cylindrical,
spherical, SCARA, and anthropomorphic.

The Cartesian geometry is realized by three prismatic joints whose axes typically
are mutually orthogonal (Figure 1.1). In view of the simple geometry, each degree
of mobility corresponds to a degree of freedom in the Cartesian space and thus it
is natural to perform straight motions in space. The Cartesian structure offers very
good mechanical stiffness. Wrist positioning accuracy is constant everywhere in the
workspace. This is the volume enclosed by a rectangular parallelepiped (Figure 1.1).
As opposed to high accuracy, the structure has low dexterity since all the joints are
prismatic. The approach to manipulate an object is sideways. On the other hand, if it is
desired to approach an object from the top, the Cartesian manipulator can be realized
by a gantry structure as illustrated in Figure 1.2. Such a structure allows obtaining a
large volume workspace and manipulating objects of gross dimensions and weight.
Cartesian manipulators are employed for material handling and assembly. The motors
actuating the joints of a Cartesian manipulator are typically electric and occasionally
pneumatic.

The cylindrical geometry differs from the Cartesian one in that the first prismatic
joint is replaced with a revolute joint (Figure 1.3). If the task is described in cylindrical
coordinates, also in this case each degree of mobility corresponds to a degree of
freedom. The cylindrical structure offers good mechanical stiffness. Wrist positioning
accuracy decreases as the horizontal stroke increases. The workspace is a portion
of a hollow cylinder (Figure 1.3). The horizontal prismatic joint makes the wrist of a
cylindrical manipulator suitable to access horizontal cavities. Cylindrical manipulators
are mainly employed for carrying objects even of gross dimensions; in such a case the
use of hydraulic motors is to be preferred to that of electric motors.

The spherical manipulator differs from the cylindrical one in that the second pris-



8 Modelling and Control of Robot Manipulators

Figure 1.4 Spherical manipulator and its workspace.

matic joint is replaced with a revolute joint (Figure 1.4). Each degree of mobility
corresponds to a degree of freedom only if the task is described in spherical coordi-
nates. Mechanical stiffness is lower than the above two geometries and mechanical
construction is more complex. Wrist positioning accuracy decreases as the radial stroke
increases. The workspace is a portion of a hollow sphere (Figure 1.4); it can include
also the supporting base of the manipulator and thus it can allow manipulation of ob-
jects on the floor. Spherical manipulators are mainly employed for machining. Electric
motors are typically used to actuate the joints.

A special geometry is the SCARA geometry that can be realized by disposing two
revolute joints and one prismatic joint in such a way that all the axes of motion are
parallel (Figure 1.5). The acronym SCARA stands for Selective Compliance Assem-
bly Robot Arm and characterizes the mechanical features of a structure offering high
stiffness to vertical loads and compliance to horizontal loads. As such, the SCARA
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Figure 1.5 SCARA manipulator and its workspace.

Figure 1.6 Anthropomorphic manipulator and its workspace.

structure is congenial to vertical assembly tasks. The correspondence between the
degrees of mobility and the degrees of freedom is maintained only for the vertical
component of a task described in Cartesian coordinates. Wrist positioning accuracy
decreases as the distance of the wrist from the first joint axis increases. The typi-
cal workspace is illustrated in Figure 1.5. The SCARA manipulator is suitable for
manipulation of small objects; joints are actuated by electric motors.

The anthropomorphic geometry is realized by three revolute joints; the revolute
axis of the first joint is orthogonal to the axes of the other two which are parallel
(Figure 1.6). By virtue of its similarity with the human arm, the second joint is called
the shoulder joint and the third joint is called the elbow joint since it connects the
“arm” with the “forearm.” The anthropomorphic structure is the most dexterous one,
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Figure 1.7 Spherical wrist.

since all the joints are revolute. On the other hand, the correspondence between the
degrees of mobility and the degrees of freedom is lost and wrist positioning accuracy
varies inside the workspace. This 1s approximately a portion of a sphere (Figure 1.6)
and its volume is large compared to manipulator encumbrance. Joints are typically
actuated by electric motors. The range of industrial applications of anthropomorphic
manipulators is wide.

All the above manipulators have an open kinematic chain structure. Whenever
larger payloads are to be manipulated, the mechanical structure shall have higher stiff-
ness to guarantee comparable positioning accuracy. In this case, one has to resort to
structures having closed kinematic chains. For instance, sometimes a parallelogram
design is adopted between the shoulder and elbow joints of the arm for an anthropo-
morphic structure, thus creating a closed kinematic chain; nonetheless, a substantial
kinematic equivalence with the open chain can be shown.

The manipulator structures presented above are required to position the wrist which
then is required to orient the manipulator’s end effector. If arbitrary orientation in the
three-dimensional space is desired, the wrist must possess at least three degrees of
mobility provided by revolute joints. Since the wrist constitutes the terminal part of the
manipulator, it has to be compact; this often complicates its mechanical design. Without
entering into construction details, the realization endowing the wrist with the highest
dexterity is one where the three revolute axes intersect at a single point. In such a case,
the wrist is called a spherical wrist, as represented in Figure 1.7. The key feature of a
spherical wrist is the decoupling between position and orientation of the end effector;
the arm is entrusted with the task of positioning the above point of intersection, whereas
the wrist determines the end-effector orientation. Those realizations where the wrist
is not spherical are simpler from a mechanical viewpoint, but position and orientation
are coupled, and this complicates the coordination between the motion of the arm and
that of the wrist to perform a given task.

The end effector is specified according to the task the robot shall execute. For
material handling tasks, the end effector is constituted by a gripper of proper shape
and dimensions determined by the object to grasp. For machining and assembly tasks,
the end effector is a tool or a specialized device, e.g., a welding torch, a spray gun, a
mill, a drill, or a screwdriver.

The versatility and flexibility of a robot manipulator shall not induce the conviction
that all mechanical structures are equivalent for the execution of a given task. The
choice of arobot is indeed conditioned by the application which sets constraints on the
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Figure 1.8 The AdeptOne XL robot (courtesy of Adept Technology Inc).

workspace dimensions and shape, the maximum payload, positioning accuracy, and
dynamic performance of the manipulator.

The photographs of a few industrial robots are illustrated in Figures 1.8 to 1.13.

The AdeptOne XL robot in Figure 1.8 has a four-joint SCARA structure. Direct
drive motors are employed. The maximum reach is 800 mm, with a repeatability' of
0.025 mm horizontally and 0.038 mm vertically. Maximum speeds are 1200 mm/s for
the prismatic joint, while range from to 650 to 3300 deg/s for the three revolute joints.
The maximum payload is 12kg. Typical industrial applications include small-parts
material handling, assembly and packaging.

The Comau SMART S2 robot in Figure 1.9 has a six-joint anthropomorphic
structure with nonspherical wrist. The maximum reach is 1458 mm horizontally and
2208 mm vertically, with a repeatability of 0.1 mm. Maximum speeds range from 115
to 200 deg/s for the inner three joints, and from 300 to 430deg/s for the outer three
joints. The maximum payload is 16 kg. Both floor and ceiling mounting positions are
allowed. Typical industrial applications include arc welding, light handling, assembly
and technological processes.

The ABB IRB 4400 robot in Figure 1.10 has also a six-joint anthropomorphic
structure, but differently from the previous open-chain structure, it possesses a closed
chain of parallelogram type between the shoulder and elbow joints. The maximum
reach ranges from 1960 to 2740 mm for the various versions, with a repeatability
from 0.07 to 0.1 mm. The maximum speed at the end effector is 2200mm/s. The
maximum payload is 60kg. Floor or shelf mounting is available. Typical industrial
applications include material handling, machine tending, grinding, gluing, casting, die

! Repeatability is a classical parameter found in industrial robot data sheets. It gives a measure
of the manipulator’s ability to return to a previously reached position.
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Figure 1.9 The Comau SMART S2 robot (courtesy of Comau SpA Robotica).

Figure 1.10 The ABB IRB 4400 robot (courtesy of ABB Flexible Automation AB).

spraying and assembly.

The Kuka KL 250 linear unit with KR 15/2 robot in Figure 1.11 is composed
by a six-joint anthropomorphic structure with spherical wrist, which is mounted on a
sliding track with a gantry type installation; the uprightinstallation is also available. The
maximum payload of the linear unit is 250 kg with a stroke of 6200 mm, a maximum
speed of 1310 mm/s and a repeatability of 0.2mm. On the other hand, the robot is
characterized by a maximum payload of 25 kg, a maximum reach of 1570 mm and a
repeatability of 0.1 mm. Maximum speeds are 152 deg/s for the inner three joints, while
range from 284 to 604 deg/s for the outer three joints. Since motion control of the linear
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Figure 1.11 The Kuka KL 250 linear unit with KR 15/2 robot (courtesy of Kuka Roboter
GmbH).

Figure 1.12 The Robotics Research K-1207i robot (courtesy of Robotics Research Corpora-
tion).

unit is integrated in the robot control as a seventh joint axis, kinematic redundancy
with respect to six-degree-of-freedom tasks is achieved and in turn enhanced mobility
throughout the workspace. Typical industrial applications include machine tending,
arc welding, deburring, coating, sealing, plasma and waterjet cutting.

The next two structures are to be considered less conventional than the previous
four, as long as industrial applications are concerned. The Robotics Research K-
12071 robot in Figure 1.12 has also a seven-joint structure, but the additional joint
is of revolute type and is integrated into the articulated robot. Enhanced dexterity
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Figure 1.13 The Fanuc I-21i robot (courtesy of Fanuc Ltd).

is achieved allowing the robot to fold compactly, a feature exploitable in operations
requiring manipulation through risers or small portholes, as well as minimizing the
storage requirements. A modular arm construction concept is adopted so that units with
seven joints in series up to seventeen axes in branching topologies can be assembled.
The robot is used for manufacturing operations, especially in the acrospace industry
and research field.

The Fanuc I-21i robot in Figure 1.13 has a six-joint anthropomorphic structure
with a nonspherical wrist. The novelty for an industrial product is represented by a
sensor-based control unit including 3D vision guidance and six-axis force sensor. It is
used for handling of randomly positioned objects, e.g., workpieces scattered on a tray,
as well as for sophisticated mechanical parts assembly, e.g., bolt fastening.

1.4 Modelling and Control of Robot Manipulators

In all industrial robot applications, completion of a generic task requires the execution
of a specific motion prescribed to the manipulator’s end effector. The motion can be
either unconstrained, if there is no physical interaction between the end effector and
the environment, or constrained if contact forces arise between the end effector and
the environment.

The correct execution of the end-effector motion is entrusted to the control system
which shall provide the joint actuators of the manipulator with the commands consistent
with the desired motion trajectory. Control of end-effector motion demands an accurate
analysis of the characteristics of the mechanical structure, actuators, and sensors. The
goal of such analysis is derivation of mathematical models of robot components.
Modelling a robot manipulator is therefore a necessary premise to finding motion
control strategies.
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In the remainder, those significant topics in the study of modelling and control
of robot manipulators are illustrated which constitute the subjects of the subsequent
chapters.

1.4.1 Modelling

Kinematic analysis of a manipulator structure concerns the description of the ma-
nipulator motion with respect to a fixed reference Cartesian frame by ignoring the
forces and moments that cause motion of the structure. It is meaningful to distinguish
between kinematics and differential kinematics. Kinematics describes the analytical
relationship between the joint positions and the end-effector position and orientation.
Differential kinematics describes the analytical relationship between the joint motion
and the end-effector motion in terms of velocities.

The formulation of the kinematics relationship allows studying two key problems
of robotics; namely, the direct kinematics problem and the inverse kinematics problem.
The former concerns the determination of a systematic, general method to describe the
end-effector motion as a function of the joint motion by means of linear algebra tools.
The latter concerns the inverse problem; its solution is of fundamental importance to
transform the desired motion naturally prescribed to the end effector in the workspace
into the corresponding joint motion.

The availability of a manipulator’s kinematic model is useful also to determine the
relationship between the forces and torques applied to the joints and the forces and
moments applied to the end effector in static equilibrium configurations.

Chapter 2 is dedicated to the study of kinematics; Chapter 3 is dedicated to the
study of differential kinematics and statics; whereas Appendix A provides a useful
brush-up on linear algebra.

Kinematics of a manipulator represents the basis of a systematic, general derivation
of its dynamics, i.e., the equations of motion of the manipulator as a function of the
forces and moments acting on it. The availability of the dynamic model is very useful
for mechanical design of the structure, choice of actuators, determination of control
strategies, and computer simulation of manipulator motion. Chapter 4 is dedicated to
the study of dynamics; whereas Appendix B recalls some fundamentals on rigid body
mechanics.

1.4.2 Control

With reference to the tasks assigned to a manipulator, the issue is whether to specify
the motion at the joints or directly at the end effector. In material handling tasks, it
is sufficient to assign only the pick-up and release locations of an object (point-to-
point motion), whereas, in machining tasks, the end effector has to follow a desired
trajectory (path motion). The goal of trajectory planning is to generate the time laws
for the relevant variables (joint or end-effector) starting from a concise description of
the desired motion. Chapter 5 is dedicated to trajectory planning.

The trajectories generated constitute the reference inputs to the motion control
system of the mechanical structure. The problem of manipulator control is to find the
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time behaviour of the forces and torques to be delivered by the joint actuators so as to
ensure the execution of the reference trajectories. This problem is quite complex, since
a manipulator is an articulated system and, as such, the motion of one link influences
the motion of the others. Manipulator equations of motion indeed reveal the presence of
coupling dynamic effects among the joints, except in the case of a Cartesian structure
with mutually orthogonal axes. The synthesis of the joint forces and torques cannot
be made on the basis of the sole knowledge of the dynamic model, since this does
not completely describe the real structure. Therefore, manipulator control is entrusted
to the closure of feedback loops; by computing the deviation between the reference
inputs and the data provided by the proprioceptive sensors, a feedback control system is
capable to satisfy accuracy requirements on the execution of the prescribed trajectories.

Chapter 6 is dedicated to the presentation of motion control techniques; whereas
Appendix C illustrates the basic principles of feedback control.

If a manipulation task requires interaction between the end effector and the en-
vironment, the control problem is further complicated by observing that besides the
(constrained) motion, also the contact forces have to be controlled. Chapter 7 is dedi-
cated to the presentation of interaction control techniques.

Realization of the motion specified by the control law requires the employment
of actuators and sensors. The functional characteristics of the most commonly used
actuators and sensors for industrial robots are described in Chapter 8.

Finally, Chapter 9 is concerned with the hardware/software architecture of arobot’s
control system which is in charge of implementation of control laws as well as of
interface with the operator.

1.5 Bibliographical Reference Texts

In the last twenty years, the robotics field has stimulated the interest of an increasing
number of scholars. A truly respectable international research community has been
established. Literature production has been conspicuous, both in terms of textbooks
and scientific monographs and in terms of journals dedicated to robotics. Therefore, it
seems appropriate to close this introduction by offering a selection of bibliographical
reference texts to those readers who wish to make a thorough study of robotics.

Besides indicating those textbooks sharing an affinity of contents with this one,
the following lists include general books and specialized texts on related subjects,
collections of contributions on the state of the art of research, scientific journals, and
series of international conferences.

Textbooks on Modelling and Control of Robot Manipulators

Asada H., Slotine J.-J.E. (1986) Robot Analysis and Control. Wiley, New York.

Craig 1.J. (1989) Introduction to Robotics: Mechanics and Control. 2nd ed., Addison-
Wesley, Reading, Mass.

Khalil W., Dombre E. (1999) Modélisation Identification et Commande des Robots.
2¢eme éd., Hermes, Paris.
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Koivo A.J. (1989) Fundamentals for Control of Robotic Manipulators. Wiley, New
York.

Lewis FL., Abdallah C.T., Dawson D.M. (1993) Control of Robot Manipulators.
Macmillan, New York.

Paul R.P. (1981) Robot Manipulators: Mathematics, Programming, and Control. MIT
Press, Cambridge, Mass.

Schilling R.J. (1990) Fundamentals of Robotics: Analysis and Control. Prentice-Hall,
Englewood Cliffs, N.J.

Spong M.W., Vidyasagar M. (1989) Robot Dynamics and Control. Wiley, New York.
Yoshikawa T. (1990) Foundations of Robotics. MIT Press, Cambridge, Mass.

General Books

Critchlow A.J. (1985) Introduction to Robotics. Macmillan, New York.
Dorf R.C. (1988) International Encyclopedia of Robotics. Wiley, New York.
Engelberger J.F. (1980) Robotics in Practice. Amacom, New York.
Engelberger J.F. (1989) Robotics in Service. MIT Press, Cambridge, Mass.

Fu K.S., Gonzalez R.C., Lee C.S.G. (1987) Robotics: Control, Sensing, Vision, and
Intelligence. McGraw-Hill, New York.

Hunt V.D. (1983) Industrial Robotics Handbook. Industrial Press, New York.
Koren Y. (1985) Robotics for Engineers. McGraw-Hill, New York.
McKerrow PJ. (1991) Introduction to Robotics. Addison-Wesley, Sydney.

Snyder W.E. (1985) Industrial Robots: Computer Interfacing and Control. Prentice-
Hall, Englewood Cliffs, N.J.

Vukobratovié M. (1989) Introduction to Robotics. Springer-Verlag, Berlin.

Specialized Texts

Topics of related interest to modelling and control of robot manipulators are:
e manipulator mechanical design,
e manipulation tools,
e manipulators with elastic members,
e parallel robots,
¢ locomotion apparatus,
e motion planning of mobile robots,
e force control,
e robot vision,
¢ multisensory data fusion.

The following texts are dedicated to these topics:
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Angeles J. (1997) Fundamentals of Robotic Mechanical Systems: Theory, Methods,
and Algorithms. Springer-Verlag, New York.

Canny J.F. (1988) The Complexity of Robot Motion Planning. MIT Press, Cambridge,
Mass.

Canudas de Wit C., Siciliano B., Bastin G. (Eds.) (1996) Theory of Robot Control.
Springer-Verlag, London.

Corke, PI. (1996) Visual Control of Robots. Research Studies Press, Taunton, England.

Cutkosky M.R. (1985) Robotic Grasping and Fine Manipulation. Kluwer Academic
Publishers, Boston, Mass.

Durrant-Whyte H.F. (1988) Integration, Coordination and Control of Multi-Sensor
Robot Systems. Kluwer Academic Publishers, Boston, Mass.

Fraser A.R., Daniel R.-W. (1991) Perturbation Techniques for Flexible Manipulators.
Kluwer Academic Publishers, Boston, Mass.

Hirose, S. (1993) Biologically Inspired Robots. Oxford University Press, Oxford,
England.

Horn B.K.P. (1986) Robot Vision. McGraw-Hill, New York.

Latombe J.-C. (1991) Robot Motion Planning. Kluwer Academic Publishers, Boston,
Mass.

Mason M.T., Salisbury J.K. (1985) Robot Hands and the Mechanics of Manipulation.
MIT Press, Cambridge, Mass.

Merlet J.-P. (2000) Parallel Robots. Kluwer Academic Publishers, Dordrecht, The
Netherlands.

Murray R.M., Li Z., Sastry S.S. (1994) A Mathematical Introduction to Robotic Ma-
nipulation. CRC Press, Boca Raton, Fla.

Raibert M. (1985) Legged Robots that Balance. MIT Press, Cambridge, Mass.
Rivin E.I. (1987) Mechanical Design of Robots. McGraw-Hill, New York.

Siciliano B., Villani L. (1999) Robor Force Control. Kluwer Academic Publishers,
Boston, Mass.

Todd D.J. (1985) Walking Machines, an Introduction to Legged Robots. Chapman Hall,
London.

Tsai L.-W. (1999) Robot Analysis: The Mechanics of Serial and Parallel Manipulators.
Wiley, New York.

Collections of Contributions on the State of the Art of Research

Brady M. (1989) Robotics Science. MIT Press, Cambridge, Mass.

Brady M., Hollerbach J.M., Johnson T.L., Lozano-Pérez T., Mason M.T. (1982) Robot
Motion: Planning and Control. MIT Press, Cambridge, Mass.

Khatib O., Craig J.J., Lozano-Pérez T. (1989) The Robotics Review 1. MIT Press,
Cambridge, Mass.
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Khatib O., Craig J.J., Lozano-Pérez T. (1992) The Robotics Review 2. MIT Press,
Cambridge, Mass.

Lee C.S.G., Gonzalez R.C., Fu K.S. (1986) Tutorial on Robotics. 2nd ed., IEEE
Computer Society Press, Silver Spring, Md.

Spong M.W., Lewis FL., Abdallah C.T. (1993) Robot Control: Dynamics, Motion
Planning, and Analysis. IEEE Press, New York.

Scientific Journals on Robotics

Advanced Robotics

IEEE Robotics and Automation Magazine

IEEE Transactions on Robotics and Automation
International Journal of Robotics and Intelligent Systems
International Journal of Robotics Research

Journal of Robotic Systems

Robotica

Robotics and Autonomous Systems

Series of Scientific International Conferences on Robotics

IEEE International Conference on Robotics and Automation
IEEE/RSJ International Conference on Intelligent Robots and Systems
IFAC Symposium on Robot Control

International Conference on Advanced Robotics

International Symposium of Robotics Research

International Symposium on Experimental Robotics

Several prestigious journals and conferences give substantial space to robotics subjects.
Such references are not cited here because they are not purely dedicated to robotics.



2. Kinematics

A manipulator can be schematically represented from a mechanical viewpoint as a
kinematic chain of rigid bodies (/inks) connected by means of revolute or prismatic
joints. One end of the chain is constrained to a base, while an end effector is mounted
to the other end. The resulting motion of the structure is obtained by composition of the
elementary motions of each link with respect to the previous one. Therefore, in order to
manipulate an object in space, it is necessary to describe the end-effector position and
orientation. This chapter is dedicated to the derivation of the direct kinematics equation
through a systematic, general approach based on linear algebra. This allows the end-
effector position and orientation to be expressed as a function of the joint variables of
the mechanical structure with respect to areference frame. Both open-chain and closed-
chain kinematic structures are considered. With reference to a minimal representation
of orientation, the concept of operational space is introduced and its relationship with
the joint space is established. Furthermore, a calibration technique of the manipulator
kinematic parameters is presented. The chapter ends with the derivation of solutions
to the inverse kinematics problem, which consists of the determination of the joint
variables corresponding to a given end-effector configuration.

2.1 Position and Orientation of a Rigid Body

A rigid body is completely described in space by its position and orientation with
respect to a reference frame. As shown in Figure 2.1, let O-zyz be the orthonormal
reference frame and «, y, z be the unit vectors of the frame axes.

The position of a point O’ on the rigid body with respect to the coordinate frame
O-zyz is expressed by the relation

;o / /
0 =0,T+0,Yy+o0.2,

where o/,, o;, o', denote the components of the vector o' along the frame axes; the
position of O’ can be compactly written as the (3 x 1) vector
o,
o /
o = |0, 2.1
o,

Vector o' is a bound vector since its line of application and point of application are
both prescribed, in addition to its direction and norm.

L. Sciavicco et al., Modelling and Control of Robor Manipularors
© Springer-Verlag London Limited 2000
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Y Y .

Figure 2.1 Position and orientation of a rigid body.

In order to describe the rigid body orientation, it is convenient to consider an
orthonormal frame attached to the body and express its unit vectors with respect to
the reference frame. Let then O'—z'y’z’ be such frame with origin in O’ and 2’, ¢', 2’
be the unit vectors of the frame axes. These vectors are expressed with respect to the
reference frame O—zyz by the equations:

1 ! !
T =2+ T Y+ T2

!

Y =y x+yy+y.z (22)

ot ! !
Z =2+ Y+ 22

The components of each unit vector are the direction cosines of the axes of frame
O'—z'y' 2’ with respect to the reference frame O—zyz.

2.2 Rotation Matrix

By adopting a compact notation, the three unit vectors in (2.2) describing the body
orientation with respect to the reference frame can be combined in the (3 x 3) matrix

! !
oy, z :cT:c yT:c sz
— ! ! ! — ! ! ! — ! ! !
R= |2 y 2 |=|2, y, z,|=|2"y vy 2"y|. 2.3)
=, oy, zl Tz y'Tz 272

which is termed rotation matrix.
It is worth noting that the column vectors of matrix R are mutually orthogonal
since they represent the unit vectors of an orthonormal frame, i.e.,
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Figure 2.2 Rotation of the frame O—zyz by an angle « about axis z.

As a consequence, R is an orthogonal matrix meaning that
R"R=1 (2.4)

where I denotes the (3 x 3) identity matrix.
If both sides of (2.4) are postmultiplied by the inverse matrix B!, the useful

result is obtained:
R =R, (2.5)

that is, the transpose of the rotation matrix is equal to its inverse. Further, observe
that det(R) = 1 if the frame is right-handed, while det(R) = —1 if the frame is
left-handed.

2.2.1 Elementary Rotations

Consider the frames that can be obtained via elementary rotations of the reference
frame about one of the coordinate axes. These rotations are positive if they are made
counter-clockwise about the relative axis.

Suppose that the reference frame O-zyz is rotated by an angle « about axis z
(Figure 2.2), and let O—z'y’2' be the rotated frame. The unit vectors of the new frame
can be described in terms of their components with respect to the reference frame, i.e.,

cos —sina 0
' = |sina y' = | cosa 2'=10
0 0 1

Hence, the rotation matrix of frame O-x'y’z' with respect to frame O—-xyz is

cosa —sina 0
R.(a) = | sina cosa Of. (2.6)
0 0 1
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In a similar manner, it can be shown that the rotations by an angle § about axis y
and by an angle vy about axis x are respectively given by:

[ cosp 0 sing

R,(B) = 0 1 0 2.7)
| —sing 0 cosp
(1 0 0

R,(v)= |0 cosy —sinvy|. (2.8)
|0 siny  cosy

These matrices will be useful to describe rotations about an arbitrary axis in space.
It is easy to verity that for the elementary rotation matrices in (2.6)—(2.8) the
following property holds:

R,(—9) = R} (v) k=uz,y,z. (2.9

In view of (2.6)—(2.8), the rotation matrix can be attributed a geometrical meaning;
namely, the matrix R describes the rotation about an axis in space needed to align the
axes of the reference frame with the corresponding axes of the body frame.

2.2.2 Representation of a Vector

In order to understand a further geometrical meaning of a rotation matrix, consider
the case when the origin of the body frame coincides with the origin of the reference
frame (Figure 2.3); it follows that o' = 0, where 0 denotes the (3 x 1) null vector. A
point P in space can be represented either as

2]

D= Dy
L2
with respect to frame O—xyz, or as
Py
P =|p,
A

with respect to frame O—z'y' 2’
Since p and p’ are representations of the same point P, it is

oy o]

p:mf+%y+@%—[m Yy zJﬁ

and, accounting for (2.3), it is
p=Rp. (2.10)
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Figure 2.3 Representation of a point P in two different coordinate frames.

The rotation matrix R represents the transformation matrix of the vector coordinates
in frame O—z'y' 2’ into the coordinates of the same vector in frame O—zy 2. In view of
the orthogonality property (2.4), the inverse transformation is simply given by

p' = RTp. (2.11)

Example 2.1

Consider two frames with common origin mutually rotated by an angle « about the axis
z. Let p and p’ be the vectors of the coordinates of a point P, expressed in the frames
O-zyz and O—x'y'2’, respectively (Figure 2.4). On the basis of simple geometry, the
relationship between the coordinates of P in the two frames is:

Pe = Pl cOSQ — py sina
py = P, sina + p, cosa
D = plz~
Therefore, the matrix (2.6) represents not only the orientation of a frame with respect

to another frame, but it also describes the transformation of a vector from a frame to
another frame with the same origin.

2.2.3 Rotation of a Vector

A rotation matrix can be also interpreted as the matrix operator allowing rotation of
a vector by a given angle about an arbitrary axis in space. In fact, let p’ be a vector
in the reference frame O—xyz; in view of orthogonality of the matrix R, the product
Ryp’ yields a vector p with the same norm as that of p’ but rotated with respect to
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Figure 2.4 Representation of a point P in rotated frames.

p’ according to the matrix R. The norm equality can be proved by observing that
pTp = p'" RT Rp' and applying (2.4). This interpretation of the rotation matrix will
be revisited later.

Example 2.2

Consider the vector p which is obtained by rotating a vector p’ in the plane xy by
an angle a about axis 2 of the reference frame (Figure 2.5). Let (p},, py, p’,) be the
coordinates of the vector p’. The vector p has components

Pz = Pl cosa — py sina
py = Py sina + p cosa
p: =pl.
It is easy to recognize that p can be expressed as
p=R.(a)p',

where R («) is the same rotation matrix as in (2.6).

In sum, a rotation matrix attains three equivalent geometrical meanings:

e It describes the mutual orientation between two coordinate frames; its column
vectors are the direction cosines of the axes of the rotated frame with respect
to the original frame.

¢ It represents the coordinate transformation between the coordinates of a point
expressed in two different frames (with common origin).

o It is the operator that allows rotating a vector in the same coordinate frame.

2.3 Composition of Rotation Matrices

In order to derive composition rules of rotation matrices, it is useful to consider the
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Figure 2.5 Rotation of a vector.

expression of a vector in two different reference frames. Let then O—zqyo29, O—
T1y121, O—T2y222 be three frames with common origin O. The vector p describing
the position of a generic point in space can be expressed in each of the above frames;
let p°, p', p? denote the expressions of p in the three frames'.

At first, consider the relationship between the expression p? of the vector p in
Frame 2 and the expression p! of the same vector in Frame 1. If R’ denotes the
rotation matrix of Frame ¢ with respect to Frame 7, it is

p' = Rip>. (2.12)
Similarly, it turns out that

p° = RYp' (2.13)

p° = Rp®. (2.14)

On the other hand, substituting (2.12) in (2.13) and using (2.14) gives
RY = R°R). (2.15)

The relationship in (2.15) can be interpreted as the composition of successive rotations.
Consider a frame initially aligned with the frame O—x(yo2o. The rotation expressed
by matrix R can be regarded as obtained in two steps:

e first rotate the given frame according to RY, so as to align it with frame
O-x1y1215

¢ then rotate the frame, now aligned with frame O—x1y; 21, according to R%, SO
as to align it with frame O—-x2y22o.

! Hereafter, the superscript of a vector or a matrix denotes the frame in which its components
are expressed.
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t

Figure 2.6 Successive rotations of an object about axes of current frame.

Notice that the overall rotation can be expressed as a sequence of partial rotations; each
rotation is defined with respect to the preceding one. The frame with respect to which
the rotation occurs is termed current frame. Composition of successive rotations is
then obtained by postmultiplication of the rotation matrices following the given order
of rotations, as in (2.15). With the adopted notation, in view of (2.5), it is

Rl =(R) ' =(R)". (2.16)

Successive rotations can be also specified by constantly referring them to the initial
frame; in this case, the rotations are made with respect to a fixed frame. Let RY be
the rotation matrix of frame O—x1y; 21 with respect to the fixed frame O—xgyozg. Let
then Rg denote the matrix characterizing frame O—x2y-222 with respect to Frame 0,
which is obtained as a rotation of Frame 1 according to the matrix R}. Since (2.15)
gives a composition rule of successive rotations about the axes of the current frame,
the overall rotation can be regarded as obtained in the following steps:

e first realign Frame 1 with Frame 0 by means of rotation R};
e then make the rotation expressed by R} with respect to the current frame;

e finally compensate for the rotation made for the realignment by means of the
inverse rotation RY.

Since the above rotations are described with respect to the current frame, application
of the composition rule (2.15) yields

R = R'R\RR?.

In view of (2.16), it is B ~
RS =RR? (2.17)
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Figure 2.7 Successive rotations of an object about axes of fi xed frame.

where the resulting R is different from the matrix R in (2.15). Hence, it can be stated
that composition of successive rotations with respect to a fixed frame is obtained by
premultiplication of the single rotation matrices in the order of the given sequence of
rotations.

By recalling the meaning of a rotation matrix in terms of the orientation of a
current frame with respect to a fixed frame, it can be recognized that its columns are
the direction cosines of the axes of the current frame with respect to the fixed frame,
while its rows (columns of its transpose and inverse) are the direction cosines of the
axes of the fixed frame with respect to the current frame.

An important issue of composition of rotations is that the matrix product is not
commutative. In view of this, it can be concluded that two rotations in general do not
commute and its composition depends on the order of the single rotations.

Example 2.3

Consider an object and a frame attached to it. Figure 2.6 shows the effects of two
successive rotations of the object with respect to the current frame by changing the
order of rotations. It is evident that the final object orientation is different in the two
cases. Also in the case of rotations made with respect to the current frame, the final
orientations differ (Figure 2.7). It is interesting to note that the effects of the sequence
of rotations with respect to the fixed frame are interchanged with the effects of the
sequence of rotations with respect to the current frame. This can be explained by
observing that the order of rotations in the fixed frame commutes with respect to the
order of rotations in the current frame.
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x ’y

Figure 2.8 Representation of Euler angles ZYZ.

2.4 Euler Angles

Rotation matrices give a redundant description of frame orientation; in fact, they are
characterized by nine elements which are not independent but related by six constraints
due to the orthogonality conditions given in (2.4). This implies that three parameters are
sufficient to describe orientation of arigid body in space. A representation of orientation
in terms of three independent parameters constitutes a minimal representation.

A minimal representation of orientation can be obtained by using a set of three
angles ¢ = [¢ o w]T. Consider the rotation matrix expressing the elementary
rotation about one of the coordinate axes as a function of a single angle. Then, a
generic rotation matrix can be obtained by composing a suitable sequence of three
elementary rotations while guaranteeing that two successive rotations are not made
about parallel axes. This implies that 12 distinct sets of angles are allowed out of all 27
possible combinations; each set represents a triplet of Euler angles. In the following,
two sets of Euler angles are analyzed; namely, the ZYZ angles and the ZYX (or
Roll-Pitch—Yaw) angles.

2.4.1 ZYZ Angles

The rotation described by ZYZ angles is obtained as composition of the following
elementary rotations (Figure 2.8):

e Rotate the reference frame by the angle ¢ about axis 2; this rotation is described
by the matrix R, () which is formally defined in (2.6).

e Rotate the current frame by the angle ¢ about axis y'; this rotation is described
by the matrix R, () which is formally defined in (2.7).

e Rotate the current frame by the angle v about axis z''; this rotation is described
by the matrix R~ (1)) which is again formally defined in (2.6).

The resulting frame orientation is obtained by composition of rotations with respect to
current frames, and then it can be computed via postmultiplication of the matrices of
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elementary rotation, i.e.,>

R(¢) = R.(p) Ry (V)R (¢)
CpCPCoyhp — SpSqh  —CPCYSyy — SpCy  CpSy (2.18)
= | 5pC9Cy T CpSy  —8,C9Sy T CpCy  SpSy
—S59Cy S9S8y Cy

It is useful to solve the inverse problem, that is to determine the set of Euler angles
corresponding to a given rotation matrix

11 Ti2 Ti13
R=|ry 1o T3
31 T32 T33

Compare this expression with that of R(¢) in (2.18). By considering the elements
[1,3] and [2, 3], on the assumption that 13 # 0 and o3 # 0, it follows that

Y = Atan2(r23, 7'13),

where Atan2(y, z) is the arctangent function of two arguments®. Then, squaring and
summing the elements [1, 3] and [2, 3] and using the element [3, 3] yields

¥ = Atan2 <\/T%3 + 7“%3,7“33> .

The choice of the positive sign for the term /7%; + 35 limits the range of feasible
values of 9 to (0, 7). On this assumption, considering the elements [3,1] and [3, 2]
gives

’(,ZJ = Atan?(rgz, —7'31).

In sum, the requested solution is

Y = Atan2(r23, 7“13)

¥ = Atan2 (\/rfg + 135, rgg) (2.19)

’(/J = Atan2(r32, —7“31).

2 The notations ¢y and sy are the abbreviations for cos ¢ and sin ¢, respectively; short-hand
notations of this kind will be adopted often throughout the text.

? The function Atan2(y, 2) computes the arctangent of the ratio ¢/ but utilizes the sign of each
argument to determine which quadrant the resulting angle belongs to; this allows the correct
determination of an angle in a range of 2.
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It 1s possible to derive another solution which produces the same effects as solution
(2.19). Choosing ¥ in the range (—r, 0) leads to

Y = Atan2(—r23, —7“13)

¥ = Atan2 (—\/T%B + 7'53,1“33> (2.19")

1!) = Atan2(—r32, 7'31).

Solutions (2.19) and (2.19') degenerate when sy = 0; in this case, it is possible to
determine only the sum or difference of ¢ and 4. In fact, if ¥ = 0, 7, the successive
rotations of ¢ and ¥ are made about axes of current frames which are parallel, thus
giving equivalent contributions to the rotation."

2.4.2 Roll-Pitch-Yaw Angles

Another set of Euler angles originates from a representation of orientation in the
(aero)nautical field. These are the ZYX angles, also called Roll-Pitch—Yaw angles, to
denote the typical motions of an (air)craft. In this case, the angles ¢ = [ ¢ ¥ ]T
represent rotations defined with respect to a fixed frame attached to the centre of mass
of the craft (Figure 2.9).

The rotation resulting from Roll-Pitch—Yaw angles can be obtained as follows:

e Rotate the reference frame by the angle i/ about axis x (yaw); this rotation is
described by the matrix R, (1) which is formally defined in (2.8).

¢ Rotate the reference frame by the angle 9 about axis y (pitch); this rotation is
described by the matrix R, () which is formally defined in (2.7).

e Rotate the reference frame by the angle ¢ about axis z (roll); this rotation is
described by the matrix R (¢) which is formally defined in (2.6).

The resulting frame orientation is obtained by composition of rotations with respect to
the fixed frame, and then it can be computed via premultiplication of the matrices of
elementary rotation, i. e.)’

R(¢) = R.(0) Ry (V)R (¢)

CpCy  CpSeSyy — SpCy  CpSYCy T SpSy (2.20)
= | SpCo  SpS9Sy T CpCy  SpSYCy — CuSy
—38y9 Cy Sy CyCoys

* In the following chapter, it will be seen that these confi gurations characterize the so-called
representation singularities of the Euler angles.

5 The ordered sequence of rotations XYZ about axes of the fi xed frame is equivalent to the
sequence ZY X about axes of the current frame.
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Figure 2.9 Representation of Roll-Pitch—Yaw angles.

As for the Euler angles ZYZ, the inverse solution to a given rotation matrix
{ 11 Ti2 T13 -|
R = erl 22 T23 J

31 T32 T33

can be obtained by comparing it with the expression of R(¢) in (2.20). The solution
for ¢ in the range (—#/2,7w/2) is

p = Atan2(roy,711)
¥ = Atan2 (—7'31, \/735 + r§3> (2.21)
¥ = Atan2(rsa, ras3),
whereas the other equivalent solution for ¢ in the range (7 /2, 37/2) is
¢ = Atan2(—ra1, —711)
¥ = Atan2 (—7“31, —\/T35 + r§3> (2.21)
¥ = Atan2(—rsa, —rs3).

Solutions (2.21) and (2.21') degenerate when cy = 0; in this case, it is possible to
determine only the sum or difference of ¢ and .

2.5 Angle and Axis

A nonminimal representation of orientation can be obtained by resorting to four pa-
rameters expressing a rotation of a given angle about an axis in space. This can be
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advantageous in the problem of trajectory planning for a manipulator’s end-effector
orientation.

Letr = [r, 1, 7.]7 be the unit vector of a rotation axis with respect to the
reference frame O—zyz. In order to derive the rotation matrix R(¥, r) expressing the
rotation of an angle ¥ about axis r, it is convenient to compose elementary rotations
about the coordinate axes of the reference frame. The angle is taken to be positive if
the rotation is made counter-clockwise about axis 7.

As shown in Figure 2.10, a possible solution is to rotate first » by the angles
necessary to align it with axis z, then to rotate by 9 about z and finally to rotate by
the angles necessary to align the unit vector with the initial direction. In detail, the
sequence of rotations, to be made always with respect to axes of fixed frame, is the
following:

e align r with 2z, which is obtained as the sequence of a rotation by —« about 2
and a rotation by — /3 about y;

e rotate by ¢ about z;

e realign with the initial direction of r, which is obtained as the sequence of a
rotation by £ about y and a rotation by « about z.

In sum, the resulting rotation matrix is
R(¥,r) = R.(a)R,(F)R. ()R, (—F)R.(—0). (2.22)

From the components of the unit vector 7 it is possible to extract the transcendental
functions needed to compute the rotation matrix in (2.22), so as to eliminate the
dependence from « and 3; in fact, it is

. Ty Tz
sina = ——— COS Q¥ = ———
[r2 1L g2 [r2 1L g2
ry Ty Ty Ty

sinf = /72 + 73 cosff =r,.

Then, it can be found that the rotation matrix corresponding to a given angle and axis
is

r2(l—cy)+co  rary(l—co) — 1259 rera(1—co) +1ys0
R(W,r) = | rory(1—co) +r289  ro(l—co)+co  ryro(1—co) —Tusy
Tt (1 —cg) —rysy Tyr.(1—cy) +rpsy r2(1—cy) +cy
(2.23)

For this matrix, the following property holds:
R(-9,—r) = R(Y,r), (2.24)

i.e., arotation by —¢ about —r cannot be distinguished from a rotation by ¢ about r;
hence, such representation is not unique.
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Figure 2.10 Rotation of an angle about an axis.

If it is desired to solve the inverse problem to compute the axis and angle corre-
sponding to a given rotation matrix

11 Ti2 713
R=|ry 790 723,
If'31 32 T'33J

the following result is useful:

9 — cos 1 (7“11 + rog + 133 — 1>

2
1 T3z — T23 (2.25)
~ s | BT
21 —T12

for sin? # 0. Notice that (2.25) expresses the rotation in terms of four parameters;
namely, the angle and the three components of the axis unit vector. However, it can be
observed that the three components of 7 are not independent but are constrained by
the condition

1yl =1 (2.26)
If sin ¥ = 0, (2.25) becomes meaningless. To solve the inverse problem, it is necessary
to directly refer to the particular expressions attained by the rotation matrix R and find
the solving formulz in the two cases ¢ = 0 and ¥ = 7. Notice that, when ¥ = 0 (null
rotation), the unit vector r is arbitrary (singularity).

2.6 Unit Quaternion

The drawbacks of the angle/axis representation can be overcome by a different four-
parameter representation; namely, the unit quaternion, viz. Euler parameters, defined
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as Q = {n, €} where:

7 = COoS —

2
2.2
.19 (2.27)
€ =sin - 7;
2
n is called the scalar part of the quaternion while € = [e, ¢, €.]7 is called the

vector part of the quaternion. They are constrained by the condition
"te+e+e =1, (2.28)

hence, the name wunit quaternion. It is worth remarking that, differently from the
angle/axis representation, a rotation by — about —r gives the same quaternion as
that associated with a rotation by 9 about r; this solves the above nonuniqueness
problem. In view of (2.23), (2.27) and (2.28), the rotation matrix corresponding to a
given quaternion takes on the form

27 +€2) =1 2(eqey —mes)  2(eges + ney)
R(n,e) = | 2(exey +me.)  2(n* + ef}) -1 2(eye. —mey) |- (2.29)
2(5965: - 77€y) 2(61162 + new) 2(772 + €§) -1

Ifitis desired to solve the inverse problem to compute the quaternion corresponding
to a given rotation matrix

11 Ti2 Ti13
R=|ry rea ras|,
31 T32 733

the following result is useful:

1
7725\/7“11 + 1o +1r33+1

sgn (r32 — 723)y/T11 — 722 — 733 + 1 (2.30)
€= |sen (riz —731)Vraa —raz —rin + 1|,
sgn (r21 — 712)y/33 — 11 — a2 + 1
where conventionally sgn (z) = 1 for x > 0 and sgn (z) = —1 for z < 0. Notice

that in (2.30) it has been implicitly assumed 7 > 0; this corresponds to an angle
¥ € [—m, 7], and thus any rotation can be described. Also, compared to the inverse
solution in (2.25) for the angle and axis representation, no singularity occurs for (2.30).

The quaternion extracted from R ' = RTisdenotedas @1, and canbe computed
as

Q" ={n,—e}. (2.31)

Let Q1 = {m, €1} and Q2 = {12, €2} denote the quaternions corresponding to
the rotation matrices R; and Rs, respectively. The quaternion corresponding to the
product R; R, is given by

Q1 x Qy ={mn2 — 6?62,77162 + 1261 + €1 X €2} (2.32)



Kinematics 37

T3]

where the quaternion product operator “*” has been formally introduced. It is easy to
see that if Q> = Q7' then the quaternion {1,0} is obtained from (2.32) which is the
identity element for the product.

2.7 Homogeneous Transformations

As illustrated at the beginning of the chapter, the position of a rigid body in space
is expressed in terms of the position of a suitable point on the body with respect
to a reference frame (translation), while its orientation is expressed in terms of the
components of the unit vectors of a frame attached to the body—with origin in the
above point—with respect to the same reference frame (rotation).

As shown in Figure 2.11, consider an arbitrary point P in space. Let p® be the
vector of coordinates of P with respect to the reference frame Og—zgyo29. Consider
then another frame in space O1—x1y12;. Let 0(1) be the vector describing the origin of
Frame 1 with respect to Frame 0, and RY be the rotation matrix of Frame 1 with respect
to Frame 0. Let also p! be the vector of coordinates of P with respect to Frame 1.
On the basis of simple geometry, the position of point P with respect to the reference
frame can be expressed as

p’ =0} + R{p". (2.33)

Hence, (2.33) represents the coordinate transformation (translation + rotation) of a
bound vector between two frames.

The inverse transformation can be obtained by premultiplying both sides of (2.33)
by R{7; in view of (2.4), it follows that

p' = RV + RVTp° (2.34)
which, via (2.16), can be written as
p' = —Rjo) + Rip°. (2.35)

In order to achieve a compact representation of the relationship between the coordinates
of the same point in two different frames, the homogeneous representation of a generic
vector p can be introduced as the vector p formed by adding a fourth unit component,
ie.,

p=|P]. (2.36)

By adopting this representation for the vectors p° and p' in (2.33), the coordinate
transformation can be written in terms of the (4 x 4) matrix

0 0
Ry o3

A0 — (2.37)

o’ 1
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Figure 2.11 Representation of a point P in different coordinate frames.

which, according to (2.36), is termed homogeneous transformation matrix. As can be
seen from (2.37), the transformation of a vector from Frame 1 to Frame 0 is expressed
by a single matrix containing the rotation matrix of Frame 1 with respect to Frame 0 and
the translation vector from the origin of Frame 0 to the origin of Frame 1°. Therefore,
the coordinate transformation (2.33) can be compactly rewritten as

P’ = AVph. (2.38)

The coordinate transformation between Frame 0 and Frame 1 is described by the
homogeneous transformation matrix A} which satisfies the equation

. - -1 .
p1 = A(l)po = (A(l)) po. (2.39)

This matrix is expressed in a block-partitioned form as

Ao | BTO-R| | R R

o” 1 o’ 1

which gives the homogeneous representation form of the result already established by
(2.34) and (2.35).

Notice that for the homogeneous transformation matrix the orthogonality property
does not hold; hence, in general,

A~ £ AT, (2.41)

® It can be shown that in (2.37) nonnull values of the fi rst three elements of the fourth row of A
produce a perspective effect, while values other than unity for the fourth element give a scaling
effect.
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Figure 2.12 Conventional representations of joints.

In sum, a homogeneous transformation matrix expresses the coordinate transfor-
mation between two frames in a compact form. If the frames have the same origin, it
reduces to the rotation matrix previously defined. Instead, if the frames have distinct
origins, it allows keeping the notation with superscripts and subscripts that directly
characterize the current frame and the fixed frame.

Analogously to what presented for the rotation matrices, it is easy to verify that a
sequence of coordinate transformations can be composed by the product

pl=A4%4l . AT pn (2.42)

where Aj_l denotes the homogeneous transformation relating the description of a
point in Frame ¢ to the description of the same point in Frame ¢ — 1.

2.8 Direct Kinematics

A manipulator consists of a series of rigid bodies (links) connected by means of
kinematic pairs or joints. Joints can be essentially of two types: revolute and prismatic;
conventional representations of the two types of joints are sketched in Figure 2.12. The
whole structure forms a kinematic chain. One end of the chain is constrained to a base.
An end effector (gripper, tool) is connected to the other end allowing manipulation of
objects in space.

From a topological viewpoint, the kinematic chain is termed open when there
is only one sequence of links connecting the two ends of the chain. Alternatively, a
manipulator contains a closed kinematic chain when a sequence of links forms a loop.

The mechanical structure of a manipulator is characterized by a number of degrees
of mobility which uniquely determine its configuration. Each degree of mobility is
typically associated with a joint articulation and constitutes a joint variable. The aim
of direct kinematics is to compute the position and orientation of the end effector as a
function of the joint variables.

It was previously illustrated that the position and orientation of a body with respect
to a reference frame are described by the position vector of the origin and the unit
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Figure 2.13 Description of the position and orientation of the end-effector frame.

vectors of a frame attached to the body. Hence, with respect to a reference frame Op—
ZTpYs2s, the direct kinematics function is expressed by the homogeneous transformation
matrix

Tb(q) _ nle)(q) 32 (q) ag(q) pg (q) , (243)

where ¢ is the (n x 1) vector of joint variables, n., s., a. are the unit vectors of a
frame attached to the end effector, and p. is the position vector of the origin of such
frame with respect to the origin of the base frame (Figure 2.13). Note that n., s., a.
and p, are a function of q.

The frame Op—zpyp 25 is termed base frame. The frame attached to the end effector
is termed end-effector frame and is conveniently chosen according to the particular
task geometry. If the end effector is a gripper, the origin of the end-effector frame
is located at the centre of the gripper, the unit vector a. is chosen in the approach
direction to the object, the unit vector s, is chosen normal to a. in the sliding plane
of the jaws, and the unit vector 1. is chosen normal to the other two so that the frame
(Tee, Se, @) is right-handed.

A first way to compute direct kinematics is offered by a geometric analysis of the
structure of the given manipulator.

Example 2.4

Consider the two-link planar arm in Figure 2.14. On the basis of simple trigonometry,
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Figure 2.14 Two-link planar arm.

the choice of the joint variables, the base frame, and the end-effector frame leads to’

0 s12 ci2 aier +ascre
T (q) = nd b al p _ (1) —812 8(1)2 a151 -502812 (2.44)
0 0 O 1 0 0 0 1

It is not difficult to infer that the effectiveness of a geometric approach to the direct
kinematics problem is based first on a convenient choice of the relevant quantities
and then on the ability and geometric intuition of the problem solver. Whenever the
manipulator structure is complex and the number of joints increases, it is preferable to
adopt a less direct solution, which, though, is based on a systematic, general procedure.
The problem becomes even more complex when the manipulator contains one or more
closed kinematic chains. In such a case, as it will be discussed later, there is no guarantee
to obtain an analytical expression for the direct kinematics function in (2.43).

2.8.1 Open Chain

Consider an open-chain manipulator constituted by n + 1 links connected by n joints,
where Link 0 is conventionally fixed to the ground. It is assumed that each joint
provides the mechanical structure with a single degree of mobility, corresponding to
the joint variable.

The construction of an operating procedure for the computation of direct kinematics
is naturally derived from the typical open kinematic chain of the manipulator structure.
In fact, since each joint connects two consecutive links, it is reasonable to consider
first the description of kinematic relationship between consecutive links and then to
obtain the overall description of manipulator kinematics in a recursive fashion. To this

7 The notations s;.. j, ¢;...; denote respectively sin (g; + ... + ¢;), cos (g; + ... + q;).
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Figure 2.15 Coordinate transformations in an open kinematic chain.

purpose, it is worth defining a coordinate frame attached to each link, from Link 0 to
Link n. Then, the coordinate transformation describing the position and orientation of
Frame n with respect to Frame O (Figure 2.15) is given by

TP (q) = AY(q1)A(g2) ... A} (an). (2.45)

As requested, the computation of the direct kinematics function is recursive and is ob-
tained in a systematic manner by simple products of the homogeneous transformation
matrices A::_l(qi) (for 7 = 1,...,n), each of which is a function of a single joint
variable.

With reference to the direct kinematics equation in (2.44), the actual coordinate
transformation describing the position and orientation of the end-effector frame with
respect to the base frame can be obtained as

T!(q) = T)T)(q)T, (2.46)

where T and T are two (typically) constant homogeneous transformations describing
the position and orientation of Frame 0 with respect to the base frame, and of the end-
effector frame with respect to Frame n, respectively. Hereafter, the subscript e is
dropped whenever it is referred to p. and R, = [n. s. a.], ie., for brevity, p and
R =[n s a]respectively denote the position and orientation of the end effector.

2.8.2 Denavit-Hartenberg Convention

In order to compute the direct kinematics equation for an open-chain manipulator
according to the recursive expression in (2.45), a systematic, general method is to be
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Figure 2.16 Denavit-Hartenberg kinematic parameters.

derived to define the relative position and orientation of two consecutive links; the
problem is that to determine two frames attached to the two links and compute the
coordinate transformations between them. In general, the frames can be arbitrarily
chosen as long as they are attached to the link they are referred to. Nevertheless, it is
convenient to set some rules also for the definition of the link frames.

With reference to Figure 2.16, let Axis ¢ denote the axis of the joint connecting
Link ¢ — 1 to Link ¢; the so-called Denavit-Hartenberg convention is adopted to define
link Frame ¢:

e Choose axis z; along the axis of Joint ¢ + 1.

e Locate the origin O; at the intersection of axis z; with the common normal® to
axes z;_1 and z;. Also, locate O; at the intersection of the common normal
with axis z;_1.

e Choose axis x; along the common normal to axes z; 1 and z; with direction
from Joint i to Joint ¢ + 1.

e Choose axis y; so as to complete a right-handed frame.

The Denavit-Hartenberg convention gives a nonunique definition of the link frame in
the following cases:

e For Frame 0, only the direction of axis zg 1s specified; then Og and x( can be
arbitrarily chosen.

e For Frame n, since there is no Joint n + 1, z,, is not uniquely defined while z,,

# The common normal between two lines is the line containing the minimum distance segment
between the two lines.
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has to be normal to axis z,_1. Typically, Joint n is revolute, and thus z,, is to
be aligned with the direction of z,,_1.

e When two consecutive axes are parallel, the common normal between them is
not uniquely defined.

e When two consecutive axes intersect, the direction of x; is arbitrary.
e When Joint ¢ is prismatic, the direction of z;_1 is arbitrary.

In all such cases, the indeterminacy can be exploited to simplify the procedure; for
instance, the axes of consecutive frames can be made parallel.

Once the link frames have been established, the position and orientation of Frame ¢
with respect to Frame ¢ — 1 are completely specified by the following parameters:

a; distance between O; and Oy,
d; coordinate of Oy along z;_1,

a; angle between axes z;_1 and z; about axis x; to be taken positive when rotation
is made counter-clockwise,

9¥; angle between axes z;_1 and z; about axis z; 1 to be taken positive when
rotation is made counter-clockwise.

Two of the four parameters (a; and «;) are always constant and depend only on
the geometry of connection between consecutive joints established by Link 4. Of the
remaining two parameters, only one is variable depending on the type of joint that
connects Link ¢ — 1 to Link . In particular:

e if Joint 4 is revolute the variable is 19;,

o if Joint s is prismatic the variable is d;.
At this point, it is possible to express the coordinate transformation between Frame ¢
and Frame ¢ — 1 according to the following steps:

e Choose a frame aligned with Frame ¢ — 1.

e Translate the chosen frame by d; along axis z;_; and rotate it by J; about axis
z;_1; this sequence aligns the current frame with Frame ¢’ and is described by
the homogeneous transformation matrix

Cy, —S8y,; 0 0

i— 59; Cy; 0 0
AT=10 0 1a
0 0 0 1

o Translate the frame aligned with Frame ¢’ by a; along axis z; and rotate it
by «; about axis x;; this sequence aligns the current frame with Frame ¢ and
is described by the homogeneous transformation matrix

0 0 a;
Co; —So; O

1
0
0 S5q; €Cay O
0 0 0 1
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e The resulting coordinate transformation is obtained by postmultiplication of
the single transformations as

C9; —89;Ca;  S9;8a;  QAiCy;
- - . S9, CY,Cq; —Cy,;Sq; AiSyY,;
Al 1oy — Al IA; — i io P20y i 247
i (@) LS 0 Sa; Coy d; @47
0 0 0 1

Notice that the transformation matrix from Frame i to Frame ¢ — 1 is a function only
of the joint variable g;, that is, 9, for a revolute joint or d; for a prismatic joint.

To summarize, the Denavit-Hartenberg convention allows constructing the di-
rect kinematics function by composition of the individual coordinate transformations
expressed by (2.47) into one homogeneous transformation matrix as in (2.45). The
procedure can be applied to any open kinematic chain and can be easily rewritten in
an operating form as follows.

1. Find and number consecutively the joint axes; set the directions of axes 2y, . . . ,
Zn—1-

2. Choose Frame 0 by locating the origin on axis zg; axes g and yo are chosen
so as to obtain a right-handed frame. If feasible, it is worth choosing Frame 0

to coincide with the base frame.
Execute steps from3toSfori=1,...,n—1:

3. Locate the origin O; at the intersection of z; with the common normal to
axes z;—1 and z;. If axes z;_; and z; are parallel and Joint ¢ is revolute, then
locate O; so that d; = 0; if Joint 7 is prismatic, locate O; at a reference position
for the joint range, e.g., a mechanical limit.

4. Choose axis x; along the common normal to axes z;_; and z; with direction
from Joint ¢ to Joint ¢ + 1.

5. Choose axis y; so as to obtain a right-handed frame.
To complete:

6. Choose Frame n; if Joint n is revolute, then align z,, with z,,_;, otherwise,
if Joint n is prismatic, then choose z,, arbitrarily. Axis x,, is set according to
step 4.

7. Fori =1,...,n, form the table of parameters a;, d;, a;, ¥;.

8. On the basis of the parameters in 7, compute the homogeneous transformation
matrices Aﬁ_l(q,-) fori=1,...,n.

9. Compute the homogeneous transformation T (q) = AY ... A?~! that yields
the position and orientation of Frame n with respect to Frame 0.

10. Given T¢ and T, compute the direct kinematics function as T?(q) =
TYTOT™ that yields the position and orientation of the end-effector frame

with respect to the base frame.

For what concerns the computational aspects of direct kinematics, it can be recognized
that the heaviest load derives from the evaluation of transcendental functions. On the
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Figure 2.17 Connection of a single link in the chain with two links.

other hand, by suitably factorizing the transformation equations and introducing local
variables, the number of flops (additions + multiplications) can be reduced. Finally,
for computation of orientation it is convenient to evaluate the two unit vectors of the
end-effector frame of simplest expression and derive the third one by vector product
of the first two.

2.8.3 Closed Chain

The above direct kinematics method based on the Denavit-Hartenberg convention
exploits the inherently recursive feature of an open-chain manipulator. Nevertheless,
the method can be extended to the case of manipulators containing closed kinematic
chains according to the technique illustrated below.

Consider a closed-chain manipulator constituted by n + 1 links. Because of the
presence of a loop, the number of joints [ must be greater than n; in particular, it can
be understood that the number of closed loops is equal to [ — n.

With reference to Figure 2.17, Links O through ¢ are connected successively through
the first ¢ joints as in an open kinematic chain. Then, Joint 7 + 1’ connects Link ¢ with
Link ¢ + 1’ while Joint ¢ 4+ 1" connects Link ¢ with Link ¢ + 1”; the axes of Joints 7 4+ 1’
and i+ 1" are assumed to be aligned. Although notrepresented in the figure, Links 7+ 1
and 7 + 1” are members of the closed kinematic chain. In particular, Link 7 + 1’ is
further connected to Link ¢ + 2’ via Joint ¢ + 2’ and so forth, until Link j via Joint j.
Likewise, Link ¢ + 1" is further connected to Link 7 + 2" via Joint ¢ + 2" and so forth,
until Link & via Joint k. Finally, Links j and k are connected together at Joint j + 1 to
form a closed chain. In general, j # k.

In order to attach frames to the various links and apply Denavit-Hartenberg con-
vention, one closed kinematic chain is taken into account. The closed chain can be
virtually cut open at Joint j + 1, i.e., the joint between Link j and Link k. An equivalent
tree-structured open kinematic chain is obtained, and thus link frames can be defined
as in Figure 2.18. Since Links 0 through ¢ occur before the two branches of the tree,
they are left out of the analysis. For the same reason, Links j + 1 through n are left
out as well. Notice that Frame ¢ is to be chosen with axis z; aligned with the axes of
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Figure 2.18 Coordinate transformations in a closed kinematic chain.

Joints ¢ + 1" and i + 1",
It follows that the position and orientation of Frame j with respect to Frame ¢ can
be expressed by composing the homogeneous transformations as

Ai(g) = AL (qivr) .- AT () (2.48)

where ¢' = [gi+11 ... gj ]T. Likewise, the position and orientation of Frame &
with respect to Frame i is given by

Al(q") = AL (qivrr) .. A Y ar) (2.49)

where q” . [(],’4_1” oo Qg ]T.

Since Links j and k are connected to each other through Joint j + 1, it is worth
analyzing the mutual position and orientation between Frames j and k, as illustrated
in Figure 2.19. Notice that, since Links j and k are connected to form a closed chain,
axes z; and zj are aligned. Therefore, the following orientation constraint has to be
imposed between Frames j and k:

zi(q') = z(¢") (2.50)

where the unit vectors of the two axes have been conveniently referred to Frame .
Moreover, if Joint j 4 1 is prismatic, the angle ¥);; between axes x; and xy, is
fixed; hence, in addition to (2.50), the following constraint is obtained:
- ,
z; (q')zi(g") = cos V. @2.51)
Obviously, there is no need to impose a similar constraint on axes y; and yy, since that
would be redundant.

Regarding the position constraint between Frames j and k, let p;'- and p¢ respec-
tively denote the positions of the origins of Frames j and k, when referred to Frame :.
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Figure 2.19 Coordinate transtormation at the cut joint.

By projecting on Frame j the distance vector of the origin of Frame &k from Frame j,
the following constraint has to be imposed:

Rl(q) (pi(d) - pj(@") =10 0 du]" (2.52)

where R{ = R;-T denotes the orientation of Frame ¢ with respect to Frame j. At this
point, if Joint j + 1 is revolute, then d;, is a fixed offset along axis z;; hence, the three
equalities of (2.52) fully describe the position constraint. If, however, Joint 3 + 1 is
prismatic, then d;;, varies. Consequently, only the first two equalities of (2.52) describe
the position constraint, i.e.,

[w§T(q’)
v (q')

} (pi(d) - pi(a")) {8] (2.53)

where R, = [z} y; zj].

In summary, if Joint j + 1 is revolute the constraints are

Rl(q) (pi(d) - pi(@") =[0 0 dy]" (2,54
zi(q') = zj(q").
whereas if Joint 7 + 1 is prismatic the constraints are
(' 0
] e = [}
J
i i 2.55
2i(d) = 2i(a") ®33
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In either case, there are six equalities that must be satisfied. Those should be solved
for a reduced number of independent joint variables to be keenly chosen among the
components of ¢’ and g which characterize the degrees of mobility of the closed chain.
These are the natural candidates to be the actuated joints, while the other joints in the
chain (including the cut joint) are typically not actuated. Such independent variables,
together with the remaining joint variables not involved in the above analysis, constitute
the joint vector q that allows the direct kinematics equation to be computed as

T, (q) = A}A}A), (2.56)

where the sequence of successive transformations after the closure of the chain has
been conventionally resumed from Frame j.

In general, there is no guarantee to solve the constraints in closed form unless the
manipulator has a simple kinematic structure. In other words, for a given manipulator
with a specific geometry, e.g., a planar structure, some of the above equalities may
become dependent. Hence, the number of independent equalities is less than six and it
should likely be easier to solve them.

To conclude, it is worth sketching the operating form of the procedure to com-
pute the direct kinematics function for a closed-chain manipulator using the Denavit-
Hartenberg convention.

1. In the closed chain, select one joint that is not actuated. Assume that the joint
is cut open so as to obtain an open chain in a tree structure.

2. Compute the homogeneous transformations according to Denavit-Hartenberg
convention.

3. Find the equality constraints for the two frames connected by the cut joint.
4. Solve the constraints for a reduced number of joint variables.

5. Express the homogeneous transformations in terms of the above joint vari-
ables and compute the direct kinematics function by composing the various
transformations from the base frame to the end-effector frame.

2.9 Kinematics of Typical Manipulator Structures

This section contains several examples of computation of the direct kinematics function
for typical manipulator structures that are often encountered in industrial robots.

2.9.1 Three-link Planar Arm

Consider the three-link planar arm in Figure 2.20, where the link frames have been
illustrated. Since the revolute axes are all parallel, the simplest choice was made for
all axes x; along the direction of the relative links (the direction of xy is arbitrary)
and all lying in the plane (xq, yo). In this way, all the parameters d; are null and the
angles between the axes z; directly provide the joint variables. The Denavit-Hartenberg
parameters are specified in Table 2.1.
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Figure 2.20 Three-link planar arm.

Table 2.1 Denavit-Hartenberg parameters for the three-link planar arm.

Link a; (677 dl ’19,
1 a1 0 0 1
2 as 0 0 192
3 as 0 0 193

Since all joints are revolute, the homogeneous transformation matrix defined in (2.47)
has the same structure for each joint, i.e.,

C; —8; 0 a;C;
AT (,) = %ﬁ' Coi (1) ‘“68” i=1,2,3. (2.57)
0 0 0 1

Computation of the direct kinematics function as in (2.45) yields

cles —S123 0 aicr 4+ ascia + ascios
T??(q) _ A?A§A2 _ 81023 01023 (1) a181 + a2862 + assi23 (2.58)
0 0 0 1

where ¢ = [91 Y2 93]T. Notice that the unit vector 23 of Frame 3 is aligned with
20 =[0 0 1]T, in view of the fact that all revolute joints are parallel to axis 2.
Obviously, p, = 0 and all three joints concur to determine the end-effector position in
the plane of the structure.

It is worth pointing out that Frame 3 does not coincide with the end-effector frame
as in Figure 2.13, since the resulting approach unit vector is aligned with &3 and
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Figure 2.21 Parallelogram arm.

not with zg. Thus, assuming that the two frames have the same origin, the constant
transformation

0 0 10
s o -1 00
=11 0 0 o0

0 0 01

is needed, having taken 1 aligned with z.

2.9.2 Parallelogram Arm

Consider the parallelogram arm in Figure 2.21. A closed chain occurs where the first
two joints connect Link 1’ and Link 1" to Link 0, respectively. Joint 4 was selected
as the cut joint, and the link frames have been established accordingly. The Denavit-
Hartenberg parameters are specified in Table 2.2, where a1/ = ag and azr = ay~ in
view of the parallelogram structure.

Table 2.2 Denavit-Hartenberg parameters for the parallelogram arm.

Link a; «; dl 192
1/ ay 0 0 Y
2/ as 0 0 2y
3 az 0 0 V3
1 a1 0 0 Ty
4 a4 0 0 0

Notice that the parameters for Link 4 are all constant. Since the joints are revolute,
the homogeneous transformation matrix defined in (2.47) has the same structure for
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each joint, i.e., as in (2.57) for Joints 1', 2/, 3’ and 1"”. Therefore, the coordinate
transformations for the two branches of the tree are respectively:

crary =Sy 0 apcy +agcra +aycpas

A9 ( /) — AY A1’A2’ _ | S1rry C1/23 0 airsiy +aorsirar + assyrorg
3\qd ) = A} Ay Az = 0 0 1 0
0 0 0 1

where ¢' = [V1 ¥ U3 ], and

Cl// —81// (],11161//

0
0 no_ Sl// Cl// 0 al//Slu
Al” (q ) - 0 0 1 0

0 0 0 1
where ¢'' = ¥1. To complete, the constant homogeneous transformation for the last
link is

1 O O aq
: 01 0 O
3 _
Ay = 0 01 O
0 0 0 1
With reference to (2.54), the position constraints are (dg1 = 0)

0
R3 (¢) (p3(a) — Pl (d") = {8}

while the orientation constraints are satisfied independently of ¢’ and ¢”'. Since a1 =
as and as = a1, two independent constraints can be extracted, i.e.,

ayr (Cl/ + 61/2/3/) + aqr (01/2/ — clu) =0
al/(sll + 81/2/3/) + al//(81/2/ — 81//) = 0.
In order to satisfy them for any choice of a1, and ay+, it must be

192/ = 191/1 — ’191/
(2.59)
193/ :71'—192/ :7T—191// —1—191/

Therefore, the vector of joint variables is ¢ = [¥1: ¥y ]T. These joints are natural
candidates to be the actuated joints.” Substituting the expressions of ¥2 and ¥/ into

% Notice that it is not possible to solve (2.59) for ¥/ and 95 since they are constrained by the
condition Jo + 93 = .
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Figure 2.22 Spherical arm.

the homogeneous transformation A9, and computing the direct kinematics function as
in (2.56) yields

—Cy/ S/ O aq/7C1 — A4C17

0/ \ _ A0 3 | —=sr —cr 0 ayrsir — aysy
Ti(q) = Ay (@A; = | 0 1 0 . (2.60)
0 0 0 1

A comparison between (2.60) and (2.44) reveals that the parallelogram arm is kine-
matically equivalent to a two-link planar arm. The noticeable difference, though, is
that the two actuated joints—providing the degrees of mobility of the structure—are
located at the base. This will greatly simplify the dynamic model of the structure, as
shall be seen in Section 4.3.3.

2.9.3 Spherical Arm

Consider the spherical arm in Figure 2.22, where the link frames have been illustrated.
Notice that the origin of Frame 0 was located at the intersection of zy with 2; so that
di = 0; analogously, the origin of Frame 2 was located at the intersection between z1
and z,. The Denavit-Hartenberg parameters are specified in Table 2.3.

Table 2.3 Denavit-Hartenberg parameters for the spherical arm.

Link a; «; dl 192
1 0 | —mn/2 0 |
2 0 /2 dy | D2
3 0 0 ds 0




54 Modelling and Control of Robot Manipulators

The homogeneous transformation matrices defined in (2.47) are for the single joints:

ctc 0 —s 07 o 0 so 0
0 _ S1 0 C1 0 1 _ S92 0 —Co 0
Al (191) - 0 -1 0 0 A2(192) - 0 1 0 d2
0 0 0 1] 0 0 O 1
r1T 0 0 O
5 {01 0 0
Aslds) =1 o 1 ds
LO 0 0 1
Computation of the direct kinematics function as in (2.45) yields
cica —S1 €182 C182d3 — s1d>
0 A0 41 42 _ | S1€C2 1 5152 81852ds + c1ds
T5(q) = AJAA; = —s 0 C cods (2.61)
0 0 0 1

where ¢ = [ ¥ d3]%. Notice that the third joint does not obviously influence
the rotation matrix. Further, the orientation of the unit vector ¢ is uniquely determined
by the first joint, since the revolute axis of the second joint z; is parallel to axis ys.
Ditferently from the previous structures, in this case Frame 3 can represent an end-
effector frame of unit vectors (n, s, a), i.e., TS =1

2.9.4 Anthropomorphic Arm

Consider the anthropomorphic arm in Figure 2.23. Notice how this arm corresponds
to a two-link planar arm with an additional rotation about an axis of the plane. In this
respect, the parallelogram arm could be used in lieu of the two-link planar arm, as
found in some industrial robots with an anthropomorphic structure.

The link frames have been illustrated in the figure. As for the previous structure,
the origin of Frame 0 was chosen at the intersection of zy with z; (d; = 0); further,
z1 and 2o are parallel and the choice of axes x; and z» was made as for the two-link
planar arm. The Denavit-Hartenberg parameters are specified in Table 2.4.

Table 2.4 Denavit-Hartenberg parameters for the anthropomorphic arm.

Link a; (677} dl ’19,
1 0 7T/2 0 191
2 as 0 0 Vo
3 as 0 0 193

The homogeneous transformation matrices defined in (2.47) are for the single joints:

C1 0 S1 0
0 _ S1 0 —C1 0

0 0 0 1
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¥ s,
Figure 2.23 Anthropomorphic arm.
C; —8§ 0 a;C;
i1 s; ¢ 0 a;s;
A= ] i=2,3
0 0 0 1
Computation of the direct kinematics function as in (2.45) yields
CiC23 —C1823 81 (O (0202 + a3023)
—51823 — 2C2 + a3ca3)
T0 — A%Al A2 = S1C23 51523 c1 si(azes 262
3(a) 1 823 Ca3 0 a382 + a3sa3 2:62)

0 0 0 1

where ¢ = [¥; ¥2 93] Since z3 is aligned with zo, Frame 3 does not coincide
with a possible end-effector frame as in Figure 2.13, and a proper constant transfor-
mation would be needed.

2.9.5 Spherical Wrist

Consider a particular type of structure consisting just of the wrist of Figure 2.24. Joint
variables were numbered progressively starting from 4, since such a wrist is typically
thought of as mounted on a three-degree-of-mobility arm of a six-degree-of-mobility
manipulator. It is worth noticing that the wrist is spherical since all revolute axes
intersect at a single point. Once 23, z4, 25 have been established, and x3 has been
chosen, there is an indeterminacy on the directions of z4 and z5. With reference to the
frames indicated in Figure 2.24, the Denavit-Hartenberg parameters are specified in
Table 2.5.
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Figure 2.24 Spherical wrist.

Table 2.5 Denavit-Hartenberg parameters for the spherical wrist.

Link a; «; dl 192
4 0 —7T/2 0 194
5 0 /2 0 | s
6 0 0 dg vs

The homogeneous transformation matrices defined in (2.47) are for the single joints:

Cq 0 —384 0 Cs 0 S5 0
5 0 c 0 s5 0 —c5 O
AA00= g 21 o o A0)=10 1 o o
0 O 0 1 0 0 0 1

Cg —Sg¢ 0 0

5 _ Sg Cg 0 0

Aﬁ(ﬁﬁ)_ 0 0 1 dG

0 0 0 1

Computation of the direct kinematics function as in (2.45) yields

C4C5C6 — 5486 —C4C55¢ — S4C (485 C4S5d6

3 A3 A4 45 _ | 54C5C6 + CaS6  —S4C556 + CaCs 5455 S455dg
T6 (q) N A4A5A6 N —55Cq 5556 Cs csds
0 0 0 1
(2.63)
where ¢ = [¥4 95 U ]T. Notice that, as a consequence of the choice made for

the coordinate frames, the block matrix R that can be extracted from T coincides
with the rotation matrix of Euler angles (2.18) previously derived, that is, ¥4, U5,
¢ constitute the set of ZYZ angles with respect to the reference frame Oz—x3y323.
Moreover, the unit vectors of Frame 6 coincide with the unit vectors of a possible
end-effector frame according to Figure 2.13.
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Figure 2.25 Stanford manipulator.

2.9.6 Stanford Manipulator

The so-called Stanford manipulator is composed by a spherical arm and a spherical
wrist (Figure 2.25). Since Frame 3 of the spherical arm coincides with Frame 3 of the
spherical wrist, the direct kinematics function can be obtained via simple composition
of the transformation matrices (2.61) and (2.63) of the previous examples, i.e.,

nO SO aO pO

TY = TITP =
0 0 0 1

Carrying out the products yields

6182d3 — 81d2 + (Cl (626485 + 8265) — 818485)d6
pO - 8182d3 + Cld2 + (81 (626485 + 8265) + 618485)d6 (264)
Cng + (—826485 + 0265)d6

for the end-effector position, and

¢y (62(646566 — $486) — 828566) — s1(8s4¢5¢6 + €486)
n’ = | s1(c2(cacsce — s456) — S285¢6) + ¢1(5ac5C6 + C456)
—53(caCs5c6 — S456) — C255C6

1 (—c2(cacssg + sace) + s25586) — s1(—s4C556 + 0406)-|
s =18 (—62(040586 + s4c6) + 828586) + ¢1(—s4¢556 + cacg) (2.65)
s2(cqc556 + S4¢6) + 25556 J
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Figure 2.26 Anthropomorphic arm with spherical wrist.

{cl (cacyss + S2c5) — 313455-|

0

a = 81(626485 + 8265) + 18485
[ —82C485 + C2C5 J

for the end-effector orientation.

A comparison of the vector p in (2.64) with the vector p$ relative to the sole
spherical arm (2.61) reveals the presence of additional contributions due to the choice
of the origin of the end-effector frame at a distance dg from the origin of Frame 3
along the direction of a. In other words, if it were dg = 0, the position vector would
be the same. This feature is of fundamental importance for the solution of the inverse
kinematics for this manipulator, as will be seen later.

2.9.7 Anthropomorphic Arm with Spherical Wrist

A comparison between Figure 2.23 and Figure 2.24 reveals that the direct kinematics
function cannot be obtained by multiplying the transformation matrices 7% and T¢,
since Frame 3 of the anthropomorphic arm cannot coincide with Frame 3 of the
spherical wrist.

Direct kinematics of the entire structure can be obtained in two ways. One consists
of interposing a constant transformation matrix between T% and T which allows
aligning the two frames. The other refers to the Denavit-Hartenberg operating proce-
dure with the frame assignment for the entire structure illustrated in Figure 2.26. The
Denavit-Hartenberg parameters are specified in Table 2.6.
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Table 2.6 Denavit-Hartenberg parameters for the anthropomorphic arm with spherical wrist.

Link a; (67 dl 191
1 0 7T/2 0 191
2 a9 0 0 ’192
3 0 7T/2 0 193
4 0 —71'/2 d4 194
5 0 /2 0 | 95
6 0 0 ds J6

Since rows 3 and 4 differ from the corresponding rows of the tables for the two single
structures, the relative homogeneous transformation matrices A% and Ai have to be
modified into

c3 0 s3 0 c4 0 —s4 O
: s3 0 —cg O S 0 c 0
A0)=10 1 0 o AD=10  0 4

0 0 0 1 0 0 0 1

while the other transformation matrices remain the same. Computation of the direct
kinematics function leads to expressing the position and orientation of the end-effector
frame as:

azc1ez + dyci823 + dg (C1 (cazcass + sa3c5) + 515455)
a951Co + d481823 + d6 (81 (6236485 + 82365) — 618485)
a282 — dacaz + dg(s523¢485 — €23¢5)

0

P’ = (2.66)

and

c1 (cas(cacsce — 5456) — s2385¢C6) + 51(84¢5¢6 + €aS6) |
s1(cas(cacsce — sas6) — S2355¢6) — C1(84C5¢6 + €456)
523(c4C5C6 — 5456) + C2355C

C1 (—623 (C4C586 + 8466) + 8238586) + 81(—846586 + 6466)
S1 (—623(646586 + 8466) + 8238586) - Cl(—S4C586 + 6466)
—593(caCs556 + S4C6) — 235556

(2.67)

c1(cascass + s23¢5) + 515455
51(c23Ca85 + 823C5) — €15455
8§23C4 85 — C23C5

By setting dg = 0, the position of the wrist axes intersection is obtained. In that case,
the vector p° in (2.66) corresponds to the vector p§ for the sole anthropomorphic arm
in (2.62), because dy4 gives the length of the forearm (a3) and axis x3 in Figure 2.26 is
rotated by 7/2 with respect to axis x3 in Figure 2.23.

2.10 Joint Space and Operational Space

As described in the previous sections, the direct kinematics equation of a manipulator
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allows the position and orientation of the end-effector frame to be expressed as a
function of the joint variables with respect to the base frame.

If a task is to be specified for the end effector, it is necessary to assign the end-
effector position and orientation, eventually as a function of time (trajectory). This
is quite easy for the position. On the other hand, specifying the orientation through
the unit vector triplet (n, s, a) is quite difficult, since their nine components must
be guaranteed to satisfy the orthonormality constraints imposed by (2.4) at each time
instant. This problem will be resumed in Chapter 5.

The problem of describing end-effector orientation admits a natural solution if
one of the above minimal representations is adopted. In this case, indeed, a motion
trajectory can be assigned to the set of angles chosen to represent orientation.

Therefore, position can be given by a minimal number of coordinates with regard
to the geometry of the structure, and orientation can be specified in terms of a minimal
representation (Euler angles) describing the rotation of the end-effector frame with
respect to the base frame. In this way, it is possible to describe a manipulator posture
by means of the (m x 1) vector, with m < n,

x = [g} (2.68)

where p describes the end-effector position and ¢ its orientation.

This representation of position and orientation allows the description of an end-
effector task in terms of a number of inherently independent parameters. The vector x
is defined in the space in which the manipulator task is specified; hence, this space is
typically called operational space.

On the other hand, the joint space (configuration space) denotes the space in which
the (n x 1) vector of joint variables

q
q= ;1} , (2.69)
dn

is defined; it is ¢; = 9; for a revolute joint and ¢; = d; for a prismatic joint.
Accounting for the dependence of position and orientation from the joint variables,
the direct kinematics equation can be written in a form other than (2.45), i.e.,

x =k(q). (2.70)

The (m x 1) vector function k(-)—nonlinear in general—allows computation of the
operational space variables from the knowledge of the joint space variables.

It is worth noticing that the dependence of the orientation components of the
function k(q) in (2.70) on the joint variables is not easy to express except for simple
cases. In fact, in the most general case of a six-dimensional operational space (m = 6),
the computation of the three components of the function ¢(q) cannot be performed in
closed form but goes through the computation of the elements of the rotation matrix,
i.e.,n(q), s(q), a(q). The equations that allow determining the Euler angles from the
triplet of unit vectors n, 8, @ were given in Section 2.4.
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Example 2.5

Consider again the three-link planar arm in Figure 2.20. The geometry of the structure
suggests that the end-effector position is determined by the two coordinates p; and p,,,
while its orientation is determined by the angle ¢ formed by the end effector with the
axis zg. Expressing these operational variables as a function of the joint variables, the
two position coordinates are given by the first two elements of the fourth column of
the homogeneous transformation matrix (2.58), while the orientation angle is simply
given by the sum of joint variables. In sum, the direct kinematics equation can be
written in the form

2 a1C1 + aac12 + a3C123
x=|py, | =k(q) = |ais1 +azs12 +azsiaz | . 2.71)
¢ V1 + Vs + U3

This expression shows that three joint space variables allow specification of at most
three independent operational space variables. On the other hand, if orientation is of no
concern,itis® = [p; Py ]T and there is kinematic redundancy of degrees of mobility
with respect to a pure positioning end-effector task; this concept will be widely treated
later.

2.10.1 Workspace

With reference to the operational space, an index of robot performance is the so-called
workspace; this is the region described by the origin of the end-effector frame when all
the manipulator joints execute all possible motions. It is often customary to distinguish
between reachable workspace and dexterous workspace. The latter is the region that
the origin of the end-effector frame can describe while attaining different orientations,
while the former is the region that the origin of the end-effector frame can reach
with at least one orientation. Obviously, the dexterous workspace is a subspace of the
reachable workspace. A manipulator with less than six degrees of mobility cannot take
any arbitrary position and orientation in space.

The workspace is characterized by the manipulator geometry and the mechanical
joint limits. For an n-degree-of-mobility manipulator the reachable workspace is the
geometric locus of the points that can be achieved by considering the direct kinematics
equation for the sole position part, i.e.,

p = p(q) gGm < ¢ <qm i=1,...,n,

where ¢; (q;pr) denotes the minimum (maximum) limit at Joint ¢. This volume is
finite, closed, connected—p(q) is a continuous function—and thus is defined by its
bordering surface. Since the joints are revolute or prismatic, it is easy to recognize
that this surface is constituted by surface elements of planar, spherical, toroidal and
cylindrical type. The manipulator workspace (without end effector) is reported in the
data sheet given by the robot manufacturer in terms of a top view and a side view. It
represents a basic element to evaluate robot performance for a desired application.
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Figure 2.27 Region of admissible confi gurations for a two-link arm.

Example 2.6

Consider the simple two-link planar arm. If the mechanical joint limits are known,
the arm can attain all the joint space configurations corresponding to the points in the
rectangle in Figure 2.27.

The reachable workspace can be derived via a graphical construction of the image
of the rectangle perimeter in the plane of the arm. To this purpose, it is worth considering
the images of the segments ab, bc, cd, da, ae, ef, fd. Along the segments ab, be, cd,
ae, ef, fd aloss of mobility occurs due to a joint limit; a loss of mobility occurs also
along the segment ad because the arm and forearm are aligned'”. Further, a change
of the arm posture occurs at points a and d: for ga > 0 the elbow-down posture is
obtained, while for g2 < O the arm is in the elbow-up posture.

In the plane of the arm, start drawing the arm in configuration A corresponding
to g1, and g2 = 0 (a); then, the segment ab describing motion from ¢, = 0 to gaas
generates the arc AB; the subsequentarcs BC,CD, DA, AE, EF, F'D are generated
in a similar way (Figure 2.28). The external contour of the area C D AFE F'HC delimits
the requested workspace. Further, the area BC' D A B is relative to elbow-down postures
while the area D AFEF D is relative to elbow-up postures; hence, the points in the area
BADH B are reachable by the end effector with both postures.

In a real manipulator, for a given set of joint variables, the actual values of the opera-
tional space variables deviate from those computed via direct kinematics. The direct
kinematics equation has indeed a dependence from the Denavit-Hartenberg parameters

' In the following chapter, it will be seen that this confi guration characterizes a kinematic
singularity of the arm.
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Figure 2.28 Workspace of a planar two-link arm.

which is not explicit in (2.70). If the mechanical dimensions of the structure differ from
the corresponding parameter of the table because of mechanical tolerances, a deviation
arises between the position reached in the assigned posture and the position computed
via direct kinematics. Such a deviation 1s defined accuracy; this parameter attains typi-
cal values below one millimeter and depends on the structure as well as on manipulator
dimensions. Accuracy varies with the end-effector position in the workspace and it is
a relevant parameter when robot programming oriented environments are adopted, as
will be seen in the last chapter.

Another parameter that is usually listed in the performance data sheet of an in-
dustrial robot 1s repeatability which gives a measure of the manipulator’s ability to
return to a previously reached position; this parameter is relevant for programming an
industrial robot by the teaching-by-showing technique which will be presented in the
last chapter. Repeatability depends not only on the characteristics of the mechanical
structure but also on the transducers and controller; it is expressed in metric units and
is typically smaller than accuracy. For instance, for a manipulator with a maximum
reach of 1.5 m, accuracy varies from 0.2 to 1 mm in the workspace, while repeatability
varies from 0.02 to 0.2 mm.

2.10.2 Kinematic Redundancy

A manipulator is termed kinematically redundant when it has a number of degrees of
mobility which is greater than the number of variables that are necessary to describe a
given task. With reference to the above-defined spaces, a manipulator is intrinsically
redundant when the dimension of the operational space is smaller than the dimension
of the joint space (m < n). Redundancy is, anyhow, a concept relative to the task
assigned to the manipulator; a manipulator can be redundant with respect to a task and
nonredundant with respect to another. Even in the case of m = n, a manipulator can
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be functionally redundant when only a number of  components of operational space
are of concern for the specific task, with » < m.

Consider again the three-degree-of-mobility planar arm of Section 2.9.1. If only
the end-effector position (in the plane) is specified, that structure presents a functional
redundancy (n = m = 3, r = 2); this is lost when also the end-effector orientation in
the plane is specified (n = m = r = 3). On the other hand, a four-degree-of-mobility
planar arm is intrinsically redundant (n = 4, m = 3).

Yet, take the typical industrial robot with six degrees of mobility; such manipulator
is not intrinsically redundant (n = m = 6), but it can become functionally redundant
with regard to the task to execute. Thus, for instance, in a laser-cutting task a functional
redundancy will occur since the end-effector rotation about the approach direction is
irrelevant to completion of the task (r = 5).

At this point, a question should arise spontaneously: Why to intentionally utilize
a redundant manipulator? The answer is to recognize that redundancy can provide
the manipulator with dexterity and versatility in its motion. The typical example is
constituted by the human arm that has seven degrees of mobility: three in the shoulder,
one in the elbow and three in the wrist, without considering the degrees of mobility
in the fingers. This manipulator is intrinsically redundant; in fact, if the base and the
hand position and orientation are both fixed—requiring six degrees of freedom—the
elbow can be moved, thanks to the additional available degree of mobility. Then, for
instance, it is possible to avoid obstacles in the workspace. Further, if a joint of a
redundant manipulator reaches its mechanical limit, there might be other joints that
allow execution of the prescribed end-effector motion.

A formal treatment of redundancy will be presented in the following chapter.

2.11 Kinematic Calibration

The Denavit-Hartenberg parameters for direct kinematics need to be computed as
precisely as possible in order to improve manipulator accuracy. Kinematic calibration
techniques are devoted to finding accurate estimates of Denavit-Hartenberg parameters
from a series of measurements on the manipulator’s end-effector location. Hence, they
do not allow direct measurement of the geometric parameters of the structure.

Consider the direct kinematics equation in (2.70) which can be rewritten by em-
phasizing the dependence of the operational space variables on the fixed Denavit-
Hartenberg parameters, besides the joint variables. Let @ = [a1 ... a,]T, a =
[ar ... an)fid=[dy ... d,] ,and9¥=[60, ... 6,]" denote the vectors
of Denavit-Hartenberg parameters for the whole structure; then (2.70) becomes

z=k(a,a,d,9). (2.72)

Manipulator’s end-effector location shall be measured with high precision for the
effectiveness of the kinematic calibration procedure. To this purpose a mechanical
apparatus can be used that allows constraining the end effector at given locations
with a priori known precision. Alternatively, direct measurement systems of object
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position and orientation in the Cartesian space can be used which employ triangulation
techniques.

Let ., be the measured location and &, the nominal location that can be computed
via (2.72) with the nominal values of the parameters a, &, d, 9. The nominal values
of the fixed parameters are set equal to the design data of the mechanical structure,
whereas the nominal values of the joint variables are set equal to the data provided by the
position transducers at the given manipulator posture. The deviation Az = x,,, — @,
gives ameasure of accuracy at the given posture. On the assumption of small deviations,
at first approximation, it is possible to derive the following relation from (2.72):

ok ok ok ok
Ax = %Aa + %Aa + %Ad + %Aﬂ 2.73)

where Aa, Aa, Ad, A9 denote the deviations between the values of the parame-
ters of the real structure and the nominal ones. Moreover, 0k/0a, 0k /Ja, Ok /0d,
Ok /09 denote the (m x n) matrices whose elements are the partial derivatives of the
components of the direct kinematics function with respect to the single parameters''.

Group the parameters in the (4n x 1) vector ¢ = [a? o dT 97]7. Let
AC = ¢ — €y, denote the parameter variations with respect to the nominal values,
and @ = [Ok/0a Ok/O0a Ok/Od Ok/JV] the (m x 4n) kinematic calibration
matrix computed for the nominal values of the parameters ¢,,. Then (2.73) can be
compactly rewritten as

Az = B(Ca) AL (2.74)

Itis desired to compute A( starting from the knowledge of ¢, ©,, and the measurement
of x,,. Since (2.74) constitutes a system of m equations into 4n unknowns with
m < 4n, a sufficient number of end-effector location measures has to be performed
S0 as to obtain a system of at least 4n equations. Therefore, if measurements are made
for a number of [ locations, (2.74) yields

Ail:l 451
Az = : =| | A¢ = PAC. (2.75)
Aml dsl

As regards the nominal values of the parameters needed for the computation of the
matrices @;, it should be observed that the geometric parameters are constant whereas
the joint variables depend on the manipulator configuration at the location 3.

In order to avoid ill-conditioning of matrix @, it is advisable to choose [ so that
Im > 4n and then solve (2.75) with a least-squares technique; in this case the solution
is of the form

A¢ = (¢1d) 1ol Az (2.76)

'" These matrices are the Jacobians of the transformations between the parameter space and the
operational space.
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where ($7®)~ @7 is the left pseudo-inverse matrix of @. By computing & with the
nominal values of the parameters (,,, the first parameter estimate is given by

¢'=¢n+ AC. (2.77)

This is a nonlinear parameter estimate problem and, as such, the procedure shall be
iterated until AC converges within a given threshold. At each iteration, the calibration
matrix @ is to be updated with the parameter estimates ¢’ obtained via (2.77) at
the previous iteration. In a similar manner, the deviation AZ is to be computed as
the difference between the measured values for the / end-effector locations and the
corresponding locations computed by the direct kinematics function with the values
of the parameters at the previous iteration.

As aresult of the kinematic calibration procedure, more accurate estimates of the
real manipulator geometric parameters as well as possible corrections to make on the
joint transducers measurements are obtained.

Kinematic calibration is an operation that is performed by the robot manufacturer
to guarantee the accuracy reported in the data sheet. There is another kind of calibration
that is performed by the robot user which is needed for the measurement system start-
up to guarantee that the position transducers data are consistent with the attained
manipulator posture. For instance, in the case of incremental (nonabsolute) position
transducers, such calibration consists of taking the mechanical structure into a given
reference posture (home) and initializing the position transducers with the values at
that posture.

2.12 Inverse Kinematics Problem

The direct kinematics equation, either in the form (2.45) or in the form (2.70), es-
tablishes the functional relationship between the joint variables and the end-effector
position and orientation. The inverse kinematics problem consists of the determination
of the joint variables corresponding to a given end-effector position and orientation.
The solution to this problem is of fundamental importance in order to transform the
motion specifications, assigned to the end effector in the operational space, into the
corresponding joint space motions that allow execution of the desired motion.

As regards the direct kinematics equation in (2.45), the end-effector position and
rotation matrix are computed in a unique manner, once the joint variables are known'.
On the other hand, the inverse kinematics problem is much more complex for the
following reasons:

e The equations to solve are in general nonlinear, and thus it is not always
possible to find a closed-form solution.

o Multiple solutions may exist.

12 In general, this cannot be said for (2.70) too, since the Euler angles are not uniquely defi ned.
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o [nfinite solutions may exist, e.g., in the case of a kinematically redundant
manipulator.

e There might be no admissible solutions, in view of the manipulator kinematic
structure.

For what concerns existence of solutions, this is guaranteed if the given end-effector
position and orientation belong to the manipulator dexterous workspace.

On the other hand, the problem of multiple solutions depends not only on the
number of degrees of mobility but also on the number of nonnull Denavit-Hartenberg
parameters; in general, the greater is the number of nonnull parameters, the greater
is the number of admissible solutions. For a six-degree-of-mobility manipulator with-
out mechanical joint limits, there are in general up to 16 admissible solutions. Such
occurrence demands some criterion to choose among admissible solutions (e.g., the
elbow-up/elbow-down case of Example 2.6). The existence of mechanical joint lim-
its may eventually reduce the number of admissible multiple solutions for the real
structure.

Computation of closed-form solutions requires either algebraic intuition to find
out those significant equations containing the unknowns or geometric intuition to find
out those significant points on the structure with respect to which it is convenient to
express position and/or orientation as a function of a reduced number of unknowns.
The following examples will point out the ability required to an inverse kinematics
problem solver. On the other hand, in all those cases when there are no—or it is
difficult to find—closed-form solutions, it might be appropriate to resort to numerical
solution techniques; these clearly have the advantage to be applicable to any kinematic
structure, but in general they do not allow computation of all admissible solutions.

2.12.1 Solution of Three-link Planar Arm

Consider the arm shown in Figure 2.20 whose direct kinematics was given in (2.58).
It is desired to find the joint variables ¥, 92, ¥3 corresponding to a given end-effector
position and orientation.

As already pointed out, it is convenient to specify position and orientation in terms
of a minimal number of parameters: the two coordinates p;, py and the angle ¢ with
axis g, in this case. Hence, it is possible to refer to the direct kinematics equation in
the form (2.71).

A first algebraic solution technique is illustrated below. Having specified the
orientation, the relation

¢ =101+ + 93 (2.78)

is one of the equations of the system to solve'?. From (2.58) the following equations

13 If ¢ is not specifi ed, then the arm is redundant and there exist infi nite solutions to the inverse
kinematics problem.
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can be obtained:
PWa = Pz — G3C¢ = A1C1 + Q2C12

2.79)
Pwy = Dy — @3Sy = G151 + Q2812

which describe the position of point W, i.e., the origin of Frame 2; this depends only
on the first two angles ¥; and 9J-. Squaring and summing the two equations in (2.79)
yields

Piva —l—p%vy =aj + a3 + 2a1a2¢9
from which
_ DPiva + Py, —ai — a3
o 2a1as '

Ca

The existence of a solution obviously imposes that —1 < ¢; < 1, otherwise the given
point would be outside the arm reachable workspace. Then, set

§9 = £4/1— 3,

where the positive sign is relative to the elbow-down posture and the negative sign to
the elbow-up posture. Hence, the angle ¢» can be computed as

192 = Atan?(sz, 02).

Having determined ¢J-, the angle ¥; can be found as follows. Substituting ¢ into
(2.79) yields an algebraic system of two equations in the two unknowns s; and ¢y,

whose solution is
(a1 + azcz)PWy — 282wz

51 = 0] 0]
Pw, +pWy
o — (a1 + az2ca2)pwa + a282pwy
1= 5 5 .
Pw, +pWy

In analogy to the above, it is

Y1 = Atan2(s1,¢1).
Finally, the angle 95 is found from (2.78) as

O3 = ¢ — ¥ — Vo

An alternative geometric solution technique is presented below. As above, the
orientation angle is given as in (2.78) and the coordinates of the origin of Frame 2 are
computed as in (2.79). The application of the cosine theorem to the triangle formed by
links a1, a2 and the segment connecting points W and O gives

Piva + Py, = ai + a3 — 2a1as cos (1 — ¥a);
the two admissible configurations of the triangle are shown in Figure 2.29. Observing
that cos (m — ¥2) = —cos leads to
_ Pive + Py, —ai — a3

2&1 as

Ca
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Figure 2.29 Admissible postures for a two-link planar arm.

For the existence of the triangle, it must be | /p}, + p%vy < a; + a». This condition

is not satisfied when the given point is outside the arm reachable workspace. Then, on
the assumption of admissible solutions, it is

¥y = cos ' (c2);
the elbow-up posture is obtained for 95 € (—=,0) while the elbow-down posture is
obtained for ¥ € (0, ).
To find ¥; consider the angles « and 3 in Figure 2.29. Notice that the determination

of o depends on the sign of py,, and pw,; then, it is necessary to compute a as

= AtanQ(pWya sz)'

To compute 3, applying again the cosine theorem yields

s/ Piya +p%yy = a1 + az02,

and resorting to the expression of ¢y given above leads to

2 2 2 2
—1 me+pWy+a’1_a‘2

2a14 /Py, + Py,

with 3 € (0, 7) so as to preserve the existence of triangles. Then, it is

B = cos

191:Oé:|:ﬁ,

where the positive sign holds for 99 < 0 and the negative sign for 12 > 0. Finally, 93
is computed from (2.78).

Itis worth noticing that, in view of the substantial equivalence between the two-link
planar arm and the parallelogram arm, the above techniques can be formally applied
to solve the inverse kinematics of the arm in Section 2.9.2.
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Figure 2.30 Manipulator with spherical wrist.

2.12.2 Solution of Manipulators with Spherical Wrist

Most of the existing manipulators are kinematically simple, since they are typically
formed by an arm, of the kind presented above, and a spherical wrist; both the Stanford
manipulator presented in Section 2.9.6 and the manipulator presented in Section 2.9.7
belong to this class of manipulators. This choice is partly motivated by the difficulty to
find solutions to the inverse kinematics problem in the general case. In particular, a six-
degree-of-mobility kinematic structure has closed-form inverse kinematics solutions
if:

¢ three consecutive revolute joint axes intersect at a common point, like for the
spherical wrist;

e three consecutive revolute joint axes are parallel.

In any case, algebraic or geometric intuition is required to obtain closed-form solutions.

Inspired by the previous solution to a three-link planar arm, a suitable point along
the structure can be found whose position can be expressed both as a function of the
given end-effector position and orientation and as a function of a reduced number of
joint variables. This is equivalent to articulate the inverse kinematics problem into
two subproblems, since the solution for the position is decoupled from that for the
orientation.

For a manipulator with spherical wrist, the natural choice is to locate such point W
at the intersection of the three terminal revolute axes (Figure 2.30). In fact, once the
end-effector position and orientation are specified intermsof pand R =[n s a],
the wrist position can be found as

pw =p —dsa (2.80)
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which is a function of the sole joint variables that determine the arm position'*. Hence,
in the case of a (nonredundant) three-degree-of-mobility arm, the inverse kinematics
can be solved according to the following steps:

e compute the wrist position pw (g1, g2, g3) as in (2.80);
e solve inverse kinematics for (g1, g2, G3);

e compute RS(q1, g2, q3);
e compute R}(d4,95,96) = RITR;
e solve inverse kinematics for orientation (¥4, 95, ¥¢).

Therefore, on the basis of this kinematic decoupling, it is possible to solve the inverse
kinematics for the arm separately from the inverse kinematics for the spherical wrist.
Below are presented the solutions for two typical arms (spherical and anthropomorphic)
as well as the solution for the spherical wrist.

2.12.3 Solution of Spherical Arm

Consider the spherical arm shown in Figure 2.22, whose direct kinematics was given
in (2.61). It is desired to find the joint variables 9,1, ¥2, ds corresponding to a given
end-effector position pyy . In order to separate the variables on which py depends, it
is convenient to express the position of pyy with respect to Frame 1; then, consider the
matrix equation

(A7) 1T = A A5

Equating the first three elements of the fourth columns of the matrices on both sides
yields

PWaCl + PWwyS1 d3s2
pl, = . — | —dses 2.81)
—PwaS1 + PwyC1 ds

which depends only on ¥/, and ds. To solve this equation, set

f = tan 2
= tan —
2
so that ‘
1—¢2 2t
Cl = ——= S§1 = ——.
L1y L1y e

Substituting this equation in the third component on the left-hand side of (2.81) gives

14 Note that the same reasoning was implicitly adopted in Section 2.12.1 for the three-link planar
arm; pw provided the one-degree-of-mobility wrist position for the two-degree-of-mobility arm
obtained by considering only the fi rst two links.
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whose solution is

do + Pwy .

The two solutions correspond to two different postures. Further, if the discriminant is
negative, the solution is not admissible. Hence, it is

¥ = 2Atan2 (—me + Q/p%/vw —I—p%,vy — dﬁ, ds —l—pWy) .

Once ¥ is known, from the first two components of (2.81) it is

t =

PwaCl +PpwysSt  d3ss

b
—DPwz —dzCy

from which
¥y = Atan2(pw,c1 + pWyShsz)~

Finally, squaring and summing the first two components of (2.81) yields

d3 = \/(szcl +pwys1)® + Py

where only the solution with d3 > 0 has been considered.

2.12.4 Solution of Anthropomorphic Arm

Consider the anthropomorphic arm shown in Figure 2.23. It is desired to find the joint
variables 1, ¥2, ¥3 corresponding to a given end-effector position pyy . Notice that
the direct kinematics for pyy is expressed by (2.62) which can be obtained from (2.66)
by setting dg = 0, dy = a3 and replacing ¥3 with the angle ¥3 + w/2 because of
the misalignment of the Frames 3 for the structures in Figure 2.23 and in Figure 2.26,
respectively.

From the particular geometry it is

¥ = Atan2 (pWya Pwz ) .

Observe that another admissible solution is
=7+ AtanQ(pWyapr)

on condition that ¥ be modified into ™ — ¥». Once ¢, is known, the resulting structure
is planar with regard to the variables ¥)» and ¥3. Hence, exploiting the previous solution
of the two-link planar arm in Section 2.12.1 directly gives

’193 = Atan2(53, Cg)

where
2 2

2 2 2 :
cs:pr+pWy+sz_a2_a3 o5 = & /1_C§
2&2(13
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Figure 2.31 The four confi gurations of an anthropomorphic arm compatible with a given wrist

position.
and
¥ = Atan2(ss, c2)
where
(az + aze3)pw: — azs3y [Py, + Piy,
52 = 2 2 2
Py, + pWy + Pw .
(a2 + azes)\ /Py, + iy, + azsspws
Co = .

Plve + Pivy T Py,

It can be recognized that four solutions exist according to the values of 91, 92, ¥3
(Figure 2.31): shoulder-right/elbow-up, shoulder-left/elbow-up, shoulder-right/elbow-
down, shoulder-left/elbow-down; obviously, the forearm orientation is different for the
two pairs of solutions. Notice also that it is possible to find the solutions only if

Pwe 7£ 0 Pwy 7£ 0.

In the case pw, = pwy = 0, an infinity of solutions is obtained, since it is possible
to determine the joint variables s and 3 independently of the value of ¥; in the
following, it will be seen that the arm in such configuration is kinematically singular.

2.12.5 Solution of Spherical Wrist

Consider the spherical wrist shown in Figure 2.24, whose direct kinematics was given
in (2.63). It is desired to find the joint variables ¥4, U5, ¥g corresponding to a given
end-effector orientation R{. As previously pointed out, these angles constitute a set
of Euler angles ZYZ with respect to Frame 3. Hence, having computed the rotation
matrix

3 .3 3

n, s, a

3 _ 3 .3 3
R; = ny S, ay |

3 .3 3

n, s, a
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Figure 2.32 Four-link closed-chain planar arm with prismatic joint.

from its expression in terms of the joint variables in (2.63), it is possible to compute
the solutions directly as in (2.19) and (2.19'), i.e.,
¥y = Atan2(az, al)
95 = Atan2 ( () + (a3)?, af;) (2.82)
s = Atan2(s?, —n?)
for ¥5 € (0, ), and
¥y = Atan2(—aj, —a3)
95 = Atan2 (— (a2)? + (a3)?, afz) (2.82))
Ye = Atan2(—s>,n?)

for ¥5 € (—m,0).

Problems

2.1 Find the rotation matrix corresponding to the set of Euler angles ZXZ.
2.2 Discuss the inverse solution for the Euler angles ZYZ in the case sy = 0.
2.3 Discuss the inverse solution for the Roll-Pitch—Yaw angles in the case ¢y = 0.

2.4 Verify that the rotation matrix corresponding to the rotation by an angle about an
arbitrary axis is given by (2.23).

2.5 Prove that the angle and the unit vector of the axis corresponding to a rotation matrix
are given by (2.25). Find inverse formule in the case of sin 9 = 0.

2.6 Verify that the rotation matrix corresponding to the unit quaternion is given by (2.29).

2.7 Prove that the unit quaternion is invariant with respect to the rotation matrix and its
transpose, i.e., R(n, €)e = RT (1, €)e = €.

2.8 Prove that the unit quaternion corresponding to a rotation matrix is given by (2.30).
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Figure 2.33 Cylindrical arm.

2.9 Prove that the quaternion product is expressed by (2.32).

2.10 By applying the rules for inverting a block-partitioned matrix, prove that matrix Ag is
given by (2.40).

2.11 Find the direct kinematics equation of the four-link closed-chain planar arm in Fig-
ure 2.32, where the two links connected by the prismatic joint are orthogonal to each
other.

2.12 Find the direct kinematics equation for the cylindrical arm in Figure 2.33.
2.13 Find the direct kinematics equation for the SCARA manipulator in Figure 2.34.

2.14 For the set of minimal representations of orientation ¢, defi ne the sum operation in terms
of the composition of rotations. By means of an example, show that the commutative
property does not hold for that operation.

2.15 Consider the elementary rotations about coordinate axes given by infi nitesimal angles.
Show that the rotation resulting from any two elementary rotations does not depend on
the order of rotations. [Hint: for an infi nitesimal angle d¢, approximate cos (d¢) =~ 1
and sin (d¢) = do .. .].
Further, defi ne R(d¢y, d¢y,d¢.) = Ry(dgz)Ry(ddy )R (d¢.); show that

R(dz,dey,dd:)R(d¢y, dd),, d¢.) = R(dps + dgy, dpy + d,, dp. + d.).

2.16 Draw the workspace of the three-link planar arm in Figure 2.20 with the data:
al] = 0.5 as2 = 0.3 a3z = 0.2
—n/3<q1 <7/3 —27/3 < g2 <2m/3 —7/2<qs <7/2.

2.17 Solve the inverse kinematics for the cylindrical arm in Figure 2.33.

2.18 Solve the inverse kinematics for the SCARA manipulator in Figure 2.34.
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Figure 2.34 SCARA manipulator.
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3. Differential Kinematics and Statics

In the previous chapter, direct and inverse kinematics equations establishing the rela-
tionship between the joint variables and the end-effector position and orientation were
derived. In this chapter, differential kinematics is presented which gives the relation-
ship between the joint velocities and the corresponding end-effector linear and angular
velocity. This mapping is described by a matrix, termed geometric Jacobian, which
depends on the manipulator configuration. Alternatively, if the end-effector location
is expressed with reference to a minimal representation in the operational space, it is
possible to compute the Jacobian matrix via differentiation of the direct kinematics
function with respect to the joint variables. The resulting Jacobian, termed analytical
Jacobian, in general differs from the geometric one. The Jacobian constitutes one
of the most important tools for manipulator characterization; in fact, it is useful for
finding singular configuration, analyzing redundancy, determining inverse kinematics
algorithms, describing the mapping between forces applied to the end effector and
resulting torques at the joints (statics) and, as will be seen in the following chapters,
for deriving dynamic equations of motion and designing operational space control
schemes. Finally, the kineto-static duality concept is illustrated, which is at the basis
of the definition of velocity and force manipulability ellipsoids.

3.1 Geometric Jacobian

Consider an n-degree-of-mobility manipulator. The direct kinematics equation can be
written in the form

R
T(q) = (@9  plg)
o’ 1
whereq =[q1 ... ¢,]7 is the vector of joint variables. Both end-effector position

and orientation vary as q varies.

The goal of differential kinematics is to find the relationship between the joint
velocities and the end-effector linear and angular velocities. In other words, it is desired
to express the end-effector linear velocity p and angular velocity w as a function of
the joint velocities ¢ by means of the following relations:

p=Jp(a)d (3.1)
w=Jolq)q; 3.2)

L. Sciavicco et al., Modelling and Control of Robor Manipularors
© Springer-Verlag London Limited 2000
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notice that v and w are free vectors since their directions in space are prescribed but
their points of application and lines of application are not prescribed.

In (3.1) Jp is the (3 x n) matrix relative to the contribution of the joint velocities ¢
to the end-effector linear velocity p, while in (3.2) Jo is the (3 X n) matrix relative
to the contribution of the joint velocities ¢ to the end-effector angular velocity w. In
compact form, (3.1) and (3.2) can be written as

v= [f,] — J(a)q (3.3)

which represents the manipulator differential kinematics equation. The (6 X n) matrix J
is the manipulator geometric Jacobian

Jp

J = Jo

) (3.4

which in general is a function of the joint variables.
In order to compute the geometric Jacobian, it is worth recalling a number of
properties of rotation matrices and some important results of rigid body kinematics.

3.1.1 Derivative of a Rotation Matrix

The manipulator direct kinematics equation in (2.45) describes the end-effector posi-
tion and orientation, as a function of the joint variables, in terms of a position vector and
a rotation matrix. Since the aim is to characterize the end-effector linear and angular
velocity, it is worth considering first the derivative of a rotation matrix with respect to
time.

Consider a time-varying rotation matrix R = R(t). In view of the orthogonality
of R, one has the relation

RHORT(t) =1

which, differentiated with respect to time, gives the identity
Rt)RT(t) + R()R" (t) = O.

Set
S(t) = R(t)RT (t); (3.5)

the (3 x 3) matrix S is skew-symmetric since
St)+ST(t) =o0. (3.6)
Postmultiplying both sides of (3.5) by R(t) gives
R(t) = S(t)R(t) (3.7)

that allows expressing the time derivative of R(t) as a function of R(t) itself.
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The equation in (3.7) relates the rotation matrix R to its derivative by means of the
skew-symmetric operator S and has a meaningful physical interpretation. Consider a
constant vector p’ and the vector p(¢) = R(¢)p’. The time derivative of p(t) is

p(t) = R(t)p’
which, in view of (3.7), can be written as
p(t) = S(t)R(t)p'.

If the vector w(t) denotes the angular velocity of frame R(t) with respect to the
reference frame at time ¢, it is known from mechanics that

p(t) = w(t) x R(t)p'.

Therefore, the matrix operator S () describes the vector product between the vector w
and the vector R(?)p'. The matrix S(¢) is so that its symmeltric elements with respect
to the main diagonal represent the components of the vector w(t) = [w, w, w,]T
in the form

0 —w: wy
S=| w, 0 —wg | (3.8)
—Wy Wy 0

which justifies the expression S(t) = S(w(t)).
Furthermore, if R denotes a rotation matrix, it can be shown that the following
relation holds:

RS(w)RT = S(Rw) (3.9)

which will be useful later.

Example 3.1

Consider the elementary rotation matrix about axis z given in (2.6). If « is a function
of time, by computing the time derivative of R («(t)), (3.5) becomes

—asina —acosa 0 cosa sina 0
S(t)=| @cosa —asina 0| | —sina cosa 0
i 0 0 0 0 0 1
[0 —& 0
=|la 0 0| =8Sw)
|10 0 0

According to (3.8), it is
w=[0 0 &)

that expresses the angular velocity of the frame about axis z.

With reference to Figure 2.11, consider the coordinate transformation of a point P
from Frame 1 to Frame 0; in view of (2.33), this is given by

p’ =0} + Rip'. (3.10)
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Figure 3.1 Characterization of generic Link ¢ of a manipulator.

Differentiating (3.10) with respect to time gives
p°’ =0l + R)p' + Rip"; (3.11)

utilizing the expression of the derivative of a rotation matrix (3.7) and specifying the
dependence on the angular velocity gives

p" = 0] + Rip' + S(w)Rip".

Further, denoting the vector RYp! by r?, it is

P’ =6+ Rip' + w x 7} (3.12)

which is the known form of the velocity composition rule.
Notice that, if p' is fixed in Frame 1, it is

Pl =0 +wd xr? (3.13)

since p' = 0.

3.1.2 Link Velocity

Consider the generic Link ¢ of a manipulator with an open kinematic chain. According
to the Denavit-Hartenberg convention adopted in the previous chapter, Link ¢ connects
Joints ¢ and ¢ + 1; Frame ¢ is attached to Link ¢ and has origin along Joint # + 1 axis,
while Frame ¢ — 1 has origin along Joint ¢ axis (Figure 3.1).

Let p;—1 and p; be the position vectors of the origins of Frames ¢ — 1 and ¢,

respectively. Also, let rfj ; denote the position of the origin of Frame ¢ with respect to
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Frame—1 expressed in Frame ¢ — 1. According to the coordinate transformation (3.10),
one can write' 4
pi=pi-1 + Ri_ir (.
Then, by virtue of (3.12), it is
Pi=pi1+Ri 7 twig x Riari ], (3.14)

=Pi—1 T V-1 T W1 XTi-1

which gives the expression of the linear velocity of Link ¢ as a function of the transla-
tional and rotational velocities of Link ¢ — 1. Note that v;_; ; denotes the velocity of
the origin of Frame 7 with respect to the origin of Frame ¢ — 1.

Concerning link angular velocity, it is worth starting from the rotation composition

R, =R, \R;
from (3.7), its time derivative can be written as
S(wi)R; = S(w;i—1)Ri + Ri_1S(w!Z] ;)R (3.15)

where wf:ii denotes the angular velocity of Frame ¢ with respect to Frame ¢ — 1
expressed in Frame ¢ — 1. From (2.4), the second term on the right-hand side of (3.15)
can be rewritten as

R, 1S(w | )R ' =R, 1S(w_{ )R] |R; 1R]"";

i—1,

in view of property (3.9), it is

Ri_ls(wf:ii)Rj_l = S(Ri_lw’f—l )R,

i—1,1

Then, (3.15) becomes

S(wz)Rl = S(wi,l)Ri + S(Rz;lwl-‘il )Rl

i—1,%

leading to the result
wi =wi—1 + Risjwi |, (3.16)

=Wio1 T Wio1,is

which gives the expression of the angular velocity of Link ¢ as a function of the angular
velocities of Link ¢ — 1 and of Link ¢ with respect to Link ¢ — 1.

! Hereafter, the indication of superscript ‘0° is omitted for quantities referred to Frame 0. Also,
without loss of generality, Frame 0 and Frame 7 are taken as the base frame and the end-eftector
frame, respectively.
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The relations in (3.14) and (3.16) attain different expressions depending on the
type of Joint i (prismatic or revolute).

Prismatic Joint

Since orientation of Frame 7 with respect to Frame ¢ — 1 does not vary by moving Joint
7,1t is
wi—1,; =0. (3.17)

Further, the linear velocity is )
Vi1 = dizi_1 (3.18)

where z;_; is the unit vector of Joint 7 axis. Hence, the expressions of angular veloc-
ity (3.16) and linear velocity (3.14) respectively become

Wi = ws s (3.19)
Di = Pic1 + dizioy +wi X 11, (3.20)

where the relation w; = w;_1 has been exploited to derive (3.20).
Revolute Joint
For the angular velocity it is obviously
Wi—1,; = 192‘Zz>1, 3.21D)
while for the linear velocity it is
Vi1, = Wi1, X Ti1, (3.22)

due to the rotation of Frame ¢ with respect to Frame ¢ — 1 induced by the motion of
Joint ¢. Hence, the expressions of angular velocity (3.16) and linear velocity (3.14)
respectively become

W; = Wi—1 + ﬁizi_l (3.23)
Pi=Pic1 +wi X Tis1s, (3.24)

where (3.16) has been exploited to derive (3.24).

3.1.3 Jacobian Computation

Let the Jacobian in (3.4) be partitioned into the (3 x 1) column vectors as:

Jp1 JPn
J = . . (3.25)

Jo1 Jon

The term ¢;7p; represents the contribution of single Joint ¢ to the end-effector linear
velocity, while the term ¢;30; represents the contribution of single Joint ¢ to the end-
effector angular velocity. In order to compute the Jacobian it is convenient to compute
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the single contributions by distinguishing the case of a prismatic joint (q¢; = d;) from
the case of a revolute joint (g; = ;).
For the contribution to the angular velocity:

e If Joint ¢ is prismatic, from (3.17) it is
Gijoi =0

and then
Joi = 0.

o If Joint 7 is revolute, from (3.21) it is
Gigoi = Vizi1
and then
JOi = Zi-1.

For the contribution to the linear velocity:

o If Joint ¢ is prismatic, from (3.18) it is
Gigpi = dizi1
and then
JPi = Zi-1.

e If Joint ¢ is revolute, observing that the contribution to the linear velocity is to
be computed with reference to the origin of the end-effector frame (Figure 3.2),
it is

qiJpi = Wi—1,; X Ti—1,n
=vizi—1 X (P — Pi—1)
and then
IPi = Zi—1 X (P — Pi—1).

In sum, it is:

{ Z’EI } for a prismatic joint
[;Pf ] - (3.26)
ol [zi_l xz(p B pi_l)} for a revolute joint.
i—1

The equation in (3.26) allow Jacobian computation in a simple, systematic way on
the basis of direct kinematics relations. In fact, the vectors z; 1, p and p;_1 are all
functions of the joint variables. In particular:

e z; 1 is given by the third column of the rotation matrix R&l ,Le.,

zi1=R)(q1)... R 3(qi1)z0 (3.27)
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Figure 3.2 Representation of vectors needed for the computation of the velocity contribution
of a revolute joint to the end-effector linear velocity.

where zo = [0 0 1]7 allows selecting the third column.

e pis given by the first three elements of the fourth column of the transformation
matrix T, i.e., by expressing P in the (4 x 1) homogeneous form

p=AYq) ... Ay (gn)Do (3.28)

where po = [0 0 0 1]% allows selecting the fourth column.

e p,_1 is given by the first three elements of the fourth column of the transfor-
mation matrix T}, , i.e., it can be extracted from

Pic1 = A%aq1) ... A3 (qim1)Po. (3.29)

Remarkably, the above equations can be conveniently used to compute the trans-
lational and rotational velocities of any point along the manipulator structure, as long
as the direct kinematics functions relative to that point are known.

Finally, notice that the Jacobian matrix depends on the frame in which the end-
effector velocity is expressed. The above equations allow computation of the geometric
Jacobian with respect to the base frame. If it is desired to represent the Jacobian in
a different Frame u, it is sufficient to know the relative rotation matrix RY*. The
relationship between velocities in the two frames is

S=[6 »]LE]

which, substituted in (3.3), gives

p] _[R O] ,.
HINER IS
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On the assumption of a time-invariant Frame w, it is

(3.30)

. [R* O
relt 2

where J* denotes the geometric Jacobian in Frame u.

3.2 Jacobian of Typical Manipulator Structures

In the following, the Jacobian is computed for some of the typical manipulator struc-
tures of the previous chapter.

3.2.1 Three-link Planar Arm

In this case, from (3.26) the Jacobian is

J(q) = Zo X (p—po) 21 x(p—p1) 22x(p—p2)
20 Z1 zZ9

Computation of the position vectors of the various links gives

0 aicy aic1 + ascia
Po= 1|0 P=|ars P2 = | @181 + a2512
0 0 0

a1c] + azci2 + azci23
P=|ais1 + a2812 + assi123 | »
0

while computation of the unit vectors of revolute joint axes gives

—
1)

since they are all parallel to axis zg. From (3.25) it is

—a181 —a2812 —azS123 —A2512 — (35123 —A35123

a101 + axc12 + ascias azc12 + azcy23 a3C123
0 0 0
J = 0 0 0 ) (3.31)
0 0 0
1 1 1

In the Jacobian (3.31), only the three nonnull rows are relevant (the rank of the matrix
is at most 3); these refer to the two components of linear velocity along axes xg, Yo
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and the component of angular velocity about axis zg. This result can be derived by
observing that three degrees of mobility allow specification of at most three end-effector
variables; v, w,, wy are always null for this kinematic structure. If orientation is of
no concern, the (2 x 3) Jacobian for the positional part can be derived by considering
just the first two rows, i.e.,

_ | —a@181 — 2512 — (3S123 —G2812 — (35123 —A35123
Jp = . (3.32)
a1¢1 + a2c12 + agcia3 a2C12 + azc123 aszC123

3.2.2 Anthropomorphic Arm

In this case, from (3.26) the Jacobian is

g |2xP=p0) z21x(P-p1) 22x(P-p2)
20 Z1 2 )

Computation of the position vectors of the various links gives

0

c1(a2ca + aszceas)
p = | si(a2cs2 +agees) |,
Q282 + agsa3

while computation of the unit vectors of revolute joint axes gives

0 S1
zZyg = 0 21 =29 = —C1
1 0
From (3.25) it is
—si(asca + ascaz) —ci(azss + agsas) —ascisas
c1(azc2 +azcas)  —si1(azs2 + assaz) —azsiSa3
J= 0 a2 + ascas azCo3 (3.33)
0 S1 S1
0 —C1 —C1
1 0 0

Only three of the six rows of the Jacobian (3.33) are linearly independent. Having
three degrees of mobility only, it is worth considering the upper (3 x 3) block of the
Jacobian

[_51(a202 +ascy3)  —ci(azsy + azsaz) —a301823-|
Jp = | ci(asca +agcaz)  —si(agss + aszszz) —assisas (3.34)
[ 0 ascz + azcas a3C23 J
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that describes the relationship between the joint velocities and the end-effector linear
velocity. This structure does not allow obtaining an arbitrary angular velocity w; in
fact, the two components w, and w, are not independent (s1wy = —ciwWy).

3.2.3 Stanford Manipulator

In this case, from (3.26) it is

g |2x@®—po) zx(p—p1) 2

20 z1 0
23X (p—p3) z4x(p—ps) 25X (p—ps)
23 24 Z5 '

Computation of the position vectors of the various links gives

0 c182d3 — s1d>
Po=p1= |0 P3 =Py =Ps = | s152d3 + c1d
0 cads

[Clszdg — 81d2 + (Cl (020485 + 8205) — 818485)d6-|
P = | s152d3 + c1ds + (81(020485 + s9¢5) + 018485)d6 >
[ 02d3 + (—826485 + 0205)d6 J

while computation of the unit vectors of joint axes gives

0 —S1 C189
z) = 0 21 = C1 Ro = 23 = 8182
1 0 i Co
—C1C284 — 51C4 c1(cacysy + 82c5) — 515455
z4 = | —81c984 + c1C4 z5 = | s1(cacaSs + s2¢5) + 15485
S984 L —89€485 + C2C5

The sought Jacobian can be obtained by developing the computations as in (3.25),
leading to expressing end-effector linear and angular velocity as a function of joint
velocities.

3.3 Kinematic Singularities

The Jacobian in the differential kinematics equation of a manipulator defines a linear

mapping
v =J(q)q (3.35)

between the vector ¢ of joint velocities and the vector v = [pT  w?'|T of end-
effector velocity. The Jacobian is, in general, a function of the configuration q; those
configurations at which J is rank-deficient are termed kinematic singularities. To find
the singularities of a manipulator is of great interest for the following reasons:
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Figure 3.3 Two-link planar arm at a boundary singularity.

(a) Singularities represent configurations at which mobility of the structure is
reduced, i.e., it is not possible to impose an arbitrary motion to the end effector.

(b) When the structure is at a singularity, infinite solutions to the inverse kinematics
problem may exist.

(¢) In the neighbourhood of a singularity, small velocities in the operational space
may cause large velocities in the joint space.

Singularities can be classified into:

e Boundary singularities that occur when the manipulator is either outstretched
or retracted. It may be understood that these singularities do not represent a
true drawback, since they can be avoided on condition that the manipulator is
not driven to the boundaries of its reachable workspace.

o [ntfernal singularities that occur inside the reachable workspace and are gen-
erally caused by the alignment of two or more axes of motion, or else by
the attainment of particular end-effector configurations. Differently from the
above, these singularities constitute a serious problem, as they can be encoun-
tered anywhere in the reachable workspace for a planned path in the operational
space.

Example 3.2

To 1llustrate the behaviour of a manipulator at a singularity, consider a two-link planar
arm. In this case, it is worth considering only the components p,, and p, of the linear
velocity in the plane. Thus, the Jacobian is the (2 X 2) matrix

—a181 —a2812 —@G2S512
J = . (3.36)
a1¢1 + a2C12 a2C12

To analyze matrix rank, consider its determinant given by
det(J) = araas0. (3.37)
For a1, as # 0, it is easy to find that the determinant in (3.37) vanishes whenever

192:0 192:71',
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91 being irrelevant for the determination of singular configurations. These occur when
the arm tip is located either on the outer (¥2 = 0) or on the inner (¢¥s = 7) boundary
of the reachable workspace. Figure 3.3 illustrates the arm posture for 92 = 0.

By analyzing the differential motion of the structure in such configuration, it
can be observed that the two column vectors [ —(a; + az)s; (a; + az)e; |7 and
[—az81 azc1 ]T of the Jacobian become parallel, and thus the Jacobian rank becomes
one; this means that the tip velocity components are not independent (see point (a)
above).

3.3.1 Singularity Decoupling

Computation of internal singularities via the Jacobian determinant may be tedious and
of no easy solution for complex structures. For manipulators having a spherical wrist,
by analogy with what already has been seen for inverse kinematics, it is possible to
split the problem of singularity computation into two separate problems:

e computation of arm singularities resulting from the motion of the first three
or more links,

e computation of wrist singularities resulting from the motion of the wrist joints.

For the sake of simplicity, consider the case n = 6; the Jacobian can be partitioned
into (3 x 3) blocks as follows:

Jiw Jio
J = 3.38
[J21 ng] (3.38)

where, since the outer three joints are all revolute, the expressions of the two right
blocks are respectively

Jp=[zsx(p—ps) zax(P—ps) 2z5%x(p—ps)]

and
J22 = [Zg Z4 25]. (339)

As singularities are typical of the mechanical structure and do not depend on the frames
chosen to describe kinematics, it is convenient to choose the origin of the end-effector
frame at the intersection of the wrist axes (see Figure 2.30). The choice p = pw leads
to

Jig = [ 0 0 O ] ,

since all vectors py — p; are parallel to the unit vectors z;, for ¢ = 3,4, 5, no matter
how Frames 3, 4, 5 are chosen according to Denavit-Hartenberg convention. In view of
this choice, the overall Jacobian becomes a block lower-triangular matrix. In this case,
computation of the determinant is greatly simplified, as this is given by the product of
the determinants of the two blocks on the diagonal, i.e.,

det(J) = det(.]ll)det(.]gz). (340)
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Figure 3.4 Spherical wrist at a singularity.

In turn, a true singularity decoupling has been achieved; the condition
det(J11) =0

leads to determining the arm singularities, while the condition
det(Jy2) =0

leads to determining the wrist singularities.

Notice, however, that this form of Jacobian does not provide the relationship
between the joint velocities and the end-effector velocity, but it allows simplifying
singularity computation. Below the two types of singularities are analyzed in detail.

3.3.2 Wrist Singularities

On the basis of the above singularity decoupling, wrist singularities can be determined
by inspecting the block J55 in (3.39). It can be recognized that the wrist is at a singular
configuration whenever the unit vectors z3, z4, z5 are linearly dependent. The wrist
kinematic structure reveals that a singularity occurs when z3 and zj5 are aligned, i.e.,
whenever

’195 =0 195 =T.

Taking into consideration only the first configuration (Figure 3.4), the loss of mobility
is caused by the fact that rotations of equal magnitude about opposite directions on ¥4
and Y do not produce any end-effector rotation. Further, the wrist is not allowed to
rotate about the axis orthogonal to z4 and z3, (see point (a) above). This singularity
is naturally described in the joint space and can be encountered anywhere inside the
manipulator reachable workspace; as a consequence, special care is to be taken in
programming an end-effector motion.

3.3.3 Arm Singularities

Arm singularities are characteristic of a specific manipulator structure; to illustrate
their determination, consider the anthropomorphic arm (Figure 2.23), whose Jacobian
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e

Figure 3.5 Anthropomorphic arm at an elbow singularity.

for the linear velocity part is given by (3.34). Its determinant is
det(JP) = —agagsg(CLgCQ + a3623).

Like in the case of the planar arm of Example 3.3, the determinant does not depend on
the first joint variable.

For as,as # 0, the determinant vanishes if s3 = 0 and/or (asca + agcas) = 0.
The first situation occurs whenever

19320 193:71'

meaning that the elbow is outstretched (Figure 3.5) or retracted, and is termed el-
bow singularity. Notice that this type of singularity is conceptually equivalent to the
singularity found for the two-link planar arm.

By recalling the direct kinematics equation in (2.62), it can be observed that the
second situation occurs when the wrist point lies on axis zg (Figure 3.6); it is thus
characterized by

Pe =py =0

and is termed shoulder singularity.

Notice that the whole axis zg describes a continuum of singular configurations;
a rotation of ¥ does not cause any translation of the wrist position (the first column
of Jp is always null at a shoulder singularity), and then the kinematics equation admits
infinite solutions; moreover, motions starting from the singular configuration that take
the wrist along the z; direction are not allowed (see point (b) above).

If a spherical wrist is connected to an anthropomorphic arm (Figure 2.26), the
arm direct kinematics is different. In this case the Jacobian to consider represents the
block Jy1 of the Jacobian in (3.38) with p = py . Analyzing its determinant leads to
finding the same singular configurations, which are relative to different values of the
third joint variables, though—compare (2.62) and (2.66).
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Figure 3.6 Anthropomorphic arm at a shoulder singularity.

Finally, it is important to remark that, differently from the wrist singularities, the
arm singularities are well identified in the operational space, and thus they can be
suitably avoided in the end-effector path planning stage.

3.4 Analysis of Redundancy

The concept of kinematic redundancy has been introduced in Section 2.10.2; redun-
dancy is related to the number n of degrees of mobility of the structure, the number
m of operational space variables, and the number r of operational space variables
necessary to specify a given task.

In order to perform a systematic analysis of redundancy, it is worth considering
differential kinematics in lieu of direct kinematics (2.70). To this purpose, (3.35) is to
be interpreted as the differential kinematics mapping relating the n components of the
joint velocity vector to the < m components of the velocity vector v of concern for
the specific task. To clarify this point, consider the case of a three-link planar arm; that
is not intrinsically redundant (n = m = 3) and its Jacobian (3.31) has three null rows
accordingly. If the task does not specify w. (r = 2), the arm becomes functionally
redundant and the Jacobian to consider for redundancy analysis is the one in (3.32).

A different case is that of the anthropomorphic arm for which only position
variables are of concern (n = m = 3). The relevant Jacobian is the one in (3.34).
The arm is neither intrinsically redundant nor can become functionally redundant if
it is assigned a planar task; in that case, indeed, the task would set constraints on the
three components of end-effector linear velocity.

Therefore, the differential kinematics equation to consider can be formally written
as in (3.35), L.e.,

v =J(q)q, (341
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Figure 3.7 Mapping between the joint velocity space and the end-effector velocity space.

where now v is meant to be the (r x 1) vector of end-effector velocity of concern
for the specific task and J is the corresponding (r x n) Jacobian matrix that can be
extracted from the geometric Jacobian; g is the (n x 1) vector of joint velocities. If
r < n, the manipulator is kinematically redundant and there exist (n — r) redundant
degrees of mobility.

The Jacobian describes the linear mapping from the joint velocity space to the end-
effector velocity space. In general, it is a function of the configuration. In the context of
differential kinematics, however, the Jacobian has to be regarded as a constant matrix,
since the instantaneous velocity mapping is of interest for a given posture. The mapping
is schematically illustrated in Figure 3.7 with a typical notation from set theory.

The relationship in (3.41) can be characterized in terms of the range and null
spaces of the mapping; specifically, one has that:

e The range of J is the subspace R(J) in IR" of the end-effector velocities that
can be generated by the joint velocities, in the given manipulator posture.

e The null of J is the subspace N (J) in IR™ of joint velocities that do not
produce any end-effector velocity, in the given manipulator posture.

If the Jacobian has full rank, one has:
dim(R(J)) =r dim(N(J)) =n—r

and the range of J spans the entire space IR". Instead, if the Jacobian degenerates at
a singularity, the dimension of the range space decreases while the dimension of the
null space increases, since the following relation holds:

dim (R(J)) + dim(N(J)) =n

independently of the rank of the matrix .J.

The existence of a subspace N (J) # () for a redundant manipulator allows
determination of systematic techniques for handling redundant degrees of mobility. To
this purpose, if ¢* denotes a solution to (3.41) and P is an (n X n) matrix so that

R(P) = N(J),
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also the joint velocity vector
q4=4q"+ Pqo, (3.42)

with arbitrary ¢o, is a solution to (3.41). In fact, premultiplying both sides of (3.42)
by J yields
JGg=J¢g +JIJPgy=Jqg" =v

since J Pgo = 0 for any qg. This result is of fundamental importance for redundancy
resolution; a solution of the kind (3.42) points out the possibility of choosing the vector
of arbitrary joint velocities gg so as to advantageously exploit the redundant degrees
of mobility. In fact, the effect of g is to generate internal motions of the structure that
do not change the end-effector position and orientation but may allow, for instance,
manipulator reconfiguration into more dexterous postures for execution of a given task.

3.5 Differential Kinematics Inversion

In Section 2.12 it was shown how the inverse kinematics problem admits closed-
form solutions only for manipulators having a simple kinematic structure. Problems
arise whenever the end effector attains a particular position and/or orientation in the
operational space, or the structure is complex and it is not possible to relate end-effector
position and orientation to different sets of joint variables, or else the manipulator is
redundant. These limitations are caused by the highly nonlinear relationship between
joint space variables and operational space variables.

On the other hand, the differential kinematics equation represents a linear map-
ping between the joint velocity space and the operational velocity space, although it
varies with the current configuration. This fact suggests the possibility to utilize the
differential kinematics equation to tackle the inverse kinematics problem.

Suppose that a motion trajectory is assigned to the end effector in terms of v and
the initial conditions on position and orientation. The aim is to determine a feasible
joint trajectory (g(t), g(t)) that reproduces the given trajectory.

By considering (3.41) with n = r, the joint velocities can be obtained via simple
inversion of the Jacobian matrix

qg=J (q)v. (3.43)

If the initial manipulator posture g(0) is known, joint positions can be computed by
integrating velocities over time, i.e.,

alt) = / 4()de + q(0).

The integration can be performed in discrete time by resorting to numerical techniques.
The simplest technique is based on the Euler integration method; given an integration
interval At, if the joint positions and velocities at time ¢, are known, the joint positions
at time tg1 = t + At can be computed as

q(tk+1) = q(tk) + q(tk)At (344)



Differential Kinematics and Statics 97

This technique for inverting kinematics is independent of the solvability of the
kinematic structure. Nonetheless, it is necessary that the Jacobian be square and of
full rank; this demands further insight into the cases of redundant manipulators and
kinematic singularity occurrence.

3.5.1 Redundant Manipulators

When the manipulator is redundant (r < n), the Jacobian matrix has more columns
than rows and infinite solutions exist to (3.41). A viable solution method is to formulate
the problem as a constrained linear optimization problem.

In detail, once the end-effector velocity v and Jacobian J are given (for a given
configuration q), it is desired to find the solutions ¢ that satisfy the linear equation
in (3.41) and minimize the quadratic cost functional of joint velocities

. 1. .
9(q) = §qTWq

where W is a suitable (n x n) symmetric positive definite weighting matrix.
This problem can be solved with the method of Lagrangian multipliers. Consider
the modified cost functional

. 1, . .
9(@:2) = ¢ Wa+ X" (v - Jg)
where A is an (r x 1) vector of unknown multipliers that allows incorporating the

constraint (3.41) in the functional to minimize. The requested solution has to satisfy
the necessary conditions:

WM _y (99 _,
aq - oA o
From the first one, itis W¢q — JTX = 0 and thus

g=w=JgTx (3.45)

where the inverse of W exists. Notice that the solution (3.45) is a minimum, since
9?g/0¢* = W is positive definite. From the second condition above, the constraint

v=Jq
is recovered. Combining the two conditions gives
v=JW g

on the assumption that J has full rank, JW ~1J7 is an (r x r) square matrix of rank r
and thus can be inverted. Solving for A yields

A= (W HghH) 1y
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which, substituted into (3.45), gives the sought optimal solution
g=w gt agw-1J7)"1lv, (3.46)

Premultiplying both sides of (3.46) by J, it is easy to verify that this solution satisfies
the differential kinematics equation in (3.41).

A particular case occurs when the weighting matrix W is the identity matrix I
and the solution simplifies into

g=Jv; (3.47)

the matrix
JH=grggn- (3.48)

is the right pseudo-inverse of J. The obtained solution locally minimizes the norm of
joint velocities.

It was pointed out above that if ¢* is a solution to (3.41), also ¢* + Pqq is a
solution, where g is a vector of arbitrary joint velocities and P is a projector in the
null space of J. Therefore, thanks to the presence of redundant degrees of mobility,
the solution (3.47) can be modified by the introduction of another term of the kind
Pqy. In particular, go can be specified so as to satisfy an additional constraint to the
problem.

In that case, it is necessary to consider a new cost functional in the form

. 1. ..
9'(a) = 5(q = q0)" (@ — o)
this choice is aimed at minimizing the norm of vector ¢ — §g; in other words, solutions
are sought which satisfy the constraint (3.41) and are as close as possible to gg. In this
way, the objective specified through gy becomes unavoidably a secondary objective to

satisfy with respect to the primary objective specified by the constraint (3.41).
Proceeding in a way similar to the above yields

§@2) = 54— @) (@~ o) + AT (v~ Tq);
from the first necessary condition it is
g=J"x+q (3.49)
which, substituted into (3.41), gives
A= (JIT) v = Jqo).
Finally, substituting X back in (3.49) gives
g=Jw+ T - I 0. (3.50)

As can be easily recognized, the obtained solution is composed of two terms. The first
one is relative to minimum norm joint velocities. The second one, termed homogeneous
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solution, attempts to satisfy the additional constraint to specify via ¢o?; the matrix
I-J tr ) is one of those matrices P introduced in (3.42) which allows projecting
the vector go in the null space of J, so as not to violate the constraint (3.41). A
direct consequence is that, in the case v = 0, is is possible to generate internal
motions described by (I —J tr )qo that reconfigure the manipulator structure without
changing the end-effector position and orientation.

Finally, it is worth discussing the way to specify the vector gy for a convenient
utilization of redundant degrees of mobility. A typical choice is

T
do = ko (&g(q)) 3.51)
q

where ko > 0 and w(q) is a (secondary) objective function of the joint variables.
Since the solution moves along the direction of the gradient of the objective function,
it attempts to locally maximize it compatible to the primary objective (kinematic
constraint). Typical objective functions are:

o The manipulability measure, defined as

w(q) = y/det(J(q)J T (q)) (3.52)

which vanishes at a singular configuration; thus, by maximizing this measure,
redundancy is exploited to move away from singularities.

e The distance from mechanical joint limits, defined as

1« i—a
wlg)=—5-> <%> (3.53)

=7 \4iM — im

where ;a7 (¢3m) denotes the maximum (minimum) joint limit and ¢; the
middle value of the joint range; thus, by maximizing this distance, redundancy
is exploited to keep the joint variables as close as possible to the centre of their
ranges.

e The distance from an obstacle, defined as
w(q) = min|jp(g) - of (3.54)

where o is the position vector of a suitable point on the obstacle (its centre,
for instance, if the obstacle is modeled as a sphere) and p is the position
vector of a generic point along the structure; thus, by maximizing this distance,
redundancy is exploited to avoid collision of the manipulator with an obstacle’.

2 It should be recalled that the additional constraint has secondary priority with respect to the
primary kinematic constraint.

3 If an obstacle occurs along the end-effector path, it is opportune to invert the order of priority
between the kinematic constraint and the additional constraint; in this way the obstacle may be
avoided, but one gives up tracking the desired path.
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3.5.2 Kinematic Singularities

Both solutions (3.43) and (3.47) can be computed only when the Jacobian has full rank.
Hence, they become meaningless when the manipulator is at a singular configuration;
in such a case, the system v = .J ¢ contains linearly dependent equations.

Itis possible to find a solution g by extracting all the linearly independent equations
only if v € R(J). The occurrence of this situation means that the assigned path is
physically executable by the manipulator, even though it is at a singular configuration.
If instead v ¢ R(J), the system of equations has no solution; this means that the
operational space path cannot be executed by the manipulator at the given posture.

It 1s important to underline that the inversion of the Jacobian can represent a serious
inconvenience not only at a singularity but also in the neighbourhood of a singularity.
For instance, for the Jacobian inverse it is well known that its computation requires the
computation of the determinant; in the neighbourhood of a singularity, the determinant
takes on a relatively small value which can cause large joint velocities (see point (c¢)
in Section 3.3). Consider again the above example of the shoulder singularity for the
anthropomorphic arm. If a path is assigned to the end effector which passes nearby the
base rotation axis (geometric locus of singular configurations), the base joint is forced
to make a rotation of about 7 in a relatively short time to allow the end effector to keep
tracking the imposed trajectory.

A more rigorous analysis of the solution features in the neighbourhood of singular
configurations can be developed by resorting to the singular value decomposition
(SVD) of matrix J.

An alternative solution overcoming the problem of inverting differential kinematics
in the neighbourhood of a singularity is provided by the so-called damped least-squares
(DLS) inverse

J*=JNJIT + P! (3.55)

where k is a damping factor that renders the inversion better conditioned from a numer-
ical viewpoint. It can be shown that such a solution can be obtained by reformulating
the problem in terms of the minimization of the cost functional

. 1 . . 1.o.7.
9"(@) = 5w =T (v = Jg) + Sk*q"q,
where the introduction of the first term allows tolerating a finite inversion error with
the advantage of norm-bounded velocities. The factor k establishes the relative weight
between the two objectives, and there exist techniques for selecting optimal values for
the damping factor.

3.6 Analytical Jacobian

The above sections have shown the way to compute the end-effector velocity in terms
of the velocity of the end-effector frame. The Jacobian is computed by following a
geometric technique in which the contributions of each joint velocity to the components
of end-effector linear and angular velocity are determined.
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If the end-effector position and orientation are specified in terms of a minimal
number of parameters in the operational space as in (2.68), it is natural to ask whether
it is possible to compute the Jacobian via differentiation of the direct kinematics
function with respect to the joint variables. To this purpose, below an analytical
technique is presented to compute the Jacobian, and the existing relationship between
the two Jacobians is found.

The translational velocity of the end-effector frame can be expressed as the time
derivative of vector p, representing the origin of the end-effector frame with respect to
the base frame, i.e.,

. _Op. i
p=5,9 Jr(q)q. (3.56)

For what concerns the rotational velocity of the end-effector frame, the minimal
representation of orientation in terms of three variables ¢ can be considered. Its time
derivative ¢ in general differs from the angular velocity vector defined above. In any
case, once the function ¢(q) is known, it is formally correct to consider the Jacobian
obtained as

b=2a= s (357
Computing the Jacobian Jy(q) as 0¢/dq is not straightforward, since the function
¢(q) is not usually available in direct form, but requires computation of the elements
of the relative rotation matrix.

Upon these premises, the differential kinematics equation can be obtained as the
time derivative of the direct kinematics equation in (2.70), i.e.,

[ [ o

where the analytical Jacobian
Jalg) = —— (3.59)

is different from the geometric Jacobian J, since the end-effector angular velocity w
with respect to the base frame is not given by ¢.

It is possible to find the relationship between the angular velocity w and the
rotational velocity ¢ for a given set of orientation angles. For instance, consider the
Euler angles ZYZ defined in Section 2.4.1; in Figure 3.8, the vectors corresponding
to the rotational velocities ¢, 9, ¥ have been represented with reference to the current
frame. Figure 3.9 illustrates how to compute the contributions of each rotational
velocity to the components of angular velocity about the axes of the reference frame:

e asaresultof ¢ [w, wy w:]T=¢p[0 0 1]7
e asaresultof J: [w, w, w.]T=9[-s, ¢, 0]T
e as aresult of 1/) [wWe wy ws 17 = 1/) [cos9 SpSp  Co 1*

s
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Figure 3.8 Rotational velocities of Euler angles ZYZ in current frame.

and then the equation relating the angular velocity w to the time derivative of the Euler
angles ¢ is

0 —sp cCpso| | )
w= 1|0 ¢, sps9|P=T(d). (3.60)
1 0 Cy

The determinant of matrix T is —sy, which implies that the relationship cannot be
inverted for ¢ = 0, 7. This means that, even though all rotational velocities of the end-
effector frame can be expressed by means of a suitable angular velocity vector w, there
exist angular velocities which cannot be expressed by means of ¢ when the orientation
of the end-effector frame causes sy = 0. In fact, in this situation, the angular velocities
that can be described by ¢ shall have linearly dependent components in the directions
orthogonal to axis z (w2 + wi = 192). An orientation for which the determinant of the
transformation matrix vanishes is termed representation singularity of ¢.

From a physical viewpoint, the meaning of w is more intuitive than that of ¢. The
three components of w represent the components of angular velocity with respect to
the base frame. Instead, the three elements of ¢ represent nonorthogonal components
of angular velocity defined with respect to the axes of a frame that varies as the end-
effector orientation varies. On the other hand, while the integral of ¢ over time gives ¢,
the integral of w does not admit a clear physical interpretation, as can be seen in the
following example.

Example 3.3

Consider an object whose orientation with respect to a reference frame is known at
time t = 0. Assign the following time profiles to w:

w=[r/2 0 0] 0<t<1 w=[0 w/2 0]T 1<t<2,
w=[0 7/2 0] 0<t<1 w=[r/2 0 0] 1<t<2

4 In Section 2.5, it was shown that for this orientation the inverse solution of the Euler angles
degenerates.
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Figure 3.9 Composition of elementary rotational velocities for computing angular velocity.

The integral of w gives the same result in the two cases

/2wdt:[7r/2 /2 0]

but the final object orientation corresponding to the second time law is clearly different
from the one obtained with the first time law (Figure 3.10).

Once the transformation 7" between w and d) is given, the analytical Jacobian can be
related to the geometric Jacobian as

I o0 ]. .
v = {0 T((ﬁ)} z=Ta(d)x (3.61)

which, in view of (3.3) and (3.58), yields
J=Ty(d)Ja. (3.62)

This relationship shows that J and J 4, in general, differ. Regarding the use of either
one or the other in all those problems where the influence of the Jacobian matters,
it is anticipated that the geometric Jacobian will be adopted whenever it is necessary
to refer to quantities of clear physical meaning, while the analytical Jacobian will be
adopted whenever it is necessary to refer to differential quantities of variables defined
in the operational space.

For certain manipulator geometries, it is possible to establish a substantial equiv-
alence between J and J 4. In fact, when the degrees of mobility cause rotations of the
end effector all about the same fixed axis in space, the two Jacobians are essentially the
same. This is the case of the above three-link planar arm. Its geometric Jacobian (3.31)
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Figure 3.10 Nonuniqueness of orientation computed as the integral of angular velocity.

reveals that only rotations about axis zg are permitted. The (3 x 3) analytical Jacobian
that can be derived by considering the end-effector position components in the plane of
the structure and defining the end-effector orientation as ¢ = 1 + ¥ + 3 coincides
with the matrix that is obtained by eliminating the three null rows of the geometric
Jacobian.

3.7 Inverse Kinematics Algorithms

In Section 3.5 it was shown how to invert kinematics by using the differential kinematics
equation. In the numerical implementation of (3.44), computation of joint velocities is
obtained by using the inverse of the Jacobian evaluated with the joint variables at the
previous instant of time

q(tre1) = q(ty) + T (q(ty))v(ty) At.

It follows that the computed joint velocities ¢ do not coincide with those satisfying
(3.43) in the continuous time. Therefore, reconstruction of joint variables ¢ is entrusted
to a numerical integration which involves drift phenomena of the solution; as a conse-
quence, the end-effector location corresponding to the computed joint variables differs
from the desired one.

This inconvenience can be overcome by resorting to asolution scheme that accounts
for the operational space error between the desired and the actual end-effector position
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and orientation. Let
e=xqy—x=xq— k(q) (3.63)

be the expression of such error, where (2.70) has been used.
Consider the time derivative of (3.63)

eE=x4—T (3.64)
which, according to differential kinematics (3.58), can be written as
e=iq—Jalq)d. (3.65)

Itis worth noticing that the use of operational space quantities has naturally lead to using
the analytical Jacobian in lieu of the geometric Jacobian in (3.65). For this equation to
lead to an inverse kinematics algorithm, it is worth relating the computed joint velocity
vector ¢ to the error e so that (3.65) gives a differential equation describing error
evolution over time. Nonetheless, it is necessary to choose a relationship between ¢
and e that ensures convergence of the error to zero.

Having formulated the inverse kinematics problem in an algorithmic fashion im-
plies that the joint variables g corresponding to the assigned end-effector posture x4
are accurately obtained only when the error e is below a given tolerated threshold;
the settling time depends on the dynamic features of the error differential equation.
The choice of the relationship between ¢ and e allows finding inverse kinematics
algorithms with different performance.

3.7.1 Jacobian (Pseudo-)Inverse

On the assumption that matrix J 4 is square and nonsingular, the choice
q=J;"(a)(@a + Ke) (3.66)
leads to the equivalent linear system
e+ Ke=0. (3.67)

If K is a positive definite (usually diagonal) matrix, the system (3.67) is asymptotically
stable. The error tends to zero along the trajectory with a convergencerate that depends
on the eigenvalues of matrix K; the larger the eigenvalues, the faster the convergence.
Since the scheme is practically implemented as a discrete-time system, it is reasonable
to predict that an upper bound exists on the eigenvalues; depending on the sampling
time, there will be a limit for the maximum eigenvalue of K under which asymptotic
stability of the error system is guaranteed.

The block scheme corresponding to the inverse kinematics algorithm in (3.66) is
illustrated in Figure 3.11, where k() indicates the direct kinematics function in (2.70).
This scheme can be revisited in terms of the usual feedback control schemes. Specifi-
cally, it can observed that the nonlinear block k(-) is needed to compute & and thus the
tracking error e, while the block J ;' (g) has been introduced to compensate for J 4 (q)
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+ v

Figure 3.11 Block scheme of the inverse kinematics algorithm with Jacobian inverse.

and making the system linear. The block scheme shows the presence of a string of
integrators on the forward loop and then, for a constant reference (4 = 0), guarantees
a null steady-state error. Further, the feedforward action provided by &, for a time-
varying reference ensures that the error is kept to zero (in the case e(0) = 0) along
the whole trajectory, independently of the type of desired reference x 4(t). Notice, too,
that (3.66), for 4 = 0, corresponds to the Newton method for solving a system of
nonlinear equations.
In the case of a redundant manipulator, solution (3.66) can be generalized into

q=Jdl @+ Ke)+ (I - J\ I (3.68)

which represents the algorithmic version of solution (3.50).

3.7.2 Jacobian Transpose

A computationally simpler algorithm can be derived by finding a relationship be-
tween ¢ and e that ensures error convergence to zero, without requiring linearization
of (3.65). As a consequence, the error dynamics is governed by a nonlinear differential
equation. The Lyapunov direct method can be utilized to determine a dependence g(e)
that ensures asymptotic stability of the error system. Choose as Lyapunov function
candidate the positive definite quadratic form

1

Vie) = 5eTKe, (3.69)

where K is a symmetric positive definite matrix. This function is so that
Vie) >0 VYe#0, V(0)=0.
Ditferentiating (3.69) with respect to time and accounting for (3.64) gives
V=e"Ki,—e'Ki. (3.70)

In view of (3.58), it is )
V=e"Ki;— e KJs(q)q. (3.71)
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Figure 3.12 Block scheme of the inverse kinematics algorithm with Jacobian transpose.

At this point, the choice of joint velocities as
g=Ji(@Ke (3.72)

leads to )
V=e"Ki;—e"KJs(q)J} (q)Ke. (3.73)

Consider the case of a constant reference (g = 0). The function in (3.73) is negative
definite, on the assumption of full rank for J 4 (g). The condition V < 0 with V > 0
implies that the system trajectories uniformly converge to e = 0, i.e., the system
is asymptotically stable. When N'(J%) # (), the function in (3.73) is only negative
semi-definite, since V =0fore # 0 with Ke e N (Jg). In this case, the algorithm
can get stuck at ¢ = 0 with e # 0. However, the example that follows will show that
this situation occurs only if the assigned end-effector position is not actually reachable
from the current configuration.

The resulting block scheme is illustrated in Figure 3.12, which shows the notable
feature of the algorithm to require computation only of direct kinematics functions
k(q), JL(q). It can be recognized that (3.72) corresponds to the gradient method for
the solution of a system on nonlinear equations.

The case when x4 is a time-varying function (¢4 # 0) deserves a separate analysis.
In order to obtain V < 0 also in this case, it would be sufficient to choose a ¢ that
depends on the (pseudo-)inverse of the Jacobian as in (3.66), recovering the asymptotic
stability result derived above’. For the inversion scheme based on the transpose, the
first term on the right-hand side of (3.73) is not canceled any more and nothing can be
said about its sign. This implies that asymptotic stability along the trajectory cannot be
achieved. The tracking error e(#) is, anyhow, norm-bounded; the larger the norm of K,
the smaller the norm of e®. In practice, since the inversion scheme is to be implemented

5 Notice that, anyhow, in case of kinematic singularities, it is necessary to resort to an inverse
kinematics scheme that does not require inversion of the Jacobian.

% Notice that the negative defi nite term is a quadratic function of the error, while the other term is
a linear function of the error. Therefore, for an error of very small norm, the linear term prevails
over the quadratic term, and the norm of K shall be increased to reduce the norm of e as much
as possible.



108 Modelling and Control of Robot Manipulators

Figure 3.13 Characterization of the anthropomorphic arm at a shoulder singularity for the
admissible solutions of the Jacobian transpose algorithm.

in discrete-time, there is an upper bound on the norm of K with reference to the adopted
sampling time.

Example 3.4

Consider the anthropomorphic arm; a shoulder singularity occurs whenever ascs +
asces = 0 (Figure 3.6). In this configuration, the transpose of the Jacobian in (3.34) is

0 0 0
T
JP = —C1 (a252 + (13823) —Sl(CLgSQ + (13823) 0
—a3C1823 —a381523 a3Ca23

By computing the null space of J3, if v, v, and v, denote the components of vector
v along the axes of the base frame, one has the result

vy 1

— v, =0,
Vg tan 191 -

implying that the direction of N'(J3) coincides with the direction orthogonal to the
plane of the structure (Figure 3.13). The Jacobian transpose algorithm gets stuck if,
with K diagonal and having all equal elements, the desired position is along the line
normal to the plane of the structure at the intersection with the wrist point. On the
other hand, the end effector cannot physically move from the singular configuration
along such line. Instead, if the prescribed path has a nonnull component in the plane

of the structure at the singularity, algorithm convergence is ensured, since in that case
Ke ¢ N(JL).

In sum, the algorithm based on the computation of the Jacobian transpose provides a
computationally efficient inverse kinematics method that can be utilized also for paths
crossing kinematic singularities.
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3.7.3 Orientation Error

The inverse kinematics algorithms presented in the above sections utilize the analytical
Jacobian since they operate on error variables (position and orientation) that are defined
in the operational space.

For what concerns the position error, it is obvious that its expression is given by

ep =pa —p(q) (3.74)

where py and p denote respectively the desired and computed end-effector positions.
Further, its time derivative is

ép =pg— P (3.75)
On the other hand, for what concerns the orientation error, its expression depends

on the particular representation of end-effector orientation; namely, Euler angles, angle
and axis, and unit quaternion.

Euler Angles

The orientation error is chosen according to an expression formally analogous to (3.74),
ie.,

eo = ¢4 — ¢(q) (3.76)

where ¢4 and ¢ denote respectively the desired and computed set of Euler angles.
Further, its time derivative is

éo = da— . (3.77)

Therefore, assuming the neither kinematic nor representation singularities occur, the
Jacobian inverse solution for a nonredundant manipulator is derived from (3.66), i.e.,
R _ p, + Kpep

—J . (q) | P? 378

q A (q) |:¢d + KOeO ( )

where K p and K¢ are positive definite matrices.

As already pointed out in Section 2.10 for computation of the direct kinematics
function in the form (2.70), the determination of the orientation variables from the
joint variables is not easy except for simple cases (see Example 2.5). To this purpose,
it is worth recalling that computation of the angles ¢, in a minimal representation of
orientation, requires computation of the rotation matrix R = [n s a]; in fact, only
the dependence of R on q is known in closed form, but not that of ¢ on q. Further,
the use of inverse functions (Atan2) in (2.19) and (2.21) involves a nonnegligible
complexity in the computation of the analytical Jacobian, and the occurrence of repre-
sentation singularities constitutes another drawback for the orientation error based on
Euler angles.

Different kinds of remarks are to be made about the way to assign a time profile
for the reference variables ¢4 chosen to represent end-effector orientation. The most
intuitive way to specify end-effector orientation is to refer to the orientation of the
end-effector frame (n g4, s4, ag) with respect to the base frame. Given the limitations
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pointed out in Section 2.10 about guaranteeing orthonormality of the unit vectors
along time, it is necessary first to compute the Euler angles corresponding to the initial
and final orientation of the end-effector frame via (2.19) or (2.21); only then a time
evolution can be generated. Such solutions will be presented in Chapter 5.

A radical simplification of the problem at issue can be obtained for manipulators
having a spherical wrist. Section 2.12.2 pointed out the possibility to solve the inverse
kinematics problem for the position part separately from that for the orientation part.
This result has an impact also at algorithmic level. In fact, the implementation of an
inverse kinematics algorithm for determining the joint variables influencing the wrist
position allows computing the time evolution of the wrist frame Ry (¢). Hence, once
the desired time evolution of the end-effector frame R4(¢) is given, it is sufficient to
compute the Euler angles ZYZ from the matrix R, R4 by applying (2.19). As shown
in Section 2.12.5, these angles are directly the joint variables of the spherical wrist.

The above considerations show that the inverse kinematics algorithms based on
the analytical Jacobian are effective for kinematic structures having a spherical wrist
which are of significant interest. For manipulator structures which cannot be reduced
to that class, it may be appropriate to reformulate the inverse kinematics problem on
the basis of a different definition of the orientation error.

Angle and Axis

If Rg=[ng sS4 agq]denotesthe desired rotation matrix of the end-effector frame
and R=[n s a]therotation matrix thatcan be computed from the joint variables,
the orientation error between the two frames can be expressed as

eo =sinvr (3.79)

where ¢ and r identify the angle and axis of the equivalent rotation that can be deduced
from the matrix
R(¥,7) = RaR"(q), (3.80)

describing the rotation needed to align R with R4. Notice that (3.79) gives a unique
relationship for —7m/2 < ¥ < m/2. The angle ¥ represents the magnitude of an
orientation error, and thus the above limitation is not restrictive since the tracking error
is typically small for an inverse kinematics algorithm.

By comparing the off-diagonal terms of the expression of R(¥, ) in (2.23) with
the corresponding terms resulting on the right-hand side of (3.80), it can be found that
a functional expression of the orientation error in (3.79) is

1
eo = §(n(q) X g+ 8(q) X sq+ alq) X ag); (3.81)

the limitation on ¥ is transformed in the condition n”7n, > 0, s7s4 > 0,a” a4 > 0.
Differentiating (3.81) with respect to time and accounting for the expression of the
columns of the derivative of a rotation matrix in (3.7) gives

éo=L"wy— Lw (3.82)
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where
L= _%(5(’”)5(") + S(s4)S(s) + S(aq)S(a)). (3.83)

At this point, by exploiting the relations (3.1) and (3.2) of the geometric Jacobian
expressing p and w as a function of g, (3.75) and (3.82) become

_ pa—Jp(@)q _ | Da I oO]..

ép
éo

The expression in (3.84) suggests the possibility of devising inverse kinematics algo-
rithms analogous to the ones derived above, but using the geometric Jacobian in place of
the analytical Jacobian. For instance, the Jacobian inverse solution for a nonredundant
nonsingular manipulator is

pq+ Kpep

. 71
q= J (q) |:L1 (Lde 4 KOeO) . (385)

It is worth remarking that the inverse kinematics solution based on (3.85) is ex-
pected to perform better than the solution based on (3.78) since it uses the geometric
Jacobian in lieu of the analytical Jacobian, thus avoiding the occurrence of represen-
tation singularities.

Unit Quaternion

In order to devise an inverse kinematics algorithm based on the unit quaternion,
a suitable orientation error shall be defined. Let Qg = {n4,€q4} and Q@ = {n,¢€}
represent the quaternions associated with R, and R, respectively. The orientation
error can be described by the rotation matrix R;RT and, in view of (2.32), can be
expressed in terms of the quaternion AQ = {An, Ae} where

AQ=Q,*Q L (3.86)

It can be recognized that AQ = {1, 0} if and only if R and R are aligned. Hence, it
is sufficient to define the orientation error as

eo = Ae = n(q)eq — nq4e(q) — S(eq)e(q), (3.87)

where the skew-symmetric operator S(-) has been used. Notice, however, that the
explicit computation of 17 and € from the joint variables is not possible but it requires
the intermediate computation of the rotation matrix R that is available from the
manipulator direct kinematics; then, the quaternion can be extracted using (2.30).

At this point, a Jacobian inverse solution can be computed as

i -1 pg + Kpep
- 3.
a=J@| BT R (389

where remarkably the geometric Jacobian has been used. Substituting (3.88) into (3.3)
gives (3.75) and
wyg —w+ Kpep =0. (3.89)
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It should be observed that now the orientation error equation is nonlinear in €o since
it contains the end-effector angular velocity error instead of the time derivative of the
orientation error. To this purpose, it is worth considering the relationship between the
time derivative of the quaternion Q and the angular velocity w. This can be found to

be .
n= —56Tw
(3.90)

e= 1l —S(©)w

which is the so-called quaternion propagation. A similar relationship holds between
the time derivative of Q4 and wy.
To study stability of system (3.89), consider the positive definite Lyapunov function
candidate
V=(na—n)®+(ea—€)(eq—e). (3.91)

In view of (3.90), differentiating (3.91) with respect to time and accounting for (3.89)
yields
V = —e,Koeo (3.92)

which is negative definite, implying that e converges to zero.
In sum, the inverse kinematics solution based on (3.88) uses the geometric Jacobian
as the solution based on (3.85) but is computationally lighter.

3.74 A Comparison Between Inverse Kinematics Algorithms

In order to make a comparison of performance between the inverse kinematics algo-
rithms presented above, consider the three-link planar arm in Figure 2.20 whose link
lengths are a; = a» = ag = 0.5m. The direct kinematics for this arm is given by
(2.71), while its Jacobian can be found from (3.31) by considering the three nonnull
rows of interest for the operational space.

Let the arm be at the initial posture ¢ = [*  —7/2 —n/2]% rad, corresponding
to the end-effector location: p = [0 0.5]7 m, ¢ = Orad. A circular path of radius
0.25m and centre at (0.25,0.5) m is assigned to the end effector. Let the motion
trajectory be

0<t <4,

1 0.25(1 — coswt)
palt) = [0.25(2 + sinwt)]

i.e., the end effector shall make two complete circles in a time of 2s per circle. As
regards end-effector orientation, initially it is required to follow the trajectory

™
t) =sin —t 0<t<4,
¢a(t) = sin o <t<
i.e., the end effector shall attain a different orientation (¢4 = 0.5rad) at the end of the
two circles.
The inverse kinematics algorithms were implemented on a computer by adopting
the Euler numerical integration scheme (3.44) with an integration time At = 1 ms.
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Figure 3.14 Time history of the norm of end-effector position error and orientation error with
the open-loop inverse Jacobian algorithm.
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Figure 3.15 Time history of the joint positions and velocities, and of the norm of end-effector
position error and orientation error with the closed-loop inverse Jacobian algorithm.

At first, the inverse kinematics along the given trajectory has been performed by
using (3.43). The obtained results in Figure 3.14 show that the norm of the position
error along the whole trajectory is bounded; at steady state, after t = 4, the error sets
to a constant value in view of the typical drift of open-loop schemes. A similar drift
can be observed for the orientation error.

Next, the inverse kinematics algorithm based on (3.66) using the Jacobian inverse
has been used, with the matrix gain K = diag{500, 500, 100}. The resulting joint
positions and velocities as well as the tracking errors are shown in Figure 3.15. The
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Figure 3.16 Time history of the norm of end-effector position error and orientation with the
Jacobian pseudo-inverse algorithm.
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Figure 3.17 Time history of the norm of end-effector position error and orientation with the
Jacobian transpose algorithm.

norm of the position error is radically decreased and converges to zero at steady state,
thanks to the closed-loop feature of the scheme; the orientation error, too, is decreased
and tends to zero at steady state.

On the other hand, if the end-effector orientation is not constrained, the operational
space becomes two-dimensional and is characterized by the first two rows of the direct
kinematics in (2.71) as well as by the Jacobian in (3.32); a redundant degree of mobility
is then available. Hence, the inverse kinematics algorithm based on (3.68) using the
Jacobian pseudo-inverse has been used with K = diag{500, 500}. If redundancy is
not exploited (gg = 0), the results in Figure 3.16 reveal that position tracking remains
satisfactory and, of course, the end-effector orientation freely varies along the given
trajectory.

With reference to the previous situation, the use of the Jacobian franspose algorithm
based on (3.72) with K = diag{500, 500} gives rise to a tracking error (Figure 3.17)
which is anyhow bounded and rapidly tends to zero at steady state.

In order to show the capability of handling the degree of redundancy, the algorithm
based on (3.68) with g # 0 has been used; two types of constraints have been
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Figure 3.18 Time history of the joint positions, the norm of end-effector position error, and the
manipulability measure with the Jacobian pseudo-inverse algorithm and manipu-
lability constraint; upper left—with the unconstrained solution, upper right—with
the constrained solution.

considered concerning an objective function to locally maximize. The first function is

w(ia, B5) = 3 (53 +53)

that provides a manipulability measure. Notice that such function is computationally
simpler than the function in (3.52), but it still describes a distance from kinematic
singularities in an effective way. The gain in (3.51) has been set to k9 = 50. In
Figure 3.18, the joint trajectories are reported for the two cases with and without (ko =
0) constraint. The addition of the constraint leads to having coincident trajectories for
Joints 2 and 3. The manipulability measure in the constrained case (continuous line)
attains larger values along the trajectory compared to the unconstrained case (dashed
line). It is worth underlining that the tracking position error is practically the same in
the two cases (Figure 3.16), since the additional joint velocity contribution is projected
in the null space of the Jacobian so as not to alter the performance of the end-effector
position task.

Finally, it is worth noticing that in the constrained case the resulting joint trajecto-
ries are cyclic, i.e., they take on the same values after a period of the circular path. This
does not happen for the unconstrained case, since the internal motion of the structure
causes the arm to be in a different posture after one circle.

The second objective function considered 1s the distance from mechanical joint
limits in (3.53). Specifically, it is assumed what follows: the first joint does not have
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Figure 3.19 Time history of the joint positions and the norm of end-effector position error with
the Jacobian pseudo-inverse algorithm and joint limit constraint (joint limits are
denoted by dashed lines).

limits (g1, = —27, q1pr = 27), the second joint has limits g2, = —7/2, g2pr = 7/2,
and the third joint has limits ¢z, = —37/2, g3 = —7/2. It is not difficult to verify
that, in the unconstrained case, the trajectories of Joints 2 and 3 violate the respective
limits. The gain in (3.51) has been set to kg = 250. The results in Figure 3.19 show
the effectiveness of the technique with utilization of redundancy, since both Joints 2
and 3 tend to invert their motion—with respect to the unconstrained trajectories in
Figure 3.18—and keep far from the minimum limit for Joint 2 and the maximum limit
for Joint 3, respectively. Such an effort does not appreciably affect the position tracking
error, whose norm is bounded anyhow within acceptable values.

3.8 Statics

The goal of statics is to determine the relationship between the generalized forces
applied to the end effector and the generalized forces applied to the joints—forces for
prismatic joints, torques for revolute joints—with the manipulator at an equilibrium
configuration.

Let T denote the (n x 1) vector of joint torques and -~y the (r x 1) vector of
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end-effector forces’ where r is the dimension of the operational space of interest.

The application of the principle of virtual work allows determination of the required
relationship. The mechanical manipulators considered are systems with time-invariant,
holonomic constraints, and thus their configurations depend only on the joint variables
g and not explicitly on time. This implies that virtual displacements coincide with
elementary displacements.

Consider the elementary works performed by the two force systems. As for the
joint torques, the elementary work associated with them is

dw,. = t1dq. (3.92)

As for the end-effector forces =, if the force contributions f are separated by the
moment contributions p, the elementary work associated with them is

dW,, = fldp + p* wdt, (3.94)

where dp is the linear displacement and wdt is the angular displacement®.
By accounting for the differential kinematics relationship in (3.3) and (3.4), (3.94)

can be rewritten as . .
dW. = f* Jp(q)dq + p” Jo(q)dq

=~"J(q)dq

where v = [T p”]7. Since virtual and elementary displacements coincide, the
virtual works associated with the two force systems are

(3.95)

oW, =1Téq (3.96)
W, =~"J(q)dq, (3.97)

where ¢ is the usual symbol to indicate virtual quantities.
According to the principle of virtual work, the manipulator is at static equilibrium
if and only if
W, =W, =0 Yéq, (3.98)

i.e., the difference between the virtual work of the joint torques and the virtual work
of the end-effector forces shall be null for all joint displacements.

From (3.97), notice that the virtual work of the end-effector forces is null for any
displacement in the null space of J. This implies that the joint torques associated with
such displacements must be null at static equilibrium. In that case, substituting (3.96)
and (3.97) in (3.98) leads to the notable result

r=J%(q)~, (3.99)

7 Hereafter, generalized forces at the joints are often called torques, while generalized forces at
the end effector are often called forces.

® The angular displacement has been indicated by wdt in view of the problems of integrability
of w discussed in Section 3.6.
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Figure 3.20 Mapping between the end-effector force space and the joint torque space.

stating that the relationship between the end-effector forces and the joint torques is
established by the transpose of the manipulator geometric Jacobian.

3.8.1 Kineto-statics Duality

The statics relationship in (3.99), combined with the ditferential kinematics equation in
(3.41), points out a property of kineto-statics duality. In fact, by adopting a representa-
tion similar to that of Figure 3.7 for differential kinematics, one has that (Figure 3.20):

e The range of J7 is the subspace R(J7) in IR™ of the joint torques that can
balance the end-effector forces, in the given manipulator posture.

e The null of J7 is the subspace A'(JT) in IR" of the end-effector forces that
do not require any balancing joint torques, in the given manipulator posture.

It is worth remarking that the end-effector forces v € N(J7) are entirely absorbed
by the structure in that the mechanical constraint reaction forces can balance them
exactly. Hence, a manipulator at a singular configuration remains in the given posture
whatever end-effector force ~ is applied so that v € N'(JT).

The relations between the two subspaces are established by:

NI =RIT) R(J) = NI

and then, once the manipulator Jacobian is known, it is possible to completely char-
acterize differential kinematics and statics in terms of the range and null spaces of the
Jacobian and its transpose.

On the basis of the above duality, the inverse kinematics scheme with the Jaco-
bian transpose in Figure 3.12 admits an interesting physical interpretation. Consider a
manipulator with ideal dynamics 7 = ¢ (null masses and unit viscous friction coeffi-
cients); the algorithm update law ¢ = J” Ke plays the role of a generalized spring
of stiffness constant K generating a force Ke that pulls the end effector towards
the desired posture in the operational space. If this manipulator is allowed to move,
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Figure 3.21 Representation of linear and angular velocities in different coordinate frames on
the same rigid body.

e.g., in the case Ke ¢ N (J T), the end effector attains the desired posture and the
corresponding joint variables are determined.

3.8.2 Velocity and Force Transformation

The kineto-statics duality concept presented above can be useful to characterize the
transformation of velocities and forces between two coordinate frames.

Consider a reference coordinate frame Og—2xo%02o and a rigid body moving with
respect to such frame. Let then O1—x1y1 21 and Os—x2y222 be two coordinate frames
attached to the body (Figure 3.21). The relationships between translational and ro-
tational velocities of the two frames with respect to the reference frame are given
by:

Wz = W,
P2 = D1 + w1 X 12,

By exploiting the skew-symmetric operator S(-) in (3.8), the above relations can be

compactly written as
pz _ I -8 (r12 ) pl
|:(.U2:| o [0 I w1 ) (3100)

All vectors in (3.100) are meant to be referred to the reference frame Og—zoyozo. On
the other hand, if vectors are referred to their own frames, it is:

T12 = Rl’f‘b
and also ) . ) D L
1= Rip; D2 = Rops = R R,y p;

Wi = le% Wo = RQ&J? = RlR%(.ué
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Accounting for (3.100) and (3.9) gives

RiR}p3 = Rip; — R1S(r,) R Riw)

Eliminating the dependence on R, which is premultiplied to each term on both sides
of the previous relations, yields’

2=l =L

w5 wi

(3.101)

giving the sought general relationship of velocity transformation from one frame to
another.

It may be observed that the transformation matrix in (3.101) plays the role of a
true Jacobian, since it characterizes a velocity transformation, and thus (3.101) may
be shortly written as

v = Jv;. (3.102)

At this point, by virtue of the kineto-statics duality, the force transformation from one
frame to another can be directly derived in the form

v =Ji"y (3.103)

which can be detailed into'

M- lsonm =) ()
- . (3.104)
Ll& S(riy)Rs R3| [p3

Finally, notice that the above analysis is instantaneous in that, if a coordinate frame
varies with respect to the other, it is necessary to recompute the Jacobian of the
transformation through the computation of the related rotation matrix of one frame
with respect to the other.

3.8.3 Closed Chain

As discussed in Section 2.8.3, whenever the manipulator contains a closed chain, there
is a functional relationship between the joint variables. In particular, the closed chain
structure is transformed into a tree-structured open chain by virtually cutting the loop
at a joint. It is worth choosing such cut joint as one of the unactuated joints. Then,
the constraints (2.54) or (2.55) shall be solved for a reduced number of joint variables,
corresponding to the degrees of mobility of the chain. Therefore, it is reasonable to
assume that at least such independent joints are actuated, while the others may or

® Recall that RTR = I, as in (2.4).
' The skew-symmetry property § + 87 = O is utilized.
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may not be actuated. Let ¢, = [gq] gl ]T denote the vector of joint variables of the
tree-structured open chain, where g, and g,, are the vectors of actuated and unactuated
joint variables, respectively. Assume that from the above constraints it is possible to
determine a functional expression

Qu = qu(qa)- (3.105)

Time differentiation of (3.105) gives the relationship between joint velocities in the
form

4% =7q, (3.106)
where
I
Y = | dq. (3.107)
04,

is the transformation matrix between the two vectors of joint velocities, which in turn
plays the role of a Jacobian.

At this point, according to an intuitive kineto-statics duality concept, it is possible
to describe the transformation between the corresponding vectors of joint torques in
the form

17.=2"r, (3.108)

T

where 7, = [77 7T]", with obvious meaning of the quantities.

Example 3.5

Consider the parallelogram arm of Section 2.9.2. On the assumption to actuate the two
Joints 1’ and 1" at the base, it is g, = [V D1» ]T and g, = [V O3 ]T. Then,
using (2.59), the transformation matrix in (3.107) is

0
0 1
1

Hence, in view of (3.108), the torque vector of the actuated joints is

| T — T + T
To = {Tl” Ty — Ts/] (3.109)

while obviously 7, = [0 0]” in agreement with the fact that both Joints 2/ and 3'
are unactuated.

3.9 Manipulability Ellipsoids

The differential kinematics equation in (3.41) and the statics equation in (3.99), to-
gether with the duality property, allow the definition of indices for the evaluation of
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manipulator performance. Such indices can be helpful both for mechanical manipula-
tor design and for determining suitable manipulator postures to execute a given task in
the current configuration.

First, it is desired to represent the attitude of a manipulator to arbitrarily change end-
effector position and orientation. This capability is described in an effective manner
by the velocity manipulability ellipsoid.

Consider the set of joint velocities of constant (unit) norm

atg=1; (3.110)

this equation describes the points on the surface of a sphere in the joint velocity space.
It is desired to describe the operational space velocities that can be generated by the
given set of joint velocities, with the manipulator in a given posture. To this purpose,
one can utilize the differential kinematics equation in (3.41) solved for the joint
velocities; in the general case of a redundant manipulator (r < n) at a nonsingular
configuration, the minimum-norm solution ¢ = JT(q)v can be considered which,
substituted into (3.110), yields

o (1T ()T (@))w = 1.
Accounting for the expression of the pseudo-inverse of J in (3.48) gives
v (I ()T "(q)) v =1, (3.111)

which is the equation of the points on the surface of an ellipsoid in the end-effector
velocity space.

The choice of the minimum-norm solution rules out the presence of internal
motions for the redundant structure. If the general solution (3.50) is used for g, the
points satisfying (3.110) are mapped into points inside the ellipsoid whose surface is
described by (3.111).

For a nonredundant manipulator, the differential kinematics solution (3.43) is used
to derive (3.111); in this case the points on the surface of the sphere in the joint velocity
space are mapped into points on the surface of the ellipsoid in the end-effector velocity
space.

Along the direction of the major axis of the ellipsoid, the end effector can move at
large velocity, while along the direction of the minor axis small end-effector velocities
are obtained. Further, the closer the ellipsoid is to a sphere—unit eccentricity—the bet-
ter the end effector can move isotropically along all directions of the operational space.
Hence, it can be understood why this ellipsoid is an index characterizing manipulation
ability of the structure in terms of velocities.

As can be recognized from (3.111), the shape and orientation of the ellipsoid are
determined by the core of its quadratic form and then by the matrix JJT which is
in general a function of the manipulator configuration. The directions of the principal
axes of the ellipsoid are determined by the eigenvectors u;, for¢ = 1,...,r, of the
matrix JJ7T, while the dimensions of the axes are given by the singular values of J,
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Figure 3.22 Velocity manipulability ellipses for a two-link planar arm in different postures.

i = /ANi(JJIT), fori = 1,...,r, where \;(JJT) denotes the generic eigenvalue
of JJT.

A global representative measure of manipulation ability can be obtained by con-
sidering the volume of the ellipsoid. This volume is proportional to the quantity

w(q) = 1/det(J(q)T7 (q)),

which is the manipulability measure already introduced in (3.52). In the case of a
nonredundant manipulator (r = n), w reduces to

w(q) = |det(J(q))]. (3.112)

It 1s easy to recognize that it is always w > 0, except for a manipulator at a singular
configuration when w = 0. For this reason, this measure is usually adopted as a
distance of the manipulator from singular configurations.

Example 3.6

Consider the two-link planar arm. From the expression in (3.37), the manipulability
measure is in this case
w = |[det(J)| = ara2|s2|-

Therefore, as a function of the arm postures, the manipulability is maximum for
2 = £m/2. On the other hand, for a given constant reach a; + az, the structure
offering the maximum manipulability, independently of ¥; and ¥J», is the one with
a; = as.

These results have an intuitive interpretation in the human arm, if that is regarded
as a two-link arm (arm + forearm). The condition a; = a» is satisfied with good
approximation. Further, the elbow angle ¢}, is usually in the neighbourhood of 7/2 in
the execution of several tasks, such as that of writing. Hence, the human being tends to
dispose the arm in the most dexterous configuration from a manipulability viewpoint.

Figure 3.22 illustrates the velocity manipulability ellipses for a certain number of
postures with the tip along the horizontal axis and a; = a; = 1. It can be seen that
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Figure 3.23 Minimum and maximum singular values of J for a two-link planar arm as a
function of the arm posture.

when the arm is outstretched the ellipsoid is very thin along the vertical direction.
Hence, one recovers the result anticipated in the study of singularities that the arm
in this posture can generate tip velocities preferably along the vertical direction. In
Figure 3.23, moreover, the behaviour of the minimum and maximum singular values of
the matrix J is illustrated as a function of tip position along axis x; it can be verified that
the minimum singular value is null when the manipulator is at a singularity (retracted
or outstretched).

The manipulability measure w has the advantage to be easy to compute, through
the determinant of matrix JJT. However, its numerical value does not constitute an
absolute measure of the actual closeness of the manipulator to a singularity. It is enough
to consider the above example and take two arms of identical structure, one with links
of 1 m and the other with links of 1¢m. Two different values of manipulability are
obtained which differ by four orders of magnitude. Hence, in that case it is convenient
to consider only |so|—eventually |2 |—as the manipulability measure. In more general
cases when it is not easy to find a simple, meaningful index, one can consider the ratio
between the minimum and maximum singular values of the Jacobian o, /oy which
is equivalent to the inverse of the condition number of matrix J. This ratio gives
not only a measure of the distance from a singularity (¢, = 0), but also a direct
measure of eccentricity of the ellipsoid. The disadvantage in utilizing this index is its
computational complexity; it is practically impossible to compute it in symbolic form,
i.e., as a function of the joint configuration, except for matrices of reduced dimension.

On the basis of the existing duality between differential kinematics and statics,
it is possible to describe the manipulability of a structure not only with reference to
velocities, but also with reference to forces. To be specific, one can consider the sphere

in the space of joint torques

Tr=1 (3.113)

which, accounting for (3.99), is mapped into the ellipsoid in the space of end-effector
forces

Y (T (@I (q))y =1 (3.114)
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Figure 3.24 Force manipulability ellipses for a two-link planar arm in different postures.

which is defined as the force manipulability ellipsoid. This ellipsoid characterizes the
end-effector forces that can be generated with the given set of joint torques, with the
manipulator in a given posture.

As can be easily recognized from (3.114), the core of the quadratic form is consti-
tuted by the inverse of the matrix core of the velocity ellipsoid in (3.111). This feature
leads to the notable result that the principal axes of the force manipulability ellipsoid
coincide with the principal axes of the velocity manipulability ellipsoid, while the di-
mensions of the respective axes are in inverse proportion. Therefore, according to the
concept of force/velocity duality, a direction along which good velocity manipulability
is obtained is a direction along which poor force manipulability is obtained, and vice
versa.

In Figure 3.24, the manipulability ellipses for the same postures as those of the
example in Figure 3.22 are illustrated. A comparison of the shape and orientation of the
ellipses confirms the force/velocity duality effect on the manipulability along different
directions.

It is worth pointing out that these manipulability ellipsoids can be represented
geometrically in all cases of an operational space of dimension at most three. Therefore,
if it is desired to analyze manipulability in a space of greater dimension, it is worth
separating the components of linear velocity (force) from those of angular velocity
(moment), avoiding also problems due to nonhomogeneous dimensions of the relevant
quantities (e.g., m/s vs. rad/s). For instance, for a manipulator with a spherical wrist,
the manipulability analysis is naturally prone to a decoupling between arm and wrist.

An effective interpretation of the above results can be achieved by regarding
the manipulator as a mechanical transformer of velocities and forces from the joint
space to the operational space. Conservation of energy dictates that an amplification
in the velocity transformation is necessarily accompanied by a reduction in the force
transformation, and vice versa. The transformation ratio along a given direction is
determined by the intersection of the vector along that direction with the surface of
the ellipsoid. Once a unit vector u along a direction has been assigned, it is possible
to compute the transformation ratio for the force manipulability ellipsoid as

—1/2
a(q) = (uTJ(q)JT(q)u> , (3.115)
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velocity

Figure 3.25 Velocity and force manipulability ellipses for a three-link planar arm in a typical
confi guration for a task of controlling force and velocity.

and for the velocity manipulability ellipsoid as

—1/2
Blq) = (uT(J<q>JT(q))‘1u> : (3.116)

The manipulability ellipsoids can be conveniently utilized not only for analyzing
manipulability of the structure along different directions of the operational space, but
also for determining compatibility of the structure to execute a task assigned along a
direction. To this purpose, it is useful to distinguish between actuation tasks and control
tasks of velocity and force. In terms of the relative ellipsoid, the task of actuating a
velocity (force) requires preferably a large transformation ratio along the task direction,
since for a given set of joint velocities (forces) at the joints it is possible to generate
a large velocity (force) at the end effector. On the other hand, for a control task it is
important to have a small transformation ratio so as to gain good sensitivity to errors
that may occur along the given direction.

Revisiting once again the duality between velocity manipulability ellipsoid and
force manipulability ellipsoid, it can be found that an optimal direction to actuate a
velocity is also an optimal direction to control a force. Analogously, a good direction
to actuate a force is also a good direction to control a velocity.

To have a tangible example of the above concept, consider the typical task of
writing on a horizontal surface for the human arm; this time, the arm is regarded
as a three-link planar arm: arm + forearm + hand. Restricting the analysis to a two-
dimensional task space (the direction vertical to the surface and the direction of the
line of writing), one has to achieve fine control of the vertical force (pressing of the
pen on the paper) and of the horizontal velocity (to write in good calligraphy). As
a consequence, the force manipulability ellipse tends to be oriented horizontally for
correct task execution. Correspondingly, the velocity manipulability ellipse tends to
be oriented vertically in perfect agreement with the task requirement. In this case,
from Figure 3.25 the typical configuration of the human arm when writing can be
recognized.

An opposite example to the previous one is that of the human arm when throwing
a load in the horizontal direction. In fact, now it is necessary to actuate a large vertical
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velocity

throwing direction

Figure 3.26 Velocity and force manipulability ellipses for a three-link planar arm in a typical
confi guration for a task of actuating force and velocity.

force (to sustain the weight) and a large horizontal velocity (to throw the load at a
considerable distance). Differently from the above, the force (velocity) manipulability
ellipse tends to be oriented vertically (horizontally) to successfully execute the task.
The relative configuration in Figure 3.26 is representative of the typical attitude of the
human arm when, for instance, throwing a bowl in the bowling game.

In the above two examples, it is worth pointing out that the presence of a two-
dimensional operational space is certainly advantageous to try reconfiguring the struc-
ture in the best configuration compatible with the given task. In fact, the transformation
ratios defined in (3.115) and (3.116) are scalar functions of the manipulator configura-
tions that can be optimized locally according to the technique for exploiting redundant
degrees of mobility previously illustrated.

Problems

3.1 Prove (3.9).

3.2 Compute the Jacobian of the cylindrical arm in Figure 2.33.

3.3 Compute the Jacobian of the SCARA manipulator in Figure 2.34.
3.4 Find the singularities of the three-link planar arm in Figure 2.20.
3.5 Find the singularities of the spherical arm in Figure 2.22.

3.6 Find the singularities of the cylindrical arm in Figure 2.33.

3.7 Find the singularities of the SCARA manipulator in Figure 2.34.

3.8 For the three-link planar arm in Figure 2.20, find an expression of the distance of the
arm from a circular obstacle of given radius and coordinates.

3.9 Find the solution to the ditferential kinematics equation with the damped least-square
inverse in (3.55).

3.10 Prove (3.60) in an alternative way, i.e., by computing S(w) as in (3.5) starting from
R(¢) in (2.18).

3.11 With reference to (3.60), find the transformation matrix T'(¢p) in the case of Roll-
Pitch—Yaw angles.
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3.12

3.13

3.14
3.15
3.16

3.17
3.18
3.19

3.20

3.21

3.22

Modelling and Control of Robot Manipulators

Show how the inverse kinematics scheme of Figure 3.11 can be simplifi ed in the case
of a manipulator having a spherical wrist.

Find an expression of the upper bound on the norm of e for the solution (3.72) in the
case &4 7 0.

Prove (3.81).
Prove (3.82) and (3.83).

Prove that the equation relating the angular velocity to the time derivative of the
quaternion is given by
w = 25(€)é + 2ne — 27e.

[Hint: start showing that (2.29) can be rewritten as R(n, €) = (2n*> — 1)I + 2ee” +
2nS(e)].

Prove (3.90).

Prove that the time derivative of the Lyapunov function in (3.91) is given by (3.92).

Show that the manipulability measure defi ned in (3.52) is given by the product of the
singular values of the Jacobian matrix.

Consider the three-link planar arm in Figure 2.20, whose link lengths are respectively
0.5m, 0.3m, 0.3 m. Perform a computer implementation of the inverse kinematics
algorithm using the Jacobian pseudo-inverse along the operational space path given
by a straight line connecting the points of coordinates (0.8, 0.2) m and (0.8, —0.2) m.
Add a constraint aimed at avoiding link collision with a circular object located at
o = [0.3 0]F m of radius 0.1 m. The initial arm confi guration is chosen so that
p(0) = pq(0). The final time is 2 s. Use sinusoidal motion time laws. Adopt the Euler
numerical integration scheme (3.44) with an integration time At = 1 ms.

Consider the SCARA manipulator in Figure 2.34, whose links both have a length of
0.5 m and are located at a height of 1 m from the supporting plane. Perform a computer
implementation of the inverse kinematics algorithms with both Jacobian inverse and
Jacobian transpose along the operational space path whose position is given by a straight
line connecting the points of coordinates (0.7,0,0) m and (0, 0.8, 0.5) m, and whose
orientation is given by a rotation from 0 rad to w/2 rad. The initial arm confi guration
is chosen so that (0) = x4(0). The final time is 2s. Use sinusoidal motion time
laws. Adopt the Euler numerical integration scheme (3.44) with an integration time
At = 1ms.

Prove that the directions of the principal axes of the force and velocity manipulability
ellipsoids coincide while their dimensions are in inverse proportion.
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4. Dynamics

Derivation of the dynamic model of a manipulator plays an important role for simu-
lation of motion, analysis of manipulator structures, and design of control algorithms.
Simulating manipulator motion allows testing control strategies and motion planning
techniques without the need to use a physically available system. The analysis of the
dynamic model can be helpful for mechanical design of prototype arms. Computation
of the forces and torques required for the execution of typical motions provides useful
information for designing joints, transmissions and actuators. The goal of this chapter
is to present two methods for derivation of the equations of motion of a manipulator
in the joint space. The first method is based on the Lagrange formulation and is con-
ceptually simple and systematic. The second method is based on the Newton-Euler
formulation and allows obtaining the model in a recursive form; it is computationally
more efficient since it exploits the typically open structure of the manipulator kinematic
chain. The problem of dynamic parameter identification is also studied. The chapter
ends with the derivation of the dynamic model of a manipulator in the operational
space and the definition of the dynamic manipulability ellipsoid.

4.1 Lagrange Formulation

The dynamic model of a manipulator provides a description of the relationship between
the joint actuator torques and the motion of the structure.

With Lagrange tormulation, the equations of motion can be derived in a systematic
way independently of the reference coordinate frame. Once a set of variables A;,
1 =1,...,n, termed generalized coordinates, are chosen which effectively describe
the link positions of an n-degree-of-mobility manipulator, the Lagrangian of the
mechanical system can be defined as a function of the generalized coordinates:

L=T-U @1

where T' and U are respectively the total kinetic energy and potential energy of the
system.
The Lagrange’s equations are expressed by

dor or _
dt 8)\Z o\ n

& 1=1,....,n 4.2)

where &; is the generalized force associated with the generalized coordinate A;.
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Figure 4.1 Actuated pendulum.

For a manipulator with an open kinematic chain a natural choice for the generalized
coordinates is the vector of joint variables

g
| =q. 4.3)
M

The contributions to the generalized forces are given by the nonconservative forces,
i.e., the joint actuator torques, the joint friction torques, as well as the joint torques
induced by end-effector forces at the contact with the environment'.

The equations in (4.2) establish the relations existing between the generalized
forces applied to the manipulator and the joint positions, velocities and accelerations.
Hence, they allow deriving the dynamic model of the manipulator starting from the
determination of kinetic energy and potential energy of the mechanical system.

Example 4.1

In order to understand the Lagrange formulation technique for deriving the dynamic
model, consider the simple case of a pendulum. Let 7 be the actuation torque about the
rotation axis; it is assumed that viscous friction occurs about the same axis (Figure 4.1).
The torque is supplied by a motor with reduction gear ratio k,, > 1 and moment of
inertia I, about the fast shaft. Let 1) denote the angle with respect to the reference po-
sition of the body hanging down (¥ = 0). By choosing ¥ as the generalized coordinate,
the kinetic energy of the system is given by

1oy 1 e
T:?W+§%MW

where I is the body moment of inertia about the rotation axis. Further, the system
potential energy is expressed by

U = mgl(l — cos¥)

' The term forque is used as a synonym of joint generalized force.
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where m is the body mass, g is the gravity acceleration (9.81 m/s?), and £ is the distance
of the body centre of mass from the rotation axis. Therefore, the Lagrangian of the
system is

1. 1 9
L= 5]192 + §Imk£192 —mgl(l — cos¥).
Substituting this expression in the Lagrange’s equation in (4.2) yields
(I + I, k2)0 + mglsing = €.

The generalized force € is given by the contributions of the actuation torque 7 and of
the viscous friction torque — F'd, i.e.,

E=71— F9,

leading to the complete dynamic model of the system as the second-order differential
equation
(I + 1, k2)0 + F + mglsing = 7.

4.1.1 Computation of Kinetic Energy

Consider a manipulator with n rigid links. The total kinetic energy is given by the sum
of the contributions relative to the motion of each link and the contributions relative to
the motion of each joint actuator:*

n

T = (Te; + Tons)» (4.4)

i=1

where 7, is the kinetic energy of Link ¢ and 7,,, is the kinetic energy of the motor
actuating Joint ¢.
The kinetic energy contribution of Link ¢ is given by

1
Te, = —/ p: Tpt pdV, 4.5)
2 v,

where p} denotes the linear velocity vector and p is the density of the elementary
particle of volume dV'; Vy, is the volume of Link ¢.

Consider the position vector p; of the elementary particle and the position vector
pc; of the link centre of mass, both expressed in the base frame. One has

ri=[rie Ty Tiz]T =D} — Dy, (4.6)

2 Link 0 is fi xed and thus gives no contribution.
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Figure 4.2 Kinematic description of Link ¢ for Lagrange formulation.

with

1
Dy = — / p;pdV 4.7
m[i Ve

i

where my, is the link mass. As a consequence, the link point velocity can be expressed
as

Pl =P twixr; (4.8)
= pe; + S(wi)ri,
where Py, is the linear velocity of the centre of mass and w; is the angular velocity of
the link (Figure 4.2).

By substituting the velocity expression (4.8) into (4.5), it can be recognized that
the kinetic energy of each link is formed by the following contributions.

Translational
The contribution is
LT . 1 LT
/ pzplipdv = §mlip£pli~ 4.9)
Ve,

DN | =

Mutual

The contribution is

1 . 1. "
2 (L / T S(wirpdv | =2 15T S(w)) / (P} — pe)pdV | = 0
2 )y, 2 Vi,

i
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since, by virtue of (4.7), it is

| pieav=pi [ pav.
Ve Ve

i i

Rotational

The contribution is

1 1
—/ rlST(w)S(w)ripdV = ~w] ST (r)S(r))pdV | w;
2 Jv, 2 v
where the property S(w;)r; = —S(r;)w, has been exploited. In view of the expression
of the matrix operator S(-)

0 —riz Ty
S(ri)=| 1 0 —7ri |,
—Tiy  Ti 0
itis
%/Vl rl' ST (w;)S(wi)ripdV = %wiTIgiw,-. (4.10)
The matrix
(2, +1r2)pdV = [riariypdV = [TigrizpdV
I, = . [+ r2)pdV = [ riyriapdy
: * * [ +13,)pdV
oe —ltay  —ltee
=« Ly, —In.|. (4.11)
* * Iy, -

is symmetric® and represents the inertia tensor relative to the centre of mass of Link i
when expressed in the base frame. Notice that the position of Link ¢ depends on
the manipulator configuration and then the inertia tensor, when expressed in the base
frame, is configuration-dependent. If the angular velocity of Link i is expressed with
reference to a frame attached to the link (as in the Denavit-Hartenberg convention), it
is

wf = Rl-Twi

where R; is the rotation matrix from Link ¢ frame to the base frame. When referred to
the link frame, the inertia tensor is constant. Let I, ; denote such tensor; then it is easy
to verify the following relation:

I, = R,I, R]. (4.12)

3 The symbol ** has been used to avoid rewriting the symmetric elements.
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If the axes of Link 7 frame coincide with the central axes of inertia, then the inertia
products are null and the inertia tensor relative to the centre of mass is a diagonal
matrix.

By summing the translational and rotational contributions (4.9) and (4.10), the kinetic
energy of Link ¢ is

1 ST . L r i pT
Te, = 3Me PPl + SWi R;I; R; w;. (4.13)
At this point, it is necessary to express the kinetic energy as a function of the
generalized coordinates of the system, that are the joint variables. To this purpose, the
geometric method for Jacobian computation can be applied to the intermediate link
other than the end effector, yielding

e =29+ + 256 = T (@.14)
wi=1%q + .+ 384 =T, (4.15)

where the contributions of the Jacobian columns relative to the joint velocities have
been taken into account up to current Link . The Jacobians to consider are then:

Jl(fi):[!]gi) Jg;) 0 ... 0] (4.16)
IS =% 0 L o] (.17)

the columns of the matrices in (4.16) and (4.17) can be computed according to (3.26),
giving

) |z for a prismatic joint 418
Ipj = Zj—1 X (pe; — Pj-1) for a revolute joint (4.13)
) [0 for a prismatic joint 419

Joj = zZj_1 for a revolute joint, (4.19)

where p;_1 is the position vector of the origin of Frame j — 1 and z;_; is the unit
vector of axis z of Frame j — 1.
In sum, the kinetic energy of Link ¢ in (4.13) can be written as

To = eI g+ LTI TR RS @)

The kinetic energy contribution of the motor of Joint ¢ can be computed in a for-
mally analogous way to that of the link. Consider the typical case of rotary electric
motors (that can actuate both revolute and prismatic joints by means of suitable trans-
missions). It can be assumed that the contribution of the fixed part (stator) is included
in that of the link on which such motor is located, and thus the sole contribution of the
rotor is to be computed.
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Figure 4.3 Kinematic description of Motor ¢.

With reference to Figure 4.3, the motor of Joint ¢ is assumed to be located on
Link ¢ — 1. In practice, in the design of the mechanical structure of an open kinematic
chain manipulator one attempts to locate the motors as close as possible to the base of
the manipulator so as to lighten the dynamic load of the first joints of the chain. The joint
actuator torques are delivered by the motors by means of mechanical transmissions
(gears)'. The contribution of the gears to the kinetic energy can be suitably included
in that of the motor. It is assumed that no induced motion occurs, i.e., the motion of
Joint ¢ does not actuate the motion of other joints.

The kinetic energy of Rotor ¢ can be written as

Tows = 5 Do P, + 3 T @2
where m,,,; is the mass of the rotor, p,,, denotes the linear velocity of the centre of
mass of the rotor, I,,,, is the inertia tensor of the rotor relative to its centre of mass,
and w,,, denotes the angular velocity of the rotor.

Let 9,,, denote the angular position of the rotor. On the assumption of a rigid
transmission, one has ‘
Kridi = Orm, (4.22)

where k,; is the gear reduction ratio. Notice that, in the case of actuation of a prismatic
joint, the gear reduction ratio is a dimensional quantity.

4 Alternatively, the joints may be actuated by torque motors directly coupled to the rotation axis
without gears.
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According to the angular velocity composition rule (3.16) and the relation (4.22),
the total angular velocity of the rotor is

Wm,; = Wi—1 + kriqizmi (4.23)

i

where w;_; is the angular velocity of Link ¢ — 1 on which the motor is located, and
zZm,; denotes the unit vector along the rotor axis.

To express the rotor kinetic energy as a function of the joint variables, it is worth
expressing the linear velocity of the rotor centre of mass—similarly to (4.14)—as

Py = T4 (4.24)
The Jacobian to compute is then
T (my m;
Jl(Dm = [.7531 . .753,1‘—)1 0 ... 0] (4.25)
whose columns are given by
my) _ | zj—1 for a prismatic joint
Jpj = {zjl X (Pm; — pj,l) for a revolute joint (4.26)

where p;_1 is the position vector of the origin of Frame j — 1. Notice that Jgpnzi) =0
in (4.25), since the centre of mass of the rotor has been taken along its axis of rotation.
The angular velocity in (4.23) can be expressed as a function of the joint variables,

Le.,

Wi, = T g (4.27)
The Jacobian to compute is then
TG = [gm g g gL 0] (4.28)

whose columns, in view of (4.23) and (4.15), are respectively given by

) . .
(ms) _ ) Joj j=1,...,i—1
Jo: = 4.29)
I { krizmi Jj=t

To compute the second relation in (4.29), it is sufficient to know the components of
the unit vector of the rotor rotation axis z,,, with respect to the base frame. Hence, the
kinetic energy of Rotor ¢ can be written as

T = g TN I d 50T IS R LR TS 430)

Finally, by summing the various contributions relative to the single links (4.20)
and single rotors (4.30) as in (4.4), the total kinetic energy of the manipulator with
actuators is given by the quadratic form

n n

1 1
T =52 bil@ii; = 54" Bla)g 4.31)

i=1 j=1
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where

n
B(g) =Y (me, Jp I + 350 Rxf RT I (4.32)

i=1

S I I 4 35T R, 1 RE TG

is the (n X n) inertia matrix which is:
e symmetric,
e positive definite,

e (in general) configuration-dependent.

4.1.2 Computation of Potential Energy

As done for kinetic energy, the potential energy stored in the manipulator is given by
the sum of the contributions relative to each link as well as to each rotor:

n

U= U +Un,). (4.33)

i=1

On the assumption of rigid links, the contribution due only to gravitational forces’
is expressed by
U=~ [ afpipdV = -muge (434)
Ve,
where gg is the gravity acceleration vector in the base frame (e.g.,go = [0 0 —g]7
if z is the vertical axis), and (4.7) has been utilized for the coordinates of the centre of
mass of Link ¢. As regards the contribution of Rotor ¢, similarly to (4.34), one has

Z/{mi = _mmiggpmi' (435)

By substituting (4.34) and (4.35) into (4.33), the potential energy is given by

n

U==> (mgd pe. + Mm. G Prm.) (4.36)
=1

which reveals that potential energy, through the vectors p;, and p,,,; is a function only
of the joint variables q, and not of the joint velocities q.

3 In the case of link fexibility, one would have an additional contribution due to elastic forces.
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4.1.3 Equations of Motion

Having computed the total kinetic and potential energy of the system as in (4.31) and
(4.36), the Lagrangian (4.1) for the manipulator can be written as

£(g,9) = T(g,9) ~ U(q) (4.37)
1 n n n
=52 2 bii@adidy + Y (meigg P (@) + mimigg P (@) -
i=1 j=1 i=1

Taking the derivatives required by Lagrange’s equations in (4.2) and recalling that U
does not depend on g yields

d (LY _d (0T _x=~, , .  ~=dbylq) .
@ (%) ~ (aq) =2 biyl@)d; + 3 = 5
j=1 j=1
n n 8[)”
) JXZ; pta)d; + Z 3%

and

yy e

jlkl

8qz

where the indices of summation have been conveniently switched. Further, in view of
(4.14) and (4.24), it is

apm]—
Man; 9o 5 ) (4.38)

= - Z (mejgoT 252 (@) +mm, g Jﬁs"f”(q)) =9i(q)

where, again, the index of summation has been changed.
As a result, the equations of motion are

> bis qJ“LZZhwk Yird; +9i(@) =&  i=1,....n. (439

j=1 j=1 k=1

[y Obij _ 1 Obji
VR By 2 0g;

A physical interpretation of (4.39) reveals that:

(4.40)

e For the acceleration terms:

The coefficient b;; represents the moment of inertia at Joint ¢ axis, in the current
manipulator configuration, when the other joints are blocked.
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The coefficient b;; accounts for the effect of acceleration of Joint j on Joint j.

o For the quadratic velocity terms:
The term h;;; q']z represents the centrifugal effect induced on Joint 2 by velocity
of Joint j; notice that h;;; = 0, since 9b;;/dq; = 0.
The term h;;1¢;Gr represents the Coriolis effectinduced on Joint ¢ by velocities
of Joints j and k.

e For the configuration-dependent terms:

The term g; represents the moment generated at Joint ¢ axis of the manipulator,
in the current configuration, by the presence of gravity.

Some joint dynamic couplings, e.g., coefficients b;; and h;;,, may be reduced or
eliminated when designing the structure, so as to simplify the control problem.

Regarding the nonconservative forces doing work at the manipulator joints, these
are given by the actuation torques T minus the viscous friction torques F,¢ and the
static friction torques fs(q,q): F, denotes the (n x n) diagonal matrix of viscous
friction coefficients. As a simplified model of static friction torques, one may consider
the Coulomb friction torques F sgn (q), where Fy is an (n X n) diagonal matrix and
sgn (g) denotes the (n x 1) vector whose components are given by the sign functions
of the single joint velocities.

If the manipulator’s end effector is in contact with an environment, a portion of
the actuation torques is used to balance the torques induced at the joints by the contact
forces. According to a relation formally analogous to (3.99), such torques are given by
JT(q)h where h denotes the vector of force and moment exerted by the end effector
on the environment.

In sum, the equations of motion in (4.39) can be rewritten in the compact matrix
form which represents the joint space dynamic model:

B(q)g + C(q,q)q + F,q + Fysgn (q) + g(q) =7 — J (q)h, (4.41)

where C'is a suitable (n x n) matrix such that its elements ¢;; satisfy the equation

> eidi =) hijednds. (4.42)
j=1

j=1k=1

Finally, if the manipulator structure contains a closed chain, it is advisable to com-
pute first the dynamic model for the equivalent tree-structured open-chain manipulator.
Then, from (3.108) the torques corresponding to the actuated joints can be computed,
and thus the equations of motion can be cast in a form similar to (4.41) where ¢ = q,
is the resulting vector of generalized coordinates.

4.2 Notable Properties of Dynamic Model

In the following, two notable properties of the dynamic model are presented which
will be useful for dynamic parameter identification as well as for deriving control
algorithms.
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4.2.1 Skew-symmetry of Matrix B — 2C

The choice of the matrix C' is not unique, since there exist several matrices C whose
elements satisfy (4.42). A particular choice can be obtained by elaborating the term
on the right-hand side of (4.42) and accounting for the expressions of the coefficients
hijr, in (4.40). To this purpose, one has

n n on
Z C,'j(jj = Z Z hijk‘jkdj
j=1

=1 k=1

ZZ Obi;  10bj\ . .
B dgi 2 dg; ) T

j=1k=1

Splitting the first term on the right-hand side by an opportune switch of summation
between j and k yields

n

1 = o by Obyx  Objr\ . .
St =532 Gt + 53 (Gt - Gt v
j=1

=1 k=1 =1 k=1 04;

As a consequence, the generic element of C' is

n
cij = Y Cijhl (4.43)
k=1
where the coefficients
(%,j (%,-k abjk
- — 4.44
Cisk = (5% * dq;  0q; (144

are termed Christoffel symbols of the first type. Notice that, in view of the symmetry
of B, itis
Cijk = Cikj- (445)

This choice for the matrix C' leads to deriving the following notable property of
the equations of motion (4.41). The matrix

N(q.q) = B(g) -2C(q.9) (4.46)
is skew-symmetric; that is, given any (n x 1) vector w, the following relation holds:
w! N(q,q)w = 0. (4.47)
In fact, substituting the coefficient (4.44) into (4.43) gives

8bz Obyr,  Objr \ .
o= 2 gt 3 2 (G - G a
k=1

0q;

. "L (Oby  Obj) .
= _bi' - - s
2 ]+21§(8qﬂ' 8qi)qk
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and then the expression of the generic element of the matrix N in (4.46) is

; " (Objr Obi .
iy = by =205 =3 ( b0, 94, ) o
k=1

The result follows by observing that
Ni; = —Njj;.

An interesting property which is a direct implication of the skew-symmetry of N (g, q)
is that, by setting w = g,
q"N(g,9)q =0: (4.48)

notice that (4.48) does not imply (4.47), since N is a function of ¢, too.

It can be shown that (4.48) holds for any choice of the matrix C) since it is a result
of the principle of conservation of energy (Hamilton). By virtue of this principle, the
total time derivative of kinetic energy is balanced by the power generated by all the
forces acting on the manipulator joints. For the mechanical system at issue, one may
write

%%(QTB(‘J)"]) =q¢"(r—F,g—F,sgn(q) —g(q) —J" (@)h). (449

Taking the derivative on the left-hand side of (4.49) gives

Liope, o .
quB(q)q +4¢"B(q)d

and substituting the expression of B(q)q in (4.41) yields

(4" B(a)a) = 54" (Bla) -~ 2C(a.@))d (450

+¢"(t - F,q - Fysgn (q) — g(g) — J" (q)h).

| =
SR

A direct comparison of the right-hand sides of (4.49) and (4.50) leads to the result
established by (4.48).
To summarize, the relation (4.48) holds for any choice of the matrix C, since it

is a direct consequence of the physical properties of the system, whereas the relation
(4.47) holds only for the particular choice of the elements of C' as in (4.43) and (4.44).

4.2.2 Linearity in the Dynamic Parameters

An important property of the dynamic model is the linearity with respect to the dynamic
parameters characterizing the manipulator links and rotors.

In order to determine such parameters, it is worth associating the kinetic and
potential energy contributions of each rotor with those of the link on which it is
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located. Hence, by considering the union of Link ¢ and Rotor ¢ + 1 (augmented Link ©),
the kinetic energy contribution is given by

Ti=Te, + Tonia 4.51)

where i 1
Teo = gmebipe; + 5w Inwi (4.52)

and 1 1
Tmi+1 = §mmi+1p£i+1pmi+1 + §w’rj7;i+1Imi+1wmi+l' (453)

With reference to the centre of mass of the augmented link, the linear velocities of the
link and rotor can be expressed according to (3.24) as:

Pe; = Po; +wi X 1oy, (4.54)
Py = Doy + Wi X 0 miys (4.55)
with
To6 = Pt — PO (4.56)
TCimiyr = Pmiyr — PCi» (457)

where pc, denotes the position vector of the centre of mass of augmented Link ¢.
Substituting (4.54) into (4.52) gives

1 T . .
Ti, = smunhpe, + b5 Swomere, . (458)
1 1
+ imfiwiTST(rcufi)S(rcili)wi + §wz‘TIfiwi’

By virtue of Steiner’s theorem, the matrix
Iéi = Ili + My, ST(TCi,li)S(TCi,li) (4.59)

represents the inertia tensor relative to the overall centre of mass p¢,, which contains
an additional contribution due to the translation of the pole with respect to which the
tensor is evaluated, as in (4.56). Therefore, (4.58) can be written as

1 LT . . 1 -
T, = im“papci +pgi5(wi)mgiroi7gi + iwiTIgiwi. (4.60)

In a similar fashion, substituting (4.55) into (4.53) and exploiting (4.23) yields

1 LT . . 1 -
Tmi+1 = §mmi+1pgip0i +pg’is(wi)mmi+1"q0i,mi+1 + §wz‘TImi+1wi 4.61)

1
. T 2 -2 T
+ krai+1qi+1zmi+1‘[mi+lwi + ikr7i+1qi+lzmi+1Imi+1zmi+1’
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where ~
Imi+1 = Imi+1 + mmi+1 ST(rci7mi+1)S(rci,mi+1)' (462)

Summing the contributions in (4.60) and (4.61) as in (4.51) gives the expression
of the kinetic energy of augmented Link ¢ in the form

1 4. 1 - .
Ti = §mipgipci + §wz‘TIiwi + kr,i+1qi+1zr€i+1Imi+1wi (4.63)

2 -2 T
+ §kr,i+1qi+1zmi+1 Imi+1 Zmiqas

where m; = myg, + M, ,, and I; = Iy, + I,,,, ,, are respectively the overall mass and
inertia tensor. In deriving (4.63), the relations in (4.56) and (4.57) have been utilized
as well as the following relation between the positions of the centres of mass:

m&pﬁi + mmi+1pmi+1 = mzpCz (464)

Notice that the first two terms on the right-hand side of (4.63) represent the kinetic
energy contribution of the rotor when this is still, whereas the remaining two terms
account for the rotor’s own motion.

On the assumption that the rotor has a symmetric mass distribution about its axis
of rotation, its inertia tensor expressed in a frame R,,, with origin at the centre of
mass and axis z,,; aligned with the rotation axis can be written as

Imee 0 0O
IMi=1 0 Iny O (4.65)
0 0 Imizz

where L, 4y = Im,zz. As a consequence, the inertia tensor is invariant with respect
to any rotation about axis z,, and is, anyhow, constant when referred to any frame
attached to Link ¢ — 1.

Since the aim is to determine a set of dynamic parameters independent of the
manipulator joint configuration, it is worth referring the inertia tensor of the link I; to
frame R; attached to the link and the inertia tensor Iy, , to frame R, , so that it is
diagonal. In view of (4.65) one has

_ mit1 T’ _
Imi+1zmi+1 - Rmi+1Imi+1 Rmi+1 Zmiy1 — Imi+1 Zmit1 (466)

where I, ., = Iy, .. denotes the constant scalar moment of inertia of the rotor
about its rotation axis.
Therefore, the kinetic energy (4.63) becomes
i

P T ,
T T . T
Ti= §mip10ip10i + 5w Lw; + krit1Giv1 Dniyr 2y

W) (4.67)

1 ¥
+ Ekz,i—i-l qz‘2+llmi+1'

According to the linear velocity composition rule for Link ¢ in (3.13), one may
write

Po, =P+ wi X1l (4.68)

i
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where all the vectors have been referred to Frame 7; note that rici is fixed in such
frame. Substituting (4.68) into (4.67) gives

1
Ti = —mmiTpierz S(whmirl o, + Qw’TIl (4.69)

+ kr,i—&-lqz'+1]mi+1zf7£+1wzl: + §k$,i+1qi2+1lmi+17
where o ' 4
I'=T +mS"(r. o)S(ric,) (4.70)

represents the inertia tensor with respect to the origin of Frame ¢ according to Steiner’s
theorem.

Let rici =[lc,e Lcowy Loyx )t The first moment of inertia is
miric, = | milcy | - (4.71)

From (4.70) the inertia tensor of augmented Link ¢ is

M Tiww + mi(lg,, + €2,.) ~Lizy — milcaloyy —lipz —milcinlo:
I = * Liyy +mi(€3p +2.)  —Liy. —milogle,.
I % * i + mi(€2.,, + zzcy)
'IAZN fiwy Amz
= = Liyy  —ILiy- |- (4.72)

Therefore, the kinetic energy of the augmented link is linear with respect to the dynamic
parameters; namely, the mass, the three components of the first moment of inertia in
(4.71), the six components of the inertia tensor in (4.72), and the moment of inertia of
the rotor.

As regards potential energy, it is worth referring to the centre of mass of augmented
Link ¢ defined as in (4.64), and thus the single contribution of potential energy can be
written as

U; = —migil pi, 4.73)
where the vectors have been referred to Frame i. According to the relation
PZC =pl+ rfc
The expression in (4.73) can be rewritten as
U = —gi" (mipl +mirl o). (4.74)

that is, the potential energy of the augmented link is linear with respect to the mass
and the three components of the first moment of inertia in (4.71).
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By summing the contributions of kinetic energy and potential energy for all aug-
mented links, the Lagrangian of the system (4.1) can be expressed in the form

n

L= (BT — Bl)m (4.75)

i=1

where 7; is the (11 x 1) vector of dynamic parameters

A

z Iizz Im, ]T’

(4.76)

in which the moment of inertia of Rotor ¢ has been associated with the parameters of
Link 7 so as to simplify the notation.

In (4.75), B1; and (3y; are two (11 x 1) vectors that allow writing the Lagrangian
as a function of ;. Such vectors are a function of the generalized coordinates of the
mechanical system (and also of their derivatives as regards 37;). In particular, it can be
shown that /BTZ' = ﬁTi(q17q27 R qivqla q.27 s 7qz) and /BZ/M = ﬁui(qla qz,--. 7qi)a
i.e., they do not depend on the variables of the joints subsequent to Link 4.

At this point, it should be observed how the derivations required by the Lagrange’s
equations in (4.2) do not alter the property of linearity in the parameters, and then the
generalized force at Joint i can be written as

n
&= yhm 4.77)
j=1

where

_ d0B7j _9B7; . OBu;
dt g 9q; 9q;

Since the partial derivatives of 31; and 3; appearing in (4.78) vanish for j < i, the

following notable result is obtained:

& yh Yk e Y] [T
& o L ... of T2
2| _ 22 n . 4.79)
&n o of ... yT | |lx,

which constitutes the property of linearity of the model of a manipulator with respect
to a suitable set of dynamic parameters.

In the simple case of no contact forces (h = 0), it may be worth including the
viscous friction coefficient F),; and Coulomb friction coefficient Fy; in the parameters
of the vector 7r;, thus leading to a total number of 13 parameters per joint. In sum,
(4.79) can be compactly written as

T=Y(q,q,q)m. (4.80)
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Figure 4.4 Two-link Cartesian arm.

where 7 is a (p X 1) vector of constant parameters and Y 1s an (n X p) matrix which
is a function of joint positions, velocities and accelerations; such a matrix 1s usually
called regressor. Regarding the dimension of the parameter vector, notice that p < 13n
since not all the thirteen parameters for each joint may explicitly appear in (4.80).

4.3 Dynamic Model of Simple Manipulator Structures

In the following, three examples of dynamic model computation are illustrated for
simple two-degree-of-mobility manipulator structures. Two degrees of mobility, in fact,
are enough to understand the physical meaning of all dynamic terms, especially the
joint coupling terms. On the other hand, dynamic model computation for manipulators
with more degrees of mobility would be quite tedious and prone to errors, when carried
out by paper and pencil. In those cases, it is advisable to perform it with the aid of a
symbolic programming software package.

4.3.1 Two-link Cartesian Arm

Consider the two-link Cartesian arm in Figure 4.4, for which the vector of generalized
coordinates is ¢ = [dy  da]T. Let my,, my, be the masses of the two links, and
My, >, My, the masses of the rotors of the two joint motors. Let also I,,,, I, be
the moments of inertia with respect to the axes of the two rotors. It is assumed that
Pm; = Pi—1 and z,,, = 2,1, for ¢ = 1,2, i.e., the motors are located on the joint
axes with centres of mass located at the origins of the respective frames.

With the chosen coordinate frames, computation of the Jacobians in (4.16) and
(4.18) yields

sz ool se o o]
10 1 o)
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Obviously, in this case there are no angular velocity contributions for both links.
Computation of the Jacobians in (4.25), (4.26), (4.28), (4.29) yields

0 0 00
Jm) =10 o Jim) =10 0
0 0 10
0 0] [0 kyo
Jg =10 o Jg =10 0
krl O_ _0 0

where k,; is the gear reduction ratio of Motor 4. It is obvious to see that z; =
[1 0 0]%, which greatly simplifies computation of the second term in (4.30).
From (4.32), the inertia matrix is

B = me, + My, + k%llml + my, 0 )

0 My, + k£2-[m2 .
Ithas to be remarked that B is constant, i.e., it does not depend on the arm configuration.
This implies also that C = O, i.e., there are no contributions of centrifugal and
Coriolis forces. As for the gravitational terms, since go = [0 0 —g]7 (g is gravity
acceleration), (4.38) with the above Jacobians gives:

g1 = (mll + My +m42)g g2 =0.
In the absence of friction and tip contact forces, the resulting equations of motion are

(Mg, 4 Moy + k2 Loy + My )dy + (Mg, + My +mey)g =71

(mb + kiZImQ)dg = T2

where 77 and 75 denote the forces applied to the two joints. Notice that a completely
decoupled dynamics has been obtained. This is a consequence not only of the Cartesian
structures but also of the particular geometry; in other words, if the second joint axis
were not at a right angle with the first joint axis, the resulting inertia matrix would not
be diagonal.

4.3.2 Two-link Planar Arm

Consider the two-link planar arm in Figure 4.5, for which the vector of generalized
coordinatesis g = [ ]T. Let /1, £5 be the distances of the centres of mass of the
two links from the respective joint axes. Let also my,, m¢, be the masses of the two
links, and m;,, , M.y, the masses of the rotors of the two joint motors. Finally, let I, ,
I,,,, be the moments of inertia with respect to the axes of the two rotors, and I, , I,
the moments of inertia relative to the centres of mass of the two links, respectively. It
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Figure 4.5 Two-link planar arm.

is assumed that p,,, = p;—1 and z,,,, = z;_1, fori = 1,2, i.e., the motors are located
on the joint axes with centres of mass located at the origins of the respective frames.

With the chosen coordinate frames, computation of the Jacobians in (4.16) and
(4.18) yields

, {—4131 0] , {—0181—@812 —{3512
Jl(gl) =1 licg O Jl(f) = aic1 +{aci2 b1 |,
0 0] 0 0 J
whereas computation of the Jacobians in (4.17) and (4.19) yields
[0 0 0 0
J =10 o J§ =10 0
|1 0 11

Notice that w;, for s = 1,2, is aligned with 2y, and thus R; has no effect. It is then
possible to refer to the scalar moments of inertia Iy, .
Computation of the Jacobians in (4.25) and (4.26) yields

0 0 —a181 0
Ji =10 0 I = | w0,
0 0 0 0
whereas computation of the Jacobians in (4.28) and (4.29) yields
0 0 0 0
J5 =10 o0 I =10 o |,
krl 0 1 kr2

where k,; is the gear reduction ratio of Motor i.
From (4.32), the inertia matrix is

_ b (2)  bi2(d:)

B@) =14, (92) b

biy = Iy +me, 03 + k2 Ly + Lo, +my, (a4 03 + 2a105c5)
+ I, + mmZaf

b2 = ba1 = Iy + mu, (6 + arlaca) + kr2 I,

bas = I, + me, 03 + K2y I,
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Compared to the previous example, the inertia matrix is now configuration-dependent
and computation of Christoffel symbols as in (4.44) gives:

111 = 2—8q1 =

10b
C112 = C121 = 5@“ = —my,a1faso = h

2

o — 0b1> _ 13522 _
129 = —8q2 5 —8q1 =
c _8[)21_131)11 _
211 = 9 X

1 (9[)22
Ca12 = €221 = 53_(]1 =
Lok
222 = 5 o0 ,

leading to the matrix
. hﬁz h(ﬁl + ’192)
caa=| " "
—hvy

Computing the matrix N in (4.46) gives

B {Qhﬁz méz} L, [ hds (D +192)}
hds 0 —ht 0
0 —2h1 — hd,
B {zwl + hds 0 ]

that allows veritying the skew-symmetry property expressed by (4.47).
As for the gravitational terms, since gog = [0 —g O]T, (4.38) with the above
Jacobians gives:
g1 = (me by + M, a1 + my,ar)ger + me, lagers

g2 = my,lagca.
In the absence of friction and tip contact forces, the resulting equations of motion are

(I, + mu, 02 + K2 Loy + Iey +mey (a3 + 03 + 2a102¢2) + Iy + mium,ad) h
+ (Iég + my, (@ + aylycy) + kT’QImg) Vo
— 2771(2@116282191192 - mg2a1€2321§‘§

+ (me, b1 + mynya1 + My a1)ger + my,lageis =1 (4.81)

(Tey + ey (03 + arlaca) + kralny) U1 + (Iny + M, 03 + koI, ) U2

32
+ my,a1 825007 + my,lagcia = T
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where 71 and 7» denote the torques applied to the joints.

Finally, it is wished to derive a parameterization of the dynamic model (4.81)
according to the relation (4.80). By direct inspection of the expressions of the joint
torques, it is possible to find the following parameter vector:

w=[m w2 73 W4 T Te A7 7rg]T (4.82)

T =M1 = My, + My,

o = milo, = my, (6 — ay)

T3 = f1 = Iy +my, (6 — Cl1)2 + I,
Ty = Iml

5 = M2 = My,

g = mzécg = mzz(éz - 02)

mr=1I = Ip, +myg, (€ — a2)2

g = Img’

where the parameters for the augmented links have been found according to (4.76). It
can be recognized that the number of nonnull parameters is less than the maximum
number of twenty-two parameters allowed in this case®. The regressor in (4.80) is

Y = Y11 Yi2 Y1z Yia Y15 Yie Yir Yis (4.83)
Y21 Y22 Y23 Y24 Y25 Y26 Y27 Y28

Y11 = a%i}il +aigcy
Y12 = 2a101 + g
Y13 = 191
y1a = k710
Y15 = (a% + 2a1a909 + a%){}il + (a1a2¢0 + a%)ﬁg — 2a1a2590179
- a1a28219§ + aiger + azgcra
Y16 = (2a1¢ + 2a2)01 + (a1¢2 + 2a2)0s — 241590105 — a1550% + ge1o

Y17 = U1 + s
Yis = kot
y21 =0

y22 =0

y23 =0

y24 =0

® The number of parameters can be further reduced by resorting to a more accurate inspection,
which leads to finding a minimum number of fi ve parameters; those turn out to be a linear
combination of the parameters in (4.82).
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Yos = (a1a2¢y + )01 + a2Us + arasso¥? + azgers
Y26 = (@100 + 2(12)191 + 2a9005 + alsgﬁ% + gcio

Yar = U1 + D

Yag = kr21§1 + kfgﬁz

Example 4.2

In order to understand the relative weight of the various torque contributions in the
dynamic model (4.81), consider a two-link planar arm with the following data:

ap=ax=1m {0 =4=05m my =my, =50kg I, =1, = 10kg-m?

Epi = kpo =100 My, = M, = 5kg Iy, = I, = 0.01kg-m?.

The two links have been chosen equal to better illustrate the dynamic interaction
between the two joints.

Figure 4.6 shows the time history of positions, velocities, accelerations and torques
resulting from joint trajectories with typical triangular velocity profile and equal time
duration. The initial arm configuration is so that the tip is located at the point (0.2, 0) m
with a lower elbow posture. Both joints make a rotation of 7/2rad in a time of 0.5s.

From the time history of the single torque contributions in Figure 4.7 it can be
recognized what follows:

o The inertia torque at Joint 1 due to Joint 1 acceleration follows the time history
of the acceleration.

e The inertia torque at Joint 2 due to Joint 2 acceleration is piecewise constant,
since the inertia moment at Joint 2 axis is constant.

¢ The inertia torques at each joint due to acceleration of the other joint confirm
the symmetry of the inertia matrix, since the acceleration profiles are the same
for both joints.

e The Coriolis effect is present only at Joint 1, since the arm tip moves with
respect to the mobile frame attached to Link 1 but is fixed with respect to the
frame attached to Link 2.

e The centrifugal and Coriolis torques reflect the above symmetry.

Figure 4.8 shows the time history of positions, velocities, accelerations and torques
resulting from joint trajectories with typical trapezoidal velocity profile and different
time duration. The initial configuration is the same as in the previous case. The two
joints make a rotation so as to take the tip to the point (1.8, 0) m. The acceleration time
is 0.15 s and the maximum velocity is 5 rad/s for both joints.

From the time history of the single torque contributions in Figure 4.9 it can be
recognized what follows:

e The inertia torque at Joint 1 due to Joint 2 acceleration is opposite to that at
Joint 2 due to Joint 1 acceleration in that portion of trajectory when the two
accelerations have the same magnitude but opposite sign.
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Figure 4.7 Time history of torque contributions with joint trajectories of equal duration.
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Figure 4.8 Time history of positions, velocities, accelerations and torques with joint trajectories
of different duration.
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Figure 4.9 Time history of torque contributions with joint trajectories of different duration.
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Figure 4.10 Time history of tip position, velocity and acceleration with a straight line tip
trajectory along the horizontal axis.

o The different velocity profiles imply that the centrifugal effect induced at Joint
1 by Joint 2 velocity dies out later than the centrifugal effect induced at Joint
2 by Joint 1 velocity.

e The gravitational torque at Joint 2 is practically constant in the first portion
of the trajectory, since Link 2 is almost kept in the same posture. As for the
gravitational torque at Joint 1, instead, the centre of mass of the articulated
system moves away from the origin of the axes.

Finally, Figure 4.10 shows the time history of tip position, velocity and acceleration
for a trajectory with a trapezoidal velocity profile. Starting from the same initial
posture as above, the arm tip makes a translation of 1.6 m along the horizontal axis;
the acceleration time is 0.15 s and the maximum velocity is 5 m/s.
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Figure 4.11 Time history of joint positions, velocities, accelerations, and torques with a straight
line tip trajectory along the horizontal axis.
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Figure 4.12 Time history of joint torque contributions with a straight line tip trajectory along
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As a result of an inverse kinematics procedure, the time history of joint positions,
velocities and accelerations have been computed which are illustrated in Figure 4.11,
together with the joint torques that are needed to execute the assigned trajectory.
It can be noticed that the time history of the represented quantities differs from the
corresponding ones in the operational space, in view of the nonlinear effects introduced
by kinematic relations.

For what concerns the time history of the individual torque contributions in Fig-
ure 4.12, it is possible to make a number of remarks similar to those made above for
trajectories assigned directly in the joint space.

4.3.3 Parallelogram Arm

Consider the parallelogram arm in Figure 4.13. Because of the presence of the closed
chain, the equivalent tree-structured open-chain arm is initially taken into account. Let
£y, €, €3 and £1 be the distances of the centres of mass of the three links along one
branch of the tree, and of the single link along the other branch, from the respective
Joint axes. Let also my,,, my,,, my,, and my,,, be the masses of the respective links,
and Ip,,, Iy, , I o and I, the moments of inertia relative to the centres of mass of
the respective links. For the sake of simplicity, the contributions of the motors are
neglected.

With the chosen coordinate frames, computation of the Jacobians in (4.16) and
(4.18) yields

([ ) |7—1€1781/ O 0-| ([ ) [—all 817 — £2781!2! —€2151721 O-I
JPI/ = 41161/ 0 0 JP2’ = ay/cy +1€2101/2/ 52101/2/ 0
[ 0 0 oJ [ 0 0 OJ

(Z ) —Qay 811 — Q1S9 — 163/ S1/913/ —QayiSyr9r — Ksr S1/913/ —£378172!3/

JP EY = al’ Clr + al” C112! + 163/ 61/2/37 al” C112! + Ksr 61/2/37 163/ C172!3/

0 0 0
and
—411181//
J(Kl”) — ¢
P = 1”61” .
0

whereas computation of the Jacobians in (4.17) and (4.19) yields

00 0 00 0 00 0
J5 =10 0 0 J5 =10 0 0 J5 =10 0 0
10 0 110 111

and
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Figure 4.13 Parallelogram arm.

From (4.32), the inertia matrix of the virtual arm composed of joints 91/, o/, U3/
is
by (V2r,93) o (Vor,03) b (Par,93)
Bl(ql) = | by (P2, 93) barar (V31) bz (V31)
byi1r (2, 93) bz (V3r) by
by =1Io, +me, 6 + Loy, +my, (al + 65 + 2a1larco) + I,
+my,, (a% + a%,, + 63, + 2a1 a1 o + 2a1: 8z corgr + 2a1m €3 ¢30)
bua = by = I, +my, (63 + avlocy) + Iy,
+ my,, (a%” + @, + ayayrcy + aplycory + 2a1m3r¢30)
by = by = I, +my, (GG + avlycyy + aynlycy)
byy = Iy, + mgQ,@, + Iy, +my,, (a2 + 02 4 2a11 L3 c30)
byy = by = I, +my, (6 + arilycy)
byizr = Iy, + mg3,€§,
while the moment of inertia of the virtual arm composed of just joint ¢y~ is

bl”l” = I/ f%,,_

Cart

+ my

11

Therefore, the inertial torque contributions of the two virtual arms are respectively:

3/
Ti' = E bi’j'ﬁj' 7-1” = bllll”’l?lll,

jlzll

At this point, in view of (2.59) and (3.109), the inertial torque contributions at the
actuated joints for the closed-chain arm turn out to be

T. = B,
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where q, = [V Y1 ]T7 Ta = [Ta1 Ta?]T and

ball ba12
B, =
|:ba21 ba22 :|

2 2 2 2
bair = Lo, +my, 05 +my, ay + Iy, +my, by +my, a7 — 2a1my,, Uy
ba12 = ba21 = (allm[27‘62' + airmy,, (a1 — £3/)) cos (V1 — V1r)

2 2 2
ba22 = Ill” + mél,, Kl// + 1[2, + m[2,‘€2/ + Mgs, alu.
This expression reveals the possibility of obtaining a configuration-independent and
decoupled inertia matrix; to this purpose it is sufficient to design the four links of the

parallelogram so that -
mfg/ é?)’ _ ay:

My, lo ayr

where f3 = €5, — aq: is the distance of the centre of mass of Link 3’ from the axis of
Joint 4. If this condition is satisfied, then the inertia matrix is diagonal (by10 = by21 =
0) with

,€‘ /Z ’
batr = o, +me, B + My, a, (1 42 ) + 1,
alralu

ba22 = Ill// + mélu

B+ I, +me, G (1 4 621231) .
21tz
As a consequence, no contributions of Coriolis and centrifugal torques are obtained.
Such a result could not be achieved with the previous two-link planar arm, no matter
how the design parameters were chosen.
As for the gravitational terms, since go = [0 —g 0]%, (4.38) with the above
Jacobians gives:

g = (my, by +my,, a1 + meg, ar)ger + (myy, b + My, aim)geira
+my,, b3 gerras
gor = (myy, Lo +my a1 )gerrar + my,, Lz gerras

g3 = My, lzigcriarg

and
gur =my,, lingeyn.

Composing the various contributions as done above yields

_ (m[l,/€1/ + m[2/ ay — mé?’/ Z3')961/
ga - é é
(me,, €1 +my,, Ly + My, a0 )gerr
which, together with the inertial torques, completes the derivation of the sought dy-
namic model.

A final comment is in order. In spite of its kinematic equivalence with the two-
link planar arm, the dynamic model of the parallelogram is remarkably lighter. This
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property is quite advantageous for trajectory planning and control purposes. For this
reason, apart from obvious considerations related to manipulation of heavy payloads,
the adoption of closed kinematic chains in the design of industrial robots has received
a great deal of attention.

4.4 Dynamic Parameter Identification

The use of the dynamic model for solving simulation and control problems demands
the knowledge of the values of dynamic parameters of the manipulator model.

Computing such parameters from the design data of the mechanical structure is not
simple. CAD modelling techniques can be adopted which allow computing the values
of the inertial parameters of the various components (links, actuators and transmissions)
on the basis of their geometry and type of materials employed. Nevertheless, the
estimates obtained by such techniques are inaccurate because of the simplification
typically introduced by geometric modelling; moreover, complex dynamic effects,
such as joint friction, cannot be taken into account.

A heuristic approach could be to dismantle the various components of the manip-
ulator and perform a series of measurements to evaluate the inertial parameters. Such
technique is not easy to implement and may be troublesome to measure the relevant
quantities.

In order to find accurate estimates of dynamic parameters, it is worth resorting to
identification techniques which conveniently exploit the property of linearity (4.80)
of the manipulator model with respect to a suitable set of dynamic parameters. Such
techniques allow computing the parameter vector 7 from the measurements of joint
torques 7 and of relevant quantities for the evaluation of the matrix Y, when suitable
motion trajectories are imposed to the manipulator.

On the assumption that the kinematic parameters in the matrix Y are known
with good accuracy, e.g., as a result of a kinematic calibration, measurements of joint
positions g, velocities g and accelerations g are required. Joint positions and velocities
can be actually measured while numerical reconstruction of accelerations is needed;
this can be performed on the basis of the position and velocity values recorded during
the execution of the trajectories. The reconstructing filter does not work in real time and
thus it can also be anti-causal, allowing an accurate reconstruction of the accelerations.

As regards joint torques, in the unusual case of torque sensors at the joint, these
can be measured directly. Otherwise, they can be evaluated from either wrist force
measurements or current measurements in the case of electric actuators.

If measurements of joint torques, positions, velocities and accelerations have been

obtained at given time instants ¢1, . .., ¢,y along a given trajectory, one may write
T(t1) Y(t1)
T = = r=Ym. (4.84)
T(tN) Y(in)

The number of time instants sets the number of measurements to perform and shall be
large enough (typically Nn > p) so as to avoid ill-conditioning of matrix Y. Solving



Dynamics 165

(4.84) by a least-squares technique leads to the solution in the form
= YTY)"'vTs (4.85)

where (YTY)~1Y T is the left pseudo-inverse matrix of Y .

It should be noticed that, in view of the block triangular structure of matrix Y
in (4.79), computation of parameter estimates could be simplified by resorting to a
sequential procedure. Take the equation 7, = y ,, and solve it for 7, by specifying
7, and y!, fora given trajectory on Joint n. By iterating the procedure, the manipulator
parameters can be identified on the basis of measurements performed joint by joint
from the outer link to the base. Such procedure, however, may have the inconvenience
to accumulate any error due to ill-conditioning of the matrices involved step by step.
It may then be worth operating with a global procedure by imposing motions on all
manipulator joints at the same time.

Regarding the rank of matrix Y, it is possible to identify only the dynamic param-
eters of the manipulator that contribute to the dynamic model. Example 4.2 has indeed
shown that for the two-link planar arm considered, only eight out of the twenty-two
possible dynamic parameters appear in the dynamic model. Hence, there exist some
dynamic parameters which, in view of the disposition of manipulator links and joints,
are non identifiable, since for any trajectory assigned to the structure they do not con-
tribute to the equations of motion. A direct consequence is that the columns of the
matrix Y in (4.79) corresponding to such parameters are null and thus they have to be
removed from the matrix itself; e.g., the resulting (2 x 8) matrix in (4.83).

Another issue to consider about determination of the effective number of parame-
ters that can be identified by (4.85) is that some parameters can be identified in linear
combinations whenever they do not appear isolated in the equations. In such case, it is
necessary, for each linear combination, to remove as many columns of the matrix Y
as the number of parameters in the linear combination minus one.

For the determination of the minimum number of identifiable parameters that
allow direct application of the least-squares technique based on (4.85), it is possible
to directly inspect the equations of the dynamic model, as long as the manipulator has
few joints. Otherwise, numerical techniques based on singular value decomposition of
matrix Y have to be used. If the matrix Y resulting from a series of measurements is
not full-rank, one has to resort to a damped least-squares inverse of Y~ where solution
accuracy depends on the weight of the damping factor.

In the above discussion, the type of trajectory imposed to the manipulator joints
has not been explicitly addressed. It can be generally ascertained that the choice shall
be oriented in favor of polynomial type trajectories which are sufficiently rich so as
to allow an accurate evaluation of the identifiable parameters. This corresponds to
achieving a low condition number of the matrix Y 7Y along the trajectory. On the
other hand, such trajectories shall not excite any unmodeled dynamic effects such
as joint elasticity or link flexibility that would naturally lead to obtaining unreliable
estimates of the dynamic parameters to identify.

Finally, it is worth observing that the technique presented above can be extended
also to the identification of the dynamic parameters of an unknown payload at the
manipulator’s end effector. In such case, the payload can be regarded as a structural
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modification of the last link and one may proceed to identify the dynamic parameters
of the modified link. To this purpose, if a force sensor is available at the manipulator’s
wrist, it is possible to directly characterize the dynamic parameters of the payload
starting from force sensor measurements.

4.5 Newton-Euler Formulation

In the Lagrange formulation, the manipulator dynamic model is derived starting from
the total Lagrangian of the system. On the other hand, the Newton-Euler formulation
is based on a balance of all the forces acting on the generic link of the manipulator.
This leads to a set of equations whose structure allows a recursive type of solution;
a forward recursion is performed for propagating link velocities and accelerations,
followed by a backward recursion for propagating forces.

Consider the generic augmented Link i (Link ¢ plus motor of Joint ¢ + 1) of
the manipulator kinematic chain (Figure 4.14). According to what was presented
in Section 4.2.2, one can refer to the centre of mass C; of the augmented link to
characterize the following parameters:

m; mass of augmented link,
I; inertia tensor of augmented link,
1, moment of inertia of rotor,
ri—1,¢c, vector from origin of Frame (i — 1) to centre of mass C',
r;,c, vector from origin of Frame ¢ to centre of mass C},
r;_1,; vector from origin of Frame (¢ — 1) to origin of Frame 4.
The velocities and accelerations to be considered are:
Pc; linear velocity of centre of mass C},
Pp; linear velocity of origin of Frame 4,
w; angular velocity of link,

wm,; angular velocity of rotor,

Pc; linear acceleration of centre of mass C},
P; linear acceleration of origin of Frame ¢,
w; angular acceleration of link,

wm,; angular acceleration of rotor,

go gravity acceleration.
The forces and moments to be considered are:
fi force exerted by Link ¢ — 1 on Link 4,
— fir1 force exerted by Link ¢ + 1 on Link 4,

p; momentexerted by Link2—1 on Link ¢ with respect to origin of Frame : —1,
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Figure 4.14 Characterization of Link 7 for Newton-Euler formulation.

—pir1 moment exerted by Link ¢ + 1 on Link ¢ with respect to origin of Frame i.

Initially, all the vectors and matrices are assumed to be expressed with reference to the
base frame.

As already anticipated, the Newton-Euler formulation describes the motion of the
link in terms of a balance of forces and moments acting on it.

The Newton equation for the franslational motion of the centre of mass can be
written as

i — firn +migo = mipe,. (4.86)

The Euler equation for the rotational motion of the link (referring moments to the
centre of mass) can be written as

pitfixric,—piv1— Fipi Xric, = %(Iiwi +hrit1Giv1lmi Zmeg, ), (4.87)
where (4.66) has been used for the angular momentum of the rotor. Notice that the
gravitational force m;go does not generate any moment, since it is concentrated at the
centre of mass.

As pointed out in the above Lagrange formulation, it is convenient to express the
inertia tensor in the current frame (constant tensor). Hence, according to (4.12), one
has I; = R;I! R, where R; is the rotation matrix from Frame i to the base frame.
Substituting this relation in the first term on the right-hand side of (4.87) yields

d - . . _
5 (Liwi) = RI'RTw; + RI!R!w; + RiI!R! w; (4.88)

= S(w)RI'Rw; + RiI!RT ST (w;)w; + R;I! RT &;
= sz + w; X (Lwl)



168 Modelling and Control of Robot Manipulators

where the second term represents the gyroscopic torque induced by the dependence
of I; on link orientation’. Moreover, by observing that the unit vector z,,,,, rotates
accordingly to Link ¢, the derivative needed in the second term on the right-hand side
of (4.87)1is

d

E(q.i+llmi+1zmi+1) = (ji+11mi+1zmi+1 + (ji+llmi+1wi X Zmi+1~ (489)

By substituting (4.88) and (4.89) in (4.87), the resulting Euler equation is

pi+ fi X ric1,c; — i1 — fir1 X ric, = Liw; + wi x (Liw;) (4.90)

+ kr,i+1(ji+11mi+1zmi+1 + kr,i+1(ji+1lmi+1wi X zmi+1~

The generalized force at Joint i can be computed by projecting the force f; for
a prismatic joint, or the moment g; for a revolute joint, along the joint axis. In
addition, there is the contribution of the rotor inertia torque k‘riImiwﬁi Zm,. Hence,
the generalized force at Joint ¢ is expressed by:

4.91)

fiTzi,l + krilmiwgizmi for a prismatic joint
Ty = . ..
plzioy + kpilm,wl zm,  for arevolute joint.

4.5.1 Link Acceleration

The Newton-Euler equations in (4.86) and (4.90) and the equation in (4.91) require the
computation of linear and angular acceleration of Link ¢ and Rotor i. This computation
can be carried out on the basis of the relations expressing the linear and angular
velocities previously derived. The equations in (3.19), (3.20), (3.23), (3.24) can be
briefly rewritten as

Wi—1 for a prismatic joint
w; = . L 4.92)
wi_1 +%2,_1 for a revolute joint
and
'._ d . X P14 f / t"'t
bi = 17, 1+ diZi—1 +wW; X Ti—14 ‘or a prisma lC‘J‘Oln (4.93)
Pi—1 T wi X T for a revolute joint.

As for the angular acceleration of the link, it can be seen that, for a prismatic joint,
differentiating (3.19) with respect to time gives

Wi = Wi_1, (4.94)

" In deriving (4.88), the operator S has been introduced to compute the derivative of R, as
in (3.7); also, the property ST (w;)w; = 0 has been utilized.
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whereas, for a revolute joint, differentiating (3.23) with respect to time gives
wi; =w;—1 + 1§z‘zi—1 + 191'601'—1 X Zj—1- (4.95)

As for the linear acceleration of the link, for a prismatic joint, differentiating (3.20)
with respect to time gives

Pi=Di1 +dizi 1 +diwi 1 X zi1 F i X T (4.96)

+wi X dizi—1 +wi X (Wi—1 X Ti_14)

where the relation 7,1 ; = dizi,l + w;_1 X 7;_1,; has been used. Hence, in view of
(3.19), the equation in (4.96) can be rewritten as

D = Pic1 4+ dizi1 + 2diw; X zi_1 + W; X ric1i+w; X (Wi X 1im14). (4.97)
Also, for a revolute joint, differentiating (3.24) with respect to time gives
Di = Di1 Fwi X1+ wi X (Wi X i), (4.98)

In sum, the equations in (4.94), (4.95), (4.97), (4.98) can be briefly rewritten as

. wi—1 for a prismatic joint

w; =1 . . . o 4.99)
Wi—1 + ;21 +wi_1 X Z;—1 for a revolute joint

and

Pi1 +dizi1 +2diw; X 2

. Fw; X P+ w; X (W X711 for a prismatic joint

Pi = ) 7 . 1—1,2 7 ( 7 7 1,2) P ] (4100)
PDi—1 +wi X P14

Fw; X (Wi X 1ri_1) for a revolute joint.

The acceleration of the centre of mass of Link ¢ required by the Newton equation
in (4.86) can be derived from (3.13), since 7“:0 = 0; by differentiating (3.13) with
respect to time, the acceleration of the centre of mass C'; can be expressed as a function
of the velocity and acceleration of the origin of Frame 4, i.e.,

Do, =D +wi X 1o +wi X (wi X 'I"z"(ji). (4.101)

Finally, the angular acceleration of the rotor can be obtained by time differentiation
of (4.23), ie.,
Wy = Wi 1 + kriGizm; + brigiwi—1 X Zm;. (4.102)

i

4.5.2 Recursive Algorithm

It is worth remarking that the resulting Newton-Euler equations of motion are not in
closed form, since the motion of a single link is coupled to the motion of the other
links through the kinematic relationship for velocities and accelerations.
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Once the joint positions, velocities and accelerations are known, one can compute
the link velocities and accelerations, and the Newton-Euler equations can be utilized
to find the forces and moments acting on each link in a recursive fashion, starting from
the force and moment applied to the end effector. On the other hand, also link and rotor
velocities and accelerations can be computed recursively starting from the velocity and
acceleration of the base link. In sum, a computationally recursive algorithm can be
constructed that features a forward recursion relative to the propagation of velocities
and accelerations and a backward recursion for the propagation of forces and moments
along the structure.

For the forward recursion, once q, ¢, ¢, and the velocity and acceleration of the
base link wq, Po — go. wo are specified, w;, w;, Pi, Pc;» Wm,; can be computed using
(4.92),(4.99),(4.100), (4.101), (4.102), respectively. Notice that the linear acceleration
has been taken as Py — go so as to incorporate the term —gg in the computation of the
acceleration of the centre of mass p¢; via (4.100) and (4.101).

Having computed the velocities and accelerations with the forward recursion from
the base link to the end effector, a backward recursion can be carried out for the forces.
Indetail,onceh = [ f,L,, pl ,]7 is given (eventually h = 0), the Newton equation
in (4.86) to be used for the recursion can be rewritten as

fi = fir1 +mibe, (4.103)

since the contribution of gravity acceleration has already been included in ¢, . Further,
the Euler equation gives

pi=—fi X (ricyi +700) + iv1 + fipr X 1o+ Liwi + wi x (Liw;)
+ kr,i+1(ji+1lmi+1zmi+1 + kr,i+1q.i+1Imi+1wi X Zmitr (4-104)

which derives from (4.90), where 7;_1 ¢, has been expressed as the sum of the two
vectors appearing already in the forward recursion. Finally, the generalized forces
resulting at the joints can be computed from (4.91) as

{ Flzi1+ kriImiwﬁi Zm; + F,d; + Fy; sgn (dz) for a prismatic joint
T =

plziy 4 kil @k 2, + Fui0; + Fyysgn (9;)  for a revolute joint,
(4.105)
where joint viscous and Coulomb friction torques have been included.

In the above derivation, it has been assumed that all vectors were referred to the
base frame. To greatly simplify computation, however, the recursion is computationally
more efficient if all vectors are referred to the current frame on Link ¢. This implies
that all vectors that need to be transformed from Frame ¢ + 1 into Frame ¢ have to be
multiplied by the rotation matrix R} 1, Whereas all vectors that need to be transformed
from Frame ¢ — 1 into Frame ¢ have to be multiplied by the rotation matrix RZ_IT.
Therefore, the equations in (4.92), (4.99), (4.100), (4.101), (4.102), (4.103), (4.104)
and (4.105) can be rewritten as:

R Twi~] for a prismatic joint
wi={ ' . (4.106)
R T (wim! +9i20) for a revolute joint

EN SN
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P ) »

) »

Figure 4.15 Computational structure of the Newton-Euler recursive algorithm.

. R 'To!] for a prismatic joint
i = 4.107)

R (wi7] 4+ ;20 + Piw]_| x 20) for a revolute joint

Ri_lT(ﬁE_% +dZ0) —|—2dwl X Rl:_lTZO

, Fwl X Tyt wl X (W x T ) for a prismatic joint
Pl = (4.108)
Z RZ_IT 1 + UJ X 7’171 i
+w! x (w X1l ;) for a revolute joint
Do, =D+ @l X1l o+ wl x (W X7 o) (4.109)
w:;l . UJ 1 + kqu + kmql X z:'n_il (41 10)
fl =R fiH +mipl, 4.111)
i __ i % i % 1+1 i+1 ]
pi=—f x(ri_y;+ric) + R pii + z+1f+1 X 720 + o) (4.112)

+ wzl’ X (Isz) + kr7i+1(‘]‘i+llmi+1zmi+1 + kr,i+IQi+1Imi+1wi X zm +1
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FITRT T 20 + kil wi M T 2000

m;
+Fyid; + Fsisgn (d;) for a prismatic joint
n={ " - (4.113)
u%TREfszo + krilmicb;;szﬁrjil
+F,i0; + Fy;sgn (¢;) for a revolute joint.

The above equations have the advantage that the quantities I, rf ,0 2o, are constant;
further, itis zo = [0 0 1]7.

To summarize, for given joint positions, velocities and accelerations, the recursive
algorithm is carried out in the following two phases:

e With known initial conditions wg, p§ — g3, and wy, use (4.106), (4.107),
(4.108), (4.109), (4.110), for i = 1,...,n, to compute w!, &}, pi, by, wirL.

my

e With known terminal conditions £ and p/"17, use (4.111) and (4.112), for
i=mn,...,1,tocompute f/ and u!, and then (4.113) to compute 7.

The computational structure of the algorithm is schematically illustrated in Fig-
ure 4.15.

4.5.3 Example

In the following, an example to illustrate the single steps of the Newton-Euler algorithm
is developed. Consider the two-link planar arm whose dynamic model has already been
derived in Example 4.2.

Start by imposing the initial conditions for the velocities and accelerations:

Po—g0=[0 g 01" wi=ag=0,

and the terminal conditions for the forces:

All quantities are referred to the current link frame. As a consequence, the following
constant vectors are obtained:

L KC& . ap 5 602 5 as
7'1701 = O 7‘071 = O 7'2702 = O 7'172 = O
0 0 0 0

where (¢, and £, are both negative quantities. The rotation matrices needed for vector
transformation from one frame to another are:

C; —8; 0
R''=|si ¢ 0O, i=12 R:=1
0 0 1

Further, it 1s assumed that the axes of rotation of the two rotors coincide with the
respective joint axes, i.e., 2571 = 2o = [0 0 1]¥ fori=1,2.

%
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According to (4.106)—(4.113), the Newton-Euler algorithm requires the execution
of the following steps.
e Forward recursion: Link 1

0
wi=10
L1 |
ol =
L1 |
—a119% + gs1
P = a1t + g1
0
—(f(jl + al)ﬁ% + gsi
1“7%]1 = (401 + al)ﬂl +961
0
0
@O =1 0
krl'l?l

e Forward recursion: Link 2

_’1.5.‘1 +’l§2_

a1821§1 — (116219% — ag(’lél + ’192)2 + gs12
3 = arcaty + 02(151 + 192) + 018219% + gcia
0

(1182191 — alcQﬁ% — (602 + ag)(’lél + ’192)2 + gsi2
P202 = | arcoVy + (bey + az) (V1 + 92) + ar520% + gero
0
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0
w}n2 = 0
9y + kr21§2

Backward recursion: Link 2

_mg (a1821§1 - (1162’19% - (602 + (12)(191 + ’192)2 + 9812)
5=\ mo (a1021§1 + (lo, + 02)(1.9.1 + 192) + 015219% + 9012)
0

*
*
j2zz(1.9.1 + 192) + ma(le, + a2)2(1.9:1 + 192) + moar (bo, + a2)021§1
+maar (boy, + a2)s29? + ma(le, + az)gers

7 = (Tozz + ma (boy + a2)? + a1(bey, + az)c2) + EpaTmy, )01
+ (Ioas +ma(le, + a2)? + k21, Us

+m2a1 (602 + (12)82’19% + mg(f(jQ + ag)gclg.

Backward recursion: Link 1

[ —mo (602 + a2)52(1§1 + 192).— m1 (‘601 + (11)19% — m2a119%
—ma(lo, + az)ea (V1 +192)2 + (my + ma)gsy

fll = ml(Zol + a1)191 + m2a1191. + m?(ZCZ + a2)02(191 + 192)
—ma(ley, + az)s2 (V1 + 92)% + (mq + ma)ger

L 0

*
*
I1..01 + maa2y + mi(le, + a1)?01 + maay (Coy, + as)eaVy
p = + 1. (U1 4 U2) + moar (boy + as)ea (P + Us)
+ma (e, + a2)? (U1 + U2) + kpolm, Uo
+moar (bo, + ag)syﬁ‘% —maa1 (o, + as)ss (191 + 192)2
L +m1(bo, + ar)ger + moarger + mo(loy, + as)gers

= (jlzz +ma(ley + a1)2 + k%lfml + L.
2 2 9
+1me (al + (@c2 + az) + 20, (@c2 + az)cz))ﬁl

+(I_2:z +ma (Lo, + a2)” + a1 (€e, + az)e) + krzfm)ﬁz

—2m2a1 (KCQ + (12)82191’192 — Moy (602 + (12)82’193
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+ (m1 (ley, +ar) + m2a1)gcl +ma(lo, + az)gcra.

As for the moment components, those marked by the symbol ‘*’ have not been
computed, since they are not related to the joint torques 7, and 7y .

Expressing the dynamic parameters in the above torques as a function of the link
and rotor parameters as in (4.82) yields:

my = mg, + My,
mile, = my, (6 — ar)
Liae +muly, = L =1, +mg, (6 — a1)” + I,
Mo = My,
malc, = my, (Zz - az)

L.+ maly, = Iy = Iy, + mgy (b — an)?.

On the basis of these relations, it can be verified that the resulting dynamic model
coincides with the model derived in (4.81) with Lagrange formulation.

4.6 Direct Dynamics and Inverse Dynamics

Both Lagrange formulation and Newton-Euler formulation allow computing the re-
lationship between the joint torques—and, if present, the end-effector forces—and
the motion of the structure. A comparison between the two approaches reveals what
follows. The Lagrange formulation has the following advantages:

o Itis systematic and of immediate comprehension.

e It provides the equations of motion in a compact analytical form containing
the inertia matrix, the matrix in the centrifugal and Coriolis forces, and the
vector of gravitational forces. Such a form is advantageous for control design.

e It is effective if it is wished to include more complex mechanical effects such
as flexible link deformation.

The Newton-Euler formulation has the following fundamental advantage:
o Itis an inherently recursive method that is computationally efficient.

In the study of dynamics, it is relevant to find a solution to two kinds of problems
concerning computation of direct dynamics and inverse dynamics.

The direct dynamics problem consists of determining, for £ > tg, the joint accel-
erations ¢(t) (and thus g(t), g(t)) resulting from the given joint torques 7(t)—and
the possible end-effector forces h(t)—once the initial positions g(to) and velocities
q(to) are known (initial state of the system).

The inverse dynamics problem consists of determining the joint torques 7(¢) which
are needed to generate the motion specified by the joint accelerations ¢(t), velocities
g(t), and positions g(t)—once the possible end-effector forces h(t) are known.

Solving the direct dynamics problem is useful for manipulator simulation. Direct
dynamics allows describing the motion of the real physical system in terms of the
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joint accelerations, when a set of assigned joint torques is applied to the manipulator;
joint velocities and positions can be obtained by integrating the system of nonlinear
differential equations.

Since the equations of motion obtained with Lagrange formulation give the ana-
lytical relationship between the joint torques (and the end-effector forces) and the joint
positions, velocities and accelerations, these can be computed from (4.41) as

§=B"(q)(r -7 (4.114)
where
7'(q,q) = C(q,4)q + Foq + Fysgn (q) + g(q) + I (q)h (4.115)
denotes the torque contributions depending on joint positions and velocities. There-
fore, for simulation of manipulator motion, once the state at the time instant ¢z is
known in terms of the position g () and velocity ¢(tx ), the acceleration §(tx) can be
computed by (4.114). Then using a numerical integration method, e.g., Runge-Kautta,
with integration step At, the velocity g(¢r41) and position g(tr41) at the instant
tg+1 = tr + At can be computed.

If the equations of motion are obtained with Newton-Euler formulation, it is
possible to compute direct dynamics by using a computationally more efficient method.
In fact, for given ¢ and ¢, the torques 7'(q, ¢) in (4.115) can be computed as the torques
given by the algorithm of Figure 4.15 with g = 0. Further, column b; of matrix B(q)
can be computed as the torque vector given by the algorithm of Figure 4.15 with
go =0, =0,§; =1andg; = 0forj # i; iterating this procedure fori = 1,...,n
leads to constructing the matrix B(q). Hence, from the current values of B(q) and
7'(q,q), and the given 7, the equations in (4.114) can be integrated as illustrated
above.

Solving the inverse dynamics problem is useful for manipulator trajectory planning
and control algorithm implementation. Once a joint trajectory is specified in terms of
positions, velocities and accelerations (typically as a result of an inverse kinematics
procedure), and if the end-effector forces are known, inverse dynamics allows com-
putation of the torques to be applied to the joints to obtain the desired motion. This
computation turns out to be useful both for verifying feasibility of the imposed tra-
jectory and for compensating nonlinear terms in the dynamic model of a manipulator.
To this purpose, Newton-Euler formulation provides a computationally efficient re-
cursive method for on-line computation of inverse dynamics. Nevertheless, it can be
shown that also Lagrange formulation is liable to a computationally efficient recursive
implementation, though with a nonnegligible reformulation effort.

For an n-joint manipulator the number of operations required is:

e O(n?) for computing direct dynamics,

e O(n) for computing inverse dynamics.

4.7 Operational Space Dynamic Model

As an alternative to the joint space dynamic model, the equations of motion of the
system can be expressed directly in the operational space; to this purpose it is necessary
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to find a dynamic model which describes the relationship between the generalized forces
acting on the manipulator and the number of minimal variables chosen to describe the
end-effector position and orientation in the operational space.

Similarly to kinematic description of a manipulator in the operational space, the
presence of redundant degrees of freedom and/or kinematic and representation singu-
larities deserves careful attention in the derivation of an operational space dynamic
model.

The determination of the dynamic model with Lagrange formulation using oper-
ational space variables allows a complete description of the system motion only in
the case of a nonredundant manipulator, when the above variables constitute a set of
generalized coordinates in terms of which the kinetic energy, the potential energy, and
the nonconservative forces doing work on them can be expressed.

This way of proceeding does not provide a complete description of dynamics for
a redundant manipulator; in this case, in fact, it is reasonable to expect the occurrence
of internal motions of the structure caused by those joint generalized forces which do
not affect the end-effector motion.

To develop an operational space model which can be adopted for both redundant
and nonredundant manipulators, it is then convenient to start from the joint space
model which is in all general. In fact, solving (4.41) for the joint accelerations, and
neglecting the joint friction torques for simplicity, yields

i=-B'(a)C(q,9)a — B~ (@)g(a) + B (9)J " (@)(y —h),  (4.116)

where the joint torques 7 have been expressed in terms of the equivalent end-effector
forces = according to (3.99). It is worth remarking that h represents the contribution
of the end-effector forces due to contact with the environment, whereas -y expresses
the contribution of the end-effector forces due to joint actuation.

On the other hand, the differential kinematics equation in (3.58) can be differen-
tiated with respect to time to get the relationship between joint space and operational
space accelerations, i.e.,

& =Jal@)d + Jalg,q)q. (4.117)

The solution in (4.116) features the geometric Jacobian J, whereas the analytical
Jacobian J 4 appears in (4.117). For notation uniformity, in view of (3.62), one can set

Ti(x)y=v4 Ti(x)h=hy 4.118)

where T'4 is the transformation matrix between the two Jacobians. Substituting (4.116)
into (4.117) and accounting for (4.118) gives

#=-JaB7'Cq—JsB g+ Jag+JaB ' T5(v4 — ha), (4.119)
where the dependence on g and ¢ has been omitted. With the positions

By = (J4B tJH)1 (4.120)
Cui = BuJaB~'Cq— Badaq (4.121)
ga=BaJsB 'y, (4.122)
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The expression in (4.119) can be rewritten as
Bu(x)d + Calz,&)d + galx) =v4 — ha, (4.123)

which is formally analogous to the joint space dynamic model (4.41). Notice that the
matrix J4 B ’1J£ is invertible if and only if J 4 is full-rank, that is, in the absence of
both kinematic and representation singularities.

For a nonredundant manipulator in a nonsingular configuration, the expressions
in (4.120)—(4.122) become:

B,=J,"BJ;! (4.120")
Ca = J;7Cq— Badag 4.121")
gr=J;"g. (4.122")

As anticipated above, the main feature of the obtained model is its formal validity also
for a redundant manipulator, even though the variables  do not constitute a set of
generalized coordinates for the system; in this case, the matrix B 4 is representative
of a kinetic pseudo-energy.

In the remainder, the utility of the operational space dynamic model in (4.123) for
solving direct and inverse dynamics problems is investigated. The following derivation
is meaningful for redundant manipulators; for a nonredundant manipulator, in fact,
using (4.123) does not pose specific problems as long as J,4 is nonsingular (see
(4.120")—(4.122")).

With reference to operational space, the direct dynamics problem consists of
determining the resulting end-effector accelerations &(t) (and thus &(t), (t)) from
the given joint torques 7(t) and end-effector forces h(t). For a redundant manipulator,
(4.123) cannot be directly used, since (3.99) has a solution in 4 only if 7 € R(JT). It
follows that for simulation purposes, the solution to the problem is naturally obtained
in the joint space; in fact, the expression in (4.41) allows computing q, g, ¢ which,
substituted into the direct kinematics equations in (2.70), (3.58), (4.117), give , &, &,
respectively.

Formulation of an inverse dynamics problem in the operational space requires the
determination of the joint torques 7 () that are needed to generate a specific motion
assigned in terms of &(t), &(t), x(t), for given end-effector forces h(t). A possible
way of solution is to solve a complete inverse kinematics problem for (2.70), (3.58),
(4.117), and then compute the required torques with the joint space inverse dynamics
as in (4.41). Hence, for redundant manipulators, redundancy resolution is performed
at kinematic level.

An alternative solution to the inverse dynamics problem consists of computing -y 4
as in (4.123) and the joint torques 7 as in (3.99). In this way, however, the presence
of redundant degrees of freedom is not exploited at all, since the computed torques do
not generate internal motions of the structure.

Ifitis desired to find a formal solution that allows redundancy resolution at dynamic
level, it is necessary to determine those torques corresponding to the equivalent end-
effector forces computed as in (4.123). By analogy with the differential kinematics
solution (3.50), the expression of the torques to be determined will feature the presence
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of a minimum-norm term and a homogeneous term. Since the joint torques have to
be computed, it is convenient to express the model (4.123) in terms of q, g, q. By
recalling the positions (4.121) and (4.122), the expression in (4.123) becomes

Bu(# — Jaq) + BaJaB 'Cq+ BaJsB 'g=v4—ha
and, in view of (4.117),

BuJag+ BaJsB'Cq+ BsJaB 'g =74 —ha. (4.124)
By setting

Ja(g) = B~ (q)J4(q)Ba(q), (4.125)

the expression in (4.124) becomes
Ji(Bg+Cq+g)=va—ha (4.126)

At this point, from the joint space dynamic model in (4.41), it is easy to recognize that
(4.126) can be written as

Ji(T —Jiha) =44 — ha,

from which -
JIr =~a4. (4.127)

The general solution to (4.127) is of the form

T =Ji(@)va+ (I - I (@)T4 ()70, (4.128)

that can be derived by observing that J% is a right pseudo-inverse of J% weighted
by the inverse of the inertia matrix B~!. The (n x 1) vector of arbitrary torques 7
in (4.128) does not contribute to the end-effector forces, since it is projected in the null
space of J 7.

To summarize, for given x, &, & and h 4, the expression in (4.123) allows com-
puting v 4. Then, (4.128) gives the torques 7 which, besides executing the assigned
end-effector motion, generate internal motions of the structure to be employed for
handling redundancy at dynamic level through a suitable choice of 7.

4.8 Dynamic Manipulability Ellipsoid

The availability of the dynamic model allows formulation of the dynamic manipu-
lability ellipsoid which provides a useful tool for manipulator dynamic performance
analysis. This can be used for mechanical structure design as well as for seeking
optimal manipulator configurations.

Consider the set of joint torques of constant (unit) norm

Tr=1 (4.129)
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describing the points on the surface of a sphere. It is desired to describe the operational
space accelerations that can be generated by the given set of joint torques.

For studying dynamic manipulability, suppose to consider the case of a manipulator
standing still (¢ = 0), not in contact with the environment (h = 0). The simplified
model is

B(q)g +g(q) =T. (4.130)

The joint accelerations g can be computed from the second-order differential kinemat-
ics that can be obtained by differentiating (3.35), and imposing successively g = 0,
leading to

v =J(q)q. (4.131)

Solving for minimum-norm accelerations only, for a nonsingular Jacobian, and sub-
stituting in (4.130) yields the expression of the torques

T = B(@)J'(q)9 +g(q) (4.132)

needed to derive the ellipsoid. In fact, substituting (4.132) into (4.129) gives

(B@)JIT ()b +9(a)" (B(a)T (@)9 +g(a) = 1.

The vector on the right-hand side of (4.132) can be rewritten as

BJTo+g=BITo+ B lg) (4.133)
=BJto+ B g+ JtuBg—JgtaBg)
= B(JTo+JTUB g+ (1-J0)Bg).

where the dependence on g has been omitted. According to what was done for solv-
ing (4.131), one can neglect the contribution of the accelerations given by B ~'g which
are in the null space of J and then produce no end-effector acceleration. Hence, (4.133)
becomes

BJ'o 1+ g=BJl(w+IB g (4.134)

and the dynamic manipulability ellipsoid can be expressed in the form
(o +JB ¢TI TBTBI (9 + IB 1g) = 1. (4.135)

The core of the quadratic form J 7T Bt depends on the geometrical and inertial
characteristics of the manipulator and determines the volume and principal axes of
the ellipsoid. The vector —J B ~'g, describing the contribution of gravity, produces a
constant translation of the centre of the ellipsoid (for each manipulator configuration)
with respect to the origin of the reference frame; see the example in Figure 4.16 for a
three-link planar arm.

The meaning of the dynamic manipulability ellipsoid is conceptually similar to that
of the ellipsoids considered with reference to kineto-statics duality. In fact, the distance
of a point on the surface of the ellipsoid from the end effector gives a measure of the
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Figure 4.16 Effect of gravity on the dynamic manipulability ellipsoid for a three-link planar

arm.

accelerations which can be imposed to the end effector along the given direction, with
respect to the constraint (4.129). With reference to Figure 4.16, it is worth noticing how
the presence of gravity acceleration allows performinglarger accelerations downwards,
as natural to predict.

In the case of a nonredundant manipulator, the ellipsoid reduces to

(v+JB'g)tgT'BTBJ (v + JB !g) = 1. (4.135")

Problems

4.1

4.2

4.3

44

4.5

4.6

4.7

Find the dynamic model of a two-link Cartesian arm in the case when the second joint
axis forms an angle of 7/4 with the fi rst joint axis; compare the result with the model
of the manipulator in Figure 4.4.

For the planar arm of Section 4.3.2, fi nd a minimal parameterization of the dynamic
model in (4.81).

Find the dynamic model of the two-link planar arm with a prismatic joint and a
revolute joint in Figure 4.17 with Lagrange formulation. Then, consider the addition
of a concentrated tip payload of mass m,, and express the resulting model in a linear
form with respect to a suitable set of dynamic parameters as in (4.80).

For the two-link planar arm of Figure 4.5, prove that with a different choice of the
matrix C, (4.48) holds true while (4.47) does not.

For the two-link planar arm of Figure 4.5, fi nd the dynamic model with the Lagrange
formulation when the absolute angles with respect to the base frame are chosen as
generalized coordinates. Discuss the result in view of a comparison with the model
derived in (4.81).

Compute the joint torques for the two-link planar arm of Figure 4.5 with the data and
along the trajectories of Example 4.2, in the case of tip forces f = [500 500]7 N.

Find the dynamic model of the two-link planar arm with a prismatic joint and a revolute
joint in Figure 4.17 by using the recursive Newton-Euler algorithm.
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Figure 4.17 Two-link planar arm with a prismatic joint and a revolute joint.

4.8 Show that for the operational space dynamic model (4.123) a skew-symmetry property
holds which is analogous to (4.47).

4.9 Show how to obtain the general solution to (4.127) in the form (4.128).

4.10 For a nonredundant manipulator, compute the relationship between the dynamic ma-
nipulability measure that can be defi ned for the dynamic manipulability ellipsoid and
the manipulability measure defi ned in (3.52).
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5. Trajectory Planning

The previous chapters focused on mathematical modelling of mechanical manipula-
tors in terms of kinematics, differential kinematics and statics, and dynamics. Before
studying the problem of controlling a manipulation structure, it is worth presenting the
main features of motion planning algorithms for the execution of specific manipulator
tasks. The goal of trajectory planning is to generate the reference inputs to the motion
control system which ensures that the manipulator executes the planned trajectories.
The user typically specifies a number of parameters to describe the desired trajectory.
Planning consists of generating a time sequence of the values attained by a polynomial
function interpolating the desired trajectory. This chapter presents some techniques
for trajectory generation both in the case when the initial and final point of the path
are assigned (point-to-point motion), and in the case when a finite sequence of points
are assigned along the path (path motion). First, the problem of trajectory planning
in the joint space is considered, and then the basic concepts of trajectory planning
in the operational space are illustrated. The chapter ends with the presentation of a
technique for dynamic scaling a trajectory which allows adapting trajectory planning
to manipulator dynamic characteristics.

5.1 Path and Trajectory

The minimal requirement for a manipulator is the capability to move from an initial
posture to a final assigned posture. The transition should be characterized by motion
laws requiring the actuators to exert joint generalized forces which do not violate
the saturation limits and do not excite the typically unmodeled resonant modes of
the structure. It is then necessary to devise planning algorithms that generate suitably
smooth trajectories.

In order to avoid confusion between terms often used as synonyms, the difference
between a path and a trajectory is to be explained. A path denotes the locus of points
in the joint space, or in the operational space, the manipulator has to follow in the
execution of the assigned motion; a path is then a pure geometric description of
motion. On the other hand, a trajectory is a path on which a time law is specified, for
instance in terms of velocities and/or accelerations at each point.

In principle, it can be conceived that the inputs to a trajectory planning algorithm
are the path description, the path constraints, and the constraints imposed by manip-
ulator dynamics, whereas the outputs are the joint (end-effector) trajectories in terms

L. Sciavicco et al., Modelling and Control of Robor Manipularors
© Springer-Verlag London Limited 2000
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of a time sequence of the values attained by position, velocity and acceleration. A
path can be defined either in the joint space or in the operational space. Usually, the
latter is preferred since it allows a natural description of the task the manipulator has
to perform.

A geometric path cannot be fully specified by the user for obvious complexity
reasons. Typically, a reduced number of parameters is specified such as extremal
points, possible intermediate points, and geometric primitives interpolating the points.
Also, the motion time law is not typically specified at each point of the geometric
path, but rather it regards the total trajectory time, the constraints on the maximum
velocities and accelerations, and eventually the assignment of velocity and acceleration
at points of particular interest. On the basis of the above information, the trajectory
planning algorithm generates a time sequence of variables that describe end-effector
position and orientation over time in respect of the imposed constraints. Since the
control action on the manipulator is carried out in the joint space, a suitable inverse
kinematics algorithm is to be used to reconstruct the time sequence of joint variables
corresponding to the above sequence in the operational space.

Trajectory planning in the operational space naturally allows accounting for the
presence of path constraints; these are due to regions of workspace which are forbidden
to the manipulator, e.g., due to the presence of obstacles. In fact, such constraints are
typically better described in the operational space, since their corresponding points in
the joint space are difficult to compute.

With regard to motion in the neighbourhood of singular configurations and presence
of redundant degrees of freedom, trajectory planning in the operational space may
involve problems difficult to solve. In such cases, it may be advisable to specify the
path in the joint space, still in terms of a reduced number of parameters. Hence, a time
sequence of joint variables has to be generated which satisfy the constraints imposed
on the trajectory.

For the sake of clarity, in the following, the case of joint space trajectory planning
is treated first. The results will then be extended to the case of trajectories in the
operational space.

5.2 Joint Space Trajectories

A manipulator motion is typically assigned in the operational space in terms of trajec-
tory parameters such as the initial and final end-effector location, possible intermediate
locations, and traveling time along particular geometric paths. If it 1s desired to plan a
trajectory in the joint space, the values of the joint variables have to be determined first
from the end-effector position and orientation specified by the user. It is then necessary
to resort to an inverse kinematics algorithm, if planning is done oft-line, or to directly
measure the above variables, if planning is done by the teaching-by-showing technique
(see Chapter 9).

The planning algorithm generates a function q(t) interpolating the given vectors
of joint variables at each point, in respect of the imposed constraints.

In general, a joint space trajectory planning algorithm is required to have the
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following features:

o the generated trajectories be not very demanding from a computational view-
point,

e joint positions and velocities be continuous functions of time (continuity of
accelerations may be imposed, too),

¢ undesirable effects be minimized, e.g., nonsmooth trajectories interpolating a
sequence of points on a path.

At first, the case is examined when only the initial and final points on the path and
the traveling time are specified (point-to-point motion); the results are then generalized
to the case when also intermediate points along the path are specified (path motion).
Without loss of generality, the single joint variable g(t) is considered.

5.2.1 Point-to-point Motion

In the point-to-point motion, the manipulator has to move from an initial to a final
joint configuration in a given time ¢z. In this case, the actual end-effector path is of
no concern. The algorithm should generate a trajectory which, in respect to the above
general requirements, is also capable to optimize some performance index when the
joint is moved from one position to another.

A suggestion for choosing the motion primitive may stem from the analysis of an
incremental motion problem. Let I be the moment of inertia of a rigid body about its
rotation axis. It 1s required to take the angle ¢ from an initial value g; to a final value
gy in atime t¢. It is obvious that infinite solutions exist to this problem. Assuming that
rotation is executed through a torque 7 supplied by a motor, a solution can be found
which minimizes the energy dissipated in the motor. This optimization problem can
be formalized as follows. Having set ¢ = w, determine the solution to the differential
equation

lwo=r1
subject to the condition

ty
/ w(t)dt = g7 — ¢,

so as to minimize the performance index

/0 v 72 (t)dt.

It can be shown that the resulting solution is of the type
w(t) = at® + bt +c.

Even though the joint dynamics cannot be described in the above simple manner', the

! In fact, recall that the moment of inertia about the joint axis is a function of manipulator
confi guration.
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choice of a third-order polynomial function to generate a joint trajectory represents a
valid solution for the problem at issue.
Therefore, to determine a joint motion, the cubic polynomial can be chosen

q(t) = ast® + ast® + a1t + ao, 5.1
resulting into a parabolic velocity profile
q(t) = 3ast® + 2ast + ay
and a linear acceleration profile
4(t) = 6agt + 2as.

Since four coefficients are available, it is possible to impose, besides the initial and
final joint position values ¢; and ¢y, also the initial and final joint velocity values ¢;
and ¢y which are usually set to zero. Determination of a specific trajectory is given by
the solution to the following system of equations:

ao = ¢

a) = ¢;

a3t§ + agt? + a1ty +ao = gy
3(131'? + 2asty + a1 = gy,

that allows computing the coefficients of the polynomial in (5.1). Figure 5.1 illustrates
the time law obtained with the following data: ¢; = 0,qf = 7w,y = 1,and ¢; = ¢y = 0.
As anticipated, velocity has a parabolic profile, while acceleration has a linear profile
with initial and final discontinuity.

If it is desired to assign also the initial and final values of acceleration, six con-
straints have to be satisfied and then a polynomial of at least fifth order is needed. The
motion time law for the generic joint is then given by

q(t) = a5t5 —|—a4t4 +a3t3 +a2t2 + a1t + ap, (5.2)

whose coefficients can be computed, as for the previous case, by imposing the condi-
tions fort = 0 and ¢ = ¢ on the joint variable ¢(¢) and on its first two derivatives. With
the choice (5.2), one obviously gives up minimizing the above performance index.

An alternative approach with time laws of blended polynomial type is frequently
adopted in industrial practice, which allows directly verifying whether the resulting
velocities and accelerations can be supported by the physical mechanical manipulator.

In this case, a trapezoidal velocity profile is assigned, which imposes a constant
acceleration in the start phase, a cruise velocity, and a constant deceleration in the
arrival phase. The resulting trajectory is formed by a linear segment connected by two
parabolic segments to the initial and final positions.

As can be seen from the velocity profiles in Figure 5.2, it is assumed that both
initial and final velocities are null and the segments with constant accelerations have
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Figure 5.1 Time history of position, velocity and acceleration with a cubic polynomial time
law.

the same time duration; this implies an equal magnitude g, in the two segments. Notice
also that the above choice leads to a symmetric trajectory with respect to the average
point ¢ = (g7 + ¢i)/2 at t, =ty /2.

The trajectory has to satisfy some constraints to ensure the transition from g; to gy
in a time t7. The velocity at the end of the parabolic segment must be equal to the
(constant) velocity of the linear segment, i.e.,

Im — 4c
tm - tc ’
where g, is the value attained by the joint variable at the end of the parabolic segment
at time ¢, with constant acceleration §, (recall that ¢(0) = 0). It is then

q.ctc = (53)

1. .
Gc = q; + §qct§- (54)
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Figure 5.2 Characterization of a time law with trapezoidal velocity profi le in terms of position,
velocity and acceleration.

Combining (5.3) with (5.4) gives
Get2 = Getyte +qr — i = 0. (5.5)

Usually, g, is specified with the constraint that sgn . = sgn (¢y — ¢;); hence, for given
ts. q; and gy, the solution for t. is computed from (5.5) as (¢, < t;/2)

tp 1 [t —4Algr — i
LT O U et C Tt O} (5.6)
2 2 de
Acceleration is then subject to the constraint
s Har —a
e > A ol (5.7)
b

When the acceleration ¢, is chosen so as to satisfy (5.7) with the equality sign, the
resulting trajectory does not feature the constant velocity segment any more and has
only the acceleration and deceleration segments (triangular profile).

Given g;, g7 and ty, and thus also an average transition velocity, the constraint
in (5.7) allows imposing a value of acceleration consistent with the trajectory. Then,
t. is computed from (5.6), and the following sequence of polynomials is generated:

g + 3Gct’ 0<t<te
q(t) = g + (jctc(t - tc/2) te <t S tf — 1. (58)
ar — 3Gc(ty — t)? by —te <t <ty.
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Figure 5.3 Time history of position, velocity and acceleration with a trapezoidal velocity profi le
time law.

Figure 5.3 illustrates a representation of the motion time law obtained by imposing the
data: ¢; =0, ¢y = m, t; = 1, and |§.| = 6.

Specifying acceleration in the parabolic segment is not the only way to determine
trajectories with trapezoidal velocity profile. Besides ¢;, gy and ¢, one can specify
also the cruise velocity ¢, which is subject to the constraint

— g ANgr — a;
lay q’|<|qc|§ lay Qzl.

5.9

. . (5.9)
By recognizing that ¢, = §.t., (5.5) allows computing ¢, as

fo= BT U TGS (5.10)

qc
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and thus the resulting acceleration is
g

- G111
Q@ — qf + qcty

Ge =
The computed values of t. and ¢, asin (5.10) and (5.11) allow generating the sequence
of polynomials expressed by (5.8).
The adoption of a trapezoidal velocity profile results in a worse performance index
compared to the cubic polynomial. The decrease is, however, limited; the term f(f T r2de
increases by 12.5% with respect to the optimal case.

5.2.2 Path Motion

In several applications, the path is described in terms of a number of points greater
than two. For instance, even for the simple point-to-point motion of a pick-and-place
task, it may be worth assigning two intermediate points between the initial point and
the final point; suitable positions can be set for lifting off and setting down the object,
so that reduced velocities are obtained with respect to direct transfer of the object. For
more complex applications, it may be convenient to assign a sequence of points so as to
guarantee better monitoring on the executed trajectories; the points are to be specified
more densely in those segments of the path where obstacles have to be avoided or a
high path curvature is expected. It should not be forgotten that the corresponding joint
variables have to be computed from the operational space locations.

Therefore, the problem is to generate a trajectory when N points, termed path
points, are specified and have to be reached by the manipulator at certain instants of
time. For each joint variable there are IV constraints, and then one might want to use
an (N — 1)-order polynomial. This choice, however, has the following disadvantages:

e Itis not possible to assign the initial and final velocities.

e As the order of a polynomial increases, its oscillatory behaviour increases, and
this may lead to trajectories which are not natural for the manipulator.

e Numerical accuracy for computation of polynomial coefficients decreases as
order increases.

e The resulting system of constraint equations is heavy to solve.

¢ Polynomial coefficients depend on all the assigned points; thus, if it is desired
to change a point, all of them have to be recomputed.

These drawbacks can be overcome if a suitable number of low-order inferpolating
polynomials, continuous at the path points, are considered in place of a single high-
order polynomial.

According to the previous section, the interpolating polynomial of lowest order
is the cubic polynomial, since it allows imposing continuity of velocities at the path
points. With reference to the single joint variable, a function ¢(t) is sought, formed
by a sequence of N — 1 cubic polynomials IT(t), for k = 1,..., N — 1, continuous
with continuous first derivatives. The function ¢(t) attains the values g for ¢ =
(k=1,...,N),and 1 = q;,t1 =0, gy = ¢y, tny = ty; the g;’s represent the path
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Figure 5.4 Characterization of a trajectory on a given path obtained through interpolating
polynomials.

points describing the desired trajectory att = ¢;, (Figure 5.4). The following situations
can be considered:

e Arbitrary values of ¢(t) are imposed at the path points.

e The values of ¢(f) at the path points are assigned according to a certain
criterion.

e The acceleration §(¢) shall be continuous at the path points.

To simplify the problem, it is also possible to find interpolating polynomials of order
less than three which determine trajectories passing nearby the path points at the given
instants of time.

Interpolating Polynomials with Velocity Constraints at Path Points

This solution requires the user to be able to specify the desired velocity at each path
point; the solution does not possess any novelty with respect to the above concepts.

The system of equations allowing computation of the coefficients of the N — 1
cubic polynomials interpolating the N path points is obtained by imposing the fol-
lowing conditions on the generic polynomial IT;(t) interpolating gy and gg+1, for
k=1,...,.N—1:

I (te) = qr
I (try1) = Qe
I, () = dx

My (te1) = qr-
The result is N — 1 systems of four equations in the four unknown coefficients of the
generic polynomial; these can be solved one independently of the other. The initial and
final velocities of the trajectory are typically set to zero (¢1 = ¢y = 0) and continuity
of velocity at the path points is ensured by setting

Iy (thi1) = g (tin)
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Figure 5.5 Time history of position, velocity and acceleration with a time law of interpolating
polynomials with velocity constraints at path points.

fork=1,...,N — 2.

Figure 5.5 illustrates the time history of position, velocity and acceleration obtained
with the data: ¢1 = 0, g2 = 2w, g5 = ©/2, g4 = 7w, b1 = 0, t2 = 2, 13 = 3,
ty =5,41 =0,¢ = m, g3 = —7, ¢4 = 0. Notice the resulting discontinuity on the
acceleration, since only continuity of velocity is guaranteed.

Interpolating Polynomials with Computed Velocities at Path Points

In this case, the joint velocity at a path point has to be computed according to a certain
criterion. By interpolating the path points with linear segments, the relative velocities
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Figure 5.6 Time history of position, velocity and acceleration with a time law of interpolating
polynomials with computed velocities at path points.

can be computed according to the following rules:

g1 =0

el

. { sgn (vg) # sgn (Vg41)
T =\ Swe +vier1)  sgn(vr) = sgn (V1)

gy =0,

(5.12)

where vy, = (g — qr—1)/ (tr, — tr—1) gives the slope of the segment in the time interval
[t—1,tk]. With the above settings, the determination of the interpolating polynomials
is reduced to the previous case.

Figure 5.6 illustrates the time history of position, velocity and acceleration obtained
with the following data: g1 = 0, g2 = 27, g3 = 7/2,q4 =7, t1 = 0,12 = 2,13 = 3,
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ty = 5,¢1 = 0, g = 0. It is easy to recognize that the imposed sequence of path
points leads to having zero velocity at the intermediate points.

Interpolating Polynomials with Continuous Accelerations at Path Points (Splines)

Both the above two solutions do not ensure continuity of accelerations at the path
points. Given a sequence of N path points, also the acceleration is continuous at
each t;, if four constraints are imposed; namely, two position constraints for each
of the adjacent cubics and two constraints guaranteeing continuity of velocity and
acceleration. The following equations have then to be satisfied:

It 1 (tr) =

Iy, (ty) = Hk(tk)
Iy (tr) = Iy (ts)
i1 (t) = ()

The resulting system for the /V path points, including the initial and final points, cannot
be solved. In fact, it is formed by 4(N — 2) equations for the intermediate points
and 6 equations for the extremal points; the position constraints for the polynomials
IIy(t1) = ¢; and IIn(tf) = g7 have to be excluded since they are not defined. Also,
Ho(t1), Io(t1), Hn(tg), IIn(tf) do not have to be counted as polynomials since they
are just the imposed values of initial and final velocities and accelerations. In sum, one
has 4N — 2 equations in 4(N — 1) unknowns.

The system can be solved only if one eliminates the two equations which allow
arbitrarily assigning the initial and final acceleration values. Fourth-order polynomials
should be used to include this possibility for the first and last segment.

On the other hand, if only third-order polynomials are to be used, the following
deception can be operated. Two virtual points are introduced for which continuity
constraints on position, velocity and acceleration can be imposed, without specifying
the actual positions, though. It is worth remarking that the effective location of these
points is irrelevant, since their position constraints regard continuity only. Hence, the
introduction of two virtual points implies the determination of N +1 cubic polynomials.

Consider N + 2 time instants ¢, where ¢y and ty4; conventionally refer to the
virtual points. The system of equations for determining the /N + 1 cubic polynomials
can be found by taking the 4(N — 2) equations:

It (t) = (5.13)
II 1 (L) = Ik (tr) (5.14)
Il 1 (ty) = Ik (ty) (5.15)
ITy 1 (tr) = I (tr) (5.16)
for k =3,..., N, written for the N — 2 intermediate path points, the 6 equations:
I (t) =g (5.17)
11 (t) = g (5.18)

I (t) = Gi (5.19)
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and
IInyi(tve2) = gf (5.17")
Inii(tnse) = dy (5.18")
[N g1 (tn42) = i (5.19")

I () = [i(ty) (5.20)
[Ty (t) = [i(t) (5:21)
I () = Ik (ty) (5.22)

for k = 2, N + 1, written for the two virtual points. The resulting system has 4(N + 1)
equations in 4(N + 1) unknowns, that are the coefficients of the N + 1 cubic polyno-
mials.

The solution to the system is computationally demanding, even for low values
of N. Nonetheless, the problem can be cast in a suitable form so as to solve the
resulting system of equations with a computationally efficient algorithm. Since the
generic polynomial Ty, (¢) is a cubic, its second derivative must be a linear function of
time which then can be written as

Ty (teyr)
Aty

_ 11 (tr,)

11, (t) At

(thy1 —t) + (t—ty) k=1,....N+1, (523)

where Aty = t;41 — ty indicates the time interval to reach gg+1 from ¢. By integrat-
ing (5.23) twice over time, the generic polynomial can be written as

- I (tr) I (thg1)

AT _ 3
4(t) = G (e =0+ =5t — 1) (5.24)
(1) AtedI(tesr)
+ ( At 5 (t —tg)

(Hz(t't:) - At’“g’“(tk)> (tier —1) k=1,... N+1,
which depends on the 4 unknowns: IT; (tg), Iy, (tpg1), I (te), I (trir).

Notice that the N variables g for £ # 2, N + 1 are given via (5.13), while
continuity is imposed for g2 and ¢ 11 via (5.20). By using (5.14), (5.17), (5.17"), the
unknowns in the N 4 1 equations in (5.24) reduce to 2(N + 2). By observing that the
equations in (5.18) and (5.18’) depend on g2 and gn11, and that ¢; and ¢ are given,
@> and gy 41 can be computed as a function of i (t1) and ]"]N-H (tn+2), respectively.
Thus, a number of 2(V + 1) unknowns are left.

By accounting for (5.16) and (5.22), and noticing that in (5.19) and (5.19") ¢; and
Gy are given, the unknowns reduce to V.
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At this point, (5.15) and (5.21) can be utilized to write the system of IV equations

in N unknowns: . .
I (t2) = 1x(t2)

HN(tNJrl) = HN+1(tN+1)~
Time-differentiation of (5.24) gives both IT; (t44 1) and I 11 (tgs1) fork = 1,..., N,
and thus it is possible to write a system of linear equations of the kind

AlIL(t) ... Inp(ne)] =0 (5.25)

which presents a vector b of known terms and a nonsingular coefficient matrix A; the
solution to this system always exists and is unique. It can be shown that the matrix A
has a tridiagonal band structure of the type

ai11 412 0 0
G21 Q22 0 0
A= : ,
0 0 ... anv—1,N—1 GN-IN
0 0 [N aN N—1 aNN

which simplifies the solution to the system. This matrix is the same for all joints, since
it depends only on the time intervals Aty specified.

An efficient solution algorithm exists for the above system which is given by a
forward computation followed by a backward computation. From the first equation,
II5(t3) can be computed as a function of I5(¢3) and then substituted in the second
equation, which then becomes an equation in the unknowns I75(¢3) and ITy(t4). This is
carried out forward by transforming all the equations in equations with two unknowns,
except the last one which will have ﬁNH (tn41) only as unknown. At this point, all
the unknowns can be determined step by step through a backward computation.

The above sequence of cubic polynomials is termed spline to indicate smooth
functions that interpolate a sequence of given points ensuring continuity of the function
and its derivatives.

Figure 5.7 illustrates the time history of position, velocity and acceleration obtained
with the data: g1 = 0,¢q3 =2m,qqu = 7/2, g6 = 7,61 = 0,13 = 2,14 = 3, t6 = 5,
g1 = 0, g¢ = 0. Two different pairs of virtual points were considered at the time
instants: to = 0.5, t5 = 4.5 (solid line in the figure), and t> = 1.5, t5 = 3.5 (dashed
line in the figure), respectively. Notice the parabolic velocity profile and the linear
acceleration profile. Further, for the second pair, larger values of acceleration are
obtained, since the relative time instants are closer to those of the two intermediate
points.

Interpolating Linear Polynomials with Parabolic Blends

A simplification in trajectory planning can be achieved as follows. Consider the case
when it is desired to interpolate IV path points ¢1, ..., ¢y at time instants ¢1, ..., ¢y
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Figure 5.7 Time history of position, velocity and acceleration with a time law of cubic splines
for two different pairs of virtual points.

with linear segments. To avoid discontinuity problems on the first derivative at the
time instants ¢, the function ¢(t) shall have a parabolic profile (blend) around t; as a
consequence, the entire trajectory is composed by a sequence of linear and quadratic
polynomials, which in turn implies that a discontinuity on §(¢) is tolerated.

Let then Aty = tx4+1 — tx be the time distance between gy, and gz, and Aty ;1
be the time interval during which the trajectory interpolating g5 and gi41 is a linear
function of time. Let also ¢x x+1 be the constant velocity and §j, be the acceleration
in the parabolic blend whose duration is At},. The resulting trajectory is illustrated
in Figure 5.8. The values of gj, Aty, and At), are assumed to be given. Velocity and
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Figure 5.8 Characterization of a trajectory with interpolating linear polynomials with parabolic
blends.

acceleration for the intermediate points are computed as
g _ Gk — Qk—1
E—1,k = — g

’ Aty

ekl — Gh—1k
At), ’

(5.26)
Gk

these equations are straightforward.

The first and last segments deserve special care. In fact, if it is desired to maintain
the coincidence of the trajectory with the first and last segments, at least for a portion
of time, the resulting trajectory has a longer duration given by tn — #1 + (At] +
Atly)/2, where go,1 = gn,n+1 = 0 has been imposed for computing initial and final
accelerations.

Notice that ¢(t) reaches none of the path points g, but passes nearby (Figure 5.8).
In this situation, the path points are more appropriately termed via points; the larger
the blending acceleration, the closer the passage to a via point.

On the basis of the given gy, Aty and At} the values of ¢;_1 x and Gy, are computed
via (5.26) and a sequence of linear polynomials with parabolic blends is generated.
Their expressions as a function of time are not derived here to avoid further loading of
the analytic presentation.

Figure 5.9 illustrates the time history of position, velocity and acceleration obtained
with the data: ¢ = 0, ¢2 = 27, g3 = 7T/2, qe =T, t1 =0,t0 = 2,13 = 3,t4 = 5,

¢1 = 0, g4 = 0. Two different values for the blend times have been considered:
At} = 0.2 (solid line in the figure) and At), = 0.6 (dashed line in the figure), for
k=1,...,4, respectively. Notice that in the first case the passage of ¢(t) is closer to

the via points, though at the expense of higher acceleration values.

The above presented technique turns out to be an application of the trapezoidal
velocity profile law to the interpolation problem. If one gives up a trajectory passing
near a via point at a prescribed instant of time, the use of trapezoidal velocity profiles
allows developing a trajectory planning algorithm which is attractive for its simplicity.
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Figure 5.9 Time history of position, velocity and acceleration with a time law of interpolating
linear polynomials with parabolic blends.

In particular, consider the case of one intermediate point only, and suppose that
trapezoidal velocity profiles are considered as motion primitives with the possibility to
specify the initial and final point and the duration of the motion only; it is assumed that
g; = ¢y = 0. If two segments with trapezoidal velocity profiles were generated, the
manipulator joint would certainly reach the intermediate point, but it would be forced
to stop there, before continuing the motion towards the final point. A keen alternative
is to start generating the second segment ahead of time with respect to the end of the
first segment, using the sum of velocities (or positions) as a reference. In this way, the
joint is guaranteed to reach the final position; crossing of the intermediate point at the
specified instant of time is not guaranteed, though.

Figure 5.10 illustrates the time history of position, velocity and acceleration ob-
tained with the data: ¢; = 0, ¢y = 37 /2,t; =0, ty = 2. The intermediate point is
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Figure 5.10 Time history of position, velocity and acceleration with a time law of interpolating
linear polynomials with parabolic blends obtained by anticipating the generation
of the second segment of trajectory.

located at ¢ = 7 with ¢ = 1, the maximum acceleration values in the two segments are
respectively |G.| = 67 and |§.| = 3, and the time anticipation is 0.18. As predicted,
with time anticipation, the assigned intermediate position becomes a via point with
the advantage of an overall shorter time duration. Notice, also, that velocity does not
vanish at the intermediate point.

5.3 Operational Space Trajectories

A joint space trajectory planning algorithm generates a time sequence of values for
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the joint variables g(t) so that the manipulator is taken from the initial to the final
configuration, eventually by moving through a sequence of intermediate configurations.
The resulting end-effector motion is not easily predictable, in view of the nonlinear
effects introduced by direct kinematics. Whenever it is desired that the end-effector
motion follows a geometrically specified path in the operational space, it is necessary
to plan trajectory execution directly in the same space. Planning can be done either
by interpolating a sequence of prescribed path points or by generating the analytical
motion primitive and the relative trajectory in a punctual way.

In both cases the time sequence of the values attained by the operational space
variables is utilized in real time to obtain the corresponding sequence of values of
the joint space variables, via an inverse kinematics algorithm. In this regard, the
computational complexity induced by trajectory generation in the operational space
and related kinematic inversion sets an upper limit on the maximum sampling rate to
generate the above sequences. Since these sequences constitute the reference inputs to
the motion control system, a linear microinterpolation is typically carried out. In this
way, the frequency at which reference inputs are updated is increased so as to enhance
dynamic performance of the system.

Whenever the path is not to be followed exactly, its characterization can be per-
formed through the assignment of N points specifying the values of the variables x
chosen to describe the end-effector location in the operational space at given time
instants tg, for k = 1,..., N. Similarly to what was presented in the above sections,
the trajectory is generated by determining a smooth interpolating vector function be-
tween the various path points. Such a function can be computed by applying to each
component of & any of the interpolation techniques illustrated in Section 5.2.2 for the
single joint variable.

Therefore, for given path (or via) points x(¢;), the corresponding components
xi(tg),fori = 1,...7 (where ris the dimension of the operational space of interest) can
be interpolated with a sequence of cubic polynomials, a sequence of linear polynomials
with parabolic blends, and so on.

On the other hand, if the end-effector motion has to follow a prescribed trajectory
of motion, this must be expressed analytically. It is then necessary to refer to motion
primitives defining the geometric features of the path and time primitives defining the
time law on the path itself.

5.3.1 Path Primitives

For the definition of path primitives itis convenient to refer to the parametric description
of paths in space. Let then p be a (3 x 1) vector and f (o) a continuous vector function
defined in the interval [o;, o¢]. Consider the equation

p = f(o); (5.27)

with reference to its geometric description, the sequence of values of p with ¢ varying
in [0;,0¢] is termed path in space. The equation in (5.27) defines the parametric
representation of the path I" and the scalar o is called parameter. As o increases,
the point p moves on the path in a given direction. This direction is said to be the
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Figure 5.11 Parametric representation of a path in space.

direction induced on I" by the parametric representation (5.27). A path is closed when
ploy) = p(o;); otherwise it is open.

Let p; be a point on the open path I" on which a direction has been fixed. The path
coordinate s of the generic point p is the length of the arc of I" with extremes p and
p; if p follows p;, the opposite of this length if p precedes p;. The point p; is said to
be the origin of the path coordinate (s = 0).

From the above presentation it follows that to each value of s a well-determined
path point corresponds, and then the path coordinate can be used as a parameter in a
different parametric representation of the path ™

p=f(s); (5.28)

the range of variation of the parameter s will be the sequence of path coordinates
associated with the points of I

Consider a path " represented by (5.28). Let p be a point corresponding to the
path coordinate s. Except for special cases, p allows the definition of three unit vectors
characterizing the path. The orientation of such vectors depends exclusively on the
path geometry, while their direction depends also on the direction induced by (5.28)
on the path.

The first of such unit vectors is the fangent unit vector denoted by t. This vector is
oriented along the direction induced on the path by s.

The second unit vector is the normal unit vector denoted by n. This vector is
oriented along the line intersecting p at a right angle with ¢ and lies in the so-called
osculating plane O (Figure 5.11); such plane is the limit position of the plane containing
the unit vector £ and a point p’ € I" when p’ tends to p along the path. The direction
of nn 1s so that the path I, in the neighbourhood of p with respect to the plane containing
t and normal to 1, lies on the same side of n.

The third unit vector is the binormal unit vector denoted by b. This vector is so that
the frame (£, n,b) is right-handed (Figure 5.11). Notice that it is not always possible
to uniquely define such frame.
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It can be shown that the above three unit vectors are related by simple relations to
the path representation I” as a function of the path coordinate. In particular, it is:

dp
t=—
ds
1 d’p
n = Ep| ds® (5.29)
‘ i
b=t xn.

Typical path parametric representations are reported below which are useful for tra-
jectory generation in the operational space.

Segment in Space

Consider the linear segment connecting point p; to point py. The parametric represen-

tation of this path is
s

pi + ——(py — Pi). (5.30)
lp; —pil 7

p(s) =

Notice that p(0) = p; and p(||py — pi||) = ps- Hence, the direction induced on I" by
the parametric representation (5.30) is that going from p; to p;. Differentiating (5.30)

with respect to s gives
dp 1

ds — |lps — pill
d’p
ds?

In this case it is not possible to define the frame (¢, 72, b) uniquely.

(pr — i)
(5.31)

Circle in Space

Consider a circle I" in space. Before deriving its parametric representation, it is nec-
essary to introduce its significant parameters. Suppose that the circle is specified by
assigning (Figure 5.12):

e the unit vector of the circle axis r,
e the position vector d of a point along the circle axis,
¢ the position vector p; of a point on the circle.

With these parameters, the position vector ¢ of the centre of the circle can be found.
Let 8 = p; — d; for p; not to be on the axis, i.e., for the circle not to degenerate into a
point, it must be

67| < [16]);

in this case it is
c=d+ (8"r)r. (5.32)

It is now desired to find a parametric representation of the circle as a function of the
path coordinate. Notice that this representation is very simple for a suitable choice of
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Figure 5.12 Parametric representation of a circle in space.

the reference frame. To see this, consider the frame O'—z'y’z’, where O’ coincides
with the centre of the circle, axis z' is oriented along the direction of the vector p; — ¢,
axis 2’ is oriented along 7 and axis ' is chosen so as to complete a right-handed frame.
When expressed in this reference frame, the parametric representation of the circle is

pcos(s/p)
psin(s/p) | .
0

p'(s) (5.33)

where p = ||p; — ¢|| is the radius of the circle and the point p; has been assumed as the
origin of the path coordinate. For a different reference frame, the path representation
becomes

p(s) = c+ Rp'(s),

where ¢ is expressed in the frame O—zyz and R is the rotation matrix of frame O'—
x'y' 2" with respect to frame O—xyz which, in view of (2.3), can be written as

(5.34)

R=[z' y 2]

x', y', z' indicate the unit vectors of the frame expressed in the frame O-zyz.
Ditferentiating (5.34) with respect to s gives

_—sin(s/ )
Z_Z =R COS(OS//S }
d2p :—c_os (s/p)/p] (5.35)
a2 B _—sm (S/P)/p §
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5.3.2 Position

Let @ be the vector of operational space variables expressing position and orientation
of the manipulator’s end effector as in (2.68). Generating a trajectory in the operational
space means to determine a function x () taking the end-effector frame from the initial
to the final location in a time ¢; along a given path with a specific motion time law.
First, consider end-effector position. Orientation will follow.

Let p = f(s) be the (3 x 1) vector of the parametric representation of the path I
as a function of the path coordinate s; the origin of the end-effector frame moves from
P; 1o py in a time t 7. For simplicity, suppose that the origin of the path coordinate is
at p; and the direction induced on I is that going from p; to ps. The path coordinate
then goes from the value s = 0 at £ = 0 to the value s = sy (path length) at ¢ = ¢y.
The time law along the path is described by the function s(#).

In order to find an analytic expression for s(t), any of the above techniques for
joint trajectory generation can be employed. In particular, either a cubic polynomial
or a sequence of linear segments with parabolic blends can be chosen for s(t).

It is worth making some remarks on the time evolution of p on I, for a given time
law s(t). The velocity of point p is given by the time derivative of p

. .dp .

p=3s a5 st,
where t is the tangent vector to the path at point p in (5.29). Then, § represents the
magnitude of the velocity vector relative to point p, taken with the positive or negative
sign depending on the direction of p along ¢. The magnitude of p starts from zero at
t = 0, then it varies with a parabolic or trapezoidal profile as per either of the above
choices for s(t), and finally it returns to zero at ¢ = #;.

As a first example, consider the segment connecting point p; with point p¢. The
parametric representation of this path is given by (5.30). Velocity and acceleration of p
can be easily computed by recalling the rule of differentiation of compound functions,
Le., .

. S .
pP= m(pf —pi) =5t
ps ; pi (5.36)
P iy —pa P P

As a further example, consider a circle I in space. From the parametric repre-

sentation derived above, in view of (5.35), velocity and acceleration of point p on the

circle are: ~
—$sin (s/p)-l
p=R | scos(s/p)
0
- 5.3
_éizcos (s/p)/p — §sin (s/p)-l 637
p=R | —5%in (s/p)/(,)o—i— §cos (s/p)J :

Notice that the velocity vector is aligned with ¢, and the acceleration vector is given
by two contributions: the first one is aligned with n and represents the centripetal
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acceleration, while the second one is aligned with ¢ and represents the tangential
acceleration.

5.3.3 Orientation

Consider now end-effector orientation. Typically, this is specified in terms of the
rotation matrix of the (time-varying) end-effector frame with respect to the base frame.
As well known, the three columns of the rotation matrix represent the three unit vectors
of the end-effector frame with respect to the base frame. To generate a trajectory,
however, a linear interpolation on the unit vectors n, s, a describing the initial and
final orientation does not guarantee orthonormality of the above vectors at each instant
of time.

Euler Angles

In view of the above difficulty, for trajectory generation purposes, orientation is often
described in terms of the Euler angles triplet ¢ = (p, 9, ¢) for which a time law can
be specified. Usually, ¢ moves along the segment connecting its initial value ¢; to its
final value ¢b;. Also in this case, it is convenient to choose a cubic polynomial or a
linear segment with parabolic blends time law. In this way, in fact, the angular velocity
w of the time-varying frame, which is related to ¢ by the linear relationship (3.60),
will have continuous magnitude.

Therefore, for given ¢p; and ¢y, the position, velocity and acceleration profiles are:

s
b =0+ m(¢f - ¢;)

. s

=Tl - ¢Z||( R

where the time law for s(#) has to be specified. The three unit vectors of the end-
effector frame can be computed—with reference to Euler angles ZYZ—as in (2.18),
the end-effector frame angular velocity as in (3.60), and the angular acceleration by
differentiating (3.60) itself.

Angle and Axis

An alternative way to generate a trajectory for orientation of clearer interpretation in
the Cartesian space can be derived by resorting to the the angle and axis description
presented in Section 2.5. Given two coordinate frames in the Cartesian space with the
same origin and different orientation, it is always possible to determine a unit vector
so that the second frame can be obtained from the first frame by a rotation of a proper
angle about the axis of such unit vector.

Let R; and Ry denote respectively the rotation matrices of the initial frame O;—
x;Y;:%; and the final frame O y—z y3 ; 2, both with respect to the base frame. The rotation
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matrix between the two frames can be computed by recalling that Ry = RiRz}; the
expression in (2.5) allows writing

11 Ti2 T13
i _ pT _
F= R Ry=|ra1 12 7
31 T32 T33

If the matrix R'(t) is defined to describe the transition from R; to Ry, it must be
R'(0) = I and R'(t;) = R. Hence, the matrix R’ can be expressed as the rotation
matrix about a fixed axis in space; the unit vector 7% of the axis and the angle of
rotation ¥y can be computed by using (2.25):

2
' ) ras — m] (5.39)
™= Ssma, [T T
f Ij“21 - 7“12J

forsindy # 0.

The matrix R!(¢) can be interpreted as a matrix R’(9(¢), %) and computed via
(2.23); it is then sufficient to assign a time law to ¥, of the type of those presented
for the single joint with ¥(0) = 0 and ¥(ty) = ¥4, and compute the components
of 7 from (5.39). Since 7 is constant, the resulting velocity and acceleration are
respectively

wi =9
L (5.40)
w'=9r".

Finally, in order to characterize the end-effector orientation trajectory with respect
to the base frame, the following transformations are needed:

R(t) = R;R(t)
w(t) = Riw'(t)
w(t) = Ryw'(t).
Once a path and a trajectory have been specified in the operational space in terms

of p(t) and ¢(t) or R(t), inverse kinematics techniques can be used to find the
corresponding trajectories in the joint space g(#).

5.4 Dynamic Scaling of Trajectories

The existence of dynamic constraints to be taken into account for trajectory generation
has been mentioned in Section 5.1. In practice, with reference to the given trajectory
time or path shape (segments with high curvature), the trajectories that can be obtained
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with any of the previously illustrated methods may impose too severe dynamic perfor-
mance for the manipulator. A typical case is that when the required torques to generate
the motion are larger than the maximum torques the actuators can supply. In this case,
an infeasible trajectory has to be suitably time-scaled.

Suppose a trajectory has been generated for all the manipulator joints as q(t),
for ¢t € [0,¢;]. Computing inverse dynamics allows evaluating the time history of the
torques 7 (t) required for the execution of the given motion. By comparing the obtained
torques with the torque limits available at the actuators, it is easy to check whether
or not the trajectory is actually executable. The problem is then to seek an automatic
trajectory dynamic scaling technique—avoiding inverse dynamics recomputation—so
that the manipulator can execute the motion on the specified path with a proper time
law without exceeding the torque limits.

Consider the manipulator dynamic model as givenin (4.41)with F, = O, F; = O
and h = 0, for simplicity. The term C(q, ¢) accounting for centrifugal and Coriolis
forces has a quadratic dependence on joint velocities, and thus it can be formally
rewritten as

C(q,9)q = I'(g)[q4], (5.41)

where [¢4q] indicates the symbolic notation of the (n(n + 1)/2 x 1) vector

[Gd) =& dide - Gno1dn 215

I'(q) is aproper (n x n(n+ 1)/2) matrix that satisfies (5.41). In view of such position,
the manipulator dynamic model can be expressed as

B(q(t)q(t) + I'(q(1))[q(1)q(t)] + g(q(t)) = 7(¢), (542)

where the explicit dependence on time ¢ has been shown.
Consider the new variable g(r(t)) satisfying the equation

q(t) = q(r(t)), (5.43)

where r(t) is a strictly increasing scalar function of time with (0) = Oand r(tf) = t5.
Differentiating (5.43) twice with respect to time provides the following relations:

(5.44)

where the prime denotes the derivative with respect to r. Substituting (5.44) into (5.42)
yields

#?(Ba(r)a" () + T(a(r)la' (d'(r)]) +7B(@(r)a' (1) +g(a(r) = 7. (5.45)
In (5.42) it is possible to identify the term

75(t) = B(q(1)q(t) + I'(q(®)[g(®)a(®)), (5.46)
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representing the torque contribution that depends on velocities and accelerations.
Correspondingly, in (5.45) one can set

7.(t) =7 (B(a()a" (") + L@ (g () + iB@(r)a'(r).  (5:47)
By analogy with (5.46), it can be written
7.(r) = B@(r)a' (") + I(@()[d (a () (5.48)
and then (5.47) becomes
Ta(t) = 7 (r) + 7B(q(r)q (1) (5.49)

The expression in (5.49) gives the relationship between the torque contributions de-
pending on velocities and accelerations required by the manipulator when this is
subject to motions having the same path but different time laws, obtained through a
time scaling of joint variables as in (5.43).

Gravitational torques have not been considered, since they are a function of the
joint positions only, and thus their contribution is not influenced by time scaling.

The simplest choice for the scaling function r(¢) is certainly the linear function

r(t) = ct,
with ¢ a positive constant. In this case, (5.49) becomes
Ts(t) = 7 (ct),

which reveals that a linear time scaling by ¢ causes a scaling of the magnitude of the
torques by the coefficient ¢2. Let ¢ > 1: (5.43) shows that the trajectory described
by g(r(t)), assuming r = ct as the independent variable, has a duration t; > ts to
cover the entire path specified by q. Correspondingly, the torque contributions 7 (ct)
computed as in (5.48) are scaled by the factor ¢? with respect to the torque contribu-
tions 75 (1) required to execute the original trajectory g(t).

With the use of a recursive algorithm for inverse dynamics computation, it is
possible to check whether the torques exceed the allowed limits during trajectory
execution; obviously, limit violation shall not be caused by the sole gravity torques.
It is necessary to find the joint for which the torque has exceeded the limit more than
the others, and to compute the torque contribution subject to scaling, which in turn
determines the factor ¢2. It is then possible to compute the time-scaled trajectory as
a function of the new time variable r = ¢t which no longer exceeds torque limits. It
should be pointed out, however, that with this kind of linear scaling the entire trajectory
may be penalized, even when a torque limit on a single joint is exceeded only for a
short interval of time.

Problems

5.1 Compute the joint trajectory from g(0) = 1 to ¢(2) = 4 with null initial and fi nal
velocities and accelerations.
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5.2 Compute the time law ¢(t) for a joint trajectory with velocity profile of the type
q(t) = k(1 — cos (at)) from ¢(0) = 0to q(2) = 3.

5.3 Given the values for the joint variable: ¢(0) = 0, ¢(2) = 2, and q(4) = 3, compute the
two fi fth-order interpolating polynomials with continuous velocities and accelerations.

5.4 Show that the matrix A in (5.25) has a tridiagonal band structure.

5.5 Given the values for the joint variable: ¢(0) = 0, ¢(2) = 2, and ¢(4) = 3, compute
the cubic interpolating spline with null initial and fi nal velocities and accelerations.

5.6 Given the values for the joint variable: ¢(0) = 0, ¢(2) = 2, and ¢(4) = 3, find the
interpolating polynomial with linear segments and parabolic blends with null initial
and fi nal velocities.

5.7 Find the motion time law p(t) for a Cartesian space straight path with trapezoidal
velocity profile from p(0) =[0 0.5 0 top(2)=[1 —0.5 0]7.

5.8 Find the motion time law p(t) for a Cartesian space circular path with trapezoidal
velocity profile from p(0) = [0 0.5 1F top(2) =[0 —0.5 1]%;the circle is
located in the plane & = 0 with centre atc = [0 0 1]7 and radius p = 0.5, and is
executed clockwise for an observer aligned with .

5.9 For the two-link planar arm of Example 4.2, perform a computer implementation of
dynamic linear time scaling along the trajectory of Figure 4.6, on the assumption of
symmetric torque limits of 3000 N-m. Adopt a sampling time of 1 ms.
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6. Motion Control

In the previous chapter, trajectory planning techniques have been presented which
allow generating the reference inputs to the motion control system. The problem of
controlling a manipulator can be formulated as that to determine the time history of
the generalized forces (forces or torques) to be developed by the joint actuators so as to
guarantee execution of the commanded task while satisfying given transient and steady-
state requirements. The task may regard either the execution of specified motions for a
manipulator operating in free space, or the execution of specified motions and contact
forces for a manipulator whose end effector is constrained by the environment. In
view of problem complexity, the two aspects will be treated separately; first, motion
control in free space, and then interaction control in constrained space. The problem
of motion control of a manipulator is the topic of this chapter. A number of joint space
control techniques are presented. These can be distinguished between decentralized
control schemes, i.e., when the single manipulator joint is controlled independently of
the others, and centralized control schemes, i.e., when the dynamic interaction effects
between the joints are taken into account. Finally, as a premise to the interaction control
problem, the basic features of operational space control schemes are illustrated.

6.1 The Control Problem

Several techniques can be employed for controlling a manipulator. The technique
followed, as well as the way it is implemented, may have a significant influence
on the manipulator performance and then on the possible range of applications. For
instance, the need for trajectory tracking control in the operational space may lead to
hardware/software implementations which differ from those allowing point-to-point
control where only reaching of the final position is of concern.

On the other hand, the manipulator mechanical design has an influence on the kind
of control scheme utilized. For instance, the control problem of a Cartesian manipulator
is substantially different from that of an anthropomorphic manipulator.

The driving system of the joints has also an effect on the type of control strategy
used. If a manipulator is actuated by electric motors with reduction gears of high ratios,
the presence of gears tends to linearize system dynamics and thus to decouple the
joints in view of the reduction of nonlinearity effects. The price to pay, however, is the
occurrence of joint friction, elasticity and backlash that may limit system performance
more than it is due to configuration-dependent inertia, Coriolis and centrifugal forces,

L. Sciavicco et al., Modelling and Control of Robor Manipularors
© Springer-Verlag London Limited 2000



214 Modelling and Control of Robot Manipulators

Lo e r
T _ . zd . . § N
— | INVERSE -| controtLer [ 3| actusTors [ 3|  DRIvES [ MANIPULATOR
—— | ENEMaTICS [—- ) - - —
+ 4

TRANSDUCERS [

Figure 6.1 General scheme of joint space control.

and so forth. On the other hand, a robot actuated with direct drives eliminates the
drawbacks due to friction, elasticity and backlash but the weight of nonlinearities and
couplings between the joints becomes relevant. As a consequence, different control
strategies have to be thought of to obtain high performance.

Without any concern to the specific type of mechanical manipulator, it is worth
remarking that task specification (end-effector motion and forces) is usually carried
out in the operational space, whereas control actions (joint actuator generalized forces)
are performed in the joint space. This fact naturally leads to considering two kinds
of general control schemes; namely, a joint space control scheme (Figure 6.1) and an
operational space control scheme (Figure 6.2). In both schemes, the control structure
has closed loops to exploit the good features provided by feedback, i.e., robustness
to modelling uncertainties and reduction of disturbance effects. In general terms, the
following considerations shall be made.

The joint space control problem is actually articulated in two subproblems. First,
manipulator inverse kinematics is solved to transform motion requirements from the
operational space into the joint space. Then, a joint space control scheme is designed
that allows tracking of the reference inputs. However, this solution has the drawback
that a joint space control scheme does not influence the operational space variables
which are controlled in an open-loop fashion through the manipulator mechanical
structure. It is then clear that any uncertainty of the structure (construction tolerance,
lack of calibration, gear backlash, elasticity) or any imprecision on the knowledge of
the end-effector position relative to an object to manipulate causes a loss of accuracy
on the operational space variables.

The operational space control problem follows a global approach that requires a
greater algorithmic complexity; notice that inverse kinematics is now embedded into
the feedback control loop. Its conceptual advantage regards the possibility of acting
directly on operational space variables; this is somewhat only a potential advantage,
since measurement of operational space variables is often performed not directly, but
through the evaluation of direct kinematics functions starting from measured joint
space variables.

On the above premises, in the following, joint space control schemes for manipula-
tor motion in the free space are presented first. In the sequel, operational space control
schemes will be illustrated which are logically at the basis of interaction control in
constrained manipulator motion.
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Figure 6.2 General scheme of operational space control.

6.2 Joint Space Control

In Chapter 4, it was shown that the equations of motion of a manipulator in the absence
of external end-effector forces and, for simplicity, of static friction (difficult to model
accurately) are described by

B(q)g+C(q,q)q¢+F.q+g(q) =7 (6.1)

with obvious meaning of the symbols. To control the motion of the manipulator in
free space means to determine the n components of generalized forces—torques for
revolute joints, forces for prismatic joints—that allow execution of a motion g(t) so
that

q(t) = qu(t)

as closely as possible, where g4(t) denotes the vector of desired joint trajectory
variables.

The generalized forces are supplied by the actuators through proper transmissions
to transform the motion characteristics. Let q,,, denote the vector of joint actuator dis-
placements; the transmissions—assumed to be rigid and with no backlash—establish
the following relationship:

where K, is an (n x n) diagonal matrix, whose elements are defined in (4.22) and are
much greater than unity. Assuming a diagonal K, leads to excluding the presence of
kinematic couplings in the transmission, that is the motion of each actuator does not
induce motion on a joint other than that actuated.

In view of (6.2), if T,,, denotes the vector of actuator driving torques, one can write

Tm = K 7'T. (6.3)

By observing that the diagonal elements of B(q) are formed by constant terms and
configuration-dependent terms (functions of sine and cosine for revolute joints), one
can set

B(q) = B+ AB(q) (6.4)
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Figure 6.3 Block scheme of manipulator with drives.

where B is the diagonal matrix whose constant elements represent the resulting average
inertia at each joint. Substituting (6.2)—(6.4) into (6.1) yields

Tm = K, 'BK, "4y + Frngm +d (6.5)

where
F,=K, 'F,K, ' (6.6)

represents the matrix of viscous friction coefficients about the motor axes, and
d=K, 'AB(@)K, 'in+ K, 'C(q,0)K, 'qn + K, 'glg) (6.7

represents the contribution depending on the configuration.

As illustrated by the block scheme of Figure 6.3, the system of manipulator with
drives is actually constituted by two subsystems; one has 7, as input and g,, as
output, the other has q,, ¢, G as inputs, and d as output. The former is linear and
decoupled, since each component of 7, influences only the corresponding component
of q,,,. The latter is nonlinear and coupled, since it accounts for all those nonlinear
and coupling terms of manipulator joint dynamics.

On the basis of the above scheme, several control algorithms can be derived with
reference to the detail of knowledge of the dynamic model. The simplest approach
that can be followed, in case of high gear reduction ratios and/or limited performance
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in terms of required velocities and accelerations, is to consider the component of the
nonlinear interacting term d as a disturbance for the single joint servo.

The design of the control algorithm leads to a decentralized control structure,
since each joint is considered independently of the others. The joint controller must
guarantee good performance in terms of high disturbance rejection and enhanced
trajectory tracking capabilities. The resulting control structure is substantially based
on the error between the desired and actual output, while the input control torque at
actuator ¢ depends only on the error of output ¢.

On the other hand, when large operational speeds are required or direct-drive actu-
ation is employed (K, = I), the nonlinear coupling terms strongly influence system
performance. Therefore, considering the effects of the components of d as a distur-
bance may generate large tracking errors. In this case, it is advisable to design control
algorithms that take advantage of a detailed knowledge of manipulator dynamics so
as to compensate for the nonlinear coupling terms of the model. In other words, it is
necessary to eliminate the causes rather than to reduce the effects induced by them;
that is, to generate compensating torques for the nonlinear terms in (6.7). This leads to
centralized control algorithms that are based on the (partial or complete) knowledge
of the manipulator dynamic model.

Nevertheless, it should be pointed out that these techniques still require the use of
error contributions between the desired and the actual trajectory, no matter whether
they are implemented in a feedback or in a feedforward fashion. This is a consequence
of the fact that the considered dynamic model, even though a quite complex one, is
anyhow an idealization of reality which does not include effects, such as joint Coulomb
friction, gear backlash, dimension tolerance, and the simplifying assumptions in the
model, e.g., link rigidity, and so on.

As pointed out above, the role of the drive system is relevant for the type of control
chosen. In the case of decentralized control, the actuator will be described in terms
of its own model as a velocity-controlled generator. Instead, in the case of centralized
control, the actuator will have to generate torque contributions computed on the basis
of a complete or reduced manipulator dynamic model; it will be then considered as
a torque-controlled generator which is representative of the actuator/power amplifier
system satisfying the above requirement.

6.3 Independent Joint Control

The simplest control strategy that can be thought of 1s one that regards the manipulator
as formed by n independent systems (the n joints) and controls each joint axis as
a single-input/single-output system. Coupling effects between joints due to varying
configurations during motion are treated as disturbance inputs.

In the case of interest, the system to control 1s Joint ¢ drive corresponding to the
single-input/single-output system of the decoupled and linear part of the scheme in
Figure 6.3. The interaction with the other joints is described by component ¢ of the
vector d in (6.7).

Assuming that the actuator is a rotary electric dc motor, the block scheme of Joint 4
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Figure 6.4 Block scheme of joint drive system.

can be represented in the domain of the complex variable s as in Figure 6.4!; other
types of actuators can be modeled analogously. In this scheme 8 is the angular variable
of the motor, I is the average inertia reported to the motor axis (I; = by /k2;), R,
is the armature resistance (auto-inductance has been neglected), and k; and k, are
respectively the torque and motor constants. Further, G, denotes the voltage gain of
the power amplifier, and then the reference input is not the armature voltage V,, but the
input voltage V. of the amplifier; note that the amplifier bandwidth has been assumed
to be much larger than that of the controlled system. In the scheme of Figure 6.4, it
has been assumed also that

kv kt

R,’

i.e., the mechanical viscous friction coefficient has been neglected with respect to the

electrical friction coefficient®.
The input/output transfer function of the motor can be written as

F, <

km
M(s) = ———— .
(s) s+ sTon)’ (6.8)
where ) R
= — T =2
Fom ky ™ koks

are respectively the velocity-to-voltage gain and time constant of the motor.

60.3.1 Feedback Control

To guide selection of the controller structure, start by noticing that an effective rejection
of the disturbance d on the output 4 is ensured by:

e a large value of the amplifier gain before the point of intervention of the
disturbance,

' Subscript ¢ has been dropped for notation compactness. Also, Laplace transforms of time-
dependent functions are indicated by capital letters without specifying dependence on s.

2 A complete treatment of actuators is deferred to Chapter 8.
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¢ the presence of an integral action in the controller so as to cancel the effect of
the gravitational component on the output at steady state (constant ).

These requisites clearly suggest the use of a proportional-integral (PI) control action
in the forward path whose transfer function is

cs) = kAT 6.9)

S

this yields zero error at steady state for a constant disturbance, and the presence of the
real zero at s = —1/T, offers a stabilizing action. To improve dynamic performance, it
is worth choosing the controller as a cascade of elementary actions with local feedback
loops closed around the disturbance.

Besides closure of a position feedback loop, the most general solution is obtained
by closing inner loops on velocity and acceleration. This leads to the scheme in
Figure 6.5, where Cp(s), Cyv(s), Ca(s) respectively represent position, velocity,
acceleration controllers, and the inmost controller shall be of PI type as in (6.9) so as
to obtain zero error at steady state for a constant disturbance. Further, krp, k1v, k1 a
are the respective transducer constants, and the amplifier gain G, has been embedded
in the gain of the inmost controller. In the scheme of Figure 6.5, notice that ;. is the
reference input, which is related to the desired output as

0, = krpba;

further, the disturbance torque D has been suitably transformed into a voltage by the
factor R, /k¢.

In the following, a number of possible solutions that can be derived from the general
scheme of Figure 6.5 are presented; at this stage, the issue arising from possible lack
of measurement of physical variables is not considered yet. Three case studies are
considered which differ in the number of active feedback loops.



220 Modelling and Control of Robot Manipulators

Figure 6.6 Block scheme of position feedback control.

Position Feedback

In this case, the control action is characterized by:

1+8Tp
P—
S

Cp(s) =K

kv = kra =0.

The scheme of Figure 6.6 shows that the transfer function of the forward path is

o k‘pr(l + STP)
P(S) - 52(1 + STm) )

while that of the return path is
H(S) = k‘Tp.

A root locus analysis can be performed as a function of the gain of the position loop
kmKpkrpTp/T,,. Three situations are illustrated for the poles of the closed-loop
system with reference to the relation between T'p and T, (Figure 6.7). Stability of the
closed-loop feedback system imposes some constraints on the choice of the parameters
of the PI controller. If T'p < T, the system is inherently unstable (Figure 6.7a). Then,
it must be Tp > T, (Figure 6.7b). As T’p increases, the absolute value of the real
part of the two roots of the locus tending towards the asymptotes increases too, and
the system has faster time response. Hence, it is convenient to render Tp > T},
(Figure 6.7¢). In any case, the real part of the dominant poles cannot be less than
—1/2T,.
The closed-loop input/output transfer function is

1
O(s) _ krp
O.(s) s2(1+ sTy,) (6.10)

kakap(]. + STP)
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Figure 6.7 Root loci for the position feedback control scheme.

which can be expressed in the form

ki(l +sTp)
Wis) = 22: 52 ’
<1+—+—2> (1+ST)
w

n n

where w,, and ( are respectively the natural frequency and damping ratio of the
pair of complex poles and —1/7 locates the real pole. These values are assigned to
define the joint drive dynamics as a function of the constant T'p; if Tp > T, then
1/¢wy > Tp > 7 (Figure 6.7b); if Tp > T, (Figure 6.7¢), for large values of the
loop gain, then (w,, > 1/7 = 1/Tp and the zero at —1/Tp in the transfer function
W (s) tends to cancel the effect of the real pole.

The closed-loop disturbance/output transfer function is

sR,
@(S) _ ktKPkZTP(].-i-STp) 6.11)
D(s) s2(1 + sTp,) ’ )

1+

k‘prk‘Tp(l + STP)

which shows that it is worth increasing Kp to reduce the effect of disturbance
on the output during the transient. The function in (6.11) has two complex poles



222 Modelling and Control of Robot Manipulators

0, ’ Mes7, i I 8] | 0 I
> > A, > > A > > > X R >
I K B 1 5 | lia, 4 . '

Figure 6.8 Block scheme of position and velocity feedback control.

(—Cwp, £53/1 — (Pwy), areal pole (—1/7), and a zero at the origin. The zero is due
to the PI controller and allows canceling the effects of gravity on the angular position
when 6 is a constant.

In (6.11), it can be recognized that the term K pk7p is the reduction factor imposed
by the feedback gain on the amplitude of the output due to disturbance; hence, the
quantity

Xr = Kpkrp (6.12)

can be interpreted as the disturbance rejection factor, which in turn is determined by
the gain K p. However, it is not advisable to increase K p too much, because small
damping ratios would result leading to unacceptable oscillations of the output. An
estimate T'r of the output recovery time needed by the control system to recover the
effects of the disturbance on the angular position can be evaluated by analyzing the
modes of evolution of (6.11). Since 7 = T'p, such estimate is expressed by

TR:maX{TP,L}. (613)
Cwn

Position and Velocity Feedback

In this case, the control action is characterized by:

1+STV
y—

CP(S) :KP Cv(s) =K S

Ca(s) =1

kra = 0.

To carry out a root locus analysis as a function of the velocity feedback loop gain, it is
worth reducing the velocity loop in parallel to the position loop by following the usual
rules for moving blocks. From the scheme in Figure 6.8 the transfer function of the
forward path is
P(S) _ ka;DKV(l + STv) ’

s2(1+ sT,,)
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Figure 6.9 Root locus for the position and velocity feedback control scheme.

while that of the return path is

H(s) = krp <1+s krv )

Kpkrp
The zero of the controller at s = —1 /Ty can be chosen so as to cancel the effects of
the real pole of the motor at s = —1/T,,. Then, by setting
TV = va

the poles of the closed-loop system move on the root locus as a function of the loop
gain k,, Ky kry, as shown in Figure 6.9. By increasing the position feedback gain
Kp, it is possible to confine the closed-loop poles into a region of the complex plane
with large absolute values of the real part. Then, the actual location can be established
by a suitable choice of K7y .
The closed-loop input/output transfer function is
1
©
(8) _ hre , (6.14)
O.(s) 1+ skrv s
Kpkrp = kmKpkrpKy

which can be compared with the typical transfer function of a second-order system

L
k
W(s) = ﬁ (6.15)
14+ —+ —
Wnp n

It can be recognized that, with a suitable choice of the gains, it is possible to obtain
any value of natural frequency w,, and damping ratio ¢. Hence, if w,, and ( are given
as design requirements, the following relations can be found:

2
Kykpy = g“" (6.16)
2
KpkppKy = 21 (6.17)

km
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Figure 6.10 Block scheme of position, velocity and acceleration feedback control.

For given transducer constants k7p and kry, once Ky has been chosen to sat-
isfy (6.16), the value of K p is obtained from (6.17).
The closed-loop disturbance/output transfer function is

sR,
D(s) 1+ skrv s
Kpkrp  knKpkrpKy
which shows that the disturbance rejection factor is
Xr = KpkrpKy (6.19)

and is fixed, once Kp and Ky have been chosen via (6.16) and (6.17). Concerning
disturbance dynamics, the presence of a zero at the origin introduced by the PI, of a
real pole at s = —1/T,,, and of a pair of complex poles having real part —(w,, should
be noticed. Hence, in this case, an estimate of the output recovery time is given by the
time constant )

Tr = max {Tm, —} , (6.20)

Cwn

which reveals an improvement with respect to the previous case in (6.13), since

T,, < Tp and the real part of the dominant poles is not constrained by the inequality
Cwp < 1/2T,.

Position, Velocity and Acceleration Feedback
In this case, the control action is characterized by:

1+ sT
Cp(s)=Kp Cy(s)=Kyv  Ca(s) = Kqp——-4.
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Figure 6.11 Root locus for the position, velocity and acceleration feedback control scheme.

After some manipulation, the block scheme of Figure 6.5 can be reduced to that of
Figure 6.10 where G’ () indicates the following transfer function:

km
T
sT,, (1 T kK akra —A>

T
(14 knKakra)

G'(s) =

(14 kpKakra) | 14+

The transfer function of the forward path is

_ KPKvKA(l + STA)

P(s) 5

G'(s),

S

while that of the return path is

skrv
H = 1 .
(s) = krp < + KPk?TP)

Also in this case, a suitable pole cancellation is worthy which can be achieved either
by setting
TA = Tms

or by making
kK akraTa > T, kK akra > 1.

The two solutions are equivalent as regards dynamic performance of the control system.
In both cases, the poles of the closed-loop system are constrained to move on the root
locus as a function of the loop gain k,, Kp Ky K 4 /(1 + kK akra) (Figure 6.11).
A close analogy with the previous scheme can be recognized, in that the resulting
closed-loop system is again of second-order type.
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The closed-loop input/output transfer function is

1
o) _ krp 621)
O:(s) - skry | $2(1+knKakra)’
Kpkrp  kmKpkrpKvKa
while the closed-loop disturbance/output transfer function is
sR,
@(8) __ ]{ZtKPkTPKvKA(1+STA) (6 22)
D(S) 14 skrv 82(1 +kaAk7TA) ' '
Kpkrp  knmKpkrpKy Ka
The resulting disturbance rejection factor is given by
Xgr = KpkrpKyv Ky, (6.23)
while the output recovery time is given by the time constant
1
Tr = max {TA, —} (6.24)
Cwn

where T4 can be made less than T, as pointed out above.
With reference to the transfer function in (6.15), the following relations can be
established for design purposes, once (, wy,, and X g have been specified:

2Kpkrp _ wn

= 6.25
kv ¢ (02
kX
kK akra = —250% — 1 (6.26)
wn
KpkrpKyvKa = Xr. (6.27)

For given k1 p, kTv, kT A, K p is chosen to satisfy (6.25), K 4 is chosen to satisfy (6.26),
and then Ky is obtained from (6.27). Notice how admissible solutions for the controller
typically require large values for the rejection factor X g. Hence, in principle, not only
does the acceleration feedback allow achieving any desired dynamic behaviour but,
with respect to the previous case, it also allows prescribing the disturbance rejection
factor as long as kp, Xg /w2 > 1.

In deriving the above control schemes, the issue of measurement of feedback variables
was not considered explicitly. With reference to the typical position control servos
that are implemented in industrial practice, there is no problem to measure position
and velocity, while a direct measurement of acceleration, in general, either is not
available or is too expensive to obtain. Therefore, for the scheme of Figure 6.10, an
indirect measure can be obtained by reconstructing acceleration from direct velocity
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Figure 6.12 Block scheme of a fi rst-order fi lter.

measurement through a first-order filter (Figure 6.12). The filter is characterized by
a bandwidth wz; = ky. By choosing this bandwidth wide enough, the effects due to
measurement lags are not appreciable, and then it is feasible to take the acceleration
filter output as the quantity to feed back. Some problem may occur concerning the
noise superimposed on the filtered acceleration signal, though.

Resorting to a filtering technique may be useful when only the direct position
measurement is available. In this case, by means of a second-order state variable filter,
itis possible to reconstruct velocity and acceleration. However, the greater lags induced
by the use of a second-order filter typically degrade the performance with respect to
the use of a first-order filter, because of limitations imposed on the filter bandwidth by
numerical implementation of the controller and filter.

Notice that the above derivation is based on an ideal dynamic model, i.e., when
the effects of transmission elasticity as well as those of amplifier and motor electrical
time constants are neglected. This implies that satisfaction of design requirements
imposing large values of feedback gains may not be verified in practice, since the
existence of unmodeled dynamics—such as electric dynamics, elastic dynamics due
to non perfectly rigid transmissions, filter dynamics for the third scheme—might lead
to degrading the system and eventually driving it to instability. In sum, the above
solutions constitute design guidelines whose limits shall be emphasized with regard to
the specific application.

6.3.2 Decentralized Feedforward Compensation

When the joint control servos are required to track reference trajectories with high
values of speed and acceleration, the tracking capabilities of the scheme in Figure 6.5
are unavoidably degraded. The adoption of a decentralized feedforward compensation
allows reducing the tracking error. Therefore, in view of the closed-loop input/output
transfer functions in (6.10),(6.14),(6.21), the reference inputs to the three control
structures analyzed in the previous section can be respectively modified into:

Vo 52(1 + sTy,)
Qr(s) = (kTP + m) Qd(s) (6.28)

' o SkTV 82
O,(s) = (kTP + p + kaPKV) Oq(s) (6.29)
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Figure 6.13 Block scheme of position feedback control with decentralized feedforward com-
pensation.

Figure 6.14 Block scheme of position and velocity feedback control with decentralized feed-
forward compensation.

2
O,(s) = (k:Tp + ng: + 2 (klm}i”;i f‘}ﬁj”) Ou(s); (6.30)
in this way, tracking of the desired joint position trajectory is achieved, if not for the
effect of disturbances. Notice that computing time derivatives of the desired trajectory
is not a problem, once 84(t) is known analytically. The tracking control schemes,
resulting from simple manipulation of (6.28), (6.29), (6.30) are reported respectively
in Figures 6.13, 6.14, 6.15, where M (s) indicates the motor transfer function in (6.8).

All the solutions allow tracking of the input trajectory within the range of validity
and linearity of the employed models. It is worth noticing that, as the number of nested
feedback loops increases, a less accurate knowledge of the system model is required
to perform feedforward compensation. In fact, T, and k,,, are required for the scheme
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Figure 6.15 Block scheme of position, velocity and acceleration feedback control with decen-
tralized feedforward compensation.

of Figure 6.13, only k,, is required for the scheme of Figure 6.14, and k,,, again—but
with reduced weight—for the scheme of Figure 6.15.

It is worth recalling that perfect tracking can be obtained only on the assumption
of exact matching of the controller and feedforward compensation parameters with
the process parameters, as well as of exact modelling and linearity of the physical
system. Deviations from the ideal values cause a performance degradation that shall
be analyzed case by case.

The presence of saturation blocks in the schemes of Figures 6.13, 6.14, 6.15 is to
be intended as intentional nonlinearities whose function is to limit relevant physical
quantities during transients; the greater the number of feedback loops, the greater the
number of quantities that can be limited (velocity, acceleration, and motor voltage). To
this purpose, notice that trajectory tracking is obviously lost whenever any of the above
quantities saturates. This situation often occurs for industrial manipulators required
to execute point-to-point motions; in this case, there is less concern about the actual
trajectories followed, and the actuators are intentionally taken to operate at the current
limits so as to realize the fastest possible motions.

After simple block reduction on the above schemes, it is possible to determine
equivalent control structures that utilize position feedback only and regulators with
standard actions. It should be emphasized that the two solutions are equivalent in
terms of disturbance rejection and trajectory tracking. However, tuning of regulator
parameters is less straightforward, and the elimination of inner feedback loops pre-
vents the possibility of setting saturations on velocity and/or acceleration. The control
structures equivalent to those of Figures 6.13, 6.14, 6.15 are illustrated in Figures 6.16,
6.17, 6.18, respectively; control actions of PI, PID, PIDD? type are illustrated which
are respectively equivalent to the cases of: position feedback; position and velocity
feedback; position, velocity and acceleration feedback.

The above schemes can incorporate the typical structure of the controllers actually
implemented in the control architectures of industrial robots. In these systems it is
important to choose the largest possible gains so that model inaccuracy and interaction
terms do not appreciably affect positions of the single joints. As pointed out above, the
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Figure 6.16 Equivalent control scheme of PI type.

A4
yvy

Figure 6.17 Equivalent control scheme of PID type.

upper limit on the gains is imposed by all those factors that have not been modeled,
such as implementation of discrete-time controllers in lieu of the continuous-time
controllers analyzed in theory, presence of finite sampling time, neglected dynamic
effects (e.g., joint elasticity, structural resonance, finite transducer bandwidth), and
sensor noise. In fact, the influence of such factors in the implementation of the above
controllers may cause a severe system performance degradation for much too large
values of feedback gains.
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Figure 6.18 Equivalent control scheme of PIDD? type.

6.4 Computed Torque Feedforward Control

Define the tracking error e(t) = 64(t) — 6(t). With reference to the most general
scheme (Figure 6.18), the output of the PIDD? regulator can be written as

t
agé +ai1é+ ape + a_q / e(s)ds

which describes the time evolution of the error. The constant coefficients as, aq, ag, a4
are determined by the particular solution adopted. Summing the contribution of the
feedforward actions and of the disturbance to this expression yields

1 . Thy R,
Eed + Ead - k—td,
where
T, IR, . _1
kn ke ™k

The input to the motor (Figure 6.5) has then to satisfy the following equation:

¢
. . T 1 . Re, Tpmy 1,
a2€é + a1é + age +a_q / e(s)ds + Ead + Ead — k:_td = kme + kmﬁ.

With a suitable change of coefficients, this can be rewritten as

Moy

¢
a.’zé+a'1é+af)e+a',1/ e(s)ds = .
¢
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This equation describes the error dynamics and shows that any physically executable
trajectory is asymptotically tracked only if the disturbance term d(¢) = 0. With the term
physically executable it is meant that the saturation limits on the physical quantities,
e.g., current and voltage in electric motors, are not violated in the execution of the
desired trajectory.

The presence of the term d(t) causes a tracking error whose magnitude is reduced
as much as the disturbance frequency content is located off to the left of the lower limit
of the bandwidth of the error system. The disturbance/error transfer function is given
by

R,
E(s) _ ki
D(s) ahs®+a\s®+ajs+a

S

and thus the adoption of loop gains which are not realizable for the above discussed
reasons is often required.

Nevertheless, even if the term d(¢) has been introduced as a disturbance, its ex-
pression is given by (6.7). It is then possible to add a further term to the previous
feedforward actions which is able to compensate the disturbance itself rather than its
effects. In other words, by taking advantage of model knowledge, the rejection effort
of an independent joint control scheme can be lightened with notable simplification
from the implementation viewpoint.

Let gq(t) be the desired joint trajectory and g.,4(t) the corresponding actuator
trajectory as in (6.2). By adopting an inverse model strategy, the feedforward action
RaKt_ldd can be introduced with

di= K, 'AB(q0) K, '4ma + K, 'C(qa,40) K, 'qma + K, 'g(ga), (6.31)

where R, and K; denote the diagonal matrices of armature resistances and torque
constants of the actuators. This action tends to compensate the actual disturbance
expressed by (6.7) and in turn allows the control system to operate in a better condition.

This solution is illustrated in the scheme of Figure 6.19, which conceptually
describes the control system of a manipulator with computed torque control. The
feedback control system is representative of the n independent joint control servos;
it is decentralized, since controller ¢ elaborates references and measurements that
refer to single Joint 4. The interactions between the various joints, expressed by d,
are compensated by a centralized action whose function is to generate a feedforward
action that depends on the joint references as well as on the manipulator dynamic
model. This action compensates the nonlinear coupling terms due to inertial, Coriolis,
centrifugal, and gravitational forces that depend on the structure and, as such, vary
during manipulator motion. N

Although the residual disturbance term d = dq — d vanishes only in the ideal
case of perfect tracking (¢ = q4) and exact dynamic modelling, d is representative of
interaction disturbances of considerably reduced magnitude with respect to d. Hence,
the computed torque technique has the advantage to alleviate the disturbance rejection
task for the feedback control structure and in turn allows limited gains. Notice that
expression (6.31) in general imposes a computationally demanding burden on the
centralized part of the controller. Therefore, in those applications where the desired
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Figure 6.19 Block scheme of computed torque feedforward control.

trajectory is generated in real time with regard to heteroceptive sensory data and
commands from higher hierarchical levels of the robot control architecture®, on-line
computation of the centralized feedforward action may require too much time*.

Since the actual controller is to be implemented on a computer with a finite
sampling time, torque computation has to be carried out during this interval of time; in
order not to degrade dynamic system performance, typical sampling times are of the
order of the millisecond.

Therefore, it may be worth performing only a partial feedforward action so as to
compensate those terms of (6.31) that give the most relevant contributions during ma-
nipulator motion. Since inertial and gravitational terms dominate velocity-dependent
terms (at operational joint speeds not greater than a few radians per second), a partial
compensation can be achieved by computing only the gravitational torques and the
inertial torques due to the diagonal elements of the inertia matrix. In this way, only
the terms depending on the global manipulator configuration are compensated while
those deriving from motion interaction with the other joints are not.

Finally, it should be pointed out that, for repetitive trajectories, the above com-
pensating contributions can be computed off-line and properly stored on the basis of
a trade-off solution between memory capacity and computational requirements of the
control architecture.

3 See also Chapter 9.

* In this regard, the problem of real-time computation of compensating torques can be solved
by resorting to effi cient recursive formulations of manipulator inverse dynamics, such as the
Newton-Euler algorithm presented in Chapter 4.
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Figure 6.20 Block scheme of the manipulator and drives system as a voltage-controlled system.

6.5 Centralized Control

In the previous sections several techniques have been discussed that allow designing in-
dependent joint controllers. These are based on a single-input/single-output approach,
since interaction and coupling effects between the joints have been considered as dis-
turbances acting on each single joint drive system. However, as shown by the dynamic
model (6.1), the manipulator is not a set of n decoupled system but it is a multivariable
system with n inputs (joint torques) and n outputs (joint positions) interacting between
them by means of nonlinear relations.

In order to follow a methodological approach which is consistent with control de-
sign, it is necessary to treat the control problem in the context of nonlinear multivariable
systems. This approach will obviously account for the manipulator dynamic model and
lead to finding nonlinear centralized control laws, whose implementation is needed
for high manipulator dynamic performance. On the other hand, the above computed
torque control can be interpreted in this framework, since it provides a model-based
nonlinear control term to enhance trajectory tracking performance. Notice, however,
that this action is inherently performed off line, as it is computed on the time history
of the desired trajectory and not of the actual one.

For the following derivation, it is worth rewriting the mathematical model of the
manipulator with drives in a more suitable form. The manipulator is described by (6.1)

B(q)g+C(q,9)q + F.q+g(q) =,
while the transmissions are described by (6.2)
K.q =qn.

With reference to (6.3) and the block scheme of Figure 6.4, the n driving systems can
be described in compact matrix form by the equations:

K 't = Kyi, (6.32)
v, = R,i, + K,qnm (6.33)
v, = Gyv,. (6.34)

In (6.32), K; is the diagonal matrix of torque constants and 2, is the vector of armature
currents of the n motors; in (6.33), v, is the vector of armature voltages, R, is the
diagonal matrix of armature resistances, and K, is the diagonal matrix of voltage
constants of the n motors; in (6.34), G, is the diagonal matrix of gains of the n
amplifiers and v, is the vector of control voltages of the n servomotors.
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Figure 6.21 Block scheme of the manipulator and drives system as a torque-controlled system.

On reduction of (6.1), (6.2), (6.32), (6.33), (6.34), the dynamic model of the system
given by the manipulator and drives is described by

B(q)§+C(q,9)g+Fq+g(qg) =u (6.35)
where the following positions have been made:

F=F,+K KR,'K,K, (6.36)
u=K,K:R;'G,v.. (6.37)

In (6.36), F' is the diagonal matrix accounting for all viscous (mechanical and electri-
cal) damping terms, and, in (6.37), w is the vector which is taken as control input to the
system. Notice that the actual torques that determine the motion of the system of manip-
ulator with drives can be obtained by subtracting to (6.37) the term K, K, R; ' K, K .q
due to electrical friction. The overall system is then voltage-controlled and the corre-
sponding block scheme is illustrated in Figure 6.20. In this case, each component of v,
corresponds to the control voltage of any of the previous independent joint control
schemes.

If the actuators have to provide torque contributions computed on the basis of
a complete or reduced manipulator model, the design of w in (6.35) depends on
the matrices K;, K, and R, of the motors, which are influenced by the operating
conditions. To reduce sensitivity to parameter variations, it is worth considering driving
systems characterized by a torque (current) control rather than by a voltage control. In
this case the actuators behave as torque-controlled generators; the equation in (6.33)
becomes meaningless and (6.34) is replaced with

io = Give, (6.34")

which gives a proportional relation between the armature currents ¢, (and thus the
torques) and the control voltages v, established by the constant matrix G;. As a
consequence, (6.36) and (6.37) become

F=F, (6.36")
u=K,K:Gv. =T, (6.37"

which show a reduced dependence of w and F' on the motor parameters. The over-
all system is now forque-controlled and the resulting block scheme is illustrated in
Figure 6.21.

In the remainder, the problem of finding control laws u that ensure a given per-
formance for the system of manipulator with drives is considered. Since (6.37') can
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be considered as a constant proportional relation between v. and w, the centralized
control algorithms that follow directly refer to the generation of control torques u.

6.5.1 PD Control with Gravity Compensation

Let a constant equilibrium posture be assigned for the system as the vector of desired
joint variables qq. It is desired to find the structure of the controller which ensures
global asymptotic stability of the above posture.

The determination of the control input which stabilizes the system around the
equilibrium posture is based on the Lyapunov direct method.

Take the vector [g7  ¢7']7 as the system state, where

qd=qi—q (6.38)

represents the error between the desired and the actual posture. Choose the following
positive definite quadratic form as Lyapunov function candidate:

s 1. . . s
V(q,q) = §qTB(q)q + §qTqu >0  VYq,g#0 (6.39)

where K p is an (n X n) symmetric positive definite matrix. An energy-based interpre-
tation of (6.39) reveals a first term expressing the system kinetic energy and a second
term expressing the potential energy stored in the system of equivalent stiffness K p
provided by the n position feedback loops.

Ditferentiating (6.39) with respect to time, and recalling that g4 is constant, yields

_ B
V =¢"B(g)g + quB(q)q —¢"Kpq. (6.40)

Solving (6.35) for Bq and substituting it in (6.40) gives

1

V= qu(B(Q) -2C(q,4)a—¢"Fqg+q¢"(u—g(g) — Kpq). (641)

The first term on the right-hand side is null since the matrix N = B — 2C satis-
fies (4.48). The second term is negative definite. Then, the choice

u =g(q) + Kp. (6.42)

describing a controller with compensation of gravitational terms and a proportional
action, leads to a negative semi-definite V' since

V=0 q=0,vq.

This result can be obtained also by taking the control law

u=g(q) + Kpqg— Kpgq, (6.43)
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Figure 6.22 Block scheme of joint space PD control with gravity compensation.

with K p positive definite, corresponding to a nonlinear compensation action of grav-
itational terms with a linear proportional-derivative (PD) action. In fact, substituting
(6.43) into (6.41) gives .

V=-¢g'(F+Kp)q, (6.44)

which reveals that the introduction of the derivative term causes an increase of the
absolute values of V/ along the system trajectories, and then it gives an improvement of
system time response. Notice that the inclusion of a derivative action in the controller,
as in (6.43), is crucial when direct-drive manipulators are considered. In that case, in
fact, mechanical viscous damping is practically null, and current control does not allow
exploiting the electrical viscous damping provided by voltage-controlled actuators.

According to the above, the function candidate V' decreases as long as ¢ # 0
for all system trajectories. It can be shown that the system reaches an equilibrium
posture. To find such posture, notice that V=0 only if ¢ = 0. System dynamics
under control (6.43) is given by

B(q)q+C(g,0)qa+ Fq+g(q) =g(a) + Kpq — Kpq. (6.45)
At the equilibrium (¢ = 0, ¢ = 0) it is
Kpg=0, (6.46)

and then
q=q9i—q=0

is the sought equilibrium posture. The above derivation rigorously shows that any
manipulator equilibrium posture is globally asymptotically stable under a controller
with a PD linear action and a nonlinear gravity compensating action. Stability is
ensured for any choice of Kp and Kp, as long as these are positive definite matrices.
The resulting block scheme is shown in Figure 6.22.

The control law requires the on-line computation of the term g(q). If compensation
is imperfect, the above discussion does not lead to the same result; this aspect will
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Figure 6.23 Global linearization performed by inverse dynamics control.

be revisited later with reference to robustness of controllers performing nonlinear
compensation.

6.5.2 Inverse Dynamics Control

Consider now the problem of tracking a joint space trajectory. The reference framework
is that of control of nonlinear multivariable systems. The dynamic model of an n-joint
manipulator is expressed by (6.35) which can be rewritten as

B(q)g +n(q,q) = u, (6.47)

where for simplicity it has been set

n(q,q) = C(q,9)qg+ Fq+g(q). (6.48)

The approach that follows is founded on the idea to find a control vector u, as a
function of the system state, which is capable to realize an input/output relationship of
linear type; in other words, it is desired to perform not a local linearization but a global
linearization of system dynamics obtained by means of a nonlinear state feedback.
The possibility of finding such a linearizing controller is guaranteed by the particular
form of system dynamics. In fact, the equation in (6.47) is linear in the control » and
has a full-rank matrix B(q) which can be inverted for any manipulator configuration.
Taking the control » as a function of the manipulator state in the form

u = B(q)y +n(q,q) (6.49)

leads to the system described by
q=y,

where y represents a new input vector whose expression is to be determined yet; the
resulting block scheme is shown in Figure 6.23. The nonlinear control law in (6.49) is
termed inverse dynamics control since it is based on the computation of manipulator
inverse dynamics. The system under control (6.49) is linear and decoupled with respect
to the new inputy. In other words, the component y; influences, with a double integrator
relationship, only the joint variable ¢;, independently of the motion of the other joints.
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Figure 6.24 Block scheme of joint space inverse dynamics control.

In view of the choice (6.49), the manipulator control problem is reduced to that of
finding a stabilizing control law y. To this purpose, the choice

y=—-Kpq—-Kpg+r (6.50)
leads to the system of second-order equations
g+ Kpqg+Kpqg=7r (6.51)

which, on the assumption of positive definite matrices K p and K p, is asymptotically
stable. Choosing Kp and K p as diagonal matrices of the type

Kp = diag{w?,,...,w2,} Kp = diag{2Cwn1, - - -, 2(awnn s

gives a decoupled system. The reference component r; influences only the joint vari-
able g; with a second-order input/output relationship characterized by a natural fre-
quency wy; and a damping ratio ;.
Given any desired trajectory gq(t), tracking of this trajectory for the output g(t)
is ensured by choosing
r=qqs+ Kpqs + Kpqq. (6.52)

In fact, substituting (6.52) into (6.51) gives the homogeneous second-order differential

equation . )
g+ Kpg+ Kpqg=0 (6.53)

expressing the dynamics of position error (6.38) while tracking the given trajectory.
Such error occurs only if g(0) and/or ¢(0) are different from zero and converges to
zero with a speed depending on the matrices K p and K p chosen.

The resulting block scheme is illustrated in Figure 6.24, in which two feedback
loops are represented; an inner loop based on the manipulator dynamic model and an
outer loop operating on the tracking error. The function of the inner loop is to obtain a
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linear and decoupled input/output relationship, whereas the outer loop is required to
stabilize the overall system. The controller design for the outer loop is simplified since
it operates on a linear and time-invariant system. Notice that the implementation of this
control scheme requires computation of the inertia matrix B(q) and of the vector of
Coriolis, centrifugal, gravitational, and damping terms n.(q, ¢) in (6.48). Differently
from computed torque control, these terms must be computed on line since control is
now based on nonlinear feedback of the current system state, and thus it is not possible
to precompute the terms off line as for the previous technique.

The above technique of nonlinear compensation and decoupling is very attractive
from a control viewpoint since the nonlinear and coupled manipulator dynamics is
replaced with n linear and decoupled second-order subsystems. Nonetheless, this
technique is based on the assumption of perfect cancellation of dynamic terms, and
then it is quite natural to raise questions about sensitivity and robustness problems due
to unavoidably imperfect compensation.

Implementation of inverse dynamics control laws indeed requires that parameters
of the system dynamic model are accurately known and the complete equations of
motion are computed in real time. These conditions are difficult to verify in practice.
On one hand, the model is usually known with a certain degree of uncertainty due to
imperfect knowledge of manipulator mechanical parameters, existence of unmodeled
dynamics, and model dependence on end-effector payloads not exactly known and
thus not perfectly compensated. On the other hand, inverse dynamics computation is
to be performed at sampling times of the order of the millisecond so as to ensure that
the assumption of operating in the continuous time domain is realistic. This may pose
severe constraints on the hardware/software architecture of the control system. In such
cases, it may be advisable to lighten the computation of inverse dynamics and compute
only the dominant terms.

On the basis of the above remarks, from an implementation viewpoint, compen-
sation may be imperfect both for model uncertainty and for the approximations made
in on-line computation of inverse dynamics. In the following, two control techniques
are presented which are aimed at counteracting the effects of imperfect compensation.
The first one consists of the introduction of an additional term to an inverse dynamics
controller which provides robustness to the control system by counteracting the effects
of the approximations made in on-line computation of inverse dynamics. The second
one adapts the parameters of the model used for inverse dynamics computation to
those of the true manipulator dynamic model.

6.5.3 Robust Control

In the case of imperfect compensation, it is reasonable to assume in (6.47) a control
vector expressed by

~

u = B(q)y +7n(q,q) (6.54)

where B and represent the adopted computational model in terms of estimates of
the terms in the dynamic model. The error on the estimates, i.e., the uncertainty, is
represented by L

B=B-B n=n-n (6.55)
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and is due to imperfect model compensation as well as to intentional simplification in
inverse dynamics computation. Notice that by setting B = B (where B is the diagonal
matrix of average inertia at the joint axes) and 1. = 0, the above decentralized control
scheme is recovered where the control action y can be of the general PID type computed
on the error.

Using (6.54) as a nonlinear control law gives

Bi+n=By+n (6.56)

where functional dependence has been omitted. Since the inertia matrix B is invertible,
it is
g=y+(B'B-Iy+B'n=y—n (6.57)
where R
n=(I-B'B)y- B 'n. (6.58)

Taking as above
Yy =4a+ Kp(qi—q) + Kp(qs — q)

leads to } )
q+Kpqg+ Kpq=n. (6.59)

The system described by (6.59) is still nonlinear and coupled, since 7 is a nonlinear
function of g and gq; error convergence to zero is not ensured by the term on the
left-hand side only.

To find control laws ensuring error convergence to zero while tracking a trajectory
even in the face of uncertainties, a linear PD control is no longer sufficient. To this
purpose, the Lyapunov direct method can be utilized again for the design of an outer
feedback loop on the error which be robust to the uncertainty 7.

Let the desired trajectory q4(t) be assigned in the joint space and let ¢ = g4 —q be
the position error. Its first time-derivative isa = {4—(q, whileits second time-derivative
in view of (6.57) is .

q=qi—y+mn. (6.60)

By taking
£= {3] (6.61)
q
as the system state, the following first-order differential matrix equation is obtained:

§=HE+D(Ga—y+n), (6.62)

where H and D are block matrices of dimensions (2n x 2n) and (2n x ), respectively:

O O

gl s

D = {0} . (6.63)

Then, the problem of tracking a given trajectory can be regarded as the problem of
finding a control law y which stabilizes the nonlinear time-varying error system (6.62).
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Control design is based on the assumption that, even though the uncertainty 77 is
unknown, an estimate on its range of variation is available. The sought control law y
shall guarantee asymptotic stability for any 7 varying in the above range. By recalling
that 17 in (6.58) is a function of g, g, G4, the following assumptions are made:

sup [|gall < Qm < o0 Vga (6.64)
t>0

I1-B Y (@)B(g)| <a<1 Vq (6.65)
7] < & < o0 Vq.q. (6.66)

Assumption (6.64) is practically satisfied since any planned trajectory cannot require
infinite accelerations.

Regarding assumption (6.65), since B is a positive definite matrix with upper and
lower limited norms, the following inequality holds:

0< B <|IB™H(q)ll < Bu < 0 va. (6.67)

and then a choice for B always exists which satisfies (6.65). In fact, by setting

2

B=—" 7
By + By, ’
from (6.65) it is
~ By — By,
B'B-I|<=—=——""= 1. 6.68
|| |< G =a< (6.68)

If B is a more accurate estimate of the inertia matrix, the inequality is satisfied with
values of « that can be made arbitrarily small (in the limit, itis B = B and o = 0).

Finally, concerning assumption (6.66), observe that . is a function of g and q.
For revolute joints a periodical dependence on q is obtained, while for prismatic
joints a linear dependence is obtained, but the joint ranges are limited and then the
above contribution is also limited. On the other hand, regarding the dependence on
g, unbounded velocities for an unstable system may arise in the limit, but in reality
saturations exist on the maximum velocities of the motors. In sum, assumption (6.66)
can be realistically satisfied, too.

With reference to (6.57), choose now

y=qs+ Kpqg+ Kpq+w (6.69)
where the PD term ensures stabilization of the error dynamic system matrix, gg
provides a feedforward term, and the term w 1s to be chosen to guarantee robustness

to the effects of uncertainty described by 77 in (6.58).
Using (6.69) and setting K = [ Kp Kp]yields

¢ =HE+ D(n—w), (6.70)
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where o I
H=(H-DK)= [—KP —KD:|
is a matrix whose eigenvalues all have negative real parts—being K p and Kp pos-
itive definite—which allows prescribing the desired error system dynamics. In fact,
by choosing Kp = diag{w?,,...,w?2,} and Kp = diag{2liwn1, - - -, 2awnn }»
n decoupled equations are obtained as regards the linear part. If the uncertainty term
vanishes, it is obviously w = 0 and the above result with an exact inverse dynamics
controller is recovered (B = B and 1 = n).
To determine w, consider the following positive definite quadratic form as Lya-
punov function candidate:

V() =¢"Qe>0  VE£0, (6.71)

where @ is a (2n x 2n) positive definite matrix. The derivative of V' along the trajec-
tories of the error system (6.70) is

V=¢"Qe +£7Qé

T 4 OTNE 4 9T O D 672)
= ¢"(H"Q + QH)¢ +2¢"QD(n - w).

Since H has eigenvalues with all negative real parts, it is well-known that for any
symmetric positive definite matrix P, the equation

H'Q+QH=-P (6.73)

gives a unique solution  which is symmetric positive definite as well. In view of this,
(6.72) becomes .
V=-¢"P¢+267QD(n - w). (6.74)

The first term on the right-hand side of (6.74) is negative definite and then the solutions
convergeif& € N(DTQ).Ifinstead £ ¢ N (DT Q), the control w must be chosen so
as to render the second term in (6.74) less than or equal to zero. By setting z = D7 Q¢,

the second term in (6.74) can be rewritten as z” (n — w). Adopting the control law
p
w=-—2z p>0 (6.75)
12l
gives®
p
2P (n—w)=z2"n- ”7||sz

6.76
<Nzl = pll=] (6.76)

= [IZll(lnll = »)-

3 Notice that it is necessary to divide z by the norm of z so as to obtain a linear dependence on
z of the term containing the control 2T w, and thus to effectively counteract, for z — 0, the
term containing the uncertainty 2”7 which is linear in z.
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Figure 6.25 Block scheme of joint space robust control.

Then, if p is chosen so that
p > lInll Vq,q, 4a, (6.77)

control (6.75) ensures that V' is less than zero along all error system trajectories.
In order to satisfy (6.77), notice that, in view of the definition of 77 in (6.58) and
of assumptions (6.64)—(6.66), and being ||w|| = p, it is

Il < 12 = B7'BI[(llgall + 1K [IE]l + l[wll) + B~ [l

(6.78)
< aQuy + of| K| ||€|| + ap + By .
Therefore, setting
p> ———(aQur + all K]+ Bu®) 6.79)
gives
V =—¢TP¢+ 227 (n - ﬁz) <0 VE # 0. (6.80)

The resulting block scheme is illustrated in Figure 6.25.
To summarize, the presented approach has lead to finding a control law which is

formed by three different contributions:
e The term Ey + 7 ensures an approximate compensation of nonlinear effects
and joint decoupling.
e The term gy + KDE + Kpq introduces a linear feedforward action (§q +
Kpq.+Kpqg)and alinear feedback action (— K pg— K pq) which stabilizes
the error system dynamics.
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Figure 6.26 Error trajectory with robust control.

e The term w = (p/||z||)z represents the robust contribution that counteracts
the indeterminacy B and 7 in computing the nonlinear terms that depend on
the manipulator state; the greater the uncertainty, the greater the positive scalar
p- The resulting control law is of the unit vector type, since it is described by
a vector of magnitude p aligned with the unit vector of z = DT Q¢, V€.

All the resulting trajectories under the above robust control reach the subspace z =
DTQ¢ = 0 that depends on the matrix @ in the Lyapunov function V. On this
attractive subspace, termed sliding subspace, the control w is ideally commuted at an
infinite frequency and all error components tend to zero with a transient depending
on the matrices Q, Kp, Kp. A characterization of an error trajectory in the two-
dimensional case is given in Figure 6.26. Notice that in the case £(0) # 0, with
£(0) ¢ N(DTQ), the trajectory is attracted on the sliding hyperplane (a line) z = 0
and tends towards the origin of the error state space with a time evolution governed
by p.

In reality, the physical limits on the elements employed in the controller impose a
control signal that commutes at a finite frequency, and the trajectories oscillate around
the sliding subspace with a magnitude as low as the frequency is high.

Elimination of these high-frequency components (chattering) can be achieved by
adopting a robust control law which, even if it does not guarantee error convergence
to zero, ensures bounded-norm errors. A control law of this type is

L for || ]| > €
) T2

6.81)

Py for ||| < e.
€

In order to provide an intuitive interpretation of this law, notice that (6.81) gives a
null control input when the error is in the null space of matrix D7 Q. On the other
hand, (6.75) has an equivalent gain tending to infinity when z tends to the null vector,
thus generating a control input of limited magnitude. Since these inputs commute at an
infinite frequency, they force the error system dynamics to stay on the sliding subspace.
With reference to the above example, control law (6.81) gives rise to an hyperplane
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Figure 6.27 Error trajectory with robust control and chattering elimination.

z = 0 which is no longer attractive, and the error is allowed to vary within a boundary
layer whose thickness depends on e (Figure 6.27).

The introduction of a contribution based on the computation of a suitable linear
combination of the generalized error confers robustness to a control scheme based on
nonlinear compensation. Even if the manipulator is accurately modeled, indeed, an
exact nonlinear compensation may be computationally demanding, and thus it may
require either a sophisticated hardware architecture or an increase of the sampling
time needed to compute the control law. The solution then becomes weak from an
engineering viewpoint, due either to infeasible costs of the control architecture or
to poor performance at decreased sampling rates. Therefore, considering a partial
knowledge of the manipulator dynamic model with an accurate, pondered estimate
of uncertainty may suggest robust control solutions of the kind presented above. It is
understood that an estimate of the uncertainty shall be found so as to impose control
inputs which the mechanical structure can bear.

6.5.4 Adaptive Control

The computational model employed for computing inverse dynamics typically has
the same structure as that of the true manipulator dynamic model, but parameter
estimate uncertainty does exist. In this case, it is possible to devise solutions that allow
adapting on line the computational model to the dynamic model, thus performing a
control scheme of the inverse dynamics type.

The possibility of finding adaptive control laws is ensured by the property of
linearity in the parameters of the dynamic model of a manipulator. In fact, it is always
possible to express the nonlinear equations of motion in a linear form with respect to
a suitable set of constant dynamic parameters as in (4.80). The equation in (6.35) can
then be written as

B(q)§ +C(q,4)qd+ Fg+g(q) =Y (q,9,4)7 = u, (6.82)

where 7 is a (p x 1) vector of constant parameters and Y is an (n X p) matrix which
is a function of joint positions, velocities and accelerations. This property of linearity
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in the dynamic parameters is fundamental for deriving adaptive control laws, among
which the technique illustrated below is one of the simplest.

At first, a control scheme which can be derived through a combined computed
torque/inverse dynamics approach is illustrated. The computational model is assumed
to coincide with the dynamic model.

Consider the control law

u = B(q)4- + C(q,9)q, + Fq, + g(q) + Kpo, (6.83)
with Kp a positive definite matrix. The choice
ar=dqa+Aq G =iat Aq, (6.84)

with A a positive definite (usually diagonal) matrix, allows expressing the nonlinear
compensation and decoupling terms as a function of the desired velocity and accel-
eration, corrected by the current state (g and ¢) of the manipulator. In fact, notice
that the term ¢, = ¢4 + Aq weighs the contribution that depends on velocity not
only on the basis of the desired velocity but also on the basis of the position tracking
error. A similar argument holds also for the acceleration contribution, where a term
depending on the velocity tracking error is considered besides the desired acceleration.
The term K po is equivalent to a PD action on the error if o is taken as

o= —q=q+Aq. (6.85)
Substituting (6.83) into (6.82) and accounting for (6.85) yields
B(q)6 +C(q,q)0c + Fo + Kpo = 0. (6.86)

Consider the Lyapunov function candidate
~ 1 -+ 1 -0 ~
Vie,q) = 57 B(q)o + 54 Mg >0 Vo,q # 0, (6.87)

where M is an (n X n) symmetric positive definite matrix; the introduction of the
second term in (6.87) is necessary to obtain a Lyapunov function of the entire system
state which vanishes for ¢ = 0 and ¢ = 0. The time derivative of V' along the
trajectories of system (6.86) is

. 1 . .
V=0"B(q)6 + 26" B(q)o + - Mg

(q) 5 (q) . q Mq 6.88)
= —O'T(F + Kp)o + 6TM6,

where the skew-symmetry property (4.47) of the matrix N = B — 2C has been
exploited. In view of the expression of o in (6.85), with diagonal A and K p, it is

convenient to choose M = 2A K p; this leads to

V= —oTFo—§ Kpi—al AKpAG
= 4 Kpq—q" AKpAq. (6.89)
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This expression shows that the time derivative is negative definite since it vanishes only
if ¢ = 0 and g = 0; thus, it follows that the origin of the state space [g1 o7 =0
is globally asymptotically stable. It is worth noticing that, differently from the robust
control case, the error trajectory tends to the subspace o = 0 without the need of a
high-frequency control.

On the basis of this notable result, the control law can be made adaptive with
respect to the vector of parameters 7.

Suppose that the computational model has the same structure as that of the manip-
ulator dynamic model, but its parameters are not known exactly. The control law (6.83)
is then modified into

B(@)ir +C(¢,@)qr + Fq. + 9 + Kpo (6.90)
- Y(Qa Q7 iIra qr)% + KDU’

u

where 7 represents the available estimate on the parameters and, accordingly, B , C ,
F, g denote the estimated terms in the dynamic model. Substituting control (6.90)
into (6.82) gives

B(q)6 + C(q,q)o + Fo + Kpo = —B(q)d, — C(q,9)q- — Fq, — g(q)
= _Y(q7Qa‘1r7ijr)%, (691)

where the property of linearity in the error parameter vector
T=mm—-7 (6.92)

has been conveniently exploited. In view of (6.55), the modelling error is characterized
by:

B=B-B C=C-Cc F=F-F g=g-—g. (6.93)

It is worth remarking that, in view of position (6.84), the matrix Y does not depend
on the actual joint accelerations but only on their desired values; this avoids problems
due to direct measurement of acceleration.

At this point, modify the Lyapunov function candidate in (6.87) into the form

o~ o~ 1 ~ 1 ~ o~
Vie,q,7) = EUTB(q)a' + g AKpqg + §7rTK7T7r >0 Vo,q,m#0, (694)

which features an additional term accounting for the parameter error (6.92), with K
symmetric positive definite. The time derivative of V' along the trajectories of system
(6.91)1s
. T L ~ o~ L L.
V=-0"Fo-q Kpqg—q AKpAq+7" (K7 ~Y"(q,4,4r,4-)0). (6.95)
If the estimate of the parameter vector is updated as in the adaptive law

7 =K:'Y"(q,4, 4. d,)0, (6.96)
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Figure 6.28 Block scheme of joint space adaptive control.

the expression in (6.95) becomes
. T 3 ~ ~
V=-0"Fo—-q Kpq—q ' AKpAq

since & = 7 (7 is constant).
By an argument similar to above, it is not difficult to show that the trajectories of
the manipulator described by the model

B(q)q+C(q,9)q + Fqg+g(q) =u.
under the control law

u=Y(q.4,4r,d)7 + Kp(q + Aq)
and the parameter adaptive law

*=K.'Y"(q.4,4.4)@+ A9),

globally asymptotically converge to o = 0 and g = 0, which implies convergence to
zero of 4, q, and boundedness of 7. The equation in (6.91) shows that asymptotically
itis

Y(q,q,qr,4,)(7 — ) = 0. (6.97)
This equation does not imply that 7 tends to 7; indeed, convergence of parameters
to their true values depends on the structure of the matrix Y (g, 4, g, §,) and then
on the desired and actual trajectories. Nonetheless, the followed approach is aimed
at solving a direct adaptive control problem, i.e., finding a control law that ensures
limited tracking errors, and not at determining the actual parameters of the system
(as in an indirect adaptive control problem). The resulting block scheme is illustrated
in Figure 6.28. To summarize, the above control law is formed by three different
contributions:

e The term Y 7 describes a control action of inverse dynamics type which en-
sures an approximate compensation of nonlinear effects and joint decoupling.
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e The term K po introduces a stabilizing linear control action of PD type on
the tracking error.

e The vector of parameter estimates 7 is updated by an adaptive law of gradient
type so as to ensure asymptotic compensation of the terms in the manipulator
dynamic model; the matrix K, determines the convergence rate of parameters
to their asymptotic values.

Notice that, with o & 0, the control law (6.90) is equivalent to a pure inverse dynamics
compensation of the computed torque type on the basis of desired velocities and
accelerations; this is made possible by the fact that Y 7w ~ Y.

The control law with parameter adaptation requires the availability of a complete
computational model and it does not feature any action aimed at reducing the effects
of external disturbances. Therefore, a performance degradation is expected whenever
unmodeled dynamic effects, e.g., when a reduced computational model is used, or
external disturbances occur. In both cases, the effects induced on the output variables
are attributed by the controller to parameter estimate mismatching; as a consequence,
the control law attempts to counteract those effects by acting on quantities that did not
provoke them originally.

On the other hand, robust control techniques provide a natural rejection to exter-
nal disturbances, although they are sensitive to unmodeled dynamics; this rejection is
provided by a high-frequency commuted control action that constrains the error trajec-
tories to stay on the sliding subspace. The resulting inputs to the mechanical structure
may be unacceptable. This inconvenience is in general not observed with the adoption
of adaptive control techniques whose action has a naturally smooth time behaviour.

6.6 Operational Space Control

In all the above control schemes, it was always assumed that the desired trajectory is
available in terms of the time sequence of the values of joint position, velocity and
acceleration. Accordingly, the error for the control schemes was expressed in the joint
space.

As often pointed out, motion specifications are usually assigned in the operational
space, and then an inverse kinematics algorithm has to be utilized to transform oper-
ational space references into the corresponding joint space references. The process of
kinematic inversion has an increasing computational load when, besides inversion of
direct kinematics, also inversion of first-order and second-order differential kinematics
is required to transform the desired time history of end-effector position, velocity and
acceleration into the corresponding quantities at the joint level. It is for this reason that
current industrial robot control systems compute the joint positions through kinemat-
ics inversion, and then perform a numerical differentiation to compute velocities and
accelerations.

A different approach consists of considering control schemes developed directly
in the operational space. If the motion is specified in terms of operational space
variables, the measured joint space variables can be transformed into the corresponding
operational space variables through direct kinematics relations. Comparing the desired
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Figure 6.29 Block scheme of Jacobian inverse control.

input with the reconstructed variables allows designing feedback control loops where
trajectory inversion is replaced with a suitable coordinate transformation embedded in
the feedback loop.

All operational space control schemes present considerable computational require-
ments, in view of the necessity to perform a number of computations in the feedback
loop which are somewhat representative of inverse kinematics functions. With refer-
ence to a numerical implementation, the presence of a computationally demanding
load requires sampling times that may lead to degrading the performance of the overall
control system.

In the face of the above limitations, it is worth presenting operational space
control schemes, whose utilization becomes necessary when the problem of controlling
interaction between the manipulator and the environment is of concern. In fact, joint
space control schemes suffice only for motion control in the free space. When the
manipulator’s end effector is constrained by the environment, e.g., in the case of
end-effector in contact with an elastic environment, it is necessary to control both
positions and contact forces and it is convenient to refer to operational space control
schemes. Hence, below some solutions are presented; these are worked out for motion
control, but they constitute the premise for the interaction control strategies that will
be illustrated in the next chapter.

6.6.1 General Schemes

As pointed out above, operational space control schemes are based on a direct compar-
ison of the inputs, specifying operational space trajectories, with the measurements of
the corresponding manipulator outputs. It follows that the control system shall incor-
porate some actions that allow passing from the operational space, in which the error
is specified, to the joint space, in which control generalized forces are developed.

A possible control scheme that can be devised is the so-called Jacobian inverse
control (Figure 6.29). In this scheme, the end-effector location in the operational space
is compared with the corresponding desired quantity, and then an operational space
deviation Ax can be computed. Assuming that this deviation is sufficiently small
for a good control system, Az can be transformed into a corresponding joint space
deviation Aq through the inverse of the manipulator Jacobian. Then, the control input
generalized forces can be computed on the basis of this deviation through a suitable
feedback matrix gain. The result is a presumable reduction of Ag and in turn of Ax.
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Figure 6.30 Block scheme of Jacobian transpose control.

In other words, the Jacobian inverse control leads to an overall system that intuitively
behaves like a mechanical system with a generalized n-dimensional spring in the joint
space, whose constant stiffness is determined by the feedback matrix gain. The role
of such system is to take the deviation Aq to zero. If the matrix gain is diagonal, the
generalized spring corresponds to n independent elastic elements, one for each joint.

A conceptually analogous scheme is the so-called Jacobian transpose control
(Figure 6.30). In this case, the operational space error is treated first through a matrix
gain. The output of this block can then be considered as the elastic force generated
by a generalized spring whose function in the operational space is that to reduce or
to cancel the position deviation Ax. In other words, the resulting force drives the end
effector along a direction so as to reduce Ax. This operational space force has then
to be transformed into the joint space generalized forces, through the transpose of the
Jacobian, so as to realize the described behaviour.

Both Jacobian inverse and transpose control schemes have been derived in an
intuitive fashion. Hence, there is no guarantee that such schemes are effective in terms
of stability and trajectory tracking accuracy. These problems can be faced by presenting
two mathematical solutions below, which will be shown to be substantially equivalent
to the above schemes.

6.6.2 PD Control with Gravity Compensation

B