

Introducing UNIX

and Linux

Mike Joy, Stephen Jarvis and Michael Luck

© Mike Joy, Stephen Jarvis and Michael Luck 2002

All rights reserved. No reproduction, copy or transmission of this publication may be
made without written permission.

No paragraph of this publication may be reproduced, copied or transmitted save with
written permission or in accordance with the provisions of the Copyright, Designs and
Patents Act 1988, or under the terms of any licence permitting limited copying issued
by the Copyright Licensing Agency, 90 Tottenham Court Road, London W1T 4LP.

Any person who does any unauthorised act in relation to this publication may be liable
to criminal prosecution and civil claims for damages.

The authors have asserted their rights to be identified as the authors of this work in
accordance with the Copyright, Designs and Patents Act 1988.

First published 2002 by
PALGRAVE MACMILLAN
Houndmills, Basingstoke, Hampshire RG21 6XS and
175 Fifth Avenue, New York, N. Y. 10010
Companies and representatives throughout the world

PALGRAVE MACMILLAN is the global academic imprint of the Palgrave Macmillan
division of St. Martin’s Press, LLC and of Palgrave Macmillan Ltd. Macmillan® is a
registered trademark in the United States, United Kingdom and other countries.
Palgrave is a registered trademark in the European Union and other countries.

ISBN 0–333–98763–2 paperback

This book is printed on paper suitable for recycling and made from fully managed and
sustained forest sources.

A catalogue record for this book is available from the British Library.

10 9 8 7 6 5 4 3 2 1
11 10 09 08 07 06 05 04 03 02

Printed and bound in Great Britain by
Antony Rowe Ltd, Chippenham and Eastbourne

Contents

Preface viii

Chapter 1 The Computing Environment 1

Chapter overview 1

1.1 What is a Computer? 1

1.2 Hardware 2

1.3 Software 4

1.4 History of UNIX and Linux 8

1.5 Conventions 10

Chapter summary 10

Chapter 2 UNIX and Linux Design and Organisation 11

Chapter overview 11

2.1 The Kernel and Shell 11

2.2 Files 13

2.3 Technical Basics 14

2.4 How to get Linux 16

Chapter summary 16

Chapter 3 Installing Linux 17

Chapter overview 17

3.1 Starting out 17

3.2 Preliminaries 18

3.3 Single boot 19

3.4 Dual boot 19

3.5 Emulators 21

3.6 Installing Linux 22

3.7 Using Linux 25

3.8 KDE 26

Chapter summary 30

iii

Introducing UNIX and Linux

Chapter 4 Getting started 31

Chapter overview 31

4.1 Using UNIX 31

4.2 Logging out 33

4.3 Commands 33

4.4 Communication with other users 36

4.5 Files 39

4.6 Input and output 44

4.7 Emergencies 54

4.8 Getting help 55

Chapter summary 57

Chapter 5 Files 59

Chapter overview 59

5.1 The UNIX directory hierarchy 59

5.2 Filesystems 62

5.3 Manipulating files 64

5.4 Protecting files 67

5.5 File contents 73

5.6 Printing files 81

5.7 File archives and file compression 83

5.8 Other relevant commands 84

Chapter summary 86

Chapter 6 Processes and devices 88

Chapter overview 88

6.1 Processes 88

6.2 Environment 92

6.3 Program control 100

6.4 Quotes and escapes 110

6.5 Devices 111

6.6 Backquotes 113

Chapter summary 115

Chapter 7 Introduction to shells 117

Chapter overview 117

7.1 Why do we need a shell? 117

7.2 Shell syntax 118

7.3 Arithmetic 126

7.4 Making decisions 128

7.5 Loops 134

iv

Contents

7.6 Searching for files 137

7.7 Formatted output 139

7.8 Passing information to scripts 142

Chapter summary 148

Chapter 8 More on shells 150

Chapter overview 150

8.1 Simple arithmetic 150

8.2 Pattern matching 154

8.3 Entering and leaving the shell 159

8.4 More about scripts with options 162

8.5 Symbolic links 165

8.6 Setting up terminals 166

8.7 Conventions used in UNIX file systems 168

Chapter summary 170

Chapter 9 Advanced shell programming 173

Chapter overview 173

9.1 Sending and trapping signals 173

9.2 Functions 175

9.3 Aliases 177

9.4 The ‘exec’ mechanism 178

9.5 The ‘eval’ mechanism 179

9.6 Sending data across networks 180

9.7 Makefiles 183

9.8 Safe programming 186

9.9 Setting up a terminal 187

9.10 More on files 188

9.11 Miscellaneous utilities 191

Chapter summary 192

Chapter 10 Regular expressions and filters 194

Chapter overview 194

10.1 Using filters 194

10.2 Character-to-character transformation 196

10.3 Selecting lines by content 198

10.4 Stream editor 203

10.5 Splitting a file according to context 206

10.6 Choosing between the three filters 210

10.7 More on Vi 210

Chapter summary 212

v

Introducing UNIX and Linux

Chapter 11 Awk 214

Chapter overview 214

11.1 What is ‘awk’? 214

11.2 Invoking ‘awk’ 215

11.3 Naming the fields 216

11.4 Formatted output 217

11.5 Patterns 220

11.6 Variables 222

11.7 Arguments to ‘awk’ scripts 225

11.8 Arrays 226

11.9 Field and record separators 229

11.10 Functions 233

Chapter summary 236

Chapter 12 Perl 239

Chapter overview 239

12.1 Introduction 239

12.2 Variables 241

12.3 Input and output 242

12.4 Fields 246

12.5 Control structures 247

12.6 Predefined Perl 249

12.7 Regular expressions 251

12.8 Perl and the Kernel 253

12.9 Quality code 254

12.10 When do I use Perl? 256

Chapter summary 257

Chapter 13 Maintaining your Linux OS 258

Chapter overview 258

13.1 Basic management 259

13.2 Linux file management 262

13.3 Linux networking 264

13.4 Security 268

13.5 Uninstalling Linux 269

Chapter summary 270

Chapter 14 Other Issues 271

Chapter overview 271

14.1 Programming languages 271

14.2 Document Preparation 273

vi

Contents

14.3 Other Software 274

14.4 Useful Resources 275

Chapter summary 277

Answers to problems 278

Appendix – summary of utilities 291

Index 296

vii

Preface

UNIX is an operating system which has seen substantial growth in its
popularity over the last few years and is used by many universities and
colleges, as well as in industry. Linux is a UNIX-like operating system for
PCs which is freely available and has become a serious alternative to
proprietary systems such as Windows. This book is a beginner’s guide for
students who have to use UNIX and/or Linux. No prior knowledge of
programming is assumed, nor is any experience of using computers. We
do, however, expect our audience to have a serious interest in computing,
and a typical reader might be a student in the first year of a degree or
HND course.

UNIX is more than just a computer operating system: it is a
philosophy of programming. Learning UNIX involves becoming familiar
not only with the commands it affords the user, but also with the
methodology it employs. It is a very powerful tool in the hands of an
experienced practitioner, but it can be daunting for the novice. We
introduce enough detail for the reader to be able to utilise the facilities in
UNIX, but no more.

In 1993 an International Standard was published, known as ‘POSIX.2’,
which specifies the constructs and commands that a UNIX system should
have available to its users. This book follows that standard. However,
POSIX is a ‘minimal’ standard, and most UNIX or Linux systems contain
much more. We discuss in this book all the basic constructs and
commands of UNIX (as defined in POSIX.2), sufficient for the reader to
be able to use each of them, together with some of the more common and
useful extensions. We do not delve into any in fine detail; part of the
UNIX philosophy is that such information is available online. The reader
who requires more sophisticated use of UNIX after reading this book will
know how and where to find the extra information they need.

To get the most from this book, you should have access to a UNIX
computer system or a PC running Linux, as much of the text relies on
your being able to try out examples. If you have a PC running Windows,
we discuss in Chapter 3 how you can install Linux on your PC.

This book is a new version of Beginning UNIX, which is no longer in
print. The material covered in chapters 4 to 11 is substantially the same
as the corresponding chapters in Beginning UNIX, but the remaining

viii

Preface

chapters are new. We have expanded the coverage to include discussion of
Linux and related issues, including installation and maintenance on a PC.
A new chapter on Perl has been included. Technical material is now
consistent with current Linux distributions in addition to Solaris and
other versions of the UNIX operating system.

Grateful thanks are due to Nathan Griffiths and Steve Matthews for
commenting on draft versions of this book. Thanks also to Hugh Glaser

NOTE

Acknowledgements for encouragement and feedback, and to students at Warwick and
Southampton for valuable input.

Adobe, Acrobat and Framemaker are registered trademarks of Adobe
Systems Incorporated.

NOTE

Trademarks BeOS is a registered trademark of Be, Inc.
Eudora is a registered trademark of the University of Illinois Board of
Trustees, licensed to QUALCOMM Inc.
Internet Explorer, Outlook, Windows, Windows 95, Windows NT,
Windows 2000 and Windows XP are registered trademarks of Microsoft
Corporation.
Java is a trademark of Sun Microsystems, Inc.
KDE, K Desktop Environment and KOffice are trademarks of KDE e.V.
Linux is a registered trademark of Linus Torvalds.
MacOS is a registered trademark of Apple Computer, Inc.
Mandrake and Linux-Mandrake are registered trademarks of
MandrakeSoft SA and MandrakeSoft, Inc.
Mozilla is a trademark of the Mozilla Organization.
Netscape Navigator is a registered trademark of Netscape
Communications Corporation.
Opera is a trademark of Opera Software AS.
PalmOS is a registered trademark of Palm, Inc.
Pentium is a registered trademark of Intel Corporation.
PostScript is a registered trademark of Adobe Systems, Inc.
Red Hat and RPM are registered trademarks of Red Hat, Inc.
SPARC is a registered trademark of SPARC International, Inc.
StuffIt is a trademark of Aladdin Systems, Inc.
SuSE is a registered trademark of SuSE AG.
TeX is a trademark of the American Mathematical Society (AMS).
UNIX is a registered trademark of The Open Group.
VMS is a registered trademark of COMPAQ Computer Corporation.
VMware is a registered trademark of VMware, Inc.
WordPerfect is a registered trademark of Corel Corporation.
X Windows is a registered trademark of the Massachusetts Institute of
Technology.
All other trademarks are the property of their respective owners.

ix

C
H
A
P
T
E
R

1

The Computing
Environment

CHAPTER OVERVIEW

This chapter

� reviews basic notions of computer hardware and software;
� outlines the different kinds of software program;
� introduces the basic philosophy of UNIX and Linux; and
� provides a brief description of the history of UNIX and Linux.

If you pick up any book over ten years old on the subject of
computing, you could get quite different ideas of how people use their
computers. The basic ways of using computers haven’t changed, but
modern computing places an unimagined amount of control and power
with the individual user. This means that the user now has the ability
(and quite often the need) to deal with issues relating to the
administration of the computer to get the best out of it. In this book,
we’ll be explaining just how to understand what this involves, and how to
minimise the amount of effort required for effective use of your computer.

We start in this chapter by reviewing some basic concepts of computing
in a non-technical way, so that if you really are a beginner, reading
through this chapter should bring you up to speed. If you are already
familiar with the ideas of hardware and software, input and output,
processors, systems software, and applications programs, you may choose
instead to move swiftly on to Chapter 2.1, or simply to skim this chapter.

1.1 What is a Computer?

In very basic terms, there are essentially two kinds of “thing” involved in
computing. There are things you can kick, actual bits of machinery that
you can pick up and take away, including the computer itself, printers,

1

Introducing UNIX and Linux

screens and other physical devices (digital cameras, scanners, disk drives,
CD drives, etc.), which are collectively and individually known as
hardware Thus, hardware includes the devices you use to communicate
with a computer system (such as the mouse, keyboard), the actual
components that make up that system, and any other devices.

Unfortunately, the hardware won’t work by itself and needs detailed
instructions, or programs, to make it do what it should. In addition to
the hardware, therefore, it is also necessary to have a set of programs that
tell the hardware what to do. These programs, which refer to the actual
instructions rather than the medium on which they are stored, are
collectively known as software. Software is needed for the basic operation
of computers (like the software that is the subject of this book, UNIX and
Linux) as well as for the more common applications that you may already
be familiar with, such as word-processing, spreadsheets, games, MP3
playing, and limitless other possibilities. By themselves, hardware and
software are not enough to do the things we want of computers — it is
the combination of hardware and software that enables effective use of
modern computers.

Below, we describe the different kinds of hardware and software in a
little more detail.

1.2 Hardware

1.2.1 Processors

The most important part of the overall system is the processor (or central

processing unit, CPU) on which the computer is based, and which does
the main work of the system. In recent years, the advance of the PC has
been fuelled by progress in such processors, which are becoming ever
faster and more powerful. In PCs, these have included the series of
Pentium processors developed by Intel, with alternatives from companies
like AMD. Other computers have different processors, like Sun’s SPARC

ACRONYM

AMD = ‘Advanced

Micro Devices, Inc.’

SPARC = ‘Scalable

Processor ARChitecture’

processor. Whichever processor your machine uses is not important for
now — there may be variations in speed and power, as well as in some
other more technical differences, but the key point to note is that this is
the main component of the machine.

1.2.2 Input Devices

Although the processor is most critical, it is of little use if you can’t
display the results of the computation it performs, or if you can’t specify
and modify the kinds of computation you want it to perform. For this
reason, we need input and output devices — hardware components that
allow users to interact with the processor in easy and convenient ways.

2

The Computing Environment

In order to instruct a computer to perform a task, we require a way to
provide instructions as input. Perhaps the most recognisable input device
is the keyboard (typically of the ‘QWERTY’ variety because of the layout
of the keys, similar to a typewriter), which nearly all computers use to
receive textual and numeric input. The keyboard is the most usual way in
which people write programs or enter data on which those programs
might operate. However, there are also many other ways to provide input
to a computer. For example, many people now have scanners to enable
graphical images to be provided as input. Similarly, digital cameras,
bar-code readers in shops, and even sound recorders offer different ways of
getting data to the processor. In this book, we will focus on the standard
keyboard as our main input device, but we also note that the mouse, with
the purpose of enabling the selection and movement of items displayed on
the screen, is a vital part of modern computer systems.

1.2.3 Output Devices

Output devices are also varied, and we will focus primarily on the screen

or monitor (or even visual display unit — VDU — to use a somewhat
out-of-date expression) that typically comes as part of the package with
the processor and the keyboard.

In the past, people used so-called dumb terminals, which are largely
redundant now. A dumb terminal consists of a keyboard and a screen,
and can display only the same sort of text and simple characters as a
typewriter. On the screen is a cursor, which is either a block (a filled
rectangle the size of a letter) or an underscore, marking the point on the
screen at which typed characters appear, and also where any message the
computer writes will begin. The equivalent of a dumb terminal is now
more commonly referred to as a command window in many systems.

These days, modern computers typically use a screen (to display both
the input that is provided through keyboards, for example, and any
results of the processing performed), a keyboard and a mouse. The
configuration is sometimes referred to as a graphics terminals, to
distinguish it from a dumb terminal. These are capable of much more
sophisticated output. In particular, the screen is a high-resolution display
(nearly always colour), allowing complex graphics to be drawn as well as
simple characters. Usually, a system is employed by which the screen is
divided up into rectangular areas called windows, with which to
communicate individually. The computer itself may be a PC, as shown in
Figure 1.1, a workstation or a laptop, but that is not important. We will
assume the use of a command window, which applies to all equally. If you
are using any of these, you can create such a window, which behaves as if
it were itself a dumb terminal, having its own cursor. Typically, there is
also a global cursor that moves each time you move the mouse; you can

3

Introducing UNIX and Linux

select which window the keyboard will communicate with by moving the
global cursor so that it is within the chosen window.

The look and feel of the various kinds of computers can vary
enormously, as can the way in which windows on a screen are
manipulated. Either a window manager or a desktop manager can be
used to control the windows on a screen, and though the distinction
between the two kinds of software is somewhat blurred, a desktop
manager typically has more features and capabilities than a window
manager. We will go into more details about these later on in Chapter 3.

Figure 1.1 A typical

computer, with

screen, keyboard and

mouse

These basic components of processor, screen and keyboard are the key
pieces of the modern computing system, and their combination underlies
all of the details that follow in this book.

1.3 Software

1.3.1 Input and Characters

When communicating with UNIX, users send to the system a stream of
characters. Each time a key on the keyboard is pressed, a character is sent
to the machine. Usually, the computer echoes the character so that it is

4

The Computing Environment

displayed on the screen. Similarly, to communicate with the user the
system sends a stream of characters to the user’s computer, which is able
to interpret the particular character coding and display the characters on
the screen accordingly.

While interacting with the system, a user types in lines of text from the
keyboard, terminating each line by pressing the Return (or Enter) key.
These lines are interpreted as instructions to UNIX, which then responds
accordingly, and displays messages on the screen. On a graphics terminal,
this dialogue is between the keyboard and a specific window (typically the
window over which the cursor has been placed). Manipulation of other
devices such as a mouse also results in the transmission of characters to
the UNIX machine. However, these are interpreted as relating to the
management and display of the windows only.

Commands sent to UNIX are executed by a program called the shell.
We shall see later that the shell is just one example of a program that can
run on a UNIX system, but is special since it is the principal interface
between a user and the very heart of the system software, known as the
kernel.

Most characters that we shall use are the printing characters. These,
which include letters, digits, punctuation marks and the other symbols
marked on the keyboard, are displayed in the obvious way. However,
other characters, known as control characters (listed in Table 1.1), are
sometimes required by a UNIX system. Each is stored as a number using a
character encoding such as ASCII. For instance, the character whose code

ACRONYM

ASCII = ‘American

Standard Code for

Information Interchange’
is 7 and is sometimes referred to as ‘bell’, if printed on your terminal,
normally causes the terminal to make a noise (typically a ‘beep’).

Each control character has a name, typically an acronym of its
description. For character number 7, this is BEL, short for ‘bell’. Control
characters can be typed by pressing a key while holding down the Ctrl

key. For BEL, this key is G, and for this reason BEL is often written as
ctrl-G or ˆG. Some of the other control characters have anachronistic
names that also relate to the functioning of a teletype, but most of them

NOTE

The bell character was

originally used on

‘teletype’ terminals to

attract the attention of

the user in the days of

the telegraph

will not concern us here.
Control characters have purposes which, for the most part, are

obscure. Many are used by operating systems (not necessarily UNIX) to
structure data, and have meanings with historical relevance only. Some of
the more useful control characters include the following. The character
TAB has the effect, when sent to the screen, of moving the cursor to the
next tab position (usually columns 8, 16, 24, 32, etc.). The key marked
TAB or →, when pressed, transmits a TAB character to the computer.
The character NL (Newline) causes the cursor to move down to the
left-hand side of the next row on the screen. This character is provided as
input to the machine whenever the key marked RETURN (or ENTER or
←↩) is pressed. The escape character, which would not normally be

5

Introducing UNIX and Linux

Table 1.1 ASCII

control characters
Code ctrl-key Name Description

0 ˆ@ NUL null

1 ˆA SOH start of heading

2 ˆB STX start of text

3 ˆC ETX end of text

4 ˆD EOT end of transmission

5 ˆE ENQ enquiry

6 ˆF ACK acknowledge

7 ˆG BEL bell

8 ˆH BS backspace

9 ˆI HT horizontal tab

10 ˆJ NL newline (linefeed)

11 ˆK VT vertical tab

12 ˆL NP new page (formfeed)

13 ˆM CR carriage return

14 ˆN SO shift out

15 ˆO SI shift in

16 ˆP DLE data link escape

17 ˆQ DC1 device control 1

18 ˆR DC2 device control 2

19 ˆS DC3 device control 3

20 ˆT DC4 device control 4

21 ˆU NAK negative acknowledgement

22 ˆV SYN synchronous idle

23 ˆW ETB end of transmission block

24 ˆX CAN cancel

25 ˆY EM end of medium

26 ˆZ SUB substitute

27 ˆ[ESC escape

28 ˆ FS file separator

29 ˆ] GS group separator

30 ˆ ˆ RS record separator

31 ˆ US unit separator

127 ˆ? DEL delete

6

The Computing Environment

displayed on a screen at all, is sometimes required when typing in data.
There should be a key on your keyboard marked ESC or ESCAPE.

1.3.2 Application Programs

As mentioned earlier, the hardware alone is not enough. To do anything
useful with a computer, you need to run software, or programs, on the
hardware. Programs can be used to do pretty much anything you want,
but commonly include word-processing, scientific calculations and games,
and even support the development of yet more programs. What is
important to note here is that for each different application, you need a
different application program to run on the computer. Thus, if you want
to do some word-processing, you’ll need to get a word-processing program
to execute; word-processing can’t be done directly by the computer
otherwise.

Programming Languages
The processing units inside a computer understand a language called
machine code, and all the calculations that a computer performs use this
code. Machine code, which is a ‘low-level’ language, is specific to the
particular make and model of computer on which it runs, and is not
designed to be read by humans. Any instruction given to a computer
must be translated (somehow) to machine code before the computer will
understand it. It is unlikely you will ever need to come into direct contact
with machine code.

Typically, programs are written in high-level languages that are easily
readable by humans, but not by computers. They require compilers and
interpreters to perform a translation into the machine code that
computers can understand.

1.3.3 The Operating System

The final piece of the jigsaw of modern computing, to make the hardware
and software work together, and to make the different bits of hardware
like the screen, keyboard and processor talk to each other, is what is
known as the operating system, which is system software as opposed to
application software. The operating system is a complex program (or
collection of programs) that controls the internal operation of the
computer to ensure that all of the different things that are taking place at
the same time are done effectively and sensibly. For example, while the
computer accepts input from the keyboard and displays output on the
screen, it may also be processing some data and accessing the hard disk,
all at the same time.

Just as there can be different processors, different screens and
keyboards, and different application programs, so there can be different

7

Introducing UNIX and Linux

operating systems. If you’ve got this far, then we should be able to
assume that you know that your particular operating system is (or is
likely to become) UNIX or Linux, but you may also be familiar with
Microsoft’s Windows, with DOS, or with some other operating systems
such as CPM, MacOS, Multics, BeOS, PalmOS or VMS.

ACRONYM

DOS = ‘Disk Operating

System’

CPM = ‘Control

Program for

Microcomputers’

VMS = ‘Virtual Memory

System’

1.3.4 System Administration

Traditionally, UNIX systems have been multi-user systems with
individuals simply gaining access as users. In these situations, there is
usually someone, somewhere, who is in day-to-day charge of the system,
and known as the system administrator. If you are using this kind of
system and have problems that neither you nor your colleagues are able
to resolve, then the system administrator will either be able to help, or at
least point you in the direction of someone who can. You should find out
who your system administrator is, and make sure that you are in
possession of any documents that he or she wishes users of the system to
have.

More recently, however, there has been a move towards the use of
UNIX for individually-run personal computers, especially with the recent
success of Linux. If this is your situation, then it is you who will act as
the system administrator for your machine, and will be responsible for its
maintenance. In particular, if you are using Linux on your own personal
computer, make sure you read the handbook supplied with the operating
system in conjunction with this book. If there are any differences, it will
be an invaluable help.

Finally, there is one user of the system who is called the super-user. He
or she has special privileges on the system, and is allowed to perform
certain actions forbidden to ordinary users, such as having the
unrestricted right to change and to delete files on the system. The
super-user may or may not be the same person as the system
administrator.

1.4 History of UNIX and Linux

The first UNIX system was built at Bell Labs, the research division of the
US telephone corporation AT&T, in 1969. Prior to that date, Bell
(together with General Electric and MIT) had been engaged in developing

ACRONYM

MIT = ‘Massachusetts

Institute of Technology’ a large-scale operating system, known as ‘Multics’. This collaboration
between industry and the academic community had begun in 1964, but
five years later it became clear that the three participants had different
goals for the project. By this time a vast amount of work had gone into
Multics, but more needed to be done for it to fulfil the aspirations of any
of the participants. Accordingly, Bell Labs pulled out of the project.

8

The Computing Environment

Faced with not having a state-of-the-art operating system with which
to work, a number of researchers at Bell, led by Ken Thompson and
Dennis Ritchie, decided to create a new operating system ‘from scratch’.
Multics had become complex, and it was felt that a much simpler system
was needed — the name ‘UNIX’ arose to emphasise that difference
between it and Multics. The experience gained during the development of
Multics contributed much to the design of UNIX.

A number of fundamental design decisions that were taken pervade the
whole of UNIX. Programs written for UNIX should be simple, and should
each do a single task well. This was different from the style adopted in
some other operating systems, where large programs would be developed
with many different capabilities, and would be commensurately complex.
Also, programs should be designed so that they could easily be linked
together, the output from one becoming the input to another. Thus it
would be possible to build more complex programs by joining simple ones
together.

Part of the philosophy underlying the design of UNIX was that the
core system software, or kernel, should be as small as possible, and only
perform those functions that are absolutely necessary — all other tasks
should be the responsibility of the shell. At the same time as UNIX was
being written, the language C was being designed, and in 1973 a UNIX
kernel was written using C. C is a high-level language, and as such is

NOTE

The kernel is discussed

in Chapter 2.1 machine-independent, so the new (small) kernel and shell could be
transferred to a different machine easily. This was found to work well, and
Bell Labs was happy to allow the source code for the kernel to be
distributed to universities.

In the next few years, work on UNIX was undertaken principally by
Bell Labs and by the University of California at Berkeley. These two
organisations, however, developed their own versions of UNIX, known
respectively as System V and BSD. Industrial users tended to use System

ACRONYM

BSD = ‘Berkeley System

Distribution’ V, whereas BSD UNIX was common in universities and colleges.
By the late 1980s UNIX had been implemented by many

manufacturers, each of whom had developed versions which, although
based either on System V or on BSD, had their own features. It became
apparent that the popularity of UNIX, coupled with the proliferation of
‘dialects’, had resulted in a pressing need for a recognised standard for
UNIX to be developed. This was taken on board by the IEEE under the

ACRONYM

IEEE = ‘Institute of

Electrical and

Electronics Engineers,

Inc.’

PASC = ‘Portable

Application Standards

Committee’

name POSIX. POSIX consists of a number of interrelated standards. Now
part of the PASC project, there are more than nine proposed POSIX
standards, but not all are yet completed. In this book we only deal with
POSIX.2, since the other standards are not necessary for understanding
the UNIX shell.

In 1991, a computer science student at the University of Helsinki in
Finland, Linus Torvalds, decided to create his own version of UNIX,
which he named Linux. It was in 1994 that he released version 1.0 of

9

Introducing UNIX and Linux

Linux. Very quickly it became clear that Torvalds alone would not be able
to develop a complete operating system, so he chose to open up his
project to allow others to contribute to its development. On the Internet,
Torvalds announced his project and called for volunteers to assist; in
doing so, the source code was made freely available.

As a result of this model of allowing developers from around the world
to contribute to the development of Linux, a Linux community was born,
and has now grown to millions of users, numerous different Linux
distributions, and over a hundred developers just for the Linux kernel. It
is now an effective and successful operating system that competes on
many platforms with commercial offerings. The latest version at the time
of writing is version 2.4.

1.5 Conventions

Several different fonts are used in this book. Bold face is used when names
or concepts are first introduced, and occasionally for emphasis. When
dialogue with a machine is displayed, fixed width font is used for
messages that the UNIX system prints, and (bold) keyboard font
for instructions typed by a user. If a word that would normally appear in
such a dialogue appears in the text, fixed width font is again used.

For most purposes in the book, the words ‘UNIX’ and ‘Linux’ are
interchangeable, and unless otherwise stated use of the word ‘UNIX’
should be understood as meaning ‘UNIX or Linux’.

CHAPTER SUMMARY

� Modern computer systems are made up of both hardware
and software.

� Hardware comprises processors, and input and output
devices.

� Software can be application programs or system software like
operating systems.

� UNIX and Linux are operating systems with a long academic
tradition.

10

C
H
A
P
T
E
R

2

UNIX and Linux
Design and
Organisation

CHAPTER OVERVIEW

This chapter

� introduces the basic organisation of UNIX and Linux;
� describes the key underlying concepts;
� outlines the basic technical components necessary to get

started; and
� gives details of how to get a copy of Linux.

2.1 The Kernel and Shell

In order for a computer to do any useful work, it must also perform
‘housekeeping’. It needs to understand that it has various devices such as
printers connected to it, and it needs to know when a user wants to run a
program. These tasks, are performed by an operating system, together
with many others that are required for the computer to function
effectively, but are not of interest to the user. An operating system is a
program, or collection of programs, that runs whenever the computer is
switched on. It controls the computer, allows the user to type in
instructions to the computer, and performs many other necessary
functions. UNIX is an operating system.

A UNIX system can be split into two parts. While the system is
operational, a program called the kernel is constantly running. This is
what forms the core of the operating system and is central to UNIX. In

11

Introducing UNIX and Linux

this book, we will not be concerned with how the kernel functions, since it
is not information which the user needs to know.

The other part of a UNIX system is a shell, which is the interface
between a user and the system itself. It allows the user to instruct the
machine and to run programs. A shell communicates with the kernel, but
keeps the user at arm’s length from it, as illustrated in Figure 2.1. In
order to use a UNIX system, it is sufficient to understand a shell; the
kernel can remain hidden from the user.

Figure 2.1 The

UNIX kernel and shell

�� ��
�
�

�
	

�

�

�

	
hardware

kernel
shell

The kernel is always present, but the shell is only active when someone
is actually using the UNIX system. Since the shell enables the user to
instruct the system to perform tasks, the instructions that can be given to
the shell must be easy for a person to understand. Different individuals
have had different ideas about exactly how a shell should be designed,
and a number of different shells have been devised in the past. They are
all similar to each other, but differ in details. The first shell, historically,
is the Bourne shell, known as sh and named after its creator. This shell is
still used today, although newer shells with more powerful features have
been created which are effectively extensions of the Bourne shell. These
include the Korn shell (ksh), the Z shell (zsh), and bash. A programmer

ACRONYM

bash = ‘Bourne Again

SHell’ familiar with the Bourne shell should have no trouble using any of these
three other shells. Indeed, if such a programmer were not using the extra
features provided by these shells, he or she would be unaware that the
shell was not the Bourne shell.

The C shell, known as csh, has a syntax that resembles that of the C
programming language, and is markedly different from any of the shells
based on the Bourne shell. A programmer familiar with the Bourne shell
would not be able to use the C shell without learning the differences
between it and the Bourne shell. Just as there are shells that are
extensions of the Bourne shell, so the C shell itself has been developed
into shells with extra facilities. The most common of these is the the tcsh

(pronounced ‘teesh’).
POSIX.2 defines the ‘standard’ shell, and is modelled principally on

the Bourne shell. The POSIX.2 shell contains features that have been
added to the Bourne shell in the light of experience gained with other

12

UNIX and Linux Design and Organisation

shells. Much of what is discussed in this book will thus be true for the
Bourne shell. It is likely that as existing shells derived from the Bourne
shell, such as ksh and zsh, are developed, each will be amended so that its
specification conforms to POSIX.2.

2.2 Files

On any machine there will be a large amount of information (or data)
that must be stored, including programs, text, and the UNIX operating
system itself. Each unit of data — which may be small (for instance, a
few words of text) or large (like parts of the UNIX operating system
itself) — is stored in a file. Files are simply sequences of bytes, stored
somewhere on the system, perhaps on magnetic disks, CD-ROMs, or
other storage devices. We are not interested in exactly where the file is
stored, merely in its contents.

Each file has a name, which should consist of any letter, digit, or the
characters . (period), - (minus sign), or (underscore). Other characters
are also acceptable in a filename, but are discouraged in order to promote
clarity. When we use files, we will normally refer to them by name. Some
examples are:

test 11a My File prog.c p-1

2.2.1 Networks

Computer systems contain at least one computer. However, it is becoming
increasingly difficult to define what is meant by ‘a computer’ — until a
few years ago, a computer would have had a single CPU, which would

ACRONYM

CPU = ‘Central

Processing Unit’ perform all the computational tasks.
Nowadays, a computer may contain several processing units around

which the workload will be distributed. In addition, several computers
may be connected together in a network where each constituent computer
can communicate with others in the network.

In some cases, the computers in a network are very intimately
connected, and the network appears to a user as a single but very large
computer. We use the word system to mean either a single computer or a
network of computers that appear to the user as a single entity. A
campus-wide UNIX network would be an example of such a system; a
more loosely-connected network such as the Internet would not be. When
using a terminal on a network, users are still communicating with a
specific machine. Each window allows a dialogue with a single UNIX
machine, and it is that target UNIX machine with which we shall be
concerned in this book.

13

Introducing UNIX and Linux

2.3 Technical Basics

2.3.1 Bits, Bytes, Words and Characters

Data inside a computer is stored as a sequence of binary digits. Each such
digit is called a bit. Exactly how bits are stored does not concern us here,
but several different methods can be used depending where on the
computer system the data is required. Bits are grouped together in groups
of (usually) 8 to form a byte. Bytes are then grouped in 2s, 4s or 8s to
form words, the number of bytes in a word depending on the machine
being used.

Figure 2.2 A 4-byte

word

One byte� �

One bit��

One word� �

It is rarely necessary to enquire what individual bits are stored on a
computer. Normally, the byte is regarded as the most basic unit of
storage on a machine. Since a byte contains 256 permutations of eight
binary digits, a byte can represent any number between 0 and 255
inclusive (or between −128 and +127, or other such ranges).

Just as with a typewriter, communication with UNIX is
character-by-character. Unless you are dealing bit-by-bit with the data
stored in the system’s memory, it is helpful to think of each byte
representing a character, such as the letter ‘A’ or the symbol ‘@’, since
there is a correspondence between characters and the numeric codes
(between 0 and 255) that can be stored in a byte. The most common
coding scheme used is called ASCII, in which codes for the upper-case

ACRONYM

ASCII = ‘American

Standard Code for

Information Interchange’
letters ‘A’ to ‘Z’ are 65 to 90, for lower-case letters ‘a’ to ‘z’ they are 97 to
122, and for the digits ‘0’ to ‘9’ they are 48 to 57. Other codes are used
for other symbols. The codes are summarised in Table 2.1.

In the earlier days of computing, the electronic components were often
unreliable, and the final bit in a byte was used as a check digit whose
value is determined by a simple calculation from the other seven bits. If
one of the other seven bits is changed, the value of the eighth, which is
referred to as a parity bit, is also changed. This parity check can then be
used to identify bytes whose contents have been accidentally altered.

14

UNIX and Linux Design and Organisation

Table 2.1 ASCII

characters
Code Description

0-31 control characters (see Table 1.1)

32 space

33 ! exclamation mark

34 ” double quote

35 # hash

36 $ dollar

37 % percent

38 & ampersand

39 ’ single quote

40 (left parenthesis

41) right parenthesis

42 * asterisk

43 + plus

44 , comma

45 - minus

46 . dot

47 / slash

48-57 0-9 digits

58 : colon

59 ; semicolon

60 < less than

61 = equals

62 > greater than

63 ? question mark

64 @ at

65-90 A-Z capital letters

91 [left bracket

92 \ backslash

93] right bracket

94 ˆ caret

95 underscore

96 ‘ backquote

97-122 a-z lower case letters

123 { left brace

124 | bar

125 } right brace

126 ˜ tilde

127 DEL delete (control character)

15

Introducing UNIX and Linux

Parity checking is an unsophisticated form of error detection, and
modern equipment seldom uses it, thus allowing 256 character codes to be
stored in a single 8-bit byte, rather than just 128. Usually the first 128
match the ASCII character set, and the remaining characters are used for
extra symbols, such as currency symbols and accented letters from
languages other than English. One such code is known as LATIN-1. For
the symbols used in this book these two codings are identical. Other
codings do exist, however, perhaps the best known being EBCDIC and

ACRONYM

EBCDIC = ‘Extended

Binary Coded Decimal

Interchange Code’
the 16-bit Unicode, but for the purposes of this book, we shall assume
that ASCII is being used.

Note that if you total the number of letters, digits, punctuation marks
and other graphics symbols, there are nowhere near 256 of them — some
codes relate to non-printing characters. These are characters which,
rather than representing a symbol that can be printed on a computer
screen, denote other actions that the computer display can perform.

2.4 How to get Linux

For many years there has been a tradition in universities of freedom of
information, and results of academic research are typically easily
accessible. Furthermore, software created during that research is often
made available free of charge, either as public domain (where copyright no
longer applies) or as shareware (where, although copyright still applies,
the copyright owner permits copying). The source code for that software
may also be available, and much software is now open source, where the
source code is distributed and the user licence prohibits sale of the
software without the source code. Linux is open source.

You may have access to a UNIX system via your university or college.
If you don’t, or you would like to use UNIX on your PC at home,
Chapter 3 tells you how to get and install your own copy of Linux.

CHAPTER SUMMARY

� The kernel is the core of the UNIX operating system.

� The shell is the interface between the kernel and the user.

� Data inside a computer is organised in bits, bytes, words,
characters and files.

� There are several different shells and character codings.

16

C
H
A
P
T
E
R

3

Installing Linux

CHAPTER OVERVIEW

This chapter

� shows you how to collect system information about your
computer;

� introduces you to the different options for setting up Linux;
� provides guidelines on how to install Linux; and
� highlights some of the everyday features which Linux will

provide.

The purpose of this chapter is to arm you with the necessary information
to install your own version of Linux. There are a number of Linux
configurations you might consider and the choice you make will be
influenced by the capabilities of your computer. This chapter is designed
to help you recognise these choices and their limitations.

3.1 Starting out

If you want to download a freely distributed version of Linux, you can do
no better than starting your venture at www.linux.org. As well as
documenting general Linux information, details of the various Linux
applications and on-line Linux tutorials, this official web site also plays
host to the distribution of the numerous Linux packages.

The distribution of Linux is now extremely well supported and you will
find that there are references to English and non-English language
versions. There are also links to mirror sites where you can download
Linux free of charge; there are details of Linux vendors and on-line
reviews of some of the free Linux distributions.

At the last count there were at least 40 versions of Linux which could
be downloaded from this site. This chapter does not deal with the
specifics involved in downloading any one of these distributions, but you

17

Introducing UNIX and Linux

will find that the on-line documentation provided with each package is
quite adequate. However, there are a number of fundamental choices of
which you should be aware when installing Linux; it is to these that we
turn our attention in this chapter.

3.2 Preliminaries

Before you begin with the installation of Linux it is important that you
establish a match between the requirements of your chosen Linux
download and the capabilities of your computer system.

Linux turns out to be extremely versatile and it is therefore likely that
your computer will be able to run Linux in one form or another. The
‘build’ you choose may, however, depend on the amount of processor
power you have available, the amount of RAM and the amount of hard

ACRONYM

RAM = ‘Random Access

Memory’ disk space you are able to commit to Linux.

3.2.1 Collecting information about your system

If your computer is already running a version of the Microsoft Windows
operating system, then you can find information about your system by
clicking on the ‘Start’ button and selecting ‘Settings’ and the ‘Control
Panel’. From here you should click on the ‘System’ icon; this will bring up
a window entitled ‘System Properties’.

The easiest way to capture the information that the ‘System
Properties’ windows provide is to print a System Resource Report. You
can do this by selecting the system properties ‘Device Manager’ window
and then clicking ‘Print’. At the print menu you should select the ‘All
devices and system summary’ option and then press ‘OK’.

If your computer is still using one of the older versions of Windows
(3.1, 3.2, etc.) then you can gather and print the same system information
by running the MSD.EXE utility from a DOS command prompt.

Among the information provided with each of the Linux distributions
will be listed the minimum system requirements. Before you decide on
which version of Linux to install, it is worth making sure that your
System Resource Report meets these requirements.

3.2.2 Installation options

A second issue likely to affect the type of Linux distribution you choose is
the way in which you intend to use Linux on a day-to-day basis. You
might want to install the Linux operating system as the sole operating
system on your computer. If this is the case then you should probably
install Linux as a ‘single boot’. This means that when you turn your
computer on it only recognises the one operating system.

18

Installing Linux

If, however, you want to retain the use of your existing operating
system, for example, you would like to be able to run Linux or Windows,
then you should choose a ‘dual boot’ option. This means that the
computer is aware of two different operating systems when it is turned on.
It is also possible to run one operating system inside another with the aid
of an emulator.

The next sections provide some of the detail which you will need to be
able to choose between installation options. Note the pros (+) and cons
(-) of each method; you should also be aware that the installations have
very different hardware requirements and that your choice may to some
extent be determined by the capabilities of your computer.

3.3 Single boot

If you are installing Linux on an old computer (without a CD drive, with
32 Mb of memory or less, or with a 75 MHz processor or thereabouts)
then you will find that the way in which you install Linux is already
limited. In this case you must install Linux as a ‘single boot’ system. This
means that you must essentially forfeit your previous operating system for

NOTE

(+) reliable install

(+) less disk and

processor

(–) can only run one OS

your new version of Linux. While this is not always what people want (as
you may still want to use Windows from time to time), this is the
simplest way to install Linux on your machine.

You need to partition your hard disk before Linux can be installed. It
is therefore worth checking whether the version of Linux you have chosen
has its own partitioning software as part of the software bundle. If not,
you will have to use the DOS/Windows FDISK program.

ACRONYM

FDISK = ‘Fixed disk

utility’ The single boot option does have a number of benefits. For example, it
provides a fast, reliable and easy to use system.

3.4 Dual boot

If you possess a more up-to-date computer, or you are keen not to lose the
use of your previous operating system, then you should install Linux as a
‘dual boot’ system. This has the overwhelming advantage of allowing you
to switch between operating systems (Windows and Linux for example)
and being able to use the applications provided by each. There are a
number of possible dual-boot set-up configurations, which we consider
next.

3.4.1 Booting from CD/floppy

Many of the Linux packages come with a boot floppy disk. If you
download Linux free of charge then you can create your own boot floppy

NOTE

(+) minimal install

(–) not as fast as a hard

disk boot
from the download; you can also order these disks online or purchase a
package with a free distribution copy inside.

19

Introducing UNIX and Linux

The advantage of this approach is that you only need to do a minimal
installation (of approximately 150 MB) for your system to be Linux
usable. The disadvantage is that you need to keep your boot disk handy
and may require your CD or floppy for other purposes.

3.4.2 Booting from your hard disk

Dual booting Linux from the hard disk is a popular option. It allows you
to select which of your two (or more) operating systems you wish to use
when you boot-up your computer and it will leave any CD or disk drives
free for other use. Although this mode of working does not allow you to
run both operating systems simultaneously (see the Section 3.5 on
emulators if this is your requirement) it allows you to maximise the speed

NOTE

(+) faster than booting

from floppy

(–) requires maximum

install disk space

at which both operating systems are able to co-exist and run
independently on your computer.

3.4.3 A partitionless install

It is possible to provide a dual boot system without any repartitioning of
your hard disk. However, repartitioning is a way of keeping the file
systems and operating components of your two operating systems

NOTE

(+) avoids disk

partitioning

(–) may impact on

existing OS

completely separate, see below. As a result you may find that you achieve
a more reliable build if a dedicated Linux partition is provided.

If you are aiming to set up a dual-boot Linux on a non-partitioned disk
— an option which is often offered with many of the Linux distributions
— then you should search for a distribution of Linux that uses UMSDOS.
This allows Linux and DOS to coexist in the same partition and uses the
Linux loader loadlin to boot between each.

ACRONYM

UMSDOS = ‘UNIX

under MS-DOS’

GUI = ‘Graphical User

Interface’

While this might seem like a good solution, it should be noted that a
partitionless dual-boot installation may have serious implications for your
existing operating system. Rather than take this risk, and to be
completely sure that you achieve a clean installation, it is better to opt
for a dedicated Linux partition.

3.4.4 A dedicated Linux partition

If you have enough disk capacity, then you can allocate a complete
partition (or indeed disk) to Linux. If you are serious about running a

NOTE

(+) most installers

automatically partition

(+) little impact on

existing OS

(–) must clear proposed

partition

(–) must calculate

partition size

safe, clean and reliable Linux alongside an operating system such as
Windows, then this is a good option. Recognising this fact, many of the
Linux installers provide a GUI-based partitioning package that is fairly
simple to use. Partitioning is discussed in more detail in Section 3.6.2
below.

20

Installing Linux

3.5 Emulators

Operating system emulation allows you to run multiple operating systems
concurrently without having to reboot. At best it allows you to run a full
version of Windows inside Linux through the creation of something called
a virtual computer — see subsection 3.5.1 below on VMware.

Alternative solutions include those systems that allow Windows
applications to run under Linux without modification. Although this is
not regarded as true emulation, it does provide a considerable level of
Linux and Windows compatibility — see subsection 3.5.2 below on WINE.

3.5.1 VMware

VMware is a commercial software package that allows you to run more
than one operating system simultaneously. This is done by setting up a
host operating system and one (or more) guest operating systems, each of
which runs in an unmodified state.

NOTE

(+) runs Windows and

Linux simultaneously

(+) unrivalled

capabilities

(–) speed hit on guest OS

(–) costs around $300 at

the time of writing

(–) “commercial

software”

Each guest operating system runs in a secure virtual machine; the
beauty of VMware is that when using these virtual machines it is as easy
to swap between operating systems as it is to swap between windows. In
fact, if you run the virtual machine window in full screen mode, it is as if
the guest operating system (OS) is the only OS on your machine.

Such sophistication must come at a price. Firstly, you will need a
machine with a bare minimum of 256 MB of RAM and a 400 MHz
processor. You will also need at least 500 MB of disk for the guest OS and
the associated applications. Secondly, there will be a speed reduction
when using the guest OS. This can be as much as 50%, which may be a
problem if your machine is at the bottom end of the hardware
requirements.

VMware is very well supported and you can configure your system so
that the host operating system is chosen from any of Windows XP, 2000
and NT, Red Hat Linux, SuSE Linux and Mandrake Linux; the guest
operating systems include all of the above and also the Windows 3.x/9x
series.

You can find out more about VMware at www.vmware.com.

3.5.2 WINE

WINE allows most Windows applications to be run natively under Intel

ACRONYM

WINE = ‘Wine Is Not

an Emulator’ versions of UNIX. WINE does this by providing low-level compatibility
for Windows programs running under Linux. As a result, the applications
run faster than they will under an emulator.

One of the main reasons for choosing WINE over an emulator is that it
does not require extensive hardware resources. If you have a processor
sufficiently powerful to run Linux then you will be able to run both

21

Introducing UNIX and Linux

WINE and Microsoft Windows applications under it. As far as disk space
is concerned, you only need approximately 250 MB of free disk to be able
to store and compile the source code plus an additional 18 MB of /tmp
space (see below) and 50 MB of disk in order to do the install. Another
advantage of WINE is that it is free.

NOTE

(+) WINE is free

(+) applications run fast

(–) some applications

don’t work

Corel has been using WINE to port its WordPerfect Suite to Linux, so
there are some well-documented success stories. However, there are
difficulties with some of the Windows applications, so it is worth looking
at the Application Database on the WINE web page before deciding
whether this is going to be appropriate for your needs.

Once you have set up WINE on your computer, you can install
Microsoft applications by invoking a terminal window and typing wine

followed by the name of the set-up program. A similar procedure is used
to run the application once it has been installed.

More details on WINE can be found at www.winehq.com.

3.6 Installing Linux

Once you are satisfied that you have chosen an appropriate version of
Linux that matches the capability of your computer and also meets your
own needs, you are ready to begin the installation process.

3.6.1 Installer software

Most of the Linux distributions, including SuSE and Red Hat, have very
good installer software. The SuSE distribution includes the text-mode
YaST installer which is designed to make the process of installation as

ACRONYM

YaST = ‘Yet another

Setup Tool’ painless as possible. You may also find references to the GUI-based
YaST2, which, despite being more memory intensive, is easier to use.
Each version of Linux has its own tool similar to YaST.

The installer software will probably provide you with a number of
installation modes such as recommended, customized and expert. If this
is your first Linux installation then you should choose a recommended
installation. This will automatically install the core components and yet
provide you with enough options to maintain control over the amount of
memory needed for the installation.

Many of the installation questions are straightforward. The choice is
less clear, however, when you are asked whether you are installing as a
workstation, as a server (installation) or for development. Again, if this is
your first installation and you are planning on using your computer as a
stand-alone machine, then you should opt for the ‘workstation’ mode. You
should also select a security setting if prompted to do so; something
around ‘medium risk’ should be adequate if you are planning on
connecting your computer to the Internet.

22

Installing Linux

3.6.2 Linux partitioning

Disk partitions allow the hard drive on your computer to be sectioned
into a number of different areas. This is useful as it allows programs to be
stored separately from data and it allows multiple operating systems to
be resident on the same disk.

If you are used to a Windows system then you will be familiar with the
alphabetic labelling of your disk drives. The labels A: and B: are reserved
for floppy disk drives. If you have two hard disks, which is true of many
computers these days, then you will find that C: and D: are normally
used as labels for the first primary partitions of each of these drives. If
your two hard drives are sub-partitioned then these would follow the
lettering E: for the second partition on the first drive and F: for the
second partition on the second drive. When accessing files under Windows
you specify the drive, directory and filename.

Linux uses a style of disk partitioning that differs from the Windows
equivalent. The names given to Linux partitions are derived from the type
of the drive, the drive letter and the partition number. This leads to some
slightly obscure names such as hda1, for example. However, the equivalent
of typing ‘dir C:\’ in DOS is to type ‘ls /’ in Linux. The relationship
between the directory name (e.g. /) and the partition which forms the
associated storage area (e.g. hda1) is set up through the mounting process.

When selecting a Linux distribution you should choose a version of
Linux that provides nondestructive disk partitioning during installation,
otherwise you will have to use the destructive application called FDISK.

If you do go for this latter option, then before installing Linux you
should back up your hard disk, as you will not be able to recover your
files after it has been run. Once you have backed up your hard disk, it is
worth running scandisk to correct any disk errors that might be present.
It also makes sense to run the Windows defrag program, which tidies up
the data stored on your disk, if you want to create a separate partition for
your Linux installation.

If you opt for a Linux distribution that provides disk partitioning —
and this should be your preferred option — then you will be taken
step-by-step through the automated process of disk partitions and
mounting. Your resulting Linux partitions should look something like
those illustrated in Table 3.1.

Table 3.1 Linux

partitions
/ root partition, stores Linux installation and program files

/boot stores Linux kernel (might be found under root partition)

/home used to store your personal files

/usr used to store your program files

/tmp used to store temporary files

/var used for variable size data including unprocessed email etc.

/swap used as extra memory by working files and applications

23

Introducing UNIX and Linux

The sizes you choose to set for each of these partitions depends on
your needs. One option is to allocate 10% for the / (root) and /var

partitions, 30% for the /home partition and 50% for the /usr partition.
The size of your /swap partition will vary, but a good rule-of-thumb is for
the size of swap partition to be double the size of your RAM. The
installer software will create, format and mount these partitions and then
begin the installation proper.

The installer will allow you some control over the software that you
decide to install. In the first instance, it is sensible to install all of the
packages that are recommended. You will be able later to uninstall some
of the packages if you later find that they are of no use to you.

User accounts
When you are using Linux you will be logged on as an account holder.
Therefore, when Linux is being set up, you will need to add some account
names and passwords. You will be asked to set up one of these accounts,
called root, by default. The root account is the Linux administrator

account and with this you will be able to change the system configuration,
install new system software and create new accounts. For your normal
day-to-day working you should use an account other than root. This will
ensure that you do not inadvertently change your system set-up.

3.6.3 LILO

The information stored on each disk begins with the partition delimiters
— where the disk partitions start and stop — and also the location of the
boot loaders, which start loading the operating system when your
computer is turned on. The Windows boot loader is called IO.SYS or
DOS.SYS; the Linux boot loader is called LILO. Running LILO causes

ACRONYM

LILO = ‘LInux LOader’ the kernel of the Linux operating system to be activated and the
operating system to be loaded.

During the installation you will be required to supply information
about the other operating systems that you are running on your
computer. Once you have done this the Linux loader will be configured so
that you can move between operating systems. You might also be asked
to create a custom boot disk, which you should store safely in case
anything goes wrong with your computer. If you are installing a dual boot
system, and the other operating system is a Windows NT/2000/XP
system, then the configuration is more complex, and you should consult
your documentation (or a site such as www.linux.com).

The installer should then set up the X server configuration (see below).
X windows provides the basic component of the Linux desktop, but your

ACRONYM

KDE = ‘K Desktop

Environment’ installer may also provide one of the new desktop environments such as
KDE or GNOME (see below). It is possible to start up Linux in text
mode (which requires you to type startx after you have logged in) or

24

Installing Linux

alternatively you can specify that X windows is run automatically on
startup.

At the end of the installation process you will need to re-boot your
computer, after which you will have a computer that boots up in Linux
and which offers you Windows as a secondary option. If you choose Linux,
you will be required to enter your name and password, and then you can
use the system.

3.7 Using Linux

3.7.1 The window manager

One of the main benefits of Linux is the ability to select and configure
your desktop environment so that it suits your working needs. This has
been made possible through the development of a component-based
windowing system.

At the core of the Linux desktop is the X windows system, a portable,
network-transparent graphical user interface whose design since the
mid-1980s has been geared towards its use with the UNIX operating
system.

The design of X windows is different from that of Microsoft Windows
in that it separates the ‘what to do’ part of a graphical application from
the ‘how to do it’. This means that the part that interfaces with your
computer hardware is not mixed up with the application itself. The Linux
world has made good use of this and, as a result, has developed the ‘what
to do’ application-side in the form of a number of so called window

managers. The window managers look different and provide a range of
different behaviours. Better still, each is highly customisable and so can
be tailored to suit your needs. One of the best known UNIX window
managers is the Tab Window Manager (TWM) and its virtual-desktop

NOTE

Sometimes called Tom’s

Window Manager, after

its principal author Tom

LaStrange

counterpart VTWM (see www.visi.com/~hawkeyd/vtwm.html). Though
dated, this still provides a good GUI interface to Linux for little hardware
overhead. Another of the older and more stable window managers is
FVWM (www.fvwm.org) which, through its development, has acquired
lots of customisable elements known as themes.

A new breed of Linux desktop environment has been developed in
response to the growth in the number of custom environments and the
increased impact of Microsoft Windows. These desktop environments, like

ACRONYM

FVWM= ‘F Virtual

Window Manager’

CDE = ‘Common

Desktop Environment’

GNOME = ‘GNU

Network Object Model

Environment’

Windows, are now highly developed and provide a range of integrated
applications to the user as well as a more comprehensive interface to
Linux.

The window manager and/or desktop environment that is provided
with your Linux download will vary. Three of the more popular options
include KDE (www.kde.org), CDE (www.opengroup.org/desktop/) and
GNOME (www.gnome.org)

25

Introducing UNIX and Linux

KDE (K Desktop Environment) is the default interface for many of the
Linux downloads. It provides an excellent graphical front end to UNIX as
well as a window manager, a help system and a number of developed
utilities. We will consider KDE in more detail below.

GNOME is also cutting-edge, though currently less stable than KDE.
GNOME not only provides a desktop environment, but also a
development platform — providing tools, libraries, and components with
which to develop UNIX applications — and GNOME Office, a set of office
applications.

3.8 KDE

The K Desktop Environment (KDE) is an easy-to-use contemporary
desktop environment for the UNIX operating system. The major
advantage of KDE over something like Microsoft Windows is that it is
completely free. KDE is also open source; this means that the
development of the desktop has not been restricted to one individual or
one company. The result is well supported and professional and benefits
from a wide range of applications, upgrades of which can be downloaded
directly from the Internet.

When you run KDE on your computer you are presented with a
default desktop configuration that contains the following:

� A panel at the bottom of the screen that is used to start applications
and switch between desktops. This default panel is customisable.

� The taskbar at the bottom of the screen that is used to manage
currently running applications.

� The desktop of files and folders. This desktop represents only a
quarter of the total desktop work area. You can move between the
desktop areas by selecting the numbered buttons found in the KDE
panel.

3.8.1 Desktop help

You should familiarise yourself with the on-line KDE Help browser. This
can be run by clicking on the KDE Help icon in the KDE panel, or
alternatively by clicking on the K icon and selecting KDE Help from the
selection menu (see Figure 3.1). It is possible to navigate your way around
the help system via a set of links and by using the options in the ‘Goto’
menu and the tool bar.

KDE Help is a valuable source of information. Here you can find all
the necessary details about the KDE system, including a short history of
KDE should you be interested, and documentation on all the KDE
applications, details of which are regularly updated on the complete
on-line KDE Help web pages.

26

Installing Linux

In KDE Help there is also a reference to a short tutorial to the K
Desktop Environment. It is well worth spending some time working
through this tutorial, as it is not overly detailed, yet covers most of the
important features you will need.

Finally, KDE help is connected to the underlying UNIX help system.
You can find out more information about any UNIX commands by
selecting ‘search’ from the KDE file menu.

Figure 3.1 The KDE

desktop displaying

KDE Help

3.8.2 Applications

The KDE applications available to you do not have the same full-blown
features of some of the more familiar Microsoft Windows applications.
However, it is worth noting that they are all free and that upgrades can
simply be downloaded from the Internet.

There are a number of applications available with the default KDE
desktop. To start an application simply click on the K button on the
KDE panel. Table 3.2 lists some default applications, and Figure 3.2
shows a typical screen shot.

27

Introducing UNIX and Linux

Table 3.2 KDE

applications
KEdit a simple text editor

KOrganizer a calendar, ‘to do’ list, appointment organiser, etc.

Games ranging from poker to mahjongg

KFax a fax viewer

KGhostview a postscript viewer

KPaint a bitmap paint program

KMail mail client

Kscd a fast CDDB enabled CD player for the UNIX

platform

KFM a file manager and fully featured web browser

Figure 3.2 KDE

running the AbiWord

word processor, the

KDE file manager and

a CD player

There are many more default applications than this and if you are
looking for something that is more Microsoft Office-like in nature, KDE
does have an office suite called KOffice (which can be downloaded from
www.koffice.org), containing applications listed in Table 3.3.

28

Installing Linux

Table 3.3 KOffice

applications
KWord a frame-based professional standard word processor

KSpread a spreadsheet application

KPresenter a fully-featured presentation program

Kivio a flowchart application program

Kontour a vector drawing application

Krayon an image manipulation program

Kugar for generating business quality reports

Kchart a graph and chart drawing tool

All the components of KOffice are compatible and you can therefore
embed one KOffice component in another. For more information consult
the web site.

There are many more non-KDE applications which you might like to
explore; two applications of note are StarOffice, a popular Linux
alternative to Microsoft Office, and Gimp, an image manipulation tool
similar to Adobe Photoshop.

3.8.3 The KDE Control Center

The default KDE desktop can be customised using the KDE Control
Center so that it suits your own working style. The Control Center allows
you to modify your desktop including the background, the colours and the
style of windows etc. It is also possible to make modifications to the
behaviour of the windows environment and to the configuration of input
devices and sound, etc.

3.8.4 File access and the command prompt

You can access the files in your home directory by clicking on ‘K’,
followed by ‘Home Directory’. The file manager is very similar to that of
Microsoft Windows, so it is possible to drag and drop files from one place
in your file system to another; creating, deleting and moving files is also
easily done through the file manager system.

If you wish to gain access to your files (and your computer) through
the UNIX command prompt, click on the ‘K’ button in the KDE panel,
then select ‘utilities’ and then ‘terminal’; alternatively click on the shell
button in the KDE panel.

29

Introducing UNIX and Linux

CHAPTER SUMMARY

When installing Linux you should:

� Collect information about your computer using the ‘System
Properties’ screen in Windows.

� Match your system capabilities to an appropriate
installation. You will need to choose between a single or dual
boot, and a partitioned or partitionless installation. VMware
and WINE provide alternative options.

� Installing Linux is best done using the YaST set-up tool (or
similar).

Once you have Linux installed the KDE desktop environment
provides an easy to use contemporary desktop environment for
your new UNIX operating system.

30

C
H
A
P
T
E
R

4

Getting started

CHAPTER OVERVIEW

This chapter discusses

� conducting a simple dialogue with a UNIX machine;
� simple use of the text editor Vi;
� getting help via the command man;
� using email with UNIX
� input and output streams; and
� input and output redirection and pipes.

This chapter describes how you start (and finish) a session on a UNIX
computer, together with some of the basic commands which you can use.
We assume that you are now using a UNIX or Linux system which has a
system administrator. If you are using a stand-alone Linux system, then
you are the system administrator. From now on, any reference to UNIX
should be interpreted as ‘UNIX or Linux’, since the two operating
systems appear virtually identical to the user.

4.1 Using UNIX

4.1.1 Usernames

In order to use your UNIX system you will need a username and a
password. The username is a code which will allow you to access the
system, and to distinguish you from any other users. For the rest of this
book, we shall assume you have been given the username chris. The
password verifies that you are in fact the person allowed to use that
username, and is similar to the PIN (4-digit code) of an ATM (cash

ACRONYM

PIN = ‘Personal

Identification Number’

ATM = ‘Automated

Teller Machine’

machine), but longer and more secure. You should already have been told
what arrangements have been made for allocating you a username. If not,
you must ask your system administrator.

31

Introducing UNIX and Linux

You will either be asked to choose a password, or you will initially be
allocated one, in which case you will have the opportunity to change your
password at a later time. When choosing a password, which can normally
be up to eight characters long, bear in mind that you don’t want anyone
else to guess what it is. Some simple rules will help you. Always use a
mixture of upper-case and lower-case letters, together with digits or other
symbols. Always choose passwords which are eight characters long. Never
choose as password a word that occurs in a dictionary, or which is the
name of a person. If you ever think that someone has discovered your
password, change it immediately and tell your system administrator. It is
also good practice to get into the habit of changing your password every
few weeks as a matter of routine.

4.1.2 Logging in

Once you have found a terminal, or you have set up your own Linux
machine, you are in a position to use the system. Sit down and make
yourself comfortable. Make sure you can see the screen clearly and that
you can reach the keyboard easily. Not only can an awkward body
posture be uncomfortable, it can be dangerous, contributing to RSI, if

ACRONYM

RSI = ‘Repetitive Strain

Injury’ held for more than short periods of time.
Check that your computer is turned on — you may need to press the

Return key since some computers darken their screens, or run a
screensaver, after a period of inactivity. Adjust the screen’s brightness so
that it is at a comfortable level. Somewhere on the screen you will see the
line

login:

If your computer has a graphics terminal with windows, use the mouse to
ensure that the cursor is within the window containing the login:

message. Now type in your username followed by Return. The computer
will then print on the screen the message

Password:

and you should then type in your password. What you type in as the
password will not appear on the screen, for obvious security reasons. If
there are other people in the same room as you, be discrete when typing
in the password, and make sure no-one is standing looking over your
shoulder. If you make a mistake typing in your username or password,
don’t worry — you’ll be given another chance. If you forget your
password, your system administrator can allocate you a new one.

Be careful when you type that you distinguish between upper-case and
lower-case letters — UNIX treats them as different. If your username is

32

Getting started

chris, and you enter Chris at the login: prompt, the system will not
allow you to log in.

Most UNIX systems appear different to their users in many superficial
ways. For instance, types of computer display will vary. The messages
displayed on the screen when you log in to the system can be changed. If
you are using a UNIX system at a University or College, it is likely that a
document is produced by your institution to explain how to use the UNIX
machines, and you should consult that document. It will clarify the
differences (if any) between your UNIX system and the standard version
described here.

4.2 Logging out

When you wish to finish using UNIX — known as logging out — there
are two things you need to do. Firstly, in each command window you
should type ctrl-D on a line by itself. Secondly, you must close down the

NOTE

Sometimes the system

will be set up so that

ctrl-D fails to work, in

which case you should

type exit instead

window manager by following the menu choices to Logout. The machine
will respond by giving you a prompt so that the next user can log in.

4.3 Commands

4.3.1 Typing in commands

After you have logged in, and a command window is available, the system
will prompt you to type in a command.

The prompt is usually $ (dollar), though many systems are able to
change this, and you yourself are able to alter it.

Beware, however, if you get a prompt that terminates in % (percent) —
this is usually an indication that the shell you will talk to is either the C
shell or a derivative of it, and not a POSIX shell. Although most of the
next couple of chapters will still be valid for such a shell, there are
significant incompatibilities, and much of Chapters 7–9 will not be
correct. In such a circumstance, it may be possible for your login shell to
be changed to a POSIX shell (such as bash). Again, consult your system

NOTE

Linux distributions

always have a POSIX

shell set up as the default
administrator. Try now typing date (remembering to press the Return
key at the end). You should see on the screen something like

$ date
Tue May 14 20:10:39 GMT 2002

$

By typing date you have instructed the machine to obey the command
called date; it has executed the command and has printed on your screen
a message (as instructed by the command date). When that command
completes, you are then given another prompt. Try now typing nonsense

33

Introducing UNIX and Linux

— you should get something like

$ qwerty
qwerty: command not found

$

telling you that it doesn’t understand what you’ve typed in.
The command date is the name of a program — it’s written in

machine code, and you don’t need to know the details of how it works,
just what it does. To describe a program such as date being obeyed, we
use the words running or executing.

You will have been notified of the command you must type for
changing your password; this is usually passwd, although some system

NOTE

passwd is not a standard

POSIX command, since

the shell does not specify

how to authenticate users

administrators prefer to install their own command. On some systems
passwd can work very slowly, and your new password may not take effect
until a few minutes after you have entered it, especially if your UNIX
system is a network of machines rather than a single computer.

4.3.2 Commands and options

UNIX commands take the form of a name (such as date), possibly
followed by options, and other arguments as required. An option is
denoted by a hyphen (-) followed by a single character (itself possibly
followed by arguments). For example, the command date can take only
one possible option, namely -u. Without this option, the date and time
are printed for the local timezone; with option -u the time is converted to
UTC thus

ACRONYM

UTC = ‘Universal

Coordinated Time’,

which is GMT $ date -u
Tue May 14 20:10:39 UTC 2002

Information about exactly what machine and operating system version
are being used can be found by typing uname (UNIX name). This
command will either give a brief (one word) description (typically the
name of the operating system), or more detailed information. uname
allows several options, including -a (all) to display all information about
the system. For instance,

$ uname

NOTE

A company which writes

a UNIX operating

system will have its own

name for it, and will

update it periodically;

major updates are called

releases, minor updates

are versions

Linux

$ uname -a
Linux box 2.4.10-4GB #1 Fri Sep 28 17:19:49 GMT 2001 i686

unknown

The output from uname indicates that the operating system is Linux, its
(kernel) release is 2.4.10, version #1 Fri Sep 28 17:19:49 GMT 2001,

34

Getting started

and the name of the machine you are using is box. The hardware being
used (i.e. the type of physical machine, as opposed to the operating
system, which is software), is an i686.

Options -m (machine), -n (nodename), -r (release), -s (system name)
or -v (version) can be used to print out part of the information that -a
(all) supplies. With no argument, -s is assumed by default. You can
combine options, for instance to print out the release and version of your
system, and can do so in one of four ways:

$ uname -r -v
2.4.10-4GB #1 Fri Sep 28 17:19:49 GMT 2001

$ uname -v -r
2.4.10-4GB #1 Fri Sep 28 17:19:49 GMT 2001

$ uname -rv
2.4.10-4GB #1 Fri Sep 28 17:19:49 GMT 2001

$ uname -vr
2.4.10-4GB #1 Fri Sep 28 17:19:49 GMT 2001

Try entering uname with the various options.
You will be communicating with the machine from a terminal. The

command tty displays the name of the terminal you are currently using.
ACRONYM

tty = ‘teletype’ If you are using a windowed display, UNIX treats each window as a
separate terminal with its own name.

Worked example 4.1
What is the name of the terminal or window you are using?
Solution: Use tty:

$ tty
pts/1

and the name is pts/1 (or whatever is printed on the screen by tty).
Note that some systems, including Sun’s Solaris, have more complex
names, such as /dev/pts/1

Another command you can try now is who:

$ who
chris pts/1 Dec 3 14:23 (console)

sam ttyp2 Dec 3 08:38 (console)

jo pts/4 Dec 3 13:58 (console)

This command lists those people currently logged in to the system by

NOTE

On some systems who

will also display extra

information
username, together with the terminals they are using and the dates and
times they last logged in. In the above example chris logged in at 2.23

35

Introducing UNIX and Linux

pm on Dec 3 to a terminal known as pts/1. This command allows several
options, including -u (unused); try typing the command who -u. The
output you will get is similar to that for who on its own, except that an
extra column of information is given, perhaps:

$ who -u
chris pts/1 Dec 3 14:23 . (console)

sam ttyp2 Dec 3 08:38 01:03 (console)

jo pts/4 Dec 3 13:58 00:02 (console)

The extra column indicates idle time — the amount of time since a user
has touched the keyboard. So, chris is active at the present moment (a
dot is used in place of a time if the user has actually used the system in
the previous few seconds). However, sam has been idle for 1 hour and 3
minutes (perhaps sam has forgotten to logout?), and jo has been idle for
only two minutes (perhaps thinking about what to do next).

4.4 Communication with other users

A big advantage of modern computer networks is that messages may be
sent between users of machines on such a network, or people on the same
machine, and email has become ubiquitous. It is also possible to send
messages to other users, either on the same machine, or elsewhere on a
network, in ‘real-time’.

4.4.1 Email

Although most people are familiar with email, through sophisticated mail
software such as Microsoft’s Outlook or Eudora, it is instructive to look
at the basic facility available under UNIX. This does still have uses, for
example if you require a shell program to send email without intervention
from the user.

The standard utility for sending email is Mailx. To make use of this,
you need to know the username of the person you wish to send a message

NOTE

It is always good

practice to give an email

message a subject
to. Type mailx followed by the username, and then type in the message
terminated by ctrl-D on a line of its own. If option -s is given to mailx,
the string following -s will be used to denote the subject of the message
to the recipient. For example,

$ mailx -s "Programming Assignment" sam

Hello Sam.

NOTE

If the subject string

contains spaces, then it

must be enclosed in

quotes

Have you finished the assignment yet?

ctrl-D

will send a message to user sam. If you have a tilde (the symbol ~) as the

36

Getting started

first character on any line you type in, this will be interpreted by mailx

as a management instruction. For instance, if you wish to edit a message
half-way through typing it in, type ~v and you will then be editing it
using a standard text editor (usually Vi).

If you have a friend who is currently logged in, mail him or her a short
message and ask them to mail you one. If not, mail one to yourself. In
either case, the mail arrives almost instantaneously.

In order to read mail that has been sent to you, just type mailx on its
own. If you have mail that you have not read, mailx will display a brief
list of messages awaiting you, with the date they were received, the name
of the sender, and the subject (if specified by the sender). For instance,

$ mailx
>N 1 sam Wed Jul 27 15:28 16/465 Programming Assignment

N 2 jo Thu Jul 28 19:33 77/1220

In this example, you have two messages (each message is given a number),
the first from user sam, the second from user jo. The mail from sam has
subject Programming Assignment, is 16 lines long and contains 465
characters; that from jo was sent without a subject specified, is 77 lines
long, and contains 1220 characters. While you are reading your mail, at
any particular moment one message is current, and may be read, deleted,
saved in a file, or edited. The > symbol indicates that message number 1
is the current message. The command p (print) will then display the
current message on the screen. If you type ? a screenful of help messages
will be displayed indicating the other commands you can give to Mailx.

Note that this mail is simple text, and does not contain attachments or
HTML enhancements, which are now commonplace.

Most UNIX systems are equipped with a collection of other (not
POSIX) programs for electronic mail: Elm, Mail, Mush, Pine, and Xmail

coming to mind. These utilities are similar to Mailx, but the
sophistication and facilities vary. Check with your system administrator
for the preferred mail programs on your system, and if they differ from
Mailx for simple use.

NOTE

Most Web browsers

include commands to let

you send mail

4.4.2 Other communication facilities

Electronic mail is useful for sending messages, but not for holding a
‘conversation’, nor for sending urgent messages (since not all users will
read mail very frequently). Two utilities are provided in UNIX to enable
‘real-time’ communication between logged in users. The first is write:
suppose user sam is logged on, and you wish to send Sam a (short)
message; use write sam followed by the lines of the message then ctrl-D.

$ write sam

37

Introducing UNIX and Linux

Hi Sam.
It’s coffee time

The message will be sent across line-by-line. Your message will appear on
Sam’s screen, preceded by a line telling sam who’s sending the message:

Message from chris@box on ttyp9 at 14:42 ...

Hi Sam.

It’s coffee time

If sam was logged on at several terminals at once (which is possible if Sam
has multiple windows on a graphics display), you could specify the
terminal the message should appear on, so:

$ write sam ttyp7

Sam can reply to you with the command write chris. Whatever sam is
doing, the lines you type will appear on Sam’s screen.

It could be that the recipient of your message does not want this to
happen (perhaps he or she is doing a complicated operation and doesn’t
wish to be disturbed). They can prevent messages being displayed by
means of mesg. To deny other users permission to write messages to your
screen, type mesg n. To reinstate permission, mesg y will reverse the

ACRONYM

n = ‘no’, y = ‘yes’ effect of mesg n. If you try to write to a user who has denied you
permission, you will simply get an error message.

The second communications mechanism is talk. Rather than sending
lines of messages, talk is the nearest you will come to actually talking to
another user. It sends messages character-by-character as you type them
in, and will work over networks. To run talk, the syntax is just as for
write. After you have typed talk sam, a message will appear on Sam’s
terminal:

Message from chris@box

talk: connection requested by chris@box

talk: respond with: talk chris@box

When sam types talk chris@box (or whatever address talk specifies)
both your screen and Sam’s will be cleared and divided into separate
regions, one for each of you. When you press a key, it will appear in ‘your’
part of the screen; when Sam presses a key the corresponding character
will appear in ‘Sam’s’ part. You can use the DELETE key if you press a
key by mistake. Your conversation will be terminated when either of you
presses ctrl-C. Standard input and standard output are not the
mechanisms employed by talk. Find a friend who is also logged in and
experiment with write and talk.

38

Getting started

4.5 Files

In UNIX, you are able to create, delete and edit files, but before
attempting to perform such operations on your files, you may need to
check which files you have at the moment. The command to do this is ls
(list).

If you have only just started to use the UNIX system, you should not
have created any files. If you type ls on its own, this should be confirmed

NOTE

There may also be

‘hidden’ files, which we

will discuss later
when nothing is printed in response, so:

$ ls
$

You will need to create and update files containing text (for example,
programs written in Java, Pascal or C, or word-processed reports). There
are many simple to use editors available, and Windows users will
probably be familiar with Microsoft Word and with Notepad. These are
fine for modifying small amounts of text, but are cumbersome if large files
are involved, or if repeated changes have to be made. We look in this
section at editors which are available under UNIX, and which are suitable
for heavy use. In particular, we introduce the standard UNIX editor Vi,
which may at first sight seem relatively tricky to use. Fear not! The skills
you will gain in later chapters will feed back into use of Vi, and allow you
to make complex changes to a file quickly and easily. We also discuss the
other options available to you if you prefer at this stage to use an editor
which is more straightforward for simpler use.

4.5.1 The editor Vi
NOTE

Vi is pronounced

‘vee-eye’, and stands for

‘VIsual display editor’
Vi is the ‘standard’ screen editor on UNIX. Whilst being the editor of
choice for many systems programmers, it has a reputation, arguably
undeserved, for being difficult to use. There is a tradeoff here — if you
use a simple, graphical editor, then you will be able to create files quickly,
and easily make simple changes to them. However, complex editing cannot
often be done quickly with simple editors. There is a learning curve for
using Vi, but once mastered the benefits later on are substantial.
Furthermore, the skills needed to use Vi overlap substantially with those
needed for UNIX shell programming, and include topics covered later on
in this book, such as Regular Expressions and the stream editor Sed.

The command vi invokes the Vi screen editor, which has facilities to

NOTE

If you have already

created a file called

myfile then choose a

filename you do not yet

have

enter text into a file and to change text already there. In this subsection
we discuss only a small proportion of Vi’s facilities, enough to allow you
to create and edit files for the rest of this book. To edit the file myfile

(say), type vi followed by the name of the file:

$ vi myfile

39

Introducing UNIX and Linux

Your screen (or window) will be cleared, and the cursor will appear in the
top-left corner of the screen. Along the left-hand side of the screen will be
a column of ~, indicating that those lines on the screen are not (yet)

NOTE

~ = tilde being used by Vi. Additionally, a message may appear on the bottom line
of the screen.

Now, type the letter a (append text) and type in several lines of text
— the Return key will terminate each line — followed by ESC. Then
press h, j, k, l, and see the cursor moving around the screen one square
at a time, as pictured in Figure 4.1.

Figure 4.1 Cursor

movement in vi

�

�

�

�

k

j

h l

You won’t be allowed to move the cursor to any location that does not
contain text. Position the cursor near the centre of your text and press a
again. Type in more text — it will appear after the cursor position. As
before, ESC will terminate the input. If you’re not sure whether or not
you have typed ESC, then type it again — if you type too many, the
extra ones will be ignored and will do no harm. Move the cursor to the
centre again, type i (insert text), and repeat what you did for a — you
will see that text is inserted, but this time before the cursor position.

To delete text, you can remove one character at a time by placing the
cursor on it and typing x. To remove a whole line, place the cursor on the
line and type dd. To remove part of the line from the cursor to the end of
the line, type D. Try these commands now.

When you have finished making all the changes you desire, type ZZ and
NOTE

Use capital letters for ZZ the contents of the file will be stored on disk and you will be returned to
the shell.

There are three modes that Vi may be in. There is command mode,
during which you can move the cursor around the screen, and generally
move from one part of the file to another, deleting and altering text at the
point of your cursor. When you enter Vi, you always start in
command-mode. Secondly, there is colon-mode. This is necessary when
you wish to perform more complicated operations on your file that cannot
(easily) be done with simple keystrokes. Third, there is input mode

during which you can enter text.
To enter colon-mode, you must be in command-mode, so make sure

you are not entering text (type ESC if necessary). Then type a colon (:)
(not followed by Return). The cursor will immediately move to the

40

Getting started

bottom line of your screen and will be preceded by a colon. At this stage,
there are a few colon-mode commands that you must know. If you make a
mistake while typing, then the command u (undo), either in colon-mode
or in command-mode, will correct it. If you accidentally type a colon, you
can return to command-mode by just pressing Return. In the following
discussion we assume that you are in command-mode unless otherwise
stated.
Try using Vi to create in file myfile just two lines:

hello

there

After you have done this, and left Vi by typing ZZ, use the command ls

to check which files you now have. You should find:

$ ls
myfile

Now edit the file myfile again and remove the two lines by typing dd

twice to delete each one in turn. Choose another document, such as a
book or a newspaper, and copy a couple of paragraphs into the file. Make
sure that you enter them correctly, using the Vi commands we have just
discussed to make any corrections. If the file fills more than one screen
you can ‘scroll’ backwards and forwards through the file by typing ctrl-U

and ctrl-D respectively.

Some other cursor-moving commands are useful:

� ^ moves the cursor to the start of the current line,

NOTE

^ = caret

$ = dollar � $ moves the cursor to the end of the current line.

The file will contain words, which just as in English are sequences of
letters and/or digits:

� w moves forward through the file to the start of the next word,

� e moves forward through the file to the next end of a word,

� b moves backwards to the start of a word.

If you know that there is a word, or sequence of characters, in the file that
you wish to find, then Vi will search for that string:

� typing / followed by the string you are looking for, followed by
Return, will look forwards in the file for the string, and

� typing ?, rather than /, searches for a previous occurrence of a string.

So, in order to search for the next occurrence of hello, you should type

/hello

41

Introducing UNIX and Linux

followed by Return. If a line is too long, you can split it into two by
positioning the cursor where you wish it to be split, and using i or a to
insert a Newline character. If you have two lines you wish to join to a
single one, place the cursor on the first one and type J (join). There are
also colon-mode commands for moving about the file. For each
colon-mode command you must press Return at the end of the command:

� :0 moves the cursor to the start of the file,
NOTE

0 is digit zero
� :$ moves the cursor to the beginning of the last line of the file,

� :n moves the cursor to the beginning of line n.

Practice the other commands listed above and those in Tables 4.1 and
4.2, and get used to them. You will have to create many files, and it is
worthwhile getting used to the editor at this stage. Some sites will support
a command called vilearn, which is a user-friendly program that teaches

NOTE

vilearn is not POSIX you how to use Vi, and if it is available you may find it very helpful.

Table 4.1

Command-mode

commands in Vi

a enter insert mode after cursor position

b moves the cursor back to the previous start of a word

cw change the word the cursor is on by deleting it and entering

insert mode

D delete rest of line after cursor position

dd delete the line the cursor is on

dw delete the word the cursor is on

e moves the cursor to the next end of a word

i enter insert mode before cursor position

J join the line the cursor is on and the following line together

o open a new line, position the cursor at the start of it and enter

insert mode

w moves the cursor to the start of the next word

x delete the character at the cursor

ZZ write all changes to the file, and quit Vi

^ moves the cursor to the beginning of the current line

C moves the cursor to the end of the current line

/word search forward for the string word

?word search backwards for the string word

ctrl-D move down the file half a screen

ctrl-U move back up the file half a screen

42

Getting started

Table 4.2

Colon-mode

commands in Vi

q quit Vi, provided you have not changed your file at all since

you last saved it (if you have altered the file, Vi will warn

you and will not terminate)

q! quit Vi, and any changes you have made to the file will be

discarded and the file left in its original state

w writes all the changes to the file, but remain in Vi

wq equivalent to performing command w followed by command

q; same as command-mode ZZ

0 moves the cursor to the beginning of the file

$ moves the cursor to the end of the file

number moves the cursor to the start of line number

At this point, mention must be made of an editor called ex. Strictly
speaking, ex and Vi are the same animal — think of Vi permanently in
colon-mode so that after each colon-mode command the cursor is
prompted on the bottom line by a colon, and you have ex. The command
visual to ex will turn it into Vi. If you are in Vi and in command-mode
the command Q (quit) will put you permanently in colon-mode, namely in
ex.

4.5.2 Other editors

Another text editor that is in common use is Emacs, and is invoked with
NOTE

Emacs is not POSIX the command emacs. The Emacs and Vi editors differ greatly in style,
and being competent in using one will not necessarily help you when you
use the other. If your system administrator recommends another editor in
place of Vi you may wish to use that editor instead, and you should refer
to the relevant system documentation. The principal advantage of Vi is
that, being a ‘standard’ editor, you can rely on it being available on all
UNIX systems. In common with many UNIX utilities, Vi is somewhat
terse, and some people simply don’t like it. Advantages of Emacs are that
you can ‘customise’ its commands, and that it includes many powerful
facilities not available in Vi. However, these benefits are offset by the
complexity of Emacs for the novice user.

Several other editors should be mentioned. The ‘simplest’ editor is ed
(edit), which looks to the user similar to ex in colon-mode. It is used
where full-screen editing may be problematic, for instance if you are
accessing the UNIX system via a slow communications link such as a
telephone line with a 56k modem. If you can use ex, then learning ed

should present no major problems. Like ex, ed is a standard editor that
you can expect to find on all UNIX systems. The commands available to
ed are similar (though not all are identical) to those used by ex, but ed
cannot be used as a full-screen editor. The machine can also edit files as

43

Introducing UNIX and Linux

well as the user; this can be done using Sed, which we discuss in
Chapter 10.

Simple text editing can be done with graphical editors, such as NEdit

or KEdit. These are point and click applications, which allow you for

NOTE

Neither command is

defined in POSIX instance to cut and paste. They are fine, but complex editing may require
many mouse movements. Also, unlike the Microsoft Windows
environment, there is no standard graphical editor, but they are simple to
use and require no instruction here. There is also an open-source version
of Vi called Vim, which supports a graphical interface.

4.6 Input and output

We now leave discussion of editors and return to consideration of the shell.
When you type in text at the terminal, the input is buffered; the

characters you type in are not immediately transmitted to the shell. They
are initially stored in a temporary area of the computer’s memory called a
buffer; the contents of the buffer are usually transmitted to the shell at
the end of each line, when you press Return. A consequence of buffering is
that if you make an error when typing in data on your terminal, you can
correct it. Systems vary in the amount of ‘line-editing’ they allow, but
you can expect at least the following:

DEL deletes the most recent character typed in
ctrl-U deletes the whole of the line currently being typed

Once you have typed in a command, and the command begins to be
executed, you may be requested to type in data as input to the command,
which will, in response, send messages as output. Output consists of the
stream of characters usually sent to the screen. The commands we have
looked at already — ls, date and who — give output but require no
input. Some commands — such as vi — will ‘interact’ with you, and need
you to type in data while they are running. For simple commands that
require input, the input is formed by the characters you type in at the
keyboard. More complex commands (vi is in this category) may also have
other input and output, but this description of how a command
communicates with the system will serve us for the present.

Each command has associated with it three input and output streams,
as shown in Figure 4.2. They are called standard input, standard output

and standard error (often abbreviated to stdin, stdout and stderr

respectively). Normally, standard input will be taken from the keyboard,
and standard output and standard error will both be sent to the terminal
screen. A command may, in addition, have other input and/or output
streams. Each input/output stream is also given a number: 0 for standard
input, 1 for standard output and 2 for standard error.

44

Getting started

Figure 4.2 Input to

and output from a

command

command�Stdin

Stream 0Input

�Stdout

Stream 1 Output from command

�Stderr

Stream 2 Diagnostic messages

Commands that require input will usually take it from standard input,
and the normal output of a command will go to standard output.
Standard error is used for other messages, typically warning messages if
the command could not be executed as intended (for instance, if you try
to print a file that does not exist). Thus, the output from a command and
its diagnostics can be separated, as we shall discuss later. The messages
sent to standard error are not always error messages, and will include
general information of use to you that is not part of the usual output of a
command — it’s called ‘standard error’ simply because the majority of
messages sent to it tend to be error messages.

To terminate input to a command, type ctrl-D on a line by itself.
When you log in, each command you type represents a new line of input
to your login shell. A shell is simply a program that takes commands as
its input. Terminating input to your login shell by typing ctrl-D causes
the shell program to finish; that’s all that logging out really is.

A useful command is cat (catenate), which takes the names of zero or
more files as arguments and copies them, in order, to standard output.
We can use cat to display files we have created. If cat has no arguments,
standard input is copied directly to standard output. For instance, to
display the file myfile which was created earlier using Vi:

$ cat myfile
hello

there

With no arguments, cat will take its input from the standard input:

NOTE

cat echoes each line as

soon as it has been typed

in since input is buffered $ cat
abc ← standard input
abc ← standard output
def ← standard input
def ← standard output
ctrl-D

It is possible, indeed common, to redirect input and/or output. Instead of
input coming from the keyboard, it can be the contents of a file or the

45

Introducing UNIX and Linux

output of another command. Similarly, output from a command can be
sent to a file or used as input to another command.

The symbol < indicates that standard input should come from a file,
and the following will produce the same output as cat myfile

(Figure 4.3):

$ cat <myfile
hello

there

So, having created file myfile, you can display its contents on the screen
in two ways. In the first case, cat is given one argument, the filename
myfile, the contents of which are copied to standard output; in the
second, cat is given zero arguments and thus the standard input, which
has been redirected from myfile, is sent to standard output.

Figure 4.3

cat <myfile

myfile

�
�

�Stdin
cat � (screen)Stdout

The standard output can be directed to a file. The output from date,
for example, can be sent to file xyz (Figure 4.4):

$ date >xyz

Figure 4.4

date >xyz

date(no input) �Stdout xyz

�
�

Now, type cat xyz to examine the contents of file xyz. The symbol >

NOTE

This is probably the

simplest way to create a

file without needing an

editor

indicates that the standard output from date is to be sent to a file whose
name immediately follows. In the case of cat, we can do the same, but
remember that cat also requires input from the standard input stream
(Figure 4.5). The following replaces the contents of xyz:

$ cat >xyz

46

Getting started

have a nice ← standard input
day ← standard input
ctrl-D

You can copy several files to standard output:

$ cat myfile xyz
hello

there

have a nice

day

Figure 4.5

cat >xyz

cat�(keyboard) Stdin �Stdout xyz

�
�

A command can redirect both its input and its output; the following will
create a copy of file myfile called def (Figure 4.6):

NOTE

In this example cat

takes zero arguments
$ cat <myfile >def

Figure 4.6

cat <myfile >def

myfile

�
�

cat�Stdin �Stdout def

�
�

The effect of this is the same as if you had not redirected standard input
and had given cat a single argument myfile:

$ cat myfile >def

Beware that you cannot take input from and send output to the same file
NOTE

WARNING! — it won’t work. The file you try to take the input from will be destroyed
in preparation for receiving the output before anything is read from it.

A command that requires a filename as an argument can use the
symbol - (hyphen) to denote standard input. The following dialogue

47

Introducing UNIX and Linux

illustrates this:

$ cat myfile -
hello ← file myfile

there ← file myfile

Mike ← standard input
Mike ← standard output
ctrl-D

Thus we can refer to the standard input in situations where simple
redirection using < would be inappropriate. The hyphen can be used
wherever the name of a file is used, so you can refer to standard input as
a file (rather than using the notation for redirection).

Worked example 4.2
Create a file called theusers containing a list of those users currently
logged in.
Solution: The command who will send a list of users to standard
output, so we need only redirect the standard output of who to the
file:

$ who >theusers

If you now type cat theusers a list of users who were logged on will
be displayed on the screen.

Having created files, you will from time to time wish to remove some of
them. The command rm (remove) deletes a file. Take care, as it is very
easy to delete a file accidentally — if you use rm with option -i (inquire)
it will ask you to confirm that you do in fact wish to delete the file:

$ rm -i theusers
rm: remove ‘theusers’? y

We can separate standard output and standard error. To illustrate this we
set up cat so that it produces good output and an error message by
asking it to copy two files, one of which (say myfile) exists, and the other
(qwerty, for instance) does not. We send the standard output to file
output and the standard error to file error:

$ cat myfile qwerty
hello

there

cat: qwerty: No such file or directory

$ cat myfile qwerty 2>error 1>output
$ cat output

48

Getting started

hello

there

$ cat error
cat: qwerty: No such file or directory

By prepending the symbol > with the number of the output stream, that

NOTE

This notation will not

work for the C shell and

its derivatives
stream is redirected to the named file. When > is used alone, it is
equivalent to 1>, so that the diagnostic messages are still sent to your
terminal unless you explicitly request otherwise.

Although in normal use UNIX commands have only one input stream,
it is possible to write programs that have more than one such stream. In
this case the same syntax applies as for output, namely that 0< denotes
taking input stream number 0 from a file, and 0< is synonymous with <.

If a command redirects output, from whatever stream, to a file using >,
then if that file does not exist it will be created. If the file does exist, then
it will be overwritten and its previous contents will be lost. If you wish to
append data to the end of a file, then replace > by >>. Consider the

NOTE

Appending data to a file

means adding it on at

the end without affecting

the data already stored

in it

following dialogue:

$ date >outfile
$ date >>outfile
$ cat outfile
Tue Dec 4 20:10:39 GMT 2001

Tue Dec 4 20:10:47 GMT 2001

The first time date is called, the standard output is sent to file outfile;
the second time, the output has been added to the end of the same file.

4.6.1 Scripts

A method of performing several commands, one after the other, is to
create a file containing those commands, one per line, and then ‘execute’
that file. As an example, create a file using Vi, called (say) whenandwho,
and containing two lines:

date

who

Now, type sh whenandwho and the commands date and who mentioned in
the file whenandwho will be executed, and you will get

$ sh whenandwho
Tue Dec 4 20:10:39 GMT 2001

chris pts/1 Dec 3 07:21 (console)

sam pts/3 Dec 3 08:38 (console)

jo pts/4 Dec 3 14:58 (console)

49

Introducing UNIX and Linux

A file such as whenandwho, which contains commands, is called a shell

script.
NOTE

‘Script’ for short At this stage it is important to understand how UNIX executes
commands in a script. When you are logged into your system, you will be
communicating with it via a program called a shell. The shell that is run
from the moment you log in to the end of your session is your login shell.
It is possible to run further copies of the shell by typing the command sh.
In order to execute a shell script, the program sh is run, but instead of
taking standard input from your terminal, the input comes from the file.
Thus while the script is executing there are two copies of sh running. The
login shell runs one command, namely sh, and this shell executes the
commands in the file.

When writing scripts, the command echo is very useful. This command
takes arguments and simply copies them to the standard output, thus:

$ echo Hello there
Hello there

Worked example 4.3
Write a script called niceday to display today’s time and date
together with a user-friendly message, thus:

$ sh niceday
The time and date are now:

Tue Dec 4 20:10:39 GMT 2001

Have a nice day!

Solution: We can use date to output the date and time, and echo to
output the messages on lines 1 and 3. To create the file niceday, use
either Vi or, if your typing is good, simply cat:

$ cat >niceday
echo The time and date are now:
date
echo Have a nice day!
ctrl-D

4.6.2 Here-documents

You will sometimes wish to give input to a command, where that input
consists of a small number of lines — for example, if you want to create a
script which, after it executes its commands, mails sam a message that is
more than a single line.

One possibility would be to create a file for the message (mymessage,
say), redirect the input for mailx to come from that file, and include the
line

50

Getting started

mailx sam <mymessage

as the last line of the script. This would work, but would involve creating
two files (one for your script, and one for the message) rather than just
one. In large scripts it might become confusing if too many files have to
be created. Note that this would not be a problem if mailx was not in a
script, as you could take the input to mailx from your terminal — but
since the input to a script may be redirected from elsewhere this is not
always possible.

A solution is known as a here-document. Following the symbol <<
comes a word, and all subsequent lines of standard input are treated as
the standard input for the command, up to (but not including) that word.
For instance,

mailx sam <<END

line 1 of message
...
last line of message
END

The line that terminates the input need not be END — any word will do.
Try mailing yourself a message using a here-document. Although
here-documents work perfectly well interactively, their principal use is in
scripts.

4.6.3 Pipes

An extension of redirecting input and output to and from files is to
redirect to and from other commands. The syntax for pipes is similar to
that for file redirection, except that the symbol | is used instead of < and

NOTE

| is a vertical bar
>. If we have a command X whose standard output is to be used as the
standard input to a command Y, we could have

$ X > tempfile
$ Y < tempfile

storing the output of X in a temporary file tempfile. However, this is not
elegant, and in some situations impossible (if you require Y to process the
output of X as soon as it is produced). By means of a pipe, we can join
the two streams together, as follows (Figure 4.7):

$ X | Y

51

Introducing UNIX and Linux

Figure 4.7 X | Y

Stdin (X) �
X

� �

��
�

�

�

Stdout (Y)

Stderr (Y)

Stderr (X)

Stdout (X) Stdin (Y) Y

Worked example 4.4
Send an email message to user sam to inform sam of the current time
and date.
Solution: The command date sends to its standard output the time
and date, and mailx sends an email message from the standard input
stream. Therefore we can pipe the output of date to the input of
mailx:

$ date | mailx -s "Today’s time and date" sam

Using > or <, different input or output streams can be specified, but pipes
only connect standard output to standard input, and cannot be used with
the standard error stream.

You can use write in a script, and since the input is standard input
this can be redirected or piped just as with any other UNIX command.
However, you cannot use talk in a pipe since it does not use the standard
input and output mechanisms.

A script may contain input and output redirection, and pipes.

Worked example 4.5
In a script, mail sam a message that says Running my script now.
Solution: Using Vi, create a file containing:

echo Running my script now | mailx -s "What I’m doing"

sam

4.6.4 Making copies of input and output

Suppose you have a command that displays something on your screen,
and you wish to save it in a file. So far, we have discussed only how that
output can be redirected to a file, so that in order to see it on the screen
and save it in a file there are two possibilities. Firstly, you could run the
command twice (the first time with no redirection, and then directed to a
file). Secondly you initially run the command with output sent to a file
and then view the file using a pager. Both methods involve duplicating

52

Getting started

the output to the command, firstly by producing it twice, and secondly by
storing it and then viewing the stored output.

The first method is no use if the command you run is interactive,
conducting a dialogue with you while it is running. If you ran the
command twice you might give it different input each time, so the two
outputs would probably differ. If your command was time-sensitive, such
as date, the second method would simply give you the wrong answer
when you tried to view the output.

If you wish to make a copy in a file of the input to a command, there
would also be a problem. If the command is interactive, so that we cannot
store the input in an intermediate file, we have not yet met any
mechanism at all which will perform this task.

The solution is to use the command tee. which duplicates the
NOTE

Tee =
�
�

standard input so:

$ tee copy of input | command name

This has the same effect as the command command name on its own,
except that a copy of all the standard input to the command is sent to
copy of input (which will be overwritten if it already exists).

Worked example 4.6
Send user jo a message and keep a copy of the message in file
jo message.
Solution: mailx will read standard input as the message; use tee to
copy it:

$ tee jo message | mailx jo

To use tee to copy standard output, pipe the output of a command
through tee.

Worked example 4.7
Run the command who, but store a copy of the output in file who out.
Solution:

$ who | tee who out

4.6.5 Pagers

A pager is a program that will allow you to browse through a file ‘one
page at a time’, moving backwards and forwards through the file with the
minimum of keystrokes. The standard pager is more, although others may
be available on your machine (two other commonly encountered pagers
are pg (page) and less). To invoke more, type more followed by the name

53

Introducing UNIX and Linux

of the file you wish to examine. For example, to view the file called
/usr/dict/words:

$ more /usr/dict/words

The following keystrokes will be useful:

Space view next page
b view previous page
Return scroll forward one line
? display a page of help on your terminal
q quit

The commands that more understands are similar to Vi, and you can, for
instance, type /hello to move to an instance of the string hello in the
file. The command cat, which was discussed earlier, is fine for viewing
small files, but should not be used as a substitute for a good pager for
general viewing of text files.

4.7 Emergencies

What happens if you type in a command you realise you shouldn’t have?
It may be that UNIX will provide you with an error message indicating
this; if, however, your command was a valid UNIX command that simply
does something that is not what you intended, then the situation becomes
more complex.

The worst-case scenario arises if your command runs and causes
damage, such as deleting a file you did not wish to delete. In this case,
you probably cannot recover from the error, and you quickly learn to be
more careful in future! Fortunately, such mistakes are infrequent, as there
are few commands that will destroy data. More common is the following:
you write a program, try to run it, and find that either it hangs (it sits
there apparently doing nothing) or begins to generate incorrect results.
You know something has gone wrong. The remedy is to interrupt the
command, which can be done by typing ctrl-C, and will cause the

NOTE

Neither ctrl-C nor ctrl-D

will get you out of Vi command to terminate immediately. This is not the same as ctrl-D, which
simply indicates to the system that the standard input stream has been
closed. Try this out — there should be a file called /usr/dict/words on
your machine; try to display it on your screen using cat. It’s a very big
file, and will take perhaps a minute to fully appear, so you will have

NOTE

The meaning of ‘/’ is

discussed in Chapter 5 ample time to press ctrl-C.
The file /usr/dict/words simply contains a list of English words and

abbreviations, one on each line. If your system does not have such a file,
create a similar file yourself using Vi, since /usr/dict/words is used for
several examples later on. If you name this new file mydictionary, then
you should substitute mydictionary whenever /usr/dict/words is

54

Getting started

mentioned in subsequent chapters. To indicate the words that might
occur in the file, the following is a typical section of /usr/dict/words:

O’Donnell

odorous

O’Dwyer

Odysseus

Odyssey

o’er

oersted

of

off

offal

4.8 Getting help

There is an on-line help facility available on UNIX systems. It goes under
the name of manual pages, and the command to get help is man (followed
by the topic you require assistance with). The manual pages give very
detailed information about UNIX commands, and may appear

NOTE

The division of UNIX

manual pages into

volumes is not part of

the POSIX standard, nor

is the exact format of a

manual page that we

describe here

intimidating at first — the manual ‘page’ for the C compiler cc often runs
to 20 or more screens of text. As an example, if we require more
information on the command who, we might get:

$ man who

WHO(1) WHO(1)

NAME

who - show who is logged on

SYNOPSIS

who [-mTu]

DESCRIPTION

If given no arguments, who prints the following

information for each user currently logged on:

login name terminal line login time

OPTIONS

...

Do not panic! Although the format looks a bit strange, each manual
page is structured in the same way. First of all, on the top line is the
name of the command followed in parentheses by a number — the manual
pages are divided into volumes, usually numbered 1 to 8 inclusive. We are

55

Introducing UNIX and Linux

concerned principally with commands in volume 1, which are commands
you can type in to the shell. Other volumes give information on other
UNIX utilities, such as libraries available to language compilers. The top
line may also tell you who wrote the utility, and when it was last updated.

There then follows a sequence of headers (such as NAME) and
information under those headings:

NAME The name of the command, and a short description
SYNOPSIS The arguments (if any) it expects
DESCRIPTION A detailed description of the command
OPTIONS A list of the possible options, and what they do
FILES The files used by the command
SEE ALSO Related topics or commands with manual pages
DIAGNOSTICS What to do if the command fails
NOTES Miscellaneous other useful information

Remember that UNIX commands are usually (though not always)
lower-case, and that if you type them upper-case by mistake, the machine
will not understand you. In the example of who above, under the heading
SYNOPSIS, we have:

who [-mTu]

The square brackets indicate that options -m, -T and -u are optional and
can be typed in any order and combination. For the meanings of the
options and arguments, look further down the manual page.

Worked example 4.8
Find out how to display the current hardware type on which your
system is running by using uname.
Solution: By typing man uname we get:

UNAME(1) UNAME(1)

NAME

uname - print system information

SYNOPSIS

uname [-amnrsv]

DESCRIPTION

...

OPTIONS

-m Print the name of the hardware type

on which the system is running.

56

Getting started

...

and thus the command you require is uname -m (machine).

If you are unsure which (if any) command you can use to perform a
particular task, type man -k followed by a keyword related to that task.
You will be given a brief (one-line) description of all commands indexed
by that keyword, and can then select which command you would like
detailed information on. You can only give man one keyword at a time, so
if the first keyword you try doesn’t indicate a suitable command, try a
couple of others.

Worked example 4.9
You wish to find who else is logged in; which command can you use?
Solution: Use man -k; choose a single keyword relevant to the topic,
say logged:

$ man -k logged
who (1) - show who is logged on

So you should use command who.

CHAPTER SUMMARY

Table 4.3 Commands

introduced in this

chapter

cat concatenate and print files to standard output

date display current time and date

echo write arguments to standard output

ed basic text editor

ex text editor (see Vi)

logname display your login user name

ls list files (directory contents)

mailx process electronic mail messages

man display manual pages

mesg allow or deny messages on your terminal

more ‘pager’

rm remove a file

sh the shell

talk talk to another user

tee duplicate standard input

tty display the terminal name

uname display the system name

57

Introducing UNIX and Linux

Table 4.3 (cont.) vi full-screen text editor

who list who is using the system

write write a message on another user’s terminal

EXERCISES

1 Which command will print out just your login name? Hint: try
keywords for man.

2 Using Vi, create a file called Parone, which contains the first
paragraph of Chapter 1. Make sure you correct any typing mistakes
you make.

3 What argument would you give to date so that it would give today’s
date and time in the format:
11:22:35 PM on Tuesday 4 December 2001

4 Suppose you have a file called important; using a single-line
command, make two copies, one in file backup1 and the other in file
backup2. Hint: this can be done in several ways.

5 Write a script that will list the users currently logged in to the
system preceded with a one-line message:
The following are logged in:

6 You are editing a file using Vi. You realise that you have misspelled
the word vision as cision. What keystrokes could you use to correct
the mistake?

58

C
H
A
P
T
E
R

5

Files

CHAPTER OVERVIEW

This chapter introduces

� the UNIX file structure;
� common commands which deal with files; and
� the UNIX file access and security mechanisms.

This chapter concentrates on the basic information you need to know
about UNIX files and the utilities that relate to them.

5.1 The UNIX directory hierarchy

A typical UNIX system has many users and usernames. The machine
stores large numbers of programs and datasets that are either ‘system’
files (required for the running of UNIX) or files for the benefit of the
system’s users (such as the UNIX commands we discuss in this book). In
addition, each user has their own collection of files. On a large UNIX
system it would not be unreasonable to expect to find millions of files
occupying thousands of gigabytes of space.

NOTE

A gigabyte is a unit of

storage equal to 1024

megabytes
If I choose to create a file called myfile (say), it is unlikely that I will

be the only user on the machine to have chosen that particular name for a
file. It would be unreasonable to expect me to choose a filename instead
of myfile that was different from all the files created by all the other
users. Therefore, UNIX must impose a structure on the filespace that will
make it easy to manage a large number of files. The solution adopted is
simple yet very powerful.

We can think of the available file storage for our machine as
partitioned into separate directories. At any given time you can access
files in one particular directory, which we can think of as the current

directory. You can also ‘move’ between different directories and so change
which is current. A directory need not be a contiguous section of disk,
and might be fragmented. That is, the various files contained within this

59

Introducing UNIX and Linux

storage area that we call a directory may in fact be physically located on
different parts of a disk, or even on completely different disks or storage
devices. This does not matter to the user — the logical structure of the
machine’s memory is important, not how it is physically implemented. In
order for the machine to know how to find the data in these directories,
each has a file, called dot and referred to by the ‘dot’ symbol (.) that
stores information about that directory (such as which files are stored
within it, how big they are, and precisely where on disk they are stored).

NOTE

. = ‘period’ The word directory is also used to describe a file such as dot, which
contains the vital statistics for a directory storage area. Since the physical
layout of a directory is not important to us, this dual meaning for the
word presents us with no ambiguity.

Within a directory are files, some of which may themselves be
NOTE

Trees grow downwards ... directories. Directories are organised in a tree-like structure. At the base
of the tree is a directory whose UNIX name is ‘/’ (‘root’). So, we might
have the situation in Figure 5.1

Figure 5.1 A typical

UNIX directory

hierarchy
/ (root)

�

bin

�

date ls man

usr

�

etc

�

tmp

�

lib

�

cs

�

ugrad staff vis

�

proj

�
�

bin

�

�

chris jo

�

sam

�

�

dir1

�

dir2

�

myfile

In each directory, in addition to the file dot, is a file called dotdot,
referred to by the symbol ‘..’, which is a synonym for the parent of that
directory in the tree. Since a file dot and a file dotdot exist in each and
every directory, we do not usually mention them when describing a UNIX
directory hierarchy.

60

Files

There are two means by which we may refer to the name of a file.
Either we can name it relative to our current directory, in which case we
need only use its simple name, such as myfile, or we can use its absolute

filename relative to the root. In this latter case, its name commences with
a /, followed by the intervening directories between the root and the file

NOTE

/ = ‘slash’ or ‘solidus’ separated by /s, and finally with the filename. Thus in the above tree, file
myfile has absolute name /cs/ugrad/chris/myfile. If a filename
commences with the character / then it is an absolute name, otherwise it
is relative. Each file thus has a unique absolute filename. Moreover, since
these filenames can be as long as required and the depth of the tree can be

NOTE

Within reason — each

system has a limit as great as needed, we can cope with a UNIX system containing as many
files as desired. Since the current directory has several names, there will
be several names for an individual file; if the current directory is
/cs/ugrad/chris then the following names all refer to the same file:

NOTE

You can insert /. after

any intermediate

directory name without

affecting the meaning
/cs/ugrad/chris/myfile

myfile

./myfile

../chris/myfile

././././././myfile

../../../cs/ugrad/./chris/myfile

When logged in to the machine, you are always in a current directory
somewhere. When you initially log in, you start in your home directory in
which you can create your own files. This directory has a synonym, ~,

NOTE

~ = tilde which you can use whenever you need to refer to your home directory. To
find your current location within the file system use the command pwd

(‘print working directory’). For example,

$ pwd
/cs/ugrad/chris

$

It is not always convenient to have your home directory as the current
directory, since this might involve much typing of absolute filenames if
you wish to access a file elsewhere. By means of the command cd (‘change
directory’) you can move around the filesystem. By typing cd followed by
the name of a directory, you can make the directory become the current
directory (if it exists — if not, an error message will be output and your
current directory will not change). For instance, to move to user sam’s
home directory, and then to a non-existent directory called /squiggle:

$ cd /cs/ugrad/sam
$ cd /squiggle
/squiggle: No such file or directory

61

Introducing UNIX and Linux

You may also want to know what files exist on the machine. The
command ls (‘list’) which we have already met will accomplish this. By
default, ls lists the files in the current directory; if, however, you give ls

one argument that is the name of a directory (either relative or absolute)
the files in that directory will be listed. For instance:

$ ls /
bin etc tmp usr lib cs

$ cd /bin
$ pwd
/bin

$ ls
date ls man

$

Try this on your own machine. The output will not look exactly the same,
and there will be many more files that are listed. If you give ls an
argument that is an ordinary file, not a directory, just that filename will
be displayed. Do not be afraid of ‘getting lost’ by changing to different
directories — you can always return to your home directory by typing cd

with no arguments (alternatively cd ~). Since ~ always refers to your
home directory, you can always refer to files relative to that directory, so
if ~ is /cs/ugrad/chris, then /cs/ugrad/chris/myfile could equally
well be referred to as ~/myfile

If you follow ~ by the name of the user, it refers to that user’s home
directory — so if you are chris then ~ is equivalent to ~chris, and sam

has home directory ~sam.

Worked example 5.1
What files does sam have in sam’s home directory?
Solution: Use ls followed by the name of sam’s home directory:

$ ls ˜sam

When a file is created, space to store it is found on the machine. That
space is given a unique number, called an inode, which remains with that

NOTE

Pronounced ‘eye-node’ file until it is eventually deleted. At creation, the file is also given a name.
The file is created in a directory, and at creation the directory is updated
so that it contains the name of the file and the inode where that file is
stored.

5.2 Filesystems

UNIX does not have the notion of ‘a disk’ that the programmer is allowed
to work with. Not only is this concept somewhat vague, but developments

62

Files

in hardware and in storage devices may well mean that thinking in terms
of disks might be inappropriate in the future. Instead, it uses the concept
of a filesystem, within which inodes are unique, and which is named and
known by the machine, and associated with a specific directory in the file
hierarchy. Each filesystem is set up with an allocated amount of storage
space which the user cannot change.

When manipulating files, you will occasionally get error messages
telling you that a filesystem is ‘full’. In order to discover the amount of
free disk space we can use the command df (‘disk free’), which will also
give information on which filesystems are set up for the system:

$ df
Filesystem 1024-blocks Used Available Capacity Mounted on

/dev/id000a 10637 10103 -529 106% /

/dev/id001b 186723 155666 12385 93% /usr

/dev/id000f 93033 42924 40806 51% /export

/dev/id000d 46508 15384 26474 37% /var

/dev/id001a 373463 266931 69186 79% /usr

/dev/id001h 124263 93306 18531 83% /usr/local

/dev/id001e 57802 39182 12840 75% /var/tmp

/dev/id000g 747582 600260 72564 89% /cs/staff

/dev/id001f 61803 50714 4909 91% /cs/ugrad

/dev/sd8e 863422 700676 76404 90% /cs/seng

/dev/id002h 560203 456846 47337 91% /cs/res

/dev/sd8d 878162 562567 227779 71% /cs/acad

/dev/id001d 186723 184473 2250 99% /ex/swap2

/dev/id002f 524542 393609 130933 75% /ex/swap

/dev/id000e 93033 80079 3651 96% /ex/root

We see the storage for the machine divided into the filesystems, and their
sizes are listed together with how much of each is in use, and where
within the directory hierarchy it is placed. Notice that, in this example,
/dev/id000a is more than 100% full — this is not a printer’s error! For
each filesystem, normally only 90% of the physical space on that device is
available. This gives UNIX leeway to warn a user if they attempt to use
more of a filesystem than actually exists. Without this extra space, the
kernel might find itself without enough workspace to continue, and the
system might crash. However, the super-user is allowed to use the final
10% of a filesystem, and the capacity is measured relative to the normally
allowed 90% of the filesystem. Although most UNIX systems are set up in
this way, the 90% is not cast in stone, and the super-user may change it
as local circumstances dictate.

63

Introducing UNIX and Linux

5.3 Manipulating files

There are lots of things you can do with a file. You can create, destroy,
rename and copy it, and you can protect it so that only certain users have
access to its contents. These simple actions have corresponding UNIX
commands, which are generally simple. Directories contain information
about files other than themselves, unlike ordinary files, and operations on
them are in consequence more complex. We shall start by looking at
directories.

5.3.1 Creating directories

To create a new directory, the command mkdir (‘make directory’),
followed by the name you wish it to have, will make a new directory with
that name. For instance, we can create a file called dir1 in the current
directory:

$ mkdir dir1

Conversely, to destroy a directory, use rmdir (‘remove directory’). Note
that rmdir will only work if the directory you are trying to remove
contains no user files. You should get used to structuring your home
directory so that it contains structured subdirectories. If you do not, and
you have more than a very small number of files, then you are likely to
find difficulty keeping track of which data you have stored where. A
common way of organising your filespace is to use the same conventions
that are used on the system files. This involves creating directories with
‘standard’ names, such as shown in Table 5.1, for instance.

Table 5.1 Standard

directories
bin commands you have written

src source code for the commands you have written

doc documentation

tmp temporary files

Worked example 5.2
Create a directory called tmp in your home directory.
Solution: Firstly, change your current directory to your home
directory by typing cd; check that no file called tmp already exists by
using ls; and then type mkdir tmp.

64

Files

Figure 5.2 A typical

user’s directory

hierarchy chris
�

�

src

�

bin

�

doc

�

tmp

�

5.3.2 Creating files

The first thing that must happen to a file before anything else is that it
must come into existence. This may happen by design of another
command (when you create it with an editor, for instance) or as a
side-effect. You will frequently find that the current directory contains
files you don’t remember anything about! When the data held in a file is
no longer required, you may wish to delete the file. Just as for file
creation, this may be explicit or implicit (some automatically created files
may disappear spontaneously).

Suppose you have created a file called myfile. You can create another
file with a copy of the contents of myfile using the command cp (‘copy’).
If you decide that the name of a file needs to be changed, the command
mv (‘move’) will do exactly that. For instance:

$ ls
myfile

$ cp myfile foo
$ ls
foo myfile

$ mv myfile bar
$ ls
bar foo

When the command cp is called, a completely new file is created, with a
new inode. The directory in which the new file is to be located is amended
with the information about the new filename and the new inode. The
data in the file being copied is not changed at all.

Sometimes it is useful to give a file several different names. This can often
happen if you have data that needs to be accessed in several different
directories, and any changes to it need to be made consistently. If you
created several copies of the file, you would have to perform updates

65

Introducing UNIX and Linux

several times, once on each copy. This is inefficient, and errors might
creep in. Also, storage space would be wasted — and if the files concerned
are large data files this might well be an important consideration. We can
use the concept of an inode to good effect here. Since a directory
associates names with their storage locations via inodes, there is no
reason why a particular file should not have several names, perhaps in
different directories.

5.3.3 Links

To create a second name for a file that already exists, we can create a link

— sometimes called a hard link — to it using the command ln (‘link’).
With two arguments, which must be filenames, provided the first file does
exist and the second does not, we can create a link from the first to the
second. For instance, if user sam whose home directory is /cs/ugrad/sam
has a file datafile that I wish to have in my own home directory under
the name samsdata, then the command ln can be used to create a link
between the two:

$ ln /cs/ugrad/sam/datafile samsdata

We say that samsdata has two links, and it has two names, one samsdata,
the other /cs/ugrad/sam/datafile. The file has a single inode, however.
When samsdata is amended, the contents of /cs/ugrad/sam/datafile
are changed at exactly the same time (and vice versa). If we delete
/cs/ugrad/sam/datafile, we actually delete that filename, and the file
continues to exist, but with only one name (samsdata) and one link. The
kernel will keep track of how many names (links) an inode has, and when
this drops to zero the filespace allocated to that inode is released for use
elsewhere. There is one important point to note here — inodes are unique
only within a single filesystem, and therefore you can only link a file to
another file within the same filesystem. We can check precisely which
inodes are allocated to which files by using option -i (‘inode’) to ls:

$ ls -i
total 561

241563 myfile 43532 dir1 86475 dir2

567721 prog.c 563341 foo 563341 bar

In this example, files foo and bar have the same inode, namely 563341,
and have therefore been linked. Note that two linked files do not
necessarily have to be in the same directory.

At this point, it is worth discussing briefly what a directory actually is.
If you type ls while in a particular directory, any directories contained
within it (referred to as subdirectories) will appear as if they were files. In
a sense, this is correct — every directory can be considered as a file, each

66

Files

with its own inode. This ‘file’ contains — in a form that need not concern
us — information as to where the files in that subdirectory are stored. By
typing cd followed by the name of a directory, the file representing that
directory is examined, and the data in the file that indicates where it is
stored is retrieved and used to work out where the new current directory
is stored.

Worked example 5.3
What is the inode of your home directory?
Solution: First of all, type cd to change to your home directory. If
you then type ls -i the inodes of the files contained in that
directory will be given; the manual page for ls indicates that option
-d (‘directory’) will list directories like other files, rather than listing
their contents. So you require

$ ls -id

5.3.4 ‘Dot’ files

Change to your home directory, and type ls -a (‘all’) and you will see
displayed the names of the files in that directory including some other
names that ls on its own does not produce. These ‘hidden’ files all have
names beginning with a dot (.). You will recognise the name of the
current directory dot and the parent directory dotdot, but some others
will also be there. Typically you may expect .profile, .mailrc and
.xinitrc; these files are all used by a UNIX utility to enable you to
customise that utility, and many of them end in rc (‘run commands’).
When a utility requires such a file, the manual page explains what data it
should contain. Never delete or edit a dot file unless you know what it
should contain, even if it’s empty — that’s why ls does not normally list
them, to prevent you accidentally changing them.

If you wish to access a dot file, the procedure is exactly the same as for
any other file — it’s just ls that hides them.

5.4 Protecting files

Some data you store on the machine should not be readable by other
users. If you are doing a programming assignment for your course, for
example, other students should not read it. If your institution has
purchased software which has conditions attached to its use (as is often
the case nowadays) it may be necessary to restrict its use to a specific
group of users.

You may also wish to prevent yourself accidentally overwriting a file
and destroying important data.

67

Introducing UNIX and Linux

In this section we look at a basic mechanism for enabling file
protection. First, however, we must explore UNIX’s formal notion of a
group of users, which is important for understanding how to protect files.

5.4.1 Groups

The system administrator manages a database of groups. Each group is a
list of users and is given a name (such as ugrads, general or proj). The
reason for having groups is that when access to software or data needs to
be restricted, a group can be used to specify this. Each user is a member
of one or more groups, and each file is allocated to exactly one group. At
any particular time, for each user there is a group that is the default
group for new files they create.

Each group has a unique name and also a unique number (its group-id

or GID). The command id (‘identifier’) is used to interrogate the
database, and on its own displays the user’s name together with the
groups they are a member of, both names and numbers, and the user’s
user-id and current group-id. If you give id an argument that is another
user’s username, then the information for that user will be displayed
instead. For example,

$ id chris
uid=145(chris) gid=12(ugrads) groups=12(ugrads),417(proj)

shows that user chris is a member of groups ugrads and proj, with GID
numbers 12 and 417 respectively. Currently chris is allocated to group
ugrads. Notice also that id has displayed a number for chris, namely
145 — each user is also allocated a unique number, their user-id or UID.
In order to change your current group-id, command newgrp (‘new group’)
should be invoked. Followed by the name of a group of which you must be
a member this will perform the required change. With no argument, it
will return you to your default group-id as defined in the password file.
For example, if you are user chris, and wish to change your allocated
group to proj, so that you can control access to users in group proj when
you create new files:

$ newgrp proj
$ id
uid=145(chris) gid=417(proj) groups=12(ugrads),417(proj)

5.4.2 File access control

UNIX has a flexible method of protecting files to deal with the situations
we described earlier. First of all, each file on the machine divides the users
of the machine into three categories:

68

Files

� the file’s owner (normally the user who created the file)

� a group of users

� other users.

For each of these categories of user, that user may be either given or
denied the following access privileges:

� read

� write

� execute.

If a file has read permission, it can be examined at a terminal, printed (if
it is a text file), viewed by an editor, and so on. If it has write permission,
the contents of the file can be changed (for example, by an editor), and
the file can be overwritten or deleted. If it has execute permission, and is
a binary program or a shell script, that program can be run (but copied
only if it also has read permission). An example is given later on.

Access control is determined as follows. The system first of all checks
to see whether the user is the owner of a file, and if so the owner
permissions are used. Otherwise, it checks to see if the user is a member
of the group allocated to that file, and if so checks group file permissions.
If the user is neither the file owner nor in the file’s group, they come
under the heading of other users. The group to which a file has been
allocated must be a valid group the that system administrator has
already set up, as discussed above. The owner of a file can change the
group to which the file has been allocated.

Access privileges for directories have a different meaning than for
ordinary files. If a directory has write permission, files in that directory
may be created or deleted. If it has read permission, it is possible to see
the files that are contained in that directory (using ls, say); if it has
execute permission it is possible to cd to it. A directory with execute but
not read permission is useful if you wish to allow someone else to run one
of your commands located in that directory, but do not wish them to see
what other files you have.

To find out the access privileges for a file, use ls. As an example,
consider user chris, who has six files in the home directory (including
two subdirectories). By typing ls -l (‘long’) the following output might

NOTE

On BSD systems you

need ls -lg be seen:

total 561

-rw-r--r-- 1 chris ugrads 122 Dec 21 18:40 myfile

drwxr-xr-x 2 chris general 512 Dec 22 14:55 dir1

drwx------ 2 chris general 512 Dec 22 14:55 dir2

-rw-r----- 1 chris proj 9912 Nov 22 17:55 prog.c

-r-x------ 2 chris general 147 Dec 22 17:56 foo

-r-x------ 2 chris general 147 Dec 22 17:56 bar

69

Introducing UNIX and Linux

In fact, ls -l will display most information you are likely to need about
files for routine work. The general format for the output is:

-rw-r--r-- 1 chris ugrads 122 Dec 21 18:40 myfile

^^^^^^^^^^ ^ ^^^^^ ^^^^^^^^^ ^^^^ ^^^^^^^^^^^^ ^^^^

access links owner group size last change name

The access privileges are presented as a string of 10 characters. The first
character is usually either a d or a -, indicating that the file is a directory
or an ordinary file respectively. There are other possible values, which we
discuss later. Characters 2–4, 5–7 and 8–10 describe the access privileges
for the owner, the group and for others respectively. Each of these
3-character substrings denotes whether read, write and execute privileges
have been allowed or denied.

For read privilege, the first character will be r, otherwise -; for write
privilege the second will be w, otherwise -. Lastly, for execute privilege,
the third will be x, otherwise -.

For example, file myfile above can be read by anybody, but only
Chris can write to it (that is, change the contents of the file in any way).
File prog.c can only be written to by Chris, but users who are members
of the group proj can also read it. File foo can be read by Chris, and
also executed, but no-one else can access it at all. Nor can Chris write to
it — this is not necessarily a mistake, it is often useful to deny yourself
write access to a file to prevent yourself accidentally deleting the file if it
contains important data.

If a directory does not have write permission, then files in that
directory cannot be deleted, nor can new ones be created. However, files
within that directory that do have write permission can have their
contents changed.

The other information that ls -l provides is as follows. The number
of links to a file is printed, followed by the owner of the file and the group
the file is currently assigned to. Then comes the size of the file in bytes
and the date and time the file last had any of its contents changed. At the
end of the line comes the name of the file.

5.4.3 Changing privileges

A file has precisely one group associated with it; this can be changed to
another group by chgrp (‘change group’). For instance, suppose our
directory has the same contents as before, and recall that we have linked
foo and bar, we might have the following dialogue:

70

Files

$ ls -l
total 561

-rw-r--r-- 1 chris ugrads 122 Dec 21 18:40 myfile

drwxr-xr-x 2 chris general 512 Dec 22 14:55 dir1

drwx------ 2 chris general 512 Dec 22 14:55 dir2

-rw-r----- 1 chris proj 9912 Nov 22 17:55 prog.c

-r-x------ 2 chris general 147 Dec 22 17:56 foo

-r-x------ 2 chris general 147 Dec 22 17:56 bar

$ chgrp proj foo
$ ls -l
total 561

-rw-r--r-- 1 chris ugrads 122 Dec 21 18:40 myfile

drwxr-xr-x 2 chris general 512 Dec 22 14:55 dir1

drwx------ 2 chris general 512 Dec 22 14:55 dir2

-rw-r----- 1 chris proj 9912 Nov 22 17:55 prog.c

-r-x------ 2 chris proj 147 Dec 22 17:56 foo

-r-x------ 2 chris proj 147 Dec 22 17:56 bar

Note that the other file linked to foo has also had its group changed, and
that the access privileges for the file are not changed. chgrp allows one
option, -R (‘recursive’) — with this option, if its file argument is a
directory, all files and subdirectories will also have their groups changed.

The above information does not tell us that foo and bar are linked —
it merely states that each of those two files has two links (but not
necessarily to each other), and that they are the same size and created at
the same time (to the nearest second). To check that two files are in fact
linked, it is necessary to ask what their inodes actually are, and you
should use ls -i as discussed earlier. The options -l and -i can be
combined, giving

$ ls -il

but you may find the output becomes wider than the width of your
terminal. Try it!

Similar to chgrp is chown (‘change owner’), which has similar syntax,
but can be used to change the actual owner of a file. This is an operation
you are unlikely to wish to perform, and most systems restrict the
command so that only the super-user may use it.

The most frequent change you are likely to make to a file, apart from
its actual contents, is to the access privileges; chmod (‘change mode’) is
used for this change. The syntax is chmod followed by a specification of
changes to the access permission, followed by a file (or files) the change is
to be applied to.

The specification can be done two ways — either the privileges for the
user/group/other sets of users can be set, or they can be changed. A

71

Introducing UNIX and Linux

character known as a who symbol, which is one of u (user), g (group), o
(other) or a (all), or a sequence of who symbols, denotes those users to
whom the specification will apply. For instance, go refers to the group and
others, but not to the file’s owner. The symbol a is a synonym for ugo —
this synonym is simply shorthand, as ugo is a very frequently used
sequence of who symbols.

Following the sequence of who symbols comes one of +, - or =, followed
by zero or more perm symbols (r, w, x or -), which represent permissions
to be set or changed for the users specified by the previous who symbols.
A + indicates add the permissions, - indicates remove those permissions,
and = means set them. For example,

$ chmod go-w myfile

denies write permission to group and to others,

$ chmod u+x myfile

gives execute permission to the owner, and

$ chmod g=r-x myfile

sets group access to r-x, so that users in the file’s group are able to read
and to execute file myfile, but not write to it.

When a file is created, it has default access privileges that would be set
by the system administrator. These can be changed by the user by means
of the command umask (‘user mask’) followed by a string with the same
information as for chmod above. For example,

$ umask u=rwx,g=r,o=

will cause all new files created to have read, write and execute privileges
for the owner, but to deny write and execute privileges for the group, and
to deny all privileges for others. This state of affairs will continue during
the current session until umask is again invoked.

Worked example 5.4
Create a file that no-one can read, and confirm that you yourself
cannot read it.
Solution: First of all, choose a name for the file (myfile, say) and use
cat or vi to create the file. In order to deny read access to
everybody, the command is

$ chmod a-r myfile

with a for all users, r for read, and - to deny. To check that you can’t

72

Files

read it, try examining the contents using cat and you should get an
error message:

$ cat myfile
cat: myfile: Permission denied

5.5 File contents

Given that you know a file exists, an obvious question is: ‘What does it
contain?’ A simple answer to this question might be that it contains a
sequence of bytes — but this would not be very helpful. We need to know
what those bytes represent. We could start off by examining the filename;
some UNIX files are required to have a particular suffix, and this
information could indicate their contents. However, we should note that,
for instance, if a file is to contain a C program, its suffix must be .c, but
the converse does not hold. If we encounter a file called myfile.c then
this does not mean that the file must contain a C program (although it
would be perverse if in fact it did not).

It is not possible to infer from a file’s suffix (if indeed it has one) what
the contents of the file represent. Indeed, UNIX makes no stipulation of
any sort as to what may or may not be stored in a file — a file is merely a
sequence of bytes.

However, all is not lost. It is possible to make an intelligent guess as to
what a file contains by examining the format of the data inside it. For
instance, if the file contains words that occur in the C language, one
might reasonably guess that the file contains C source code. Many sorts of
data can have their type inferred from their format, and the command
file is provided to do this. For example:

$ file prog.c
prog.c: c program text

$ file libc.a
libc.a: archive random library

$ file story
story: English text

Don’t worry about file telling you that a particular file is of a weird
type you’ve never heard of! It probably means it contains something you
aren’t interested in anyway. Unfortunately, file is not infallible, and it is
possible to confuse it, but nonetheless it’s a pretty reliable aid.

73

Introducing UNIX and Linux

Worked example 5.5
What type of file is /usr?
Solution: Use file:

$ file /usr
/usr: directory

thus /usr is a directory.

We should also ask whether the question ‘What does file X contain?’ is
a useful question. It is possible to define in a precise way what a C
program must look like, but not, for instance, the data for transactions
pertaining to a bank account. Rather than asking what type of data is in
a particular file, we should instead be creating files whose contents are in
a specified format.

5.5.1 Text files

We now concentrate on a particular class of files, text files, which are files
divided into lines separated by a Newline character. Such files, which
would normally contain only printable characters, include text program
source files, shell scripts, and in fact any files you would wish to use a text
editor on. However, this is not a requirement, and what we discuss in this
section will also hold true for files containing other characters. Most of
the files we will use as examples in the rest of this book will be text files.

Suppose we have created a file called story, which contains English
text. Having established that it is a text file (by means of file or
otherwise), we may wish briefly to examine its contents. We could, of
course, invoke an editor such as vi and use the commands within the
editor to move through the file and look at various parts of it, or we could
use a pager. However, there are easier methods.

Often you will simply want to look at the first few lines of a file (for
instance to verify that it was indeed the file you expected it to be). In this
case, head will print out the first five lines of the file. In a similar vein,
tail will print out the last five. If you want to see the first (say) 10 lines,
then the command would be

head -n 10

where n = ‘number’.
Strictly speaking, tail copies its input to standard output beginning

at a designated place, which is usually a number of lines from the end of
the file. There are many options available to tail to allow you to specify
what is meant by the designated place, and how many lines are output —
refer to the manual page for further details.

74

Files

As an example of simple use, suppose file myfile contains 100 lines, as
follows:

line 1

line 2

...

line 100

Then we might have

$ head -n 2 myfile
line 1

line 2

$ tail -n 3 myfile
line 98

line 99

line 100

$

Worked example 5.6
Find the most recently modified file (excluding ‘dot’ files) in the
current directory.
Solution: This has clearly somehow got to involve ls. With option -l

we could examine by hand every file and see which one was last
changed. That is not the UNIX way of doing things — by examining
the manual page for ls we find an option -t (‘time’) which will sort
the files it prints out so that the most recent is shown first. Option -1

(1 is digit ‘one’) forces the output to be one filename per line. Thus
ls -t1 will produce a list of filenames with the desired one at the top
— use head to isolate it by piping the output of ls to head thus:

$ ls -t1 | head -n 1

There is only a limited amount of space on a machine, and it may be
that each user has been restricted (by the system administrator) as to
how much filespace they are allowed to use. A quick way to find out how
big files are is to use wc (‘wordcount’), which indicates (i) the number of
lines, (ii) the number of words and (iii) the number of characters (bytes)
in a file. The latter two are only meaningful if the file is a text file,
though. For example,

$ wc myfile
27 124 664 myfile

indicates that file myfile has 27 lines, 124 words and 664 bytes

75

Introducing UNIX and Linux

(characters). With options -c, -w or -l respectively, only the byte, word
or line count will be printed. Note that wc does not work on directories.

5.5.2 Comparing files

A situation that often arises is that you are examining a file, and you
discover a very similar file, and need to know the differences between the
two files. This can happen when a file has been edited several times, and
you lose track of precisely what changes have been made. The command
diff (‘differences’) will come to your aid. Use it followed by the names of
two files and it will tell you the changes in the following manner. Suppose
we have two files, file1 and file2, where file1 contains the following
text:

A

test

file

and file2 contains

A

testing

file

then we would have

$ diff file1 file2
2c2

< test

--

> testing

indicating that line 2 containing myfile has been removed from file1

and replaced by a line containing testing.
Related to diff is cmp (‘compare’). Sometimes, especially within shell

scripts, the verbosity of diff is not required, and a terse indication of
whether or not two files are identical is required — cmp will give a short
message if its two arguments are different, otherwise it will stay silent.
Also, diff can only compare text files — cmp will compare two files of
any type and indicate whether or not their contents are the same.

5.5.3 Filtering files

Text files — especially ones containing ‘raw data’ — often contain
repeated lines. It is sometimes useful to know either how often this occurs,
or to filter out the repeated occurrences. The command uniq (‘unique’) is

76

Files

provided for this purpose. For instance, supposing file A contains

aaa

bbb

bbb

bbb

bbb

bbb

ccc

ccc

aaa

ddd

then the following dialogue might take place:

$ uniq A
aaa

bbb

ccc

aaa

ddd

$ uniq -c A
1 aaa

5 bbb

2 ccc

1 aaa

1 ddd

With no options, uniq simply filters out consecutive repeated lines;
option -c (‘count’) prepends each line of output with a count of the
number of times that line was repeated. Option -d (‘duplicate’) causes
uniq only to write out lines that are repeated, and -u (‘unique’) only to
write out lines that are not repeated consecutively. Thus:

$ uniq -d A
bbb

ccc

$ uniq -u A
aaa

aaa

ddd

Another common situation arises when you have two or more files,
containing what can be thought of as columns in a table. You require
corresponding lines from the files to be concatenated so as to actually
produce a table. Using the command paste will achieve this —

77

Introducing UNIX and Linux

corresponding lines of its arguments are joined together separated by a
single TAB character. For example, suppose file A contains

hello

Chris

and file B contains

there

how are you?

then the following dialogue can take place:

$ paste A B
hello there

Chris how are you?

Both paste and uniq, though only of use in limited situations, save a
great deal of time editing files when they can in fact be used.

Sometimes, when dealing with files that are presented in a rigid format,
you may wish to select character columns from such a file. The utility cut

is a very simple method for extracting columns. Suppose we have a file
myfile containing the following data (dates of birth and names):

17.04.61 Smith Fred

22.01.63 Jones Susan

03.11.62 Bloggs Zach

We can choose the years from each line by selecting character columns 7
to 8, thus:

$ cut -c7-8 myfile (‘column’)
61

63

62

This command can also distinguish between fields, and to select family

NOTE

A line is thought of as

divided into fields

separated by a known

delimiter

names from myfile (Smith, Jones and Bloggs), we could use cut -f2

-d’ ’ myfile, which specifies that we select field number 2 where the
delimiter (option -d) is the space character:

$ cut -f2 -d’ ’ myfile (‘field’)
Smith

Jones

Bloggs

Related to cut is fold; cut will assume that you want the same number

78

Files

of lines in the output as the input, but you wish to select part of those
input lines. On the other hand, fold assumes that you want all of your
input, but that your output needs to fit within some lines of maximum
width — for example, if you had a file with some very long lines in it that
you needed printing on a printer that was fairly narrow. The action
performed by fold is to copy its standard input, or names mentioned as
arguments, to standard output, but whenever a line of length greater
than a certain number (default 80 characters) is met, then a Newline
character is inserted at that point. With option -w (‘width’) followed by a
number, that number is taken to be the maximum length of output lines
rather than 80. Try the following:

$ fold -w 15 <<END
Let’s start
with three
short lines
and finish with an extremely long one with lots of
words
END

For more sophisticated processing of files divided into records and fields
we can use Awk (see Chapter 11).

Another exceptionally useful command is sort, which sorts its input
into alphabetical order line-by-line. It has many options, and can sort on
a specified field of the input rather than the first, or numerically (using
option -n) (‘numerical’) rather than alphabetically. So using file A above,
we could have:

$ sort A
aaa

aaa

bbb

bbb

bbb

bbb

bbb

ccc

ccc

ddd

A feature of uniq is that it will only filter out repeated lines if they are
consecutive; if we wish to display each line that occurs in a file once and
only once, we could first of all sort the file into an order and then use
uniq:

79

Introducing UNIX and Linux

$ sort A | uniq
aaa

bbb

ccc

ddd

This has the same effect as using sort with option -u, which we have
already mentioned.

Worked example 5.7
Find out how many separate inodes are represented by the files
(excluding ‘dot’ files) in the current directory.
Solution: Using ls -i1 we can list the files, one per line, preceded by
their inode number. Piping the output into cut we can isolate the
first six character columns, which contain the inode number, and
sort with option -u, which will sort these into order and remove all
duplicates. These can then be counted by counting the number of
lines of output using wc -l:

$ ls -i1 | cut -c1-6 | sort -u | wc -l

5.5.4 Non-text files

We must address the question of what a file contains if it is not a text file.
Clearly we cannot use the text utilities described above — not only will
the file not be neatly split up into lines, the characters contained within it
will in general not be printable. The file command gives us a rough
indication as to what sort of data a file (binary or text) contains, but no
more. If we need to know exactly what characters are contained in a file
that is not printable, because it is in, for example, binary format, od will
give us precisely that information. Thinking of a file as a sequence of
bytes, od lists each byte in a representation that can be printed. The
name stands for octal dump, and by default it lists the bytes by their
octal (base 8) codes word-by-word (a word being typically 4 bytes).

Since computers use binary code internally, when in the past it was
necessary to examine data, it was often not possible to display that data
in any way other than as a representation of binary numbers. One of the
simplest ways of doing this was to group the bits (binary digits) together
in sequences of 3, consider each 3-bit sequence as representing a digit in
base 8, and print out the data as a string of octal digits. Hence we get the
phrase octal dump.

A more useful way to generate output is with option -t c, (c =
‘character’, t = ‘type’) whereby each byte is either printed as a 3-digit
octal number that is the code for that character, or the character itself (if

80

Files

it is printable), or backslash followed by a character (if a standard escapeNOTE

The escape sequence for

the newline character is

\n

sequence is known). For instance,

$ od -t c bintest
0000000 201 003 \n 013 \0 001 200 \0

0000010 \0 \0 @ \0 \0 \0 251 230

0000020 \0 \0 \0 \0 \0 \0

0000030 \0 \0 \0 \0 \0 \0 \0 \0

0000040 274 020 \0 320 003 240 @

0000050 222 003 240 D 225 * 002

0000060 224 002 240 004 224 002 @ \n

0000070 027 \0 \0 h 324 " 343 240

0000100 003 \0 \0 \b 302 \0 b \b

...

We see that the first byte in the file has code 201 in octal (which is 129 in
decimal). The third byte is a Newline character. Just for comparison, a
file called hellotest, containing one line that is simply the word Hello,
would be displayed thus:

$ od -t c hellotest
0000000 H e l l o \n

0000006

The command has several possible options, which we do not list here.
If you just want to examine a binary file quickly, and see what

printable strings exist within it, use command strings. This can be
useful if you have compiled a program, such as one written in C, and that
program contains strings whose value is of interest to you (filenames, for
instance). Going through the binary code with od would be tedious.

A useful command we introduce at this point is touch. This command
has the effect of changing the date and time that its file arguments were
last modified — they are altered to the current date and time. If the files
that are its arguments do not currently exist, they are created with size 0;
touch is useful to create a file if you haven’t yet decided what to put in it,
but want it to be there. This might happen during the development phase
of a program. It is also useful to indicate that the file is in some sense
‘up-to-date’.

5.6 Printing files

Although you will probably spend a lot of time sitting in front of a
computer terminal, you will from time to time need to get ‘hard copy’ of
documents; that is, you will need to print them onto paper. To do this,
type lp (‘lineprinter’) followed by the name of the file or files you wish to

81

Introducing UNIX and Linux

be printed. If you omit filenames, the standard input will be printed, so
that can have data piped into it. It is important that you only attempt

NOTE

On BSD and Linux

systems lpr is used

instead of lp

to print text files. Most modern printers will be sensible if you send them
unprintable files, and simply refuse to print them, but a few will go
haywire.

Your machine will be set up with a ‘default’ printer, and your system
administrator should have told you which this is and where it is located.

NOTE

Each copy will normally

start on a separate side

of paper

If you give to lp the option -d (‘destination’) followed by the name of
another printer, that printer will be used instead. The option -n

(‘numerical’) followed by a number will cause that number of copies of the
document to be printed (use with care!). For instance, to print two copies
of file myfile on the printer named def:

$ lp -n 2 -d def myfile

It is a fact of life that documents stored on a machine are changed
frequently. When a file is sent to a printer, it is often useful for an
indication to be given as to when the file was printed (so the reader will
be reminded how out-of-date it may be). It is also useful, when the
document is long, for each page to be printed together with a header
containing useful information such as the page number. When a file is
printed with lp, that file is printed completely naked; nothing except the
characters in the file appear on paper. The command pr is designed to
remedy this situation; it has numerous options, which allow you to tailor
your files to particular printers. pr divides the input into pages, each
commencing with a header naming the file and the date and time, and
ending with a trailer of blank lines. The size (number of columns and
width) of each page and the size of the header and trailer can be changed,
output can be multi-column, and various other attributes of the output
can be altered. The output of pr is sent to standard output, and so must
be piped to lp. For example, the following command will print file abc on
the printer named def, two columns per page (option -2, 50 lines per
page (using option -l):

NOTE

l is letter ‘ell’

$ pr -2 -l 50 abc | lp -d def

To use pr effectively, you must know the characteristics of the printer (or
printers) to which you have access; your system administrator should
provide you with that information.

It is common nowadays for laser printers to be available. Rather than
having a fixed set of characters like a line printer, or a coarse selection of

NOTE

Such as PostScript, a

code which most printers

use for formatting

documents

symbols that can be created by an artistic user such as in a dot-matrix
printer, a laser printer is suitable for intricate graphical printing. In order
to use such facilities, files for a laser printer must be in a special code. It

82

Files

is worth mentioning that most laser printers will accept text input just
like other printers.

5.7 File archives and file compression

It will often be necessary to take a copy of a complete directory, either for
the purpose of storing it in a safe place in case the computer system

NOTE

A ‘backup’ ‘crashes’, or to send it to a different computer system. There are two
particular problems that utilities such as cp are unable to address. First,
different machines and operating systems store data in different formats,
and it may be necessary to convert the format in which the files in the
directory are stored. Second, cp does not handle links.

There have historically been two commands, tar (‘tape archive’) and
cpio (‘copy in out’), that have been used. Both work by copying all the
files in the directory, together with data describing the structure of the
directory, into a single file known as an archive. Unfortunately, both tar

and cpio work differently and produce archives in different formats.
Although tar was used much more extensively than cpio, it was felt
necessary to create a completely new command that would perform the
functions of both rather than try to update tar so that it would also do
everything cpio would do.

Neither tar nor cpio became part of POSIX, but a new command pax

(‘portable archive exchange’) has been written. We give a couple of
examples illustrating both pax and tar.

NOTE

pax is not found on all

Linux systems To create a new archive, give pax the argument -w (‘write’) or tar the
argument -c (‘create’). The archive file will be sent to standard output.
So to archive the contents of the current directory to the tape drive
/dev/rst8, either of the following will work:

$ tar -c . >/dev/rst8
$ pax -w . >/dev/rst8

Alternatively, you can redirect the output to a file. To extract the
contents of an archive, the standard input to pax or tar should be
redirected from the archive; pax requires argument -r (‘read’) and tar

argument -x (‘extract’). Naturally, when unpacking an archive, you don’t
want to overwrite any files or directories that you have already created. It
is a good idea to check the contents of an archive by means of the -t

option to both tar and pax, which simply causes the names of the files in
the archive to be listed.

Having multiple copies of directories — whether ‘real’ or archived — is
bound to take up space. If you have created an archive — mydir.pax, say
— you can compress the file and reduce its size, by means of the
command compress. This creates a file mydir.pax.Z (note the .Z suffix)

NOTE

compress is not POSIX and deletes mydir.pax; the file mydir.pax.Z will have a smaller size than

83

Introducing UNIX and Linux

mydir.pax. The actual reduction in file size depends on what the file to
be compressed contains. For example:

NOTE

Typically a factor of

between 0.5 and 0.2
$ ls
mydir.pax

$ wc -c mydir.pax
206336

$ compress mydir.pax
$ ls
mydir.pax.Z

$ wc -c mydir.pax.Z
89473

To reverse the compression, use the command uncompress. If you have
stored any large files that you do not use on a regular basis, you may wish
to compress them.

Worked example 5.8
Copy the contents of your current directory to /tmp/backup

preserving all links.
Solution: Using pax -w we can create a new archive; store this in a
temporary file, create /tmp/backup, change directory to
/tmp/backup, and read the archive.

$ pax -w . >/tmp/backup.pax
$ mkdir /tmp/backup
$ cd /tmp/backup
$ pax -r </tmp/backup.pax

5.8 Other relevant commands

Many files have names containing a suffix, or a sequence of characters at
the end of the name and commencing with a dot. For example, if you
have a program written in the language C, the file in which that program
is stored should have a suffix .c of necessity. Let us suppose you have
written a C program that is stored in file myfile.c in your home
directory /cs/ugrad/chris. From the point of view of the UNIX kernel,
it is irrelevant what name this file has. Only when you attempt to compile
and run the program will the suffix become important, as the UNIX
command for compiling a C program demands that the .c suffix be
present, and indeed will create files with the same base myfile and
different suffix. In this example, a file myfile.o would be created (the ‘o’
stands for ‘object code’, i.e. binary code for the processor). A standard

84

Files

POSIX command makes no demands on a file’s suffix, although other
utilities may well do so; the manual page for that command will tell you.

The command dirname takes as argument the name of a file and strips
off the actual filename, leaving only the directories. Command basename

also takes a filename as argument, but strips off the directory
information, leaving only the filename relative to its parent directory. If
basename is given two arguments, and the second argument is a suffix of
the filename, that suffix is also removed. For instance:

$ dirname /cs/ugrad/chris/test.c
/cs/ugrad/chris

$ basename /cs/ugrad/chris/test.c
test.c

$ basename /cs/ugrad/chris/test.c .c
test

The benefit of these two commands will not be apparent at this stage, but
later on, when writing shell scripts to manipulate files, they are
exceptionally useful.

When the command mv is called, the directory in which its first
argument is located is updated so that the file’s absolute name is
changed. The inode of the file is not changed if the new filename is on the
same filesystem. This command name is somewhat misleading, since the
file doesn’t really move at all.

We also need to know the total amount of space taken up by our files.
Here the command du (‘disk usage’) comes to our rescue. With an
argument of the name of a directory (or the current directory, if no
argument is given), du prints the total number of kilobytes used to store
the data in the files in that directory. For example,

$ du
12 ./dir1

7 ./dir2

27 .

indicates that directory dir1 takes up 12k (kilobytes) and dir2 takes 7k,
whereas the total amount of storage used for the current directory is 27k
(including dir1 and dir2).

There are some other standard commands that are not required for
simple use of UNIX. Nevertheless, they are included within the standard,
and are included here for completeness.

Suppose you have distributed some text files to a colleague, and you
then make minor alterations to them. You want your colleague to have
updated copies of the files. One possibility is to send them all the files
anew, but this has the disadvantage that a potentially large volume of

85

Introducing UNIX and Linux

data must be transmitted, which may well incur costs. An arguably
preferable method would be to send your colleague a list of the changes to
the files. These changes can be displayed using diff, but it would be
unreasonable for your colleague to edit all the files by hand to make the
changes. Fortunately, the command patch is provided to perform the task
automatically. It takes a file containing the changes, as generated by
diff, and the name of a file to which those changes are to be applied, and
carries out the changes.

The commands we have introduced in this chapter will be seen to
perform only simple manipulations of UNIX files, especially when
examining the contents of files. Three programs — Grep, Sed and Awk —
which we discuss later in the book — provide comprehensive facilities for
processing file contents, and obviate the need for more ‘simple’ UNIX
commands over and above those mentioned in this chapter.

CHAPTER SUMMARY

Table 5.2 Commands

discussed in this

chapter

basename display non-directory part of filename

cd change working directory

chgrp change file group ownership

chmod change file access privileges

chown change file ownership

cmp compare two files

compress compress files

cp copy files

cpio copy files to and from archives

cut select columns or fields from each line of a file

df display free disk space

diff show differences between two files

dirname display directory part of a pathname

du display file space usage

file describe file contents

fold fold lines

head show the first few lines of a file

id display information about a user’s identity

ln link files

lp send files to a printer

lpr send files to a printer

mkdir create new directories

mv move files

newgrp change your current group-id

86

Files

Table 5.2 (cont.) od dump files in various formats

paste merge corresponding lines of text files

patch apply changes to files

pax file archiver and format translator

pr a very basic formatter for text files

pwd display working directory

rmdir remove empty directories

sort sort or merge text files

strings display printable strings in a file

tail show the last few lines of a file

tar create tape archives, and add or extract files

touch change last modification time of a file

umask change access privileges when files are created

uncompress uncompress files

uniq filter out repeated lines

wc word, line and byte count

EXERCISES

1 Write a script to list the three most recently altered files (including
‘dot’ files) in the current directory.

2 What type of file is /bin/id?

3 List the files (excluding ‘dot’ files) in the current directory, together
with their inodes, in numerical order of the inodes.

4 How many subdirectories are there in /usr?

5 Write a script to display the owner of the current directory only.

6 Write a script to display the names of files in /bin and /usr/bin

that have the same name.

7 Write a script to list the files in the current directory (excluding ‘dot’
files) in ‘long’ format (that is, including the information that ls
provides with option -l), and in increasing order of size (difficult).

8 List (without duplication) the groups that own the files in the
current directory.

87

C
H
A
P
T
E
R

6

Processes and devices

CHAPTER OVERVIEW

In this chapter you will learn about

� processes, jobs and the execution environment; and
� UNIX handling of input and output devices.

The basic program unit apparent to a programmer working in a UNIX
environment is the ‘process’. An understanding of how processes are
handled is fundamental to the effective use of UNIX.

6.1 Processes

So far we have considered a dialogue with a UNIX system as being a
sequence of commands entered by the user, and the system taking action
at each command. We now explore the mechanisms with which UNIX
implements commands.

When describing an operating system, we need to remember that the
computer system on which it is running contains electronics that run only
machine code. Any command that a user types in is either translated into
machine code directly by compilation, or interpreted by another program
that is already in machine code. A machine code program is known as a
process. Every command given to a UNIX system, and every program run
on a UNIX machine, relates to a process — either it creates one or more
processes, or it is interpreted by one that is already running. A UNIX
shell has a mechanism for controlling processes that appears to the user
to be independent of the electronics inside the machine.

6.1.1 Process status

Within a UNIX system there are one or more processing elements (which
we will refer to as processors) that can only run a single process at any
one time. At any instant, that process can be described completely by a
sequence of bytes — some representing the memory contained within the

88

Processes and devices

processor, some describing the precise current state of the computation. It
is possible to copy these bytes to memory, and replace them by a sequence
of bytes from elsewhere in memory. Thus a partially completed process
can be temporarily suspended (or stopped), and completed at a later
time, and in the meantime another process can be run on that processor.

The kernel manages a large ‘pool’ of processes, most of which are not
running at any specific instant, and moves them to and from the
processor (or processors) as required. Much of this movement is automatic
and hidden from users — for instance, when there are several users on the

NOTE

Known as ‘time-sharing’ machine each with a program which is running, the relevant processes are
moved in and out of the processor so that each is allocated a fair
percentage of the time. However, users do have a certain degree of control
over their own processes.

A process can be in a number of states, normally either running

(currently being worked on by a processor), or stopped (not being
processed, but available to continue evaluation when instructed). When a
process completes its execution; it is removed from the system entirely
and killed. Not all processes will have been invoked by a user — some are
so-called system processes, and are constantly running while the system is
operational.

When you initially log in, you invoke a program that is a copy of the
shell, and known as your login shell. This program forms a process which
must be present during the whole time you are logged in. Any subsequent
process that is created by you is controlled from the terminal (or window)
in which you were typing the command that created it.

If you type in a command to a shell, it can be of two possible types.
Either it is a ‘built-in’ shell command, which is interpreted by the shell
process directly, or a new process is created for it. In the latter case the
binary code for it is copied from storage, and forms the process to execute
that command. The process that is the current shell is suspended and the
process for the new command is run. After that process has finished
running, it is destroyed, and the shell process is resumed.

You can find out which processes you have, either running or stopped,
by means of the command ps. This displays a list of your processes, by
default in a format similar to the following:

NOTE

POSIX does not specify

the default format of the

output $ ps
PID TTY TIME COMMAND

10312 p7 00:02:23 sh

14277 p7 00:00:00 ps

Each process is given a unique identification number, its process-id or

NOTE

All time when a process

has been suspended, or

has otherwise been

moved out of any

processor, is excluded

from the figures

PID, which is indicated in the first column of the output from ps. The
second column displays the name of the terminal from which that process
is being controlled (normally your own terminal or one of your windows).

89

Introducing UNIX and Linux

The column headed TIME is the amount of processor time the process has
so far consumed while actually running, a measure of how much work the
computer has so far done for that process. In the final column, the name
of the command that the process is running is given. In the above
example, the user has two processes running, the login shell sh, and the
ps command that is being used to display the list of processes. The login
shell (PID 10312) has already consumed 2 minutes and 23 seconds of
processor time, whereas ps (PID 14277) has used less than 1 second
(rounded down to 0 in the output from ps). The PID number is used
internally by the kernel, and is not normally needed by the user.

Another very useful utility is top, which will display in order the
NOTE

top is not POSIX processes (including other users’) which are taking up the most system
resources. This can be useful if your machine appears to be slowing down,
and you need to diagnose the problem. It is an interactive utility (press q
to terminate it) which combines most of the functionality of ps and kill

(see below). In the following sample output, the main system user is Sam,
with a program gen taking up 249M of RAM, which has been running for
over 18 hours. Chris also has two small programs running which have
been active for several days. For the moment you do not need to be
concerned with the details of the output of top.

NOTE

The output of top differs

significantly between

different UNIX systems,

and you should always

refer to the manual page

5:21pm up 1 day, 23:02, 2 users, load av: 1.00, 1.00, 1.00

150 processes: 146 sleeping, 1 running, 3 zombie, 0 stopped

CPU states: 0.1% user, 0.7% system, 0.0% nice, 99.0% idle

Mem: 128808K av, 120728K used, 8080K free, 37432K buff

Swap: 152248K av, 9812K used, 142436K free 618980K cached

PID USER PRI NI SIZE RSS STAT %CPU %MEM TIME COMMAND

10545 sam 16 0 249M 106M R 24.2 17.1 18.5H gen

14250 chris 9 0 92 80 S 23.4 11.0 74.3H S5Ba

14271 chris 9 0 0 0 SW 23.5 11.0 74.4H S5Bb

28095 sam 9 0 0 0 SW 0.7 0.1 0:00 wget

25716 root 19 19 0 0 SWN 0.0 0.0 0:00 init

11 root 9 0 0 0 SW 0.0 0.0 0:00 khubd

372 root 9 0 676 640 S 0.0 0.0 0:00 dhcpcd

631 root 9 0 892 852 S 0.0 0.0 0:00 sshd

646 root 9 0 692 688 S 0.0 0.0 0:00 syslogd

649 root 9 0 1056 1048 S 0.0 0.1 0:00 klogd

6.1.2 Foreground and background

When running a command interactively — that is, when you type in a
command and wait for the system to respond — the command is being
run in the foreground. You can instruct UNIX to run a program in the

background instead. This means that the program will begin to run but
you will be prompted by the shell for the next command without waiting

90

Processes and devices

for the program to complete — your login shell and the background
program are effectively running simultaneously. In order to instruct UNIX
to run a command in the background, follow the command with an
ampersand (&) — try the following:

$ date &

A line will be printed confirming that the command has been sent to the

NOTE

The exact meanings of

the messages will be

clarified later on in this

chapter

background, and then you will be prompted for your next command with
$. Meanwhile, date is executing, and shortly after its output is displayed
you will be informed that date has completed running:

[1] 7293

$ Fri Dec 7 18:29:04 GMT 2001

[1]+ Exit 0 date

6.1.3 Process control

To illustrate how we can control processes, we use as an example the
command sleep. Followed by an integer, sleep suspends execution of the
current shell for that number of seconds, so:

$ date
Fri Dec 7 17:22:21 GMT 2001

$ sleep 15
(there is a delay of 15 seconds at this point)
$ date
Fri Dec 7 17:22:36 GMT 2001

So sleep is a command that essentially does nothing, but a process is
created for it nonetheless. So we might have:

$ sleep 100 &
[1] 16403

$ ps
PID TTY TIME COMMAND

10312 p7 00:02:25 sh

16403 p7 00:00:00 sleep 100

16425 p7 00:00:00 ps

After 100 seconds process number 16403 will terminate. The system

NOTE

Jobs are discussed later

on in this chapter confirms that the command has been sent to run in the background by
printing a line containing jobnumber (enclosed in square brackets), and
the process ID number (16403) of the command.

91

Introducing UNIX and Linux

6.1.4 Signals

The kernel controls many processes, created by possibly many users, and
including many that are ‘system’ processes, necessary for the system to
function. The kernel allows these processes to communicate by sending
‘messages’ to each other. Any process in the system can send a message to
any other process, and because there could be many processes and many
messages being sent, UNIX restricts the messages to being very simple.

These messages are known as signals, and each takes the form of a
single byte. They are instructions to processes, such as kill (cease running
immediately) and stop (become a suspended process). Signals are
concerned with the scheduling of processes, that is, when and in which
order they are executed. The command kill is provided for a user to send

NOTE

kill is so named

because the most

commonly used signals

that a user invokes will

destroy a process

a signal to a specific process. A detailed discussion of signals is beyond the
scope of this chapter, but one particular signal is important at this stage.

The signal SIGKILL, when received by a process, causes it to be
destroyed immediately. For example, to kill the sleep process above, you
could type

$ kill -s KILL 16403

where kill with option -s (‘signal’) causes the signal named after -s to
be sent to the process whose PID is given as the final argument to kill.
Note that, although this signal is referred to as SIGKILL, only the word
KILL is passed to the command kill. This is because all signals are called
SIGsomething, so the SIG is redundant in any context where the name of
a signal is expected. There are many other signals, such as SIGHUP and
SIGTTIN, some of which will be discussed later on.

This raises the question of why you might ever wish to destroy a
process. It sometimes happens that a process that is running in the
background is left there by mistake, for instance if the software that
created it was poorly written. It also happens sometimes that you send a
program to run in the background when you think it will run for a long
time, and later on discover that because of an error in the program it is
failing to finish.

It is important to remember that UNIX uses processes as its most
basic concept of a ‘program’. Remembering PIDs can be tedious, however.
A more ‘user-friendly’ method of handling processes, called job control, is
available, which we now introduce.

6.2 Environment

Another communication mechanism employed by UNIX is that of the
environment. If you are already familiar with a programming language,
the environment is a collection of variable names together with an
associated value for each one. Unlike most other languages, variables in

92

Processes and devices

UNIX are usually regarded as character-strings, and only interpreted as
numbers (or other data types) in specific circumstances.

6.2.1 Environment variables

A variable in UNIX is a name associated with a value. For instance, there
is a name LOGNAME whose value is your own username. Variable names are

NOTE

Some systems also have

a variable USER with the

same value
by convention formed of upper-case letters, whereas names of files are
normally lower-case. The value of a variable can be referred to by
prefixing the name with a $:

$ echo LOGNAME
LOGNAME

$ echo $LOGNAME
chris

Some variable names are set by the UNIX system for you; other names
you can set for yourself. The syntax for assigning a value to a name is
name = value, for instance:

$ ADDRESS="1 High Street"
$ echo I live at $ADDRESS
I live at 1 High Street

If the value of a variable includes whitespace (Spaces or TABs) or symbols
known to the shell (such as & and |), the value should be enclosed in
single or double quotes. For the moment, just think of the value as being
a string; if it contains numbers, they are still just sequences of characters,
and you will not (yet) be able to do any arithmetic on it. Check the
values of the predefined variables listed in Table 6.1 using echo as above.

Table 6.1 Some

predefined variables
EDITOR Your preferred editor

HOME The absolute pathname of your home directory

LOGNAME Your login name

PATH The ‘search path’ for commands

PRINTER The ‘default’ printer that lp uses

PS1 The shell prompt

PS2 The shell ‘continuation’ prompt

SHELL The pathname of the shell you use

TERM The type of terminal or window you are using

VISUAL Your preferred full-screen editor (possibly same as EDITOR)

Of these, PATH and PS1 deserve further discussion. When a UNIX shell
encounters a command that is not built in to the shell, it looks at the

93

Introducing UNIX and Linux

variable PATH — as you may have noticed, the value of this variable is a
sequence of pathnames, known as pathname components, separated by
colons. UNIX then examines each of these pathnames in order, assuming
each to be a directory, to see whether there is an executable file whose
name is the same as that of the command. If it finds one, it is executed,
otherwise an error message is generated when all the directories in PATH

have been examined. Typically, PATH will have been set up on your
system so as to contain the directories the system administrator knows
you will need; a typical example might be:

$ echo $PATH
/bin:/usr/bin:/usr/local/bin

For the moment, do not try to reset the value of PATH.
If you want a variable’s value to contain the dollar symbol, prefix the

dollar with a backslash, or enclose the value in single quotes:

$ X=’This is a $’
$ echo $X
This is a $

The variable PS1 controls the prompt the shell gives you; you can safely
play with this variable:

$ PS1="Type in a command: "
Type in a command: echo $PS1
Type in a command:

The concept of a variable is understood by any process; a variable can be
assigned a value by other utilities, not just by the shell. However, the
value of a variable is not automatically available to other processes.

You may ask ‘What happens if I change the value of LOGNAME?’. Try it
— the system will not prevent you from changing it. The only problem to
arise is if you run a command that needs to know about LOGNAME, such as
one you may have written yourself. The system knows who you are, and
does not need to examine LOGNAME to find out — using LOGNAME is an aid
to you when writing shell scripts.

You can list all the variables set for you by use of the command env

(‘environment’) with no arguments, which we discuss in more detail later
on. Try it — you may need to pipe the output through a pager, since
your system may have set many variables for you:

$ env | more

94

Processes and devices

Worked example 6.1
Find out the name of the type of terminal you are using.
Solution: Examine the contents of the environment variable TERM:

$ echo $TERM
xterm

6.2.2 Global and local variables

Suppose a process assigns a value to a variable. The value cannot be
passed to the parent process, but may be passed to child processes. To
illustrate this, consider a variable called X, which we set to be the number
42. Then invoke a second copy of the shell using sh; you will get the usual
prompt, but this prompt is from the new shell, not from your login shell.
The new shell is a child of your login shell. Now check the value of X, and
you will see that it is not assigned a value:

$ X=42
$ echo $X
42

$ sh
$ echo $X
(blank line)
$

The new value of X is not passed down to the child process. We say that
the value of X is local to the process that assigned it the value, and no
changes will be recognised by any child process. If you now cause the
child shell to finish by typing ctrl-D, you will get the $ prompt again, this
time from your login shell. Now, if you examine the value of X again, you
will see that it is 42, as that was the value assigned to it in the login shell.

We can cause a variable instead to be global by means of the command
export, which means that its value will be passed down to all the child
processes, and their children, and so on. Do the same as in the example
above, but immediately after setting X to 42, type a line exporting X:

$ export X

95

Introducing UNIX and Linux

Worked example 6.2
Change your prompt from $ to enter command:

Solution: The variable PS1 contains the prompt; reset it and export

its value:

$ PS1="enter command: "
enter command: export PS1

Another method for assigning a variable a value is by means of the
command read. Followed by one or more variable names, this reads words
from the standard input and assigns them to the successive variables. The
following script requests the name of a user and sends them a greeting by
mail:

echo "Whom do you wish to greet?"

read RECIPIENT

echo Hello | mailx -s Greeting $RECIPIENT

Generally you will read one variable at a time, but it is possible to read
several at once from a single line of input. In this case you must be careful
if the number of variables and the number of words on the input line are
different. If there are fewer variables than words on the line, the initial
variables will be assigned one word each, and the final one the rest of the
line; if there are more variables than words on the line, the final variables
will be assigned the null string. If script testread has the following
contents:

read X Y Z

echo "X=$X Y=$Y Z=$Z"

then we might have the following:

$ sh testread
hello there chris
X=hello Y=there Z=chris

$ sh testread
hello
X=hello Y= Z=

$ sh testread
hello there chris jo and sam
X=hello Y=there Z=chris jo and sam

96

Processes and devices

Worked example 6.3
Write a script to prompt the user for the name of a file and then
print the file on their terminal.
Solution: Use echo to prompt the user, read to get a filename into a
variable, and cat to display the file:

echo Type in a filename

read FILENAME

cat $FILENAME

One use of read that is not apparent from the above discussion is that
it can be used to allow the user control over the speed with which a shell
script is executed. Try creating a file (say cat2files) containing the
following:

echo Type in 2 file names

read FILE1 FILE2

cat $FILE1

echo Press Return to continue

read X

cat $FILE2

Now execute that script — it will print out the first file on the screen,
then pause for you to press Return before displaying the second file. The
second read assigns a value to the variable X (which is not actually used
for anything else), but waits for you to type in something before moving
on to the next line.

Suppose file myprogram contains

echo The emperor is $MY NAME

and you wish to run the commands in the file with MY NAME set to a value.
You could set MY NAME, then export it, then run the file, so:

$ MY NAME="Julius Caesar"
$ export MY NAME
$ sh myprogram
The emperor is Julius Caesar

There is a problem with this, namely that you have reset MY NAME in the
current shell as well. You may not wish to do this. You may wish to test
myprogram with the variable MY NAME assigned a different value. This
would be especially important if you were writing a script that used
system-defined variables, such as TERM or LOGNAME, where it would be
confusing if you were to reset them. You can use the following:

97

Introducing UNIX and Linux

$ MY NAME="Julius Caesar" sh myprogram
The emperor is Julius Caesar

This does not affect the current value of MY NAME, but has the same effect
as inserting the single line

MY NAME="Julius Caesar"

at the start of the file myprogram. An equivalent effect can be achieved
using the command env:

$ env MY NAME="Julius Caesar" sh myprogram
The emperor is Julius Caesar

6.2.3 Executable scripts

Suppose you have written a script, called (say) myprogram. In order to
execute the commands in this file, we have indicated that they must be
passed to the shell. Now, using

$ sh myfile

a copy of the shell command interpreter is created for the sole purpose of
executing the commands in myfile and, when it has finished with them,
the new shell terminates. Typing sh each time can be tedious, especially
if you have written many scripts; if you change the permissions on myfile

so that you have execute permission for it, then it can be run as any other
command:

$ chmod +x myfile

This is the same as

$ chmod a+x myfile

which gives execute permission to all users. You can now type just the
name of the file and it will run:

$ /cs/ugrad/chris/myfile

For example, if you create a file called mydate and containing

echo The date and time is:

date

then you could run the script by

98

Processes and devices

$ $HOME/mydate

Alternatively, give it the name relative to the current directory:

$./mydate

Finally, examine the value of your PATH:

$ echo $PATH

If there is a dot as one of the components of PATH the current directory
NOTE

. is the current directory will also be searched, and you can then simply type mydate

$ mydate

Worked example 6.4
Update your PATH so that it includes the subdirectory bin of your
home directory.
Solution: We assume that you have created the subdirectory by
moving to your home directory using cd and then typing mkdir bin.
The value of $HOME is the name of your home directory, so the
subdirectory bin can be referred to by $HOME/bin. The variable PATH

contains the directories, separated by colons, that are searched for.
You want to replace the value of PATH by a new value, which is the
old value with a colon, and then $HOME/bin added on at the end.
You will then need to export the value of PATH so that child
processes will use the new one.

$ PATH=$PATH:$HOME/bin
$ export PATH

Note that we have added $HOME/bin to the end of $PATH; it would be
unwise to place it at the start, in case you accidentally include a
command in $HOME/bin that has a name identical to another
command on the system. If this happened, your command would be
executed in preference to the other one, which might have
unexpected consequences. Of course, you might wish to write your
own version of a system command, in which case having $HOME/bin

at the start of $PATH would be necessary, but you are strongly
advised against rewriting system commands.

There is a command . which, when followed by a file that is a shell
script, will cause the commands in the script to be executed by the calling
shell. A new shell is not created. For most purposes it does not matter

NOTE

Not to be confused with

the directory . whether or not you use sh or ., but if you use sh you should bear in mind
that any environment variables defined in the calling shell must be

99

Introducing UNIX and Linux

exported to be recognised within the script. If you use . changes you
make to the environment will alter the environment of the current shell.

Worked example 6.5
Write a command changeprompt to request you to enter a new shell
prompt and then reset it to its new value.
Solution: The variable PS1 has its value as your prompt. Create a file
to reset its value. Execute the file using . (not sh) to run the
commands in your interactive shell.

echo Type in the new prompt:

read PS1

export PS1

6.3 Program control

A process can create other processes. Consider a shell script containing
one line, which is date. When the script is executed, two processes will be
created, one for the invocation of the shell, and one for the command
date. The shell is referred to as the parent process, and date as a child

process. Some UNIX commands that appear simple may create child
processes, and it is seldom of interest to users how many are created, and
how they relate to the original command — the user is only interested in
the original command.

The shell allows us to control programs without needing to concern
ourselves with the finer details of which process is involved in which
activity. The concept of a job, and associated shell facilities, will be
helpful.

6.3.1 Job control

A job is a collection of processes grouped together and identified by a
small integer. In the example above, the job number for process 16403
was 1. When a UNIX command is sent to the background using &, a
single job is created consisting of one or more processes. That job will
initially be sent to the background, but can be moved into the foreground
or destroyed in much the same way as an individual process. Consider the
following pipe:

$ cat testfile | wc &
[2] 2374

A single job (number 2) has been created in the background, but two
processes are required, one for cat and one for wc. The process number
2374 is that of the last command in the pipe, namely wc. You can destroy

100

Processes and devices

the job, and consequently both processes, with

$ kill -s KILL %2

(instead of giving the command kill the number of the process to send a
signal to, we give it the number of the job preceded by a percent
character).

Worked example 6.6
Arrange to be given an ‘alarm call’ after 2 minutes.
Solution: Create a script that uses sleep to cause it to suspend for
120 seconds, and then use echo to write a message to your screen.
The script should be run in the background.

$ cat >myalarm
sleep 120
echo Your alarm call ...
ctrl-D
$ sh myalarm &

If you now typed ps, you would find (amongst others) two processes:

23624 p2 S 0:00 sh myalarm

23625 p2 S 0:00 sleep 120

indicating that both the script myalarm and the command sleep had
been invoked.

You may have several jobs running at any one time, and the command
jobs will list them. For example,

$ jobs
[1] Stopped testA

[2]- Running sh myalarm &

[3]+ Running testB &

indicates that you have three jobs. Jobs 2 and 3 are running in the
background, whereas number 1 has been stopped. This means that the

NOTE

The word Suspended is

used on some systems

instead of Stopped
system is not running that job at all; it is suspended pending reactivation.
You can try creating a few jobs yourself — the script myalarm from the
last worked example is suitable to experiment with. Take a copy of
myalarm, call it (say) newalarm, and execute both in the background; you
should get a dialogue similar to:

$ cp myalarm newalarm
$ sh myalarm &

101

Introducing UNIX and Linux

[1] 25816

$ sh newalarm &
[2] 25820

$ jobs
[1]- Running sh myalarm &

[2]+ Running sh newalarm &

If you have jobs running or stopped, one of them will be the default job,
and is indicated in the output from jobs by the symbol + after its
number — in the above example this would be job 3. The default job is
the job that was most recently created (or sent a signal by you). If you
have two or more running, one will be indicated by a - symbol, which
indicates that if the default job was to terminate, this one would then
become the default. In the example above this would be job 2. The
default job is also known as %%.

Any job that is in the background or is stopped can become the
foreground job simply by giving the job number (preceded by %) as
argument to the command fg (‘foreground’). Similarly, any stopped job
can be reactivated to run in the background by the command bg

(‘background’):

$ bg %1
[1]+ testA &

$ jobs
[1] Running testA

[2]- Running sleep 120 &

[3]+ Running testB &

$ fg %%

The reason for having default jobs is that quite often, when you have sent
a job into the background, you will either want it to be brought back to
the foreground or perhaps killed. In practice, you tend to find that you
have not created any new jobs in the meantime, and it is useful to have a
shorthand for referring to the default job.

Any job sent to the background will still have its standard output and
standard error streams set up as if the job were still in the foreground.
What this means for the user is that if a background job wants to write to
your terminal, it will do so (so you should not be surprised if, when
running jobs in the background, messages do appear on your screen). Yet
any input you type on your terminal will be sent to the current
foreground process or to the shell — if you had many background
processes running, the system couldn’t be expected to decide which job
your input was intended for, so can only send it to a foreground process.

A background job must therefore do something sensible if it requires
input from the terminal. What happens in this case is that the

102

Processes and devices

background job automatically stops — a signal called SIGTTIN is sent to
it when it attempts to read from the terminal, and this signal has the

NOTE

TTIN = ‘tty input’ effect of stopping the job. Consider:

$ cat &
[1] 13249

$

[1]+ Stopped (SIGTTIN) cat

The command cat, in the absence of any arguments, reads from standard
input; cat is run in the background, so immediately demands input, but
since it is in the background it cannot receive it. It therefore becomes
suspended and you are sent a message to tell you of this fact.

If you send a job to the background that requires input from your
terminal, it will become stopped as soon as it requires that input, and you
must bring it to the foreground if you wish it to complete executing. Try
this with mailx:

$ mailx -s "Test" chris &
[1] 24545

[1]+ Stopped (SIGTTIN) mailx

$ fg %1
(you can type in your message now)

6.3.2 Command history list

UNIX keeps a record of the commands you have typed in to your shell.
Each command is given a number, starting with 1, and using the
command fc (‘fix command’) you can re-execute previous commands. To
list the commands you have already run, use option -l (‘list’):

$ fc -l
1 date

2 sh myalarm &

3 mailx sam

If you run fc with no arguments, the shell first of all creates a temporary

NOTE

The mechanism for

command history lists is

based on that used in

the Korn shell

file (you don’t need to know its name) containing one line, namely the
last command you ran. In the above example, this would be

mailx sam

The shell would then run Vi on that file without you having to type vi

yourself. You can then edit that file, thinking of it as a script of
commands to be run — you can change the last command you ran, or add
extra commands to the file. When you leave Vi, whatever is in that

103

Introducing UNIX and Linux

temporary file will be treated as commands to the shell and run
immediately. Note that if, when leaving the editor, there is more than one
line in the temporary file, each line in the file will be executed separately
and in turn. An fc command is not itself entered in the history list.

You can select a number of commands by specifying the first and last
numbers of the commands you have already run — so to rerun commands
2 through 4 and edit them,

$ fc 2 4

will create a file containing three lines and then apply vi to that file.
Often you will simply wish to re-run commands you have previously

typed in without editing. Using option -s (‘string’) this can be
accomplished. In the above example, to re-run the alarm, you could just
have

$ fc -s 3

6.3.3 Running a job at a specific time

During a session on your UNIX system, most of the programs you run
will be executed immediately. Sometimes this will not be desirable. If a
program is likely to take a long time to run, you may wish it to run
overnight, since, if a machine tries to execute too many processes at once,
it becomes slow, to the detriment of all logged-in users. The command at

can be used to schedule a job for a specific time in the future.
In its simplest form, typing at followed by a time and/or date will

cause the standard input to be read, and those commands entered as
input to be executed at that time, thus:

$ at 1530

at> echo "It’s half past three"
ctrl-D
job 81 at 2001-12-07 15:30

The number of the job, together with confirmation of the date and time it
has been scheduled, will be printed on the terminal. The output (both
standard output and standard error) will be mailed to you. Alternatively,
you can create a file (testfile, say) containing commands you wish to

NOTE

The results will still be

sent to you via email be executed, and then you can use at with option -f (‘file’):

$ at -f testfile 1530
job 81 at 2001-12-07 15:30

The formats allowed for you to specify the time are broad and easy to
use, but rather complex to specify — look in the manual page for at to

104

Processes and devices

check the exact syntax allowed. The following examples will give the
general idea:

1645

16:45

16:45 GMT tomorrow

noon

4am Jan 25 2001

11pm today

now + 30 minutes

now + 1 month

If you take care that your time/date specification is unambiguous, it will
probably be acceptable to at.

When a job has been created using at, it is placed on a queue. At the
specified time and date, or as soon thereafter as the load on the system
permits, an invocation of the shell will execute the commands given to at.
The jobs on the queue can be examined with option -l (‘list’) and jobs on
the queue can be removed with option -r (‘remove’) by at:

$ at -l
81 2001-12-07 15:30 a chris

$ at -r 81
$ at -l
$

The fourth column of the listing of jobs contains an a indicating that the
queue is named a (‘at queue’). You should not normally need to be
concerned about which queue a job has been placed on.

Similar to at is batch. This command is used when you do not wish to

NOTE

batch is the same as the

command

at -q b -m now
specify exactly when a job should run, merely that the system load should
not be high when you do it. A job submitted with batch is dealt with by
the system in exactly the same way as at, except that batch will instruct
the time of running to be now and will place the job on a separate queue.
Jobs submitted to this batch queue can be listed and removed using at:

$ batch <testfile
job 121 at 2001-12-07 15:45

$ at -l
121 2001-12-07 15:45 b chris

Notice that the name of the queue is b (‘batch queue’)
The ‘jobs’ described in connection with at and batch should not be

confused with the ‘jobs’ in the section on job control. Jobs in an at-queue
can only be created and removed by batch or at.

105

Introducing UNIX and Linux

Worked example 6.7
Write a script to list all the files in your filespace, and run that script
in one minute’s time.
Solution: Using man ls you will discover that option -R (‘recursive’)
to ls will list all files in the current directory and recursively through
all subdirectories. So we can pass ls -R as the command to be
processed by at. First of all, however, we must change directory to
the home directory.

$ at now + 1 minute
cd
ls -R
ctrl-D

6.3.4 Running programs periodically

There is also a facility to specify, for instance, ‘run program X every

NOTE

The word crontab is

obscure, but probably

means ‘commands run

over night table’

morning at 2 am’. This is enabled by the command crontab. The
mechanism used by crontab is different from that for at or batch.

For each user, a file is kept on the system to specify which commands
are to be run periodically, and when. You can edit this file using vi by
invoking crontab with option -e (‘edit’). Each line of this file commences
with five columns, representing respectively minutes (0–59), hours (0–23)
day of month (1–31), month (1–12), and day of week (1–7); each of these
columns contains either a number, a comma-separated list of numbers, or
an asterisk. The rest of each line is a command to be executed repeatedly
whenever the five columns match the current time and date. An asterisk
means ‘every’. For instance, if the crontab file contains

30 15 * * * ls -R

0 0 * * 1 X

0 0 * 6 * Y

0 0 1,8,15,22 * * Z

then the command ls -R will be executed every day at 3:30 pm,
command X will be run first thing every Monday, and command Y first

NOTE

Monday is day 1 in the

week, Sunday day 7 thing every day in June. Command Z is run on days 1, 8, 15 and 22 of
each month. If you try to create an entry in the crontab file that is
inconsistent, such as specifying a non-existent date, you will be warned
and the crontab file will not be changed.

To list the entries in your crontab file without using the editor type
crontab -l.

106

Processes and devices

Worked example 6.8
Create an entry in your crontab file to send user jo a friendly
message every Christmas morning.
Solution: Using crontab -e create a line in the file that is

00 09 25 12 * echo Happy Xmas | mailx jo

indicating that the message Happy Xmas will be piped to the mail
program mailx at 0900 hours on the 25th of the 12th month each
year. The day field is left as a * since having specified the date we do
not need to worry about the day of the week as well.

Some sites will restrict the use of this command — if you find
difficulties, check with your system administrator first.

6.3.5 Big programs

Some programs take a lot of processing time before they complete. If you
are running such a program, and the results are not needed urgently, you
would probably like it to be executing on a processor when the system is
not busy, and for it to be suspended when the usage of the machine
becomes high, in order not to slow down more urgent processes. The
facility called nice exists to prioritise a job. If mycommand is a big

NOTE

nice is so called because

you are being considerate

to other users
program, then

$ nice mycommand &

will run mycommand in the background with low priority.
If a process is already running and you wish to reduce its priority, the

command renice can be used, but we omit discussion of this command
here — examine the manual page using man for further information.

When you finish your session on the system, a signal SIGHUP is sent to
NOTE

HUP = ‘hangup’ all the processes you created during the session. Most processes, when
they receive this signal, will terminate. If you have a job you wish to
continue running in the background after you have logged off — and this
will probably be true for any big jobs you run — you must make the job
immune to the signal SIGHUP by means of command nohup. The syntax is
nohup followed by a command; you will probably also wish the command
to run in the background:

$ nohup testfile &

You would only want to run a command via nohup in the foreground if
you were connected to the system using a communication link that might
disconnect you without warning in the middle of a session. Standard

107

Introducing UNIX and Linux

output and the standard error stream from a job running with nohup are
redirected to a file called nohup.out instead of to your terminal, if they
are not already redirected, and the priority of the job is low (as with
nice). The difference between nice and nohup is principally that a job
run with nice will terminate when the user who invoked the job logs off.

6.3.6 Timing a program

It’s often useful to know how long it takes to run a command. Perhaps
you need to compare the speeds of different machines (if you have access
to more than one) in order to choose the fastest machine. Perhaps you
need to know if a program takes a long time to run so that you can
schedule it when you run it again at a quiet time of day. The command
time provides this information. With no options, time followed by a
simple command (that is, not a pipeline or other complex shell construct)
displays some statistics on the standard error stream.

NOTE

The statistics generated

by time, and the format,

vary on different systems
A more concise output can be obtained by running time with option

-p. In this case, only three numbers will be given. First, the total real (or
elapsed) time (in seconds) the command took to run is displayed and then
the processing time spent by the user’s command executing on the
processor. Finally, the time spent by the system (for example, moving

NOTE

‘System’ time refers to

time spent by the kernel processes in and out of the processor) is displayed:

$ time date

Fri Dec 7 09:45:32 GMT 2001

real 0m0.063s

user 0m0.010s

sys 0m0.042s

$ time -p date
NOTE

p = ‘POSIX’

Fri Dec 7 09:47:02 GMT 2001

real 0.6

user 0.1

sys 0.4

If the system is busy, the real time will be larger, since there will be many
users running processes, all of which demand their fair share of processor
time. However, for a particular command (such as date) the user and the
system times ought to remain fairly constant, since that command will do
the same work each time it is run. Try timing the sleep command:

$ time sleep 5
real 5.7

user 0.3

sys 0.3

108

Processes and devices

You will see that the total time for the command to run was slightly over
5 seconds, but the amount of processing time — and thus the work the
system had to do — was very small in comparison. This is to be expected,
since sleep does nothing anyway.

The times for the system and user are the actual processing time, and
exclude any idle time when the relevant processes are not running, so that
the real time will always be at least the sum of the user and system time.

If you wish to time a complex command, which is not a single word
with arguments, then a simple way to do it is to create a shell script
containing the command and time the execution of that script.

6.3.7 Running programs in order

You may wish a program to run only when another has completed. If a
large program (myprogram, say) is to be run, and you require to be mailed
a message when it has finished, you could create a file containing

sh myprogram

echo "Program completed" | mailx chris

and then run the commands from that file in the background using sh

and &. This is not always convenient, and once myprogram has begun to
execute you cannot go back and edit the file. Another possibility is to use
the command wait. In order to do this, you require the PID of the
command you wish to wait for. As an example, create a file called
myprogram containing

sleep 200

date

Run this in the background:

$ sh myprogram &

[1]+ 14523

and you will be informed of the PID of the process running myprogram, in
this case 14523. Now, create another file (say notify):

$ cat >notify
wait 14523
echo "Program completed"
ctrl-D

The command wait is similar to sleep, except that instead of waiting a
specified number of seconds, it waits until a process (which is its

109

Introducing UNIX and Linux

argument) terminates. If we now run notify in the background,

$ sh notify &

then as soon as myprogram has finished, notify will write Program

completed on your terminal.
There are restrictions on the use of wait — you can only wait for a

process to complete if that process has been spawned from the current
shell. Thus you cannot wait for someone else’s process to complete. If you
call wait with no arguments, it will wait for all child processes to
terminate — therefore, if you are running many jobs in the background
wait will not complete until each of them has finished. Normally you
would use wait with a PID as argument.

6.4 Quotes and escapes

A number of characters are understood by the shell to have a special
meaning, such as $, > and <, for example, which we have already used.
The purpose of quotes and backslash is to enable characters that are part

NOTE

This section is rather

important! of the shell’s reserved characters to be used in a context where they are
not recognised as such. In this section we discuss the three characters ’
(single quote), " (double quote), and \ (backslash). The following other
characters are reserved for the shell:

< > | & * @ # ? ! - $ () [] { } ; = % ‘’

If you wish to use any of these characters in any context other than the
shell defines for them, they must be either quoted or escaped. In general,
if it’s a single character, preceding it with a backslash will indicate that
its literal value is to be used. Alternatively, if there are several such

NOTE

A single quote refers to a

‘close’ single quote ’ characters, enclose the whole string in single quotes:

$ X=’hello <$Chris>’
$ echo $X
hello <$Chris>

There are two important points here that you need to remember. First of
all, the shell strips off pairs of quotes, and matches an opening quote with
its nearest possible closing match, so:

$ X=’abc >’’>&def’
$ echo $X
abc >>&def

This implies that a single quote cannot occur within a quoted string that
is quoted using single quotes. The second point is that quotes must come

110

Processes and devices

in pairs. Notice what happens if they don’t:

$ X=’abc
>

At the end of the first line the shell is looking for a single quote; not
having found one, it assumes that the Newline character you entered
when you typed Return is part of the string, that you intended a space
instead, and that you wish to continue entering the rest of the string on

NOTE

You can change the

continuation prompt by

setting PS2
the following line. The > is the continuation prompt (different from $)
indicating an unfinished command. If we then complete the dialogue:

$ X=’abc
NOTE

The newline is not part

of the string, and is

replaced by a space

> def’
$ echo $X
abc def

Double quotes can be used in the same way as single quotes, except that
not all characters enclosed between them become literal. In particular,
variable names preceded by $ are replaced by their values. Double quotes
may be used to include a single quote in a string:

$ PS1="$LOGNAME’s prompt "
chris’s prompt

Without quotes, the shell would assign $LOGNAME to PS1 and then try to
execute prompt as the next command.

Having set up variables, you may wish to protect some of them to
avoid accidentally changing them. The command readonly will prohibit
you changing the value of a variable:

$ X=42
$ readonly X
$ X=99
X: read-only variable

$ echo $X
42

If a read-only variable has been exported, it will not be read-only for any
child processes — ‘read-only-ness’ is not exportable.

6.5 Devices

A device is any piece of equipment connected to a computer system which
performs communication between ‘the outside world’ and the system,
such as a printer or a terminal. Although normally hardware, a device

111

Introducing UNIX and Linux

might be software that behaves, from the perspective of UNIX, in the
same way as hardware. When you have run commands that use input and
output streams, their behaviour as ‘streams of characters’ does not
depend upon where they originate from or are directed to. They are
simply streams of characters. It does not matter whether input comes
from a terminal or from a file, nor whether output is piped to a printer,
sent to the terminal, or redirected to a file. In fact, UNIX treats devices
exactly the same as files.

From the perspective of a UNIX programmer, every device is a file.
Type tty to discover what the name of your current terminal (or

window) is (say, ttyp9). Now change directory to /dev (‘device’) and use
ls to examine which files are in it. You will find a very large number of
files. Look closely at file ttyp9:

NOTE

Substitute the name of

the terminal you are

using for ttyp9 $ ls -l ttyp9
crw--w--- 1 chris tty 20, 2 Mar 26 12:02 ttyp9

This looks very much like an ordinary file, except that the first character
in the output of ls -l is the character c, indicating that the file is a
character special file, the technical jargon used to describe a device such

NOTE

Defined in POSIX.1 as a terminal. You own the file, and can write to it. Try:

$ date >ttyp9

and the date will appear on your screen just as if you had typed date on
its own.

Every device has a filename in the directory /dev.
If you attempt to write to a device owned by another user, it won’t

work. If you have several windows on your terminal you will normally be
allowed to write to other windows — use tty to discover their names, and
then try the above example with one of them. There is also a file in /dev

called tty which is always a synonym for the current terminal’s filename
— so

$ date >tty

would produce the same output as above.
Standard input is received from, and standard output and standard

error are sent to, the file that is your terminal, unless you redirect them
elsewhere. They are not files, they are simply concepts to enable
redirection of streams to take place. At the ends of pipelines, unless these
streams are redirected, they are automatically directed at /dev/tty. Thus

NOTE

You can overload a

device and direct input

and/or more than one

output at it $ sh myprogram

is equivalent to

112

Processes and devices

$ sh myprogram 0</dev/tty 1>/dev/tty 2>/dev/tty

Other devices you may encounter include /dev/audio, if your terminal
has a loudspeaker and microphone, /dev/console if you are using a
workstation, and devices with names similar to /dev/rst8 if you ever
need to use a magnetic tape drive.

There is, however, one device you will need, and will have to use by
name. Suppose you have written a program that outputs diagnostic
messages as well as its output, and you wish to view only the output. You
could send the standard error stream to a file:

$ sh myprogram 2>test.errors

but this would be wasteful of filespace. You can discard this stream by
redirecting it to a file (device) known as /dev/null:

$ sh myprogram 2>/dev/null

This file behaves in the same way as any other file or device, but it simply
junks any output sent to it, and if you try to read from it it is always at
end-of-file. Use /dev/null with care, and only when you know that you
want output discarded.

Worked example 6.9
Write a script to read in the name of a file and display a message
only if it cannot be read.
Solution: Use cat to read the contents of the file. If cat fails, the file
is unreadable, and the error message, sent to standard error, should
be displayed. However, we do not actually wish to see the file’s
contents, so junk them by directing the standard output to
/dev/null:

echo Type the name of a file:

read FILENAME

cat $FILENAME >/dev/null

6.6 Backquotes

Sometimes, redirecting output from a command is not quite what you
want to do. If you need to set the value of a variable to be the output of a
command, the mechanisms we have already met will not work. As an
example, suppose you wished to set a variable YEAR to the current year.

NOTE

Use the manual page to

find out about formatted

output from date
We can easily find the current year using date. Either use the formatting

argument +"%Y" to date, or pipe the output through cut.

113

Introducing UNIX and Linux

$ date +"%Y"
2001

NOTE

cut was discussed in the

previous chapter
$ date | cut -f7 -d’ ’
2001

However, printing the output of date on your terminal or sending it to a
file will not allow it to be on the right-hand side of the equals symbol in
an assignment. If you enclose a command in backquotes (‘), or
alternatively enclose it in $(and), it is executed and its standard output
becomes a string which is then passed to the shell in place of the original
command. This is known as command substitution:

$ YEAR=‘date +"%Y"‘
$ YEAR=$(date +"%Y")

As for double quotes, variable names preceded by a $ symbol will be
replaced by their values between backquotes.

Worked example 6.10
Reset your shell prompt to the name of the shell followed by a >

symbol.
Solution: the variable SHELL holds the name of the shell as an
absolute pathname:

$ echo $SHELL
/usr/local/bin/sh

The command basename can be used to remove the directory portion
of a path name, so basename $SHELL will extract the name of the
shell you are using. Use backquotes to turn the output from
basename into a string, and remember that > and the space, since
they are special symbols, must be quoted:

$ PS1=$(basename $SHELL)"> "
sh>

114

Processes and devices

CHAPTER SUMMARY

Table 6.2 Commands

introduced in this

chapter

at execute commands at a specified time

batch execute commands when system load permits

bg run a job in the background

crontab schedule periodic background work

env set environment for a command

export set export attribute for a variable

fc process command history list

fg run a job in the foreground

jobs list the jobs in the current session

kill send a signal to a process

nice run a command with changed priority

nohup run a command immune to hangups

ps display information about processes

read read a line from standard input

readonly set read-only attribute for variables

renice change the priority of a running process

sleep suspend execution for a time interval

time display execution time for a command

wait suspend process until completion of another process

115

Introducing UNIX and Linux

EXERCISES

1 Arrange for a ‘Good Morning’ message to be mailed to you at 8 am
every Monday morning.

2 Arrange for a list of all your files (including ‘dot’ files) and directories
to be mailed to you every weekday at 6 pm.

3 Arrange for an ‘alarm call’ message to be written on your terminal in
one hour.

4 What is the Process-ID (PID) of your login shell?

5 Write a script to write your username, your home directory, the type
of your terminal, and the printer that lp uses, so the output looks
like:

Your username is chris

Home directory is /cs/ugrad/chris

You are using a terminal which is a vt100

The default lineprinter is cs/p1

6 Write a script to prompt you for the name of a directory and then
list the files in it.

7 Set an environment variable called MY NAME to be your name in the
form first name followed by a space followed by family name.

116

C
H
A
P
T
E
R

7

Introduction to shells

CHAPTER OVERVIEW

This chapter

� explains why a shell is needed; and
� introduces simple syntax for the shell, including conditional

statements and loops.

In previous chapters, we have considered UNIX commands together with
related concepts such as process and environment. In this chapter we
consider the shell — the command interpreter — in more detail, and
introduce the constructs that are a part of the shell and make it a
programming language in its own right.

7.1 Why do we need a shell?

This question may be on your mind. Most of the commands discussed so
far are to be found in directories mentioned in your PATH. You can edit
files, print files, and run programs. You can schedule commands. You
have access to languages such as Pascal or C on your system, and they
can be used for complex programming tasks. So what else does the shell
have to offer?

The shell allows you to check on the success and failure of commands,
on the state of the filesystem, and on the values of environment variables,
and to process this knowledge. It is a programming language in the full
sense — it has the power of other programming languages — but tailored
for use in conjunction with an operating system. It contains built-in
features that allow the user to get the maximum amount of information
from the kernel in an easy manner. By writing shell scripts you can also
create your own commands.

Although the shell is a powerful programming language, it is designed
as a user interface to a UNIX machine, and is not an ideal language for
doing complex numerical calculations. If you have a particular application

117

Introducing UNIX and Linux

that does not clearly have a need to be written in the shell, then it is
good practice to write it in another language better suited, and then call
that program from the shell.

It is not possible to give exact instructions as to where the boundary
lies — when you should decide that the shell is unsuitable and use another
language — but the examples in the following chapters will give you a feel
as to what sorts of task are typically programmed in the shell. Some
people use a UNIX system happily and hardly ever use any of the shell
facilities, while others are quite at home with the most complex scripts.

7.2 Shell syntax

Any computer language has a syntax — that is, a set of rules defining
what you can write in the language, and what you are forbidden to write.
The shell uses symbols and words in a very precise way. We will not
attempt to give a formal definition of the shell’s syntax here, but we will
describe most of its features.

Recall that a script is a file containing commands that the shell is able
to interpret. If a script is two or three lines long, it is likely to be clear to
anyone reading the file what the commands do, and therefore what the
purpose of the script is. If a script is a hundred lines long, it will not be so
easy to see what is happening. Not only will it be difficult for someone else
reading your scripts, but if you make an error while writing it, you may
yourself find trouble discovering exactly where the error has occurred.

It is good practice to include comments in your scripts. These are
messages the shell ignores — they are there merely for the benefit of
anyone reading the scripts.

If you write a script, and include a # (‘hash’) symbol, then the rest of
that line (including the #) is ignored by the shell (unless that # appears
within quotes or is within a word). For instance, the following script

MESSAGE="Hello $LOGNAME"

echo $MESSAGE

causes a message to be displayed on the terminal screen. The next script

NOTE

Comments only work in

scripts, and will not

work interactively when

you are giving the shell

instructions from a

terminal

does exactly the same thing, but has had comments included.

This script prints a friendly message on standard output

Written by Chris, 5 December 2001

#

This script requires variable LOGNAME to be set

MESSAGE="Hello $LOGNAME" # Set MESSAGE to the message

echo $MESSAGE # ... and echo it to stdout

118

Introduction to shells

The sort of information that should appear in comments includes

� who wrote the script,

� what the script does,

� when it was written, and

� what the individual parts of the script do.

For very short scripts, this may appear rather trivial, but for longer
scripts comments are essential, and you should get into the habit of
commenting all your scripts. Try creating a file (messagefile, say)
containing the above script, and run it using:

$ sh messagefile

When the shell reads input, it reads the input line-by-line looking for
commands, and each line is first of all stripped of comments. A command
is normally terminated by the end of the line on which it appears, with
the exception that if the end of the line is premature, and the shell knows
you haven’t completed typing in the command, it will recognise this and
expect you to continue the command on the next line. If the shell is
interactive, it will prompt you with a > to continue with a command that

NOTE

Or whatever the value of

PS2 is instead of > was started on the previous line. For instance, if you tried to echo a string
and typed only one quote the shell would infer that you had not finished
typing in the string, and that you would continue on the next line. Try it:

$ echo "Hello
> Chris"
Hello

Chris

You can also try creating a file containing

echo "Hello

Chris"

and executing the file as a shell script. Remember that the only difference
between a shell script (which is a file containing shell commands) and the
commands you type in on your terminal, is where the input to the shell
comes from. In the case of an interactive shell, such as your login shell,
the shell commands are typed in by you at your terminal; when a script is
run, the shell reads commands from the script file.

You can also terminate a command with the symbols & or ; so you can
have several commands on a single line. If you separate them with
semicolons they will run one after the other, as if you had written them
on separate lines. If you separate them by ampersands, they will be sent
to run in the background one after the other, and will therefore be
executed concurrently. A semicolon terminates a command and causes it

119

Introducing UNIX and Linux

to be run in the foreground. Try the following:

$ date; sleep 5; date
$ date & uname & who &

A sequence of commands separated by semicolons or Newlines is called a
sequential list, and a sequence separated by ampersands is an
asynchronous list.

7.2.1 Types of shell command

We must now distinguish between two concepts — utilities and
commands. A utility is the name of a program, such as wc, date or uname.
A command is an instruction to the shell to perform a task. A very simple
command may well just be the name of a utility, but in general is more
complex. Consider

$ uname -a >outputfile

which will display the ‘vital statistics’ of the system you are running the
command on, redirecting the output to file outputfile. The command

uname -a >outputfile

comprises utility uname with argument -a, and standard output redirected
to outputfile.

In order to combine the utilities we have met, and the sorts of
command we already know about, into more complex structures, we need
to be very precise about what sorts of command are available. The shell
allows five different types of command:

� simple command

� pipeline

� list command

� function definition

� compound command.

When we use the word command, we mean any of the above five types of
command. We discuss all of the above in this chapter, with the exception
of functions, which are found in Chapter 9. Of the five types of command,
we will explicitly define the first four, and all other commands we
introduce come under the heading of compound commands. Don’t worry
if these names look complex — we need them so that later on we can be
completely unambiguous when we discuss shells, and you may then need
to refer back to here. For now, you should remember simply that
command types are neatly categorised.

120

Introduction to shells

7.2.2 Simple commands

A simple command is a name (understood to be a valid UNIX utility
name) together with options and arguments, any input or output
redirection, and possibly preceded by variable assignments. Examples we
have met in previous chapters include the following.

date

This is just the name of a utility that displays the current time and date.

cat 0< inputfile 1> outputfile

This is a utility with input and output redirected — it copies inputfile
to outputfile.

VAR=42 NAME=Chris mycommand argument1 argument2

This utility (mycommand) is run with two arguments and variables VAR and
NAME set — see Chapter 6.

7.2.3 Pipelines

A pipeline is a sequence of commands separated by the pipe symbol (|); a
single command is also technically a pipeline. We can string any number

NOTE

The length of pipelines is

subject to system

dependent limits
of commands together to form a long pipeline. The following are valid
pipelines:

date

This is a simple command that displays the time and date.

who | cut -c1-8 | sort

This is a pipeline of three simple commands; it will list the users currently
logged in in alphabetical order, without any of the extra information that

NOTE

This pipeline assumes

that usernames are at

most 8 characters long
who displays. The first command in the pipeline lists users together with
more information, including the terminal they are using the system from,
and the second — cut — extracts the first eight characters from each line
of the output of who. These eight characters are precisely the character
columns that contain the usernames. The output of cut is then piped to
sort to place the usernames in alphabetical order.

ls -l /usr/local/bin 2> errorfile | wc -l > outputfile

This is a pipeline of two simple commands, each redirecting some of its
output, which counts the number of files in /usr/local/bin. If directory

121

Introducing UNIX and Linux

/usr/local/bin exists, the number of lines produced by ls -l — and
hence the number of files in /usr/local/bin — will be counted by wc,
and the result sent to outputfile. If /usr/local/bin does not exist, an
error message will be sent to errorfile.

who | VAR=42 mycommand | VAR=99 mycommand

This is a pipeline of three simple commands, the latter two run with
variable VAR set to a specific value; since mycommand is not a system
utility — it is the name of a script which you will have written — the
effect of this pipeline will depend on what you have written in that script.

7.2.4 Grouping commands

Occasionally it will be necessary to group commands together so that
they appear to the shell as a single command. For instance, suppose you
wish to print a text file (myfile, say) on the printer, and you wish to
append lines both at the start and at the end of the file. If this is to be
performed in a script, you cannot use vi, since vi does not use standard
input and standard output in a simple manner. What you also cannot do
is to send the standard output of the echo and cat commands to lp

NOTE

Use lpr if lp is not

installed on your system separately — you would then get the header and footer messages printed
on separate pages. There are several solutions that you will already be
able to use. The first involves creating a temporary file to store the
output, and then using cat on that file:

$ echo "This is the start" > temp
$ cat myfile >> temp
$ echo "This is the end" >> temp
$ cat temp | lp

This is inelegant and to be discouraged — proliferation of temporary files
causes confusion and wastes storage space. The second involves creating a
script to perform the task, so:

$ cat <<END >temp
echo "This is the start"
cat myfile
echo "This is the end"
END
$ sh temp | lp

This method also uses a temporary file, but we can substitute the
occurrence of temp for standard output, and pipe it to sh:

122

Introduction to shells

$ cat <<END | sh - | lp
echo "This is the start"
cat myfile
echo "This is the end"
END

By using the latter method we have overcome the need for a temporary
file by taking the commands for sh from standard input explicitly by
using the hyphen. What we have done is to anonymise the temporary file.
However, we can improve on the here-document method by means of a
technique called command grouping.

By enclosing a list of commands in parentheses, a new invocation of
the shell is formed to execute that list of commands, just as if you had
placed those commands in a file and run that file as a separate shell
script. The solution to the above problem then becomes:

$ (echo "This is the start"
> cat myfile
> echo "This is the end") | lp

If a sequence of commands (which can be separated either by newlines or
by semicolons) is enclosed in parentheses, then they will be executed in
sequence, and their output streams will be concatenated together to form
a single stream, which can itself then be redirected.

Worked example 7.1
Without creating any temporary files, and using a single shell
command, instruct your shell to display the names of files in the
current directory, preceded by an explanatory message, and paged (in
case you have a large number of them).
Solution: Use ls to list the files, echo to produce a message, and
more as the pager. Then use command grouping to join the outputs
of ls and echo together:

$ (echo "Your files are:"; ls) | more

7.2.5 Exit status

Every time a UNIX command terminates, it returns a number, called its
exit status, to the shell that caused it to run. Depending on the number,
the shell can then take appropriate action. By convention, the exit status
of a command is 0 if the command is successful. If a command fails, for
whatever reason, a value different from 0 is returned (and this is typically

NOTE

We discuss special

parameters in detail later

on in this chapter
1). We can find out the exit status of the previous command executed by
means of the special parameter $?. Immediately after running a

123

Introducing UNIX and Linux

command, type echo $? and the exit status of that command will be
displayed. The exit status of a pipeline is the exit status of the last
command in that pipeline.

As an example, create a file (testfile, say), protect it so that you
cannot write to it using chmod and then try to write to it:

$ chmod -w testfile
$ cat >testfile
testfile: Permission denied.

$ echo $?
1

The 1 that is the value of $? indicates that the cat command failed.

Worked example 7.2
What is the exit status of
mv ~/X /

Solution: We would expect this command to fail. If ~/X does not
exist, it will return exit status 1 for that reason. If it does exist, you
should not have write permission for the root directory, and the
command will fail. Anyhow, check the exit status by typing the
command and then echo $?:

$ mv ˜/X /
an error message
$ echo $?
1

7.2.6 List commands

A simple use of exit status is when using a list command. A list command
is a sequence of pipelines separated by either || or &&. In the case of an

NOTE

|| is pronounced ‘or’
or-list

$ pipeline1 || pipeline2

pipeline1 is run, and if a non-zero exit status is returned pipeline2 is run.
If pipeline1 returns 0, the exit status for this list command is 0, otherwise
it is the status of pipeline2. Thus the or-list succeeds if either the first
command or the second succeeds. In the case of an and-list

NOTE

&& is pronounced ‘and’

$ pipeline1 && pipeline2

pipeline1 is run, and if a zero exit status is returned pipeline2 is run. The
exit status for this list command is that of pipeline1, if non-zero, otherwise

124

Introduction to shells

that of pipeline2. An and-list succeeds if both its first and its second
component succeed. Both or-lists and and-lists can be strung together,
and the pipelines separated by || and && are evaluated from left to right.

Simple examples for || and && would be to check whether a command
has in fact completed successfully:

$ mycommand || echo Cannot run mycommand
$ mycommand && echo mycommand ran OK

In the first line above, if mycommand fails — that is, returns exit status
not zero — the subsequent echo command is run and informs you that
mycommand failed. In the second, if mycommand succeeds the subsequent
echo command is run.

Worked example 7.3
Compare files named file1 and file2, and if they are different mail
yourself a message indicating the differences.
Solution: Use diff to compare the two files. We see from the manual
page for diff that an exit status of 0 is returned only when the two
arguments to diff are identical. You can therefore send the output
of diff to a file and then mail yourself the contents of that file. ||
can be used so that the mail will only be performed if the diff

returned non-zero exit status.

$ diff file1 file2 >diffout ||
> mailx -s "Output of diff" chris <diffout

Using && we can sequence commands so that subsequent commands
will only run if earlier ones have been completed successfully.

Worked example 7.4
Compare files named file1 and file2, and if they are identical
delete file2.
Solution: Since we do not require a list of any differences it will be
quicker to use cmp, which, like diff, returns 0 exit status if its
arguments have the same contents. Use && to perform rm upon
successful completion of cmp.

$ cmp file1 file2 && rm file2

Parentheses can also be used to group list commands so that, for
instance,

command1 || (command2 && command3)

125

Introducing UNIX and Linux

would cause command1 to be run, and if it failed the and-list command2
&& command3 would then be run.

Two other commands it is appropriate to introduce here are true and

NOTE

There is also a command

: (colon), which has the

same effect as true
false. Both these commands do nothing at all, but return exit status 0
and 1 respectively. We shall use them later on in this chapter.

7.3 Arithmetic

The shell itself does contain some rudimentary facilities to do arithmetic,
which we shall discuss later. However, it is not itself designed for doing
such calculations, unlike most high-level languages. It is recognised,
however, that non-trivial arithmetic will be required by some shell
programmers. The solution adopted is to introduce a utility known as bc
(‘basic calculator’), which is a sophisticated calculator. Use of this utility
deserves a chapter in its own right, and we shall merely touch on the
possibilities that bc offers. The characteristics of bc include

� arbitrary precision arithmetic,

� a complete programming language including for and while loops and
variables, and

� ability to perform arithmetic in bases other than 10.

We omit here the complex structures in bc and concentrate on using bc to
perform simple calculations in decimal.

By default, bc takes input from standard input; commands are one per
line or separated by semicolons. Each command to bc is either an
expression, which it evaluates, or a statement that affects the subsequent
output. As a short example, consider the following dialogue:

$ bc
1+2
3

100/7
14

scale=5
100/7
14.28571

sqrt(2)
1.41421

Most of this dialogue is self-explanatory; scale=5 indicates that
subsequent calculations should be displayed correct to 5 decimal places,
and sqrt is a predefined function that calculates the square root of its
argument.

126

Introduction to shells

To use a function in bc, type the name of the function followed by its
argument enclosed in parentheses. Thus to evaluate ‘log base e of 10’ the
expression would be l(10) (lower-case ‘ell’).

Table 7.1 Operators

used by bc
+ addition

- subtraction

* multiplication

/ division

% integer remainder

^ power

Table 7.2 Functions

used by bc
sqrt square root

length number of decimal digits

scale scale

s sine, requires option -l

c cosine, requires option -l

a inverse tangent, requires option -l

e exponential, requires option -l

l natural logarithm, requires option -l

The available operators and functions are summarised in Tables 7.1 and
7.2. If the ‘scale’ is set to 0, no calculations are performed on digits after
the decimal point, and integer arithmetic is performed. In this case the
operator % will yield integer remainder so that 11 % 3 would yield 2.
Some of the operators require bc to be called with option -l (‘library’),
and these are indicated in Table 7.1. Trigonometric functions assume you
are working with radians (and not degrees), and the exponential function
e raises e (the base of natural logarithms, 2.718...) to the power of its
argument. In bc you can use parentheses to group parts of an expression
together, so the expression

10 * (3 + 4)

would evaluate to 70. You can use as many parenthesised expressions as
you like, provided you ensure that each opening parenthesis is matched by
a closing one — i.e. the usual conventions in a programming language
apply. Note that multiplication and division take precedence over addition

NOTE

If in doubt about

precedence, use

parentheses
and subtraction, so that

1 + 3 * 4

127

Introducing UNIX and Linux

is equivalent to

1 + (3 * 4)

and not to

(1 + 3) * 4

Worked example 7.5
Use bc to find the number of seconds in a day.
Solution: The calculation we require is 24×60×60, and the dialogue
that would follow is:

$ bc
24 * 60 * 60
86400

ctrl-D

Since bc takes input from standard input, to leave bc you type ctrl-D
on a line of its own. We can also pipe expressions into bc, and

$ echo "1 + 2" | bc

would be a valid way of using bc, since the pipe ensures that the standard
output of echo becomes the standard input to bc.

Worked example 7.6
Write a script to read in two numbers and display their product.
Solution: Use read to input the numbers, and then construct the
expression that represents their product using the * operator in bc.
This expression can then be passed to the standard input of bc using
echo.

echo Input two numbers: # Prompt the user ...

read N1 N2 # read in two numbers ...

echo "$N1 * $N2" | bc # pass their product to bc

7.4 Making decisions

Consider the following problem: ‘If file A is smaller than 100 lines then
display it on the terminal, otherwise tell me that it’s bigger than 100
lines.’ How would you set about programming that using the shell? We
can find out how many lines are in A using wc, we can print a file, and we
can display a message. However the only method we have so far met for

128

Introduction to shells

deciding to execute commands conditionally is to use || or && and the
exit status of a command. We would ideally like a command A is small

which succeeds (exit status 0) if A is smaller than 100 lines. Our script
might then look like:

(A is small && more A) || echo A is too big

The fundamental method by which the shell allows you to make choices
as to what to do next in a script is by use of the exit status of a
command. We can’t in general expect commands such as A is small to
exist already — there must be a more general method of translating such
statements into things the shell can understand, which will return an
appropriate exit status. We need to be able to compare numbers (such as
file sizes) and strings (values of environment variables), and to interrogate
easily the existence and access permissions of files.

7.4.1 The ‘test’ statement

The command to accomplish this is test. Followed by arguments, test
will give an exit status of 0 if the arguments evaluate to True. There are
two ways of invoking test:

test arguments

[arguments]

and we shall use the latter for the rest of this book. To give you the
flavour, the following checks whether file testfile exists and displays a
suitable message if it does:

$ [-e testfile] && echo Testfile exists

Using the alternative syntax this would look like:

$ test -e testfile && echo Testfile exists

The operator -e, when presented as an argument to test, examines the
following argument and, if that file exists, the command succeeds (exit
status 0), otherwise it fails with exit status 1. Various options are
available to test; those listed in Table 7.3 relate to files, and with the
exception of -f are self-explanatory.

129

Introducing UNIX and Linux

Worked example 7.7
Write a script which will read in the name of a file and print out a
message indicating whether or not it is a directory.
Solution: Use test with option -d to check the file, and || and && to
control which message is output.

echo Input a file name: # Prompt the user ...

read FILENAME # input a file name ...

([-d $FILENAME] && # check it’s a directory ...

then confirm this if so

echo $FILENAME is a directory) ||

echo $FILENAME is not a directory

Table 7.3 File

operators used by test
-d filename True if filename exists and is a directory

-e filename True if filename exists

-f filename True if filename exists and is regular

-r filename True if filename exists and is readable

-s filename True if filename exists and has size non-zero

-w filename True if filename exists and is writable

-x filename True if filename exists and is executable

Table 7.4 String

operators used by test
-n string True if string has length non-zero

-z string True if string has length zero

string True if string is not null

s1 = s2 True if strings s1 and s2 are equal

s1 != s2 True if strings s1 and s2 are not equal

The options given in Table 7.4 relate to strings. For instance, to check
whether variable NAME has been set a value that is not the null string, we

NOTE

A regular file is

essentially one that is

not a directory; there are

other sorts of

non-regular files, such as

FIFO files, but they do

not concern us here

might have:

$ ["$NAME"] || echo NAME is unset

Note that we have enclosed $NAME in double quotes; test expects to get
an argument, and if we did not enclose it in quotes, and NAME was unset
(or contained only whitespace), the line would become

ACRONYM

FIFO = ‘First In First

Out’
[] || echo NAME is unset

prior to execution, which would give an error, whereas

130

Introduction to shells

[""] || echo NAME is unset

would be OK.

Worked example 7.8
Write a script to greet the person running it if they are logged on as
user chris.
Solution: Use logname to check the user’s name (not the variable
LOGNAME, which might accidentally have been changed), and test to
compare it with chris.

["$(logname)" = chris] && echo Hello Chris

Table 7.5 Arithmetic

operators used by test
n1 -eq n2 True if numbers n1 and n2 are equal

n1 -ne n2 True if numbers n1 and n2 are not equal

n1 -gt n2 True if n1 is greater than n2

n1 -ge n2 True if n1 is greater than or equal to n2

n1 -lt n2 True if n1 is less than n2

n1 -le n2 True if n1 is less than or equal to n2

The numerical checks listed in Table 7.5 that test can perform are the
principal way of doing numerical comparisons using the shell. They only
work with whole numbers, however, and if you wish to perform complex

NOTE

We will not cover

floating-point aspects of

bc here
tasks using floating-point numbers you are advised to use bc. As an
example, we code the solution to the question posed at the start of this
section, which was: ‘If file A is smaller than 100 lines then display it on
the terminal, otherwise tell me that it’s bigger than 100 lines.’

FILESIZE=$(wc -l A) # Use wc -l to count the lines

(["$FILESIZE" -gt 100] && echo File too big) || cat A

There is a difference between the operators = and -eq. For instance,

[0 -eq 00]

succeeds, as 0 and 00 are numerically equal, but

[0 = 00]

fails, as they are different strings of characters.

131

Introducing UNIX and Linux

Worked example 7.9
Write a script to request you to type in a number, and then to guess
its square; it should then either congratulate you or tell you the
correct answer.
Solution: After reading in a number into variable NUMBER, construct
an expression $NUMBER * $NUMBER to be piped to bc, assigning the
output of the calculation to SQUARE. Then, after reading in the user’s
guess into variable GUESS, use test to check whether GUESS and
SQUARE are the same.

Notice the different ‘style’ of comments used here — each on a line
of its own; this style is preferred with long command lines.

Prompt the user and read in the number

echo Type in a number:

read NUMBER

Evaluate the square of the number using bc

SQUARE=$(echo "$NUMBER * $NUMBER" | bc)

Prompt the user and read in the guessed answer

echo Guess its square:

read GUESS

If the guess is equal to the square, confirm ...

(["$GUESS" -eq "$SQUARE"] && echo Correct) ||

otherwise display the correct answer

echo The correct answer is $SQUARE

Since test requires arguments, you must separate those arguments
from the word test by whitespace. Similarly, if you are using the square

NOTE

WARNING! bracket notation for test, you should separate the square brackets from
what is inside the brackets. Otherwise, the brackets themselves would
become part of the strings which they should enclose. For instance,

[hello = hello]

would attempt to compare string hello with string hello] and think
that you had forgotten to provide the closing square bracket.

7.4.2 The ‘if ’ statement

For making simple decisions based on a command’s exit status, || and &&

are fine, but if many commands are involved it may become quite difficult
to read. For this reason, another syntax for checking the exit status of a
command is provided, taking the form of an if statement. To illustrate

132

Introduction to shells

this, recall the example used to introduce || and &&:

$ mycommand || echo Cannot run mycommand
$ mycommand && echo mycommand ran OK

This could be rewritten using if as follows:

$ if mycommand
> then echo mycommand ran OK

NOTE

The line that starts with

else is optional > else echo Cannot run mycommand
> fi

NOTE

The keyword fi denotes

the end of the statement

This mechanism is very similar to that used in Pascal or C. You may find
it easier, or clearer, to use than || or &&. It should be stressed that an if

statement fulfils exactly the same function as || and &&.

Worked example 7.10
Write a script to inform you whether or not you have used more than
100k of disk space.
Solution: Using du with option -s will give you a number that
represents the number of kilobytes of storage you have used, and will
also display the name of the directory for which it performed that
calculation. You can use cut to extract the first field of that output,
namely the number. Then test can check whether this number is
greater than 100, returning an exit status of 0 if so, and if can check
this exit status and run echo to display a message if it is indeed the
case.

Evaluate the number of kilobytes of storage used

KBYTES=$(du -s ~ | cut -f2 -d’ ’)

Check the value of KBYTES ..

if [$KBYTES -gt 100]

and display message if >100

then echo "You have used more than 100k"

and display message if <=100

else echo "You have used less than 100k"

fi

Using || and &&, this could have been coded so:

KBYTES=$(du -s ~ | cut -f2 -d’ ’)

([$KBYTES -gt 100] &&

echo "You have used more than 100k") ||

[$KBYTES -gt 100] ||

echo "You have used less than 100k"

133

Introducing UNIX and Linux

7.5 Loops

It is often necessary to execute part of a script multiple times. This can
be done either a given number of times, or while a given condition is met.
This construct is known as a loop, and exists in some form in all
programming languages. There are two basic types of loop which the shell
supports.

7.5.1 ‘For’ loops

The for loop is a method of executing a section of a script for a specified
(and fixed) number of times. For instance, to page, in sequence, each
readable file in the current directory:

$ for i in $(ls)
> do
> [-r $i] && more $i

NOTE

r = ‘readable’
> done

The syntax for the for loop is

for name in values
do

commands
done

and this causes the variable name to be set in turn to each word in values,
and commands executed with name set to that value. So, in the above
example, $(ls) becomes a list of the files in the current directory, and
variable i is set to each one in turn. The filename, which is the value of i,
is tested to see if it is readable, and if so it is paged using more.

Worked example 7.11
Send a personalised greeting (such as Hello jo) to each of the users
jo, sam and george:
Solution: You cannot simply use mailx jo sam george, as they
would then each receive the same (unpersonalised) message. So you
should instead use a for loop to create each message in turn and
then mail it to the appropriate user.

$ for user in jo sam george
> do
> echo "Hello $user" | mailx $user
> done

134

Introduction to shells

7.5.2 ‘While’ and ‘until’ loops

You may wish to execute a sequence of commands for a variable number
of times while a certain specified condition holds. The if statement allows
a single test to be carried out; multiple tests can be carried out using
while. The syntax is

while command1
do command2
done

indicating that command1 is executed repeatedly. Each time its exit
status is checked, and if the exit status is zero, command2 is executed. As

NOTE

The exit status of true

is always 0 soon as command1 yields a non-zero exit status, the while loop ceases
immediately. As a simple example of a while loop, the following will
display tick on your terminal repeatedly once a second:

$ while true
> do

NOTE

Don’t forget to press

ctrl-C to stop it! > echo tick
> sleep 1
> done

Worked example 7.12
Use a while loop to print out the ‘twelve times table’:

1 x 12 = 12

2 x 12 = 24

...

12 x 12 = 144

Solution: Use a while loop and bc to do the calculations. Set a
variable i to start at 1 and then become in turn 2, 3, up to 12. While
the value of i is less than or equal to 12 evaluate $i * 12 using bc,
storing the answer in variable result, display the line of the table,
and add one to i using bc again.

$ i=1
$ while [$i -le 12]
> do
> result=$(echo "$i * 12" | bc)
> echo "$i x 12 = $result"
> i=$(echo "$i + 1" | bc)
> done

135

Introducing UNIX and Linux

Similar to while is until; the syntax is the same as while, but
instead of the condition that command1 must succeed for the loop to
continue to execute, command1 must fail, and the loop finishes when the
condition gives non-zero exit status. So

until command1
do command2
done

indicates that command1 is executed repeatedly. Each time its exit status
is checked, and if the exit status is not zero, command2 is executed. As
soon as command1 yields a zero exit status, the until loop ceases.

Worked example 7.13
Write a script to repeatedly request names of files to be displayed,
until you type in QUIT to stop.
Solution: Use an until loop repeatedly to read in the name of a file,
and then (after having checked that it can be read) display it. Note
that we commence by setting the value of the filename, stored in the
variable FILENAME, to "" (i.e. the null string). This is advisable, just
in case the user running the script has already set FILENAME to QUIT

— in which case the script would stop immediately it had begun to
run. This may appear highly unlikely, but you should always err on
the side of caution.

FILENAME="" # Initialise FILENAME

until ["$FILENAME" = "QUIT"] # Finish when value is QUIT

do

echo "Name of file to print (or QUIT to finish):"

read FILENAME # Read in FILENAME

if [-r "$FILENAME"] # If it’s readable ...

then lp "$FILENAME" # print it

fi

done

Two other commands are provided for use in while, until and for

loops. The first one is break, which is a method of breaking out of a loop.
If a break command is encountered the immediately enclosing loop will
terminate immediately. The other command is continue; unlike break,
instead of completely leaving the loop, control passes back to the
beginning of the loop.

136

Introduction to shells

Worked example 7.14
A file called core is sometimes created when a program ‘crashes’ —
it is very big, and you will often need to delete it. Write a script to
check once a minute to see whether you have created a file called
core in your home directory, and to terminate with a message on
your terminal warning you of this fact.
Solution: There are several ways of approaching this, and we present
two possible solutions. Both use loops, check the existence of the file
core using the test command, and sleep for 60 seconds between
tests. The first uses until:

until [-f $HOME/core] # Stop when $HOME/core exists

do

sleep 60 # Wait one minute

done

echo core file created # Notify the user

The second solution involves looping forever. Within each loop it does
the test and, if this detects the file, it uses break to leave the loop:

while true # Forever ...

do

sleep 60 # Wait one minute ...

if [-f $HOME/core] # If $HOME/core exists ...

then break # leave the loop

fi

done

echo core file created # Notify the user

Try running one of these scripts in the background. You can create a
file core yourself, using touch, say, to check that it does indeed
work:

$ touch core
Instead of writing a shell script, you might have considered crontab

for this task.

7.6 Searching for files

In spite of files being arranged in a directory structure, the complexity of
the file structure is still high. Using ls may not be an easy way of finding
some files — suppose, for instance, that you had a large number of files
and many subdirectories, and that somewhere you had created a file
myfile. How would you find it? In any event, searching for files other
than by name is hit-and-miss using ls — how could you print out the
names of all your executable files of size greater than 1k, for instance?

137

Introducing UNIX and Linux

You would, at this stage, have to list all your files, send the output to a
file, and edit that file.

There is a command find which can be used to examine all files within
a directory (and all subdirectories of it) and select them according to
criteria such as the group the file belongs to, the time of last modification,
its name, its access permissions, its size, and so on. The syntax is find,
followed by a pathname (which should normally be a directory), and then

NOTE

find will work if its

argument is just a file the criteria find is to use. For instance, to print the pathnames of all files
in your home directory called myfile, you could have:

$ find ˜ -name myfile -print

This will search your home directory (~), looking for files whose name

NOTE

The criteria for find are

simply arguments to

find, not options
(-name) is myfile, and display (-print) the full pathname of each such
file to standard output. Note that the criteria for find selecting files are
real words, not single letters. Note also that in order for find actually to
print out the names of the files found, you must explicitly state this by
using -print. Instead of printing the names of the files found, you can
tell UNIX to run any other command on those files. It is likely that you
will normally only use find to display the names of files, but instead of
simply displaying names, find can be instructed to perform other actions
on files it has selected. The following instructs find to perform wc on all
files in the current directory (and any subdirectories) owned by chris:

$ find . -user chris -exec wc {} \;

The directory find is searching is . (the current directory), the criterion
it uses to select files is -user chris, meaning files owned by chris. The
action it takes when it has selected a file is to execute (-exec) the
command wc on the file. The notation {} is shorthand for the name of
that file. The semicolon terminates the action to be taken (otherwise the
shell command used as the action for find would get confused with the
find command itself), and must be escaped with a \.

The arguments to find are of three varieties: options which affect the
command’s behaviour, tests which specify which files are to be selected,
and actions which specify what will be done with the selected files.
Table 7.6 and 7.7 list useful tests and actions.

Worked example 7.15
Remove all files named core from your filespace.
Solution: Use find to locate the files, and then -exec to call rm to
delete them:

$ find ˜ -name core -exec rm {} \;

138

Introduction to shells

Table 7.6 Tests used

by find
-empty file is empty, either a regular file or a directory

-gid n file’s group ID is n

-group name file’s group name is name

-inum n file’s inode is n

-links n file has n hard links

-name pattern filename matches pattern

-perm mode file’s permissions are (exactly) mode

-size n file has size n blocks of 512 bytes

-type c file’s type is c

-user name file’s owner is name

Table 7.7 Actions

used by find
-exec command execute command

-printf format display the filename

7.7 Formatted output

To display messages on standard output we have so far used echo. This
command can only write a single string on a single line. A command
printf is provided to format a message any way you desire. Use of

NOTE

The shell command

printf is very similar to

printf() in the

language C

printf involves giving it a string, known as the format, as first argument,
followed perhaps by subsequent arguments. The format string is copied to
the standard output with certain changes made. A simple example is

$ printf "Hello"
Hello$

NOTE

Some shells do not yet

support printf
Note that Hello is precisely what has been printed — no extra spaces
and no Newline character after it, so that the next dollar prompt follows
it immediately.

If a \ (backslash) is encountered, it is treated as an escape character

with the following character examined, and the pair are replaced
according to Table 7.8. Not all of these characters will be interpreted
sensibly by all terminals, especially formfeed and vertical tab.

139

Introducing UNIX and Linux

Table 7.8 Escape

sequences
\\ \
\a ‘alert’ (bell)

\b ‘backspace’ (moves cursor left one space)

\f ‘formfeed’ (skips one ‘page’ if possible)

\n ‘newline’ sequence

\r ‘carriage return’ (moves cursor to start of current line)

\t ‘tab’

\v ‘vertical tab’

Perhaps the most common escape sequence you will meet is \n, to
terminate a line:

$ printf "Hello\nthere\n"
Hello

there

When a % (‘percent’) is included, the following several characters
represent a conversion specification, to instruct how one of the arguments
is to be displayed. There should be the same number of conversion
specifications as arguments following the format string, and they are
paired up with the arguments in order. The next example illustrates the
use of %d to insert a number into the output:

$ printf "%d is a square number\n" 64
64 is a square number

The string %% is not a specification, and is replaced by a single % in the
output:

$ printf "%s is %d%%\n" "one half" 50
one half is 50%

Common specifications are given in Table 7.9. Between the % and the
conversion character may come a number indicating the field width in
which the argument should be printed, and preceding this number may
come a - (hyphen) indicating that the argument should be displayed

Table 7.9 Conversion

characters
d integer (printed in decimal, base 10)

o integer (printed in octal, base 8)

x integer (printed in hexadecimal, base 16)

s string

c character

140

Introduction to shells

left-justified within the field (it would by default be right-justified). If the
data is numeric, then following the % immediately with a + would cause
the number always to be displayed with a leading + or - sign. Note that if
you wish printf to terminate a line, you must do so yourself by including
a \n within the format string. The following examples illustrate use of
printf:

$ printf "Hello %s\n" $LOGNAME
Hello chris

The string value of LOGNAME is substituted for %s.

$ printf "The temperature is %+7d degrees\n" 21
The temperature is +21 degrees

The number 21 is substituted for %d, preceded by a + sign, and padded
out with blanks to fill seven character positions.

$ printf "You are %s\nyour home directory is: %s\n" \
$(logname) $HOME
You are chris

your home directory is: /cs/ugrad/chris

The string that results from executing the command logname, and the
value of the variable HOME, are substituted for the two %s specifications.
Note the Newlines within the format string, and the use of a backslash to
continue the statement onto another line when it becomes long.

Worked example 7.16
Write a script to read the standard input and display each word from
the input right-justified in one column of width 30. A blank line (or
end of file) will terminate the script.
Solution: This is concerned with formatting, so we need printf. Use
a while loop to continually read in words until a ‘null’ one is read in
(which happens with a blank line or end of file).

read X # Read first word

while ["$X"] # while a "real" word ...

do

printf "%30s\n" $X # print it ...

read X # and read next one

done

141

Introducing UNIX and Linux

7.8 Passing information to scripts

A script can be passed data by many methods, such as input streams, and
the values of environment variables. We look now at this in more detail.

7.8.1 Scripts with arguments

Just as a UNIX command can take arguments, so can a script. After all, a
script is a command written by a user. The first argument of a script is
referred to within the script as $1, the second by $2, and so on. These are
known as positional parameters. They can be manipulated like any other
variables, except that they cannot be reset using =. Create a file
(argfile, say) containing one line:

echo $1 $2

Now run that script, but give it two arguments:

$ sh argfile hello 99
hello 99

There are some other ‘variable names’ that have special meanings when
used within a script. The name of the script (i.e. the name of the file
containing the script) is denoted by $0, and the number of positional
parameters by $#. Suppose the following script, called showargs, is

NOTE

In this context # does

not introduce a comment invoked:

This script is $0, and it has $# arguments

First argument is $1

The output we would get would be:

$ sh ./showargs foo bar

NOTE

Note that $0 uses the

name of the script that

has been called
This script is ./showargs, and it has 2 arguments

First argument is foo

$ sh showargs "foo bar"
This script is showargs, and it has 1 arguments

First argument is foo bar

In the second invocation, the first argument of showargs is the string
"foo bar", not foo — the quotes around it cause it to be considered as a
single word.

When a script is given many arguments, accessing them one-by-one
using positional parameters is often awkward. We can use $* to refer to
them all at once. In other words, the value of $* is the single string "$1

$2 $3 ...". In order to experiment with these parameters, create a
script containing

142

Introduction to shells

for i in $*

do

echo $i

done

and call it testfile. When it is run, the $* will be replaced by the
arguments of the script; thus calling testfile with arguments jo, sam
and george, so

$ testfile jo sam george

would be equivalent to running a script containing:

for i in jo sam george

do

echo $i

done

We must be careful, though; the shell will strip out quotes before passing
arguments to a command, and we need to be able to handle

$ sh testfile jo "Sue Smith" sam

in a sensible manner. To this end we can use $@, which is similar to $*.
Edit testfile to replace $* by $@. In both cases the result is the same,
namely

$ sh testfile jo "Sue Smith" sam
jo

Sue

Smith

sam

indicating that the quotes have been stripped before the arguments have
been passed to testfile. If, instead, the first line of the script is

for i in "$*"

the quotes are stripped from the arguments, which are then enclosed by a
new pair of quotes. Thus the string jo Sue Smith sam is the expansion
of $*, which is then quoted within the script indicating a single string,
and the output is:

$ sh testfile jo "Sue Smith" sam
jo Sue Smith sam

If, however, "$@" is used, the arguments to the script are passed without
modification, including quotes, to replace "$@", and the quotes are then

143

Introducing UNIX and Linux

interpreted within the script:

$ sh testfile jo "Sue Smith" sam
jo

Sue Smith

sam

If a script requires an indeterminate number of arguments, you may wish
to discard the earlier ones — for instance, if they are options and you
have finished processing all the options. The command shift will remove
$1 from the positional parameters, $2 will become $1 (etc.), and $*, $@
and $# will all be changed accordingly.

Worked example 7.17
Write a script called mypager to take arguments that are files and
page each of them in turn using more. Additionally, mypager may
take a single argument, -i, which will cause a message to be
displayed on the screen before each file is paged, giving the name of
the file, and requiring the user to press Return to continue.
Solution:

IFLAG=no

if ["$#" -gt 0] # Make sure there are some files

then if ["$1" = "-i"] # Check if the option is called

then IFLAG=yes # If so, reset the flag ...

shift # and delete the argument

fi

fi

for i in "$@" # Go through each file in turn

do

if ["$IFLAG" = "yes"] # If "-i" ...

then echo "Paging $i" # output message ...

echo "Press Return to continue"

read j # wait for Return

fi

more "$i" # Page the file

done

7.8.2 Parameter expansion

We have already considered assigning values to variables in the previous
chapter. In this section, we look at the shell’s features that allow it to

144

Introduction to shells

examine in detail whether variables have been set values and what form
those values take.

Often you will write scripts where you will use variables that you
assume will have certain values. They may be variables you have created
yourself for your own benefit, or they may be ‘system’ variables, such as
PATH, which have been set for you. However, there is always a possibility
that such a variable has not been assigned a value. A case in point is the
variable NAME, which is not mentioned in the POSIX standard, and
commonly contains the user’s real name. Many shells and utilities
(especially mailers) use it, and it’s quite reasonable to assume that it has
been set a value. Unfortunately, this is not guaranteed.

It is thus good practice, whenever writing a script that relies on a
variable not defined as necessarily existing in POSIX, to check that it has
in fact been assigned a value, and that that value is of the correct format.
Parameter expansion is the mechanism usually employed.

Consider NAME, and suppose a particular script requires it; we could
include the following code to check whether it indeed does have a value,
and if not we could give it a default value:

if [-z "$NAME"]

then NAME="A.N. Other"

fi

This will work. It is also verbose — a script that uses many variables
would be tedious to write if you include checks for all the variables in the
script. It should be emphasised that it is a very good idea to check that
variables have in fact been assigned values before you attempt to use
those variables. Parameter expansion will not do anything that cannot
already be done using test, but it provides a concise and easy to read
notation that avoids saturating scripts with tests.

At this point we need to discuss an apparently minor — but
nonetheless important — feature of variables. If a variable has not got a
value, this can be for two reasons. Either it has not been mentioned at all
before, in which case it is unset, or it has been set but has the null string

NOTE

A null string "" has

length zero as its value, so

$ NAME=""

or, alternatively, since it would not be ambiguous:

$ NAME=

For most purposes the two situations have the same result. If you wish to
unset a variable rather than just set its value to null, use unset:

$ unset NAME

145

Introducing UNIX and Linux

To ensure that a variable is set, the form is

${variable:-default}

which expands to the value of variable, if that variable has been set or is
null, otherwise to default. For instance, instead of the test example
above, the first time you use NAME, replace $NAME by

${NAME:-"A.N. Other"}

The following script will check to see if variable NAME has been set; if not
it will be replaced by the value of LOGNAME, and display a welcome
message:

$ echo Hello ${NAME:-$LOGNAME}

Try this, first of all without NAME set, and then after you have given it a
value.

The form of default can be anything that returns a value — the above
could be accomplished equally well using:

$ echo Hello ${NAME:-$(logname)}

Worked example 7.18
Create a welcome message to initially check variable NAME to find out
your name; if it is unset, it checks LOGNAME, and if LOGNAME is unset it
uses command logname as a last resort.
Solution: As in the example above, if NAME is unset we fall back on
the value of LOGNAME, but then we also have to check that LOGNAME
has been assigned a value. So we can replace $LOGNAME by the result
of running the command logname.

$ echo Hello ${NAME:-${LOGNAME:-$(logname)}}

If a variable is unset, the :- mechanism will not assign the default
value to it — that default is merely substituted for the expression at that
single instance. If you also wish the variable to be set to the default, use
:= instead of :-, so:

$ unset NAME
$ echo Hello ${NAME:=$LOGNAME}
Hello chris

$ echo $NAME
chris

Another behaviour that might be desirable is for the shell to give you an

146

Introduction to shells

error message if a variable is unset — this is especially useful if there is no
sensible default value you can substitute for the variable. Replace :- with
:? so:

$ unset NAME
$ echo Hello ${NAME:?}
NAME: parameter null or not set

If you follow the ? with a string, that message will be displayed instead of
parameter null or not set:

NOTE

Don’t forget to enclose

the string in quotes if it

contains blanks $ echo Hello ${NAME:?"who are you?"}
NAME: who are you?

Worked example 7.19
Ensure that PATH is set; if it is not, reset it to /bin:/usr/bin, and
inform the user of its value.
Solution: Use positional parameters

$ echo The PATH is ${PATH:="/bin:/usr/bin"}

When using :- the default value is substituted if the variable is null or
unset. If you use :+ the reverse happens — the default value is
substituted only if the variable is set and not null:

$ unset NAME
$ echo ${NAME:+Chris}
(blank line)
$ echo ${LOGNAME:+Chris}
Chris

We can discover the length (i.e. the numbers of characters) of a string:

$ echo $LOGNAME
chris

$ echo ${#LOGNAME}

NOTE

does not begin a

comment when used in

this way
5

147

Introducing UNIX and Linux

Worked example 7.20
Use a loop to print out a line of 50 pluses so:
++

Solution: Use an until loop, and store the plusses in a variable, LINE
(say). Start off by setting LINE to null, and repeatedly add a single +

to it until its length has become 50.

LINE="" # Set LINE to null

until [${#LINE} -eq 50] # Until its length is 50 ...

do

LINE=$LINE+ # add another "+" to it ...

done

echo $LINE # and finally display the line

CHAPTER SUMMARY

Table 7.10

Commands introduced

in this chapter

bc calculator

break exit from for, while or until loop

continue continue for, while or until loop

false returns ‘false’ value, exit status 1

find find files

printf write formatted output

shift shift positional parameters

test evaluate expression

true returns ‘true’ value, exit status 0

148

Introduction to shells

EXERCISES
1 List all regular files in your home directory whose size is less than
512 bytes.

2 What is the maximum length of a line in /usr/dict/words?

3 Write a script called mcat which will be identical to cat with the
following difference: if any file argument given to mcat either does
not exist or is unreadable, mcat will not send any output to the
standard output. The behaviour of cat is such that all its readable
arguments are copied to standard output.

4 List the name of each regular file in the current directory (or any
subdirectory of it), together with the first line of the file.

5 List all users currently logged in to the system, in 4 columns of width
10 characters, so:

chris jo sam george

pete sue dave jane

emma bill

6 Write a script to prompt the user for two numbers, representing the
width and height of a rectangle in cm, and display the area of the
rectangle both in square metres and in square inches (1 inch = 2.54
cm).

7 Write a script to take text input from standard input, and copy it to
standard output with each line preceded by a line number in the
same manner as cat -n. Do not use the command cat.

149

C
H
A
P
T
E
R

8

More on shells

CHAPTER OVERVIEW

This chapter covers

� arithmetic expansion, pattern matching and ‘case’
statements;

� scripts that require options; and
� file system conventions.

In this chapter we examine shells in more depth. Much of this chapter is
dependent on you being comfortable with the previous chapter, and if you
have not yet familiarised yourself with the material in that chapter you
are strongly encouraged to return to it.

8.1 Simple arithmetic

8.1.1 Arithmetic expansion

The utility bc was discussed in the previous chapter, and will perform any
calculations required, to any accuracy, just as if you had a pocket
calculator available. Although bc does have all the facilities required, it is
in many circumstances ‘overkill’ — the overheads of calling and executing
a utility such as bc are high. It is therefore desirable to have another
method of doing simple arithmetic tasks as a part of the shell, thus
obviating the need to call a utility like bc. The mechanism is known as

NOTE

On some non-POSIX

systems, use $[...]

instead of $((...))
arithmetic expansion and takes the form of

$((expression))

where expression is a valid arithmetic expression, using only integers (no
floating point arithmetic), and the operators described below. Boolean

NOTE

Do not confuse these

with the shell commands

true and false
expressions are represented by 1 for True and 0 for False. The operators,
which are listed in Table 8.1, are a subset of those available in the C

150

More on shells

programming language, and parentheses may be used to group
subexpressions. Thus the following dialogue could take place:

$ echo $((1 + 2 + (3 * 4)))
15

$ echo $((1 > 2))
0

$ echo $((1 < 2))
1

Table 8.1 Operators

for arithmetic

expansion

+ plus

* times

/ integer division

% integer remainder

== equal to

!= not equal to

> greater than

>= greater than or equal to

< less than

<= less than or equal to

As an example, the following script will read in a number, assumed to
represent pounds weight, and write to the standard output a message
translating that to stones and pounds:

NOTE

One stone = 14 pounds
echo Type in a whole number representing pounds weight:

read POUNDS

STONES=$(($POUNDS / 14))

SMALLPOUNDS=$(($POUNDS % 14))

echo $POUNDS pounds is $STONES and $SMALLPOUNDS pounds

Worked example 8.1
Write a script convertsec to read in a number, thought of as
representing seconds, and print out the number of hours, minutes
and seconds it represents, so:

$ convertsec
Enter a number of seconds:

12345
12345 seconds is 3:25:45

Solution: First of all, check that the number is not less than zero, and
then do the calculation, which is self-explanatory.

151

Introducing UNIX and Linux

Prompt the user and read in number of seconds

echo Enter a number of seconds:

read SECONDS

if [$SECONDS -lt 0] # Check it’s positive

then echo Number must be positive

else MINUTES=$(($SECONDS / 60)) # Total minutes

RSECONDS=$(($SECONDS % 60)) # Residual seconds

HOURS=$(($MINUTES / 60)) # Total hours

MINUTES=$(($MINUTES % 60)) # Residual minutes

printf "%d seconds is %d:%02d:%02d\n" $SECONDS \

$HOURS $MINUTES $RSECONDS

fi

You may wish to compare arithmetic expansion with using bc. The
example in the previous chapter, which displays the ‘12 times table’
would be coded as a script using arithmetic expansion as follows:

i=1

while [$i -le 12]

do

result=$(($i * 12))

echo "$i x 12 = $result"

i=$(($i + 1))

done

Try out both — you will find that when you use arithmetic expansion it is
much faster. Where possible, you should use arithmetic expansion in
preference to bc, but if you are in any doubt as to whether arithmetic
expansion can give you sufficient precision, you should play safe and use
bc.

8.1.2 The ‘expr’ command

The command expr (‘expression’) performs a similar function to
arithmetic expansion. In fact, it can be considered just a different syntax
— just as [expression] can be replaced by test expression, so
$((expression)) can be replaced by expr expression. Non-POSIX shells
will probably only support expr.

There is, unfortunately, a catch. You can also use expr to perform

NOTE

We do not explore

non-arithmetic

capabilities of expr here
more functions than just arithmetic — it is also capable of rudimentary
operations on strings. If you give expr an argument that is not a ‘sum’, it
will assume it is a string and print it:

$ expr hello

152

More on shells

hello

Between $((and)), the shell knows it is expecting an arithmetic
expression. Following expr the shell does not know that what follows will
be such an expression — it might be simply a string. For instance,

$ expr 1+2
1+2

In this example, 1+2 was not recognised by expr as ‘1 + 2’. In order for
expr to work correctly with arithmetic, each ‘token’ — that is,
number/operator — must be separated by whitespace:

$ expr 1 + 2
3

Since expr is simply a command like any other, any characters within the
expression that are special to the shell (such as *) must be escaped, for
instance:

$ expr 6 * 7
42

If you had not escaped * in this example it would have been replaced by
the names of all the files in the current directory. Another difference
between arithmetic expansion and expr is that the equality operator for

NOTE

For historical reasons,

expr uses = expr is =, not ==.

Worked example 8.2
Write a script to read in a number and decide whether or not that
number is prime.
Solution: This calculation is one you would typically code in another
programming language — it is not too complex to use the shell for,
although efficiency considerations would discourage it. Using a
variable I to iterate from 2 to half the possibly prime number N, keep
checking whether or not I divides N exactly. If a divisor is found, set
RESULT to 1. If we used bc for this, it would be extremely slow.

echo "Type in a number"

read N

RESULT=0

I=2

HALFN=$(($N / 2)) # HALFN is N/2

while [$I -le $HALFN] # Stop when I equals N/2

do

if [$(($N % $I)) -eq 0] # If I divides N exactly

153

Introducing UNIX and Linux

then RESULT=1 # ... RESULT is 1

break # ... and leave the loop

fi

I=$(($I + 1)) # Increment I

done

if [$RESULT -eq 0] # If no divisor found

then echo "$N is prime"

else echo "$N is composite"

fi

A better algorithm would have been to iterate to
√
N rather than N/2,

but arithmetic expansion doesn’t allow for the square root function.
Try this example using expr instead of arithmetic expansion.

8.2 Pattern matching

8.2.1 Patterns

Using a notation known as pattern matching, we can consider concepts
such as ‘all files with suffix .c’, or ‘all arguments to the command that
are three characters long and commence with a digit’. Pattern matching is
used in several situations by the shell, and we shall introduce those
particular instances as we meet them. If the shell encounters a word
containing any of the following symbols (unless they are ‘escaped’ by
being preceded by a backslash or contained within (single) quotes)

? * [

then it will attempt to match that word with filenames, either in the
current directory, or absolute pathnames (if they commence with /). A ?

matches any single character, * matches anything at all, and [introduces
a list of characters it matches. If the word commences with a * or a ?, it
will only match filenames in the current directory not commencing with a
dot. When the shell has worked out which filenames the word matches, it
will replace the word by all those names. Try:

$ echo *

Since * matches anything, it will match any files in the current directory,

NOTE

echo * won’t format

filenames into neat

columns, and the output

might be longer than

your terminal is wide

and the resulting output will be similar to that from ls. Suppose you
have a file mycommand; then try

$ echo m*

Since m* matches all filenames in the current directory commencing with

154

More on shells

m, all those filenames will be displayed, including mycommand.

Worked example 8.3
Use ls -ld to list all ‘dot’ files in your home directory.
Solution: Use ls -ld, but instead of giving it argument ~ or $HOME
to list files in your home directory, you must isolate only those whose
names commence with a dot. The ‘dot’ files in your home directory
will each be matched with either ~/.* or $HOME/.* and one solution
is therefore:

$ ls -ld $HOME/.*

A * will match any number of characters, a ? will match one single
character, but is otherwise used in exactly the same way as *, so

$ echo ????

will display all filenames in the current directory that have four characters
in their names (but do not commence with a dot). Pattern matching does
not extend to subdirectories of the current directory, and ??? would not
match a/b.

Worked example 8.4
How many directories or files located in the root directory have
names three characters long?
Solution: Use pattern matching and ls to select the files and wc -w

to count them.

$ ls /??? | wc -w

Many files on a UNIX system come equipped with a specified suffix —
that is, a sequence of characters at the end of the filename. Some also

NOTE

Some specific suffixes are

.c for C programs and

.o for files containing

object code

give meaning to other parts of their filenames — look at the files in /lib,
for instance, which contains files of the form libsomething.a and are
library files used by the C compiler. Pattern matching is useful for
isolating files whose names you know to be of a specific ‘shape’.

Worked example 8.5
Display detailed information on all files in the current directory with
the .c suffix.
Solution: Using ls -l, we need to give it as arguments those files
with suffix .c, and the pattern *.c will match precisely those files:

$ ls -l *.c

155

Introducing UNIX and Linux

Between symbols [and] comes either a list of characters, or one or
more ranges of expressions, possibly preceded by the ! (exclamation
mark) character. A range, which is denoted by two characters separated
by a hyphen, means all those characters that are lexically between (and
including) those two characters. Thus [m-q] matches any lower-case letter
between m and q inclusive. Note that the character to the left of the
hyphen in a range must lexically precede the character to the right or the
range matches nothing. The ! indicates that the word will match any
single character not specified between the brackets. Table 8.2 gives some
examples of simple patterns.

Table 8.2 Some

patterns
[abc] matches a or b or c

[l-z] matches all lower-case letters l to z inclusive

[A-Cb-k] matches upper-case letters A to C and lower-case b to k

[XYa-z] matches X and Y and any lower-case letter

[-a-z] matches any lower-case letter or a hyphen

[!0-9] matches any character that is not a digit

Worked example 8.6
List all commands stored in /bin whose names consist of two
characters, the second one being a vowel.
Solution: Use ls with an argument which will match this pattern. ?
matches a single character, and [aeiouAEIOU] matches any vowel,
thus:

$ ls /bin/?[aeiouAEIOU]

We shall use pattern matching later on in this chapter in the context of

NOTE

WARNING: rm * deletes

all files in your current

directory — be careful

using patterns with rm

case statements, and you should remember that it is a much more
powerful tool than simply for checking filenames. In the meantime, using
ls followed by a pattern is an excellent method of getting used to pattern
matching. Remember that *, ?, [and] all involve patterns, and that if
you use them in a script and don’t want them to relate to patterns, they
must be escaped using \ or single quotes. In later chapters we shall
introduce a similar concept to pattern matching, known as regular

expressions.

Worked example 8.7
Create a script to remove all files with suffix .o in the current
directory, prompting you for each one as to whether you do in fact
wish to delete it, and confirming whether or not it has been removed.

156

More on shells

Solution: These files are matched by *.o, and we can pass the files
one-by-one to rm -i using a for loop. rm yields exit status 1 if it fails
to remove its argument.

for i in *.o # Loop through files

do

if rm -i $i # If deleted ...

then echo File $i deleted # confirm this ...

else echo File $i not deleted # otherwise not

fi

done

We could not simply have used

rm -i *.o

since we would then have been unable to generate the ‘confirmation’
message.

8.2.2 The case statement

A statement that involves pattern matching is case. It works by starting
off with

case expression in

where expression has a value (and would typically be a variable preceded
by $). Following that, there is a sequence of

pattern) command-list ;;

and the case statement is terminated with esac. The value of expression
is evaluated, and the first of the patterns that matches it has the
following command-list executed. For example, a very simple version of
the command file, which only examines the suffix of its first argument,
might look like:

NOTE

Double semicolons are

required, because a

single semicolon is used

to separate multiple

commands occurring on

a single line

case $1 in

*.c) printf "%s: %s\n" "$1" "c program text" ;;

*.a) printf "%s: %s\n" "$1" "archive library" ;;

*.o) printf "%s: %s\n" "$1" "object file" ;;

*) printf "%s: %s\n" "$1" "unknown type" ;;

esac

Where patterns appear in a case statement they are matched with the
expression at the start of the case statement, and not with any filenames.
If a pattern appears within a command-list in a case statement, however,

157

Introducing UNIX and Linux

the pattern is matched to filenames as before. The following script lists
the files in the current directory, but asks you whether you wish to list
the ‘dot’ files:

echo "List dot files as well? " # Prompt user

read YESORNO # Read reply

case "$YESORNO" in # Check reply

[Yy]*) ls * .* ;; # Commence with a Y?

[Nn]*) ls * ;; # Commence with an N?

*) echo "Sorry, don’t understand";;

esac

Note the technique used here for asking the user a yes/no question — the

NOTE

The names for the

compilers may be

different on your system,

and are not specified in

POSIX

answer is assumed to commence with a Y or an N, in upper or lower case,
and that is sufficient. This script would happily accept input Yqwerty as
a positive response. If you required the user to type in exactly the word
YES, the pattern, instead of [Yy]*, would be [Yy][Ee][Ss].

Worked example 8.8
Write a script named compile to take a single argument representing
the name of a program written in a high-level language, and then
compile that program using one of cc (for C), pc (for Pascal) or f77
(for FORTRAN). File suffixes .c, .p and .f respectively are assumed
to indicate the language type.
Solution: We need to check the file suffix using a case statement.

First, check we do have a single argument

case $# in

1) ;;

*) echo "$0: Incorrect number of arguments";;

esac

Now examine the suffix of argument 1

case $1 in

*.c) cc $1 ;;

*.p) pc $1 ;;

*.f) f77 $1 ;;

*) echo "Unknown language";;

esac

Where the same command is required for two separate patterns, rather
than duplicating the line (or lines) of commands, you can combine the
two (or more) patterns. So the pattern

158

More on shells

sam|chris

would match either sam or chris.

Worked example 8.9
Write a script to read in a string representing a telephone number as
dialled from the UK, and indicate whether it is an overseas number
(commencing 00 or 010), a value added number (commencing 0898 or
0891), a freephone number (commencing 0800), a service number
(three digits commencing with a 1) or a national code (ten digits
commencing 0 or eleven digits commencing 01).
Solution: We could use many if statements, but the script would be
very messy. This is the sort of problem for which a case statement is
ideal.

Prompt user and read in the number

printf "Input phone number: "

read N

Examine the various patterns that might match N

case $N in

00*|010*) echo "International" ;;

0898*|0891*) echo "Value added" ;;

0800*) echo "Freephone" ;;

1??) echo "Service number" ;;

0?????????) echo "National code (pre 1995)" ;;

01?????????) echo "National code (after 1995)" ;;

*) echo "Unknown code" ;;

esac

8.3 Entering and leaving the shell

In this section we look at the command sh — the shell. As we have
discussed, the shell is a program. It is treated just as any other utility,
and as such can take arguments. If it takes one filename as its argument,
the action taken is to take its input (the commands for that shell) from
that file, which is called a shell script. With no arguments, the shell reads
its commands from the standard input. When a shell terminates, just like
any other command it returns an exit status, which is normally the status
of the last command executed by that shell.

Create a file (mycommand, say), containing a single line which is the
shell command false. Run the command and check its exit status using
$?:

159

Introducing UNIX and Linux

$ sh mycommand
$ echo $?
1

Add an extra line, which is the shell command true, to the end of
mycommand (using vi or >>) which is the shell command true; run the
command again and check the exit status. This time it will be 0.

NOTE

It is good practice

explicitly to use exit to

leave a script, rather

than allowing a default

exit status

A shell can be forced to terminate with a specific exit status by means
of command exit. Add the following line to the end of mycommand, run it
again and see what exit status you then get:

exit 42

Any commands that might be executed after an exit command are
discarded; exit kills the shell immediately. The same is true of an
interactive shell.

Type sh to start a new interactive shell, and reset the prompt (so you
know which is the new shell, and which the previous one) then type exit

followed by a number. You will see that the new shell terminates (since
you are back to the original prompt), and $? confirms that the new shell
did indeed return an exit status to the original shell.

$ sh
$ PS1="--> "
--> exit 99
$ echo $?
99

Worked example 8.10
Write a script called morning to exit with exit status 0 (if it is run
before noon) and status 1 (if run after noon).
Solution: Use date to check the time, then test to check whether the
time is am or pm.

HOUR=$(date +"%H") # HOUR is a number between 0 and 23

if [$HOUR -le 11] # Check HOUR is AM

then exit 0 # ... then exit with status 0

else exit 1 # ... otherwise status 1

fi

This command can then be used, for instance, in the following
manner:

$ if sh morning
> then echo "Good morning"
> else echo "Good afternoon"
> fi

160

More on shells

You could have piped the output from date to cut instead of using
the formatting option to date, as in previous worked examples. By
now, however, you should be getting into the habit of using man to
find out more information on commands.

The shell supports various options, just like other commands. A very
useful option is -x (‘eXpand’), which instructs the shell that, each time it
is about to execute a command, it should display on the standard error
stream the name of that command. This is performed after all variable
names have been replaced by their values, and other substitutions done; it
is thus a very good method of debugging shell scripts in the event of them
not working as planned. For instance, supposing file badcommand contains

date # This is OK ...

cat $LOGNAME # but file chris doesn’t exist

We could then run this with option -x set:

$ sh -x badcommand
+ date

Mon Dec 10 17:39:52 GMT 2001

+ cat chris

cat: chris: No such file or directory

Shell options can be set during a shell session by means of the command
set:

$ set -x

and can be unset as follows:
NOTE

Not unset

$ set +x

Within a script — or indeed when using an interactive shell — you can
set the positional parameters $1, $2, etc., without passing them as
arguments to the script. This uses set, and in the same way as before.
Suppose we have a file testfile, which contains a script. Having set -x

at the start of the file and executing the file using sh would be equivalent
to not having set -x in the script, and running the script with sh -x

testfile. If we wanted to pass other arguments to testfile, we could
either have:

$ sh testfile arg1 arg2 arg3

or we could set the extra arguments at the start of the script with

set arg1 arg2 arg3

161

Introducing UNIX and Linux

in which case $1 would become arg1, $2 would become arg2, $3 would
become arg3 and $# would become 3. This is handy when debugging
scripts that use positional parameters. After setting positional
parameters, you can list what they are, together with the values of all
other environment variables, by just typing set. You can unset all of
them with:

$ set --

Try the following:

$ set --
$ set Chris
$ echo Hello $1
Hello Chris

$ set Sam
$ echo Hello $1
Hello Sam

The line set Sam has reset the value of the first positional parameter $1
to Sam.

8.4 More about scripts with options

Writing a script with arguments is straightforward — you just need to
examine $1, $2, etc. — but what about options? Suppose you wanted to

NOTE

An option is an

argument that

commences with a

hyphen

write a command mycommand which, if given option -h, would print a
‘help’ message rather than executing:

$ mycommand -h
Usage: mycommand [-h]

You could check whether $1 is equal to ‘-h’, but if you had several
possible options, not just one, the number of permutations would make
this a very messy programming exercise. If mycommand took option -a in
addition to -h, you would have to check for:

mycommand -h

mycommand -a

mycommand -ah

mycommand -ha

mycommand -a -h

mycommand -h -a

in addition to any invalid options it might be presented with. The utility
getopts is provided to assist in writing shells that have options. Consider
the instance above — we could have as the contents of mycommand:

162

More on shells

while getopts h OPTIONNAME

do

case $OPTIONNAME in

h) echo ’Usage: mycommand [-h]’ ;;

?) echo ’Bad option to mycommand’

exit 1 ;;

esac

done

echo "Arguments were $@"

The action that getopts performs is to look at getopts’ first argument,
which should be a list of letters — representing the valid options allowed
by the script — and possibly colons (see below). It then looks at the next
argument to the script in which it occurs. If the argument to a script is an
option (i.e. preceded by a minus sign), getopts checks to see whether the
option is in the list of valid options. If not, an error message is displayed.
The second argument to getopts is a variable name, which is set to the

NOTE

Options must precede all

other arguments that are

not options
option that getopts has discovered. Only one option at a time will be
checked, so you need to enclose getopts in a while loop. Let’s see what
happens when mycommand is called:

$ mycommand -h hello
Usage: mycommand [-h]

Arguments were -h hello

$ mycommand -x hello
mycommand: illegal option -- x

Bad option to mycommand

$ mycommand hello there
Arguments were hello there

$ mycommand hello -h

NOTE

In the case of mycommand

hello -h, the argument

-h is not an option
Arguments were hello -h

Some commands take options that require arguments — such as lp,
whose option -d must be followed by the name of the destination printer.
This is handled in getopts by using colons.

If an option requires an argument, then a colon should follow the
option name in the list of allowed options to getopts. When that option

NOTE

If you intend to write

scripts which require

options, then using

getopts is the preferred

method

is encountered, the value of its argument will be stored in the system
variable OPTARG. For instance, suppose a script called mymessage takes
one option -m, followed by a string, and displays that string. With no
arguments, mymessage displays Hello. The string would be an argument
to the -m option. This script might be coded thus:

163

Introducing UNIX and Linux

MESSAGE=Hello # Variable to store message

if getopts m: OPTIONNAME # If an option found

then

case $OPTIONNAME in # Check which option found

m) MESSAGE=$OPTARG;;

?) exit 1;; # Exit if not -m

esac

fi

echo $MESSAGE # Output the message

The number of the next argument to be processed by getopts is stored in
OPTIND, so that by using shift you can strip off the options from the
command and leave the rest of the arguments for processing later.

Worked example 8.11
Write a script mymail to call mailx to send messages. The script
should take an optional argument -s (to specify the subject) and one
or more other arguments to specify the recipients (just like mailx).
No other options apart from -s should be allowed. If mymail is called
without option -s it should prompt the user for a subject.

$ mymail -s "Test message" sam
(message)
$ mymail sam
Subject: Test message
(message)

Solution: Use getopts to process the command line the script is
invoked from:

SUBJECT=""

if getopts s: OPTNAME # Valid option is ’s’

then # which takes an argument

case $OPTNAME in

s) SUBJECT="$OPTARG";; # The argument to ’s’ is

SUBJECT

?) echo "Usage: $0 [-s subject] users"

exit 1;; # Exit if invalid option

esac

fi

shift $(($OPTIND - 1)) # Remove the options

USERS="$*" # The rest of the line

is the recipients

164

More on shells

if [-z "$USERS"] # ... which is compulsory

then echo "Must specify recipients"

exit 1 # Exit if no recipients

fi

while [-z "$SUBJECT"] # Loop until subject

do # is not null

printf "Subject (no quotes): "

read SUBJECT

done

mailx -s "$SUBJECT" $USERS"

8.5 Symbolic links

In Chapter 5 we introduced links. Recall that a file is represented by a
name and by an inode, and that a single inode can have several names.
We use a link to create an extra name for an inode using the command
ln, so

$ ln fileA fileB

will cause fileA and fileB to be two names for the same file. If you
delete one of them, the other continues to exist, and the file only
disappears when both are removed. They share the same inode.

These hard links can only be used within a single filesystem. Hard links
can also only be used on ordinary files, and not on directories. If you try,
for instance,

$ ln / rootdirectory

you will get an error message.
There is another type of link referred to as a symbolic link, or soft link

NOTE

Not POSIX which can get around these problems.
A hard link is an entry in a directory associating a filename with an

inode. A soft link is an entry in a directory associating a filename with
another filename. This is an important distinction — hard links are
names for inodes, soft links are names for other filenames. To create a soft
link, use ln with option -s (‘symbolic’). Consider:

$ ln -s fileA fileB

which will create a symbolic link, called fileB, to a file fileA, which
should already exist. Examining your files with ls -l would give
something like

165

Introducing UNIX and Linux

lrw-r--r-- 1 chris ugrads 122 May 21 18:40 fileB -> fileA

indicating that fileB is a symbolic link (l in column 1), and that it
points to (->) fileA. Whenever you use fileB, UNIX will assume you
want to access fileA and treat fileB accordingly. If fileA does not
exist, and you try to access fileB, you will get an error message telling
you fileB does not exist.

You can make a symbolic link to any file, provided that the file already
exists. The advantage of symbolic links is that you do not have to worry
about the filesystems the system’s storage is divided into. There is a
danger, though: if the file pointed to by a symbolic link is deleted, the
link remains in place. Try:

$ ln -s fileA fileB
$ rm fileA
$ cat fileB
cat: fileB: No such file or directory

Thus you must be careful when deleting files which are pointed to by
symbolic links.

Worked example 8.12
In your home directory create a symbolic link called systmp which is
linked to /tmp.
Solution: Use ln -s, as just described. You cannot use a hard link,
since /tmp will (almost certainly) be on a different filesystem.

$ ln -s /tmp $HOME/systmp

Now try the following to confirm it works:

$ ls $HOME/systmp
$ ls /tmp

8.6 Setting up terminals

With a bit of luck, you’ll never have to worry about the ‘characteristics’
of your own terminal, but it is possible that you may have to hook up a
terminal to the system and then find it’s not quite in order. The
command tput is provided to help you check basic characteristics of your
terminal, using knowledge provided by the environment variable TERM. It
can perform operations such as ‘resetting’ or ‘initialising’ your terminal (if
either is possible) and cause your screen to ‘clear’. The usability of this
command depends entirely on the type of terminal you are using, and
only three actions are specified by POSIX. To clear the terminal screen,

166

More on shells

invoke tput with argument clear:

$ tput clear

The reset and initialise procedures require arguments reset and init

respectively, and their actions depend on the system you are using.
Typically you may need tput reset if your terminal starts to respond
unexpectedly, which is sometimes due to having received spurious data it
has interpreted. This can sometimes happen if you cat a binary file by
mistake. Check the manual page for tput to find out precisely what effect
binary files will have on your system.

The TAB key provides a TAB character as input to the system. For
most purposes a TAB can be treated as a Space, and both are sometimes
collectively described as whitespace. The effect of touching a TAB key is
to move the cursor to the next tab position. You can reset the tab
positions on your terminal (just for the duration of your current session)

NOTE

The tabs command only

works on some terminals using the command tabs. Followed by a comma-separated list of
numbers, tabs will reset the tab positions to those column numbers. So,
to set the tab positions to columns 5, 10 and 15, you would type:

$ tabs 5,10,15

Tabs are useful in text files if you want to line up columns, and don’t wish
to involve yourself in any complex text formatting programs. It is a good
idea when writing shell scripts to ‘line up’ the first character of each
command to clearly identify commands inside a loop. For instance, in the
following script, the ‘body’ of the for loop is made up of two commands
that have been indented by several spaces.

for i in *

do

printf "File %s has size " $i

wc -c $i

printf "\n"

done

Rather than count the number of spaces each time, you may find it easier
to insert a TAB character instead:

for i in *

do

TABprintf "File %s has size " $i

TABwc -c $i

TABprintf "\n"
done

167

Introducing UNIX and Linux

8.7 Conventions used in UNIX file systems

In Chapter 5 we introduced the hierarchy of UNIX directories and files. In
this section we look in more detail at which files are stored where.
Although your home directory will be located at least one level down the
hierarchy, and whatever subdirectories you create are your own business,
there are some conventions it would be unwise to ignore. Conventions are
not always followed, however, even in parts of the file hierarchy that
contain system files, and there is no requirement for them in the
standards.

Executable files, whether they are binary files or executable shell
scripts, are usually held in directories called bin, or with bin as part of
their name. For instance:

/cs/ugrad/chris/bin

/cs/ugrad/chris/import/bin

/cs/ugrad/chris/bin/star4

/cs/ugrad/chris/bin/scripts

If bin is the last component of the pathname, the previous components
would typically indicate some property of the commands held in the
directory. The directory /cs/ugrad/chris/import/bin might well hold

NOTE

‘Imported’ is used to

indicate commands that

have come from other

systems

commands chris has been mailed by colleagues. If bin is not the last
component, subsequent names in the pathname might indicate the type of
machine the commands can run on. Commands in
/cs/ugrad/chris/bin/star4 might be binary commands that will only
run on a Star4 system, and /cs/ugrad/chris/bin/scripts might

NOTE

Recall that binary code

is machine-specific contain shell scripts.
Devices are contained in directories called dev; most systems will

simply have /dev as the only such directory, since they cannot be created
by users at will. Manual pages are always contained in a hierarchy with
man as the last component. Source code (such as C or Pascal programs) is
often held in directories called src. Files that must be stored temporarily
while being sent to a printer or waiting to be sent off by the electronic
mail program, are held in directories called spool. Files and directories

NOTE

var = ‘variable size’ whose size is known to vary considerably are often held in a directory
called var. It would not be uncommon for chris’s mailbox — the file in
which incoming mail is stored before being read — to be the file
/var/spool/mail/chris. Libraries — that is, sets of data required by
specific utilities such as the C compiler — are held in directories called
lib, and ‘include’ files — also required by the C compiler — are held in
directories called include. Have a look at the root directory, and you will
see several of these directories.

There is a wide variety of practice across manufacturers and
institutions, but these conventions are broadly adhered to, even if minor

168

More on shells

variations are added; if you find a directory called 4lib you would be
fairly safe guessing it to be a ‘library’ directory.

The last directory name that interests us here is tmp. This directory is
used for temporary files. Many commands — including several of the
scripts in this book — use temporary files that are only required while the
command is running, and the existence of these files is of no interest to
the user running the command. Instead of using the current directory to
store the temporary files, it is good practice to use a completely different
directory. There are two principal reasons for this. First, it avoids the
problem of the current directory filling up with unwanted files (should
they accidentally not be deleted) and secondly, it prevents existing files
being overwritten (should their names happen to coincide with that of the
temporary file). There is also an advantage from the viewpoint of the
system administrator — provided that the locations of the tmp directories
are known, they can periodically have their contents removed, so that
unwanted temporary files do not waste storage space.

You can expect to find a directory called /tmp, and you can choose
names for temporary files to place in that directory by using $$ as part of

NOTE

$$ is the current process

number the filename.

Worked example 8.13
Write a script to repeatedly request you to type in the names of files,
and to concatenate them and display on the terminal the resulting
file after all the concatenation has taken place. The script should
terminate when you enter a blank line in response to the request for
a filename.
Solution: We need to concatenate the files to a temporary file, cat
that file, then delete it.

Start by choosing a unique name for the temporary file

TMPFILE=/tmp/$LOGNAME.$$

Double check that it doesn’t exist - just in case

if [-f $TMPFILE]

then echo "Temporary file exists"

exit 1 # The command fails ...

fi

while true # Forever ...

do printf "New file (Return to finish): "

read NEXTFILE

if [-z "$NEXTFILE"]

then break # Leave the while loop

fi

cat $NEXTFILE >>$TMPFILE

169

Introducing UNIX and Linux

done

cat $TMPFILE # Print the temporary file

rm $TMPFILE # Remove the temporary file

exit 0 # Exit cleanly

First of all, a filename is chosen to store the concatenated text as it is
produced; a check is made to ensure that it does not in fact exist.
This is necessary — in the unlikely event that another user had
chosen the same temporary filename, and you did not make this
check, the results of running the script would at best be
unpredictable. A more sophisticated solution would try generating
other filenames until it found one that did not exist. The script then
loops continuously, requesting the user to enter a filename, reading
that name from standard input, and storing it in the variable
NEXTFILE. If NEXTFILE has zero length (i.e. the user has typed in a
blank line) the loop is exited using break, otherwise the named file is
appended to the end of the temporary file. Finally, after the loop has
been exited, the temporary file is sent to standard output and then
removed.

CHAPTER SUMMARY

Table 8.3 Commands

introduced in this

chapter

exit cause the shell to exit

expr evaluate an expression

getopts parse options for a utility

set set options and positional parameters

tabs reset the tab positions

tput change terminal characteristics

unset unset options and positional parameters

EXERCISES

1 Write a script cm2ftin which uses arithmetic expansion to convert
from centimetres to feet and inches, rounded down to the nearest
whole number of inches. Input should be a whole number of
centimetres, and you may assume 1 foot is 30 cm.

170

More on shells

$ cm2ftin
Enter cm: 42
42 cm is 1 foot 5 inches

2 Repeat exercise 1 using expr instead of arithmetic expansion.

3 Write a script to read a single argument, representing the name of a
text file, and display the average number of characters per line
(excluding Newline characters) to two decimal places. Make sure that
the script can handle the cases when it is called with the wrong
number of arguments and when it cannot access the required file.
Hint: use read and wc.

4 Write a script called area to take two numerical arguments,
representing the base length and height of a right-angled triangle,
plus one or two options -a and -h (meaning area and help). With
option -a, the area of the triangle should be displayed on standard
output preceded by the message Area is, and with option -h a short
help message should be displayed. With no options, there should be
no output; any other option should be ignored, except that a warning
message should be output on standard error.

5 Write a script called hello to display one of Good morning, Good
afternoon or Good evening depending on the time of day. You
should use the output of date and pattern matching.

6 Write a script called saytime to display the current time in words.

7 Write a script called drawsquare to take as argument a single
number, between 3 and 15 inclusive, and draw on the standard
output a square, using the symbols + (plus), - (hyphen) and |

(vertical bar), so:

$ drawsquare 4
+--+

| |

| |

+--+

If drawsquare is presented without arguments, with more than 1
argument, or with a single argument that is not a number between 3
and 15, it should display an error message and exit with status 1.

8 Write a script called drawcube to take as argument a single number,
between 3 and 15 inclusive, and draw on the standard output a cube,
using the symbols + (plus), - (hyphen), / (slash) and | (vertical bar),
so:

171

Introducing UNIX and Linux

$ drawcube 4
+--+

/ /|

/ / |

+--+ +

| | /

| |/

+--+

If drawcube is presented without arguments, with more than 1
argument, or with a single argument that is not a number between 3
and 15, it should output an error message and exit with status 1.

9 Write a script called eurhello to display a greeting in one of several
languages. With option -e, or with no options, eurhello should use
the greeting Hello, with option -f it should use the French Bonjour,
and with option -g it should use the German Guten Tag. It should
also allow an option -G, which takes an argument, allowing an
arbitrary greeting. Following any options, an argument, which is a
string representing the name of the person to whom the greeting is
addressed, is required:

$ eurhello Chris
Hello Chris

$ eurhello -f "Monsieur le President"
Bonjour Monsieur le President

$ eurhello -G "Hi there" Sam
Hi there Sam

If several of the three possible options are given as arguments to the
script, the last (rightmost) one takes precedence.

172

C
H
A
P
T
E
R

9

Advanced shell
programming

CHAPTER OVERVIEW

This chapter covers

� trapping signals;
� shell functions;
� the ‘exec’ and ‘eval’ mechanisms;
� mailing files which are not text files; and
� other POSIX utilities not discussed elsewhere in this book.

In this chapter we examine briefly those aspects of shells that are not
required later in this book, and which may be considered as ‘advanced’ in
comparison with those topics already covered. The other chapters in the
book will enable you to use the shell quite adequately, and the contents of
this chapter are by no means necessary for you to be a competent shell
programmer. However, even if you do not at this stage make use of the
facilities discussed in this chapter, knowledge of their existence is
important should you in the future decide to study shell programming in
greater detail. Also, if you read shell scripts written by other people, and
if you encounter unfamiliar utilities, you will at least recognise the
facilities they may use.

9.1 Sending and trapping signals

In some circumstances you will wish that accidentally typing ctrl-C will
not kill the current process. This would be true, for example, in the
execution of a complex script that makes non-trivial changes to files,
where your filespace would be left in a mess if the script died when only
half-completed. There is a mechanism, known as trapping signals,

173

Introducing UNIX and Linux

whereby a shell takes an action specified by you when it receives a signal,
rather than taking the default action. The command used to intercept a
signal is trap, and it is used in the following manner:

trap ’action’ signal

The action is either null or a string containing a command, and the signal
is one of the signal names. Create a script interrupts containing:

trap ’echo Ouch’ INT

echo Beginning

sleep 10

echo ten seconds

sleep 10

echo twenty seconds

sleep 10

echo thirty seconds and ended

and execute it using sh. Try to interrupt it by typing ctrl-C at your

NOTE

The signal SIGINT (INT

= ‘Interrupt’) is sent

when ctrl-C is pressed

The SIG in the name of a

signal is omitted when

naming the signal to

trap

terminal a couple of times and see what happens. You should see

$ sh interrupts
Beginning

ctrl-C
Ouch

ten seconds

ctrl-C
Ouch

twenty seconds

ctrl-C
Ouch

thirty seconds and ended

Similar to SIGINT is SIGQUIT. This signal can usually be generated from
your terminal by typing ctrl-\. The difference between the two is that
SIGQUIT will on many systems generate a coredump, that is a file named
core which contains information about the interrupted command when it
received the signal. The file core can be used to examine the state of the
program when the signal was received. A core file can be interrogated by
an experienced UNIX programmer using utilities such as dbx, but at this
stage you will not be interested in its contents. A coredump is usually a
big file and should be removed unless you intend to use it. Try the
following:

174

Advanced shell programming

$ sleep 1000 &
[1] 17465

$ kill -s QUIT %1
[1]+ Quit (core dumped) sleep 1000

Check which files you have using ls and you should find that one named
core has now been created.

When a shell script exits, a signal is sent to it called EXIT, which can
be trapped. To see which signals you have trapped, use trap with no
arguments. Be careful which signals you trap — in particular, don’t try

NOTE

You will not be allowed

to trap KILL KILL (or you would have difficulty using kill to destroy the process) or
HUP (or unpredictable things would happen if you tried to suspend the
process). If you have set a trap on a signal, you can remove it by giving it
the action - (minus symbol), so:

trap - INT

will restore ctrl-C to its normal function.

Worked example 9.1
By setting a trap on your login shell, arrange to be given the message
Goodbye when you logout.
Solution: The signal EXIT is sent to your login shell when you logout,
so use trap to perform an echo when this signal is intercepted:

$ trap ’echo Goodbye’ EXIT

There are various other signals — the main standard ones are listed in
Table 9.1, although most UNIX systems support many more.

Table 9.1 Signal

names
SIGEXIT trapped by all shells immediately before exit

SIGHUP hangup — sent to child process when parent dies

SIGINT Sent by ctrl-C

SIGQUIT Sent by ctrl-\ and may coredump

SIGKILL ‘Sure kill’ signal — cannot be trapped

SIGALRM ‘Alarm’ — used by e.g. sleep

SIGTERM The ‘default’ signal used by kill

9.2 Functions

The shell supports functions, which are a way of grouping commands
together in a non-trivial manner without needing to write a new shell

175

Introducing UNIX and Linux

script. In complexity, functions lie between a straightforward pipe (or
similar shell command) and a script.

To create a function, you first of all choose a name for a function, then
enter that name, followed by (), followed by a shell command enclosed in
braces. For example, a simple function myls, which performs ls -l

$HOME, might be defined thus:

$ myls() { ls -l $HOME }

NOTE

Separate the braces from

the function definition

by blanks To execute a function, simply type its name:

$ myls

A function can only be used by the shell in which it has been defined, and
subshells or child processes cannot use it. A function will use the
environment of the current shell (so that you need not export variables
that the function may use).

Worked example 9.2
Write a function myusage to display the total disk space used by your
home directory, preceded by a message reminding you of that
directory’s pathname.
Solution: Standard syntax for defining a function is followed. To find
the disk usage, du is used; the output from du with option -s consists
of two fields: the size of the directory that is its argument, and the
name of the directory. Use cut to isolate the size. The output from
du thus piped to cut will print the size of your home directory on
standard output.

$ myusage() {
> printf "Directory %s uses " $HOME
> du -s $HOME | cut -f 1
> }

You may be wondering why functions are needed — at first sight, they
may appear an added complication to the shell, and duplicate the purpose
of executable shell scripts. However, there are some operations which
cannot be performed by a script. Consider writing a command to alter the
value of a variable in the current shell. If it is implemented as a shell
script, running the command involves creating a child process whose
parent is the current shell. Any change in that variable’s value will be
done by the child process. However, there is no way that the child process
can communicate the new value back to its parent, and the variable’s
value in the current shell thus remains unchanged. A function, however,

176

Advanced shell programming

would be executed by the current shell without sparking a child process,
and could therefore be used successfully.

Having defined one or more functions, you may wish to run a
command without looking up the function definitions. You may, for
instance, have a shell script that runs a command called myls. You would
not wish the command run by the shell script that was called myls to be
confused with the function called myls. Since a function is not the name
of a file, you cannot use the value of PATH to perform the disambiguation.

As a simple example, supposing you had called the function above ls

instead of myls. Then, to run the original utility called ls, simply prefix
the command with command:

$ command ls

The effect of command is identical to typing a command not preceded by
command, except that user-defined functions are not looked up.

Functions can be defined interactively or within a script, in which case
they can be used from within that script only, unless the script is run
using dot (.) (see Chapter 6).

Another reason for using functions is efficiency. Executing a function
involves the shell in less work because it does not have to create a new
process. It can also be argued that functions are easier to understand
than shell scripts. One common function that many users define, in order
to speed up their sessions, is ll:

$ ll() { ls -l }

If you wish to exit from a function before the end you should use return

— this is equivalent to the use of exit to leave a shell script early.

9.3 Aliases

Functions are general-purpose, and can be arbitrarily long. A mechanism
similar to functions, but suitable for naming short commands only, is that
of aliasing. The format is

alias alias-name=string

and whenever the alias-name is encountered it is replaced by the string,
whose value is then executed as a command. For instance, instead of
naming ll above using functions, we could have

$ alias ll=’ls -l’

The command alias, with no arguments, lists all the aliases you have set
up, and alias followed by a name (assumed to be the name of an alias)

177

Introducing UNIX and Linux

will display the string that alias represents. To remove an alias definition,
the command unalias can be used.

When the shell encounters a name, it first of all checks to see whether
it is an alias; if not, the shell sees if there is a function definition for it. If
both of these fail, it examines the PATH to find an executable command by
that name.

9.4 The ‘exec’ mechanism

When you execute a script, a copy of the shell is created. Thus when that
script itself executes a command, a process is created for that command
as well as the process for the calling shell. This is potentially inefficient,
especially if the script is relatively simple, but essentially unavoidable.

In a few instances, however, the calling shell is redundant, in particular
if a utility is executed as the last command in the shell. The shell will
terminate precisely when the utility has terminated. During the time that
the utility is running, the shell’s process continues to run, but is simply
waiting for the utility to finish — nothing more. This is inefficient because
the kernel still needs to manage the shell process, and the shell is a ‘big’
program. The command exec is provided to reduce this redundancy.

Using exec the final command can be executed by the same process as
the calling shell. UNIX accomplishes this by replacing the machine code
that the shell process contains with the machine code for the command,
and the shell cannot therefore execute any later commands. Suppose file
sleepfile contains one line, sleep 100:

$ sh sleepfile &
[1] 28409

$ ps
PID TT STAT TIME COMMAND

15826 p4 S 0:21 sh

28409 p4 S 0:00 sh sleepfile

28410 p4 S 0:00 sleep 100

28417 p4 R 0:00 ps

There are four processes: your login shell 15826, the ps process, process
28409 for the shell that interprets the script, and the process 28410 for
the command in the script. Now, replace the first line of the file by exec

sleep 100, and we get:

$ sh sleepfile &
[1] 28547

$ ps

178

Advanced shell programming

PID TT STAT TIME COMMAND

15826 p4 S 0:22 sh

28547 p4 S 0:00 sleep 100

28551 p4 R 0:00 ps

The shell script was created with PID 28547. When we look at the
processes, we have the login shell and the ps process as before, but
process 28547 is the sleep command, not a shell.

Worked example 9.3
Write a script to take one argument, assumed to be a filename, and
run vi on that file using exec. If no arguments are given, the script
should exit with return status 1.
Solution:

Check number of arguments

if [$# -ne 1]

If too few arguments, warn user

then echo $0 requires exactly 1 argument

and exit with status 1

exit 1

otherwise run vi

else exec vi $1

fi

9.5 The ‘eval’ mechanism

Suppose you are using variables that contain values representing the
names of other variables. For instance, you wish to check the values of
variables X1 through X100, and you need a loop to perform this task. You
cannot choose another variable N, loop the value of N from 1 to 100 using
expr, and examine the value of X$N. It simply won’t work. Nor does the
shell allow indexed variables, such as arrays, as in Pascal or C. You must
use eval instead; eval will examine its arguments, and concatenate them
to form a command it then executes. The arguments to eval are
examined and any environment variables are replaced by their values.
This forms the command that is then executed. So to print out the values
of PS1, PS2 and HOME, we might have:

for i in HOME PS1 PS2

do

eval echo The value of $i is ’$’$i

done

179

Introducing UNIX and Linux

For the first iteration of the loop, the value of i is HOME; the command

eval echo The value of $i is ’$’$i

is then executed. The first thing that eval does is to replace $i by HOME

and remove the quotes, and then the remainder of the line after eval is
executed as a command itself:

echo The value of HOME is $HOME

This process is then repeated with i set to PS1 and then to PS2.

Worked example 9.4
Create a script to read in a single-line command and execute it.
Solution: Use read to read the command into a variable (say CMD)
and eval to execute that command.

echo "Type a command:" # Prompt the user ...

read CMD # read in the command ...

eval $CMD # and run it

Note that the last line of the script must not be simply $CMD — see
what happens if you change that line to $CMD and then enter ls
$HOME as the command. You will get a message

ls: $HOME: No such file or directory

indicating that it was trying to find a file whose actual name is $HOME.

If you find yourself needing to specify an array of variables while shell
programming, then using eval is the only method available to you. Your
problem is likely to be solved more effectively using another utility, and
Awk — which is introduced in Chapter 11 — is recommended.

9.6 Sending data across networks

9.6.1 Sending printable characters

If you send electronic mail to someone, the message you send must consist
only of printable characters. If you wish to send other data you must
encode it into a form containing only ordinary text. The reason for this is
that some networks interpret some non-printing characters as
instructions, which could cause messages to go astray or their contents to
be changed. The command uuencode takes a file and writes to standard
output a representation of that file containing only ASCII characters; the
command uudecode takes a file and performs the reverse operation.
Either one or two arguments are needed by uuencode — the second one is
the name of the file as it will be known when decoded (which is not
necessarily the same as the name of the file you are encoding). The first

180

Advanced shell programming

argument, if there are two, is the file to be encoded (standard input is
encoded if there is only one argument). The format of the file after
encoding is a sequence of lines commencing with a header line and
terminating with end on a line of its own. The header line consists of
three fields — the word begin, the access permissions the file should have
after it is decoded, and the name of the file after decoding. For example,
suppose we have a file A containing an ‘alert’ character (ctrl-G), and we
wish to mail it to sam, and to be received with name chris file. We can
check what the file contains using od, which will confirm that \a (i.e.

NOTE

od is discussed in

Chapter 5 ctrl-G) is indeed included in chris file

$ od -t c A
0000000 h e l l o \a \n
0000007

This file can now be coded using uuencode. Note that the output is sent
to standard output:

$ uuencode A chris file
begin u=rw,go= chris file

’:&5L;&\’"@CP
(line containing a single blank space)
end

So, to send the encoded file to sam, we merely pipe the output to mailx:

$ uuencode A chris file | mailx -s "Binary file" sam

The resulting file can then be recreated by sam storing the mail message
in (say) mailfile and typing:

$ uudecode mailfile

Any lines before begin and after end are ignored by uudecode, so you
don’t need to worry about any extra header lines the mailer inserts into
your message. Try this yourself — choose a file, uuencode it, mail it to a
friend, and get them to uudecode it. Have a look at the encoded version,
and the final decoded file, and convince yourself that it does in fact work.

Try now encoding a large file, say /usr/dict/words:

$ uuencode /usr/dict/words tmpfile

Look at the output — it consists of lines of fixed width (61 characters)
commencing with the letter M:

181

Introducing UNIX and Linux

...

M=&4*87)B;E86P*87)B;W)E=’5M"F%R8G5T=7,*87)C"F%R8V%D90I!<F-A

M9&EA"F%R8N80IA<F-A;F4*87)C8V]S"F%R8V-O<VEN90IA<F-H"F%R8VAA

M90IA<F-H8C"F%R8VAA:7-M"F%R8VAA;F=E; IA<F-H8FES:&]P"F%R8VAD

...

9.6.2 Splitting files

It is possible to write scripts to read in a file containing several encoded
files and automatically separate them.

Some mailers and networks restrict the size of messages they can send

NOTE

Often restricted to 64k

bytes so that if you wish to mail a large file you cannot send it in a single
message. You could, of course, edit the message into several smaller files
and send each one in turn, but that would be tedious. The command
split will split a file automatically for you into similar sized pieces. For
instance, try

$ split /usr/dict/words

and you will find that a large collection of files have been created in the
current directory with names xaa, xab, xac, etc., all of which (with the
exception of the last one) are 1000 lines long (test this with wc). With
option -l (‘lines’) followed by a number, split will chop a file into a
collection of files each of that number of lines. The reason for having 1000
lines as the default size of the file is not only that 1000 is a ‘nice round
number’, but also that 1000 lines of text with 61 characters per line
(uuencode outputs lines which are 61 characters wide) comprise just less
than the 64k limit that some mailers impose on files.

Worked example 9.5
You have a long file called bigdata, which contains control
characters, and you wish sam to have a copy of it. Arrange to send
sam a copy via electronic mail.
Solution: First of all, bigdata must be encoded and then split into
small enough chunks to pass through the mailer. Each of those
chunks must be individually mailed to sam.

$ uuencode bigdata bigdata | split
$ for i in x??
> do
> mailx -s "File $i" sam <$i
> done

You must ensure that you have no files whose names are of three
letters commencing with an x before attempting this exercise. The

182

Advanced shell programming

xaa files will be overwritten by split if files of the same name
already exist in your current directory. The files sam receives can be
joined together and then uudecoded to recreate the original file
bigdata. Although uudecode will strip away headers and footers
from a single file, it will not cope with extra lines inserted in the
middle of a file. The recreated file will have to be edited to remove all
headers and footers introduced by the mailer.

It is to be hoped that sending data across a network will result in the
message received being identical to that sent. Regrettably, this is not
always the case. If the communications medium is prone to interference
(such as a crackly telephone line) it sometimes happens that data
becomes corrupted. The command cksum can be used to identify quickly

NOTE

On some non-POSIX

systems the command

sum is provided instead

of cksum

whether this has happened. Followed by a filename, cksum will print a
large number, known as a checksum, based on the contents of the file,
together with the number of characters in that file. If anything is altered
in the file, the number created will be very different, as in the fllowing
example in which the capital ‘T’ becomes a lower-case ‘t’:

$ echo "To be or not to be" | cksum
3740407258 19

$ echo "to be or not to be" | cksum
1143317160 19

If the sender and the recipient of data both run cksum on the message,
and this yields the same number, then they can both be confident that
the message has not been corrupted during transmission. To try out
cksum, create two files (say data1 and data2) using vi, and containing
the same piece of text (a short poem would be suitable). Then see what
happens if you first of all use cksum to check whether they are the same,
and then try diff.

9.7 Makefiles

When developing software you will frequently create files that depend on

NOTE

Note the suffix .c for C

files the existence and/or state of other files. Consider the situation where you
have a C program, and which you wish to call myprogram, which is stored
in two files, prog1.c and prog2.c. In order to compile the program you
would compile each of the two source code files, creating files prog1.o

NOTE

Program links are not

related to file links and prog2.o respectively which contain object code (binary code). Those
two files would then be linked to create the final file myprogram. That is,
the binary code in prog1.o and prog2.o will be joined together to
produce a single binary file — this is in fact not a trivial operation. We
therefore have the dependencies:

183

Introducing UNIX and Linux

� prog1.o depends on prog1.c

� prog2.o depends on prog2.c

� myprogram depends on both prog1.o and prog2.o.

In order to compile this C program using the command cc, you would
have three commands to perform:

$ cc -c prog1.c
$ cc -c prog2.c
$ cc -o myprogram prog1.o prog2.o

The first two lines, which translate the two source files to object code, can
be performed in either order. The final command, which links two object
code files together, must wait until the first two have been completed.

If you were to type in these commands each time, there would be a
danger of making an error and accidentally forgetting to recompile one of
the source files after editing it. Alternatively, you could place all three
commands into a file and then execute that file as a shell script. This
would have the disadvantage that if you edited (say) prog1.c you would
also have to recompile prog2.c even though this was not necessary.

In this small example, this might seem a minor problem, but when
performing serious system development it is not unusual to have large
volumes of code that take a long time to compile. In such a case, it is
sensible to minimise the amount of work that has to be done when small
changes to the code are made.

A tool that makes use of file dependencies is known as make. This
works in the following way: a file, called a makefile, is created (usually in
the same directory containing the software being developed), and a
program called make reads that file. The makefile contains information
indicating

� which file depends on which other file(s), and

� what commands must be performed to bring a file ‘up-to-date’.

The above example could have as the contents of its makefile:

myprogram: prog1.o prog2.o

cc -o myprogram prog1.o prog2.o

prog1.o: prog1.c

cc -c prog1.c

prog2.o: prog2.c

cc -c prog2.c

You will notice two types of line in this file. There are lines that are not
indented — they take the form of a word (known as the target) followed
by a colon, and then followed by some other words, where the words

184

Advanced shell programming

would usually be names of files. These lines indicate that the word (file)
on the left of the colon is dependent on the filenames on the right of the
semicolon. Thus myprogram depends on both prog1.o and prog2.o, etc.

The indented lines (which must be indented with a single TAB, not
with Spaces) indicate the action to be taken if the dependency (which
would be shown on the previous line) is not up-to-date. So, if myprogram
was older than either prog1.o or prog2.o, the command cc -o

myprogram prog1.o prog2.o would be executed.
In order to use makefiles, data in the format discussed above should be

stored in a file with name either Makefile or makefile. Then, to bring
the software up-to-date, simply type make followed by the target which
you need updated:

$ make myprogram

If you invoke make without any arguments, it will assume that the target
is the first target mentioned in the makefile. If you run make with option
-n it will display the commands that it would execute, but will not
actually run them. If you are unsure of the correctness of your makefile, it
is wise to run make with the -n option initially simply to ensure that the
actions it performs are in fact the actions you expect. For instance, taking
the above example would give:

$ make -n
cc -c prog1.c

cc -c prog2.c

cc -o myprogram prog1.o prog2.o

If, while running make, one of the commands fails (for example, you had
not created prog1.c at all, or there was an error in that C program),
then make would terminate at that point.

This utility has many other features, and can handle much more
complex dependencies than the simple ones indicated here. If you are
creating programs as part of a course in Pascal or C (say), then a simple
makefile such as this one will be adequate. Only when you move on to
more complex programming tasks will you need to examine make in
greater detail.

Two other standard commands, which are principally used within
makefiles, are worth mentioning briefly. Command ar is used to maintain
‘archives’ of files, and is used principally for maintaining libraries of
object code. When an executable file consisting of binary code is

NOTE

Object code is usualy

produced by a compiled

language such as C
produced, it contains information used by debugging utilities, but not
required simply to execute it. This redundancy can be eliminated from
such a file by means of the command strip.

185

Introducing UNIX and Linux

9.8 Safe programming

To write a script that always works as you want it to, it is good practice
to perform as many checks as you can. Whenever you try to use a file,
make sure that a suitable action is taken if you cannot access that file.
Whenever you write a script called with options or arguments, make sure
that the first few lines check that it has been called with sensible options
and arguments.

So far we have met ways of checking access to individual files, and have
remarked that names of files may be subject to certain limits. A utility
called pathchk is available which will give more information than test.
When followed by the name of a path, pathchk will check that it does not
breach any of those limits, by (for example) being simply too long. It will
also check that no component of the pathname cannot be searched
because it does not have execute permission. With option -p (‘portable’)
it will also indicate any potential problems where the name may be
acceptable for the current system, but breaches certain minimum limits
defined by POSIX, and might thus present problems if the name were to
be used on a different system.

Worked example 9.6
Is it sensible to write a script to create and use a file called
instrumentation and expect this script to work on all systems?
Solution: This is a problem that concerns the portability of a
filename; use pathchk with option -p:

$ pathchk -p instrumentation
pathchk: name ‘instrumentation’ has length 15; exceeds

limit of 14

This message indicates that any filename of length above 14 may not
be allowed on every system, so the answer is ‘no’.

If, during the course of a session logged on to a UNIX system, you
have reset a number of variables, it may be that you accidentally change
the value of a system variable that was defined when you logged in. You
can find what the values of the system-defined variables are with
command getconf (‘get configuration’). This can also be useful in a shell
script if you wish to check that such variables have the required values.
Perhaps the clearest example of where this would be useful would be in
the case of PATH. It is common to reset the value of PATH, as we have

NOTE

PATH is discussed in

Chapter 6 already discussed, so that it includes directories within your own file
space. If you were to make an error while doing this and left out one of
the system directories, you might be unable to proceed, as some
commands you needed to use would be denied you. By using

186

Advanced shell programming

$ getconf PATH

the default value would be printed out and you could reset PATH to a
sensible value, which would allow you to continue.

There are a number of variables which are not ‘environment’ variables
(and cannot be changed) but indicate the system limits (such as the
maximum length of a filename allowed, and the maximum number of
processes you can have running at any one time). These values can only
be accessed using getconf.

9.9 Setting up a terminal

We have assumed that your system administrator has set up your terminal
and the system so that the terminal will work. This is a very reasonable
expectation, but sometimes you may need to communicate with a UNIX
machine from an unusual terminal that has not been set up for you. If you
have a problem with your terminal, then in the normal course of events it
can be corrected using tput; this will not help though if the system does

NOTE

tput is discussed in

Chapter 8 not already have all the information it needs about the terminal.
The command stty is used to specify to the UNIX system the

characteristics both of the terminal and of the communication device
linking the terminal and the system. Clearly, if you cannot communicate
at all with the UNIX system, stty is of no use to you. If you can get the
system as far as reading a line containing stty, you are then in a position

NOTE

WARNING! Be careful

using stty — mistakes

may be difficult to

correct

to correct such things as the size of terminal screen that UNIX thinks you
have, which control characters are matched to which keys, and so on. Try
this command with option -a to display the current settings for your
terminal. You will get several lines of output, which will look something
like:

$ stty -a
speed 9600 baud; rows 25; columns 80; line = 2; intr = ^C;

...

-parenb -parodd cs8 -hupcl -cstopb cread -clocal -crtscts

...

In this instance, the terminal has 25 rows and 80 columns and
communicates with the processors at 9600 baud. The keystroke necessary

NOTE

baud is ‘bits per second’ to send an interrupt signal SIGINT is ctrl-C. Look at the manual page for
stty to discover the meaning of the other information it displays. In
order to change any of the settings, follow stty by the setting you wish to
change and its new value. For example, to cause your terminal to have a
width of only 30 character columns, you should type:

$ stty columns 30

187

Introducing UNIX and Linux

If you try this example, remember to reset the terminal to its original
settings afterwards.

9.10 More on files

UNIX supports named pipes, also known as FIFO files (‘first in first out’).
A named pipe is like an ordinary pipe, except that it has a name by
which it can be referred to from within a program (normally pipes are
anonymous). In order to implement a named pipe, UNIX creates a file as
the named pipe, whose name is the name of the named pipe. The
command mkfifo is available to create such a file. The use of such a file is
that many processes can write to it at once, the file will temporarily store
the data it receives, and when the contents are requested by another
process the contents of the file will be ‘flushed’. Try the following:

$ mkfifo pfile
$ ls -l
total 0 prw------- 1 chris general 0 Dec 3 15:08

pfile

$ echo Hello >pfile &
[1] 2230

$ echo There >pfile &
[2] 2231

$ cat pfile
There

Hello

[1]- Done echo Hello >pfile

[2]+ Done echo There >pfile

You will notice that the ls -l indicates that pfile exists as a file in the
current directory, but the character in the first column is a p indicating
that it is a named pipe. Once a named pipe is ‘opened’, when you start to
write something to it or read something from it, you can write to it from
several processes (such as the two echo processes in the above example)
— the pipe can therefore have several input streams. The input streams
are then merged and the result can be read by reading the named pipe
just like any other file.

As soon as all the processes writing to the named pipe have
terminated, the named pipe closes and any processes attempting to read
it receive the end-of-file character. The named pipe acts as a ‘buffer’,
temporarily storing characters sent to it from its input streams, and after
sending these characters to the standard output they are deleted.

There is one ‘feature’ of named pipes — all processes that read from,
or write to, a given named pipe must be running on the same processor as
that which created the pipe in the first place. If your UNIX system

188

Advanced shell programming

contains many processors you must take care. We do not discuss named
pipes further here, save to indicate that if you are familiar with
programming in C you may wish to investigate them in greater detail.

If you create a binary file using (say) C, that file will contain symbols:
that is to say, it will contain the names used within that file for data that
may need to be communicated to and from the file. Although discussion
of the format of object files is outside the scope of this book, the
command nm is provided to list names in such a file, and will be of
interest to a C programmer. To see how nm works, look in directory
/usr/lib, see what files there are in that directory with suffix .a and

NOTE

To list all .a files, type

ls /usr/lib/*.a choose one of them (say libc.a). A large volume of output will be
produced, so you will probably wish to pipe it through more:

$ nm /usr/lib/libc.a | more

A similar task can be accomplished on the source code files written in C

NOTE

ctags can also be used

on some other language

constructs
or FORTRAN using ctags, which will create a file called tags listing the
named functions defined in those files given to ctags as arguments.

When creating text files that include TABs, it is sometimes
inconvenient to have those TABs there — or vice versa, you may wish a
file to include TABs where otherwise it might not. Situations where this
may be important include preparing input for utilities such as Awk or
make. TABs are sometimes included in text files automatically, especially
by some editors, in order to utilise space more efficiently. The command
expand takes input containing TABs and produces standard output which
is the same as the input but with the TABs replaced by the appropriate
number of spaces. The command unexpand does the reverse — a file
containing spaces will have some (or all) of the spaces replaced by TABs,
where tab stops are assumed to occur at every eighth column. See also
the command tabs discussed previously.

If you have two text files whose lines have been sorted into order, the
utilities comm and join may be of use. To select those lines common to
both files, or which occur in only one of them, use comm. This command is
complementary to diff and to uniq. The output of comm, when given two
arguments representing filenames, is a sequence of lines containing three
tab-separated columns. The first column contains the lines unique to the

NOTE

diff, uniq and paste are

discussed in Chapter 5 first file, the second column the lines unique to the second, and the third
column those lines common to both. For instance, if file A contains

apple

orange

pear

pomegranate

strawberry

189

Introducing UNIX and Linux

and file B contains

apple

peach

pomegranate

raspberry

then the output from

$ comm A B

would be

apple

orange

peach

pear

pomegranate

raspberry

strawberry

To join lines containing a common field from the two files, use join —
this command is complementary to paste. The two files are considered to
contain a number of blank-separated columns. Lines with an identical
first column cause a line to be displayed that is the first field followed by
the other fields from the line in the first file, then the other fields from the
second. To illustrate this command, suppose A and B contain lists of fruits
together with other data; then join will output a sequence of lines that
commence with the fruit names and then include the extra data from A

and B. Suppose A is

apple 2 kilos Monday

orange 4 kilos from Jones’ shop

pear none

pomegranate 3 kilos Tuesday

strawberry 2 boxes

and file B contains

apple 1 kilo Wednesday

peach none

pomegranate 1 kilo Thursday

raspberry none

then the effect of join would be

$ join A B
apple 2 kilos Monday 1 kilo Wednesday

pomegranate 3 kilos Tuesday 1 kilo Thursday

190

Advanced shell programming

9.11 Miscellaneous utilities

Although the structure of files on a UNIX machine is uncomplicated,
other operating systems may impose a more complex structure on how
their files are represented. If you need to convert a file, either to export it
to, or to import it from, a non-UNIX system, use dd (‘disk-to-disk’). For
example, some systems require that files be structured as having a
sequence of fixed-size blocks, or might use a different character set from
ASCII. This command can also perform simple translation of characters
— for instance, if you received a file funny, which contains only
upper-case letters, then dd can create a file with lower-case letters in
place of the upper-case ones:

$ dd conv=lcase < funny

NOTE

conv = ‘convert’

lcase = ‘lower case’
You can try this. More seriously, if you do need to read from or write to a
file to be used on a non-UNIX system, you should examine the manual
page for dd carefully.

Suppose you wished to run a utility with the arguments to that utility
piped to it. This might be the case if the arguments were to be split over
several lines. A simple example might be if you had a file list containing
filenames, and you wished to ls -l each of them. Using the mechanisms
so far discussed, the resultant script would be inelegant:

$ X=$(cat list); eval ls -l $X

By use of the $(...) mechanism, we have concatenated all the lines of
list into a single string, and have passed that string to ls -l. The
utility xargs can help: it takes as its arguments a command, and then
reading from its standard input appends options to that command, and
then runs it. The above example would then become:

$ xargs ls -l <list

A more serious, and frequently quoted, example of the use of xargs is in
conjunction with find, where with the -exec argument find might

NOTE

find was introduced in

Chapter 7 create a large number of processes. Suppose your home directory contains
a large number of subdirectories, and you wished to perform ls -ld on
each of them. One possibility would be:

$ find ˜ -type d -exec ls -ld {} \;

but this would create as many processes as directories — it is inefficient.
More effective — and quicker — would be:

$ find ˜ -type d -print | xargs ls -ld

191

Introducing UNIX and Linux

The final three commands that are mentioned in this chapter are
introduced for completeness; they are included in the POSIX standard,
and you should know of their existence.

There is a command logger (‘log error message’) which can be used to
save a message for reading later on by the system administrator. It might
be used (say) to inform the administrator if a batch job failed to read a
system file correctly; the user would not be in a position to forward the
message easily, and the action to be taken would definitely be for the
administrator to perform.

NOTE

Unless your

administrator has given

you specific instructions

on how it should be used,

you are probably advised

not to use logger

Although you are likely to be using UNIX where English is a normal
medium of communication, the concept of locale is supported whereby
both messages from commands and the character set used can be
customised to other languages. The command locale allows you to
examine the current locale, and localedef to define a new locale.

CHAPTER SUMMARY

Table 9.2 Summary

of utilities
alias define or display aliases

ar maintain a library archive

cksum file checksum utility

comm select/reject lines common to two files

command execute a simple command

ctags create a ‘tags’ file

dd convert file format

eval construct command by concatenating arguments

exec execute command by replacing shell process

expand replace tabs by spaces

getconf get configuration variables

join relational database operator

locale display information about the ‘locale’

localedef define the ‘locale’

logger log message for the system administrator

make maintain and update groups of programs

mkfifo create a FIFO file

nm display name list of an object file

pathchk check pathname is valid

return return from a function

split split a file into pieces

strip remove unnecessary data from executable files

192

Advanced shell programming

Table 9.2 (cont.) stty set terminal options

trap intercept a signal

unalias remove alias definition

unexpand replace spaces by tabs

uudecode decode a file which was coded with uuencode

uuencode encode a binary file

xargs construct argument list and execute command

EXERCISES

1 Write a function thisyear to cause the message This year is to be
displayed followed by the current year.

2 Write a function changedir to prompt you for a directory name and
cd to that directory. Why must you use a function, and not a script?

3 Write a function called addtopath to request you to type the name
of a directory, and if that directory exists and you can read it, to add
it to the end of your PATH.

4 Write a script to prompt you for the name of a directory, and the
email address of a user, and to mail the contents of that directory to
that user.

5 Define an alias debugsh to have the effect of sh with option -x.

6 Write a script which will, every minute, display the date and time,
but when run in the foreground will terminate if it receives ctrl-C
three times.

7 Write a script to request you to type in the name of a shell
environment variable, and display its value.

193

C
H
A
P
T
E
R

10

Regular expressions
and filters

CHAPTER OVERVIEW

This chapter covers

� regular expressions; and
� simple use of the utilities Grep, Sed and tr.

The purpose of this chapter is to consider in detail three powerful UNIX
utilities which are usually used as filters (components of a pipeline).

10.1 Using filters

Any command that reads data from standard input and writes data to
the standard output stream, is known as a filter. Most UNIX utilities are
filters, or can be used as such. Most utilities are also simple in their
functionality.

Much UNIX programming involves transforming input, of a known
form, to output, also of a known form. This output depends on the input
in a specified manner, and often involves creating a pipeline. In order to
use UNIX effectively, you must develop the skill of being able to choose
utilities to pipe together. It is not always obvious why the filters that are
‘standard’ for UNIX have been developed, but they have been found to be
very powerful ‘building blocks’. We now examine three filters, all
significantly more complex than those we have met before, but whose
relevance will be striking.

The editor Vi is an interactive tool, and is one of the few UNIX
utilities that cannot be used as a filter. The commands we now look at
perform tasks you might consider suitable for an editor such as Vi, but
are designed so that they can work as filters.

You may be wondering why, having discussed detailed syntax for the
shell, we now need to introduce further commands. After all, we did claim

194

Regular expressions and filters

that the shell was a ‘full programming language’. In UNIX there are
rarely unique solutions to problems, although some techniques are
arguably ‘better’ than others. Most tasks have many possible ways in
which a UNIX programmer can solve them, but an experienced
programmer will be able to chose a solution that can be implemented fast
and efficiently. The purpose of commands such as grep, sed, tr and awk

is to provide speedy solutions for tasks that are frequently encountered

NOTE

awk is discussed in the

next chapter and difficult to program using the shell alone.
Whenever you write a shell script that takes more than a few lines,

stand back from the problem for a moment and ask yourself whether
some utility will do the job for you. Maybe there isn’t, but often you will
be able to save yourself time and trouble by recalling a utility you’d
almost forgotten about. When you have finished reading this book, go
back to the earlier chapters and remind yourself of the commands — such
as comm and uniq — whose usefulness may not then have been apparent.

10.1.1 Collating sequence

Before considering these filters we must digress with some remarks about
characters. Specifically, we must ask the question: ‘how are they ordered?’
We have already remarked that to each character is assigned a code
(normally the ASCII representation), and the ordering of characters
corresponds with the numerical order of the codes. So, for instance, the
code for b is one greater than the code for a. There are two possible
problems with this: first, it is not necessarily the case that ASCII is being
used, and secondly, the code representation — and ordering of characters
— is different depending on which native language you speak. Although
most UNIX systems use standard English/American, and a standard
keyboard, POSIX allows for user interfaces consistent with other
languages and equipment. Where, for instance, do accented letters fit in
the alphabet, or completely different letters such as Greek? We therefore
have a concept called a collating sequence which is a specification of the
logical ordering for the character set you are using. In practice, this
ordering applies just to letters and to digits, although it is defined for the
whole character set. The collating sequence can be changed in POSIX by
amending the locale.

NOTE

Locale was mentioned in

Chapter 7 In the following discussion we will refer to ranges, which are collections
of characters that are consecutive within the collating sequence. A range
is specified by a first and by a last character, separated by a hyphen. For
instance,

b-z

refers to the characters between b and z, inclusive, in the current collating
sequence.

195

Introducing UNIX and Linux

Characters come in various familiar flavours: there are letters,
numbers, punctuation marks, and so on. These are character classes, and
there is a notation for referring to these classes that is used by some
utilities. The form this takes is a name of a class enclosed between [: and
:] as shown in Table 10.1

Table 10.1 Character

classes
[:alnum:] letters and digits

[:alpha:] letters

[:blank:] usually Space and TAB

[:cntrl:] all control characters

[:digit:] digits

[:graph:] printable characters excluding Space

[:lower:] lower-case letters

[:print:] all printable characters

[:punct:] punctuation marks

[:space:] whitespace characters

[:upper:] upper-case letters

[:xdigit:] hexadecimal digits (0-9A-Fa-f)

10.2 Character-to-character transformation

Translating a file so that specific characters are replaced by others can be
accomplished with tr. This command takes as arguments two strings,
which may consist of any number of individual characters, ranges and
character classes. If both strings are the same length, instances of
characters in the first string are replaced by the corresponding character
in the second. For example, to capitalise all the lower-case letters in the

NOTE

The command tr can

only be used as a pipe —

it cannot take a filename

as an argument

input we would have:

tr "a-z" "A-Z"

or alternatively

tr "[:lower:]" "[:upper:]"

Try this out using just standard input and standard output. To capitalise
all the words in /usr/dict/words you would have:

tr "[:lower:]" "[:upper:]" < /usr/dict/words

Worked example 10.1
Write a filter to replace all digits by blank spaces.
Solution: Use [:digit:] to represent digits as first argument to tr.

tr "[:digit:]" " "

196

Regular expressions and filters

The second argument to tr must not be shorter than the first. If the
second argument is longer than the first, the excess characters in the
second argument disregarded, so that in the pipe

tr "a-z" "A-Z123"

the characters 1, 2 and 3 are unaffected.
The two arguments to tr are strings; as usual, if the strings contain

whitespace they must be quoted, and the standard conventions for quoted
strings are used. So for a filter to replace all blanks in the input with a B,
you could have:

tr ’ ’ ’B’

Remember that between double quotes the characters $, * and @ have
special meanings and that certain characters must be escaped. If neither

NOTE

At this point you may

wish to re-read the

section of Chapter 4 that

deals with quotes

string argument to tr includes characters requiring quoting, then the
quotes are not needed. The following three filters are equivalent:

tr a-z A-Z

tr "a-z" "A-Z"

tr ’a-z’ ’A-Z’

Although the strings that tr is given as arguments do not always require
quoting, when the strings contain no characters that are interpreted by
the shell in an undesired fashion, it may be helpful to quote them anyway,
and from now on we will always quote strings. This has two benefits —
firstly, it reminds you to be careful that some characters may need to be
escaped in the strings, and secondly it may make it easier to see where
the two strings start and finish.

Worked example 10.2
Write a filter to replace all double quotes by single quotes.
Solution: The tricky part of this example is to specify the strings
correctly. The first string is a double quote, but in order for it not to
be interpreted by the shell, it must either be preceded by a \ or
enclosed by single quotes. The second must also either be escaped
with a \ or enclosed in double quotes. Either of the following two
filters will solve the problem.

tr ’"’ "’"

tr \" \’

We can specify a string comprising a number of instances of a single

NOTE

This notation is used by

tr only character: "[X*5]" is the same as "XXXXX". The notation "[X*]" yields a
string containing sufficient numbers of the character X so that if used as a
component of the second string, the second string is long enough to match

197

Introducing UNIX and Linux

the first one. For instance, to replace all digits with a question mark, you
could use either of the following:

tr "0-9" "[?*10]"

tr "0-9" "[?*]"

Worked example 10.3
Write a filter to replace all letters in the first half of the alphabet by
A and all in the second half by Z.
Solution: Use tr, and note that there are 13 letters in the first half of
the alphabet, each having an upper-case and a lower-case character.
Thus the first half of the alphabet is represented by a set of 26
characters.

tr "A-Ma-mN-Zn-z" "[A*26][Z*26]"

There are also options available to tr; with option -d (‘delete’) and only
one string as argument, all occurrences of characters specified by that
string are deleted. With option -c (‘complement’) as well as -d all
characters not occurring within the string are deleted.

Worked example 10.4
Write a filter to delete all non-letter characters from the input.
Solution: Use tr with option -c to specify all non-alphabetic
characters, and -d to delete them.

tr -cd "A-Za-z"

Alternatively, use character classes:

tr -cd "[:alpha:]"

After all other changes have been performed, repeated instances of a
character specified in the final string argument can be replaced by single
instances of the same character using option -s (‘squash’). In this case,
the string passed to tr represents those characters on which this
operation is performed. So to replace multiple spaces by single ones:

$ echo "hello there Chris" | tr -s " "
hello there Chris

10.3 Selecting lines by content

10.3.1 Regular expressions

The pattern matching described in Chapter 6 is a very simple means of
associating many strings which have a common pattern with a single

198

Regular expressions and filters

string that describes that pattern. It is fine for matching filenames, and
for the use of a case statement. However, a more powerful mechanism,
known as regular expressions or REs, is available for use in certain UNIX
utilities.

There are different types of regular expression, and regular expressions
can be defined in a variety of ways. UNIX specifies two sorts — a basic

regular expression (or BRE), and an extended regular expression (or
ERE). We start by defining a basic regular expression.

10.3.2 Basic regular expressions

The general idea is just like pattern matching — a BRE consists of a
sequence of characters, some of which have a special meaning. The BRE
is said to match a string if

� each part of the BRE with special meaning corresponds to a part of
the other string, and

� the other individual characters in the BRE and the string correspond.

In order to check whether a BRE matches a string, the two strings are
examined working from left to right. Each time a match is found, the
corresponding parts of the BRE and the string are discarded and the
process continues immediately after.

First of all, we consider how to specify a match for a single character.
For this we use a BRE called a a bracket expression, which is an
expression enclosed in square brackets ([]). The expression enclosed by
the brackets is either a matching list or a nonmatching list. A matching
list consists of a sequence of:

� single characters (escaped, if necessary),

� ranges (as described above for tr),

� character classes (as for tr)

and a character matches a matching list if it matches any of the patterns
that make up that sequence. The following BRE matches the letters a, x,
y, z and any digit.

[ax-z[:digit:]]

If a matching list is preceded by a circumflex (^) it becomes a

NOTE

^ corresponds to ! in

pattern matching nonmatching list, and matches any character not specified in that list.

[^[:upper:]#]

will match any character that is neither an upper-case letter nor the
symbol #. If you wish to specify the hyphen character in a range, you
must have it as either the first or the last character in the bracket
expression, so that

[-xyz]

199

Introducing UNIX and Linux

will match x, y, z or -. A dot (.), when not enclosed in square brackets,
matches any single character. To match a string containing more than one
character, you can concatenate characters which you wish to match, dots
and bracket expressions. So,

[Cc]hris

will match Chris or chris, and no other string;

[[:alpha:]]..

will match any three-character string commencing with a letter. More
generally, if you follow a bracket expression (or a single character or a
dot) with an asterisk (*), that expression together with the * will match
zero or more consecutive occurrences of the expression. So

[[:digit:]][[:digit:]][[:digit:]]*

will match any string consisting of two or more digits. The two characters
^ and $ are used to indicate the start and end of a string respectively, so

^A.*E$

will match any string commencing with A and terminating with E,
including ANGLE and AbbreviatE, but not DALE or Alpha.

Worked example 10.5
What BRE will match a string that is just a sequence of digits?
Solution: One digit is matched by [[:digit:]], zero or more digits
are matched by [[:digit:]]*, and so [[:digit:]][[:digit:]]*

will match one or more. The BRE will commence with ^ and end
with $, to indicate that this is exactly what the string will contain,
and will not have other characters at the start or at the end. The
answer is therefore

^[[:digit:]][[:digit:]]*$

10.3.3 Extended regular expressions

Basic regular expressions are sufficient for most purposes, but a more
sophisticated form of regular expression is available known as an extended

regular expression or ERE. There are a couple of principal extra features
available using EREs that are unavailable to BREs.

The symbol +, following a bracket expression (or single character or
dot) indicates one or more consecutive occurrences of the expression, in
the same way that * indicates zero or more. The symbol ?, in the same

NOTE

The ? is not to be

confused with the ? in

pattern matching
context, indicates zero or one occurrences of that expression, so

[[:alpha:]]+[[:digit:]]?

200

Regular expressions and filters

matches any string commencing with a letter, consisting only of letters,
and terminated optionally by a single digit.

If two EREs are separated by a | (vertical bar), the result matches
either of those two EREs. Parentheses may be used to group
subexpressions together:

(xyz|ab)\.c

will match either xyz.c or ab.c, and no other string. If you need a
parenthesis to be a matched character in an ERE you must escape it.

Worked example 10.6
Write an ERE to match any string consisting either of only
upper-case letters or only lower-case letters.
Solution: As in the previous worked example, the expression will
commence with ^ and end with $. By taking advantage of the symbol
+ a match for upper-case letters would be [[:upper:]]+ and
[[:lower:]]+ for lower-case letters. A sequence of letters of the
same case will be matched by ([[:upper:]]+|[[:lower:]]+)), and
a solution is therefore:

^[[:lower:]]+|[[:upper:]]+$

10.3.4 Grep

We have defined regular expressions; in order to use them, we begin with

ACRONYM

Grep refers to the ex

command g/RE/p a utility called Grep. The function of Grep is to select lines from its input
(either standard input or named files given as arguments) that match a
BRE normally given as first argument to grep. The BRE is known as a
script. Those lines of input that match the BRE are then copied to
standard output. For instance, to print out all words ending in ise or ize
from /usr/dict/words, you could have:

NOTE

Single quotes needed

here as $ is in the BRE
$ grep ’i[sz]e$’ /usr/dict/words

With option -E, grep will use EREs instead of BREs. With option -F,
grep uses only fixed strings — there are no regular expressions, the string
given as argument to grep is matched against the input exactly as it
appears. With option -c, instead of copying matched lines to standard
output, a count of the number of matched lines is displayed instead.

Worked example 10.7
How many words in /usr/dict/words begin with a vowel?
Solution: Use grep with option -c to select and then count lines
beginning with upper-case or lower-case vowels. The BRE contains a

201

Introducing UNIX and Linux

list of all such vowels, preceded with a ^ to indicate that the vowel
must be at the start of each word:

$ grep -c ’ˆ[AEIOUaeiou]’ /usr/dict/words

Option -i (‘insensitive’) causes grep to ignore the case of letters when
checking for matches, and overrides any explicit specification regarding
upper-case and lower-case letters in the regular expression. Thus a
solution to the previous worked example could be:

NOTE

On some non-POSIX

systems separate

commands egrep

(‘Extended GREP’) and

fgrep (‘Fixed GREP’)

are used instead of grep

-E and grep -F

$ grep -ci ’ˆ[aeiou]’ /usr/dict/words

With option -f (‘file’) followed by a filename, regular expressions
contained in that file are used instead of being given as an argument to
grep. If the file contains more than one regular expression, then Grep
selects lines that match any of the REs in the file. This is the preferred
method by which Grep can select lines where there is a choice of matching
specifications.

The ‘reverse behaviour’ — namely displaying those lines not matching
the RE specified — can be enabled with option -v (‘inVert’). This is often
simpler than constructing a new regular expression. An example of this
being useful might be to a FORTRAN programmer. A program written in
the computer language FORTRAN treats any line starting with a C as a
comment; if you were examining such a program, and wished to search for
lines of code containing some identifier, and were not interested in the
lines of comments, you might wish to use

grep -v ’^C’

to strip out the comments to begin with.
If grep is given several files as arguments, option -l (‘list’) displays a

list of those files containing a matching line, rather than those lines
themselves.

Worked example 10.8
Suppose you have saved many mail messages in files in the current
directory, and you want to check which file or files contain messages
whose subject is something to do with ‘examinations’. Each mail
message contains a line beginning with the string Subject: followed
by the subject of the message (if any).
Solution: We require grep -l followed by a BRE followed by * to list
the filenames. The following lines might occur as the ‘subject’ lines of
the messages:

Subject: Examinations

202

Regular expressions and filters

Subject: examinations

Subject: NEXT MONTH’S EXAMS

Subject: Exams

These all have a common string, namely exam, in upper-case or
lower-case (or a mixture of cases). So, to match these lines, a BRE is
required to recognise Subject: at the start of the line, followed by
some characters (possibly none), followed by exam in any mixture of
cases. The Subject: at the start of the line is matched by ^Subject

and .* matches the characters between that and exam. In order to
ensure that the cases of the letters in exam do not matter, you can
either explicitly match them with [Ee][Xx][Aa][Mm], or you can
instruct grep to be ‘case-insensitive’ with option -i. The following
two solutions would be acceptable:

grep -l ’^Subject: .*[Ee][Xx][Aa][Mm]’ *

grep -li ’^Subject: .*exam’ *

Note that this is not an infallible solution. It will also select files with
subjects related to counterexamples and hexameters, and will not
find a file with subject examinations. When using UNIX tools to
process data from electronic mail or other documents containing
English text, you must be conscious of human fallibility. Some
solutions will of necessity be approximate.

10.4 Stream editor

Whereas Grep selects lines from input and copies those lines to standard
ACRONYM

Sed = ‘Stream EDitor’ output, Sed will in addition change those lines if required. Just as with
Grep, Sed takes a script either as an argument, or from a file by using
option -f, and filters its input according to the instructions in that script.
For Grep, the script consists simply of one or more BREs, and the output
is formed of those lines of input matching one or more of those BREs. For
Sed, the behaviour is more complex. Each Sed instruction is of the form

address command arguments

where address and/or arguments are optional. The address indicates
which lines of the input command is to be performed on.

Actually, we need to be slightly more precise than this. Each time a

NOTE

You may wish to re-read

this paragraph after you

have completed this

section

line of input is read, it is first of all stored in an area called the pattern

space. The instructions forming the script are then examined one-by-one,
in order, and each instruction whose address matches the address of the
input line has its command applied to whatever is currently in the
pattern space. When all the instructions in the script have been

203

Introducing UNIX and Linux

examined, the contents of the pattern space are copied to the standard
output, and the pattern space emptied ready for the next input line. This
is repeated for the next line of input until the input is exhausted.

The simplest Sed script is the script containing nothing; since there are
no instructions, an input line is copied to the pattern space which is then
immediately copied to the standard output. Try it:

$ sed ’’

Addresses for Sed come in several forms, as itemised in Table 10.2.

Table 10.2 Sed

addresses
empty matches all lines

number matches input line number

number1,number2 matches all lines in the range from number1

to number2 inclusive

$ matches the last input line, and can also be

used in place of number2 in the previous

type of address

/BRE/ matches any line matched by BRE

Both ^ and $ can be used. To try some of these addresses, the easiest
command we can use is probably d to delete the contents of the pattern
space. So

sed ’1,4d’

deletes lines 1 to 4 inclusive from the input. Try the following using the
standard input:

sed ’d’ deletes all the input
sed ’3d’ deletes line 3 only
sed ’2,$d’ deletes all lines except the first
sed ’/^A/d’ deletes all lines commencing A

An often used command is s (‘substitute’), which is used to exchange part
of a line (specified by a BRE) with another string. This command is used
as follows:

s/BRE/replacement/

The pattern space is searched from left to right to find an instance of the
BRE. If none is found, no change is made, otherwise the string that
matches the BRE is replaced by the replacement. Normally only the first
occurrence of the BRE is altered, but if you follow the command with g

(‘global’) then all matches for the BRE in the pattern space are changed.
Note that after the change, the altered string stays in the pattern space

204

Regular expressions and filters

and can then be changed by later Sed commands in the same script. So,
for example,

$ sed ’s/Chris/Sam/g’

changes all occurrences of Chris to Sam,

$ sed ’s/ˆ= /?/’

changes each equals symbol at the start of a line to a question-mark, and

$ sed ’s/[:punct:]//g’

removes all punctuation (equivalent to tr -d "[:punct:]").

Worked example 10.9
Write a Sed command to remove all whitespace that terminates lines.
Solution: The BRE [:blank:] matches a single whitespace
character, [:blank:]* matches any number of them, and
[:blank:]*$ when they occur at the end of a line. To delete them
we replace them by nothing.

sed ’s/[:blank:]*$//’

Although it is most common for simple Sed commands to be applied to
all lines of the input, you should also be familiar with being able to
specify addresses of lines. Sometimes an editing problem can be solved
either by a complex edit on every line of input or by a simple edit on only
some of the input lines — the latter approach is preferable.

Worked example 10.10
Write a filter to precede each word in /usr/dict/words containing a
capital letter by an asterisk.
Solution: Using Sed we can match lines containing such words by the
BRE [A-Z]. Using this BRE to specify addresses, on those lines we
can use s to substitute the start of each line (^) by a *:

$ sed ’/[A-Z]/s/ˆ/*/’ </usr/dict/words

It is usual for Sed to be an element of a pipeline but, unlike tr, Sed
can take a filename as argument, in which case the input will come
from that file. So another solution would be:

$ sed ’/[A-Z]/s/ˆ/*/’ /usr/dict/words

205

Introducing UNIX and Linux

If an ampersand (&) is met as part of the replacement string, it is
replaced by the string that has been matched; the following will enclose
each capital letter in the input by square brackets:

$ sed ’s/[A-Z]/[&]/g’

If you want an actual ampersand to occur in the replacement string, it
must be escaped by preceding it with a backslash.

If you give sed option -n (‘noprint’) then the pattern space will not
automatically be sent to standard output; so sed -n ’’ will not give any
output at all. We can use command p (‘print’) to copy the pattern space
explicitly to standard output; so the following two commands are
equivalent:

sed ’’

sed -n ’p’

See what happens if you have just:

sed ’p’

We can use p to good effect if we wish to select only part of the input, so

sed ’15p’

will display line 15 of the input only, and

sed ’1,10s/[:alpha:]//g’

will display the first ten lines only, with all letters deleted. By using
option -n, we can simulate simple use of Grep using Sed, since the
following are equivalent:

grep ’BRE’
sed -n ’/BRE/p’

Worked example 10.11
Write a filter to display the last line of the input prepended by The

last line is.
Solution: Use $ to match the last line of input, option -n of sed to
ignore other lines in the input, and command p to print it out after
substituting The last line is for the beginning of the line:

sed -n ’$s/^/The last line is /p’

10.5 Splitting a file according to context

We have already met split as a method of splitting a file into smaller
units, and have indicated its use when mailing large text files. Another

206

Regular expressions and filters

reason for splitting a file is if you know that the file contains separate
identifiable portions. For instance, suppose you had a simple text file
consisting of paragraphs of English separated by blank lines, and you
wanted the paragraphs to be in separate files. The blank lines would
identify where to break the file, and you can specify a blank line by means
of the BRE, ^$.

The command csplit splits a file into sections where the sections
ACRONYM

csplit = ‘context split’ either contain specified numbers of lines or are delimited by text that can
be described by a basic regular expression. To start with a simple
example,

$ csplit data 10

will take file data, and create two new files called xx00 and xx01. File
xx00 will contain lines 1 through 9 of file data, and xx01 will contain line
10 up to the end of file data. File data remains unaltered. When each
new file is created, csplit will print the size (in bytes) of that file, on the
standard error stream (this can be suppressed with option -s). (‘silent’)

The first argument to csplit is the name of a file (or - (hyphen) if
standard input) and the following one or more arguments indicate where
the file is to be split. An argument that is a line number instructs a break
to be made at the beginning of that line (hence in the previous example
line 10 is sent to the second file). The new, smaller, files are named xxnn,
where nn starts at 00 and counts upwards. With option -f followed by a
string that string will be used as the prefix instead of xx. Any number of
arguments can follow the filename.

Worked example 10.12
Split /usr/dict/words into three files called words00, words01 and
words02, the first two containing 10000 lines, the final one containing
the rest of /usr/dict/words.
Solution: Use csplit to split the file with option -f to specify that
the prefix is words. The next argument is /usr/dict/words, and this
is to be split at lines 10001 and 20001.

$ csplit -f words /usr/dict/words 10001 20001

Now use wc to check that the files you have created are of the
specified length:

$ wc words??

The three files you have created are fairly big, so don’t forget to
delete them.

207

Introducing UNIX and Linux

If an argument to csplit is a number n and is then followed
immediately by an argument of the form {count}, then it will be split at
line n and then repeatedly every n lines up to a maximum of count times.
Delete any previous xx files you have created, and try the following:

$ csplit -s /usr/dict/words 1000 {2}
$ wc -l xx??

You will see that /usr/dict/words has been split into four files. The first
split is at the start of line 1000, so the first file is 999 lines long, then the
subsequent two splits are each 1000 lines longer. The final file xx03

contains the rest of /usr/dict/words.
If you specify that the file be split at too many places, no split files will

be created and an error message will be generated. For instance, to try to
split /usr/dict/words into 50 files of 10000 lines each (which we clearly
cannot do):

$ csplit /usr/dict/words 10000 {50}

NOTE

82985 is the number of

bytes in xx01, etc. 82985

82982

csplit: {50} - out of range

The reason for this behaviour is to encourage you to be aware of how you
are splitting your files, and csplit errs on the side of caution. Mistakes
when specifying the arguments to csplit would otherwise be prone to
causing large volumes of unwanted split files to be generated, thus
wasting valuable storage space. There are some instances, however, when
this behaviour is undesirable, especially when the length of a file is not
initially known. If you give csplit option -k it will warn you if you try to
split the input file too many times, but it will create the xx files anyway.
So, to split /usr/dict/words into as many files as possible each
containing (roughly) 5000 lines:

$ csplit -k /usr/dict/words 5000 {10000}

Worked example 10.13
Split /usr/dict/words into three files called w0, w1 and w2, each
containing a roughly equal number of lines.
Solution: Use wc to count the lines in /usr/dict/words, then
arithmetic expansion to calculate one-third and two-thirds of that
number.

$ LINES=$(wc -l < /usr/dict/words)
$ ONETHIRD=$(($LINES / 3))
$ TWOTHIRDS=$(($ONETHIRD + $ONETHIRD))

208

Regular expressions and filters

$ csplit -f w -n 1 /usr/dict/words $ONETHIRD
$TWOTHIRDS

When performing wc we redirected the standard input from the file
/usr/dict/words; by doing that, wc does not include the filename
on its output. Had we used wc -l /usr/dict/words it would have
been necessary to pipe the output to cut in order to isolate the first
field, as the output from wc would have included the filename
/usr/dict/words.

An argument to csplit can be a basic regular expression enclosed
between two / (slash) symbols, in which case the file being split will be
broken at the start of the next line matching that expression.

Worked example 10.14
Split /usr/dict/words into two files, the first containing all words
commencing with characters up to and including m, the second
containing words commencing n through z.
Solution: Use csplit with argument ’/^[Nn]/’ indicating that
/usr/dict/words should be split at the start of the first line
commencing either N or n.

$ csplit /usr/dict/words ’/ˆ[Nn]/’

Consider the problem posed at the start of the section, namely
splitting a text file into paragraphs. The BRE that denotes a blank line is
^$, so if we have in file X some such text, we might have:

$ csplit X ’/ˆ$/’

This will not work; it will split the file at the first blank line only. Just as
with number arguments we can follow a BRE argument to csplit by a
number in braces, to indicate that the split should occur multiple times.
If we don’t know how big X is, we must use option -k as above:

$ csplit -k X ’/ˆ$/’ {10000}

Create a small file containing a few paragraphs of text and try this
command.

Worked example 10.15
The file book contains the text for a book, with each of 10 chapters
commencing with a line starting Chapter ... so:

209

Introducing UNIX and Linux

Title: ...

...

Chapter 1: Introduction

...

Chapter 2: Getting started

...

Split this file into several files, called chapter00, etc., one for each
chapter.
Solution: Use csplit with option -f (to denote the names of the
split files), and split at the start of each line commencing Chapter.
The split will need to be repeated an extra 9 times:

$ csplit -f chapter book ’/ˆChapter/’ {9}

10.6 Choosing between the three filters

It will be apparent that anything Grep or tr can do, Sed can also do
(though possibly not as elegantly). Why do we need Grep and tr?

NOTE

It is good practice to use

the simplest filter

available to you, if a

choice exists

Speed may be important if the data you wish to filter is large, or your
UNIX system is small and not very powerful. Since Sed does more than
the other two utilities, it is almost certainly slower. Unless you really need
the facilities offered by Sed, then it will be easier to remember how to use
the other two utilities. Extended regular expressions are only available to
Grep. Finally, some operations are not easy to perform using Sed — try
coding the following using only Sed:

tr A-Z a-z

grep -l abc *

10.7 More on Vi

At this point, mention should be made of Vi commands which are almost
identical to those of Sed, and which rely on BREs. First of all, / and ? are
used for searching for strings. Followed by a BRE, each will locate the
next (or previous) string matching that BRE. So, to move the cursor to
the next blank line, and assuming you are in command-mode, type

/^$

or, if the apparently blank lines in your file may contain spaces also,

/^ *$

In colon-mode the commands available are, like Sed, of the form

address command arguments

210

Regular expressions and filters

Addresses constructed are the same as for Sed, with the addition of two
extra symbols. These are ^, which means the first line of the file, and .

(dot), denoting the current line as indicated by the cursor.
There is a command s (‘substitute’) which can be used to exchange

occurrences of a string (denoted by a BRE) for another string. Suppose
that, in the file you are editing, the cursor is on a line containing

Jack and Jill went up the hill

you could swap up for down by

:s/up/down/

The : gets you into colon-mode, s is the command to perform a
substitution, and following s are three slashes. Between the first two is
the BRE you wish to be changed. Between the final two is the string (just
a string, not a BRE) it is to be changed to.

Normally, a substitution will occur once on the current line. That is,
the address . is assumed by default. If the BRE to be substituted does
not exist, then no change will happen. If you follow the command by a g

(‘global’) the substitution will be made for all occurrences of the BRE on
that line. So, to change all words on the current line commencing J to the
string someone, you would type

:s/J[a-zA-Z]*/someone/g

Before a substitution command you can indicate which lines it is to be
performed on by indicating an address explicitly. Preceding the command
with % (percent) will cause it to be performed on every line in the file, but
preceding it by a single line number will do the substitution on that line
only. A pair of line numbers, separated by a comma, will apply the
substitution to that range of lines. The start of the file is denoted by ^

and the end by $. Thus

:10,20s/Hello/Bonjour/

will substitute the first occurrence of Hello for Bonjour on lines 10
through 20 inclusive.

Worked example 10.16
You are using Vi to edit a file, and wish to change all occurrences of
Chris to Sam on all lines.
Solution: Use the substitution command in colon-mode, and apply it
from the start of the file to the end, and globally on every line:

:^,$s/Chris/Sam/g

Be careful if your file contains (say) Christine — this solution
changes it to Samtine

211

Introducing UNIX and Linux

The Vi colon-mode commands which were discussed in Chapter 4 can
be preceded by an address and/or followed by arguments. The command

NOTE
The symbol % can be
used instead of ^,$ to
mean the whole of the
file

w assumes the address %, and so will normally write the whole file; if a
filename follows the w as an argument to the command, it will be that file
written to, and the original file will remain unchanged. The command

:1,10w xyz

will write the first ten lines of the file fileto the f named xyz .
Often you will wish to perform an action on many lines, and the same

action on each. The colon mode command g (‘global’) is used to apply a
command to all lines matching a regular expression:

:g/BRE/action

For instance, to delete all completely empty lines,

:g/^$/d

or to insert an asterisk at the start of each line containing Chris

:g/Chris/s/^/*/

CHAPTER SUMMARY

Table 10.3
Commands introduced
in this chapter

csplit split a file according to context
grep select lines matching regular expression
sed stream editor
tr translate characters

EXERCISES

1 Write a filter to extract from /usr/dict/words all words containing
all five vowels in alphabetical order.

2 A utility known as rot13 is a very simple encryption mechanism
which replaces every letter by the letter 13 further on (or previous
to it) in the alphabet. Thus

The quick brown fox jumped over the lazy dog

would be changed to

Gur dhvpx oebja sbk whzcrq bire gur ynml qbt

Write a script to encrypt standard input using the rot13 algorithm.

212

Regular expressions and f lters

3 List the names of all files (excluding directories) in the current
directory which contain the string program (or some other string).

4 The file /etc/group contains lines of the form
group-name GID list-of-members
For instance, a line defining group ateam, with group ID 99, and
consisting of users chris, jo and sam, would be

ateam:99:chris,jo,sam

Write a script to list the names of all the groups of which jo is a
member.

5 Write a filter, numbers, which considers its input as consisting of
whole numbers (containing only digits), together with other text,
and displays a list of those numbers, one per line, sorted into
numerical order with duplicates removed, so:

$ numbers
1st Blankshire Bank Ltd.,
17-19 High Street,
Anytown,
Blanks.,
AN1 4GQ.
END
1

4

17

19

6 How many words in /usr/dict/words contain at least three vowels?

7 Split the file /usr/dict/words into two halves, the frst containing
all words up to (but not including) middle, the second containing
the rest.

213

END<<

C
H
A
P
T
E
R

11

Awk

CHAPTER OVERVIEW

This chapter

� introduces simple use of Awk.

The utility known as Awk, and described as a ‘pattern scanning and
processing language’, is a complete programming language, with a syntax
resembling that of C.

ACRONYM

Awk is named after its

inventors’ names Aho,

Weinberger and

Kernighan

It can be studied as a language in its own right, or can be integrated
into shell programming when other utilities are found to lack sufficient
power or flexibility.

11.1 What is ‘awk’?

If you are familiar with high-level programming languages, you will
recognise the need for such constructs as loops, variables, conditional
statements, input and output facilities, and a library of predefined
procedures; in other words, a rich syntax allowing many complex tasks to
be performed easily and efficiently by an experienced programmer. The
shell is a high-level language, although its features are tailored to a very
special task, namely managing UNIX processes, and many high-level
constructs are not present in the shell.

If you need to write a program that is not clearly suited to writing in
the shell, you would normally choose a language such as C or Pascal in
which to write it. There is a grey area, though, where the application does
seem to fit in well with the ideas and methods underlying shell
programming, yet the power of a full high-level language would be
advantageous. A typical situation would be where the contents of a file
(or output from a pipe) contains complex (numerical or textual) data,
organised into records (e.g. lines) and fields (e.g. columns), and
calculations are required to be performed on the data.

To illustrate this, consider data which has as its columns a person’s
name, followed by numbers representing that person’s marks in a number

214

Awk

of examinations. You need to process that data to determine each
person’s overall mark, possibly converting it to a grade, and to calculate
overall statistical data for the individual examinations. Perhaps you
would like a graphical display of the mark distribution. These tasks could
be performed with the shell (with some difficulty), but they can be
programmed naturally using Awk.

Mention has been made before of the language C — if you can
program in C then Awk will look familiar to you, and vice versa. There
are features of Awk, such as pattern matching and associative arrays,
which are not available with C, and vice versa. If you write a program in
C, then it will probably execute faster than an equivalent program in
Awk. You should therefore bear in mind that significant differences do
exist, and take care not to confuse the two. There is insufficient space in
this book to examine Awk in great detail, so we shall concentrate on
those features of Awk which complement the other shell utilities.

11.2 Invoking ‘awk’

Just as with Grep and Sed, simple use of Awk involves a script containing
the commands that Awk uses. This script can either be a string that is an
argument to awk, or can be contained in a file named by option -f.

The data which the Awk script will process is either piped from
standard input, or is contained in one or more files given as arguments to
the command. The data is divided into records, each of which is
subdivided into fields. Unless otherwise stated, each record is a single line
of the data, and fields will be separated by whitespace. For instance, to
represent students with their marks, a dataset might look like:

Cringle Chris 14 75 33

Smith Sam 56 58 45

Jones Jo 9 63 51

This data contains three records (lines), each record containing five fields
(columns of text). An Awk script consists of a sequence of pairs

pattern { action }

where either the pattern or the action can be omitted. The data is read,
record by record, and each record that matches a pattern in the script
causes the corresponding action to be performed. If the pattern is omitted
the action is performed on every single line of input data. For the rest of
this chapter we shall concentrate on the format of the script, and assume
that data is piped from standard input. The simplest Awk script is

{ }

215

Introducing UNIX and Linux

which will do precisely nothing for each line of data — the effect is
indistinguishable from cat >/dev/null. It can be invoked either by
creating a file (say awkfile) containing a single line, namely the pair of
braces, and

awk -f awkfile

or by

NOTE

Recall the conventions

for double and single

quotes awk ’{ }’

where the script is a string following awk. For the rest of this chapter, the
word script will refer to an Awk script (not a shell script), unless
otherwise stated.

11.3 Naming the fields

In a shell script, $1 , $2, etc., name the arguments of the script, but in an
Awk script $1, $2, etc., name the fields of each record of data. The whole
record is referred to as $0. To cause Awk to display something on
standard output the command print can be used. Whenever the action
print is performed, a Newline character is always displayed afterwards,
just like the shell command echo. The following script copies standard
input to standard output:

{ print $0 }

Worked example 11.1
Write a shell script to run Awk to display the first field of each line
of standard input.
Solution: The Awk script is simple for this task, so we can enclose it
within single quotes in the shell script. The Awk action is print $1

to be performed on each line. The Awk pattern to match every line is
the null pattern, so that the Awk script becomes

{ print $1 }

To run Awk from a shell script, we require the utility awk, followed
by this script (enclosed in quotes). Don’t forget the comments!

This shell script prints the first field of each

line of standard input

awk ’{ print $1 }’

If you give print several arguments, it will concatenate their values
before displaying them. The following Awk script displays each line of
input enclosed in parentheses:

{ print "(" $0 ")" }

so for input

216

Awk

hello there

Chris

the output would be:

(hello there)

(Chris)

11.4 Formatted output

You will recall the use of printf as a shell utility for displaying
information on standard output in a format you specify. For instance

$ printf "Hello %s!\n" $LOGNAME

NOTE

printf never displays a

Newline unless explicitly

instructed to do so will print on your screen

Hello chris!

The shell utility printf takes a number of arguments: the first is a string
specifying the format of the output, the second and subsequent arguments
are data (such as values of variables) to be displayed according to the
specification given by the format string.

In Awk there is also a command called printf, which is almost
identical to that used by the shell. The only major difference is that the
arguments are separated by commas, not by whitespace. Try this script:

{ printf "The first field is %s\n", $1 }

Worked example 11.2
Write an Awk script which, when given input in two columns
representing a person’s first name followed by their family name,
such as

Abraham Lincoln

John Kennedy

Benjamin Disraeli

will reverse the order of the names, and separate them with a comma:

Lincoln, Abraham

Kennedy, John

Disraeli, Benjamin

Solution: Using $1 and $2 to represent the first name and the family
name of each person, display them using printf thus:

{ printf "%s, %s\n", $2, $1 }

Alternatively, using print, this would be

{ print $2 ", " $1 }

217

Introducing UNIX and Linux

Before we can experiment much further with Awk, we need some data.
Consider the problem of a grocery bill — you have purchased some
vegetables that are priced per kilogram, and you buy a number of
kilograms of various different vegetables. Create a file containing in
column 1 the names of vegetables, in column 2 the price per kilogram,
and in column 3 the number of kilograms purchased, something like:

potatoes 0.50 5

carrots 0.80 2.5

peas 2.20 1

beans 2.10 2

artichokes 8.50 0.5

sweetcorn 0.90 3

Name this file vegetables. We shall use this file, and Awk, to perform
tasks such as totalling the cost for each vegetable, and evaluating the
total bill. Recall that when using printf to format an integer you use the
format specifier %d; for a floating-point number the specifier is %f. You can
also require a floating-point number to be displayed to a specific accuracy
— if you include between the % symbol and the f a dot followed by a
number, the floating-point number will be displayed with that number of
digits after the decimal place. So we could copy the file vegetables using

{ printf "%s %.2f %.1f\n", $1, $2, $3 }

Try this, using

$ awk ’{ printf "%s %.2f %.1f\n", $1, $2, $3 }’ \
< vegetables

Note what happens when you have a whole number as one of the last two
columns — it is printed with the relevant number of decimal places
containing zeros:

potatoes 0.50 5.0

carrots 0.80 2.5

peas 2.20 1.0

beans 2.10 2.0

artichokes 8.50 0.5

sweetcorn 0.90 3.0

Simple arithmetic can be performed by Awk, with the same operators and
conventions as bc. These are listed in Table 11.1. To evaluate the number
of seconds in a day and print it out, the following would suffice:

$ awk ’{ print 24*60*60 }’

Try it — but remember that this will be done for each line of input, so if
you pipe the contents of a file to this command, the output will have the

218

Awk

Table 11.1 Operators

used by Awk
+ addition

- subtraction

* multiplication

/ division

% integer remainder

^ power

== is equal to

!= is not equal to

> is greater than

>= is greater than or equal to

< is less than

<= is less than or equal to

&& and

|| or

same number of lines as the input, each line being the number 86400. If
you just wish to do an arithmetic calculation, use bc.

Worked example 11.3
Write an Awk script to reformat the data in vegetables as follows:

I bought 5.0 kilos of potatoes at 50p per kilo

I bought 2.5 kilos of carrots at 80p per kilo

...

Solution: Use printf with the %f specifier to display the ‘number of
kilos’ field to one decimal place accuracy, and calculating the number
of pence per kilo as 100 times the price in pounds. Since the pence
per kilo is an integer, use the %d format specifier.

{ printf "I bought %.1f kilos of %s at %dp per kilo\n",

$3, $1, 100*$2 }

If you wish to do floating-point arithmetic in Awk, and your script
contains some whole numbers, then Awk will automatically convert those
integers to floating-point numbers when it is sensible to do so. Thus 1/2
will evaluate to 0.5. Similarly, if Awk is expecting a field to be a string,
and receives a number as input instead, that number will be treated as a
string of digits (together with decimal point or minus sign, if appropriate).

219

Introducing UNIX and Linux

Worked example 11.4
Write an Awk script which uses the data in vegetables to calculate
the total amount of money spent on each vegetable, displaying it in
the following format:

potatoes cost 2.50

carrots cost 2.00

...

Solution: We can calculate the total cost for each vegetable by
multiplying the second and third fields together.

{ printf "%s cost %.2f\n", $1, $2*$3 }

Earlier on, we used cut to extract fields from lines of input. You may
find it easier to use Awk in some instances.

Worked example 11.5
Display the current year.
Solution: We could use date and pipe the output to cut, as before,
or we could use a format argument with date. Another method is to
pipe the output of date to awk, using awk to print out the sixth field.

$ date | awk ’{ print $6 }’

For comparison, the other two methods would be written:

$ date | cut -d’ ’ -f6
$ date +"%Y"

It is up to you to decide which one you think is clearest.

11.5 Patterns

In the previous examples, we have performed a task on every line of the
standard input by using a null pattern. There are two simple patterns
that are very useful — they are called BEGIN and END. An action
associated with pattern BEGIN will be executed once, when the awk script
starts and before any lines are read from the standard input. The action
associated with END is performed after all other actions, and immediately
prior to awk terminating. The following Awk script will copy its standard

NOTE

Just as in shell scripts,

comments can, and

should, be inserted into

Awk scripts

input to the standard output, but also write Start of file at the
beginning of the output, and End of file at the end:

220

Awk

BEGIN { print "Start of file" } # Done at the start

{ print $0 } # for each line of input

END { print "End of file" } # done at the end

Try this with the input coming from vegetables. More generally, many
sorts of pattern are available. An ERE enclosed between slashes (/) is a

NOTE

See Chapter 10 for a

detailed discussion of

regular expressions
pattern which will match any line of input matched by that ERE. So to
print the cost per kilo of every vegetable whose name commences with a
vowel, we could have

/^[aeiou]/ { printf "%s costs %.2f per kilo\n", $1, $2 }

The pattern specified by the ERE normally applies to the whole record. It
can be restricted to a single field by preceding the ERE with the field
number and a tilde. Since in the above example we are interested in the
first field commencing with a vowel, we could restrict the pattern match
to the first field thus:

$1 ~ /^[aeiou]/ { printf "%s costs %.2f per kilo\n", $1,$2 }

The behaviour of Grep can be mimicked by Awk — the following two
shell commands have the same effect:

grep -E ’ERE’
awk ’/ERE/ { print $0 }’

The pattern can also be an expression that evaluates to true or to false.
The following displays the cost per kilo of all expensive (more than 1
pound per kilo) vegetables:

$2 > 1.00 { printf "%s costs %.2f per kilo\n", $1, $2 }

Worked example 11.6
Display the total costs for vegetables only if that cost is at least 2.50.
Solution: For each line, evaluate the total cost ($2*$3), and perform
printf if that value is greater than or equal to 2.50:

$2*$3 >= 2.50 { printf "%s cost %.2f\n", $1, $2*$3 }

More complicated patterns can be constructed using && (‘and’) and ||

(‘or’). These are boolean operators:

expression1 && expression2

is true if both expression1 and expression2 are true, whereas

expression1 || expression2

is true if either expression1 or expression2 is true, or if both are true.

221

Introducing UNIX and Linux

Worked example 11.7
Display the names of each vegetable purchased which either cost at
most 1 pound per kilo, or for which less than 1 kilo was purchased.
Solution:

$2 <= 1 || $3 < 1 { printf "%s\n", $1 }

11.6 Variables

11.6.1 Accessing Values

In the shell, we use variables, which we name, and access their values by
placing a dollar before their names. In Awk we also have variables, to
which we can assign values in the same way as the shell, but to use a
variable we do not need the dollar. The reason that the shell needs the
dollar is a technical one, relating to ensuring that each shell statement is
unambiguous. The ambiguities that might arise in the shell do not occur
in Awk.

Suppose we require a total grocery bill. We could use a variable
(total, say) to keep a ‘running total’ of the cost of each vegetable and
print it out at the end:

Initialise total to 0

BEGIN { total = 0 }

For each line of input, that is, each vegetable, add

the total cost to variable total

{ total = total + $2*$3 }

At the end, print out the total

END { printf "Total cost is %.2f\n", total}

Some explanation is required for the action total = total + $2*$3: the
current value stored in the variable total has the values of $2*$3 added
to it, and the resulting number is stored back in total. So the value of
the variable total has been updated. Another way of stating this action
is to use the symbol +=, so:

total += $2*$3

Thus, total += ... is just shorthand for total = total + ...

Analogous to += are -=, *=, /=, %= and ^= .

222

Awk

Worked example 11.8
Calculate the average price per kilo of the vegetables you have
purchased.
Solution: We need to total the amount of money spent, and also the
number of kilograms. The final answer is calculated by dividing one
by the other.

Use variable totalcost for the money spent

Use variable totalweight for the total kilos

Initialise totalcost and totalweight to 0

BEGIN { totalcost = 0

totalweight = 0 }

For each line of input update the running totals

{ totalcost = totalcost + $2*$3 } # Cost

{ totalweight = totalweight + $3 } # Weight

At the end, print out the average

END { printf "Average cost is %.2f pounds per kilo\n",

totalcost/totalweight}

11.6.2 Special variables

Just as the shell can use predefined variables such as HOME, so can Awk.
There are many of these, all of which use capital letters only (so variable
names you choose yourself should use lower-case letters). Some of them,
which we discuss here, are listed in Table 11.2.

Table 11.2

Predefined Awk

variables

FILENAME The pathname of the current input file

FS Input field separator, usually Space

NF Number of fields in current record

NR Number of current record from start of input

FNR Number of current record from start of current input file

OFS Output field separator used by print, usually Space

ORS Output record separator used by print, usually Newline

Each input record is counted, starting at 1. Given that the variable NR

contains the number of the current record, the following script will
ACRONYM

NR = ‘number of record’ prepend each input line with the line number (unless otherwise specified,
a record is assumed to be a single line). The format is that of cat -n,
where six spaces are allowed for the line numbers, which are separated
from the line contents by two blanks. The format specification %6d

indicates an integer right-justified within six spaces.

223

Introducing UNIX and Linux

{ printf "%6d %s\n", NR, $0 }

Try this Awk script, and also cat -n, with a file such as vegetables.

Worked example 11.9
Using awk, select the first three lines of standard input, in the
manner of head -3.
Solution: Display only those lines whose number, as given by NR, is at
most three. When NR is equal to three, the program should finish —
otherwise it will continue reading input until the input terminates.
The action exit causes awk to terminate.

NR <= 3 { print $0 }

NR == 3 { exit }

The variable NR starts off with value 1 on the first line of input, and

ACRONYM

FNR = ‘File Number of

Record’ continues counting however many files you have given as argument to awk.
There is another variable FNR, which is similar to NR, but is reset to 1

each time a new file is read as input. The variable FILENAME holds the
name of the current data file being read in.

Worked example 11.10
Write an Awk script firstlines to read from a number of files and
display the first line of each file preceded by the message The first

line of filename is: in the following manner:

$ awk -f firstlines vegetables /usr/dict/words
The first line of vegetables is:

potatoes 0.50 5

The first line of /usr/dict/words is:

AAAA

Solution: Use variable FNR to form the pattern to find the first line of
each input file, then printf to display that line ($0).

FNR == 1 { printf "The first line of %s is:\n%s\n",

FILENAME, $0 }

Each record consists of a number of fields. The variable NF is the
ACRONYM

NF = ‘number of fields’ number of fields contained in the current record. Try the following:

$ awk ’{ print NF }’
hello there
2

A B C D E

224

Awk

5

(blank line)
0

ctrl-D

Worked example 11.11
If some data in vegetables had been mistyped, there might be lines
in the file containing either less than or more than three fields. Such
lines cannot be processed correctly by the previous Awk scripts.
Write an Awk script to read a file and display a list of those lines
containing a number of fields different to three.
Solution: Use the pattern NF != 3 to choose those lines, and the
value of NR to indicate which lines they are:

NF != 3 { printf "Line %d has %d fields\n", NR, NF }

Use this script to check that your file vegetables is indeed of the
correct format. Try it on some other files you own and see what
happens.

11.7 Arguments to ‘awk’ scripts

Suppose we wished to write a shell script called price, which would take
one argument, representing a vegetable name, and interrogate the file
vegetables as before to display the total price paid for that vegetable.
One solution would be to get Awk to evaluate the total cost for all
vegetables, and then use Grep to filter out the single line of output from

NOTE

In grep $1, the $1 refers

to the first argument of

the shell script
awk:

awk ’{ printf "%s %.2f\n", $1, $2*$3 }’ vegetables | grep $1

This is a perfectly acceptable solution. Another would be to use a pattern
for awk so that only that single line would be processed by awk. But here
is a problem — we cannot use the following:

awk ’/$1/ { printf "%s %.2f\n", $1, $2*$3 }’ vegetables

The pattern /$1/ is an ERE pattern. The character $ in an ERE matches
the end of a string, and since each record Awk processes is a line, $
matches the end of an input line. The ERE $1, and thus the awk pattern
/$1/, will match all lines containing the digit 1 as the character after the
end of that line. This an impossible pattern, so it will not be matched by
any line. Try it — you should expect not to get any output. The point to
remember is that the $1 has nothing to do with the $1 that would
represent the first argument to a shell script.

There is, fortunately, a way around this problem. When invoking awk

you can preset Awk variables by specifying their initial value on the

225

Introducing UNIX and Linux

command line. So, we could assign an Awk variable called veg (say),
which would start off with the value that was the first argument to the
script:

awk ’{ if (veg == $1)

printf "%s %.2f\n", $1, $2*$3 }’ veg=$1 vegetables

By placing veg=$1 immediately after the Awk script, it will set the value
of veg to $1 — the first argument to the shell script — as soon as awk
starts up. Another method would be to use veg as part of a pattern:

awk ’ veg == $1

{ printf "%s %.2f\n", $1, $2*$3 }’ veg=$1 vegetables

Worked example 11.12
Write a shell script to take a single argument, representing a cost in
pence, and print out the names of all vegetables listed in file
vegetables that cost more than that number of pence per kilo.
Solution: Use awk, but pass a variable cost to it that is set to the
first argument of the shell script.

First, check the shell script has one argument

if [$# -ne 1]

then echo "One argument needed"

exit 1

fi

Now fire awk ...

awk ’{ if ($2 * 100 >= cost)

printf "%s\n", $1 }’ cost=$1 vegetables

Exit cleanly

exit 0

11.8 Arrays

Most high-level languages include arrays. An array (or associative array)
is a collection of variables with a name, and each variable in that array
has an index. An array index can be a string or a number. For example,
we might have an array called daysin consisting of 12 variables, indexed
by the names of the months of the year. These 12 variables would have
names daysin["January"], daysin["February"], and so on up to
daysin["December"].

226

Awk

Worked example 11.13
Write an Awk script to read as input a sequence of lines, each
containing the name of a month. Output should be the name of the
month read in followed by the number of days in it. For instance, for
input

March

November

we would have as output

March has 31 days

November has 30 days

Solution: Use an array indexed by the names of the months, so that
each array element has as its value the number of days in the month
that is its index. At the start of the script, the array must be
initialised.

BEGIN { # Initialise the array daysin

daysin["January"] = 31; daysin["February"] = 28

daysin["March"] = 31; daysin["April"] = 30

daysin["May"] = 31; daysin["June"] = 30

daysin["July"] = 31; daysin["August"] = 31

daysin["September"] = 30; daysin["October"] = 31

daysin["November"] = 30; daysin["December"] = 31

}

For each input line, output month name and no. of days

{ printf "%s has %d days\n", $1, daysin[$1] }

Note that we can place multiple Awk commands on a single line by
separating them with semicolons. Try this example. If you enter a
month name that is incorrectly spelled, Awk will see that the element
of the array with that index has not been assigned a value, and will
assume it is therefore 0.

Returning to our shopping expedition, we may wish to store the data
on each vegetable to be used later on. For example, if we purchased
several bags of potatoes at different shops, we would need to enter several
lines starting with potatoes. The scripts we have written already will not
be able to total the costs for potatoes, they will just total the cost of each
item on each line of input; that is, for each separate purchase. What we
could do is to have an array costs indexed by the names of the
vegetables, which we can update each time a new line of data is read in:

{ costs[$1] += $2*$3 }

The symbol += indicates that the variable on the left of the symbol has its
value updated by adding to it the number on the right of the symbol. At

227

Introducing UNIX and Linux

the start of the script, we would not initialise costs, since we do not at
that point know the names of the vegetables to be mentioned in the
input. When the first line of vegetables is read in, which is

potatoes 0.50 5

the following action is performed:

costs["potatoes"] += 0.50*5

The value of costs["potatoes"] starts off at 0, since it begins
uninitialised, and its value is increased by 2.50.

Just as in the shell, Awk contains for loops. In fact, Awk allows
several types of for loop. One of these allows you to loop through arrays
and pick out those indices that have been used. The for statement looks
like:

for (variable in array) statement

So, we could examine the values of the elements of costs for all indices
by using

for (veg in costs) printf "%s costs %.2f\n",

veg, costs[veg]

A complete Awk script for totalling the costs for all vegetables would
then be

{ costs[$1] += $2*$3 }

END { for (veg in costs)

printf "%s costs %.2f\n", veg, costs[veg] }

Worked example 11.14
Calculate the average cost per kilo for each vegetable.
Solution: The total cost and the total weight for each vegetable must
be calculated.

Use arrays costs and weights to store the total costs

and total weight for each vegetable.

{ costs[$1] += $2*$3; weights[$1] += $3 }

At the end, for each vegetable, divide its total costs

by the total weight, and output the value

END { for (veg in costs)

printf "%s: %.2f pence per kilo\n",

veg, costs[veg]/weights[veg] }

There is a special array ENVIRON which contains all the (exported)
shell environment variables. To display the value of your PATH, the
following Awk statement could be used:

228

Awk

printf "%s\n", ENVIRON["PATH"];

11.9 Field and record separators

The fields in a record are normally separated by whitespace. This is not
always convenient. Suppose a file (ages, say) contains a list of people’s
names and their ages:

John 13

Sue 12

James Smith 15

James Jones 14

The number of fields on each line varies. This is a potential problem. Let
us suppose we wish to write a simple Awk script to display

John is 13 years old

Sue is 12 years old

James Smith is 15 years old

James Jones is 14 years old

There are several possible solutions. One that you will already be able to
find checks the number of fields and performs a separate action each time:

NF == 2 { printf "%s is %d years old\n", $1, $2 }

NF == 3 { printf "%s %s is %d years old\n", $1, $2, $3 }

This solution is fine if you know how many names a person is likely to
have — but it is not elegant since there is a lot of duplication in the Awk
script. If you were to allow persons with many forenames to appear in the
list the Awk script would become unmanageable. Loops, such as for and
while loops, are provided in Awk, and although we do not discuss them
here, they could be used to ‘count over’ the first few fields. However, the
solution begins to get moderately complex if that method is adopted.

The reason that the Awk scripts to perform this apparently simple task
are less straightforward than you might expect is that the data has been
coded unwisely. The fields are separated by characters which themselves
appear in one of the fields, namely blanks. If the data had been

John:13

Sue:12

James Smith:15

James Jones:14

so that a colon (say) was used to separate the names from the numbers,
then each line would have precisely two fields, and the spaces in the
names would not matter. We can instruct Awk to use a different field

separator to the usual whitespace by resetting the value of the variable
FS; this should be done at the very start of the Awk script. Create a file

ACRONYM

FS = ‘field separator’

229

Introducing UNIX and Linux

called ages with the above names and ages in the ‘colon-separated’
format, and run the following Awk script:

BEGIN { FS=":" }

{ printf "%s is %d years old\n", $1, $2 }

The field separator can be any ERE, and can also be changed by giving
awk the option -F followed by that ERE. For instance, to allow a sequence
of one or more blanks, commas and colons to separate fields, you might
have

awk -F "[,:]+"

On your UNIX system there should be a file called /etc/passwd which
contains information about users on your system. This file consists of a
sequence of lines which look like:

chris:hi64MH4uhJiq2:1623:103:Chris Cringle:/cs/ugrad/chris:

sam:a8PyPVSiPVXT6:1628:103:Sam Smith:/cs/ugrad/sam:/bin/sh

jo:9gqrX4IOig7qs:1631:103:Jo Jones:/cs/ugrad/jo:/bin/sh

geo:58esMw4xFsZ9I:1422:97:George Green:/cs/staff/geo:/bin/sh

...

Each line contains seven colon-separated fields; these represent the
following:

1 A user’s username (e.g. chris)

2 That user’s encrypted password (e.g. hi64MH4uhJiq2). Passwords are
usually stored in a coded form; if you know a password, it’s easy to
encrypt it, but virtually impossible to take an encrypted password
and decode it. So it’s safe for the encrypted passwords to be accessible
by everyone. Having said this, some UNIX implementations —
especially networked systems — impose a higher degree of security
and do not allow the encrypted passwords to be accessed. In that
case, the second field will be replaced by some other value.

3 The user’s user-id (see Chapter 5).

4 The user’s group-id (see Chapter 5).

5 The user’s ‘real’ name; sometimes this field will also include other
information, such as the user’s office phone number or course of study.

6 The user’s home directory.

7 The user’s login shell (if empty, defaults to /bin/sh).

Some systems which ‘hide’ the encrypted passwords will also have another
mechanism for storing the data normally in /etc/passwd. If you find that
this file either does not exist, or does not contain the information just
described, then it is likely to be available using a special command. A

ACRONYM

NIS = ‘Network

Information Service’ common method of organising users’ data over a network uses a system
called NIS. To display the password file using NIS you should type

230

Awk

ypcat passwdACRONYM

yp = ‘yellow pages’ and the data will be sent to standard output.

Worked example 11.15
Using Awk and /etc/passwd write a shell script findname to take
an argument, which is a usercode, and display the name of the user
who owns that usercode.
Solution: We need to look at fields 1 and 5 of the password file; if
field 1 is the shell script argument we display field 5.

As usual, make sure the script has one argument ...

if [$# -ne 1]

then echo "findname requires one argument"

exit 1

fi

awk ’

Set field separator to :

BEGIN { FS=":" }

{

Is the first field the usercode?

if ($1 == usercode)

If yes, print out field 5, the user’s name

printf "%s\n", $5 }

’ usercode=$1 </etc/passwd

Run awk with usercode set to the value of the

first argument of the shell script, and read

the data from /etc/passwd

Just as we can specify what should separate fields within a record, so
we can specify what should separate records. Unless otherwise specified, a
record is a line of input, so the record separa-

tor is the Newline character. The special variable used to change this is RS.
ACRONYM

RS = ‘record separator’

Worked example 11.16
Write an Awk script to read standard input containing a list of
company names and phone numbers, together with other
information. All companies in the input with the keyword Anytown as
part of their data should be displayed. The data for each company
should be separated by a single line containing a single % symbol:

231

Introducing UNIX and Linux

Toytown Telecom

Birmingham

0121 123 4567

Sells phones and answering machines

%

Sue, Grabbit and Runne

Solicitors

London

020 7999 9999

%

Chopham, Sliceham and Son

Anytown 234

family butchers

So with this data, the output would be:

Chopham, Sliceham and Son

Anytown 234

family butchers

Solution: Set the record separator to a %.

BEGIN { RS="%" } # Set RS

/Anytown/ { print $0 }’ # Print records matching "Anytown"

You must be very careful if you reset the record separator. If the
NOTE

WARNING! Newline character is no longer the record separator, any Newlines will be
a part of the record. Unless the field separator is an ERE which allows a
Newline, it will also be part of one of the fields. You will seldom need to
reset the record separator.

Although the function print has been mentioned briefly, we have so
far used the function printf as the usual means of displaying output
from awk. This is because printf is very flexible. For simple output,
print can be ‘tailored’ to individual requirements by use of the output

field and output record separators OFS and ORS. When print takes
several arguments, they will be printed out separated by the value of OFS
(normally Space), and each record will be terminated by ORS (normally
Newline).

Worked example 11.17
Write an Awk script to read in the password file and display users’
names and home directories, in the following format:

Chris Cringle has home directory /cs/ugrad/chris.

Sam Smith has home directory /cs/ugrad/sam.

232

Awk

...

Solution: Use print to display the fifth and sixth fields of
/etc/passwd. Set the input field separator to a colon, the output
field separator to

has home directory

and the output record separator to Newline.

awk ’ BEGIN { FS=":"

OFS=" has home directory "

ORS="\n" }

{ print $5,$6 }’ </etc/passwd

11.10 Functions

Just as bc and expr have functions defined that you can use with them
(such as exp), so does awk. Some of these are listed in Tables 11.3 and
11.4.

Table 11.3

Arithmetic functions

used by awk

sin(x) returns the sine of x

cos(x) returns the cosine of x

atan2(x,y) returns the inverse tangent of x/y

exp(x) returns the exponential of x, viz. ex

log(x) returns the natural logarithm of x

sqrt(x) returns the square root of x

int(x) truncates x to the nearest integer to 0

rand() returns a random number x with 0≤x≤1

Worked example 11.18 Write a script to ‘roll a die’. Each time a line of input is entered, the
script should display a number between 1 and 6 to mimic someone
throwing a die.
Solution: Use awk. All the input should be discarded, but whenever a
line is entered from standard input the function rand is called to
generate a number between 0 and 1 (but not including 1). This is
multiplied by 6 to get a number between 0 and 6 (but not including
6). Adding 1 to this produces a number between 1 and 7, and giving
this as argument to int yields a whole number between 1 and 6
inclusive.

awk ’{ printf "%d\n", int(rand()*6 + 1) }’

233

Introducing UNIX and Linux

Table 11.4 Other

functions used by awk
tolower(s) returns string s with all upper-case letters

in s lower-cased

toupper(s) returns string s with all lower-case letters

in s upper-cased

split(s, a, fs) splits string s into array elements

a[1], a[2], ..., a[n], and returns n; separation is

done with the regular expression fs

length(s) returns the length in characters of string s

getline moves on to the next input record;

$0, NF, etc., are reset to their new values

match(s, ERE) returns the position in string s, starting at 1,

where ERE occurs; 0 is returned if

ERE does not occur in s

sub(ERE, rep) substitutes string rep for the first occurrence

of ERE in the current record

sub(ERE, rep, in) substitutes string rep for the first occurrence

of ERE in the string in

substr(s,m) returns the substring of s beginning at

position m

substr(s,m,n) returns the substring of s beginning at

position m

of length n (or up to the end of the string,

if sooner)

system(expression) evaluates expression as a shell command and

returns its exit status

The trigonometric functions use radians, not degrees, and the number
returned by rand might be 0, but will be strictly less than 1.

Worked example 11.19
Write a shell script to read the password file and display each user’s
name in capitals.
Solution: Use awk to pass the fifth field of its input to the function
toupper, the result of which is then displayed.

awk ’ BEGIN { FS=":" }

{ print toupper($5) }’ </etc/passwd

Where a function takes a string as argument, that string is not itself
altered, so that if you passed $0 to one of those functions, $0 would stay
the same, but the function would return a new string based on $0.

234

Awk

Worked example 11.20
A certain Birmingham electrical retail company offers free delivery of
its products to customers living in the Birmingham area, defined as
having addresses with postcode commencing B followed by at least
one digit. Delivery outside this area is charged at a flat rate per
delivery. It is company practice for the driver of its delivery van to
collect that fee. The company stores part of its customer data in the
following format:

invoice number,customer,road,town,postcode

For example,

6152,J. Smith,1 High St.,Birmingham,B99 9ZZ

6183,F. Bloggs,5 Long Ave.,Dudley,DY1 1AA

The company requires a document to instruct the delivery driver
whom to visit and whom to collect a delivery fee from.
Solution: This is an exercise that could be accomplished using Sed,
although it would be quite messy. Using Awk we can use function
match to examine the postcode. The ERE that matches a
Birmingham postcode is

^B[0-9]

namely a B at the start of the postcode followed by one digit. What
follows the digit — if anything — does not concern us. The Awk
script might be:

Set the field separator to be a comma

BEGIN { FS="," }

For each line, $5 is the postcode

Check if it is a Birmingham one

{ if (match($5, "^B[0-9]") > 0)

fee = "no fee"

else

fee = "standard fee"

Print out message for driver

printf "%s, %s, %s, %s: %s\n", $2, $3, $4, $5, fee

}

235

Introducing UNIX and Linux

CHAPTER SUMMARY
We have described very basic use of the Awk language.

EXERCISES
1 A railway company operates trains that travel between a number of
cities. The company offers three types of service: local, fast and
express. Its fares are based on 10p per km travelled per passenger for
local trains, 12p for fast trains, and 15p for express. The company
keeps a log of all journeys made. For each year this data is kept in a
file (trainlog , say), which contains a number of fields. These are, in
order, the departure city, the destination city, the distance travelled
(in kilometres), the number of passengers carried, and the service
(local, fast or express). The final two fields represent the day and
month the journey took place. A typical part of the log file might
look like:

...

Edinburgh Glasgow 71 23 local 14 5

Aberdeen London 805 675 express 14 5

Manchester Birmingham 128 534 fast 15 5

Exeter Exmouth 8 112 local 15 5

...

The costs to the company of running trains are a fixed cost of 100
pounds per journey made plus 5 pounds per km travelled. Write Awk
scripts to take input from trainlog and display the following
information:

a The number of trains run.

b The number of trains run in May.

c The number of fast trains run in May.

d The total number of passengers carried in the year.

e The total fares collected in the year.

f The percentage of revenue which was generated by local trains.

g For each train, the profit or loss made on the journey; the output
should be a sequence of lines formatted so:

...

14/5 Edinburgh-Glasgow: loss 291.70

14/5 Aberdeen-London: profit 77381.25

15/5 Manchester-Birmingham: profit 7462.24

15/5 Exeter-Exmouth: loss 50.40

...

236

Awk

2 The Anytown and Blankshire Historical Society has decided to

computerise its membership records. There are three classes of

membership:

Annual, renewable on the anniversary of joining and subject to a
fee of 10.00 pounds each year.

Life, subject to a single payment of 250.00 pounds.

Honorary, which gives the same rights and privileges as Life
membership, but is awarded by the Committee and no fee is
payable.

Its membership secretary proposes to store its membership records in
a file containing single-line records. Each record contains a number of
colon-separated fields, the number of which depend on the class of
membership.
For annual members, the fields have the following meaning:

1 Surname

2 First name(s) or initials

3 Class of membership, the string ‘annual’

4 Address

5 Home phone number

6 Date of first joining (dd/mm/yy)

7 Date renewal due

For life and honorary members, field 3 is ‘life’ and ‘honorary’
respectively, and there are only six fields. For example,

Bloggs:Fred:annual:1 High Street:1234:03/12/90:03/12/97

Smith:John J.:annual:2 High Street::13/01/97:13/01/98

Doe:Jane:life:3 High Street:123 4567:22/02/93

Jones:Cllr. A.:honorary:New House:123 2345:22/02/93

Write shell scripts to read a membership file from standard input and
produce the following information:

a A list of members’ names, sorted by category of membership, then
alphabetically by surname.

b A list of annual members whose membership has expired and is
due for renewal.

c The total number of annual members due to renew in the current
year.

d The total dues paid already by each member during their
membership of the society.

237

Introducing UNIX and Linux

e A list of honorary members who will have been of 10 years’
standing in the current year.

f Combine (a–e) to produce a single shell script to display a
comprehensive report. Take care to include messages in the
output so that the report is easy to read.

3 For each of these tasks, ask how else you might solve the problem
under UNIX, for instance with Grep or Sed. Is Awk the most
appropriate tool?

238

C
H
A
P
T
E
R

12

Perl

CHAPTER OVERVIEW

This chapter discusses

� simple use of Perl; and
� how to use Perl effectively in combination with other UNIX

tools.

12.1 Introduction

12.1.1 Why yet another utility?

A theme we have been following through this book is “keep it simple” —
that is, if there is a simple utility to do what you need, then use it.
However, there will always be situations where you need something more
heavyweight than what we have already introduced.

We have discussed Awk, and seen that it can process data streams and
files in a relatively complex fashion. However, Awk was never designed for
sophisticated calculations, and as soon as an application deviates from
straightforward processing of character streams, Awk is messy to use.
Since Awk was devised in the early days of UNIX, our understanding of
how to write a programming language has moved a long way, and the
result is Perl. This is not to say that Awk is a bad language — it’s not,
it’s just dated. However, an understanding of Awk is helpful when
learning Perl, and as you will see there are tasks for which Awk is still a
very appropriate solution.

Perl stands for Practical Extraction and Report Language. Don’t let
that put you off! To the serious UNIX programmer it’s the best thing
since sliced bread.

So what actually is Perl? It’s a programming language, with a syntax
similar to “C”, and it comes complete with a full set of libraries —
predefined functions — that access the UNIX kernel. It also has libraries

239

Introducing UNIX and Linux

for performing almost any other function you care to name, including
database access, cryptography, graphics and internet access. The syntax
of Perl is well-designed, but is very terse — it is a language for the skilled
programmer, and a beginner would be well-advised to learn another
language first before attempting a Perl exercise. Perl is also free, and is
open source, which means that it is evolving, and new libraries for it are
being continually written. It also means that there is no concept of a
“standard” for Perl. The latest version of Perl is version 5, and it is
normally contained in all UNIX and Linux distributions. In addition, Perl
can be used on other operating systems including MacOS and Windows.

12.1.2 Beginning Perl

We will assume that the previous chapters have made sense to you. Our
goal is to identify the types of tasks for which the other tools you are now
familiar with are inappropriate, and to show how to begin to code them
in Perl. Our starting point will be processing a stream of characters, just
as we did with Awk.

However, before we start, there is a fundamental difference between
Perl and Awk. Whereas an Awk script assumes its data is naturally
separated into records which themselves are subdivided into fields, a Perl
program does not. Perl is a general purpose programming language, and
although it can perform the same tasks as Awk (very easily, in fact) there
are no constraints on its manner of use. Perl is not an “interactive shell”.
While the shell can be used to “talk to” the operating system in real
time, Perl is not designed to. If the data you wish to process is not very
well structured you should consider using Perl.

12.1.3 Invoking Perl

Just as with Grep, Sed and Awk, simple use of the perl command
involves a program containing the commands Perl uses. This program can
either be a file which is an argument to perl, or can be contained in a
string named by option -e. Note that this is slightly different from the
convention used by Awk. Thus, to print out Hello World! we can either
invoke

perl -e ’print "Hello World!\n"’

or alternatively create a file (perlprogram, say) containing the print
statement print "Hello World!" and then invoke perl on the file thus:

perl perlprogram

As we shall see, although Perl embraces all the concepts we have
already encountered (such as standard input and output, pipes, processes,
and so on), the syntax it uses for them is quite different.

240

Perl

12.1.4 Documentation on perl

Extensive documentation is provided using the command perldoc. By
default, this documentation is not available via the standard UNIX man

command (although the manual pages can be be created if required). For
an overview of how perldoc works, type

perldoc perldoc

12.1.5 Perl Scripts

Superficially a Perl script looks similar to a shell or an Awk script, and
consists of a sequence of statements. Blocks of code can be enclosed in
braces, and many of the basic commands, such as printf, are the same.
There is one initial difference that often confuses, which is that every
statement must be terminated by a semicolon. The end of a line has no
significance to Perl.

12.2 Variables

In the shell (and Awk also), there is only one type of variable, which is a
string of characters. If those characters are digits, and the variable is used
in a context where a number is expected, then the variable will be
understood to be a number. In Awk, arrays are also provided for.

In the shell, the value of a variable is accessed by placing a dollar
symbol in front of the name of the variable, but its value is set by just
using the name. In Awk, the dollar symbol is not needed at all.

In Perl, the situation is more complex. First of all we consider scalar
variables. These are similar to variables you have already met, and can
contain strings of characters, which are interpreted appropriately. The
difference between Perl and shell/Awk variables is that the name of a
scalar variable is always prepended with a dollar. For example, to set the
value of $i to 0 and the value of $x to $i+1:

$i=0;

$x=$i+1;

Arrays are indicated by the @ symbol before the name, and square
brackets are used to access individual elements of an array, which must be
indexed by integers commencing with 0. Individual elements of an array,
since they are scalars, are prepended with a $. A predefined array you will
often use is @ARGV, which is the list of arguments to the Perl program. Its

ACRONYM

ARGV = ‘ARGument

Vector’ first element is $ARGV[0].
In Awk, an array could be indexed by any string, and we referred to

such an array as an associative array. In Perl it is called a hash. It is
distinguished from an array in three ways. First, the @ symbol is replaced

241

Introducing UNIX and Linux

by % to refer to the whole hash. Second, square brackets are replaced by
braces, and finally the indices are strings, not integers.

Simple use of Perl seldom requires the @ and % symbols, since most of
the time we access the individual elements of the arrays directly. As an
example, suppose array @month is an array of 12 strings containing the
names of the months, and %age is a hash containing the ages of some
people. The following fragments of code set the first and last elements of
@month and the ages for Chris and Sam.

$month[0]=’January’;

$month[11]=’December’;

$age{’Chris’}=22;

$age{’Sam’}=19;

Either single or double quotes can be used to denote strings, but like
the shell, dollars and escape characters will be interpreted within double
quotes but not within single quotes.

Strings can be concatenated — that is, joined together — by use of the
operator . (“dot”). For instance, the concatenation of strings

"Hello " . "world!"

is equivalent to the single string

"Hello world!"

12.3 Input and output

A feature of the shell is that input and output, as simple data streams,
are fundamental to its working. In other languages, such as Java or C,
input and output can be much more complex, and programmers need to
be aware of the type of data they are reading in or sending to an output
device or file.

For example, if a program were to write data to many different files,
then a shell program that relied on redirection of the standard output
stream would become unwieldy and difficult to write.

Perl retains the simplicity of the shell whilst allowing the programmer
a greater variety of methods for reading and writing data. It is equipped
with five predefined variables for input and output (known as filehandles),
shown in Table 12.1.

Table 12.1 The five

predefined input and

output variables

STDIN is the standard input stream

STDOUT is the standard output stream

STDERR is the standard output stream

ARGV is an array containing the arguments to the program

DATA is the Perl equivalent of a here-document

242

Perl

12.3.1 Files and redirection

Files can be accessed directly by associating a new filehandle with the
actual name of a file, using the function open. The syntax is curiously
familiar. To open a file (tempfile, say) for reading, using the filehandle
TMP, either of the following will work:

open(TMP, "tempfile");

open(TMP, "<tempfile");

To open tempfile, for writing using the TMP filehandle, use the
following if you want the current contents of the file to be deleted (just as
for the > file redirection mechanism in the shell):

open(TMP, ">tempfile");

The data written to the file can to be appended using the following
syntax (as the >> file redirection mechanism in the shell):

open(TMP, ">>tempfile");

For the time being, use printf (syntax virtually identical to that in
the shell) to send output using a filehandle (if you omit the filehandle,
STDOUT is assumed). To display Hello World in file tempfile, the code
fragment would be:

open(TMP, ">tempfile");

print TMP "Hello World!\n";

close(TMP);

Note the use of close — there are system limits on the number of files
than can be opened at any one time, and it is good practice to “close”
files when you have finished writing to (or reading from) them.

Reading a text file or stream is performed by enclosing the filehandle
in angle brackets. Look at the following dialogue:

$v = <STDIN>;

open(TMP, "tempfile");

$w = <TMP>;

close(TMP);

The scalar variable v is set to the next line of standard input, and w to
the first line of tempfile. Both v and w contain the newline character at
the end of the line (unlike the shell command read or Awk) — this can
be removed by use of the command chomp:

chomp($v);

A while loop can be used to go through all the lines in a file or
stream. The syntax is

while (<filehandle>) { ... }

243

Introducing UNIX and Linux

The variable $ contains the current line of input that has been read in.

Worked example 12.1
Write a Perl script to take the name of a file as its first argument,
and then read standard input and copy it to that file.
Solution: The ARGV array contains the filename as its first element.
Open that file for writing with a filehandle, and loop through the
lines of standard input, not forgetting to close the file after use.

Set the filename variable to the first argument

$filename=$ARGV[0];

Open the file

open(FILE, ">$filename");

Repeatedly read in lines from standard input

while (<STDIN>) {

Print each line to the file

print FILE $_;

}

Finally, close the file

close(FILE);

12.3.2 Pipes

A similar method of working allows access to pipes. Suppose we wish to
open a pipe to filter data into a command (cmd, say), which is both valid
and exists on the current machine, and giving the data stream the
filehandle TMP. To do this, use:

open(TMP, "| cmd");

Similarly, to take the output of a command as a stream, simply place
the pipe symbol the other side of the command name:

open(TMP, "cmd |");

Worked example 12.2
Write a Perl script to take a string as first argument, then read
standard input and copy all lines containing that string to standard
output.
Solution: This is a job for fgrep. The ARGV array contains the string
as its first element. Construct the command fgrep with the string as

244

Perl

its argument (note that since the string may contain spaces, you need
to enclose the argument in single quotes). Open a pipe into the
command, and loop through the lines of standard input, not
forgetting to close the file after use. The output of fgrep by default
goes to standard output, so a second pipe is unnecessary. Closing the
filehandle is required even though no named file is used.

Set the value of variable string to the first argument

$string=$ARGV[0];

Create a shell command to search for that string

$command="fgrep ’$string’";

Open a pipe to that command

open(FGREP, "| $command");

Repeatedly real lines from standard input ...

while (<STDIN>) {

... and send them to the pipe

printf FGREP $_;

}

Finally, close the pipe

close(FGREP);

12.3.3 The DATA filehandle

The DATA filehandle allows access to data in the same physical file as the
Perl program itself (similar to a shell “here” document). The program
and data should be separated by a line containing the string END , and
unlike the shell this terminator cannot be changed to a different one.

Worked example 12.3
Write a Perl script to read into an array @days the names of the
seven days of the week and then display them on standard output.
Solution: Use the DATA filehandle and place the data at the end of the
Perl script. One loop is needed to do both the assignment and the
printing.

Set variable i to count the lines of data read in

$i=0;

Repeatedly read lines of data

245

Introducing UNIX and Linux

while (<DATA>) {

Remove the trailing newline character

chomp($_);

Set the array value indexed by i to the line

$weekday[$i]=$_;

Print the line on standard output

printf "$weekday[$i]\n";

Increment i

$i++;

}

The Perl program ends and the data follows

__END__

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday

12.4 Fields

In previous chapters we have frequently considered text files as being
divided into records (usually lines) and fields (usually columns separated
by whitespace or colons).

In Perl, we can take a string and decompose it into fields using the
Perl operator split. This takes two arguments, a pattern enclosed in
forward slashes, and the string, and returns an array whose values are the
fields of the string using the pattern to describe what separates the fields.
For example, suppose string $play is set to the string "Much Ado About

Nothing"; then the following will create an array @words containing four
elements (indexed from 0 to 3) containing strings "Much", "Ado", "About"
and "Nothing" respectively:

@words = split / /, $play;

If the second argument is omitted, $ is assumed; if the first argument
is also omitted, the split is performed on whitespace.

246

Perl

Worked example 12.4
The file /etc/passwd contains colon-separated fields specifying the
users of the machine. The first field is always the username. Write a
Perl script to read the password file and display, one per line, all the
usernames.
Solution: use split to extract the fields into an array, using pattern
: to describe the field separator, and print out the first element of
the array (index 0).

open(PASSWORDS, "/etc/passwd");

while (<PASSWORDS>) {

@cols = split /:/;

print "@cols[0]\n";

}

close(PASSWORDS);

12.5 Control structures

The phrase control structures refers to the statements in the language
that allow for choices and repetitions. In practice, this usually means if
statements and loops.

The condition can be anything that evaluates to true or false.
Similarly, a while statement will repeatedly execute until the condition
ceases to be true:

while (condition) {

code to execute while condition is true
}

We have already met a while loop in the previous section, in the context
of repeatedly reading in lines of input. In that case, the condition
<STDIN> is assumed to be true if there is another line to read in, and false
if the input has terminated. Let’s look at a more typical use of while in
an example.

Worked example 12.5
Read in two numbers from standard input, and prompt the user to
enter their product. Continue to do so until the correct answer is
entered.
Solution: Read the two numbers, on separate lines of input, into
variables $n1 and $n2, then prompt the user to multiply them
together. Read in the user’s answer into $answer, check whether this

247

Introducing UNIX and Linux

is different to $n1*$n2, and if so tell the user their answer is wrong,
ask them to try again, and read in $answer again. Repeat until the
user enters a correct answer.

Prompt for input, and read two numbers

print "Type in the first number: ";

$n1 = <STDIN>;

print "Type in the second number: ";

$n2 = <STDIN>;

Prompt for, and read, answer

print "Type in their product: ";

$answer = <STDIN>;

Loop until correct answer input

while ($answer != $n1*$n2) {

print "Wrong - try again: ";

$answer = <STDIN>;

}

print "Correct - the answer is $answer\n";

Similary, at its simplest, an if statement takes the following form:

if (condition) {

code to execute if condition true
} else {

code to execute if condition false
}

There is also a variant of the syntax for if. Instead of

if (condition) { statement }

we can write

condition && { statement }

and instead of

if (! condition) { statement }

we can write

condition || { statement }

248

Perl

The symbol && is pronounced and, and || is pronounced or. The words
and and or can be used in place of && and || respectively. This is simply
a way of making code easier to read. For instance, if you wished to open
file myfile for reading, and wanted Perl to inform you if the file could not
be read, the following one line of code could be used:

open(INPUT, "myfile") || die "Cannot open myfile";

The die command causes the message following die to be displayed on
the standard error stream and the Perl program to terminate immediately
with non-zero exit status.

Worked example 12.6
Your login shell reads in commands from the first of the following
two files which may exist in your home directory: .bash profile,
.profile. Write a Perl script either to display the contents of that
file, or to inform you that neither file exists.
Solution: Try to open each of the files in turn, and if both fail die. If
one has been opened, display its contents.

Try to open the one of the two files

open(INPUT, ".bash_profile") ||

open(INPUT, ".profile") ||

die "Neither .bash_profile nor .profile found";

If one is open, use filehandle INPUT to read from it

while (<INPUT>) {

print "$_";

}

Finally, close the file

close(INPUT);

12.6 Predefined Perl

12.6.1 Functions

There are many functions predefined in Perl, too many to list here. Some
are almost identical to standard utilities available on UNIX/Linux, such
as chmod, mkdir, grep and sort. We present here a brief (and simplified)
description of a set of standard Perl functions that we feel are particularly
useful. For a full list, and a detailed explanation of each, you should
consult the Perl web site at www.perl.com.

249

Introducing UNIX and Linux

Table 12.2 Some

predefined Perl

functions

chdir changes the working directory to its (string) argument

do executes as a Perl program the file that is its (string) argument

eof returns true if its (filehandle) argument is at end of file

eval evaluates its argument as if it were a Perl program

exec executes the shell command that is its (string) argument

exit ends program immediately, exit status its argument

lc returns its (string) argument changed to lowercase

length returns the number of characters in its (string) argument

scalar returns the number of elements in its (array) argument

uc returns its (string) argument changed to uppercase

12.6.2 Modules

A Perl module is a collection of Perl programs written to be used in other
programs. You can write your own, or you can use modules written by
other people. Some modules are included with each distribution of Perl,
and others are made freely available on the Web.

The web site www.cpan.org (“Comprehensive Perl Archive Network”)
is the main place to go to find out what is available. The site is
continually growing, and at the time of writing contained over 1600
modules, including modules in the following areas:

� security, encryption and authentication;

� database support for most commercial databases;

� web support, including HTML parsers and HTTP servers;

ACRONYM

HTML = ‘HyperText

Markup Language’

HTTP = ‘HyperText

Transfer Protocol
� email clients and servers;

� mathematics;

� image manipulation;

� archiving and file conversion;

� interfaces to operating systems, including MacOS, OS/2 and
Windows;

� hardware drivers; and

� specialised computational modules, such as Neural Networks and
Artificial Intelligence.

In order to use a module, include the line

use name-of-module;

at the start of your program.

250

Perl

Worked example 12.7
Write a Perl script to take two arguments, considered to be
filenames, and copy the contents of the first file to the second.
Solution: Use the copy function in the File::Copy module:

use File::Copy;

copy($ARGV[0], $ARGV[1]) or die "Cannot perform copy"

Note that we have checked the successful completion of the copy

function and generated an error message if it failed.

12.7 Regular expressions

Regular expressions have been used extensively in the previous chapters,
and it will come as no surprise that Perl also uses them. The difference
between Perl’s approach to regular expressions, and that of other utilities,
is that they are central to the use of Awk, Sed and Grep. In Perl, the use
of regular expressions is just one of many possibilities available to the
programmer. Typical use of regular expressions in Perl involves the
comparison or editing of strings.

The operator used to manipulate regular expressions is =~, known as
the pattern binding operator. Perl does not use the phrase regular
expression, preferring instead pattern, but it is synonymous.

The simplest use of patterns is to match strings. The expression

string =~ /pattern/

evaluates to true if the string is matched by the pattern, and

string !~ /pattern/

evaluates to true if the string is not matched by the pattern.

Worked example 12.8
Write a Perl fragment to take the variable $word and enclose its
contents in single quotes only if it does not already contain single
quotes as both its first and last characters.
Solution: Use a pattern match — the pattern ^’.*’$ matches a
single quote at the left (anchored by the ^) and at the right
(anchored by the $). The pattern .* matched zero or more
occurrences of anything.

if ($word !~ /^’.*’$/) {

$word = "’" . $word . "’";

}

251

Introducing UNIX and Linux

12.7.1 Single character translation

We start by considering character-by-character translation. You will recall
the use in Chapter 10 of the shell command tr, and there is an almost
identical facility available in Perl. The syntax is almost identical, except
that

� the arguments are separated and enclosed by three slashes, and

� the options (such as d) appear at the end.

The string which appears between the first two slashes is called the
search string, and the string between the last two slashes is the replace
string. For example, the following command lowercases each letter in
$word:

$word =~ tr/A-Z/a-z/;

The following command replaces each vowel in $word by an @ symbol:

$word =~ tr/AEIOUaeiou/@/;

The option d to delete characters is supported, and causes all
characters in the search string which do not have replacements in the
replacement string to be deleted. For example, to delete all vowels in

NOTE

This behaviour is slightly

more complex than the

shell command tr
$word we could type:

$word =~ tr/AEIOUaeiou//d;

Worked example 12.9
Write a Perl script to copy standard input to standard output with
all digits deleted and the symbol @ replaced by #.
Solution: Use a while loop to iterate through the lines of standard
input; for each line, the variable $ contains the line, and we can then
use tr with option d search string @0-9 to delete the digits, and
raplacement string # to replace the first character of the search string
(the @):

while (<STDIN>) {

$_ =~ tr/@0-9/#/d;

print $_;

}

12.7.2 String editing

Just as the Perl command tr is similar to the shell command tr, the Perl
command s is similar to Sed. The syntax is the same as for tr:

s/search-string/replacement-string/options

252

Perl

For example, to replace Hello or hello in variable $greeting by Howdy,
we might have:

$greeting =~ s/[Hh]ello/Howdy;

Worked example 12.10
Write a Perl script which takes one argument, assumed to be the
name of a file which is itself a Perl program, and copies that file to
standard output with all comments removed. Assume that # is not
contained in any quoted string in the argument program.
Solution: A comment commences with # and continues to the end of
the line, so a search string matching a comment is #.*$ (note the use
of $ to anchor the search string to the end of the line, and .* to
match an arbitrary length sequence of characters). The script then
becomes

open (FILE,$ARGV[0]);

while (<FILE>) {

$_ =~ s/\#.*$//;

print "$_" ;

}

Worked example 12.11
Write a Perl script to read text from standard input, and send to
standard output the text with all leading/trailing whitespace
removed, and all sequences of tabs/spaces replaced with a single
space character.
Solution: This is another use of the s, with a simple enclosing loop.
The substitution is performed in two stages: first, remove the leading
space, then the trailing space, then the excess whitespace. Note that
a tab is whitespace, and is entered as a \t.
while (<STDIN>) {

$_ =~ s/^[\t]*//; # remove leading spaces

$_ =~ s/[\t]*$//; # remove trailing spaces

$_ =~ s/[\t][\t]*/ /g; # squash internal whitespace

print "$_" ;

}

12.8 Perl and the Kernel

We have already mentioned some of the functions available in Perl, and
have noted that functions often appear similar in name and in what they
do to shell utilities. This is no accident.

253

Introducing UNIX and Linux

Recall that a UNIX system contains at its core the kernel. The
interface to this kernel is specified both in the C language (POSIX.1) and
as shell commands (POSIX.2). The shell command names mimic — as far
as is sensible — the names of the corresponding C procedures. For
example, to create a new directory, the shell command mkdir is used, and
the corresponding C procedure is called mkdir. The Perl function is also
called mkdir.

The C language has been used to code the kernel, and much of the
shell and Perl is written in C (or its more recent object-oriented
derivative C++). The use of the names used by C to interface with the
kernel thus gives the shell or Perl programmer a consistent window into
the kernel. Anything (almost!) that can be coded in C on a UNIX system
can be written in the shell or in Perl.

12.9 Quality code

There has been much debate since programming languages were invented
as to what constitutes “good code”. At the time of writing,
object-oriented programming languages are commonly seen as
encapsulating a natural, intuitive, and solid programming style, in which
it is easy to write readily understandable programs. Like the shell, Perl
was invented by capable and confident system programmers, people who
perhaps did not feel the need for their code to be easily read by others.

Perl is not object-oriented. Perl does not come with interactive
development environments which will help you write code. Perl is not
forgiving of mistakes — it allows the programmer full licence to do what
she or he wants.

It is possible to write Perl in variety of obscure ways so that your code
is extremely difficult to read. This can be taken to extremes, for instance
in the form of JAPH scripts. See http://www.perl.com/CPAN-local/

ACRONYM

JAPH = ‘Just Another

Perl Hacker’ misc/japh for examples. The onus is on you, the programmer, to write
Perl so that your code is “good code”. What does this mean in practice?

Use comments
Your program should be well commented, and perhaps a quarter of the
code should be comments. Help the reader to understand what you’re
doing, since the Perl code itself might not.

Use meaningful variable names
It is tempting to use single letter names, since they are quicker to type,
and make your programs smaller. This is false economy, and it’s easy to
forget what you were using variables for.

254

Perl

Check for error conditions
If you know that your program only requires one argument (say), make
sure that your code does something sensible when presented with 0
arguments or with more than one.

Structured your programs in a modular fashion
Use modules and functions. We have only touched on them in this
chapter, but when you have gained experience programming Perl, and are
used to writing longer programs, this will be helpful. In the meantime, if
a program has several distinct phases, then ensure that they are
distinguished. This can be done easily by separating them with blank
lines and commenting them. Indenting the bodies of loops is another
simple technique which clarifies the structure of the code.

Use standard libraries if appropriate
Perl comes supplied with libraries. Many of the tasks you may wish to
accomplish can be written easily using modules from those libraries.
Don’t re-invent the wheel!

Worked example 12.12

Good style Write a Perl script, which takes one integer argument, and displays a
message to inform the user whether the number is prime. Ensure
your code is of good quality.
Solution:
Suppose the argument is n. We solve this problem by successively
trying to divide numbers from 2 up to n/2 into n. If any of these
divides exactly, then n is not prime.

Program to calculate whether a number is prime

Part 1: Check the input data

if ($#ARGV != 0) {

printf "Exactly one argument required\n";

exit 1;

}

if ($ARGV[0] <= 0) {

printf "The argument must be positive\n";

exit 1;

}

Part 2: Perform the calculation

Variable number is the integer we are testing

$number = $ARGV[0];

255

Introducing UNIX and Linux

$isPrime = 0;

loop through all possible divisors

for ($divisor=2; $divisor <= $number/2; $divisor++) {

if ($number % $divisor == 0) {

$isPrime = 1;

}

}

Part 3: output the result

if ($isPrime == 1) {

printf "%d is not prime\n", $number;

}

else {

printf "%d is prime\n", $number;

}

Worked example 12.13

Bad style The task is identical to the previous worked example. The solution in
this case ignores our advice on good coding. We hope that the point
is made!
Solution:

$n=$ARGV[0];$i=0;

for ($j=2;$j<=$n/2;$j++){if($n%$j==0){$i=1;}}

if($i==1){printf "%d is not prime\n", $n;}

else {printf "%d is prime\n", $n;}

12.10 When do I use Perl?

Use Perl whenever you want. Anything you can program in the shell can
be done in Perl. It is up to you to decide when the extra complication of
using Perl actually saves you time. If you want to view the first line of a
file, use head. It’s easy, and a Perl program would be overkill. However, if
you cannot identify simple UNIX utilities to perform the task you need
done, then think about Perl. Complicated shell programming gets messy,
and Perl is more suitable for non-trivial tasks.

There is one other reason to use Perl — security. Suppose you write a
command to be used and owned by root, and to be accessible by a
general user. An example might be a program for sending email, which
requires write access to system files (including log files). It is dangerous to
write such a program as a shell script, since under certain circumstances a

256

Perl

user can use their knowledge of the shell environment to gain a subshell
with root privileges. This can be prevented if the program is written in Perl.

CHAPTER SUMMARY
We have described very basic use of the Perl language.

EXERCISES

1 Write a Perl script which takes one argument, assumed to be the
URL of a web site (such as www.any.site.com), and displays on
standard output the email address of postmaster at that site
(postmaster@any.site.com). Ensure your script outputs suitable
error messages if the script is run without exactly one argument.

2 Write a Perl script to mimic a simple version of fmt. It should read
text on standard input, and write the words (a word is a string of
characters terminated by a space or the end of a line) one by one to
standard output. As many words as possible, separated by single
characters, are to be on each output line. Each output line has a
maximum width of 72 characters.

3 You are provided with a file of coordinate data generated by a GPS
(‘Global Positioning System’) device which has logged a journey.
This takes the form of a text file in which each line consists of two
decimal numbers, representing a map coordinate in kilometres, the
first line being the start of the journey and the last line the end.
Write a Perl script, taking one argument which is a filename, and
outputs a message which is the calculated total length of the journey.

257

C
H
A
P
T
E
R

13

Maintaining your
Linux OS

CHAPTER OVERVIEW

This chapter

� documents key features of Linux system maintenance;
� presents a number of alternative tools for Linux file

management;
� provides an introduction to Linux networking;
� introduces guidelines on Linux security; and
� shows you how to uninstall Linux.

UNIX is a very stable operating system and all of the well-known
distributions of Linux also provide very reliable day-to-day computing
environments. This said, you will have to maintain your system both
routinely — monitoring disk usage, changing user passwords, etc. — and
also on a more occasional basis — configuring network usage, installing
new software, and so on. The Web is a very good source of information on
Linux administration and maintenance; this chapter is intended only to
provide you with a basic toolkit, the key components of which will be
sufficient for the day-to-day management of your Linux system. It may
well be the case that you want to do more with Linux; this chapter also
provides a basis from which you can begin to explore the exciting world of
Linux networking. With the introduction of networking comes the
responsibility of security; if so this is also covered towards the end of the
chapter. Finally, if you are not happy with your Linux installation then
you will want to uninstall the operating system, and details of how to do
so are provided at the end of the chapter.

258

Maintaining your Linux OS

13.1 Basic management
NOTE

linuxconf is a

sophisticated

administration system

for Linux

Maintenance and administration can take place at various levels in your
system. Most Linux installations have with them a copy of the linuxconf

tool. This is a versatile tool with which a number of administrative tasks
can be performed, including setting the system time, changing the
network settings, performing user administration and setting up file
systems etc.

Maintenance can also be coordinated through tools supplied by the
Linux desktop environment. These tools differ according to the Linux
distribution you are running. KDE, for example, comes with a built-in
Control Center (which can be reached through the K menu). The KDE
Control Center is similar to the Settings menu that is found in the
Windows operating system. It therefore provides a convenient interface
with which to manage processor and memory configuration, device
information, the windows environment, the configuration of the file
manager, and so on.

A number of maintenance tasks can also be performed using the YaST
set-up tool which was introduced in Section 3.6.1.

It is worth noting that some of these tools will look different (that is,
they will provide you with different options and capabilities) under
different user logins. You can expect to be provided with the full
capabilities of the tools if, and only if, you are logged in as the root user.

The following subsections provide a useful summary of basic
management tasks, which should probably form part of your
administrative routine. Beyond this, the following web sites are
recommended sources of information for more detailed Linux management
and administration issues:

� www.linuxdoc.org

This is the home of the Linux documentation project, including online
guides, HOWTO pages, frequently asked questions and manuals for a
number of Linux activities;

� www.linuxnewbie.org

Contains news and articles including help for new and more advanced
users;

� www.freshmeat.net

Reportedly contains the largest index of UNIX software and
applications on the Web. This is a good source of free Linux software
and will probably contain all the applications that you, or the users of
your system, will require.

259

Introducing UNIX and Linux

13.1.1 PasswordsNOTE

For more information on

the passwd command,

see Section 4.3.1

If the security of your system is of concern, then you will need to update
your passwords regularly. This is best done through the passwd command
which can be issued from a terminal window. It allows the current user
(that is, the user who is currently logged in) to change their password. If
you want to change the password of other users on the system, it can be
done using the command

passwd user

Note, however, that in order to change the password of other users, you
must be logged in as the root user.

13.1.2 Checking storage space

The df command provides a report of the available disk space on your

NOTE

df was discussed in

Section 5.2 system. It is worth checking the disk usage from time to time as, if you
exceed the space allocated to your Linux partition, then you are likely to
run into difficulties. If your disk usage appears to be very high,
particularly in the /var directory, then you should explore the contents of
the /var/spool/mail directory. It is in this directory that mail is stored
before it is processed by your chosen mail tool. Sometimes the mail tools
are not configured to remove the data from the mailbox file in
/var/spool/mail and, as a result, this file can grow very large. It is also
worth keeping an eye on the hidden directories that are maintained and
updated by your web browser. For example, if you are using Netscape,
then you might find that the .netscape/cache directory can also become
very large, particularly if you download large quantities of multimedia
files from the Internet.

13.1.3 Checking processes

Using the command ps it is possible to view the processes which are

NOTE

ps was discussed in

Section 6.1.1 currently running on your system. By including a combination of
run-time flags it is possible to output the user (UID), process identifier
(PID), parent process identifier (PPID), start time (STIME), cumulative
execution time (TIME) and command name (CMD) of each process on the
system. The output will look something like this:

NOTE

This output is the result

of running the command

ps -af. For more on the

runtime flags of ps type

man ps

UID PID PPID C STIME TTY TIME CMD

Croe 29527 16663 0 15:55:44 pts/37 38:24 netscape

Jara 29793 29792 0 16:25:55 pts/17 0:01 gs

sue 27128 1 0 12:02:30 pts/35 0:01 ttsession

It is worth checking the processes on your system from time to time, as
occasionally when you close down an application, or something crashes,

260

Maintaining your Linux OS

the associated processes remain. If processes are defunct, usually written
DEFUNCT in the CMD column of the ps output, or are simply unwanted,
then they can be removed using the command kill. It is a rule that

NOTE

kill was discussed in

Sections 6.1.4 and 9.1 processes can only be killed by their owners or by the root user; this is
useful as it saves you (or anyone else) inadvertently killing the active
processes of other users.

13.1.4 Managing users

Managing users, as with most administrative tasks, can be done through
interaction with a graphical user interface such as the Kuser tool supplied
with KDE or, if you prefer, through a terminal window.

Kuser will do most of the tasks described below. It is designed to allow
you to act as an administrator to the users or groups of users that have
access to your Linux system; this includes the tasks of creating, disabling
and removing users from the system.

NOTE

The adduser command

is sometimes different for

different installations;

try the command

useradd as the first

alternative

The command line tools that provide the same functionality through a
terminal window can be found in the /bin directory in the Linux
installation. The command for creating a new user is adduser and can be
run by typing the command /bin/adduser in a terminal window. This
command should be disabled to all users but root.

Users can be disabled by editing the /etc/passwd file. This file
contains a list of user names and their associated passwords (stored in an
encrypted form for security reasons). To disable a user, replace their
encrypted password with the * (asterisk) character; this change will make
it impossible for the user to sign on. Again, you will only be able to do
this as the root user.

If you want to completely remove a user from the system then you
should use the command userdel. This command can only be run by
root users and comes with a variety of command line options (type man

userdel for details). If the -r flag is added to this command then this
will not only remove the user’s name from the password file, but will also
remove their home directory.

13.1.5 Shutting down and restarting your computer

You can shut down your computer from a terminal window using the
shutdown command:

/bin/shutdown -r now

This has the same effect as pressing ctrl-alt-delete on the keyboard, and
will close down all the processes on the machine, shutdown the machine,
and then reboot. You can halt your machine (a shutdown without a
subsequent reboot) by substituting the -r flag in the above command

261

Introducing UNIX and Linux

with the -h flag. Linux will tell you that your computer has halted, at
which point you can safely turn the power off. This is useful if you are
preparing your computer for transit.

13.1.6 Automating tasks

In Chapter 6 we discussed a facility called crontab for the automatic
scheduling of repetitive tasks. This allows you to program an activity to
be performed as often as every minute, or as infrequently as every year.

When managing your system, crontab is an invaluable tool for
performing tasks, such as backups, which are important for the system to
run reliably, but which can be forgotten if left to you to perform yourself.

Worked example 13.1
How can Sam arrange for his mailbox to be backed up to
.mailbackup in his home directory each morning at 6 am?
Solution: Sam should use crontab -e to edit his personal crontab
file so that it includes:

At 6.00am each day

copy /var/mail/sam to ~sam/.mailbackup

0 6 * * * /bin/cp /var/mail/sam ~sam/.mailbackup

This will perform the file copy, and if any error message is generated,
it will be mailed to Sam. Note the use of ~sam to denote Sam’s home
directory.

Many Linux distributions, including Red Hat and SuSE, include
directories /etc/cron.hourly, /etc/cron.daily and
/etc/cron.weekly. The executable scripts placed in these directories are
run on an hourly, daily or weekly basis.

13.2 Linux file management

13.2.1 File compression and archiving tools

Files and file hierarchies which are no longer in use, but are nonetheless
still required, can be compressed or archived. This can reduce the amount
of disk space they occupy by as much as 60–70%. Compression and
archiving are not only convenient ways of optimising disk usage, but also
of storing and creating back-ups of important data and system files.

NOTE

Details of the compress

and tar commands can

also be found in

Section 5.7

There are a number of tools for compressing and archiving files. These
can be broadly categorised as those which can be run from a console
window and those which can be run through a graphical user interface.

262

Maintaining your Linux OS

Console-based tools suitable for Linux file management include the
following:

� compress — a utility that attempts to reduce a file using a lossless
data compression algorithm. The compressed file (identified by the .Z

extension) replaces the original, while the ownership modes and the
change and modification times remain the same. The amount of
compression depends on the type and size of the input file; for a
typical text file it is of the order of 50–60%.

� gzip — is a compression utility designed to replace the compress

command. The main advantages of gzip over compress are the better
compression ratio and the freedom from patented algorithms. gzip
produces compressed output files which can be identified by the .gz

extension. To uncompress the .gz file, the command gunzip is used.
gzip may not have been included in your Linux installation and if
this is the case, then the utility can be downloaded free of charge from
www.gzip.org.

� tar — archives and extracts files to and from a single file called a
tarfile. Common operations include

tar -cvf resultsfile *

which archives all the files in the current and any nested
subdirectories, and

tar -xvf resultsfile

which retrieves these files while maintaining the original directory
structure.

There are a large number of file compression and archiving desktop tools.
The (current) pick of the pack include:

� Karchiver — a KDE-based utility which allows you to create .Z, .gz,
and .tar files via a graphical user interface.

� StuffIt — a tool that provides support for nearly all possible archive
formats including those created by the Windows and Macintosh
operating systems. StuffIt claims to produce the smallest files of any
compression program; if you would like to test this claim then the
toolkit can be found at www.stuffit.com.

� RAR — is a Linux (and Windows) archiving utility that contains a
powerful compression algorithm. The tool is particularly good for the
compression of multimedia data, but it can also be used to create
self-extracting archives and recover damaged archives. It can be
downloaded from www.rarsoft.com.

263

Introducing UNIX and Linux

13.2.2 File managers

The version of Linux you have installed will no doubt have a built in file
manager. KDE2, for example, has a very respectable file manager known
as Kcommander, which features the mounting and unmounting of
CDROMs and floppy drives, the ability to compress files and to create its
own archives, built-in (Samba) networking support and a configurable
menu system.

It is now possible to use file managers that provide web-based
interfaces rather than the Windows style look and feel of files and folders.
PHPFileExchange is a free web-based file interchange system which
features authenticated user login, user groups, read and write access
control at the user and group level, user privilege levels and a MySQL
backend. For more information see www.seattleserver.com.

Nautilus is a file management system and a graphical shell found as an
integral part of the GNOME desktop environment. Its features include
‘advanced file management’ and a look and feel that is unsurpassed. Most
Linux installations have GNOME as an option. If your version does not
support GNOME then you can download it for free from www.gnome.org.

13.2.3 File splitters
NOTE

For more information on

the split command see

Section 9.6.2
As well as the UNIX split command there are a number of graphical
packages that allow the splitting and joining of large files. GfileSplit
comes with the GNOME desktop environment and allows a file of any size
to be split into smaller fixed size pieces; for more information see
www.gfilesplit.sourceforget.net. ProSplitter is a fast Windows and
Linux compatible tool for splitting and joining files. It has a simple
graphical user interface and a number of advanced features such as DES
encryption and robustness and reliability data checks. ProSplitter can be
downloaded for free from www.prosplitter.co.uk.

13.3 Linux networking

13.3.1 Getting started

There is a lot to Linux networking and it is not the intention of this
section (or indeed this book) to provide a comprehensive Linux
networking tutorial. However, this section should serve as an introduction
to the material that you will find in many of the good Linux networking
tutorials and books. It will familiarise you with the terminology that you
will need to understand and proceed with these more detailed manuals.
This said, later subsections provide some detail on ‘how to add your
Linux machine to an existing network’ and ‘how to build your own private
Linux network’.

264

Maintaining your Linux OS

For further Linux networking information see the following sources:

� www.linux.org — follow the links to ‘Linux Networking HOWTO’.
Incidentally, there are lots of other HOWTOs at this web site that
contain useful information, from how to configure a CD-ROM under
Linux to how you should go about installing Chinese.

� comp.os.linux.networking — this is a useful newsgroup dedicated
to networking and related matters. If you have any networking
problems, be they large or small, you will probably find someone on
this newsgroup who has experienced the problem before.

There are a variety of ways of networking collections of UNIX-based
computers. Probably the most common is through the use of Ethernet.

13.3.2 MAC and IP addresses

If you are planning on adding your computer to an existing UNIX
network, or if you are planning on building your own local network, then
you will probably already have ensured that your computer has an
Ethernet card. Each Ethernet card has a unique Media Access Control (or
MAC) address. Despite this being unique, these addresses are not

ACRONYM

MAC = ‘Media Access

Control’ commonly used as network identifiers and instead the MAC address is
mapped to a higher level IP (Internet Protocol) address.

IP addresses are 32-bit numbers, usually represented in dotted decimal
notation (i.e. xxx.xxx.xxx.xxx), which uniquely identify each interface of
a host or network router. Using this notation, each decimal number can
represent eight bits of binary data and therefore the numbers between 0
and 255. The first of these decimal numbers is important, as it determines
the class of network to which this IP address belongs — see Table 13.1.

Table 13.1 Network

classes and their IP

addresses and

Netmasks

Class Range Netmask

A 0.0.0.0 to 127.255.255.255 255.0.0.0

B 128.0.0.0 to 191.255.255.255 255.255.0.0

C 192.0.0.0 to 223.255.255.255 255.255.255.0

Network classes are used to break networks down according to their
size. Class A networks can have up to 16,777,214 hosts, class B networks
16,384 hosts and class C networks 254 hosts. This might look restrictive
(and there are proposals to update this 32-bit IP version 4 to a 128-bit
version 6), but sharing IP addresses across many hosts makes this less of
a problem than it might first seem.

There are certain IP addresses that are reserved for special purposes.
The number 0, for example, is used to refer to the current network or
host, the number 127 (known as a loopback) is used for diagnostic

265

Introducing UNIX and Linux

purposes and the number 255 is used for broadcasting packets of data to
the entire network.

NOTE

To find the IP address of

your machine try the

command ypmatch

Each machine IP address in a local network will share a common
‘network portion’ and contain a unique ‘host portion’. One of the
machines that I use the most has the IP address 137.205.227.85; my
neighbour in the office next door has a computer with the IP address
137.205.227.84. The host portion of this address is represented by the last
(the far right) numbers — the 227.84 or 227.85; the network portion of
the address is the 137.205 part of the address; the 227 part is in fact a
sub-part of the main university network (a subnet). As it is conventional
for the number of hosts to be contiguous, there are at least 85 hosts in
subnet 227.

To retrieve the network portion of an IP address a subnet mask (or
Netmask) is used. When this is ‘bitwise ANDed’ with the IP address, the
address of the network to which the address belongs is revealed (see
Table 13.1). This mask also allows the network to be further subdivided.
Table 13.2 shows how an IP address can be decomposed into its
associated masks, portions and addresses.

Table 13.2

Decomposing IP

addresses

Host address 137.205.227.85

Network mask 255.255.255.0

Network portion 137.205.227.

Host portion .85

Network address 137.205.227.0

Broadcast address 137.205.227.255

13.3.3 Domain names

IP addresses are not easy to remember and therefore computers are
usually referred to using their domain name. You will be familiar with the
use of domain names when accessing sites on the Internet. These domain
names are mapped to IP addresses through a Domain Name Service (a
DNS).

ACRONYM

DNS = ‘Domain Name

Service’ The domain name for the IP address 137.205.227.85 is
cement.dcs.warwick.ac.uk. The host machine cement maps to the host
portion 85 in the IP address; the 227 part of the network portion of the
IP address corresponds to the dcs (Department of Computer Science)
network; the 137.205 part of the IP address maps to warwick.ac.uk. The
University of Warwick may not own all the class B 137.205 network
addresses; the slice of addresses they own is coordinated by UKERNA —
the organisation that administers all of the .ac and .gov domain names
in the UK.

266

Maintaining your Linux OS

13.3.4 Adding a Linux host to an existing network

If you are planning on adding your Linux machine to an existing network
then you will need to know how the IP addresses on the network are
already arranged. You will need to know the following information:

� The host IP address that can be allocated to your machine. Your
network administrator will have a list of those IP addresses that are
allocated and those that are free.

� The IP network address.

� The IP broadcast address (as it might not necessarily be your network
address followed by 255).

� The IP netmask.

� The router address.

� The Domain Name Server address (DNS address) which you have
assigned to your machine.

Once you have this information, networking the machine is in fact
quite easy. The best way to do this is to configure the network entries of
your machine through the ‘network configuration’ menu of the YaST tool.
This simply means copying the IP and DNS information into the
appropriate fields of the network configuration menu. It is also possible to
set this network information using linuxconf.

13.3.5 Building a private network

If you are building your own private network then you can choose
whatever IP addresses you like. You will still need to:

� choose an IP address for each machine in your network;

� choose an appropriate netmask; and

� assign each machine a DNS address.

If you are configuring your network through YaST or linuxconf then
it it recommended that you log in as root before working through the
administration procedure.

13.3.6 Configuring the network interface

When Linux was installed on your machine it is likely that the networking
device (such as the Ethernet card) on your machine was detected by the
Ethernet device driver and assigned a unique interface identifier (for
example, ‘eth0’). The final stage of networking requires you to link this
device to your chosen IP address. Again, the best way to do this is to use
the YaST tool, and then to test that your modem still works using the
program wvdial. There are more manual ways of doing this setup (for

267

Introducing UNIX and Linux

example using the command ifconfig), but these are less easy to master
than the network administration parts of YaST.

13.4 Security

Whatever anyone tells you about security, unfortunately the only way to
be completely sure that your computer is safe from a security breach is to
disconnect it from the Internet and never to load any program or
document that supports macros. This is clearly not going to be practical,
so the answer is to find a number of ways of making security breaches to
your networked computer more difficult. A number of possibilities are
listed below.

� It is possible to set up your system so that logins to your machine can
only be done from other computers on your own local network and
not from machines on the Internet. To do this you need to look at the
files /etc/hosts.allow and /etc/hosts.deny.

� You should make sure that your root password is secure. It is no use
using short dictionary words, as these can easily be broken using
simple password generator programs. Do not be tempted to set up
users with blank passwords; it might seem like a good idea at the
time, but this is very insecure. Finally, if you have more than one
server, then you should make sure that the passwords are different for
each. This ensures that if one machine is breached you do not
compromise the whole system.

NOTE

ssh can be downloaded

for free from

www.ssh.com
� Denying host access will not completely secure your system as it is

possible to intercept messages from your machine, strip out the
important data, such as the identifiers of other machines on your
network, and then by a mechanism known as ‘spoofing’ pretend to be
another machine. The best way of getting around this problem is to
use the ssh tool when connecting to other machines in your network.
This ensures that the data packets sent between machines are
encrypted. If you use ssh-level security for all your network traffic,
then you make spoofing much harder.

� Another way of maintaining security is to monitor the system log files.
In the directory /var/log you will find a number of files in which
information regarding all the system and network information on your
machine is stored. While this information takes a bit of interpretation,
you will find that you can use it to study most of the activity on your
system and on your network.

� Firewalls provide a means of protection between private devices such
as computers or local networks and the wider Internet. The simplest
form of firewall protection is to set up a Linux machine with a single
Internet connection (through an Ethernet card or modem) which acts

268

Maintaining your Linux OS

as a buffer between the Internet and any local network. This machine
then blocks direct communication between the local network and the
Internet (in either direction). The advantage of this approach is that
anything inside the firewall is protected; the disadvantage is that it is
a little complicated to set up — you need to configure the machine for
two Ethernet cards and then connect the two cards through an
IP-chain to filter the data between them.

13.5 Uninstalling Linux

There are a number of ways of removing a Linux installation and the
method which you choose will depend on the type of installation that you
carried out in the first place. Essentially, you need to delete the partitions
on which Linux is installed and then remove the lilo from the master
boot record.

� Method 1 — Run fdisk from a Linux rescue disk and delete the
Linux partitions. This will remove the partition table entries and
effectively ‘wipe’ the Linux partition. You can then reformat these
areas of disk from the MS-DOS boot floppy by typing fdisk /mbr.

� Method 2 — Run fdisk and delete the Linux partitions, as above.
Then instead of using fdisk /mbr, use the command lilo -U, which
should restore the boot file your system previously used before Linux
was installed. This will only work if a backup copy was stored at
install time.

� Method 3 — If you are not worried about retaining any of the existing
partitions on your machine and want a clean way of reformatting the
hard drive for a completely new operating system, then you can use
the MaxBlast tool. This can be downloaded from www.maxtor.com

and reports are that it is both very easy to use and effective.

There is plenty of advice on the Internet if you are unsure about this
procedure.

269

Introducing UNIX and Linux

CHAPTER SUMMARY

Table 13.3 System

and network

administration

commands

passwd change login password (see 4.3.1)

df reports available disk space (see 5.2)

ps reports process status (see 6.1.1)

kill terminates processes (see 6.1.4 and 9.1)

adduser creates new user

useradd creates new user

userdel removes a user

shutdown close down processes and shut down machine

compress reduces file to compressed form (see 5.7)

gzip reduces file to compressed form

gunzip uncompresses gzip file

tar file and directory archive tool (see 5.7)

split splits and joins large files (see 9.6.2)

ypmatch prints values from Network Information System

ssh secure shell for remote login

fdisk modifies disk partition table (see 3.3)

270

C
H
A
P
T
E
R

14

Other Issues

CHAPTER OVERVIEW

This chapter

� introduces some issues not covered elsewhere in the book;
� provides a brief description of relevant software packages; and
� identifies other resources for software, documentation and

information relating to UNIX and Linux.

If you have made it this far, it should be clear that UNIX and Linux
are very powerful tools that give a large amount of control to the user,
and offer a very high degree of flexibility. The previous chapters have
covered very many different aspects of UNIX and Linux, ranging from
core issues of installing and maintaining the system, through aspects of
files, processes and shells, to the more applied side of tools that can be
used with UNIX. However, much more can be added to the basic system
to increase its power and usefulness dramatically.

This chapter will review some of the things that are important to
mention in the context of a general introduction to UNIX and Linux, but
which may have had no obvious place in earlier chapters. Inevitably, the
contents will be somewhat random, but provide pointers to places to look
for further resources.

We give web sites for some of the resources we mention, but you
should not forget that your system may have some of them already
installed. To find out, see if a man page exists, or check the online
documentation provided on the system.

14.1 Programming languages

Perhaps the most powerful thing you can do with computers is to develop
your own programs. While we have looked at some ways of writing
programs through shells, Awk and Perl, for example, high-level
programming languages offer many more facilities.

271

Introducing UNIX and Linux

Java, for example, is a very powerful language that is increasingly
being used across a range of platforms and for a variety of applications. It
is particularly interesting because of its use in web applications, and
being run through web browsers, which is increasingly common. Under
UNIX and Linux, Java can be installed by downloading the appropriate
software from java.sun.com. There are different versions available for
Solaris (a version of UNIX) and Linux, with full instructions.

Many other languages are also available for download. Table 14.1
below offers a quick summary of a selection of these, but is not at all
exhaustive, because there are far too many. However, a quick web search
will usually reveal the necessary information.

Table 14.1

Programming

languages

Language Further information

Java java.sun.com

Based on the idea that the same software should

run on many different kinds of computers, consumer

electronics and embedded devices.

Tcl/Tk www.scriptics.com

Tcl is a scripting language with a simple syn-

tax, and comes with Tk, a graphical user interface

toolkit. They are highly portable.

GCC gcc.gnu.org

The GNU Compiler Collection includes compilers

for C, C++, Fortran and several other languages.

GNU Prolog gnu-prolog.inria.fr

A free Prolog compiler.

GCL www.gnu.org/software/gcl/

GNU Common Lisp is a portable and efficient

compiler and interpreter for Lisp.

Perl www.perl.com

Extensive resources about Perl.

www.perl.org

Support for Perl users.

PHP www.php.org

A general-purpose scripting language that is es-

pecially suited for Web development and can be

embedded into HTML.

272

Other Issues

14.2 Document Preparation

One of the interesting points of contention about using UNIX relates to
the choice of popular word-processing packages. Some common
application software is not available under UNIX, but there are very good
alternatives. For example, this book was typeset using the LATEX text
formatting package, which offers one of the most effective ways of writing
documents. Unlike word processors, text formatters do not have the best
user-interface, but can provide far better layout of mathematical and
other sophisticated output. Table 14.2 lists various different kinds of
software available for UNIX and Linux, with their sources.

Table 14.2

Document

preparation software

Package Further information

TEX www.tug.org

High-quality typesetting software designed for the

production of scientific documents.

LATEX www.latex-project.org

The most common set of macros for TEX.

Acrobat Reader www.adobe.com

Allows PDF files to be viewed and printed.

Framemaker www.adobe.com

A desk-top publishing package which is suitable for

large content-rich documents.

Ghostscript www.cs.wisc.edu/~ghost/

Allows you to view and print PostScript and PDF

files, and to convert files between formats.

Ghostview www.cs.wisc.edu/~ghost/

A user-friendly interface to Ghostscript.

GSView www.cs.wisc.edu/~ghost/

Another user-friendly interface to Ghostscript, sim-

ilar to Ghostview.

Emacs www.gnu.org/software/emacs/

A very sophisticated text editor with an extensive

range of features.

KOffice www.koffice.org

KDE Office application suite.

StarOffice www.sun.com/software/star/staroffice/

A suite of programs similar to Microsoft’s Office,

including word processor, spreadsheet, etc.

OpenOffice www.openoffice.org

An Open Source implementation of StarOffice.

273

Introducing UNIX and Linux

14.3 Other Software

UNIX comes with a large number of utilities, and in Table 14.3 we list
some we have found particularly useful (some of which may not be
installed on your system).

Table 14.3 General

Software for Linux
Package Further information

VMware www.vmware.com

Allows you to run more than one operating system

simultaneously.

WINE www.winehq.com

Allows most Windows applications to be run na-

tively under Intel versions of UNIX.

StuffIt www.stuffit.com

A tool to support a large range of archiving formats

and purposes.

gzip www.gzip.org

A compression utility designed to replace compress,

with better compression ratios.

RAR www.rarsoft.com

Another powerful archiving utility.

prosplitter www.prosplitter.co.uk

A fast tool for splitting and joining files.

XV http://www.trilon.com/xv/xv.html

An image display utility, good for previewing pic-

tures, which also has simple editing facilities.

GIMP www.gimp.org

The GIMP is the GNU Image Manipulation Pro-

gram, a powerful image drawing and editing tool.

XMMS www.xmms.org

The X MultiMedia System is a cross-platform mul-

timedia player, suitable for playing audio files in

most formats.

CVS www.cvshome.org

Concurrent Versions System, an open-source

network-transparent version control system.

VNC www.uk.research.att.com/vnc/

A remote display system which allows you to view

your ‘desktop’ from anywhere on the Internet.

274

Other Issues

14.4 Useful Resources

There is a wealth of information available about different UNIX versions,
UNIX systems administration, and the various kinds of software that can
be run under UNIX and Linux. Table 14.4 lists some of the more popular
web sites.

Table 14.4 Other

resources
Resource Further information

Linux www.linux.org

An Web site which aims to be a central source of

information about Linux.

www.linux.com

An independent site that provides news and infor-

mation about Linux and Open Source, as well as

links to software and learning resources.

www.linuxnewbie.org

Contains news and articles for new and experienced

users.

www.linuxdoc.org

The Linux Documentation Project, as the name

suggests, offers lots of documentation and guides

on various aspects of Linux.

www.freshmeat.net

The largest index of Open Source software on the

Web.

www.OSDN.com

Information about Open Source software, with

many links to relevant sites.

sourceforge.net

A repository of Open Source software.

GNU www.gnu.org

Intimately entwined with Linux, the GNU project

(GNU’s Not Unix) started in 1984 with the aim of

developing a free Unix-like operating system. GNU

offers a large range of useful software for Linux.

News www.slashdot.org

News about Linux (and other techie topics).

www.theregister.co.uk

Independent IT news, with a Linux flavour.

275

Introducing UNIX and Linux

14.4.1 Web Tools

It is almost essential now to be able to browse the web, and several web
browsers and servers are easily available, as listed in Table 14.5. All of the
web broswers listed, with the exception of Lynx, are “fully functional”,
though the look-and-feel varies considerably.

Table 14.5 Web

resources
Resource Further information

Mozilla www.mozilla.org

An open-source web browser which includes a pow-

erful email client.

Netscape www.netscape.com

The most common web browser for UNIX and

Linux, which uses much of Mozilla’s code.

Opera www.opera.com

A newer entrant to the web browser market — a

free version is available for Linux.

Konqueror www.konqueror.org

An Open Source web browser distributed with

KDE.

Galeon galeon.sourceforge.net

An Open Source web browser distributed with

GNOME, and which shares some of its code with

Mozilla.

Lynx lynx.browser.org

A text-only web browser, useful if you have a slow

Internet connection.

Apache www.apache.org

An Open Source web server, which will allow you

to host and serve web pages from your own system.

276

Other Issues

14.4.2 Network Tools

It is likely that your system is connected to a network, and you may have
access to more than one other system. Table 14.6 lists tools which are
available for you to move data between those systems, and to remotely
connect to and find information about them.

Table 14.6 Network

resources
Resource Further information

FTP A common protocol for transferring data between

systems, using commands such as ftp and ncftp.

Telnet A protocol for connecting to remote systems via the

command telnet.

rlogin A command for connecting to remote systems,

similar to telnet.

rcp A command for copying files to a remote system.

SSH www.openssh.org

OpenSSH is an open source version of the SSH

protocol suite of secure (encrypted) network tools.

OpenSSH replaces (for example) rlogin, rcp and

ftp by slogin, scp and sftp.

putty www.chiark.greenend.org.uk/~sgtatham/putty/

A free implementation of Telnet and SSH for Win-

dows platforms, along with an xterm terminal

emulator. Strictly not a UNIX or Linux utility, but

if you have access to a UNIX server and need to

connect from a Windows PC it will allow a secure

connection.

CHAPTER SUMMARY

� A large amount of software can be downloaded and installed
under UNIX and Linux.

� The World Wide Web provides a quick and easy way of
finding and installing freely available software.

� The resources available to support UNIX and Linux users are
almost boundless.

277

Answers to selected problems

Chapter 4

1 Whenever you need to find out information about a command, you
should use man. With option -k followed by a keyword, man will
display commands related to that keyword. In this case, a suitable
keyword would be login, and the dialogue would look like:

$ man -k login
...

logname (1) - print user’s login name

...

The correct answer is therefore logname. Try it:

$ logname
chris

3 As in problem 4.1, you should use man to find out more information
on date. In this case, however, you need specific information on
date, so the command you use is

$ man date

The manual page for date is likely to be big, but this is not a
problem. Remember that the manual page is divided into sections.
First of all, notice that under section SYNOPSIS the possible format
for arguments to date is given:

SYNOPSIS

date [-u] [+format]

This indicates that date may have up to two arguments, both of

NOTE

The POSIX standard

specifies only two

arguments to date –

some systems may in

addition allow others

which are optional (to show this, they are enclosed in square
brackets). The second one is preceded by a + symbol, and if you
read further down, in the DESCRIPTION section it describes what
format can contain. This is a string (so enclose it in quotes) which

278

Answers to selected problems

includes field descriptors to specify exactly what the output of
date should look like. The field descriptors which are relevant are:
%r (12-hour clock time), %A (weekday name), %d (day of week), %B
(month name) and %Y (year). The argument you would give to
date would therefore be:

+"%r on %A %d %B %Y"

so that the command you would type would be

date +"%r on %A %d %B %Y"

5 The first decision to be made is which command to use to display
the machine’s users. Use man with a suitable keyword:

$ man -k logged
...

who (1) - show who is logged on

...

The script should therefore echo the one-line message and then run
who:

echo "The following are logged in:"

who

Chapter 5

By this stage, you should be getting used to using man to decide which
commands to use, and to decide which options to give to commands.

1 Use ls with options -a (to include listing ‘dot’ files), -1 (to list
NOTE

‘1’ is digit one filename on each line of output) and -t (to list in order of
modification time). Pipe this output to head, with option -n 3 (to
select the first three lines in the list):

ls -1at | head -n 3

3 Use ls with option -i (to list inodes as well as filenames), and pipe
the output to sort with option -n (to indicate numerical rather
than lexical order):

$ ls -i | sort -n

5 Running ls with options -l and -d followed by a dot (the current
NOTE

‘l’ is lower-case letter l directory) will display details about the current directory. The
owner of the file begins in character column 16 and may continue
until column 23, so use cut with option -c to select columns 16 to
23:

279

Introducing UNIX and Linux

ls -ld . | cut -c 16-23

7 Use ls with option -l, and pipe the output to sort. Since the fifth
field is the field which is to be used for sorting comparisons,
argument +4 should be given to sort (the fields are counted
starting from 0). The sort should be according to numerical order
rather than lexical, so sort requires option -n also:

ls -l | sort -n +4

Chapter 6

1 Use crontab -e to edit the crontab file, adding the following line
to that file:

0 8 * * 1 echo "Good Morning"

This instructs crontab to run

echo "Good Morning"

(whose output will be mailed to you) at 0 minutes past 8 o’clock
every first day (i.e. Monday) of every week regardless of the month
or the date.

3 Use at to schedule the alarm call by giving it argument now + 1

hour. Remember that at will mail you the standard output from
the commands you give it, so you must send the message directly
to the device which is your terminal. You can find out the device
name using tty:

$ tty
/dev/ttypf

$ at now + 1 hour
at> echo "Your alarm" >/dev/ttypf
at> ctrl-D

5 This is an exercise in knowing the names of the environment
variables which store the relevant information. These were
presented in Table 6.1.

echo "Your username is $LOGNAME"

echo "Home directory is $HOME"

echo "You are using a terminal which is a $TERM"

echo "The default lineprinter is $PRINTER"

7 Set MY NAME to be the string containing your first and family
names, and enclose that string in quotes so that the blank space
between the two names is part of that string:

$ MY NAME="Chris Cringle"

280

Answers to selected problems

Chapter 7

1 Use find followed by a tilde (the current directory) to select files
from the current directory, and argument -print to list them.
Other arguments are needed to perform the selection, and as there
are many possible arguments you should read the manual page.
Argument -type f selects regular files. To check on the file size,
argument -size followed by an integer n selects all files whose size
is between (n − 1) and n blocks of 512 bytes. The command
becomes:
$ find ~ -type f -size 1 -print

3 The script must initially check that all the arguments are readable;
then it can simply pass them all to cat:

for i in "$@" # For each argument

do

if [! -r "$i"] # if it is not (!) readable (-r)

then exit 1 # then bomb out

fi

done

cat "$@" # cat the files

5 Use printf to format and who to find the users. With option -q

two lines will be displayed by who, the first contains the users, the
second the number of them. Use head to select the first line of the
output of who -q, then a for loop to print out each of them in
turn. A count must also be made so as to know when to finish a
line of output.

COUNT="" # Use to count to 4

ALLUSERS=$(who -q | head -1) # Get the list of users

for i in $ALLUSERS # Loop through in turn

do

printf "%10s" $i # Print each in width 10

COUNT=$COUNT"x" # Add an "x" to COUNT

if ["$COUNT" = "xxxx"] # If 4 "x"s in COUNT

then printf "\n" # terminate the line

COUNT="" # and reset COUNT

fi

done

At the end, if the final line contains less than

four columns, that line must be terminated

if ["$COUNT" != ""]

then printf "\n"

fi

281

Introducing UNIX and Linux

7 You need to keep a count of the number of the line, which can be
incremented with the aid of bc. Use read to read in the standard
input line-by-line, and printf to ensure that the format is the
same as cat -n (i.e. six character columns for the line number,
followed by two blank spaces, followed by the line).

LINENUMBER=1 # To store the line number

while read LINE # ‘read’ returns false at end

do # of input

Print the line number and the line

printf "%6d %s\n" $LINENUMBER $LINE

Add one to the line number

LINENUMBER=$(echo "$LINENUMBER + 1" | bc)

done

Chapter 8

1 This is an exercise in arithmetic expansion only.

printf "Enter cm: " # Prompt

read CM # Read number of cm

FEET=$(($CM / 30)) # FEET is easy to calculate

CM=$(($CM % 30)) # Replace CM by residual cm

above the previous feet

INCHES=$(($CM * 12 / 30)) # Convert residual cm

to inches

printf "%d cm is %d foot %d inches\n" $CM $FEET $INCHES

3 This exercise requires the use of the test command at the start to
perform the checks on the filename given as argument to the script,
followed by a miscellany of UNIX utilities.

Check number of arguments

if [$# -ne 1]

then echo "Requires one argument"

exit 1

If a single argument, check it’s readable

elif [! -r $1]

then echo "File is unreadable"

exit 1

fi

LINES=0 # To count number of lines

COL=0 # To count number of characters

while read LINE # read returns false at end of input

do

282

Answers to selected problems

Characters on line (including Newline)

COLONLINE=$(echo "$LINE" | wc -c)

Add to COL and subtract 1 for the Newline

COL=$(($COL + $COLONLINE - 1)

Increment line count

LINES=$(($LINES + 1)

done <$1 # Input from the file

Since 2 decimal places needed, must use bc to

calculate the average, not arithmetic expansion

AVERAGE=$(echo "scale=2; $COL / $LINES" | bc)

Finally, display the average

printf "Average is %s\n" $AVERAGE

5 Use date to display the hour, then pattern match on the output:

Format %H gives the hour as 2 digits, 00-23

case $(date "+%H") in

Any hour 00 to 09, also 10 or 11

0?|1[01]) echo Good Morning ;;

Any hour 12 to 17

1[2-7]) echo Good afternoon ;;

Any other time is evening

*) echo Good evening ;;

esac

7 This solution involves a moderately complex while loop.

Check number of arguments

if [$# -ne 1]

then echo "Requires 1 argument"

exit 1

fi

Check the argument is between 1 and 15

case $1 in

[1-9]|1[0-5]) ;;

*) echo "Require number 1-15"

exit 1

esac

LINE=1 # Use to count through the lines

while [$LINE -le $1]

283

Introducing UNIX and Linux

do

For the top and bottom lines of the square

if [$LINE -eq 1] || [$LINE -eq $1]

then printf "+" # First column

COL=2 # Column to print in next

while [$COL -lt $1]

do printf "-"

COL=$(($COL + 1)

done

printf "+\n" # Last column, and end line

The middle lines

else printf "|" # First column

COL=2 # Column to print in next

while [$COL -lt $1]

do printf " "

COL=$(($COL + 1)

done

printf "|\n" # Last column, and end line

fi

LINE=$(($LINE + 1)

done

9 This could be solved using pattern matching on the arguments, but
since there are many possibilities for running eurhello with
options, the clean way to solve the problem is with getopts.

Set the string GREETING to the usual greeting

GREETING="Hello"

Use getopts to go through the possible options

These can be f or g, or G followed by an argument

An option is stored in OPTIONNAME when encountered

while getopts fgG: OPTIONNAME

do

Check the three possibilities

case "$OPTIONNAME" in

French

f) GREETING="Bonjour";;

German

g) GREETING="Guten Tag";;

Argument to -G held in OPTARGS

G) GREETING="$OPTARG";;

esac

done

If the script is called with invalid options,

284

Answers to selected problems

getopts will discard them and display an error

message

Now get rid of the options which have been processed

shift $(($OPTIND - 1)

Check a name string is an argument to the script

if [$# -eq 0]

then echo "usage: $0 [-f] [-g] [-G greeting] name"

exit 1

fi

Finally, produce the output

echo "$GREETING $*"

Chapter 9

1 This is a straightforward function, just requiring two commands
between the braces.

thisyear() {

printf "This year is "

date "+%Y"

}

Alternatively, this could be done using echo:

thisyear() {

echo "This year is $(date +%Y)"

}

Note that the argument to date does not need to be enclosed in
quotes, as in this case it contains no characters with special
meaning to the shell. In the first solution they are included for
clarity, in the second one they were omitted to avoid clashing with
the quotes enclosing the argument to echo.

3 The body of this function is the same as a script, if you had
written it as a script instead. It must be written as a function in
order that the value of PATH in the current shell can be altered —
you cannot export from a child process to its parent.

addtopath() {

printf "Enter directory name: " # Prompt

read NEW # Read name

if [-d "$NEW"] && # Check directory

[-r "$NEW"] # Check readable

then PATH="$PATH":"$NEW" # Update PATH

285

Introducing UNIX and Linux

fi

}

5 The only complication with this example is that you must
remember to enclose the sh -x in quotes, since there is a blank
which is part of the alias:

$ alias debugsh=’sh -x’

7 This is simple use of eval.

printf "Type in a variable name: "

read VARIABLE

Construct the name of the variable

and echo its value

eval echo \$$VARIABLE

Chapter 10

1 We require a Grep pattern which matches the five vowels, either
upper- or lower-case, separated by zero or more other characters.
The pattern [Aa] matches an upper- or lower-case ‘a’, and the
pattern .* (dot followed by an asterisk) any sequence of other
characters:

$ grep ’[Aa].*[Ee].*[Ii].*[Oo].*[Uu]’
/usr/dict/words

3 Use grep with option -l:

$ grep -l program *

5 Begin by replacing all characters which are not digits by blanks,
then translate each blank to a newline, remove all empty lines, and
finally sort the result to be in numerical (rather than lexical) order,
removing duplicates:

sed ’s/[^0-9]/ /g’ | # Pattern [^0-9] matches

any non-digit

tr " " "\n" | # Replace blanks by newlines

grep -v ’^$’ | # Select all lines NOT

matching ^$

sort -u -n # Sort, remove duplicated lines

into numerical order

7 Use csplit to split the file at the position denoted by the BRE
^middle$ – we have to ‘anchor’ the m and the e to be at the start
and end of a line so that it does not split the file earlier if there is
another word containing middle.

286

Answers to selected problems

$ csplit /usr/dict/words ’/ˆmiddle$/’

Chapter 11

For these problems, the solutions are in no way unique. See if you can
devise different answers.

1a The number of trains run is simply the number of lines in the file,
which is the value of NR at the end of processing the data.

END { print NR }

1b Use a variable count (say) to count the lines where the seventh
field is 5:

$7 == 5 { count++ }

END { print count }

1c Similar to the previous problem, but the count is incremented when
field 7 is 5 and field 5 is fast:

$7 == 5 && $5 == "fast" { count++ }

END { print count }

1d Rather than incrementing count by one each time a line of input
relates to May (field 7 is 5), sum all the values of field 4:

{ passengers += $4 }

END { print passengers }

1e As the previous example, but the incremented fare total depends
on the value of field 5. The solution presented here does the
calculation in pence, and converts to pounds only at the end.

$5 == "local" { fares += 10*$3*$4 }

$5 == "fast" { fares += 12*$3*$4 }

$5 == "express" { fares += 15*$3*$4 }

END { printf "%.2f\n", fares / 100 }

1f In this case we have three variables for the different fare categories.

$5 == "local" { localfares += 10*$3*$4 }

$5 == "fast" { fastfares += 12*$3*$4 }

$5 == "express" { expressfares += 15*$3*$4 }

END { printf "%.2f\n", localfares*100/ \

(localfares+fastfares+expressfares) }

1g In this solution, floating-point arithmetic is used throughout, all
the calculations being performed in pounds.

BEGIN { rate["local"] = 0.10

rate["fast"] = 0.12

rate["express"] = 0.15 }

287

Introducing UNIX and Linux

{ cost = 100 + 5*$3

revenue = $3*$4*rate[$5]

profit = revenue - cost

printf "%d/%d %s-%s: ", $6, $7, $1, $2

if (profit > 0)

printf "profit %.2f\n", profit

else

printf "loss %.2f\n", -profit

}

Chapter 12

As for the Awk solution, there are many other possible solutions to the
Perl problems

2 $available_chars=72;

$output_line="";

while (<STDIN>) {

remove newline

chomp;

remove leading spaces

$_ =~ s/^[]*//;

remove trailing spaces

$_ =~ s/[]*$//;

create an array of the words on the input line

@words=split;

loop through the words in turn ...

for ($i=0; $i <= $#words; $i++) {

$word = $words[$i];

... and if it will not fit on an output line ...

if (length($word) >= $available_chars) {

... print the current output line ...

print $output_line . "\n";

... and reset the variables

$available_chars=72 - length($word);

$output_line=$word;

}

288

Answers to selected problems

add the word to the output line (not forgetting a

blank space) and reset the variable storing the

available space

$available_chars = $available_chars - length($word) - 1;

$output_line = $output_line . " " . $word;

};

}

print $output_line . "\n";

3

Process the first argument

open(DATA, $ARGV[0]) || die "Cannot open data file";

Initialise running total

$length=0.0;

Data file must have at least one line

@oldcoordinate holds the previous line, and

@coordinate the current line

if (<DATA>) {

Extract the fields in the first line into

the array @oldcoordinate

@oldcoordinate = split;

} else {

Terminate if the data file is empty

die "No data";

}

Loop through the lines of the file

while (<DATA>) {

The current leg is calculated by

subtracting the new coordinated from

the old

@coordinate = split;

$x = $coordinate[0] - $oldcoordinate[0];

$y = $coordinate[1] - $oldcoordinate[1];

Use Pythagoras’ Theorem!

$d = sqrt ($x*$x + $y*$y);

Update the running total

$length += $d;

The new line now becomes the previous

289

Introducing UNIX and Linux

coordinate

@oldcoordinate = @coordinate;

}

Tidy up the open file handle

close (DATA);

Finally, output the answer

printf "The journey length is %0.2f km.\n", $length;

290

Appendix – summary of utilities

Table 14.7 Utilities

a–c
Utility Description Chapter

adduser creates new user 13

alias define or display aliases 9

ar maintain a library archive 9

at execute commands at a specified time 6

awk pattern scanning and processing language 11

basename display non-directory part of filename 5

batch execute commands when system load permits 6

bc calculator 7

bg run a job to the background 6

break exit from for, while or until loop 7

cat concatenate and print files to standard output 4

cd change working directory 5

chgrp change file group ownership 5

chmod change file access privileges 5

chown change file ownership 5

cksum file checksum utility 9

cmp compare two files 5

comm select/reject lines common to two files 9

command execute a simple command 9

compress reduces file to compressed form 5

continue continue for, while or until loop 7

cp copy files 5

crontab schedule periodic background work 6

csplit split a file according to context 10

ctags create a ‘tags’ file 9

cut select columns or fields from each line of a file 5

291

Introducing UNIX and Linux

Table 14.7 (cont.)

Utilities d–j
Utility Description Chapter

date display current time and date 4

dd convert file format 9

df display free disk space 5

diff show differences between two files 5

dirname display directory part of a pathname 5

du display file space usage 5

echo write arguments to standard output 4

ed basic text editor 4

env set environment for a command 6

eval construct command by concatenating arguments 9

exec execute command by replacing shell process 9

exit cause the shell to exit 8

expand replace tabs by spaces 9

export set export attribute for a variable 6

expr evaluate an arithmetic expression 8

ex text editor (see vi) 4

false returns ‘false’ value, exit status 1 7

fc process command history list 6

fdisk modifies disk partition table 3

fg run a job to the foreground 6

file describe file contents 5

find find files 7

fold fold lines 5

getconf get configuration variables 9

getopts parse options for a utility 8

grep select lines matching regular expression 10

gunzip uncompresses gzip file 13

gzip reduces file to compressed form 13

head show the first few lines of a file 5

id display information about a user’s identity 5

jobs list the jobs in the current session 6

join relational database operator 9

292

Appendix – summary of utilities

Table 14.7 (cont.)

Utilities k–p
Utility Description Chapter

kill send a signal to a process 6

ln link files 5

locale display information about the ‘locale’ 9

localedef define the ‘locale’ 9

logger log message for the system administrator 9

logname display your login user name 4

lp send files to a printer 5

ls list files (directory contents) 4

mailx process electronic mail messages 4

make maintain and update groups of programs 9

man display manual pages 4

mesg allow or deny messages on your terminal 4

mkdir create new directories 5

mkfifo create a FIFO file 9

more ‘pager’ 4

mv move files 5

newgrp change your current group-id 5

nice run a command with changed priority 6

nm display name list of an object file 9

nohup run a command immune to hangups 6

od dump files in various formats 5

passwd change login password 4

paste merge corresponding lines of text files 5

patch apply changes to files 5

pathchk check pathname is valid 9

pax file archiver and format translator 5

perl ‘Practical Extraction and Report Language’ 12

pr a very basic formatter for text files 5

printf write formatted output 7

ps display information about processes 6

pwd display working directory 5

293

Introducing UNIX and Linux

Table 14.7 (cont.)

Utilities r–t
Utility Description Chapter

read read a line from standard input 6

readonly set read-only attribute for variables 6

renice change the priority of a running process 6

return return from a function 9

rm remove a file 4

rmdir remove empty directories 3

sed stream editor 10

set set options and positional parameters 8

sh the shell 4

shift shift positional parameters 7

shutdown close down processes and shut down machine 13

sleep suspend execution for a time interval 6

sort sort or merge text files 5

split split a file into pieces 9

ssh secure shell for remote login 13

strings display printable strings in a file 5

strip remove unnecessary data from executable files 9

stty set terminal options 9

tabs reset the tab positions 8

tail show the last few lines of a file 5

talk talk to another user 4

tar file and directory archive tool 5

tee duplicate standard input 4

test evaluate expression 7

time display execution time for a command 6

touch change last modification time of a file 5

tput change terminal characteristics 8

tr translate characters 10

trap intercept a signal 9

true returns ‘true’ value, exit status 0 7

tty display the terminal name 4

294

Appendix – summary of utilities

Table 14.7 (cont.)

Utilities u–x
Utility Description Chapter

umask change access privileges when files are created 5

unalias remove alias definition 9

uname display the system name 4

unexpand replace spaces by tabs 9

uniq filter out repeated lines 5

unset unset options and positional parameters 8

useradd creates new user 13

userdel removes a user 13

uudecode decode a file which was coded with uuencode 9

uuencode encode a binary file 9

vi full-screen text editor 4

wait suspend process until completion of another process 6

wc word, line and byte count 5

who list who is using the system 4

write write a message on another user’s terminal 4

ypmatch prints values from Network Information System 13

xargs construct argument list and execute command 7

295

Index

!= (arithmetic expansion) 151

!= (Awk) 219

! 156

" 110

(string length) 147

118

$ (BRE) 200

$ (Perl) 241

$ (prompt) 33

$ (variable) 93

$ (Vi) 41, 43

$((command substitution) 114

$(114

$((150

$* 142

$0 (Awk) 216

$0 142

$1, $2, etc (Awk) 216

$1, $2, etc 142

$? 123

$@ 143

$[150

$# 142

${ 146

% 102

% (bc) 127

% (arithmetic expansion) 151

% (Awk) 219

% (conversion specification) 140

% (Perl) 242

% (prompt) 33

%% 102

& 91

& (Sed) 205

&& (Awk) 219, 221

&& 124

’ 94, 110

((command grouping) 125

() 176

) (case) 157

)) 150

* (bc) 127

* (tr) 197

* (arithmetic expansion) 151

* (Awk) 219

* (BRE) 200

* (pattern matching) 154

+ (bc) 127

+ (arithmetic expansion) 151

+ (Awk) 219

+ (ERE) 200

+= (Awk) 227

- 13

- (bc) 127

- (Awk) 219

- (BRE) 199

- (option) 34

- (pattern matching) 156

- (standard input) 47

-empty (find) 139

-eq (test) 131

-exec (find) 139

-ge (test) 131

-gid (find) 139

-group (find) 139

-gt (test) 131

-inum (find) 139

-le (test) 131

-links (find) 139

-lt (test) 131

-name (find) 139

-ne (test) 131

-perm (find) 139

-print (find) 138

296

Appendix – summary of utilities

-printf (find) 139

-size (find) 139

-type (find) 139

-user (find) 139

. 13

. (BRE) 200

. (command) 99

. (directory) 60

. (filename) 60

. (Perl) 242

. (vi address) 211

.. (directory) 60

.a (filename suffix) 155, 189

.c (filename suffix) 155

.f (filename suffix) 158

.o (filename suffix) 155

.p (filename suffix) 158

/ (bc) 127

/ (arithmetic expansion) 151

/ (Awk) 219

/ (root directory) 61

/ (Vi) 41, 42

/dev 112

/dev/audio 113

/dev/console 113

/dev/null 113

/dev/rst8 113

/dev/tty 112

/etc/passwd 230

/tmp 169

/usr/dict/words 54

0 (Vi) 43

0< 49

1> 48

2> 48

:+ 147

:- 146

:0 (Vi) 42

:= 146

:? 147

: (Vi) 40

: 126

:$ (Vi) 42

:n (Vi) 42

:] 196

:q (Vi) 43

:q! (Vi) 43

:w (Vi) 43

:wq (Vi) 43

;; 157

< (arithmetic expansion) 151

< (Awk) 219

< (input redirection) 46

< (Perl) 243

<< 51

<= (arithmetic expansion) 151

<= (Awk) 219

= (alias) 177

= (test) 131

= (variable assignment) 93

== (arithmetic expansion) 151

== (Awk) 219

> (arithmetic expansion) 151

> (Awk) 219

> (output redirection) 46

> (Perl) 243

> (prompt) 111

>= (arithmetic expansion) 151

>= (Awk) 219

>> (Perl) 243

>> 49

? (Vi) 42

? (more) 54

? (ERE) 200

? (pattern matching) 154

? (Vi) 41

@ (Perl) 241

[(test) 129

[(BRE) 199

[(pattern matching) 154

[: 196

\ 110

\\ (backslash) 140

\a (alert) 140

\b (backspace) 140

\f (formfeed) 140

\n (newline) 140

\r (carriage return) 140

\t (tab) 140

\v (vertical tab) 140

] (arithmetic expansion) 150

] (test) 129

^ (Awk) 219

^ (bc) 127

^ (BRE) 199

^ (Vi) 41, 42

13

END (Perl) 245

297

Introducing UNIX and Linux

‘ 114

{ (csplit) 207

{} (find) 138

| 51, 121

| (ERE) 201

|| 124

|| (Awk) 219, 221

~ 36

~ (directory) 61

~v (Vi) 37

A

a (Vi) 40, 42

a (bc arctan function) 127

absolute filename 61

access privileges 69

Acrobat 273

action (Awk) 215

adduser 261

administrator account 24

alias 177

alias 177

and-list 124

Apache 276

append 49

application program 7

ar 185

archive 83

argument 34

arithmetic expansion 150

array (Awk) 226

array index (Awk) 226

ASCII 5, 14, 191

associative array (Awk) 226

asynchronous list 120

at 104

at queue 105

AT&T 8

atan2 (Awk arctan function) 233

awk 214

Awk 214

B

b (more) 54

b (Vi) 41, 42

background 90

backquote 113

backslash 110

backup 83

base 84

basename 85

bash 12

bash 33

basic regular expression 199

batch queue 105

batch 105

baud 187

bc 126

BEL 5

Bell Labs 8

BeOS 8

bg 102

binding operator (Perl) 251

bit 14

block 191

boot loader 24

Bourne shell 12

bracket expression 199

BRE 199

break 136

BSD 9

buffer 44

buffered input 44

byte 14

C

C (programming language) 9

C (Vi) 42

C shell 12

c (bc cosine function) 127

case 157

cat 45

cc 184

cd 61

CDE 25

central processing unit 2

character 14

298

Appendix – summary of utilities

character encoding 5

character class 196

character special file 112

check digit 14

checksum 183

chgrp 70

child process 100

chmod 71

chown 71

cksum 183

cmp 76

collating sequence 195

colon 126

colon-mode (Vi) 40

comm 189

command 120

command 177

command argument 34

command grouping 123

command history list 103

command option 34

command substitution 114

command window 3

command-mode (Vi) 40

comment 118

compilation 88

compiler 7

compound command 120

compress 83, 262

compression 83

Concurrent Versions System 274

continuation prompt 111

continue 136

control center (KDE) 29

control character 5

control structure (Perl) 247

controlling terminal 89

conversion specification 140

core 137, 174

coredump 174

cos (Awk cosine function) 233

cp 65

cpio 83

CPM 8

CPU 2

crontab 106, 262

csh 12

csplit 207

ctags 189

Ctrl key 5

ctrl-\ 174

ctrl-C 54, 187

ctrl-D 33, 45

ctrl-D (Vi) 41, 42

ctrl-G 5

ctrl-U (Vi) 41, 42

current directory 59

current message (Mailx) 37

cursor 3

customized (installation) 22

cut 78

CVS 274

cw (Vi) 42

D

D (Vi) 40, 42

DATA (Perl) 245

date 33

dbx 174

dd (Vi) 40, 42

dd 191

debugging shell scripts 161

default job 102

definition 176

DEL key 44

delimiter 78

DESCRIPTION (manual page) 56

desktop (KDE) 26

desktop manager 4

development (installation) 22

device 111

df 63, 260

DIAGNOSTICS (manual page) 56

diff 76, 86, 189

directory 59, 64

directory hierarchy 59

dirname 85

DNS 266

DOS 8

DOS.SYS 24

dotdot 60

double quote 110

du 85

dual boot 19

dumb terminal 3

299

Introducing UNIX and Linux

dw (Vi) 42

E

e (Vi) 41, 42

e (bc exponential function) 127

EBCDIC 16

echo 4

echo 50, 139

ed 43

EDITOR 93

editors 39

egrep 201

elapsed time 108

electronic mail 36

Elm 37

Emacs 43, 273

emacs 43

email 36, 180

emergencies 54

emulator 19, 21

Enter (key) 5

env 94, 98

ENVIRON (Awk) 228

environment 92

ERE 199, 200, 225

esac 157

ESC (Vi) 40

escape character 139

escape sequence 81

eval 179

ex 43

exec 178

executable shell script 98

execute permission (file) 69

executing 34

EXIT 175

exit 33, 160

exit status 123

exp (Awk exponential function)

233

expand 189

expert (installation) 22

export 95

expr 152

extended regular expression 199,

200, 225

F

false 126

fc 103

FDISK 19, 23

fdisk 269

fg 102

fgrep 201

field 78, 215

field delimiter 78

field separator (Awk) 229

field width 140

fields (Perl) 246

FIFO 188

FIFO file 130

file 13, 73

file access control 68

file group 69

file owner 69

FILENAME (Awk) 223

FILENAME 224

filename 62

filename suffix 155

FILES (manual page) 56

filesystem 63

filter 194

find 138, 191

floating point number 218

FNR (Awk) 223, 224

fold 78

for 134

foreground 90

Framemaker 273

FS (Awk) 223, 229

FTP 277

ftp 277

function 175

function (bc) 126

function (Awk) 233

function definition 120, 175, 176

FVWM 25

300

Appendix – summary of utilities

G

Galeon 276

GCC 272

GCL 272

General Electric 8

getconf 186

getline (Awk) 234

getopts 162

Ghostscript 273

Ghostview 273

GID 68

gigabyte 59

GIMP 274

global variable 95

GNOME 25

graphics terminal 3

Grep 201

grep 201

group 68

group (file) 69

group-id 68

GSView 273

GUI 20

gzip 274

H

h (Vi) 40

hang 54

hangup 107

hard link 66

hardware 2

head 74

help 55

here-document 50

HOME 93

home directory 61

hyphen (standard input) 47

I

i (Vi) 40, 42

id 68

idle time 36

IEEE 9

if 132

include (directory) 168

index (array) 226

inode 62

input 44

input device 2

input mode (Vi) 40

int (Awk truncation function) 233

interpreter 7, 88

interrupt 54

IO.SYS 24

IP-chain 269

J

j (Vi) 40

J (Vi) 42

JAPH 254

Java 272

job 100

job control 92, 100

jobnumber 91

jobs 101

join 189

K

k (Vi) 40

KDE 24, 25

KEdit 44

kernel 5, 11

keyboard 3

kill 92, 175, 261

killed process 89

KOffice 273

Konqueror 276

Korn shell 12

ksh 12

L

l (Vi) 40

l (bc logarithm function) 127

LaTeX 273

LATIN-1 16

301

Introducing UNIX and Linux

length (of a string) 147

length (bc) 127

length (Awk) 234

less 53

lib (directory) 168

LILO 24

lines 74

link 66, 70, 165

linking (object files) 183

Linus Torvalds 9

Linux 9

linuxconf 259

Lisp 272

list command 120, 124

list command grouping 125

ln 66

loadlin 20

locale 192, 195

locale 192

localedef 192

local variable 95

log (Awk logarithm function) 233

log in 32

logger 192

logging in 32

logging out 33

login 32

login shell 50, 89

logname 58

LOGNAME 93

logout 33

loop 134

lp 81

lpr 82

ls 39, 62

Lynx 276

M

MAC 265

machine code 7

MacOS 8

Mail 37

mailbox 168

Mailx 36

mailx 36

make 184

Makefile 185

makefile 185

makefile 184

man 55

manual page 55

manual volume 55

match (Awk) 234

matching list 199

mesg 38

MIT 8

mkdir 64

mkfifo 188

module (Perl) 250

monitor 3

more 53

mounting 23

mouse 3

Mozilla 276

Multics 8

Mush 37

mv 65, 85

N

name (array) 226

NAME (manual page) 56

NAME 145

named pipe 188

ncftp 277

NEdit 44

Netscape 276

network 13

Network Information Service 230

newgrp 68

Newline 74

NF (Awk) 223

NF 224

nice 107

NIS 230

NL 5

nm 189

nohup 107

nonmatching list 199

NOTES (manual page) 56

NR (Awk) 223

302

Appendix – summary of utilities

O

o (Vi) 42

octal dump 80

od 80

OFS (Awk) 232, 223

open source 16

OpenOffice 273

Opera 276

operating system 7, 11

OPTARG 163

OPTIND 164

OPTIONS (manual page) 56

options 34, 162

or-list 124

ORS (Awk) 223, 232

other (file) 69

output 44

output device 2, 3

output field separator 232

output record separator 232

owner (file) 69

P

pager 53

PalmOS 8

panel (KDE) 26

parameter expansion 144

parent process 100

parent (directory) 60

parity bit 14

partitioning 20, 23

PASC 9

passwd 34, 260

password 31

paste 77, 190

patch 86

PATH 94, 99

pathchk 186

pathname component 94

pattern (Awk) 215

pattern binding operator 251

pattern matching 154

pattern space (Sed) 203

pax 83

Perl 239, 272

perldoc 241

perm symbol 72

pg 53

PHP 272

PID 89

Pine 37

pipe 51

pipeline 120, 121

positional parameters 142

POSIX 9

PostScript 82

pr 82

precedence 127

prefix (csplit) 207

prepend 49

print (Awk) 216

PRINTER 93

printf (Awk) 217

printf 139

printing character 5

prioritise 107

process 88

process-id 89

processing time 108

processor 2, 88

program 2

program (Perl) 240

program control 100

Prolog 272

prompt 33

prosplitter 274

ps 89, 260

PS1 93

PS2 93, 111

putty 277

pwd 61

Q

q (more) 54

Q (Vi) 43

q (Vi) 43

q! (Vi) 43

queue 105

303

Introducing UNIX and Linux

R

RAM 18

rand (Awk random number) 233

range 195

RAR 274

rcp 277

RE 199

read 96

readonly 111

read permission (file) 69

real time 108

recommended (installation) 22

record 215

record separator 231

Red Hat 22

redirection 45

regular expression 199

regular file 129

relative filename 61

release 34

renice 107

repetitive strain injury 32

Return (key) 5

Return (more) 54

return 177

rlogin 277

rm 48

rmdir 64

root 60

root (account) 24

RS 231

RSI 32

running process 89

running program 34

S

s (bc sine function) 127

scale (bc) 126, 127

scandisk 23

scheduling 92

scp 277

screen 3

screensaver 32

script 50, 159

script (Awk) 215

script (Grep) 201

script (Sed) 203

Sed 203

SEE ALSO (manual page) 56

sequential list 120

server 22

set 161

sftp 277

sh 12

sh 50

shell 5, 11, 12

SHELL 93

shell options 161

shift 144

shutdown 261

SIGALRM 175

SIGEXIT 175

SIGHUP 107, 175

SIGINT 174, 175

SIGKILL 92, 175

signals 92

SIGQUIT 174, 175

SIGTERM 175

SIGTTIN 103

simple command 120, 121

sin (Awk sine function) 233

single boot 19

single quote 94, 110

slash 61

sleep 91

slogin 277

soft link 165

software 2, 4

solidus 61

sort 79

Space (more) 54

SPARC 2

split (Awk) 234

split (Perl) 246

split 182, 206, 264

spool (directory) 168

sqrt (bc) 127

sqrt (Awk square root) 233

ssh 268

SSH 277

standard error 44

standard input 44

standard output 44

StarOffice 273

304

Appendix – summary of utilities

startx 24

stderr 44

stdin 44

stdout 44

stopped (process) 89

stopped job 101

stopped process 89

stream 4, 44

strings 81

strip 185

stty 187

Stuffit 274

sub (Awk) 234

subdirectory 66

substr (Awk) 234

suffix 84, 155

sum 183

super-user 8

SuSE 22

suspended (process) 89

symbol 189

symbolic link 165

SYNOPSIS (manual page) 56

syntax 118

system 13

system (Awk) 234

system administration 8

system administrator 8

system software 7

system time 108

System V 9

T

TAB 5

TAB key 167, 189

tab position 167

Tab Window Manager 25

tabs 167, 189

tail 74

talk 38

tar 83, 262

target 184

taskbar (KDE) 26

Tcl/Tk 272

tcsh 12

tee 53

Telnet 277

telnet 277

temporary files 169

TERM 93, 95

terminal 35

test 129

TeX 273

text files 74

theme (FVWM) 25

tilde (directory) 61

time 108

time-sharing 89

tmp (directory) 169

tolower (Awk) 234

Tom’s Window Manager 25

top 90

touch 81

toupper (Awk) 234

tput 166, 187

tr 196

trap 174

trapping signals 173

trees 60

true 126

tty 35

TWM 25

U

UID 68

umask 72

UMSDOS 20

unalias 178

uname 34, 56

uncompress 84

unexpand 189

Unicode 16

uniq 76, 189

Universal Coordinated Time 34

UNIX 9

unset 145

unset variable 145

until 136

USER 93

user accounts 24

user-id 68

useradd 261

305

Introducing UNIX and Linux

userdel 261

username 31, 35

UTC 34

utility 120

uudecode 180

uuencode 180

V

value 93

var (directory) 168

variable 92

VDU 3

version 34

Vi 39, 210

vi 39

vilearn 42

Vim 44

virtual computer 21

Virtual Network Computing 274

VISUAL 93

visual display unit 3

VMS 8

VMware 21, 274

VNC 274

VTWM 25

W

w (Vi) 41, 42, 43

wait 109

wc 75

while 135

whitespace 167

who 35, 55

who symbol 72

window 3, 35

window manager 4, 25

Windows 8

WINE 21, 274

wine 22

word 14

workstation 3

workstation (installation) 22

wq (Vi) 43

write 37

write permission (file) 69

wvdial 267

X

x (Vi) 40, 42

xargs 191

Xmail 37

XMMS 274

X MultiMedia System 274

X windows 24

XV 274

Y

ypcat 231

ypmatch 266

Z

zsh 12

Z shell 12

ZZ (Vi) 40, 42

306

