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Preface

This book is intended for use in a rigorous introductory Ph.D.-level course in
econometrics or in a field course in econometric theory. It is based on lec-
ture notes that I developed during the period 1997–2003 for the first-semester
econometrics course “Introduction to Econometrics” in the core of the Ph.D.
program in economics at the Pennsylvania State University. Initially, these lec-
ture notes were written as a companion to Gallant’s (1997) textbook but have
been developed gradually into an alternative textbook. Therefore, the topics
that are covered in this book encompass those in Gallant’s book, but in much
more depth. Moreover, to make the book also suitable for a field course in
econometric theory, I have included various advanced topics as well. I used to
teach this advanced material in the econometrics field at the Free University of
Amsterdam and Southern Methodist University on the basis of the draft of my
previous textbook (Bierens 1994).
Some chapters have their own appendixes containing the more advanced top-

ics, difficult proofs, or both. Moreover, there are three appendixes with material
that is supposed to be known but often is not – or not sufficiently. Appendix
I contains a comprehensive review of linear algebra, including all the proofs.
This appendix is intended for self-study only but may serve well in a half-
semester or one-quarter course in linear algebra. Appendix II reviews a variety
of mathematical topics and concepts that are used throughout the main text, and
Appendix III reviews the basics of complex analysis, which is a subject needed
to understand and derive the properties of characteristic functions.
At the beginning of the first class, I always tell my students, “Never ask

me how. Only ask me why.” In other words, don’t be satisfied with recipes.
Of course, this applies to other economics fields as well – in particular if the
mission of the Ph.D. program is to place its graduates at research universities.
First, modern economics is highly mathematical. Therefore, in order to be
able to make original contributions to economic theory, Ph.D. students need to
develop a “mathematical mind.” Second, students who are going to work in an

xv



xvi Preface

applied econometrics field like empirical Industrial Organization (IO) or labor
need to be able to read the theoretical econometrics literature in order to keep
up-to-date with the latest econometric techniques. Needless to say, students
interested in contributing to econometric theory need to become professional
mathematicians and statisticians first. Therefore, in this book I focus on teaching
“why” by providing proofs, or at least motivations if proofs are too complicated,
of the mathematical and statistical results necessary for understanding modern
econometric theory.
Probability theory is a branch of measure theory. Therefore, probability the-

ory is introduced in Chapter 1 in a measure-theoretical way. The same applies
to unconditional and conditional expectations in Chapters 2 and 3, which are
introduced as integrals with respect to probability measures. These chapters are
also beneficial as preparation for the study of economic theory – in particular
modern macroeconomic theory. See, for example, Stokey, Lucas, and Prescott
(1989).
It usually takes me three weeks (on a schedule of two lectures of one hour

and fifteen minutes per week) to get through Chapter 1 with all the appendixes
omitted. Chapters 2 and 3 together, without the appendixes, usually take me
about three weeks as well.
Chapter 4 deals with transformations of random variables and vectors and

also lists the most important univariate continuous distributions together with
their expectations, variances, moment-generating functions (if they exist), and
characteristic functions. I usually explain only the change-of-variables formula
for (joint) densities, leaving the rest of Chapter 4 for self-tuition.
The multivariate normal distribution is treated in detail in Chapter 5 far be-

yond the level found in other econometrics textbooks. Statistical inference (i.e.,
estimation and hypotheses testing) is also introduced in Chapter 5 in the frame-
work of the classical linear regression model. At this point it is assumed that
the students have a thorough understanding of linear algebra. This assumption,
however, is often more fiction than fact. To test this hypothesis, and to force
the students to refresh their linear algebra, I usually assign all the exercises in
Appendix I as homework before starting with Chapter 5. It takes me about three
weeks to get through this chapter.
Asymptotic theory for independent random variables and vectors – in partic-

ular the weak and strong laws of large numbers and the central limit theorem – is
discussed in Chapter 6 together with various related convergence results. More-
over, the results in this chapter are applied to M-estimators, including nonlinear
regression estimators, as an introduction to asymptotic inference. However, I
have never been able to get beyond Chapter 6 in one semester, even after skip-
ping all the appendixes and Sections 6.4 and 6.9, which deal with asymptotic
inference.
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Chapter 7 extends theweak lawof large numbers and the central limit theorem
to stationary time series processes, starting from the Wold (1938) decomposi-
tion. In particular, the martingale difference central limit theorem of McLeish
(1974) is reviewed together with preliminary results.
Maximum likelihood theory is treated in Chapter 8. This chapter is differ-

ent from the standard treatment of maximum likelihood theory in that special
attention is paid to the problem of how to set up the likelihood function if the
distribution of the data is neither absolutely continuous nor discrete. In this
chapter only a few references to the results in Chapter 7 are made – in partic-
ular in Section 8.4.4. Therefore, Chapter 7 is not a prerequisite for Chapter 8,
provided that the asymptotic inference parts of Chapter 6 (Sections 6.4 and 6.9)
have been covered.
Finally, the helpful comments of five referees on the draft of this book,

and the comments of my colleague Joris Pinkse on Chapter 8, are gratefully
acknowledged. My students have pointed out many typos in earlier drafts, and
their queries have led to substantial improvements of the exposition. Of course,
only I am responsible for any remaining errors.
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1 Probability and Measure

1.1. The Texas Lotto

1.1.1. Introduction

Texans used to play the lotto by selecting six different numbers between 1
and 50, which cost $1 for each combination.1 Twice a week, onWednesday and
Saturday at 10 .., six ping-pong balls were released without replacement from
a rotating plastic ball containing 50 ping-pong balls numbered 1 through 50.
The winner of the jackpot (which has occasionally accumulated to 60 or more
million dollars!) was the one who had all six drawn numbers correct, where the
order in which the numbers were drawn did not matter. If these conditions were
still being observed, what would the odds of winning by playing one set of six
numbers only?
To answer this question, suppose first that the order of the numbers does

matter. Then the number of ordered sets of 6 out of 50 numbers is 50 possibilities
for the first drawn number times 49 possibilities for the second drawn number,
times 48 possibilities for the third drawn number, times 47 possibilities for the
fourth drawn number, times 46 possibilities for the fifth drawn number, times
45 possibilities for the sixth drawn number:

5∏
j=0

(50− j) =
50∏
k=45

k =
∏50
k=1 k∏50−6
k=1 k

= 50!

(50− 6)!
.

1 In the spring of 2000, the Texas Lottery changed the rules. The number of balls was
increased to fifty-four to create a larger jackpot. The official reason for this change was
to make playing the lotto more attractive because a higher jackpot makes the lotto game
more exciting. Of course, the actual intent was to boost the lotto revenues!

1



2 The Mathematical and Statistical Foundations of Econometrics

The notation n!, read “n factorial,” stands for the product of the natural numbers
1 through n:

n! = 1× 2× · · · × (n − 1)× n if n > 0, 0! = 1.

The reason for defining 0! = 1 will be explained in the next section.
Because a set of six given numbers can be permutated in 6! ways, we need

to correct the preceding number for the 6! replications of each unordered set
of six given numbers. Therefore, the number of sets of six unordered numbers
out of 50 is(

50

6

)
def.= 50!

6!(50− 6)!
= 15,890,700.

Thus, the probability of winning such a lotto by playing only one combination
of six numbers is 1/15,890,700.2

1.1.2. Binomial Numbers

In general, the number of ways we can draw a set of k unordered objects out of
a set of n objects without replacement is

(n
k

)
def.= n!

k!(n − k)! . (1.1)

These (binomial) numbers,3 read as “n choose k,” also appear as coefficients in
the binomial expansion

(a + b)n =
n∑
k=0

(n
k

)
akbn−k . (1.2)

The reason for defining 0! = 1 is now that the first and last coefficients in this
binomial expansion are always equal to 1:

(n
0

)
=

(n
n

)
= n!

0!n!
= 1

0!
= 1.

For not too large ann, the binomial numbers (1.1) canbe computed recursively
by hand using the Triangle of Pascal:

2 Under the new rules (see Note 1), this probability is 1/25,827,165.
3 These binomial numbers can be computed using the “Tools → Discrete distribution

tools” menu of EasyReg International, the free econometrics software package de-
veloped by the author. EasyReg International can be downloaded from Web page
http://econ.la.psu.edu/∼hbierens/EASYREG.HTM
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1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 . . . . . . . . . . . . . . . 1

(1.3)

Except for the 1’s on the legs and top of the triangle in (1.3), the entries are
the sum of the adjacent numbers on the previous line, which results from the
following easy equality:(

n − 1

k − 1

)
+

(
n − 1

k

)
=

(n
k

)
for n ≥ 2, k = 1, . . . , n − 1. (1.4)

Thus, the top 1 corresponds to n = 0, the second row corresponds to n = 1, the
third row corresponds to n = 2, and so on, and for each row n + 1, the entries
are the binomial numbers (1.1) for k = 0, . . . , n. For example, for n = 4 the
coefficients of akbn−k in the binomial expansion (1.2) can be found on row 5
in (1.3): (a + b)4 = 1× a4 + 4× a3b + 6× a2b2 + 4× ab3 + 1× b4.

1.1.3. Sample Space

The Texas lotto is an example of a statistical experiment. The set of possible
outcomes of this statistical experiment is called the sample space and is usually
denoted by �. In the Texas lotto case, � contains N = 15,890,700 elements:
� = {ω1, . . . , ωN }, where each element ω j is a set itself consisting of six dif-
ferent numbers ranging from 1 to 50 such that for any pair ωi , ω j with i 
= j ,
ωi 
= ω j . Because in this case the elements ω j of � are sets themselves, the
condition ωi 
= ω j for i 
= j is equivalent to the condition that ωi ∩ ω j /∈ �.

1.1.4. Algebras and Sigma-Algebras of Events

A set {ω j1 , . . . , ω jk} of different number combinations you can bet on is called
an event. The collection of all these events, denoted by ö, is a “family” of
subsets of the sample space�. In the Texas lotto case the collectionö consists
of all subsets of �, including � itself and the empty set ∅.4 In principle, you
could bet on all number combinations if you were rich enough (it would cost
you $15,890,700). Therefore, the sample space � itself is included in ö. You
could also decide not to play at all. This event can be identified as the empty
set ∅. For the sake of completeness, it is included inö as well.

4 Note that the latter phrase is superfluous because�⊂� signifies that every element of�
is included in �, which is clearly true, and ∅ ⊂ � is true because ∅ ⊂ ∅ ∪ � = �.



4 The Mathematical and Statistical Foundations of Econometrics

Because, in the Texas lotto case, the collection ö contains all subsets of �,
it automatically satisfies the conditions

If A ∈ ö then Ã = �\A ∈ ö, (1.5)

where Ã = �\A is the complement of the set A (relative to the set �), that is,
the set of all elements of � that are not contained in A, and

If A, B ∈ ö then A ∪ B ∈ ö. (1.6)

By induction, the latter condition extends to any finite union of sets in ö: If
Aj ∈ö for j = 1, 2, . . . , n, then ∪nj=1A j ∈ ö.

Definition 1.1: A collection ö of subsets of a nonempty set � satisfying the
conditions (1.5) and (1.6) is called an algebra.5

In the Texas lotto example, the sample space � is finite, and therefore the
collection ö of subsets of � is finite as well. Consequently, in this case the
condition (1.6) extends to

If A j ∈ ö for j = 1, 2, 3, . . . then
∞∪
j=1
A j ∈ ö. (1.7)

However, because in this case the collection ö of subsets of � is finite, there
are only a finite number of distinct sets Aj ∈ ö. Therefore, in the Texas lotto
case the countable infinite union ∪∞

j=1A j in (1.7) involves only a finite number
of distinct sets Aj; the other sets are replications of these distinct sets. Thus,
condition (1.7) does not require that all the sets Aj ∈ö are different.

Definition 1.2: A collection ö of subsets of a nonempty set � satisfying the
conditions (1.5) and (1.7) is called a σ -algebra.6

1.1.5. Probability Measure

Let us return to the Texas lotto example. The odds, or probability, of winning
are 1/N for each valid combination ω j of six numbers; hence, if you play n
different valid number combinations {ω j1 , . . . , ω jn}, the probability of winning
is n/N :P({ω j1 , . . . , ω jn }) = n/N . Thus, in the Texas lotto case the probability
P(A), A ∈ ö, is given by the number n of elements in the set A divided by the
total number N of elements in�. In particular we have P(�)= 1, and if you do
not play at all the probability of winning is zero: P(∅) = 0.

5 Also called a field.
6 Also called a σ -field or a Borel field.



Probability and Measure 5

The functionP(A),A∈ö, is called a probabilitymeasure. It assigns a number
P(A) ∈ [0, 1] to each set A ∈ ö. Not every function that assigns numbers in
[0, 1] to the sets inö is a probabilitymeasure except as set forth in the following
definition:

Definition 1.3: A mapping P: ö → [0, 1] from a σ -algebraö of subsets of
a set � into the unit interval is a probability measure on {�, ö} if it satisfies
the following three conditions:

For all A ∈ ö, P(A) ≥ 0, (1.8)

P(�) = 1, (1.9)

For disjoint sets A j ∈ ö, P

(
∞∪
j=1
A j

)
=

∞∑
j=1

P(A j ). (1.10)

Recall that sets are disjoint if they have no elements in common: their inter-
sections are the empty set.
The conditions (1.8) and (1.9) are clearly satisfied for the case of the Texas

lotto. On the other hand, in the case under review the collection ö of events
contains only a finite number of sets, and thus any countably infinite sequence of
sets inömust contain sets that are the same. At first sight this seems to conflict
with the implicit assumption that countably infinite sequences of disjoint sets
always exist for which (1.10) holds. It is true indeed that any countably infinite
sequence of disjoint sets in a finite collectionö of sets can only contain a finite
number of nonempty sets. This is no problem, though, because all the other sets
are then equal to the empty set ∅. The empty set is disjoint with itself, ∅∩ ∅=∅,
and with any other set, A ∩ ∅ = ∅. Therefore, ifö is finite, then any countable
infinite sequence of disjoint sets consists of a finite number of nonempty sets
and an infinite number of replications of the empty set. Consequently, if ö is
finite, then it is sufficient to verify condition (1.10) for any pair of disjoint sets
A1, A2 in ö, P(A1 ∪ A2) = P(A1)+ P(A2). Because, in the Texas lotto case
P(A1 ∪ A2) = (n1 + n2)/N , P(A1) = n1/N , and P(A2) = n2/N , where n1 is
the number of elements of A1 and n2 is the number of elements of A2, the latter
condition is satisfied and so is condition (1.10).
The statistical experiment is now completely described by the triple {�,ö,

P}, called the probability space, consisting of the sample space � (i.e., the set
of all possible outcomes of the statistical experiment involved), a σ -algebra
ö of events (i.e., a collection of subsets of the sample space � such that the
conditions (1.5) and (1.7) are satisfied), and a probability measure P: ö →
[0, 1] satisfying the conditions (1.8)–(1.10).
In the Texas lotto case the collection ö of events is an algebra, but because

ö is finite it is automatically a σ -algebra.
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1.2. Quality Control

1.2.1. Sampling without Replacement

As a second example, consider the following case. Suppose you are in charge of
quality control in a light bulb factory. Each day N light bulbs are produced. But
before they are shipped out to the retailers, the bulbs need to meet a minimum
quality standard such as not allowingmore thanR out ofN bulbs to be defective.
The only way to verify this exactly is to try all the N bulbs out, but that will
be too costly. Therefore, the way quality control is conducted in practice is to
randomly draw n bulbs without replacement and to check how many bulbs in
this sample are defective.
As in the Texas lotto case, the numberM of different samples sj of size n you

can draw out of a set of N elements without replacement is

M =
(
N

n

)
.

Each sample sj is characterized by a number kj of defective bulbs in the sample
involved. Let K be the actual number of defective bulbs. Then kj ∈ {0, 1, . . . ,
min(n, K)}.
Let�= {0, 1, . . . , n} and let the σ -algebraö be the collection of all subsets

of �. The number of samples sj with kj = k ≤ min(n, K) defective bulbs is(
K

k

)(
N − K
n − k

)

because there are “K choose k” ways to draw k unordered numbers out of K
numbers without replacement and “N − K choose n − k” ways to draw n − k
unordered numbers out of N − K numbers without replacement. Of course,
in the case that n > K the number of samples s j with k j = k > min(n, K)
defective bulbs is zero. Therefore, let

P({k}) =
(
K
k

) (
N − K
n− k

)
(
N
n

) if 0 ≤ k ≤ min(n, K ),

P({k}) = 0 elsewhere, (1.11)

and for each set A = {k1, . . . , km} ∈ ö, let P(A) = ∑m
j=1 P({k j }). (Exercise:

Verify that this function P satisfies all the requirements of a probability mea-
sure.) The triple {�, ö, P} is now the probability space corresponding to this
statistical experiment.
The probabilities (1.11) are known as the hypergeometric (N, K, n) pro-

babilities.
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1.2.2. Quality Control in Practice7

The problem in applying this result in quality control is that K is unknown.
Therefore, in practice the following decision rule as to whether K ≤ R or not
is followed. Given a particular number r ≤ n, to be determined at the end of
this subsection, assume that the set of N bulbs meets the minimum quality
requirement K ≤ R if the number k of defective bulbs in the sample is less than
or equal to r. Then the set A(r) = {0, 1, . . . , r} corresponds to the assumption
that the set of N bulbs meets the minimum quality requirement K≤ R, hereafter
indicated by “accept,” with probability

P(A(r )) =
r∑
k=0

P({k}) = pr (n, K ), (1.12)

say, whereas its complement Ã(r ) = {r + 1, . . . , n} corresponds to the assump-
tion that this set of N bulbs does not meet this quality requirement, hereafter
indicated by “reject,” with corresponding probability

P( Ã(r )) = 1− pr (n, K ).
Given r, this decision rule yields two types of errors: a Type I error with prob-
ability 1− pr (n, K ) if you reject, whereas in reality K ≤ R, and a Type II
error with probability pr (K , n) if you accept, whereas in reality K > R. The
probability of a Type I error has upper bound

p1(r, n) = 1− min
K≤R

pr (n, K ), (1.13)

and the probability of a Type II error upper bound

p2(r, n) = max
K>R

pr (n, K ). (1.14)

To be able to choose r, one has to restrict either p1(r, n) or p2(r, n), or both.
Usually it is the former option that is restricted because a Type I error may
cause the whole stock of N bulbs to be trashed. Thus, allow the probability of
a Type I error to be a maximal α such as α = 0.05. Then r should be chosen
such that p1(r, n) ≤ α. Because p1(r, n) is decreasing in r, due to the fact that
(1.12) is increasing in r, we could in principle choose r arbitrarily large. But
because p2(r, n) is increasing in r, we should not choose r unnecessarily large.
Therefore, choose r = r (n|α), where r (n|α) is the minimum value of r for
which p1(r, n) ≤ α. Moreover, if we allow the Type II error to be maximal β,
we have to choose the sample size n such that p2(r (n|α), n) ≤ β.

As we will see in Chapters 5 and 6, this decision rule is an example of a
statistical test, where H0 : K ≤ R is called the null hypothesis to be tested at

7 This section may be skipped.
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the α × 100% significance level against the alternative hypothesis H1 : K > R.
The number r (n|α) is called the critical value of the test, and the number k of
defective bulbs in the sample is called the test statistic.

1.2.3. Sampling with Replacement

As a third example, consider the quality control example in the previous section
except that now the light bulbs are sampled with replacement: After a bulb is
tested, it is put back in the stock of N bulbs even if the bulb involved proves to
be defective. The rationale for this behavior may be that the customers will at
most accept a fraction R/N of defective bulbs and thus will not complain as
long as the actual fraction K/N of defective bulbs does not exceed R/N . In
other words, why not sell defective light bulbs if doing so is acceptable to the
customers?
The sample space � and the σ -algebra ö are the same as in the case of

sampling without replacement, but the probability measure P is different. Con-
sider again a sample s j of size n containing k defective light bulbs. Because the
light bulbs are put back in the stock after being tested, there are Kk ways of
drawing an ordered set of k defective bulbs and (N − K )n−k ways of drawing
an ordered set of n − k working bulbs. Thus, the number of ways we can draw,
with replacement, an ordered set of n light bulbs containing k defective bulbs is
Kk(N − K )n−k . Moreover, as in the Texas lotto case, it follows that the number
of unordered sets of k defective bulbs and n − k working bulbs is “n choose
k.” Thus, the total number of ways we can choose a sample with replacement
containing k defective bulbs and n − k working bulbs in any order is(n

k

)
Kk(N − K )n−k .

Moreover, the number of ways we can choose a sample of size n with replace-
ment is Nn . Therefore,

P({k}) =
(n
k

) Kk(N − K )n−k
Nn

=
(n
k

)
pk(1− p)n−k, k = 0, 1, 2, . . . , n, (1.15)

where p = K/N , and again for each set A = {k1, . . . , km} ∈ ö, P(A) =∑m
j=1 P({k j }). Of course, if we replace P({k}) in (1.11) by (1.15), the argument

in Section 1.2.2 still applies.
The probabilities (1.15) are known as the binomial (n, p) probabilities.

1.2.4. Limits of the Hypergeometric and Binomial Probabilities

Note that ifN andK are large relative to n, the hypergeometric probability (1.11)
and the binomial probability (1.15) will be almost the same. This follows from
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the fact that, for fixed k and n,

P({k}) =
(
K
k

) (
N − K
n− k

)
(
N
n

) =
K !(N − K )!

K !(K − k)!(n− k)!(N − K − n+ k)!
N !

n!(N−n)!

= n!

k!(n − k)! ×
K !(N − K )!

(K − k)!(N − K − n+ k)!
N !

(N − n)!

=
(n
k

)
×

K !
(K − k)! × (N − K )!

(N − K − n+ k)!
N !

(N − n)!

=
(n
k

)
×

(∏k
j=1(K − k + j)

)
×

(∏n−k
j=1(N − K − n + k + j)

)
∏n
j=1(N − n + j)

=
(n
k

)
×

[∏k
j=1

(
K
N − k

N + j
N

)]
×

[∏n−k
j=1

(
1− K

N − n
N + k

N + j
N

)]
∏n
j=1

(
1− n

N + j
N

)
→

(n
k

)
pk(1− p)n−k if N → ∞ and K/N → p.

Thus, the binomial probabilities also arise as limits of the hypergeometric prob-
abilities.
Moreover, if in the case of the binomial probability (1.15) p is very small

and n is very large, the probability (1.15) can be approximated quite well by
the Poisson(λ) probability:

P({k}) = exp(−λ)λ
k

k!
, k = 0, 1, 2, . . . , (1.16)

where λ = np. This follows from (1.15) by choosing p = λ/n for n > λ, with
λ > 0 fixed, and letting n→ ∞ while keeping k fixed:

P({k}) =
(n
k

)
pk(1− p )n−k

= n!

k!(n − k)! (λ/n)
k (1− λ/n)n−k = λk

k!
× n!

nk(n − k)!
× (1− λ/n)n

(1− λ/n)k
→ exp(−λ)λ

k

k!
for n→ ∞,

because for n→ ∞,

n!

nk(n − k)! =
∏k
j=1(n − k + j)

nk
=

k∏
j=1

(
1− k

n
+ j

n

)
→

k∏
j=1

1 = 1

(1− λ/n)k → 1
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and

(1− λ/n)n → exp(−λ). (1.17)

Due to the fact that (1.16) is the limit of (1.15) for p = λ/n ↓ 0 as n→ ∞,
the Poisson probabilities (1.16) are often used to model the occurrence of rare
events.
Note that the sample space corresponding to the Poisson probabilities is

� = {0, 1, 2, . . .} and that the σ -algebra ö of events involved can be chosen
to be the collection of all subsets of � because any nonempty subset A of � is
either countable infinite or finite. If such a subset A is countable infinite, it takes
the form A = {k1, k2, k3, . . .}, where the k j ’s are distinct nonnegative integers;
hence, P(A) = ∑∞

j=1 P({k j }) is well-defined. The same applies of course if
A is finite: if A = {k1, . . . , km}, then P(A) =

∑m
j=1 P({k j }). This probability

measure clearly satisfies the conditions (1.8)–(1.10).

1.3. Why Do We Need Sigma-Algebras of Events?

In principle we could define a probability measure on an algebra ö of sub-
sets of the sample space rather than on a σ -algebra. We only need to change
condition (1.10) as follows: For disjoint sets A j ∈ ö such that ∪∞

j=1A j ∈ ö,

P(∪∞
j=1A j ) =

∑∞
j=1 P(A j ). By letting all but a finite number of these sets

be equal to the empty set, this condition then reads as follows: For disjoint
sets A j ∈ ö, j = 1, 2, . . . , n < ∞, P(∪nj=1A j ) =

∑n
j=1 P(A j ). However, if

we confined a probability measure to an algebra, all kinds of useful results
would no longer apply. One of these results is the so-called strong law of large
numbers (see Chapter 6).
As an example, consider the following game. Toss a fair coin infinitely many

times and assume that after each tossing you will get one dollar if the outcome
is heads and nothing if the outcome is tails. The sample space � in this case
can be expressed in terms of the winnings, that is, each element ω of � takes
the form of a string of infinitely many zeros and ones, for example, ω = (1, 1,
0, 1, 0, 1 . . .). Now consider the event: “After n tosses the winning is k dollars.”
This event corresponds to the set Ak,n of elements ω of � for which the sum
of the first n elements in the string involved is equal to k. For example, the set
A1,2 consists of all ω of the type (1, 0, . . .) and (0, 1, . . .). As in the example in
Section 1.2.3, it can be shown that

P(Ak,n) =
(n
k

)
(1/2 )n for k = 0, 1, 2, . . . , n,

P(Ak,n) = 0 for k > n or k < 0.

Next, for q = 1, 2, . . . , consider the events after n tosses the average winning
k/n is contained in the interval [0.5− 1/q, 0.5+ 1/q]. These events corre-
spond to the sets Bq,n = ∪[n/2+n/q]

k=[n/2−n/q)]+1 Ak,n, where [x] denotes the smallest
integer ≥ x. Then the set ∩∞

m=n Bq,m corresponds to the following event:
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From the nth tossing onwards the average winning will stay in the interval
[0.5− 1/q, 0.5+ 1/q]; the set ∪∞

n=1 ∩∞
m=n Bq,m corresponds to the event there

exists an n (possibly depending onω) such that from the nth tossing onwards the
average winning will stay in the interval [0.5− 1/q, 0.5+ 1/q]. Finally, the set
∩∞
q=1 ∪∞

n=1 ∩∞
m=n Bq,m corresponds to the event the average winning converges

to 1/2 as n converges to infinity. Now the strong law of large numbers states
that the latter event has probability 1: P[∩∞

q=1 ∪∞
n=1 ∩∞

m=n Bq,m] = 1. However,
this probability is only defined if∩∞

q=1 ∪∞
n=1 ∩∞

m=n Bq,m ∈ ö. To guarantee this,
we need to require that ö be a σ -algebra.

1.4. Properties of Algebras and Sigma-Algebras

1.4.1. General Properties

In this section I will review the most important results regarding algebras, σ -
algebras, and probability measures.
Our first result is trivial:

Theorem 1.1: If an algebra contains only a finite number of sets, then it is a
σ -algebra. Consequently, an algebra of subsets of a finite set� is a σ -algebra.

However, an algebra of subsets of an infinite set � is not necessarily a σ -
algebra. A counterexample is the collection ö∗ of all subsets of � = (0, 1]
of the type (a, b], where a < b are rational numbers in [0, 1] together with
their finite unions and the empty set ∅. Verify that ö∗ is an algebra. Next,
let pn = [10nπ ]/10n and an = 1/pn , where [x] means truncation to the near-
est integer ≤ x. Note that pn ↑ π ; hence, an ↓ π−1 as n → ∞. Then, for
n = 1, 2, 3, . . . , (an, 1] ∈ ö∗, but ∪∞

n=1(an, 1] = (π−1, 1] /∈ ö∗ because π−1

is irrational. Thus, ö∗ is not a σ -algebra.

Theorem 1.2: Ifö is an algebra, then A, B ∈ö implies A ∩ B ∈ö; hence, by
induction, Aj ∈ ö for j = 1, . . . , n < ∞ implies ∩nj=1 A j ∈ ö. A collection
ö of subsets of a nonempty set� is an algebra if it satisfies condition (1.5) and
the condition that, for any pair A, B ∈ ö, A ∩ B ∈ ö.

Proof: Exercise.
Similarly, we have

Theorem 1.3: If ö is a σ -algebra, then for any countable sequence of sets
A j ∈ ö,∩∞

j=1 A j ∈ ö. A collection ö of subsets of a nonempty set � is a
σ -algebra if it satisfies condition (1.5) and the condition that, for any countable
sequence of sets A j ∈ ö,∩∞

j=1 A j ∈ ö.
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These results will be convenient in cases in which it is easier to prove that
(countable) intersections are included inö than to prove that (countable) unions
are included:
If ö is already an algebra, then condition (1.7) alone would make it a σ -

algebra. However, the condition in the following theorem is easier to verify than
(1.7):

Theorem 1.4: If ö is an algebra and A j , j = 1, 2, 3, . . . is a countable se-
quence of sets in ö, then there exists a countable sequence of disjoint sets
Bj in ö such that ∪∞

j=1 A j = ∪∞
j=1 Bj . Consequently, an algebra ö is also a

σ -algebra if for any sequence of disjoint sets Bj inö,∪∞
j=1 Bj ∈ ö.

Proof: Let A j ∈ ö. Denote B1 = A1, Bn+1 = An+1\(∪nj=1 A j ) = An+1 ∩
(∩nj=1 Ã j ). It follows from the properties of an algebra (see Theorem 1.2) that
all the Bj ’s are sets in ö. Moreover, it is easy to verify that the Bj ’s are dis-
joint and that ∪∞

j=1A j = ∪∞
j=1Bj . Thus, if ∪∞

j=1Bj ∈ ö , then ∪∞
j=1A j ∈ ö.

Q.E.D.

Theorem 1.5: Let öθ , θ ∈ �, be a collection of σ -algebras of subsets of a
given set �, where � is a possibly uncountable index set. Thenö = ∩θ∈�öθ

is a σ -algebra.

Proof: Exercise.
For example, let öθ = {(0, 1],∅, (0, θ ], (θ, 1]}, θ ∈ � = (0, 1]. Then

∩θ∈�öθ = {(0, 1],∅} is a σ -algebra (the trivial σ -algebra).
Theorem 1.5 is important because it guarantees that, for any collection Œ

of subsets of �, there exists a smallest σ -algebra containing Œ. By adding
complements and countable unions it is possible to extend Œ to a σ -algebra.
This can always be done becauseŒ is contained in the σ -algebra of all subsets
of�, but there is often no unique way of doing this except in the case in which
Œ is finite. Thus, let öθ , θ ∈ � be the collection of all σ -algebras containing
Œ. Thenö = ∩θ∈�öθ is the smallest σ -algebra containing Œ.

Definition 1.4: The smallest σ -algebra containing a given collectionŒ of sets
is called the σ -algebra generated by Œ and is usually denoted by σ (Œ).

Note that ö = ∪θ∈�öθ is not always a σ -algebra. For example, let � =
[0, 1] and let, for n ≥ 1, ön = {[0, 1],∅, [0, 1− n−1], (1− n−1, 1]}. Then
An = [0, 1− n−1] ∈ ön ⊂ ∪∞

n=1ön , but the interval [0, 1) = ∪∞
n=1An is not

contained in any of the σ -algebrasön; hence, ∪∞
n=1An /∈ ∪∞

n=1ön .
However, it is always possible to extend ∪θ∈�öθ to a σ -algebra, often in

various ways, by augmenting it with the missing sets. The smallest σ -algebra
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containing ∪θ∈�öθ is usually denoted by

∨θ∈�öθ

def.= σ (∪θ∈�öθ ) .

The notion of smallest σ -algebra of subsets of� is always relative to a given
collection Œ of subsets of �. Without reference to such a given collection Œ,
the smallest σ -algebra of subsets of � is {�, ∅}, which is called the trivial
σ -algebra.
Moreover, as in Definition 1.4, we can define the smallest algebra of subsets

of � containing a given collection Œ of subsets of �, which we will denote by
α(Œ).
For example, let�= (0, 1], and letŒ be the collection of all intervals of the

type (a, b] with 0 ≤ a < b ≤ 1. Then α(Œ) consists of the sets in Œ together
with the empty set ∅ and all finite unions of disjoint sets inŒ. To see this, check
first that this collection α(Œ) is an algebra as follows:

(a) The complement of (a, b] in Œ is (0, a] ∪ (b, 1]. If a = 0, then (0, a] =
(0, 0] = ∅, and if b = 1, then (b, 1] = (1, 1] = ∅; hence, (0, a] ∪ (b, 1]
is a set in Œ or a finite union of disjoint sets in Œ.

(b) Let (a, b] inŒ and (c, d] inŒ, where without loss of generality we may
assume that a≤ c. If b< c, then (a, b] ∪ (c, d] is a union of disjoint sets
inŒ. If c ≤ b ≤ d, then (a, b] ∪ (c, d] = (a, d] is a set inŒ itself, and if
b> d, then (a, b] ∪ (c, d]= (a, b] is a set inŒ itself. Thus, finite unions
of sets in Œ are either sets in Œ itself or finite unions of disjoint sets
in Œ.

(c) Let A = ∪nj=1(a j , b j ], where 0 ≤ a1 < b1 < a2 < b2 < · · · < an <
bn ≤ 1. Then Ã = ∪nj=0(b j , a j+1], where b0 = 0 and an+1 = 1, which
is a finite union of disjoint sets in Œ itself. Moreover, as in part (b) it is
easy to verify that finite unions of sets of the type A can be written as
finite unions of disjoint sets in Œ.

Thus, the sets in Œ together with the empty set ∅ and all finite unions of
disjoint sets in Œ form an algebra of subsets of � = (0, 1].
To verify that this is the smallest algebra containing Œ, remove one of the

sets in this algebra that does not belong to Œ itself. Given that all sets in the
algebra are of the type A in part (c), let us remove this particular set A. But then
∪nj=1(a j , b j ] is no longer included in the collection; hence, we have to remove
each of the intervals (a j , b j ] as well, which, however, is not allowed because
they belong to Œ.
Note that the algebra α(Œ) is not a σ -algebra because countable infinite

unions are not always included inα(Œ). For example,∪∞
n=1(0, 1− n−1] = (0, 1)

is a countable union of sets in α(Œ), which itself is not included in α(Œ).
However, we can extend α(Œ) to σ (α(Œ)), the smallest σ -algebra containing
α(Œ), which coincides with σ (Œ).
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1.4.2. Borel Sets

An important special case of Definition 1.4 is where � = R and Œ is the
collection of all open intervals:

Œ = {(a, b) : ∀a < b, a, b ∈ R}. (1.18)

Definition 1.5: The σ -algebra generated by the collection (1.18) of all open
intervals inR is called the Euclidean Borel field, denoted byB, and its members
are called the Borel sets.

Note, however, thatB can be defined in different ways because the σ -algebras
generated by the collections of open intervals, closed intervals {[a, b] : ∀a ≤
b, a, b ∈ R} and half-open intervals {(−∞, a] : ∀a ∈ R}, respectively, are all
the same! We show this for one case only:

Theorem 1.6: B = σ ({(−∞, a] : ∀a ∈ R}).
Proof: Let

Œ∗ = {(−∞, a] : ∀a ∈ R}. (1.19)

(a) If the collection Œ defined by (1.18) is contained in σ (Œ∗), then σ (Œ∗)
is a σ -algebra containing Œ. But B = σ (Œ) is the smallest σ -algebra
containing Œ; hence, B = σ (Œ) ⊂ σ (Œ∗).
To prove this, construct an arbitrary set (a, b) in Œ out of countable

unions or complements of sets in Œ∗, or both, as follows: Let A =
(−∞, a] and B = (−∞, b], where a < b are arbitrary real numbers.
Then A, B ∈ Œ∗; hence, A, B̃ ∈ σ (Œ∗), and thus

∼ (a, b] = (−∞, a] ∪ (b,∞) = A ∪ B̃ ∈ σ (Œ∗).

This implies thatσ (Œ∗) contains all sets of the type (a, b]; hence, (a, b) =
∪∞
n=1(a, b − (b − a)/n] ∈ σ (Œ∗). Thus, Œ ⊂ σ (Œ∗).

(b) If the collection Œ∗ defined by (1.19) is contained in B = σ (Œ), then
σ (Œ) is a σ -algebra containingŒ∗. But σ (Œ∗) is the smallest σ -algebra
containing Œ∗; hence, σ (Œ∗) ⊂ σ (Œ) = B.
To prove the latter, observe that, for m = 1, 2, . . . , Am = ∪∞

n=1(a −
n, a + m−1) is a countable union of sets in Œ; hence, Ãm ∈ σ (Œ),
and consequently (−∞, a] = ∩∞

m=1Am = ∼(∪∞
m=1 Ãm) ∈ σ (Œ). Thus,

Œ∗ ⊂ σ (Œ) = B.

We have shown now that B = σ (Œ) ⊂ σ (Œ∗) and σ (Œ∗) ⊂ σ (Œ) = B.
Thus, B and σ (Œ∗) are the same. Q.E.D.8

The notion of Borel set extends to higher dimensions as well:

8 See also Appendix 1.A.



Probability and Measure 15

Definition 1.6: Bk = σ ({×kj=1(a j , b j ) : ∀a j < b j , a j , b j ∈ R}) is the k-
dimensional Euclidean Borel field. Its members are also called Borel sets (in
R
k).

Also, this is only one of the ways to define higher-dimensional Borel sets. In
particular, as in Theorem 1.6 we have

Theorem 1.7: Bk = σ ({×kj=1(−∞, a j ] : ∀a j ∈ R}).

1.5. Properties of Probability Measures

The three axioms (1.8), (1.9), and (1.10) imply a variety of probability measure
properties. Here we list only the most important ones.

Theorem 1.8: Let {�, ö, P} be a probability space. The following hold for
sets inö:

(a) P(∅) = 0,
(b) P( Ã) = 1− P(A),
(c) A ⊂ B implies P(A) ≤ P(B),
(d) P(A ∪ B)+ P(A ∩ B) = P(A)+ P(B),
(e) If An ⊂ An+1 for n = 1, 2, . . . , then P(An) ↑ P(∪∞

n=1An),
(f) If An ⊃ An+1 for n = 1, 2, . . . , then P(An) ↓ P(∩∞

n=1An),
(g) P(∪∞

n=1An) ≤
∑∞
n=1 P(An).

Proof: (a)–(c): Easy exercises. (d ) A ∪ B = (A ∩ B̃) ∪ (A ∩ B) ∪ (B ∩ Ã)
is a union of disjoint sets; hence, by axiom (1.10), P(A ∪ B) = P(A ∩
B̃)+ P(A ∩ B)+ P(B ∩ Ã). Moreover, A = (A ∩ B̃) ∪ (A ∩ B) is a union
of disjoint sets; thus, P(A) = P(A ∩ B̃)+ P(A ∩ B), and similarly, P(B) =
P(B ∩ Ã)+ P(A ∩ B). Combining these results, we find that part (d) fol-
lows. (e) Let B1 = A1, Bn = An\An−1 for n ≥ 2. Then An = ∪nj=1A j =
∪nj=1Bj and ∪∞

j=1A j = ∪∞
j=1Bj . Because the Bj ’s are disjoint, it follows from

axiom (1.10) that

P

(
∞∪
j=1
A j

)
=

∞∑
j=1

P(Bj )

=
n∑
j=1

P(Bj )+
∞∑

j=n+1

P(Bj ) = P(An)+
∞∑

j=n+1

P(Bj ).

Part (e) follows now from the fact that
∑∞
j=n+1 P(Bj ) ↓ 0. ( f ) This part follows

from part (e) if one uses complements. (g) Exercise.
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1.6. The Uniform Probability Measure

1.6.1. Introduction

Fill a bowl with ten balls numbered from 0 to 9. Draw a ball randomly from
this bowl and write down the corresponding number as the first decimal digit
of a number between 0 and 1. For example, if the first-drawn number is 4, then
write down 0.4. Put the ball back in the bowl, and repeat this experiment. If,
for example, the second ball corresponds to the number 9, then this number
becomes the second decimal digit: 0.49. Repeating this experiment infinitely
many times yields a random number between 0 and 1. Clearly, the sample space
involved is the unit interval: � = [0, 1].
For a given number x ∈ [0, 1] the probability that this random number is less

than or equal to x is x. To see this, suppose that you only draw two balls and
that x = 0.58. If the first ball has a number less than 5, it does not matter what
the second number is. There are five ways to draw a first number less than or
equal to 4 and 10 ways to draw the second number. Thus, there are 50 ways to
draw a number with a first digit less than or equal to 4. There is only one way to
draw a first number equal to 5 and 9 ways to draw a second number less than or
equal to 8. Thus, the total number of ways we can generate a number less than or
equal to 0.58 is 59, and the total number of ways we can draw two numbers with
replacement is 100. Therefore, if we only draw two balls with replacement and
use the numbers involved as the first and second decimal digit, the probability
that we will obtain a number less than or equal to 0.58 is 0.59. Similarly, if we
draw 10 balls with replacement, the probability that we will obtain a number
less than or equal to 0.5831420385, for instance, is 0.5831420386. In the limit
the difference between x and the corresponding probability disappears. Thus,
for x ∈ [0, 1] we have P([0, x]) = x . By the same argument it follows that
for x ∈ [0, 1], P({x}) = P([x, x]) = 0, that is, the probability that the random
number involvedwill be exactly equal to a given number x is zero. Therefore, for
a given x ∈ [0, 1], P((0, x]) = P([0, x)) = P((0, x)) = x . More generally, for
any interval in [0, 1] the corresponding probability is the length of the interval
involved regardless of whether the endpoints are included. Thus, for 0 ≤ a <
b ≤ 1, we have P([a, b]) = P((a, b]) = P([a, b)) = P((a, b)) = b − a. Any
finite union of intervals can be written as a finite union of disjoint intervals
by cutting out the overlap. Therefore, this probability measure extends to finite
unions of intervals simply by adding up the lengths of the disjoint intervals in-
volved. Moreover, observe that the collection of all finite unions of subintervals
in [0, 1], including [0, 1] itself and the empty set, is closed under the formation
of complements and finite unions. Thus, we have derived the probability mea-
sure P corresponding to the statistical experiment under review for an algebra
ö0 of subsets of [0, 1], namely,
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ö0 = {(a, b), [a, b], (a, b], [a, b),∀a, b ∈ [0, 1], a ≤ b,
and their finite unions}, (1.20)

where [a, a] is the singleton {a} and each of the sets (a, a), (a, a] and [a, a)
should be interpreted as the empty set ∅. This probability measure is a special
case of the Lebesgue measure, which assigns each interval its length.
If you are only interested in making probability statements about the sets

in the algebra (1.20), then you are done. However, although the algebra (1.20)
contains a large number of sets, we cannot yet make probability statements
involving arbitrary Borel sets in [0, 1] because not all the Borel sets in [0, 1]
are included in (1.20). In particular, for a countable sequence of sets A j ∈ ö0,
the probability P(∪∞

j=1A j ) is not always defined because there is no guarantee
that ∪∞

j=1A j ∈ ö0. Therefore, to make probability statements about arbitrary
Borel set in [0, 1], you need to extend the probability measure P on ö0 to a
probability measure defined on the Borel sets in [0, 1]. The standard approach
to do this is to use the outer measure.

1.6.2. Outer Measure

Any subset A of [0, 1] can always be completely covered by a finite or countably
infinite union of sets in the algebra ö0: A ⊂ ∪∞

j=1A j , where A j ∈ ö0; hence,
the “probability” of A is bounded from above by

∑∞
j=1 P(A j ). Taking the

infimum of
∑∞
j=1 P(A j ) over all countable sequences of sets A j ∈ ö0 such

that A ⊂ ∪∞
j=1A j then yields the outer measure:

Definition 1.7: Letö0 be an algebra of subsets of�. The outer measure of an
arbitrary subset A of � is

P∗(A) = inf
A⊂∪∞

j=1A j ,A j∈ö0

∞∑
j=1

P(A j ). (1.21)

Note that it is not required in (1.21) that ∪∞
j=1A j ∈ ö0.

Because a union of sets Aj in an algebraö0 can always be written as a union
of disjoint sets in the algebra ö0 (see Theorem 1.4), we may without loss of
generality assume that the infimum in (1.21) is taken over all disjoint sets Aj in
ö0 such that A ⊂ ∪∞

j=1A j . This implies that

If A ∈ ö0 then P∗(A) = P(A). (1.22)

The question now arises, For which other subsets of � is the outer measure a
probabilitymeasure?Note that the conditions (1.8) and (1.9) are satisfied for the
outer measure P* (Exercise: Why?), but, in general, condition (1.10) does not
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hold for arbitrary sets. See, for example, Royden (1968, 63–64). Nevertheless, it
is possible to extend the outer measure to a probability measure on a σ -algebra
ö containing ö0:

Theorem 1.9: Let P be a probability measure on {�, ö0}, where ö0 is an
algebra, and letö = σ (ö0) be the smallest σ -algebra containing the algebra
ö0. Then the outer measure P* is a unique probability measure on {�, ö},
which coincides with P onö0.

The proof that the outer measure P* is a probability measure onö = σ (ö0)
that coincides with P onö0 is lengthy and is therefore given in Appendix I.B.
The proof of the uniqueness of P* is even longer and is therefore omitted.
Consequently, for the statistical experiment under review there exists a σ -

algebraö of subsets of�= [0, 1] containing the algebraö0 defined in (1.20)
for which the outer measure P*: ö → [0, 1] is a unique probability measure.
This probability measure assigns its length as probability in this case to each
interval in [0, 1]. It is called the uniform probability measure.
It is not hard to verify that the σ -algebra ö involved contains all the Borel

subsets of [0, 1]: {[0, 1] ∩ B, for all Borel sets B} ⊂ ö. (Exercise: Why?)
This collection of Borel subsets of [0, 1] is usually denoted by [0, 1] ∩ B

and is a σ -algebra itself (Exercise: Why?). Therefore, we could also describe
the probability space of this statistical experiment by the probability space
{[0, 1], [0, 1] ∩ B, P*}, where P* is the same as before. Moreover, defining
the probability measure µ on B as µ(B) = P*([0, 1] ∩ B), we can also de-
scribe this statistical experiment by the probability space {R, B, µ}, where, in
particular

µ((−∞, x]) = 0 if x ≤ 0,

µ((−∞, x]) = x if 0 < x ≤ 1,

µ((−∞, x]) = 1 if x > 1,

and, more generally, for intervals with endpoints a < b,

µ((a, b)) = µ([a, b]) = µ([a, b)) = µ((a, b])

= µ((−∞, b])− µ((−∞, a]),

whereas for all other Borel sets B,

µ(B) = inf
B⊂∪∞

j=1(a j ,b j )

∞∑
j=1

µ((a j , b j )). (1.23)
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1.7. Lebesgue Measure and Lebesgue Integral

1.7.1. Lebesgue Measure

Along similar lines as in the construction of the uniform probability measure
we can define the Lebesgue measure as follows. Consider a function λ that
assigns its length to each open interval (a, b), λ((a, b)) = b − a, and define for
all other Borel sets B in R,

λ(B) = inf
B⊂∪∞

j=1(a j ,b j )

∞∑
j=1

λ((a j , b j )) = inf
B⊂∪∞

j=1(a j ,b j )

∞∑
j=1

(b j − a j ).

This function λ is called the Lebesgue measure on R, which measures the total
“length” of a Borel set, where the measurement is taken from the outside.
Similarly, now let λ(×ki=1(ai , bi )) =

∏k
i=1(bi − ai ) and define

λ(B) = inf
B⊂∪∞

j=1{×ki=1(ai, j ,bi, j )}

∞∑
j=1

λ
(×ki=1(ai, j , bi, j )

)

= inf
B⊂∪∞

j=1{×ki=1(ai, j ,bi, j )}

∞∑
j=1

{
k∏
i=1

(bi, j − ai, j )
}
,

for all other Borel sets B in R
k. This is the Lebesgue measure on R

k, which
measures the area (in the case k = 2) or the volume (in the case k ≥ 3) of a
Borel set in R

k, where again the measurement is taken from the outside.
Note that, in general, Lebesgue measures are not probability measures be-

cause the Lebesgue measure can be infinite. In particular, λ(Rk) = ∞. How-
ever, if confined to a set with Lebesgue measure 1, this measure becomes the
uniform probability measure. More generally, for any Borel set A ∈ R

k with
positive and finite Lebesgue measure, µ(B) = λ(A ∩ B)/λ(A) is the uniform
probability measure on Bk ∩ A.

1.7.2. Lebesgue Integral

The Lebesgue measure gives rise to a generalization of the Riemann integral.
Recall that the Riemann integral of a nonnegative function f (x) over a finite
interval (a, b] is defined as

b∫
a

f (x)dx = sup
n∑
m=1

(
inf
x∈Im

f (x)

)
λ(Im),
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where the Im’s are intervals forming a finite partition of (a, b] – that is, they are
disjoint and their union is (a, b] : (a, b] = ∪nm=1 Im − and λ(Im) is the length of
Im ; hence, λ(Im) is the Lebesgue measure of Im , and the supremum is taken
over all finite partitions of (a, b]. Mimicking the definition of Riemann integral,
the Lebesgue integral of a nonnegative function f (x) over a Borel set A can be
defined as∫

A

f (x)dx = sup
n∑
m=1

(
inf
x∈Bm

f (x)

)
λ(Bm),

where now the Bm’s are Borel sets forming a finite partition of A and the supre-
mum is taken over all such partitions.
If the function f (x) is not nonnegative,we can alwayswrite it as the difference

of two nonnegative functions: f (x) = f+(x)− f−(x), where

f+(x) = max[0, f (x)], f−(x) = max[0,− f (x)].
Then the Lebesgue integral over a Borel set A is defined as∫

A

f (x)dx =
∫
A

f+(x)dx−
∫
A

f−(x)dx

provided that at least one of the right-hand integrals is finite.
However, we still need to impose a further condition on the function f in

order for it to be Lebesgue integrable. A sufficient condition is that, for each
Borel set B in R, the set {x : f (x) ∈ B} is a Borel set itself. As we will see in
the next chapter, this is the condition for Borel measurability of f.
Finally, note that if A is an interval and f (x) is Riemann integrable over A,

then the Riemann and the Lebesgue integrals coincide.

1.8. Random Variables and Their Distributions

1.8.1. Random Variables and Vectors

In broad terms, a random variable is a numerical translation of the outcomes of a
statistical experiment. For example, flip a fair coin once. Then the sample space
is � = {H, T}, where H stands for heads and T stands for tails. The σ -algebra
involved is ö = {�,∅, {H}, {T}}, and the corresponding probability measure
is defined by P({H}) = P({T}}) = 1/2. Now define the function X (ω) = 1 if
ω = H, X (ω) = 0 if ω = T. Then X is a random variable that takes the value 1
with probability 1/2 and the value 0 with probability 1/2:

P(X = 1)
(shorthand notation)= P({ω ∈ � : X (ω) = 1}) = P({H}) = 1/2,

P(X = 0)
(shorthand notation)= P({ω ∈ � : X (ω) = 0}) = P({T}) = 1/2.
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Moreover, for an arbitrary Borel set B we have

P(X ∈ B) =

P({ω ∈ � : X (ω) ∈ B})



= P({H}) = 1/2 if 1 ∈ B and 0 /∈ B,
= P({T}) = 1/2 if 1 /∈ B and 0 ∈ B,
= P({H,T}) = 1 if 1 ∈ B and 0 ∈ B,
= P(∅) = 0 if 1 /∈ B and 0 /∈ B,

where, again, P(X ∈ B) is a shorthand notation9 for P({ω ∈ � : X (ω) ∈ B}).
In this particular case, the set {ω ∈ � : X (ω) ∈ B} is automatically equal

to one of the elements of ö, and therefore the probability P(X ∈ B) =
P({ω ∈ � : X (ω) ∈ B}) is well-defined. In general, however, we need to con-
fine the mappings X : � → R to those for which we can make probability
statements about events of the type {ω ∈ � : X (ω) ∈ B}, where B is an arbi-
trary Borel set, which is only possible if these sets are members ofö:

Definition 1.8: Let {�,ö, P} be a probability space. A mapping X : �→ R

is called a random variable defined on {�,ö, P} if X is measurableö, which
means that for every Borel set B, {ω ∈ � : X (ω) ∈ B} ∈ ö. Similarly, a map-
ping X : � → R

k is called a k-dimensional random vector defined on {�,
ö, P} if X is measurable ö in the sense that for every Borel set B in Bk,

{ω ∈ � : X (ω) ∈ B} ∈ ö.

In verifying that a real function X : � → R is measurable ö, it is not
necessary to verify that for allBorel sets B, {ω ∈ � : X (ω) ∈ B} ∈ ö, but only
that this property holds for Borel sets of the type (−∞, x]:

Theorem 1.10: A mapping X : �→ R is measurableö (hence X is a random
variable) if and only if for all x ∈ R the sets {ω ∈ � : X (ω) ≤ x} are members
ofö. Similarly, a mapping X : �→ R

k is measurableö (hence X is a random
vector of dimension k) if and only if for all x = (x1, . . . , xk)T ∈ R

k the sets
∩kj=1{ω ∈ � : X j (ω) ≤ x j } = {ω ∈ � : X (ω) ∈ ×kj=1(−∞, x j ]} are members
ofö, where the Xj’s are the components of X.

Proof: Consider the case k= 1. Suppose that {ω ∈ � : X (ω) ∈ (−∞, x]} ∈
ö,∀x ∈ R. Let D be the collection of all Borel sets B for which {ω ∈ � :
X (ω) ∈ B} ∈ ö. Then D ⊂ B and D contains the collection of half-open
intervals (−∞, x], x ∈ R. IfD is a σ -algebra itself, it is a σ -algebra containing

9 In the sequel we will denote the probability of an event involving random variables or
vectors X as P (“expression involving X”) without referring to the corresponding set
in ö. For example, for random variables X and Y defined on a common probability
space {�,ö, P}, the shorthand notation P(X > Y ) should be interpreted as P({ω ∈ � :
X (ω) > Y (ω)}).
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the half-open intervals. ButB is the smallest σ -algebra containing the half-open
intervals (see Theorem 1.6), and thus B ⊂ D; hence, D = B. Therefore, it
suffices to prove that D is a σ -algebra:

(a) Let B ∈ D. Then {ω ∈ � : X (ω) ∈ B} ∈ ö; hence,

∼ {ω ∈ � : X (ω) ∈ B} = {ω ∈ � : X (ω) ∈ B̃} ∈ ö,

and thus B̃ ∈ D.
(b) Next, let Bj ∈ D for j = 1, 2, . . . . Then {ω ∈ � : X (ω) ∈ Bj } ∈ ö;

hence,

∪∞
j=1{ω ∈ � : X (ω) ∈ Bj } = {ω ∈ � : X (ω) ∈ ∪∞

j=1Bj } ∈ ö,

and thus ∪∞
j=1Bj ∈ D.

The proof of the case k > 1 is similar. Q.E.D.10

The sets {ω ∈ � : X (ω) ∈ B} are usually denoted by X−1(B):

X−1(B)
def.= {ω ∈ � : X (ω) ∈ B}.

The collectionöX = {X−1(B),∀B ∈ B} is a σ -algebra itself (Exercise:Why?)
and is called the σ -algebra generated by the random variable X. More generally,

Definition 1.9: Let X be a random variable (k = 1) or a random vector
(k > 1).Theσ -algebraöX = {X−1(B),∀B ∈ Bk} is called theσ -algebra gen-
erated by X.

In the coin-tossing case, the mapping X is one-to-one, and therefore in that
case öX is the same as ö, but in general öX will be smaller than ö. For
example, roll a dice and let X = 1 if the outcome is even and X = 0 if the
outcome is odd. Then

öX = {{1, 2, 3, 4, 5, 6}, {2, 4, 6}, {1, 3, 5},∅},
whereasö in this case consists of all subsets of � = {1, 2, 3, 4, 5, 6}.
Given a k-dimensional random vector X, or a random variable X (the case

k = 1), define for arbitrary Borel sets B ∈ Bk :

µX (B) = P
(
X−1(B)

) = P ({ω ∈ � : X (ω) ∈ B}) . (1.24)

Then µX(·) is a probability measure on {Rk, Bk}
(a) for all B ∈ Bk, µX(B) ≥ 0;
(b) µX (R

k) = 1;
(c) for all disjoint Bj ∈ Bk, µX (∪∞

j=1Bj ) =
∑∞
j=1 µX (Bj ).

10 See also Appendix 1.A.
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Thus, the random variableXmaps the probability space {�,ö,P} into a new
probability space, {R, B, µX}, which in its turn is mapped back by X−1 into
the (possibly smaller) probability space {�, öX , P}. The behavior of random
vectors is similar.

Definition 1.10: The probability measure µX (·) defined by (1.24) is called the
probability measure induced by X.

1.8.2. Distribution Functions

For Borel sets of the type (−∞, x], or ×kj=1(−∞, x j ] in the multivariate case,
the value of the induced probability measure µX is called the distribution
function:

Definition 1.11: Let X be a random variable (k = 1) or a random vector
(k > 1) with induced probability measure µX . The function F(x) =
µX (×kj=1(−∞, x j ]), x = (x1, . . . , xk)T ∈ R

k is called the distribution function
of X.

It follows from these definitions and Theorem 1.8 that

Theorem 1.11: A distribution function of a random variable is always
right continuous, that is, ∀x ∈ R, limδ↓0F(x + δ) = F(x), and monotonic
nondecreasing, that is, F(x1) ≤ F(x2) if x1 < x2, with limx↓−∞F(x) = 0,
limx↑∞F(x) = 1.

Proof: Exercise.
However, a distribution function is not always left continuous. As a coun-

terexample, consider the distribution function of the binomial (n, p) distribu-
tion in Section 1.2.2. Recall that the corresponding probability space consists
of sample space� = {0, 1, 2, . . . , n}, the σ -algebraö of all subsets of�, and
probability measure P({k}) defined by (1.15). The random variable X involved
is defined as X (k) = k with distribution function

F(x) = 0 for x < 0,

F(x) =
∑
k≤x
P({k}) for x ∈ [0, n],

F(x) = 1 for x > n.

Now, for example, let x = 1. Then, for 0 < δ < 1, F(1− δ) = F(0), and
F(1+ δ) = F(1); hence, limδ↓0 F(1+ δ) = F(1), but limδ↓0 F(1− δ) =
F(0) < F(1).
The left limit of a distribution function F in x is usually denoted by F(x−):

F(x−)
def.= lim

δ↓0
F(x − δ).
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Thus, if x is a continuity point, then F(x−) = F(x); if x is a discontinuity point,
then F(x−) < F(x).
The binomial distribution involved is an example of a discrete distribution.

The uniform distribution on [0, 1] derived in Section 1.5 is an example of a
continuous distribution with distribution function

F(x) = 0 for x < 0,

F(x) = x for x ∈ [0, 1], (1.25)

F(x) = 1 for x > 1.

In the case of the binomial distribution (1.15), the number of discontinuity points
of F is finite, and in the case of the Poisson distribution (1.16) the number of
discontinuity points of F is countable infinite. In general, we have that

Theorem 1.12: The set of discontinuity points of a distribution function of a
random variable is countable.

Proof: Let D be the set of all discontinuity points of the distribution func-
tion F(x). Every point x in D is associated with a nonempty open interval
(F(x−), F(x)) = (a, b), for instance, which is contained in [0, 1]. For each of
these open intervals (a, b) there exists a rational number q such a < q < b;
hence, the number of open intervals (a, b) involved is countable because the
rational numbers are countable. Therefore, D is countable. Q.E.D.
The results of Theorems 1.11 and 1.12 only hold for distribution functions of

random variables, though. It is possible to generalize these results to distribution
functions of random vectors, but this generalization is far from trivial and is
therefore omitted.
As follows from Definition 1.11, a distribution function of a random variable

or vector X is completely determined by the corresponding induced probability
measure µX (·). But what about the other way around? That is, given a distri-
bution function F(x), is the corresponding induced probability measure µX (·)
unique? The answer is yes, but I will prove the result only for the univariate
case:

Theorem 1.13: Given the distribution function F of a random vector X ∈ R
k,

there exists a unique probability measure µ on {Rk, Bk} such that for x =
(x1, . . . , xk)T ∈ R

k, F(x) = µ(×ki=1(−∞, xi ]).

Proof: Let k = 1 and let T0 be the collection of all intervals of the type

(a, b), [a, b], (a, b], [a, b), (−∞, a), (∞, a], (b,∞),

[b,∞), a ≤ b ∈ R (1.26)
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together with their finite unions, where [a, a] is the singleton {a}, and (a, a),
(a, a], and [a, a) should be interpreted as the empty set ∅. Then each set in
T0 can be written as a finite union of disjoint sets of the type (1.26) (compare
(1.20)); hence, T0 is an algebra. Define for −∞ < a < b < ∞,

µ((a, a)) = µ((a, a]) = µ([a, a)) = µ(∅) = 0

µ({a}) = F(a)− lim
δ↓0
F(a − δ), µ((a, b]) = F(b)− F(a)

µ([a, b)) = µ((a, b])− µ({b})+ µ({a}),
µ([a, b]) = µ((a, b])+ µ({a})
µ((a, b)) = µ((a, b])− µ({b}), µ((−∞, a]) = F(a)

µ([−∞, a)) = F(a)− µ({a}), µ((b,∞)) = 1− F(b)
µ([b,∞)) = µ((b,∞))+ µ({b})

and let µ(∪nj=1A j ) =
∑n
j=1 µ(A j ) for disjoint sets A1, . . . , An of the type

(1.26). Then, the distribution function F defines a probability measure µ on
T0, and this probability measure coincides on T0 with the induced-probability
measure µX . It follows now from Theorem 1.9 that there exists a σ -algebra
T containing T0 for which the same applies. This σ -algebra T may be chosen
equal to the σ -algebra B of Borel sets. Q.E.D.
The importance of this result is that there is a one-to-one relationship between

the distribution function F of a random variable or vector X and the induced
probability measure µX . Therefore, the distribution function contains all the
information about µX .

Definition 1.12: A distribution function F on R
k and its associated probabil-

ity measure µ on {Rk,Bk} are called absolutely continuous with respect to
Lebesgue measure if for every Borel set B in R

k with zero Lebesgue measure,
µ(B) = 0.

We will need this concept in the next section.

1.9. Density Functions

An important concept is that of a density function. Density functions are usually
associated to differentiable distribution functions:

Definition 1.13: The distribution of a random variable X is called absolutely
continuous if there exists a nonnegative integrable function f, called the density
function of X, such that the distribution function F of X can be written as the
(Lebesgue) integral F(x) = ∫ x

−∞ f (u)du.Similarly, the distribution of a random



26 The Mathematical and Statistical Foundations of Econometrics

vector X ∈ R
k is called absolutely continuous if there exists a nonnegative

integrable function f on R
k , called the joint density, such that the distribution

function F of X can be written as the integral

F(x) =
x1∫

−∞
· · ·

xk∫
−∞

f (u1, . . . , uk)du1 . . . duk,

where x = (x1, . . . , xk)T.

Thus, in the case F(x) = ∫ x
−∞ f (u)du, the density function f (x) is the

derivative of F(x) : f (x) = F ′(x), and in themultivariate case F(x1, . . . , xk) =∫ x1
−∞ . . .

∫ xk
−∞ f (u1, . . . , uk)du1 . . . duk the joint density is f (x1, · · · , xk) =

(∂/∂x1) . . . (∂/∂xk)F(x1, . . . , xk).
The reason for calling the distribution functions in Definition 1.13 abso-

lutely continuous is that in this case the distributions involved are absolutely
continuous with respect to Lebesgue measure. See Definition 1.12. To see this,
consider the case F(x) = ∫ x

−∞ f (u)du, and verify (Exercise) that the corre-
sponding probability measure µ is

µ(B) =
∫
B

f (x)dx, (1.27)

where the integral is now the Lebesgue integral over a Borel set B. Because
the Lebesgue integral over a Borel set with zero Lebesgue measure is zero
(Exercise), it follows that µ(B) = 0 if the Lebesgue measure of B is zero.
For example, the uniform distribution (1.25) is absolutely continuous be-

cause we can write (1.25) as F(x) = ∫ x
−∞ f (u)du with density f (u) = 1 for

0 < u < 1 and zero elsewhere. Note that in this case F(x) is not differen-
tiable in 0 and 1 but that does not matter as long as the set of points for
which the distribution function is not differentiable has zero Lebesgue mea-
sure. Moreover, a density of a random variable always integrates to 1 be-
cause 1 = limx→∞F(x) =

∫ ∞
−∞ f (u)du. Similarly, for random vectors X ∈

R
k :

∫ ∞
−∞

∫ ∞
−∞ · · · ∫ ∞

−∞ f (u1, . . . , uk)du1 . . . duk = 1.
Note that continuity and differentiability of a distribution function are not

sufficient conditions for absolute continuity. It is possible to construct a contin-
uous distribution function F(x) that is differentiable on a subset D ⊂ R, with
R\D a set with Lebesgue measure zero, such that F ′(x) ≡ 0 on D, and thus in
this case

∫ x
−∞ F

′(x)dx ≡ 0. Such distributions functions are called singular. See
Chung (1974, 12–13) for an example of how to construct a singular distribution
function on R and Chapter 5 in this volume for singular multivariate normal
distributions.
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1.10. Conditional Probability, Bayes’ Rule, and Independence

1.10.1. Conditional Probability

Consider a statistical experimentwith probability space {�,ö,P}, and suppose
it is known that the outcome of this experiment is contained in a set B with
P(B) > 0. What is the probability of an event A given that the outcome of the
experiment is contained in B? For example, roll a dice. Then � = {1, 2, 3, 4,
5, 6}, ö is the σ -algebra of all subsets of �, and P({ω}) = 1/6 for ω = 1, 2,
3, 4, 5, 6. Let B be the event The outcome is even (B = {2, 4, 6}), and let A =
{1, 2, 3}. If we know that the outcome is even, then we know that the outcomes
{1, 3} in A will not occur; if the outcome is contained in A, it is contained
in A ∩ B = {2}. Knowing that the outcome is 2, 4, or 6, the probability that
the outcome is contained in A is therefore 1/3 = P(A ∩ B)/P(B). This is the
conditional probability of A, given B, denoted by P(A|B). If it is revealed
that the outcome of a statistical experiment is contained in a particular set
B, then the sample space � is reduced to B because we then know that the
outcomes in the complement of Bwill not occur, the σ -algebraö is reduced to
ö ∩ B = {A ∩ B, A ∈ ö}, the collection of all intersections of the sets in ö
with B (Exercise: Is this a σ -algebra?), and the probability measure involved
becomes P(A|B) = P(A ∩ B)/P(B); hence, the probability space becomes
{B,ö ∩ B, P(·|B)}. See Exercise 19 for this chapter.

1.10.2. Bayes’ Rule

Let A and B be sets in ö. Because the sets A and Ã form a partition of the
sample space �, we have B = (B ∩ A) ∪ (B ∩ Ã); hence,

P(B) = P(B ∩ A)+ P(B ∩ Ã) = P(B|A)P(A)+ P(B| Ã)P( Ã).

Moreover,

P(A|B) = P(A ∩ B)
P(B)

= P(B|A)P(A)
P(B)

.

Combining these two results now yields Bayes’ rule:

P(A|B) = P(B|A)P(A)
P(B|A)P(A)+ P(B| Ã)P( Ã) .

Thus, Bayes’ rule enables us to compute the conditional probability P(A|B) if
P(A) and the conditional probabilities P(B|A) and P(B| Ã) are given.
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More generally, if A j , j = 1, 2, . . . , n (≤ ∞) is a partition of the sample
space � (i.e., the A j ’s are disjoint sets inö such that � = ∪nj=1A j ), then

P(Ai |B) = P(B|Ai )P(Ai )∑n
j=1 P(B|A j )P(A j )

.

Bayes’ rule plays an important role in a special branch of statistics (and
econometrics) called Bayesian statistics (econometrics).

1.10.3. Independence

If P(A|B) = P(A), knowing that the outcome is in B does not give us any
information about A. In that case the events A and B are described as being
independent. For example, if I tell you that the outcome of the dice experiment
is contained in the set {1, 2, 3, 4, 5, 6} = �, then you know nothing about
the outcome: P(A|�) = P(A ∩�)/P(�) = P(A); hence,� is independent of
any other event A.
Note that P(A|B) = P(A) is equivalent to P(A ∩ B) = P(A)P(B). Thus,

Definition 1.14: Sets A and B inö are (pairwise) independent if P(A ∩ B) =
P(A)P(B).

If events A and B are independent, and events B and C are independent, are
events A and C independent? The answer is not necessarily. As a counterexam-
ple, observe that if A and B are independent, then so are Ã and B, A and B̃, and
Ã and B̃ because

P( Ã ∩ B) = P(B)− P(A ∩ B) = P(B)− P(A)P(B)
= (1− P(A))P(B) = P( Ã)P(B),

and similarly,

P(A ∩ B̃) = P(A)P(B̃) and P( Ã ∩ B̃) = P( Ã)P(B̃).
Now if C = Ã and 0 < P(A) < 1, then B and C = Ã are independent if A and
B are independent, but

P(A ∩ C) = P(A ∩ Ã) = P(∅) = 0,

whereas

P(A)P(C) = P(A)P( Ã) = P(A)(1− P(A)) 
= 0.

Thus, for more than two events we need a stronger condition for independence
than pairwise independence, namely,
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Definition 1.15: A sequence A j of sets inö is independent if for every subse-
quence A ji , i = 1, 2, . . . , n, P(∩ni=1A ji ) =

∏n
i=1 P(A ji ).

By requiring that the latter hold for all subsequences rather than P(∩∞
i=1Ai ) =∏∞

i=1 P(Ai ), we avoid the problem that a sequence of events would be called
independent if one of the events were the empty set.
The independence of a pair or sequence of random variables or vectors can

now be defined as follows.

Definition 1.16: Let X j be a sequence of random variables or vectors de-
fined on a common probability space {�, ö, P}. X1 and X2 are pairwise
independent if for all Borel sets B1, B2 the sets A1 = {ω ∈ � : X1(ω) ∈
B1} and A2 = {ω ∈ � : X2(ω) ∈ B2} are independent. The sequence X j is in-
dependent if for all Borel sets B j the sets A j = {ω ∈ � : X j (ω) ∈ Bj } are
independent.
As we have seen before, the collection ö j = {{ω ∈ � : X j (ω) ∈ B}, B ∈

B}} = {X−1
j (B), B ∈ B} is a sub-σ -algebra of ö. Therefore, Definition 1.16

also reads as follows: The sequence of random variables X j is independent if
for arbitrary A j ∈ ö j the sequence of sets A j is independent according to
Definition 1.15.

Independence usually follows from the setup of a statistical experiment. For
example, draw randomly with replacement n balls from a bowl containing R
red balls and N − R white balls, and let X j = 1 if the jth draw is a red ball and
X j = 0 if the jth draw is a white ball. Then X1, . . . , Xn are independent (and
X1 + · · · + Xn has the binomial (n, p) distribution with p = R/N ). However,
if we drew these balls without replacement, then X1, . . . , Xn would not be
independent.
For a sequence of random variables X j it suffices to verify only the condition

in Definition 1.16 for Borel sets Bj of the type (−∞, x j ], x j ∈ R:

Theorem 1.14: Let X1, . . . , Xn be random variables, and denote, for x ∈ R

and j = 1, . . . , n, A j (x) = {ω ∈ � : X j (ω) ≤ x}. Then X1, . . . , Xn are inde-
pendent if and only if for arbitrary (x1, . . . , xn)T ∈ R

n the sets A1(x1),
. . . , An(xn) are independent.

The complete proof of Theorem 1.14 is difficult and is therefore omitted,
but the result can be motivated as follow. Let ö0

j = {�,∅, X−1
j ((−∞, x]),

X−1
j ((y,∞)),∀x, y ∈ R together with all finite unions and intersections of the

latter two types of sets}. Thenö0
j is an algebra such that for arbitrary A j ∈ ö0

j
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the sequence of sets A j is independent. This is not too hard to prove. Now
ö j = {X−1

j (B), B ∈ B}} is the smallest σ -algebra containing ö0
j and is also

the smallest monotone class containingö0
j . One can show (but this is the hard

part), using the properties of monotone class (see Exercise 11 below), that, for
arbitrary A j ∈ ö j , the sequence of sets A j is independent as well.
It follows now from Theorem 1.14 that

Theorem 1.15: The random variables X1, . . . , Xn are independent if and only
if the joint distribution function F(x) of X = (X1, . . . , Xn)T can be written as
the product of the distribution functions Fj (x j ) of the X j ’s, that is, F(x) =∏n
j=1 Fj (x j ), where x = (x1, . . . , xn)T.

The latter distribution functions Fj (x j ) are called the marginal distribution
functions. Moreover, it follows straightforwardly from Theorem 1.15 that, if
the joint distribution of X = (X1, . . . , Xn)T is absolutely continuous with joint
density function f (x), then X1, . . . , Xn are independent if and only if f (x) can
be written as the product of the density functions f j (x j ) of the X j ’s:

f (x) =
n∏
j=1

f j (x j ), where x = (x1, . . . , xn)
T.

The latter density functions are called the marginal density functions.

1.11. Exercises

1. Prove (1.4).

2. Prove (1.17) by proving that ln[(1− µ/n)n] = n ln(1− µ/n) → −µ for
n→ ∞.

3. Letö∗ be the collection of all subsets of � = (0, 1] of the type (a, b], where
a < b are rational numbers in [0, 1], together with their finite disjoint unions
and the empty set ∅. Verify thatö∗ is an algebra.

4. Prove Theorem 1.2.

5. Prove Theorem 1.5.

6. Let � = (0, 1], and let Œ be the collection of all intervals of the type (a, b]
with 0 ≤ a < b ≤ 1. Give as many distinct examples as you can of sets that
are contained in σ (Œ) (the smallest σ -algebra containing this collection Œ)
but not in α(Œ) (the smallest algebra containing the collectionŒ).

7. Show that σ ({[a, b] : ∀ a ≤ b, a, b ∈ R}) = B.

8. Prove part (g) of Theorem 1.8.

9. Prove thatö0 defined by (1.20) is an algebra.
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10. Prove (1.22).

11. A collectionö of subsets of a set� is called amonotone class if the following
two conditions hold:

An ∈ ö, An ⊂ An+1, n = 1, 2, 3, . . . imply ∪∞
n=1 An ∈ ö,

An ∈ ö, An ⊃ An+1, n = 1, 2, 3, . . . imply ∩∞
n=1 An ∈ ö.

Show that an algebra is a σ -algebra if and only if it is a monotone class.

12. A collection öλ of subsets of a set � is called a λ-system if A ∈ öλ implies
Ã ∈ öλ, and for disjoint sets A j ∈ öλ,∪∞

j=1A j ∈ öλ. A collection öπ of
subsets of a set� is called aπ -system if A, B ∈ öπ implies that A ∩ B ∈ öπ .
Prove that if a λ-system is also a π -system, then it is a σ -algebra.

13. Let ö be the smallest σ -algebra of subsets of R containing the (countable)
collection of half-open intervals (−∞, q] with rational endpoints q. Prove that
ö contains all the Borel subsets of R : B = ö.

14. Consider the following subset of R
2 : L = {(x, y) ∈ R

2 : y = x, 0 ≤ x ≤ 1}.
Explain why L is a Borel set.

15. Consider the following subset of R
2 : C = {(x, y) ∈ R

2 : x2 + y2 ≤ 1}. Ex-
plain why C is a Borel set.

16. Prove Theorem 1.11. Hint: Use Definition 1.12 and Theorem 1.8. Determine
first which parts of Theorem 1.8 apply.

17. Let F(x) = ∫ x
−∞ f (u)du be an absolutely continuous distribution function.

Prove that the corresponding probability measure µ is given by the Lebesgue
integral (1.27).

18. Prove that the Lebesgue integral over a Borel set with zero Lebesgue measure
is zero.

19. Let {�, ö, P} be a probability space, and let B ∈ ö with P(B) > 0. Verify
that {B,ö ∩ B, P(·|B)} is a probability space.

20. Are disjoint sets inö independent?

21. (Application of Bayes’ rule): Suppose that a certain disease, for instanceHIV+,
afflicts 1 out of 10,000 people. Moreover, suppose that there exists a medical
test for this disease that is 90% reliable: If you don’t have the disease, the test
will confirm that with probability 0.9; the probability is the same if you do
have the disease. If a randomly selected person is subjected to this test, and the
test indicates that this person has the disease, what is the probability that this
person actually has this disease? In other words, if you were this person, would
you be scared or not?

22. Let A and B inö be pairwise independent. Prove that Ã and B are independent
(and therefore A and B̃ are independent and Ã and B̃ are independent).
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23. Draw randomlywithout replacement n balls from a bowl containing R red balls
and N − R white balls, and let X j = 1 if the jth draw is a red ball and X j = 0
if the jth draw is a white ball. Show that X1, . . . , Xn are not independent.

APPENDIXES

1.A. Common Structure of the Proofs of Theorems 1.6 and 1.10

The proofs of Theorems 1.6 and 1.10 employ a similar argument, namely the
following:

Theorem 1.A.1: Let Œ be a collection of subsets of a set �, and let σ (Œ) be
the smallest σ -algebra containingŒ. Moreover, let ρ be a Boolean function on
σ (Œ), that is, ρ is a set function that takes either the value “True” or “False.”
Furthermore, let ρ(A) = True for all sets A in Œ. If the collectionD of sets A
in σ (Œ) for which ρ(A) = True is a σ -algebra itself, then ρ(A) = True for all
sets A in σ (Œ).

Proof: BecauseD is a collection of sets in σ (Œ) we haveD ⊂ σ (Œ). More-
over, by assumption,Œ ⊂ D, andD is a σ -algebra. But σ (Œ) is the smallest σ -
algebra containing Œ; hence, σ (Œ) ⊂ D. Thus, D = σ (Œ) and, consequently,
ρ(A) = True for all sets A in σ (Œ). Q.E.D.
This type of proof will also be used later on.
Of course, the hard part is to prove that D is a σ -algebra. In particular, the

collection D is not automatically a σ -algebra. Take, for example, the case in
which� = [0, 1],Œ is the collection of all intervals [a, b] with 0 ≤ a < b ≤ 1,
and ρ(A)= True if the smallest interval [a, b] containing A has positive length:
b − a > 0 and ρ(A) = False otherwise. In this case σ (Œ) consists of all the
Borel subsets of [0, 1] but D does not contain singletons, whereas σ (Œ) does,
and thus D is smaller than σ (Œ) and is therefore not a σ -algebra.

1.B. Extension of an Outer Measure to a Probability Measure

To use the outer measure as a probability measure for more general sets that
those in ö0, we have to extend the algebra ö0 to a σ -algebra ö of events for
which the outer measure is a probability measure. In this appendix it will be
shown how ö can be constructed via the following lemmas.

Lemma 1.B.1: For any sequence Bn of disjoint sets in �, P∗(∪∞
n=1Bn) ≤∑∞

n=1 P
∗(Bn).

Proof: Given an arbitrary ε > 0 it follows from (1.21) that there exists a
countable sequence of sets An, j inö0 such that Bn ⊂ ∪∞

j=1An, j and P
∗(Bn) >
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∑∞
j=1 P(An, j )− ε2−n; hence,

∞∑
n=1

P∗(Bn) >
∞∑
n=1

∞∑
j=1

P(An, j )− ε

∞∑
n=1

2−n =
∞∑
n=1

∞∑
j=1

P(An, j )− ε.

(1.28)

Moreover, ∪∞
n=1Bn ⊂ ∪∞

n=1 ∪∞
j=1 An, j , where the latter is a countable union of

sets in ö0; hence, it follows from (1.21) that

P∗
(

∞∪
n=1
Bn

)
≤

∞∑
n=1

∞∑
j=1

P(An, j ). (1.29)

If we combine (1.28) and (1.29), it follows that for arbitrary ε > 0,
∞∑
n=1

P∗(Bn) > P∗
(

∞∪
n=1
Bn

)
− ε. (1.30)

Letting ε ↓ 0, the lemma follows now from (1.30). Q.E.D.
Thus, for the outer measure to be a probability measure, we have to impose

conditions on the collection ö of subsets of � such that for any sequence Bj
of disjoint sets inö, P∗(∪∞

j=1Bj ) ≥
∑∞
j=1 P

∗(Bj ). The latter is satisfied if we
chooseö as follows:

Lemma 1.B.2: Letö be a collection of subsets B of� such that for any subset
A of �:

P∗(A) = P∗(A ∩ B)+ P∗(A ∩ B̃). (1.31)

Then for all countable sequences of disjoint sets A j ∈ ö, P∗(∪∞
j=1A j ) =∑∞

j=1 P
∗(A j ).

Proof: Let A = ∪∞
j=1A j , B = A1. Then A ∩ B = A ∩ A1 = A1 and A ∩

B̃ = ∪∞
j=2A j are disjoint; hence,

P∗( ∪∞
j=1 A j

) = P∗(A) = P∗(A ∩ B)+ P∗(A ∩ B̃)
= P∗(A1)+ P∗( ∪∞

j=2 A j
)
. (1.32)

If we repeat (1.32) for P∗(∪∞
j=k A j ) with B = Ak , k = 2, . . . , n, it follows by

induction that

P∗( ∪∞
j=1 A j

) = n∑
j=1

P∗(A j )+ P∗( ∪∞
j=n+1 A j

)

≥
n∑
j=1

P∗(A j ) for all n ≥ 1;

hence, P∗(∪∞
j=1A j ) ≥

∑∞
j=1 P

∗(A j ). Q.E.D.
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Note that condition (1.31) automatically holds if B ∈ ö0: Choose an
arbitrary set A and an arbitrary small number ε > 0. Then there ex-
ists a covering A ⊂ ∪∞

j=1A j , where A j ∈ ö0, such that
∑∞
j=1 P(A j ) ≤

P∗(A)+ ε. Moreover, because A ∩ B ⊂ ∪∞
j=1A j ∩ B, where A j ∩ B ∈ ö0,

and A ∩ B̃ ⊂ ∪∞
j=1A j ∩ B̃, where A j ∩ B̃ ∈ ö0, we have P∗(A ∩ B) ≤∑∞

j=1 P(A j ∩ B) and P∗(A ∩ B̃) ≤ ∑∞
j=1 P(A j ∩ B̃); hence, P∗(A ∩ B)+

P∗(A ∩ B̃) ≤ P∗(A)+ ε. Because ε is arbitrary, it follows now that P∗(A) ≥
P∗(A ∩ B)+ P∗(A ∩ B̃).
I will show now that

Lemma 1.B.3: The collectionö in Lemma 1.B.2 is a σ -algebra of subsets of
� containing the algebraö0.

Proof: First, it follows trivially from (1.31) that B ∈ ö implies B̃ ∈ ö. Now,
let Bj ∈ ö. It remains to show that ∪∞

j=1Bj ∈ ö, which I will do in two steps.
First, I will show thatö is an algebra, and then I will use Theorem 1.4 to show
that ö is also a σ -algebra.

(a) Proof that ö is an algebra: We have to show that B1, B2 ∈ ö implies
that B1 ∪ B2 ∈ ö. We have

P∗(A ∩ B̃1) = P∗(A ∩ B̃1 ∩ B2)+ P∗(A ∩ B̃1 ∩ B̃2),

and because

A ∩ (B1 ∪ B2) = (A ∩ B1) ∪ (A ∩ B2 ∩ B̃1),

we have

P∗(A ∩ (B1 ∪ B2)) ≤ P∗(A ∩ B1)+ P∗(A ∩ B2 ∩ B̃1).

Thus,

P∗(A ∩ (B1 ∪ B2))+ P∗(A ∩ B̃1 ∩ B̃2) ≤ P∗(A ∩ B1)
+ P∗(A ∩ B2 ∩ B̃1)+ P∗(A ∩ B̃2 ∩ B̃1)

= P∗(A ∩ B1)+ P∗(A ∩ B̃1) = P∗(A). (1.33)

Because ∼(B1 ∪ B2) = B̃1 ∩ B̃2 and P∗(A) ≤ P∗(A ∩ (B1 ∪ B2))+
P∗(A ∩ (∼(B1 ∪ B2)), it follows now from (1.33) that P∗(A) =
P∗(A ∩ (B1 ∪ B2))+ P∗(A ∩ (∼(B1 ∪ B2)). Thus, B1, B2 ∈ ö implies
that B1 ∪ B2 ∈ ö; hence,ö is an algebra (containing the algebraö0).

(b) Proof that ö is a σ -algebra: Because we have established that ö is
an algebra, it follows from Theorem 1.4 that, in proving that ö is
also a σ -algebra, it suffices to verify that ∪∞

j=1Bj ∈ ö for disjoint
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sets Bj ∈ ö. For such sets we have A ∩ (∪nj=1Bj ) ∩ Bn = A ∩ Bn and
A ∩ (∪nj=1Bj ) ∩ B̃n = A ∩ (∪n−1

j=1Bj ); hence,

P∗
(
A ∩

(
n∪
j=1
Bj

))

= P∗
(
A ∩

(
n∪
j=1
Bj

)
∩ Bn

)
+ P∗

(
A ∩

(
n∪
j=1
Bj

)
∩ B̃n

)

= P∗(A ∩ Bn)+ P∗
(
A ∩

(
n−1∪
j=1
Bj

))
.

Consequently,

P∗
(
A ∩

(
n∪
j=1
Bj

))
=

n∑
j=1

P∗(A ∩ Bj ). (1.34)

Next, let B = ∪∞
j=1Bj . Then B̃ = ∩∞

j=1 B̃ j ⊂ ∩nj=1 B̃ j = ∼(∪nj=1Bj ); hence,

P∗(A ∩ B̃) ≤ P∗
(
A ∩

(
∼

[
n∪
j=1
Bj

]))
. (1.35)

It follows now from (1.34) and (1.35) that for all n ≥ 1,

P∗(A) = P∗
(
A ∩

(
n∪
j=1
Bj

))
+ P∗

(
A ∩

(
∼

[
n∪
j=1
Bj

]))

≥
n∑
j=1

P∗(A ∩ Bj )+ P∗(A ∩ B̃);

hence,

P∗(A) ≥
∞∑
j=1

P∗(A ∩ Bj )+ P∗(A ∩ B̃) ≥ P∗(A ∩ B)+ P∗(A ∩ B̃),

(1.36)

where the last inequality is due to

P∗(A ∩ B) = P∗
(

∞∪
j=1

(A ∩ Bj )
)
≤

∞∑
j=1

P∗(A ∩ Bj ).

Because we always have P∗(A) ≤ P∗(A ∩ B)+ P∗(A ∩ B̃) (compare Lemma
1.B.1), it follows from (1.36) that, for countable unions B = ∪∞

j=1Bj of disjoint
sets Bj ∈ ö,

P∗(A) = P∗(A ∩ B)+ P∗(A ∩ B̃);
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hence, B ∈ ö. Consequently, ö is a σ -algebra and the outer measure P∗ is a
probability measure on {�,ö}. Q.E.D.

Lemma 1.B.4: The σ -algebraö in Lemma 1.B.3 can be chosen such that P∗

is unique: any probability measure P∗ on {�,ö} that coincides with P onö0

is equal to the outer measure P∗.

The proof of Lemma 1.B.4 is too difficult and too long (see Billingsley 1986,
Theorems 3.2–3.3) and is therefore omitted.
If we combine Lemmas 1.B.2–1.B.4, Theorem 1.9 follows.



2 Borel Measurability, Integration,
and Mathematical Expectations

2.1. Introduction

Consider the following situation: You are sitting in a bar next to a guy who
proposes to play the following game. He will roll dice and pay you a dollar per
dot. However, you have to pay him an amount y up front each time he rolls the
dice. Which amount y should you pay him in order for both of you to have equal
success if this game is played indefinitely?
Let X be the amount you win in a single play. Then in the long run you will

receive X = 1 dollars in 1 out of 6 times, X = 2 dollars in 1 out of 6 times, up
to X = 6 dollars in 1 out of 6 times. Thus, on average you will receive (1 +
2 + · · ·+ 6)/6 = 3.5 dollars per game; hence, the answer is y = 3.5.
Clearly, X is a random variable: X (ω) = ∑6

j=1 j · I (ω ∈ { j}), where here,
and in the sequel, I (·) denotes the indicator function:

I (true) = 1, I (false) = 0.

This random variable is defined on the probability space {�, ö, P}, where
� = {1, 2, 3, 4, 5, 6}, ö is the σ -algebra of all subsets of �, and P({ω}) =
1/6 for each ω ∈ �. Moreover, y = ∑6

j=1 j/6 = ∑6
j=1 j P({ j}). This amount

y is called the mathematical expectation of X and is denoted by E(X).
More generally, if X is the outcome of a game with payoff function g(X ),

where X is discrete: p j = P[X = x j ] > 0 with
∑n
j=1 p j = 1 (n is possibly

infinite), and if this game is repeated indefinitely, then the average payoff will
be

y = E[g(X )] =
n∑
j=1

g(x j )p j . (2.1)

Some computer programming languages, such as Fortran, Visual Basic, C++,
and so on, have a built-in function that generates uniformly distributed random
numbers between zero and one. Now suppose that the guy next to you at the
bar pulls out his laptop computer and proposes to generate random numbers

37
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and pay you X dollar per game if the random number involved is X provided
you pay him an amount y up front each time. The question is again, Which
amount y should you pay him for both of you to play even if this game is played
indefinitely?
Because the random variable X involved is uniformly distributed on

[0, 1], it has distribution function F(x) = 0 for x ≤ 0, F(x) = x for 0 < x <
1, F(x) = 1 for x ≥ 1 with density function f (x) = F ′(x) = I (0 < x < 1).
More formally, X = X (ω) = ω is a nonnegative random variable defined on
the probability space {�, ö, P}, where � = [0, 1], ö = [0, 1] ∩ B, that
is, the σ -algebra of all Borel sets in [0, 1], and P is the Lebesgue measure
on [0, 1].
To determine y in this case, let

X∗(ω) =
m∑
j=1

[
inf

ω∈(b j−1,b j ]
X (ω)

]
I (ω ∈ (b j−1, b j ])

=
m∑
j=1

b j−1 I (ω ∈ (b j−1, b j ]),

where b0 = 0 and bm = 1. Clearly, 0 ≤ X∗ ≤ X with probability 1, and, as is
true for the dice game, the amount y involved will be greater than or equal to∑m
j=1 b j−1P((b j−1, b j ]) =

∑m
j=1 b j−1(b j − b j−1). Taking the supremum over

all possible partitions ∪mj=1(b j−1, b j ] of (0, 1] then yields the integral

y = E(X ) =
1∫

0

xdx = 1/2. (2.2)

More generally, if X is the outcome of a game with payoff function g(X ),
where X has an absolutely continuous distribution with density f (x), then

y = E[g(X )] =
∞∫

−∞
g(x) f (x)dx. (2.3)

Now two questions arise. First, under what conditions is g(X ) a well-defined
random variable? Second, how do we determine E(X ) if the distribution of X
is neither discrete nor absolutely continuous?

2.2. Borel Measurability

Let g be a real function and let X be a randomvariable defined on the probability
space {�,ö, P}. For g(X ) to be a random variable, we must have that

For all Borel sets B, {ω ∈ � : g(X (ω)) ∈ B} ∈ ö. (2.4)
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It is possible to construct a real function g and a random variable X for which
this is not the case. But if

For all Borel sets B, AB = {x ∈ R : g(x) ∈ B} is a Borel set itself,
(2.5)

then (2.4) is clearly satisfied because then, for any Borel set B and AB defined
in (2.5),

{ω ∈ � : g(X (ω)) ∈ B} = {ω ∈ � : X (ω) ∈ AB} ∈ ö.

Moreover, if (2.5) is not satisfied in the sense that there exists a Borel set B
for which AB is not a Borel set itself, then it is possible to construct a random
variable X such that the set

{ω ∈ � : g(X (ω)) ∈ B} = {ω ∈ � : X (ω) ∈ AB} /∈ ö;

hence, for such a random variable X , g(X ) is not a random variable itself.1

Thus, g(X ) is guaranteed to be a random variable if and only if (2.5) is satisfied.
Such real functions g(x) are described as being Borel measurable:

Definition 2.1: A real function g is Borel measurable if and only if for all Borel
sets B in R the sets AB = {x ∈ R : g(x) ∈ B} are Borel sets in R. Similarly, a
real function g on R

k is Borel measurable if and only if for all Borel sets B in
R the sets AB = {x ∈ R

k : g(x) ∈ B} are Borel sets in R
k .

However, we do not need to verify condition (2.5) for all Borel sets. It suffices
to verify it for Borel sets of the type (−∞, y], y ∈ R only:

Theorem 2.1: A real function g onR
k is Borel measurable if and only if for all

y ∈ R the sets Ay = {x ∈ R
k : g(x) ≤ y} are Borel sets in R

k .

Proof: Let D be the collection of all Borel sets B in R for which the sets
{x ∈ R

k : g(x) ∈ B} are Borel sets in R
k , including the Borel sets of the type

(−∞, y], y ∈ R. Then D contains the collection of all intervals of the type
(−∞, y], y ∈ R. The smallest σ -algebra containing the collection {(−∞, y],
y ∈ R} is just the Euclidean Borel field B= σ ({(−∞, y], y ∈ R}); hence, if D
is a σ -algebra, then B ⊂ D. But D is a collection of Borel sets; hence, D ⊂
B. Thus, if D is a σ -algebra, then B = D. The proof that D is a σ -algebra is
left as an exercise. Q.E.D.
The simplest Borel measurable function is the simple function:

1 The actual construction of such a counterexample is difficult, though, but not impossible.
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Definition 2.2: A real function g on R
k is called a simple function if it takes

the form g(x) = ∑m
j=1 a j I (x ∈ Bj), with m < ∞, a j ∈ R, where the Bj’s are

disjoint Borel sets in Rk.

Without loss of generality we may assume that the disjoint Borel sets Bj ’s
form a partition of R

k : ∪mj=1 Bj = R
k because, if not, then let g(x) = ∑m+1

j=1

a j I (x∈Bj), with Bm+1=R
k\(∪mj=1Bj ) and am+1= 0.Moreover, without loss of

generality we may assume that the a j ’s are all different. For example, if g(x)=∑m+1
j=1 a j I (x ∈ Bj) and am = am+1, then g(x) =

∑m
j=1 a j I (x ∈ B∗

j ), where
B∗
j = Bj for j = 1, . . . , m − 1 and B∗

m = Bm ∪ Bm+1.
Theorem 2.1 can be used to prove that

Theorem 2.2: Simple functions are Borel measurable.

Proof: Let g(x)=∑m
j=1 ajI (x∈Bj) be a simple function onR

k . For arbitrary
y ∈ R,

{x ∈ R
k : g(x) ≤ y} =

{
x ∈ R

k :
m∑
j=1

a j I (x ∈ Bj ) ≤ y
}
= ∪
a j≤y

B j ,

which is a finite union of Borel sets and therefore a Borel set itself. Because y
was arbitrary, it follows from Theorem 2.1 that g is Borel measurable. Q.E.D.

Theorem 2.3: If f (x) and g(x) are simple functions, then so are f (x)+ g(x),
f (x)− g(x), and f (x) · g(x). If, in addition, g(x) 
= 0 for all x, then f (x)/g(x)
is a simple function.

Proof: Exercise
Theorem 2.1 can also be used to prove

Theorem 2.4: Let g j (x), j = 1, 2, 3, . . . be a sequence of Borel-measurable
functions. Then

(a) f1,n(x) = min{g1(x), . . . , gn(x)} and f2,n(x) = max{g1(x), . . . , gn(x)}
are Borel measurable;

(b) f1(x)= infn≥1gn(x) and f2(x)= supn≥1gn(x) are Borel measurable; and
(c) h1(x) = liminfn→∞gn(x) and h2(x) = limsupn→∞gn(x) are Borel mea-

surable;
(d) if g(x) = limn→∞gn(x) exists, then g is Borel measurable.

Proof: First, note that the min, max, inf, sup, liminf, limsup, and lim oper-
ations are taken pointwise in x. I will only prove the min, inf, and liminf cases
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for Borel-measurable real functions on R. Again, let y ∈ R be arbitrary. Then,

(a) {x ∈ R : f1,n(x) ≤ y} = ∪nj=1{x ∈ R : gj(x) ≤ y} ∈ B.

(b) {x ∈ R : f1(x) ≤ y} = ∪∞
j=1{x ∈ R : g j (x) ≤ y} ∈ B.

(c) {x ∈ R : h1(x) ≤ y} = ∩∞
n=1∪∞

j=n {x ∈ R : gj(x) ≤ y} ∈ B.

The max, sup, limsup, and lim cases are left as exercises. Q.E.D.
Because continuous functions can be written as pointwise limits of step

functions and step functions with a finite number of steps are simple functions,
it follows from Theorems 2.1 and 2.4(d) that

Theorem 2.5: Continuous real functions are Borel measurable.

Proof: Let g be a continuous function on R. Define for natural numbers n,
gn(x)= g(x) if−n< x≤ n but gn(x)= 0 elsewhere. Next, define for j= 0, . . . ,
m − 1 and m = 1, 2, . . .

B( j,m, n) = (−n + 2n · j/m,−n + 2( j + 1)n/m].

Then the B( j,m, n)’s are disjoint intervals such that ∪m−1
j=0 B( j,m, n) = (−n,

n]; hence, the function

gn,m(x) =
m−1∑
j=0

(
inf

x
∗∈B( j,m,n)

g(x∗)
)
I (x ∈ B( j,m, n))

is a step function with a finite number of steps and thus a simple function.
Because, trivially, g(x)= limn→∞gn(x) pointwise in x, g(x) is Borelmeasurable
if the functions gn(x) are Borel measurable (see Theorem 2.4(d)). Similarly,
the functions gn(x) are Borel measurable if, for arbitrary fixed n, gn(x) =
limm→∞gn,m(x) pointwise in x because the gn,m(x)’s are simple functions and
thus Borel measurable. To prove gn(x) = limm→∞gn,m(x), choose an arbitrary
fixed x and choose n > |x |. Then there exists a sequence of indices jn,m such
that x ∈ B( jn,m,m, n) for all m; hence,

0 ≤ gn(x)− gn,m(x) ≤ g(x)− inf
x∗∈B( jn,m ,m,n)

g(x∗)

≤ sup
|x−x∗|≤2n/m

|g(x)− g(x∗)| → 0

as m→ ∞. The latter result follows from the continuity of g(x). Q.E.D.
Next, I will show in two steps that real functions are Borel measurable if and

only if they are limits of simple functions:

Theorem 2.6: A nonnegative real function g(x) is Borel measurable if and only
if there exists a nondecreasing sequence gn(x) of nonnegative simple functions
such that pointwise in x, 0 ≤ gn(x) ≤ g(x), and limn→∞gn(x) = g(x).
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Proof: The “if ” case follows straightforwardly from Theorems 2.2 and 2.4.
For proving the “only if ” case let, for 1 ≤ m ≤ n2n, gn(x) = (m − 1)/2n if
(m − 1)/2n ≤ g(x) < m/2n and gn(x) = n otherwise. Then gn(x) is a sequence
of simple functions satisfying 0≤ gn(x) ≤ g(x) and limn→∞gn(x)= g(x) point-
wise in x. Q.E.D.
Every real function g(x) can be written as a difference of two nonnegative

functions:

g(x) = g+(x)− g−(x), where g+(x) = max{g(x), 0},
g−(x) = max{−g(x), 0}. (2.6)

Moreover, if g is Borel measurable, then so are g+ and g in (2.6). Therefore, it
follows straightforwardly from (2.6) and Theorems 2.3 and 2.6 that

Theorem 2.7: A real function g(x) is Borel measurable if and only if it is the
limit of a sequence of simple functions.

Proof: Exercise.
Using Theorem 2.7, we can now generalize Theorem 2.3 to

Theorem 2.8: If f (x) and g(x) are Borel-measurable functions, then so are
f (x)+ g(x), f (x)− g(x), and f (x) · g(x). Moreover, if g(x) 
= 0 for all x, then
f (x)/g(x) is a Borel-measurable function.

Proof: Exercise.

2.3. Integrals of Borel-Measurable Functions with Respect to a
Probability Measure

If g is a step function on (0, 1] – for instance, g(x)=∑m
j=1 a j I (x ∈ (b j , b j+1]) –

where b0 = 0 and bm+1 = 1, then the Riemann integral of g over (0, 1] is defined
as

1∫
0

g(x)dx =
m∑
j=1

a j (b j+1− b j ) =
m∑
j=1

a j µ((b j , b j+1]),

where µ is the uniform probability measure on (0, 1]. Mimicking these results
for simple functions andmore general probabilitymeasuresµ, we can define the
integral of a simple function with respect to a probability measureµ as follows:

Definition 2.3: Let µ be a probability measure on {Rk , Bk}, and let g(x) =∑m
j=1 a j I (x ∈ Bj ) be a simple function on R

k . Then the integral of g with
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respect to µ is defined as∫
g(x)dµ(x)

def.=
m∑
j=1

a j µ(Bj ).
2

For nonnegative continuous real functions g on (0, 1], the Riemann integral of
g over (0, 1] is defined as

∫ 1
0 g(x)dx = sup0≤g∗≤g

∫ 1
0 g∗(x)dx, where the supre-

mum is taken over all step functions g∗ satisfying 0 ≤ g∗(x) ≤ g(x) for all x
in (0, 1]. Again, we may mimic this result for nonnegative, Borel-measurable
functions g and general probability measures µ:

Definition 2.4: Let µ be a probability measure on {Rk , Bk} and let g(x) be
a nonnegative Borel-measurable function on R

k . Then the integral of g with
respect to µ is defined as∫

g(x)dµ(x)
def.= sup

0≤g∗≤g

∫
g∗(x)dµ(x),

where the supremum is taken over all simple functions g∗ satisfying 0≤ g∗(x)≤
g(x) for all x in a Borel set B with µ(B) = 1.

Using the decomposition (2.6), we can now define the integral of an arbitrary
Borel-measurable function with respect to a probability measure:

Definition 2.5: Let µ be a probability measure on {Rk Bk} and let g(x) be a
Borel-measurable function on R

k . Then the integral of g with respect to µ is
defined as∫

g(x)dµ(x) =
∫
g+(x)dµ(x)−

∫
g−(x)dµ(x), (2.7)

where g+(x)=max{g(x), 0}, g−(x)=max{−g(x), 0} provided that at least one
of the integrals at the right-hand side of (2.7) is finite.3

Definition 2.6: The integral of a Borel-measurable function g with respect
to a probability measure µ over a Borel set A is defined as

∫
A g(x)dµ(x)

def.=∫
I (x ∈ A)g(x)dµ(x).

All the well-known properties of Riemann integrals carry over to these new
integrals. In particular,

2 The notation
∫
g(x)dµ(x) is somewhat odd because µ(x) has no meaning. It would be

better to denote the integral involved by
∫
g(x)µ(dx) (which some authors do), where dx

represents a Borel set. The current notation, however, is the most common and is therefore
adopted here too.

3 Because∞−∞ is not defined.
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Theorem 2.9: Let f (x) and g(x) be Borel-measurable functions on R
k, let µ

be a probability measure on {Rk, Bk}, and let A be a Borel set in R
k . Then

(a)
∫
A(αg(x)+ β f (x))dµ(x) = α

∫
A g(x)dµ(x)+ β

∫
A f (x)dµ(x).

(b) For disjoint Borel sets Aj in R
k ,

∫
∪∞
j=1A j

g(x)dµ(x) =∑∞
j=1

∫
A j
g(x)dµ(x).

(c) If g(x) ≥ 0 for all x in A, then
∫
A g(x)dµ(x) ≥ 0.

(d) If g(x) ≥ f (x) for all x in A, then
∫
A g(x)dµ(x) ≥

∫
A f (x)dµ(x).

(e)
∣∣∫
A g(x)dµ(x)

∣∣ ≤ ∫
A |g(x)|dµ(x).

(f) If µ(A) = 0, then
∫
A g(x)dµ(x) = 0.

(g) If
∫ |g(x)|dµ(x) < ∞ and limn→∞ µ(An) = 0 for a sequence of Borel
sets An, then limn→∞

∫
An
g(x)dµ(x) = 0.

Proofs of (a)–( f ): Exercise.
Proof of (g):Without loss of generality we may assume that g(x) ≥ 0. Let

Ck = {x ∈ R : k ≤ g(x) < k + 1} and

Bm = {x ∈ R : g(x) ≥ m} = ∪∞
k=mCk .

Then
∫

R
g(x)dµ(x) = ∑∞

k=0

∫
Ck
g(x)dµ(x) <∞; hence,

∫
Bm

g(x)dµ(x) =
∞∑
k=m

∫
Ck

g(x)dµ(x) → 0 for m → ∞. (2.8)

Therefore,∫
An

g(x)dµ(x) =
∫

An∩Bm

g(x)dµ(x)+
∫

An∩(R\Bm )
g(x)dµ(x)

≤
∫
Bm

g(x)dµ(x)+ mµ(An);

hence, for fixed m, limsupn→∞
∫
An
g(x)dµ(x) ≤ ∫

Bm
g(x)dµ(x). Letting

m → ∞, we find that part (g) of Theorem 2.9 follows from (2.8). Q.E.D.
Moreover, there are two important theorems involving limits of a sequence

of Borel-measurable functions and their integrals, namely, the monotone con-
vergence theorem and the dominated convergence theorem:

Theorem 2.10: (Monotone convergence) Let gn be a nondecreasing sequence
of nonnegative Borel-measurable functions on R

k (i.e., for any fixed x ∈ R
k ,

0 ≤ gn(x) ≤ gn+1(x) for n = 1, 2, 3, . . .), and let µ be a probability measure
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on {Rk , Bk}. Then

lim
n→∞

∫
gn(x)dµ(x) =

∫
lim
n→∞

gn(x)dµ(x).

Proof: First, observe from Theorem 2.9(d) and the monotonicity of
gn that

∫
gn(x)dµ(x) is monotonic nondecreasing and that therefore

limn→∞
∫
gn(x)dµ(x) exists (but may be infinite) and g(x) = limn→∞gn(x)

exists (but may be infinite) and is Borel-measurable. Moreover, given that for
x∈R

k , gn(x)≤ g(x), it follows easily from Theorem 2.9(d) that
∫
gn(x)dµ(x) ≤∫

g(x)dµ(x); hence, limn→∞
∫
gn(x)dµ(x) ≤

∫
g(x)dµ(x).Thus, it remains to

be shown that

lim
n→∞

∫
gn(x)dµ(x) ≥

∫
g(x)dµ(x). (2.9)

It follows from the definition on the integral
∫
g(x)dµ(x) that (2.9) is true if, for

any simple function f (x) with 0 ≤ f (x) ≤ g(x),

lim
n→∞

∫
gn(x)dµ(x) ≥

∫
f (x)dµ(x). (2.10)

Given such a simple function f (x), let An = {x ∈ R
k : gn(x) ≥ (1− ε) f (x)}

for arbitrary ε > 0, and let supx f (x) = M . Note that, because f (x) is simple,
M <∞. Moreover, note that

lim
n→∞µ

(
R
k\An

) = lim
n→∞µ

({
x ∈ R

k : gn(x) ≤ (1− ε) f (x)
}) = 0.

(2.11)

Furthermore, observe that∫
gn(x)dµ(x) ≥

∫
An

gn(x)dµ(x) ≥ (1− ε)
∫
An

f (x)dµ(x)

= (1− ε)
∫
f (x)dµ(x)− (1− ε)

∫
R
k\An

f (x)dµ(x)

≥ (1− ε)
∫
f (x)dµ(x)− (1− ε)Mµ

(
R
k\An

)
.

(2.12)

It follows now from (2.11) and (2.12) that, for arbitrary ε > 0,
limn→∞

∫
gn(x)dµ(x) ≥ (1− ε)

∫
f (x)dµ(x), which implies (2.10). If we com-

bine (2.9) and (2.10), the theorem follows. Q.E.D.

Theorem 2.11: (Dominated convergence) Let gn be sequence of Borel-
measurable functions on R

k such that pointwise in x, g(x) = limn→∞gn(x),
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and let ḡ(x) = supn≥1|gn(x)|. If
∫
ḡ(x)dµ(x) < ∞, where µ is a probability

measure on {Rk, Bk}, then

lim
n→∞

∫
gn(x)dµ(x) =

∫
g(x)dµ(x).

Proof: Let fn(x) = ḡ(x)− supm≥ngm(x). Then fn(x) is nondecreasing and
nonnegative and limn→∞ fn(x) = ḡ(x)− g(x). Thus, it follows from the
condition

∫
ḡ(x)dµ(x) < ∞ and Theorems 2.9(a,d)–2.10 that∫
g(x)dµ(x) = lim

n→∞

∫
sup
m≥n
gm(x)dµ(x)

≥ lim
n→∞ sup

m≥n

∫
gm(x)dµ(x) = limsup

n→∞

∫
gn(x)dµ(x).

(2.13)

Next, let hn(x) = ḡ(x) + infm≥ngm(x). Then hn(x) is nondecreasing and non-
negative and limn→∞hn(x) = ḡ(x)+ g(x). Thus, it follows again from the con-
dition

∫
ḡ(x)dµ(x) < ∞ and Theorems 2.9(a,d)–2.10 that∫
g(x)dµ(x) = lim

n→∞

∫
inf
m≥n
gm(x)dµ(x) ≤ lim

n→∞ inf
m≥n

∫
gm(x)dµ(x)

= liminf
n→∞

∫
gn(x)dµ(x). (2.14)

The theorem now follows from (2.13) and (2.14). Q.E.D.
In the statistical and econometric literature youwill encounter integrals of the

form
∫
A g(x)dF(x), whereF is a distribution function. Because each distribution

function F(x) on R
k is uniquely associated with a probability measure µ onBk ,

one should interpret these integrals as∫
A

g(x)dF(x)
def.=

∫
A

g(x)dµ(x), (2.15)

where µ is the probability measure on Bk associated with F, g is a Borel-
measurable function on R

k , and A is a Borel set in Bk .

2.4. General Measurability and Integrals of Random Variables with
Respect to Probability Measures

All the definitions and results in the previous sections carry over to mappings
X : � → R, where � is a nonempty set, with ö a σ -algebra of subsets of �.
Recall that X is a random variable defined on a probability space {�, ö, P}
if, for all Borel sets B in R, {ω ∈ � : X(�) ∈ B} ∈ ö. Moreover, recall that
it suffices to verify this condition for Borel sets of the type By = (−∞, y],
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y ∈ R. These generalizations are listed in this section with all random variables
involved defined on a common probability space {�,ö, P}.

Definition 2.7: A random variable X is called simple if it takes the form X(ω) =∑m
j=1 b j I (ω ∈ A j ), with m < ∞, b j ∈R, where the A j ’s are disjoint sets in

ö.

Compare Definition 2.2. (Verify as was done for Theorem 2.2 that a simple
random variable is indeed a random variable.) Again, we may assume with-
out loss of generality that the bj’s are all different. For example, if X has a
hypergeometric or binomial distribution, then X is a simple random variable.

Theorem 2.12: If X and Y are simple random variables, then so are X + Y ,
X − Y , and X · Y . If, in addition, Y is nonzero with probability 1, then X/Y is
a simple random variable.

Proof: Similar to Theorem 2.3.

Theorem 2.13: Let X j be a sequence of random variables. Then max1≤ j≤n X j ,
min1≤ j≤n X j , supn≥1Xn, infn≥1Xn, limsupn→∞Xn, and liminfn→∞Xn are ran-
dom variables. If limn→∞Xn(ω) = X (ω) for all ω in a set A inö with P(A)=
1, then X is a random variable.

Proof: Similar to Theorem 2.4.

Theorem 2.14: A mapping X:�→ R is a random variable if and only if there
exists a sequence Xn of simple random variables such that limn→∞Xn(ω) =
X (ω) for all ω in a set A inö with P(A)= 1.

Proof: Similar to Theorem 2.7.
As in Definitions 2.3–2.6, we may define integrals of a random variable X

with respect to the probability measure P in four steps as follows.

Definition 2.8: Let X be a simple random variable: X (ω) = ∑m
j=1 b j I (ω ∈

Aj), for instance. Then the integral of X with respect to P is defined as∫
X(ω)dP (ω)

def.= ∑m
j=1bjP(Aj).

4

Definition 2.9: Let X be a nonnegative random variable (with probability
1). Then the integral of X with respect of P is defined as

∫
X (ω)dP(ω) =

sup0≤X∗≤X
∫
X (ω)∗dP(ω), where the supremum is taken over all simple random

variables X* satisfying P[0 ≤ X∗ ≤ X ] = 1.

4 Again, the notation
∫
X (ω)dP(ω) is odd because P(ω) has no meaning. Some authors use

the notation
∫
X (ω)P(dω), where dω represents a set in ö. The former notation is the

most common and is therefore adopted.



48 The Mathematical and Statistical Foundations of Econometrics

Definition 2.10: Let X be a random variable. Then the integral of Xwith respect
to P is defined as

∫
X (ω)dP(ω)

def .= ∫
X+(ω)dP(ω)−

∫
X−(ω) dP(ω), where

X+ = max{X, 0} and X− = max{−X, 0}, provided that at least one of the
latter two integrals is finite.

Definition 2.11: The integral of a random variable X with respect to a prob-
ability measure P over a set A in ö is defined as

∫
A X (ω)dP(ω) =

∫
I (ω ∈

A)X (ω)dP(ω).

Theorem 2.15: Let X and Y be random variables, and let A be a set inö. Then

(a)
∫
A(αX (ω)+ βY (ω))dP(ω) = α

∫
A X (ω)dP(ω)+ β

∫
A Y (ω)dP(ω).

(b) For disjoint sets A j inö,
∫
∪∞
j=1A j

X (ω)dP(ω) = ∑∞
j=1

∫
A j
X (ω)dP(ω).

(c) If X(ω) ≥ 0 for all ω in A, then
∫
A X (ω)dP(ω) ≥ 0.

(d) If X(ω) ≥ Y (ω) for all ω in A, then ∫A X (ω)dP(ω) ≥ ∫
A Y (ω)dP(ω).

(e)
∣∣∫
A X (ω)dP(ω)

∣∣ ≤ ∫
A |X (ω)|dP(ω).

(f) If P(A) = 0, then
∫
A X (ω)dP(ω) = 0.

(g) If
∫ |X (ω)|dP(ω) < ∞ and for a sequence of sets An in ö, limn→∞

P(An) = 0, then limn→∞
∫
An
X (ω)dP(ω) = 0.

Proof: Similar to Theorem 2.9.
Also the monotone and dominated-convergence theorems carry over:

Theorem2.16: Let Xn be amonotonic, nondecreasing sequence of nonnegative
random variables defined on the probability space {�, ö, P}, that is, there
exists a set A ∈ ö with P(A) = 1 such that for all ω ∈ A, 0 ≤ Xn(ω) ≤
Xn+1(ω), n = 1, 2, 3, . . . . Then

lim
n→∞

∫
Xn(ω)dP(ω) =

∫
lim
n→∞ Xn(ω)dP(ω).

Proof: Similar to Theorem 2.10.

Theorem 2.17: Let Xn be a sequence of random variables defined on the
probability space {�, ö, P} such that for all ω in a set A ∈ ö with
P(A) = 1, Y(ω) = limn→∞Xn(ω). Let X̄ = supn≥1 |Xn|. If

∫
X̄ (ω)dP(ω) < ∞,

then limn→∞
∫
Xn(ω)dP(ω) =

∫
Y (ω)dP(ω).

Proof: Similar to Theorem 2.11.
Finally, note that the integral of a random variable with respect to the corre-

sponding probability measure P is related to the definition of the integral of a
Borel-measurable function with respect to a probability measure µ:

Theorem 2.18: LetµX be the probability measure induced by the random vari-
able X. Then

∫
X (ω)dP(ω) = ∫

xdµX (x). Moreover, if g is a Borel-measurable
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real function on R
k and X is a k-dimensional random vector with induced

probabilitymeasureµX, then
∫
g(X (ω))dP(ω) = ∫

g(x)dµX (x). Furthermore,
denoting in the latter case Y = g(X ), with µY the probability measure in-
duced by Y, we have

∫
Y (ω)dP(ω) = ∫

g(X (ω))dP(ω) = ∫
g(x)dµX (x) =∫

ydµY (y).

Proof: Let X be a simple random variable: X (ω) = ∑m
j=1 b j I (ω ∈ A j ),

for instance, and recall that without loss of generality we may assume that
the b j ’s are all different. Each of the disjoint sets Aj are associated with disjoint
Borel sets Bj such that Aj = {ω ∈ � : X(ω) ∈ Bj} (e.g., let Bj = {bj}). Then∫
X(ω)dP (ω) = ∑m

j=1 b j P(A j ) =
∑m
j=1 b jµX (Bj) =

∫
g∗(x)dµX(x), where

g∗(x) =
∑m
j=1 b j I (x ∈ Bj) is a simple function such that

g∗(X (ω)) =
m∑
j=1

b j I (X (ω) ∈ Bj ) =
m∑
j=1

b j I (ω ∈ A j ) = X (ω).

Therefore, in this case the Borel set C = {x : g∗(x) 
= x} has µX measure zero:
µX (C) = 0, and consequently,∫

X (ω)dP(ω) =
∫

R\C
g∗(x)dµX (x)+

∫
C

g∗(x)dµX (x)

=
∫
R\C
xdµX (x) =

∫
xdµX (x). (2.16)

The rest of the proof is left as an exercise. Q.E.D.

2.5. Mathematical Expectation

With these new integrals introduced, we can now answer the second question
stated at the end of the introduction: How do we define the mathematical ex-
pectation if the distribution of X is neither discrete nor absolutely continuous?

Definition 2.12: The mathematical expectation of a random variable X
is defined as E(X ) = ∫

X (ω)dP(ω) or equivalently as E(X ) = ∫
xdF(x)

(cf.(2.15)), where F is the distribution function of X, provided that the integrals
involved are defined. Similarly, if g(x) is a Borel-measurable function onR

k and
X is a random vector in R

k , then, equivalently, E[g(X )] = ∫
g(X (ω))dP(ω) =∫

g(x)dF(x), provided that the integrals involved are defined.

Note that the latter part of Definition 2.12 covers both examples (2.1) and
(2.3).
Asmotivated in the introduction, the mathematical expectation E[g(X )] may

be interpreted as the limit of the average payoff of a repeated game with pay-
off function g. This is related to the strong law of large numbers, which we
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will discuss in Chapter 7: Let X1, X2, X3, . . . be a sequence of independent
random variables or vectors each distributed the same as X, and let g be a
Borel-measurable function such that E[|g(X )|] < ∞. Then

P

(
lim
n→∞(1/n)

n∑
j=1

g(X j ) = E[g(X )]
)
= 1.

There are a few important special cases of the function g – in particular the
variance of X, which measures the variation of X around its expectation E(X) –
and the covariance of a pair of random variables X and Y, which measures how
X and Y fluctuate together around their expectations:

Definition 2.13: The m’s moment (m = 1, 2, 3, . . .) of a random variable X is
defined as E(Xm), and the m’s central moment of X is defined by E(|X − µx |m),
where µx = E(X ). The second central moment is called the variance of X,
var(X ) = E[(X − µx )2] = σ 2

x , for instance. The covariance of a pair (X, Y) of
random variables is defined as cov(X, Y ) = E[(X − µx ) (Y − µy)], where µx
is the same as before, and µy = E(Y). The correlation (coefficient) of a pair (X,
Y) of random variables is defined as

corr(X, Y ) = cov(X, Y )√
var(X )

√
var(Y )

= ρ(X, Y ).

The correlation coefficient measures the extent to which Y can be approxi-
mated by a linear function of X, and vice versa. In particular,

If exactly Y = α + βX, then corr(X, Y ) = 1 if β > 0,

corr(X, Y ) = −1 if β < 0. (2.17)

Moreover,

Definition 2.14: Random variables X and Y are said to be uncorrelated if
cov(X, Y) = 0. A sequence of random variables Xj is uncorrelated if, for all
i 
= j, Xi and Xj are uncorrelated.

Furthermore, it is easy to verify that

Theorem 2.19: If X1, . . . , Xn are uncorrelated, then var(
∑n
j=1 X j ) =∑n

j=1 var(X j ).

Proof: Exercise.

2.6. Some Useful Inequalities Involving Mathematical Expectations

There are a few inequalities that will prove to be useful later on – in particular
the inequalities of Chebishev, Holder, Liapounov, and Jensen.
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2.6.1. Chebishev’s Inequality

Let X be a nonnegative random variable with distribution Function F(x), and
let ϕ(x) be a monotonic, increasing, nonnegative Borel-measurable function on
[0,∞). Then, for arbitrary ε > 0,

E[ϕ(X )] =
∫
ϕ(x)dF(x) =

∫
{ϕ(x)>ϕ(ε)}

ϕ(x)dF(x)

+
∫

{ϕ(x)≤ϕ(ε)}
ϕ(x)dF(x) ≥

∫
{ϕ(x)>ϕ(ε)}

ϕ(x)dF(x) ≥ ϕ(ε)

×
∫

{ϕ(x)>ϕ(ε)}
dF(x) = ϕ(ε)

∫
{x>ε}

dF(x) = ϕ(ε)(1− F(ε));

(2.18)

hence,

P(X > ε) = 1− F(ε) ≤ E[ϕ(X )]/ϕ(ε). (2.19)

In particular, it follows from (2.19) that, for a random variable Y with expected
value µy = E(Y ) and variance σ 2

y ,

P
({
ω ∈ � : |Y (ω)− µy | >

√
σ 2
y /ε

})
≤ ε. (2.20)

2.6.2. Holder’s Inequality

Holder’s inequality is based on the fact that ln(x) is a concave function on (0,∞):
for 0 < a < b, and 0 ≤ λ ≤ 1, ln(λa + (1− λ)b) ≥ λln(a)+ (1− λ) ln(b);
hence,

λa + (1− λ)b ≥ aλ b1−λ . (2.21)

Now let X and Y be random variables, and put a = |X |p/E(|X |p), b =
|Y |q/E(|Y |q ), where p > 1 and p−1 + q−1 = 1. Then it follows from (2.21),
with λ = 1/p and 1− λ = 1/q, that

p−1 |X |p
E(|X |p) + q

−1 |Y |q
E(|Y |q ) ≥

( |X |p
E(|X |p)

)1/p ( |Y |q
E(|Y |q )

)1/q

= |X · Y |
(E(|X |p))1/p (E(|Y |q ))1/q .

Taking expectations yields Holder’s inequality:

E(|X · Y |) ≤ (E(|X |p))1/p (E(|Y |q ))1/q ,
where p > 1 and

1

p
+ 1

q
= 1. (2.22)
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For the case p = q = 2, inequality (2.22) reads E(|X · Y |) ≤
√
E(X2)

√
E(Y 2),

which is known as the Cauchy–Schwartz inequality.

2.6.3. Liapounov’s Inequality

Liapounov’s inequality follows from Holder’s inequality (2.22) by replacing Y
with 1:

E(|X |) ≤ (E(|X |p))1/p, where p ≥ 1.

2.6.4. Minkowski’s Inequality

If for some p ≥ 1, E[|X |p] < ∞ and E[|Y |p] < ∞, then

E(|X + Y |) ≤ (E(|X |p))1/p + (E(|Y |p))1/p . (2.23)

This inequality is due to Minkowski. For p = 1 the result is trivial. There-
fore, let p > 1. First note that E[|X + Y |p] ≤ E[(2 ·max(|X |, |Y |))p] =
2pE[max(|X |p, |Y |p)] ≤ 2pE[|X |p + |Y |p] < ∞; hence, we may apply
Liapounov’s inequality:

E(|X + Y |) ≤ (E(|X + Y |p))1/p. (2.24)

Next, observe that

E(|X + Y |p) = E(|X + Y |p−1|X + Y |) ≤ E(|X + Y |p−1|X |)
+ E(|X + Y |p−1|Y |). (2.25)

Letq = p/(p − 1).Because 1/q + 1/p = 1 it follows fromHolder’s inequality
that

E(|X + Y |p−1|X |) ≤ (
E(|X + Y |(p−1)q )

)1/q
(E(|X |p))1/p

≤ (E(|X + Y |p))1−1/p(E(|X |p))1/p, (2.26)

and similarly,

E(|X + Y |p−1|Y |) ≤ (E(|X + Y |p))1−1/p(E(|Y |p))1/p. (2.27)

If we combine (2.24)–(2.26), Minkowski’s inequality (2.23) follows.

2.6.5. Jensen’s Inequality

A real function ϕ(x) on R is called convex if, for all a, b ∈ R and 0 ≤ λ ≤ 1,

ϕ(λa + (1− λ)b) ≤ λϕ(a)+ (1− λ)ϕ(b).
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It follows by induction that, then also,

ϕ

(
n∑
j=1

λ j a j

)
≤

n∑
j=1

λ j ϕ(a j ),

where λ j > 0 for j = 1, . . . , n, and
n∑
j=1

λ j = 1.

(2.28)

Consequently, it follows from (2.28) that, for a simple random variable X,

ϕ(E(X )) ≤ E(ϕ(X )) for all convex real functions ϕ on R. (2.29)

This is Jensen’s inequality. Because (2.29) holds for simple random variables,
it holds for all random variables. Similarly, we have

ϕ(E(X )) ≥ E(ϕ(X )) for all concave real functions ϕ on R.

2.7. Expectations of Products of Independent Random Variables

Let X and Y be independent random variables, and let f and g be Borel-
measurable functions on R. I will show now that

E[ f (X )g(Y )] = (E[ f (X )])(E[g(Y )]). (2.30)

In general, (2.30) does not hold, although there are cases in which it holds
for dependent X and Y . As an example of a case in which (2.30) does not hold,
let X = U0 ·U1 and X = U0 ·U2, where U0, U1, and U2 are independent and
uniformly [0, 1] distributed, and let f (x) = x, g(x) = x . The joint density of
U0, U1 and U2 is

h(u0, u1, u2) = 1 if (u0, u1, u2)
T ∈ [0, 1]× [0, 1]× [0, 1],

h(u0, u1, u2) = 0 elsewhere;

hence,

E[ f (X )g(Y )] = E[X · Y ] = E[
U 2

0 U1U2
]

=
1∫

0

1∫
0

1∫
0

u20u1u2du0 du1 du2

=
1∫

0

u20 du0

1∫
0

u1du1

1∫
0

u2du2

= (1/3)× (1/2)× (1/2) = 1/12,
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whereas

E[ f (X )] = E[X ] =
1∫

0

1∫
0

1∫
0

u0 u1 du0 du1 du2

=
1∫

0

u0 du0

1∫
0

u1 du1

1∫
0

du2 = 1/4,

and similarly, E[g(Y )] = E[Y ] = 1/4.
As an example of dependent randomvariablesX and Y for which (2.30) holds,

now let X = U0(U1 − 0.5) and Y = U0(U2 − 0.5), where U0, U1, and U2 are
the same as before, and again f (x) = x, g(x) = x . Then it is easy to show that
E[X · Y ] = E[X ] = E[Y ] = 0.
To prove (2.30) for independent random variables X and Y, let f and

g be simple functions, f (x) = ∑m
i=1 αi I (x ∈ Ai ), g(x) =

∑n
j=1 β j I (x ∈ Bj ),

where the Ai ’s are disjoint Borel sets and the Bj ’s are disjoint Borel sets. Then

E[ f (X )g(Y )] = E
[
m∑
i=1

n∑
j=1

αi β j I (X ∈ Ai and Y ∈ Bj )
]

=
∫ (

m∑
i=1

n∑
j=1

αi β j I (X (ω) ∈ Ai and Y (ω) ∈ Bj )
)
dP(ω)

=
m∑
i=1

n∑
j=1

αi β j P({ω ∈ � : X (ω) ∈ Ai }∩{ω ∈ � : Y (ω) ∈ Bj })

=
m∑
i=1

n∑
j=1

αi β j P({ω ∈ � : X (ω) ∈ Ai })

×P({ω ∈ � : Y (ω) ∈ Bj })

=
(
m∑
i=1

αi P({ω ∈ � : X (ω) ∈ Ai })
)

×
(

n∑
j=1

β j P({ω ∈ � : Y (ω) ∈ Bj })
)

= (E[ f (X )]) (E[g(Y )])

because, by the independence of X and Y, P(X ∈ Ai and Y ∈ Bj ) = P(X ∈
Ai )P(Y ∈ Bj ). From this result the next theorem follows more generally:
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Theorem2.20: Let X and Y be random vectors inR
p andR

q , respectively. Then
X and Y are independent if and only if E[ f (X )g(Y )] = (E[ f (X )])(E[g(Y )])
for all Borel-measurable functions f and g onR

p andR
q , respectively, for which

the expectations involved are defined.

This theorem implies that independent random variables are uncorrelated.
The reverse, however, is in general not true. A counterexample is the case
I have considered before, namely, X = U0(U1 − 0.5) and Y = U0(U2 − 0.5),
where U0, U1, and U2 are independent and uniformly [0, 1] distributed. In
this case, E[X · Y ] = E[X ] = E[Y ] = 0; hence, cov(X, Y) = 0, but X and
Y are dependent owing to the common factor U0. The latter can be shown
formally in different ways, but the easiest way is to verify that, for example,
E[X2 · Y 2] 
= (E[X2])(E[Y 2]), and thus the dependence of X and Y follows
from Theorem 2.20.

2.8. Moment-Generating Functions and Characteristic Functions

2.8.1. Moment-Generating Functions

Themoment-generating function of a bounded randomvariableX (i.e., P[|X | ≤
M] = 1 for some positive real number M < ∞) is defined as the function

m(t) = E[exp(t · X )], t ∈ R, (2.31)

where the argument t is nonrandom. More generally:

Definition 2.15: The moment generating function of a random vector X in
R
k is defined by m(t) = E[exp(tTX )] for t ∈ T ⊂ R

k , where T is the set of
nonrandom vectors t for which the moment-generating function exists and is
finite.

For bounded random variables the moment-generating function exists and is
finite for all values of t. In particular, in the univariate bounded case we can
write

m(t) = E[exp(t · X )] = E
[ ∞∑
k=0

t k Xk

k!

]
=

∞∑
k=0

t k E[Xk]

k!
.

It is easy to verify that the jth derivative of m(t) is

m( j)(t) = d j m(t)

(dt ) j
=

∞∑
k= j

t k− j E[Xk]
(k − j)!

= E[X j ]+
∞∑

k= j+1

t k− j E[Xk]
(k − j)! ; (2.32)
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hence, the jth moment of X is

m( j)(0) = E[X j ]. (2.33)

This is the reason for calling m(t) the “moment-generating function.”
Although the moment-generating function is a handy tool for computing

moments of a distribution, its actual importance arises because the shape of
the moment-generating function in an open neighborhood of zero uniquely
characterizes the distribution of a random variable. In order to show this, we
need the following result.

Theorem 2.21: The distributions of two random vectors X and Y in R
k are the

same if and only if for all bounded continuous functions ϕ on R
k , E[ϕ(X )] =

E[ϕ(Y )].

Proof: I will only prove this theorem for the case in which X and Y are
random variables: k = 1. Note that the “only if” case follows from the definition
of expectation.
Let F(x) be the distribution function of X and let G(y) be the distribution

function of Y. Let a < b be arbitrary continuity points of F(x) and G(y) and
define

ϕ(x) =



= 0 if x ≥ b,
= 1 if x < a,

= b − x
b − a if a ≤ x < b.

(2.34)

Clearly, (2.34) is a bounded, continuous function and therefore, by assumption,
we have E[ϕ(X )] = E[ϕ(Y )]. Now observe from (2.34) that

E[ϕ(X )] =
∫
ϕ(x)dF(x) = F(a)+

b∫
a

b − x
b − a dF(x) ≥ F(a)

and

E[ϕ(X )] =
∫
ϕ(x)dF(x) = F(a)+

b∫
a

b − x
b − a dF(x) ≤ F(b).

Similarly,

E[ϕ(Y )] =
∫
ϕ(y)dG(y) = G(a)+

b∫
a

b − x
b − a dG(x) ≥ G(a)
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and

E[ϕ(X )] =
∫
ϕ(y)dG(y) = G(a)+

b∫
a

b − x
b − a dG(x) ≤ G(b).

If we combine these inequalities with E[ϕ(X )] = E[ϕ(Y )], it follows that for
arbitrary continuity points a < b of F(x) and G(y),

G(a) ≤ F(b), F(a) ≤ G(b). (2.35)

If we let b ↓ a, it follows from (2.35) that F(a) = G(a). Q.E.D.
Now assume that the random variables X and Y are discrete, and take with

probability 1 the values x1, . . . , xn . Without loss of generality we may assume
that x j = j , that is,

P[X ∈ {1, 2, . . . , n}] = P[Y ∈ {1, 2, . . . , n}] = 1.

Suppose that all the moments of X and Y match: For k = 1, 2, 3, . . . , E[Xk] =
E[Y k]. I will show that then, for an arbitrary bounded continuous function ϕ
on R, E[ϕ(X )] = E[ϕ(Y )].
Denoting p j = P[X = j], q j = P[Y = j], we can write E[ϕ(X )] =∑n
j=1 ϕ( j)Pj , E[ϕ(Y )] =

∑n
j=1 ϕ( j)q j . It is always possible to construct a

polynomial ρ(t) = ∑n−1
k=0 ρk t

k such that ϕ( j) = ρ( j) for j= 1, . . . n by solving

1 1 1 . . . 1
1 2 22 . . . 2n−1

...
...

...
. . .

...
1 n n2 . . . nn−1







ρ0
ρ1...
ρn−1


 =



ϕ(1)
ϕ(2)
...

ϕ(n)


 .

Then E[ϕ(X )] = ∑n
j=1

∑n−1
k=0 ρk j

k p j =
∑n−1
k=0 ρk

∑n
j=1 j

k p j =
∑n−1
k=0 ρk

E[Xk] and, similarly, E[ϕ(Y )] = ∑n−1
k=0 ρk E[Y

k]. Hence, it follows from
Theorem 2.21 that if all the corresponding moments of X and Y are the same,
then the distributions of X and Y are the same. Thus, if the moment-generating
functions of X and Y coincide on an open neighborhood of zero, and if all the
moments of X and Y are finite, it follows from (2.33) that all the corresponding
moments of X and Y are the same:

Theorem 2.22: If the random variables X and Y are discrete and take with
probability 1 only a finite number of values, then the distributions of X and Y
are the same if and only if the moment-generating functions of X and Y coincide
on an arbitrary, small, open neighborhood of zero.

However, this result also applies without the conditions that X and Y are
discrete and take only a finite number of values, and for random vectors as well,
but the proof is complicated and is therefore omitted:
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Theorem 2.23: If the moment-generating functions mX (t) and mY (t) of the
random vectors X and Y in R

k are defined and finite in an open neighborhood
N0(δ) = {x∈ R

k : ‖x‖ < δ} of the origin of Rk , then the distributions of X and
Y are the same if and only if mX (t) = mY (t) for all t ∈ N0(δ)

2.8.2. Characteristic Functions

The disadvantage of the moment-generating function is that it may not be finite
in an arbitrarily small, open neighborhood of zero. For example, if X has a
standard Cauchy distribution, that is, X has density

f (x) = 1

π (1+ x2) , (2.36)

then

m(t) =
∞∫

−∞
exp(t · x) f (x)dx

{= ∞ if t 
= 0,
= 1 if t = 0.

(2.37)

There aremany other distributionswith the same property as (2.37) (seeChapter
4); hence, the moment-generating functions in these cases are of no use for
comparing distributions.
The solution to this problem is to replace t in (2.31) with i · t,

where i = √−1. The resulting function ϕ(t) = m(i · t) is called the char-
acteristic function of the random variable X : ϕ(t) = E[exp(i · t · X )],
t ∈ R. More generally,

Definition 2.16: The characteristic function of a random vector X in R
k is

defined by ϕ(t) = E[exp(i · tTX )], t ∈ R
k , where the argument t is nonrandom.

The characteristic function is bounded because exp(i · x) = cos(x)+ i ·
sin(x). See Appendix III. Thus, the characteristic function in Definition 2.16
can be written as

ϕ(t) = E[cos(tTX )]+ i · E[sin(tTX )], t ∈ R
k .

Note that by the dominated convergence theorem (Theorem 2.11),
limt→0 ϕ(t) = 1 = ϕ(0); hence, a characteristic function is always continuous
in t = 0.
Replacing moment-generating functions with characteristic functions, we

find that Theorem 2.23 now becomes

Theorem 2.24: Random variables or vectors have the same distribution if and
only if their characteristic functions are identical.
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The proof of this theorem is complicated and is therefore given in Appendix
2.A at the end of this chapter. The same applies to the following useful result,
which is known as the inversion formula for characteristic functions:

Theorem 2.25: Let X be a random vector in R
k with characteristic function

ϕ(t). Ifϕ(t) is absolutely integrable (i.e.,
∫

R
k |ϕ(t)|dt < ∞), then the distribution

of X is absolutely continuous with joint density f (x) = (2π )−k
∫

R
k exp(−i ·

tTx)ϕ(t)dt.

2.9. Exercises

1. Prove that the collection D in the proof of Theorem 2.1 is a σ -algebra.

2. Prove Theorem 2.3.

3. Prove Theorem 2.4 for the max, sup, limsup, and lim cases.

4. Why is it true that if g is Borel measurable then so are g+ and g− in (2.6)?

5. Prove Theorem 2.7.

6. Prove Theorem 2.8.

7. Let g(x) = x if x is rational and g(x) = −x if x is irrational. Prove that g(x) is
Borel measurable.

8. Prove parts (a)–( f ) of Theorem 2.9 for simple functions

g(x) =
n∑
i=1

ai I (x ∈ Bi ), f (x) =
m∑
j=1

b j I (x ∈ C j ).

9. Why can you conclude from Exercise 8 that parts (a)–( f ) of Theorem 2.9 hold
for arbitrary, nonnegative, Borel-measurable functions?

10. Why can you conclude from Exercise 9 that Theorem 2.9 holds for arbitrary
Borel-measurable functions provided that the integrals involved are defined?

11. From which result on probability measures does (2.11) follow?

12. Determine for each inequality in (2.12) which part of Theorem 2.9 has been
used.

13. Why do we need the condition in Theorem 2.11 that
∫
ḡ(x)dµ(x) < ∞?

14. Note thatwe cannot generalize Theorem2.5 to randomvariables because some-
thing missing prevents us from defining a continuous mapping X : � → R.
What is missing?

15. Verify (2.16) and complete the proof of Theorem 2.18.

16. Prove equality (2.2).

17. Show that var(X ) = E(X2)− (E(E))2, cov(X, Y ) = E(X · Y )− (E(X )).
(E(Y )), and −1 ≤ corr(X, Y ) ≤ 1. Hint: Derive the latter result from
var(Y − λX ) ≥ 0 for all λ.
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18. Prove (2.17).

19. Which parts of Theorem 2.15 have been used in (2.18)?

20. How does (2.20) follow from (2.19)?

21. Why does it follow from (2.28) that (2.29) holds for simple random variables?

22. Prove Theorem 2.19.

23. Complete the proof of Theorem 2.20 for the case p = q = 1.

24. Let X = U0(U1 − 0.5) and Y = U0(U2 − 0.5), where U0, U1, and U2 are
independent and uniformly [0, 1] distributed. Show that E[X2 · Y 2] 
=
(E[X2])(E[Y 2]).

25. Prove that if (2.29) holds for simple random variables, it holds for all random
variables. Hint: Use the fact that convex and concave functions are continuous
(see Appendix II).

26. Derive the moment-generating function of the binomial (n, p) distribution.

27. Use the results in Exercise 26 to derive the expectation and variance of the
binomial (n, p) distribution.

28. Show that the moment-generating function of the binomial (n, p) distribution
converges pointwise in t to the moment-generating function of the Poisson (λ)
distribution if n→∞ and p ↓ 0 such that n · p→ λ.

29. Derive the characteristic function of the uniform [0, 1] distribution. Is the
inversion formula for characteristic functions applicable in this case?

30. If the random variable X has characteristic function exp(i · t), what is the dis-
tribution of X?

31. Show that the characteristic function of a random variable X is real-valued if
and only if the distribution of X is symmetric (i.e., X and −X have the same
distribution).

32. Use the inversion formula for characteristic functions to show that ϕ(t) =
exp(−|t |) is the characteristic function of the standard Cauchy distribution
[see (2.36) for the density involved]. Hints: Show first, using Exercise 31 and
the inversion formula, that

f (x) = π−1

∞∫
0

cos(t · x) exp(−t)dt,

and then use integration by parts.
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APPENDIX

2.A. Uniqueness of Characteristic Functions

To understand characteristic functions, you need to understand the basics of
complex analysis, which is provided in Appendix III. Therefore, it is recom-
mended that Appendix III be read first.
In the univariate case, Theorem 2.24 is a straightforward corollary of the

following link between a probability measure and its characteristic function.

Theorem 2.A.1: Let µ be a probability measure on the Borel sets in R with
characteristic function ϕ, and let a < b be continuity points of µ : µ({a}) =
µ({b}) = 0. Then

µ((a, b]) = lim
T→∞

1

2π

T∫
−T

exp(−i · t · a)− exp(−i · t · b)
i · t ϕ(t)dt.

(2.38)

Proof: Using the definition of characteristic function, we can write

T∫
−T

exp(−i · t · a)− exp(−i · t · b)
i · t ϕ(t)dt

=
T∫

−T

∞∫
−∞

exp(i · t(x − a))− exp(i · t · (x − b))
i · t dµ(x)dt

=
T∫

−T

lim
M→∞

M∫
−M

exp(i · t(x − a))− exp(i · t · (x − b))
i · t dµ(x)dt.

(2.39)

Next, observe that∣∣∣∣∣∣
M∫

−M

exp(i · t(x − a))− exp(i · t · (x − b))
i · t dµ(x)

∣∣∣∣∣∣
≤

∣∣∣∣exp(−i · t · a)− exp(−i · t · b)
i · t

∣∣∣∣µ([−M,M])

≤| exp(−i · t · a)− exp(−i · t · b)|
|t | =

√
2(1− cos(t · (b − a))

t2

≤ b − a.
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Therefore, it follows from the bounded convergence theorem that

T∫
−T

exp(−i · t · a)− exp(−i · t · b)
i · t ϕ(t)dt

= lim
M→∞

T∫
−T

M∫
−M

exp(i · t(x − a))− exp(i · t · (x − b))
i · t dµ(x)dt

× lim
M→∞

M∫
−M

T∫
−T

exp(i · t(x − a))− exp(i · t · (x − b))
i · t dtdµ(x)

=
∞∫

−∞


 T∫
−T

exp(i · t(x − a))− exp(i · t · (x − b))
i · t dt


 dµ(x).

(2.40)

The integral between square brackets can be written as

T∫
−T

exp(i · t(x − a))− exp(i · t · (x − b))
i · t dt

=
T∫

−T

exp(i · t(x − a))− 1

i · t dt −
T∫

−T

exp(i · t · (x − b))− 1

i · t dt

=
T∫

−T

sin(t(x − a))
t

dt −
T∫

−T

sin(t(x − b))
t

dt

= 2

T∫
0

sin(t(x − a))
t(x − a) dt(x − a)− 2

T∫
0

sin(t(x − b))
t(x − b) dt(x − b)

= 2

T(x−a)∫
0

sin(t)

t
dt − 2

T(x−b)∫
0

sin(t)

t
dt

= 2sgn(x − a)
T|x−a|∫
0

sin(t)

t
dt − 2sgn(x − b)

T|x−b|∫
0

sin(t)

t
dt,

(2.41)
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where sgn(x) = 1 if x > 0, sgn(0) = 0, and sgn(x) = −1 if x < 0. The last two
integrals in (2.41) are of the form

x∫
0

sin(t)

t
dt =

x∫
0

sin(t)

∞∫
0

exp(−t · u)dudt

=
∞∫
0

x∫
0

sin(t) exp(−t · u)dtdu

=
∞∫
0

du

1+ u2 −
∞∫
0

[cos(x)+ u · sin(x)] exp(−x · u)
1+ u2 du,

(2.42)

where the last equality follows from integration by parts:

x∫
0

sin(t) exp(−t · u)dt

= −
x∫

0

dcos(t)

dt
exp(−t · u)dt

= cos(t) exp(−t · u)|x0 −u.
x∫

0

cos(t) exp(−t · u)dt

= 1− cos(x) exp(−x · u)− u.
x∫

0

dsin(t)

dt
exp(−t · u)dt

= 1− cos(x) exp(−x · u)− u · sin(x) exp(−x · u)

− u2
x∫

0

sin(t) exp(−t · u)dt.

Clearly, the second integral at the right-hand side of (2.42) is bounded in x > 0
and converges to zero as x → ∞. The first integral at the right-hand side of
(2.42) is

∞∫
0

du

1+ u2 =
∞∫
0

darctan(u) = arctan(∞) = π/2.
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Thus, the integral (2.42) is bounded (hence so is (2.41)), and

lim
T→∞

T∫
−T

exp(i · t(x − a))− exp(i · t · (x − b))
i · t dt

= π [sgn(x − a)− sgn(x − b)]. (2.43)

It follows now from (2.39), (2.40), (2.43), and the dominated convergence
theorem that

lim
T→∞

1

2π

T∫
−T

exp(−i · t · a)− exp(−i · t · b)
i · t ϕ(t)dt

= 1

2

∫
[sgn(x − a)− sgn(x − b)]dµ(x)

= µ((a, b))+ 1

2
µ({a})+ 1

2
µ({b}). (2.44)

The last equality in (2.44) follow from the fact that

sgn(x − a)− sgn(x − b) =


0 if x < a or x > b,
1 if x = a or x = b,
2 if a < x < b.

The result (2.38) now follows from (2.44) and the conditionµ({a}) = µ({b}) =
0. Q.E.D.
Note that (2.38) also reads as

F(b)− F(a) = lim
T→∞

1

2π

T∫
−T

exp(−i · t · a)− exp(−i · t · b)
i · t ϕ(t)dt,

(2.45)

where F is the distribution function corresponding to the probability
measure µ.
Next, suppose thatϕ is absolutely integrable:

∫ ∞
−∞ |ϕ(t)|dt < ∞.Then (2.45)

can be written as

F(b)− F(a) = 1

2π

∞∫
−∞

exp(−i · t · a)− exp(−i · t · b)
i · t ϕ(t)dt,
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and it follows from the dominated convergence theorem that

F ′(a) = lim
b↓a
F(b)− F(a)
b − a

= 1

2π

∞∫
−∞

lim
b↓a

1− exp(−i · t · (b − a))
i · t · (b − a) exp(−i · t · a)ϕ(t)dt

= 1

2π

∞∫
−∞

exp(−i · t · a)ϕ(t)dt.

This proves Theorem 2.25 for the univariate case.
In the multivariate case Theorem 2.A.1 becomes

Theorem 2.A.2: Let µ be a probability measure on the Borel sets in R
k

with characteristic function ϕ. Let B = ×kj=1(a j , b j ], where a j < b j for

j = 1, 2, . . . , k, and let ∂B be the border of B, that is, ∂B = {×kj=1[a j , b j ]}\
{×kj=1(a j , b j )}. If µ(∂B) = 0; then

µ(B) = lim
T1→∞

. . . lim
Tk→∞

∫
×kj=1(−T j ,T j )

k∏
j=1

[
exp(−i · t j · a j )− exp(−i · t j · b j )

i · 2π t j

]

× ϕ(t)dt, (2.46)

where t = (t1, . . . , tk)T.

This result proves Theorem 2.24 for the general case.
Moreover, if

∫
R
k |ϕ(t)|dt < ∞, (2.46) becomes

µ(B) =
∫
R
k

k∏
j=1

[
exp(−i · t j · a j )− exp(−i · t j · b j )

i · 2π t j

]
ϕ(t)dt,

and by the dominated convergence theorem we may take partial derivatives
inside the integral:

∂k µ(B)

∂ a1 . . . ∂ ak
= 1

(2π )k

∫
R
k

exp(−i · tTa)ϕ(t)dt, (2.47)

where a = (a1, . . . , ak)T. The latter is just the density corresponding to µ in
point a. Thus, (2.47) proves Theorem 2.25.



3 Conditional Expectations

3.1. Introduction

Roll a die, and let the outcome be Y . Define the random variable X = 1 if Y is
even, and X = 0 if Y is odd. The expected value of Y is E[Y ] = (1+ 2+ 3+
4+ 5+ 6)/6 = 3.5. But what would the expected value of Y be if it is revealed
that the outcome is even: X = 1? The latter information implies that Y is 2, 4,
or 6 with equal probabilities 1/3; hence, the expected value of Y , conditional
on the event X = 1, is E[Y |X = 1] = (2+ 4+ 6)/3 = 4. Similarly, if it is
revealed that X = 0, then Y is 1, 3, or, 5 with equal probabilities 1/3; hence,
the expected value of Y , conditional on the event X = 0, is E[Y |X = 0] =
(1+ 3+ 5)/3 = 3. Both results can be captured in a single statement:

E[Y |X ] = 3+ X. (3.1)

In this example the conditional probability of Y = y, given, X = x is1

P(Y = y|X = x) = P(Y = y and X = x)
P(X = x)

= P({y} ∩ {2, 4, 6})
P({2, 4, 6}) = P({y})

P({2, 4, 6})

= 1

3
if x = 1 and y ∈ {2, 4, 6}

= P({y} ∩ {2, 4, 6})
P({2, 4, 6}) = P(∅)

P({2, 4, 6})
= 0 if x = 1 and y /∈ {2, 4, 6}

1 Here and in the sequel the notations P(Y = y|X = x), P(Y = y and X = x), P(X = x),
and similar notations involving inequalities are merely shorthand notations for
the probabilities P({ω ∈ � : Y (ω) = y}|{ω ∈ � : X (ω) = x}), P({ω ∈ � : Y (ω) = y} ∩
{ω ∈ � : X (ω) = x}), and P({ω ∈ � : X (ω) = x}), respectively.

66
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= P({y} ∩ {1, 3, 5})
P({1, 3, 5}) = P({y})

P({1, 3, 5})

= 1

3
if x = 0 and y ∈ {1, 3, 5}

= P({y} ∩ {1, 3, 5})
P({1, 3, 5}) = P(∅)

P({1, 3, 5})
= 0 if x = 0 and y /∈ {1, 3, 5}; (3.2)

hence,

6∑
y=1

yP(Y = y|X = x)



= 2+ 4+ 6

3
= 4 if x = 1

= 1+ 3+ 5

3
= 3 if x = 0


 = 3+ x .

Thus, in the case in which both Y and X are discrete random variables, the
conditional expectation E[Y |X ] can be defined as

E[Y |X ] =
∑
y

yp(y|X ), where

p(y|x) = P(Y = y|X = x) for P(X = x) > 0.

A second example is one in which X is uniformly [0, 1] distributed, and given
the outcome x of X, Y is randomly drawn from the uniform [0, x] distribution.
Then the distribution function F(y) of Y is

F(y) = P(Y ≤ y) = P(Y ≤ y and X ≤ y)+ P(Y ≤ y and X > y)

= P(X ≤ y)+ P(Y ≤ y and X > y)

= y + E[I (Y ≤ y)I (X > y)]

= y +
1∫

0


 x∫

0

I (z ≤ y) x−1 dz


 I (x > y) dx

= y +
1∫
y


 min(x,y)∫

0

x−1 dz


 dx

= y +
1∫
y

(y/x) dx = y(1− ln(y)) for 0 ≤ y ≤ 1.

Hence, the density of Y is

f (y) = F ′(y) = − ln(y) for y ∈ (0, 1], f (y) = 0 for y /∈ (0, 1].
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Thus, the expected value of Y is E[Y ] = ∫ 1
0 y(− ln(y))dy = 1/4. But what

would the expected value be if it is revealed that X = x for a given number x ∈
(0, 1)? The latter information implies that Y is now uniformly [0, x] distributed;
hence, the conditional expectation involved is

E[Y |X = x] = x−1

x∫
0

ydy = x/2.

More generally, the conditional expectation of Y given X is

E[Y |X ] = X−1

X∫
0

ydy = X/2. (3.3)

The latter example is a special case of a pair (Y, X ) of abso-
lutely continuously distributed random variables with joint density function
f (y, x) and marginal density fx (x). The conditional distribution function of Y ,
given the event X ∈ [x, x + δ], δ > 0, is

P(Y ≤ y|X ∈ [x, x + δ]) = P(Y ≤ y and X ∈ [x, x + δ])

P(X ∈ [x, x + δ])

=
∫ y
−∞

1
δ

∫ x+δ
x f (u, v)dvdu

1
δ

∫ x+δ
x fx (v)dv

.

Letting δ ↓ 0 then yields the conditional distribution function of Y given the
event X = x :

F(y|x) = lim
δ↓0
P(Y ≤ y|X ∈ [x, x + δ])

=
y∫

−∞
f (u, x)du/ fx (x), provided fx (x) > 0.

Note that we cannot define this conditional distribution function directly as

F(y|x) = P(Y ≤ y and X = x)/P(X = x)
because for continuous random variables X, P(X = x) = 0.
The conditional density of Y , given the event X = x , is now

f (y|x) = ∂F(y|x)/∂y = f (y, x)/ fx (x),

and the conditional expectation of Y given the event X = x can therefore be
defined as

E[Y |X = x] =
∞∫

−∞
yf(y|x)dy = g(x), for instance.
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Plugging in X for x then yields

E[Y |X ] =
∞∫

−∞
yf(y|X )dy = g(X ). (3.4)

These examples demonstrate two fundamental properties of conditional ex-
pectations. The first one is that E[Y |X ] is a function of X , which can be trans-
lated as follows: Let Y and X be two random variables defined on a common
probability space {�,ö, P}, and let öX be the σ -algebra generated by X ,
öX = {X−1(B), B ∈ B}, where X−1(B) is a shorthand notation for the set
{ω ∈ � : X (ω) ∈ B} and B is the Euclidean Borel field. Then,

Z = E[Y |X ] is measurableöX , (3.5)

which means that, for all Borel sets B, {ω ∈ � : Z (ω) ∈ B} ∈ öX . Secondly,
we have

E[(Y − E[Y |X ])I (X ∈ B)] = 0 for all Borel sets B. (3.6)

In particular, in the case (3.4) we have

E[(Y − E[Y |X ])I (X ∈ B)]

=
∞∫

−∞

∞∫
−∞

(y − g(x)) I (x ∈ B) f (y, x)dydx

=
∞∫

−∞


 ∞∫
−∞
yf (y|x)dy


 I (x ∈ B) fx (x)dx

−
∞∫

−∞


 ∞∫
−∞

f (y|x)dy

 g(x)I (x ∈ B) fx (x)dx

=
∞∫

−∞
g(x)I (x ∈ B) fx (x)dx−

∞∫
−∞

g(x)I (x ∈ B) fx (x)dx = 0.

(3.7)

BecauseöX = {X−1(B), B ∈ B}, property (3.6) is equivalent to∫
A

(Y (ω)− Z (ω)) dP(ω) = 0 for all A ∈ öX . (3.8)

Moreover, note that � ∈ öX , and thus (3.8) implies

E(Y ) =
∫
�

Y (ω)dP(ω) =
∫
�

Z (ω)dP(ω) = E(Z ) (3.9)
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provided that the expectations involved are defined. A sufficient condition for
the existence of E(Y ) is that

E(|Y |) < ∞. (3.10)

We will see later that (3.10) is also a sufficient condition for the existence of
E(Z ).
I will show now that condition (3.6) also holds for the examples (3.1) and

(3.3). Of course, in the case of (3.3) I have already shown this in (3.7), but it is
illustrative to verify it again for the special case involved.
In the case of (3.1) the random variable Y ·I (X = 1) takes the value 0 with

probability 1/2 and the values 2, 4, or 6 with probability 1/6; the random variable
Y ·I (X = 0) takes the value 0 with probability 1/2 and the values 1, 3, or 5 with
probability 1/6. Thus,

E[Y · I (X ∈ B)] = E[Y · I (X = 1)] = 2 if 1 ∈ B and 0 /∈ B,
E[Y · I (X ∈ B)] = E[Y · I (X = 0)] = 1.5 if 1 /∈ B and 0 ∈ B,
E[Y · I (X ∈ B)] = E[Y ] = 3.5 if 1 ∈ B and 0 ∈ B,
E[Y · I (X ∈ B)] = 0 if 1 /∈ B and 0 /∈ B,

which by (3.1) and (3.6) is equal to

E[(E[Y |X ])I (X ∈ B)]
= 3E[I (X ∈ B)]+ E[X · I (X ∈ B)]
= 3P(X ∈ B)+ P(X = 1 and X ∈ B)
= 3P(X = 1)+ P(X = 1) = 2 if 1 ∈ B and 0 /∈ B,
= 3P(X = 0)+ P(X = 1 and X = 0) = 1.5 if 1 /∈ B and 0 ∈ B,
= 3P(X = 0 or X = 1)+ P(X = 1) = 3.5 if 1 ∈ B and 0 ∈ B,
= 0 if 1 /∈ B and 0 /∈ B.

Moreover, in the case of (3.3) the distribution function of Y · I (X ∈ B) is

FB(y) = P(Y · I (X ∈ B) ≤ y) = P(Y ≤ y and X ∈ B)+ P(X /∈ B)
= P(X ∈ B ∩ [0, y])+ P(Y ≤ y and X ∈ B ∩ (y, 1))+ P(X /∈ B)
=

y∫
0
I (x ∈ B)dx+ y

1∫
y
x−1 I (x ∈ B)dx+ 1−

1∫
0
I (x ∈ B)dx

= 1−
1∫
y
I (x ∈ B)dx+ y

1∫
y
x−1 I (x ∈ B)dx for 0 ≤ y ≤ 1;

hence, the density involved is

fB(y) =
1∫
y

x−1 I (x ∈ B)dx for y ∈ [0, 1], fB(y) = 0 for y /∈ [0, 1].
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Thus,

E[Y · I (X ∈ B)] =
1∫

0

y


 1∫
y

x−1 I (x ∈ B)dx

 dy

= 1

2

1∫
0

y · I (y ∈ B)dy,

which is equal to

E(E[Y |X ]I (X ∈ B)) = 1

2
E[X · I (X ∈ B)] = 1

2

1∫
0

x · I (x ∈ B)dx.

The two conditions (3.5) and (3.8) uniquely define Z = E[Y |X ] in the sense
that if there exist two versions of E[Y |X ] such as Z1 = E[Y |X ] and Z2 =
E[Y |X ] satisfying the conditions (3.5) and (3.8), then P(Z1 = Z2) = 1. To see
this, let

A = {ω ∈ � : Z1(ω) < Z2(ω)}. (3.11)

Then A ∈ öX ; hence, it follows from (3.8) that∫
A

(Z2(ω)− Z1(ω))dP(ω) = E[(Z2 − Z1)I (Z2 − Z1 > 0)] = 0.

The latter equality implies P(Z2 − Z1 > 0) = 0 as I will show in Lemma 3.1.
If we replace the set A by A = {ω ∈ � : Z1(ω) > Z2(ω)}, it follows similarly
that P(Z2 − Z1 < 0) = 0. Combining these two cases, we find that P(Z2 
=
Z1) = 0.

Lemma 3.1: E[Z · I (Z > 0)] = 0 implies P(Z > 0) = 0.

Proof: Choose ε > 0 arbitrarily. Then

0 = E[Z · I (Z > 0)] = E[Z · I (0 < Z < ε)]+ E[Z · I (Z ≥ ε)]

≥ E[Z · I (Z ≥ ε)] ≥ εE[I (Z ≥ ε)] = εP(Z ≥ ε);

hence, P(Z > ε) = 0 for all ε > 0. Now take ε = 1/n, n = 1, 2, . . . and let

Cn = {ω ∈ � : Z (ω) > n−1}.
Then Cn ⊂ Cn+1; hence,

P(Z > 0) = P
[

∞∪
n=1
Cn

]
= lim
n→∞ P[Cn] = 0. (3.12)

Q.E.D.
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Conditions (3.5) and (3.8) only depend on the conditioning random variable
X via the sub-σ -algebra öX of ö. Therefore, we can define the conditional
expectation of a random variable Y relative to an arbitrary sub-σ -algebra ö0

ofö, denoted by E[Y |ö0], as follows:

Definition 3.1: Let Y be a random variable defined on a probability space
{�,ö, P} satisfying E(|Y |) < ∞, and letö0 ⊂ ö be a sub-σ -algebra ofö.
The conditional expectation of Y relative to the sub-σ -algebraö0, denoted by
E[Y |ö0] = Z , for instance, is a random variable Z that is measurableö0 and
is such that for all sets A ∈ ö0,∫

A

Y (ω)dP(ω) =
∫
A

Z (ω)dP(ω).

3.2. Properties of Conditional Expectations

As conjectured following (3.10), the condition E(|Y |) < ∞ is also a sufficient
condition for the existence of E(E[Y |ö0]). The reason is twofold. First, I have
already established in (3.9) that

Theorem 3.1: E[E(Y |ö0)] = E(Y ).

Second, conditional expectations preserve inequality:

Theorem 3.2: If P(X ≤ Y ) = 1, then P(E(X |ö0) ≤ E(Y |ö0)) = 1.

Proof: Let A = {ω ∈ � : E(X |ö0)(ω) > E(Y |ö0)(ω)}. Then A ∈ ö0, and∫
A

X (ω)dP(ω) =
∫
A

E(X |ö0)(ω)dP(ω) ≤
∫
A

Y (ω)dP(ω)

=
∫
A

E(Y |ö0)(ω)dP(ω);

hence,

0 ≤
∫
A

(E(Y |ö0)(ω)− E(X |ö0)(ω))dP(ω) ≤ 0. (3.13)

It follows now from (3.13) and Lemma 3.1 that P({ω ∈ � : E(X |ö0)(ω) >
E(Y |ö0)(ω)}) = 0. Q.E.D.
Theorem 3.2 implies that |E(Y |ö0)| ≤ E(|Y ||ö0) with probability 1, and if

we apply Theorem 3.1 it follows that E[|E(Y |ö0)|] ≤ E(|Y |). Therefore, the
condition E(|Y |) < ∞ is sufficient for the existence of E(E[Y |ö0]).

Conditional expectations also preserve linearity:
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Theorem 3.3: If E[|X |] < ∞ and E[|Y |] < ∞, then P[E(αX + βY |ö0) =
αE(X |ö0)+ βE(Y |ö0)] = 1.

Proof: Let Z0 = E(αX + βY |ö0), Z1 = E(X |ö0), Z2 = E(Y |ö0). For
every A ∈ ö0 we have∫

A

Z0(ω)dP(ω) =
∫
A

(αX (ω)+ βY (ω))dP(ω)

= α

∫
A

X (ω)dP(ω)+ β

∫
A

Y (ω)dP(ω),

∫
A

Z1(ω)dP(ω) =
∫
A

X (ω)dP(ω),

and ∫
A

Z2(ω)dP(ω) =
∫
A

Y (ω)dP(ω);

hence, ∫
A

(Z0(ω)− αZ1(ω)− βZ2(ω))dP(ω) = 0. (3.14)

Ifwe take A = {ω ∈ � : Z0(ω)− αZ1(ω)− βZ2(ω) > 0} it follows from(3.14)
and Lemma 3.1 that P(A) = 0, if we take A = {ω ∈ � : Z0(ω)− αZ1(ω)−
βZ2(ω) < 0} it follows similarly that P(A) = 0; hence, P({ω ∈ � : Z0(ω)−
αZ1(ω)− βZ2(ω) 
= 0}) = 0. Q.E.D.
If we condition a random variable Y on itself, then intuitively we may expect

that E(Y |Y ) = Y because then Y acts as a constant. More formally, this result
can be stated as

Theorem 3.4: Let E[|Y |] < ∞. If Y is measurable ö, then P(E(Y |ö) =
Y ) = 1.

Proof: Let Z = E(Y |ö). For every A ∈ ö we have∫
A

(Y (ω)− Z (ω))dP(ω) = 0. (3.15)

Take A = {ω ∈ � : Y (ω)− Z (ω) > 0}. Then A ∈ ö; hence, it follows from
(3.15) and Lemma 3.1 that P(A) = 0. Similarly, if one takes A = {ω ∈
� : Y (ω)− Z (ω) < 0}, it follows that P(A) = 0. Thus, P({ω ∈ � : Y (ω)−
Z (ω) 
= 0}) = 0. Q.E.D.
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In Theorem 3.4 I have conditioned Y on the largest sub-σ -algebra of ö –
namely ö itself. The smallest sub-σ -algebra of ö is T = {�,∅}, which is
called the trivial σ -algebra.

Theorem 3.5: Let E[|Y |] < ∞. Then P[E(Y |T) = E(Y )] = 1.

Proof: Exercise, along the same lines as the proofs of Theorems 3.2 and 3.4.
The following theorem, which plays a key role in regression analysis, follows

from combining the results of Theorems 3.3 and 3.4:

Theorem 3.6: Let E[|Y |] < ∞ and U = Y − E[Y |ö0]. Then P[E(U |ö0) =
0] = 1.

Proof: Exercise.
Next, let (Y, X, Z ) be jointly continuously distributed with joint density

function f (y, x, z) and marginal densities fy,x (y, x), fx,z(x, z) and fx (x).
Then the conditional expectation of Y given X = x and Z = z is E[Y |X, Z ] =∫ ∞
−∞ yf (y|X, Z )dy = gx,z(X, Z ), for instance, where f (y|x, z) = f (y, x, z)/
fx,z(x, z) is the conditional density of Y given X = x and Z = z. The con-
ditional expectation of Y given X = x alone is E[Y |X ] = ∫ ∞

−∞ yf (y|X )dy =
gx (X ), for instance, where f (y|x) = fy,x (y, x)/ fx (x) is the conditional density
of Y given X = x alone. If we denote the conditional density of Z given X = x
by fz(z|x) = fz,x (z, x)/ fx (x), it follows now that

E (E[Y |X, Z ]|X ) =
∞∫

−∞


 ∞∫
−∞
yf(y|X, z)dy


 fz(z|X )dz

=
∞∫

−∞


 ∞∫
−∞

y
f (y, X, z)

fx,z(X, z)
dy


 fx,z(X, z)

fx (X )
dz

=
∞∫

−∞
y


 ∞∫
−∞

f (y, X, z)dzdy


 1

fx (X )

=
∞∫

−∞
y
fy,x (y, X )

fx (X )
dy

=
∞∫

−∞
yf(y|X )dy = E[Y |X ].
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This is one of the versions of the law of iterated expectations. Denoting byöX,Z

the σ -algebra generated by (X, Z ) and by öX the σ -algebra generated by X ,
we find this result can be translated as

E(E[Y |öX,Z ]|öX ) = E[Y |öX ].

Note that öX ⊂ öX,Z because

öX = {{ω ∈ � : X (ω) ∈ B1}, B1 ∈ B}
= {{ω ∈ � : X (ω) ∈ B1, Z (ω) ∈ R}, B1 ∈ B}
⊂ {{ω ∈ � : X (ω) ∈ B1, Z (ω) ∈ B2}, B1, B2 ∈ B} = öX,Z .

Therefore, the law of iterated expectations can be stated more generally as

Theorem 3.7: Let E[|Y |] < ∞, and let ö0 ⊂ ö1 be sub-σ -algebras of ö.

Then

P[E(E[Y |ö1]|ö0) = E(Y |ö0)] = 1.

Proof: Let Z0 = E[Y |ö0], Z1 = E[Y |ö1] and Z2 = E[Z1|ö0]. It has
to be shown that P(Z0 = Z2) = 1. Let A ∈ ö0. Then also A ∈ ö1. It
follows from Definition 3.1 that Z0 = E[Y |ö0] implies

∫
A Y (ω)dP(ω) =∫

A Z0(ω)dP(ω), Z1 = E[Y |ö1] implies
∫
A Y (ω)dP(ω) =

∫
A Z1(ω)dP(ω), and

Z2 = E[Z1|ö0] implies
∫
A Z2(ω)dP(ω) =

∫
A Z1(ω)dP(ω). If we combine

these equalities, it follows that for all A ∈ ö0,∫
A

(Z0(ω)− Z2(ω)) dP(ω) = 0. (3.16)

Now choose A = {ω ∈ � : Z0(ω)− Z2(ω) > 0}. Note that A ∈ ö0. Then it
follows from (3.16) and Lemma 3.1 that P(A) = 0. Similarly, if we choose
A = {ω ∈ � : Z0(ω)− Z2(ω) < 0}, then, again, P(A) = 0.Therefore, P(Z0 =
Z2) = 1. Q.E.D.
The following monotone convergence theorem for conditional expectations

plays a key role in the proofs of Theorems 3.9 and 3.10 below.

Theorem 3.8: (Monotone convergence). Let Xn be a sequence of non-
negative random variables defined on a common probability space
{�,ö, P} such that P(Xn ≤ Xn+1) = 1 and E[supn≥1Xn] < ∞. Then
P(limn→∞E[Xn|ö0] = E[limn→∞Xn|ö0]) = 1.

Proof: Let Zn = E[Xn|ö0] and X = limn→∞Xn. It follows from Theo-
rem 3.2 that Zn is monotonic nondecreasing; hence, Z = limn→∞Zn exists.
Let A ∈ ö0 be arbitrary and Yn(ω) = Zn(ω) · I (ω ∈ A), Y (ω) = Z (ω) · I (ω ∈
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A) for ω ∈ �. Then also Yn is nonnegative and monotonic nondecreasing and
Y = limn→∞Yn; hence, it follows from themonotone convergence theorem that
limn→∞

∫
Yn(ω)dP(ω) =

∫
Y (ω)dP(ω), which is equivalent to

limn→∞
∫
A

Zn(ω)dP(ω) =
∫
A

Z (ω)dP(ω). (3.17)

Similarly, if we let Un(ω) = Xn(ω) · I (ω ∈ A),U (ω) = X (ω) · I (ω ∈ A), it
follows from the monotone convergence theorem that limn→∞

∫
Un(ω)dP(ω) =∫

U (ω)dP(ω), which is equivalent to

limn→∞
∫
A

Xn(ω)dP(ω) =
∫
A

X (ω)dP(ω). (3.18)

Moreover, it follows from the definition of Zn = E[Xn|ö0] that∫
A

Zn(ω)dP(ω) =
∫
A

Xn(ω)dP(ω). (3.19)

It follows now from (3.17)–(3.19) that∫
A

Z (ω)dP(ω) =
∫
A

X (ω)dP(ω). (3.20)

Theorem 3.8 easily follows from (3.20). Q.E.D.
The following theorem extends the result of Theorem 3.4:

Theorem 3.9: Let X be measurableö0, and let both E(|Y |) and E(|XY |) be
finite. Then P[E(XY |ö0) = X · E(Y |ö0)] = 1.

Proof: I will prove the theorem involved only for the case in which both X
and Y are nonnegative with probability 1, leaving the general case as an easy
exercise.
Let Z = E(XY |ö0), Z0 = E(Y |ö0). If

∀A ∈ ö0:
∫
A

Z (ω)dP(ω) =
∫
A

X (ω)Z0(ω)dP(ω), (3.21)

then the theorem under review holds.

(a) First, consider the case in which X is discrete: X (ω) = ∑n
j=1 β j I (ω ∈

A j ), for instance, where the A j ’s are disjoint sets in ö0 and the β j ’s
are nonnegative numbers. Let A ∈ ö0 be arbitrary, and observe that
A ∩ A j ∈ ö0 for j = 1, . . . , n. Then by Definition 3.1,
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∫
A

X (ω)Z0(ω)dP(ω) =
∫
A

n∑
j=1

β j I (ω ∈ A j )Z0(ω)dP(ω)

=
n∑
j=1

β j

∫
A∩A j

Z0(ω)dP(ω)

=
n∑
j=1

β j

∫
A∩A j

Y (ω)dP(ω)

=
n∑
j=1

β j

∫
A

I (ω ∈ A j )Y (ω)dP(ω)

=
∫
A

n∑
j=1

β j I (ω ∈ A j )Y (ω)dP(ω)

=
∫
A

X (ω)Y (ω)dP(ω) =
∫
A

Z (ω)dP(ω),

which proves the theorem for the case in which X is discrete.
(b) If X is not discrete, then there exists a sequence of discrete random

variables Xn such that for each ω ∈ � we have 0 ≤ Xn(ω) ≤ X (ω)
and Xn(ω) ↑ X (ω) monotonic; hence, Xn(ω)Y (ω) ↑ X (ω)Y (ω)
monotonic. Therefore, it follows from Theorem 3.8 and part (a)
that E[XY |ö0] = limn→∞ E[XnY |ö0] = limn→∞ XnE[Y |ö0] =
XE[Y |ö0] with probability 1. Thus, the theorem under review holds
for the case that both X and Y are nonnegative with probability 1.

(c) The rest of the proof is left as an exercise. Q.E.D.

We have seen for the case in which Y and X are jointly, absolutely contin-
uously distributed that the conditional expectation E[Y |X ] is a function of X .
This holds also more generally:

Theorem 3.10: Let Y and X be random variables defined on the probability
space {�,ö, P}, and assume that E(|Y |) < ∞. Then there exists a Borel-
measurable function g such that P[E(Y |X ) = g(X )] = 1. This result carries
over to the case in which X is a finite-dimensional random vector.

Proof: The proof involves the following steps:

(a) Suppose that Y is nonnegative and bounded: ∃K < ∞ : P({ω ∈ � : 0 ≤
Y (ω) ≤ K }) = 1, and let Z = E(Y |öX ), where öX is the σ -algebra
generated by X. Then

P({ω ∈ � : 0 ≤ Z (ω) ≤ K }) = 1. (3.22)
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(b) Under the conditions of part (a) there exists a sequence of discrete
random variables Zm, Zm(ω) =

∑m
i=1 αi,m I (ω ∈ Ai,m), where Ai,m ∈

öX , Ai,m ∩ A j,m = ∅ if i 
= j,∪mi=1 Ai,m = �, 0 ≤ αi,m < ∞ for i =
1, . . . ,m such that Zm(ω) ↑ Z (ω) monotonic. For each Ai,m we can
find a Borel set Bi,m such that Ai,m = X−1(Bi,m). Thus, if we take
gm(x) =

∑m
i=1 αi,m I (x ∈ Bi,m), then Zm = gm(X ) with probability 1.

Next, let g(x) = limsupm→∞gm(x). This function is Borel measur-
able, and Z = limsupm→∞Zm = limsupm→∞gm(X ) = g(X ) with prob-
ability 1.

(c) Let Yn = Y · I (Y < n). Then Yn(ω) ↑ Y (ω) monotonic. By part (b) it
follows that there exists a Borel-measurable function gn(x) such that
E(Yn|öX ) = gn(X ). Let g(x) = limsupn→∞gn(x),which is Borel mea-
surable. It follows now from Theorem 3.8 that

E(Y |öX ) = lim
n→∞ E(Yn|öX ) = limsupn→∞E(Yn|öX )

= limsupn→∞gn(X ) = g(X ).

(d) Let Y+ = max(Y, 0), Y− = max(−Y, 0). Then Y = Y+ − Y−,
and therefore by part (c), E(Y+|öX ) = g+(X ), for instance, and
E(Y−|öX ) = g−(X ). Then E(Y |öX ) = g+(X )− g−(X ) = g(X ).
Q.E.D.

If random variables X and Y are independent, then knowing the realization
of X will not reveal anything about Y, and vice versa. The following theorem
formalizes this fact.

Theorem 3.11: Let X and Y be independent random variables. If E[|Y |] <
∞, then P(E[Y |X ] = E[Y ]) = 1. More generally, let Y be defined on the
probability space {�,ö, P}, let öY be the σ -algebra generated by Y, and
let ö0 be a sub-σ -algebra of ö such that öY and ö0 are independent,
that is, for all A ∈ öY and B ∈ ö0, P(A ∩ B) = P(A)P(B). If E [|Y |] <
∞, then P (E[Y |ö0] = E[Y ]) = 1.

Proof: LetöX be the σ -algebra generated byX, and let A ∈ öX be arbitrary.
There exists a Borel set B such that A = {ω ∈ � : X (ω) ∈ B}. Then∫

A

Y (ω)dP(ω) =
∫
�

Y (ω)I (ω ∈ A)dP(ω)

=
∫
�

Y (ω)I (X (ω) ∈ B)dP(ω)

= E[Y I (X ∈ B)] = E[Y ]E[I (X ∈ B)],
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where the last equality follows from the independence of Y and X. Moreover,

E[Y ]E[I (X ∈ B)] = E[Y ]
∫
�

I (X (ω) ∈ B)dP(ω)

= E[Y ]
∫
�

I (ω ∈ A)dP(ω) =
∫
A

E[Y ]dP(ω).

Thus,

∫
A

Y (ω)dP(ω) =
∫
A

E[Y ]dP(ω).

By the definition of conditional expectation, this implies that E[Y |X ] = E[Y ]
with probability 1. Q.E.D.

3.3. Conditional Probability Measures and Conditional Independence

The notion of a probability measure relative to a sub-σ -algebra can be defined
as in Definition 3.1 using the conditional expectation of an indicator function:

Definition 3.2: Let {�,ö, P} be a probability space, and let ö0 ⊂ ö be a
σ -algebra. Then for any set A in ö, P(A|ö0) = E[IA|ö0], where IA(ω) =
I (ω ∈ A).

In the sequel I will use the shorthand notation P(Y ∈ B|X ) to indicate the
conditional probability P({ω ∈ � : Y (ω) ∈ B}|öX ),where B is a Borel set and
öX is the σ -algebra generated by X, and P(Y ∈ B|ö0) to indicate P({ω ∈
� : Y (ω) ∈ B}|ö0) for any sub-σ -algebraö0 ofö. The event Y ∈ B involved
may be replaced by any equivalent expression.
Recalling the notion of independence of sets and random variables, vectors,

or both (see Chapter 1), we can now define conditional independence:

Definition 3.3: A sequence of sets A j ∈ ö is conditional independent rela-
tive to a sub-σ -algebra ö0 of ö if for any subsequence jn, P(∩n A jn |ö0) =∏
n P(A jn |ö0).Moreover, a sequence Y j of randomvariables or vectors defined

on a common probability space {�,ö, P} is conditional independent relative
to a sub-σ -algebraö0 ofö if for any sequence B j of conformable Borel sets the
sets A j = {ω ∈ � : Y j (ω) ∈ Bj } are conditional independent relative toö0.
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3.4. Conditioning on Increasing Sigma-Algebras

Consider a random variable Y defined on the probability space {�,ö, P} satis-
fying E[|Y |] < ∞, and letön be a nondecreasing sequence of sub-σ -algebras
of ö :ön ⊂ ön+1 ⊂ ö. The question I will address is, What is the limit of
E[Y |ön] for n→ ∞? As will be shown in the next section, the answer to this
question is fundamental for time series econometrics.
We have seen in Chapter 1 that the union of σ -algebras is not necessarily a

σ -algebra itself. Thus, ∪∞
n=1 ön may not be a σ -algebra. Therefore, let

ö∞ =
∞∨
n=1

ön
def.= σ

(
∞∪
n=1

ön

)
, (3.23)

that is, ö∞ is the smallest σ -algebra containing ∪∞
n=1 ön. Clearly, ö∞ ⊂ ö

because the latter also contains ∪∞
n=1 ön.

The answer to our question is now as follows:

Theorem 3.12: If Y is measurableö, E[|Y |] < ∞, and {ön} is a nondecreas-
ing sequence of sub-σ -algebras ofö, then limn→∞ E[Y |ön] = E[Y |ö∞]with
probability 1, whereö∞ is defined by (3.23).

This result is usually proved by using martingale theory. See Billingsley
(1986), Chung (1974), and Chapter 7 in this volume. However, in Appendix
3.A I will provide an alternative proof of Theorem 3.12 that does not require
martingale theory.

3.5. Conditional Expectations as the Best Forecast Schemes

I will now show that the conditional expectation of a random variable Y given a
random variable or vectorX is the best forecasting scheme for Y in the sense that
the mean-square forecast error is minimal. Let ψ(X ) be a forecast of Y, where
ψ is a Borel-measurable function. The mean-square forecast error (MSFE) is
defined by MSFE = E[(Y − ψ(X ))2]. The question is, For which function ψ
is the MSFE minimal? The answer is

Theorem 3.13: If E[Y 2] < ∞, then E[(Y − ψ(X ))2] is minimal for ψ(X ) =
E[Y |X ].

Proof: According to Theorem 3.10 there exists a Borel-measurable function
g such that E[Y |X ] = g(X ) with probability 1. Let U = Y − E[Y |X ] = Y −
g(X ). It follows from Theorems 3.3, 3.4, and 3.9 that
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E[(Y − ψ(X ))2|X ] = E[(U + g(X )− ψ(X ))2|X ]
= E[U 2|X ]+ 2E[(g(X )− ψ(X ))U |X ]

+ E[(g(X )− ψ(X ))2|X ]
= E[U 2|X ]+ 2(g(X )− ψ(X ))E[U |X ]

+ (g(X )− ψ(X ))2, (3.24)

where the last equality follows fromTheorems3.4 and3.9.Because, byTheorem
3.6, E(U |X ) = 0 with probability 1, equation (3.24) becomes

E[(Y − ψ(X ))2|X ] = E[U 2|X ]+ (g(X )− ψ(X ))2. (3.25)

Applying Theorem 3.1 to (3.25), it follows now that

E[(Y − ψ(X ))2] = E[U 2]+ E[(g(X )− ψ(X ))2],

which is minimal if E[(g(X )− ψ(X ))2] = 0. According to Lemma 3.1 this
condition is equivalent to the condition that P[g(X ) = ψ(X )] = 1. Q.E.D.
Theorem 3.13 is the basis for regression analysis. In parametric regression

analysis, a dependent variable Y is “explained” by a vector X of explanatory
(also called “independent”) variables according to a regressionmodel of the type
Y = g(X, θ0)+U, where g(x, θ ) is a known function of x and a vector θ of
parameters, andU is the error termassumed to satisfy the condition E[U |X ] = 0
(with probability 1). The problem is then to estimate the unknown parameter
vector θ0. For example, a Mincer-type wage equation explains the log of the
wage,Y, of aworker from the years of education, X1, and the years of experience
on the job, X2, by a regressionmodel of the typeY = α + βX1 + γ X2 − δX2

2 +
U, and thus in this case θ = (α, β, γ, δ)T, X = (X1, X2)T, and g(X, θ ) = α +
βX1 + γ X2 − δX2

2. The condition that E[U |X ] = 0 with probability 1 now
implies that E[Y |X ] = g(X, θ0) with probability 1 for some parameter vector
θ0. It follows therefore from Theorem 3.12 that θ0 minimizes the mean-square
error function E[(Y − g(X, θ ))2]:

θ0 = argminθ E[(Y − g(X, θ ))2], (3.26)

where “argmin” stands for the argument for which the function involved is
minimal.
Next, consider a strictly stationary time series process Yt .

Definition 3.4: A time series process Yt is said to be strictly station-
ary if, for arbitrary integers m1 < m2 < · · · < mk , the joint distribution of
Yt−m1 , . . . , Yt−mk does not depend on the time index t.

Consider the problem of forecasting Yt of the basis of the past Yt− j , j ≥ 1,
of Yt . Usually we do not observe the whole past of Yt but only Yt− j for j =
1, . . . , t − 1, for instance. It follows from Theorem 3.13 that the optimalMSFE
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forecast of Yt given the information on Yt− j for j = 1, . . . ,m is the conditional
expectation of Yt given Yt− j for j = 1, . . . ,m. Thus, if E[Y 2

t ] < ∞, then

E[Yt |Yt−1, . . . , Yt−m] = argminψE[(Yt − ψ(Yt−1, . . . , Yt−m))2].

Similarly, as before, the minimum is taken over all Borel-measurable functions
ψ on R

m . Moreover, because of the strict stationarity assumption, there exists
a Borel-measurable function gm on R

m that does not depend on the time index
t such that with probability 1,

E[Yt |Yt−1, . . . , Yt−m] = gm(Yt−1, . . . , Yt−m)

for all t. Theorem 3.12 now tells us that

lim
m→∞ E[Yt |Yt−1, . . . , Yt−m] = lim

m→∞ gm(Yt−1, . . . , Yt−m)

= E[Yt |Yt−1, Yt−2, Yt−3, . . .], (3.27)

where the latter is the conditional expectation of Yt given its whole past
Yt− j , j ≥ 1. More formally, let öt−1

t−m = σ (Yt−1, . . . , Yt−m) and öt−1
−∞ =∨∞

m=1 ö
t−1
t−m . Then (3.27) reads

lim
m→∞ E[Yt |ö

t−1
t−m] = E[Yt |öt−1

−∞].

The latter conditional expectation is also denoted by Et−1[Yt ]:

Et−1[Yt ]
def.= E[Yt |Yt−1, Yt−2, Yt−3, . . .]

def.= E[Yt |öt−1
−∞]. (3.28)

In practice we do not observe the whole past of time series processes.
However, it follows from Theorem 3.12 that if t is large, then approximately,
E[Yt |Yt−1, . . . , Y1] ≈ Et−1[Yt ].
In time series econometrics the focus is often onmodeling (3.28) as a function

of past values of Yt and an unknown parameter vector θ , for instance. For
example, an autoregressive model of order 1, denoted by AR(1), takes the form
Et−1[Yt ] = α + βYt−1, θ = (α, β)T, where |β| < 1. Then Yt = α + βYt−1 +
Ut , where Ut is called the error term. If this model is true, then Ut = Yt −
Et−1[Yt ], which by Theorem 3.6 satisfies P(Et−1[Ut ] = 0) = 1.
The condition |β| < 1 is one of the two necessary conditions for strict station-

arity of Yt , the other one being thatUt be strictly stationary. To see this, observe
that by backwards substitution we can write Yt = α/(1− β)+∑∞

j=0 β
jUt− j ,

provided that |β| < 1. The strict stationarity of Yt follows now from the strict
stationarity of Ut .

3.6. Exercises

1. Why is property (3.6) equivalent to (3.8)?

2. Why is the set A defined by (3.11) contained inöx?

3. Why does (3.12) hold?
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4. Prove Theorem 3.5.

5. Prove Theorem 3.6.

6. Verify (3.20). Why does Theorem 3.8 follow from (3.20)?

7. Why does (3.21) imply that Theorem 3.9 holds ?

8. Complete the proof of Theorem3.9 for the general case bywriting, for instance,

X = max(0, X )−max(0,−X ) = X1 − X2, and

Y = max(0, Y )−max(0,−Y ) = Y1 − Y2
and applying the result of part (b) of the proof to each pair Xi , Y j .

9. Prove (3.22).

10. LetY andXbe randomvariableswith E[|Y |] < ∞ and�be aBorel-measurable
one-to-one mapping from R into R. Prove that E[Y |X ] = E[Y |�(X )] with
probability 1.

11. Let Y and X be random variables with E[Y 2] < ∞, P(X = 1) = P(X = 0) =
0.5, E[Y ] = 0, and E[X · Y ] = 1. Derive E[Y |X ]. Hint: Use Theorems 3.10
and 3.13.

APPENDIX

3.A. Proof of Theorem 3.12

Let Zn = E[Y |ön] and Z = E[Y |ö∞], and let A ∈ ∪∞
n=1 ön be arbitrary.

Note that the latter implies A ∈ ö∞. Because of the monotonicity of {ön}
there exists an index kA (depending on A) such that for all n ≥ kA,∫

A

Zn(ω)dP(ω) =
∫
A

Y (ω)dP(ω). (3.29)

If Y is bounded: P[|Y | < M] = 1 for some positive real numberM, then Zn is
uniformly bounded: |Zn| = |E[Y |ön]| ≤ E[|Y ||ön] ≤ M ; hence, it follows
from (3.29), the dominated convergence theorem, and the definition of Z that∫

A

lim
n→∞ Zn(ω)dP(ω) =

∫
A

Z (ω)dP(ω) (3.30)

for all sets A ∈ ∪∞
n=1 ön. Although ∪∞

n=1 ön is not necessarily a σ -algebra, it
is easy to verify from the monotonicity of {ön} that ∪∞

n=1 ön is an algebra.
Now letö∗ be the collection of all subsets ofö∞ satisfying the following two
conditions:

(a) For each set B ∈ ö∗ equality (3.30) holds with A = B.
(b) For each pair of sets B1 ∈ ö∗ and B2 ∈ ö∗, equality (3.30) holds with

A = B1 ∪ B2.
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Given that (3.30) holds for A = � because� ∈ ∪∞
n=1 ön, it is trivial that (3.30)

also holds for the complement Ã of A:∫
Ã

lim
n→∞ Zn(ω)dP(ω) =

∫
Ã

Z (ω)dP(ω);

hence, if B ∈ ö∗, then B̃ ∈ ö∗. Thus,ö∗ is an algebra. Note that this algebra
exists because∪∞

n=1 ön is an algebra satisfying the conditions (a) and (b). Thus,
∪∞
n=1 ön ⊂ ö∗ ⊂ ö∞.
I will show now that ö∗ is a σ -algebra, and thus that ö∞ = ö∗ because

the former is the smallest σ -algebra containing ∪∞
n=1 ön. For any sequence of

disjoint sets A j ∈ ö∗, it follows from (3.30) that∫
∪∞
j=1 A j

lim
n→∞ Zn(ω)dP(ω) =

∞∑
j=1

∫
A j

lim
n→∞ Zn(ω)dP(ω)

=
∞∑
j=1

∫
A j

Z (ω)dP(ω) =
∫

∪∞
j=1 A j

Z (ω)dP(ω);

hence, ∪∞
j=1 A j ∈ ö∗. This implies thatö∗ is a σ -algebra containing ∪∞

n=1 ön

becausewe have seen inChapter 1 that an algebra closed under countable unions
of disjoint sets is a σ -algebra. Hence,ö∞ = ö∗, and consequently (3.30), hold
for all sets A ∈ ö∞.This implies that P[Z = limn→∞ Zn] = 1 if Y is bounded.
Next, let Y be nonnegative: P[|Y ≥ 0] = 1 and denote for natural num-

bers m ≥ 1, Bm = {ω ∈ � :m − 1 ≤ Y (ω) < m}, Ym = Y · I (m − 1 ≤ Y <

m), Z (m)
n = E[Ym |ön] and Z (m) = E[Ym |ö∞]. I have just shown that for fixed

m ≥ 1 and arbitrary A ∈ ö∞,∫
A

lim
n→∞ Z

(m)
n (ω)dP(ω) =

∫
A

Z (m)(ω)dP(ω) =
∫
A

Ym(ω)dP(ω)

=
∫

A∩Bm

Y (ω)dP(ω), (3.31)

where the last two equalities follow from the definitions of Z (m) and Zm . Because
Ym(ω)I (ω ∈ B̃m) = 0, it follows that Z (m)

n (ω)I (ω ∈ B̃m) = 0; hence,∫
A

lim
n→∞ Z

m
n (ω)dPω =

∫
A∪Bm

lim
n→∞ Z

(m)
n (ω)dPω

+
∫

A∩B̃m

lim
n→∞ Z

(m)
n (ω)dP(ω)

=
∫

A∩Bm

lim
n→∞ Z

(m)
n (ω)dPω,
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and thus by (3.31),∫
A∩Bm

lim
n→∞ Z

(m)
n (ω)dP(ω) =

∫
A∩Bm

Y (ω)dP(ω).

Moreover, it follows from the definition of conditional expectations and Theo-
rem 3.7 that

Z (m)
n = E[Y · I (m − 1 ≤ Y < m)|ön] = E[Y |Bm ∩ ön]

= E[E(Y |ön)|Bm ∩ ön] = E[Zn|Bm ∩ ön];

hence, for every set A ∈ ∪∞
n=1 ön,

lim
n→∞

∫
A∩Bm

Z (m)
n (ω)dP(ω) = lim

n→∞

∫
A∩Bm

Zn(ω)dP(ω)

=
∫

A∩Bm

lim
n→∞ Zn(ω)dP(ω)

=
∫

A∩Bm

Y (ω)dP(ω), (3.32)

which by the same argument as in the bounded case carries over to the sets
A ∈ ö∞. It follows now from (3.31) and (3.32) that∫

A∩Bm

lim
n→∞ Zn(ω)dP(ω) =

∫
A∩Bm

Y (ω)dP(ω)

for all sets A ∈ ö∞. Consequently,∫
A

lim
n→∞ Zn(ω)dP(ω) =

∞∑
m=1

∫
A∩Bm

lim
n→∞ Zn(ω)dP(ω)

=
∞∑
m=1

∫
A∩Bm

Y (ω)dP(ω) =
∫
A

Y (ω)dP(ω)

for all sets A ∈ ö∞. This proves the theorem for the case P[|Y ≥ 0] = 1.
The general case is now easy using the decomposition Y = max(0, Y )−
max(0,−Y ).



4 Distributions and Transformations

This chapter reviews themost important univariate distributions and shows how
to derive their expectations, variances, moment-generating functions (if they
exist), and characteristic functions. Many distributions arise as transformations
of random variables or vectors. Therefore, the problem of how the distribution
of Y = g(X ) is related to the distribution of X for a Borel-measure function or
mapping g(x) is also addressed.

4.1. Discrete Distributions

In Chapter 1 I introduced three “natural” discrete distributions, namely, the
hypergeometric, binomial, and Poisson distributions. The first two are natural
in the sense that they arise from the way the random sample involved is drawn,
and the last is natural because it is a limit of the binomial distribution. A fourth
“natural” discrete distribution Iwill discuss is thenegativebinomial distribution.

4.1.1. The Hypergeometric Distribution

Recall that a random variable X has a hypergeometric distribution if

P(X = k) =
(
K
k

) (
N − K
n − k

)
(
N
n

) for k = 0, 1, 2, . . . ,min(n, K ),

P(X = k) = 0 elsewhere, (4.1)

where 0 < n < N and0 < K < N are natural numbers.This distribution arises,
for example, if we randomly draw n balls without replacement from a bowl
containing K red balls and N − K white balls. The random variable X is
then the number of red balls in the sample. In almost all applications of this
distribution, n < K , and thus I will focus on that case only.

86
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The moment-generating function involved cannot be simplified further than
its definition mH (t) =

∑m
k=0 exp(t · k)P(X = k), and the same applies to the

characteristic function. Therefore, we have to derive the expectation directly:

E[X ] =
n∑
k=0

k

(
K
k

) (
N − K
n − k

)
(
N
n

) =
n∑
k=1

K ! (N − K )!
(k− 1) ! (K − k) ! (n− k) ! (N − K − n+ k) !

N !
n ! (N − n)!

= nK

N

n−1∑
k=0

(K − 1) ! ((N − 1)− (K − 1))!
k ! ((K − 1)−k) ! ((n− 1)− k) ! ((N − 1)− (K − 1)− (n− 1)+ k)!

(N − 1)!
(n− 1) ! ((N − 1)− (n− 1))!

= nK

N

n−1∑
k=0

(
K − 1
k

) (
(N − 1)− (K − 1)

(n − 1)− k
)

(
N − 1
n − 1

) = nK

N
.

Along similar lines it follows that

E[X (X − 1)] = n(n − 1)K (K − 1)

N (N − 1)
; (4.2)

hence,

var (X ) = E[X2]− (E[X ])2 = nK

N

(
(n − 1)(K − 1)

N − 1
+ 1− nK

N

)
.

4.1.2. The Binomial Distribution

A random variable X has a binomial distribution if

P(X = k) =
(
n
k

)
pk(1− p)n−k for k = 0, 1, 2, . . . , n,

P(X = k) = 0 elsewhere, (4.3)

where 0 < p < 1. This distribution arises, for example, if we randomly draw n
balls with replacement from a bowl containing K red balls and N − K white
balls, where K/N = p. The random variable X is then the number of red balls
in the sample.
We have seen in Chapter 1 that the binomial probabilities are limits of hy-

pergeometric probabilities: If both N and K converge to infinity such that
K/N → p, then for fixed n and k, (4.1) converges to (4.3). This also suggests
that the expectation and variance of the binomial distribution are the limits of
the expectation and variance of the hypergeometric distribution, respectively:

E[X ] = np, (4.4)

var (X ) = np(1− p). (4.5)
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As we will see in Chapter 6, in general, convergence of distributions does not
imply convergence of expectations and variances except if the random variables
involved are uniformly bounded. Therefore, in this case the conjecture is true
because the distributions involved are bounded: P[0 ≤ X < n] = 1. However,
it is not hard to verify (4.4) and (4.5) from the moment-generating function:

mB(t) =
n∑
k=0

exp(t · k)
(
n
k

)
pk(1− p)n−k

=
n∑
k=0

(
n
k

)
(pet )k(1− p)n−k

= (p · et + 1− p)n. (4.6)

Similarly, the characteristic function is

ϕB(t) = (p · ei ·t + 1− p)n.

4.1.3. The Poisson Distribution

A randomvariable X is Poisson(λ)-distributed if for k = 0, 1, 2, 3, . . . and some
λ > 0,

P(X = k) = exp(−λ)λ
k

k!
. (4.7)

Recall that the Poisson probabilities are limits of the binomial probabilities
(4.3) for n→∞ and p ↓ 0 such that np→ λ. It is left as an exercise to show
that the expectation, variance, moment-generating function, and characteristic
function of the Poisson(λ) distribution are

E[X ] = λ, (4.8)

var (X ) = λ, (4.9)

mP (t) = exp[λ(et −1)], (4.10)

ϕP (t) = exp[λ(ei ·t −1)], (4.11)

respectively.

4.1.4. The Negative Binomial Distribution

Consider a sequence of independent repetitions of a random experiment with
constant probability p of success. Let the randomvariable X be the total number
of failures in this sequence before themth success, wherem ≥ 1. Thus, X + m
is equal to the number of trials necessary to produce exactly m successes.
The probability P(X = k), k = 0, 1, 2, . . . is the product of the probability of
obtaining exactly m − 1 successes in the first k + m − 1 trials, which is equal
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to the binomial probability(
k + m − 1
m − 1

)
pm−1(1− p)k+m−1−(m−1)

and the probability p of a success on the (k + m)th trial. Thus,

P(X = k) =
(
k + m − 1
m − 1

)
pm(1− p)k, k = 0, 1, 2, 3, . . . .

This distribution is called the negative binomial (m, p) – abbreviated NB
(m, p) – distribution.
It is easy to verify from the preceding argument that an NB(m, p)-distributed

random variable can be generated as the sum of m independent NB(1, p)-
distributed random variables (i.e., if X1,1, . . . , X1,m are independent NB(1, p)
distributed, then X = ∑n

j=1 X1, j is NB(m, p) distributed.) The moment-
generating function of the NB(1, p) distribution is

mNB(1,p)(t) =
∞∑
k=0

exp(k · t)
(
k
0

)
p(1− p)k

= p
∞∑
k=0

(
(1− p) et)k

= p

1− (1− p) et
provided that t < − ln(1− p), hence, the moment-generating function of the
NB(m, p) distribution is

mNB(m,p)(t) =
(

p

1− (1− p) et
)m

, t < − ln(1− p). (4.12)

Replacing t by i · t in (4.12) yields the characteristic function

ϕNB(m,p)(t) =
(

p

1− (1− p) ei ·t
)m

=
(
p(1+ (1− p) ei ·t )

1+ (1− p)2
)m

.

It is now easy to verify, using the moment generating function that, for an
NB(m, p)-distributed random variable X,

E[X ] = m(1− p)/p,
var (X ) = m(1− p)/p2.

4.2. Transformations of Discrete Random Variables and Vectors

In the discrete case, the questionGiven a randomvariable or vector X and aBorel
measure function or mapping g(x), how is the distribution of Y = g(X ) related
to the distribution of X? is easy to answer. If P[X ∈ {x1, x2, . . .}] = 1 and
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g(x1), g(x2), . . . are all different, the answer is trivial: P(Y = g(x j )) = P(X =
x j ). If some of the values g(x1), g(x2), . . . are the same, let {y1, y2, . . .} be the
set of distinct values of g(x1), g(x2), . . . Then

P(Y = y j ) =
∞∑
i=1

I [y j = g(xi )]P(X = xi ). (4.13)

It is easy to see that (4.13) carries over to the multivariate discrete case.
For example, if X is Poisson(λ)-distributed and g(x) = sin2(πx) =

(sin(πx))2 – and thus for m = 0, 1, 2, 3, . . . , g(2m) = sin2(πm) = 0 and
g(2m + 1) = sin2(πm + π/2) = 1 – then P(Y = 0) = e−λ ∑∞

j=0 λ
2 j/(2 j)!

and P(Y = 1) = e−λ ∑∞
j=0 λ

2 j+1/(2 j + 1)!
As an application, let X = (X1, X2)T, where X1 and X2 are independent

Poisson(λ) distributed, and let Y = X1 + X2. Then for y = 0, 1, 2, . . .

P(Y = y) =
∞∑
i=0

∞∑
j=0

I [y = i + j]P(X1 = i, X2 = j)

= exp(−2λ)
(2λ)y

y!
. (4.14)

Hence, Y is Poisson(2λ) distributed. More generally, we have

Theorem 4.1: If for j = 1, . . . , k the random variables X j are independent
Poisson(λ j ) distributed, then

∑k
j=1 X j is Poisson (

∑k
j=1 λ j ) distributed.

4.3. Transformations of Absolutely Continuous Random Variables

If X is absolutely continuously distributed, with distribution function F(x) =∫ x
−∞ f (u)du, the derivation of the distribution function of Y = g(X ) is less
trivial. Let us assumefirst that g is continuous andmonotonic increasing: g(x) <
g(z) if x < z. Note that these conditions imply that g is differentiable.1 Then
g is a one-to-one mapping – that is, for each y ∈ [g(−∞), g(∞)] there exists
one and only one x ∈ R ∪ {−∞} ∪ {∞} such that y = g(x). This unique x is
denoted by x = g−1( y).Note that the inverse function g−1( y) is alsomonotonic
increasing and differentiable. Now let H ( y) be the distribution function of Y .
Then

H ( y) = P(Y ≤ y) = P(g(X ) ≤ y)
= P(X ≤ g−1( y)) = F(g−1( y)). (4.15)

1 Except perhaps on a set with Lebesgue measure zero.
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Taking the derivative of (4.15) yields the density H ( y) of Y :

h( y) = H ′( y) = f (g−1( y))
dg−1( y)

dy
. (4.16)

If g is continuous and monotonic decreasing: g(x) < g(z) if x > z,
then g−1( y) is also monotonic decreasing, and thus (4.15) becomes

H ( y) = P(Y ≤ y) = P(g(X ) ≤ y)
= P(X ≥ g−1( y)) = 1− F(g−1( y)),

and (4.16) becomes

h( y) = H ′( y) = f (g−1( y))

(
−dg

−1( y)

dy

)
. (4.17)

Note that in this case the derivative of g−1( y) is negative because g−1( y) is
monotonic decreasing. Therefore, we can combine (4.16) and (4.17) into one
expression:

h( y) = f (g−1( y))

∣∣∣∣∣dg
−1( y)

dy

∣∣∣∣∣ . (4.18)

Theorem 4.2: If X is absolutely continuously distributed with density f, and
Y = g(X ), where g is a continuous, monotonic real function on R, then Y
is absolutely continuously distributed with density h( y) given by (4.18) if
min[g(−∞), g(∞)] < y < max[g(−∞), g(∞)], and h( y) = 0 elsewhere.

4.4. Transformations of Absolutely Continuous Random Vectors

4.4.1. The Linear Case

Let X = (X1, X2)T be a bivariate random vector with distribution function

F(x) =
x1∫

−∞

x2∫
−∞

f (u1, u2) du1du2 =
∫

(−∞,x1]×(−∞,x2]

f (u) du,

where x = (x1, x2)
T, u = (u1, u2)

T.

In this section I will derive the joint density of Y = AX + b, where A is a
(nonrandom) nonsingular 2× 2 matrix and b is a nonrandom 2× 1 vector.
Recall from linear algebra (see Appendix I) that any square matrix A can be

decomposed into

A = R−1L · D ·U, (4.19)
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where R is a permutation matrix (possibly equal to the unit matrix I ), L is a
lower-triangular matrix with diagonal elements all equal to 1, U is an upper-
triangular matrix with diagonal elements all equal to 1, and D is a diagonal
matrix. The transformation Y = AX + b can therefore be conducted in five
steps:

Z1 = UX
Z2 = DZ1
Z3 = LZ2
Z4 = R−1 Z3
Y = Z4 + b.

(4.20)

Therefore, I will consider the first four cases, A = U, A = D, A = L , and
A = R−1 for b = 0 and then the case A = I , b 
= 0.
Let Y = AX with A an upper-triangular matrix:

A =
(
1 a
0 1

)
. (4.21)

Then

Y =
(
Y1
Y2

)
=

(
X1 + aX2
X2

)
;

hence, the joint distribution function H ( y) of Y is

H ( y) = P(Y1 ≤ y1, Y2 ≤ y2) = P(X1+ aX2 ≤ y1, X2 ≤ y2)
= E [I (X1 ≤ y1− aX2)I (X2 ≤ y2)]
= E (E [I (X1 ≤ y1− aX2)| X2] I (X2 ≤ y2))

=
y2∫

−∞


 y1−ax2∫

−∞
f1|2(x1 | x2) dx1


 f2(x2) dx2

=
y2∫

−∞


 y1−ax2∫

−∞
f (x1, x2) dx1


 dx2, (4.22)

where f1|2(x1|x2) is the conditional density of X1 given X2 = x2 and f2(x2) is
the marginal density of X2. If we take partial derivatives, it follows from (4.22)
that for Y = AX with A given by (4.21),

h( y) = ∂2H ( y)

∂y1∂y2
= ∂

∂y2

y2∫
−∞

f ( y1 − ax2, x2)dx2

= f ( y1 − ay2, y2) = f (A−1y).
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Along the same lines, it follows that, if A is a lower-triangular matrix, then the
joint density of Y = AX is

h( y) = ∂2H ( y)

∂y1∂y2
= f ( y1, y2 − ay1) = f (A−1y). (4.23)

Next, let Y = AX with A a nonsingular diagonal matrix

A =
(
a1 0
0 a2

)
,

where a1 
= 0, a2 
= 0. Then Y1 = a1X1 and Y2 = a2X2; hence, the joint distri-
bution function H ( y) is

H ( y) = P(Y1 ≤ y1, Y2 ≤ y2) = P(a1X1 ≤ y1, a2X2 ≤ y2) =
P(X1 ≤ y1/a1, X2 ≤ y2/a2)

=
y1/a1∫
−∞

y2/a2∫
−∞

f (x1, x2)dx1dx2 if a1 > 0, a2 > 0,

P(X1 ≤ y1/a1, X2 > y2/a2)

=
y1/a1∫
−∞

∞∫
y2/a2

f (x1, x2)dx1dx2 if a1 > 0, a2 < 0,

P(X1 > y1/a1, X2 ≤ y2/a2)

=
∞∫

y1/a1

y2/a2∫
−∞

f (x1, x2)dx1dx2 if a1 < 0, a2 > 0,

P(X1 > y1/a1, X2 > y2/a2)

=
∞∫

y1/a1

∞∫
y2/a2

f (x1, x2)dx1dx2 if a1 < 0, a2 < 0. (4.24)

It is a standard calculus exercise to verify from (4.24) that in all four cases

h( y) = ∂2H ( y)

∂y1∂y2
= f ( y1/a1, y2/a2)

|a1a2| = f (A−1y)|det(A−1)|. (4.25)

Now consider the case Y = AX , for instance, where A is the inverse of a
permutation matrix (which is a matrix that permutates the columns of the unit
matrix):

A =
(
0 1
1 0

)−1

=
(
0 1
1 0

)
.
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Then the joint distribution function H ( y) of Y is

H ( y) = P(Y1 ≤ y1, Y2 ≤ y2) = P(X2 ≤ y1, X1 ≤ y2)
= F( y2, y1) = F(Ay),

and the density involved is

h( y) = ∂2H ( y)

∂y1∂y2
= f ( y2, y1) = f (Ay).

Finally, consider the case Y = X + b with b = (b1, b2)T. Then the joint dis-
tribution function H(y) of Y is

H ( y) = P(Y1 ≤ y1, Y2 ≤ y2) = P(X1 ≤ y1 − b1, X2 ≤ y2 − b2)
= F( y1 − b1, y2 − b2);

hence, the density if Y is

h( y) = ∂2H ( y)

∂y1∂y2
= f ( y1 − b1, y2 − b2) = f ( y − b).

Combining these results, we find it is not hard to verify, using the decompo-
sition (4.19) and the five steps in (4.20), that for the bivariate case (k = 2):

Theorem 4.3: Let X be k-variate, absolutely continuously distributed with
joint density f (x), and let Y = AX + b, where A is a nonsingular square ma-
trix. Then Y is k-variate, absolutely continuously distributed with joint density
h( y) = f (A−1( y − b))|det(A−1)|.

However, this result holds for the general case as well.

4.4.2. The Nonlinear Case

If we denote G(x) = Ax+ b,G−1( y) = A−1( y − b), then the result of Theo-
rem 4.3 reads h( y) = f (G−1( y))|det(∂G−1( y)/∂y)|. This suggests that Theo-
rem 4.3 can be generalized as follows:

Theorem 4.4: Let X be k-variate, absolutely continuously distributed with
joint density f (x), x = (x1, . . . , xk)T, and let Y = G(X ), where G(x) =
(g1(x), . . . , gk(x))T is a one-to-one mapping with inverse mapping x =
G−1( y) = (g∗1 ( y), . . . , g

∗
k ( y))

T whose components are differentiable in the
components of y = ( y1, . . . , yk)T. Let J ( y) = ∂x/∂y = ∂G−1( y)/∂y, that is,
J ( y) is the matrix with i, j’s element ∂g∗i ( y)/∂y j , which is called the Jacobian.
Then Y is k-variate, absolutely continuously distributed with joint density
h( y) = f (G−1( y))|det(J ( y))| for y in the set G(Rk) = {y ∈ R

k : y = G(x),
f (x) > 0, x ∈ R

k} and h( y) = 0 elsewhere.
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This conjecture is indeed true. Its formal proof is given in Appendix 4.B.
An application of Theorem 4.4 is the following problem. Consider the

function

f (x) = c · exp(−x2/2) if x ≥ 0,

= 0 if x < 0. (4.26)

For which value of c is this function a density?
To solve this problem, consider the joint density f (x1, x2) = c2 exp[−(x21 +

x22 )/2], x1 ≥ 0, x2 ≥ 0, which is the joint distribution of X = (X1, X2)T, where
X1 and X2 are independent random drawings from the distribution with density
(4.26). Next, consider the transformation Y = (Y1, Y2)T = G(X ) defined by

Y1 =
√
X2
1 + X2

2 ∈ (0,∞)

Y2 = arctan(X1/X2) ∈ (0, π/2).

The inverse X = G−1(Y ) of this transformation is

X1 = Y1 sin(Y2),
X2 = Y1 cos(Y2)

with Jacobian

J (Y ) =
(
∂X1/∂Y1 ∂X1/∂Y2
∂X2/∂Y1 ∂X2/∂Y2

)
=

(
sin(Y2) Y1cos(Y2)
cos(Y2) −Y1sin(Y2)

)
.

Note that det[J (Y )] = −Y1. Consequently, the density h( y) = h( y1, y2) =
f (G−1( y))|det(J ( y))| is

h( y1, y2) = c2y1 exp
(−y21/2) for y1 > 0 and 0 < y2 < π/2,

= 0 elsewhere;

hence,

1 =
∞∫
0

π/2∫
0

c2y1 exp
(− y21 /2) dy2dy1

= c2(π/2)
∞∫
0

y1 exp
(− y21 /2) dy1

= c2 π/2.
Thus, the answer is c = √

2/π :

∞∫
0

exp(−x2/2)√
π/2

dx = 1.
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Note that this result implies that

∞∫
−∞

exp(−x2/2)√
2π

dx = 1. (4.27)

4.5. The Normal Distribution

Several univariate continuous distributions that play a key role in statistical and
econometric inference will be reviewed in this section, starting with the normal
distribution. The standard normal distribution emerges as a limiting distribution
of an aggregate of randomvariables. In particular, if X1, . . . , Xn are independent
randomvariableswith expectationµ and finite and positive varianceσ 2, then for
large n the random variable Yn = (1/

√
n)

∑n
j=1(X j − µ)/σ is approximately

standard normally distributed. This result, known as the central limit theorem,
will be derived in Chapter 6 and carries over to various types of dependent
random variables (see Chapter 7).

4.5.1. The Standard Normal Distribution

The standard normal distribution is an absolutely continuous distribution with
density function

f (x) = exp(−x2/2)√
2π

, x ∈ R. (4.28)

Compare this equation with (4.27). Its moment-generating function is

mN (0,1)(t) =
∞∫

−∞
exp(t · x) f (x)dx =

∞∫
−∞

exp(t · x) exp(−x
2/2)√

2π
dx

= exp(t2/2)

∞∫
−∞

exp[−(x2 − 2t · x + t2)/2]√
2π

dx

= exp(t2/2)

∞∫
−∞

exp[−(x − t)2/2]√
2π

dx

= exp(t2/2)

∞∫
−∞

exp[−u2/2]√
2π

du = exp(t2/2), (4.29)

which exists for all t ∈ R, and its characteristic function is

ϕN (0,1)(t) = m(i · t) = exp(−t2/2).
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Consequently, if X is standard normally distributed, then

E[X ] = m ′(t)
∣∣
t=0

= 0, E[X2] = var (X ) = m ′′(t)
∣∣
t=0

= 1.

Given this result, the standard normal distribution is denoted by N (0, 1), where
the first number is the expectation and the second number is the variance, and
the statement “X is standard normally distributed” is usually abbreviated as
“X ∼ N (0, 1).”

4.5.2. The General Normal Distribution

Now let Y = µ+ σ X , where X ∼ N (0, 1). It is left as an easy exercise to verify
that the density of Y takes the form

f (x) = exp
(− 1

2 (x − µ)2/σ 2
)

σ
√
2π

, x ∈ R

with corresponding moment-generating function

mN (µ,σ 2)(t) = E[exp(t · Y )] = exp(µt) exp(σ 2t2/2), t ∈ R

and characteristic function

ϕN (µ,σ 2)(t) = E[exp(i · t · Y )] = exp(i ·µt) exp(−σ 2t2/2).

Consequently, E[Y ] = µ, var (Y ) = σ 2. This distribution is the general normal
distribution, which is denoted by N (µ, σ 2). Thus, Y ∼ N (µ, σ 2).

4.6. Distributions Related to the Standard Normal Distribution

The standard normal distribution generates, via various transformations, a few
other distributions such as the chi-square, t , Cauchy, and F distributions. These
distributions are fundamental in testing statistical hypotheses, as we will see in
Chapters 5, 6, and 8.

4.6.1. The Chi-Square Distribution

Let X1, . . . Xn be independent N (0, 1)-distributed random variables, and let

Yn =
n∑
j=1

X2
j . (4.30)

The distribution of Yn is called the chi-square distribution with n degrees of
freedom and is denoted by χ2

n or χ2(n). Its distribution and density functions
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can be derived recursively, starting from the case n = 1:

G1( y) = P[Y1 ≤ y] = P
[
X2
1 ≤ y

] = P[−√
y ≤ X1 ≤ √

y]

=
√
y∫

−√
y

f (x)dx = 2

√
y∫

0

f (x)dx for y > 0,

G1( y) = 0 for y ≤ 0,

where f (x) is defined by (4.28); hence,

g1( y) = G ′
1( y) = f

(√
y
)
/
√
y = exp(−y/2)

√
y
√
2π

for y > 0,

g1( y) = 0 for y ≤ 0.

Thus, g1( y) is the density of the χ2
1 distribution. The corresponding moment-

generating function is

mχ2
1
(t) = 1√

1− 2t
for t < 1/2, (4.31)

and the characteristic function is

ϕχ2
1
(t) = 1√

1− 2 · i · t =
√
1+ 2 · i · t√
1+ 4 · t2 . (4.32)

It follows easily from (4.30) – (4.32) that the moment-generating and charac-
teristic functions of the χ2

n distribution are

mχ2
n
(t) =

(
1

1− 2t

)n/2
for t < 1/2 (4.33)

and

ϕχ2
n
(t) =

(
1+ 2 · i · t
1+ 4 · t2

)n/2
,

respectively. Therefore, the density of the χ2
n distribution is

gn( y) = yn/2−1 exp(−y/2)
�(n/2)2n/2

, (4.34)

where, for α > 0,

�(α) =
∞∫
0

xα−1 exp(−x)dx. (4.35)

The result (4.34) can be proved by verifying that for t < 1/2, (4.33) is the
moment-generating function of (4.34). The function (4.35) is called the Gamma
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function. Note that

�(1) = 1, �(1/2) = √
π, �(α + 1) = α�(α) for α > 0. (4.36)

Moreover, the expectation and variance of the χ2
n distribution are

E[Yn] = n, var (Yn) = 2n. (4.37)

4.6.2. The Student’s t Distribution

Let X ∼ N (0, 1) and Yn ∼ χ2
n , where X and Yn are independent. Then the

distribution of the random variable

Tn = X√
Yn/n

is called the (Student’s2) t distribution with n degrees of freedom and is denoted
by tn .
The conditional density hn(x |y) of Tn given Yn = y is the density of the

N (1, n/y) distribution; hence, the unconditional density of Tn is

hn(x) =
∞∫
0

exp(−(x2 /n)y/2)√
n/y

√
2π

× yn/2−1 exp(−y/2)
�(n/2) 2n/2

dy

= �((n + 1)/2)√
nπ�(n/2)(1+ x2/n)(n+1)/2

.

The expectation of Tn does not exist if n = 1, as we will see in the next subsec-
tion, and is zero for n ≥ 2 by symmetry. Moreover, the variance of Tn is infinite
for n = 2, whereas for n ≥ 3,

var (Tn) = E
[
T 2
n

] = n

n − 2
. (4.38)

See Appendix 4.A.
The moment-generating function of the tn distribution does not exist, but its

characteristic function does, of course:

ϕtn (t) =
�((n + 1)/2)√
nπ�(n/2)

∞∫
−∞

exp(it · x)
(1+ x2/n)(n+1)/2

dx

= 2 ·�((n + 1)/2)√
nπ�(n/2)

∞∫
0

cos(t · x)
(1+ x2/n)(n+1)/2

dx.

2 The t distribution was discovered by W. S. Gosset, who published the result under the
pseudonym Student. The reason for this was that his employer, an Irish brewery, did not
want its competitors to know that statistical methods were being used.
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4.6.3. The Standard Cauchy Distribution

The t1 distribution is also known as the standard Cauchy distribution. Its density
is

h1(x) = �(1)√
π�(1/2)(1+ x2) =

1

π (1+ x2) , (4.39)

where the second equality follows from (4.36), and its characteristic function
is

ϕt1 (t) = exp(−|t |).
The latter follows from the inversion formula for characteristic functions:

1

2π

∞∫
−∞

exp(−i · t · x) exp(−|t |)dt = 1

π (1+ x2) . (4.40)

SeeAppendix 4.A.Moreover, it is easy to verify from (4.39) that the expectation
of the Cauchy distribution does not exist and that the secondmoment is infinite.

4.6.4. The F Distribution

Let Xm ∼ χ2
m and Yn ∼ χ2

n , where Xm and Yn are independent. Then the distri-
bution of the random variable

F = Xm/m

Yn/n

is said to be F with m and n degrees of freedom and is denoted by Fm,n . Its
distribution function is

Hm,n(x) = P[F ≤ x]

=
∞∫
0


 m·x ·y/n∫

0

zm/2−1 exp(−z/2)
�(m/2)2m/2

dz




× y
n/2−1 exp(−y/2)
�(n/2)2n/2

dy, x > 0,

and its density is

hm,n(x) =
mm/2 �(m/2+ n/2) xm/2−1

nm/2 �(m/2)�(n/2) [1+ m · x/n]m/2+n/2 , x > 0 (4.41)

See Appendix 4.A.
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Moreover, it is shown in Appendix 4.A that

E[F] = n/(n − 2) if n ≥ 3,
=∞ if n = 1, 2,

var (F) = 2 n2(m + n − 4)

m(n − 2)2(n − 4)
if n ≥ 5,

=∞ if n = 3, 4,
= not defined if n = 1, 2.

(4.42)

Furthermore, the moment-generating function of the Fm,n distribution does
not exist, and the computation of the characteristic function is too tedious an
exercise and is therefore omitted.

4.7. The Uniform Distribution and Its Relation to the Standard
Normal Distribution

As we have seen before in Chapter 1, the uniform [0, 1] distribution has density

f (x) = 1 for 0 ≤ x ≤ 1, f (x) = 0 elsewhere.

More generally, the uniform [a, b] distribution (denoted byU[a, b]) has density

f (x) = 1

b − a for a ≤ x ≤ b, f (x) = 0 elsewhere,

moment-generating function

mU [a,b](t) = exp(t · b)− exp(t · a)
(b − a)t ,

and characteristic function

ϕU [a,b](t) = exp(i · b · t)− exp(i · a · t)
i · (b − a)t

= (sin(b · t)+ sin(a · t))− i · (cos(b · t)+ cos(a · t))
b − a .

Most computer languages such as Fortran, Pascal, and Visual Basic have a
built-in function that generates independent random drawings from the uniform
[0, 1] distribution.3 These random drawings can be converted into independent
random drawings from the standard normal distribution via the transformation

X1 = cos(2π U1) ·
√−2 · ln(U2),

X2 = sin(2π U1) ·
√−2 · ln(U2),

(4.43)

3 See, for example, Section 7.1 in Press et al. (1989).
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where U1 and U2 are independent U [0, 1] distributed. Then X1 and X2 are
independent, standard normally distributed. This method is called the Box–
Muller algorithm.

4.8. The Gamma Distribution

The χ2
n distribution is a special case of a Gamma distribution. The density of

the Gamma distribution is

g(x) = xα−1 exp(−x/β)
�(α)βα

, x > 0, α > 0, β > 0.

This distribution is denoted by �(α, β). Thus, the χ2
n distribution is a Gamma

distribution with α = n/2 and β = 2.
The Gamma distribution has moment-generating function

m�(α,β)(t) = [1− βt]−α, t < 1/β (4.44)

and characteristic function ϕ�(α,β)(t) = [1− β · i · t]−α. Therefore, the �(α, β)
distribution has expectation αβ and variance αβ2.
The �(α, β) distribution with α = 1 is called the exponential distribution.

4.9. Exercises

1. Derive (4.2).

2. Derive (4.4) and (4.5) directly from (4.3).

3. Derive (4.4) and (4.5) from the moment-generating function (4.6).

4. Derive (4.8), (4.9), and (4.10).

5. If X is discrete andY = g(x), dowe need to require that g beBorelmeasurable?

6. Prove the last equality in (4.14).

7. Prove Theorem 4.1, using characteristic functions.

8. Prove that (4.25) holds for all four cases in (4.24).

9. Let X be a random variable with continuous distribution function F(x). Derive
the distribution of Y = F(X ).

10. The standard normal distribution has density f (x) = exp(−x2/2)/√2π,
x ∈ R. Let X1 and X2 be independent random drawings from the standard
normal distribution involved, and let Y1 = X1 + X2, Y2 = X1 − X2. Derive
the joint density h( y1, y2) of Y1 and Y2, and show that Y1 and Y2 are indepen-
dent. Hint: Use Theorem 4.3.
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11. The exponential distribution has density f (x) = θ−1 exp(−x/θ ) if x ≥ 0
and f (x) = 0 if x < 0, where θ > 0 is a constant. Let X1 and X2 be inde-
pendent random drawings from the exponential distribution involved and let
Y1 = X1 + X2, Y2 = X1 − X2. Derive the joint density h( y1, y2) of Y1 and Y2.
Hints:Determine first the support {( y1, y2)T ∈ R

2 : h( y1, y2) > 0} of h( y1, y2)
and then use Theorem 4.3.

12. Let X ∼ N (0, 1). Derive E[X2k] for k = 2, 3, 4, using the moment-generating
function.

13. Let X1, X2, . . . , Xn be independent, standard normally distributed. Show that
(1/

√
n)

∑n
j=1 X j is standard normally distributed.

14. Prove (4.31).

15. Show that for t < 1/2, (4.33) is the moment-generating function of (4.34).

16. Explain why the moment-generating function of the tn distribution does not
exist.

17. Prove (4.36).

18. Prove (4.37).

19. Let X1, X2, . . . , Xn be independent, standard Cauchy distributed. Show that
(1/n)

∑n
j=1 X j is standard Cauchy distributed.

20. The class of standard stable distributions consists of distributions with char-
acteristic functions of the type ϕ(t) = exp(−|t |α/α), where α ∈ (0, 2]. Note
that the standard normal distribution is stable with α = 2, and the standard
Cauchy distribution is stable with α = 1. Show that for a random sample
X1, X2, . . . , Xn from a standard stable distribution with parameter α, the ran-
dom variable Yn = n−1/α

∑n
j=1 X j has the same standard stable distribution

(this is the reason for calling these distributions stable).

21. Let X and Y be independent, standard normally distributed. Derive the distri-
bution of X/Y .

22. Derive the characteristic function of the distribution with density
exp(−|x |)/2,−∞ < x < ∞.

23. Explain why the moment-generating function of the Fm,n distribution does not
exist.

24. Prove (4.44).

25. Show that ifU1 andU2 are independentU [0, 1] distributed, then X1 and X2 in
(4.43) are independent, standard normally distributed.

26. If X and Y are independent �(1, 1) distributed, what is the distribution of
X − Y ?
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APPENDICES

4.A. Tedious Derivations

Derivation of (4.38):

E
[
T 2
n

] = n�((n + 1)/2)√
nπ�(n/2)

∞∫
−∞

x2/n

(1+ x2/n)(n+1)/2
dx

= n�((n + 1)/2)√
nπ�(n/2)

∞∫
−∞

1+ x2/n
(1+ x2/n)(n+1)/2

dx

− n�((n + 1)/2)√
nπ�(n/2)

∞∫
−∞

1

(1+ x2/n)(n+1)/2
dx

= n�((n + 1)/2)√
π�(n/2)

∞∫
−∞

1

(1+ x2)(n−1)/2
dx − n

= n�((n − 1)/2+ 1)

�(n/2)

�(n/2− 1)

�((n − 1)/2)
− n = n

n − 2
.

In this derivation I have used (4.36) and the fact that

1 =
∞∫

−∞
hn−2(x)dx

= �((n − 1)/2)√
(n − 2)π�((n − 2)/2)

∞∫
−∞

1

(1+ x2 /(n − 2))(n−1)/2
dx

= �((n − 1)/2)√
π�((n − 2)/2)

∞∫
−∞

1

(1+ x2)(n−1)/2
dx.

Derivation of (4.40): For m > 0, we have

1

2π

m∫
−m

exp(−i · t · x) exp(−|t |)dt

= 1

2π

m∫
0

exp(−i · t · x) exp(−t)dt+ 1

2π

m∫
0

exp(i · t · x) exp(−t)dt
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= 1

2π

m∫
0

exp[−(1+ i · x)t]dt+ 1

2π

m∫
0

exp[−(1− i · x)t]dt

= 1

2π

exp[−(1+ i · x)t]
−(1+ i · x)

∣∣∣∣
m

0

+ 1

2π

exp[−(1− i · x)t]
−(1− i · x)

∣∣∣∣
m

0

= 1

2π

1

(1+ i · x) +
1

2π

1

(1− i · x) −
1

2π

exp[−(1+ i · x)m]
(1+ i · x)

− 1

2π

exp[−(1− i · x)m]
(1− i · x)

= 1

π (1+ x2) −
exp(−m)
π (1+ x2) [cos(m · x)− x · sin(m · x)].

Letting m → ∞, we find that (4.40) follows.

Derivation of (4.41):

hm,n(x) = H ′
m,n(x)

=
∞∫
0

m · y
n

× (m · x · y/n)m/2−1 exp(−(m · x · y/(2n)
�(m/2) 2m/2

× y
n/2−1 exp(−y/2)
�(n/2) 2n/2

dy

= mm/2 xm/2−1

nm/2 �(m/2)�(n/2) 2m/2+n/2

×
∞∫
0

ym/2+n/2−1 exp (− [1+ m · x/n] y/2) dy

= mm/2 xm/2−1

nm/2 �(m/2)�(n/2) [1+ m · x/n]m/2+n/2

×
∞∫
0

zm/2+n/2−1 exp (−z) dz

= mm/2 �(m/2+ n/2) xm/2−1

nm/2 �(m/2)�(n/2) [1+ m · x/n]m/2+n/2 , x > 0.

Derivation of (4.42): It follows from (4.41) that
∞∫
0

xm/2−1

(1+ x)m/2+n/2 dx =
�(m/2)�(n/2)

�(m/2+ n/2) ;
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hence, if k < n/2, then
∞∫
0

xk hm,n(x)dx

= mm/2 �(m/2+ n/2)
nm/2 �(m/2)�(n/2)

∞∫
0

xm/2+ k− 1

(1+ m · x/n)m/2+ n/2 dx

= (n/m)k
�(m/2+ n/2)
�(m/2)�(n/2)

∞∫
0

x (m+ 2k)/2− 1

(1+ x)(m+ 2k)/2+ (n− 2k)/2
dx

= (n/m)k
�(m/2+ k)�(n/2− k)

�(m/2)�(n/2)

= (n/m)k
∏k−1
j=0(m/2+ j)∏k
j=1(n/2− j)

,

where the last equality follows from the fact that, by (4.36), �(α + k) = �(α)∏k−1
j=0(α + j) for α > 0. Thus,

µm,n =
∞∫
0

xhm,n(x)dx = n

n − 2
if n ≥ 3, µm,n = ∞ if n ≤ 2,

(4.46)

∞∫
0

x2 hm,n(x)dx =
n2(m + 2)

m(n − 2)(n − 4)
if n ≥ 5,

= ∞ if n ≤ 4. (4.47)

The results in (4.42) follow now from (4.46) and (4.47).

4.B. Proof of Theorem 4.4

For notational convenience I will prove Theorem 4.4 for the case k = 2 only.
First note that the distribution of Y is absolutely continuous because, for arbi-
trary Borel sets B in R

2,

P[Y ∈ B] = P[G(X ) ∈ B] = P[X ∈ G−1(B)] =
∫

G−1(B)

f (x)dx.

If B has Lebesgue measure zero, then, because G is a one-to-one mapping, the
Borel set A = G−1(B) has Lebesgue measure zero. Therefore, Y has density
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h( y), for instance, and thus for arbitrary Borel sets B in R
2,

P[Y ∈ B] =
∫
B

h( y)dy.

Choose a fixed y0 = ( y0,1, y0,2)T in the support G(R2) of Y such that x0 =
G−1( y0) is a continuity point of the density f of X and y0 is a continuity point
of the density h of Y . Let Y(δ1, δ2) = [y0,1, y0,1 + δ1]× [y0,2, y0,2 + δ2] for
some positive numbers δ1 and δ2. Then, with λ the Lebesgue measure

P[Y ∈ Y(δ1, δ2)]

=
∫

G−1(Y(δ1,δ2))

f (x)dx ≤
(

sup
x∈G−1(Y(δ1,δ2))

f (x)

)
λ(G−1(Y(δ1, δ2)))

=
(

sup
y∈Y(δ1,δ2)

f (G−1( y))

)
λ(G−1(Y(δ1, δ2))), (4.48)

and similarly,

P[Y ∈ Y(δ1, δ2)] ≥
(

inf
y∈Y(δ1,δ2)

f (G−1( y))

)
λ(G−1(Y(δ1, δ2))).

(4.49)

It follows now from (4.48) and (4.49) that

h(y0) = lim
δ1↓0

lim
δ2↓0

P[Y ∈ Y(δ1, δ2)]

δ1 δ2

= f (G−1(y0)) lim
δ1↓0

lim
δ2↓0

λ(G−1(Y(δ1, δ2)))

δ1 δ2
. (4.50)

It remains to show that the latter limit is equal to |det[J (y0)]|.
If we let G−1( y) = (g∗1 ( y), g

∗
2 ( y))

T, it follows from the mean value theorem
that for each element g∗j ( y) there exists a λ j ∈ [0, 1] depending on y and y0
such that g∗j ( y) = g∗j (y0)+ Jj (y0+ λ j ( y − y0))( y − y0), where Jj ( y) is the
j th row of J ( y). Thus, writing

D0( y) =
(
J1( y0 + λ1( y − y0))− J1( y0)
J2( y0 + λ2( y − y0))− J2( y0)

)
= J̃ 0( y)− J ( y0), (4.51)

for instance, we have G−1( y) = G−1( y0)+ J ( y0)( y − y0)+ D0( y)( y − y0).
Now, put A = J ( y0)−1 and b = y0 − J ( y0)−1G−1( y0). Then,

G−1( y) = A−1( y − b)+ D0( y)( y − y0); (4.52)
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hence,

G−1(Y(δ1, δ2)) = {x ∈ R
2 : x

= A−1( y − b)+ D0( y)( y − y0), y ∈ Y(δ1, δ2)}.
(4.53)

The matrix A maps the set (4.53) onto

A[G−1(Y(δ1, δ2))]

= {x ∈ R
2 : x = y − b + A · D0( y)( y − y0), y ∈ Y(δ1, δ2)},

(4.54)

where for arbitrary Borel sets B conformable with amatrix A, A[B]
def.= {x : x =

Ay, y ∈ B}. Because the Lebesgue measure is invariant for location shifts (i.e.,
the vector b in (4.54)), it follows that

λ
(
A[G−1(Y(δ1, δ2))]

)
= λ

({x ∈ R
2 : x = y + A · D0( y)( y − y0), y ∈ Y(δ1, δ2)}

)
.

(4.55)

Observe from (4.51) that

A · D0( y) = J ( y0)−1D0( y) = J ( y0)−1 J̃ 0( y)− I2 (4.56)

and

lim
y→y0

J ( y0)
−1 J̃ 0( y) = I2. (4.57)

Then

λ
(
A[G−1(Y(δ1, δ2))]

)
= λ

({x ∈ R
2 : x = y0 + J ( y0)−1 J̃ 0( y)( y − y0), y ∈ Y(δ1, δ2)}

)
.

(4.58)

It can be shown, using (4.57), that

lim
δ1↓0

lim
δ2↓0

λ
(
A[G−1(Y(δ1, δ2))]

)
λ (Y(δ1, δ2))

= 1. (4.59)

Recall fromAppendix I that thematrix A can bewritten as A = QDU , where
Q is an orthogonal matrix, D is a diagonal matrix, andU is an upper-triangular
matrix with diagonal elements all equal to 1. Let B = (0, 1)× (0, 1). Then it
is not hard to verify in the 2× 2 case that U maps B onto a parallelogram
U [B] with the same area as B; hence, λ(U [B]) = λ(B) = 1. Consequently, the
Lebesguemeasure of the rectangle D[B] is the same as the Lebesguemeasure of
the set D[U [B]]. Moreover, an orthogonal matrix rotates a set of points around
the origin, leaving all the angles and distances the same. Therefore, the set A[B]
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has the same Lebesgue measure as the rectangle D[B] : λ(A[B]) = λ(D[B]) =
|det[D]| = |det[A]|. Along the same lines, the following more general result
can be shown:

Lemma 4.B.1: For a k × k matrix A and a Borel set B in R
k , λ(A[B]) =

|det[A]|λ(B), where λ is the Lebesgue measure on the Borel sets in R
k .

Thus, (4.59) now becomes

lim
δ1↓0

lim
δ2↓0

λ
(
A

[
G−1(Y(δ1, δ2))

])
λ (Y(δ1, δ2))

= |det[A]| lim
δ1↓0

lim
δ2↓0

λ
(
G−1(Y(δ1, δ2))

)
δ1δ2

= 1;

hence,

lim
δ1↓0

lim
δ2↓0

λ
(
G−1(Y(δ1, δ2))

)
δ1 δ2

= 1

|det[A]|
= |det[A−1]| = |det[J (y0)]|. (4.60)

Theorem 4.4 follows now from (4.50) and (4.60).



5 The Multivariate Normal Distribution
and Its Application to Statistical
Inference

5.1. Expectation and Variance of Random Vectors

Multivariate distributions employ the concepts of the expectation vector and
variance matrix. The expected “value” or, more precisely, the expectation
vector (sometimes also called the “mean vector”) of a random vector X =
(x1, . . . , xn)T is defined as the vector of expected values:

E(X )
def.= (E(x1), . . . , E(xn))

T.

Adopting the convention that the expectation of a random matrix is the matrix
of the expectations of its elements, we can define the variance matrix of X as1

Var(X )
def.= E

[
(X − E(X ))(X − E(X ))T]

=



cov(x1, x1) cov(x1, x2) · · · cov(x1, xn)
cov(x2, x1) cov(x2, x2) · · · cov(x2, xn)

...
...

. . .
...

cov(xn, x1) cov(xn, x2) · · · cov(xn, xn)


 . (5.1)

Recall that the diagonal elements of thematrix (5.1) are variances: cov(x j , x j ) =
var(x j ). Obviously, a variance matrix is symmetric and positive (semi)definite.
Moreover, note that (5.1) can be written as

Var(X ) = E[XXT]− (E[X ])(E[X ])T. (5.2)

Similarly, the covariance matrix of a pair of random vectors X and Y is the
matrix of covariances of their components:2

1 To distinguish the variance of a random variable from the variance matrix of a random
vector, the latter will be denoted by Var with capital V.

2 The capital C in Cov indicates that this is a covariance matrix rather than a covariance of
two random variables.

110
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Cov(X, Y )
def.= E

[
(X − E(X ))(Y − E(Y ))T] . (5.3)

Note that Cov(Y, X ) = Cov(X, Y )T. Thus, for each pair X , Y there are two
covariance matrices, one being the transpose of the other.

5.2. The Multivariate Normal Distribution

Now let the components of X = (x1, . . . , xn)T be independent, standard nor-
mally distributed random variables. Then, E(X ) = 0 (∈ R

n) and Var(X ) = In .
Moreover, the joint density f (x) = f (x1, . . . , xn) of X in this case is the product
of the standard normal marginal densities:

f (x) = f (x1, . . . , xn) =
n∏
j=1

exp
(−x2j /2)√
2π

= exp
(− 1

2

∑n
j=1 x

2
j

)
(
√
2π )n

= exp
(− 1

2 x
Tx

)
(
√
2π )n

.

The shape of this density for the case n = 2 is displayed in Figure 5.1.
Next, consider the following linear transformations of X : Y = µ+ AX ,

where µ = (µ1, . . . , µn)T is a vector of constants and A is a nonsingu-
lar n × n matrix with nonrandom elements. Because A is nonsingular and
therefore invertible, this transformation is a one-to-one mapping with inverse
X = A−1(Y − µ). Then the density function g(y) of Y is equal to

g(y) = f (x)|det(∂x/∂y)|
= f (A−1y − A−1µ)|det(∂(A−1y − A−1µ)/∂y)|

= f (A−1y − A−1µ)|det(A−1)| = f (A−1y − A−1µ)

|det(A)|

= exp
[− 1

2 (y − µ)T(A−1)TA−1(y − µ)
]

(
√
2π )n|det(A)|

= exp
[− 1

2 (y − µ)T(AAT)−1(y − µ)
]

(
√
2π )n

√
|det(AAT)| .

Observe that µ is the expectation vector of Y : E(Y ) = µ+ A (E(X )) = µ.
Butwhat isAAT?Weknow from (5.2) thatVar(Y ) = E[YYT]− µµT. Therefore,
substituting Y = µ+ AX yields

Var(Y ) = E[
(µ+ AX)(µT + XTAT)− µµT

]
= µ(E(XT))AT + A(E(X ))µT + A(E(XXT))AT = AAT
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Figure 5.1. The bivariate standard normal density on [−3, 3]× [−3, 3].

because E(X ) = 0 and E[XXT] = In . Thus, AAT is the variance matrix of Y .
This argument gives rise to the following definition of the n-variate normal
distribution:

Definition 5.1: Let Y be an n × 1 random vector satisfying E(Y ) = µ and
Var(Y ) = �, where � is nonsingular. Then Y is distributed Nn(µ,�) if the
density g(y) of Y is of the form

g(y) = exp
[− 1

2 (y − µ)T�−1(y − µ)
]

(
√
2π )n

√
det(�)

. (5.4)

In the same way as before we can show that a nonsingular (hence one-to-one)
linear transformation of a normal distribution is normal itself:

Theorem 5.1: Let Z = a + BY, where Y is distributed Nn(µ,�) and B is a
nonsingular matrix of constants. Then Z is distributed Nn(a + Bµ, B�BT).

Proof: First, observe that Z = a + BY implies Y = B−1(Z − a). Let h(z)
be the density of Z and g(y) the density of Y . Then

h(z) = g(y)|det(∂y/∂z)|
= g(B−1z − B−1a)|det(∂(B−1z − B−1a)/∂z)|

= g(B−1z − B−1a)

|det(B)| = g(B−1(z − a))√
det(BBT)

= exp
[− 1

2 (B
−1(z − a)− µ)T�−1(B−1(z − a)− µ)

]
(
√
2π )n

√
det(�)

√
det(BBT)

= exp
[− 1

2 (z − a − Bµ)T(B�BT)−1(z − a − Bµ)]
(
√
2π )n

√
det(B�BT)

.

Q.E.D.



The Multivariate Normal Distribution 113

I will now relax the assumption in Theorem 5.1 that the matrix B is a nonsin-
gular n × n matrix. This more general version of Theorem 5.1 can be proved
using the moment-generating function or the characteristic function of the mul-
tivariate normal distribution.

Theorem 5.2: Let Y be distributed Nn(µ,�). Then the moment-generating
function of Y is m(t) = exp(tTµ+ tT�t/2), and the characteristic of Y is
ϕ(t) = exp(i · tTµ− tT�t/2).

Proof: We have

m(t)

=
∫

exp[tTy]
exp

[− 1
2 (y − µ)T�−1(y − µ)

]
(
√
2π )n

√
det(�)

dy

=
∫

exp
(− 1

2 [y
T�−1y − 2µT�−1y + µT�−1µ− 2tTy]

)
(
√
2π )n

√
det(�)

dy

=
∫

exp
(− 1

2

[
yT�−1y − 2(µ+�t)T�−1y + (µ+�t)T�−1(µ+�t)

])
(
√
2π )n

√
det(�)

dy

× exp

(
1

2

[
(µ+�t)T�−1(µ+�t)− µT�−1µ

])

=
∫

exp
(− 1

2 (y − µ−�t)T�−1(y − µ−�t)
)

(
√
2π )n

√
det(�)

dy× exp

(
tTµ+ 1

2
tT�t

)
.

Because the last integral is equal to 1, the result for the moment-generating
function follows. The result for the characteristic function follows from ϕ(t) =
m(i · t). Q.E.D.

Theorem 5.3: Theorem 5.1 holds for any linear transformation Z = a + BY.

Proof: Let Z = a + BY, where B is m × n. It is easy to verify that the char-
acteristic function of Z is ϕZ (t) = E[exp(i · tTZ )] = E[exp(i · tT(a + BY))] =
exp(i · tTa)E[exp(i · tTBY)] = exp(i · (a + Bµ)Tt − 1

2 t
TB�BTt). Theorem

5.3 follows now from Theorem 5.2. Q.E.D.
Note that this result holds regardless of whether the matrix B�BT is non-

singular or not. In the latter case the normal distribution involved is called
“singular”:

Definition 5.2: An n × 1 random vector Y has a singular Nn(µ,�) distribution
if its characteristic function is of the form ϕY (t) = exp(i · tTµ− 1

2 t
T�t) with

� a singular, positive semidefinite matrix.
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Figure 5.2. Density of a near-singular normal distribution on [−3, 3]× [−3, 3].

Because of the latter condition the distribution of the random vector Y in-
volved is no longer absolutely continuous, but the form of the characteristic
function is the same as in the nonsingular case – and that is all that matters.
For example, let n = 2 and

µ =
(
0
0

)
, � =

(
1 0
0 σ 2

)
,

whereσ 2 > 0but small. The density of the corresponding N2(µ,�) distribution
of Y = (Y1, Y2)T is

f (y1, y2|σ ) =
exp

(− y21/2)√
2π

× exp
(− y22/(2σ 2)

)
σ
√
2π

. (5.5)

Then limσ↓0 f (y1, y2|σ ) = 0 if y2 
= 0, and limσ↓0 f (y1, y2|σ ) = ∞ if y2 = 0.
Thus, a singular multivariate normal distribution does not have a density.
In Figure 5.2 the density (5.5) for the near-singular case σ 2 = 0.00001

is displayed. The height of the picture is actually rescaled to fit in the box
[−3, 3]× [−3, 3]× [−3, 3]. If we let σ approach zero, the height of the ridge
corresponding to the marginal density of Y1 will increase to infinity.
The next theorem shows that uncorrelated multivariate normally distributed

random variables are independent. Thus, although for most distributions uncor-
relatedness does not imply independence, for the multivariate normal distribu-
tion it does.

Theorem 5.4: Let X be n-variate normally distributed, and let X1 and X2

be subvectors of components of X. If X1 and X2 are uncorrelated, that is,
Cov(X1, X2) = O, then X1 and X2 are independent.

Proof: Because X1 and X2 cannot have common components, we may with-
out loss of generality assume that X = (XT

1 , X
T
2 )

T, X1 ∈ R
k, X2 ∈ R

m . Parti-
tion the expectation vector and variance matrix of X conformably as

E(X ) =
(
µ1

µ2

)
, Var(X ) =

(
�11 �12

�21 �22

)
.
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Then�12 = O and�21 = O because they are covariance matrices, and X1 and
X2 are uncorrelated; hence, the density of X is

f (x) = f (x1, x2)

=
exp

(
− 1

2

[(
x1
x2

)
−

(
µ1

µ2

)]T [
�11 0
0 �22

]−1 [(
x1
x2

)
−

(
µ1

µ2

)])

(
√
2π )n

√
det

(
�11 0
0 �22

)

= exp
(− 1

2 (x1 − µ1)T�
−1
11 (x1 − µ1)

)
(
√
2π )k

√
det(�11)

× exp
(− 1

2 (x2 − µ2)T�
−1
22 (x2 − µ2)

)
(
√
2π )m

√
det(�22)

.

This implies independence of X1 and X2. Q.E.D.

5.3. Conditional Distributions of Multivariate Normal
Random Variables

Let Y be a scalar random variable and X be a k-dimensional random vector.
Assume that(

Y
X

)
∼ Nk+1

[(
µY
µX

)
,

(
�YY �YX
�XY �XX

)]
,

where µY = E(Y ), µX = E(X ), and

�YY = Var(Y ), �YX = Cov(Y, X )

= E[
(Y − E(Y ))(X − E(X ))T],

�XY = Cov(X, Y ) = E(X − E(X ))(Y − E(Y ))
= �T

YX, �XX = Var(X ).

To derive the conditional distribution of Y , given X , let U = Y − α − βTX ,
where α is a scalar constant and β is a k × 1 vector of constants such that
E(U ) = 0 and U and X are independent. It follows from Theorem 5.1 that(

U
X

)
=

(−α
0

)
+

(
1 −BT

0 Ik

)(
Y
X

)

∼ Nk+1

[(−α + µY − βTµX
µX

)
,(

1 −βT

0 Ik

)(
�YY �YX
�XY �XX

)(
1 0T

−β Ik

)]
.
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The variance matrix involved can be rewritten as

Var

(
U
X

)
=

(
�YY −�YXβ − βT�XY + βT�XXβ �YX − βT�XX

�XY −�XXβ �XX

)
.

(5.6)

Next, choose β such that U and X are uncorrelated and hence independent. In
view of (5.6), a necessary and sufficient condition for that is�XY −�XXβ = 0;
hence, β = �−1

XX�XY. Moreover, E(U ) = 0 if α = µY − βTµX . Then

�YY −�YXβ − βT�XY + βT�XXβ = �YY −�YX�
−1
XX�XY,

�YX − βT�XX = 0T, �XY −�XXβ = 0,

and consequently(
U
X

)
∼ Nk+1

[(
0
µX

)
,

(
�YY −�YX�

−1
XX�XY 0T

0 �XX

)]
. (5.7)

Thus, U and X are independent normally distributed, and consequently
E(U |X ) = E(U ) = 0. Because Y = α + βTX +U , we now have E(Y |X ) =
α + βT (E(X |X ))+ E(U |X ) = α + βTX . Moreover, it is easy to verify from
(5.7) that the conditional density of Y, given X = x , is

f (y|x) = exp
[− 1

2 (y − α − βTx)2/σ 2
u

]
σu
√
2π

,

where σ 2
u = �YY −�YX�

−1
XX�XY.

Furthermore, note that σ 2
u is just the conditional variance of Y , given X :

σ 2
u = var(Y |X ) def.= E [

(Y − E(Y |X ))2|X]
.

These results are summarized in the following theorem.

Theorem 5.5: Let(
Y
X

)
∼ Nk+1

[(
µY
µX

)
,

(
�YY �YX
�XY �XX

)]
,

where Y ∈ R, X ∈ R
k , and �XX is nonsingular. Then, conditionally on X, Y is

normally distributed with conditional expectation E(Y |X ) = α + βTX, where
β = �−1

XX�XY and α = µY − βTµX , and conditional variance var(Y |X ) =
�YY −�YX�

−1
XX�XY.

The result in Theorem 5.5 is the basis for linear regression analysis. Suppose
that Y measures an economic activity that is partly caused or influenced by
other economic variables measured by the components of the random vector
X . In applied economics the relation between Y , called the dependent variable,
and the components of X , called the independent variables or the regressors,
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is often modeled linearly as Y = α + βTX +U , where α is the intercept, β is
the vector of slope parameters (also called regression coefficients), and U is
an error term that is usually assumed to be independent of X and normally
N (0, σ 2) distributed. Theorem 5.5 shows that if Y and X are jointly normally
distributed, then such a linear relation between Y and X exists.

5.4. Independence of Linear and Quadratic Transformations of
Multivariate Normal Random Variables

Let X be distributed Nn(0, In) – that is, X is n-variate, standard, normally
distributed. Consider the linear transformations Y = BX, where B is a k × n
matrix of constants, and Z = CX, where C is an m × n matrix of constants. It
follows from Theorem 5.4 that(

Y
Z

)
∼ Nk+m

[(
0
0

)
,

(
BBT BCT

CBT CCT

)]
.

Then Y and Z are uncorrelated and therefore independent if and only if CBT =
O . More generally we have

Theorem 5.6: Let X be distributed Nn(0, In), and consider the linear trans-
formations Y = b + BX, where b is a k × 1 vector and B a k × n matrix of
constants, and Z = c + CX, where c is an m × 1 vector and C an m × n ma-
trix of constants. Then Y and Z are independent if and only if BCT = O.

This result can be used to set forth conditions for independence of linear and
quadratic transformations of standard normal random vectors:

Theorem 5.7: Let X and Y be defined as in Theorem 5.6, and let Z = XTCX,
where C is a symmetric n× nmatrix of constants. Then Y and Z are independent
if BC = O.

Proof: First, note that the latter condition only makes sense if C is singular,
for otherwise B = O . Thus, let rank (C) = m < n. We can write C = Q�QT,
where� is a diagonal matrix with the eigenvalues of C on the diagonal, and Q
is the orthogonal matrix of corresponding eigenvectors. Let V = QTX , which
is Nn(0, In) distributed because QQT = In . Because n − m eigenvalues of C
are zero, we can partition Q, �, and V such that

Q = (Q1, Q2), � =
(
�1 O
O O

)
,

V =
(
V1
V2

)
=

(
QT

1 X

QT
2 X

)
, Z = V T

1 �1V1,
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where �1 is the diagonal matrix with the m nonzero eigenvalues of C on the
diagonal. Then

BC = B(Q1, Q2)

(
�1 O
O O

)(
QT

1

QT
2

)
= BQ1�1Q

T
1 = O

implies BQ1�1 = BQ1�1QT
1Q1 = O (because QTQ = In implies QT

1Q1 =
Im), which in turn implies that BQ1 = O . The latter is a sufficient condition
for the independence of V1 and Y and hence of the independence of Z and Y .
Q.E.D.
Finally, consider the conditions for independence of two quadratic forms of

standard normal random vectors:

Theorem 5.8: Let X ∼ Nn(0, In), Z1 = XTAX, andZ2 = XTBX, where A and
B are symmetric n × n matrices of constants. Then Z1 and Z2 are independent
if and only if AB = O.

The proof of Theorem 5.8 is not difficult but is quite lengthy; it is therefore
given in Appendix 5.A.

5.5. Distributions of Quadratic Forms of Multivariate Normal
Random Variables

As we will see in Section 5.6, quadratic forms of multivariate normal random
variables play a key role in statistical testing theory. The two most important
results are stated in Theorems 5.9 and 5.10:

Theorem 5.9: Let X be distributed Nn(0, �), where � is nonsingular. Then
XT�−1X is distributed as χ2

n .

Proof: Denote Y = (Y1, . . . , Yn)T = �−1/2X . Then Y is n-variate, standard
normally distributed; hence, Y1, . . . , Yn are independent identically distributed
(i.i.d.) N (0, 1), and thus, XT�−1X = Y TY = �nj=1Y

2
j ∼ χ2

n . Q.E.D.
The next theorem employs the concept of an idempotentmatrix. Recall from

Appendix I that a square matrixM is idempotent if M2 = M . IfM is also sym-
metric, we can write M = Q�QT, where� is the diagonal matrix of eigenval-
ues of M and Q is the corresponding orthogonal matrix of eigenvectors. Then
M2 = M implies �2 = �; hence, the eigenvalues of M are either 1 or 0. If
all eigenvalues are 1, then � = I; hence, M = I . Thus, the only nonsingular
symmetric idempotent matrix is the unit matrix. Consequently, the concept of
a symmetric idempotent matrix is only meaningful if the matrix involved is
singular.
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The rank of a symmetric idempotent matrixM equals the number of nonzero
eigenvalues; hence, trace(M) = trace(Q�QT) = trace(�QTQ) = trace(�) =
rank(�) = rank(M), where trace(M) is defined as the sum of the diagonal el-
ements of M. Note that we have used the property trace(AB) = trace(BA) for
conformable matrices A and B.

Theorem 5.10: Let X be distributed Nn(0, I ), and let M be a symmetric idem-
potent n × n matrix of constants with rank k. Then XTMX is distributed χ2

k .

Proof: We can write

M = Q
(
Ik O
O O

)
QT,

whereQ is the orthogonalmatrix of eigenvectors.BecauseY = (Y1, . . . , Yn)T =
QTX ∼ Nn(0, I ), we now have

XTMX = Y T

(
Ik O
O O

)
Y =

k∑
j=1

Y 2
j ∼ χ2

k .

Q.E.D.

5.6. Applications to Statistical Inference under Normality

5.6.1. Estimation

Statistical inference is concerned with parameter estimation and parameter in-
ference. The latter will be discussed next in this section.
In a broad sense, an estimator of a parameter is a function of the data

that serves as an approximation of the parameter involved. For example,
if X1, X2, . . . , Xn is a random sample from the N (µ, σ 2)-distribution, then
the sample mean X̄ = (1/n)

∑n
j=1 X j may serve as an estimator of the un-

known parameter µ (the population mean). More formally, given a data set
{X1, X2, . . . , Xn} for which the joint distribution function depends on an un-
known parameter (vector) θ , an estimator of θ is a Borel-measurable function
θ̂ = gn(X1, . . . , Xn) of the data that serves as an approximation of θ . Of course,
the function gn should not itself depend on unknown parameters.
In principle, we can construct many functions of the data that may serve as

an approximation of an unknown parameter. For example, one may consider
using X1 only as an estimator of µ. How does one decide which function of
the data should be used. To be able to select among the many candidates for an
estimator, we need to formulate some desirable properties of estimators. The
first one is “unbiasedness”:
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Definition 5.3: An estimator θ̂ of a parameter (vector) θ is unbiased if
E[θ̂ ] = θ .

Theunbiasedness property is not specific to a particular value of the parameter
involved but should hold for all possible values of this parameter in the sense
that if we draw a new data set from the same type of distribution but with a
different parameter value, the estimator should stay unbiased. In other words,
if the joint distribution function of the data is Fn(x1, . . . , xn|θ ), where θ ∈ �

is an unknown parameter (vector) in a parameter space � (i.e., the space of all
possible values of θ ), and θ̂ = gn(X1, . . . , Xn) is an unbiased estimator of θ ,
then

∫
gn(x1, . . . , xn)dFn(x1, . . . , xn|θ ) = θ for all θ ∈ �.

Note that in the preceding example both X̄ and X1 are unbiased estimators
of µ. Thus, we need a further criterion in order to select an estimator. This
criterion is efficiency:

Definition 5.4: An unbiased estimator θ̂ of an unknown scalar parameter θ is
efficient if, for all other unbiased estimators θ̃ , var(θ̂ ) ≤ var(θ̃ ). In the case in
which θ is a parameter vector, the latter reads: Var(θ̃ )− Var(θ̂ ) is a positive
semidefinite matrix.

In our example, X1 is not an efficient estimator of µ because var(X1) = σ 2

and var(X̄ ) = σ 2/n. But is X̄ efficient? To answer this question, we need to
derive theminimumvariance of an unbiased estimator as follows. For notational
convenience, stack the data in a vector X. Thus, in the univariate case X =
(X1, X2, . . . , Xn)T, and in the multivariate case X = (XT

1 , . . . , X
T
n )

T. Assume
that the joint distribution of X is absolutely continuous with density fn(x |θ ),
which for each x is twice continuously differentiable in θ . Moreover, let θ̂ =
gn(X ) be an unbiased estimator of θ . Then∫

gn(x) fn(x |θ )dx = θ. (5.8)

Furthermore, assume for the time being that θ is a scalar, and let

d

dθ

∫
gn(x) fn(x |θ )dx =

∫
gn(x)

d

dθ
fn(x |θ )dx . (5.9)

Conditions for (5.9) can be derived from the mean-value theorem and the dom-
inated convergence theorem. In particular, (5.9) is true for all θ in an open set
� if ∫

|gn(x)|supθ∈�|d2 fn(x |θ )/(dθ )2|dx < ∞.
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Then it follows from (5.8) and (5.9) that∫
gn(x)

[
d

dθ
ln( fn(x |θ ))

]
fn(x |θ )dx =

∫
gn(x)

d

dθ
fn(x |θ )dx = 1.

(5.10)

Similarly, if

d

dθ

∫
fn(x |θ )dx =

∫
d

dθ
fn(x |θ )dx, (5.11)

which is true for all θ in an open set� forwhich
∫
supθ∈�|d2 fn(x |θ )/(dθ )2|dx <

∞, then, because
∫
fn(x |θ )dx = 1, we have∫ [

d

dθ
ln( fn(x |θ ))

]
fn(x |θ )dx =

∫
d

dθ
fn(x |θ )dx = 0. (5.12)

If we let β̂ = d ln( fn(X |θ ))/dθ , it follows now from (5.10) that E[θ̂ ·
β̂] = 1 and from (5.12) that E[β̂] = 0. Therefore, cov(θ̂ , β̂) = E[θ̂ · β̂]−
E[θ̂ ]E[β̂] = 1. Because by the Cauchy–Schwartz inequality, |cov(θ̂ , β̂)| ≤√
var(θ̂ )

√
var(β̂), we now have that var(θ̂ ) ≥ 1/var(β̂):

var(θ̂ ) ≥ 1

E
(
[d ln( fn(X |θ ))/dθ ]2

) . (5.13)

This result is known as the Cramer–Rao inequality, and the right-hand side
of (5.13) is called the Cramer–Rao lower bound. More generally, we have the
following:

Theorem 5.11: (Cramer–Rao) Let fn(x |θ ) be the joint density of the data
stacked in a vector X, where θ is a parameter vector. Let θ̂ be an unbiased
estimator of θ . Then Var(θ̂ ) = (E[(∂ln( fn(X |θ )/∂θT)(∂ln( fn(X |θ )/∂θ )])−1 +
D, where D is a positive semidefinite matrix.

Now let us return to our problem of whether the sample mean X̄ of a ran-
dom sample from the N (µ, σ 2) distribution is an efficient estimator of µ. In
this case the joint density of the sample is fn(x |µ, σ 2) = ∏n

j=1 exp(− 1
2 (x j −

µ)2/σ 2)/
√
σ 22π ; hence, ∂ln( fn(X |µ, σ 2))/∂µ =∑n

j=1(X j − µ)/σ 2, and thus
the Cramer–Rao lower bound is

1

E
[
(∂ln ( fn(X |µ, σ 2)) /∂µ)2

] = σ 2/n. (5.14)

This is just the variance of the samplemean X̄ ; hence, X̄ is an efficient estimator
of µ. This result holds for the multivariate case as well:
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Theorem 5.12: Let X1, X2, . . . , Xn be a random sample from the Nk[µ,�]
distribution. Then the sample mean X̄ = (1/n)

∑n
j=1 X j is an unbiased and

efficient estimator of µ.

The sample variance of a random sample X1, X2, . . . , Xn from a univariate
distribution with expectation µ and variance σ 2 is defined by

S2 = (1/(n − 1))
n∑
j=1

(X j − X̄ )2, (5.15)

which serves as an estimator of σ 2. An alternative form of the sample variance
is

σ̂ 2 = (1/n)
n∑
j=1

(X j − X̄ )2 = n − 1

n
S2, (5.16)

but as I will show for the case of a random sample from the N (µ, σ 2) distribu-
tion, (5.15) is an unbiased estimator and (5.16) is not:

Theorem 5.13: Let S2 be the sample variance of a random sample X1, . . . , Xn
from the N (µ, σ 2) distribution. Then (n − 1)S2/σ 2 is distributed χ2

n−1.

The proof of Theorem 5.13 is left as an exercise. Because the expectation
of the χ2

n−1 distribution is n − 1, this result implies that E(S2) = σ 2, whereas
by (5.16), E(σ̂ 2) = σ 2(n − 1)/n. Moreover, given that the variance of the χ2

n−1
distribution is 2(n − 1), it follows from Theorem 5.13 that

var(S2) = 2σ 4/(n − 1). (5.17)

The Cramer–Rao lower bound for an unbiased estimator of σ 2 is 2σ 4/n; thus,
S2 is not efficient, but it is close if n is large.
For a random sample X1, X2, . . . , Xn from a multivariate distribution with

expectation vector µ and variance matrix � the sample variance matrix takes
the form

�̂ = (1/(n − 1))
n∑
j=1

(X j − X̄ )(X j − X̄ )T. (5.18)

This is also an unbiased estimator of � = Var(X j ) even if the distribution
involved is not normal.

5.6.2. Confidence Intervals

Because estimators are approximations of unknown parameters, the question
of how close they are arises. I will answer this question for the sample mean
and the sample variance in the case of a random sample X1, X2, . . . , Xn from
the N (µ, σ 2) distribution.
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It is almost trivial that X̄ ∼ N (µ, σ 2/n); hence,
√
n(X̄ − µ)/σ ∼ N (0, 1). (5.19)

Therefore, for given α ∈ (0, 1) there exists a β > 0 such that

P[|X̄ − µ| ≤ βσ/
√
n] = P[|√n(X̄ − µ)/σ | ≤ β]

=
β∫

−β

exp(−u2/2)√
2π

du = 1− α. (5.20)

For example, if we choose α = 0.05, then β = 1.96 (see Appendix IV, Table
IV.3), and thus in this case

P[X̄ − 1.96σ/
√
n ≤ µ ≤ X̄ + 1.96σ/

√
n] = 0.95.

The interval [X̄ − 1.96σ/
√
n, X̄ + 1.96σ/

√
n] is called the 95% confidence

interval of µ. If σ is known, then this interval can be computed and will tell us
how close X̄ and µ are with a margin of error of 5%. But in general σ is not
known, so how do we proceed then?
To solve this problem, we need the following corollary of Theorem 5.7:

Theorem5.14: Let X1, X2, . . . , Xn be a randomsample from the N (µ, σ 2)dis-
tribution. Then the samplemean X̄ and the sample variance S2 are independent.

Proof: Observe, for instance, that X∗ = ((X1 − µ)/σ, (X2 − µ)/σ, . . . ,
(Xn − µ)/σ )T ∼ Nn(0, In), X̄ = µ+ (σ/n, . . . , σ/n)X∗ = b + BX∗, and



(X1 − X̄ )/σ

...
(Xn − X̄ )/σ


 =


I − 1

n



1
1
...
1


 (1, 1, . . . , 1)


 X∗ = CX∗.

The latter expression implies that (n − 1)S2/σ 2 = XT
∗C

TCX∗ = XT
∗C

2X∗ =
XT
∗CX∗ because C is symmetric and idempotent with rank(C) = trace(C) =
n − 1. Therefore, by Theorem 5.7, the samplemean and the sample variance are
independent if BC = 0, which in the present case is equivalent to the condition
CBT = 0. The latter is easily verified as follows:

CBT = σ

n


I − 1

n



1
1
...
1


 (1, . . . , 1)






1
1
...
1


 = σ

n






1
1
...
1


− 1

n



1
1
...
1


 n


 = 0

Q.E.D.
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It follows now from (5.19), Theorems 5.13 and 5.14, and the definition of
the Student’s t distribution that

Theorem 5.15: Under the conditions of Theorem 5.14,
√
n(X̄− µ)/S ∼ tn−1.

Recall from Chapter 4 that the tn−1 distribution has density

hn−1(x) = �(n/2)√
(n − 1)π�((n − 1)/2)(1+ x2/(n − 1))n/2

, (5.21)

where �(y) = ∫ ∞
0 x y−1 exp(−x)dx, y > 0. Thus, as in (5.20), for each α ∈

(0, 1) and sample size n there exists a βn > 0 such that

P[|X̄ − µ| ≤ βn S/
√
n] =

βn∫
−βn

hn−1(u)du = 1− α; (5.22)

hence, [X̄ − βn S/
√
n, X̄ + βn S/

√
n] is now the (1− α)× 100% confidence

interval of µ.
Similarly, on the basis of Theorem 5.13we can construct confidence intervals

of σ 2. Recall from Chapter 4 that the χ2
n−1 distribution has density

gn−1(x) = x (n−1)/2−1 exp(−x/2)
�((n − 1)/2)2(n−1)/2

.

For a given α ∈ (0, 1) and sample size n we can choose β1,n < β2,n such that

P
[
(n − 1)S2/β2,n ≤ σ 2 ≤ (n − 1)S2/β1,n

]
= P[β1,n ≤ (n − 1)S2/σ 2 ≤ β2,n

]

=
β2,n∫

β1,n

gn−1(u)du = 1− α. (5.23)

There are different ways to choose β1,n and β2,n such that the last equality
in (5.23) holds. Clearly, the optimal choice is such that β−1

1,n − β−1
2,n is minimal

because it will yield the smallest confidence interval, but that is computationally
complicated. Therefore, in practice β1,n and β2,n are often chosen such that

β1,n∫
0

gn−1(u)du = α/2,

∞∫
β2,n

gn−1(u)du = α/2. (5.24)

Appendix IV contains tables from which you can look up the values of the
β’s in (5.20) and (5.22) for α × 100% = 5% and α × 100% = 10%. These
percentages are called significance levels (see the next section).
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5.6.3. Testing Parameter Hypotheses

Suppose you consider starting a business to sell a new product in the United
States such as a European car that is not yet being imported there. To determine
whether there is a market for this car in the United States, you have randomly
selected n persons from the population of potential buyers of this car. Each
person j in the sample is asked how much he or she would be willing to pay for
this car. Let the answer be Y j . Moreover, suppose that the cost of importing this
car is a fixed amount Z per car. Denote X j = ln(Y j/Z ), and assume that X j is
N (µ, σ 2) distributed. If µ > 0, then your planned car import business will be
profitable; otherwise, you should forget about this idea.
To decide whether µ > 0 or µ ≤ 0, you need a decision rule based on the

random sample X = (X1, X2, . . . , Xn)T. Any decision rule takes the following
form. Given a subset C of R

n , to be determined below in this section, decide
that µ > 0 if X ∈ C , and decide that µ ≤ 0 if X /∈ C . Thus, you decide that the
hypothesis µ ≤ 0 is true if I (X ∈ C) = 0, and you decide that the hypothesis
µ > 0 is true if I (X ∈ C) = 1. In this case the hypothesis µ ≤ 0 is called the
null hypothesis, which is usually denoted by H0 :µ ≤ 0, and the hypothesis
µ > 0 is called the alternative hypothesis and is denoted by H1 :µ > 0. The
procedure itself is called a statistical test.
This decision rule yields two types of errors. In the first one, called the Type

I error, you decide that H1 is true whereas in reality H0 is true. In the other
error, called the Type II error, H0 is considered to be true whereas in reality
H1 is true. Both errors come with costs. If the Type I error occurs, you will
incorrectly assume your car import business to be profitable, and thus you will
lose your investment if you start up your business. If the Type II error occurs,
you will forgo a profitable business opportunity. Clearly, the Type I error is the
more serious of the two.
Now choose C such that X ∈ C if and only if

√
n(X̄/S) > β for some fixed

β > 0. Then

P[X ∈ C] = P[√n(X̄/S) > β] = P[√n(X̄ − µ)/S +√
nµ/S > β]

= P[√n(X̄ − µ)/σ +√
nµ/σ > β · S/σ ]

=
∞∫

−∞
P[S/σ < (u +√

nµ/σ )/β] exp[−u2/2]/
√
2πdu,

(5.25)

where the last equality follows from Theorem 5.14 and (5.19). If µ ≤ 0, this
probability is that of aType I error. Clearly, the probability (5.25) is an increasing
function of µ; hence, the maximum probability of a Type I error is obtained for
µ = 0. But if µ = 0, then it follows from Theorem 5.15 that

√
n(X̄/S) ∼ tn−1;

hence,
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max
µ≤0

P[X ∈ C] =
∞∫
β

hn−1(u)du = α, (5.26)

for instance, where hn−1 is the density of the tn−1 distribution (see (5.21)). The
probability (5.26) is called the size of the test of the null hypothesis involved,
which is the maximum risk of a Type I error, and α × 100% is called the
significance level of the test. Depending on how risk averse you are, you have
to choose a size α ∈ (0, 1), and therefore β = βn must be chosen such that∫ ∞
βn
hn−1(u)du = α. This valueβn is called the critical value of the test involved,

and because it is based on the distribution of
√
n(X̄/S), the latter is considered

the test statistic involved. Moreover, α × 100% is called the significance level
of the test.
If we replace β in (5.25) by βn, 1 minus the probability of a Type II error is

a function of µ/σ > 0:

ρn(µ/σ ) =
∞∫

−√
nµ/σ

P[S/σ < (u +√
nµ/σ )/βn]

exp(−u2/2)√
2π

du,

µ > 0. (5.27)

This function is called the power function, which is the probability of cor-
rectly rejecting the null hypothesis H0 in favor of the alternative hypothesis H1.
Consequently, 1− ρn(µ/σ ), µ > 0, is the probability of a Type II error.
The test in this example is called a t-test because the critical value βn is

derived from the t-distribution.
A test is said to be consistent if the power function converges to 1 as n→ ∞

for all values of the parameter(s) under the alternative hypothesis. Using the
results in the next chapter, one can show that the preceding test is consistent:

lim
n→∞ ρn(µ/σ ) = 1 if µ > 0. (5.28)

Now let us consider the test of the null hypothesis H0 : µ = 0 against the al-
ternative hypothesis H1:µ 
= 0. Under the null hypothesis,

√
n(X̄/S) ∼ tn−1

exactly. Given the size α ∈ (0, 1), choose the critical value βn > 0 as in
(5.22). Then H0 is accepted if |√n(X̄/S)| ≤ βn and rejected in favor of H1

if |√n(X̄/S)| > βn . The power function of this test is

ρn(µ/σ ) =
∞∫

−∞
P[S/σ < |u +√

nµ/σ |/βn] exp[−u2/2]/
√
2πdu,

µ 
= 0. (5.29)
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This test is known as is the two-sided t-test with significance level α × 100%.
The critical values βn for the 5% and 10% significance levels can be found in
Table IV.1 in Appendix IV. Also, this test is consistent:

lim
n→∞ ρn(µ/σ ) = 1 if µ 
= 0. (5.30)

5.7. Applications to Regression Analysis

5.7.1. The Linear Regression Model

Consider a random sample Z j = (Y j , XT
j )

T, j = 1, 2, . . . , n from a k-variate,
nonsingular normal distribution, where Y j ∈ R, X j ∈ R

k−1. We have seen in
Section 5.3 that one can write

Y j = α + XT
j β +Uj ,Uj ∼ N (0, σ 2), j = 1, . . . , n, (5.31)

where Uj = Y j − E[Y j |X j ] is independent of Xj. This is the classical linear
regression model, where Yj is the dependent variable, Xj is the vector of in-
dependent variables, also called the regressors, and Uj is the error term. This
model is widely used in empirical econometrics – even in the case in which Xj
is not known to be normally distributed.
If we let

Y =



Y1
...
Yn


 , X =



1 XT

1
...

...
1 XT

n


 , θ0 =

(
α

β

)
, U =



U1
...
Un


 ,

model (5.31) can be written in vector–matrix form as

Y = Xθ0 +U,U |X ∼ Nn[0, σ 2 In], (5.32)

where U|X is a shorthand notation for “U conditional on X.”
In the remaining sections I will address the problems of how to estimate

the parameter vector θ0 and how to test various hypotheses about θ0 and its
components.

5.7.2. Least-Squares Estimation

Observe that

E[(Y − Xθ )T(Y − Xθ )] = E[
(U + X (θ0 − θ ))T(U + X (θ0 − θ ))

]
= E[UTU ]+ 2(θ0 − θ )TE(XTE[U |X ])

+ (θ0 − θ )T(E[XTX ])(θ0 − θ )

= n · σ 2 + (θ0 − θ )T(E[XTX ])(θ0 − θ ).

(5.33)
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Hence, it follows from (5.33) that3

θ0 = argmin
θ∈R

k

E
[
(Y − Xθ )T(Y − Xθ )] = (E[XTX ])

−1
E[XTY ]

(5.34)

provided that the matrix E[XTX ] is nonsingular. However, the nonsingularity
of the distribution of Z j = (Y j , XT

j )
T guarantees that E[XTX ] is nonsingular

because it follows from Theorem 5.5 that the solution (5.34) is unique if�XX =
Var(X j ) is nonsingular.
The expression (5.34) suggests estimating θ0 by the ordinary4 least-squares

(OLS) estimator

θ̂ = argmin
θ∈R

k

(Y − Xθ )T(Y − Xθ ) = (XTX )
−1
XTY. (5.35)

It follows easily from (5.32) and (5.35) that

θ̂ − θ0 = (XTX )
−1
XTU ; (5.36)

hence, θ̂ is conditionally unbiased: E[θ̂ |X ] = θ0 and therefore also uncondi-
tionally unbiased: E[θ̂ ] = θ0. More generally,

θ̂ |X ∼ Nk
[
θ0, σ

2(XTX )−1
]
. (5.37)

Of course, the unconditional distribution of θ̂ is not normal.
Note that the OLS estimator is not efficient because σ 2(E[XTX ])−1 is the

Cramer–Rao lower bound of an unbiased estimator of (5.37) and Var(θ̂ ) =
σ 2E[(XTX )−1] 
= σ 2(E[XTX ])−1. However, the OLS estimator is the most
efficient of all conditionally unbiased estimators θ̃ of (5.37) that are linear
functions of Y. In other words, the OLS estimator is the best linear unbiased
estimator (BLUE). This result is known as the Gauss–Markov theorem:

Theorem 5.16: (Gauss–Markov theorem) Let C(X ) be a k × n matrix whose
elements are Borel-measurable functions of the random elements of X, and let
θ̃ = C(X )Y . If E[θ̃ |X ] = θ0, then for some positive semidefinite k × k matrix
D, Var[θ̃ |X ] = σ 2C(X )C(X )T = σ 2(XTX )−1 + D.
Proof: The conditional unbiasedness condition implies that C(X )X = Ik ;

hence, θ̃ = θ0 + C(X )U , and thus Var(θ̃ |X ) = σ 2C(X )C(X )T. Now

D = σ 2
[
C(X )C(X )T − (XTX )−1

]
= σ 2

[
C(X )C(X )T − C(X )X (XTX )−1XTC(X )T

]
= σ 2C(X )

[
In − X (XTX )−1XT

]
C(X )T = σ 2C(X )MC(X )T,

3 Recall that “argmin” stands for the argument for which the function involved takes a
minimum.

4 The OLS estimator is called “ordinary” to distinguish it from the nonlinear least-squares
estimator. See Chapter 6 for the latter.
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for instance, where the second equality follows from the unbiasedness condition
CX = Ik . The matrix

M = In − X
(
XTX

)−1
XT (5.38)

is idempotent; hence, its eigenvalues are either 1 or 0. Because all the eigen-
values are nonnegative, M is positive semidefinite and so is C(X )MC(X )T.
Q.E.D.
Next, we need an estimator of the error variance σ 2. If we observed the errors

Uj , then we could use the sample variance S2 = (1/(n − 1))
∑n
j=1(Uj − Ū )2

of the Uj ’s as an unbiased estimator. This suggests using OLS residuals,

Û j = Y j − X̃T
j θ̂ , where X̃ j =

(
1
X j

)
, (5.39)

instead of the actual errorsUj in this sample variance. Taking into account that

n∑
j=1

Û j ≡ 0, (5.40)

we find that the feasible variance estimator involved takes the form Ŝ2 =
(1/(n − 1))

∑n
j=1 Û

2
j . However, this estimator is not unbiased, but a minor

correction will yield an unbiased estimator of σ 2, namely,

S2 = (1/(n − k))
n∑
j=1

Û 2
j , (5.41)

which is called the OLS estimator of σ 2. The unbiasedness of this estimator is
a by-product of the following more general result, which is related to the result
of Theorem 5.13.

Theorem5.17: Conditional on X andwell as unconditionally, (n − k)S2/σ 2 ∼
χ2
n−k; hence, E[S

2] = σ 2.

Proof: Observe that

n∑
j=1

Û 2
j =

n∑
j=1

(
Y j − X̃T

j θ̂
)2 = n∑

j=1

(
Uj − X̃T

j (θ̂ − θ0)
)2

=
n∑
j=1

U 2
j − 2

(
n∑
j=1

Uj X̃
T
j

)
(θ̂ − θ0)

+ (θ̂ − θ0)
T

(
n∑
j=1

X̃T
j X̃ j

)
(θ̂ − θ0)

= UTU − 2UTX (θ̂ − θ0)+ (θ̂ − θ0)X
TX (θ̂ − θ0)

= UTU −UTX (XTX )−1XTU = UTMU, (5.42)
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where the last twoequalities follow from (5.36) and (5.38), respectively.Because
the matrix M is idempotent with rank

rank(M) = trace(M) = trace(In)− trace
(
X (XTX )

−1
XT

)
= trace(In)− trace

(
(XTX )

−1
XTX

) = n − k,
it follows from Theorem 5.10 that, conditional on X, (5.42) divided by σ 2 has
a χ2

n−k distribution

n∑
j=1

Û 2
j

/
σ 2|X ∼ χ2

n−k . (5.43)

It is left as an exercise to prove that (5.43) also implies that the unconditional
distribution of (5.42) divided by σ 2 is χ2

n−k :

n∑
j=1

Û 2
j

/
σ 2 ∼ χ2

n−k . (5.44)

Because the expectation of the χ2
n−k distribution is n − k, it follows from (5.44)

that the OLS estimator (5.41) of σ 2 is unbiased. Q.E.D.
Next, observe from (5.38) that XTM = O , and thus by Theorem 5.7

(XTX )−1XTU and UTMU are independent conditionally on X, that is,

P[XTU ≤ x and UTMU ≤ z|X ]
= P[XTU ≤ x |X ] · P[UTMU ≤ z|X ],∀ x ∈ R

k,z ≥ 0.

Consequently,

Theorem 5.18: Conditional on X, θ̂ and S2 are independent,

but unconditionally they can be dependent.
Theorems 5.17 and 5.18 yield two important corollaries, which I will state

in the next theorem. These results play a key role in statistical testing.

Theorem 5.19:

(a) Let c ∈ R
k be a given nonrandom vector. Then

cT(θ̂ − θ0)

S
√
cT(XTX )−1c

∼ tn−k . (5.45)

(b) Let R be a given nonrandom m × k matrix with rank m ≤ k. Then

(θ̂ − θ0)TRT
(
R(XTX )

−1
RT

)−1
R(θ̂ − θ0)

m · S2 ∼ Fm,n−k . (5.46)
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Proof of (5.45): It follows from (5.37) that cT(θ̂ − θ0)|X ∼ N [0,
σ 2cT(XTX )−1c]; hence,

cT(θ̂ − θ0)

σ
√
cT(XTX )−1c

∣∣∣∣∣X ∼ N [0, 1]. (5.47)

It follows now from Theorem 5.18 that, conditional on X , the random variable
in (5.47) and S2 are independent; hence, it follows from Theorem 5.17 and the
definition of the t-distribution that (5.44) is true, conditional on X and therefore
also unconditionally.
Proof of (5.46): It follows from (5.37) that R(θ̂ − θ0)|X ∼ Nm[0,

σ 2R(XTX )−1RT]; hence, it follows from Theorem 5.9 that

(θ̂ − θ0)TRT
(
R(XTX )−1RT

)−1
R(θ̂ − θ0)

σ 2

∣∣∣∣∣X ∼ χ2
m . (5.48)

Again it follows from Theorem 5.18 that, conditional on X, the random variable
in (5.48) and S2 are independent; hence, it follows from Theorem 5.17 and the
definition of theF-distribution that (5.46) is true, conditional on X and therefore
also unconditionally. Q.E.D.
Note that the results in Theorem 5.19 do not hinge on the assumption that

the vector X j in model (5.31) has a multivariate normal distribution. The only
conditions that matter for the validity of Theorem 5.19 are that in (5.32),U |X ∼
Nn(0, σ 2 In) and P[0 < det(XTX ) < ∞] = 1.

5.7.3. Hypotheses Testing

Theorem 5.19 is the basis for hypotheses testing in linear regression analysis.
First, consider the problem of whether a particular component of the vector X j
of explanatory variables in model (5.31) have an effect on Y j or not. If not, the
corresponding component of β is zero. Each component of β corresponds to a
component θi,0, i > 0, of θ0. Thus, the null hypothesis involved is

H0 : θi,0 = 0. (5.49)

Let θ̂i be component i of θ̂ , and let the vector ei be column i of the unit matrix
Ik . Then it follows from Theorem 5.19(a) that, under the null hypothesis (5.49),

t̂ i = θ̂i

S
√
eTi (X

TX )−1ei
∼ tn−k . (5.50)

The statistic t̂ i in (5.50) is called the t-statistic or t-value of the coefficient θi,0. If
θi,0 can take negative or positive values, the appropriate alternative hypothesis
is
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H1: θi,0 
= 0. (5.51)

Given the size α ∈ (0, 1) of the test, the critical value γ corresponds to P[|T | >
γ ] = α, where T ∼ tn−k . Thus, the null hypothesis (5.49) is accepted if |t̂ i | ≤ γ

and is rejected in favor of the alternative hypothesis (5.51) if |t̂ i | > γ . In the
latter case, we say that θi,0 is significant at the α × 100% significance level. This
test is called the two-sided t-test. The critical value γ can be found in Table IV.1
in Appendix IV for the 5% and 10% significance levels and degrees of freedom
n − k ranging from 1 to 30. As follows from the results in the next chapter, for
larger values of n − k one may use the critical values of the standard normal
test in Table IV.3 of Appendix IV.
If the possibility that θi,0 is negative can be excluded, the appropriate alter-

native hypothesis is

H+
1 : θi,0 > 0. (5.52)

Given the size α, the critical value γ+ involved now corresponds to P[T >

γ+] = α, where again T ∼ tn−k . Thus, the null hypothesis (5.49) is accepted if
t̂ i ≤ γ+ and is rejected in favor of the alternative hypothesis (5.52) if t̂ i > γ+.
This is the right-sided t-test. The critical value γ+ can be found in Table IV.2
of Appendix IV for the 5% and 10% significance levels and degrees of freedom
n − k ranging from 1 to 30. Again, for larger values of n − k one may use the
critical values of the standard normal test in Table IV.3 of Appendix IV.
Similarly, if the possibility that θi,0 is positive can be excluded, the appropriate

alternative hypothesis is

H−
1 : θi,0 < 0. (5.53)

Then the null hypothesis (5.49) is accepted if t̂ i ≥ −γ+ and is rejected in favor
of the alternative hypothesis (5.53) if t̂ i < −γ+. This is the left-sided t-test.
If the null hypothesis (5.49) is not true, then one can show, using the results

in the next chapter, that for n→ ∞ and arbitrary M > 0, P[t̂ i > M] → 1 if
θi,0 > 0 and P[t̂ i < −M] → 1 if θi,0 < 0. Therefore, the t-tests involved are
consistent.
Finally, consider a null hypothesis of the form

H0 : Rθ0 = q, (5.54)

where R is a given m × k matrix with rank m ≤ k, and q is a given m × 1
vector.
For example, the null hypothesis that the parameter vector β in model (5.31)

is a zero vector corresponds to R = (0, Ik−1), q = 0 ∈ R
k−1, m = k − 1. This

hypothesis implies that none of the components of X j have any effect on Y j . In
that case Y j = α +Uj , and because Uj and X j are independent, so are Y j and
X j .
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It follows from Theorem 5.19(b) that, under the null hypothesis (5.54),

F̂ = (Rθ̂ − q)T(R(XTX )
−1
RT

)−1
(Rθ̂ − q)

m · S2 ∼ Fm,n−k . (5.55)

Given the size α, the critical value γ is chosen such that P[F > γ ] = α, where
F ∼ Fm,n−k . Thus, the null hypothesis (5.54) is accepted if F̂ ≤ γ and is re-
jected in favor of the alternative hypothesis Rθ0 
= q if F̂ > γ . For obvious
reasons, this test is called the F test. The critical value γ can be found in Ap-
pendix IV for the 5% and 10% significance levels. Moreover, one can show,
using the results in the next chapter, that if the null hypothesis (5.54) is false,
then for any M > 0, limn→∞P[F̂ > M] = 1. Thus, the F test is a consistent
test.

5.8. Exercises

1. Let (
Y
X

)
∼ N2

[(
1
0

)
,

(
4 1
1 1

)]
.

(a) Determine E(Y |X ).
(b) Determine var(U ), where U = Y − E(Y |X ).
(c) Why are U and X independent?

2. Let X be n-variate standard normally distributed, and let A be a nonstochastic
n × k matrix with rank k < n. The projection of X on the column space of A
is a vector p such that the following two conditions hold:
(1) p is a linear combination of the columns of A;
(2) the distance between X and p, ‖X − p‖ =

√
(X − p)T(X − p), is

minimal.
(a) Show that p = A(ATA)−1ATX .
(b) Is it possible to write down the density of p? If yes, do it. If no,

why not?
(c) Show that ‖p‖2 = pT p has a χ2 distribution. Determine the de-

grees of freedom involved.
(d) Show that ‖X − p‖2 has a χ2 distribution. Determine the degrees

of freedom involved.
(e) Show that ‖p‖ and ‖X − p‖ are independent.

3. Prove Theorem 5.13.

4. Show that (5.11) is true for θ in an open set � if d2 fn(x |θ )/(dθ )2 is, for each
x , continuous on � and

∫
supθ∈�|d2 fn(x |θ )/(dθ )2|dx < ∞. Hint: Use the

mean-value theorem and the dominated convergence theorem.
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5. Show that for a random sample X1, X2, . . . , Xn from a distributionwith expec-
tation µ and variance σ 2 the sample variance (5.15) is an unbiased estimator
of σ 2 even if the distribution involved is not normal.

6. Prove (5.17).

7. Show that for a random sample X1, X2, . . . , Xn from amultivariate distribution
with expectation vector µ and variance matrix � the sample variance matrix
(5.18) is an unbiased estimator of �.

8. Given a random sample of size n from the N (µ, σ 2) distribution, prove that
the Cramer–Rao lower bound for an unbiased estimator of σ 2 is 2σ 4/n.

9. Prove Theorem 5.15.

10. Prove the second equalities in (5.34) and (5.35).

11. Show that the Cramer–Rao lower bound of an unbiased estimator of (5.37) is
equal to σ 2(E[XTX ])−1.

12. Show that the matrix (5.38) is idempotent.

13. Why is (5.40) true?

14. Why does (5.43) imply (5.44)?

15. Suppose your econometric software package reports that the OLS estimate of
a regression parameter is 1.5, with corresponding t-value 2.4. However, you
are only interested in whether the true parameter value is 1 or not. How would
you test these hypotheses? Compute the test statistic involved. Moreover, given
that the sample size is n = 30 and that your model has five other parameters,
conduct the test at the 5% significance level.

APPENDIX

5.A. Proof of Theorem 5.8

Note again that the condition AB = O only makes sense if both A and B are
singular; if otherwise, either A, B or both are O. Write A = QA�AQT

A, B =
QB�BQT

B , where QA and QB are orthogonal matrices of eigenvectors and
�A and �B are diagonal matrices of corresponding eigenvalues. Then Z1 =
XTQA�AQT

AX, Z2 = XTQB�BQT
B X . Because A and B are both singular, it

follows that �A and �B are singular. Thus, let

�A =

�1 O O
O −�2 O
O O O


 ,
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where �1 is the k × k diagonal matrix of positive eigenvalues and −�2 the
m × m diagonal matrix of negative eigenvalues of A with k + m < n. Then

Z1 = XTQA


�1 O O
O −�2 O
O O O


 QT

AX

= XTQA


�

1
2
1 O O

O �
1
2
2 O

O O O





Ik O O
O −Im O
O O In−k−m





�

1
2
1 O O

O �
1
2
2 O

O O O


 QT

AX.

Similarly, let

�B =

�∗

1 O O
O −�∗

2 O
O O O


 ,

where �∗
1 is the p × p diagonal matrix of positive eigenvalues and −�∗

2 is the
q × q diagonal matrix of negative eigenvalues of B with p + q < n. Then

Z2 = XTQB


(�∗

1)
1
2 O O

O (�∗
2)

1
2 O

O O O





Ip O O
O −Iq O
O O In−p−q




×

(�∗

1)
1
2 O O

O (�∗
2)

1
2 O

O O O


 QT

B X.

Next, for instance, let

Y1 =


�

1
2
1 O O

O �
1
2
2 O

O O O


 QT

AX = M1X,

Y2 =


(�∗

1)
1
2 O O

O (�∗
2)

1
2 O

O O O


 QT

B X = M2X.

Then, for instance,

Z1 = Y T
1


Ik O O
O −Im O
O O In−k−m


 Y1 = Y T

1 D1Y1,
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and

Z2 = Y T
2


Ip O O
O −Iq O
O O In−p−q


 Y2 = Y T

2 D2Y2,

where the diagonal matrices D1 and D2 are nonsingular but possibly different.
Clearly, Z1 and Z2 are independent if Y1 and Y2 are independent. Now observe
that

AB = QA


�

1
2
1 O O

O �
1
2
2 O

O O In−k−m





Ik O O
O −Im O
O O In−k−m




×


�

1
2
1 O O

O �
1
2
2 O

O O O


 QT

AQB


(�∗

1)
1
2 O O

O (�∗
2)

1
2 O

O O O




×

Ip O O
O −Iq O
O O In−p−q





(�∗

1)
1
0 O O

O (�∗
2)

1
2 O

O O In−p−q


 QT

B .

The first three matrices are nonsingular and so are the last three. Therefore,
AB = O if and only if

M1M
T
2 =


�

1
2
1 O O

O �
1
2
2 O

O O O


 QT

AQB


(�∗

1)
1
2 O O

O (�∗
2)

1
2 O

O O O


 = O.

It follows now from Theorem 5.7 that the latter implies that Y1 and Y2 are inde-
pendent; hence, the condition AB = O implies that Y1 and Y2 are independent.
Q.E.D.



6 Modes of Convergence

6.1. Introduction

Toss a fair coin n times, and let Y j = 1 if the outcome of the j th tossing is heads
and Y j = −1 if the outcome involved is tails. Denote Xn = (1/n)

∑n
j=1 Y j . For

the case n = 10, the left panel of Figure 6.1 displays the distribution function
Fn(x)1 of Xn on the interval [−1.5, 1.5], and the right panel displays a typical
plot of Xk for k = 1, 2, . . . , 10 based on simulated Y j ’s.2

Now let us seewhat happens if we increase n: First, consider the case n = 100
in Figure 6.2. The distribution function Fn(x) becomes steeper for x close to
zero, and Xn seems to tend towards zero.
These phenomena are even more apparent for the case n = 1000 in Figure

6.3.
What you see in Figures 6.1–6.3 is the law of large numbers: Xn =

(1/n)
∑n
j=1 Y j → E[Y1] = 0 in some sense to be discussed in Sections 6.2–

6.3 and the related phenomenon that Fn(x) converges pointwise in x 
= 0 to
the distribution function F(x) = I (x ≥ 0) of a “random” variable X satisfying
P[X = 0] = 1.
Next, let us have a closer look at the distribution function of

√
nXn : Gn(x) =

Fn(x/
√
n) with corresponding probabilities P[

√
nXn = (2k − n)/√n], k = 0,

1, . . . , n and see what happens if n→ ∞. These probabilities can be displayed

1 Recall that n(Xn + 1)/2 = ∑n
j=1(Y j + 1)/2 has a binomial (n, 1/2) distribution, and thus

the distribution function Fn(x) of Xn is

Fn(x) = P[Xn ≤ x] = P[n(Xn +1)/2 ≤ n(x + 1)/2]

=
min(n,[n(x+1)/2])∑

k=0

(
n
k

)
(1/2 )n,

where [z] denotes the largest integer ≤ z, and the sum
∑m
k=0 is zero if m < 0.

2 The Y j ’s have been generated as Y j = 2 · I (Uj > 0.5)− 1, where the Uj ’s are random
drawings from the uniform [0, 1] distribution and I (·) is the indicator function.
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Figure 6.1. n = 10. Left: Distribution function of Xn . Right: Plot of Xk for k =
1, 2, . . . , n.

in the form of a histogram:

Hn(x) =
P

[
2(k − 1)/

√
n −√

n <
√
nXn ≤ 2k/

√
n −√

n
]

2/
√
n

if x ∈ (
2(k − 1)/

√
n −√

n, 2k/
√
n −√

n
]
, k = 0, 1, . . . , n,

Hn(x) = 0 elsewhere.

Figures 6.4–6.6 compareGn(x) with the distribution function of the standard
normal distribution and Hn(x) with the standard normal density for n = 10, 100
and 1000.
What you see in the left-hand panels in Figures 6.4–6.6 is the central limit

theorem:

lim
n→∞Gn(x) =

x∫
−∞

exp[−u2/2]√
2π

du,

pointwise in x , and what you see in the right-hand panels is the corresponding
fact that

lim
δ↓0

lim
n→∞

Gn(x + δ)− Gn(x)
δ

= exp[−x2/2]√
2π

.

The lawof largenumbers and the central limit theoremplay akey role in statistics
and econometrics. In this chapter I will review and explain these laws.

Figure 6.2. n = 100. Left: Distribution function of Xn . Right: Plot of Xk for k =
1, 2, . . . , n.
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Figure 6.3. n = 1000. Left: Distribution function of Xn . Right: Plot of Xk for k =
1, 2, . . . , n.

Figure 6.4. n = 10. Left: Gn(x). Right: Hn(x) compared with the standard normal
distribution.

Figure 6.5. n = 100. Left: Gn(x). Right: Hn(x) compared with the standard normal
distribution.

Figure 6.6. n = 1000. Left: Gn(x). Right: Hn(x) compared with the standard normal
distribution.
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6.2. Convergence in Probability and the Weak Law of Large Numbers

Let Xn be a sequence of random variables (or vectors) and let X be a random
or constant variable (or conformable vector).

Definition 6.1: We say that Xn converges in probability to X, also de-
noted as plimn→∞Xn = X or Xn →p X, if for an arbitrary ε > 0 we have
limn→∞P(|Xn − X | > ε) = 0, or equivalently, limn→∞P(|Xn − X | ≤ ε)= 1.

In this definition, X may be a random variable or a constant. The latter
case, where P(X = c) = 1 for some constant c, is the most common case in
econometric applications. Also, this definition carries over to random vectors
provided that the absolute value function |x | is replaced by the Euclidean norm
‖x‖ = √

xTx .
The right panels of Figures 6.1–6.3 demonstrate the law of large numbers.

One of the versions of this law is the weak law of large numbers (WLLN),
which also applies to uncorrelated random variables.

Theorem 6.1: (WLLN for uncorrelated random variables). Let X1, . . . , Xn be
a sequence of uncorrelated random variables with E(X j ) = µ and var(X j ) =
σ 2 < ∞ and let X̄ = (1/n)

∑n
j=1 X j . Then plimn→∞ X̄ = µ.

Proof: Because E(X̄ ) = µ and var(X̄ ) = σ 2/n, it follows from Chebishev
inequality that P(|X̄ − µ| > ε) ≤ σ 2/(nε2) → 0 if n→ ∞. Q.E.D.
The condition of a finite variance can be traded in for the i.i.d. condition:

Theorem 6.2: (TheWLLN for i.i.d. random variables). Let X1, . . . , Xn be a se-
quence of independent, identically distributed randomvariableswith E[|X j |] <
∞ and E(X j ) = µ, and let X̄ = (1/n)

∑n
j=1 X j . Then plimn→∞ X̄ = µ .

Proof: Let Y j = X j · I (|X j | ≤ j) and Z j = X j · I (|X j | > j), and thus
X j = Y j + Z j . Then

E

∣∣∣∣∣(1/n)
n∑
j=1

(Z j − E(Z j ))
∣∣∣∣∣ ≤ 2(1/n)

n∑
j=1

E[|Z j |]

= 2(1/n)
n∑
j=1

E[|X1|I (|X1| > j)] → 0, (6.1)

and

E



∣∣∣∣∣(1/n)

n∑
j=1

(Y j −E(Y j ))
∣∣∣∣∣
2

 ≤ (1/n2)

n∑
j=1

E[Y 2
j ]

= (1/n2)
n∑
j=1

E
[
X2
1 I (|X1| ≤ j)

]
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= (1/n2)
n∑
j=1

j∑
k=1

E
[
X2
1 I (k − 1 < |X1| ≤ k)

]

≤ (1/n2)
n∑
j=1

j∑
k=1

k · E[|X1| · I (k − 1 < |X1| ≤ k)]

= (1/n2)
n∑
j=1

j−1∑
k=1

j∑
i=k
E[|X1| · I (i − 1 < |X1| ≤ i)]

≤ (1/n2)
n∑
j=1

j−1∑
k=1

E[|X1| · I (|X1| > k − 1)]

≤ (1/n)
n∑
k=1

E[|X1| · I (|X1| > k − 1)] → 0 (6.2)

as n→ ∞, where the last equality in (6.2) follows from the easy equal-
ity

∑ j
k=1 k · αk =

∑ j−1
k=1

∑ j
i=kαi , and the convergence results in (6.1) and

(6.2) follow from the fact that E[|X1|I (|X1| > j)] → 0 for j → ∞ because
E[|X1|] < ∞. Using Chebishev’s inequality, we find that it follows now from
(6.1) and (6.2) that, for arbitrary ε > 0,

P

[∣∣∣∣∣(1/n)
n∑
j=1

(X j − E(X j ))
∣∣∣∣∣ > ε

]

≤ P
[∣∣∣∣∣(1/n)

n∑
j=1

(Y j − E(Y j ))
∣∣∣∣∣ +

∣∣∣∣∣(1/n)
n∑
j=1

(Z j − E(Z j ))
∣∣∣∣∣ > ε

]

≤ P
[∣∣∣∣∣(1/n)

n∑
j=1

(Y j − E(Y j ))
∣∣∣∣∣ > ε/2

]

+ P

[∣∣∣∣∣(1/n)
n∑
j=1

(Z j − E(Z j ))
∣∣∣∣∣ > ε/2

]

≤ 4E



∣∣∣∣∣(1/n)

n∑
j=1

(Y j − E(Y j ))
∣∣∣∣∣
2

/

ε2

+ 2E

[∣∣∣∣∣(1/n)
n∑
j=1

(Z j − E(Z j ))
∣∣∣∣∣
]/

ε → 0 (6.3)

as n→ ∞. Note that the second inequality in (6.3) follows from the fact that,
for nonnegative random variables X and Y , P[X + Y > ε] ≤ P[X > ε/2]+
P[Y > ε/2]. The theorem under review follows now from (6.3), Definition 6.1,
and the fact that ε is arbitrary. Q.E.D.
Note that Theorems 6.1 and 6.2 carry over to finite-dimensional random

vectors X j by replacing the absolute values |·| by Euclidean norms: ‖x‖ =
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√
xTx and the variance by the variance matrix. The reformulation of Theorems

6.1 and 6.2 for random vectors is left as an easy exercise.
Convergence in probability carries over after taking continuous transforma-

tions. This result is often referred to as Slutky’s theorem:

Theorem 6.3: (Slutsky’s theorem). Let Xn a sequence of random vectors in R
k

satisfying Xn →p c, where c is nonrandom. Let�(x) be anR
m-valued function

on R
k that is continuous in c. Then �(Xn) →p �(c) .

Proof: Consider the case m = k = 1. It follows from the continuity of �
that for an arbitrary ε > 0 there exists a δ > 0 such that |x − c| ≤ δ implies
|�(x)−�(c)| ≤ ε; hence,

P(|Xn − c| ≤ δ) ≤ P(|�(Xn)−�(c)| ≤ ε).

Because limn→∞P(|Xn − c| ≤ δ) = 1, the theorem follows for the case under
review. The more general case with m > 1, k > 1, or both can be proved along
the same lines. Q.E.D.
The condition that c be constant is not essential. Theorem 6.3 carries over to

the case in which c is a random variable or vector, as we will see in Theorem
6.7 below.
Convergence in probability does not automatically imply convergence of

expectations. A counterexample is Xn = X + 1/n, where X has a Cauchy dis-
tribution (see Chapter 4). Then E[Xn] and E(X ) are not defined, but Xn →p X .
However,

Theorem 6.4: (Bounded convergence theorem) If Xn is bounded, that is,
P(|Xn| ≤ M) = 1 for some M < ∞ and all n, then Xn →p X implies
limn→∞E(Xn) = E(X ).

Proof: First, X has to be bounded too, with the same bound M ; other-
wise, Xn →p X is not possible. Without loss of generality we may now assume
that P(X = 0) = 1 and that Xn is a nonnegative random variable by replacing
Xn with |Xn − X | because E[|Xn − X |] → 0 implies limn→∞ E(Xn) = E(X ).
Next, let Fn(x) be the distribution function of Xn and let ε > 0 be arbitrary.
Then

0 ≤ E(Xn) =
M∫
0

xdFn(x)

=
ε∫
0

xdFn(x)+
M∫
ε

xdFn(x) ≤ ε + M · P(Xn ≥ ε).

(6.4)
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Because the latter probability converges to zero (by the definition of conver-
gence in probability and the assumption that Xn is nonnegative with zero
probability limit), we have 0 ≤ limsupn→∞ E(Xn) ≤ ε for all ε > 0; hence,
limn→∞ E(Xn) = 0. Q.E.D.
The condition that Xn in Theorem 6.4 is bounded can be relaxed using the

concept of uniform integrability:

Definition 6.2: A sequence Xn of random variables is said to be uniformly
integrable if limM→∞ supn≥1E[|Xn| · I (|Xn| > M)] = 0.

Note that Definition 6.2 carries over to random vectors by replacing the
absolute value |·| with the Euclidean norm ‖·‖. Moreover, it is easy to verify
that if |Xn| ≤ Y with probability 1 for all n ≥ 1, where E(Y ) < ∞, then Xn is
uniformly integrable.

Theorem 6.5: (Dominated convergence theorem) Let Xn be uniformly inte-
grable. Then Xn →p X implies limn→∞E(Xn) = E(X ).

Proof: Again, without loss of generality we may assume that P(X = 0) = 1
and that Xn is a nonnegative random variable. Let 0 < ε < M be arbitrary.
Then, as in (6.4),

0 ≤ E(Xn) =
∞∫
0

xdFn(x) =
ε∫

0

xdFn(x)+
M∫
ε

xdFn(x)+
∞∫
M

xdFn(x)

≤ ε + M · P(Xn ≥ ε)+ sup
n≥1

∞∫
M

xdFn(x). (6.5)

For fixed M the second term on the right-hand side of (6.5) converges to zero.
Moreover, by uniform integrability we can choose M so large that the third
term is smaller than ε. Hence, 0 ≤ limsupn→∞E(Xn) ≤ 2ε for all ε > 0, and
thus limn→∞ E(Xn) = 0. Q.E.D.
Also Theorems 6.4 and 6.5 carry over to random vectors by replacing the

absolute value function |x | by the Euclidean norm ‖x‖ = √
xTx .

6.3. Almost-Sure Convergence and the Strong Law of Large Numbers

In most (but not all!) cases in which convergence in probability and the weak
law of large numbers apply, we actually have a much stronger result:

Definition 6.3: We say that Xn converges almost surely (or with probability 1)
to X , also denoted by Xn → X a.s. (or w.p.1), if
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for all ε > 0, lim
n→∞ P(supm≥n

|Xm − X | ≤ ε) = 1, (6.6)

or equivalently,

P( lim
n→∞ Xn = X ) = 1. (6.7)

The equivalence of conditions (6.6) and (6.7) will be proved in Appendix 6.B
(Theorem 6.B.1).
It follows straightforwardly from (6.6) that almost-sure convergence implies

convergence in probability. The converse, however, is not true. It is possible
that a sequence Xn converges in probability but not almost surely. For example,
let Xn = Un/n, where the Un’s are i.i.d. nonnegative random variables with
distribution function G(u) = exp(−1/u) for u > 0, G(u) = 0 for u ≤ 0. Then,
for arbitrary ε > 0,

P(|Xn| ≤ ε) = P(Un ≤ nε) = G(nε)
= exp(−1/(nε)) → 1 as n→ ∞;

hence, Xn →p 0. On the other hand,

P(|Xm | ≤ ε for all m ≥ n) = P(Um ≤ mε for all m ≥ n)

= ∞
�
m=n
G(mε) = exp

(
−ε−1

∞∑
m=n
m−1

)

= 0,

where the second equality follows from the independence of the Un’s and the
last equality follows from the fact that

∑∞
m=1 m

−1 = ∞. Consequently, Xn does
not converge to 0 almost surely.
Theorems 6.2–6.5 carry over to the almost-sure convergence case without

additional conditions:

Theorem 6.6: (Kolmogorov’s strong law of large numbers). Under the condi-
tions of Theorem 6.2, X̄ → µ a.s.

Proof: See Appendix 6.B.
The result of Theorem 6.6 is actually what you see happening in the right-

hand panels of Figures 6.1–6.3.

Theorem 6.7: (Slutsky’s theorem). Let Xn a sequence of random vectors in
R
k converging a.s. to a (random or constant) vector X. Let �(x) be an R

m-
valued function on R

k that is continuous on an open subset3 B of R
k for which

P(X ∈ B) = 1). Then �(Xn) → ψ(X ) a.s.

3 Recall that open subsets of a Euclidean space are Borel sets.
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Proof: See Appendix 6.B.
Because a.s. convergence implies convergence in probability, it is trivial that

Theorem 6.8: If Xn → X a.s., then the result of Theorem 6.4 carries over.

Theorem 6.9: If Xn → X a.s., then the result of Theorem 6.5 carries over.

6.4. The Uniform Law of Large Numbers and Its Applications

6.4.1. The Uniform Weak Law of Large Numbers

In econometrics we often have to deal with means of random functions. A
random function is a function that is a random variable for each fixed value of
its argument. More precisely,

Definition6.4: Let{�,ö,P}be theprobability space.A random function f (θ )
on a subset � of a Euclidean space is a mapping f (ω, θ) : �×� → R such
that for each Borel set B in R and each θ ∈ �, {ω ∈ � : f (ω, θ) ∈ B} ∈ ö.

Usually random functions take the form of a function g(X, θ ) of a random
vector X and a nonrandom vector θ . For such functions we can extend the weak
law of large numbers for i.i.d. random variables to a uniform weak law of large
numbers (UWLLN):

Theorem 6.10: (UWLLN). Let X j , j = 1, . . . , n be a random sample from
a k-variate distribution, and let θ ∈ � be nonrandom vectors in a closed
and bounded (hence compact4) subset � ⊂ R

m. Moreover, let g(x, θ ) be a
Borel-measurable function on R

k ×� such that for each x, g(x, θ ) is a con-
tinuous function on �. Finally, assume that E[supθ∈�|g(X j , θ )|] < ∞. Then
plimn→∞supθ∈�|(1/n)

∑n
j=1 g(X j , θ )− E[g(X1, θ )]| = 0.

Proof: See Appendix 6.A.

6.4.2. Applications of the Uniform Weak Law of Large Numbers

6.4.2.1. Consistency of M-Estimators

Chapter 5 introduced the concept of a parameter estimator and listed two desir-
able properties of estimators: unbiasedness and efficiency. Another obviously

4 See Appendix II.
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desirable property is that the estimator gets closer to the parameter to be esti-
mated if we use more data information. This is the consistency property:

Definition 6.5: An estimator θ̂ of a parameter θ , based on a sample of size n,
is called consistent if plimn→∞θ̂ = θ .

Theorem 6.10 is an important tool in proving consistency of parameter esti-
mators. A large class of estimators is obtained by maximizing or minimizing an
objective function of the form (1/n)

∑n
j=1 g(X j , θ ), where g, X j , and θ are the

same as in Theorem 6.10. These estimators are called M-estimators (where the
M indicates that the estimator is obtained byMaximizing orMinimizing aMean
of random functions). Suppose that the parameter of interest is θ0 = argmaxθ∈�
E[g(X1, θ )], where� is a given closed and bounded set. Note that “argmax” is
a shorthand notation for the argument for which the function involved is maxi-
mal. Then it seems a natural choice to use θ̂ = argmaxθ∈�(1/n)

∑n
j=1 g(X j , θ )

as an estimator of θ0. Indeed, under somemild conditions the estimator involved
is consistent:

Theorem 6.11: (Consistency of M-estimators) Let θ̂ = argmaxθ∈� Q̂(θ ), θ0 =
argmaxθ∈� Q̄(θ ), where Q̂(θ ) = (1/n)

∑n
j=1g(X j , θ ), and Q̄(θ ) = E[Q̂(θ )] =

E[g(X1, θ )], with g, X j , and θ the same as in Theorem 6.10. If θ0 is unique,
in the sense that for arbitrary ε > 0 there exists a δ > 0 such that Q̄(θ0)−
sup‖θ−θ0‖>ε Q̄(θ ) > δ,5 then plimn→∞θ̂ = θ0.

Proof: First, note that θ̂ ∈ � and θ0 ∈ � because g(x, θ ) is continuous in θ .
See Appendix II. By the definition of θ0,

0 ≤ Q̄(θ0)− Q̄(θ̂ ) = Q̄(θ0)− Q̂(θ0)+ Q̂(θ0)− Q̄(θ̂ )
≤ Q̄(θ0)− Q̂(θ0)+ Q̂(θ̂ )− Q̄(θ̂ ) ≤ 2 sup

θ∈�
|Q̂(θ )− Q̄(θ )|, (6.8)

and it follows from Theorem 6.3 that the right-hand side of (6.8) converges in
probability to zero. Thus,

plim
n→∞

Q̄(θ̂ ) = Q̄(θ0). (6.9)

Moreover, the uniqueness condition implies that for arbitrary ε > 0 there exists
a δ > 0 such that Q̄(θ0)− Q̄(θ̂ ) ≥ δ if ‖θ̂ − θ0‖ > ε; hence,

P(‖θ̂ − θ0‖ > ε) ≤ P(Q̄(θ0)− Q̄(θ̂ ) ≥ δ). (6.10)

5 It follows from Theorem II.6 in Appendix II that this condition is satisfied if� is compact
and Q̄ is continuous on �.
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Combining (6.9) and (6.10), we find that the theorem under review follows from
Definition 6.1. Q.E.D.
It is easy to verify that Theorem 6.11 carries over to the “argmin” case simply

by replacing g by −g.
As an example, let X1, . . . , Xn be a random sample from the noncentral

Cauchy distribution with density h(x |θ0) = 1/[π (1+ (x − θ0)2] and suppose
that we know that θ0 is contained in a given closed and bounded interval �.
Let g(x, θ ) = f (x − θ ), where f (x) = exp(−x2/2)/√2π is the density of the
standard normal distribution. Then,

E[g(X1, θ )] =
∞∫

−∞

exp(−(x + θ0 − θ )2)/
√
2π

π (1+ x2) dx

=
∞∫

−∞
f (x − θ + θ0)h(x |θ )dx = γ (θ − θ0), (6.11)

for instance, where γ (y) is a density itself, namely the density of Y = U + Z ,
with U and Z independent random drawings from the standard normal and
standard Cauchy distribution, respectively. This is called the convolution of the
two densities involved. The characteristic function of Y is exp(−|t | − t2/2),
and thus by the inversion formula for characteristic functions

γ (y) = 1

2π

∞∫
−∞

cos(t · y) exp(−|t | − t2/2)dt. (6.12)

This function is maximal in y = 0, and this maximum is unique because, for
fixed y 
= 0, the set {t ∈ R : cos(t · y) = 1} is countable and therefore has
Lebesgue measure zero. In particular, it follows from (6.12) that, for arbitrary
ε > 0,

sup
|y|≥ε

γ (y) ≤ 1

2π

∞∫
−∞

sup
|y|≥ε

|cos(t · y)| exp(−|t | − t2/2)dt < γ (0).

(6.13)

Combining (6.11) and (6.13) yields sup|θ−θ0|≥ε E[g(X1, θ )] < E[g(X1, θ0)].
Thus, all the conditions of Theorem 6.11 are satisfied; hence, plimn→∞θ̂ = θ0.
Another example is the nonlinear least-squares estimator. Consider a ran-

dom sample Z j = (Y j , XT
j )

T, j = 1, 2, . . . , n with Y j ∈ R, X j ∈ R
k and as-

sume that

Assumption 6.1: For a given function f (x, θ ) onR
k ×�,with� a given com-

pact subset ofRm , there exists a θ0 ∈ � such that P[E[Y j |X j ] = f (X j , θ0)] =
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1. Moreover, for each x ∈ R
k , f (x, θ ) is a continuous function on �, and for

each θ ∈ �, f (x, θ ) is a Borel-measurable function on R
k . Furthermore, let

E[Y 2
1 ] < ∞, E[supθ∈� f (X1, θ )2] < ∞, and

inf
‖θ−θ0‖≥δ

E
[
( f (X1, θ )− f (X1, θ0))

2
]
> 0 for δ > 0.

Letting Uj = Y j − E[Y j |X j ], we can write

Y j = f (X j , θ0)+Uj , where P(E[Uj |X j ] = 0) = 1. (6.14)

This is the general form of a nonlinear regression model. I will show now that,
under Assumption 6.1, the nonlinear least-squares estimator

θ̂ = argmin
θ∈�

(1/n)
n∑
j=1

(Y j − f (X j , θ ))
2 (6.15)

is a consistent estimator of θ0.

Let g(Z j , θ ) = (Y j − f (X j , θ ))2. Then it follows from Assumption 6.1 and
Theorem 6.10 that

plim
n→∞

sup
θ∈�

∣∣∣∣∣(1/n)
n∑
j=1

[g(Z j , θ )− E[g(Z1, θ )]
∣∣∣∣∣ = 0.

Moreover,

E[g(Z1, θ )] = E
[
(Uj + f (X j , θ0)− f (X j , θ ))

2
]

= E [
U 2
j

]+ 2E[E(Uj |X j )( f (X j , θ0)− f (X j , θ ))]

+ E [
( f (X j , θ0)− f (X j , θ ))

2
]

= E [
U 2
j

]+ E [
( f (X j , θ0)− f (X j , θ ))

2
]
;

hence, it follows from Assumption 6.1 that inf||θ−θ0||≥δE[|g(Z1, θ )|] > 0 for
δ > 0. Therefore, the conditions of Theorem 6.11 for the argmin case are
satisfied, and, consequently, the nonlinear least-squares estimator (6.15) is
consistent.

6.4.2.2. Generalized Slutsky’s Theorem

Another easy but useful corollary of Theorem 6.10 is the following generaliza-
tion of Theorem 6.3:

Theorem 6.12: (Generalized Slutsky’s theorem) Let Xn a sequence of random
vectors in R

k converging in probability to a nonrandom vector c. Let �n(x)
be a sequence of random functions on R

k satisfying plimn→∞ supx∈B |�n(x)−
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�(x)| = 0, where B is a closed and bounded subset of Rk containing c and �
is a continuous nonrandom function on B. Then �n(Xn)→p �(c).

Proof: Exercise.
This theorem can be further generalized to the case in which c = X is a random
vector simply by adding the condition that P[X ∈ B] = 1, but the current result
suffices for the applications of Theorem 6.12.
This theorem plays a key role in deriving the asymptotic distribution of an

M-estimator together with the central limit theorem discussed in Section 6.7.

6.4.3. The Uniform Strong Law of Large Numbers and Its Applications

The results of Theorems 6.10–6.12 also hold almost surely. See Appendix 6.B
for the proofs.

Theorem 6.13: Under the conditions of Theorem 6.10, supθ∈�|(1/n)∑n
j=1 g(X j , θ )− E[g(X1, θ )]| → 0 a.s.

Theorem 6.14: Under the conditions of Theorems 6.11 and 6.13, θ̂ → θ0 a.s.

Theorem 6.15: Under the conditions of Theorem 6.12 and the additional con-
dition that Xn → c a.s., �n(Xn) → �(c) a.s.

6.5. Convergence in Distribution

Let Xn be a sequenceof randomvariables (or vectors)with distribution functions
Fn(x), and let X be a random variable (or conformable random vector) with
distribution function F(x).

Definition 6.6: We say that Xn converges to X in distribution (denoted by
Xn →d X ) if limn→∞Fn(x) = F(x) pointwise in x – possibly except in the dis-
continuity points of F(x).

Alternative notation: If X has a particular distribution, for example N (0, 1),
then Xn →d X is also denoted by Xn →d N (0, 1).

The reason for excluding discontinuity points of F(x) in the definition of
convergence in distribution is that limn→∞ Fn(x) may not be right-continuous
in these discontinuity points. For example, let Xn = X + 1/n. Then Fn(x) =
F(x − 1/n). Now if F(x) is discontinuous in x0, then limn→∞ F(x0 − 1/n) <
F(x0); hence limn→∞ Fn(x0) < F(x0). Thus, without the exclusion of discon-
tinuity points, X + 1/n would not converge in distribution to the distribution
of X, which would be counterintuitive.
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If each of the components of a sequence of random vectors converges in dis-
tribution, then the random vectors themselves may not converge in distribution.
As a counterexample, let

Xn =
(
X1n

X2n

)
∼ N2

((
0
0

)
,

(
1 (−1)n/2

(−1)n/2 1

))
. (6.16)

Then X1n →d N (0, 1) and X2n →d N (0, 1), but Xn does not converge in distri-
bution.
Moreover, in general Xn →d X does not imply that Xn →p. For example, if

we replace X by an independent random drawing Z from the distribution of X ,
then Xn →d X and Xn →d Z are equivalent statements because they only say
that the distribution function of Xn converges to the distribution function of X
(or Z ) pointwise in the continuity points of the latter distribution function. If
Xn →d X implied Xn →p X , then Xn →p Z would imply that X = Z , which is
not possible because X and Z are independent. The only exception is the case
in which the distribution of X is degenerated: P(X = c) = 1 for some cons-
tant c:

Theorem 6.16: If Xn converges in distribution to X, and P(X = c) = 1, where
c is a constant, then Xn converges in probability to c.

Proof: Exercise.
Note that this result is demonstrated in the left-hand panels of Figures 6.1–6.3.
On the other hand,

Theorem 6.17: Xn →p X implies Xn →d X.

Proof: Theorem 6.17 follows straightforwardly fromTheorem 6.3, Theorem
6.4, and Theorem 6.18 below. Q.E.D.
There is a one-to-one correspondence between convergence in distribution

and convergence of expectations of bounded continuous functions of random
variables:

Theorem 6.18: Let Xn and X be random vectors in R
k . Then Xn →d X if

and only if for all bounded continuous functions ϕ on R
k limn→∞E[ϕ(Xn)] =

E[ϕ(X )].

Proof: I will only prove this theorem for the case in which Xn and X are ran-
dom variables. Throughout the proof the distribution function of Xn is denoted
by Fn(x) and the distribution function of X by F(x).
Proof of the “only if” case: Let Xn →d X . Without loss of generality we

may assume that ϕ(x) ∈ [0, 1] for all x . For any ε > 0 we can choose continuity
points a and b of F(x) such that F(b)− F(a) > 1− ε. Moreover, we can
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choose continuity points a = c1 < c2 < · · · < cm = b of F(x) such that, for
j = 1, . . . ,m − 1,

sup
x∈(c j ,c j+1]

ϕ(x)− inf
x∈(c j ,c j+1]

ϕ(x) ≤ ε. (6.17)

Now define

ψ(x) = inf
x∈(c j ,c j+1]

ϕ(x) for x ∈ (c j , c j+1],

j = 1, . . . ,m − 1, ψ(x) = 0 elsewhere. (6.18)

Then0 ≤ ϕ(x)− ψ(x) ≤ ε for x ∈ (a, b], 0 ≤ ϕ(x)− ψ(x) ≤ 1 for x /∈ (a, b];
hence,

limsup
n→∞

|E[ψ(Xn)]− E[ϕ(Xn)]|

≤ limsup
n→∞


 ∫
x∈(a,b]

|ψ(x)− ϕ(x)|dFn(x)+
∫

x /∈(a,b]
|ψ(x)− ϕ(x)|dFn(x)




≤ ε + 1− lim
n→∞ (Fn(b)− Fn(a)) = ε + 1− (F(b)− F(a)) ≤ 2ε. (6.19)

Moreover, we have

|E[ψ(X )]− E[ϕ(X )]| ≤ 2ε, (6.20)

and

lim
n→∞ E[ψ(Xn)] = E[ψ(X )]. (6.21)

If we combine (6.19)–(6.21), the “only if” part easily follows.
Proof of the “if” case: Let a < b be arbitrary continuity points of F(x), and

let

ϕ(x) =


= 0 if x ≥ b,
= 1 if x < a,
= b−x
b−a if a ≤ x < b.

(6.22)

Then clearly (6.22) is a bounded continuous function. Next, observe that

E[ϕ(Xn)] =
∫
ϕ(x)dFn(x)

= Fn(a)+
b∫
a

b − x
b − a dFn(x) ≥ Fn(a); (6.23)

hence,

E[ϕ(X )] = lim
n→∞ E[ϕ(Xn)] ≥ limsup

n→∞
Fn(a). (6.24)



152 The Mathematical and Statistical Foundations of Econometrics

Moreover,

E[ϕ(X )] =
∫
ϕ(x)dF(x) = F(a)+

b∫
a

b − x
b − a dF(x) ≤ F(b). (6.25)

Combining (6.24) and (6.25) yields F(b) ≥ limsupn→∞Fn(a); hence, because
b(> a) was arbitrary, letting b ↓ a it follows that

F(a) ≥ limsup
n→∞

Fn(a). (6.26)

Similarly, for c < a we have F(c) ≤ liminfn→∞Fn(a); hence, if we let c ↑ a, it
follows that

F(a) ≤ liminf
n→∞ Fn(a). (6.27)

If we combine (6.26) and (6.27), the “if” part follows, that is, F(a) =
limn→∞Fn(a). Q.E.D.
Note that the “only if” part of Theorem 6.18 implies another version of the

bounded convergence theorem:

Theorem 6.19: (Bounded convergence theorem) If Xn is bounded: P(|Xn| ≤
M) = 1 for some M < ∞ and all n, then Xn →d X implies limn→∞E(Xn) =
E(X ).

Proof: Easy exercise.
On the basis of Theorem 6.18, it is not hard to verify that the following result

holds.

Theorem 6.20: (Continuous mapping theorem) Let Xn and X be random vec-
tors in R

k such that Xn →d X, and let�(x) be a continuous mapping from R
k

into R
m. Then �(Xn)→d�(X ).

Proof: Exercise.
The following are examples of Theorem 6.20 applications:

(1) Let Xn →d X , where X is N(0, 1) distributed. Then X2
n →d χ

2
1 .

(2) Let Xn →d X , where X is Nk(0, I ) distributed. Then XT
n Xn →d χ

2
k .

If Xn →d X, Yn →d Y , and�(x, y) is a continuous function, then in general
it does not follow that �(Xn, Yn) →d �(X, Y ) except if either X or Y has a
degenerated distribution:

Theorem 6.21: Let X and Xn be random vectors inR
k such that Xn →d X, and

let Yn be a random vector in R
m such that plimn→∞Yn = c, where c ∈ R

m is
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a nonrandom vector. Moreover, let �(x, y) be a continuous function on the set
R
k×{y ∈ R

m : ‖y − c‖ < δ} for some δ > 0.6 Then �(Xn, Yn) →d �(X, c).

Proof: Again, we prove the theorem for the case k = m = 1 only. Let Fn(x)
and F(x) be the distribution functions of Xn and X , respectively, and let
�(x, y) be a bounded continuous function on R × (c − δ, c + δ) for some
δ > 0. Without loss of generality we may assume that |�(x, y)| ≤ 1. Next,
let ε > 0 be arbitrary, and choose continuity points a < b of F(x) such that
F(b)− F(a) > 1− ε. Then for any γ > 0,

|E[�(Xn, Yn)]− E[�(Xn, c)|
≤ E[|�(Xn, Yn)−�(Xn, c)|I (|Yn − c| ≤ γ )]

+ E[|�(Xn, Yn)−�(Xn, c)|I (|Yn − c| > γ )]

≤ E[|�(Xn, Yn)−�(Xn, c)|I (|Yn − c| ≤ γ )I (Xn ∈ [a, b])]

+ 2P(Xn /∈ [a, b])+ 2P(|Yn − c| > γ )

≤ sup
x∈[a,b], |y−c|≤γ

|�(x, y)−�(x, c)| + 2(1− Fn(b)+ Fn(a))

+ 2P(|Yn − c| > γ ). (6.28)

Because a continuous function on a closed and bounded subset of Euclidean
space is uniformly continuous on that subset (see Appendix II), we can choose
γ so small that

sup
x∈[a,b], |y−c|≤γ

|�(x, y)−�(x, c)| < ε. (6.29)

Moreover, 1− Fn(b)+ Fn(a) → 1− F(b)+ F(a) < ε, and P(|Yn − c| >
γ ) → 0. Therefore, it follows from (6.28) that

limsup
n→∞

|E[�(Xn, Yn)]− E[�(Xn, c)| ≤ 3ε. (6.30)

The rest of the proof is left as an exercise. Q.E.D.

Corollary 6.1: Let Zn be t-distributed with n degrees of freedom. Then Zn →d

N (0, 1).

Proof: By the definition of the t-distribution with n degrees of freedom we
can write

Zn = U0√
1
n

∑n
j=1U

2
j

, (6.31)

where U0,U1, . . . ,Un are i.i.d. N (0, 1). Let Xn = U0 and X = U0

so that trivially Xn→d X . Let Yn = (1/n)
∑n
j=1U

2
j . Then by the weak law

6 Thus, � is continuous in y on a little neighborhood of c.
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of large numbers (Theorem 6.2) we have plimn→∞Yn = E(U 2
1 ) = 1. Let

�(x, y) = x/√y.Note that�(x, y) is continuous on R × (1− ε, 1+ ε) for 0 <
ε < 1. Thus, by Theorem 6.21, Zn = �(Xn, Yn) → �(X, 1) = U0 ∼ N (0, 1)
in distribution. Q.E.D.

Corollary 6.2: Let U1 . . .Un be a random sample from Nk(µ,�), where
� is nonsingular. Denote Ū = (1/n)

∑n
j=1Uj , �̂ = (1/(n − 1))

∑n
j=1(Uj −

Ū )(Uj − Ū )T, and let Zn = n(Ū − µ)T�̂−1(Ū − µ). Then Zn →d χ
2
k .

Proof: For a k × k matrix A = (a1, . . . , ak), let vec(A) be the k2 × 1 vec-
tor of stacked columns a j , j = 1, . . . , k of A : vec(A) = (aT1 , . . . , a

T
k )

T = b,
for instance, with inverse vec−1(b) = A. Let c = vec(�), Yn = vec(�̂), Xn =√
n(Ū − µ), X ∼ Nk(0, �), and �(x, y) = xT(vec−1(y))−1x . Because � is

nonsingular, there exists a neighborhood C(δ) = {y ∈ R
k×k : ‖y − c‖ < δ} of

c such that for all y inC(δ), vec−1(y) is nonsingular (Exercise: Why?), and con-
sequently,�(x, y) is continuous onR

k × C(δ) (Exercise: Why?). The corollary
follows now from Theorem 6.21 (Exercise: Why?). Q.E.D.

6.6. Convergence of Characteristic Functions

Recall that the characteristic function of a random vector X in R
k is defined as

ϕ(t) = E[exp(itTX )] = E[cos(tTX )]+ i · E[sin(tTX )]
for t ∈ R

k , where i = √−1. The last equality obtains because exp(i · x) =
cos(x)+ i · sin(x).
Also recall that distributions are the same if and only if their characteristic

functions are the same. This property can be extended to sequences of random
variables and vectors:

Theorem 6.22: Let Xn and X be random vectors in R
k with characteristic

functions ϕn(t) and ϕ(t), respectively. Then Xn →d X if and only if ϕ(t) =
limn→∞ϕn(t) for all t ∈ R

k .

Proof: See Appendix 6.C for the case k = 1.
Note that the “only if” part of Theorem 6.22 follows from Theorem 6.18:

Xn →d X implies that, for any t ∈ R
k ,

lim
n→∞ E[cos(t

TXn)] = E[cos(tTX )];
lim
n→∞ E[sin(t

TXn)] = E[sin(tTX )];

hence,

lim
n→∞

ϕn(t) = lim
n→∞ E[cos(t

TXn)]+ i · lim
n→∞ E[sin(t

TXn)]

= E[cos(tTX )]+ i · E[sin(tTX )] = ϕ(t).
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Theorem 6.22 plays a key role in the derivation of the central limit theorem in
the next section.

6.7. The Central Limit Theorem

The prime example of the concept of convergence in distribution is the central
limit theorem, which we have seen in action in Figures 6.4–6.6:

Theorem 6.23: Let X1, . . . , Xn be i.i.d. random variables satisfying E(X j ) =
µ, var (X j ) = σ 2 < ∞ and let X̄ = (1/n)

∑n
j=1 X j . Then

√
n(X̄ − µ) →d

N (0, σ 2).

Proof: Without loss of generality we may assume thatµ = 0 and σ = 1. Let
ϕ(t) be the characteristic function of X j . The assumptions µ = 0 and σ = 1
imply that the first and second derivatives of ϕ(t) at t = 0 are equal to ϕ′(0) =
0, ϕ′′(0) = −1, respectively; hence by Taylor’s theorem applied to Re[φ(t)] and
Im[φ(t)] separately there exists numbers λ1,t , λ2,t ∈ [0, 1] such that

ϕ(t) = ϕ(0)+ tϕ′(0)+ 1

2
t2

(
Re[ϕ′′(λ1,t · t)]+ i · Im[ϕ′′(λ2,t · t)]

)
= 1− 1

2
t2 + z(t)t2,

for instance, where z(t) = (1+Re[ϕ′′(λ1,t · t)]+ i · Im[ϕ′′(λ2,t · t)])/2. Note
that z(t) is bounded and satisfies limt→0 z(t) = 0.
Next, let ϕn(t) be the characteristic function of

√
n X̄ . Then

ϕn(t) =
(
ϕ(t/

√
n)

)n
=

(
1− 1

2
t2/n + z(t/√n) t2/n

)n

=
(
1− 1

2
t2/n

)n

+
n∑
m=1

(
n
m

)(
1− 1

2
t2 /n

)n−m (
z(t/

√
n)t2/n

)m
. (6.32)

For n so large that t2 < 2n we have∣∣∣∣∣
n∑
m=1

(
n
m

)(
1− 1

2
t2 /n

)n−m (
z(t/

√
n)t2/n

)m∣∣∣∣∣
≤

n∑
m=1

(
n
m

) (|z(t/√n)|t2/n)m = (
1+ |z(t/√n)| t2/n)n −1.

(6.33)
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Now observe that, for any real-valued sequence an that converges to a,

lim
n→∞ ln ((1+ an /n )n) = lim

n→∞ n ln(1+ an /n)

= lim
n→∞

an × lim
n→∞

ln(1+ an /n)− ln(1)

an /n

= a × lim
δ→0

ln(1+ δ)− ln(1)

δ
= a;

hence,

lim
n→∞ an = a ⇒ lim

n→∞ (1+ an/n)n = ea . (6.34)

If we let an = |z(t/√n)|t2, which has limit a = 0, it follows from (6.34) that the
right-hand expression in (6.33) converges to zero, and if we let an = a = −t2/2
it follows then from (6.32) that

lim
n→∞ϕn(t) = e−t2/2. (6.35)

The right-hand side of (6.35) is the characteristic function of the standard normal
distribution. The theorem follows now from Theorem 6.22. Q.E.D.
There is also a multivariate version of the central limit theorem:

Theorem 6.24: Let X1, . . . , Xn be i.i.d. random vectors in R
k satisfying

E(X j ) = µ, Var(X j ) = �, where � is finite, and let X̄ = (1/n)
∑n
j=1 X j .

Then
√
n(X̄ − µ) →d Nk(0, �).

Proof: Let ξ ∈ R
k be arbitrary but not a zero vector. Then it follows

from Theorem 6.23 that
√
nξT(X̄ − µ) →d N (0, ξT�ξ ); hence, it follows

from Theorem 6.22 that for all t ∈ R, limn→∞E(exp[i · t
√
n ξT(X̄ − µ)]) =

exp(−t2ξT�ξ/2). Choosing t = 1, we thus have that, for arbitrary ξ ∈ R
k ,

limn→∞E(exp[i · ξT
√
n(X̄ − µ)]) = exp(−ξT�ξ/2). Because the latter is the

characteristic function of the Nk(0, �) distribution, Theorem 6.24 follows now
from Theorem 6.22. Q.E.D.
Next, let � be a continuously differentiable mapping from R

k to R
m , and

let the conditions of Theorem 6.24 hold. The question is, What is the limiting
distribution of

√
n(�(X̄ )−�(µ)), if any? To answer this question, assume for

the time being that k = m = 1 and let var(X j ) = σ 2; thus,
√
n(X̄ − µ) →d

N (0, σ 2). It follows from the mean value theorem (see Appendix II) that there
exists a random variable λ ∈ [0, 1] such that

√
n(�(X̄ )−�(µ)) = √

n(X̄ − µ)�′(µ+ λ(X̄ − µ)).

Because
√
n(X̄ − µ) →d N (0, σ 2) implies (X̄ − µ) →d 0, which by Theorem

6.16 implies that X̄ →p µ, it follows that µ+ λ(X̄ − µ)→p µ. Moreover,
because the derivative �′ is continuous in µ it follows now from Theorem 6.3
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that �′(µ+ λ(X̄ − µ))→p �
′(µ). Therefore, it follows from Theorem 6.21

that
√
n(�(X̄ )−�(µ))→d N [0, σ 2(�′(µ))2]. Along similar lines, if we apply

themean value theorem to each of the components of� separately, the following
more general result can be proved. This approach is known as the δ-method.

Theorem 6.25: Let Xn be a random vector in R
k satisfying

√
n(Xn −

µ) →d Nk[0, �], where µ ∈ R
k is nonrandom. Moreover, let �(x) =

(�1(x), . . . , �m(x))T with x = (x1, . . . , xk)T be a mapping fromR
k toR

m such
that the m × k matrix of partial derivatives

"(x) =



∂�1(x)/∂x1 . . . ∂�1(x)/∂xk

...
. . .

...
∂�m(x)/∂x1 . . . ∂�m(x)/∂xk


 (6.36)

exists in an arbitrary, small, open neighborhood of µ and its elements are
continuous in µ. Then

√
n(ϕ(Xn)−�(µ)) →d Nm[0,"(µ)�"(µ)T].

6.8. Stochastic Boundedness, Tightness, and the Op and op Notations

The stochastic boundedness and related tightness concepts are important for
various reasons, but one of the most important is that they are necessary con-
ditions for convergence in distribution.

Definition 6.7: A sequence of random variables or vectors Xn is said to be
stochastically bounded if, for every ε ∈ (0, 1), there exists a finite M > 0 such
that inf n≥1 P[‖Xn‖ ≤ M] > 1− ε.

Of course, if Xn is bounded itself (i.e., P[||Xn|| ≤ M] = 1 for all n),
it is stochastically bounded as well, but the converse may not be true. For
example, if the Xn’s are equally distributed (but not necessarily indepen-
dent) random variables with common distribution function F , then for ev-
ery ε ∈ (0, 1) we can choose continuity points −M and M of F such that
P[|Xn| ≤ M] = F(M)− F(−M) = 1− ε. Thus, the stochastic boundedness
condition limits the heterogeneity of the Xn’s.

Stochastic boundedness is usually denoted by Op(1) : Xn = Op(1) means
that the sequence Xn is stochastically bounded. More generally,

Definition 6.8: Let an be a sequence of positive nonrandom variables. Then
Xn = Op(an) means that Xn/an is stochastically bounded and Op(an) by itself
represents a generic random variable or vector Xn such that Xn = Op(an).

The necessity of stochastic boundedness for convergence in distribution fol-
lows from the fact that
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Theorem 6.26: Convergence in distribution implies stochastic boundedness.

Proof: Let Xn and X be random variables with corresponding distribu-
tion functions Fn and F , respectively, and assume that Xn →d X . Given an
ε ∈ (0, 1) we can choose continuity points −M1 and M1 of F such that
F(M1) > 1− ε/4, F(−M1) < ε/4. Because limn→∞ Fn(M1) = F(M1) there
exists an index n1 such that |Fn(M1)− F(M1)| < ε/4 if n ≥ n1; hence,
Fn(M1) > 1− ε/2 if n ≥ n1. Similarly, there exists an index n2 such that
Fn(−M1) < ε/2 if n ≥ n2. Letm = max(n1, n2). Then infn≥m P[|Xn| ≤ M1] >
1− ε. Finally, we can always choose an M2 so large that min1≤n≤m−1P[|Xn| ≤
M2] > 1− ε. If we take M = max(M1,M2), the theorem follows. The proof
of the multivariate case is almost the same. Q.E.D.
Note that, because convergence in probability implies convergence in distri-

bution, it follows trivially from Theorem 6.26 that convergence in probability
implies stochastic boundedness.
For example, let Sn =

∑n
j=1 X j , where the X j ’s are i.i.d. random vari-

ables with expectation µ and variance σ 2 < ∞. If µ = 0, then Sn =
Op(

√
n) because, by the central limit theorem, Sn/

√
n converges in distri-

bution to N (0, σ 2). However, if µ 
= 0, then only Sn = Op(n) because then
Sn/

√
n − µ

√
n→d N (0, σ 2); hence, Sn/

√
n = Op(1)+ Op(

√
n) and thus

Sn = Op(
√
n)+ Op(n) = Op(n).

In Definition 6.2 I have introduced the concept of uniform integrability. It is
left as an exercise to prove that

Theorem 6.27: Uniform integrability implies stochastic boundedness.

Tightness is the version of stochastic boundedness for probability measures:

Definition 6.9: A sequence of probability measures µn on the Borel sets in R
k

is called tight if, for an arbitrary ε ∈ (0, 1) there exists a compact subset K of
R
k such that inf n≥1µn(K ) > 1− ε.

Clearly, if Xn = Op(1), then the sequence of corresponding induced proba-
bilitymeasuresµn is tight because the sets of the type K = {x ∈ R

k : ‖x‖ ≤ M}
are closed and bounded for M < ∞ and therefore compact.
For sequences of random variables and vectors the tightness concept does not

add much over the stochastic boundedness concept, but the tightness concept
is fundamental in proving so-called functional central limit theorems.
If Xn = Op(1), then obviously for any δ > 0, Xn = Op(nδ). But Xn/nδ

is now more than stochastically bounded because then we also have that
Xn/nδ →p 0. The latter is denoted by Xn = op(nδ):

Definition 6.10: Let an be a sequence of positive nonrandom variables. Then
Xn = op(an)means that Xn/an converges in probability to zero (or a zero vector
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if Xn is a vector), and op(an) by itself represents a generic random variable or
vector Xn such that Xn = op(an). Moreover, the sequence 1/an represents the
rate of convergence of Xn .

Thus, Xn →p X can also be denoted by Xn = X + op(1). This nota-
tion is handy if the difference of Xn and X is a complicated expression.
For example, the result of Theorem 6.25 is obtained because, by the mean
value theorem,

√
n(ϕ(Xn)−�(µ)) = "̃n(µ)

√
n(Xn − µ) = "(µ)

√
n(Xn −

µ)+ op(1), where
"̃n(µ)

=




∂�1(x)/∂x |x=µ+λ1,n (Xn−µ)
...

∂�m(x)/∂x |x=µ+λk,n (Xn−µ)


 , with λ j,n ∈ [0, 1], j = 1, . . . , k.

The remainder term ("̃n(µ)−"(µ))
√
n(Xn − µ) can now be represented by

op(1), because "̃n(µ) →p "(µ) and
√
n(Xn − µ) →d Nk[0, �]; hence, by

Theorem 6.21 this remainder term converges in distribution to the zero vector
and thus also in probability to the zero vector.

6.9. Asymptotic Normality of M-Estimators

This section sets forth conditions for the asymptotic normality of M-estimators
in addition to the conditions for consistency. An estimator θ̂ of a parameter
θ0 ∈ R

m is asymptotically normally distributed if an increasing sequence of
positive numbers an and a positive semidefinitem × m matrix� exist such that
an(θ̂ − θ0) →d Nm[0, �]. Usually, an =

√
n, but there are exceptions to this

rule.
Asymptotic normality is fundamental for econometrics. Most of the econo-

metric tests rely on it. Moreover, the proof of the asymptotic normality theorem
in this section also nicely illustrates the usefulness of the main results in this
chapter.
Given that the data are a random sample, we only need a few additional

conditions over those of Theorems 6.10 and 6.11:

Theorem 6.1: Let, in addition to the conditions of Theorems 6.10 and 6.11,
the following conditions be satisfied:

(a) � is convex.
(b) θ0 is an interior point of �.
(c) For each x ∈ R

k , g(x, θ ) is twice continuously differentiable on �.
(d) For each pair θi1 , θi2 of components of θ ,

E[supθ∈�|∂2g(X1, θ )/(∂θi1∂θi2 )|] < ∞.
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(e) The m × m matrix A = E
[
∂2g(X1, θ0)
∂θ0∂θ

T
0

]
is nonsingular.

(f) The m × m matrix B = E
[(

∂g(X1, θ0)
∂θT0

) (
∂g(X1, θ0)

∂θ0

)]
is finite.

Then
√
n(θ̂ − θ0)→d Nm[0, A−1BA−1].

Proof: I will prove the theorem for the case m = 1 only, leaving the general
case as an exercise.
I have already established in Theorem 6.11 that θ̂ →p θ0. Because θ0 is an

interior point of �, the probability that θ̂ is an interior point converges to 1,
and consequently the probability that the first-order condition for a maximum
of Q̂(θ ) = (1/n)

∑n
j=1g(X j , θ ) in θ = θ̂ holds converges to 1. Thus,

lim
n→∞ P[Q̂

′(θ̂ ) = 0] = 1, (6.37)

where, as usual, Q̂′(θ ) = d Q̂(θ )/dθ . Next, observe from the mean value theo-
rem that there exists a λ̂ ∈ [0, 1] such that

√
nQ̂′(θ̂ ) = √

nQ̂′(θ0)+ Q̂′′(θ0 + λ̂(θ̂ − θ0))
√
n(θ̂ − θ0), (6.38)

where Q̂′′(θ ) = d2 Q̂(θ )/(dθ )2. Note that, by the convexity of �,

P[θ0 + λ̂(θ̂ − θ0) ∈ �] = 1, (6.39)

and by the consistency of θ̂ ,

plim
n→∞

[θ0 + λ̂(θ̂ − θ0)] = θ0. (6.40)

Moreover, it follows from Theorem 6.10 and conditions (c) and (d), with the
latter adapted to the univariate case, that

plim
n→∞

sup
θ∈�

|Q̂′′(θ )− Q̄′′(θ )| = 0, (6.41)

where Q̄′′(θ ) is the second derivative of Q̄(θ ) = E[g(X1, θ )]. Then it follows
from (6.39)–(6.41) and Theorem 6.12 that

plim
n→∞

Q̂′′(θ0 + λ̂(θ̂ − θ0)) = Q̄′′(θ0) 
= 0. (6.42)

Note that Q̄′′(θ0) corresponds to the matrix A in condition (e), and thus Q̄′′(θ0)
is positive in the “argmin” case and negative in the “argmax” case. Therefore,
it follows from (6.42) and Slutsky’s theorem (Theorem 6.3) that

plim
n→∞

Q̂′′(θ0 + λ̂(θ̂ − θ0))
−1 = Q̄′′(θ0)−1 = A−1. (6.43)
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Now (6.38) can be rewritten as
√
n(θ̂ − θ0) = −Q̂′′(θ0 + λ̂(θ̂ − θ0))

−1√nQ̂′(θ0)
+ Q̂′′(θ0 + λ̂(θ̂ − θ0))

−1√nQ̂′(θ̂ )
= −Q̂′′(θ0 + λ̂(θ̂ − θ0))

−1√nQ̂′(θ0)+ op(1), (6.44)

where the op(1) term follows from (6.37), (6.43), and Slutsky’s theorem.
Because of condition (b), the first-order condition for θ0 applies, that is,

Q̄′(θ0) = E[dg(X1, θ0)/dθ0] = 0. (6.45)

Moreover, condition (f), adapted to the univariate case, now reads as follows:

var[dg(X1, θ0)/dθ0] = B ∈ (0,∞). (6.46)

Therefore, it follows from (6.45), (6.46), and the central limit theorem (Theorem
6.23) that

√
nQ̂′(θ0) = (1/

√
n)

n∑
j=1

dg(X j , θ0)/dθ0 →d N [0, B]. (6.47)

Now it follows from (6.43), (6.47), and Theorem 6.21 that

−Q̂′′(θ0 + λ̂(θ̂ − θ0))
−1√nQ̂′(θ0) →d N [0, A

−1BA−1]; (6.48)

hence, the result of the theorem under review for the case m = 1 follows from
(6.44), (6.48), and Theorem 6.21. Q.E.D.
The result of Theorem 6.28 is only useful if we are able to estimate the

asymptotic variance matrix A−1BA−1 consistently because then we will be able
to design tests of various hypotheses about the parameter vector θ0.

Theorem 6.29: Let

Â = 1

n

n∑
j=1

∂2g(X j , θ̂ )

∂θ̂∂θ̂T
, (6.49)

and

B̂ = 1

n

n∑
j=1

(
∂g(X j , θ̂ )

∂θ̂T

)(
∂g(X j , θ̂ )

∂θ̂

)
. (6.50)

Under the conditions of Theorem 6.28, plimn→∞ Â = A, and under the ad-
ditional condition that E[supθ∈�‖∂g(X1, θ )/∂θT‖2] < ∞, plimn→∞ B̂ = B.
Consequently, plimn→∞ Â−1 B̂ Â−1 = A−1BA−1.

Proof: The theorem follows straightforwardly from the uniform weak law
of large numbers and various Slutsky’s theorems – in particular Theorem 6.21.
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6.10. Hypotheses Testing

As an application of Theorems 6.28 and 6.29, consider the problem of testing
a null hypothesis against an alternative hypothesis of the form

H0 : Rθ0 = q, H1 : Rθ0 
= q, (6.51)

respectively, where R is a given r × m matrix of rank r ≤ m and q is a given
r × 1 vector. Under the null hypothesis in (6.51) and the conditions of Theorem
6.2,

√
n(Rθ̂ − q) →d Nr [0,RA−1BA−1RT], and if the matrix B is nonsingular

then the asymptotic variance matrix involved is nonsingular. Then it follows
from Theorem 6.21 that

Theorem6.30: Under the conditions of Theorems 6.28 and 6.29, the additional
condition that B is nonsingular, and the null hypothesis in (6.51) with R of full
rank r,

Wn = n(Rθ̂ − q)T
(
R Â−1 B̂ Â−1RT

)−1
(Rθ̂ − q) →d χ

2
r . (6.52)

On the other hand, under the alternative hypothesis in (6.51),

Wn/n→p (Rθ0 − q)T
(
RA−1BA−1RT

)−1
(Rθ0 − q) > 0. (6.53)

The statisticWn is now the test statistic of theWald test of the null hypothesis
in (6.51). Given the size α ∈ (0, 1), choose a critical value β such that, for
a χ2

r -distributed random variable Z , P[Z > β] = α and thus under the null
hypothesis in (6.51), P[Wn > β] → α. Then the null hypothesis is accepted if
Wn ≤ β and rejected in favor of the alternative hypothesis if Wn > β. Owing
to (6.53), this test is consistent. Note that the critical value β can be found in
Table IV.4 in Appendix IV for the 5% and 10% significance levels and degrees
of freedom r ranging from 1 to 30.
If r = 1, so that R is a row vector, we can modify (6.52) to

tn =
√
n
(
R Â−1 B̂ Â−1RT

)−1/2
(Rθ̂ − q) →d N (0, 1), (6.54)

whereas under the alternative hypothesis (6.53) becomes

tn/
√
n→p

(
RA−1BA−1RT

)−1/2
(Rθ0 − q) 
= 0. (6.55)

These results can be used to construct a two or one-sided test in a way similar
to the t-test we have seen before in the previous chapter. In particular,

Theorem 6.31: Assume that the conditions of Theorem 6.30 hold. Let θi,0 be
component i of θ0, and let θ̂ i be component i of θ̂ . Consider the hypotheses
H0 : θi,0 = θ∗i,0, H1 : θi,0 
= θ∗i,0, where θ

∗
i,0 is given (often the value θ

∗
i,0 = 0 is

of special interest). Let the vector ei be column i of the unit matrix Im. Then,
under H0,
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t̂i =
√
n(θ̂ i − θ∗i,0)√
eTi Â

−1 B̂ Â−1ei )
→d N (0, 1), (6.56)

whereas under H1,

t̂i/
√
n→p

θ̂i,0 − θ∗i,0√
eTi A

−1BA−1ei )

= 0. (6.57)

Given the size α ∈ (0, 1), choose a critical value β such that, for a standard,
normally distributed random variable U, P[|U | > β] = α, and thus by (6.56),
P[|t̂i | > β] → α if the null hypothesis is true. Then the null hypothesis is
accepted if |t̂i | ≤ β and rejected in favor of the alternative hypothesis if |t̂i | > β.
It is obvious from (6.57) that this test is consistent.
The statistic t̂i in (6.56) is usually referred to as a t-test statistic because

of the similarity of this test to the t-test in the normal random sample case.
However, its finite sample distribution under the null hypothesis may not be
of the t-distribution type at all. Moreover, in the case θ∗i,0 = 0 the statistic t̂i is
called the t-value (or pseudo t-value) of the estimator θ̂ i , and if the test rejects
the null hypothesis this estimator is said to be significant at the α × 100%
significance level. Note that the critical value β involved can be found in Table
IV.3 in Appendix IV, for the 5% and 10% significance levels.

6.11. Exercises

1. Let Xn = (X1,n, . . . , Xk,n)T and c = (c1, . . . , ck)T. Prove that plimn→∞Xn =
c if and only if plimn→∞Xi,n = ci for i = 1, . . . , k.

2. Prove that if P(|Xn| ≤ M) = 1 and Xn →p X then P(|X | ≤ M) = 1.

3. Prove Theorem 6.12.

4. Explain why the random vector Xn in (6.16) does not converge in distribution.

5. Prove Theorem 6.16.

6. Prove Theorem 6.17.

7. Prove (6.21).

8. Prove Theorem 6.19.

9. Prove Theorem 6.20, using Theorem 6.18.

10. Finish the proof of Theorem 6.21.

11. Answer the questions Why? in the proof of Corollary 6.2.

12. Prove that the limit (6.35) is just the characteristic function of the standard
normal distribution.

13. Prove the first and the last equality in (6.32).
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14. Prove Theorem 6.25.

15. Prove Theorem 6.27. Hint: Use Chebishev’s inequality for first absolute mo-
ments.

16. Adapt the proof of Theorem 6.28 for m = 1 to the multivariate case m > 1.

17. Prove Theorem 6.29.

18. Formulate the conditions (additional to Assumption 6.1) for the asymptotic
normality of the nonlinear least-squares estimator (6.15) for the special case
that P[E(U 2

1 |X1) = σ 2] = 1.

APPENDIXES

6.A. Proof of the Uniform Weak Law of Large Numbers

First, recall that “sup” denotes the smallest upper bound of the function in-
volved, and similarly, “inf” is the largest lower bound. Now for arbitrary
δ > 0 and θ∗ ∈ �, let �δ(θ∗) = {θ ∈ � : ‖θ − θ∗‖ < δ}. Using the fact that
supx | f (x)| ≤ max{|supx f (x)|, |infx f (x)|} ≤ |supx f (x)| + |infx f (x)|, we find
that

sup
θ∈�δ (θ∗)

∣∣∣∣∣(1/n)
n∑
j=1

g(X j , θ )− E[g(X1, θ )

∣∣∣∣∣
≤

∣∣∣∣∣ sup
θ∈�δ (θ∗)

{
(1/n)

n∑
j=1

g(X j , θ )− E[g(X1, θ )]

}∣∣∣∣∣
+

∣∣∣∣∣ inf
θ∈�δ (θ∗)

{
(1/n)

n∑
j=1

g(X j , θ )− E[g(X1, θ )]

}∣∣∣∣∣ (6.58)

Moreover,

sup
θ∈�δ (θ∗)

{
(1/n)

n∑
j=1

g(X j , θ )− E[g(X1, θ )]

}

≤ (1/n)
n∑
j=1

sup
θ∈�δ (θ∗)

g(X j , θ )− inf
θ∈�δ (θ∗)

E[g(X1, θ )]

≤
∣∣∣∣∣(1/n)

n∑
j=1

sup
θ∈�δ (θ∗)

g(X j , θ )− E
[

sup
θ∈�δ (θ∗)

g(X1, θ )

]∣∣∣∣∣
+ E

[
sup

θ∈�δ (θ∗)
g(X1, θ )

]
− E

[
inf

θ∈�δ (θ∗)
g(X1, θ )

]
, (6.59)
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and similarly

inf
θ∈�δ (θ∗)

{
(1/n)

n∑
j=1

g(X j , θ )− E[g(X1, θ )]

}

≥ (1/n)
n∑
j=1

inf
θ∈�δ (θ∗)

g(X j , θ )− sup
θ∈�δ (θ∗)

E[g(X1, θ )]

≥ −
∣∣∣∣∣(1/n)

n∑
j=1

inf
θ∈�δ (θ∗)

g(X j , θ )− E
[

inf
θ∈�δ (θ∗)

g(X1, θ )

]∣∣∣∣∣
+ E

[
inf

θ∈�δ (θ∗)
g(X1, θ )

]
− E

[
sup

θ∈�δ (θ∗)
g(X1, θ )

]
. (6.60)

Hence,

∣∣∣∣∣ sup
θ∈�δ (θ∗)

{
(1/n)

n∑
j=1

g(X j , θ )− E[g(X1, θ )]

}∣∣∣∣∣
≤

∣∣∣∣∣(1/n)
n∑
j=1

sup
θ∈�δ (θ∗)

g(X j , θ )− E
[

sup
θ∈�δ (θ∗)

g(X1, θ )

]∣∣∣∣∣
+

∣∣∣∣∣(1/n)
n∑
j=1

inf
θ∈�δ (θ∗)

g(X j , θ )− E
[

inf
θ∈�δ (θ∗)

g(X1, θ )

]∣∣∣∣∣
+ E

[
sup

θ∈�δ (θ∗)
g(X1, θ )

]
− E

[
inf

θ∈�δ (θ∗)
g(X1, θ )

]
, (6.61)

and similarly

∣∣∣∣∣ inf
θ∈�δ (θ∗)

{
(1/n)

n∑
j=1

g(X j , θ )− E[g(X1, θ )]

}∣∣∣∣∣
≤

∣∣∣∣∣(1/n)
n∑
j=1

sup
θ∈�δ (θ∗)

g(X j , θ )− E
[

sup
θ∈�δ (θ∗)

g(X1, θ )

]∣∣∣∣∣
+

∣∣∣∣∣(1/n)
n∑
j=1

inf
θ∈�δ (θ∗)

g(X j , θ )− E
[

inf
θ∈�δ (θ∗)

g(X1, θ )

]∣∣∣∣∣
+ E

[
sup

θ∈�δ (θ∗)
g(X1, θ )

]
− E

[
inf

θ∈�δ (θ∗)
g(X1, θ )

]
. (6.62)
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If we combine (6.58), (6.61), and (6.62), it follows that

sup
θ∈�δ (θ∗)

∣∣∣∣∣(1/n)
n∑
j=1

g(X j , θ )− E[g(X1, θ )]

∣∣∣∣∣
≤ 2

∣∣∣∣∣(1/n)
n∑
j=1

sup
θ∈�δ (θ∗)

g(X j , θ )− E
[

sup
θ∈�δ (θ∗)

g(X1, θ )

]∣∣∣∣∣
+ 2

∣∣∣∣∣(1/n)
n∑
j=1

inf
θ∈�δ (θ∗)

g(X j , θ )− E
[

inf
θ∈�δ (θ∗)

g(X1, θ )

]∣∣∣∣∣
+ 2

(
E

[
sup

θ∈�δ (θ∗)
g(X1, θ )

]
− E

[
inf

θ∈�δ (θ∗)
g(X1, θ )

])
. (6.63)

It follows from the continuity of g(x, θ ) in θ and the dominated convergence
theorem [Theorem 6.5] that

limsup
δ↓0

sup
θ∗∈�

E

[
sup

θ∈�δ (θ∗)
g(X1, θ )− inf

θ∈�δ (θ∗)
g(X1, θ )

]

≤ limE
δ↓0

sup
θ∗∈�

[
sup

θ∈�δ (θ∗)
g(X1, θ )− inf

θ∈�δ (θ∗)
g(X1, θ )

]
= 0;

hence, we can choose δ so small that

supE
θ∗∈�

[
sup

θ∈�δ (θ∗)
g(X1, θ )− inf

θ∈�δ (θ∗)
g(X1, θ )

]
< ε/4. (6.64)

Furthermore, by the compactness of� it follows that there exist a finite number
of θ∗’s, for instance θ1, . . . , θN (δ) such that

� ⊂ N (δ)
∪
i=1

�δ(θi ). (6.65)

Therefore, it follows from Theorem 6.2 and (6.63)–(6.65) that

P

(
sup
θ∈�

∣∣∣∣∣(1/n)
n∑
j=1

g(X j , θ )− E[g(X1, θ )]

∣∣∣∣∣ > ε

)

≤ P
(

max
1≤i≤N (δ)

sup
θ∈�δ (θi )

∣∣∣∣∣(1/n)
n∑
j=1

g(X j , θ )− E[g(X1, θ )]

∣∣∣∣∣ > ε

)

≤
N (δ)∑
i=1

P

(
sup

θ∈�δ (θi )

∣∣∣∣∣(1/n)
n∑
j=1

g(X j , θ )− E[g(X1, θ )]

∣∣∣∣∣ > ε

)
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≤
N (δ)∑
i=1

P

(∣∣∣∣∣(1/n)
n∑
j=1

sup
θ∈�δ (θ∗)

g(X j , θ )− E
[

sup
θ∈�δ (θ∗)

g(X1, θ )

]∣∣∣∣∣
+

∣∣∣∣∣(1/n)
n∑
j=1

inf
θ∈�δ (θ∗)

g(X j , θ )− E
[

inf
θ∈�δ (θ∗)

g(X1, θ )

]∣∣∣∣∣ > ε/4

)

≤
N (δ)∑
i=1

P

(∣∣∣∣∣(1/n)
n∑
j=1

sup
θ∈�δ (θ∗)

g(X j , θ )− E
[

sup
θ∈�δ (θ∗)

g(X1, θ )

]∣∣∣∣∣ > ε/8

)

+
N (δ)∑
i=1

P

(∣∣∣∣∣(1/n)
n∑
j=1

inf
θ∈�δ (θ∗)

g(X j , θ )− E
[

inf
θ∈�δ (θ∗)

g(X1, θ )

]∣∣∣∣∣ > ε/8

)

→ 0 as n→ ∞. (6.66)

6.B. Almost-Sure Convergence and Strong Laws of Large Numbers

6.B.1. Preliminary Results

First, I will show the equivalence of (6.6) and (6.7) in Definition 6.3:

Theorem 6.B.1: Let Xn and X be random variables defined on a common
probability space {�,ö, P}. Then limn→∞P(|Xm − X | ≤ ε for all m ≥ n) =
1 for arbitrary ε > 0 if and only if P(limn→∞ Xn = X ) = 1. This result carries
over to random vectors by replacing | · | with the Euclidean norm ‖·‖.

Proof: Note that the statement P(limn→∞ Xn = X ) = 1 reads as follows:
There exists a set N ∈ ö with P(N ) = 0 such that limn→∞Xn(ω) = X (ω)
pointwise in ω ∈ �\N . Such a set N is called a null set.
Let

An(ε) =
∞∩
m=n{ω ∈ � : |Xm(ω)− X (ω)| ≤ ε}. (6.67)

First, assume that for arbitrary ε > 0, limn→∞ P(An(ε)) = 1. Because
An(ε) ⊂ An+1(ε) it follows that P[∪∞

n=1 An(ε)] = limn→∞ P(An(ε)) = 1;
hence, N (ε) = �\∪∞

n=1 An(ε) is a null set and so is the countable
union N = ∪∞

k=1 N (1/k). Now let ω ∈ �\N . Then ω ∈ �\∪∞
k=1 N (1/k) =

∩∞
k=1 Ñ (1/k) = ∩∞

k=1 ∪∞
n=1 An(1/k); hence, for each positive integer k, ω ∈

∪∞
n=1 An(1/k). Because An(1/k) ⊂ An+1(1/k) it follows now that for each pos-

itive integer k there exists a positive integer nk(ω) such that ω ∈ An(1/k) for all
n ≥ nk(ω). Let k(ε) be the smallest integer ≥ 1/ε, and let n0(ω, ε) = nk(ε)(ω).
Then for arbitrary ε > 0, | Xn(ω)− X (ω)| ≤ ε if n ≥ n0(ω, ε). Therefore,
limn→∞ Xn(ω) = X (ω) pointwise in ω ∈ �\N and hence P (limn→∞ Xn =
X ) = 1.
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Next, assume that the latter holds, that is, there exists a null set N such that
limn→∞ Xn(ω) = X (ω) pointwise in ω ∈ �\N . Then for arbitrary ε > 0 and
ω ∈ �\N there exists a positive integer n0(ω, ε) such that ω ∈ An0(ω,ε)(ε) and
therefore also ω ∈ ∪∞

n=1 An(ε). Thus, �\N ⊂ ∪∞
n=1An(ε), and consequently

1 = P(�\N ) ≤ P[∪∞
n=1 An(ε)].Because An(ε) ⊂ An+1(ε), it follows now that

limn→∞ P(An(ε)) = P[∪∞
n=1 An(ε)] = 1. Q.E.D.

The following theorem, known as the Borel–Cantelli lemma, provides a con-
venient condition for almost-sure convergence.

Theorem6.B.2: (Borel–Cantelli). If for arbitrary ε > 0,
∑∞
n=1 P(|Xn − X | >

ε) < ∞, thenXn → X a.s.

Proof: Let Ãn(ε) be the complement of the set An(ε) in (6.67). Then

P( Ãn(ε)) = P
[

∞∪
m=n

{ω ∈ � : |Xm(ω)− X (ω)| > ε}
]

≤
∞∑
m=n

P[|Xn − X | > ε] → 0,

where the latter conclusion follows from the condition that
∑∞
n=1 P(|Xn − X | >

ε) < ∞.7 Thus, limn→∞P( Ãn(ε)) = 0; hence, limn→∞P(An(ε)) = 1. Q.E.D.
The following theorem establishes the relationship between convergence in

probability and almost-sure convergence:

Theorem 6.B.3: Xn→p X if and only if every subsequence nm of n = 1, 2,
3, . . . contains a further subsequence nm(k) such that for k → ∞, Xnm (k) →
X a.s.

Proof: Suppose that Xn→p X is not true but that every subsequence nm
of n = 1, 2, 3, . . . contains a further subsequence nm(k) such that for k →
∞, Xnm (k) → X a.s. Then there exist numbers ε > 0, δ ∈ (0, 1) and a sub-
sequence nm such that supm≥1 P[| Xnm −X | ≤ ε] ≤ 1− δ. Clearly, the same
holds for every further subsequence nm(k), which contradicts the assumption
that there exists a further subsequence nm(k) such that for k → ∞, Xnm (k) → X
a.s. This proves the “only if” part.
Next, suppose that Xn →p X . Then for every subsequence nm, Xnm →p X .

Consequently, for each positive integer k, limm→∞P[|Xnm − X | > k−2] = 0;
hence, for each k we can find a positive integer nm(k) such that P[|Xnm (k) −

7 Let am , m ≥ 1, be a sequence of nonnegative numbers such that
∑∞
m=1 am = K < ∞.

Then
∑n−1
m=1 am is monotonic nondecreasing in n ≥ 2 with limit limn→∞

∑n−1
m=1 am =∑∞

m=1 am = K ; hence, K = ∑∞
m=1 am = limn→∞

∑n−1
m=1 am + limn→∞

∑∞
m=n am = K +

limn→∞
∑∞
m=n am . Thus, limn→∞

∑∞
m=n am = 0.
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X | > k−2] ≤ k−2. Thus,
∑∞
k=1 P[|Xnm (k) − X | > k−2] ≤ ∑∞

k=1 k
−2 < ∞. The

latter implies that
∑∞
k=1 P[|Xnm (k) − X | > ε] < ∞ for each ε > 0; hence, by

Theorem 6.B.2, Xnm (k) → X a.s. Q.E.D.

6.B.2. Slutsky’s Theorem

Theorem 6.B.1 can be used to prove Theorem 6.7. Theorem 6.3 was only proved
for the special case that the probability limit X is constant. However, the general
result of Theorem 6.3 follows straightforwardly from Theorems 6.7 and 6.B.3.
Let us restate Theorems 6.3 and 6.7 together:

Theorem 6.B.4: (Slutsky’s theorem). Let Xn a sequence of random vectors in
R
k converging a.s. (in probability) to a (random or constant) vector X. Let�(x)
be an R

m-valued function on R
k that is continuous on an open (Borel) set B

in R
k for which P(X ∈ B) = 1). Then �(Xn) converges a.s. (in probability) to

�(X ).

Proof: Let Xn → X a.s. and let {�,ö, P} be the probability space in-
volved. According to Theorem 6.B.1 there exists a null set N1 such that
limn→∞ Xn(ω) = X (ω) pointwise in ω ∈ �\N1. Moreover, let N2 = {ω ∈ � :
X (ω) /∈ B}. Then N2 is also a null set and so is N = N1 ∪ N2 . Pick an ar-
bitrary ω ∈ �\N . Because � is continuous in X (ω) it follows from standard
calculus that limn→∞�(Xn(ω)) = �(X (ω)). By Theorem 6.B.1 this result im-
plies that �(Xn) → �(X ) a.s. Because the latter convergence result holds
along any subsequence, it follows from Theorem 6.B.3 that Xn→p X implies
�(Xn)→p �(X ). Q.E.D.

6.B.3. Kolmogorov’s Strong Law of Large Numbers

I will now provide the proof of Kolmogorov’s strong law of large numbers
based on the elegant and relatively simple approach of Etemadi (1981). This
proof (and other versions of the proof as well) employs the notion of equivalent
sequences.

Definition 6.B.1: Two sequences of random variables, Xn and Yn, n ≥ 1, are
said to be equivalent if

∑∞
n=1 P[Xn 
= Yn] < ∞.

The importance of this concept lies in the fact that if one of the equivalent
sequences obeys a strong law of large numbers, then so does the other one:

Lemma 6.B.1: If Xn and Yn are equivalent and (1/n)
∑n
j=1 Y j → µ a.s., then

(1/n)
∑n
j=1 X j → µ a.s.
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Proof: Without loss of generality we may assume that µ = 0. Let {�,ö,
P} be the probability space involved and let

An =
∞∪
m=n

{ω ∈ � : Xm(ω) 
= Ym(ω)}.

Then P(An) ≤
∑∞
m=n P(Xm 
= Ym) → 0; hence, limn→∞ P(An) = 0 and thus

P(∩∞
n=1 An) = 0. The latter implies that for each ω ∈ �\{∩∞

n=1 An} there exists
a natural number n∗(ω) such that Xn(ω) = Yn(ω) for all n ≥ n∗(ω) because, if
not, there exists a countable infinite subsequence nm(ω),m = 1, 2, 3, . . . such
that Xnk (ω)(ω) 
= Ynk (ω)(ω); hence, ω ∈ An for all n ≥ 1 and thus ω ∈ ∩∞

n=1 An .
Now let N1 be the null set on which (1/n)

∑n
j=1 Y j → 0 a.s. fails to hold, and

let N = N1 ∪ {∩∞
n=1An}. Because for each ω ∈ �\N , X j (ω) and Y j (ω) differ

for at most a finite number of j’s and limn→∞(1/n)
∑n
j=1 Y j (ω) = 0, it follows

also that limn→∞(1/n)
∑n
j=1 X j (ω) = 0. Q.E.D.

The following construction of equivalent sequences plays a key role in the
proof of the strong law of large numbers.

Lemma 6.B.2: Let Xn, n ≥ 1, be i.i.d., with E[|Xn|] < ∞, and let Yn = Xn ·
I (|Xn| ≤ n). Then Xn and Yn are equivalent.

Proof: The lemma follows from

∞∑
n=1

P[Xn 
= Yn] =
∞∑
n=1

P[|Xn| > n]

=
∞∑
n=1

P[|X1| > n] ≤
∞∫
0

P[|X1| > t]dt

=
∞∫
0

E[I (|X1| > t)]dt ≤ E

 ∞∫

0

I (|X1| > t)]dt



= E

 |X1|∫

0

dt


 = E[|X1|] < ∞.

Q.E.D.
Now let Xn, n ≥ 1 be the sequence in Lemma 6.B.2, and suppose

that (1/n)
∑n
j=1 max(0, X j ) → E[max(0, X1)] a.s. and (1/n)

∑n
j=1 max(0,

−X j ) → E[max(0,−X1)] a.s. Then it is easy to verify from Theorem 6.B.1,
by taking the union of the null sets involved, that

1

n

n∑
j=1

(
max(0, X j )
max(0,−X j )

)
→

(
E[max(0, X1)]
E[max(0,−X1)]

)
a.s.
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Applying Slutsky’s theorem (Theorem 6.B.4) with �(x, y) = x − y, we find
that (1/n)

∑n
j=1 X j → E[X1] a.s. Therefore, the proof of Kolmogorov’s strong

law of large numbers is completed by Lemma 6.B.3 below.

Lemma 6.B.3: Let the conditions of Lemma 6.B.2 hold, and assume in addition
that P[Xn ≥ 0] = 1. Then (1/n)

∑n
j=1 X j → E[X1] a.s.

Proof: Let Z (n) = (1/n)
∑n
j=1 Y j and observe that

var(Z (n)) ≤ (1/ n2)
n∑
j=1

E
[
Y 2
j

] = (1/ n2)
n∑
j=1

E
[
X2
j I (X j ≤ j)

]
≤ n−1 E

[
X2
1 I (X1 ≤ n)

]
. (6.68)

Next let α > 1 and ε > 0 be arbitrary. It follows from (6.68) and Chebishev’s
inequality that

∞∑
n=1

P[|Z ([αn])− E[Z ([αn])]| > ε]

≤
∞∑
n=1

var(Z ([αn]))/ ε2 ≤
∞∑
n=1

E
[
X2
1 I (X1 ≤ [αn])

]
ε2

[
αn

]
≤ ε−2 E

[
X2
1

∞∑
n=1

I (X1 ≤ [αn]) /[αn]

]
, (6.69)

where [αn] is the integer part of αn . Let k be the smallest natural number such
that X1 ≤ [αk], and note that [αn] > αn/2. Then the last sum in (6.69) satisfies

∞∑
n=1

I
(
X1 ≤ [αn]

)
/[αn] ≤ 2

∞∑
n=k

α−n

= 2 ·
( ∞∑
n=0

α−n
)
α−k ≤ 2α

(α − 1)X1
;

hence,

E

[
X2
1

∞∑
n=1

I
(
X1 ≤ [αn]

)
/[αn]

]
≤ 2α

α − 1
E[X1] < ∞.

Consequently, it follows from the Borel–Cantelli lemma that Z ([αn])−
E[Z ([αn]) → 0 a.s. Moreover, it is easy to verify that E[Z ([αn]) → E[X1].
Hence, Z ([αn]) → E[X1] a.s.
For each natural number k > α there exists a natural number nk such that

[αnk ] ≤ k ≤ [αnk+1], and since the X j ’s are nonnegative we have
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[αnk ]

[αnk +1]
Z
(
[αnk ]

) ≤ Z (k) ≤ [αnk +1]

[αnk ]
Z
(
[αnk +1]

)
. (6.70)

The left-hand expression in (6.70) converges a.s. to E[X1]/α as k → ∞, and
the right-hand side converges a.s. to αE[X1]; hence, we have, with probabi-
lity 1,

1

α
E[X1] ≤ liminf

k→∞
Z (k) ≤ limsup

k→∞
Z (k) ≤ αE[X1].

In other words, if we let Z = liminfk→∞Z (k), Z̄ = limsupk→∞Z (k), there ex-
ists a null set Nα (depending on α) such that for all ω ∈ �\Nα, E[X1]/α
≤ Z (ω) ≤ Z̄ (ω) ≤ αE[X1]. Taking the union N of Nα over all rational α > 1,
so that N is also a null set,8 we find that the same holds for all ω ∈ �\N
and all rational α > 1. Letting α ↓ 1 along the rational values then yields
limk→∞ Z (k) = Z (ω) = Z̄ (ω) = E[X1] for all ω ∈ �\N . Therefore, by The-
orem 6.B.1, (1/n)

∑n
j=1Y j → E[X1] a.s., which by Lemmas 6.B.2 and 6.B.3

implies that (1/n)
∑n
j=1 X j → E[X1]. a.s. Q.E.D.

This completes the proof of Theorem 6.6.

6.B.5. The Uniform Strong Law of Large Numbers and Its Applications

Proof of Theorem 6.13: It follows from (6.63), (6.64), and Theorem 6.6 that

limsup
n→∞

sup
θ∈�δ (θ∗)

∣∣∣∣∣(1/n)
n∑
j=1

g(X j , θ )− E[g(X1, θ )

∣∣∣∣∣
≤ 2

(
E

[
sup

θ∈�δ (θ∗)
g(X1, θ )

]
−E

[
inf

θ∈�δ (θ∗)
g(X1, θ )

])
<ε/2 a.s.;

hence, (6.65) can now be replaced by

limsup
n→∞

sup
θ∈�

∣∣∣∣∣(1/n)
n∑
j=1

g(X j , θ )−E[g(X1, θ )]

∣∣∣∣∣
≤ limsup

n→∞
max

1≤i≤N (δ)
sup

θ∈�δ (θi )

∣∣∣∣∣(1/n)
n∑
j=1

g(X j , θ )− E[g(X1, θ )]

∣∣∣∣∣
≤ ε/2 a.s. (6.71)

With ε/2 replaced by 1/m,m ≥ 1, the last inequality in (6.71) reads as follows:

8 Note that ∪α∈(1,∞) Nα is an uncountable union and may therefore not be a null set. Conse-
quently, we need to confine the union to all rational α > 1, which is countable.
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Let {�, ö, P} be the probability space involved. For m = 1, 2, 3, . . .there
exist null sets Nm such that for all ω ∈ �\Nm ,

limsup
n→∞

sup
θ∈�

∣∣∣∣∣(1/n)
n∑
j=1

g(X j (ω), θ )− E[g(X1, θ )]

∣∣∣∣∣ ≤ 1/m, (6.72)

and the same holds for all ω ∈ �\∪∞
k=1 Nk uniformly in m. If we get m → ∞

in (6.72), Theorem 6.13 follows.
Note that this proof is based on a seminal paper by Jennrich (1969).
An issue that has not yet been addressed is whether supθ∈� |(1/n)∑n
j=1 g(X j , θ )− E[g(X1, θ )| is a well-defined random variable. If so, we must

have that for arbitrary y > 0,{
ω ∈ � : sup

θ∈�

∣∣∣∣∣(1/n)
n∑
j=1

g(X j (ω), θ )− E[g(X1, θ )

∣∣∣∣∣ ≤ y
}

= ∩
θ∈�

{
ω ∈ � :

∣∣∣∣∣(1/n)
n∑
j=1

g(X j (ω), θ )−E[g(X1, θ )

∣∣∣∣∣≤ y
}
∈ ö.

However, this set is an uncountable intersection of sets in ö and therefore not
necessarily a set in ö itself. The following lemma, which is due to Jennrich
(1969), shows that in the case under review there is no problem.

Lemma 6.B.4: Let f (x, θ ) be a real function on B ×�, B ⊂ R
k , � ⊂ R

m,
where B is a Borel set and � is compact (hence � is a Borel set) such that for
each x in B, f (x, θ ) is continuous in θ ∈ �, and for each θ ∈ �, f (x, θ ) is Borel
measurable. Then there exists a Borel-measurable mapping θ (x) : B → � such
that f (x, θ (x)) = infθ∈� f (x, θ ); hence, the latter is Borel measurable itself.
The same result holds for the “sup” case.

Proof: I will only prove this result for the special case k = m = 1, B = R,
� = [0, 1]. Denote�n = ∪nj=1{0, 1/j, 2/j, . . . , ( j − 1)/j, 1}, and observe that
�n ⊂ �n+1 and that �∗ = ∪∞

n=1�n is the set of all rational numbers in [0,
1]. Because �n is finite, for each positive integer n there exists a Borel-
measurable function θn(x) :R → �n such that f (x, θn(x)) = infθ∈�n f (x, θ ).
Let θ (x) = lim infn→∞ θn(x). Note that θ (x) is Borel measurable. For each
x there exists a subsequence n j (which may depend on x) such that θ (x) =
lim j→∞θn j (x). Hence, by continuity, f (x, θ (x)) = lim j→∞ f (x, θn j (x)) =
lim j→∞ infθ∈�n j f (x, θ ). Now suppose that for some ε > 0 the latter is greater
or equal to ε + infθ∈�∗ f (x, θ ). Then, because for m ≤ n j , infθ∈�n j f (x, θ ) ≤
infθ∈�m f (x, θ ), and the latter is monotonic nonincreasing in m, it follows
that, for all n ≥1, infθ∈�n f (x, θ ) ≥ ε + infθ∈�∗ f (x, θ ). It is not too hard
to show, using the continuity of f (x, θ ) in θ , that this is not possible.
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Therefore, f (x, θ (x)) = infθ∈�∗ f (x, θ ); hence, by continuity, f (x, θ (x)) =
infθ∈� f (x, θ ). Q.E.D.

Proof of Theorem 6.14: Let {�,ö, P} be the probability space involved, and
denote θn = θ̂ . Now (6.9) becomes Q̄(θn) → Q̄(θ0) a.s., that is, there exists a
null set N such that for all ω ∈ �\N ,

lim
n→∞ Q̄(θn(ω)) = Q̄(θ0). (6.73)

Suppose that for some ω ∈ �\N there exists a subsequence nm(ω) and an
ε > 0 such that infm≥1‖θnm (ω)(ω)− θ0‖ > ε. Then by the uniqueness condi-
tion there exists a δ(ω) > 0 such that Q̄(θ0)− Q̄(θnm (ω)(ω)) ≥ δ(ω) for all
m ≥ 1, which contradicts (6.73). Hence, for every subsequence nm(ω) we have
limm→∞ θnm (ω)(ω) = θ0, which implies that limn→∞θn(ω) = θ0.

Proof ofTheorem6.15: The condition Xn → c a.s. translates as follows:There
exists a null set N1 such that for all ω ∈ �\N1, limn→∞ Xn(ω) = c. By the
continuity of� on B the latter implies that limn→∞ |�(Xn(ω))−�(c)| = 0 and
that for at most a finite number of indices n, Xn(ω) /∈ B. Similarly, the uniform
a.s. convergence condition involved translates as follows: There exists a null set
N2 such that for all ω ∈ �\N2, limn→∞supx∈B |�n(x, ω)−�(x)| → 0. Take
N = N1 ∪ N2. Then for all ω ∈ �\N ,

limsup
n→∞

|�n(Xn(ω), ω)−�(c)|
≤ limsup

n→∞
|�n(Xn(ω), ω)−�(Xn(ω))|

+ limsup
n→∞

|�(Xn(ω))−�(c)| ≤ limsup
n→∞

sup
x∈B

|�n(x, ω)−�(x)|
+ limsup

n→∞
|�(Xn(ω))−�(c)| = 0.

6.C. Convergence of Characteristic Functions and Distributions

In this appendix I will provide the proof of the univariate version of Theorem
6.22. Let Fn be a sequence of distribution functions on R with corresponding
characteristic functions ϕn(t), and let F be a distribution function on R with
characteristic function ϕ(t) = limn→∞ϕn(t). Let

F(x) = lim
δ↓0

liminf
n→∞ Fn(x + δ), F(x) = lim

δ↓0
limsup
n→∞

Fn(x + δ).

The function F(x) is right continuous and monotonic nondecreasing in x but
not necessarily a distribution function itself because limx↑∞ F(x) may be less
than 1 or even 0. On the other hand, it is easy to verify that limx↓−∞ F(x) = 0.
Therefore, if limx→∞ F(x) = 1, then F is a distribution function. The same
applies to F̄(x): If limx→∞ F̄(x) = 1, then F̄ is a distribution function.
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Iwill first show that limx→∞ F(x) = limx→∞ F̄(x) = 1 and then that F(x) =
F̄(x).

Lemma 6.C.1: Let Fn be a sequence of distribution functions onR with corre-
sponding characteristic functions ϕn(t) and suppose that ϕ(t) = limn→∞ϕn(t)
pointwise for each t in R, where ϕ is continuous in t = 0. Then F(x) =
limδ↓0liminf n→∞Fn(x + δ) is a distribution function and so is F̄(x) =
limδ↓0limsupn→∞Fn(x + δ).

Proof: For T > 0 and A > 0 we have

1

2T

T∫
−T

ϕn(t)dt = 1

2T

T∫
−T

∞∫
−∞

exp(i · t · x)dFn(x)dt

= 1

2T

∞∫
−∞

T∫
−T

exp(i · t · x)dtdFn(x)

= 1

2T

∞∫
−∞

T∫
−T

cos(t · x)dtdFn(x)

=
∞∫
−∞

sin(Tx)

Tx
dFn(x)

=
2A∫

−2A

sin(T x)

Tx
dFn(x)+

−2A∫
−∞

sin(Tx)

Tx
dFn(x)

+
∞∫

2A

sin(Tx)

Tx
dFn(x). (6.74)

Because |sin(x)/x | ≤ 1 and |Tx |−1 ≤ (2TA )−1 for |x | > 2A it follows from
(6.74) that∣∣∣∣∣∣

1

T

T∫
−T

ϕn(t)dt

∣∣∣∣∣∣ ≤ 2

2A∫
−2A

dFn(x)+ 1

AT

−2A∫
−∞

dFn(x)+ 1

AT

∞∫
2A

dFn(x)

= 2

(
1− 1

2AT

) 2A∫
−2A

dFn(x)+ 1

AT

= 2

(
1− 1

2AT

)
µn([−2A, 2A])+ 1

AT
, (6.75)
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where µn is the probability measure on the Borel sets in R corresponding to
Fn . Hence, if we put T = A−1 it follows from (6.75) that

µn([−2A, 2A]) ≥

∣∣∣∣∣∣∣A
1/A∫
−1/A

ϕn(t)dt

∣∣∣∣∣∣∣− 1, (6.76)

which can be rewritten as

Fn(2A) ≥

∣∣∣∣∣∣∣A
1/A∫

−1/A

ϕn(t)dt

∣∣∣∣∣∣∣− 1+ Fn(−2A)− µn({−2A}). (6.77)

Now let 2A and−2A be continuity points of F . Then it follows from (6.77),
the condition that ϕ(t) = limn→∞ ϕn(t) pointwise for each t in R, and the
bounded9 convergence theorem that

F(2A) ≥

∣∣∣∣∣∣∣A
1/A∫

−1/A

ϕ(t)dt

∣∣∣∣∣∣∣− 1+ F(−2A). (6.78)

Because ϕ(0)= 1 and ϕ is continuous in 0 the integral in (6.78) converges to 2
for A→ ∞.
Moreover, F(−2A) ↓ 0 if A→ ∞. Consequently, it follows from (6.78) that

limA→∞F(2A) = 1. By the same argument it follows that limA→∞ F̄(2A) = 1.
Thus, F and F̄ are distribution functions. Q.E.D.

Lemma 6.C.2: Let Fn be a sequence of distribution functions on R such that
F(x) = limδ↓0 liminfn→∞ Fn(x + δ)and F̄(x) = limδ↓0 limsupn→∞Fn(x + δ)
are distribution functions. Then for every bounded continuous function ϕ on R

and every ε > 0 there exist subsequences n k(ε) and n̄ k(ε) such that

limsup
k→∞

∣∣∣∣
∫
ϕ(x)dFnk (ε)(x)−

∫
ϕ(x)dF(x)

∣∣∣∣ < ε,

limsup
k→∞

∣∣∣∣
∫
ϕ(x)dFnk (ε)(x) −

∫
ϕ(x)d F̄(x)

∣∣∣∣ < ε.

Proof: Without loss of generality we may assume that ϕ(x) ∈ [0, 1] for all
x . For any ε > 0 we can choose continuity points a < b of F(x) such that
F(b)− F̄(a) > 1− ε. Moreover, we can choose continuity points a = c1 <

9 Note that |ϕ(t)| ≤ 1.
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c2 < · · · < cm = b of F(x) such that, for j = 1, . . . ,m − 1,

sup
x∈(c j ,c j+1]

ϕ(x)− inf
x∈(c j ,c j+1]

ϕ(x) ≤ ε. (6.79)

Furthermore, there exists a subsequence nk (possibly depending on ε) such that

lim
k→∞

Fnk (c j ) = F(c j ) for j = 1, 2, . . . ,m. (6.80)

Now define

ψ(x) = inf
x∈(c j ,c j+1]

ϕ(x) for x ∈ (c j , c j+1], j = 1, . . . ,m − 1,

ψ(x) = 0 elsewhere. (6.81)

Then by (6.79), 0 ≤ ϕ(x)− ψ(x) ≤ ε for x ∈ (a, b] and 0 ≤ ϕ(x)− ψ(x) ≤
1 for x /∈ (a, b]; hence,

limsup
n→∞

∣∣∣∣
∫
ψ(x)dFn(x)−

∫
ϕ(x)dFn(x)

∣∣∣∣
≤ limsup

n→∞


 ∫
x∈(a,b]

|ψ(x)− ϕ(x)|dFn(x)+
∫

x /∈(a,b]
|ψ(x)− ϕ(x)|dFn(x)




≤ ε + 1− limsup
n→∞

(Fn(b)− Fn(a)) ≤ ε + 1− (
F(b)− F̄(a)) ≤ 2ε.

(6.82)

Moreover, if follows from (6.79) and (6.81) that∣∣∣∣
∫
ψ(x)dF(x)−

∫
ϕ(x)dF(x)

∣∣∣∣ ≤ 2ε (6.83)

and from (6.80) that

lim
k→∞

∫
ψ(x)dFnk (x) =

∫
ψ(x)dF(x). (6.84)

Combining (6.82)–(6.84) we find that

limsup
k→∞

∣∣∣∣
∫
ϕ(x)dFnk (x)−

∫
ϕ(x)dF(x)

∣∣∣∣
≤ limsup

k→∞

∣∣∣∣
∫
ϕ(x)dFnk (x)−

∫
ψ(x)dFnk (x)

∣∣∣∣
+ limsup

k→∞

∣∣∣∣
∫
ψ(x)dFnk (x)−

∫
ψ(x)dF(x)

∣∣∣∣
+ limsup

k→∞

∣∣∣∣
∫
ψ(x)dF(x)−

∫
ϕ(x)dF(x)

∣∣∣∣ < 4ε. (6.85)

A similar result holds for the case F̄ . Q.E.D.
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Letϕ∗(t) be the characteristic function of F . Becauseϕ(t) = limn→∞ ϕn(t), it
follows from Lemma 6.C.2 that for each t and arbitrary ε > 0, |ϕ(t)− ϕ∗(t)| <
ε; hence, ϕ(t) = ϕ∗(t). The same result holds for the characteristic function
ϕ∗(t) of F̄ : ϕ(t) = ϕ∗(t). Consequently, ϕ(t) = limn→∞ ϕn(t) is the character-
istic function of both F and F̄ , which byLemma6.C.1 are distribution functions.
By the uniqueness of characteristic functions (see Appendix 2.C in Chapter 2)
it follows that both distributions are equal: F(x) = F̄(x) = F(x), for instance.
Thus, for each continuity point x of F , F(x) = limn→∞Fn(x).
Note that we have not assumed from the outset that ϕ(t) = limn→∞ϕn(t) is a

characteristic function but only that this pointwise limit exists and is continuous
in zero. Consequently, the univariate version of the “if” part of Theorem 6.22
can be restated more generally as follows:

Lemma 6.C.1: Let Xn be a sequence of random variables with corresponding
characteristic functions ϕn(t). If ϕ(t) = lim

n→∞ϕn(t) exists for all t ∈ R and ϕ(t)

is continuous in t = 0 (i.e., limt→0 ϕ(t) = 1), then

(a) ϕ(t) is a characteristic function itself;
(b) Xn →d X, where X is a random variable with characteristic function

ϕ(t).

This result carries over to the multivariate case, but the proof is rather com-
plicated and is therefore omitted. See Section 29 in Billingsley (1986).



7 Dependent Laws of Large Numbers
and Central Limit Theorems

Chapter 6 I focused on the convergence of sums of i.i.d. random variables –
in particular the law of large numbers and the central limit theorem. However,
macroeconomic and financial data are time series data for which the indepen-
dence assumption does not apply. Therefore, in this chapter I will generalize
the weak law of large numbers and the central limit theorem to certain classes
of time series.

7.1. Stationarity and the Wold Decomposition

Chapter 3 introduced the concept of strict stationarity, which for convenience
will be restated here:

Definition 7.1: A time series process Xt is said to be strictly station-
ary if, for arbitrary integers m1 < m2 < · · · < mn, the joint distribution of
Xt−m1 , . . . , Xt−mn does not depend on the time index t.

A weaker version of stationarity is covariance stationarity, which requires
that the first and second moments of any set Xt−m1 , . . . , Xt−mn of time series
variables do not depend on the time index t.

Definition 7.2: A time series process Xt ε R
k is covariance stationary (or

weakly stationary) if E[‖Xt‖2] < ∞ and, for all integers t and m, E[Xt ] = µ

and E[(Xt − µ)(Xt−m − µ)T] = �(m) do not depend on the time index t.

Clearly, a strictly stationary time series process Xt is covariance stationary
if E[‖Xt‖2] < ∞.
For zero-mean covariance stationary processes the famous Wold (1938) de-

composition theorem holds. This theorem is the basis for linear time series anal-
ysis and forecasting – in particular the Box–Jenkins (1979) methodology – and
vector autoregression innovation response analysis. See Sims (1980, 1982,
1986) and Bernanke (1986) for the latter.

179
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Theorem 7.1: (Wold decomposition) Let Xt ∈ R be a zero-mean covari-
ance stationary process. Then we can write Xt =

∑∞
j=0 α jUt− j +Wt, where

α0 = 1,
∑∞
j=0 α

2
j < ∞, the Ut ’s are zero-mean covariance stationary and

uncorrelated random variables, and Wt is a deterministic process, that is,
there exist coefficients β j such that P[Wt =

∑∞
j=1 β jWt− j ] = 1. Moreover,

Ut = Xt −
∑∞
j=1 β j Xt− j and E[Ut+mWt ] = 0 for all integers m and t.

Intuitive proof: The exact proof employs Hilbert space theory and will there-
fore be given in the appendix to this chapter. However, the intuition behind the
Wold decomposition is not too difficult.
It is possible to find a sequence β j , j = 1, 2, 3, . . . of real numbers such that

E[(Xt −
∑∞
j=1 β j Xt− j )

2] is minimal. The random variable

X̂ t =
∞∑
j=1

β j Xt− j (7.1)

is then called the linear projection of Xt on Xt− j , j ≥ 1. If we let

Ut = Xt −
∞∑
j=1

β j Xt− j , (7.2)

it follows from the first-order condition ∂E[(Xt −
∑∞
j=1 β j Xt− j )

2]/∂β j = 0
that

E[Ut Xt−m] = 0 for m = 1, 2, 3, . . . . (7.3)

Note that (7.2) and (7.3) imply

E[Ut ] = 0, E[UtUt−m] = 0 for m = 1, 2, 3, . . . . (7.4)

Moreover, note that by (7.2) and (7.3),

E
[
X2
t

] = E

(
Ut +

∞∑
j=1

β j Xt− j

)2



= E [
U 2
t

]+ E

( ∞∑

j=1

β j Xt− j

)2

 ,

and thus by the covariance stationarity of Xt ,

E
[
U 2
t

] = σ 2
u ≤ E [

X2
t

]
(7.5)

and

E
[
X̂2
t

] = E


( ∞∑
j=1

β j Xt− j

)2

 = σ 2

X̂
≤ E [

X2
t

]
(7.6)
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for all t. Hence it follows from (7.4) and (7.5) thatUt is a zero-mean covariance
stationary time series process itself.
Next, substitute Xt−1 = Ut−1 +

∑∞
j=1 β j Xt−1− j in (7.1). Then (7.1)

becomes

X̂ t = β1

(
Ut−1 +

∞∑
j=1

β j Xt−1− j

)
+

∞∑
j=2

β j Xt− j

= β1Ut−1 +
∞∑
j=2

(β j + β1β j−1)Xt− j

= β1Ut−1 +
(
β2 + β2

1

)
Xt−2 +

∞∑
j=3

(β j + β1β j−1)Xt− j . (7.7)

Now replace Xt−2 in (7.7) by Ut−2 +
∑∞
j=1 β j Xt−2− j . Then (7.7) becomes

X̂ t = β1Ut−1 +
(
β2 + β2

1

) (
Ut−2 +

∞∑
j=1

β j Xt−2− j

)
+

∞∑
j=3

(β j + β1β j−1)Xt− j

= β1Ut−1 +
(
β2 + β2

1

)
Ut−2 +

∞∑
j=3

[(
β2 + β2

1

)
β j−2 + (β j + β1β j−1)

]
Xt− j

= β1Ut−1 +
(
β2 + β2

1

)
Ut−2 +

[(
β2 + β2

1

)
β1 + (β3 + β1β2)

]
Xt−3

+
∞∑
j=4

[(
β2 + β2

1

)
β j−2 + (β j + β1β j−1)

]
Xt− j .

Repeating this substitution m times yields an expression of the type

X̂ t =
m∑
j=1

α jUt− j +
∞∑

j=m+1

θm, j Xt− j , (7.8)

for instance. It follows now from (7.3), (7.4), (7.5), and (7.8) that

E
[
X̂2
t

] = σ 2
u

m∑
j=1

α2
j + E


( ∞∑

j=m+1

θm, j Xt− j

)2

 .

Hence, letting m → ∞, we have

E
[
X̂2
t

] = σ 2
u

∞∑
j=1

α2
j + lim

m→∞ E


( ∞∑

j=m+1

θm, j Xt− j

)2

 = σ 2

X̂
< ∞.

Therefore, we can write Xt as

Xt =
∞∑
j=0

α jUt− j +Wt , (7.9)
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where α0 = 1 and
∑∞
j=0 α

2
j < ∞withWt = plimm→∞

∑∞
j=m+1 θm, j Xt− j a re-

mainder term that satisfies

E[Ut+mWt ] = 0 for all integers m and t. (7.10)

Finally, observe from (7.2) and (7.9) that

Ut −
(
Wt −

∞∑
j=1

β jWt− j

)
= (Xt −Wt )−

∞∑
j=1

β j (Xt− j −Wt− j )

=
∞∑
j=0

α j

(
Ut− j −

∞∑
m=1

βmUt− j−m

)

= Ut +
∞∑
j=1

δ jUt− j , for instance.

It follows now straightforwardly from (7.4), (7.5), and (7.10) that δ j = 0 for all
j ≥ 1; hence, Wt =

∑∞
j=1 β jWt− j with probability 1. Q.E.D.

Theorem 7.1 carries over to vector-valued covariance stationary processes:

Theorem 7.2: (Multivariate Wold decomposition) Let Xt ∈ R
k be a zero-mean

covariance stationary process. Then we can write Xt =
∑∞
j=0 A jUt− j +Wt,

where A0 = Ik,
∑∞
j=0 A j A

T
j is finite, the Ut ’s are zero-mean covariance sta-

tionary and uncorrelated random vectors (i.e., E[UtUT
t−m] = O for m ≥

1), and Wt is a deterministic process (i.e., there exist matrices B j such
that P[Wt =

∑∞
j=1 BjWt− j ] = 1). Moreover, Ut = Xt −

∑∞
j=1 Bj Xt− j , and

E[Ut+mWT
t ] = O for all integers m and t.

Although the process Wt is deterministic in the sense that it is per-
fectly predictable from its past values, it still may be random. If so, let
öt
W = σ (Wt ,Wt−1,Wt−2, . . .) be the σ -algebra generated byWt−m form ≥ 0.

Then all Wt ’s are measurable öt−m
W for arbitrary natural numbers m; hence,

all Wt ’s are measurable ö−∞
W = ∩∞

t=0ö
−t
W . However, it follows from (7.2)

and (7.9) that each Wt can be constructed from Xt− j for j ≥ 0; hence,
öt
X = σ (Xt , Xt−1, Xt−2, . . .) ⊃ öt

W , and consequently, all Wt ’s are measur-
ableö−∞

X = ∩∞
t=0ö

−t
X . This implies that Wt = E[Wt |ö−∞

X ]. See Chapter 3.
The σ -algebraö−∞

X represents the information contained in the remote past
of Xt . Therefore,ö−∞

X is called the remote σ -algebra, and the events therein are
called the remote events. If ö−∞

X is the trivial σ -algebra {�,∅}, and thus the
remote past of Xt is uninformative, then E[Wt |ö−∞

X ] = E[Wt ]; hence,Wt = 0.
However, the same result holds if all the remote events have either probability
0 or 1, as is easy to verify from the definition of conditional expectations with
respect to a σ -algebra. This condition follows automatically fromKolmogorov’s
zero-one law if the Xt ’s are independent (see Theorem 7.5 below), but for
dependent processes this is not guaranteed. Nevertheless, for economic time
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series this is not too farfetched an assumption, for in reality they always start
from scratch somewhere in the far past (e.g., 500 years ago for U.S. time series).

Definition 7.3: A time series process Xt has a vanishing memory if the events
in the remote σ -algebra ö−∞

X = ∩∞
t=0σ (X−t , X−t−1, X−t−2, . . .) have either

probability 0 or 1.

Thus, under the conditions of Theorems 7.1 and 7.2 and the additional as-
sumption that the covariance stationary time series process involved has a van-
ishing memory, the deterministic term Wt in the Wold decomposition is 0 or is
a zero vector, respectively.

7.2. Weak Laws of Large Numbers for Stationary Processes

Iwill shownow that covariance stationary time series processeswith a vanishing
memory obey a weak law of large numbers and then specialize this result to
strictly stationary processes.
Let Xt ∈ R be a covariance stationary process, that is, for all t, E[Xt ] =

µ, var[Xt ] = σ 2 and cov(Xt , Xt−m) = γ (m). If Xt has a vanishing mem-
ory, then by Theorem 7.1 there exist uncorrelated random variables Ut ∈ R

with zero expectations and common finite variance σ 2
u such that Xt − µ =∑∞

m=0 αmUt−m , where
∑∞
m=0 α

2
m < ∞. Then

γ (k) = E
[( ∞∑

m=0

αm+kUt−m

)( ∞∑
m=0

αmUt−m

)]
. (7.11)

Because
∑∞
m=0 α

2
m < ∞, it follows that limk→∞

∑∞
m=k α

2
m = 0. Hence, it fol-

lows from (7.11) and the Schwarz inequality that

|γ (k)| ≤ σ 2
u

√√√√ ∞∑
m=k

α2
m

√√√√ ∞∑
m=0

α2
m → 0 as k → ∞.

Consequently,

var

(
(1/n)

n∑
t=1

Xt

)
= σ 2/n + 2(1/n2)

n−1∑
t=1

n−t∑
m=1

γ (m)

= σ 2/n + 2(1/n2)
n−1∑
m=1

(n − m)γ (m)

≤ σ 2/n + 2(1/n)
n∑
m=1

|γ (m)| → 0 as n→ ∞.

(7.12)

From Chebishev’s inequality, it follows now from (7.12) that

Theorem 7.3: If Xt is a covariance stationary time series process with van-
ishing memory, then plimn→∞(1/n)

∑n
t=1 Xt = E[X1].
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This result requires that the second moment of Xt be finite. However, this
condition can be relaxed by assuming strict stationarity:

Theorem 7.4: If Xt is a strictly stationary time series process with vanishing
memory, and E[|X1|] < ∞, then plimn→∞(1/n)

∑n
t=1 Xt = E[X1].

Proof: Assume first that P[Xt ≥ 0] = 1. For any positive real number
M, Xt I (Xt ≤ M) is a covariance stationary process with vanishing memory;
hence, by Theorem 7.3,

plim
n→∞

(1/n)
n∑
t=1

(Xt I (Xt ≤ M)− E[X1 I (X1 ≤ M)]) = 0. (7.13)

Next, observe that∣∣∣∣∣(1/n)
n∑
t=1

(Xt − E[X1])

∣∣∣∣∣
≤

∣∣∣∣∣(1/n)
n∑
t=1

(Xt I (Xt ≤ M)− E[X1 I (X1 ≤ M)])

∣∣∣∣∣
+

∣∣∣∣∣(1/n)
n∑
t=1

(Xt I (Xt > M)− E[X1 I (X1 > M)])

∣∣∣∣∣ (7.14)

Because, for nonnegative random variables Y and Z, P[Y + Z > ε] ≤ P[Y >

ε/2]+ P[Z > ε/2], it follows from (7.14) that for arbitrary ε > 0,

P

[∣∣∣∣∣(1/n)
n∑
t=1

(Xt − E[X1])

∣∣∣∣∣ > ε

]

≤ P
[∣∣∣∣∣(1/n)

n∑
t=1

(Xt I (Xt ≤ M)− E[X1 I (X1 ≤ M)])

∣∣∣∣∣ > ε/2

]

+ P
[∣∣∣∣∣(1/n)

n∑
t=1

(Xt I (Xt > M)− E[X1 I (X1 > M)])

∣∣∣∣∣ > ε/2

]
.

(7.15)

For an arbitrary δ ∈ (0, 1), we can chooseM so large that E[X1 I (X1 > M)] <
εδ/8. Hence, if we use Chebishev’s inequality for first moments, the last prob-
ability in (7.15) can be bounded by δ/2:

P

[∣∣∣∣∣(1/n)
n∑
t=1

(Xt I (Xt > M)− E[X1 I (X1 > M)])

∣∣∣∣∣ > ε/2

]

≤ 4E[X1 I (X1 > M)]/ε < δ/2. (7.16)



Dependent Laws of Large Numbers and Central Limit Theorems 185

Moreover, it follows from (7.13) that there exists a natural number n0(ε, δ) such
that

P

[∣∣∣∣∣(1/n)
n∑
t=1

(Xt I (Xt ≤ M)− E[X1 I (X1 ≤ M)])

∣∣∣∣∣ > ε/2

]

< δ/2 if n ≥ n0(ε, δ). (7.17)

If we combine (7.15)–(7.17), the theorem follows for the case P[Xt ≥ 0] =
1. The general case follows easily from Xt = max(0, Xt )−max(0,−Xt ) and
Slutsky’s theorem. Q.E.D.
Most stochastic dynamic macroeconomic models assume that the model

variables are driven by independent randomshocks, and thus themodel variables
involved are functions of these independent random shocks and their past. These
random shock are said to form a base for the model variables involved:

Definition 7.4: A time series process Ut is a base for a time series process Xt
if, for each t, Xt is measurableö t

−∞ = σ (Ut ,Ut−1,Ut−2, . . .).

If Xt has an independent base, then it has a vanishing memory owing to
Kolmogorov’s zero-one law:

Theorem 7.5: (Kolmogorov’s zero-one law) Let Xt be a sequence of indepen-
dent random variables or vectors, and letö t

−∞ = σ (Xt , Xt−1, Xt−2, . . .). Then
the sets in the remote σ -algebraö−∞ = ∩∞

t=1ö
t
−∞ have either probability ∅

or 1.

Proof: Denote byö t+k
t the σ -algebra generated by Xt , . . . , Xt+k .Moreover,

denote by ö t−1
t−m the σ -algebra generated by Xt−1, . . . , Xt−m . Each set A1 in

ö t+k
t takes the form

A1 = {ω ∈ � : (Xt (ω), . . . , Xt+k(ω))T ∈ B1}
for some Borel set B1 ∈ R

k+1. Similarly, each set A2 in ∪∞
m=1ö

t−1
t−m takes the

form

A2 = {ω ∈ � : (Xt−1(ω), . . . , Xt−m(ω))T ∈ B2}
for some m ≥ 1 and some Borel set B2 ∈ R

m . Clearly, A1 and A2 are
independent.
I will now show that the same holds for sets A2 in ö t−1

−∞ = σ (∪∞
m=1ö

t−1
t−m),

the smallest σ -algebra containing∪∞
m=1ö

t−1
t−m . Note that∪∞

m=1ö
t−1
t−m may not be

a σ -algebra itself, but it is easy to verify that it is an algebra because ö t−1
t−m ⊂

ö t−1
t−m−1. For a given setC inö t+k

t with positive probability and for all sets A in
∪∞
m=1ö

t−1
t−m , we have P(A|C) = P(A). Thus, P(·|C) is a probability measure

on the algebra ∪∞
m=1ö

t−1
t−m , which has a unique extension to the smallest σ -

algebra containing∪∞
m=1ö

t−1
t−m (see Chapter 1). Consequently, P(A|C) = P(A)
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is true for all sets A in ö t−1
−∞. Moreover, if C has probability zero, then P(A ∩

C) ≤ P(C) = 0 = P(A)P(C). Thus, for all sets C in ö t+k
t and all sets A in

ö t−1
−∞, P(A ∩ C) = P(A)P(C).
Next, let A ∈ ∩tö t−1

−∞, where the intersection is taken over all integers t, and
letC ∈ ∪∞

k=1ö
t
t−k . Then for some k,C is a set inö t

t−k and A is a set inö
m
−∞ for

all m; therefore, A ∈ ö t−k−1
−∞ and hence P(A ∩ C) = P(A)P(C). By a similar

argument it can be shown that P(A ∩ C) = P(A)P(C) for all sets A ∈ ∩tö t−1
−∞

and C ∈ σ (∪∞
k=1ö

t
t−k). But ö−∞ = ∩tö t−1

−∞ ⊂ σ (∪∞
k=1ö

t
t−k), and thus we

may choose C = A. Consequently, for all sets A ∈ ∩tö t−1
−∞, P(A) = P(A)2,

which implies that P(A) is either zero or one. Q.E.D.

7.3. Mixing Conditions

Inspectionof the proof ofTheorem7.5 reveals that the independence assumption
can be relaxed.We only need independence of an arbitrary set A inö−∞ and an
arbitrary set C inö t

t−k = σ (Xt , Xt−1, Xt−2, . . . , Xt−k) for k ≥ 1. A sufficient
condition for this is that the process Xt is α-mixing or ϕ-mixing:

Definition 7.5: Let ö t
−∞ = σ (Xt , Xt−1, Xt−2, . . .), ö∞

t = σ (Xt , Xt+1,

Xt+2, . . .) and

α(m) = sup
t

sup
A∈ö∞

t , B∈ö t−m
−∞

|P(A ∩ B)− P(A) · P(B)|,

ϕ(m) = sup
t

sup
A∈ö∞

t , B∈ö t−m
−∞

|P(A|B)− P(A)|.

If limm→∞α(m) = 0, then the time series process Xt involved is said to be
α-mixing; if limm→∞ϕ(m) = 0, Xt is said to be ϕ-mixing.

Note in the α-mixing case that

sup
A∈ö t

t−k , B∈ö−∞

|P(A ∩ B)− P(A) · P(B)|

≤ limsup
m→∞

sup
t

sup
A∈ö∞

t−k , B∈ö
t−k−m
−∞

|P(A ∩ B)− P(A) · P(B)|

= limsup
m→∞

α(m) = 0;

hence, the sets A ∈ öt
t−k, B ∈ ö−∞ are independent. Moreover, note that

α(m) ≤ ϕ(m), and thus ϕ-mixing implies α-mixing. Consequently, the latter is
the weaker condition, which is sufficient for a zero-one law:

Theorem 7.6: Theorem 7.5 carries over for α-mixing processes.

Therefore, the following theorem is another version of the weak law of large
numbers:
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Theorem 7.7: If Xt is a strictly stationary time series process with an α-mixing
base and E[|X1|] < ∞, then plimn→∞(1/n)

∑n
t=1 Xt = E[X1].

7.4. Uniform Weak Laws of Large Numbers

7.4.1. Random Functions Depending on Finite-Dimensional
Random Vectors

On the basis ofTheorem7.7, all the convergence in probability results inChapter
6 for i.i.d. randomvariables or vectors carry over to strictly stationary time series
processes with an α-mixing base. In particular, the uniform weak law of large
numbers can now be restated as follows:

Theorem 7.8(a): (UWLLN) Let Xt be a strictly stationary k-variate time se-
ries process with an α-mixing base, and let θ ∈ � be nonrandom vectors in a
compact subset� ⊂ R

m. Moreover, let g(x, θ ) be a Borel-measurable function
on R

k ×� such that for each x, g(x, θ ) is a continuous function on�. Finally,
assume that E[supθ∈�|g(X j , θ )|] < ∞. Then

plimn→∞ supθ∈�

∣∣∣∣∣(1/n)
n∑
j=1

g(X j , θ )− E[g(X1, θ )]

∣∣∣∣∣ = 0.

Theorem 7.8(a) can be proved along the same lines as the proof of the uniform
weak law of large numbers for the i.i.d. case in Appendix 6.A of Chapter 6
simply by replacing the reference to the weak law of large numbers for i.i.d.
random variables by a reference to Theorem 7.7.

7.4.2. Random Functions Depending on Infinite-Dimensional
Random Vectors

In time series econometrics we quite often have to deal with random functions
that depend on a countable infinite sequence of random variables or vectors. As
an example, consider the time series process

Yt = β0Yt−1 + Xt , with Xt = Vt − γ0Vt−1, (7.18)

where the Vt ’s are i.i.d. with zero expectation and finite variance σ 2 and the
parameters involved satisfy |β0| < 1 and |γ0| < 1. The part

Yt = β0Yt−1 + Xt (7.19)

is an autoregression of order 1, denoted by AR(1), and the part

Xt = Vt − γ0Vt−1 (7.20)

is a moving average process or order 1, denoted by MA(1). Therefore, model
(7.18) is called an ARMA(1, 1) model (see Box and Jenkins 1976). The
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condition |β0| < 1 is necessary for the strict stationarity of Yt because then,
by backwards substitution of (7.18), we can write model (7.18) as

Yt =
∞∑
j=0

β
j
0 (Vt− j − γ0Vt−1− j )

= Vt + (β0 − γ0)
∞∑
j=1

β
j−1
0 Vt− j . (7.21)

This is the Wold decomposition of Yt . The MA(1) model (7.20) can be written
as an AR(1) model in Vt :

Vt = γ0Vt−1 +Ut . (7.22)

If |γ0| < 1, then by backwards substitution of (7.22) we can write (7.20) as

Xt = −
∞∑
j=1

γ
j
0 Xt− j + Vt . (7.23)

If we substitute Xt = Yt − β0Yt−1 in (7.23), the ARMA(1, 1) model (7.18) can
now be written as an infinite-order AR model:

Yt = β0Yt−1 −
∞∑
j=1

γ
j
0 (Yt− j − β0Yt−1− j )+ Vt

= (β0 − γ0)
∞∑
j=1

γ
j−1
0 Yt− j + Vt . (7.24)

Note that if β0 = γ0, then (7.24) and (7.21) reduce to Yt = Vt ; thus, there
is no way to identify the parameters. Consequently, we need to assume that
β0 
= γ0. Moreover, observe from (7.21) that Yt is strictly stationary with an
independent (hence α-mixing) base.
There are different ways to estimate the parameters β0, γ0 in model (7.18) on

the basis of observations on Yt for t = 0, 1, . . . , n only. If we assume that the
Vt ’s are normally distributed, we can use maximum likelihood (see Chapter 8).
But it is also possible to estimate the model by nonlinear least squares (NLLS).
If we would observe all the Yt ’s for t < n, then the nonlinear least-squares

estimator of θ0 = (β0, γ0)T is

θ̂ = argmin
θ∈�

(1/n)
n∑
t=1

(Yt − ft (θ ))
2, (7.25)

where

ft (θ ) = (β − γ )
∞∑
j=1

γ j−1Yt− j , with θ = (β, γ )T, (7.26)

and

� = [−1+ ε, 1− ε]× [−1+ ε, 1− ε], ε ∈ (0, 1), (7.27)
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for instance, where ε is a small number. If we only observe the Yt ’s for t =
0, 1, . . . , n, which is the usual case, then we can still use NLLS by setting the
Yt ’s for t < 0 to zero. This yields the feasible NLLS estimator

θ̃ = argmin
θ∈�

(1/n)
n∑
t=1

(Yt − f̃ t (θ ))
2, (7.28)

where

f̃ t (θ ) = (β − γ )
t∑
j=1

γ j−1Yt− j . (7.29)

For proving the consistency of (7.28) we need to show first that

plim
n→∞

sup
θ∈�

∣∣∣∣∣(1/n)
n∑
t=1

(
(Yt − f̃ t (θ ))

2 − (Yt − ft (θ ))
2
)∣∣∣∣∣ = 0 (7.30)

(Exercise), and

plim
n→∞

sup
θ∈�

∣∣∣∣∣(1/n)
n∑
t=1

(
(Yt − ft (θ ))

2 − E[
(Y1 − f1(θ ))

2
]) ∣∣∣∣∣ = 0. (7.31)

(Exercise) However, the random functions gt (θ ) = (Yt − ft (θ ))2 depend on
infinite-dimensional random vectors (Yt , Yt−1, Yt−2, Yt−2, . . .)T, and thus Theo-
rem 7.8(a) is not applicable to (7.31). Therefore, we need to generalize Theorem
7.8(a) to prove (7.31):

Theorem 7.8(b): (UWLLN) Let öt = σ (Vt , Vt−1, Vt−2, . . .), where Vt is a
time series process with an α-mixing base. Let gt (θ ) be a sequence of random
functions on a compact subset � of a Euclidean space. Write Nδ(θ∗) = {θ ∈
� : ‖θ − θ∗‖ ≤ δ} for θ∗ ∈ � and δ ≥ 0. If for each θ∗ ∈ � and each δ ≥ 0,

(a) supθ∈Nδ (θ∗) gt (θ ) and inf θ∈Nδ (θ∗)gt (θ ) are measurable öt and strictly
stationary,

(b) E[supθ∈Nδ (θ∗)gt (θ )] < ∞ and E[inf θ∈Nδ (θ∗)gt (θ )] > −∞,
(c) limδ↓0E[supθ∈Nδ(θ∗)gt (θ )] = limδ↓0E[inf θ∈Nδ (θ∗)gt (θ )] = E[gt (θ∗)];

then, plimn→∞supθ∈�|(1/n)
∑n
t=1 gt (θ )− E[g1(θ )]| = 0.

Theorem 7.8(b) can also be proved easily along the lines of the proof of the
uniform weak law of large numbers in Appendix 6.A of Chapter 6.
Note that it is possible to strengthen the (uniform)weak laws of large numbers

to corresponding strong laws or large numbers by imposing conditions on the
speed of convergence to zero of α(m) (see McLeish 1975).
It is not too hard (but rather tedious) to verify that the conditions of Theorem

7.8(b) apply to the random functions gt (θ ) = (Yt − ft (θ ))2 with Yt defined by
(7.18) and ft (θ ) by (7.26).
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7.4.3. Consistency of M-Estimators

Further conditions for the consistency of M-estimators are stated in the next
theorem, which is a straightforward generalization of a corresponding result in
Chapter 6 for the i.i.d. case:

Theorem 7.9: Let the conditions of Theorem 7.8(b) hold, and let
θ0 = argmaxθ∈�E[g1(θ )], θ̂ = argmaxθ∈�(1/n)

∑n
t=1 gt (θ ). If for δ > 0,

supθ∈�\Nδ (θ0)E[g1(θ )] < E[g1(θ0)], then plimn→∞θ̂ = θ0. Similarly, if θ0 =
argminθ∈�E[g1(θ )], θ̂ = argminθ∈�(1/n)

∑n
t=1 gt (θ ), and for δ > 0,

inf θ∈�\Nδ (θ0)E[g1(θ )] > E[g1(θ0)], then plimn→∞θ̂ = θ0.

Again, it is not too hard (but rather tedious) to verify that the conditions of
Theorem 7.9 apply to (7.25) with Yt defined by (7.18) and ft (θ ) by (7.26). Thus
the feasible NLLS estimator (7.28) is consistent.

7.5. Dependent Central Limit Theorems

7.5.1. Introduction

As is true of the conditions for asymptotic normality of M-estimators in the
i.i.d. case (see Chapter 6), the crucial condition for asymptotic normality of the
NLLS estimator (7.25) is that

1√
n

n∑
t=1

Vt
(
∂ ft (θ0)/∂θ

T
0

)→d N2[0, B], (7.32)

where

B = E [
V 2
1

(
∂ f1(θ0)/∂θ

T
0

)
(∂ f1(θ0)/∂θ0)

]
. (7.33)

It follows from (7.21) and (7.26) that

ft (θ0) = (β0 − γ0)
∞∑
j=1

β
j−1
0 Vt− j , (7.34)

which is measurable öt−1 = σ (Vt−1, Vt−2, Vt−3, . . .), and thus

∂ ft (θ0)/∂θ
T
0

=
( ∞∑
j=1

(β0 + (β0 − γ0)( j − 1))β j−2
0 Vt− j −

∞∑
j=1

β
j−1
0 Vt− j

)
.
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Therefore, it follows from the law of iterated expectations (see Chapter 3) that

B = σ 2E
[(
∂ f1(θ0)/∂θT0

)
(∂ f1(θ0)/∂θ0)

]

= σ 4




∑∞
j=1 (β0 + (β0 − γ0)( j − 1))2β2( j−2)

0 −∑∞
j=1 (β0 + (β0 − γ0)( j − 1))β2( j−2)

0

−∑∞
j=1 (β0 + (β0 − γ0)( j − 1))β2( j−2)

0

∑∞
j=1 β

2( j−1)
0




(7.35)

and

P
(
E[Vt (∂ ft (θ0)/∂θ

T
0 )|öt−1] = 0

) = 1. (7.36)

The result (7.36) makes Vt (∂ ft (θ0)/∂θT0 ) a bivariate martingale difference
process, and for an arbitrary nonrandom ξ ∈ R

2, ξ 
= 0, the process Ut =
VtξT(∂ ft (θ0)/∂θT0 ) is then a univariate martingale difference process:

Definition 7.4: LetUt be a time series process defined on a common probability
space {�,ö, P}, and let öt be a sequence of sub-σ -algebras of ö. If for
each t,

(a) Ut is measurableöt ,
(b) öt−1 ⊂ öt ,
(c) E[|Ut |] < ∞, and
(d) P(E[Ut |öt−1] = 0) = 1,

then {Ut ,öt } is called a martingale difference process.

If condition (d) is replaced by P(E[Ut |öt−1] = Ut−1) = 1, then {Ut ,öt }
is called a martingale. In that case"Ut = Ut −Ut−1 = Ut − E[Ut |öt−1] sat-
isfies P(E["Ut |öt−1] = 0) = 1. This is the reason for calling the process in
Definition 7.4 a martingale difference process.
Thus, what we need for proving (7.32) is a martingale difference central limit

theorem.

7.5.2. A Generic Central Limit Theorem

In this section I will explain McLeish’s (1974) central limit theorems for de-
pendent random variables with an emphasis on stationary martingale difference
processes.
The following approximation of exp(i · x) plays a key role in proving central

limit theorems for dependent random variables.

Lemma 7.1: For x ∈ R with |x | < 1, exp(i · x) = (1+ i · x)exp(−x2/2+
r (x)), where |r (x)| ≤ |x |3.
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Proof: It follows from the definition of the complex logarithm and the series
expansion of log(1+ i · x) for |x | < 1 (see Appendix III) that

log(1+ i · x) = i · x + x2/2+
∞∑
k=3

(−1)k−1i k xk/k + i · m · π

= i · x + x2/2− r (x)+ i · m · π,
where r (x) = −∑∞

k=3(−1)k−1i k xk/k. Taking the exp of both sides of the
equation for log(1+ i · x) yields exp(i · x) = (1+ i · x) exp(−x2/2+ r (x)).
To prove the inequality |r (x)| ≤ |x |3, observe that

r (x) = −
∞∑
k=3

(−1)k−1i k xk/k = x3
∞∑
k=0

(−1)ki k+1xk/(k + 3)

= x3
∞∑
k=0

(−1)2ki2k+1x2k/(2k + 3)

+ x3
∞∑
k=0

(−1)2k+1i2k+2x2k+1/(2k + 4)

= x3
∞∑
k=0

(−1)k x2k+1/(2k + 4)+ i · x3
∞∑
k=0

(−1)k x2k/(2k + 3)

=
∞∑
k=0

(−1)k x2k+4/(2k + 4)+ i ·
∞∑
k=0

(−1)k x2k+3/(2k + 3)

=
x∫

0

y3

1+ y2 dy+ i ·
x∫

0

y2

1+ y2 dy, (7.37)

where the last equality in (7.37) follows from

d

dx

∞∑
k=0

(−1)k x2k+4/(2k + 4) =
∞∑
k=0

(−1)k x2k+3

= x3
∞∑
k=0

(−x2)k = x3

1+ x2

for |x | < 1, and similarly

d

dx

∞∑
k=0

(−1)k x2k+3/(2k + 3) = x2

1+ x2 .

The theorem now follows from (7.37) and the easy inequalities∣∣∣∣∣
x∫

0

y3

1+ y2 dy
∣∣∣∣∣ ≤

|x |∫
0

y3dy = 1

4
|x |4 ≤ |x |3/

√
2
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and ∣∣∣∣∣
x∫

0

y2

1+ y2 dy
∣∣∣∣∣ ≤

|x |∫
0

y2dy = 1

3
|x |3 ≤ |x |3/

√
2,

which hold for |x | < 1. Q.E.D.
The result of Lemma 7.1 plays a key role in the proof of the following generic

central limit theorem:

Lemma 7.2: Let Xt , t = 1, 2, . . . , n, . . . be a sequence of random variables
satisfying the following four conditions:

plim
n→∞

max
1≤t≤n

|Xt |/
√
n = 0, (7.38)

plim
n→∞

(1/n)
n∑
t=1

X2
t = σ 2 ∈ (0,∞), (7.39)

lim
n→∞ E

[
n∏
t=1

(1+ i · ξ · Xt/
√
n)

]
= 1, ∀ξ ∈ R, (7.40)

and

sup
n≥1
E

[
n∏
t=1

(
1+ ξ 2X2

t /n
)]

< ∞, ∀ξ ∈ R. (7.41)

Then

1√
n

n∑
t=1

Xt →d N (0, σ
2). (7.42)

Proof: Without loss of generality we may assume that σ 2 = 1 because, if
not, we may replace Xt by Xt/σ . It follows from the first part of Lemma 7.1
that

exp

(
iξ (1/

√
n)

n∑
t=1

Xt

)
=

[
n∏
t=1

(1+ iξ Xt/
√
n)

]

× exp

(
−(ξ 2/2)(1/n)

n∑
t=1

X2
t

)
exp

(
n∑
t=1

r (ξ Xt/
√
n)

)
. (7.43)

Condition (7.39) implies that

plim
n→∞

exp

(
−(ξ 2/2)(1/n)

n∑
t=1

X2
t

)
= exp(−ξ 2/2). (7.44)
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Moreover, it follows from (7.38), (7.39), and the inequality |r (x)| ≤ |x |3 for
|x | < 1 that∣∣∣∣∣

n∑
t=1

r (ξ Xt/
√
n)I (|ξ Xt/

√
n| < 1)

∣∣∣∣∣
≤ |ξ |3
n
√
n

n∑
t=1

|X j |3 I
(|ξ Xt/√n| < 1

)

≤ |ξ |3 max1≤t≤n|Xt |√
n

(
(1/n)

n∑
t=1

X2
t

)
→p 0.

Next, observe that∣∣∣∣∣
n∑
t=1

r (ξ Xt/
√
n)I (|ξ Xt/

√
n| ≥ 1)

∣∣∣∣∣
≤

n∑
t=1

∣∣∣∣∣r (ξ Xt/√n)
∣∣∣∣∣I (|ξ Xt/√n| ≥ 1)

≤ I
(
|ξ | · max

1≤t≤n
|Xt |/

√
n| ≥ 1

) n∑
t=1

∣∣∣∣∣r (ξ Xt/√n)
∣∣∣∣∣. (7.45)

The result (7.45) and condition (7.38) imply that

P

[
n∑
t=1

r (ξ Xt/
√
n)I (|ξ Xt/

√
n| ≥ 1) = 0

]

≥ P
(
|ξ | · max

1≤t≤n
|Xt |/

√
n < 1

)
→ 1. (7.46)

Therefore, it follows from (7.38), (7.39), and (7.46) that

plim
n→∞

exp

(
n∑
t=1

r (ξ Xt/
√
n)

)
= 1. (7.47)

Thus, we can write

exp

(
iξ (1/

√
n)

n∑
t=1

Xt

)
=

[
n∏
t=1

(1+ iξ Xt/
√
n)

]
exp(−ξ 2/2)

+
[
n∏
t=1

(1+ iξ Xt/
√
n)

]
Zn(ξ ), (7.48)
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where

Zn(ξ ) = exp(−ξ 2/2)− exp

(
−(ξ 2/2)(1/n)

n∑
t=1

X2
t

)

× exp

(
n∑
t=1

r (ξ Xt/
√
n)

)
→p 0. (7.49)

Because |Zn(ξ )| ≤ 2 with probability 1 given that

| exp(−x2/2+ r (x))| ≤ 1, (7.50)

it follows from (7.49) and the dominated-convergence theorem that

lim
n→∞ E

[|Zn(ξ )|2] = 0. (7.51)

Moreover, condition (7.41) implies (using zw = z̄ · w̄ and |z| = √
zz̄) that

sup
n≥1
E



∣∣∣∣∣
n∏
t=1

(1+ iξ Xt/
√
n)

∣∣∣∣∣
2



= sup
n≥1
E

[
n∏
t=1

(1+ iξ Xt/
√
n)(1− iξ Xt/

√
n)

]

= sup
n≥1
E

[
n∏
t=1

(1+ ξ 2X2
t /n)

]
< ∞. (7.52)

Therefore, it follows from theCauchy–Schwarz inequality and (7.51) and (7.52)
that ∣∣∣∣∣ limn→∞ E

[
Zn(ξ )

n∏
t=1

(1+ iξ Xt/
√
n)

]∣∣∣∣∣

≤
√

lim
n→∞ E[|Zn(ξ )|

2]

√√√√sup
n≥1
E

[
n∏
t=1

(1+ ξ 2X2
t /n)

]
= 0 (7.53)

Finally, it follows now from (7.40), (7.48), and (7.53) that

lim
n→∞ E

[
exp

(
iξ (1/

√
n)

n∑
t=1

Xt

)]
= exp(−ξ 2/2). (7.54)

Because the right-hand side of (7.54) is the characteristic function of the N(0,
1) distribution, the theorem follows for the case σ 2 = 1 Q.E.D.
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Lemma 7.2 is the basis for various central limit theorems for dependent
processes. See, for example, Davidson’s (1994) textbook. In the next section, I
will specialize Lemma 7.2 to martingale difference processes.

7.5.3. Martingale Difference Central Limit Theorems

Note that Lemma 7.2 carries over if we replace the Xt ’s by a double array
Xn,t , t = 1, 2, . . . , n, n = 1, 2, 3, . . . . In particular, let

Yn,1 = X1,

Yn,t = Xt I
(
(1/n)

t−1∑
k=1

X2
k ≤ σ 2 + 1

)
for t ≥ 2. (7.55)

Then, by condition (7.39),

P[Yn,t 
= Xt for some t ≤ n] ≤ P[(1/n)
n∑
t=1

X2
t > σ 2 + 1] → 0;

(7.56)

hence, (7.42) holds if

1√
n

n∑
t=1

Yn,t →d N (0, σ
2). (7.57)

Therefore, it suffices to verify the conditions of Lemma 7.2 for (7.55).
First, it follows straightforwardly from (7.56) that condition (7.39) implies

plim
n→∞

(1/n)
n∑
t=1

Y 2
n,t = σ 2. (7.58)

Moreover, if Xt is strictly stationary with an σ -mixing base and E[X2
1] = σ 2 ∈

(0,∞), then it follows from Theorem 7.7 that (7.39) holds and so does (7.58).
Next, let us have a closer look at condition (7.38). It is not hard to verify that,

for arbitrary ε > 0,

P

[
max
1≤t≤n

|Xt |/
√
n > ε

]
= P

[
(1/n)

n∑
t=1

X2
t I (|Xt |/

√
n > ε) > ε2

]
.

(7.59)

Hence, (7.38) is equivalent to the condition that, for arbitrary ε > 0,

(1/n)
n∑
t=1

X2
t I (|Xt | > ε

√
n)→p 0. (7.60)
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Note that (7.60) is true if Xt is strictly stationary because then

E

[
(1/n)

n∑
t=1

X2
t I (|Xt | > ε

√
n)

]
= E [

X2
1 I (|X1| > ε

√
n)

] → 0.

Now consider condition (7.41) for the Yn,t ’s. Observe that

n∏
t=1

(1+ ξ 2Y 2
n,t/n)

=
n∏
t=1

[
1+ ξ 2X2

t I

(
(1/n)

t−1∑
k=1

X2
k ≤ σ 2 + 1

)/
n

]

=
Jn∏
t=1

[
1+ ξ 2X2

t /n
]
,

where

Jn = 1+
n∑
t=2

I

(
(1/n)

t−1∑
k=1

X2
k ≤ σ 2 + 1

)
. (7.61)

Hence,

ln

[
n∏
t=1

(1+ ξ 2Y 2
n,t/n)

]
=
Jn−1∑
t=1

ln
[
1+ ξ 2X2

t /n
]+ ln

[
1+ ξ 2X2

Jn/n
]

≤ ξ 2
1

n

Jn−1∑
t=1

X2
t + ln

[
1+ ξ 2X2

Jn/n
]

≤ (σ 2 + 1)ξ 2 + ln
[
1+ ξ 2X2

Jn/n
]
, (7.62)

where the last inequality in (7.62) follows (7.61). Therefore,

sup
n≥1
E

[
n∏
t=1

(
1+ ξ 2Y 2

n,t/n
)]

≤ exp((σ 2 + 1)ξ 2)

[
1+ ξ 2sup

n≥1
E

[
X2
Jn

]
/n

]

≤ exp((σ 2 + 1)ξ 2)

[
1+ ξ 2 sup

n≥1

(
(1/n)

n∑
t=1

E
[
X2
t

]])
. (7.63)

Thus, (7.63) is finite if supn≥1(1/n)
∑n
t=1 E[X

2
t ] < ∞, which in its turn is true

if Xt is covariance stationary.
Finally, it follows from the law of iterated expectations that, for a mar-

tingale difference process Xt , E[
∏n
t=1(1+ iξ Xt/

√
n)] = E[∏n

t=1(1+
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iξE[Xt |öt−1]/
√
n)] = 1,∀ξ ∈ R, and therefore also E[

∏n
t=1(1+

iξYn,t/
√
n)] = E[∏n

t=1(1+ iξE[Yn,t |öt−1]/
√
n)] = 1,∀ξ ∈ R.

We can now specialize Lemma 7.2 to martingale difference processes:

Theorem 7.10: Let Xt ∈ R be a martingale difference process satisfying the
following three conditions:

(a) (1/n)
∑n
t=1 X

2
t →p σ

2 ∈ (0,∞);
(b) For arbitrary ε > 0, (1/n)

∑n
t=1 X

2
t I (|Xt | > ε

√
n)→p 0;

(c) supn≥1(1/n)
∑n
t=1 E[X

2
t ] < ∞.

Then, (1/
√
n)

∑n
t=1 Xt →d N (0, σ 2).

Moreover, it is not hard to verify that the conditions of Theorem 7.10 hold if the
martingale difference process Xt is strictly stationary with an α-mixing base
and E[X2

1] = σ 2 ∈ (0,∞):

Theorem 7.11: Let Xt ∈ R be a strictly stationary martingale difference
process with an α-mixing base satisfying E[X2

1] = σ 2 ∈ (0,∞).Then
(1/

√
n)

∑n
t=1 Xt →d N (0, σ 2).

7.6. Exercises

1. Let U and V be independent standard normal random variables, and let Xt =
U · cos(λt)+ V · sin(λt) for all integers t and some nonrandom number λ ∈
(0, π ). Prove that Xt is covariance stationary and deterministic.

2. Show that the process Xt in problem 1 does not have a vanishing memory but
that nevertheless plimn→∞(1/n)

∑n
t=1 Xt = 0.

3. Let Xt be a time series process satisfying E[|Xt |] < ∞, and suppose that the
events in the remote σ -algebra ö−∞ = ∩∞

t=0σ (X−t , X−t−1, X−t−2, . . .) have
either probability 0 or 1. Show that P(E[Xt |ö−∞] = E[Xt ]) = 1.

4. Prove (7.30).

5. Prove (7.31) by verifying the conditions on Theorem 7.8(b) for gt (θ ) = (Yt −
ft (θ ))2 with Yt defined by (7.18) and ft (θ ) by (7.26).

6. Verify the conditions of Theorem 7.9 for gt (θ ) = (Yt − ft (θ ))2 with Yt defined
by (7.18) and ft (θ ) by (7.26).

7. Prove (7.50).

8. Prove (7.59).
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APPENDIX

7.A. Hilbert Spaces

7.A.1. Introduction

In general terms, a Hilbert space is a space of elements for which properties
similar to those of Euclidean spaces hold. We have seen in Appendix I that
the Euclidean space R

n is a special case of a vector space, that is, a space of
elements endowed with two arithmetic operations: addition, denoted by “+,”
and scalar multiplication, denoted by a dot. In particular, a space V is a vector
space if for all x, y, and z in V and all scalars c, c1, and c2,

(a) x + y = y + x ;
(b) x + (y + z) = (x + y)+ z;
(c) There is a unique zero vector 0 in V such that x + 0 = x ;
(d) For each x there exists a unique vector−x in V such that x + (−x) = 0;
(e) 1 · x = x ;
(f) (c1c2) · x = c1 · (c2 · x);
(g) c · (x + y) = c · x + c · y;
(h) (c1 + c2) · x = c1 · x + c2 · x .
Scalars are real or complex numbers. If the scalar multiplication rules are

confined to real numbers, the vector space V is a real vector space. In the sequel
I will only consider real vector spaces.
The inner product of two vectors x and y in R

n is defined by xTy. If we
denote 〈x, y〉 = xTy, it is trivial that this inner product obeys the rules in the
more general definition of the term:

Definition 7.A.1: An inner product on a real vector space V is a real function
〈x, y〉 on V × V such that for all x, y, z in V and all c in R,

(1) 〈x, y〉 = 〈y, x〉;
(2) 〈cx, y〉 = c〈x, y〉;
(3) 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉;
(4) 〈x, x〉 > 0 when x 
= 0.

A vector space endowed with an inner product is called an inner-product
space. Thus,Rn is an inner-product space. InR

n the norm of a vector x is defined
by ‖x‖ = √

xTx . Therefore, the norm on a real inner-product space is defined
similarly as ‖x‖ = √〈x, x〉. Moreover, in R

n the distance between two vectors
x and y is defined by ‖x − y‖ =

√
(x − y)T(x − y). Therefore, the distance

between two vectors x and y in a real inner-product space is defined similarly
as ‖x − y‖ = √〈x − y, x − y〉. The latter is called a metric.
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An inner-product space with associated norm and metric is called a pre-
Hilbert space. The reason for the “pre” is that still one crucial property of R

n

is missing, namely, that every Cauchy sequence in R
n has a limit in R

n .

Definition 7.A.2: A sequence of elements Xn of an inner-product space with
associated norm and metric is called a Cauchy sequence if, for every ε > 0,
there exists an n0 such that for all k, m ≥ n0, ‖xk − xm‖ < ε.

Theorem 7.A.1: Every Cauchy sequence inR
$, $ < ∞ has a limit in the space

involved.

Proof: Consider first the case R. Let x̄ = limsupn→∞xn , where xn is a
Cauchy sequence. I will show first that x̄ < ∞.
There exists a subsequence nk such that x̄ = limk→∞xnk . Note that xnk is

also a Cauchy sequence. For arbitrary ε > 0 there exists an index k0 such that
|xnk − xnm | < ε if k,m ≥ k0. If we keep k fixed and let m → ∞, it follows that
|xnk − x̄ | < ε; hence, x̄ < ∞, Similarly, x = liminfn→∞xn > −∞. Now we
can find an index k0 and subsequences nk and nm such that for k,m ≥ k0, |xnk −
x̄ | < ε, |xnm − x | < ε, and |xnk − xnm | < ε; hence, |x − x̄ | < 3ε. Because ε is
arbitrary, we must have x = x̄ = limn→∞xn . If we apply this argument to each
component of a vector-valued Cauchy sequence, the result for the case R

$

follows. Q.E.D.
For an inner-product space to be a Hilbert space, we have to require that the

result in Theorem 7.A1 carry over to the inner-product space involved:

Definition 7.A.3: A Hilbert space H is a vector space endowed with an inner
product and associated norm and metric such that every Cauchy sequence in
H has a limit in H.

7.A.2. A Hilbert Space of Random Variables

Let U0 be the vector space of zero-mean random variables with finite second
moments defined on a common probability space {�,ö, P} endowed with the
inner product 〈X, Y 〉 = E[X · Y ], norm ‖X‖ =

√
E[X2], andmetric ‖X − Y‖.

Theorem 7.A.2: The space U0 defined above is a Hilbert space.

Proof: To demonstrate that U0 is a Hilbert space, we need to show that
every Cauchy sequence Xn, n ≥ 1, has a limit in U0. Because, by Chebishev’s
inequality,

P[|Xn − Xm | > ε] ≤ E[(Xn − Xm)2]/ε2
= ‖Xn − Xm‖2/ε2 → 0 as n,m → ∞
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for every ε > 0, it follows that |Xn − Xm |→ p 0 as n,m→∞. InAppendix 6.B
of Chapter 6, we have seen that convergence in probability implies convergence
a.s. along a subsequence. Therefore, there exists a subsequence nk such that
|Xnk − Xnm | → 0 a.s. as n,m → ∞. The latter implies that there exists a null
set N such that for every ω ∈ �\N , Xnk (ω) is a Cauchy sequence in R; hence,
limk→∞Xnk (ω) = X (ω) exists for every ω ∈ �\N . Now for every fixed m,

(Xnk − Xm)2 → (X − Xm)2 a.s. as k → ∞.

ByFatou’s lemma (seeLemma7.A.1) and theCauchy property, the latter implies
that

‖X − Xm‖2 = E
[
(X − Xm)2

]
≤ liminf

k→∞
E

[
(Xnk − Xm)2

] → 0 as m → ∞.

Moreover, it is easy to verify that E[X ] = 0 and E[X2] < ∞. Thus, every
Cauchy sequence inU0 has a limit inU0; hence,U0 is a Hilbert space. Q.E.D.

Lemma 7.A.1: (Fatou’s lemma). Let Xn, n ≥ 1, be a sequence of nonnegative
random variables. Then E[liminf n→∞Xn] ≤ liminf n→∞E[Xn].

Proof: Put X = liminfn→∞Xn and let ϕ be a simple function satisfying 0 ≤
ϕ(x) ≤ x . Moreover, put Yn = min(ϕ(X ), Xn). Then Yn→p ϕ(X ) because, for
arbitrary ε > 0,

P[|Yn − ϕ(X )| > ε] = P[Xn < ϕ(X )− ε] ≤ P[Xn < X − ε] → 0.

Given that E[ϕ(X )] < ∞ because ϕ is a simple function, and Yn ≤ ϕ(X ), it
follows from Yn→p ϕ(X ) and the dominated convergence theorem that

E[ϕ(X )] = lim
n→∞ E[Yn] = liminf

n→∞ E[Yn] ≤ liminf
n→∞ E[Xn]. (7.64)

If we take the supremum over all simple functions ϕ satisfying 0 ≤ ϕ(x) ≤
x , it follows now from (7.64) and the definition of E[X ] that E[X ] ≤
liminfn→∞E[Xn]. Q.E.D.

7.A.3. Projections

As for the Hilbert space R
n , two elements x and y in a Hilbert space H are said

to be orthogonal if 〈x, y〉 = 0, and orthonormal if, in addition, ‖x‖ = 1 and
‖y‖ = 1. Thus, in the Hilbert space U0, two random variables are orthogonal
if they are uncorrelated.

Definition 7.A.4: A linear manifold of a real Hilbert space H is a nonempty
subset M of H such that for each pair x, y in M and all real numbers α and β,
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α · x + β · y ∈ M . The closure M̄ of M is called a subspace of H. The subspace
spanned by a subset C of H is the closure of the intersection of all linear
manifolds containing C.

In particular, if S is the subspace spanned by a countable infinite sequence
x1, x2, x3, . . . of vectors in H, then each vector x in S takes the form x =∑∞
n cn · xn , where the coefficients cn are such that ‖x‖ < ∞.
It is not hard to verify that a subspace of a Hilbert space is a Hilbert space

itself.

Definition 7.A.5: The projection of an element y in a Hilbert space H on a
subspace S of H is an element x of S such that ‖y − x‖ = minz∈S‖y − z‖.
For example, if S is a subspace spanned by vectors x1, . . . , xk in H and y ∈

H\S, then the projection of y on S is a vector x = c1 · x1 + · · · + ck · xk ∈ S,
where the coefficients c j are chosen such that ‖y − c1 · x1 − · · · − ck · xk‖ is
minimal. Of course, if y ∈ S, then the projection of y on S is y itself.
Projections always exist and are unique:

Theorem 7.A.3: (Projection theorem) If S is a subspace of a Hilbert space H
and y is a vector inH, then there exists a unique vector x in S such that‖y − x‖ =
minz∈S‖y − z‖. Moreover, the residual vector u = y − x is orthogonal to any
z in S.

Proof: Let y ∈ H\S and infz∈S‖y − z‖ = δ. By the definition of infimum it
is possible to select vectors xn in S such that ‖y − xn‖ ≤ δ + 1/n. The existence
of the projection x of y on S then follows by showing that xn is a Cauchy
sequence as follows. Observe that

‖xn − xm‖2 = ‖(xn − y)− (xm − y)‖2
= ‖xn − y‖2 + ‖xm − y‖2 − 2〈xn − y, xm − y〉

and

4‖(xn + xm)/2− y‖2 = ‖(xn − y)+ (xm − y)‖2
= ‖xn − y‖2 + ‖xm − y‖2 + 2〈xn − y, xm − y〉.

Adding these two equations up yields

‖xn − xm‖2 = 2‖xn − y‖2 + 2‖xm − y‖2 − 4‖(xn + xm)/2− y‖2.
(7.65)

Because (xn + xm)/2 ∈ S, it follows that ‖(xn + xm)/2− y‖2 ≥ δ2; hence, it
follows from (7.65) that

‖xn − xm‖2 ≤ 2‖xn − y‖2 + 2‖xm − y‖2 − 4δ2

≤ 4δ/n + 1/n2 + 4δ/m + 1/m2.
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Thus, xn is a Cauchy sequence in S, and because S is a Hilbert space itself, xn
has a limit x in S.
As to the orthogonality of u = y − x with any vector z in S, note that for

every real number c and every z in S, x + c · z is a vector in S, and thus

δ2 ≤ ‖y − x − c · z‖2 = ‖u − c · z‖2
= ‖y − x‖2 + ‖c · z‖2 − 2〈u, c · z〉
= δ2 + c2‖z‖2 − 2c〈u, z〉. (7.66)

Minimizing the right-hand side of (7.66) to c yields the solution c0 =
〈u, z〉/‖z‖2, and substituting this solution in (7.66) yields the inequality
(〈u, z〉)2/‖z‖2 ≤ 0. Thus, 〈u, z〉 = 0.
Finally, suppose that there exists another vector p in S such that ‖y − p‖ = δ.

Then y − p is orthogonal to any vector z in S : 〈y − p, z〉 = 0. But x − p is
a vector in S, and thus 〈y − p, x − p〉 = 0 and 〈y − x, x − p〉 = 0; hence,
0 = 〈y − p, x − p〉 − 〈y − x, x − p〉 = 〈x − p, x − p〉 = ‖x − p‖2. There-
fore, p = x . Q.E.D.

7.A.5. Proof of the Wold Decomposition

Let Xt be a zero-mean covariance stationary process and E[X2
t ] = σ 2. Then

the Xt ’s are members of the Hilbert space U0 defined in Section 7.A.2. Let
St−1
−∞ be the subspace spanned by Xt− j , j ≥ 1, and let X̂ t be the projection

of Xt on S
t−1
−∞. Then Ut = Xt − X̂ t is orthogonal to all Xt− j , j ≥ 1, that is,

E[Ut Xt− j ] = 0 for j ≥ 1. Because Ut− j ∈ St−1
−∞ for j ≥ 1, the Ut ’s are also

orthogonal to each other: E[UtUt− j ] = 0 for j ≥ 1.
Note that, in general, X̂ t takes the form X̂ t =

∑∞
j=1 βt, j Xt− j , where the

coefficients βt, j are such that ‖Yt‖2 = E[Y 2
t ] < ∞. However, because Xt is

covariance stationary the coefficients βt, j do not depend on the time index t,
for they are the solutions of the normal equations

γ (m) = E[Xt Xt−m] =
∞∑
j=1

β j E[Xt− j Xt−m]

=
∞∑
j=1

β jγ (| j − m|), m = 1, 2, 3, . . . .

Thus, the projections X̂ t =
∑∞
j=1 β j Xt− j are covariance stationary and so are

the Ut ’s because

σ 2 = ‖Xt‖2 = ‖Ut + X̂ t‖2 = ‖Ut‖2 + ‖X̂ t‖2 + 2〈Ut , X̂ t 〉
= ‖Ut‖2 + ‖X̂ t‖2 = E

[
U 2
t

]+ E[
X̂2
t

]
;

thus, E
[
U 2
t

] = σ 2
u ≤ σ 2.
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Next, let Zt,m = ∑m
j=1 α jUt− j , where α j = 〈Xt ,Ut− j 〉 = E[XtUt− j ]. Then

‖Xt − Zt,m‖2 =
∥∥∥∥∥Xt −

m∑
j=1

α jUt− j

∥∥∥∥∥
2

= E [
X2
t

]− 2
m∑
j=1

α j E[XtUt− j ]

+
m∑
i=1

m∑
j=1

αiα j E[UiU j ] = E
[
X2
t

]− m∑
j=1

α2
j ≥ 0

for all m ≥ 1; hence,
∑∞
j=1 α

2
j < ∞. The latter implies that

∑∞
j=m α

2
j → 0 for

m → ∞, and thus for fixed t, Zt,m is a Cauchy sequence in St−1
−∞, and Xt − Zt,m

is a Cauchy sequence in St−∞. Consequently, Zt =
∑∞
j=1 α jUt− j ∈ St−1

−∞ and
Wt = Xt −

∑∞
j=1 α jUt− j ∈ St−∞ exist.

As to the latter, it follows easily from (7.8) thatWt ∈ St−m−∞ for everym; hence,

Wt ∈ ∩−∞<t<∞
St−∞. (7.67)

Consequently, E[Ut+mWt ] = 0 for all integers t and m. Moreover, it follows
from (7.67) that the projection of Wt on any St−m−∞ is Wt itself; hence, Wt is
perfectly predictable from any set {Xt− j , j ≥ 1} of past values of Xt as well as
from any set {Wt− j , j ≥ 1} of past values of Wt .



8 Maximum Likelihood Theory

8.1. Introduction

Consider a random sample Z1, . . . , Zn from a k-variate distributionwith density
f (z|θ0), where θ0 ∈ � ⊂ R

m is an unknown parameter vector with � a given
parameter space. As is well known, owing to the independence of the Z j ’s, the
joint density function of the random vector Z = (ZT

1 , . . . , Z
T
n )

T is the product
of the marginal densities,

∏n
j=1 f (z j | θ0). The likelihood function in this case

is defined as this joint density with the nonrandom arguments zj replaced by the
corresponding random vectors Zj, and θ0 by θ :

L̂n(θ ) =
n∏
j=1

f (Z j |θ ). (8.1)

The maximum likelihood (ML) estimator of θ0 is now θ̂ = argmaxθ∈� L̂n(θ ),
or equivalently,

θ̂ = argmax
θ∈�

ln(L̂n(θ )), (8.2)

where “argmax” stands for the argument for which the function involved takes
its maximum value.
The ML estimation method is motivated by the fact that, in this case,

E[ln(L̂n(θ ))] ≤ E[ln(L̂n(θ0))]. (8.3)

To see this, note that ln(u) = u − 1 for u = 1 and ln(u) < u − 1 for 0 < u < 1
and u > 1. Therefore, if we take u = f (Z j |θ )/ f (Z j |θ0) it follows that, for all
θ , ln( f (Z j |θ )/ f (Z j |θ0)) ≤ f (Z j |θ )/ f (Z j |θ0)− 1, and if we take expectations

205
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it follows now that

E[ln( f (Z j |θ )/ f (Z j |θ0))] ≤ E[ f (Z j |θ )/ f (Z j |θ0)]− 1

=
∫
R
k

f (z|θ )
f (z|θ0) f (z|θ0)dz− 1

=
∫

{z∈R
k : f (z| θ0)>0}

f (z|θ )dz− 1 ≤ 0.

Summing up for j = 1, 2, . . . , n, (8.3) follows.
This argument reveals that neither the independence assumption of the data

Z = (ZT
1 , . . . , Z

T
n )

T nor the absolute continuity assumption is necessary for
(8.3). The only condition that matters is that

E[L̂n(θ )/L̂n(θ0)] ≤ 1 (8.4)

for all θ ∈ � and n ≥ 1. Moreover, if the support of Z j is not affected by the
parameters in θ0 – that is, if in the preceding case the set {z ∈ R

m : f (z|θ ) > 0}
is the same for all θ ∈ � – then the inequality in (8.4) becomes an equality:

E[L̂n(θ )/L̂n(θ0)] = 1 (8.5)

for all θ ∈ � and n ≥ 1. Equality (8.5) is the most common case in eco-
nometrics.
To show that absolute continuity is not essential for (8.3), suppose that the

Z j ’s are independent and identically discrete distributed with support %, that
is, for all z ∈ %, P[Z j = z] > 0 and

∑
z∈% P[Z j = z] = 1. Moreover, now

let f (z|θ0) = P[Z j = z], where f (z|θ ) is the probability model involved. Of
course, f (z|θ ) should be specified such that∑z∈% f (z|θ ) = 1 for all θ ∈ �. For
example, suppose that the Z j ’s are independent Poisson (θ0) distributed, and
thus f (z|θ ) = e−θ θ z/z! and % = {0, 1, 2, . . . }. Then the likelihood function
involved also takes the form (8.1), and

E[ f (Z j |θ )/ f (Z j |θ0)] =
∑
z∈%

f (z|θ )
f (z|θ0) f (z|θ0) =

∑
z∈%

f (z|θ ) = 1;

hence, (8.5) holds in this case as well and therefore so does (8.3).
In this and the previous case the likelihood function takes the form of a prod-

uct. However, in the dependent case we can also write the likelihood function
as a product. For example, let Z = (ZT

1 , . . . , Z
T
n )

T be absolutely continuously
distributed with joint density fn(zn, . . . , z1|θ0), where the Z j ’s are no longer
independent. It is always possible to decompose a joint density as a product of
conditional densities and an initial marginal density. In particular, letting, for
t ≥ 2,

ft (zt |zt−1, . . . , z1, θ ) = ft (zt , . . . , z1|θ )/ ft−1(zt−1, . . . , z1|θ ),
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we can write

fn(zn, . . . , z1|θ ) = f1(z1|θ )
n∏
t=2

ft (zt |zt−1, . . . , z1, θ ).

Therefore, the likelihood function in this case can be written as

L̂n(θ ) = fn(Zn, . . . , Z1|θ ) = f1(Z1|θ )
n∏
t=2

ft (Zt |Zt−1, . . . , Z1, θ ).

(8.6)

It is easy to verify that in this case (8.5) also holds, and therefore so does (8.3).
Moreover, it follows straightforwardly from (8.6) and the preceding argument
that

P

(
E

[
L̂ t (θ )/L̂ t−1(θ )

L̂ t (θ0)/L̂ t−1(θ0)

∣∣∣∣∣ Zt−1, . . . , Z1

]
≤ 1

)
= 1

for t = 2, 3, . . . , n; (8.7)

hence,

P(E[ln(L̂ t (θ )/L̂ t−1(θ ))− ln(L̂ t (θ0)/L̂ t−1(θ0))|Zt−1, . . . , Z1] ≤ 0)

= 1 for t = 2, 3, . . . , n. (8.8)

Of course, these results hold in the independent case as well.

8.2. Likelihood Functions

There are many cases in econometrics in which the distribution of the data is
neither absolutely continuous nor discrete. TheTobitmodel discussed in Section
8.3 is such a case. In these cases we cannot construct a likelihood function in
the way I have done here, but still we can define a likelihood function indirectly,
using the properties (8.4) and (8.7):

Definition 8.1: A sequence L̂n(θ ), n ≥ 1, of nonnegative random functions
on a parameter space � is a sequence of likelihood functions if the following
conditions hold:

(a) There exists an increasing sequenceön, n ≥ 0, of σ -algebras such that
for each θ ∈ � and n ≥ 1, L̂n(θ ) is measurableön.

(b) There exists a θ0 ∈ � such that for all θ ∈ �, P(E[L1(θ )/L1(θ0)|ö0]
≤ 1) = 1, and, for n ≥ 2,

P

(
E

[
L̂n(θ )/L̂n−1(θ )

L̂n(θ0)/L̂n−1(θ0)

∣∣∣∣∣ön−1

]
≤ 1

)
= 1.
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(c) For all θ1 
= θ2 in �, P[L̂1(θ1) = L̂1(θ2)|ö0] < 1, and for n ≥ 2,

P[L̂n(θ1)/L̂n−1(θ1) = L̂n(θ2)/L̂n−1(θ2)|ön−1] < 1.1

The conditions in (c) exclude the case that L̂n(θ ) is constant on �. Moreover,
these conditions also guarantee that θ0 ∈ � is unique:

Theorem 8.1: For all θ ∈ �\{θ0} and n ≥ 1, E[ln(L̂n(θ )/L̂n(θ0))] < 0.

Proof: First, let n = 1. I have already established that ln(L̂1(θ )/L̂1(θ0)) <
L̂1(θ )/L̂1(θ0)− 1 if L̂n(θ )/L̂n(θ0) 
= 1. Thus, letting Y (θ ) = L̂n(θ )/L̂n(θ0)−
ln(L̂n(θ )/L̂n(θ0))− 1 and X (θ ) = L̂n(θ )/L̂n(θ0), we have Y (θ ) ≥ 0, and
Y (θ ) > 0 if and only if X (θ ) 
= 1. Now suppose that P(E[Y (θ )|ö0] = 0) = 1.
Then P[Y (θ ) = 0|ö0] = 1 a.s. because Y (θ ) ≥ 0; hence, P[X (θ ) = 1|ö0] =
1 a.s. Condition (c) in Definition 8.1 now excludes the possibility that θ 
= θ0;
hence, P(E[ln(L̂1(θ )/L̂1(θ0))|ö0] < 0) = 1 if and only if θ 
= θ0. In its turn
this result implies that

E[ln(L̂1(θ )/L̂1(θ0))] < 0 if θ 
= θ0. (8.9)

By a similar argument it follows that, for n ≥ 2,

E[ln(L̂n(θ )/L̂n−1(θ ))− ln(L̂n(θ0)/L̂n−1(θ0))] < 0 if θ 
= θ0.

(8.10)

The theorem now follows from (8.9) and (8.10). Q.E.D.
As we have seen for the case (8.1), if the support {z : f (z|θ ) > 0} of
f (z|θ ) does not depend on θ , then the inequalities in condition (b) become
equalities, with ön = σ (Zn, . . . , Z1) for n ≥ 1, and ö0 the trivial σ -algebra.
Therefore,

Definition 8.2: The sequence L̂n(θ ), n ≥ 1, of likelihood functions has invari-
ant support if, for all θ ∈ �, P(E[L̂1(θ )/L̂1(θ0)|ö0] = 1) = 1, and, for n ≥ 2,

P

(
E

[
L̂n(θ )/L̂n−1(θ )

L̂n(θ0)/L̂n−1(θ0)

∣∣∣∣∣ön−1

]
= 1

)
= 1.

As noted before, this is the most common case in econometrics.

1 See Chapter 3 for the definition of these conditional probabilities.



Maximum Likelihood Theory 209

8.3. Examples

8.3.1. The Uniform Distribution

Let Z j , j = 1, . . . , n be independent random drawings from the uniform [0, θ0]
distribution, where θ0 > 0. The density function of Z j is f (z|θ0) = θ−1

0 I (0 ≤
z ≤ θ0), and thus the likelihood function involved is

L̂n(θ ) = θ−n
n∏
j=1

I (0 ≤ Z j ≤ θ ). (8.11)

In this case ön = σ (Zn, . . . , Z1) for n ≥ 1, and we may choose for ö0 the
trivial σ -algebra {�,∅}. The conditions (b) in Definition 8.1 now read

E[L̂1(θ )/L̂1(θ0)|ö0] = E[L̂1(θ )/L̂1(θ0)|] = min(θ, θ0)/θ ≤ 1,

E

[
L̂n(θ )/L̂n−1(θ )

L̂n(θ0)/L̂n−1(θ0)

∣∣∣∣∣ön−1

]
= E[L̂1(θ )/L̂1(θ0)|]

= min(θ, θ0)/θ ≤ 1 for n ≥ 2.

Moreover, the conditions (c) in Definition 8.1 read

P
[
θ−1
1 I (0 ≤ Z1 ≤ θ1) = θ−1

2 I (0 ≤ Z1 ≤ θ2)
]

= P(Z1 > max(θ1, θ2)) < 1 if θ1 
= θ2.

Hence, Theorem 8.1 applies. Indeed,

E[ln(L̂n(θ )/L̂n(θ0))] = n ln(θ0/θ )+ nE[ln(I (0 ≤ Z1 ≤ θ ))]

− E[ln(I (0 ≤ Z1 ≤ θ0))]

= n ln(θ0/θ )+ nE[ln(I (0 ≤ Z1 ≤ θ ))]

=



−∞ if θ < θ0,

n ln(θ0/θ ) < 0 if θ > θ0,

0 if θ = θ0.

8.3.2. Linear Regression with Normal Errors

Let Z j = (Y j , XT
j )

T, j = 1, . . . , n be independent random vectors such that

Y j = α0 + βT
0 X j +Uj ,Uj |X j ∼ N

(
0, σ 2

0

)
,

where the latter means that the conditional distribution of Uj , given X j ,
is a normal N (0, σ 2

0 ) distribution. The conditional density of Y j , given
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X j , is

f (y|θ0, X j ) =
exp

[− 1
2

(
y − α0 − βT

0 X j
)2
/σ 2

0

]
σ0
√
2π

,

where θ0 =
(
α0, β

T
0 , σ

2
0

)T
.

Next, suppose that the X j ’s are absolutely continuously distributed with density
g(x). Then the likelihood function is

L̂n(θ ) =
(
n∏
j=1

f (Y j |θ,X j )
)(

n∏
j=1

g(X j )

)

= exp[− 1
2

∑n
j=1

(
Y j − α − βTX j

)2
/σ 2]

σ n(
√
2π )n

n∏
j=1

g(X j ), (8.12)

where θ = (α, βT, σ 2)T.However, note that in this case themarginal distribution
of X j does not matter for the ML estimator θ̂ because this distribution does not
depend on the parameter vector θ0. More precisely, the functional form of the
ML estimator θ̂ as a function of the data is invariant to themarginal distributions
of the X j ’s, although the asymptotic properties of the ML estimator (implicitly)
depend on the distributions of the X j ’s. Therefore, without loss of generality, we
may ignore the distribution of the X j ’s in (8.12) and work with the conditional
likelihood function:

L̂cn(θ ) =
n∏
j=1

f (Y j |θ,X j ) =
exp

[− 1
2

∑n
j=1

(
Y j − α − βTX j

)2
/σ 2

]
σ n(

√
2π )n

,

where θ = (
α, βT, σ 2

)T
. (8.13)

As to the σ -algebras involved, we may choose ö0 = σ ({X j }∞j=1) and, for
n ≥ 1,ön = σ ({Y j }nj=1) ∨ö0, where∨ denotes the operation “take the small-
est σ -algebra containing the two σ -algebras involved.”2 The conditions (b) in
Definition 8.1 then read

E
[
L̂c1(θ )/L̂

c
1(θ0)|ö0

] = E[ f (Y1|θ, X1)/ f (Y1|θ0, X1)|X1] = 1,

E

[
L̂cn(θ )/L̂

c
n−1(θ )

L̂cn(θ0)/L̂
c
n−1(θ0)

∣∣∣∣∣ön−1

]
= E[ f (Yn|θ, Xn)/ f (Yn|θ0, Xn)|Xn]

= 1 for n ≥ 2.

Thus, Definition 8.2 applies. Moreover, it is easy to verify that the
conditions (c) of Definition 8.1 now read as P[ f (Yn |θ1, Xn) = f (Yn|θ2,
Xn)|Xn] < 1 if θ1 
= θ2. This is true but is tedious to verify.

2 Recall from Chapter 1 that the union of σ -algebras is not necessarily a σ -algebra.
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8.3.3. Probit and Logit Models

Again, let Z j = (Y j , XT
j )

T, j = 1, . . . , n be independent random vectors, but
now Y j takes only two values, 0 and 1, with conditional Bernoulli probabilities

P(Y j = 1|θ0, X j ) = F
(
α0 + βT

0 X j
)
,

P(Y j = 0|θ0, X j ) = 1− F(
α0 + βT

0 X j
)
, (8.14)

where F is a given distribution function and θ0 = (α0, βT
0 )

T. For example, let
the sample be a survey of households, where Y j indicates home ownership and
X j is a vector of household characteristics such as marital status, number of
children living at home, and income.
If F is the logistic distribution function, F(x) = 1/[1+ exp(−x)], then

model (8.14) is called the Logit model; if F is the distribution function of
the standard normal distribution, then model (8.14) is called the Probit model.
In this case the conditional likelihood function is

L̂cn(θ ) =
n∏
j=1

[
Y j F

(
α + βTX j

)+ (1− Y j )
(
1− F(

α + βTX j
))]

,

where θ = (α, βT)T. (8.15)

Also in this case, the marginal distribution of X j does not affect the functional
form of the ML estimator as a function of the data.
The σ -algebras involved are the same as in the regression case, namely,

ö0 = σ ({X j }∞j=1) and, for n ≥ 1,ön = σ ({Y j }nj=1) ∨ö0. Moreover, note that

E[L̂c1(θ )/L̂
c
1(θ0)|ö0] =

1∑
y=0

[
yF

(
α + βTX1

)
+ (1− y)(1− F(

α + βTX1
))] = 1,

and similarly

E

[
L̂cn(θ )/L̂

c
n−1(θ )

L̂cn(θ0)/L̂
c
n−1(θ0)

∣∣∣∣∣ön−1

]
=

1∑
y=0

[
yF

(
α + βTXn

)
+ (1− y)(1− F(

α + βTXn
))] = 1;

hence, the conditions (b) of Definition 8.1 and the conditions of Definition
8.2 apply. Also the conditions (c) in Definition 8.1 apply, but again it is rather
tedious to verify this.



212 The Mathematical and Statistical Foundations of Econometrics

8.3.4. The Tobit Model

Let Z j = (Y j , XT
j )

T, j = 1, . . . , n be independent random vectors such that

Y j = max(Y ∗
j , 0), where Y ∗

j = α0 + βT
0 X j +Uj

with Uj |X j ∼ N
(
0, σ 2

0

)
. (8.16)

The random variables Y ∗
j are only observed if they are positive. Note that

P[Y j = 0|X j ] = P
[
α0 + βT

0 X j +Uj ≤ 0|X j
]

= P[Uj > α0 + βT
0 X j |X j

] = 1−�
((
α0 + βT

0 X j
)
/σ0

)
,

where �(x) =
x∫

−∞
exp(−u2/2)/

√
2πdu.

This is a Probit model. Because model (8.16) was proposed by Tobin (1958)
and involves a Probit model for the case Y j = 0, it is called the Tobitmodel. For
example, let the sample be a survey of households, where Yj is the amount of
money household j spends on tobacco products and X j is a vector of household
characteristics. But there are households in which nobody smokes, and thus for
these households Y j = 0.
In this case the setup of the conditional likelihood function is not as straight-

forward as in the previous examples because the conditional distribution of Y j
given X j is neither absolutely continuous nor discrete. Therefore, in this case
it is easier to derive the likelihood function indirectly from Definition 8.1 as
follows.
First note that the conditional distribution function of Y j , given X j and Y j >

0, is

P[Y j ≤ y|X j , Y j > 0] = P[0 < Y j ≤ y|X j ]
P[Y j > 0|X j ]

= P
[− α0 − βT

0 X j < Uj ≤ y − α0 − βT
0 X j |X j

]
P[Y j > 0|X j ]

= �
((
y − α0 − βT

0 X j
)
/σ0

)−�
((− α0 − βT

0 X j
)
/σ0

)
�

((
α0 + βT

0 X j
)
/σ0

) I (y > 0);

hence, the conditional density function of Y j , given X j and Y j > 0, is

h(y|θ0, X j , Y j > 0) = ϕ
((
y − α0 − βT

0 X j
)
/σ0

)
σ0�

((
α0 + βT

0 X j
)
/σ0

) I (y > 0),

where ϕ(x) = exp(−x2/2)√
2π

.
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Next, observe that, for any Borel-measurable function g of (Y j , X j ) such that
E[|g(Y j , X j )|] < ∞, we have

E[g(Y j , X j )|X j ]
= g(0, X j )P[Y j = 0|X j ]+ E[g(Y j , X j )I (Y j > 0)|X j ]
= g(0, X j )P[Y j = 0|X j ]
+ E (

E[g(Y j , X j )|X j , Y j > 0)|X j ]I (Y j > 0)|X j
)

= g(0, X j )
(
1−�

((
α0 + βT

0 X j
)
/σ0

))
+ E


 ∞∫

0

g(y, X j )h(y|θ0, X j , Y j > 0)dy · I (Y j > 0)|X j



= g(0, X j )
(
1−�

((
α0 + βT

0 X j
)
/σ0

))
+

∞∫
0

g(y, X j )h(y|θ0, X j , Y j > 0)dy ·� ((
α0 + βT

0 X j
)
/σ0

)
= g(0, X j )

(
1−�

((
α0 + βT

0 X j
)
/σ0

))
+ 1

σ0

∞∫
0

g(y, X j )ϕ
((
y − α0 − βT

0 X j
)
/σ0

)
dy. (8.17)

Hence, if we choose

g(Y j , X j )

= (1−�((α + βTX j )/σ ))I (Y j = 0)+ σ−1ϕ((Y j − α − βTX j )/σ )I (Y j > 0)

(1−�((α0 + βT
0 X j )/σ0))I (Y j = 0)+ σ−1

0 ϕ(Y j − α0 − βT
0 X j )/σ0)I (Y j > 0)

,

(8.18)

it follows from (8.17) that

E[g(Y j , X j )|X j ] = 1−�
((
α + βTX j

)
/σ

)
+ 1

σ

∞∫
0

ϕ
((
y − α − βTX j

)
/σ

)
dy

= 1−�
((
α + βTX j

)
/σ

)
+ 1−�

((− α − βTX j
)
/σ

) = 1. (8.19)

In view of Definition 8.1, (8.18) and (8.19) suggest defining the conditional
likelihood function of the Tobit model as

L̂cn(θ ) =
n∏
j=1

[(
1−�

((
α + βTX j

)
/σ

))
I (Y j = 0)

+ σ−1ϕ
((
Y j − α − βTX j

)
/σ

)
I (Y j > 0)

]
.
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The conditions (b) in Definition 8.1 now follow from (8.19) with the σ -algebras
involved defined as in the regression case. Moreover, the conditions (c) also
apply.
Finally, note that

E[Y j |X j , Y j > 0] = α0 + βT
0 X j +

σ0ϕ
((
α0 + βT

0 X j
)
/σ0

)
�

((
α0 + βT

0 X j
)
/σ0

) . (8.20)

Therefore, if one estimated a linear regressionmodel using only the observations
with Y j > 0, the OLS estimates would be inconsistent, owing to the last term
in (8.20).

8.4. Asymptotic Properties of ML Estimators

8.4.1. Introduction

Without the conditions (c) in Definition 8.1, the solution θ0 = argmaxθ∈�
E[ln(L̂n(θ ))] may not be unique. For example, if Z j = cos(X j + θ0) with the
X j ’s independent absolutely continuously distributed random variables with
common density, then the density function f (z|θ0) of Z j satisfies f (z|θ0) =
f (z|θ0 + 2sπ ) for all integers s. Therefore, the parameter space � has to be
chosen small enough to make θ0 unique.
Also, the first- and second-order conditions for a maximum of E[ln(L̂n(θ ))]

at θ = θ0 may not be satisfied. The latter is, for example, the case for the
likelihood function (8.11): if θ < θ0, then E[ln(L̂n(θ ))] = −∞; if θ ≥ θ0,
then E[ln(L̂n(θ ))] = −n · ln(θ ), and thus the left derivative of E[ln(L̂n(θ ))]
in θ = θ0 is limδ↓0(E[ln(L̂n(θ0))]− E[ln(L̂n(θ0 − δ))])/δ = ∞, and the right-
derivative is limδ↓0(E[ln(L̂n(θ0 + δ))]− E[ln(L̂n(θ0))])/δ = −n/θ0. Because
the first- and second-order conditions play a crucial role in deriving the asymp-
totic normality and efficiency of the ML estimator (see the remainder of this
section), the rest of this chapter does not apply to the case (8.11).

8.4.2. First- and Second-Order Conditions

The following conditions guarantee that the first- and second-order conditions
for a maximum hold.

Assumption 8.1: The parameter space� is convex and θ0 is an interior point of
�. The likelihood function L̂n(θ ) is, with probability 1, twice continuously dif-
ferentiable in an open neighborhood�0 of θ0, and, for i1, i2 = 1, 2, 3, . . . ,m,

E

[
sup
θ∈�0

∣∣∣∣∣∂
2 L̂n(θ )

∂θi1∂θi2

∣∣∣∣∣
]
< ∞ (8.21)
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and

E

[
sup
θ∈�0

∣∣∣∣∣∂
2ln(L̂n(θ ))

∂θi1∂θi2

∣∣∣∣∣
]
< ∞. (8.22)

Theorem 8.2: Under Assumption 8.1,

E

(
∂ln(L̂n(θ ))

∂θT

∣∣∣∣∣
θ=θ0

)
= 0 and E

(
∂2ln(L̂n(θ ))

∂θ∂θT

∣∣∣∣∣
θ=θ0

)

= −Var
(
∂ln(L̂n(θ ))

∂θT

∣∣∣∣∣
θ=θ0

)
.

Proof: For notational convenience I will prove this theorem for the uni-
variate parameter case m = 1 only. Moreover, I will focus on the case that
Z = (ZT

1 , . . . , Z
T
n )

T is a random sample from an absolutely continuous distri-
bution with density f (z|θ0).
Observe that

E[ln(L̂n(θ ))/n] = 1

n

n∑
j=1

E[ln( f (Z j |θ ))] =
∫

ln( f (z|θ )) f (z|θ0)dz,

(8.23)

It follows from Taylor’s theorem that, for θ ∈ �0 and every δ 
= 0 for which
θ + δ ∈ �0, there exists a λ(z, δ) ∈ [0, 1] such that

ln( f (z|θ + δ))− ln( f (z|θ ))
= δ

d ln( f (z|θ ))
dθ

+ 1

2
δ2
d2 ln( f (z|θ + λ(z, δ)δ))

(d(θ + λ(z, δ)δ))2
. (8.24)

Note that, by the convexity of�, θ0 + λ(z, δ)δ ∈ �. Therefore, it follows from
condition (8.22), the definition of a derivative, and the dominated convergence
theorem that

d

dθ

∫
ln( f (z|θ )) f (z|θ0)dz =

∫
d ln( f (z|θ ))

dθ
f (z|θ0)dz. (8.25)

Similarly, it follows from condition (8.21), Taylor’s theorem, and the dominated
convergence theorem that∫

df (z|θ )
dθ

dz = d

dθ

∫
f (z|θ )dz = d

dθ
1 = 0. (8.26)



216 The Mathematical and Statistical Foundations of Econometrics

Moreover,∫
d ln( f (z|θ ))

dθ
f (z| θ0)dz |θ=θ0 =

∫
df (z|θ )/dθ
f (z|θ ) f (z| θ0)dz |θ=θ0

=
∫
df (z|θ )
dθ

dz |θ=θ0 (8.27)

The first part of Theorem 8.2 now follows from (8.23) through (8.27).
As is the case for (8.25) and (8.26), it follows from the mean value theorem

and conditions (8.21) and (8.22) that

d2

(dθ )2

∫
ln( f (z|θ )) f (z|θ0)dz =

∫
d2 ln( f (z|θ ))

(dθ )2
f (z|θ0)dz (8.28)

and ∫
d2 f (z|θ )
(dθ )2

dz = d

(dθ )2

∫
f (z|θ )dz = 0. (8.29)

The second part of the theorem follows now from (8.28), (8.29), and∫
d2 ln ( f (z|θ ))

(dθ )2
f (z|θ0)dz|θ=θ0 =

∫
d2 f (z|θ )
(dθ )2

f (z|θ0)
f (z|θ ) dz|θ=θ0

−
∫ (

df(z|θ )/dθ
f (z|θ )

)2

f (z|θ0)dz|θ=θ0 =
∫
d2 f (z|θ )
(dθ )2

dz|θ=θ0

−
∫

(d ln ( f (z|θ )) /dθ )2 f (z|θ0)dz|θ=θ0 .

The adaptation of the proof to the general case is reasonably straightforward
and is therefore left as an exercise. Q.E.D.
The matrix

Hn = Var
(
∂ ln(L̂n(θ ))/∂θ

T|θ=θ0
)

(8.30)

is called the Fisher information matrix. As we have seen in Chapter 5, the
inverse of the Fisher information matrix is just the Cramer–Rao lower bound
of the variance matrix of an unbiased estimator of θ0.

8.4.3. Generic Conditions for Consistency and Asymptotic Normality

The ML estimator is a special case of an M-estimator. In Chapter 6, the generic
conditions for consistency and asymptotic normality of M-estimators, which
in most cases apply to ML estimators as well, were derived. The case (8.11) is
one of the exceptions, though. In particular, if
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Assumption 8.2: plimn→∞supθ∈�|ln(L̂n(θ )/L̂n(θ0))− E[ln(L̂n(θ )/L̂n(θ0))]
| = 0 and limn→∞ supθ∈�|E[ln(L̂n(θ )/L̂n(θ0))]− $(θ |θ0)| = 0, where $(θ |θ0)
is a continuous function in θ0 such that, for arbitrarily small δ > 0,
supθ∈�:||θ−θ0||≥δ$(θ |θ0) < 0,

then the ML estimator is consistent.

Theorem 8.3: Under Assumption 8.2, plimn→∞θ̂ = θ0.

The conditions in Assumption 8.2 need to be verified on a case-by-case
basis. In particular, the uniform convergence in probability condition has to
be verified from the conditions of the uniform weak law of large numbers.
Note that it follows from Theorem II.6 in Appendix II that the last condition
in Assumption 8.2, that is, supθ∈�:||θ−θ0 ||≥δ $(θ | θ0) < 0, holds if the parameter
space � is compact, $(θ | θ0) is continuous on �, and θ0 is unique. The latter
follows from Theorem 8.1.
Some of the conditions for asymptotic normality of the ML estimator are

already listed in Assumption 8.1 – in particular the convexity of the parameter
space� and the condition that θ0 be an interior point of�. The other (high-level)
conditions are

Assumption 8.3: For i1, i2 = 1, 2, 3, . . . ,m,

plim
n→∞

sup
θ∈�

∣∣∣∣∣∂
2 ln(L̂n(θ ))/n

∂θi1∂θi2
− E

[
∂2 ln(L̂n(θ ))/n

∂θi1∂θi2

]∣∣∣∣∣ = 0 (8.31)

and

lim
n→∞ supθ∈�

∣∣∣∣∣E
[
∂2 ln(L̂n(θ ))/n

∂θi1∂θi2

]
+ hi1,i2 (θ )

∣∣∣∣∣ = 0, (8.32)

where hi1,i2 (θ ) is continuous in θ0.Moreover, them × m matrix H̄ with elements
hi1,i2 (θ0) is nonsingular. Furthermore,

∂ln(L̂n(θ0))/
√
n

∂θT0
→d Nm[0, H̄ ]. (8.33)

Note that the matrix H̄ is just the limit of Hn/n, where Hn is the Fisher
information matrix (8.30). Condition (8.31) can be verified from the uniform
weak law of large numbers. Condition (8.32) is a regularity condition that
accommodates data heterogeneity. In quite a few cases we may take hi1,i2 (θ ) =
−n−1E[∂2 ln(L̂n(θ ))/(∂θi1∂θi2 )]. Finally, condition (8.33) can be verified from
the central limit theorem.
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Theorem 8.4: Under Assumptions 8.1–8.3,
√
n(θ̂ − θ0) →d Nm[0, H̄−1].

Proof: It follows from the mean value theorem (see Appendix II) that for
each i ∈ {1, . . . ,m} there exists a λ̂i ∈ [0, 1] such that

∂ ln(L̂n(θ ))/
√
n

∂θi

∣∣∣∣∣
θ=θ̂

= ∂ ln(L̂n(θ ))/
√
n

∂θi

∣∣∣∣∣
θ=θ0

+

 ∂2 ln(L̂(θ ))/n

∂θ∂θi

∣∣∣∣∣
θ=θ0+λ̂i (θ̂−θ0)


√

n(θ̂ − θ0),

(8.34)

The first-order condition for (8.2) and the condition that θ0 be an interior point
of � imply

plim
n→∞

n−1/2∂ ln(L̂n(θ ))/∂θi |θ=θ̂ = 0. (8.35)

Moreover, the convexity of � guarantees that the mean value θ0 + λ̂i (θ̂ − θ0)
is contained in�. It follows now from the consistency of θ̂ and the conditions
(8.31) and (8.32) that

H̃ =




∂2 ln(L̂n (θ ))/n
∂θ∂θ1

∣∣∣
θ=θ0+λ̂1(θ̂−θ0)
...

∂2 ln(L̂n (θ ))/n
∂θ∂θm

∣∣∣
θ=θ0+λ̂m (θ̂−θ0)


→p H̄ . (8.36)

The condition that H̄ is nonsingular allows us to conclude from (8.36) and
Slutsky’s theorem that

plim
n→∞

H̃−1 = H̄−1; (8.37)

hence, it follows from (8.34) and (8.35) that
√
n(θ̂ − θ0) = −H̃−1

(
∂ ln(L̂n(θ0))/∂θ

T
0

)/√
n + op(1). (8.38)

Theorem 8.4 follows now from condition (8.33) and the results (8.37) and
(8.38). Q.E.D.
In the case of a random sample Z1, . . . , Zn , the asymptotic normality con-

dition (8.33) can easily be derived from the central limit theorem for i.i.d.
random variables. For example, again let the Z j ’s be k-variate distributed with
density f (z|θ0). Then it follows from Theorem 8.2 that, under Assumption
8.1,

E
[
∂ln( f (Z j |θ0))/∂θT0

] = n−1E
[
∂ ln(L̂n(θ0))/∂θ

T
0

] = 0
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and

Var
[
∂ ln( f (Z j |θ0))/∂θT0

] = n−1Var
[
∂ ln(L̂n(θ0))/∂θ

T
0

] = H̄ ,
and thus (8.33) straightforwardly follows from the central limit theorem for
i.i.d. random vectors.

8.4.4. Asymptotic Normality in the Time Series Case

In the time series case (8.6) we have

∂ ln(L̂n(θ0))/∂θT0√
n

= 1√
n

n∑
t=1

Ut , (8.39)

where

U1 = ∂ ln( f1(Z1|θ0))/∂θT0 ,
Ut = ∂ ln( ft (Zt |Zt−1, . . . , Z1, θ0))/∂θ

T
0 for t ≥ 2. (8.40)

The processUt is a martingale difference process (see Chapter 7): Lettingöt =
σ (Z1, . . . , Zt ) for t ≥ 1 and designatingö0 as the trivial σ -algebra {�,∅}, it is
easy to verify that, for t ≥ 1, E[Ut |öt−1] = 0 a.s. Therefore, condition (8.33)
can in principle be derived from the conditions of the martingale difference
central limit theorems (Theorems 7.10 and 7.11) in Chapter 7.
Note that, even if Zt is a strictly stationary process, the Ut ’s may not be

strictly stationary. In that case condition (8.33) can be proved by specializing
Theorem 7.10 in Chapter 7.
An example of condition (8.33) following from Theorem 7.11 in Chapter 7

is the autoregressive (AR) model of order 1:

Zt = α + βZt−1 + εt ,

where εt is i.i.d. N (0, σ 2) and |β| < 1. (8.41)

The condition |β| < 1 is necessary for strict stationarity of Zt . Then, for t ≥ 2,
the conditional distribution of Zt , given öt−1 = σ (Z1, . . . , Zt−1), is N (α +
βZt−1, σ

2), and thus, with θ0 = (α, β, σ 2 )T, (8.40) becomes

Ut =
∂(− 1

2 (Zt − α − βZt−1)2/σ
2 − 1

2 ln(σ
2)− ln

(√
2π ))

∂(α, β, σ 2)

= 1

σ 2




εt

εt Zt−1

1
2 (ε

2
t /σ

2 − 1)


 . (8.42)

Because the εt ’s are i.i.d. N (0, σ 2) and εt and Zt−1 are mutually independent,
it follows that (8.42) is a martingale difference process not only with respect
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toöt = σ (Z1, . . . , Zt ) but also with respect toö t
−∞ = σ ({Zt− j }∞j=0), that is,

E[Ut |ö t−1
−∞] = 0 a.s.

By backwards substitution of (8.41) it follows that Zt =
∑∞
j=0 β

j (α + εt− j );
hence, the marginal distribution of Z1 is N [α/(1− β), σ 2/(1− β2)]. However,
there is no need to derive U1 in this case because this term is irrelevant for the
asymptotic normality of (8.39). Therefore, the asymptotic normality of (8.39)
in this case follows straightforwardly from the stationary martingale difference
central limit theorem with asymptotic variance matrix

H̄ = Var(Ut ) = 1

σ 2




1 α
1−β 0

α
1−β

α2

(1−β)2 + σ 2

1−β2 0

0 0 1
2σ 2


 .

8.4.5. Asymptotic Efficiency of the ML Estimator

The ML estimation approach is a special case of the M-estimation approach
discussed inChapter 6.However, the position of theMLestimator among theM-
estimators is a special one, namely, the ML estimator is, under some regularity
conditions, asymptotically efficient.
To explain and prove asymptotic efficiency, let

θ̃ = argmax
θ∈�

(1/n)
n∑
j=1

g(Z j , θ ) (8.43)

be an M-estimator of

θ0 = argmax
θ∈�

E[g(Z1, θ )], (8.44)

where again Z1, . . . , Zn is a random sample from a k-variate, absolutely con-
tinuous distribution with density f (z|θ0), and � ⊂ R

m is the parameter space.
In Chapter 6, I have set forth conditions such that

√
n(θ̃ − θ0)→d Nm[0, A

−1 BA−1], (8.45)

where

A = E
[
∂2g(Z1, θ0)

∂θ0∂θ
T
0

]
=

∫
R
k

∂2g(z, θ0)

∂θ0∂θ
T
0

f (z|θ0)dz (8.46)

and

B = E [(
∂g(Z1, θ0)/∂θ

T
0

)
(∂g(Z1, θ0)/∂θ0)

]
=

∫
R
k

(
∂g(z, θ0)/∂

T
0

)
(∂g(z, θ0)/∂θ0) f (z| θ0)dz. (8.47)
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As will be shown below in this section, the matrix A−1BA−1 − H̄−1 is positive
semidefinite; hence, the asymptotic variance matrix of θ̃ is “larger” (or at least
not smaller) than the asymptotic variance matrix H̄−1 of the ML estimator θ̃ .
In other words, the ML estimator is an asymptotically efficientM-estimator.
This proposition can be motivated as follows. Under some regularity condi-

tions, as in Assumption 8.1, it follows from the first-order condition for (8.44)
that ∫

R
k

(
∂g(z, θ0)/∂θ

T
0

)
f (z|θ0)dz = 0. (8.48)

Because equality (8.48) does not depend on the value of θ0 it follows that, for
all θ ,

∫
R
k

(∂g(z, θ )/∂ θT) f (z|θ )dz = 0. (8.49)

Taking derivatives inside and outside the integral (8.49) again yields

∫
R
k

∂2g(z, θ )

∂θ∂θT
f (z|θ )dz+

∫
R
k

(∂g(z, θ )/∂θT)(∂ f (z|θ )/∂θ )dz

=
∫
R
k

∂2g(z, θ )

∂θ∂θT
f (z|θ )dz+

∫
R
k

(∂g(z, θ )/∂θT)

×(∂ ln( f (z|θ ))/∂θ ) f (z|θ )dz = O. (8.50)

If we replace θ by θ0, it follows from (8.46) and (8.50) that

E

[(
∂g(Z1, θ0)

∂θT0

)(
∂ln( f (Z1|θ0))

∂θ0

)]
= −A. (8.51)

Because the two vectors in (8.51) have zero expectations, (8.51) also reads

Cov

(
∂g(Z1, θ0)

∂θT0
,
∂ln( f (Z1|θ0))

∂θT0

)
= −A. (8.52)

It follows now from (8.47), (8.52), and Assumption 8.3 that

Var

(
∂g(Z1, θ0)/∂θT0

∂ln( f (Z1|θ0))/∂θT0

)
=

(
B −A
−A H̄

)
,
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which of course is positive semidefinite, and therefore so is

(
A−1, H̄

−1
)(

B −A
−A H̄

)(
A−1

H̄
−1

)
= A−1 BA−1 − H̄−1

.

Note that this argument does not hinge on the independence and absolute
continuity assumptions made here. We only need that (8.45) holds for some
positive definite matrices A and B and that

1√
n

(∑n
j=1 ∂g(Z j , θ0)/∂θ

T
0

∂ ln(L̂n(θ0))/∂θT0

)
→d N2m

[(
0
0

)
,

(
B −A
−A H̄

)]
.

8.5. Testing Parameter Restrictions

8.5.1. The Pseudo t-Test and the Wald Test

In view of Theorem 8.2 and Assumption 8.3, the matrix H̄ can be estimated
consistently by the matrix Ĥ in (8.53):

Ĥ = − ∂2 ln(L̂n(θ ))/n

∂θ∂θT

∣∣∣∣∣
θ=θ̂

→p H̄ . (8.53)

If we denote the ith column of the unit matrix Im by ei it follows now from
(8.53), Theorem 8.4, and the results in Chapter 6 that

Theorem 8.5: (Pseudo t-test) under Assumptions 8.1–8.3, t̂i =
√
neTi θ̂/√

eTi Ĥ
−1ei→d N (0, 1) if eTi θ0 = 0.

Thus, the null hypothesis H0 : eTi θ0 = 0, which amounts to the hypothesis that
the ith component of θ0 is zero, can now be tested by the pseudo t-value t̂i in
the same way as for M-estimators.
Next, consider the partition

θ0 =
(
θ1,0
θ2,0

)
, θ1,0 ∈ R

m−r , θ2,0 ∈ R
r (8.54)

and suppose that we want to test the null hypothesis θ2,0 = 0. This hypothesis
corresponds to the linear restriction Rθ0 = 0, where R = (O, Ir ). It follows
from Theorem 8.4 that under this null hypothesis

√
nRθ̂ →d Nr (0, RH̄

−1RT). (8.55)
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Partitioning θ̂ , Ĥ−1 and H̄−1 conformably to (8.54) as

θ̂ =
(
θ̂1

θ̂2

)
, Ĥ−1 =

(
Ĥ (1,1) Ĥ (1,2)

Ĥ (2,1) Ĥ (2,2)

)
,

H̄−1 =
(
H̄ (1,1) H̄ (1,2)

H̄ (2,1) H̄ (2,2)

)
, (8.56)

we find that θ̂2 = Rθ̂ , Ĥ (2,2) = RĤ−1RT, and H̄ (2,2) = RH̄−1RT; hence, it fol-

lows from (8.55) that (Ĥ (2,2))
−1/2√

nθ̂2 →d Nr (0, Ir ).

Theorem 8.6: (Wald test) Under Assumptions 8.1–8.3, nθ̂T2 (Ĥ
(2,2))

−1
θ̂2→dχ

2
r

if θ2,0 = 0.

8.5.2. The Likelihood Ratio Test

An alternative to the Wald test is the likelihood ratio (LR) test, which is based
on the ratio

λ̂ = maxθ∈�:θ2=0 L̂n(θ )

maxθ∈� L̂n(θ )
= L̂n(θ̃ )

L̂n(θ̂ )
,

where θ is partitioned conformably to (8.54) as

θ =
(
θ1
θ2

)

and

θ̃ =
(
θ̃1
θ̃2

)
=

(
θ̃1
0

)
= argmax

θ∈�:θ2=0
L̂n(θ ) (8.57)

is the restricted ML estimator. Note that λ̂ is always between 0 and 1. The
intuition behind the LR test is that, if θ2,0 = 0, then λ̂ will approach 1 (in
probability) as n→ ∞ because then both the unrestricted ML estimator θ̂

and the restricted ML estimator θ̃ are consistent. On the other hand, if the null
hypothesis is false, then λ̂ will converge in probability to a value less than 1.

Theorem 8.7: (LR test) Under Assumptions 8.1–8.3, −2 ln (λ̂)→d χ
2
r if

θ2,0 = 0.

Proof: As in (8.38) we have

√
n(θ̃1 − θ1,0) = −H̄−1

1,1

(
∂ ln(L̂n(θ ))/

√
n

∂θT1

∣∣∣∣∣
θ=θ0

)
+ op(1),
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where H̄1,1 is the upper-left (m − r )× (m − r ) block of H̄

H̄ =
(
H̄1,1 H̄1,2

H̄2,1 H̄2,2

)
,

and consequently

√
n(θ̃ − θ0) = −

(
H̄−1

1,1 O
O O

)(
∂ln(L̂n(θ0))/

√
n

∂θT0

)
+ op(1). (8.58)

Subtracting (8.58) from (8.34) and using condition (8.33) yield

√
n(θ̂ − θ̃0) = −

(
H̄−1 −

(
H̄−1

1,1 O
O O

))(
∂ ln(L̂n(θ0))/

√
n

∂θT0

)

+ op(1) →d Nm(0,"), (8.59)

where

" =
(
H̄−1 −

(
H̄−1

1,1 O
O O

))
H̄

(
H̄−1 −

(
H̄−1

1,1 O
O O

))

= H̄−1 −
(
H̄−1

1,1 O
O O

)
. (8.60)

The last equality in (8.60) follows straightforwardly from the partition (8.56).
Next, it follows from the second-order Taylor expansion around the unre-

stricted ML estimator θ̂ that, for some η̂ ∈ [0, 1],

ln(λ̂) = ln(L̂n(θ̃ ))− ln(L̂n(θ̂ )) = (θ̃ − θ̂ )T
(
∂ ln(L̂n(θ ))

∂θT

∣∣∣∣∣
θ=θ̂

)

+ 1

2

√
n(θ̃ − θ̂ )T


 ∂2 ln(L̂n(θ ))/n

∂θ∂θT

∣∣∣∣∣
θ=θ̂+η̂(θ̃−θ̂ )


√

n(θ̃ − θ̂ )

= −1

2

√
n(θ̃ − θ̂ )T H̄

√
n(θ̃ − θ̂ )+ op(1), (8.61)

where the last equality in (8.61) follows because, as in (8.36),

∂2 ln(L̂(θ ))/n

∂θ∂θT

∣∣∣∣∣
θ=θ̂+η̂(θ̃−θ̂ )

→p − H̄ . (8.62)

Thus,we have

−2 ln(λ̂) = (
"−1/2√n(θ̂ − θ̃ )

)T (
"1/2 H̄"1/2

) (
"−1/2√n(θ̂ − θ̃ )

)
+ op(1). (8.63)
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Because, by (8.59), "−1/2√n(θ̂ − θ̃ )→d Nm(0, Im), and by (8.60) the matrix
"1/2 H̄"1/2 is idempotent with rank ("1/2 H̄"1/2) = trace ("1/2 H̄"1/2) = r ,
the theorem follows from the results in Chapters 5 and 6. Q.E.D.

8.5.3. The Lagrange Multiplier Test

The restricted ML estimator θ̃ can also be obtained from the first-order condi-
tions of the Lagrange function ‹(θ, µ) = ln(L̂n(θ ))− θT2 µ, where µ ∈ R

r is a
vector of Lagrange multipliers. These first-order conditions are

∂‹(θ, µ)/∂θT1 |θ=θ̃ ,µ=µ̃ = ∂ ln(L̂(θ ))/∂θT1 |θ=θ̃ = 0,

∂‹(θ, µ)/∂θT2 |θ=θ̃ ,µ=µ̃ = ∂ln(L̂(θ ))/∂θT2 |θ=θ̃ − µ̃ = 0,

∂‹(θ, µ)/∂µT|θ=θ̃ ,µ=µ̃ = θ̃2 = 0.

Hence,

1√
n

(
0
µ̃

)
= ∂ln(L̂(θ ))/

√
n

∂ θT

∣∣∣∣
θ=θ̃

.

Again, using the mean value theorem, we can expand this expression around
the unrestricted ML estimator θ̂ , which then yields

1√
n

(
0
µ̃

)
= −H̄√n(θ̃ − θ̂ )+ op(1)→d N (0, H̄"H̄ ), (8.64)

where the last conclusion in (8.64) follows from (8.59). Hence,

µ̃T H̄ (2,2,)µ̃

n
= 1

n
(0T, µ̃T)H̄−1

(
0
µ̃

)
= √

n(θ̃ − θ̂ )T H̄
√
n(θ̃ − θ̂ )+ op(1) →d χ

2
r , (8.65)

where the last conclusion in (8.65) follows from (8.61). Replacing H̄ in expres-
sion (8.65) by a consistent estimator on the basis of the restricted ML estimator
θ̃ , for instance,

H̃ = − ∂2 ln(L̂n(θ ))/n

∂θ∂θT

∣∣∣∣∣
θ=θ̃

. (8.66)

and partitioning H̃−1 conformably to (8.56) as

H̃−1 =
(
H̃ (1,1) H̃ (1,2)

H̃ (2,1) H̃ (2,2)

)
,

we have

Theorem 8.8: (LM test) Under Assumptions 8.1–8.3, µ̃T H̃ (2,2)µ̃/n→d χ
2
r if

θ2,0 = 0.
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8.5.4. Selecting a Test

The Wald, LR, and LM tests basically test the same null hypothesis against the
same alternative, so which one should we use? The Wald test employs only
the unrestricted ML estimator θ̂ , and thus this test is the most convenient if we
have to conduct unrestricted ML estimation anyway. The LM test is entirely
based on the restricted ML estimator θ̃ , and there are situations in which we
start with restricted ML estimation or where restricted ML estimation is much
easier to do than unrestricted ML estimation, or even where unrestricted ML
estimation is not feasible because, without the restriction imposed, the model
is incompletely specified. Then the LM test is the most convenient test. Both
the Wald and the LM tests require the estimation of the matrix H̄ . That may be
a problem for complicated models because of the partial derivatives involved.
In that case I recommend using the LR test.
Although I have derived the Wald, LR, and LM tests for the special case

of a null hypothesis of the type θ2,0 = 0, the results involved can be modified
to general linear hypotheses of the form Rθ0 = q, where R is a r × m matrix
of rank r, by reparametrizing the likelihood function as follows. Specify a
(m − r )× m matrix R∗ such that the matrix

Q =
(
R∗
R

)

is nonsingular. Then define new parameters by

β =
(
β1
β2

)
=

(
R∗ θ
Rθ

)
−

(
0
q

)
= Qθ −

(
0
q

)
.

If we substitute

θ = Q−1 β + Q−1

(
0
q

)

in the likelihood function, the null hypothesis involved is equivalent to β2 = 0.

8.6. Exercises

1. Derive θ̂ = argmaxθ L̂n(θ ) for the case (8.11) and show that, if Z1, . . . , Zn is
a random sample, then the ML estimator involved is consistent.

2. Derive θ̂ = argmaxθ L̂n(θ ) for the case (8.13).

3. Show that the log-likelihood function of the Logit model is unimodal, that is,
the matrix ∂2ln[L̂n(θ )]/(∂θ∂θT) is negative-definite for all θ .

4. Prove (8.20).

5. Extend the proof of Theorem 8.2 to the multivariate parameter case.
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6. Let (Y1, X1), . . . , (Yn, Xn) be a random sample from a bivariate continuous
distribution with conditional density

f (y|x, θ0) = (x/θ0) exp (−y · x/θ0) if x > 0 and y > 0;

f (y|x, θ0) = 0 elsewhere,

where θ0 > 0 is an unknown parameter. The marginal density h(x) of X j is
unknown, but we do know that h does not depend on θ0 and h(x) = 0 for x ≤ 0.
(a) Specify the conditional likelihood function L̂cn(θ ).
(b) Derive the maximum likelihood estimator θ̂ of θ0.
(c) Show that θ̂ is unbiased.
(d) Show that the variance of θ̂ is equal to θ20 /n.
(e) Verify that this variance is equal to the Cramer–Rao lower bound.
(f) Derive the test statistic of the LR test of the null hypothesis θ0 = 1 in the

form for which it has an asymptotic χ2
1 null distribution.

(g) Derive the test statistic of the Wald test of the null hypothesis θ0 = 1.
(h) Derive the test statistic of the LM test of the null hypothesis θ0 = 1.
(i) Show that under the null hypothesis θ0 = 1 the LR test in part (f) has a

limiting χ2
1 distribution.

7. Let Z1, . . . , Zn be a random sample from the (nonsingular) Nk[µ,�] distri-
bution. Determine the maximum likelihood estimators of µ and �.

8. In the case in which the dependent variable Y is a duration (e.g., an unem-
ployment duration spell), the conditional distribution of Y given a vector X of
explanatory variables is often modeled by the proportional hazard model

P[Y ≤ y|X = x] = 1− exp


−ϕ(x)

y∫
0

λ(t)dt


 , y > 0, (8.68)

where λ(t) is a positive function on (0,∞) such that
∫ ∞
0 λ(t)dt = ∞ and ϕ is

a positive function.
The reason for calling this model a proportional hazard model is the fol-

lowing. Let f (y|x) be the conditional density of Y given X = x , and let
G(y|x) = exp

(−ϕ(x) ∫y0 λ(t)dt) , y > 0. The latter function is called the con-
ditional survival function. Then f (y|x)/G(y|x) = ϕ(x)λ(y) is called the haz-
ard function because, for a small δ > 0, δ f (y|x)/G(y|x) is approximately
the conditional probability (hazard) that Y ∈ (y, y + δ] given that Y > y and
X = x .
Convenient specifications of λ(t) and ϕ(x) are

λ(t) = γ tγ−1, γ > 0 (Weibull specification)

ϕ(x) = exp(α + βTx).
(8.69)

Now consider a random sample of size n of unemployed workers. Each
unemployed worker j is interviewed twice. The first time, worker j tells the
interviewer how long he or she has been unemployed and reveals his or her
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vector X j of characteristics. Call this time Y1, j . A fixed period of length T
later the interviewer asks worker j whether he or she is still (uninterruptedly)
unemployed and, if not, how long it took during this period to find employment
for the first time. Call this duration Y2, j . In the latter case the observed unem-
ployment duration is Y j = Y1, j + Y2, j , but if the worker is still unemployed we
only know that Y j > Y1, j + T . The latter is called censoring. On the assump-
tion that the X j ’s do not change over time, set up the conditional likelihood
function for this case, using the specifications (8.68) and (8.69).



Appendix I – Review of Linear Algebra

I.1. Vectors in a Euclidean Space

A vector is a set of coordinates that locates a point in a Euclidean space. For
example, in the two-dimensional Euclidean space R

2 the vector

a =
(
a1
a2

)
=

(
6
4

)
(I.1)

is the point whose location in a plane is determined by moving a1 = 6 units
away from the origin along the horizontal axis (axis 1) and then moving a2 = 4
units away parallel to the vertical axis (axis 2), as displayed in Figure I.1. The
distances a1 and a2 are called the components of the vector a involved.
An alternative interpretation of the vector a is a force pulling from the origin

(the intersection of the two axes). This force is characterized by its direction
(the angle of the line in Figure I.1) and its strength (the length of the line piece
between point a and the origin). As to the latter, it follows from the Pythagorean
theorem that this length is the square root of the sum of the squared distances of

point a from the vertical and horizontal axes,
√
a21 + a22 =

√
62 + 42 = 3

√
6,

and is denoted by ‖a‖. More generally, the length of a vector

x =



x1
x2
...
xn


 (I.2)

in R
n is defined by

‖x‖ def.=
√√√√ n∑

j=1

x2j . (I.3)

229
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Figure I.1. A vector in R2.

Two basic operations apply to vectors inR
n . The first basic operation is scalar

multiplication:

c · x def.=



c · x1
c · x2
...

c · xn


 , (I.4)

where c ∈ R is a scalar. Thus, vectors in R
n are multiplied by a scalar by multi-

plying each of the components by this scalar. The effect of scalar multiplication
is that the point x is moved a factor c along the line through the origin and
the original point x . For example, if we multiply the vector a in Figure I.1 by
c = 1.5, the effect is the following:

Figure I.2. Scalar multiplication.
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Figure I.3. c = a + b.

The second operation is addition. Let x be the vector (I.2), and let

y =



y1
y2
...
yn


 . (I.5)

Then

x + y def.=



x1 + y1
x2 + y2

...
xn + yn


 . (I.6)

Thus, vectors are added by adding up the corresponding components. Of course,
this operation is only defined for conformable vectors, that is, vectors with the
same number of components.
As an example of the addition operation, let a be the vector (I.1), and let

b =
(
b1
b2

)
=

(
3
7

)
. (I.7)

Then

a + b =
(
6
4

)
+

(
3
7

)
=

(
9
11

)
= c, (I.8)

for instance. This result is displayed in Figure I.3. We see from Figure I.3 that
the origin together with the points a, b, and c = a + b form a parallelogram
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(which is easy to prove). In terms of forces, the combined forces represented
by the vectors a and b result in the force represented by the vector c = a + b.
The distance between the vectors a and b in Figure I.3 is ‖a − b‖. To see

this, observe that the length of the horizontal line piece between the vertical line
through b and point a is a1 − b1, and similarly the vertical line piece between
b and the horizontal line through a has length b2 − a2. These two line pieces,
together with the line piece connecting the points a and b, form a triangle for
which the Pythagorean theorem applies: The squared distance between a and b
is equal to (a1 − b1)2 + (a2 − b2)2 = ‖a − b‖2. More generally,
The distance between the vector x in (I.2) and the vector y in (I.5) is

‖x − y‖ =
√√√√ n∑

j=1

(x j − y j )2. (I.9)

Moreover, it follows from (I.9) and the law of cosines1 that
The angle ϕ between the vector x in (I.2) and the vector y in (I.5) satisfies

cos(ϕ) = ‖x‖2 + ‖y‖2 − ‖x − y‖2
2‖x‖ · ‖y‖ =

∑n
j=1 x j y j

‖x‖ · ‖y‖ . (I.10)

I.2. Vector Spaces

The two basic operations, addition and scalar multiplication, make a Euclidean
space R

n a special case of a vector space:

Definition I.1: Let V be a set endowed with two operations: the operation
“addition,” denoted by “+,” which maps each pair (x, y) in V × V into V, and
the operation “scalar multiplication” denoted by a dot (·) that maps each pair
(c, x) in R × V into V. The set V is called a vector space if the addition and
multiplication operations involved satisfy the following rules for all x, y, and z
in V and all scalars c, c1, and c2 in R:

(a) x + y = y + x;
(b) x + (y + z) = (x + y)+ z;
(c) There is a unique zero vector 0 in V such that x + 0 = x;
(d) For each x there exists a unique vector−x in V such that x + (−x) = 0;
(e) 1 · x = x;
(f) (c1c2) · x = c1 · (c2 · x);
(g) c · (x + y) = c · x + c · y;
(h) (c1 + c2) · x = c1 · x + c2 · x .

1 Law of cosines: Consider a triangle ABC, let ϕ be the angle between the legs C → A and
C → B, and denote the lengths of the legs opposite to the points A, B, and C by α, β, and
γ , respectively. Then γ 2 = α2 + β2 − 2αβ cos(ϕ).
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It is trivial to verify that, with addition “+” defined by (I.6) and scalar mul-
tiplication c · x defined by (I.4), the Euclidean space R

n is a vector space. How-
ever, the notion of a vector space is much more general. For example, let V be
the space of all continuous functions on R with pointwise addition and scalar
multiplication defined the same way as for real numbers. Then it is easy to
verify that this space is a vector space.
Another (but weird) example of a vector space is the space V of positive real

numbers endowed with the “addition” operation x + y = x · y and the “scalar
multiplication” c · x = xc. In this case the null vector 0 is the number 1, and
−x = 1/x .

Definition I.2: A subspace V0 of a vector space V is a nonempty subset of V
that satisfies the following two requirements:

(a) For any pair x, y in V0, x + y is in V0;
(b) For any x in V0 and any scalar c, c · x is in V0.

It is not hard to verify that a subspace of a vector space is a vector space
itself because the rules (a) through (h) in Definition I.1 are inherited from the
“host” vector space V. In particular, any subspace contains the null vector 0, as
follows from part (b) of Definition I.2 with c= 0. For example, the line through
the origin and point a in Figure I.1 extended indefinitely in both directions is
a subspace of R

2. This subspace is said to be spanned by the vector a. More
generally,

Definition I.3: Let x1, x2, . . . , xn be vectors in a vector space V. The space
V0 spanned by x1, x2, . . . , xn is the space of all linear combinations of
x1, x2, . . . , xn , that is, each y in V0 can be written as y =

∑n
j=1 c j x j for some

coefficients c j in R.

Clearly, this space V0 is a subspace of V .
For example, the two vectors a and b in Figure I.3 span the whole Euclidean

space R
2 because any vector x in R

2 can be written as

x =
(
x1
x2

)
= c1

(
6
4

)
+ c2

(
3
7

)
=

(
6c1 + 3c2
4c1 + 7c2

)
,

where

c1 = 7

30
x1 − 1

10
x2, c2 = − 2

15
x1 + 1

5
x2.

The same applies to the vectors a, b, and c in Figure I.3: They also span the
whole Euclidean space R

2. However, in this case any pair of a, b, and c does
the same, and thus one of these three vectors is redundant because each of the



234 The Mathematical and Statistical Foundations of Econometrics

vectors a, b, and c can already be written as a linear combination of the other
two. Such vectors are called linear dependent:

Definition I.4: A set of vectors x1, x2, . . . , xn in a vector space V is linear
dependent if one or more of these vectors can be written as a linear combination
of the other vectors, and the set is called linear independent if none of them
can be written as a linear combination of the other vectors. In particular,
x1, x2, . . . , xn are linear independent if and only if

∑n
j=1 c j x j = 0 implies that

c1 = c2 = · · · = cn = 0.

For example, the vectors a and b in Figure I.3 are linear independent because,
if not, then would exist a scalar c such that b = c · a; hence, 6 = 3c and 4 = 7c,
which is impossible. A set of such linear-independent vectors is called a basis
for the vector space they span:

Definition I.5: Abasis for a vector space is a set of vectors having the following
two properties:

(a) They are linear independent;
(b) They span the vector space involved.

We have seen that each of the subsets {a, b}, {a, c}, and {b, c} of the set
{a, b, c} of vectors in Figure I.3 is linear independent and spans the vector
space R

2. Thus, there are in general many bases for the same vector space, but
what they have in common is their number. This number is called the dimension
of V.

Definition I.6: The number of vectors that form a basis of a vector space is
called the dimension of this vector space.

To show that this definition is unambiguous, let {x1, x2, . . . , xn} and
{y1, y2, . . . , ym} be two different bases for the same vector space, and let
m = n + 1. Each of the yi ’s can be written as a linear combination of
x1, x2, . . . , xn : yi =

∑n
j=1 ci, j x j . If {y1, y2, . . . , yn+1} is linear independent,

then
∑n+1
i=1 zi yi =

∑n
j=1

∑n+1
i=1 zi ci, j x j = 0 if and only if z1 = · · · = zn+1 = 0.

But because {x1, x2, . . . , xn} is linear independent we must also have that∑n+1
i=1 zi ci, j = 0 for j = 1, . . . , n. The latter is a system of n linear equations

in n + 1 unknown variables zi and therefore has a nontrivial solution in the
sense that there exists a solution z1, . . . , zn+1 such that at least one of the z’s is
nonzero. Consequently, {y1, y2, . . . , yn+1} cannot be linear independent.
Note that in principle the dimension of a vector space can be infinite.

For example, consider the space R
∞ of all countable infinite sequences



Appendix I. Review of Linear Algebra 235

x = (x1, x2, x3, . . .) of real numbers endowed with the addition operation

x + y = (x1, x2, x3, . . .)+ (y1, y2, y3, . . .)

= (x1 + y1, x2 + y2, x3 + y3, . . .)
and the scalar multiplication operation

c · x = (c · x1, c · x2, c · x3, . . .).
Let yi be a countable infinite sequence of zeros except for the ith element in
this sequence, which is equal to 1. Thus, y1 = (1, 0, 0, . . .), y2 = (0, 1, 0, . . .),
and so on. Then {y1, y2, y3, . . .} is a basis for R

∞ with dimension ∞. Also in
this case there are many different bases; for example, another basis for R

∞ is
y1 = (1, 0, 0, 0, . . .), y2 = (1, 1, 0, 0, . . .), y3 = (1, 1, 1, 0, . . .), and so on.

I.3. Matrices

In Figure I.3 the location of point c can be determined by moving nine units
away from the origin along the horizontal axis 1 and then moving eleven units
away from axis 1 parallel to the vertical axis 2. However, given the vectors a and
b, an alternative way of determining the location of point c is to move ‖a‖ units
away from the origin along the line through the origin and point a (the subspace
spanned by a) and then move ‖b‖ units away parallel to the line through the
origin and point b (the subspace spanned by b). Moreover, if we take ‖a‖ as
the new distance unit along the subspace spanned by a, and ‖b‖ as the new
distance unit along the subspace spanned by b, then point c can be located by
moving one (new) unit away from the origin along the new axis 1 formed by
the subspace spanned by a and then moving one (new) unit away from this new
axis 1 parallel to the subspace spanned by b (which is now the new axis 2). We
may interpret this as moving the point

(1
1

)
to a new location: point c. This is

precisely what a matrix does: moving points to a new location by changing the
coordinate system. In particular, the matrix

A = (a, b) =
(
6 3
4 7

)
(I.11)

moves any point

x =
(
x1
x2

)
(I.12)

to a new location by changing the original perpendicular coordinate system to
a new coordinate system in which the new axis 1 is the subspace spanned by
the first column, a, of the matrix A with new unit distance the length of a, and
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the new axis 2 is the subspace spanned by the second column, b, of A with new
unit distance the length of b. Thus, this matrix A moves point x to point

y = Ax = x1 · a + x2 · b
= x1 ·

(
6
4

)
+ x2 ·

(
3
7

)
=

(
6x1 + 3x2
4x1 + 7x2

)
. (I.13)

In general, an m × n matrix

A =



a1,1 . . . a1,n
...

. . .
...

am,1 . . . am,n


 (I.14)

moves the point in R
n corresponding to the vector x in (I.2) to a point in the

subspace of R
m spanned by the columns of A, namely, to point

y = Ax =
n∑
j=1

x j



a1, j
...
am, j


 =




∑n
j=1 a1, j x j

...∑n
j=1 am, j x j


 =



y1
...
ym


 . (I.15)

Next, consider the k × m matrix

B =



b1,1 . . . b1,m
...

. . .
...

bk,1 . . . bk,m


 , (I.16)

and let y be given by (I.15). Then

By = B(Ax) =



b1,1 . . . b1,m
...

. . .
...

bk,1 . . . bk,m







∑n
j=1 a1, j x j

...∑n
j=1 am, j x j




=




∑n
j=1

(∑m
s=1 b1,sas, j

)
x j

...∑n
j=1

(∑m
s=1 bk,sas, j

)
x j


 = Cx, (I.17)

where

C =



c1,1 . . . c1,n
...

. . .
...

ck,1 . . . ck,n


 with ci, j =

m∑
s=1

bi,sas, j .
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This matrix C is called the product of the matrices B and A and is denoted by
BA. Thus, with A given by (I.14) and B given by (I.16),

BA =



b1,1 . . . b1,m
...

. . .
...

bk,1 . . . bk,m






a1,1 . . . a1,n
...

. . .
...

am,1 . . . am,n




=




∑m
s=1 b1,sas,1 . . .

∑m
s=1 b1,sas,n

...
. . .

...∑m
s=1 bk,sas,1 . . .

∑m
s=1 bk,sas,n


 ,

which is a k × n matrix. Note that the matrix BA only exists if the number of
columns of B is equal to the number of rows of A. Such matrices are described
as being conformable. Moreover, note that if A and B are also conformable, so
that AB is defined,2 then the commutative law does not hold, that is, in general
AB 
= BA. However, the associative law (AB)C = A(BC) does hold, as is easy
to verify.
Let A be the m × n matrix (I.14), and now let B be another m × n matrix:

B =



b1,1 . . . b1,n
...

. . .
...

bm,1 . . . bm,n


 .

As argued before, A maps a point x ∈ R
n to a point y = Ax ∈ R

m , and B
maps x to a point z = Bx ∈ R

m . It is easy to verify that y + z = Ax + Bx =
(A + B)x = Cx , for example, where C = A + B is the m × n matrix formed
by adding up the corresponding elements of A and B:

A + B =



a1,1 . . . a1,n
...

. . .
...

am,1 . . . am,n


+



b1,1 . . . b1,n
...

. . .
...

bm,1 . . . bm,n




=



a1,1 + b1,1 . . . a1,n + b1,n

...
. . .

...
am,1 + bm,1 . . . am,n + bm,n


 .

Thus, conformable matrices are added up by adding up the corresponding
elements.

2 In writing a matrix product it is from now on implicitly assumed that the matrices involved
are conformable.
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Moreover, for any scalar cwehave A(c · x) = c · (Ax) = (c · A)x , where c · A
is the matrix formed by multiplying each element of A by the scalar c:

c · A = c ·



a1,1 . . . a1,n
...

. . .
...

am,1 . . . am,n


 =



c · a1,1 . . . c · a1,n

...
. . .

...
c · am,1 . . . c · am,n


 .

Now with addition and scalar multiplication defined in this way, it is easy to
verify that all the conditions in Definition I.1 hold for matrices as well (i.e., the
set of all m × n matrices is a vector space). In particular, the “zero” element
involved is the m × n matrix with all elements equal to zero:

Om,n =



0 . . . 0
...

. . .
...

0 . . . 0


 .

Zero matrices are usually denoted by O only without subscripts indicating the
size.

I.4. The Inverse and Transpose of a Matrix

I will now address the question of whether, for a given m × n matrix A, there
exists an n × m matrix B such that, with y = Ax , By = x . If so, the action of
A is undone by B, that is, B moves y back to the original position x.
Ifm < n, there is no way to undo the mapping y = Ax . In other words, there

does not exist an n × m matrix B such that By = x . To see this, consider the
1× 2matrix A = (2, 1). Then, with x as in (I.12),Ax = 2x1 + x2 = y, but if we
know y and Awe only know that x is located on the line x2 = y − 2x1; however,
there is no way to determine where on this line.
If m = n in (I.14), thus making the matrix A involved a square matrix, we

can undo the mapping A if the columns3 of the matrix A are linear independent.
Take for example the matrix A in (I.11) and the vector y in (I.13), and let

B =
(

7
30 − 1

10

− 2
15

1
5

)
.

Then

By =
(

7
30 − 1

10

− 2
15

1
5

)(
6x1 + 3x2
4x1 + 7x2

)
=

(
x1
x2

)
= x,

3 Here and in the sequel the columns of a matrix are interpreted as vectors.
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and thus this matrix Bmoves the point y = Ax back to x. Such amatrix is called
the inverse of A and is denoted by A−1. Note that, for an invertible n × n matrix
A, A−1A = In , where In is the n × n unit matrix:

In =




1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1


 . (I.18)

Note that a unit matrix is a special case of a diagonal matrix, that is, a square
matrix with all off-diagonal elements equal to zero.
We have seen that the inverse of A is a matrix A−1 such that A−1A = I .4 But

what about AA−1? Does the order of multiplication matter? The answer is no:

Theorem I.1: If A is invertible, then AA−1 = I , that is, A is the inverse of A−1,

because it is trivial that

Theorem I.2: If A and B are invertible matrices, then (AB)−1 = B−1A−1.

Now let us give a formal proof of our conjecture that

Theorem I.3: A square matrix is invertible if and only if its columns are linear
independent.

Proof: Let A be n × n the matrix involved. I will show first that

(a) The columns a1, . . . , an of A are linear independent if and only if for
every b ∈ R

n the system of n linear equations Ax = b has a unique
solution.

To see this, suppose that there exists another solution y :Ay = b. Then A
(x − y) = 0 and x − y 
= 0, which imply that the columns a1, . . . , an of A are
linear dependent. Similarly, if for every b ∈ R

n the system Ax = b has a unique
solution, then the columns a1, . . . , an of Amust be linear independent because,
if not, then there exists a vector c 
= 0 in R

n such that Ac = 0;hence, if x is a
solution of Ax = b, then so is x + c.
Next, I will show that

(b) A is invertible if and only if for every b ∈ R
n the system of n linear

equations Ax = b has a unique solution.

4 Here and in the sequel I denotes a generic unit matrix.
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First, if A is invertible then the solution of Ax = b is x = A−1b, which for
each b ∈ R

n is unique. Second, let b = ei be the ith column of the unit matrix In ,
and let xi be the unique solution of Axi = ei . Then the matrix X with columns
x1, . . . , xn satisfies

AX = A(x1, . . . , xn) = (Ax1, . . . , Axn) = (e1, . . . , en) = In;
hence, A is the inverse of X : A = X−1. It follows now from Theorem I.1 that
X is the inverse of A : X = A−1. Q.E.D.
If the columns of a squarematrixA are linear dependent, thenAxmaps point x

into a lower-dimensional space, namely, the subspace spanned by the columns
of A. Such a mapping is called a singular mapping, and the corresponding
matrix A is therefore called singular. Consequently, a square matrix with linear
independent columns is described as nonsingular. It follows from Theorem I.3
that nonsingularity is equivalent to invertibility and singularity is equivalent to
the absence of invertibility.
If m > n in (I.14), and thus the matrix A involved has more rows than

columns, we can also undo the action of A if the columns of the matrix A are
linear independent as follows. First, consider the transpose5 AT of the matrix A
in (I.14):

AT =



a1,1 . . . am,1
...

. . .
...

a1,n . . . am,n


 ,

that is, AT is formed by filling its columns with the elements of the correspond-
ing rows of A. Note that

Theorem I.4: (AB)T = BTAT. Moreover, if A and B are square and in-
vertible, then (AT)−1 = (A−1)T, ((AB)−1)

T = (B−1A−1)
T = (A−1)

T
(B−1)

T =
(AT)

−1
(BT)

−1
, and similarly, ((AB)T)

−1 = (BTAT)
−1 = (AT)

−1
(BT)

−1 =
(A−1)

T
(B−1)

T
.

Proof: Exercise.
Because a vector can be interpreted as a matrix with only one column, the

transpose operation also applies to vectors. In particular, the transpose of the
vector x in (I.2) is

xT = (x1, x2, . . . , xn),

which may be interpreted as a 1× n matrix.

5 The transpose of a matrix A is also denoted in the literature by A′.
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Now if y = Ax , then ATy = ATAx , where ATA is an n × nmatrix. If ATA is
invertible, then (ATA)−1ATy = x and thus the action of the matrix A is undone
by the n × m matrix (ATA)−1AT. Consequently, it remains to be shown that

Theorem I.5: ATA is invertible if and only if the columns of the matrix A are
linear independent.

Proof: Let a1, . . . , an be the columns of A. Then ATa1, . . . , ATan are the
columns of ATA. Thus, the columns of ATA are linear combinations of the
columns ofA. Suppose that the columns of ATA are linear dependent. Then there
exist coefficients c j not all equal to zero such that c1ATa1 + · · · + cn ATan = 0.
This equation can be rewritten as AT(c1a1 + · · · + cnan) = 0. Because
a1, . . . , an are linear independent, we have c1a1 + · · · + cnan 
= 0; hence, the
columns of AT are linear dependent. However, this is impossible because of the
next theorem. Therefore, if the columns of A are linear independent, then so
are the columns of ATA. Thus, the theorem under review follows fromTheorem
I.3 and Theorem I.6 below.

Theorem I.6: The dimension of the subspace spanned by the columns of a
matrix A is equal to the dimension of the subspace spanned by the columns of
its transpose AT.

The proof of Theorem I.6 has to be postponed because we need for it the
results in the next sections. In particular, Theorem I.6 follows from Theorems
I.11, I.12, and I.13.

Definition I.7: The dimension of the subspace spanned by the columns of a
matrix A is called the rank of A.

Thus, a square matrix is invertible if and only if its rank equals its size, and
if a matrix is invertible then so is its transpose.

I.5. Elementary Matrices and Permutation Matrices

Let A be them × n matrix in (I.14). An elementarym × m matrix E is a matrix
such that the effect of EA is the addition of a multiple of one row of A to another
row of A. For example, let Ei, j (c) be an elementary matrix such that the effect
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of Ei, j (c)A is that c times row j is added to row i < j :

Ei, j (c)A =




a1,1 . . . a1,n
...

. . .
...

ai−1,1 . . . ai−1,n

ai,1 + ca j,1 . . . ai,n + ca j,n
ai+1,1 . . . ai+1,n

...
. . .

...
a j,1 . . . a j,n
...

. . .
...

am,1 . . . am,n




. (I.19)

Then Ei, j (c)6 is equal to the unit matrix Im (compare (I.18)) except that the
zero in the (i, j)’s position is replaced by a nonzero constant c. In particular, if
i = 1 and j = 2 in (I.19), and thus E1,2(c)A adds c times row 2 of A to row 1
of A, then

E1,2(c) =




1 c 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1


 .

This matrix is a special case of an upper-triangularmatrix, that is, a square ma-
trix with all the elements below the diagonal equal to zero. Moreover, E2,1(c)A
adds c times row 1 of A to row 2 of A:

E2,1(c) =




1 0 0 . . . 0
c 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1


 , (I.20)

which is a special case of a lower-triangular matrix, that is, a square matrix
with all the elements above the diagonal equal to zero.
Similarly, if E is an elementary n × n matrix, then the effect of AE is that

one of the columns of A times a nonzero constant is added to another column
of A. Thus,

6 The notation Ei, j (c) will be used for a specific elementarymatrix, and a generic elementary
matrix will be denoted by “E.”
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Definition I.8: An elementary matrix is a unit matrix with one off-diagonal
zero element replaced by a nonzero constant.

Note that the columns of an elementary matrix are linear independent; hence,
an elementary matrix is invertible. The inverse of an elementary matrix is easy
to determine: If the effect of EA is that c times row j of A is added to row i of
A, then E−1 is an elementary matrix such that the effect of E−1EA is that −c
times row j of EA is added to row i of A; thus, E−1EA restores A. For example,
the inverse of the elementary matrix (I.20) is

E2,1(c)
−1 =




1 0 0 . . . 0
c 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1




−1

=




1 0 0 . . . 0
−c 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1




= E2,1(−c).
We now turn to permutation matrices.

Definition I.9: An elementary permutation matrix is a unit matrix with two
columns or rows swapped. A permutation matrix is a matrix whose columns or
rows are permutations of the columns or rows of a unit matrix.

In particular, the elementary permutation matrix that is formed by swapping
the columns i and j of a unit matrix will be denoted by Pi, j .

The effect of an (elementary) permutation matrix on A is that PA swaps
two rows, or permutates the rows, of A. Similarly, AP swaps or permutates the
columns of A. Whether you swap or permutate columns or rows of a unit matrix
does not matter because the resulting (elementary) permutation matrix is the
same. An example of an elementary permutation matrix is

P1,2 =




0 1 0 . . . 0
1 0 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1


 .

Note that a permutation matrix P can be formed as a product of elementary
permutation matrices, for example, P = Pi1, j1 . . . Pik , jk . Moreover, note that
if an elementary permutation matrix Pi, j is applied to itself (i.e., Pi, j Pi, j ),
then the swap is undone and the result is the unit matrix: Thus, the inverse
of an elementary permutation matrix Pi, j is Pi, j itself. This result holds only
for elementary permutation matrices, though. In the case of the permutation
matrix P = Pi1, j1 . . . Pik , jk we have P−1 = Pik , jk . . . Pi1, j1 . Because elementary
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permutation matrices are symmetric (i.e., Pi, j = PT
i, j ), it follows that P

−1 =
PT
ik , jk

. . . PT
i1, j1

= PT. Moreover, if E is an elementary matrix and Pi, j an ele-
mentary permutation matrix, then Pi, j E = EPi, j . Combining these results, we
obtain the following theorem:

Theorem I.7: If E is an elementary matrix and P is a permutation matrix, then
PE = EPT. Moreover, P−1 = PT.

I.6. Gaussian Elimination of a Square Matrix and the Gauss–Jordan
Iteration for Inverting a Matrix

I.6.1. Gaussian Elimination of a Square Matrix

The results in the previous section are the tools we need to derive the following
result:

Theorem I.8: Let A be a square matrix.

(a) There exists a permutation matrix P, possibly equal to the unit matrix
I, a lower-triangular matrix L with diagonal elements all equal to 1,
a diagonal matrix D, and an upper-triangular matrix U with diagonal
elements all equal to 1 such that PA = LDU.

(b) If A is nonsingular and P = I, this decomposition is unique; that is, if
A = LDU = L∗D∗U∗, then L∗ = L , D∗ = D, and U∗ = U.

The proof of part (b) is as follows: LDU = L∗D∗U∗ implies

L−1L∗D∗ = DUU−1
∗ . (I.21)

It is easy to verify that the inverse of a lower-triangular matrix is lower triangu-
lar and that the product of lower-triangular matrices is lower triangular. Thus
the left-hand side of (I.21) is lower triangular. Similarly, the right-hand side
of (I.21) is upper triangular. Consequently, the off-diagonal elements in both
sides are zero: Both matrices in (I.21) are diagonal. Because D∗ is diagonal
and nonsingular, it follows from (I.21) that L−1L∗ = DUU−1

∗ D
−1
∗ is diagonal.

Moreover, because the diagonal elements of L−1 and L∗ are all equal to 1, the
same applies to L−1L∗, that is, L−1L∗ = I ; hence, L = L∗. Similarly, we have
U = U∗. Then D = L−1AU−1 and D∗ = L−1AU−1.

Rather than giving a formal proof of part (a) of Theorem I.8, I will demon-
strate the result involved by two examples, one for the case that A is nonsingular
and the other for the case that A is singular.

Example 1: A is nonsingular.

Let

A =

 2 4 2

1 2 3
−1 1 −1


 . (I.22)
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We are going to multiply A by elementary matrices and elementary permutation
matrices such that the final result will be an upper-triangular matrix. This is
called Gaussian elimination.
First, add−1/2 times row1 to row2 in (I.22). This is equivalent tomultiplying

A by the elementary matrix E2,1(−1/2). (Compare (I.20) with c = −1/2.) Then

E2,1(−1/2)A =

 1 0 0
−0.5 1 0
0 0 1





 2 4 2

1 2 3
−1 1 −1


 =


 2 4 2

0 0 2
−1 1 −1


 .

(I.23)

Next, add 1/2 times row 1 to row 3, which is equivalent to multiplying (I.23)
by the elementary matrix E3,1(1/2):

E3,1(1/2)E2,1(−1/2)A =

 1 0 0

0 1 0
0.5 0 1





 2 4 2

0 0 2
−1 1 −1




=

2 4 2
0 0 2
0 3 0


 . (I.24)

Now swap rows 2 and 3 of the right-hand matrix in (I.24). This is equivalent
to multiplying (I.24) by the elementary permutation matrix P2,3 formed by
swapping the columns 2 and 3 of the unit matrix I3. Then

P2,3E3,1(1/2)E2,1(−1/2)A

=

1 0 0
0 0 1
0 1 0





2 4 2
0 0 2
0 3 0


 =


2 4 2
0 3 0
0 0 2




=

2 0 0
0 3 0
0 0 2





1 2 1
0 1 0
0 0 1


 = DU, (I.25)

for instance. Moreover, because P2,3 is an elementary permutation matrix we
have that P−1

2,3 = P2,3; hence, it follows from Theorem I.7 and (I.25) that

P2,3E3,1(1/2)E2,1(−1/2)A = E3,1(1/2)P2,3E2,1(−1/2)A

= E3,1(1/2)E2,1(−1/2)P2,3A

= DU. (I.26)

Furthermore, observe that

E3,1(1/2)E2,1(−1/2)

=

 1 0 0
−0.5 1 0
0 0 1





 1 0 0

0 1 0
0.5 0 1


 =


 1 0 0
−0.5 1 0
0.5 0 1


 ;
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hence,

(E3,1(1/2)E2,1(−1/2))−1 =

 1 0 0
−0.5 1 0
0.5 0 1




−1

=

 1 0 0

0.5 1 0
−0.5 0 1


 = L , (I.27)

for instance. Combining (I.26) and (I.27), we find now that P2,3A = LDU .

Example 2: A is singular.

Theorem I.8 also holds for singular matrices. The only difference with the
nonsingular case is that, if A is singular, then the diagonal matrix D will have
zeros on the diagonal. To demonstrate this, let

A =

 2 4 2

1 2 1
−1 1 −1


 . (I.28)

Because the first and last column of the matrix (I.28) are equal, the columns are
linear dependent; hence, (I.28) is singular. Now (I.23) becomes

E2,1(−1/2)A =

 1 0 0
−0.5 1 0
0 0 1





 2 4 2

1 2 1
−1 1 −1


 =


 2 4 2

0 0 0
−1 1 −1


 ,

(I.24) becomes

E3,1(1/2)E2,1(−1/2)A =

 1 0 0

0 1 0
0.5 0 1





 2 4 2

0 0 0
−1 1 −1




=

2 4 2
0 0 0
0 3 0


 ,

and (I.25) becomes

P2,3E3,1(1/2)E2,1(−1/2)A =

1 0 0
0 0 1
0 1 0





2 4 2
0 0 0
0 3 0


 =


2 4 2
0 3 0
0 0 0




=

2 0 0
0 3 0
0 0 0





1 2 1
0 1 0
0 0 1


 = DU. (I.29)
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The formal proof of part (a) of Theorem I.8 is similar to the argument in
these two examples and is therefore omitted.
Note that the result (I.29) demonstrates that

Theorem I.9: The dimension of the subspace spanned by the columns of a
square matrix A is equal to the number of nonzero diagonal elements of the
matrix D in Theorem I.8.

Example 3: A is symmetric and nonsingular

Next, consider the case that A is symmetric, that is, AT = A. For example,
let

A =

2 4 2
4 0 1
2 1 −1


 .

Then

E3,2(−3/8)E2,1(−1)E2,1(−2)AE1,2(−2)E1,3(−1)E2,3(−3/8)

=

2 0 0
0 −8 0
0 0 −15/8


 = D;

hence,

A = (E3,2(−3/8)E3,1(−1)E2,1(−2))−1

×D(E1,2(−2)E1,3(−1)E2,3(−3/8))−1 = LDLT.
Thus, in the symmetric case we can eliminate each pair of nonzero elements
opposite the diagonal jointly by multiplying A from the left by an appropriate
elementary matrix and multiplying A from the right by the transpose of the
same elementary matrix.

Example 4: A is symmetric and singular

Although I have demonstrated this result for a nonsingular symmetric matrix,
it holds for the singular case as well. For example, let

A =

2 4 2
4 0 4
2 4 2


 .

Then

E3,1(−1)E2,1(−2)AE1,2(−2)E1,3(−1) =

2 0 0
0 −8 0
0 0 0


 = D.
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Example 5: A is symmetric and has a zero in a pivot position

If there is a zero in a pivot position,7 then we need a row exchange. In that
case the result A = LDLT will no longer be valid. For example, let

A =

0 4 2
4 0 4
2 4 2


 .

Then

E3,2(−1)E3,1(−1/2)P1,2A =

4 0 4
0 4 2
0 0 −2




=

4 0 0
0 4 0
0 0 −2





1 0 1
0 1 1/2
0 0 1


 = DU,

but

L = (E3,2(−1)E3,1(−1/2))−1 = E3,1(1/2)E3,2(1)

=

 1 0 0

0 1 0
1/2 1 1


 
= UT.

Thus, examples 3, 4, and 5 demonstrate that

Theorem I.10: If A is symmetric and the Gaussian elimination can be con-
ducted without the need for row exchanges, then there exists a lower-triangular
matrix L with diagonal elements all equal to 1 and a diagonal matrix D such
that A = LDLT.

I.6.2. The Gauss–Jordan Iteration for Inverting a Matrix

The Gaussian elimination of the matrix A in the first example in the previous
section suggests that this method can also be used to compute the inverse of A
as follows. Augment the matrix A in (I.22) to a 3× 6 matrix by augmenting
the columns of A with the columns of the unit matrix I3:

B = (A, I3) =

 2 4 2 1 0 0

1 2 3 0 1 0
−1 1 −1 0 0 1


 .

Now follow the same procedure as in Example 1, up to (I.25), with A replaced

7 A pivot is an element on the diagonal to be used to wipe out the elements below that
diagonal element.
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by B. Then (I.25) becomes

P2,3E3,1(1/2)E2,1(−1/2)B

= (P2,3E3,1(1/2)E2,1(−1/2)A, P2,3E3,1(1/2)E2,1(−1/2))

=

2 4 2 1 0 0
0 3 0 0.5 0 1
0 0 2 −0.5 1 0


 = (U∗,C), (I.30)

for instance, where U∗ in (I.30) follows from (I.25) and

C = P2,3E3,1(1/2)E2,1(−1/2) =

 1 0 0

0.5 0 1
−0.5 1 0


 . (I.31)

Nowmultiply (I.30) by elementary matrix E13(−1), that is, subtract row 3 from
row 1:

(E1,3(−1)P2,3E3,1(1/2)E2,1(−1/2)A,

E1,3(−1)P2,3E3,1(1/2)E2,1(−1/2))

=

2 4 0 1.5 −1 0
0 3 0 0.5 0 1
0 0 2 −0.5 1 0


 ; (I.32)

multiply (I.32) by elementary matrix E12(−4/3), that is, subtract 4/3 times row
3 from row 1:

(E1,2(−4/3)E1,3(−1)P2,3E3,1(1/2)E2,1(−1/2)A,

E1,2(−4/3)E1,3(−1)P2,3E3,1(1/2)E2,1(−1/2))

=

2 0 0 5/6 −1 −4/3
0 3 0 0.5 0 1
0 0 2 −0.5 1 0


 ; (I.33)

and finally, divide row 1 by pivot 2, row 2 by pivot 3, and row 3 by pivot 2, or
equivalently, multiply (I.33) by a diagonal matrix D* with diagonal elements
1/2, 1/3 and 1/2:

(D∗E1,2(−4/3)E1,3(−1)P2,3E3,1(1/2)E2,1(−1/2)A,

D∗E1,2(−4/3)E1,3(−1)P2,3E3,1(1/2)E2,1(−1/2))

= (I3, D∗E1,2(−4/3)E1,3(−1)P2,3E3,1(1/2)E2,1(−1/2))

=

1 0 0 5/12 −1/2 −2/3
0 1 0 1/6 0 1/3
0 0 1 −1/4 1/2 0


 . (I.34)

Observe from (I.34) that the matrix (A, I3) has been transformed into
a matrix of the type (I3, A∗) = (A∗A, A∗), where A∗ = D∗E1,2(−4/3)×
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E1,3(−1)P2,3E3,1(1/2)E2,1(−1/2) is the matrix consisting of the last three
columns of (I.34). Consequently, A∗ = A−1.
This way of computing the inverse of a matrix is called the Gauss–Jordan

iteration. In practice, the Gauss–Jordan iteration is done in a slightly different
but equivalent way using a sequence of tableaux. Take again the matrix A in
(I.22). The Gauss–Jordan iteration then starts from the initial tableau:

Tableau 1
A I

2 4 2 1 0 0
1 2 3 0 1 0 .

−1 1 −1 0 0 1

If there is a zero in a pivot position, you have to swap rows, as we will see
later in this section. In the case of Tableau 1 there is not yet a problem because
the first element of row 1 is nonzero.
The first step is to make all the nonzero elements in the first column equal

to one by dividing all the rows by their first element provided that they are
nonzero. Then we obtain

Tableau 2
1 2 1 1/2 0 0
1 2 3 0 1 0 .

1 −1 1 0 0 −1

Next, wipe out the first elements of rows 2 and 3 by subtracting row 1 from them:

Tableau 3
1 2 1 1/2 0 0
0 0 2 −1/2 1 0 .

0 −3 0 −1/2 0 −1

Now we have a zero in a pivot position, namely, the second zero of row 2.
Therefore, swap rows 2 and 3:

Tableau 4
1 2 1 1/2 0 0
0 −3 0 −1/2 0 −1 .

0 0 2 −1/2 1 0

Divide row 2 by −3 and row 3 by 2:

Tableau 5
1 2 1 1/2 0 0
0 1 0 1/6 0 1/3 .

0 0 1 −1/4 1/2 0

The left 3× 3 block is now upper triangular.
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Next, we have to wipe out, one by one, the elements in this block above the
diagonal. Thus, subtract row 3 from row 1:

Tableau 6
1 2 0 3/4 −1/2 0
0 1 0 1/6 0 1/3 .

0 0 1 −1/4 1/2 0

Finally, subtract two times row 2 from row 1:

Tableau 7
I A−1

1 0 0 5/12 −1/2 −2/3
0 1 0 1/6 0 1/3 .

0 0 1 −1/4 1/2 0

This is the final tableau. The last three columns now form A−1.
Once you have calculated A−1, you can solve the linear system Ax = b by

computing x = A−1b.However, you can also incorporate the latter in theGauss–
Jordan iteration, as follows. Again let A be the matrix in (I.22), and let, for
example,

b =

1
1
1


 .

Insert this vector in Tableau 1:

Tableau 1∗

A b I
2 4 2 1 1 0 0
1 2 3 1 0 1 0 .

−1 1 −1 1 0 0 1

and perform the same row operations as before. Then Tableau 7 becomes

Tableau 7∗

I A−1b A−1

1 0 0 −5/12 5/12 −1/2 −2/3
0 1 0 1/2 1/6 0 1/3 .

0 0 1 −1/4 −1/4 1/2 0

This is how matrices were inverted and systems of linear equations were
solved fifty and more years ago using only mechanical calculators. Nowadays
of course youwould use a computer, but the Gauss–Jordanmethod is still handy
and not too time consuming for small matrices like the one in this example.
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I.7. Gaussian Elimination of a Nonsquare Matrix

The Gaussian elimination of a nonsquare matrix is similar to the square case ex-
cept that in the final result the upper-triangular matrix now becomes an echelon
matrix:

Definition I.10: An m × n matrix U is an echelon matrix if, for i = 2, . . . ,m,
the first nonzero element of row i is farther to the right than the first nonzero
element of the previous row i − 1.

For example, the matrix

U =

2 0 1 0
0 0 3 1
0 0 0 4




is an echelon matrix, and so is

U =

2 0 1 0
0 0 0 1
0 0 0 0


 .

Theorem I.8 can now be generalized to

Theorem I.11: For each matrix A there exists a permutation matrix P, possibly
equal to the unit matrix I, a lower-triangular matrix L with diagonal elements
all equal to 1, and an echelon matrix U such that PA = LU. If A is a square
matrix, thenU is an upper-triangularmatrix.Moreover, in that case PA = LDU,
where now U is an upper-triangular matrix with diagonal elements all equal to
1 and D is a diagonal matrix.8

Again, I will only prove the general part of this theorem by examples. The
parts for square matrices follow trivially from the general case.
First, let

A =

 2 4 2 1

1 2 3 1
−1 1 −1 0


 , (I.35)

8 Note that the diagonal elements of D are the diagonal elements of the former upper-
triangular matrix U.
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which is thematrix (I.22) augmentedwith an additional column. Then it follows
from (I.31) that

P2,3E3,1(1/2)E2,1(−1/2)A =

 1 0 0

0.5 0 1
−0.5 1 0





 2 4 2 1

1 2 3 1
−1 1 −1 0




=

2 4 2 1
0 3 0 1/2
0 0 2 1/2


 = U,

where U is now an echelon matrix.
As another example, take the transpose of the matrix A in (I.35):

AT =



2 1 −1
4 2 1
2 3 −1
1 1 0


 .

Then

P2,3E4,2(−1/6)E4,3(1/4)E2,1(−2)E3,1(−1)E4,1(−1/2)AT

=



2 1 −1
0 2 0
0 0 3
0 0 0


 = U,

where again U is an echelon matrix.

I.8. Subspaces Spanned by the Columns and Rows of a Matrix

The result in Theorem I.9 also reads as follows: A = BU, where B = P−1L is
a nonsingular matrix. Moreover, note that the size of U is the same as the size
of A, that is, if A is an m × n matrix, then so isU . If we denote the columns of
U by u1, . . . , un , it follows therefore that the columns a1, . . . , an of A are equal
to Bu1, . . . ,Bun , respectively. This suggests that the subspace spanned by the
columns of A has the same dimension as the subspace spanned by the columns
of U . To prove this conjecture, let VA be the subspace spanned by the columns
of A and let VU be the subspace spanned by the columns ofU . Without loss or
generality we may reorder the columns of A such that the first k columns
a1, . . . , ak of A form a basis for VA. Now suppose that u1, . . . , uk are linear
dependent, that is, there exist constants c1, . . . , ck not all equal to zero such
that

∑k
j=1 c ju j = 0. But then also

∑k
j=1 c jBu j =

∑k
j=1 c ja j = 0, which by

the linear independence of a1, . . . , ak implies that all the c j ’s are equal to zero.
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Hence, u1, . . . , uk are linear independent, and therefore the dimension of VU
is greater or equal to the dimension of VA. But because U = B−1A, the same
argument applies the other way around: the dimension of VA is greater or equal
to the dimension of VU . Thus, we have

Theorem I.12: The subspace spanned by the columns of A has the same di-
mension as the subspace spanned by the columns of the corresponding echelon
matrix U in Theorem I.9.

Next, I will show that

Theorem I.13: The subspace spanned by the columns of AT is the same as
the subspace spanned by the columns of the transpose UT of the corresponding
echelon matrix U in Theorem I.9.

Proof: Let A be an m × n matrix. The equality A = BU implies that AT =
UTBT. The subspace spanned by the columns of AT consists of all vectors
x ∈ R

m forwhich there exists a vector c1 ∈ R
n such that x = ATc1, and similarly

the subspace spanned by the columns of UT consists of all vectors x ∈ R
m for

which there exists a vector c2 ∈ R
n such that x = UTc2. If we let c2 = BTc1,

the theorem follows. Q.E.D.
Now let us have a closer look at a typical echelon matrix:

U =




0 . . . 0 ☺ . . . ∗ ∗ . . . ∗ ∗ . . . ∗ ∗ . . . ∗
0 . . . 0 0 . . . 0 ☺ . . . ∗ ∗ . . . ∗ ∗ . . . ∗
0 . . . 0 0 . . . 0 0 . . . 0 ☺ . . . ∗ ∗ . . . ∗
0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 ☺ . . . ∗
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
... . . .

...
0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0



,

(I.36)

where each symbol ☺ indicates the first nonzero elements of the row involved
called the pivot. The elements indicated by * may be zero or nonzero. Because
the elements below a pivot ☺ are zero, the columns involved are linear in-
dependent. In particular, it is impossible to write a column with a pivot as a
linear combination of the previous ones. Moreover, it is easy to see that all the
columns without a pivot can be formed as linear combinations of the columns
with a pivot. Consequently, the columns of U with a pivot form a basis for the
subspace spanned by the columns of U . But the transpose UT of U is also an
echelon matrix, and the number of rows of U with a pivot is the same as the
number of columns with a pivot; hence,
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Theorem I.14: The dimension of the subspace spanned by the columns of an
echelon matrix U is the same as the dimension of the subspace spanned by the
columns of its transpose UT.

If we combine Theorems I.11, I.12 and I.13, it now follows that Theorem I.6
holds.
The subspace spanned by the columns of a matrix A is called the column

space of A and is denoted byR(A). The row space of A is the space spanned by
the columns of AT, that is, the row space of A isR(AT). Theorem I.14 implies
that the dimension of R(A) is equal to the dimension ofR(AT).
There is also another space associated with a matrix A, namely, the null space

of A denoted by N(A). This is the space of all vectors x for which Ax = 0,
which is also a subspace of a vector space. If A is square and nonsingular, then
N(A) = {0}; if not it follows from Theorem I.12 thatN(A) = N(U ), where
U is the echelon matrix in Theorem I.12.
To determine the dimension of N(U ), suppose that A is an m × n matrix

with rank r , and thus U is an m × n matrix with rank r . Let R be an n × n
permutation matrix such that the first r columns of UR are the r columns of
U with a pivot. Clearly, the dimension of N(U ) is the same as the dimension
of N(UR). We can partition UR as (Ur ,Un−r ), where Ur is the m × r matrix
consisting of the columns of U with a pivot, and Un−r is the m × (n − r )
matrix consisting of the other columns ofU . Partitioning a vector x inN(UR)
accordingly – that is, x = (xTr , x

T
n−r )

T – we have

URx = Ur xr +Un−r xn−r = 0. (I.37)

It follows from Theorem I.5 that UT
r Ur is invertible; hence, it follows from

(I.37) and the partition x = (xTr , x
T
n−r )

T that

x =
(
− (
UT
r Ur

)−1
UT
r Un−r

In−r

)
xn−r . (I.38)

Therefore,N(UR) is spanned by the columns of the matrix in (I.38), which has
rank n − r , and thus the dimension of N(A) is n − r . By the same argument
it follows that the dimension of N(AT) is m − r .
The subspaceN(AT) is called the left null space of A because it consists of

all vectors y for which yTA = 0T.
In summary, it has been shown that the following results hold.

Theorem I.15: Let A be an m × n matrix with rank r. ThenR(A) andR(AT)
have dimension r, N(A) has dimension n − r , and N(AT) has dimension
m − r .
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Figure I.4. Projection of b on the subspace spanned by a.

Note that in general the rank of a product AB is not determined by the ranks
r and s of A and B, respectively. At first sight one might guess that the rank of
AB is min(r, s), but that in general is not true. For example, let A = (1, 0) and
BT = (0, 1). Then A and B have rank 1, but AB = 0, which has rank zero. The
only thing we know for sure is that the rank of AB cannot exceed min(r, s). Of
course, if A and B are conformable, invertible matrices, then AB is invertible;
hence, the rank of AB is equal to the rank of A and the rank of B, but that is a
special case. The same applies to the case in Theorem I.5.

I.9. Projections, Projection Matrices, and Idempotent Matrices

Consider the following problem:Which point on the line through the origin and
point a in Figure I.3 is the closest to point b? The answer is point p in Figure
I.4. The line through b and p is perpendicular to the subspace spanned by a,
and therefore the distance between b and any other point in this subspace is
larger than the distance between b and p. Point p is called the projection of b
on the subspace spanned by a. To find p, let p = c · a, where c is a scalar. The
distance between b and p is now ‖b − c · a‖; consequently, the problem is to
find the scalar c that minimizes this distance. Because ‖b − c · a‖ is minimal
if and only if

‖b − c · a‖2 = (b − c · a)T(b − c · a) = bTb − 2c · aTb + c2aTa
is minimal, the answer is c = aTb/aTa; hence, p = (aTb/aTa) · a.
Similarly, we can project a vector y in R

n on the subspace of R
n spanned

by a basis {x1, . . . , xk} as follows. Let X be the n × k matrix with columns
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x1, . . . , xk . Any point p in the column space R(X ) of X can be written as
p = Xb, where b ∈ R

k . Then the squared distance between y and p = Xb is
‖y − Xb‖2 = (y − Xb)T(y − Xb)

= yTy − bTXTy − yTXb + bTXTXb

= yTy − 2bTXTy + bTXTXb, (I.39)

where the last equality follows because yTXb is a scalar (or, equivalently, a
1 × 1 matrix); hence, yTXb = (yTXb)T = bTXTy. Given X and y, (I.39) is a
quadratic function of b. The first-order condition for a minimum of (I.39) is
given by

∂‖y − Xb‖2
∂bT

= −2XTy + 2XTXb = 0,

which has the solution

b = (XTX )−1XTy.

Thus, the vector p inR(X ) closest to y is

p = X (XTX )−1XTy, (I.40)

which is the projection of y onR(X ).
Matrices of the type in (I.40) are called projection matrices:

Definition I.11: Let A be an n × k matrix with rank k. Then the n × n matrix
P = A(ATA)−1AT is called a projection matrix: For each vector x in R

n , Px is
the projection of x on the column space of A.

Note that this matrix P is such that PP = A(ATA)−1ATA(ATA)−1AT) =
A(ATA)−1AT = P . This is not surprising, though, because p = Px is already
inR(A); hence, the point inR(A) closest to p is p itself.

Definition I.12: An n × n matrix M is called idempotent if MM = M.

Thus, projection matrices are idempotent.

I.10. Inner Product, Orthogonal Bases, and Orthogonal Matrices

It follows from (I.10) that the cosine of the angle ϕ between the vectors x in
(I.2) and y in (I.5) is

cos(ϕ) =
∑n
j=1 x j y j

‖x‖ · ‖y‖ = xTy

‖x‖ · ‖y‖ . (I.41)
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Figure I.5. Orthogonalization.

Definition I.13: The quantity xTy is called the inner product of the vectors x
and y.

If xTy = 0, then cos(ϕ) = 0; hence,ϕ = π/2 orϕ = 3π/4. This corresponds
to angles of 90 and 270◦, respectively; hence, x and y are perpendicular. Such
vectors are said to be orthogonal.

Definition I.14: Conformable vectors x and y are orthogonal if their inner
product xTy is zero.Moreover, they are orthonormal if, in addition, their lengths
are 1 : ‖x‖ = ‖y‖ = 1.

In Figure I.4, if we flip point p over to the other side of the origin along the
line through the origin and point a and add b to −p, then the resulting vector
c = b − p is perpendicular to the line through the origin and point a. This is
illustrated in Figure I.5. More formally,

aTc = aT(b − p) = aT(b − (aTb/‖a‖2))a
= aTb − (aTb/‖a‖2)‖a‖2 = 0.

This procedure can be generalized to convert any basis of a vector space
into an orthonormal basis as follows. Let a1, . . . , ak, k ≤ n be a basis for a
subspace of R

n , and let q1 = ‖a1‖−1 · a1. The projection of a2 on q1 is now
p = (qT1 a2) · q1; hence, a∗2 = a2 − (qT1 a2) · q1 is orthogonal to q1. Thus, let
q2 = ‖a∗2‖−1a∗2 . The next step is to erect a3 perpendicular to q1 and q2, which
can be done by subtracting from a3 its projections on q1 and q2, that is, a∗3 =
a3 − (aT3 q1)q1 − (aT3 q2)q2. Using the facts that, by construction,

qT1 q1 = 1, qT2 q2 = 1, qT1 q2 = 0, qT2 q1 = 0,

we have indeed that qT1 a
∗
3 = qT1 a3 − (aT3 q1)q

T
1 q1 − (aT3 q2)q

T
1 q2 = qT1 a3 −

aT3 q1 = 0 and similarly, qT2 a
∗
3 = 0. Thus, now let q3 = ‖a∗3‖−1a∗3 . Repeating

this procedure yields
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Theorem I.16: Let a1, . . . , ak be a basis for a subspace of R
n, and construct

q1, . . . , qk recursively by

q1 = ‖a1‖−1 · a1 and a∗j = a j −
j−1∑
i=1

(
aTj qi

)
qi ,

q j = ‖a∗j ‖−1a∗j for j = 2, 3, . . . , k. (I.42)

Thenq1, . . . , qk is an orthonormal basis for the subspace spannedbya1, . . . , ak.

The construction (I.42) is known as the Gram–Smidt process. The orthonor-
mality of q1, . . . , qk has already been shown, but it still has to be shown that
q1, . . . , qk spans the same subspace as a1, . . . , ak . To show this, observe from
(I.42) that a1, . . . , ak is related to q1, . . . , qk by

a j =
j∑
i=1

ui, j qi , j = 1, 2, . . . , k, (I.43)

where

u j, j = ‖a∗j ‖, ui, j = qTi a j for i < j,

ui, j = 0 for i > j, i, j = 1, . . . , k (I.44)

with a∗1 = a1. It follows now from (I.43) that a1, . . . , ak are linear combinations
of q1, . . . , qk , and it follows from (I.42) that q1, . . . , qk are linear combinations
of a1, . . . , ak ; hence, the two bases span the same subspace.
Observe from (I.44) that the k × k matrix U with elements ui, j is an upper-

triangular matrix with positive diagonal elements. Moreover, if we denote by
A the n × k matrix with columns a1, . . . , ak and by Q the n × k matrix with
columns q1, . . . , qk , it follows from (I.43) that A = QU. Thus, Theorem I.17
follows from Theorem I.16, (I.43), and (I.44):

Theorem I.17: Let A be an n × k matrix with rank k. There exists an n × k
matrix Q with orthonormal columns and an upper-triangular k × k matrix U
with positive diagonal elements such that A = QU.

In the case k = n, the matrix Q in Theorem I.17 is called an orthogonal
matrix:

Definition I.15: An orthogonal matrix Q is a square matrix with orthonormal
columns: QTQ = I .
In particular, if Q is an orthogonal n × n matrix with columns q1, . . . , qn ,

then the elements of the matrix QTQ are qTi q j = I (i = j), where I (·) is the
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indicator function9; hence, QTQ = In . Thus, QT = Q−1. It follows now from
Theorem I.1 also that QQT = In , that is, the rows of an orthogonal matrix are
also orthonormal.
Orthogonal transformations of vectors leave the angles between the vectors,

and their lengths, the same. In particular, let x and y be vectors in R
n and let Q

be an orthogonal n × n matrix. Then (Qx)T(Qy) = xTQTQy = xTy, ‖Qx‖ =√
(Qx)T(Qx) = √

xTx = ‖x‖; hence, it follows from (I.41) that the angle be-
tween Qx and Qy is the same as the angle between x and y.
In the case n = 2, the effect of an orthogonal transformation is a rotation. A

typical orthogonal 2× 2 matrix takes the form

Q =
(
cos(θ ) sin(θ )
sin(θ ) − cos(θ )

)
. (I.45)

This matrix transforms the unit vector e1 = (1, 0)T into the vector qθ =
(cos(θ ), sin(θ ))T, and it follows from (I.41) that θ is the angle between the
two. By moving θ from 0 to 2π , the vector qθ rotates counterclockwise from
the initial position e1 back to e1.

I.11. Determinants: Geometric Interpretation and Basic Properties

The area enclosed by the parallelogram in Figure I.3 has a special meaning,
namely, the determinant of the matrix

A = (a, b) =
(
a1 b1
a2 b2

)
=

(
6 3
4 7

)
. (I.46)

The determinant is denoted by det(A). This area is two times the area enclosed
by the triangle formed by the origin and the points a and b in Figure I.3 and in
its turn is the sum of the areas enclosed by the triangle formed by the origin,
point b, and the projection

p = (aTb/aTa) · a = (aTb/‖a‖2) · a
of b on a and the triangle formed by the points p, a, and b in Figure I.4. The
first triangle has area 1/2‖b − p‖ times the distance of p to the origin, and the
second triangle has area equal to 1/2‖b − p‖ times the distance between p and
a; hence, the determinant of A is

det(A) = ‖b − p‖ · ‖a‖ = ‖b − (aTb/‖a‖2)‖ · ‖a‖
=

√
‖a‖2‖b‖2 − (aTb)2

=
√(
a21 + a22

) (
b21 + b22

)− (a1b1 + a2b2)2

=
√
(a1b2 − b1a2)2 = ±|a1b2 − b1a2| = a1b2 − b1a2. (I.47)

9 I (true) = 1, I (false) = 0.
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The last equality in (I.47) is a matter of normalization inasmuch as −(a1b2 −
b1a2) would also fit (I.47), but the chosen normalization is appropriate for (I.46)
because, then,

det(A) = a1b2 − b1a2 = 6× 7− 3× 4 = 30. (I.48)

However, as I will show for the matrix (I.50) below, a determinant can be
negative or zero.
Equation (I.47) reads in words:

Definition I.16: The determinant of a 2× 2 matrix is the product of the diag-
onal elements minus the product of the off-diagonal elements.

We can also express (I.47) in terms of the angles ϕa and ϕb of the vectors a
and b, respectively, with the right-hand side of the horizontal axis:

a1 = ‖a‖ cos(ϕa), a2 = ‖a‖ sin(ϕa),
b1 = ‖b‖ cos(ϕb), b2 = ‖b‖ sin(ϕb);

hence,

det(A) = a1b2 − b1a2
= ‖a‖ · ‖b‖ · (cos(ϕa) sin(ϕb)− sin(ϕa) cos(ϕb))

= ‖a‖ · ‖b‖ · sin(ϕb − ϕa). (I.49)

Because, in Figure I.3, 0 < ϕb − ϕa < π , we have that sin(ϕb − ϕa) > 0.
As an example of a negative determinant, let us swap the columns of A and

call the result matrix B:

B = AP1,2 = (b, a) =
(
b1 a1
b2 a2

)
=

(
3 6
7 4

)
, (I.50)

where

P1,2 =
(
0 1
1 0

)

is the elementary permutation matrix involved. Then

det(B) = b1a2 − a1b2 = −30.

At first sight this seems odd because the area enclosed by the parallelogram in
Figure I.3 has not been changed. However, it has! Recall the interpretation of
a matrix as a mapping: A matrix moves a point to a new location by replacing
the original perpendicular coordinate system by a new system formed by the
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Figure I.6. Backside of Figure I.3.

columns space of thematrix involvedwith newunits ofmeasurement the lengths
of the columns. In the case of the matrix B in (I.50) we have

Unit vectors
Axis Original New

1: e1 =
(
1
0

)
→ b =

(
3
7

)
2: e2 =

(
0
1

)
→ a =

(
6
4

)

Thus, b is now the first unit vector, and a is the second. If we adopt the
convention that the natural position of unit vector 2 is above the line spanned
by the first unit vector, as is the case for e1 and e2, then we are actually looking
at the parallelogram in Figure I.3 from the backside, as in Figure I.6.
Thus, the effect of swapping the columnsof thematrixA in (I.46) is that Figure

I.3 is flipped over vertically 180◦. Because we are now looking at Figure I.3
from the back, which is the negative side, the area enclosed by the parallelogram
is negative too! Note that this corresponds to (I.49): If we swap the columns of
A, then we swap the angles ϕa and ϕb in (I.49); consequently, the determinant
flips sign.
As another example, let a be as before, but now position b in the southwest

quadrant, as in Figures I.7 and I.8. The fundamental difference between these
two cases is that in Figure I.7 point b is above the line through a and the
origin, and thus ϕb − ϕa < π , whereas in Figure I.8 point b is below that line:
ϕb − ϕa > π . Therefore, the area enclosed by the parallelogram in Figure I.7
is positive, whereas the area enclosed by the parallelogram in Figure I.8 is
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Figure I.7. det(a, b) > 0.

negative. Hence, in the case of Figure I.7, det(a, b) > 0, and in the case of
Figure I.8, det(a, b) < 0. Again, in Figure I.8 we are looking at the backside of
the picture; you have to flip it vertically to see the front side.
What I have demonstrated here for 2× 2 matrices is that, if the columns are

interchanged, then the determinant changes sign. It is easy to see that the same

Figure I.8. det(a, b) < 0.
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applies to the rows. This property holds for general n × n matrices as well in
the following way.

Theorem I.18: If two adjacent columns or rows of a square matrix are
swapped,10 then the determinant changes sign only.

Next, let us consider determinants of special 2× 2 matrices. The first special
case is the orthogonal matrix. Recall that the columns of an orthogonal matrix
are perpendicular andhaveunit length.Moreover, recall that anorthogonal 2× 2
matrix rotates a set of points around the origin, leaving angles and distances the
same. In particular, consider the set of points in the unit square formed by the
vectors (0, 0)T, (0, 1)T, (1, 0)T, and (1, 1)T. Clearly, the area of this unit square
equals 1, and because the unit square corresponds to the 2× 2 unit matrix I2,
the determinant of I2 equals 1. Now multiply I2 by an orthogonal matrix Q.
The effect is that the unit square is rotated without affecting its shape or size.
Therefore,

Theorem I.19: The determinant of an orthogonal matrix is either 1 or−1, and
the determinant of a unit matrix is 1.

The “either–or” part follows from Theorem I.18: swapping adjacent columns
of an orthogonal matrix preserves orthonormality of the columns of the new
matrix but switches the sign of the determinant. For example, consider the
orthogonal matrix Q in (I.45). Then it follows from Definition I.16 that

det(Q) = − cos2(θ )− sin2(θ ) = −1.

Now swap the columns of the matrix (I.45):

Q =
(
sin(θ ) − cos(θ )
cos(θ ) sin(θ )

)
.

Then it follows from Definition I.16 that

det(Q) = sin2(θ )+ cos2(θ ) = 1.

Note that Theorem I.19 is not confined to the 2× 2 case; it is true for orthog-
onal and unit matrices of any size.
Next, consider the lower-triangular matrix

L =
(
a 0
b c

)
.

10 The operation of swapping a pair of adjacent columns or rows is also called a column or
row exchange, respectively.
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Figure I.9. det(L).

According to Definition I.16, det(L) = a · c − 0 · c = a · c, and thus in the
2× 2 case the determinant of a lower-triangular matrix is the product of
the diagonal elements. This is illustrated in Figure I.9. The determinant of
L is the area in the parallelogram, which is the same as the area in the rectangle
formed by the vectors (a, 0)T and (0, c)T. This area is a · c. Thus, you can move
b freely along the vertical axis without affecting the determinant of L . If you
were to flip the picture over vertically, which corresponds to replacing a by−a,
the parallelogram would be viewed from the backside; hence, the determinant
flips sign.
The same result applies of course to upper-triangular and diagonal 2× 2

matrices. Thus, we have

Theorem I.20: The determinant of a lower-triangular matrix is the product of
the diagonal elements. The same applies to an upper-triangular matrix and a
diagonal matrix.

Again, this result is not confined to the 2× 2 case but holds in general.
Now consider the determinant of a transpose matrix. In the 2× 2 case the

transpose AT of A can be formed by first swapping the columns and then
swapping the rows. Then it follows from Theorem I.18 that in each of the two
steps only the sign flips; hence,

Theorem I.21: det(A) = det(AT).
The same applies to the general case: the transpose of A can be formed by a

sequence of column exchanges and a corresponding sequence of rowexchanges,
and the total number of column and row exchanges is an even number.
It follows fromTheorem I.11 that, in the case of a squarematrix A, there exist

a permutation matrix P possibly equal to the unit matrix I , a lower-triangular
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matrix L with diagonal elements all equal to 1, a diagonal matrix D, and
an upper-triangular matrix U with diagonal elements all equal to 1 such that
PA = LDU. Moreover, recall that a permutation matrix is orthogonal because it
consists of permutations of the columns of the unit matrix. Thus, we can write
A = PTLDU.
Now consider the parallelogram formed by the columns of U . Because the

diagonal elements of U are 1, the area of this parallelogram is the same as the
area of the unit square: det(U ) = det(I ). Therefore, the effect of the transfor-
mation PTLD on the area of the parallelogram formed by the columns of U
is the same as the effect of PTLD on the area of the unit square, and con-
sequently det(PTLDU) = det(PTLD). The effect of multiplying D by L is
that the rectangle formed by the columns of D is tilted and squeezed with-
out affecting the area itself. Therefore, det(LD) = det(D), and consequently
det(PTLDU) = det(PTD). Next, PT permutates the rows of D, and so the
effect on det(D) is a sequence of sign switches only. The number of sign
switches involved is the same as the number of column exchanges of PT nec-
essary to convert PT into the unit matrix. If this number of swaps is even, then
det(P) = det(PT) = 1; otherwise, det(P) = det(PT) = −1. Thus, in the 2× 2
case (as well as in the general case) we have

Theorem I.22: det (A) = det (P) · det (D), where P andD are the permutation
matrix and the diagonal matrix, respectively, in the decomposition PA = LDU
in Theorem I.11 for the case of a square matrix A.

This result yields two important corollaries. First,

Theorem I.23: The determinant of a singular matrix is zero.

To see this, observe from the decomposition PA = LDU that A is singular
if and only if D is singular. If D is singular, then at least one of the diagonal
elements of D is zero; hence, det(D) = 0.
Second, for conformable square matrices A and B we have

Theorem I.24: det(AB) = det(A) · det(B).

This result can be shown in the same way as Theorem I.22, that is, by show-
ing that det(A) = det(PTLDUB) = det(P) · det(DB) and det(DB) = det(D) ·
det(B).
Moreover, Theorems I.20 and I.24 imply that

Theorem I.25: Adding or subtracting a constant times a row or column to
another row or column, respectively, does not change the determinant.
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The reason is that this operation is equivalent to multiplying a matrix by an
elementary matrix and that an elementary matrix is triangular with diagonal
elements equal to 1.
Furthermore, we have

Theorem I.26: Let A be an n × n matrix and let c be a scalar. If one of the
columns or rows is multiplied by c, then the determinant of the resulting matrix
is c · det(A). Consequently, det(c · A) = cn · det(A).

This theorem follows straightforwardly from Theorems I.20 and I.24. For
example, let B be a diagonal matrix with diagonal elements 1, except for one
element, such as diagonal element i , which equals c. Then BA is the matrix A
with the ith column multiplied by c. Because, by Theorem I.20, det(B) = c, the
first part of Theorem I.26 for the “column” case follows from Theorem I.24,
and the “row” case follows from det(AB) = det(A) · det(B) = c · det(A). The
second part follows by choosing B = c · In .
The results in this sectionmerely serve as amotivation for what a determinant

is as well as its geometric interpretation and basic properties. All the results
so far can be derived from three fundamental properties, namely, the results in
Theorems I.18, I.20, and I.21. If we were to assume that the results in Theorems
I.18, I.20, and I.21 hold and treat these properties as axioms, all the other
results would follow from these properties and the decomposition PA = LDU .
Moreover, the function involved is unique.
As to the latter, suppose that δ(A) is a function satisfying

(a) If two adjacent rows or columns are swapped, then δ switches sign only.
(b) If A is triangular, then δ(A) is the product of the diagonal elements of A.
(c) δ(AB) = δ(A) · δ(B).
Then it follows from the decomposition A = PTLDU and axiom (c) that

δ(A) = δ(PT)δ(L)δ(D)δ(U ).

Moreover, it follows from axiom (b) that δ(L) = δ(U ) = 1 and δ(D) = det(D).
Finally, it follows from axiom (b) that the functions δ(·) and det(·) coincide
for unit matrices and therefore by axiom (a), δ(PT) = δ(P) = det(P). Thus,
δ(A) = det(A); hence, the determinant is uniquely defined by the axioms (a),
(b), and (c). Consequently,

Definition I.17: The determinant of a square matrix is uniquely defined by
three fundamental properties:

(a) If two adjacent rows or columns are swapped, then the determinant
switches sign only.
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(b) The determinant of a triangular matrix is the product of the diagonal
elements.

(c) The determinant of AB is the product of the determinants of A and B.

These three axioms can be used to derive a general expression for the deter-
minant together with the results in the next section regarding determinants of
block-triangular matrices.

I.12. Determinants of Block-Triangular Matrices

Consider a square matrix A partitioned as

A =
(
A1,1 A1,2
A2,1 A2,2

)
,

where A1,1 and A2,2 are submatrices of size k × k andm × m, respectively, A1,2
is a k × mmatrix, and A2,1 is anm × kmatrix. Thismatrix A is block-triangular
if either A1,2 or A2,1 is a zero matrix, and it is block-diagonal if both A1,2 and
A2,1 are zero matrices. In the latter case

A =
(
A1,1 O
O A2,2

)
,

where the two O blocks represent zero elements. For each block A1,1 and A2,2
we can apply Theorem I.11, that is, A1,1 = PT

1 L1D1U1, A2,2 = PT
2 L2D2U2;

hence,

A =
(
PT
1 L1D1U1 O
O PT

2 L2D2U2

)

=
(
P1 O
O P2

)T

.

(
L1 O
O L2

)
.

(
D1 O
O D2

)(
U1 O
O U2

)
= PTLDU,

for instance. Then det(A) = det(P) · det(D) = det(P1) · det(P2) · det(D1) ·
det(D2) = det(A1,1) · det(A2,2). More generally, we have that

Theorem I.27: The determinant of a block-diagonal matrix is the product of
the determinants of the diagonal blocks.

Next, consider the lower block-diagonal matrix

A =
(
A1,1 O
A2,1 A2,2

)
,

where again A1,1 and A2,2 are k × k and m × m matrices, respectively, and
A2,1 is an m × k matrix. Then it follows from Theorem I.25 that for any k × m
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matrix C ,

det(A) = det

[(
A1,1 O

A2,1 − CA1,1 A2,2

)]
.

If A1,1 is nonsingular, then we can chooseC = A−1
1,1A2,1 so that A2,1 − CA1,1 =

O . In that case it follows fromTheorem I.27 that det(A) = det(A1,1) · det(A2,2).
If A1,1 is singular, then the rows of A1,1 are linear dependent, and so are the first
k rows of A. Hence, if A1,1 is singular, then A is singular; thus, by Theorem
I.23, det(A) = det(A1,1) · det(A2,2) = 0. Consequently,

Theorem I.28: The determinant of a block-triangular matrix is the product of
the determinants of the diagonal blocks.

I.13. Determinants and Cofactors

Consider the n × n matrix

A =



a1,1 . . . a1,n
...

. . .
...

an,1 . . . an,n


 (I.51)

and define the following matrix-valued function of A:

Definition I.18: The transformation ρ(A|i1, i2, . . . , in) is a matrix formed by
replacing all but the ik’s element ak,ik by zeros in rows k = 1, . . . , n of matrix
(I.51). Similarly, the transformation κ(A|i1, i2, . . . , in) is a matrix formed by
replacing all but the ik’s element aik ,k by zeros in columns k = 1, . . . , n ofmatrix
(I.51).

For example, in the 3 × 3 case,

ρ(A|2, 3, 1) =

 0 a1,2 0

0 0 a2,3
a3,1 0 0


 ,

κ(A|2, 3, 1) =

 0 0 a1,3
a2,1 0 0
0 a3,2 0


 .

Recall that a permutation of the numbers 1, 2, . . . , n is an ordered set of
these n numbers and that there are n! of these permutations, including the trivial
permutation 1, 2, . . . , n. Moreover, it is easy to verify that, for each permutation
i1, i2, . . . , in of 1, 2, . . . , n, there exists a unique permutation j1, j2, . . . , jn
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such that ρ(A|i1, i2, . . . , in) = κ(A| j1, j2, . . . , jn) and vice versa. Now define
the function

δ(A) =
∑

det[ρ(A|i1, i2, . . . , in)]
=

∑
det[κ(A|i1, i2, . . . , in)], (I.52)

where the summation is over all permutations i1, i2, . . . , in of 1, 2, . . . , n.
Note that det[ρ(A|i1, i2, . . . , in)] = ±a1,i1a2,i2 . . . an,in , where the sign de-

pends on how many row or column exchanges are needed to convert
ρ(A|i1, i2, . . . , in) into a diagonal matrix. If the number of exchanges is even,
the sign is +; the sign is − if this number is odd. Clearly, this sign is the same
as the sign of the determinant of the permutation matrix ρ(En|i1, i2, . . . , in),
where En is the n × n matrix with all elements equal to 1.
I will show now that δ(A) in (I.52) satisfies the axioms in Definition I.17,

and thus:

Theorem I.29: The function δ(A) in (I.52) is the determinant of A : δ(A) =
det(A).

Proof: First, exchange rows of A such as rows 1 and 2, for ex-
ample. The new matrix is P12A, where P12 is the elementary per-
mutation matrix involved, that is, the unit matrix with the first two
columns exchanged. Then ρ(P12A|i1, i2, . . . , in) = P12ρ(A|i1, i2, . . . , in);
hence, δ(P12A) = det(P1,2)δ(A) = −δ(A). Thus, δ(A) satisfies axiom (a) in
Definition I.17.
Second, let A be lower triangular. Then ρ(A|i1, i2, . . . , in) is lower tri-

angular but has at least one zero diagonal element for all permutations
i1, i2, . . . , in except for the trivial permutation 1, 2, . . . , n. Thus, in this case
δ(A) = det[ρ(A|1, 2, . . . , n) = det(A). The same applies, of course, to upper-
triangular and diagonal matrices. Consequently δ(A) satisfies axiom (b) in Def-
inition I.17.
Finally, observe that ρ(AB|i1, i2, . . . , in) is a matrix with elements∑n
k=1 am,kbk,im in position (m, im),m = 1, . . . , n and zeros elsewhere. Hence,

ρ(AB|i1, i2, . . . , in) = A · ρ(B|i1, i2, . . . , in),
which implies that

δ(AB) = det(A) · δ(B). (I.53)

Now write B as B = PTLDU, and observe from (I.53) and axiom (b) that
δ(B) = δ((PTLD)U ) = det(PTLD)δ(U ) = det(PTLD) det(U ) = det(B). The
same applies to A. Thus,
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δ(AB) = det(A) · det(B) = δ(A) · δ(B). (I.54)

Q.E.D.
Next, consider the following transformation.

Definition I.19: The transformation τ (A|k,m) is a matrix formed by replacing
all elements in row k and column m by zeros except element ak,m itself.

For example, in the 3× 3 case,

τ (A|2, 3) =

a1,1 a1,2 0

0 0 a2,3
a3,1 a3,2 0


 . (I.55)

Then it follows from (I.52) and Theorem I.29 that

det[τ (A|k,m)] =
∑
ik=m

det[ρ(A|i1, i2, . . . , in)]

=
∑
ik=k

det[κ(A|i1, i2, . . . , in)]; (I.56)

hence,

Theorem I.30: For n × n matrices A, det(A) = ∑n
m=1 det[τ (A|k,m)] for k =

1, 2, . . . , n and det(A) = ∑n
k=1 det[τ (A|k,m)] for m = 1, 2, . . . , n.

Now let us evaluate the determinant of the matrix (I.55). Swap rows 1 and
2, and then recursively swap columns 2 and 3 and columns 1 and 2. The total
number of row and column exchanges is 3; hence,

det[τ (A|2, 3)] = (−1)3 det




a2,3 0 0

0 a1,1 a1,2
0 a3,1 a3,2







= a2,3(−1)2+3 det

[(
a1,1 a1,2
a3,1 a3,2

)]
= a2,3cof2,3(A),

for instance, where cof2,3(A) is the cofactor of element a2,3 of A. Note that
the second equality follows from Theorem I.27. Similarly, we need k − 1 row
exchanges and m − 1 column exchanges to convert τ (A|k,m) into a block-
diagonal matrix. More generally,

Definition I.20: The cofactor cof k,m(A) of an n × n matrix A is the determi-
nant of the (n − 1)× (n − 1) matrix formed by deleting row k and column m
times (−1)k+m .

Thus, Theorem I.30 now reads as follows:
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Theorem I.31: For n × n matrices A, det (A) = ∑n
m=1 ak,mcof k,m(A) for k =

1, 2, . . . , n, and also det(A) = ∑n
k=1 ak,mcof k,m(A) for m = 1, 2, . . . , n.

I.14. Inverse of a Matrix in Terms of Cofactors

Theorem I.31 now enables us to write the inverse of a matrix A in terms of
cofactors and the determinant as follows. Define

Definition I.20: The matrix

Aadjoint =



cof 1,1(A) . . . cof n,1(A)

...
. . .

...
cof 1,n(A) . . . cof n,n(A)


 (I.57)

is called the adjoint matrix of A.

Note that the adjoint matrix is the transpose of the matrix of cofactors
with typical (i, j)’s element cofi, j (A). Next, observe from Theorem I.31 that
det(A) = ∑n

k=1 ai,kcofi,k(A) is just the diagonal element i of A · Aadjoint. More-
over, suppose that row j of A is replaced by row i , and call this matrix B. This
has no effect on cof j,k(A), but

∑n
k=1 ai,kcof j,k(A) =

∑n
k=1 ai,kcofi,k(B) is now

the determinant of B. Because the rows of B are linear dependent, det(B) = 0.
Thus, we have∑n

k=1 ai,kcof j,k(A) = det(A) if i = j,
= 0 if i 
= j ;

hence,

Theorem I.32: If det(A) 
= 0, then A−1 = 1
det(A) Aadjoint.

Note that the cofactors cof j,k(A) do not depend on ai, j . It follows therefore
from Theorem I.31 that

∂ det(A)

∂ai, j
= cofi, j (A). (I.58)

Using the well-known fact that d ln(x)/dx = 1/x , we find now from Theorem
I.32 and (I.58) that

Theorem I.33: If det (A) > 0 then

∂ln [det (A)]

∂A

def.=




∂ln [det (A)]
∂a1,1

. . .
∂ln [det (A)]

∂an,1
...

. . .
...

∂ln [det (A)]
∂a1,n

. . .
∂ln [det (A)]

∂an,n


 = A−1. (I.59)
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Note that (I.59) generalizes the formula d ln(x)/dx = 1/x to matrices. This re-
sult will be useful in deriving the maximum likelihood estimator of the variance
matrix of the multivariate normal distribution.

I.15. Eigenvalues and Eigenvectors

I.15.1. Eigenvalues

Eigenvalues and eigenvectors play a key role in modern econometrics – in par-
ticular in cointegration analysis. These econometric applications are confined
to eigenvalues and eigenvectors of symmetric matrices, that is, square matrices
A for which A = AT. Therefore, I will mainly focus on the symmetric case.

Definition I.21: The eigenvalues11 of an n × n matrix A are the solutions for
λ of the equation det(A − λIn) = 0.

It follows from Theorem I.29 that det(A) = ∑±a1,i1a2,i2 . . . an,in , where the
summation is over all permutations i1, i2, . . . , in of 1, 2, . . . , n. Therefore, if we
replace A by A − λIn it is not hard to verify that det(A − λIn) is a polynomial of
order n in λ, det(A − λIn) =

∑n
k=0 ckλ

k , where the coefficients ck are functions
of the elements of A.
For example, in the 2× 2 case

A =
(
a1,1 a1,2
a2,1 a2,2

)

we have

det(A − λI2) = det

[(
a1,1 − λ a1,2
a2,1 a2,2 − λ

)]

= (a1,1 − λ)(a2,2 − λ)− a1,2a2,1
= λ2 − (a1,1 + a2,2)λ+ a1,1a2,2 − a1,2a2,1,

which has two roots, that is, the solutions of λ2 − (a1,1 + a2,2)λ+ a1,1a2,2 −
a1,2a2,1 = 0:

λ1 = a1,1 + a2,2 +
√
(a1,1 − a2,2)2 + 4a1,2a2,1

2
,

λ2 = a1,1 + a2,2 −
√
(a1,1 − a2,2)2 + 4a1,2a2,1

2
.

There are three cases to be distinguished. If (a1,1 − a2,2)2 + 4a1,2a2,1 > 0, then

11 Eigenvalues are also called characteristic roots. The name “eigen” comes from the German
adjective eigen, which means “inherent,” or “characteristic.”
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λ1 and λ2 are different and real valued. If (a1,1 − a2,2)2 + 4a1,2a2,1 = 0, then
λ1 = λ2 and they are real valued. However, if (a1,1 − a2,2)2 + 4a1,2a2,1 < 0,
then λ1 and λ2 are different but complex valued:

λ1 = a1,1 + a2,2 + i ·
√−(a1,1 − a2,2)2 − 4a1,2a2,1

2
,

λ2 = a1,1 + a2,2 − i ·
√−(a1,1 − a2,2)2 − 4a1,2a2,1

2
,

where i = √−1. In this case λ1 and λ2 are complex conjugate: λ2 = λ̄1.12 Thus,
eigenvalues can be complex valued!
Note that if the matrix A involved is symmetric (i.e., a1,2 = a2,1), then

λ1 =
a1,1 + a2,2 +

√
(a1,1 − a2,2)2 + 4a21,2

2
,

λ2 =
a1,1 + a2,2 −

√
(a1,1 − a2,2)2 + 4a21,2

2
,

and thus in the symmetric 2× 2 case the eigenvalues are always real valued. It
will be shown in Section I.15.3 that this is true for all symmetric n × nmatrices.

I.15.2. Eigenvectors

By Definition I.21 it follows that if λ is an eigenvalue of an n × n matrix A,
then A − λIn is a singular matrix (possibly complex valued!). Suppose first that
λ is real valued. Because the rows of A − λIn are linear dependent there exists
a vector x ∈ R

n such that (A − λIn)x = 0 (∈ Rn); hence, Ax = λx . Such a
vector x is called an eigenvector of A corresponding to the eigenvalue λ. Thus,
in the real eigenvalue case:

Definition I.22: An eigenvector13 of an n × n matrix A corresponding to an
eigenvalue λ is a vector x such that Ax = λx .

However, this definition also applies to the complex eigenvalue case, but then
the eigenvector x has complex-valued components: x ∈ ÷n . To show the latter,
consider the case that λ is complex valued: λ = α + i · β, α, β ∈ R, β 
= 0.
Then

A − λIn = A − α In − i · β In
12 Recall that the complex conjugate of x = a + i · b, a, b ∈ R, is x̄ = a − i · b. See Ap-

pendix III.
13 Eigenvectors are also called characteristic vectors.
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is complex valued with linear-dependent rows in the following sense. There
exists a vector x = a + i · bwith a, b ∈ R

n and length14 ‖x‖ = √
aTa + bTb >

0 such that

(A − α In − i · β In)(a + i · b)
= [(A − α In)a + βb]+ i · [(A − α In)b − βa] = 0(∈ R

n).

Consequently, (A − α In)a + βb = 0 and (A − α In)b − βa = 0; thus,(
A − α In β In
−β In A − α In

)(
a
b

)
=

(
0
0

)
∈ R

2n. (I.60)

Therefore, in order for the length of x to be positive, the matrix in (I.60) has to
be singular; then

(a
b

)
can be chosen from the null space of this matrix.

I.15.3. Eigenvalues and Eigenvectors of Symmetric Matrices

On the basis of (I.60) it is easy to show that, in the case of a symmetric matrix
A, β = 0 and b = 0:

Theorem I.34: The eigenvalues of a symmetric n × n matrix A are all real
valued, and the corresponding eigenvectors are contained in R

n.

Proof: First, note that (I.60) implies that, for arbitrary ξ ∈ R,

0 =
(
b
ξa

)T (
A − α In β In
−β In A − α In

)(
a
b

)

= ξaTAb + bTAa − αbTa − ξαaTb + βbTb − ξβaTa.

Next observe that bTa = aTb and by symmetry, bTAa = (bTAa)T = aTATb =
aTAb,where thefirst equality followsbecausebTAa is a scalar (or 1× 1matrix).
Then we have for arbitrary ξ ∈ R,

(ξ + 1)aTAb − α(ξ + 1)aTb + β(bTb − ξaTa) = 0. (I.61)

If we choose ξ = −1 in (I.61), then β(bTb + aTa) = β · ‖x‖2 = 0; conse-
quently, β = 0 and thus λ = α ∈ R. It is now easy to see that b no longer
matters, and we may therefore choose b = 0. Q.E.D.
There is more to say about the eigenvectors of symmetric matrices, namely,

14 Recall (see Appendix III) that the length (or norm) of a complex number x =
a + i · b, a, b ∈ R, is defined as |x | = √

(a + i · b) · (a − i · b) = √
a2 + b2. Similarly,

in the vector case x = a + i · b, a, b ∈ R
n , the length of x is defined as ‖x‖ =√

(a + i · b)T(a − i · b) = √
aTa + bTb.
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Theorem I.35: The eigenvectors of a symmetric n × n matrix A can be chosen
orthonormal.

Proof: First assume that all the eigenvalues λ1, λ2, . . . , λn of A are different.
Let x1, x2, . . . , xn be the corresponding eigenvectors. Then for i 
= j, xTi Ax j =
λ j xTi x j and x

T
j Axi = λi xTi x j ; hence, (λi − λ j )xTi x j = 0 because, by symmetry,

xTi Ax j =
(
xTi Ax j

)T = xTj ATxi = xTj Axi .
Because λi 
= λ j , it follows now that xTi x j = 0. Upon normalizing the eigen-
vectors as q j = ‖x j‖−1x j , we obtain the result.
The case in which two or more eigenvalues are equal requires a com-

pletely different proof. First, normalize the eigenvectors as q j = ‖x j‖−1x j .
Using the approach in Section I.10, we can always construct vectors
y2, . . . , yn ∈ R

n such that q1, y2, . . . , yn is an orthonormal basis of R
n .

Then Q1 = (q1, y2, . . . , yn) is an orthogonal matrix. The first column of
QT

1 AQ1 is Q
T
1 Aq1 = λQT

1q1. But by the orthogonality of Q1, qT1 Q1 = qT1 (q1,
y2, . . . , yn) = (qT1 q1, q

T
1 y2, . . . , q

T
1 yn) = (1, 0, 0, . . . , 0); hence, the first col-

umn of QT
1 AQ1 is (λ1, 0, 0, . . . , 0)

T and, by symmetry of QT
1 AQ1, the first row

is (λ1, 0, 0, . . . , 0). Thus, QT
1 AQ1 takes the form

QT
1 AQ1 =

(
λ1 0T

0 An−1

)
.

Next, observe that

det
(
QT

1 AQ1 − λIn
) = det

(
QT

1 AQ1 − λQT
1Q1

)
= det

[
QT

1 (A − λIn)Q1
]

= det
(
QT

1

)
det(A − λIn) det(Q1)

= det(A − λIn),

and thus the eigenvalues of QT
1 AQ1 are the same as the eigenvalues of A;

consequently, the eigenvalues of An−1 are λ2, . . . , λn . Applying the preceding
argument to An−1, we obtain an orthogonal (n − 1)× (n − 1) matrix Q∗

2 such
that

Q∗T
2 An−1Q

∗
2 =

(
λ2 0T

0 An−2

)
.

Hence, letting

Q2 =
(
1 0T

0 Q∗
2

)
,

which is an orthogonal n × n matrix, we can write

QT
2Q

T
1 AQ1Q2 =

(
�2 O
O An−2

)
,
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where�2 is a diagonal matrix with diagonal elements λ1 and λ2. Repeating this
procedure n − 3 more times yields

QT
n . . . Q

T
2Q

T
1 AQ1Q2 . . . Qn = �,

where �2 is the diagonal matrix with diagonal elements λ1, λ2, . . . , λn .
Note that Q = Q1Q2 . . . Qn , is an orthogonal matrix itself, and it is now

easy to verify that the columns of Q are the eigenvectors of A. Q.E.D.
In view of this proof, we can now restate Theorem I.35 as follows:

Theorem I.36: A symmetric matrix A can be written as A = Q�QT, where
� is a diagonal matrix with the eigenvalues of A on the diagonal and Q is the
orthogonal matrix with the corresponding eigenvectors as columns.

This theorem yields several useful corollaries. The first one is trivial:

Theorem I.37: The determinant of a symmetric matrix is the product of its
eigenvalues.

The next corollary concerns idempotent matrices (see Definition I.12):

Theorem I.38: The eigenvalues of a symmetric idempotent matrix are either
0 or 1. Consequently, the only nonsingular symmetric idempotent matrix is the
unit matrix I.

Proof: Let the matrix A in Theorem I.36 be idempotent: A · A = A. Then,
A = Q�QT = A · A = Q�QTQ�QT = Q�2QT; hence, � = �2. Because
� is diagonal, each diagonal element λ j satisfies λ j = λ2j ; hence, λ j (1− λ j ) =
0. Moreover, if A is nonsingular and idempotent, then none of the eigenvalues
can be zero; hence, they are all equal to 1 :� = I . Then A = QI QT = A =
QQT = I . Q.E.D.

I.16. Positive Definite and Semidefinite Matrices

Another set of corollaries of Theorem I.36 concern positive (semi)definite ma-
trices. Most of the symmetric matrices we will encounter in econometrics are
positive (semi)definite or negative (semi)definite. Therefore, the following re-
sults are of the utmost importance to econometrics.

Definition I.23: An n × n matrix A is called positive definite if, for arbitrary
vectors x ∈ R

n unequal to the zero vector, xTAx > 0, and it is called positive
semidefinite if for such vectors x, xTAx ≥ 0. Moreover, A is called negative
(semi)definite if −A is positive (semi)definite.



278 The Mathematical and Statistical Foundations of Econometrics

Note that symmetry is not required for positive (semi)definiteness. However,
xTAx can always be written as

xTAx = xT
(
1

2
A + 1

2
AT

)
x = xTAsx, (I.62)

for example, where As is symmetric; thus, A is positive or negative
(semi)definite if and only if As is positive or negative (semi)definite.

Theorem I.39: A symmetric matrix is positive (semi)definite if and only if all
its eigenvalues are positive (nonnegative).

Proof: This result follows easily from xTAx = xTQ�QTx = yT�y =∑
j λ j y

2
j , where y = QTx with components y j . Q.E.D.

On the basis of Theorem I.39, we can now define arbitrary powers of positive
definite matrices:

Definition I.24: If A is a symmetric positive (semi)definite n × n matrix, then
for α ∈ R [α > 0] the matrix A to the power α is defined by Aα = Q�αQT,
where �α is a diagonal matrix with diagonal elements the eigenvalues of A to
the power α :�α = diag(λα1 , . . . , λαn ) and Q is the orthogonal matrix of corre-
sponding eigenvectors.

The following theorem is related to Theorem I.8.

Theorem I.40: If A is symmetric and positive semidefinite, then the Gaussian
elimination can be conducted without need for row exchanges. Consequently,
there exists a lower-triangular matrix L with diagonal elements all equal to 1
and a diagonal matrix D such that A = LDLT.

Proof: First note that by Definition I.24 with α = 1/2, A1/2 is symmetric
and (A1/2)TA1/2 = A1/2A1/2 = A. Second, recall that, according to Theorem
I.17 there exists an orthogonal matrix Q and an upper-triangular matrixU such
that A1/2 = QU ; hence, A = (A1/2)TA1/2 = UTQTQU = UTU . The matrix
UT is lower triangular and can be written asUT = LD∗, where D∗ is a diagonal
matrix and L is a lower-triangular matrix with diagonal elements all equal to 1.
Thus, A = LD∗D∗LT = LDLT, where D = D∗D∗. Q.E.D.

I.17. Generalized Eigenvalues and Eigenvectors

The concepts of generalized eigenvalues and eigenvectors play a key role in
cointegration analysis. Cointegration analysis is an advanced econometric time
series topic and will therefore not likely be covered in an introductory Ph.D.-
level econometrics course for which this review of linear algebra is intended.
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Nevertheless, to conclude this review I will briefly discuss what generalized
eigenvalues and eigenvectors are and how they relate to the standard case.
Given two n × n matrices A and B, the generalized eigenvalue problem is to

find the values of λ for which

det(A − λB) = 0. (I.63)

Given a solution λ, which is called the generalized eigenvalue of A relative to
B, the corresponding generalized eigenvector (relative to B) is a vector x in R

n

such that Ax = λBx.
However, if B is singular, then the generalized eigenvalue problem may not

have n solutions as in the standard case and may even have no solution at all.
To demonstrate this, consider the 2× 2 case:

A =
(
a1,1 a1,2
a2,1 a2,2

)
, B =

(
b1,1 b1,2
b2,1 b2,2

)
.

Then,

det(A − λB) = det

[(
a1,1 − λb1,1 a1,2 − λb1,2
a2,1 − λb2,1 a2,2 − λb2,2

)]
= (a1,1 − λb1,1)(a2,2 − λb2,2)

− (a1,2 − λb1,2)(a2,1 − λb2,1)

= a1,1a2,2 − a1,2a2,1
+ (a2,1b1,2 − a2,2b1,1 − a1,1b2,2 + b2,1a1,2)λ
+ (b1,1b2,2 − b2,1b1,2)λ2.

If B is singular, then b1,1b2,2 − b2,1b1,2 = 0, and thus the quadratic term van-
ishes. But the situation can even be worse! It is also possible that the coefficient
of λ vanishes, whereas the constant term a1,1a2,2 − a1,2a2,1 remains nonzero.
In that case the generalized eigenvalues do not exist at all. This is, for example,
the case if

A =
(
1 0
0 −1

)
, B =

(
1 1
1 1

)
.

Then

det(A − λB) = det

[(
1− λ −λ
−λ −1− λ

)]
= −(1− λ)(1+ λ)− λ2 = −1,

and thus the generalized eigenvalue problem involved has no solution.
Therefore, in general we need to require that the matrix B be nonsingular.

In that case the solutions of (I.63) are the same as the solutions of the standard
eigenvalue problems det(AB−1 − λI ) = 0 and det(B−1A − λI ) = 0.
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The generalized eigenvalue problems we will encounter in advanced econo-
metrics always involve a pair of symmetric matrices A and B with B positive
definite. Then the solutions of (I.63) are the same as the solutions of the sym-
metric, standard eigenvalue problem

det(B−1/2AB−1/2 − λI ) = 0. (I.64)

The generalized eigenvectors relative to B corresponding to the solutions of
(I.63) can be derived from the eigenvectors corresponding to the solutions of
(I.64):

B−1/2AB−1/2x = λx = λB1/2B−1/2x ⇒ A(B−1/2x)

= λB(B−1/2x). (I.65)

Thus, if x is an eigenvector corresponding to a solution λ of (I.64), then
y = B−1/2x is the generalized eigenvector relative to B corresponding to the
generalized eigenvalue λ.
Finally, note that generalized eigenvectors are in general not orthogonal even

if the two matrices involved are symmetric. However, in the latter case the gen-
eralized eigenvectors are “orthogonal with respect to the matrix B” in the sense
that, for different generalized eigenvectors y1 and y2, yT1 By2 = 0. This follows
straightforwardly from the link y = B−1/2x between generalized eigenvectors
y and standard eigenvectors x .

I.18. Exercises

1. Consider the matrix

A =

 2 1 1

4 −6 0
−2 7 2


 .

(a) Conduct the Gaussian elimination by finding a sequence Ej of elementary
matrices such that (Ek Ek−1 . . . E2 · E1) A = U = upper triangular.

(b) Then show that, by undoing the elementary operations E j involved, one
gets the LU decomposition A = LU with L a lower-triangular matrix with
all diagonal elements equal to 1.

(c) Finally, find the LDU factorization.

2. Find the 3× 3 permutation matrix that swaps rows 1 and 3 of a 3× 3 matrix.

3. Let

A =



1 ν1 0 0
0 ν2 0 0
0 ν3 1 0
0 ν4 0 1


 ,

where v2 
= 0.
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(a) Factorize A into LU.
(b) Find A−1, which has the same form as A.

4. Compute the inverse of the matrix

A =

1 2 0
2 6 4
0 4 11




by any method.

5. Consider the matrix

A =

 1 2 0 2 1
−1 −2 1 1 0
1 2 −3 −7 −2


 ,

(a) Find the echelon matrix U in the factorization PA = LU.
(b) What is the rank of A?
(c) Find a basis for the null space of A.
(d) Find a basis for the column space of A.

6. Find a basis for the following subspaces of R
4:

(a) The vectors (x1, x2, x3, x4)T for which x1 = 2x4.
(b) The vectors (x1, x2, x3, x4)T for which x1 + x2 + x3 = 0 and x3 + x4 = 0.
(c) The subspace spanned by (1, 1, 1, 1)T, (1, 2, 3, 4)T, and (2, 3, 4, 5)T.

7. Let

A =

1 2 0 3
0 0 0 0
2 4 0 1


 and b =


b1b2
b3


 .

(a) Under what conditions on b does Ax = b have a solution?
(b) Find a basis for the nullspace of A.
(c) Find the general solution of Ax = b when a solution exists.
(d) Find a basis for the column space of A.
(e) What is the rank of AT?

8. Apply the Gram–Smidt process to the vectors

a =

0
0
1


 , b =


0
1
1


 , c =


1
1
1




and write the result in the form A = QU, where Q is an orthogonal matrix and
U is upper triangular.

9. With a, b, and c as in problem 8, find the projection of c on the space spanned
by a and b.

10. Find the determinant of the matrix A in problem 1.
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11. Consider the matrix

A =
(

1 a
−1 1

)
.

For which values of a has this matrix
(a) two different real-valued eigenvalues?
(b) two complex-valued eigenvalues?
(c) two equal real-valued eigenvalues?
(d) at least one zero eigenvalue?

12. For the case a = −4, find the eigenvectors of the matrix A in problem 11 and
standardize them to unit length.

13. Let A be a matrix with eigenvalues 0 and 1 and corresponding eigenvectors (1,
2)T and (2, −1)T.
(a) How can you tell in advance that A is symmetric?
(b) What is the determinant of A?
(c) What is A?

14. The trace of a square matrix is the sum of the diagonal elements. Let A be a
positive definite k× kmatrix. Prove that the maximum eigenvalue of A can be
found as the limit of the ratio trace(An)/trace(An−1) for n→ ∞.



Appendix II – Miscellaneous Mathematics

This appendix reviews various mathematical concepts, topics, and related re-
sults that are used throughout the main text.

II.1. Sets and Set Operations

II.1.1. General Set Operations

The union A ∪ B of two sets A and B is the set of elements that belong to either
A or B or to both. Thus, if we denote “belongs to” or “is an element of ” by the
symbol ∈, x ∈ A ∪ B implies that x ∈ A or x ∈ B, or in both, and vice versa.
A finite union ∪nj=1 A j of sets A1, . . . , An is the set having the property that
for each x ∈ ∪nj=1 A j there exists an index i, 1 ≤ i ≤ n, for which x ∈ Ai , and
vice versa: If x ∈ Ai for some index i, 1 ≤ i ≤ n, then x ∈ ∪nj=1 A j . Similarly,
the countable union ∪∞

j=1 A j of an infinite sequence of sets A j , j = 1, 2, 3, . . .
is a set with the property that for each x ∈ ∪∞

j=1 A j there exists a finite index
i ≥ 1 for which x ∈ Ai , and vice versa: If x ∈ Ai for some finite index i ≥ 1,
then x ∈ ∪∞

j=1 A j .
The intersection A ∩ B of two sets A and B is the set of elements that belong

to both A and B. Thus, x ∈ A ∩ B implies that x ∈ A and x ∈ B, and vice versa.
The finite intersection ∩nj=1 A j of sets A1, . . . , An is the set with the property
that, if x ∈ ∩nj=1 A j , then for all i = 1, . . . , n, x ∈ Ai and vice versa: If x ∈ Ai
for all i = 1, . . . , n, then x ∈ ∩nj=1 A j . Similarly, the countable intersection
∩∞
j=1 A j of an infinite sequence of sets A j , j = 1, 2, . . . is a setwith the property

that, if x ∈ ∩∞
j=1 A j , then for all indices i ≥ 1, x ∈ Ai , and vice versa: If x ∈ Ai

for all indices i ≥ 1, then x ∈ ∩∞
j=1 A j .

A set A is a subset of a set B, denoted by A ⊂ B, if all the elements of A are
contained in B. If A ⊂ B and B ⊂ A, then A = B.
The difference A\B (also denoted by A − B) of sets A and B is the set of

elements of A that are not contained in B. The symmetric difference of two sets
A and B is denoted and defined by A"B = (A/B) ∪ (B/A).

283
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If A ⊂ B, then the set Ã = B/A (also denoted by ∼ A) is called the com-
plement of A with respect to B. If A j for j = 1, 2, 3, . . . are subsets of B, then
∼ ∪ j A j = ∩ j Ã j and ∼ ∩ j A j = ∪ j Ã j for finite as well as countable infinite
unions and intersections.
Sets A and B are disjoint if they do not have elements in common: A ∩ B = ∅,

where ∅ denotes the empty set, that is, a set without elements. Note that A ∪ ∅ =
A and A ∩ ∅ = ∅. Thus, the empty set ∅ is a subset of any set, including ∅ itself.
Consequently, the empty set is disjoint with any other set, including ∅ itself. In
general, a finite or countable infinite sequence of sets is disjoint if their finite
or countable intersection is the empty set ∅.
For every sequence of sets A j , j = 1, 2, 3, . . . , there exists a sequence

Bj , j = 1, 2, 3, . . . of disjoint sets such that for each j, Bj ⊂ A j , and ∪ j A j =
∪ j B j . In particular, let B1 = A1 and Bn = An \∪n−1

j=1 A j for n = 2, 3, 4, . . . .
The order in which unions are taken does not matter, and the same applies

to intersections. However, if you take unions and intersections sequentially,
it matters what is done first. For example, (A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C),
which is in general different from A ∪ (B ∩ C) except if A ⊂ C . Similarly, (A ∩
B) ∪ C = (A ∪ C) ∩ (B ∪ C), which is in general different from A ∩ (B ∪ C)
except if A ⊂ B.

II.1.2. Sets in Euclidean Spaces

An open ε-neighborhood of a point x in a Euclidean space R
k is a set of the

form

Nε(x) = {y ∈ R
k : ‖y − x‖ < ε}, ε > 0,

and a closed ε-neighborhood is a set of the form

N̄ ε(x) = {y ∈ R
k : ‖y − x‖ ≤ ε}, ε > 0.

A set A is considered open if for every x ∈ A there exists a small open
ε-neighborhood Nε(x) contained in A. In shorthand notation: ∀x ∈ A ∃ε >
0: Nε(x) ⊂ A,where ∀ stands for “for all” and ∃ stands for “there exists.” Note
that the ε’s may be different for different x.
A point x is called a point of closure of a subset A of R

k if every open ε-
neighborhood Nε(x) contains a point in A as well as a point in the complement
Ã of A. Note that points of closure may not exist, and if one exists it may not
be contained in A. For example, the Euclidean space R

k itself has no points of
closure because its complement is empty. Moreover, the interval (0,1) has two
points of closure, 0 and 1, both not included in (0,1). The boundary of a set A,
denoted by ∂A, is the set of points of closure of A. Again, ∂A may be empty.
A set A is closed if it contains all its points of closure provided they exist. In
other words, A is closed if and only if ∂A 
= ∅ and ∂A ⊂ A. Similarly, a set A
is open if either ∂A = ∅ or ∂A ⊂ Ã. The closure of a set A, denoted by Ā, is
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the union of A and its boundary ∂A: Ā = A ∪ ∂A. The set A\∂A is the interior
of A.
Finally, if for each pair x, y of points in a set A and an arbitrary λ ∈ [0, 1]

the convex combination z = λx + (1− λ)y is also a point in A, then the set A
is called convex.

II.2. Supremum and Infimum

The supremum of a sequence of real numbers, or a real function, is akin to
the notion of a maximum value. In the latter case the maximum value is taken
at some element of the sequence, or in the function case some value of the
argument. Take for example the sequence an = (−1)n/n for n = 1, 2, . . . , that
is, a1 = −1, a2 = 1/2, a3 = −1/3, a4 = 1/4, . . . .Then clearly the maximum
value is 1/2, which is taken by a2. The latter is what distinguishes a maximum
from a supremum. For example, the sequence an = 1− 1/n for n = 1, 2, . . . is
bounded by 1: an < 1 for all indices n ≥ 1, and the upper bound 1 is the lowest
possible upper bound; however, a finite index n for which an = 1 does not
exist. More formally, the (finite) supremum of a sequence an(n = 1, 2, 3, . . .)
is a number b denoted by supn≥1 an such that an ≤ b for all indices n ≥ 1, and
for every arbitrary small positive number ε there exists a finite index n such
that an > b − ε. Clearly, this definition fits a maximum as well: a maximum is
a supremum, but a supremum is not always a maximum.
If the sequence an is unbounded from above in the sense that for every

arbitrary, large real number M there exists an index n ≥1 for which an > M,
then we say that the supremum is infinite: supn≥1 an = ∞.
The notion of a supremumalso applies to functions. For example, the function
f (x) = exp(−x2) takes its maximum 1 at x = 0, but the function f (x) = 1−
exp(−x2) does not have a maximum; it has supremum 1 because f (x) ≤ 1 for
all x , but there does not exist a finite x for which f (x) = 1.As another example,
let f (x) = x on the interval [a, b]. Then b is themaximumof f (x) on [a, b], but
b is only the supremum f (x) on [a, b) because b is not contained in [a, b). More
generally, the finite supremum of a real function f (x) on a set A, denoted by
supx∈A f (x), is a real number b such that f (x) ≤ b for all x in A, and for every
arbitrary, small positive number ε there exists an x in A such that f (x) > b − ε.
If f (x) = b for some x in A, then the supremum coincides with the maximum.
Moreover, the supremum involved is infinite, supx∈A f (x) = ∞, if for every
arbitrary large real number M there exists an x in A for which f (x) > M .
The minimum versus infimum cases are similar:

inf
n≥1
an = − sup

n≥1
(−an) and infx∈A f (x) = − supx∈A(− f (x)).

The concepts of supremum and infimum apply to any collection {cα , α ∈
A} of real numbers, where the index set A may be uncountable, for we may
interpret cα as a real function on the index set A – for instance, cα = f (α).
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II.3. Limsup and Liminf

Let an(n = 1, 2, . . .) be a sequence of real numbers, and define the sequence
bn as

bn = sup
m≥n
am . (II.1)

Then bn is a nonincreasing sequence: bn ≥ bn+1 because, if an is greater than
the smallest upper bound of an+1, an+2, an+3, . . ., then an is the maximum of
an, an+1, an+2, an+3, . . .; hence, bn = an > bn+1 and, if not, then bn = bn+1 .

Nonincreasing sequences always have a limit, although the limit may be −∞.
The limit of bn in (II.1) is called the limsup of an:

limsup
n→∞

an
def.= lim

n→∞

(
sup
m≥n
am

)
. (II.2)

Note that because bn is nonincreasing, the limit of bn is equal to the infimum
of bn . Therefore, the limsup of an may also be defined as

limsup
n→∞

an
def.= inf

n≥1

(
sup
m≥n
am

)
. (II.3)

Note that the limsup may be+∞ or−∞, for example, in the cases an = n and
an = −n, respectively.

Similarly, the liminf of an is defined by

liminf
n→∞

an
def.= lim

n→∞

(
inf
m≥n am

)
(II.4)

or equivalently by

liminf
n→∞

an
def.= sup

n≥1

(
inf
m≥n am

)
. (II.5)

Again, it is possible that the liminf is +∞ or −∞.
Note that liminfn→∞ an ≤ limsupn→∞ an because infm≥n am ≤ supm≥n am

for all indices n ≥ 1, and therefore the inequality must hold for the limits
as well.
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Theorem II.1:

(a) If liminf n→∞ an = limsupn→∞ an, then limn→∞ an = limsup
n→∞

an, and if

liminf n→∞ an < limsupn→∞ an, then the limit of an does not exist.
(b) Every sequence an contains a subsequence ank such that limk→∞ ank =

limsupn→∞ an, and an also contains a subsequence anm such that
limm→∞ anm = liminf n→∞ an.

Proof: The proof of (a) follows straightforwardly from (II.2), (II.4), and the
definition of a limit. The construction of the subsequence ank in part (b) can be
done recursively as follows. Let b = limsupn→∞ an < ∞. Choose n1 = 1, and
suppose that we have already constructed an j for j = 1, . . . , k ≥ 1. Then there
exists an index nk+1 > nk such that ank+1 > b − 1/(k + 1) because, otherwise,
am ≤ b − 1/(k + 1) for all m ≥ nk , which would imply that limsupn→∞ an ≤
b − 1/(k + 1). Repeating this construction yields a subsequence ank such that,
from large enough k onwards, b − 1/k < ank ≤ b. If we let k → ∞, the limsup
case of part (b) follows. If limsupn→∞ an = ∞, then, for each index nk we can
find an index nk+1 > nk such that ank+1 > k + 1; hence, limk→∞ ank = ∞. The
subsequence in the case limsupn→∞ an = −∞ and in the liminf case can be
constructed similarly. Q.E.D.
The concept of a supremum can be generalized to sets. In particular, the

countable union ∪∞
j=1 A j may be interpreted as the supremum of the sequence

of sets A j , that is, the smallest set containing all the sets A j . Similarly, we may
interpret the countable intersection ∩∞

j=1 A j as the infimum of the sets A j , that
is, the largest set contained in each of the sets A j . Now let Bn = ∪∞

j=n A j for
n = 1, 2, 3, . . . . This is a nonincreasing sequence of sets: Bn+1 ⊂ Bn; hence,
∩nj=1 Bn = Bn . The limit of this sequence of sets is the limsup of An for n→ ∞,
that is, as in (II.3) we have

limsup
n→∞

An
def.= ∞∩

n=1

(
∞∪
j=n
A j

)
.

Next, let Cn = ∩∞
j=n A j for n = 1, 2, 3, . . . . This is a nondecreasing sequence

of sets: Cn ⊂ Cn+1; hence, ∪nj=1 Cn = Cn . The limit of this sequence of sets is
the liminf of An for n→ ∞, that is, as in (II.5) we have

liminf
n→∞ An

def.= ∞∪
n=1

(
∞∩
j=n
A j

)
.

II.4. Continuity of Concave and Convex Functions

A real function ϕ on a subset of a Euclidean space is convex if, for each pair
of points a, b and every λ ∈ [0, 1], ϕ(λa + (1− λ)b) ≥ λϕ(a)+ (1− λ)ϕ(b).
For example, ϕ(x) = x2 is a convex function on the real line, and so is ϕ(x) =
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exp(x). Similarly, ϕ is concave if, for each pair of points a, b and every λ ∈
[0, 1], ϕ(λa + (1− λ)b) ≤ λϕ(a)+ (1− λ)ϕ(b).
I will prove the continuity of convex and concave functions by contradiction.

Suppose that ϕ is convex but not continuous in a point a. Then

ϕ(a+) = lim
b↓a

ϕ(b) 
= ϕ(a) (II.6)

or

ϕ(a−) = lim
b↑a

ϕ(b) 
= ϕ(a), (II.7)

or both. In the case of (II.6) we have

ϕ(a+) = lim
b↓a

ϕ(a + 0.5(b − a)) = lim
b↓a

ϕ(0.5a + 0.5b)

≤ 0.5ϕ(a)+ 0.5 lim
b↓a

ϕ(b) = 0.5ϕ(a)+ 0.5ϕ(a+);

hence, ϕ(a+) ≤ ϕ(a), and therefore by (II.6), ϕ(a+) < ϕ(a). Similarly, if (II.7)
is true, then ϕ(a−) < ϕ(a). Now let δ > 0. By the convexity of ϕ, it follows
that

ϕ(a) = ϕ(0.5(a − δ)+ 0.5(a + δ)) ≤ 0.5ϕ(a − δ)+ 0.5ϕ(a + δ),

and consequently, letting δ ↓ 0 and using the fact that ϕ(a+) < ϕ(a), or
ϕ(a−) < ϕ(a), or both, we have ϕ(a) ≤ 0.5ϕ(a−)+ 0.5ϕ(a+) < ϕ(a). Be-
cause this result is impossible, it follows that (II.6) and (II.7) are impossible;
hence, ϕ is continuous.
If ϕ is concave, then −ϕ is convex and thus continuous; hence, concave

functions are continuous.

II.5. Compactness

An (open) covering of a subset � of a Euclidean space R
k is a collection of

(open) subsetsU (α), α ∈ A, of R
k , where A is a possibly uncountable index set

such that� ⊂ ∪α∈AU (α). A set is described as compact if every open covering
has a finite subcovering; that is, ifU (α), α ∈ A is an open covering of� and�
is compact, then there exists a finite subset B of A such that � ⊂ ∪α∈B U (α).

The notion of compactness extends to more general spaces than only Eu-
clidean spaces. However,

Theorem II.2: Closed and bounded subsets of Euclidean spaces are compact.

Proof: I will prove the result for sets� inR only. First note that boundedness
is a necessary condition for compactness because a compact set can always be
covered by a finite number of bounded open sets.
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Next let� be a closed and bounded subset of the real line. By boundedness,
there exist points a and b such that� is contained in [a, b]. Because every open
covering of � can be extended to an open covering of [a, b], we may without
loss of generality assume that� = [a, b]. For notational convenience, let� =
[0, 1]. There always exists an open covering of [0, 1] because, for arbitrary
ε > 0, [0, 1] ⊂ ∪0≤x≤1(x − ε, x + ε). Let U (α), α ∈ A, be an open covering
of [0, 1]. Without loss of generality we may assume that each of the open sets
U (α) takes the form (a(α), b(α)). Moreover, if for two different indices α and
β, a(α) = a(β), then either (a(α), b(α)) ⊂ (a(β), b(β)), so that (a(α), b(α)) is
superfluous, or (a(α), b(α)) ⊃ (a(β), b(β)), so that (a(β), b(β)) is superfluous.
Thus, without loss of generality we may assume that the a(α)’s are all distinct
and can be arranged in increasing order. Consequently, we may assume that the
index set A is the set of the a(α)’s themselves, that is,U (a) = (a, b(a)), a ∈ A,
where A is a subset of R such that [0, 1] ⊂ ∪a∈A(a, b(a)). Furthermore, if
a1 < a2, then b(a1) < b(a2), for otherwise (a2, b(a2)) is superfluous. Now let
0 ∈ (a1, b(a1)), and define for n = 2, 3, 4, . . . , an = (an−1+ b(an−1))/2. Then
[0, 1] ⊂ ∪∞

n=1(an, b(an)). This implies that 1 ∈ ∪∞
n=1(an, b(an)); hence, there

exists an n such that 1 ∈ (an, b(an)). Consequently, [0, 1] ⊂ ∪nj=1(a j , b(a j )).
Thus, [0, 1] is compact. This argument extends to arbitrary closed and bounded
subsets of a Euclidean space. Q.E.D.
A limit point of a sequence xn of real numbers is a point x∗ such that for every

ε > 0 there exists an index n for which | xn − x∗ | < ε. Consequently, a limit
point is a limit along a subsequence. Sequences xn confined to an interval [a, b]
always have at least one limit point, and these limit points are contained in [a, b]
because limsupn→∞ xn and liminfn→∞ xn are limit points contained in [a, b]
and any other limit point must lie between liminfn→∞ xn and limsupn→∞ xn .
This property carries over to general compact sets:

Theorem II.3: Every infinite sequence θn of points in a compact set � has at
least one limit point, and all the limit points are contained in �.

Proof: Let � be a compact subset of a Euclidean space and let �k, k =
1, 2, . . . be a decreasing sequence of compact subsets of � each containing
infinitely many θn’s to be constructed as follows. Let�0 = � and k ≥ 0. There
exist a finite number of points θ∗k, j , j = 1, . . . ,mk such that, with Uk(θ∗) =
{θ : ‖θ − θ∗‖ < 2−k},�k is contained in ∪mkj=1Uk(θ

∗
k, j ). Then at least one of

these open sets contains infinitely many points θn , say Uk(θ∗k,1). Next, let

�k+1 = {θ : ‖θ − θ
∗
k,1‖ ≤ 2−k} ∩�k,

which is compact and contains infinitely many points θn . Repeating this con-
struction, we can easily verify that∩∞

k=0�k is a singleton and that this singleton
is a limit point contained in �. Finally, if a limit point θ∗ is located outside �,
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then, for some large k,Uk(θ∗) ∩� = ∅,which contradicts the requirement that
Uk(θ∗) contain infinitely many θn’s. Q.E.D.

Theorem II.4: Let θn be a sequence of points in a compact set �. If all the
limit points of θn are the same, then limn→∞θn exists and is a point in �.

Proof: Let θ∗ ∈ � be the common limit point. If the limit does not exist, then
there exists a δ > 0 and an infinite subsequence θnk such that | θnk −θ∗| ≥ δ for
all k. But θnk also has limit point θ∗, and thus there exists a further subsequence
θnk (m) that converges to θ∗. Therefore, the theorem follows by contradiction.
Q.E.D.

Theorem II.5: For a continuous function g on a compact set�, supθ∈� g(θ ) =
maxθ∈� g(θ ) and inf θ∈� g(θ ) = minθ∈� g(θ ).Consequently, argmaxθ∈� g(θ ) ∈
� and argminθ∈� g(θ ) ∈ �.

Proof: It follows from the definition of supθ∈� g(θ ) that for each k ≥ 1
there exists a point θk ∈ � such that g(θk) > supθ∈� g(θ )− 2−k ; hence,
limk→∞ g(θk) = supθ∈� g(θ ). Because � is compact, the sequence θk has a
limit point θ∗ ∈ � (see Theorem II.3); hence, by the continuity of g, g(θ∗) =
supθ∈� g(θ ). Consequently, supθ∈� g(θ ) = maxθ∈� g(θ ) = g(θ∗). Q.E.D.

Theorem II.6: Let g be a continuous function on a compact set �, and
let θ0 = argminθ∈� g(θ ) be unique. Then there exists a δ̄ > 0 such
that for all δ ∈ (0, δ̄), inf θ∈�:‖θ−θ0 ‖≥δ g(θ ) > g(θ0). Similarly, if θ0 =
argmaxθ∈� g(θ ) is unique, then there exists a δ̄ > 0 such that for all δ ∈
(0, δ̄), supθ∈�: ‖θ−θ0 ‖≥δ g(θ ) < g(θ0).

Proof: It follows from Theorem II.5 that θ0 = argminθ∈� g(θ ) ∈ �. Let
�δ = {θ ∈ � : ‖θ − θ0‖ ≥ δ} for δ > 0. If �δ is nonempty, then it is com-
pact. To see this, let {�α, α ∈ A} be an open covering of�δ : �δ ⊂ ∪α∈A�α,

and let �∗ = {θ : ‖θ − θ0 ‖ < δ}. Then � ⊂ �∗ ∪ (∪α∈A�α), and thus by the
compactness of� there exists a finite subcovering� ⊂ ∪nj=1� j . Without loss
of generality wemay assume that�∗ = �0 and thus that�δ ⊂ ∪nj=0� j ; hence,
�δ is compact. Then by Theorem II.5, θδ = argminθ∈�δ

g(θ ) ∈ �δ ⊂ �. Be-
cause θ0 is unique we have g(θ0) < g(θδ). The argmax case follows by a similar
argument. Q.E.D.

II.6. Uniform Continuity

A function g onR
k is called uniformly continuous if for every ε > 0 there exists

a δ > 0 such that |g(x)− g(y)| < ε if ‖x − y‖ < δ. In particular,
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Theorem II.7: If a function g is continuous on a compact subset� ofRk, then
it is uniformly continuous on �.

Proof: Let ε > 0 be arbitrary, and observe from the continuity of g that,
for each x in �, there exists a δ(x) > 0 such that |g(x)− g(y)| < ε/2 if
‖x − y‖ < 2δ(x). Now let U (x) = {y ∈ R

k : ‖y − x‖ < δ(x)}. Then the col-
lection {U (x), x ∈ �} is an open covering of �; hence, by compactness of �
there exists a finite number of points θ1, . . . , θn in� such that� ⊂ ∪nj=1U (θ j ).
Next, let δ = min1≤ j≤n δ(θ j ). Each point x ∈ � belongs to at least one of the
open sets U (θ j ) : x ∈ U (θ j ) for some j . Then ‖x − θ j ‖ < δ(θ j ) < 2δ(θ j ) and
hence |g(x)− g(θ j )| < ε/2.Moreover, if ‖x − y‖ < δ, then

‖y − θ j ‖ = ‖y − x + x − θ j ‖ ≤ ‖x − y‖
+‖x − θ j ‖ < δ + δ(θ j ) ≤ 2δ(θ j );

hence, |g(y)− g(θ j )| < ε/2. Consequently, |g(x)− g(y)| ≤ |g(x)− g(θ j )| +
|g(y)− g(θ j )| < ε if ‖x − y‖ < δ. Q.E.D.

II.7. Derivatives of Vector and Matrix Functions

Consider a real function f (x) = f (x1, . . . , xn) on R
n, where x =

(x1, . . . , xn )
T. Recall that the partial derivative of f to a component xi of

x is denoted and defined by

∂ f (x)

∂ xi
= ∂ f (x1, . . . , xn)

∂ xi
def.= lim

δ→0

f (x1, . . . , xi−1, xi +δ, xi+1, . . . , xn)− f (x1, . . . , xi−1, xi , xi+1, . . . , xn)

δ
.

For example, let f (x) = βTx = xTβ = β1x1 + · · ·βnxn. Then

∂ f (x)/∂x1

...
∂ f (x)/∂xn


 =



β1
...
βn


 = β.

This result could also have been obtained by treating xT as a scalar and taking the
derivative of f (x) = xTβ to xT : ∂(xTβ)/∂xT = β. This motivates the conven-
tion to denote the column vector of a partial derivative of f (x) by ∂ f (x)/∂ xT.
Similarly, if we treat x as a scalar and take the derivative of f (x) = βTx to x ,
then the result is a row vector: ∂(βTx)/∂x = βT. Thus, in general,

∂ f (x)

∂xT
def.=



∂ f (x)/∂x1

...
∂ f (x)/∂xn


 ,

∂ f (x)

∂x
def.= (∂ f (x)/∂x1, . . . , ∂ f (x)/∂xn) .
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If the function H is vector valued, for instance H (x) = (h1(x), . . . ,
hm(x))T, x ∈ R

n, then applying the operation ∂/∂x to each of the components
yields an m × n matrix:

∂H (x)

∂x
def.=



∂h1(x)/∂x

...
∂hm(x)/∂x


 =



∂h1(x)/∂x1 · · · ∂h1(x)/∂xn

...
...

∂hm(x)/∂x1 · · · ∂hm(x)/∂xn


 .

Moreover, applying the latter to a column vector of partial derivatives of a real
function f yields

∂(∂ f (x)/∂xT)

∂x
=




∂2 f (x)

∂x1∂x1
· · · ∂2 f (x)

∂x1∂xn
...

. . .
...

∂2 f (x)

∂xn∂x1
· · · ∂2 f (x)

∂xn∂xn


 = ∂2 f (x)

∂x∂xT
,

for instance.
In the case of an m × n matrix X with columns x1, . . . , xn ∈ R

k, x j =
(x1, j , . . . , xm, j )

T and a differentiable function f (X ) on the vector space of
k × n matrices, we may interpret X = (x1, . . . , xn) as a “row” of column vec-
tors, and thus

∂ f (X )

∂X
= ∂ f (X )

∂(x1, . . . , xn)
def.=



∂ f (X )/∂x1

...
∂ f (X )/∂xn




def.=



∂ f (X )/∂x1,1 · · · ∂ f (X )/∂xm,1

...
. . .

...
∂ f (X )/∂x1,n · · · ∂ f (X )/∂xm,n




is an n × m matrix. For the same reason, ∂ f (X )/∂XT def.= (∂ f (X )/∂X )T. An
example of such a derivative to amatrix is given by Theorem I.33 in Appendix I,
which states that if X is a square nonsingular matrix, then ∂ ln[det(X )]/∂X =
X−1.

Next, consider the quadratic function f (x) = a + xTb + xTCx, where

x =



x1
...
xn


 , b =



b1
...
bn


 ,C =



c1,1 · · · c1,n
... · · · ...
cn,1 · · · cn,n


 with ci, j = c j,i .
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Thus, C is a symmetric matrix. Then

∂ f (x)/∂xk =
∂
(
a +∑n

i=1 bi xi +
∑n
i=1

∑n
j=1 xi ci, j x j

)
∂xk

=
n∑
i=1

bi
∂xi
∂xk

+
n∑
i=1

n∑
j=1

∂xi ci, j x j
∂xk

= bk + 2ck,k xk +
n∑
i=1
i 
=k

xi ci,k +
n∑
j=1
j 
=k

ck, j x j

= bk + 2
n∑
j=1

ck, j x j , k = 1, . . . , n;

hence, stacking these partial derivatives in a column vector yields

∂ f (x)/∂ xT = b + 2Cx. (II.8)

If C is not symmetric, we may without loss of generality replace C in the func-
tion f (x) by the symmetric matrix C/2+ CT/2 because xTCx = (xTCx)T =
xTCTx , and thus

∂ f (x)/∂xT = b + Cx + CTx .

The result (II.8) for the case b= 0 can be used to give an interesting alternative
interpretation of eigenvalues and eigenvectors of symmetric matrices, namely,
as the solutions of a quadratic optimization problemunder quadratic restrictions.
Consider the optimization problem

max ormin xT Ax s · t · xTx = 1, (II.9)

where A is a symmetric matrix and “max” and “min” include local maxima
and minima and saddle-point solutions. The Lagrange function for solving this
problem is

‹(x, λ) = xTAx+ λ(1− xTx)
with first-order conditions

∂‹(x, λ)/∂xT = 2Ax− 2λx = 0 ⇒ Ax = λx, (II.10)

∂‹(x, λ)/∂λ = 1− xTx = 0 ⇒ ‖x‖ = 1. (II.11)

Condition (II.10) defines the Lagrange multiplier λ as the eigenvalue and the
solution for x as the corresponding eigenvector of A, and (II.11) is the normal-
ization of the eigenvector to unit length. If we combine (II.10) and (II.11), it
follows that λ = xTAx.
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Figure II.1. The mean value theorem.

II.8. The Mean Value Theorem

Consider a differentiable real function f (x) displayed as the curved line in
Figure II.1. We can always find a point c in the interval [a, b] such that
the slope of f (x) at x = c, which is equal to the derivative f ′(c), is the
same as the slope of the straight line connecting the points (a, f (a)) and
(b, f (b)) simply by shifting the latter line parallel to the point where it be-
comes tangent to f (x). The slope of this straight line through the points
(a, f (a)) and (b, f (b)) is ( f (b)− f (a))/(b − a). Thus, at x = c we have
f ′(c) = ( f (b)− f (a))/(b − a), or equivalently, f (b) = f (a)+ (b − a) f ′(c).
This easy result is called the mean value theorem. Because this point c can
also be expressed as c = a + λ(b − a), with 0 ≤ λ = (c − a)/(b − a) ≤ 1,
we can now state the mean value theorem as follows:

Theorem II.8(a): Let f (x) be a differentiable real function on an interval
[a, b] with derivative f ′(x). For any pair of points x, x0 ∈ [a, b] there exists a
λ ∈ [0, 1] such that f (x) = f (x0)+ (x − x0) f ′(x0 + λ(x − x0)).

This result carries over to real functions of more than one variable:

Theorem II.8(b): Let f (x) be a differentiable real function on a convex subset
C of R

k . For any pair of points x, x0 ∈ C there exists a λ ∈ [0, 1] such that

f (x) = f (x0)+ (x − x0)T(∂/∂yT) f (y)|y=x0+λ(x−x0).

II.9. Taylor’s Theorem

Themean value theorem implies that if, for two pointsa < b, f (a) = f (b), then
there exists a point c ∈ [a, b] such that f ′(c) = 0. This fact is the core of the
proof of Taylor’s theorem:
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Theorem II.9(a): Let f (x) be an n-times, continuously differentiable real func-
tion on an interval [a, b] with the nth derivative denoted by f (n)(x). For any
pair of points x, x0 ∈ [a, b] there exists a λ ∈ [0, 1] such that

f (x) = f (x0)+
n−1∑
k=1

(x − x0 )k
k!

f (k)(x0)

+ (x − xn )n
n!

f (n)(x0+λ(x − x0)).

Proof: Let a ≤ x0 < x ≤ b. We can always write

f (x) = f (x0)+
n−1∑
k=1

(x − x0 )k
k!

f (k)(x0)+ Rn, (II.12)

where Rn is the remainder term. Now let a ≤ x0 < x ≤ b be fixed, and consider
the function

g(u) = f (x)− f (u)−
n−1∑
k=1

(x − u )k
k!

f (k)(u)− Rn(x − u )n
(x − x0 )n

with derivative

g′(u) = − f ′(u)+
n−1∑
k=1

(x − u)k−1

(k − 1)!
f (k)(u)−

n−1∑
k=1

(x − u)k
k!

f (k+1)(u)

+ nRn(x − u)
n−1

(x − x0)n = − f ′(u)+
n−2∑
k=0

(x − u)k
k!

f (k+1)(u)

−
n−1∑
k=1

(x − u)k
k!

f (k+1)(u)+ nRn(x − u)
n−1

(x − x0)n

= − (x − u)n−1

(n − 1)!
f (n)(u)+ nRn(x − u)

n−1

(x − x0)n .

Then g(x) = g(x0) = 0; hence, there exists a point c ∈ [x0, x] such that
g′(c) = 0 :

0 = − (x − c)n−1

(n − 1)!
f (n)(c)+ nRn(x − c)

n−1

(x − x0)n .

Therefore,

Rn = (x − xn )n
n!

f (n)(c) = (x − xn )n
n!

f (n) (x0+λ(x − x0)) , (II.13)
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where c = x0 + λ (x − x0). If we combine (II.12) and (II.13), the theorem
follows. Q.E.D.
Also, Taylor’s theoremcarries over to real functions ofmore than one variable,

but the result involved is awkward to display for n> 2. Therefore, we only state
the second-order Taylor expansion theorem involved:

Theorem II.9(b): Let f (x) be a twice continuously differentiable real function
on a convex subset % of R

n. For any pair of points x, x0 ∈ % there exists a
λ ∈ [0, 1] such that

f (x) = f (x0)+ (x − x0 )T
(
∂ f (y)

∂ yT

∣∣∣∣
y=x0

)

+ 1

2
(x − x0

T
)

(
∂2 f (y)

∂y∂yT

∣∣∣∣
y=x0+λ(x−x0)

)
(x − x0). (II.14)

II.10. Optimization

Theorem II.9(b) shows that the function f (x) involved is locally quadratic.
Therefore, the conditions for a maximum or a minimum of f (x) in a point
x0 ∈ % can be derived from (II.14) and the following theorem.

Theorem II.10: Let C be a symmetric n × n matrix, and let f (x) = a + xTb +
xTCx,∈ R

n, where a is a given scalar and b is a given vector in R
n. If C is

positive (negative) definite, then f (x) takes a unique minimum (maximum) at
x = −1/2C−1 b.

Proof: The first-order condition for a maximum or minimum is
∂ f (x)/∂ xT = 0(∈ R

n); hence, x = −1/2C−1b.As to the uniqueness issue and
the question of whether the optimum is a minimum or a maximum, recall that
C = Q�QT, where � is the diagonal matrix of the eigenvalues of C and Q is
the corresponding matrix of eigenvectors. Thus, we can write f (x) as f (x) =
a + xT QQTb + xTQ�QTx . Let y = QTx = (y1, . . . , yn)T and β = QTb =
(β1, . . . , βn)T. Then f (Qy) = a + yTβ + yT� y = a +∑n

j=1(β j y j + λ j y2j ).
The latter is a sum of quadratic functions in one variable that each have a unique
minimum if λ j > 0 and a unique maximum if λ j < 0. Q.E.D.
It follows now from (II.14) and Theorem II.10 that

Theorem II.11: The function f (x) in Theorem II.9(b) takes a local maximum
(minimum) in a point x0 ∈ %, that is, x0 is contained in an open subset %0

of % such that, for all x ∈ %0\{x0}, f (x) < f (x0)( f (x) > f (x0)) if and only if
∂ f (x0)/∂ xT0 = 0(∈ R

n), and the matrix ∂2 f (x0)/(∂ x0 ∂ xT0 ) is negative (posi-
tive) definite.
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A practical application of Theorems II.8(a), II.9, and II.10 is the Newton
iteration for finding a minimum or a maximum of a function. Suppose that the
function f (x) in Theorem II.9(b) takes a unique global maximum at x∗ ∈ %.
Starting from an initial guess x0 of x∗, for k ≥ 0 let,

xk+1 = xk −
(
∂2 f (xk)

∂xk∂xTk

)−1 (
∂ f (xk)

∂xTk

)
.

Thus, the Newton iteration maximizes or minimizes the local quadratic ap-
proximation of f in xk . The iteration is stopped if for some small threshold
ε > 0, ‖ xk+1 − xk ‖ < ε.



Appendix III – A Brief Review
of Complex Analysis

III.1. The Complex Number System

Complex numbers havemany applications. The complex number system allows
computations to be conducted that would be impossible to perform in the real
world. In probability and statistics we mainly use complex numbers in dealing
with characteristic functions, but in time series analysis complex analysis plays
a key role. See for example Fuller (1996).
Complex numbers are actually two-dimensional vectors endowed with arith-

metic operations that make them act as numbers. Therefore, complex numbers
are introduced here in their “real” form as vectors in R

2.
In addition to the usual addition and scalar multiplication operators on the

elements of R
2 (see Appendix I), we define the vector multiplication operator

“×” by (
a
b

)
×

(
c
d

)
def.=

(
a · c − b · d
b · c + a · d

)
. (III.1)

Observe that(
a
b

)
×

(
c
d

)
=

(
c
d

)
×

(
a
b

)
.

Moreover, define the inverse operator “−1” by(
a
b

)−1
def.= 1

a2+ b2
(
a
−b

)
provided that a2+ b2 > 0, (III.2)

and thus (
a
b

)−1

×
(
a
b

)
=

(
a
b

)
×

(
a
b

)−1

= 1

a2+ b2
(
a
−b

)
×

(
a
b

)
=

(
1
0

)
.

298
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The latter vector plays the same role as the number 1 in the real number system.
Furthermore, we can now define the division operator “/” by

(
a
b

)/(
c
d

)
def.=

(
a
b

)
×

(
c
d

)−1

= 1

c2+ d2
(
a
b

)
×

(
c
−d

)

= 1

c2+ d2
(
a · c + b · d
b · c − a · d

)
(III.3)

provided that c2+ d2 > 0. Note that

(
1
0

)/(
c
d

)
= 1

c2+ d2
(
c
−d

)
=

(
c
d

)−1

.

In the subspace R
2
1 = {(x, 0)T, x ∈ R} these operators work the same as for

real numbers:(
a
0

)
×

(
c
0

)
=

(
a · c
0

)
,

(
c
0

)−1

=
(
1/c
0

)
,

(
a
0

)/(
c
0

)
=

(
a/c
0

)

provided that c 
= 0. Therefore, all the basic arithmetic operations (addition,
subtraction, multiplication, division) of the real number system R apply to R

2
1,

and vice versa.
In the subspaceR

2
2 = {(0, x)T, x ∈ R} the multiplication operator “×” yields(

0
b

)
×

(
0
d

)
=

(−b · d
0

)
.

In particular, note that(
0
1

)
×

(
0
1

)
=

(−1
0

)
. (III.4)

Now let

a + i · b def.=
(
1
0

)
a +

(
0
1

)
b, where i =

(
0
1

)
(III.5)

and interpret a + i.0 as the mapping

a + i · 0 :

(
a
0

)
→ a. (III.6)
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Then it follows from (III.1) and (III.5) that

(a + i · b)× (c + i · d) =
(
a
b

)
×

(
c
d

)
=

(
a · c − b · d
b · c + a · d

)
= (a · c − b · d)+ i · (b · c + a · d). (III.7)

However, the same result can be obtained by using standard arithmetic opera-
tions and treating the identifier i as

√−1 :

(a + i · b)× (c + i · d) = a · c + i2 · b · d + i · b · c + i · a · d
= (a · c − b · d)+ i · (b · c + a · d). (III.8)

In particular, it follows from (III.4)–(III.6) that

i × i =
(
0
1

)
×

(
0
1

)
=

(−1
0

)
= −1+ i · 0 → −1,

which can also be obtained by standard arithmetic operations with treated i as√−1 and i.0 as 0.
Similarly, we have

(a + i · b)/(c + i · d) =
(
a
b

)/(
c
d

)
= 1

c2+ d2
(
a · c + b · d
b · c − a · d

)

= a · c + b · d
c2+ d2 + i · b · c − a · d

c2+ d2
provided that c2+ d2 > 0. Again, this result can also be obtained by standard
arithmetic operations with i treated as

√−1 :

(a + i · b)/(c + i · d) = a + i · b
c + i · d × c − i · d

c − i · d
= (a + i · b)× (c − i · d)

(c + i · d)× (c − i · d)

= a · c + b · d
c2+ d2 + i · b · c − a · d

c2+ d2 .

The Euclidean space R
2 endowed with the arithmetic operations (III.1)–

(III.3) resembles a number system except that the “numbers” involved cannot
be ordered. However, it is possible to measure the distance between these “num-
bers” using the Euclidean norm:

|a + i · b| def.=
∥∥∥∥
(
a
b

)∥∥∥∥ =
√
a2+ b2

=
√
(a + i · b)× (a − i · b). (III.9)

If the “numbers” in this system are denoted by (III.5) and standard arithmetic
operations are applied with i treated as

√−1 and i.0 as 0, the results are the
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same as for the arithmetic operations (III.1), (III.2), and (III.3) on the elements
of R

2. Therefore, we may interpret (III.5) as a number, bearing in mind that this
number has two dimensions if b 
= 0.
From now on I will use the standard notation for multiplication, that is,

(a + i · b)(c + i · d) instead of (III.8).
The “a” of a + i · b is called the real part of the complex number involved,

denoted by Re(a + i · b) = a, and b is called the imaginary part, denoted by
Im(a + i · b) = b· Moreover, a − i · b is called the complex conjugate of a +
i · b and vice versa. The complex conjugate of z = a + i · b is denoted by a
bar: z̄ = a − i · b. It follows from (III.7) that, for z = a + i · b and w = c +
i · d, zw = z̄ · w̄. Moreover, |z| = √

z z. Finally, the complex number system
itself is denoted by ÷.

III.2. The Complex Exponential Function

Recall that, for real-valued x the exponential function ex , also denotedby exp(x),
has the series representation

ex =
∞∑
k=0

xk

k!
. (III.10)

The property ex+y = ex ey corresponds to the equality

∞∑
k=0

(x + y)k
k!

=
∞∑
k=0

1

k!

k∑
m=0

(
k
m

)
xk−m ym

=
∞∑
k=0

k∑
m=0

xk−m

(k − m)!
ym

m!

=
( ∞∑
k=0

xk

k!

)( ∞∑
m=0

ym

m!

)
. (III.11)

The first equality in (III.11) results from the binomial expansion, and the last
equality follows easily by rearranging the summation. It is easy to see that
(III.11) also holds for complex-valued x and y. Therefore, we can define the
complex exponential function by the series expansion (III.10):

ea+i ·b def.=
∞∑
k=0

(a + i · b)k
k!

=
∞∑
k=0

ak

k!

∞∑
m=0

(i · b)m
m!

= ea
∞∑
m=0

im · bm
m!

= ea
[ ∞∑
m=0

(−1)m · b2m
(2m)!

+ i ·
∞∑
m=0

(−1)m · b2m+1

(2m + 1)!

]
.

(III.12)
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Moreover, it follows from Taylor’s theorem that

cos(b) =
∞∑
m=0

(−1)m · b2m
(2m)!

, sin(b) =
∞∑
m=0

(−1)m · b2m+1

(2m + 1)!
, (III.13)

and thus (III.12) becomes

ea+i ·b = ea[cos(b)+ i · sin(b)]. (III.14)

Setting a = 0, we find that the latter equality yields the following expressions
for the cosines and sine in terms of the complex exponential function:

cos(b) = ei ·b+ e−i ·b
2

, sin(b) = ei ·b− e−i ·b
2 · i .

These expressions are handy in recovering the sine-cosine formulas:

sin(a) sin(b) = [cos(a − b)− cos(a + b)]/2
sin(a) cos(b) = [sin(a + b)+ sin(a − b)]/2
cos(a) sin(b) = [sin(a + b)− sin(a − b)]/2
cos(a) cos(b) = [cos(a + b)+ cos(a − b)]/2

sin(a + b) = sin(a) cos(b)+ cos(a) sin(b)

cos(a + b) = cos(a) cos(b)− sin(a) sin(b)

sin(a − b) = sin(a) cos(b)− cos(a) sin(b)

cos(a − b) = cos(a) cos(b)+ sin(a) sin(b).

Moreover, it follows from (III.14) that, for natural numbers n,

ei ·n·b = [cos(b)+ i · sin(b) ]n = cos(n · b)+ i · sin(n · b). (III.15)

This result is known as DeMoivre’s formula. It also holds for real numbers n,
as we will see in Section III.3.
Finally, note that any complex number z = a + i ·b can be expressed as

z = a + i · b = |z| ·
[

a√
a2+ b2

+ i · b√
a2+ b2

]
= |z| · [cos(2πϕ)+ i · sin(2πϕ)] = |z| · exp(i · 2πϕ),

where ϕ ∈ [0, 1] is such that 2πϕ = arccos(a/
√
a2+ b2) = arcsin(b/√

a2+ b2).
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III.3. The Complex Logarithm

Like the natural logarithm ln(·), the complex logarithm log(z), z ∈ ÷ is a com-
plex number a + i · b = log(z) such that exp(a + i · b) = z; hence, it follows
from (III.15) that z = exp(a)[cos(b)+ i · sin(b)] and consequently, because

| exp(−a) · z| = | cos(b)+ i · sin(b)| =
√
cos2(b)+ sin2(b) = 1,

we have that exp(a) = |z| and exp(i · b) = z/|z|. The first equation has a unique
solution, a = ln(|z|), as long as z 
= 0. The second equation reads as

cos(b)+ i · sin(b) = (Re(z)+ i · Im(z))/|z|; (III.16)

hence cos(b) = Re(z)/|z|, sin(b) = Im(z)/|z|, and thus b = arctan(Im(z)/
Re(z)). However, equation (III.16) also holds if we add or subtract
multiples of π to or from b because tan(b) = tan(b + m · π ) for arbitrary inte-
gers m; hence,

log(z) = ln(|z|)+ i · [arctan(Im(z)/Re(z))+ mπ ],
m = 0,±1,±2,±3, . . . . (III.17)

Therefore, the complex logarithm is not uniquely defined.
The imaginary part of (III.17) is usually denoted by

arg(z) = arctan(Im(z)/Re(z))+ mπ, m = 0,±1,±2,±3, . . . .

It is the angle in radians indicated in Figure III.1 eventually rotated multiples
of 180◦ clockwise or counterclockwise: Note that Im(z)/Re(z) is the tangents
of the angle arg(z); hence, arctan (Im(z)/Re(z)) is the angle itself.
With the complex exponential function and logarithm defined, we can now

define the power zw as the complex number a + i · b such that a + i · b =
exp(w · log(z)), which exists if |z| > 0. Consequently, DeMoivre’s formula car-
ries over to all real-valued powers n:

[cos(b)+ i · sin(b) ]n = (
ei ·b

)n = ei ·n·b = cos(n · b)+ i · sin(n · b).

III.4. Series Expansion of the Complex Logarithm

For the case x ∈ R, |x | < 1, it follows from Taylor’s theorem that ln(1+ x) has
the series representation

ln(1+ x) =
∞∑
k=1

(−1)k−1 xk /k. (III.18)

I will now address the issue of whether this series representation carries over if
we replace x by i · x because this will yield a useful approximation of exp(i · x),
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Figure III.1. arg(z).

which plays a key role in proving central limit theorems for dependent random
variables.1 See Chapter 7.
If (III.18) carries over we can write, for arbitrary integers m,

log(1+ i · x) =
∞∑
k=1

(−1)k−1i k xk/k + i · mπ

=
∞∑
k=1

(−1)2k−1i2k x2k/(2k)

+
∞∑
k=1

(−1)2k−1−1i2k−1x2k−1/(2k − 1)+ i · mπ

=
∞∑
k=1

(−1)k−1x2k/(2k)

+ i ·
∞∑
k=1

(−1)k−1x2k−1/(2k − 1)+ i · mπ. (III.19)

On the other hand, it follows from (III.17) that

log(1+ i · x) = 1

2
ln(1+ x2)+ i · [arctan(x)+ mπ ].

Therefore, we need to verify that, for x ∈ R, |x | < 1,

1

2
ln(1+ x2) =

∞∑
k=1

(−1)k−1x2k/(2k) (III.20)

1 For x ∈ Rwith |x | < 1, exp(i · x) = (1+ i · x) exp(−x2/2+ r (x)),where |r (x)| ≤ |x |3 .
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and

arctan(x) =
∞∑
k=1

(−1)k−1x2k−1/(2k − 1). (III.21)

Equation (III.20) follows from (III.18) by replacing xwith x2. Equation (III.21)
follows from

d

dx

∞∑
k=1

(−1)k−1x2k−1/(2k − 1) =
∞∑
k=1

(−1)k−1 x2k−2

=
∞∑
k=0

(− x2)k = 1

1+ x2

and the facts that arctan (0) = 0 and

darctan(x)

dx
= 1

1+ x2 .
Therefore, the series representation (III.19) is true.

III.5. Complex Integration

In probability and statistics we encounter complex integrals mainly in the form
of characteristic functions, which for absolutely continuous random variables
are integrals over complex-valued functions with real-valued arguments. Such
functions take the form

f (x) = ϕ(x)+ i · ψ(x), x ∈ R,

where ϕ and ψ are real-valued functions on R. Therefore, we may define the
(Lebesgue) integral of f over an interval [a, b] simply as

b∫
a

f (x)dx =
b∫
a

ϕ(x)dx + i ·
b∫
a

ψ(x)dx

provided of course that the latter two integrals are defined. Similarly, if µ is
a probability measure on the Borel sets in R

k and Re( f (x)) and Im( f (x)) are
Borel-measurable-real functions on R

k , then∫
f (x)dµ(x) =

∫
Re( f (x))dµ(x)+ i ·

∫
Im( f (x))dµ(x),

provided that the latter two integrals are defined.
Integrals of complex-valued functions of complex variables aremuch trickier,

though. See, for example,Ahlfors (1966).However, these types of integrals have
limited applicability in econometrics and are therefore not discussed here.



Appendix IV – Tables of Critical Values

Table IV.1: Critical values of the two-sided tk test at the 5% and 10% significance
levels

k 5% 10% k 5% 10% k 5% 10%

1 12.704 6.313 11 2.201 1.796 21 2.080 1.721
2 4.303 2.920 12 2.179 1.782 22 2.074 1.717
3 3.183 2.353 13 2.160 1.771 23 2.069 1.714
4 2.776 2.132 14 2.145 1.761 24 2.064 1.711
5 2.571 2.015 15 2.131 1.753 25 2.059 1.708
6 2.447 1.943 16 2.120 1.746 26 2.056 1.706
7 2.365 1.895 17 2.110 1.740 27 2.052 1.703
8 2.306 1.859 18 2.101 1.734 28 2.048 1.701
9 2.262 1.833 19 2.093 1.729 29 2.045 1.699

10 2.228 1.813 20 2.086 1.725 30 2.042 1.697

306
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Table IV.2: Critical values of the right-sided tk test at the 5% and 10%
significance levels

k 5% 10% k 5% 10% k 5% 10%

1 6.313 3.078 11 1.796 1.363 21 1.721 1.323
2 2.920 1.886 12 1.782 1.356 22 1.717 1.321
3 2.353 1.638 13 1.771 1.350 23 1.714 1.319
4 2.132 1.533 14 1.761 1.345 24 1.711 1.318
5 2.015 1.476 15 1.753 1.341 25 1.708 1.316
6 1.943 1.440 16 1.746 1.337 26 1.706 1.315
7 1.895 1.415 17 1.740 1.333 27 1.703 1.314
8 1.859 1.397 18 1.734 1.330 28 1.701 1.313
9 1.833 1.383 19 1.729 1.328 29 1.699 1.311

10 1.813 1.372 20 1.725 1.325 30 1.697 1.310

Note: For k >30 the critical values of the tk test are approximately equal to the critical values of
the standard normal test in Table IV.3.

Table IV.3: Critical values of the N(0, 1) test

Significance levels: 5% 10%

Two-sided: 1.960 1.645
Right-sided: 1.645 1.282

Table IV.4: Critical values of the χ2
k test at the 5% and 10% significance levels

k 5% 10% k 5% 10% k 5% 10%

1 3.841 2.705 11 19.675 17.275 21 32.671 29.615
2 5.991 4.605 12 21.026 18.549 22 33.925 30.814
3 7.815 6.251 13 22.362 19.812 23 35.172 32.007
4 9.488 7.780 14 23.684 21.064 24 36.414 33.196
5 11.071 9.237 15 24.995 22.307 25 37.653 34.381
6 12.591 10.645 16 26.296 23.541 26 38.885 35.563
7 14.067 12.017 17 27.588 24.769 27 40.114 36.741
8 15.507 13.361 18 28.869 25.990 28 41.336 37.916
9 16.919 14.683 19 30.144 27.204 29 42.557 39.088

10 18.307 15.987 20 31.410 28.412 30 43.772 40.256

Note: Because the χ2
k test is used to test parameter restrictions with the degrees of freedom k equal

to the number of restrictions, it is unlikely that you will need the critical values of the χ2
k test for

k > 30.
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almost sure convergence, 143, 144, 167, 168
alternative hypothesis, 125, 131, 162
approximation, 119. See estimation
area, 19
argmax, 205
argmin, 128n.3, 147
asymptotic normality, 159, 190, 217, 219
asymptotic theory, xvi, xvii
asymptotic variance matrix, 161, 162, 221
autoregression, 179–180, 187, 219
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Bayesian statistics, 26, 27, 28, 31, 66, 79
Bernoulli probabilities, 211
best linear unbiased estimator (BLUE), 128
binomial distribution, 8–9, 24, 60, 87, 89
binomial expansion, 2
binomial numbers, 2
BLUE. See best linear unbiased estimator
Boolean functions, 32
Borel-Cantelli lemma, 168, 171
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mathematical expectations, 49
measure theory, 37, 41, 42
probability measure and, 42
random variables and, 39
random vectors and, 77
randomness and, 20–21, 39, 77
Riemann integrals, 43
simple functions, 40
stationarity and, 82

Borel sets, 13, 17, 21, 39, 305
Borel measure. See Borel measure
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integration and, 305
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partition of, 39–40
probability and, 17, 18
random variables, 20–21
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bounded convergence theorem, 62, 142,
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convergence and, 155
defined, 96, 138
dependent, 190
functional, 158
generic, 191
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multivariate, 156
tightness and, 158

change of variables formula, xvi
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complex analysis and, xv
convergence of, 154, 174
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inversion formula, 59, 100
moment generating functions, 58
random variables and, 58
random vectors, 154
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uniqueness of, 61

characteristic roots. See eigenvalues
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chi-square distribution, 97
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cointegration analysis, 273, 278
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exponential function, 301, 302
integrations, 305
logarithms, 303
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number system, 298
review of, 298
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computer models, 37, 101, 251
concave functions, 51, 287
conditional density, 68
conditional distributions, 26, 27, 66, 68, 79,
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conditional expectations, 66, 68

convergence and, 75
defined, 67

expectation and, 67
forecasting and, 80
fundamental properties of, 69
independence and, 79
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properties of, 72
random variables, 72
σ -algebras and, 72

conditional likelihood function, 213
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consistency, 146, 216
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central limit theorem, 155
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disjoint sets, 5, 33, 84, 284
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differentiability, 25–26
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joint distributions, 30, 94
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singular, 26
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error function, 81
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consistency of, 146
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properties of, 119
unbiased, 119

Etemadi theorem, 169
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300
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convergence and, 142
defined, 49
games and, 37
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integration and, 37
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products of, 53
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exponential distribution, 102
exponential function, 301

F distribution, 100
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factorials, 2
Fatou lemma, 201
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Fisher information matrix, 216,

217
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gamma distribution, 102
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Gauss-Jordan iteration, 248
Gauss-Markov theorem, 128
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defined, 200
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Borel measure and, 37, 42, 44, 48
complex, 305
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probability measure and, 46, 48
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Riemann integrals, 19, 43
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Jensen inequality, 52
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joint distributions, 30, 94
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Liapounov inequality, 52
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linear equations, 251
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linear transformations, 117
logarithms, 303
logistic distribution, 211
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M-estimators, xvi
asymptotic distribution, 149
consistency of, 145, 146, 190
defined, 146
efficiency of, 221
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normality of, 159, 190

macroeconomic theory, xvi
mapping theorem, 152
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marginal distribution functions, 30
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adjoint, 272
co-factors of, 272
determinants. See determinants
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dimension of, 255
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elementary, 241, 243, 266–267
functions of, 291
Gauss-Jordan iteration, 248
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estimator, 159
general, 97
linear regression and, 209
moment generating function, 97
multivariate, 111
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singular, 113
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positive definite matrix, 277, 278
power function, 126
probability, 144

convergence and. See convergence
macroeconomic theory and, xvi
measure in. See probability measure
statistical experiment, 5
types of, 8

probability measure, xvi, 4, 15, 48–49
algebra and, 16–17
Borel measure and, 18, 42
characteristic function, 61
convergence and, 142
distribution function, 24, 25
induced, 23, 24, 25
integration and, 46, 48
Lebesgue measure and, 16–17, 19
outer measure, 32
properties of, 15
σ -algebra and, 5, 36
statistical experiment and, 16–17
uniform, 18
unique, 24, 36

Probit model, 211, 212
projections, 201, 202, 256, 257
proportional hazard model, 227
pseudo t-test, 163, 222

quadratic forms, 117, 118
quality control, 5, 6

random functions, 187
random numbers, 37
random variables, 24, 77, 89, 200

Borel measure and, 39
Borel sets and, 20–21
characteristic functions, 58
conditional distributions, 115
conditional expectation, 72
continuity and, 25–26, 90
correlation coefficient, 50
covariance of, 50
discrete, 77
distribution of, 20, 23, 56
expectations, 37, 49
experiment and, 20
independence of, xvi, 29, 30, 114
integrals of, 46, 48, 143
large numbers, laws of, 140
linear projection, 180

measurable, 21
moments of, 50
products of, 53
sequence of, 47, 48
sets, 29
σ -algebra, 22
simple, 46
transformations of, xvi
uncorrelated, 50, 114, 140
uniformly bounded, 88
variance, 50, 110n.1
vectors. See random vectors
Wold decomposition, xvi, 179, 182, 188,

203
See also specific types, topics

random vectors, 48–49
absolutely continuous, 91
Borel measure and, 77
characteristic function of, 154
continuous distributions, 114
convergence, 149–150
discontinuities and, 24
discrete, 89
distribution functions, 24
Euclidean norm, 140
expectation, 110
finite-dimensional, 141–142, 187
independence of, 29
infinite-dimensional, 187
k-dimensional, 21
moment generating function, 55
random functions, 187
random variables and, 24
variance, 110n.1

rare events, 9–10
rational numbers, 11
regression analysis, 81, 127, 148
regressors, 116–117
regressors. See independent variables
remote events, 182
replacement, in sampling, 6, 8
residuals, 129
Riemann integrals, 19, 43
rotation, 260, 264

sampling
choice in, 8
errors, 7
quality control, 6
with replacement, 8
replacement and, 6, 8, 32
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sample space, 3, 27
test statistics, 8

Schwarz inequality, 183
second-order conditions, 214
semi-definite matrices, 277
square matrix, 91–92
sets

Borel sets. See Borel sets
compactness of, 288
infinite, 11
open, 284
operations on, 283, 284
order and, 2, 8, 284
random variables, 29

σ -algebra, 18, 29–30, 74, 80
Boolean functions, 32
Borel field, 14
condition for, 11–12
defined, 4
disjoint sets, 84
events and, 3, 10
expectation and, 72
infinite sets and, 11
lambda-system, 31
law of large numbers, 11
probability measure, 5, 36
properties of, 11
random variable and, 22
random variables and, 22
remote, 182
smallest, 12–13
sub-algebra, 79
trivial, 12–13

significance levels, 124, 126
simple functions, 39–40, 46, 47
singular distributions, 26
singular mapping, 240
Slutsky’s theorem, 142, 144, 148,

160–161, 169, 171, 218
software packages, 2. See also computer

models
stable distributions, 103
stationarity, xvi, 82, 179, 183
statistical inference, xvi, 5, 6, 16–17, 20,

110, 118, 119, 125, 126
statistical tests. See specific types
step functions, 41
stochastic boundedness, 157–158
Student t distribution, 99, 123–124, 126,

127, 131, 132, 153, 163

Student t test
supremum, 285
symmetric matrix, 277, 278

Taylor’s theorem, 155, 215, 224, 294,
303

Texas Lotto, 1, 3–4, 5, 6
t distribution. See Student t distribution
t test. See Student t test
tightness, 157, 158
time series processes, 80, 81, 82, 183, 185,

198, 219
Tobit model, 207, 212, 213
trace, of matrix, 282
transformations, xvi, 86, 117, 268,

278

unbiasedness, 119, 129, 134
unemployment model, 227, 228
uniform boundedness, 88
uniform distribution, 24, 60, 101, 209
uniform integrability, 143, 158
uniform probability measure, 16, 18
uniqueness condition, 146
unordered sets, 2, 8
urn problems, 86, 87

vanishing memory, 183, 184
variance, 50, 88, 110n.1,

141–142
vectors, xvi, 199, 232, 260, 291

basis for, 234
conformable, 231, 258
column space, 255
dimension of, 234
Euclidean space, 229, 232
linear dependent, 234
null space, 255
orthogonal, 258
projection of, 256
random. See random vectors
transformations of, xvi

wage equation, 81
Wald test, 162, 222, 223, 226
Weibull specification, 227
Wold decomposition, xvi, 179–180, 182,

188, 203

zero-one law, 185




