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Foreword

As already mentioned by Lo and Wang (1995) there is an apparent paradox if
we derive standard option pricing formulae for an underlying mean-reverting drift.
While the drift has an influence on the long-run behavior of the underlying, the
option price becomes independent of the drift of the price process itself. Using
the continuous-time pricing framework this leads to option prices which are much
too large for more distant maturities. One possible solution for this paradox is the
assumption that the market is incomplete. As shown by Ross (1997), in an incom-
plete market the mean reversion remains in the drift of the risk-adjusted process
under the equivalent martingale measure. However, mean reversion in the drift
complicates the solution process for option pricing considerably.

Lutz contributes to this research in several respects. Using state-of-the-art Fourier
inversion techniques he extends the mean-reverting one-factor diffusion setting of
Schwartz (1997) and Ross (1997) and discusses processes with stochastic volatility,
different jump components, a stochastic equilibrium level and deterministic season-
alities. This leads to new and rather complex models, where the resulting Riccati
systems are difficult to solve. While giving new analytic solutions in some cases
Lutz shows that numerical procedures for the Riccati systems are often superior in
terms of numerical efficiency.

I recommend this research monograph to everybody who deals with the specific
peculiarities of mean-reversion in option pricing.

Tübingen, Rainer Schöbel
May 2009
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Chapter 1
Introduction

The commodity derivatives market has strongly increased in recent years, both
in trading volume and the variety of offered products. Adequate models to price
and hedge commodity futures and options are required and a multitude of models
are already proposed. However, the derivative pricing theory developed for finan-
cial assets cannot be utilized for commodity derivatives without some adaptations,
since it is important that the models capture the empirical properties of commodity
price processes. The most important among these are mean reversion in spot and
futures prices and backwardation in futures prices for some commodities.1 Back-
wardation is an implication of mean reversion and may be used as a predictor for
mean-reverting spot prices.2

Unlike financial assets, supply and demand for commodities are to a large extent
influenced by production costs and consumer behavior. When prices are low, con-
sumption will increase and high-cost producers will leave the market. This leads
to an increase in prices. When prices are relatively high, consumers and producers
will react vice versa, putting a downward pressure on prices.3 Additionally, the level
of inventories plays an important role in determining the value for storable goods.4

The owner of the good decides whether to consume it immediately or store it for
future disposal. Hence, the price of the commodity is the maximum of its current
consumption and asset values.5

In Fig. 1.1 and 1.3, the behavior of futures prices can be seen for two commodity
futures traded at the New York mercantile exchange (NYMEX). The graphs show

1 (Strong) backwardation refers to (discounted) futures prices which are lower than the current
spot price. A consumer has the possibility to buy the good now and store it until it is needed
for consumption. In this case, he faces storing costs and foregone interest as opportunity costs.
The second alternative is to buy the corresponding futures contract where payment and delivery is
deferred to the maturity date. One would expect that the futures price is in contango, i.e. is above
the current spot price, since it incorporates the costs of the first alternative. Therefore, situations of
backwardation can only arise when the immediate disposition is worthy.
2 French (2005).
3 See Schwartz (1997).
4 The theory of storage traces back to Kaldor (1939) and Working (1948, 1949).
5 Routledge, Seppi, and Spatt (2000).

B. Lutz, Pricing of Derivatives on Mean-Reverting Assets,
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2 1 Introduction

Fig. 1.1 NYMEX crude oil futures prices from 01/02/1990 to 06/12/2006
Source: Bloomberg data

the closing price variations of the nearest-to-deliver futures contract for crude oil
and natural gas.

It can be seen that particularly the crude oil futures price behavior experienced a
regime shift in the last few years. In the period before 2002, the futures price clearly
shows a mean-reverting pattern, though the average amplitude of the price peaks
increased at the end of the 1990’s. From 2002 to 2006, the futures price increased
sharply from 13.8$ per barrel to round about 70$ per barrel (68.68$ per barrel were
already reached on 10/15/2004). The reason for this regime change is twofold.
Firstly, considering oil supply, the current limit of the oil production capacity is
fairly reached and there exists uncertainty about the remaining global oil resources.
Secondly, considering oil demand, particularly the oil demand of China increased
tremendously. The large impact of the new supply/demand-ratio can be seen in the
400%-price rise within 3 years.

Figure 1.2 displays the oil price trend for a one-year period. When comparing
Figs. 1.1 and 1.2, one observes that models with a mean-reverting oil price process
could be appropriate for short-term oil futures, while long-term models should addi-
tionally incorporate the risk of regime shifts.6 In the foreseeable future, the regime
shift risk in oil price behavior could also affect oil substitutes such as natural gas,
though the price history of natural gas shows mean-reverting behavior with large
peaks and did not yet experience such a regime shift as the oil price did.

6 In Chap. 6, we propose models with a stochastic equilibrium level. A jump component in the
subordinated equilibrium level process could account for the risk of a regime shift.



1 Introduction 3

Fig. 1.2 NYMEX crude oil futures prices from 06/01/2006 to 05/31/2007
Source: Bloomberg data

Fig. 1.3 NYMEX natural gas futures prices from 01/02/1990 to 06/12/2006
Source: Bloomberg data

The main reason for short-term price peaks is that consumption and demand are
quite inelastic for some products. This may lead to a shortage of the good when
production shows an intense decline, e.g. due to crop failures in case of agricul-
tural commodities, unstable political situations in oil producing countries in case of
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crude oil, or when dealing with electricity, consider heat waves which lead to a shut-
down of nuclear power plants because the cooling water of the rivers is overheated.
Since storage is limited, such situations drive the inventory level to zero while prices
increase dramatically. In case of electricity, storage is virtually impossible (exclud-
ing hydro power) and therefore, the buffering effect of inventories is not existent,
leading to large peaks in prices which decay as fast as they arrived when the reason
for the shortage is eliminated.7

In periods of shortage, the owner of the physical commodity clearly has an advan-
tage compared with the owner of a contract for future delivery.8 The advantage arises
both from price variations and from the ability to maintain a consumption plan or
production process. The sum of these “convenient” effects for the holder of the
physical good is called convenience yield. As already stated by Kaldor (1939) and
Working (1948, 1949), the magnitude of the convenience yield depends inversely on
inventories. Routledge, Seppi, and Spatt (2000) follow this approach. They model
the level of inventories endogenously in discrete time. The resulting price process
is regime-shifting, including one regime with positive inventories and one with zero
inventories. A plausible assumption is that the convenience yield in their model is
an output variable.

Bühler, Korn and Schöbel (2004) also implement the short-sale constraint in a
two-regime pricing model for crude oil futures prices. They take the spot price as
exogenous variable and model the futures price in a continuous time two-regime
setting, where low spot prices correspond to the cost-of-carry model and high spot
prices correspond to the Schwartz (1997) model 1. While the former model assumes
that the futures price is only determined by the spot plus storage costs and interest,
the latter model assumes a mean reverting spot price process due to convenience
yield effects.9

Schwartz (1997) proposes three model settings for the spot price process of
commodities. In all three types, the mean reverting property of the price process
is considered, either directly in a price process of Ornstein–Uhlenbeck type as in
model 1 or indirectly through a subordinated convenience yield process as in mod-
els 2 and 3. Model 3 incorporates also stochastic interest rates. While models 2 and
3 are based upon standard arbitrage theory, model 1 is similar to Ross (1997).10

Ross postulates that frictions in the commodity market inhibit derivative security
pricing according to the cost-of-carry model. One may think of high costs for storing
and holding of the good, limited storing both in volume and in time (e.g. in case
of perishable agricultural goods) or the absence of storing possibilities (e.g. when

7 See Geman and Roncoroni (2006). The buffering effect of inventories can be seen in the graphs
of electricity prices in this paper, since the price peaks are considerably smaller in an energy pool
with a large amount of hydro power.
8 See Brennan (1991). As a result of this, futures prices can be backwardated.
9 The setup of the model 1 in Schwartz was already considered in Schöbel (1992) as well as
Bjerksund and Ekern (1995).
10 Ross assumes mean-reversion in the price process, whereas Schwartz’s model 1 is based on
mean-reversion in the log-price process.
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dealing with electricity as underlying). These properties result in a price process
which is mean reverting under the equivalent martingale measure.11

The papers of Ross and Bühler, Korn and Schöbel are representative for a series
of papers which investigate the crisis of the German company Metallgesellschaft
in 1993. Metallgesellschaft had a program of selling long-dated fuel and oil supply
commitments to end-users and hedged these commitments by rolling over short-
term futures contracts. In complete and frictionless markets, such a hedging strategy
is promising. In fact, things are different and Metallgesellschaft experienced liquid-
ity problems due to large variation margin calls on the futures, finally leaving the
company with a loss of USD 1.3 bn after unwinding all of the outstanding posi-
tions. After the Metallgesellschaft case, the pricing and hedging of commodity (and
especially crude oil) futures contracts became an interesting and vivid subject in
financial research.

The purpose of this thesis is an extension of the one-factor models of Schwartz
and Ross. Hence, we combine mean reversion in the underlying price process with
other stochastic factors such as stochastic volatility and stochastic equilibrium level.
Discontinuous jump events and deterministic seasonality effects are also included.
The derived solutions can be applied for European type derivatives on assets which
show mean-reverting behavior, namely commodity derivatives, electricity contracts,
currency options or credit spread options.12

The above-mentioned model extensions were already introduced in other papers,
though the combination of some of the factors is new in this work. As for the
stochastic volatility extension, there exist various papers which deal with stochastic
volatility, but not with mean-reverting price processes. Heston (1993) introduces the
square-root process as subordinated variance process. Stein and Stein (1991) adopt
the Ornstein–Uhlenbeck process as volatility process. Schöbel and Zhu (1999) and
Zhu (2000) extend Stein and Stein (1991) and allow for non-zero correlation. Tahani
(2004) was first in combining mean reversion in the underlying with square-root and
Ornstein–Uhlenbeck stochastic volatility, following Longstaff and Schwartz (1995)
and Zhu (2000).13 However, the Tahani approach has some shortcomings. Due to a
slightly different model setup, we are able to remedy the deficiencies of the Tahani
model and provide a closed-form solution based on hypergeometric functions in the
square-root stochastic volatility case.

Concerning jump components, there is already a multitude of models proposed
in various papers, amongst others Bates (1996a, 1996a, 2000), Bakshi et al. (1997),
Hilliard and Reis (1998, 1999), Duffie et al. (2000), Zhu (2000) and Eraker (2004).
Textbook references on this topic are Cont and Tankov (2003) and Shreve (2004),
for instance. However, all of these papers consider financial assets as underlying

11 Cf. Ross (1997).
12 The mean-reverting property of exchange rates is addressed in Sørensen (1997), Anthony and
MacDonald (1998, 1999) and Hui and Lo (2006), among others. As for credit spread options, cf.
Longstaff and Schwartz (1995) and Tahani (2004).
13 Longstaff and Schwartz (1995) deal with a mean-reverting price process without stochastic
volatility.
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and deal with non-mean reverting asset prices.14 The combination of mean revert-
ing price processes with jumps can be found in Das (2002), who models jumps
in interest rate processes, as well as in Kamat and Oren (2002), Kispert (2005)
and Geman and Roncoroni (2006), among others. The latter references all deal
with the modeling of electricity futures prices. However, the authors do not com-
bine mean reversion, jumps and stochastic volatility. Closed-form solutions for this
model setup are also not presented in this work, but due to the use of numerical
integration algorithms for systems of ordinary differential equations, we are able to
provide fast and accurate solution methods also for this case.

The combination with a stochastic equilibrium level is discussed in Schwartz and
Smith (2000), Korn (2005) and Realdon (2007). Schwartz and Smith (2000) work
with a price process which is additionally composed of an increasing long-term fac-
tor and a zero-mean Ornstein–Uhlenbeck process as short-term factor. We firstly
extend model 1 in Schwartz (1997) by making the equilibrium level stochastic. In
this model setup, the long-term equilibrium level follows a Brownian motion pro-
cess with drift. This specification is based on a subordinated process, but nearly
equivalent to the Schwartz and Smith (2000) setup. Korn (2005) follows Schwartz
and Smith by working with a long-term and a short-term price component, but the
long-term component in his setup is specified by an Ornstein–Uhlenbeck process.
Realdon (2007) deals with a subordinated equilibrium level process which is also
mean-reverting. We extend Realdon (2007) as for the presentation of a closed-form
solution and a special case solution. We further extend both specifications of the
stochastic mean by implementing stochastic volatility. Finally, the combination with
jump elements is considered.

Seasonality effects are obviously a feature of commodities which are subject to
cyclical fluctuations, e.g. the harvesting cycle in case of agricultural commodities
or the season cycle in case of electricity derivatives. Hence, papers incorporating
seasonality effects in the price process focus on the pricing of either agricultural
commodity derivatives (e.g. Sørensen (2002) and Richter and Sørensen (2002)) or
electricity derivatives (Lucia and Schwartz (2002), Elliott et al. (2003), Weron et al.
(2003) and Kispert (2005), among others). The specifications of the seasonal com-
ponent in the papers dealing with electricity are all very similar. It consists of one
sine function with a frequency of one year. The approach of Richter and Sørensen
(2002) is more flexible, since it consists of a combination of weighted sine and
cosine functions.

We follow Richter and Sørensen (2002) as for the specification of the seasonal
component. However, the authors work with a non-mean-reverting price process.
The seasonality effect in their subordinated variance process is associated with
an exponential function, which inhibits closed-form solutions. We discuss sea-
sonal components in the mean-reverting underlying and the variance process. We
show that the structure of the solution remains unchanged by the incorporation

14 An exception is Hilliard and Reis (1998, 1999) who model jumps in commodity price processes.
However, their model specification is also non-mean reverting.



1 Introduction 7

of deterministic seasonality effects. Hence, we are able to provide closed-form
solutions for some model setups which are not too complex. We also present an
alternative specification of the seasonality component in the variance process which
allows closed-form solutions. The incorporation of seasonality effects in the model
setups of the preceding chapters is also considered.

The remainder of this thesis is organized as follows. In Chap. 2, we firstly deal
with empirical findings concerning the sources of mean reversion. Chapter 3 devel-
ops the fundamentals of derivative pricing to provide a framework for the model
specifications of the following chapters. In Chap. 4, we generalize model 1 of
Schwartz (1997) to square-root and Ornstein–Uhlenbeck stochastic volatility. We
compare our findings with a similar attempt of Tahani (2004) and provide a com-
parison with numerical Monte Carlo results. This verification of accuracy via Monte
Carlo results is repeated for the most important models in the following chapters.
Chapter 5 addresses the integration of different jump components in the stochas-
tic volatility framework. In Chap. 6, the standard Ornstein–Uhlenbeck model is
extended by a stochastic equilibrium level. We propose two different specifications
for the subordinated equilibrium level process. The combination with the model
extensions of the previous chapters is also discussed. Chapter 7 deals with seasonal-
ity effects in the price and variance processes. We address extensions of previously
discussed model propositions with seasonal components. Chapter 8 concludes.



Chapter 2
Mean Reversion in Commodity Prices

2.1 Sources of Mean Reversion

In this chapter, we discuss the sources, empirical evidence and implications of mean
reversion in asset prices. As for the sources of mean reversion, there are three aspects
to be discussed. Firstly and most importantly, the correlation between the conve-
nience yield and spot prices accounts for mean reversion. Secondly, spot price level
dependent time-varying risk premia have a mean-reverting impact on prices and
thirdly, a negative relation between interest rates and prices induces mean reversion.
In this section, we will tackle the link between mean reversion and convenience
yields as well as with time-varying risk premia.1

2.1.1 Convenience Yields

We will focus on commodity markets, where mean reversion is mainly induced by
convenience yields. The convenience yield is the sum of all effects which evolve
from the ownership of the physical commodity compared to the ownership of a
futures contract.2 Hull (2006) explains the convenience yield as reflecting “the mar-
ket’s expectations concerning the future availability of the commodity. The greater
the possibility that shortages will occur, the higher the convenience yield.” In case
of shortage of the good, one may think of convenience yield as non-existent trans-
portation costs since the good is already available or the value of the ability to profit
from local shortages of the commodity, which involves both price variations when
the good is sold or the convenience of being able to maintain a production process
when inventories are used for own purposes. It is evident that the magnitude of such
effects depends inversely on the overall level of inventories. Since the theory of

1 Mean reversion arising from a negative relation between interest rates and prices arises in the
case of commodities which mainly serve as a store of value, i.e. precious metals. This feature is
addressed in Sect. 2.2.
2 Cf. also Brennan (1991).
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10 2 Mean Reversion in Commodity Prices

storage traces back to Kaldor (1939) and Working (1948, 1949), Brennan (1991)
calls this finding the Kaldor–Working-hypothesis.3

In our model setup in the subsequent chapters, we implement mean reversion
directly in the price process by means of an Ornstein–Uhlenbeck (OU) process.
An alternative approach of working with mean reverting spot prices is to assume a
subordinated convenience yield process where the convenience yield may depend
on spot prices. The setup for the underlying price process conforms in the sim-
plest case to the Black–Scholes stochastic differential equation (SDE). However,
mean reversion in spot prices may be induced by the subordinated convenience yield
process. In some cases, both model formulations can be equivalent.4 Casassus and
Collin-Dufresne (2005) point out that models which imply mean reversion of spot
prices under the risk-neutral measure can be interpreted as “arbitrage-free models of
commodity spot prices, where the convenience yield is a function of the spot price.”

Let us give a short overview of stochastic convenience yield models. This model
class does not examine the behavior of inventory levels, but makes use of the fact
that the convenience yield will depend on spot prices, since low inventories cor-
respond to high spot prices and high convenience yields. A common assumption
in this model class is constant correlation between the stock price and the conve-
nience yield (see Gibson and Schwartz (1990), Brennan (1991), Amin et al. (1995),
Schwartz (1997) and Hilliard and Reis (1998)). However, it is important to mention
the fact that the correlation between spot prices and convenience yields is unlikely
to be constant.5

Brennan proposes four types of convenience yield models. In three of these mod-
els, the convenience yield depends on the spot price. The easiest setting among
these is a linear dependency of the spot price as in Brennan and Schwartz (1985).
The fourth specification is called “autonomous convenience yield model” where the
convenience yield follows a mean reverting process which is independent of the spot
price. The commodities which are involved in the empirical investigation are four
precious metals (gold, silver, platinum and copper), heating oil, lumber and ply-
wood. The best empirical performance is asserted for the autonomous convenience
model, though the models with dependence from the spot price level performed well
for precious metals, but not for the other commodities.

Casassus and Collin-Dufresne (2005) present a three factor model of commodity
futures prices. The authors call their model “maximal” in the sense that it allows
for the most general three factor model setting. On this account, the Casassus and
Collin-Dufresne model nests some of the models we already mentioned, namely
Gibson and Schwartz (1990), Brennan (1991), Schwartz (1997), Ross (1997) and
Schwartz and Smith (2000). The convenience yield is allowed to depend both on
interest rates and spot prices. Additionally, they follow Duffee (2002) and model risk

3 The empirical results of Brennan (1991) concerning the Kaldor–Working hypothesis are dis-
cussed in in the next subsection.
4 See the comparison of models 1 and 2 in Schwartz (1997), p. 927. This equivalence is only given
when the subordinated convenience yield process depends linearly on spot prices.
5 Routledge, Seppi, and Spatt (2000), p. 1300.
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premia as linear functions of the state variables, so extending models with constant
risk premiums.

2.1.2 Kaldor–Working Hypothesis

The Kaldor–Working hypothesis postulates that the convenience yield depends
inversely upon the level of inventories. Models which are directly build up on the
Kaldor–Working-hypothesis are Deaton and Laroque (1992, 1996), Schöbel (1992)
and Routledge, Seppi, and Spatt (2000), among others. The model setup in these
papers is based on modeling the level of inventories.

In his empirical investigation, Brennan (1991) tests the null hypothesis that the
convenience yield is zero against the Kaldor–Working hypothesis. For that purpose,
the author estimates a non-linear regression of the convenience yield against the
inventory/sales ratio. He finds strong evidence for an inverse dependency of the
inventory level and the convenience yield for all involved commodities except for
platinum.6 The reason for the insignificant result concerning platinum is that very
low inventory levels for this good were only observed during the interference of
the Hunt brothers in the silver market in 1980. This speculative period is excluded
in the analysis of Brennan. However, when the 1980 data for platinum is consid-
ered, one observes a high rate of convenience yield in line with the Kaldor–Working
hypothesis. Hence, it is likely that the Kaldor–Working theory applies for all seven
commodities analyzed by Brennan, whereas the strength of the inverse relation-
ship between convenience yield and inventory level increases with the consumption
purposes of the commodity in relation to its asset purposes.

A similar finding is reported in Casassus and Collin-Dufresne (2005). The
authors test their model using futures price data for crude oil, copper, gold and silver.
Since the authors do not work with inventory and sales data, the Kaldor–Working
hypothesis can only be verified indirectly. Low inventory levels should correspond
to high spot prices, which are induced by high convenience yields. For crude oil and
copper, the authors assert a significant positive relation between spot price and con-
venience yield, therefore confirming the theory of storage. Hence, for commodities
which serve as consumption good, the relations between convenience yield, spot
prices and inventory levels are strong. As for gold and silver, which serve to a large
extent as a store of value, the relation between spot price and convenience yield is
marginal.

The results of Brennan together with Casassus and Collin-Dufresne suggest that
for commodities with both financial and commercial purposes, there exist also both
financial and commercial inventories. When commercial inventories are driven to
zero, one observes an increase in convenience yields accompanied by an increase
in prices according to the Kaldor–Working theory. On the other hand, a variation in

6 The involved commodities are gold, silver, platinum, copper, heating oil, lumber and plywood.
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prices is not obligatory due to low inventory levels since prices may be driven to a
large extent by financial investors.7 Hence, for commodities with both financial and
commercial purposes, price levels cannot always be taken as an indicator for the
convenience yield and inventory level.

Sørensen (2002) also tests for the empirical evidence of the Kaldor–Working
hypothesis based on U.S. data for agricultural commodities, i.e. wheat, corn and
soybeans. The methodology is similar to Brennan (1991). The estimation results for
all three commodities are significant and document the negative relation between
convenience yield and the inventory level.8 The Kaldor–Working theory seems also
to be valid for agricultural commodities, though the regression curve of the net con-
venience yield against the stocks of inventory turns out to be concave for corn and
wheat and is only convex for soybeans.9 Sørensen explains this pattern with the fact
that storage costs were ignored and postulates that the incorporation of storage costs
would lead to convex regression curves for all commodities under account.

2.1.3 Time-Varying Risk Premia

Fama and French (1987) use a regression approach as described in Fama (1984) and
test for time-varying risk premia. For that matter, they consider a linear regression of
changes in the spot price and the forward premium on the basis.10 The results of the
empirical analysis are the following: Only for some agricultural commodities as well
as lumber and plywood, there exists reliable statistical evidence for time-varying
risk premia. Especially for precious metals, the regression evidence is unreliable,
because the basis variances are too small relative to the variances of premiums and
the changes in spot prices, though basis variances may be large in absolute terms.

Casassus and Collin-Dufresne (2005) allow risk premia to be time-varying and
motivate this specification with the findings of Fama and French. They point out that
“mean reversion under the risk-neutral measure is due to convenience yield, whereas
mean reversion under the historical measure results from both the convenience yield
and the time variation in risk premia.”11 The assumption of time varying risk pre-
miums is therefore important when working with time series of futures prices. The
importance of the convenience yield component, respectively the risk premium com-
ponent, on the overall mean reversion effect in spot prices depends on the type

7 For instance, prices for gold and silver are to a large amount influenced by interest rates (see also
the discussion of Bessembinder et al. (1995) in Sect. 2.2)
8 Sørensen normalizes the inventory data with respect to total production in the U.S. and not
relating to sales data as in Brennan (1991).
9 A convex regression curve is expected since low inventories should lead to a large increase in
convenience yield while the convenience yield should level off at zero when the good is well
available.
10 The basis is the difference of futures and spot price (see also Fama and French (1987), p. 56).
11 Cassasus and Collin-Dufresne (2005), p. 2285.
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of commodity under account. The authors observe for commodities which serve
mainly as a consumption good (e.g. crude oil, copper) a higher contribution of the
convenience yield effect to mean reversion compared to commodities which may
also serve as a store of value (e.g. gold, silver), where the mean reversion in spot
prices is mainly due to negative correlation between risk premia and spot prices.

2.2 Empirical Evidence of Mean Reversion

Bessembinder et al. (1995) provide a test which examines whether investors expect
the prices of different assets to revert. For that matter, they work with price data from
futures contracts with different maturities. The nearest-to-deliver futures contract is
taken as a proxy for the spot, which leads to applicability of the test even for assets
without reliable spot price data.12 The assets under account are agricultural com-
modities (wheat, live cattle, orange juice, world sugar and domestic sugar), crude
oil, metals (gold, silver and platinum) and financial contracts (the S&P 500 index
and treasury bonds). The data set ranges from 1982 to 1991.

As indicator for mean reversion, the authors use the relationship between actual
spot price level and slope of the term structure of futures prices. When markets
imply mean reversion, the mean-reverting behavior of prices is reflected in the slope
of the term structure of futures prices as follows. For a spot price which is placed
above the long-term equilibrium level, prices are expected to fall. This expectation
will lead to a negative slope of the term structure of futures prices. This argument
holds also vice versa.

Bessembinder et al. (1995) point out that their test can detect mean reversion aris-
ing from correlation between convenience yields and prices and correlation between
interest rates and prices, but not from a negative relation between prices and risk
premia.13

As for commodity markets, the results are clear without ambiguity. For metals,
crude oil and agricultural commodities, the slope of the term structure of futures
prices is significantly negatively related to the level of spot prices. Hence, spot prices
on all involved commodity markets imply mean reversion.

In the crude oil and agricultural commodity markets, the source of mean rever-
sion is the convenience yield, while the impact of interest rate changes is not
significantly different from zero. For the precious metals, mean reversion in prices
arises both from convenience yields and a negative correlation between interest rates
and prices.

12 One often observes a lack of reliable spot price data in commodity markets. Hence, working
with the nearest-to-deliver futures contract as a proxy is a standard technique when working with
empirical data for commodities.
13 Bessembinder et al. (1995) do not consider mean reversion arising from risk premia since their
test is based on the cross section of contemporaneous futures prices.
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A different result is obtained for financial markets. The results are insignificant
when working with the complete data set, though there is very weak evidence for
mean reversion. After the exclusion of the 1987 crash period, the regression coef-
ficient for the second nearest contract is significantly positive, while the coefficient
for the fourth nearest contract is significantly negative. The interpretation of this
finding is that financial asset prices tend to be mean-reverting on the long run, while
they show opposed behavior on the short run.

This conclusion is at least partially supported by Poterba and Summers (1988)
as well as by Fama and French (1988). In their study, Poterba and Summers find
evidence for positive autocorrelation in stock prices over short periods and for neg-
ative autocorrelation over large periods. Furthermore, the results indicate that the
return standard deviation over long horizons increases less than proportionally with
time, which would be the case if the random walk hypothesis applies. Fama and
French (1988) examine first order autocorrelations for stock prices. The authors
conclude that the autocorrelations are U-shaped: starting from positive values over
short return horizons, autocorrelations decay as the return horizon increases. The
minimum value for 3-5-year returns is negative. For longer return horizons, auto-
correlations increase and approach zero. Poterba and Summers as well as Fama and
French work with a data set ranging from 1926 to 1985. In both papers, the evidence
for mean reversion weakens when the data before 1940 is excluded.14 Vice versa, the
indication of mean reversion strengthens when the newer data is ruled out. Fama and
French argue that it is possible that temporary price components which are account-
able for mean reversion are less important after 1940. Hence, mean reversion mainly
is a feature of commodity prices.

2.3 Mean Reversion and Volatility: The Samuelson Hypothesis

Samuelson (1965) stated that “it is a well known rule of thumb that nearness to
expiration date involves greater variability or riskiness per hour or per day or per
month than does farness.” Hence, the so-called Samuelson hypothesis postulates
that futures prices are less volatile with increasing time to maturity.

This pattern is especially important for the valuation of options on futures since
the option price is strongly affected by the volatility of the underlying. In mar-
kets where the Samuelson hypothesis holds, not only the actual futures volatility
but also the time to maturity of the underlying futures contract is important. One
motivation for this theory could be that the information flow increases as the deliv-
ery date approaches and therefore, decreasing uncertainty leads to higher volatility
of futures contracts.15 In the case of agricultural commodities, the link between
increasing information flow and futures price volatility can be interpreted as follows.

14 The data from 1926 to 1939 includes the regression period in the 1930s.
15 See Anderson and Danthine (1983).
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A year before the harvest, there is only little information available about the har-
vest and the future spot price. Hence, futures prices with 1 year to maturity do
not fluctuate strongly. As the harvest approaches, uncertainty about weather con-
ditions is resolved and the information about temperatures and rainfall is reflected
in futures prices, leading to increasing volatility every time when new information
is incorporated in prices.

Conversely, Bessembinder et al. (1996) argue that the variance of futures price
changes may be influenced by three factors. Based on the cost-of-carry relation
F.t; T / D St expf.rt �„t /.T �t/g, Bessembinder et al. (1996) consider the changes
in the log futures price to identify the sources of (log-) futures price volatility. The
change in the log futures price is given by ln.F.t C 1; T // � ln.F.t; T // D 	t C
ln.StC1=Et ŒStC1�/ C �st.T � t/. The three elements are ex ante spot market risk
premium 	t , unexpected log spot price changes and changes in the slope of the term
structure of futures prices �st D �.rt � „t / weighted with time to maturity T � t ,
where r is the risk-free interest rate and „ denotes the convenience yield.

Apart from unexpected spot price changes, there are two factors left. Firstly, the
variance in spot price changes influences the futures price volatility and is gov-
erned itself by the flow of information. This property is at first sight in line with the
above-mentioned reasoning of Anderson and Danthine (1983). However, Bessem-
binder et al. (1996) illustrate that since there are multiple futures contracts with
different maturity dates among the year, the increasing information flow conducted
with one near-to-deliver futures contract should also have impact on the volatil-
ity of the other futures contracts with a larger time to maturity. Consequently, all
futures contracts would experience an increase in volatility when a near-to-deliver
contract matures, which would result in a saw-toothed volatility pattern.16 However,
empirical observations do not support such a behavior.

Secondly, the time variation in risk premia could account for changes in futures
price volatility. At first, the authors do not focus on the risk premium component.
When the risk premium component is removed, the only reason for the Samuelson
hypothesis is negative covariation between unexpected spot price changes and the
slope of the term structure of futures prices. As already stated in Bessembinder et al.
(1995) and Sect. 2.2, such negative covariation is equivalent to a mean-reverting
behavior of spot prices. Considering risk premia, Bessembinder et al. (1996) point
out that “mean reversion in spot prices that is associated exclusively with variation
in the risk premiums will not induce the negative comovement between the futures
term slope and unexpected returns that is required for the success of the hypothesis.”

The empirical analysis in Bessembinder et al. (1996) supports these findings.
For commodities with mean-reverting spot prices such as agricultural commodities
and crude oil, the authors assert strong evidence for the Samuelson hypothesis. The
mean reversion for these commodities is mainly due to negative correlation between
convenience yield and spot prices. As for metals, where mean reversion in prices
arises both from time-varying risk premia and negative correlation of convenience

16 Bessembinder et al. (1996), p. 49.
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yield and prices, the support of the hypothesis weakens with the importance of
the risk premium component in overall spot price mean reversion. For financial
contracts, there is no evidence for the Samuelson hypothesis to be found.

In line with Bessembinder et al. (1996), Richter and Sørensen (2002) as well as
Sørensen (2002) report decreasing standard deviations in futures prices for increas-
ing maturities concerning contracts on agricultural commodities, i.e. corn, soybeans
and wheat. Other papers supporting the Samuelson hypothesis in agricultural com-
modity futures markets are Benavides (2002) (addressing corn and wheat), Adrangi
and Chatrath (2003) (coffee, sugar and cocoa) and Chatrath et al. (2002) (soybeans,
corn, wheat and cotton).

The modeling of a subordinated stochastic volatility process with a long-term
mean which is higher than the actual volatility level is adequate to capture the empir-
ical findings as discussed in this section. We address stochastic volatility models for
commodity derivative pricing in Chap. 4.



Chapter 3
Fundamentals of Derivative Pricing

In this chapter, we discuss the basics for the pricing of European options and
futures in a generalized setting. We begin with some technical preliminaries to pro-
vide a framework which is based on an underlying price process with subordinated
stochastic volatility process. This framework can also be generalized to a multifactor
model without changing the solution methods, as done in Chap. 6.

3.1 Derivative Pricing Under the Risk-Neutral Measure

3.1.1 Introduction

Black and Scholes (1973) and Merton (1973) showed in their seminal papers that a
derivative security can be priced by creating a replicating portfolio, i.e. a portfolio
of primitive securities which matches the payoff of the derivative at maturity. Since
both the replication portfolio and the derivative offer the same payoff at maturity,
they have to have the same price at any preceding time. Deviations from this equality
lead to arbitrage possibilities. Hence, the pricing by duplication procedure inhibits
arbitrage by construction. Harrison and Kreps (1979) (in a discrete time setting)
and Harrison and Pliska (1981) (in a continuous time setting) demonstrate that the
replication-based price is equivalent to the calculation of the discounted expected
value of the derivative’s payoff under the equivalent martingale measure Q. Delbaen
and Schachermayer (1994, 1998) extend Harrison and Pliska to more sophisticated
unbounded stochastic processes.

In complete markets, Q is the measure under which the discounted value of
the derivative under account is a martingale, i.e. it is a stochastic process whose
expected future value is its current value.1 Hence, buying and holding the derivative
corresponds to the participation at a fair game under Q since the expected change of
value is zero.2

1 The definition of a martingale process can be found in Baxter and Rennie (1996).
2 See also Malliaris and Brock (1991), p. 17.
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Equivalence of the physical measure P and the above-mentioned measure Q

means that both measures have the same zero subsets. In other words, the two mea-
sures agree on what is possible and what is not possible, merely the probabilities
of a possible event may be different. In fact, they are different, unless there is no
risk adjustment. Under the measure Q, the expected return of all assets is the same.
Under the assumption of a risk-free asset with known rate of return r , this argument
holds also for the risk-free bond and therefore, all assets have an expected return of
r under Q.3 A risk-neutral investor would be indifferent between the investment in
the risk-free bond or a risky asset with the very same rate of return, regardless of the
risk he or she takes by following the latter alternative. Hence, the measure Q is also
called the risk-neutral measure.

Consider St as price process of the underlying. St is a F -adapted stochastic
process defined on a filtered probability space (�, F , P) with filtration F and prob-
ability measure P.4 The evolution of the process under the physical measure is given
by the following stochastic differential equation (SDE):

dSt D a.St ; Vt / St dt C
p

Vt St dW S
t C St dP S

t (3.1)

with subordinated variance process

dVt D b.Vt/ dt C c.Vt /dW V
t C dP V

t , (3.2)

where St is the spot price and Vt denotes the instantaneous variance of the process
at time t . a.St ; Vt / W R

2 ! R, b.Vt / W R ! R and c.Vt / W R ! R are adapted
functions which are specified by constant parameters and additionally may or may
not depend on St and Vt , respectively.5

One needs to ensure that a unique solution to the SDE system described by
(3.1) and (3.2) exists. Hence, we assume that Lipschitz and growth conditions as
described in Appendix E in Duffie (2001) hold.6

W S
t and W V

t both are one-dimensional standard Brownian motions and P S
t

and P V
t are one-dimensional jump processes with different jump size distribution

3 See also Sundaram (1997).
4 The definition of a probability space, probability measures and measurability is given Malliaris
and Brock (1991) and Bauer (1992). For the definition of a filtration, see e.g. Shreve (2004), p. 51.
5 In this case, the functions are Itô processes themselves. Different process specifications are given
in the following chapters.
6 We also presume the square-integrability condition for Itô integrals (see Shreve (2004), p. 133.):

E

�Z T

0

Vt dt

�

< 1

E

�Z T

0

c2.Vt / dt

�

< 1 ,

where T is the maturity of the derivative security.
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defined on the probability space (�, F , P).7 The two Wiener processes are allowed
to be correlated via

dW S
t � dW V

t D � � dt .

The two jump processes are independent from each other and from the continuous
part.8

3.1.2 Change of Measure for Diffusion Processes

To change the measure from the physical measure P to the risk-neutral measure Q,
we firstly omit the two jump processes. Under the physical measure P, the SDEs
of the underlying price process together with the subordinated variance process are
then given by

dSt D a.St ; Vt / St dt C
p

Vt St dW S
t

dVt D b.Vt/ dt C c.Vt / dW V
t . (3.3)

Now define the Brownian motions under Q

d QW S
t D dW S

t C 
S
t .St ; Vt / dt

d QW V
t D dW V

t C 
V
t .Vt / dt , (3.4)

where 
S ; 
V are the risk premiums of the underlying and the variance process,
respectively. As mentioned above, the measure Q is characterized by the fact that
all assets have an expected return which equals the risk-free interest rate. In order to
achieve an expected return of r , the price process must transform via9


S
t .St ; Vt / D a.St ; Vt / � rp

Vt

. (3.5)

7 For a definition of Wiener processes, see e.g. Björk (2005), p. 36. Firstly, we will focus on the
continuous part of the jump-diffusion process. We will provide a definition of the jump processes
when we explicitly address jump components.
8 In Sect. 5.4.2, we incorporate the case where the two jump sizes are allowed to be correlated (see
also Duffie et al. (2000)). The independence between the jump and the continuous part is also given
in this context.
9 Considering the variance risk premium, Heston (1993) illustrates how a risk premium pro-
portional to V can be obtained. The key assumption according to Breeden (1979) is 
V D
&CovŒdV; dY=Y �, where & is the relative risk aversion of an investor and Yt is the consump-
tion rate, which is driven by a Cox et al. (1985) process. Another possibility to obtain the variance
risk premium is via a hedge portfolio as described in the appendix of this chapter.
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Girsanov’s theorem assures that QW S
t and QW V

t really are Brownian motions under Q

when the adapted processes 
S
t and 
V

t fulfill Novikov’s condition10:

E
Q

�

exp
˚1

2

Z T

0

.
S
u .Su; Vu//2du

�
�

< 1

E
Q

�

exp
˚1

2

Z T

0

.
V
u .Vu//2du

�
�

< 1 , (3.6)

Embedded in the Girsanov theorem is the concept of the Radon-Nikodym deriva-
tive Z.11 It is defined by

Z D dQ

dP
,

and in the case of (3.4), the Radon-Nikodym derivative reads

Z D exp

�

�
Z T

0

�!
u d
�!
Wu � 1

2

Z T

0

��!
u
�2

du

�

,

where �!
u D .
S
u .Su; Vu//I 
V

u .Vu/// and d
�!
Wu D .dW S

u I dW V
u / are vector pro-

cesses. To change measure from P to Q, one uses the Radon-Nikodym derivative.
Let OY be an F -measurable random variable. Then the expectations of OY under P

and Q are linked via

E
Q
	 OY 
 D E

P
	 OY � Z



.

Provided that the technical conditions in (3.6) hold, the Brownian motions under
P in (3.3) are replaced according to (3.4) and (3.5). Equation (3.3) changes to

dSt D r St dt C
p

Vt St d QW S
t

dVt D Qb.Vt / dt C c.Vt / d QW V
t , (3.7)

with

Qb.Vt/ D b.Vt/ � 
V
t .Vt / c.Vt / , (3.8)

where the (3.7) now describe the evolution of the price process and its instantaneous
variance under the risk-neutral measure Q.

10 Girsanov’s theorem and Novikov’s condition are defined in Sundaram (1997). Another more
technical reference is Øksendal (2000).
11 See e.g. Shreve (2004), p. 212.
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Let us now consider a European call option C as derivative security.12 The actual
price Ct is the expected discounted value under Q of the payoff at maturity of the
option, CT :

Ct D E
QŒD.t; T /CT � , (3.9)

where D.t; T / D expf� R T

t
rsdsg is the discount factor with the risk-free interest

rate r . The payoff of the derivative is a function of St , Vt and t , i.e. C D f .St ;

Vt ; t/.13 The application of the Itô formula leads to the dynamics of the derivative
under Q as follows.14

dC D
�

@C

@t
C r St

@C

@S
C 1

2
Vt S2

t

@2C

@S2
C Qb.Vt/

@C

@V
C 1

2
c2.Vt /

@2C

@V 2

C � c.Vt /
p

Vt

@2C

@S@V

�

dt C
p

Vt St

@C

@S
d QW S

t C c.Vt /
@C

@V
d QW V

t (3.10)

As shown in the appendix of this chapter (Sect. 3.6, see (3.82)), the risk-adjusted
generator in (3.10) can be simplified by15

�

r St

@C

@S
C 1

2
Vt S2

t

@2C

@S2
C Qb.Vt /

@C

@V
C 1

2
c2.Vt /

@2C

@V 2

C � c.Vt /
p

Vt

@2C

@S@V

�

dt D r C dt � @C

@t
dt , (3.11)

the replacement of (3.11) in (3.10) leads to

dC D rCdt C
p

Vt St

@C

@S
d QW S

t C c.Vt /
@C

@V
d QW V

t . (3.12)

Define the discounted value of the derivative as

D D expf�rtg C . (3.13)

The evolution of the discounted value process is then given by

dD D
p

Vt St

@D

@S
d QW S

t C c.Vt /
@D

@V
d QW V

t . (3.14)

12 A derivative of European style can only be exercised at maturity. Contrary, American style
derivatives can be exercised at any time between the actual date and maturity.
13 This is a crucial, but common restriction. Cf. also Lewis (2000).
14 The two-dimensional Itô formula is presented in Shreve (2004), p. 167.
15 The generator of an Itô diffusion is defined in Øksendal (2000), p. 115.
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By definition, a stochastic process which is driftless is a local martingale (but
not necessarily a martingale).16 Since (3.14) is driftless, this process is a local
martingale under Q. Provided that the technical conditions17

E
Q

��Z T

0

�p
Vt St

@C

@S

�2
� 1

2
�

< 1

E
Q

��Z T

0

�
c.Vt /

@C

@V

�2
� 1

2
�

< 1

hold, (3.14) is also a martingale under Q.
As already mentioned above, the fact that the discounted derivative process is

a martingale under the risk-neutral measure implies that the derivative’s expected
return net of opportunity costs is zero, i.e. buying and holding the derivative cor-
responds to the participation at a fair game. This does not mean that buying and
holding is also a fair game under the real measure P.

3.1.3 Change of Measure for Jump-Diffusion Processes

Now consider the case when the price process shows both continuous and jump
components, as defined in (3.1). The aim of the change of measure is again to
achieve the martingale property of the discounted derivative process. Let us focus
only on the jump-diffusion process of the underlying which we recapitulate as given
by

dSt D a.St ; V / St dt C
p

V St dW S
t C St dP S

t , (3.15)

where V denotes constant variance. Firstly, consider the jump part in (3.15). Every
specification of jump components consists of a combination of a random variable
with a Poisson process. This combination is often referred to as compound Poisson
process (e.g. Shreve (2004). The Poisson process counts the number of jumps in
the considered time interval and the random variable follows a certain distribution
which specifies the amount of which the process jumps upward or downward. A
Poisson process Nt is defined by

Nt D
X

n�1

1t�Pn
kD1 �k

8 t � 0 , (3.16)

16 This definition is given in Baxter and Rennie (1996). A more technical definition of local
martingales can be found in Karatzas and Shreve (1991), p. 36.
17 Cf. also Baxter and Rennie (1996).
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where �k is an independent and identically distributed (i.i.d.) sequence of exponen-
tial random variables with parameter �.18 The trajectories of Nt are right continuous
with left limits, piecewise constant between the jump events and increase by jumps
of size 1. The parameter � is also called the intensity of the Poisson process.

To calculate the expected value of the increment dNt , we can use the property
that the probability of two or more simultaneous jumps is zero and the arrival of a
jump is independent from previous jumps. The arrival of one jump in the next small
time interval dt occurs with probability �dt . No jump will occur with probability
1 � �dt . Hence,

E
	
dNt


 D 1�dt C 0.1 � �dt/ D �dt . (3.17)

An interesting special case is the compensated Poisson process. It is defined by

dN �
t D dNt � �dt .

The expected increment of N �
t is zero, therefore the compensated Poisson pro-

cess is a martingale. We make use of compensated processes while adding jump
components to ensure the martingale property of the claim on Xt .

Zhu (2000) points out that in the presence of jumps, is not possible to construct
a hedging portfolio which protects against any price changes at any time, but the
martingale property of the price process ensures that the construction of a hedging
portfolio “is a fair game over a long time in an expectation sense even when jumps
happen” (Zhu, 2000).

Nt has independent increments and belongs therefore to the class of Markov
processes. The characteristic function of a Poisson process with intensity � is given
by

E
	
ei
Nt


 D exp
˚
�t.ei
 � 1/

�
, (3.18)

where 
 is the Fourier parameter and i is the imaginary unit with i 2 D �1.19 The
compound Poisson process is given by

P S
t D

NtX

kD1

Jk , (3.19)

where Nt is a Poisson process with intensity �S defined by (3.16) and Jk denotes
the jump size of the k-th jump. The jump sizes are i.i.d. with density function
'.Jk/.

18 Cf. Cont and Tankov (2003), p. 48.
19 The characteristic function is given by the Fourier transform of the density function. We address
characteristic functions more detailed in Sect. 3.2.
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Our listing of the properties of Poisson processes is not fully complete. Other
less important technical properties of Poisson processes can be found in Cont and
Tankov (2003) or Shreve (2004).

Let us now consider the change of measure. According to Girsanov’s theorem as
defined in the previous subsection, one replaces the Brownian motion in (3.15) as
follows.

dW S
t D d QW S

t � a.St ; V / � r
p

V
dt (3.20)

After the substitution in (3.20), the drift of the process is equal to r St dt . Hence, the
discounted process defined in (3.13) is a local martingale if the jump process QP S

t is
a local martingale under Q. In order to switch the Poisson process to the risk-neutral
measure, both the intensity and the density function of the process are changed to Q�
and Q'.Jk/.

Equivalently to Girsanov’s theorem in the continuous case, we have to show that
QP S
t is a Poisson process and QW S

t is a Brownian motion under Q. Shreve (2004)
approaches the problem by showing that the two processes have the correct joint
moment-generating function.

The Radon-Nikodym-derivative Z of the jump-diffusion process can be writ-
ten as product of the diffusion and the jump component, since dW S

t and dP S
t are

independent.

Z D dQ

dP
D ZD ZJ , (3.21)

with20

ZD D exp

�

�
Z T

0

a.Su; V / � r
p

V
du � 1

2

Z T

0

�
a.Su; V / � r

p
V

�2

du

�

ZJ D exp
˚
.� � Q�/ T

� NTY

kD1

Q� Q'.Jk/

�'.Jk/
,

where ZD and ZJ are the Radon-Nikodym-derivatives of the Brownian motion and
the jump process, respectively. The joint moment-generating function of the two
processes is given by

E
Q
	
expf
1

QW S
t C 
2

QP S
t g
 D E

P
	
expf
1

QW S
t gZD


 � E
P
	
expf
2

QP S
t gZJ



. (3.22)

Provided that Novikov’s condition (3.6) holds, Girsanov’s theorem assures that the
first expectation on the right hand side in (3.22) is the moment-generating function

20 For a detailed proof, see Shreve (2004).
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of a normal random variable with mean zero and variance t, which corresponds to
the Brownian motion QW S

t . The second expectation is given by21

E
P
	
expf
2

QP S
t gZJ


 D exp
˚ Q�t

� Q‡J .
2/ � 1
�
/
�

, (3.23)

where Q‡J .
2/ is the moment-generating function of the jump sizes under Q defined
by

Q‡J .
2/ D E
Q
	
expf
2

OJ g
 ,

where the hat denotes the random variable property of OJ .
Equation (3.18) provides that (3.23) is the moment-generating function of a Pois-

son process and finally that (3.22) is the joint moment-generating function of a
Wiener process and a Poisson process under Q.22 Hence, if QP S

t is a local martin-
gale, the discounted derivative process is also a local martingale.23 These findings
can be generalized to vector processes which incorporate the subordinated variance
process.

3.1.4 Change of Measure if the Underlying
is not a Traded Asset

Now consider a commodity as underlying for the price process St . For commodities
with high storing and holding costs of the good, the risk-neutral hedging argument
does not apply.24 Additionally, prices are influenced by production and consump-
tion of the good.25 As prices increase, production will grow and consumption will
decline, therefore putting a downward pressure on prices. This argument holds also
vice versa. Hence, the price process of a consumption good is to a lesser extent
influenced by hedging with the physical commodity and to a larger extent governed
by supply and demand.

In this case, the adjustment of the price process to the risk-neutral measure as
in (3.4) does not require that (3.5) holds. The expected return of S under the risk-
neutral measure may be different from r and we have

21 The proof of this finding is not supplied in short. Again, we refer to Shreve (2004).
22 The characteristic function ˆ.
/ D E

Q
	
ei
 OJ



is linked to the moment-generating function ‡

via ˆ.�i
/ D ‡.
/ D E
Q
	
e
 OJ



, 
 2 N.

23 The jump processes of the underlying in Chap. 5 are defined as compensated processes and
therefore fulfill the martingale property.
24 Ross (1997) works with a mean-reverting price process without stochastic volatility and jumps
based on this argument.
25 Cf. also Schwartz (1997).
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dSt D Qa.St ; Vt / St dt C
p

Vt St d QW S
t C St d QP S

t

dVt D Qb.Vt / dt C c.Vt / d QW V
t C d QP V

t , (3.24)

where

Qa.St ; Vt / D a.St ; Vt / � 
S
t .St ; Vt /

p
Vt

Qb.Vt / D b.Vt/ � 
V
t .Vt / c.Vt / . (3.25)

In our model specifications in the following chapters, we deal with mean revert-
ing log-price processes under the risk-neutral measure Q. The application of Itô’s
lemma leads to the dynamics of the log-price process dXt D d.ln St/.26

dXt D
�

Qa.Xt ; Vt / � 1

2
Vt

�

dt C
p

Vt d QW X
t C d QP X

t

dVt D Qb.Vt / dt C c.Vt / d QW V
t C d QP V

t , (3.26)

where

d QW X
t D d QW S

t ,

d QP X
t D dNt

˚
ln
�
St.1 C OJ /

� � ln
�
St

�� D dNt ln
�
.1 C OJ /

�
.

As shown in (3.24) – (3.26), the risk premiums are already incorporated in the
drift term of the underlying and the subordinated process, respectively. There-
fore, these processes are formulated under the risk-neutral measure. The jump
process QP S

t is defined as compensated process.27 For notational convenience in
this chapter, the drift term adaption of the compensated jump process is incorpo-
rated in the parameter a.Xt ; Vt /. In Chap. 5, we explicitly work with the drift term
adaption.

3.2 Characteristic Functions

In the previous section, the risk-neutral dynamics of the underlying were developed.
Together with the actual price (and other parameter values), the SDE system deter-
mines the risk-neutral distribution of the underlying at time T , i.e. the maturity of the
derivative security. The distribution function of ST (the price at time T ) is needed to
solve for the value of the derivative as specified in (3.9). The characteristic function
is the Fourier transform of the density function. Hence, distribution function, density

26 The one-dimensional Itô formula is defined in Malliaris and Brock (1991), p. 81.
27 A compensated jump process has a drift term adaption which ensures the martingale property,
i.e. that the expected increment of the process is zero.
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function (the derivative of the distribution function) and characteristic function (the
Fourier transform of the density function) are completely interchangeable.28

The use of characteristic functions in finance became popular with the intro-
duction of the Fourier inversion approach for option pricing by Heston (1993). A
clear advantage of the Fourier inversion approach is the fact that it involves only
one integration of the Fourier integral, even when more than one stochastic factor
are involved (e.g. stock price and volatility). The integration methods for charac-
teristic functions are much faster concerning computation time than other solution
methods for differential equations such as finite difference or Monte Carlo methods.
Due to computation speed, the Fourier inversion approach is often referred to as
closed-form solution though it involves the (numerical) solution of the Fourier inte-
gral. Following Heston (1993), many authors adopted this solution method, among
them are Bates (1996b), Scott (1997), Bakshi et al. (1997), Schöbel and Zhu (1999),
Bakshi and Madan (2000), Duffie et al. (2000), Zhu (2000), Kispert (2005) and
Repplinger (2008).29

The Fourier inversion approach based on characteristic functions allows for a rich
spectrum of process specifications. It is even applicable when the density function
is intractable, provided that the characteristic function has a closed-form solution.30

Furthermore, the use of numerical integration algorithms leads to applicability of the
Fourier inversion approach even when no closed-form solution for the characteristic
function exists.31

We define the characteristic function of the state variable XT (the log-price at
time T) as

ˆ.t; T; 
/ D E
Q

t

	
ei 
 XT



; (3.27)

where i denotes the imaginary unit which is defined by i 2 D �1 and 
 is the Fourier
parameter.

The characteristic function is linked to the moment-generating function ‡ via

ˆ.t; T; �i
/ D ‡.t; T; 
/ D E
Q

t

	
e
 XT



, 
 2 N , (3.28)

provided that the moment-generating function exists, which is equivalent to the
statement

E
Q

t

	
e
 XT



< 1 8 
 2 N . (3.29)

28 The so-called spanning property of characteristic functions is addressed in Bakshi and Madan
(2000).
29 This list is far from being complete. Nevertheless, these papers already involve different problem
specifications, e.g. diffusion processes with stochastic volatility and stochastic interest rates as well
as jump-diffusion processes.
30 An example for this case is the Variance Gamma model of Madan and Seneta (1990) and
Madan et al. (1998).
31 See Sect. 3.6.
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The characteristic function ˆ always exists, even when (3.29) is not fulfilled and
therefore the moment-generating function does not exist.32 This property is an
advantage of handling with characteristic functions instead of moment-generating
functions.33

3.3 Fundamental Partial Differential Equation

In order to compute the characteristic function, we need to solve the expectation
in (3.27), which in case of (3.26) is a function of Xt , Vt and time t : ˆ.t; Xt ; Vt /.
The theorem of Feynman and Kac provides the link between stochastic differential
equations and partial differential equations (PDEs). It also assures that solving the
expectation in (3.27) is equivalent to solving the corresponding PDE.

Suppose that the system of SDEs as given in (3.26) describes the log-price
dynamics. The integral representation of the dynamics of the characteristic function
is given by34:

ˆ.T; XT ; VT / D ˆ.t; Xt ; Vt / C
Z T

t

@ˆ

@t
ds C

Z T

t

@ˆ

@X
dXs C 1

2

Z T

t

@2ˆ

@X2
dX2

s

C
Z T

t

@ˆ

@V
dVs C 1

2

Z T

t

@2ˆ

@V 2
dV 2

s C
Z T

t

@2ˆ

@X@V
dXs dVs

C
X

t<s�T

Œˆ.s; Xs; Vs/ � ˆ.s; Xs�; Vs/�

C
X

t<s�T

Œˆ.s; Xs; Vs/ � ˆ.s; Xs; Vs�/� , (3.30)

where the jump of the log-underlying (respectively the variance jump) at time s is
given by J X D Xs � Xs� (respectively J V D Vs � Vs�). Replacing the process
specifications as given in (3.26) and (3.30) and simplifying leads to

ˆ.T; XT ; VT / D ˆ.t; Xt ; Vt / C
Z T

t

�
@ˆ

@t
C QAˆ

�

ds C
Z T

t

p
Vs

@ˆ

@X
d QW X

s

32 A proof of this property can be found in Schaich and Münnich (2001), p. 134.
33 However, it is possible that the characteristic function exhibits no closed-form representation,
e.g. for the lognormal distribution.
34 The Itô formula for two-dimensional jump-diffusion processes is given in Shreve (2004), p. 489.
The necessary integrability conditions for jump-diffusions can be found in Duffie et al. (2000).
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C
Z T

t

c.Vs/
@ˆ

@V
d QW V

s C
X

t<s�T

Œˆ.s; Xs; Vs/ � ˆ.s; Xs�; Vs/�

C
X

t<s�T

Œˆ.s; Xs; Vs/ � ˆ.s; Xs; Vs�/� , (3.31)

where

QAˆ D
�

Qa.Xt ; Vt / � 1

2
Vt

�
@ˆ

@X
C Qb.Vt/

@ˆ

@V
C 1

2
Vt

@2ˆ

@X2
C 1

2
c2.Vt /

@2ˆ

@V 2

C �
p

Vt c.Vt /
@2ˆ

@X@V
(3.32)

is the risk-neutral generator of the continuous process.35

Suppose that ˆ.t; Xt ; Vt / solves the PDE

@ˆ

@t
C QA ˆ C �X

Z

R

	
.ˆ.t; Xt C J X ; Vt / � ˆ.t; Xt ; Vt //



d'.J X/

C �V

Z

R

	
.ˆ.t; Xt ; Vt C J V / � ˆ.t; Xt ; Vt //



d'.J V / D 0 , (3.33)

where �X , �V are the jump intensities of the two jump processes and J X and
J V are assumed to be distributed with density '.J X / and '.J V /. The boundary
condition is given by ˆ.T; XT ; VT / D f .XT ; VT /. Under this assumption, (3.31)
changes to

f .XT ; VT / D ˆ.t; Xt ; Vt / C
Z T

t

p
Vs

@ˆ

@X
d QW X

s C
Z T

t

c.Vs/
@ˆ

@V
d QW V

s . (3.34)

Now take expectation to obtain

ˆ.t; Xt ; Vt / D E
Q

t

	
f .XT ; VT /

ˇ
ˇXt D X0; Vt D V0



, (3.35)

where X0 and V0 are the initial values for X and V , respectively.
Hence, solving (3.27) and the PDE (3.33) is equivalent. Note that if (3.33) holds,

the corresponding SDE to (3.34) is a local martingale.36 Furthermore, one has to

35 As mentioned earlier, the generator of an Itô diffusion is defined in Øksendal (2000), p. 115.
36 A driftless stochastic process is a local martingale (Baxter and Rennie (1996)). Note that as a
result of this, the futures price is also driftless under the martingale measure (EŒdF � D 0). This is
true since F.t; T / D ˆ.t; T; 
 j 
 D �i / and EŒdF � D EŒdˆ j 
 D �i � (See (3.38) and (3.41) in
Sect. 3.4.1). This finding is in line with Ross (1997), p. 392.
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ensure that the process (3.34) has bounded variance:

E
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��Z T

0

�p
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�2
� 1

2
�

< 1

E
Q

��Z T

0

�
c.Vt /

@ˆ

@V

�2
� 1

2
�

< 1 .

If (3.34) has bounded variance and no drift term, it corresponds to a global martin-
gale process and the price of the claim on X is given by the discounted expectation
under Q.37

Equations (3.33) and (3.32) determine the fundamental partial differential equa-
tion (FPDE):
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@t
C
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@V 2

C�
p

Vt c.Vt /
@2ˆ

@X@V
C �X

E
QŒ.ˆ.t; Xt C J X ; Vt / � ˆ.t; Xt ; Vt //�

C�V
E

QŒ.ˆ.t; Xt ; Vt C J V / � ˆ.t; Xt ; Vt //� D 0

(3.36)

The FPDE can be transformed in a set of ordinary differential equations (ODEs)
with an exponential guess for ˆ. The structure of the guess depends on the system
of SDEs in (3.26). For a SDE system with two state variables X and V , the guess is
exponential affine38:

ˆ.t; Xt ; Vt / D exp
˚
i
A.�/Xt C B.�/Vt C C.�/

�
, (3.37)

where � D T � t . The replacement of the corresponding derivatives of (3.37) in
(3.36) and collecting terms with Xt , Vt and constants leads to a system of ODEs.
The ODE system can be solved subject to boundary conditions of the auxiliary func-
tions A.�/, B.�/ and C.�/ providing that (3.27) holds at maturity of the derivative
security.

Since the further proceeding is model dependent, we address the application of
the exponential guess and the solution of the resulting ODE system in the following
chapters.

37 Cf. Lewis (2000).
38 For the success of an exponential affine guess, it is necessary that the FPDE incorporates only
terms with Xt , Vt or constants. Cf. Heston (1993).
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3.4 European Style Derivatives

Armed with the FPDE and an exponential guess for ˆ, we obtain a system of ODEs
which can be solved analytically – if possible – or via Runge–Kutta methods as
described in Sect. 3.6 in the appendix of this chapter. By this means, we can provide
a solution for the characteristic function contingent on the SDE system. The charac-
teristic function itself is necessary for the pricing of derivative instruments such as
forwards and futures or European options. The pricing equation for these derivatives
can be expressed in terms of characteristic functions.

3.4.1 Forwards and Futures

Forwards and futures are the simplest derivative instruments. All contract specifi-
cations (e.g. underlying, delivery price, maturity, contract size) are fixed when the
contract is written, but the physical completion of the contract, i.e. payment and
delivery, is deferred to the maturity date. Hence, a forward (futures) contract can be
seen as a bet on the spot price at maturity.

Since no cash flows occur when the contract is written, the futures price is the
price which makes the contract valueless. It is defined by39

F.t; T / D E
Q

t

	
ST


 D E
Q

t

	
expfXT g
 , (3.38)

where t is the actual date, T is the maturity date, r is the risk-free interest rate and
S (respectively X ) denotes the price (respectively log-price) of the underlying. The
forward price is given by

F W.t; T / D E
Q

t

	
expf

Z T

t

rsdsg
St D E
Q

t

	
expf

Z T

t

rsdsg
 expfXtg . (3.39)

Since a futures contract is settled at the end of each trading day in contrast to
forward contracts, where the only cashflow is paid on the maturity date, the sum
of the payments of a futures contract matches the payment of a forward contract,
merely the timing of the cashflows is different. Consequently, an equality of the
forward and futures price is given when interest rates are deterministic besides
the assumption of the absence of market frictions, e.g. no transaction costs and
taxes, perfect divisibility of futures contracts and lending and borrowing at the same
rate. A nonrandom interest rate results in a zero covariance of the discount pro-
cess D.t; T / D expf� R T

t rsdsg and the underlying process. When interest rates are
stochastic, the difference � is given by40

39 This finding traces back to Cox et al. (1981).
40 See also Shreve (2004) or Miltersen and Schwartz (1998).
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� D F W.t; T / � F.t; T / D 1

E
Q

t

	
D.t; T /


 covQ
�
D.t; T /; S.T /

�
. (3.40)

In our framework, we apply constant and therefore non-stochastic interest rates.
In the following, we work with futures prices keeping in mind that the futures price
equals the forward price under the above assumptions.41

The futures price in (3.38) is given by the first moment of the distribution of
ST . We do not need to apply Fourier transformation theory to calculate (3.38).
Hence, the characteristic function as defined in (3.27) is not needed, but can be
useful anyway since it determines the moments of the distribution of XT via (3.28).

The first moment is required for the computation of the futures price. Therefore,
the futures price is given by the characteristic function with a frequency of �i :

F.t; T / D ˆ.t; T; �i/ D ‡.t; T; 1/ . (3.41)

3.4.2 European Options

Another class of standard derivative instruments are European call and put options,
which give its holder the right, but not the obligation, to buy (respectively sell, in
case of a put option) the underlying for a prespecified price at maturity. In contrast
to futures and forwards, an option contract always has a nonnegative value for the
holder of the option.42

It is important to note that most of the options in the commodity derivatives
market are American style options on futures. European options on futures can be
covered within our framework, when the (log-) spot price is replaced by the (log-)
futures price. The price of the American option is the price of the equivalent Euro-
pean option plus an early exercise premium. The early exercise premium of the
American option has to be estimated with an adequate method, e.g. the trinomial
lattice model in Broadie and Detemple (1996) as mentioned in Richter and Sørensen
(2002).43

41 For a more detailed discussion of the differences between forward and futures prices, see e.g.
French (1983) or Jarrow and Oldfield (1981).
42 Contrarily, the option writer commits himself to deliver the underlying (respectively buy, in case
of a put option) at the strike price. Hence, the possible loss of the deal is unlimited for the call
option writer (and limited to the exercise price less the received option premium for the put option
writer, respectively). The option premium received from the holder of the option is a compensation
for the takeover of this risk.
43 Another approximation method for the early exercise premium is described in Barone-Adesi and
Whaley (1987).
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In line with the definition given in (3.9) at the beginning of this chapter, the value
of a European call option at time t with expiration date T is

Ct D E
Q

t

�

exp.�
Z T

t

rs ds/ .ST � K/C
�

(3.42)

D
Z 1

k

exp.�
Z T

t

rs ds/ .eXT � K/ '.XT / dXT : (3.43)

The corresponding put option can be priced using put-call-parity. XT and k are the
log-transformations of the price ST of the underlying and the strike price K . '.XT /

is the risk-neutral probability density function of the log-price at time T.
We present two ways of solving the expectation in (3.42): The traditional two-

integral approach and the one-integral approach of Carr and Madan (1999) or Lewis
(2000, 2001). Both approaches have their advantages: In the traditional approach,
one directly calculates the risk-neutral probabilities which are useful for hedge ratios
or the knowledge of the risk-neutral probability of ending up in the money. As a
drawback of this approach, the calculation of two integrals can be a slow algorithm
in case of numerical computation of the characteristic function. On the other hand,
as discussed in Lee (2004), the one-integral approach is superior with respect to
error management and faster in the calculation if one does not need the risk-neutral
probabilities. The drawback of this approach is obviously that one forgoes the delta
and the risk-neutral exercise probability of the option. As is the previous sections,
we will assume constant interest rates in the following.

Traditional Approach

In this paragraph, we demonstrate the traditional approach for option pricing which
was adopted by Heston (1993), Scott (1997), Bakshi and Madan (2000) and Zhu
(2000), among others. The splitting of the maximum function in (3.42) in two parts
and simplifying leads to

Ct D E
Q

t

�

exp.�
Z T

t

rs ds/ ST1XT > k

�

� K E
Q

t

�

exp.�
Z T

t

rs ds/1XT > k

�

,

(3.44)

where 1XT > k denotes the indicator function under the appropriate probability
measure.

In order to simplify calculations, the measure is changed in both expectations
from Q to Q1 and Q2, respectively.44

Q1 is the measure with the underlying as

44 An excellent reading for the change of numéraire in option pricing theory is the work of Geman
et al. (1995).
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numéraire. Under this measure, all assets are quoted in terms of the underlying, and
the price of the underlying is therefore 1. Equivalently, Q2 is the measure with a
zero bond B.t; T / with time to maturity T � t and a face value of 1 as numéraire.
Hence, Q2 is also called the T-forward measure.

The equivalent martingale measures Q1 and Q2 are characterized via their
Radon-Nikodym derivatives with respect to Q

45

Z1 D d Q1

d Q
D exp.� R T

t
rs ds/ exp.XT /

EQ
	
exp.� R T

t
rs ds/ exp.XT /


 (3.45)

Z2 D d Q2

d Q
D exp.�

Z T

t

rs ds/
1

B.t; T /
. (3.46)

Note that in case of non-mean-reverting assets, the denominator in (3.45) is just
St since the underlying is expected to grow with rate r under Q and therefore,
the Radon-Nikodym derivative is Z1 D exp.� R T

t
rs ds/ST =St . This simplification

is not valid if one assumes mean-reversion under Q. But, in the case of deter-
ministic interest rates, the first Radon-Nikodym derivative can be simplified to
Z1 D exp.XT /=E

Q
	
exp.XT /



. Equivalently, we have B.t; T / D exp.� R T

t
rs ds/

and the second Radon-Nikodym derivative in (3.46) is Z2 D 1. Therefore, the two
measures Q and Q2 are identical.

Now change numéraire according to46
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. (3.47)

The expected value of exp.XT / under Q corresponds to the characteristic func-
tion with a frequency of �i and the two expectations of the indicator function are
denoted by …1 and …2.47 We obtain

Ct D e�r.T �t / � 	ˆ.t; T; �i/ � …1 � K � …2



. (3.48)

45 Cf. also Bakshi and Madan (2000), p. 214 or the remarks to Girsanov’s theorem in Sect. 3.1.1 in
this chapter.
46 The change of measure is done according to E

Q1 Œ OY � D E
QŒZ1

OY �, where OY is a substitutional
random variable. See also Geman et al. (1995).
47 The characteristic function with a frequency of �i is the futures price F.t; T / (See also
Sect. 3.4.1).
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…2 is the risk-neutral probability of ending up in the money. …1 is the delta of the
option. Both values can be expressed in terms of the characteristic function. Firstly,
consider …2. The risk-neutral density function '.XT / is linked to its characteristic
function ˆ.t; T; 
/ via the Fourier inversion theorem48:

'.XT / D 1
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0

�

ei
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/ C e�i
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/
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d


D 1
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0
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e�i
XT ˆ.t; T; 
/

�

d
 (3.49)

For the computation of the risk-neutral exercise probability, one needs the distribu-
tion function of XT . Integration of (3.49) leads to

…0.k/ D 1
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i


�

d
 .

…0.k/ denotes the probability that XT < k (or, equivalently, that ST < K). For a
call option, one needs the inverse probability49
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2
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d
 . (3.50)

For the calculation of …1, the same steps can be done with a slightly different
characteristic function ˆ1.t; T; 
/ D E

Q

t

	
e.1Ci
/XT



and we obtain50

…1.K/ D 1 � …0
1.K/ D 1

2
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Z 1

0

Re
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K�i
ˆ1.t; T; 
/

i


�

d
 . (3.51)

Armed with the option pricing (3.48) and the formulas for the delta (3.51) and
the risk-neutral exercise probability (3.50), one can calculate the option price by
calling the characteristic functions ˆ1 and ˆ. However, Bakshi and Madan (2000)
demonstrate that both characteristic functions can analytically be expressed in terms
of the characteristic function of the state price density. Hence, …1 can be computed

48 The Fourier inversion theorem is discussed in Bronstein et al. (2001), p. 746. The second
equality in (3.49) is obtained by the following considerations: The complex number NZ D
ReŒZ� � i � I mŒZ� D ei
XT ˆ.t; T; �
/ is the complex conjugate of Z D ReŒZ� C i � I mŒZ� D
e�i
XT ˆ.t; T; 
/, where ReŒZ� denotes the real part and I mŒZ� denotes the imaginary part of Z.
Therefore, NZ C Z D ReŒZ� � i � I mŒZ� C ReŒZ� C i � I mŒZ� D 2ReŒZ�.
49 The probability that ST > K is the exercise probability of the call option. Remember that this
probability is taken under the risk-neutral measure and is not the exercise probability under the real
measure P.
50 Remember that ˆ2 D ˆ because the measures Q2 and Q are identical, which is due to the
non-randomness of interest rates. For a detailed discussion of this approach, see Zhu (2000).
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by calling the very same characteristic function ˆ via51

…1.K/ D 1
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C 1

	

Z 1
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K�i
 ˆ.t; T; 
 � i/

i
 ˆ.t; T; �i/

�

d
 . (3.52)

This definition of …1 seems more tractable since one has only to deal with one
characteristic function when computing an option price.

Now consider the calculation of the integrals in (3.50) and (3.52). At first
sight, the integration is not straightforward because both integrands have a pole
at 
 D 0. However, the integrals can be recovered via Gauss-Laguerre quadra-
ture (see Sect. 3.6), which does not require the evaluation of the integrands at

 D 0.

Carr–Madan Approach

Conversely, the pole at 
 D 0 affects the application of Fast Fourier Transforma-
tion techniques of the following Sect. 3.5 since the integration node at 
 D 0 is
needed for this integration algorithm. Following Carr and Madan (1999), a dampen-
ing parameter ı is introduced to eliminate the pole in both equations. Starting from
(3.43), we get a dampened option price

C ı
t D eı k

Z 1

k

e�r.T �t / .eXT � ek/ '.XT / dXT : (3.53)

The Fourier transform of the dampened option price is
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Z 1

�1
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keık

Z 1

k

e�r.T �t / .eXT � ek/ '.XT / dXT dk : (3.54)

Changing the order of integration according to Fubini’s theorem, solving the integral
over k and splitting the remaining integral in two parts leads to52
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1

1 C ı C i

eXT �.1CıCi
/ dXT . (3.55)

The option price is recovered by Fourier inversion and multiplication with factor
e�ık .

51 See Bakshi and Madan (2000), case 2 on p. 218.
52 See e.g. Björk (2005), p. 414.



3.5 Fast Fourier Algorithms 37
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The one-integral approach of Carr and Madan is analogous to (3.53) – (3.56) in the
previous subsection except for the splitting of the integral. The Fourier transform of
the dampened option price is

‰.t; T; 
/ D
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.

The option price is again obtained by Fourier inversion and undampening with factor
e�ık .
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The valuation equation for the call option price in (3.57) is perfect for the
application of fast algorithms which are described in the next section, since only
one integral has to be solved for each moneyness. If one needs the delta and
the risk-neutral exercise probability, (3.56) is the appropriate equation for the fast
algorithms.

3.5 Fast Fourier Algorithms

3.5.1 Fast Fourier Transformation

The use of Fast Fourier Transformation (FFT) algorithms in option pricing is ade-
quate if we want to price options for multiple strikes. The idea to use FFT for this
purpose traces back to Carr and Madan (1999). FFT delivers a vector of all option
prices simultaneously and significantly speeds up the computation compared to the
repeated calculation of single option values. However, FFT has a crucial disadvan-
tage: the algorithm requires a circular convolution property of the transform vector.
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The resulting restrictions are the following: Firstly, the number of strikes has to
equal the number of nodes of the integral over 
 and secondly, the distance of the
nodes over the 
-axis and the strike axis cannot be chosen independently.

FFT is the corresponding fast algorithm of the discrete Fourier transform (DFT).
The DFT Fm of a vector fn is defined as follows53:

Fm D
N �1X

nD0

fn exp

�

�2 	 i m n

N

�

(3.58)

To map the complete vector fn into its DFT Fm, we have to perform the summation
in (3.58) N times for m D 0; ..; N � 1. Consequently, both vectors Fm and fn

contain N elements. Each element of the sum in (3.58) can be interpreted as polar
coordinate of a complex number where 2 	 m n

N
denotes the angle and fn is the radius.

For n D N , we have performed a full circle and obtain the same result as for
n D 0. Due to this circular convolution property, we have also F�n D FN �n. Each
element exp. 2 	 i m n

N
/ is used N times and can therefore be stored to speed up the

computation.
Now apply (3.58) to our integration problem. Consider again (3.57). The contin-

uous inverse Fourier transformation can be approximated by its discrete counterpart
via
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wn is some weighting function determined by the trapezoidal or Simpson’s rule, it
can also be unity.54 Note that both indices n (which determines the value of the
integration parameter 
) and m (which determines the strike of the call option)
take N values from zero to N � 1. To discretize the integral, it is truncated at
some large value 
max, for which the function value of the integrand is satisfacto-
rily small, say 10�6. Subsequently, the size of �
 is fixed. Depending on accuracy,
the value of �
 is located in the interval Œ0:1; 0:25�.55 With �
 given, we adjust

max upwards so that the number of nodes is a power of 2. N 2 2x 8 x 2 N

is convenient for the Fast Fourier algorithm. The result is 
n D �
 � n , for
n D 0; ..; N � 1.

Starting from this setting for 
n, there is only one degree of freedom left for the
log-strike axis km. The smallest log-strike k0 can be chosen freely. The number of

53 See Bronstein et al. (2001).
54 The trapezoidal and Simpson’s rule are illustrated in Bronstein et al. (2001), p. 922 and p. 923.
55 Of course, smaller or larger values for �
 are possible. However, the location of �
 in the
specified interval is a convenient trade-off between accuracy and computation time.
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strikes is already fixed at N . The m-th element of the log-strike vector is defined by
km D k0 C �k � m, for m D 0; ..; N � 1. Plugging these results in (3.59), we have
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A comparison with (3.58) reveals the restriction on �k so that (3.60) is a DFT:

�k � �
 D 2	

N
(3.61)

A small value of �
 leads to a coarser grid over the strike axis and vice versa.
High accuracy can be achieved with small values of �
 . Unfortunately, increasing
the accuracy leads to calculation of option prices which are not needed because of
unrealistic strikes.

The DFT as described in (3.58) or (3.60) requires N 2 computations. The corre-
sponding fast algorithm uses the fact that N is a power of 2 and divides the sum
stepwise into sums with even and odd elements56:
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: : :

This procedure can be repeated log2 N times until there is a sum of N single
elements and no longer a sum of sums on the right hand side. For example, the

56 See also Press et al. (1997).
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single Fourier transforms of a vector f with eight elements 0, 1, 2, 3, 4, 5, 6, 7 are
arranged after three steps in order 0, 4, 2, 6, 1, 5, 3, 7. If we express the elements
in binary code, we observe a change from 000, 001, 010, 011, 100, 101, 110, 111
to 000, 100, 010, 110, 001, 101, 011, 111. A closer look at the binary codes reveals
that the rearranging is obtained by reverting the binary code for each element. The
fast algorithm consists of rearranging the Fourier transforms of single elements of
f according to the reversion of their binary codes and then performing the log2 N

steps of merging adjacent elements until the sum over all elements is obtained. The
resulting length of the algorithm is reduced from order N 2 to order N log2 N .

This procedure works also for other prime factors, e.g. 3, 5, 7 etc. The Matlab�

function fft does not require N to be a power of 2 and uses the smallest prime
factors of N . If a decomposition of N into small prime factors is not possible,
the resulting FFT is not very fast. The worst case scenario is for N being a prime
number, where we obtain no speedup in the computation. It is then convenient to
increase N to a well-factorized number by padding the vector with zeros. For further
reading of this topic, we suggest Cerny Cerny (2004), who provides a short overview
of computation speeds for different values of N .

3.5.2 Fractional Fast Fourier Transformation

The Fractional Fast Fourier Transformation (FRFT) remedies the deficiencies of
the FFT algorithm. The number and the spacing of the nodes over the strike axis
can be chosen independently. The structure of FRFT can be found in Bailey and
Swartztrauber (1991).57 Chourdakis (2004) was first in adopting FRFT in finance, he
uses a normalized characteristic function with an asset price of unity (and therefore
a log-price of zero) to improve accuracy. The option prices are finally obtained by
multiplication with the real asset price. If we want to apply the normalization of
the characteristic function on mean-reverting assets, we do not only have to adjust
the asset price and the strike, but also the mean-reversion level.58 In this chapter,
we do not work with normalized characteristic functions. Since the loss of accuracy
is marginal, we apply the original characteristic function and use log-strikes rather
than log-moneyness as transform variable.

The FRFT of a vector f with fractional parameter ˛ according to Bailey and
Swartztrauber (1991) is defined as:

57 The definition of FRFT according to Bailey and Swartztrauber (1991) virtually is another name
for a z-transform which corresponds to a DFT. There exists a rival definition for FRFT, which is
short for Fractional Fourier Transform and denotes the n-th power of a Fourier transform where n
is not required to be an integer (see e.g. Namias (1980)). Following Chourdakis (2004), we refer
to the z-transform as FRFT.
58 The long-term equilibrium level corresponds to the parameter X in (4.1) or (4.18), for example.
The linear homogeneity property (Merton (1973)) of option prices in the case of mean-reverting
asset prices is also discussed in Sect. 4.1.
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Gm D
N �1X

nD0

fne�2	imn˛ (3.62)

Following Chourdakis (2004), we show that this transform can be expressed in terms
of conventional FFTs.

Consider again (3.60) as discretized integral under account. Note that it is no
longer necessary that the number of strikes M equals the number of nodes N

for each integral. This property accounts for the superiority of the FRFT algo-
rithm over the FFT approach in the previous subsection. Following Carr and Madan
(1999) and Chourdakis (2004), we calculate option prices for the log-moneyness
range Œ�b; Cb�. Therefore, we have a log-strike range from k0 D �b C ln.S/ to
kM�1 D Cb C ln.S/. The number of strikes M is only required to be smaller
or equal N . This condition for M is not a crucial restriction, since high accu-
racy requires a sizeable N . The maximal number of strikes grows with increasing
accuracy, smaller values are possible. With M given, the value of �k results in
�k D 2b=.M � 1/.
Setting

˛ D �
 �k

2	
D �
 b

	 .M � 1/
, (3.63)

we obtain

Ct .km/ � e�kmı

	
�


N �1X

nD0

Re
	
e�2	inm˛ fn



. (3.64)

Using 2nm D n2 C m2 � .m � n/2, we have

Ct.km/ � e�kmı

	
�
 Re

	
e�	im2˛

N �1X

nD0

e�	in2˛ e	i.m�n/2˛ fn



. (3.65)

Substitution of
fne�	in2˛ D fj e�	ij 2˛ D yj

and
e	i.m�n/2˛ D e	ij 2˛ D zj

leads to

Ct .km/ � e�kmı

	
�
 Re

	
e�	im2˛

N �1X

nD0

ynzm�n



. (3.66)

We notice that the index of z depends on both n and m and becomes nega-
tive for n > m. The value of the sum over all elements of z does not depend
on m if z shows circular convolution, but this property is not yet fulfilled since
zm�n ¤ zm�nCN . Following this objective, the length of the sequences y and z is
doubled; the second N elements are defined as yj D 0 and zj D e	i.j �2N /2˛ for
j D N; N C 1; ::; 2N � 1. With this setting for z, a circular convolution of length
2N is obtained, i.e. zj C2N D zj �2N D zj .
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Ct.km/ � e�kmı

	
�
 Re

	
e�	im2˛

2N �1X

nD0

ynzm�n



(3.67)

Performing an identity operation by Fourier transform and inverse Fourier transform
leads to

Ct.km/ � e�kmı

	
�
 �

� Re

�

e�	im2˛ 1

2N

2N �1X

j D0

2N �1X

lD0

2N �1X

nD0

ynzl�n exp

�

� i	jl

N

�

exp

�
i	jm

N

��

.

(3.68)

Split the exponential function of the Fourier transform and change the order of
summation:

Ct.km/ � e�kmı

	
�
 Re

�
e�	im2˛

2N

2N �1X

j D0

2N �1X

nD0

yn exp

�

� i	jn
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�

�

�
2N �1X

lD0

zl�n exp

�

� i	j.l � n/

N

�

exp

�
i	jm

N

��

. (3.69)

Now consider the third sum which is the DFT of z. Due to circular convolution,
it is extraneous at which element the summation starts and DF T .zl�n/ can be sim-
plified to DF T .zl /. We identify the two DFT’s and the inverse DFT, replace them
with their corresponding fast algorithms and obtain

Ct .km/ � e�kmı

	
�
Re

	
e�	im2˛ IFF T fFF T .y/ ˇ FF T .z/g
 , (3.70)

where ˇ denotes element-by-element vector multiplication and IFFT is the inverse
FFT. This approximation is only valid for m D 0; 1; ::; M � 1. All FFT’s are of
length 0; 1; ::; 2N � 1, the first M elements are used and the remaining elements are
discarded.

3.6 Recovering Single Option Prices with Gauss-Laguerre
Quadrature

The FFT algorithms described in the previous section are convenient if multi-
ple option prices for different strikes are needed. Especially when the charac-
teristic function is calculated numerically, the calculation process can become
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very time-consuming. Hence, an integration routine for single option prices saves
computation time if one does not need option prices for multiple strikes.

It is necessary to calculate integrals of the type

Z 1

0

ReŒf .
/� d
 (3.71)

to recover the risk-neutral probabilities ((3.50) and (3.52)) and the option price.
The integrand is an oscillating function which decays as 
 approaches infinity. An
integration of (3.71) with standard quadrature routines such as the trapezoidal or
Simpson’s rule is suboptimal, especially when the function values are not given in
closed form and time-consuming numerical procedures are applied.59

A fast and accurate way to calculate integrals in the interval Œ0; 1/ is the use of
Gauss-Laguerre quadrature, since less function calls of the characteristic function
are required.60 As in every quadrature routine, the integral is approximated via a
sum.

Z 1

0

w.
/ � g.
/ d
 D
nX

kD1

wk.
k/ � g.
k/ C En (3.72)

w.
/ is the weighting function and the 
k are the nodes of the quadrature formula.
The nodes of Gauss formulae are not required to be equidistant. The possibility
to choose the coefficients wk and also the nodes 
k leads to additional degrees of
freedom in the quadrature rule which can be used to approximate the integrand by
polynomials of higher degree. The maximum degree for a formula with n points
is 2 n � 1. The quadrature rule has small approximation errors if the integrand is
a continuous and differentiable function. In the case of indefinite integrals in the
interval Œ0; 1/, we also have a truncation error. En in (3.72) denotes the summa-
rized error. The weighting function is only required to be nonnegative; it can also
be unity. Other weighting functions are used when the approximation works better
for the product of weighting function and modified integrand than for the original
integrand. In the case of Gauss-Laguerre quadrature we have w.
/ D exp.�
/. In
order to apply the quadrature routine, the weighting function is plugged into the
Integral (3.71).

Z 1

0

w.
/ exp.
/ ReŒf .
/� d
 D
nX

kD1

wk.
k/ exp.
k/ ReŒf .
k/� C En (3.73)

59 We used Runge–Kutta and predictor-corrector algorithms as described in Sect. 3.6 in the
appendix of this chapter. A discussion of Runge–Kutta computation time is provided in Sect. 4.2.3
in the appendix Chap. 4. For a discussion of the trapezoidal and Simpon’s rule, see Bronstein et al.
(2001), p. 922 and p. 923.
60 See also Tahani (2004).
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The function f .
/ has to be computed only at n points. The choice of n determines
the size of the error: A large n uses more function calls and results in a small error
and vice versa.

The nodes 
k are the zeros of a special polynomial Ln.
/ which is orthonormal
to the weighting function. Orthonormality in this respect means that

Z 1

0

w.
/ Ln.
/ Pm.
/ d
 D 1 for m D n

Z 1

0

w.
/ Ln.
/ Pm.
/ d
 D 0 for m ¤ n

holds for any polynomial Pm.
/ with m D n and m ¤ n, respectively. It can be
shown that the orthonormal polynomial always exists and is unique.61 In the case
of the interval Œ0; 1/ with the weighting function w.
/ D exp.�
/, the orthonor-
mal polynomial is a Laguerre polynomial Ln. The zeros of Laguerre polynomials
and the corresponding weights are tabulated in Abramowitz and Stegun (1970) for
n � 15. For higher orders, the nodes can be found by solving an eigenvalue problem
for the tridiagonal matrix

T D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

1 �1 0 0 : : : 0

�1 3 �2 0 : : : 0

0 �2 5 �3
: : :

:::

0 0 �3 7
: : : 0

:::
:::

: : :
: : :

: : : �.n � 1/

0 0 : : : 0 �.n � 1/ 2 n � 1

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

:

The eigenvalues of T are the nodes of the Gauss-Laguerre quadrature rule of order n.
The weights wk.
k/ are acquired by squaring the first element of the corresponding
eigenvector.62

For any n, the nodes lay in the interval .0; 1/. This property has the advan-
tage that the function f .
/ does not have to be calculated at 
 D 0, which is a pole.
Hence, we can apply Gauss Laguerre quadrature directly without using a dampening
parameter as described in Sect. 3.4.2.

61 See Stroud (1974) for a proof of this finding.
62 The proofs of these properties are given in Golub and Welsch (1969).
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Appendix

The Hedging Portfolio in the Stochastic Volatility Framework

In this section, we demonstrate according to Lewis (2000) the construction of a
hedging portfolio out of nC call options and nS shares of the underlying:

W D nC C C nS S , (3.74)

where W denotes the portfolio wealth. Lewis adopts a stochastic volatility frame-
work without jumps and constructs a hedging portfolio which is uncorrelated with
the underlying, i.e. if dW dS D 0 holds, the portfolio is hedged against price
changes of the underlying for an infinitesimal time segment dt (though it is not
hedged against changes of variance). We obtain

dW dS D
�
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�
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@t
C a.Xt ; Vt / St
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2
Vt S2
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t C nC c.Vt /

@C
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D 0 . (3.75)

Using

dt2 D dt dW X
t D dt dW V

t D 0

.dW X
t /2 D dt

dW X
t dW V

t D � dt ,

(3.75) simplifies to
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�p
Vt St
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�
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Vt St nS
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(3.76) holds for

nS D �nC

�
@C

@S
C � c.Vt /p

Vt St

@C

@V

�

. (3.77)
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Substitute nS via (3.77) and set nC D 1 to obtain for the dynamics of the portfolio
wealth63

dW D
�

@C

@t
C 1

2
Vt S2

t

@2C

@S2
C @C

@V

�

b.Vt/ � � c.Vt / a.Xt ; Vt /p
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. (3.78)

To switch to the risk-adjusted dynamics, one defines the risk premium of the hedging
portfolio as


P
t D aP

t � r

�P
t

, (3.79)

where aP
t W refers to the drift of dW via

aP
t W D @C
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2
Vt S2
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and �P
t is given by

.�P
t W/2 D c2.Vt /

�
@C

@V

�2

.1 � �2/ . (3.81)

Plug (3.80) and (3.81) in (3.79). Together with (3.74) and (3.77), one arrives at the
following relation:
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Vt S2

t
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C @C
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Qb.Vt/ C 1
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c2.Vt /
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� r C C r S

@C
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Qb.Vt/ in (3.82) is the risk-adjusted volatility parameter which is given by

Qb.Vt / D b.Vt / � c.Vt /
�
� 
S

t ˙
p

1 � �2 
P
t

�
, (3.83)

63 The volume of the hedge portfolio is extraneous. If the parameter is not replaced, it is canceled
in the result anyway (Lewis (2000)).
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where the ˙ sign in (3.83) depends on the nonnegativity condition for �P
t . Hence,

the risk premium for the variance process is


V
t D � 
S

t ˙
p

1 � �2 
P
t . (3.84)

The variance risk premium which is used in the Girsanov transformation in (3.4)
and (3.8) has to fulfill the condition in (3.84).

Numerical Integration of ODE Systems

When the system of ODEs does not have an analytic solution or the analytic solution
is difficult to compute, it can be solved numerically. Matlab� provides different
integration algorithms in its ODE suite. We will focus on the ode45-routine which
is based on the Dormand and Prince (1980) 4-5-pair of embedded Runge–Kutta-
formulae.

A Question of Computational Efficiency: Explicit or Implicit Schemes?

The integration routines of the Matlab� ODE suite extrapolate the value of a scalar
or vector y.t/ stepwise when an initial condition y.0/ is known and a (system of)
ODE(s) describes the dynamics of y.t/64:

y0.t/ D f .y.t/; t/ . (3.85)

The different integration methods can be classified coarsely in explicit and
implicit schemes. Explicit schemes have a lower computational cost per integration
step than implicit ones. Hence, explicit schemes are usually applied. However, when
the ODE system exhibits stiffness, an explicit integration scheme is forced to reduce
the stepsize dramatically to maintain the stability of the solution. The drawback of
this pattern is twofold: Firstly, the overall computation time is highly increased and
secondly, there is more machine roundoff error accumulated.65 Since the stability of
implicit schemes is not affected by stiffness or non-stiffness, implicit schemes prove
to be much more effective in the case of heavy stiffness. When only mild stiffness is
involved, the decision is more challenging since it is questionable whether the lesser
number of time steps compensates for the higher computational effort per time step
or not.

The choice of the appropriate ODE solver therefore depends on the stiffness of
(3.85). A definition of this concept is required. However, the definition of stiffness
in the literature is not clear-cut. Ekeland et al. (1998) provide a short overview of

64 In our case, the initial condition is the boundary condition at maturity of the derivative security.
65 An example for the integration of a stiff ODE system with explicit schemes is given in Huang
and Yu (2007).
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the various definitions. Huang and Yu (2007) discuss stiffness in affine asset pricing
models based on the following definition: “Stiff differential equations are differen-
tial equations with greatly differing time constants (i.e., rates of decay).” According
to Ekeland et al. as well as Huang and Yu, we choose the eigenvalues of the Jacobian
of (3.85) as indicator for stiffness. Ekeland et al. point out that “an eigenvalue with
a large negative real part can be an indication of stiffness.” The authors also assert
that stiffness properties may change as the integration proceeds. Huang and Yu use
a similar approach based on the ratio of the largest absolute value and the smallest
absolute value of the real parts of the eigenvalues. The larger the value of the ratio,
the larger is the stiffness of the underlying ODE system.

Huang and Yu (2007) study the performance of explicit (ode45, ode23) and
implicit (ode23s, ode15s) Matlab� solvers. In the Huang and Yu paper, the implicit
schemes prove to be superior for all problems under account since all ODE systems
exhibit mild or heavy stiffness.

The results are not that clear for the integration problems arising in our model
settings which are discussed in the following chapters. Explicit integration schemes
prove to be (slightly) faster than implicit routines since the ODE systems are non-
stiff (respectively moderately stiff) for reasonable parameter values. Take the ODE
system of the square-root stochastic volatility model (4.7) as an example:

dB.�/

d�
D �1

2
i
e��� C 1

2
.i
/2e�2�� � �B.�/ C 1

2
�2B2.�/ C ��i
e���B.�/

dC.�/

d�
D �Xi
e��� C ��B.�/ .

The Jacobian for this integration problem is given by

J D
�

�2B.�/ C ��i
e��� � � 0

�� 0

�

,

with eigenvalues

�.J/ D
�

�2B.�/ C ��i
e��� � �

0

�

.

An examination of the nonzero eigenvalue reveals the following properties of
its constituents: B.�/ is a complex number whereas the parameter values and
the integration variable � are constrained to real numbers.66 The restrictions are

66 An exception is 
 D �i which corresponds to the calculation of futures prices (See Sect. 3.4.1).
When 
 D �i holds, the term ��i
e��� is a real (and depending on the sign of � a positive
or negative) number. However, due to parameter restrictions, the term is small and therefore does
not have a large impact on the absolute value of the real part of the eigenvalue. Secondly, B.�/ is
also a real number when 
 D �i holds. The impact of B.�/ on the eigenvalue increases as the
integration proceeds.
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�; �; �; 
 > 0, � � 0 and � 2 Œ�1; 1�.67 The boundary condition defines � D 0 and
B.0/ D 0 as the starting values of the integration scheme. If we firstly restrict our
view to the start of the integration, a large negative real part of the eigenvalue is only
obtained when � is large. Small values of � are equivalent to a nonstiff ODE sys-
tem. Secondly, the stiffness of the system will increase (decrease) as the integration
proceeds when B.�/ exhibits a negative (positive) real part. These considerations
are confirmed by our tests. We tested the ode45 and the ode15s scheme since these
two routines involve the highest accuracy among the explicit and implicit schemes,
respectively.68 Small values of � involve superiority of the explicit scheme and vice
versa. The real part of B.�/ turns out to be negative; the larger the value of 
, the
larger is the absolute value of the real part of B.�/ and the higher is the stiffness
of the ODE system. Hence, both 
 and � influence stiffness and the choice of the
fastest ODE solver.

The computation time of the explicit ode45 scheme with respect to 
 and � is
displayed in the upper left subfigure of Fig. 3.1.69 The other parameters are set to
� D �0:5, � D 0:2, � D 1, � D 0:5. The efficiency of the implicit ode15s scheme
is shown in the second row on the left, and the upper right subfigure contains the
computational advantage of the explicit scheme compared with ode15s. Since all
values of the difference matrix are positive, the explicit ode45 integration procedure
is superior with respect to the implicit scheme for all shown values of 
 and �. All
schemes show minimal computation time for 
 and � close to zero. For larger values
of the two parameters, computation time for the implicit ode15s scheme is nearly
constant at �0:7 s per function call. Since the computation time for the explicit
scheme increases with both parameters, the implicit scheme will be more efficient
for very large values of 
 and �. However, values of 
 larger than 100 are sel-
dom used in the quadrature scheme and large values of the variance mean reversion
parameter � seem unrealistic.70

The third integration routine under account is ode113. Huang and Yu (2007)
did not examine the performance of this solver because it is not applicable for
stiff problems. This integration scheme is based on the Adams-Bashforth-Moulton

67 �; �; � are constant model parameters as explained in Sect. 4.1, 
 is the Fourier parameter and
� denotes time to maturity. � is also a model parameter which determines the correlation between
asset price variations and volatility variations. For financial assets, a negative value of � is appro-
priate (This pattern is called leverage effect). In the case of commodities, both positive and negative
correlations are realistic.
68 The implicit ode23s scheme does not apply to the problem (see Shampine and Reichelt (1997)
for the requirements of this function). Furthermore, the explicit ode23 routine is slightly faster than
ode45, but associated with a larger error.
69 The displayed computation time refers to the average time of 25 replications of the calculation.
The calculations were done on a 2 � 2:8 GHz Pentium� Dual Core workstation.
70 When � is very large, the impact of the Brownian motion term in (4.1) on variance behavior
vanishes. In this case, a stochastic volatility model seems to be inappropriate since variance could
as well be modeled deterministic.
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Fig. 3.1 Performance of Matlab� ODE solvers for the square-root stochastic volatility model

predictor-corrector method. It is a linear multistep PECE solver.71 Since the mul-
tistep solver requires multiple starting values to proceed, but only one initial value
is known, the necessary starting values are extrapolated with an explicit Runge–
Kutta scheme (see the illustration of the ode45 integration routine in the next
subsection).

The low computational cost per iteration is its greatest advantage. For each iter-
ation, only one function value has to be estimated based on data which is available
from the preceding steps. This efficiency can be seen in the lower left subfigure. The
computation time differences with respect to the two other schemes are displayed

71 PECE stands for predict, evaluate, correct, evaluate. The explicit predictor method yields a value
yp.t Ch/ of the integrated function y for the new time step t Ch. The predicted value yp.t Ch/ is
plugged in the implicit corrector method which yields a corrected value yc.tCh/. This procedure is
repeated until the predetermined error tolerance is achieved. More information about the Matlab�

ODE solvers is given in Shampine and Reichelt (1997).
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in the second and third row on the right. For the given parameter setting and the
square-root stochastic volatility ODE system, the computation time of the multistep
solver turns out to be six to seven times faster than ode45 and ode15s, respectively.
The accuracy of ode113 is similar to the other two solvers. The same findings are
obtained when integrating the ODE set (4.20) for the Ornstein–Uhlenbeck stochastic
volatility model in Sect. 4.2.2.

An example of superiority of the implicit ode15s solver with respect to the
explicit ode45 solver, can be obtained with the ODE set defined by (6.3) and (6.16)
in Sect. 6.2.1.
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where

B.�/ D �i


� � �X

�

e��X� � e���

�

for � ¤ �X .

This model setting incorporates a mean reverting (log-)price process with mean
reverting stochastic equilibrium level and square-root stochastic volatility. For �X

large (say 50) and � small (say 0:5) and vice versa, the implicit solver turns out
to be slightly faster (around 20%) than ode45.72 Again, the predictor-corrector
method ode113 turns out to be the fastest (�80% faster than ode45). All solvers
are comparable concerning accuracy.

Therefore, implicit schemes seem to be in an inferior position for reasonable
parameter values in our model settings. Albeit the ode113 solver performed best for
our tests, the standard ode45 Runge–Kutta integration scheme still is a maintainable
choice. However, if computation time is crucial (e.g. due to numerous replications
of the integration), our tests support the choice of ode113. In the following chapters,
we refer generally to Runge–Kutta-solutions meaning that either ode45 or ode113
were applied. In case of ode113, the term Runge–Kutta-solution is strictly speaking
not correct, but is used anyway since the solution for the two solvers is identical and
the ode45 solver is the standard method.

72 �X is the adjustment speed parameter of the stochastic equilibrium level process and � is the
adjustment speed of the square-root stochastic volatility process.
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The Ode45 Integration Scheme

The easiest method to solve for (3.85) is known as the Euler method where the
differential coefficient is approximated by the difference coefficient y.tCh/�y.t/

h
. The

result for the estimate after a small time step h is

y.t C h/ D y.t/ C hf .y.t/; t/ C O.h2/ .

The disadvantage of this algorithm is that the Taylor series expansion is already
truncated after the first derivative and the error is of order h2 and therefore relatively
large. To compensate for the large error term, one has to choose a very small stepsize
to achieve reliable results. By this means, the procedure becomes either very time-
consuming or inexact, or both.

Hence, algorithms with an error term of higher order are required.
Runge–Kutta-formulae do not only use the slope at t , but also at t C h and within
the stepsize interval. These slopes are extrapolated from the known values at time t .
The general form of a Runge–Kutta-formula of order n is

y.t C h/ D y.t/ C h
	A1k1 C A2k2 C � � � C Ankn



, (3.86)

where

k1 D f .y.t/; t/

k2 D f .y.t C $2;1k1/; t C &2h/

:::

kn D f .y.t C $n;1k1 C � � � C $n;n�1kn�1/; t C &nh/ . (3.87)

For n D 1, the Runge–Kutta-scheme matches the Euler method. For larger n and
i > 1, the coefficients ki are the additional slopes which are extrapolated via

ki D f .y.t/; t/ C &i h
@

@t
f .y.t/; t/ C � � � C .&i h/n�1

.n � 1/Š

@n�1

@tn�1
f .y.t/; t/

C hf .y.t/; t/
@

@y.t/

	
$i;1k1 C � � � C $i;i�1ki�1



. (3.88)

The approximations of the ki according to (3.88) with the unknowns $i;j and &i

are set in (3.86). Keeping in mind that f .y.t/; t/ is the first derivative of y.t/, one
asserts that (3.86) is a sum which contains derivatives of y.t/ up to order n. This
sum has to take the form of the Taylor series expansion of order n:

y.t C h/ D y.t/ C hy0.t/ C h2

2
y.2/.t/ C � � � C hn

nŠ
y.n/.t/ C O.hnC1/ . (3.89)
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Equation (3.89) reveals that the error term is one order smaller than the order of
the Runge–Kutta-algorithm. The required matching of (3.86) with (3.89) determines
the constants Ai , $i;j and &i . There are less equations than unknowns so that there
are one or more degrees of freedom which lead to multiple Runge–Kutta-schemes
for the same order.

The most commonly used Runge–Kutta formula is of order 4. The Matlab�

function ode45 incorporates the Dormand and Prince (1980) pair of embedded
Runge–Kutta formulae. In this coherence, embedded means that the same function
evaluations which are calculated for a Runge–Kutta step of order 4 are used for a
step of order 5 in parallel. Both results together are used for an error estimate. The
error estimate is needed for an adaptive stepsize algorithm which repeats the step
with a smaller stepsize when the predetermined error is exceeded or enlarges the
stepsize for the next iteration if the estimate is in favor of a smooth interval of the
extrapolated function. Due to the adaptive stepsize, the numerical integration is still
acceptably fast.73

73 For a discussion of the computation time of the ode45 Runge–Kutta algorithm compared with
other calculation methods, we refer the reader to Sect. 4.2.3 in the appendix of Chap. 4.

Appendix



Chapter 4
Stochastic Volatility Models

So far, the characteristic function of the log-price at maturity was used without fur-
ther specifications. In the following chapters, we derive characteristic functions for
different settings. Once the characteristic function is obtained, it can be applied in
the pricing equations as presented in Chap. 3.

We will focus on the pricing of commodity contingent claims. Applications of
mean-reverting OU processes for commodity prices were done by Schwartz (1997)
and Ross (1997), among others. In both papers, futures prices and hedge ratios are
derived, but no stochastic volatility is incorporated. Schwartz (1997) also provides
an empirical survey for the proposed models. The commodities involved are crude
oil, copper, and gold.

Longstaff and Schwartz (1995) apply an Ornstein–Uhlenbeck (OU) model with-
out stochastic volatility to price credit spread options. Following Zhu (2000), Tahani
(2004) extends their proposal by incorporation of square-root and OU-stochastic
volatility, respectively. In our stochastic volatility models, we will refer to the results
and interpretations of Tahani.

In our framework, all models exhibit mean reversion of the underlying under the
risk-neutral measure Q and can therefore represent price processes with this feature,
e.g. log-commodity price processes or log-credit spread processes.

4.1 Square-Root Stochastic Volatility

The process of Xt is modeled as an Ornstein–Uhlenbeck process with long-term
equilibrium level X and adjustment speed parameter �. The variance Vt follows
a square-root process first introduced in finance by Cox et al. (CIR 1985). �, �

and � are positive constants where � denotes the volatility of volatility, � is the
attractor and � the adjustment speed of the variance process. Hence, both processes
are mean-reverting.

dXt D
�

�fX � Xtg � 1

2
Vt

�

dt C
p

Vt dW X
t

dVt D �.� � Vt /dt C �
p

Vt dW V
t (4.1)

B. Lutz, Pricing of Derivatives on Mean-Reverting Assets,
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c
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The processes in (4.1) are already formulated under the measure Q. For nota-
tional convenience, we omit in this chapter and the following chapters the tilde
which denotes risk adjustment. Note that we do not develop a full general equilib-
rium model, instead of this we assume that the market prices of risk premiums of the
underlying and volatility risk are already included in the risk-adjusted parameters X

and � , respectively. This assumption is valid for all models we derive.
The standard reference for the application of the CIR process as subordinated

variance process is Heston (1993). Among the stochastic volatility models, it is quite
popular in practice due to nonnegativity and analytical tractability. The variance
process described by (4.1) is ensured to be nonnegative, because if Vt ever becomes
zero, the diffusion term will vanish and the drift term will push the process back to
the positive mean. For �2 � �� , the process never reaches zero because the drift
term always has a stronger impact than the diffusion term. If �2 > �� , Vt D 0 is
possible as a reflecting barrier.1 Another appealing property of the assumption of
the square-root process for instantaneous variance is the fact that it leads in many
cases of interest to closed-form or semi closed-form solutions for the characteristic
function. We are also able to derive a closed-form solution based on hypergeometric
functions when the underlying follows a mean-reverting process.2

4.1.1 Comparison with the Tahani Square-Root Model

The specification in (4.1) is similar to the square-root mean-reverting model of
Tahani (2004):

dXt D .� � � Xt / dt C
p

Vt dW X
t

dVt D �.� � Vt /dt C �
p

Vt dW V
t (4.2)

Tahani applies the mean reverting framework to price credit spread options follow-
ing Longstaff and Schwartz (1995), who do not incorporate stochastic volatility in
their model.3 The author points out that the process specifications in (4.2) can also be
applied to price derivatives on commodities which show a mean reversion property.

Tahani reports a strong impact of even weak mean reversion on credit spread
option prices. He calculates call option prices for small adjustment speed parameters
� D 0:01, 0.02 and 0.03 and gets relative differences of the prices between 4%
and 56% (depending on � and maturity) compared to the reference value with no
mean reversion for � D 0. This comparison seems questionable since � does either

1 A proof for nonnegativity can be found in Feller (1951).
2 See Sect. 4.1.2.
3 The log-process of the underlying in Longstaff and Schwartz (1995) is also of the form dXt D
.a � bXt /dt C �dWt . Contrary to Tahani (2004), they do not report any parameter values and
resulting option prices.
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determine the mean reversion level (together with �, as we shall see) or the drift
of the process when there is no mean reversion. Typically, the drift is expressed in
percentage terms and the mean reversion level in absolute terms. Consequently, the
two values have different dimensions.

This could be a reason for the fact that the only call prices provided by the author
are for relatively small values of the underlying and the strike, i.e. S D K D 0:02.
S is interpreted as credit spread and can therefore be expressed in percentage terms.
The maturity is set to 3, 6, 9 and 12 months.

Unfortunately, the reason for the major effect is not the mean reversion itself,
but rather a misunderstanding of the process parameters and as a result of this, the
unrealistic parameter settings. One can easily see this by adapting equation (4.1) to
the setting of Tahani. To recover the results of Tahani, we change the first equation
in (4.1) to

dXt D �fX � Xtg dt C
p

Vt dW X
t , (4.3)

which is equivalent to incorporating a term C0:5 Vt dt in the process of St via Itô’s
lemma. Obviously, this adaption results in slightly higher option values. Which pro-
cess assumption is chosen is a matter of taste, but when starting from the price of
the underlying, (4.1) for the log-process seems more reasonable.

However, this is not the reason for the unrealistic behavior of the price pro-
cess. Regarding (4.2), the author sets � D 0:03. The other parameters are set to
S D K D 0:02, T � t D 0:5, � D 0:2,

p
V D 0:2, � D 1, r D 0:05, � D �0:5,

� D 0:05. � takes the values 0.01, 0.02 and 0.03. Hence, the three values for the
adjustment speed are very small and one would expect at most marginal differ-
ences in the process behavior. The behavior of the Tahani and our OU model for the
parameter setting of Tahani is plotted in Fig. 4.1. All six trajectories correspond to

Fig. 4.1 Trajectories for Tahani and our OU processes with square-root stochastic volatility for
the parameter settings of Tahani
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the same set of random numbers to point up the effects of the different processes and
values of �, respectively. We observe that the marginal differences can only be seen
in the right figure for our modified OU model (4.3). The impact of � in the Tahani
model is quite larger, and the process is driven at a faster speed away from the initial
value. The reason for the large impact of � in the Tahani model is that the long-term
equilibrium level of the log-process dXt is not �, but rather �=�. Comparing (4.2)
and (4.3), we obtain the same processes for S D exp.X/ D exp.�=�/. This means
that the equilibrium level of the underlying S is exp.3/ (exp.1:5/, exp.1/, respec-
tively, depending on the value of �). Therefore, the process is driven to a level which
lies by a factor of 1004 (224, 136, respectively) above the initial value of S D 0:02.
Not surprisingly, even very small adjustment speeds have a substantial effect on call
values when combined with a very large equilibrium level. Due to the coupling of
X and � in one parameter �, the real equilibrium level X increases as � decreases,
and one observes a crucial effect of mean reversion.

The shortcoming gets even more obvious if ceteris paribus the values of S , K and
the would-be equilibrium level � are expressed in absolute terms, i.e. S D K D 2,
� D 3, � D 0:03, T � t D 0:5, � D 0:2,

p
V D 0:2, � D 1, r D 0:05, � D �0:5,

� D 0:05. One would expect that the call value is not affected by the change from
percentage to absolute terms and therefore also increases by a factor of 100, i.e.
C D 0:2220.4 Secondary, if one wants to apply the model for commodity price
processes, this value of S seems much more realistic.

A trajectory of this setting is plotted in Fig. 4.2. For � D 0:03 and the Tahani
model, both the delta and the risk-neutral probability of ending up in the money
are unity and the call price is C D 6:6929 (see also Table 4.1). The call is more

Fig. 4.2 Trajectories for Tahani and our OU processes with square-root stochastic volatility with
increased parameter values

4 This property is independent from the distribution of the underlying and known as linear
homogeneity (Merton 1973)
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Table 4.1 Tahani square-root call prices

percentage terms S D K D 0:02 absolute terms S D K D 2

� D 0:03 � D 3

� C Exercise prob. S C Exercise prob. S

0.01 0.00165 0.6232 20:09 6.81832 1.0000 1:94 � 10130

0.02 0.00192 0.6721 4:48 6.75523 1.0000 1:39 � 1065

0.03 0.00222 0.7172 2:72 6.69285 1.0000 2:69 � 1043

1 0.07310 1.0000 1:03 2.91608 1.0000 20.09
3 0.39265 1.0000 1:01 0.53406 0.9924 2.72

Table 4.2 Modified OU model call prices

percentage terms S D K D 0:02 absolute terms S D K D 2

� C Exercise prob. S C Exercise prob. S

0.01 0.00123 0.5351 0.03 0.12323 0.5351 3
0.02 0.00125 0.5409 0.03 0.12527 0.5409 3
0.03 0.00127 0.5465 0.03 0.12732 0.5465 3
1 0.00364 0.9102 0.03 0.36422 0.9102 3
3 0.00731 0.9987 0.03 0.73132 0.9987 3
3 0.53406 0.9924 2.72

than three times more expensive than the asset. Of course, this unrealistic result
is due to the equilibrium level of the price process which is S D 2:69 � 1043. We
also implemented trajectories for more realistic adjustment speeds, i.e. � 2 f1I 3g,
where one can also see the inverse relationship of the mean reversion level and the
adjustment speed for the model of Tahani. The dotted line in this figure displays the
attractor S D exp.1/ which corresponds to � D 3.

In the right figure, which corresponds to our modified OU process as described
in (4.3), we observe for all values of � an adjustment to the mean reversion level
S D 3. The call prices in this model increased by a factor of 100, as expected (see
Table 4.2).

Hence, the claim of Tahani that even weak mean reversion has a strong impact
on option prices is not correct. In our OU model, where the equilibrium level is
independent from the adjustment speed, the influence of the drift term is marginal
for small adjustment speeds. Due to the independence of the parameters, our model
also fulfills the linear homogeneity condition of call prices in contrast to the Tahani
model which fails.

Another interesting property of European in-the-money call prices written on
mean reverting assets is reported by Longstaff and Schwartz (1995). When the
long-term equilibrium level S is smaller than the actual price of the underlying,
a European in-the-money call has a price which is smaller than its intrinsic value.
This finding is plausible since the price of the underlying is expected to fall and
therefore, the immediate exercise of the option would be optimal. For small values
of the adjustment speed parameter, this case is unlikely to occur in the Tahani setting
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since it is improbable that the real equilibrium level is smaller than the actual price
of the underlying.

4.1.2 Solution for the Characteristic Function

Consider again the dynamics as described in (4.1). According to the general form of
the FPDE, we set the corresponding process parameters of (4.1) in (3.36) and obtain

@ˆ

@t
C
�

�fX � Xtg � 1

2
Vt

�
@ˆ

@X
C �.� � Vt /

@ˆ

@V

C 1

2
Vt

@2ˆ

@X2
C 1

2
�2Vt

@2ˆ

@V 2
C �Vt �

@2ˆ

@X@V
D 0 . (4.4)

We notice that the FPDE depends on terms with the state variables Xt and Vt and
terms with constant parameters. Therefore, our exponential affine guess takes the
form

ˆ.t; Xt ; Vt / D expfi 
 A.�/ Xt C B.�/ Vt C C.�/g , (4.5)

where � D T � t . The boundary conditions at maturity are A.0/ D 1, B.0/ D 0,
C.0/ D 0. Setting the partial derivatives in (4.4) and collecting the terms with Xt ,
Vt and constants, we obtain the following set of ODEs:

dA.�/

d�
D ��A.�/

dB.�/

d�
D �1

2
i
A.�/ C 1

2
.i
/2A2.�/ � �B.�/ C 1

2
�2B2.�/ C ��i
A.�/B.�/

dC.�/

d�
D �Xi
A.�/ C ��B.�/ (4.6)

The solution of the first ODE is given by

A.�/ D e�� � ,

leading us to a system of two ODEs with boundary conditions B.0/ D C.0/ D 0:

dB.�/

d�
D �1

2
i
e��� C 1

2
.i
/2e�2�� � �B.�/ C 1

2
�2B2.�/ C ��i
e���B.�/

dC.�/

d�
D �Xi
e��� C ��B.�/ (4.7)

Tahani (2004) obtained a similar system of ODEs. However, the author only pro-
vided a very short derivation of the analytic solution based on MapleTM software. The
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MapleTM solution for the Tahani square-root model is given in terms of Whittaker
functions. Since the integration constants are not defined, the analytic solutions of
Tahani are rather cumbersome to reproduce. We present a detailed derivation includ-
ing integration constants which are determined by the boundary conditions. We
further show that the structure of the solution, which is either in terms of Kummer
or in terms of Bessel functions, depends crucially on the parameter values.

Firstly, we consider the ODE for B.�/ in (4.7) and make the standard substitution
for Riccati equations. Substitute

G.�/ D expf�
Z

1

2
�2B.�/d�g

to transform the Riccati equation in a second order linear homogenous equation
(Polyanin and Zaitsev 2003, p. 8)

d2G.�/

d�2
� �i
e��� dG.�/

d�
C �

dG.�/

d�

C 1

4
�2.i
/2e�2�� G.�/ � 1

4
�2i
e���G.�/ D 0 . (4.8)

Repplinger (2008) ends up at a similar equation involving exponential functions
of the time variable in an unspanned stochastic volatility framework following
Collin-Dufresne and Goldstein (2002) and Heath et al. (1992). We make a similar
substitution and change the time variable to � D i
e��� to arrive at the following
equation:

�
d2G.�/

d�2
C dG.�/

d�

�

1 C ��

�
� � �

�

�

C 1

4

�2

�2
G.�/Œ� � 1� D 0 . (4.9)

The solution of this second order linear homogenous (4.9) depends on the param-
eters �, � and �. We begin with the most general case. Under the constraints that
firstly, � ¤ ˙1 (i.e. the Brownian motions of the underlying and variance processes
are not perfectly correlated) and secondly, the quotient �=� is not a positive integer,
the solution of the function G.�/ is given by5

G.�/ D exp

�
�

2�
.
p

�2 � 1 � �/ �

�

�
�

C1 � M

�

a; b; �� � �
p

�2 � 1

�

�

C C2 � U

�

a; b; �� � �
p

�2 � 1

�

��

; (4.10)

5 Solutions for second order linear homogenous equations of the general form .a2x C b2/
d2y

dx2 C
.a1x C b1/

dy

dx
C .a0x C b0/y D 0 can be found in Polyanin and Zaitsev (2003), Table 15.
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with

a D
.1 � �

�
/.
p

�2 � 1 � �/ � 1
2

�

�

2
p

�2 � 1

b D 1 � �

�

and C1; C2 being the integration constants which are determined by the boundary
condition B.0/ D 0. M and U are the Kummer functions of the first and second
kind, respectively.

We make the inverse transformations to obtain the solutions for the functions B

and C 6:

B.�/ D c.�/

�

�
�

p
�2 � 1

� 1

C 2a �
C b�1M.1 C a; 1 C b; c.�/

�

�
/ � U.1 C a; 1 C b; c.�/

�

�
/

CM.a; b; c.�/
�

�
/ C U.a; b; c.�/

�

�
/

�

(4.11)

C.�/ D 	
c.�/ � c.0/


 �
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X
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C ��
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1 � �
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�2 � 1

��

� 2��

�2
ln

�CM.a; b; c.�/
�

�
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�

�
/
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�

�
/ C U.a; b; c.0/

�

�
/

�

, (4.12)

with

C D C1

C2

D
2aU

�
1 C a; 1 C b; c.0/

�

�

�C
�

1 � �p
�2�1

�

U
�
a; b; c.0/

�

�

�

2a
b

M
�
1 C a; 1 C b; c.0/

�

�

� �
�

1 � �p
�2�1

�

M
�
a; b; c.0/

�

�

� ,

c.�/ D �i
e���
p

�2 � 1 .

Special Case 1

If � ¤ ˙1 and .�=�/ 2 N, the solution for G.�/ is given by (see case 2 in section
“Case 2: �=� is a Positive Integer” in the appendix)7:

6 For a more detailed derivation, see case 1 in section “Solution for B and C in the Square-Root
Stochastic Volatility Framework with Imperfectly Correlated Brownian Motions”.
7 Polyanin and Zaitsev (2003), p. 222.
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G.�/ D exp

�
�

2�
.
p

�2 � 1 � �/�

�

�
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��
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p
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�

�1�b

�
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�

�

CC�
2 U

�
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�
p

�2 � 1

�

��

.

After making the inverse transformations, one obtains the solutions for B.�/ and
C.�/ as follows:

B.�/ D c.�/

�

�
�

p
�2 � 1

� 1

�

C 2�

�2
C 2c.�/.a � b C 1/

�

�
C�.2 � b/�1M.a � b C 2; 3 � b; c.�/

�

�
/ � U.a � b C 2; 3 � b; c.�/

�

�
/
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�

�
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�

�
/
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(4.13)

C.�/ D 	
c.�/ � c.0/
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(4.14)

with

C� D
2.a � b C 1/U.a � b C 2; 3 � b; c.0/

�

�
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�

�
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2 � a�bC1
2�b
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�
/ � d � M.a � b C 1; 2 � b; c.0/

�

�
/

,

d D 1 � �
p

�2 � 1
� 2�

�c.0/
.

Special Case 2

Let us now consider the special case of assuming perfect correlation between the
Brownian motions of the underlying and variance processes (i.e. � D ˙1). We
obtain the solution of (4.9) in terms of Bessel functions (see section “Solution for B
and C in the Square-Root Stochastic Volatility Framework with Perfectly Correlated
Brownian Motions” in the appendix). The solutions for the functions G.�/, B.�/

and C.�/ are8

8 Polyanin and Zaitsev (2003), Table 15.
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G.�/ D exp
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and
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with

g.�/ D �

�

s

i
 e���

�
2�

�
.� � �/ � 1

�

.

J and Y denote the Bessel functions of the first and second kind, respectively. The
boundary condition C.0/ D 0 determines the constant

eC D
eC1

eC2

D
��i
 Y �

�

�
g.0/

� � � g.0/ Y �
� �1

�
g.0/

�

� g.0/ J �
� �1

�
g.0/

� � ��i
 J �
�

�
g.0/

� . (4.17)

4.1.3 Comparison with the Monte-Carlo Solution

In this section, the accuracy of the analytic solution is tested by comparing it with
the result of a Monte-Carlo (MC) simulation. We apply the solution of the charac-
teristic function for the unmodified OU model with square-root stochastic volatility
(4.1). The parameter values are set to S D 80; S D 85; � D 1; T � t D 0:5; � D
0:2;

p
V D 0:2; � D 1, � D �0:5; � D 0:05, which corresponds to the special case

1 solution in the previous subsection (� ¤ ˙1 and �=� 2 N).9

The MC simulation involves 1.5 million simulation paths, 375,000 of them are
independent. Each path contains 2,500 time steps. A large number of paths accounts
for a small confidence interval and a large number of time steps per path reduces the
overall discretization error.

9 With these parameter values, we try to provide a realistic model setup.
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Fig. 4.3 Histogram, density function and confidence interval for the OU model with square-root
stochastic volatility

Antithetic sampling as variance reduction technique has been applied.10 Anti-
thetic sampling makes use of the fact that for a given trajectory, its mirror image
has equal probability. For the simulation of the process in (4.1), one set of random
numbers QzX is needed for the underlying process and another set QzV for the subordi-
nated process. While drawing one set of random numbers per Brownian motion,
we get four simulation paths by using the corresponding mirror images accord-
ing to .CQzX ; CQzV /, .CQzX ; �QzV /, .�QzX ; CQzV / and .�QzX ; �QzV /.11 The average of the
four paths is used as individual sample. The advantage of antithetic sampling is a
reduction of variance, and a correction of the first moment which is useful for the
computation of futures prices.12

The results of the MC simulation are shown in Fig. 4.3. The histogram and the
estimated density function of the spot price at time T are displayed.13 The histogram

10 The MC simulation setup with 1.5 million paths and 2,500 time steps per path is valid for all
simulations in this thesis. However, antithetic sampling is only applied in the stochastic volatility
framework, since the concept of mirror images is not applicable in the presence of asymmetric
jumps.
11 Of course, the random numbers are only pseudo-random. We applied the Matlab� pseudo-
random number generator ’randn’ for normally distributed random variables, which uses the
ziggurat algorithm of Marsaglia and Tsang (2000) with a period of approximately 264.
12 The correction of the first moment is mentioned in Jäckel (2002). More information about MC
simulations in general and antithetic sampling in particular are given in Kloeden and Platen (1999)
or Glasserman (2004).
13 The density estimation is obtained with the Matlab� function ksdensity.
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consists of 1,500 bins of equal length which are set in the interval of interest. The
mean reversion in the drift term results in a distribution which is close to normal.
The skewness of the distribution of ST is �0:083 and the kurtosis is 3:173.14

In subfigure 3, the 95% confidence interval Œ81:7941; 81:8090� for the spot price
at time T includes the analytic solution

F D expfe��.T �t / Xt C B.�/ Vt C C.�/g D 81:8008 ,

where B.�/ and C.�/ are given by (4.11) and (4.12) with 
 D �i . The analytic
solution matches very well the MC Solution where EŒST � D 81:8016.

4.2 Ornstein–Uhlenbeck Stochastic Volatility

The system of SDEs is similar to the previous section, the only difference is included
in the subordinated process. The OU process for the log-underlying remains
unchanged, but volatility is also modeled as an Ornstein–Uhlenbeck process. There-
fore, the process dynamics are the following:

dXt D .�fX � Xtg � 1

2
�2

t / dt C �t dW X
t

d�t D �.� � �t /dt C � dW �
t (4.18)

Stein and Stein (1991) assumed an OU stochastic volatility process under the con-
straint that the two Brownian motions dW X

t and dW �
t are uncorrelated. Schöbel

and Zhu (1999) extend their proposal and allow for constant correlation. Tahani
(2004) applies their model on mean-reverting assets (see also Sect. 4.2.1).

Schöbel and Zhu examine the behavior of OU-stochastic volatilities and point
out that there exists no barrier (neither reflecting nor absorbing) for the volatil-
ity � .15 Volatility enters in the model not only as variance �2, but also as linear
term. Consequently, the probability for negative volatilities is non-zero (though very
small) and cannot be seen as being reflected at � D 0.16

14 Note that the skewness of the distribution of the log-price XT is �0:477 and the kurtosis is 3:597.
Hence, due to stochastic volatility, the price ST is no longer lognormally distributed which would
be the case if the log-price process is determined by the somewhat simpler constant volatility model
1 in Schwartz (1997) which is given by dXt D �.X � Xt /dt C p

Vt dW X
t . This simple process

specification leads to a normal distribution of XT with parameters EŒXT � D e���Xt C.1�e��� /X

and var.XT / D Vt

2�
.1 � e�2�� /.

15 Schöbel and Zhu (1999) point out that the volatility �T conditional on an initial value �t is
normally distributed. The parameters of the distribution are the mean a D � C .�t � �/e��.T �t/

and the variance b2 D �2

2�
.1 � e�2�.T �t//. The probability for negative volatilities �T is then given

by N.�a=b/.
16 Only for � D 0, the same results are obtained for positive and negative volatilities and the model
can therefore be treated as if volatility is reflected at � D 0 (Schöbel and Zhu 1999).
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The possibility of negative volatilities can be seen as a drawback of the OU-
stochastic volatility model. However, the probabilities for such an event are marginal
when � and � are large enough and � is relatively small. For example, if � � 2; � �
0:2 and � � 0:1, the probability will be smaller or equal 8:48 � 10�6, when the other
parameters are set to T � t D 0:5; � D 0:2. Of course, the squared volatility always
remains positive.

An advantage of OU stochastic volatility compared with a subordinated CIR
stochastic volatility process could be that this richer model setup is able to perform
better when fitting the model at an observed volatility smile.

4.2.1 Comparison with the Tahani OU Model

The Ornstein–Uhlenbeck mean-reverting model of Tahani (2004) shows the same
difficulties as in the previous section, since the shortcoming was due to the underly-
ing and not due to the subordinated process. As in the previous section, the results
of Tahani can be recovered by changing the process of the log-underlying to (4.3)
and setting S D exp.�=�/.

4.2.2 Solution for the Characteristic Function

By setting the drift and volatility parameters in (3.36), we obtain the following
FPDE:

@ˆ

@t
C
�

�fX � Xtg � 1

2
�2

t

�
@ˆ

@X
C �.� � �t /

@ˆ

@�

C 1

2
�2

t

@2ˆ

@X2
C 1

2
�2 @2ˆ

@�2
C ��t �

@2ˆ

@X@�
D 0 (4.19)

This FPDE consists of terms with Xt , terms containing volatility �t , terms with
squared volatility �2

t and terms with constant parameters. Hence, the guess for ˆ is
exponential linear-quadratic in �t and takes the form

ˆ.t; Xt ; �t / D expfi 
 A.�/ Xt C B.�/ �2
t C C.�/ �t C D.�/g ,

with boundary conditions A.0/ D 1, B.0/ D C.0/ D D.0/ D 0.
Again, we set the partial derivatives of the characteristic function in the FPDE

(4.19) to obtain a system of ODEs as follows.

dB.�/

d�
D �1

2
i
e��� C 1

2
.i
/2e�2�� � 2�B.�/ C 2�2B2.�/ C 2��i
e���B.�/

dC.�/

d�
D 2�2B.�/C.�/ C 2��B.�/ � �C.�/ C ��i
e���C.�/
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dD.�/

d�
D �Xi
e��� C ��C.�/ C �2B.�/ C 1

2
�2C 2.�/ , (4.20)

with A.�/ D e��� as in the square-root case (Sect. 4.1.2).
Consider the first equation in (4.20). The structure is almost identical to the first

equation of the ODE system (4.7) in the square-root model. Therefore, we make the
same substitutions (4.8) and (4.9) as in the previous section and obtain the following
second order linear homogenous equation:

�
@2G.�/

@�2
C
�

1 C 2��

�
� � 2�

�

�
@G.�/

@�
C �2

�2

	
� � 1



G.�/ D 0 . (4.21)

Not surprisingly, the solution of (4.21) is given in terms of Kummer functions
if we assume imperfect correlation of the Brownian motions or in terms of Bessel
functions if we set � D ˙1. Since the derivation of the solution for B.�/ is almost
identical to the previous section, we want to refer the reader to the corresponding
sections “Solution for B and C in the Square-Root Stochastic Volatility Frame-
work with Imperfectly Correlated Brownian Motions” and “Solution for B and C in
the Square-Root Stochastic Volatility Framework with Perfectly Correlated Brow-
nian Motions” of the square-root stochastic volatility model for a more detailed
derivation of the solutions.

General Case: � ¤ ˙1 and .2�=�/ … N

Under the constraints that the Brownian motions W X
t and W �

t are imperfectly
correlated and the quotient .2�=�/ is not a positive integer, the solution for B.�/

according to case 1 of section “Solution for B and C in the Square-Root Stochas-
tic Volatility Framework with Imperfectly Correlated Brownian Motions” in the
appendix is

B.�/ D c.�/

�

�
�

2
p

�2 � 1
� 1

2

Ca� �
K.b�/�1M

�
1 C a�; 1 C b�; 2c.�/

�

�

��U
�
1 C a�; 1 C b�; 2c.�/

�

�

�

KM
�
a�; b�; 2c.�/

�

�

�C U
�
a�; b�; 2c.�/

�

�

�

�

,

(4.22)

where

a� D
�
1 � 2�

�

��p
�2 � 1 � �

� � �

�

2
p

�2 � 1
,

b� D 1 � 2�

�
,
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K D
a�U

�
1 C a�; 1 C b�; 2c.0/

�

�

�C 1
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1 � �p
�2�1
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�

�

� � 1
2

�

1 � �p
�2�1

�

M
�
a�; b�; 2c.0/

�

�

� .

Plug the result (4.22) in the ODE for C.�/ (see (4.20)) to arrive at the following
ODE

dC.�/

d�
D
�

�
p

�2 � 1i
e��� �
KM 0�a�; b�; 2c.�/

�

�

�C U 0�a�; b�; 2c.�/
�

�

�

KM
�
a�; b�; 2c.�/

�

�

�C U
�
a�; b�; 2c.�/

�

�

� � �

�

� C.�/ C 2��B.�/ ,

which takes therefore the form

dC.�/

d�
D f1.�/C.�/ C f0.�/.

The solution of this linear ODE is

C.�/ D D e
R

f1.�/d� C e
R

f1.�/d�

Z
e� R

f1.�/d�f0.�/d� , (4.23)

where D is determined by the boundary condition C.0/ D 0. The inner integral is
given by

Z
f1.�/d� D � �

�

p
�2 � 1 i
 e���

� ln

�

KM
�
a�; b�; 2c.�/

�

�

�C U

�

a�; b�; 2c.�/
�

�

��

� �� ,

but the outer integral in (4.23) cannot be expressed in closed form. Therefore, we
are also not able to provide an analytic solution for the function D.�/. Nevertheless,
the characteristic function can be computed numerically with numerical integration
methods which are specified in Sect. 3.6.

Special Case 1: � ¤ ˙1 and .2�=�/ 2 N

Now consider the special case of assuming imperfect correlation of the Brownian
motions, but the quotient .2�=�/ is a positive integer. The solution for B.�/ accord-
ing to case 2 of section “Solution for B and C in the Square-Root Stochas-
tic Volatility Framework with Imperfectly Correlated Brownian Motions” in the
appendix is
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B.�/ D c.�/

�
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� 1
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�
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� ,

(4.24)

with the constants

K� D .a� � b� C 1/U
�
a� � b� C 2; 3 � b�; 2c.0/

�

�

�C d�U
�
a� � b� C 1; 2 � b�; 2c.0/

�

�

�

a�

�b�

C1
2�b�

M
�
a� � b� C 2; 3 � b�; 2c.0/

�

�

�� d�M
�
a� � b� C 1; 2 � b�; 2c.0/

�

�

� ,

d� D 1

2
� �

2
p

�2 � 1
� �

�c.0/
.

Apply the solution for B.�/ in the ODE for C.�/ to obtain

dC.�/

d�
D 2��B.�/ C

"

�
p

�2 � 1i
e��� C �

�
K�M 0�a� � b� C 1; 2 � b�; 2c.�/
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�
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K�M
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�

�

�CU
�
a� � b� C 1; 2 � b�; 2c.�/

�

�

�

#

C.�/,

which is of the same form (4.23) as in the general case.

Special Case 2: � D ˙1

If we assume perfect correlation, the solution for B.�/ is given in terms of Bessel
functions according to section “Solution for B and C in the Square-Root Stochastic
Volatility Framework with Perfectly Correlated Brownian Motions” in the
appendix.

B.�/ D ��i
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where
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i
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�

�
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� .
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Plug the result for B.�/ in the ODE for C.�/. In this special case, we obtain a
somewhat simpler expression

dC.�/

d�
D �

eKJ 0
2�
�

�
h.�/

�C Y 0
2�
�

�
h.�/

�

eKJ 2�
�

�
h.�/

�C Y 2�
�

�
h.�/

� C.�/ C 2��B.�/ .

The solution for this ODE is given by

C.�/ D
R 	
eKJ 2�

�

�
h.�/

�C Y 2�
�

�
h.�/

�

2��B.�/ d� C D

eKJ 2�
�

�
h.�/

�C Y 2�
�

�
h.�/

� .

Again, the remaining integral cannot be solved and we are forced to apply numerical
methods to compute the characteristic function.

4.2.3 Comparison with the Monte-Carlo Solution

As in the previous section, we test our Runge-Kutta solution (see Sect. 3.6) by per-
forming a MC simulation with 1.5 million simulation paths from which 375,000 are
independent due to antithetic sampling. Each path consists of 2,500 time steps. Con-
trary to square-root stochastic volatility, we embedded no boundary for the volatility
� within the simulation. The parameter values are S D 80; S D 85; � D 1; T � t D
0:5; � D 0:1; � D 0:2; � D 2; � D �0:5; � D 0:22. The probability for negative
volatilities is therefore 2:40 � 10�6.

The histogram, the estimated density function of the distribution of ST and the
95% confidence interval for the futures price are displayed in Fig. 4.4. The Runge-
Kutta solution F D 81:7946 lies within the confidence interval Œ81:7874I 81:8028�

of the MC simulation and matches very well the numerical solution of the MC
simulation where EŒST � D 81:7951.

The adjustment speed � of the volatility process has been raised to 2 to reduce
the probability of negative volatilities. Due to this increased adjustment speed, very
large volatilities also become less likely. Hence, the distribution is even closer to
normal than in Sect. 4.1.3. The skewness is �0:010 and the kurtosis is 3:090.

Appendix

Solution for B and C in the Square-Root Stochastic Volatility
Framework with Imperfectly Correlated Brownian Motions

Case 1: �=� is an Arbitrary Noninteger

Consider the general case where � ¤ ˙1 and .�=�/ … N. We get the solution for
G.�/ after the transformations
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Fig. 4.4 Histogram, density function and confidence interval for the OU model with OU stochastic
volatility

G.�/ D expf�
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2
�2B.�/d�g
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� D i
e��� : G.�/ D exp
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.
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�2 � 1
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�

C C2 � U

�
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p

�2 � 1
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��

,

with

a D
.1 � �

�
/.
p

�2 � 1 � �/ � 1
2

�

�

2
p

�2 � 1

b D 1 � �

�

(see (4.10)).
B.�/ is recovered by the inverse relationship

B.�/ D � 2G0.�/

�2G.�/
,
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and we have
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(4.26)

with

c.�/ D �i
e���
p

�2 � 1

and

C D C1

C2

.

The recurrence relations for the two Kummer functions are17
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, (4.27)

and we get

B.�/ D c.�/
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p
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#
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(4.28)

Apply the boundary condition B.0/ D 0 to solve for the constant

C D
2aU

�
1 C a; 1 C b; c.0/

�

�

�C
�

1 � �p
�2�1

�

U
�
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� �
�

1 � �p
�2�1
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M
�
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�

�

� .

17 Abramowitz and Stegun (1970), p. 507.
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Going back to the ODE for C.�/ (see (4.7)), we obtain

dC.�/

d�
D �Xi
e��� C �� i


�
e��� .

p
�2 � 1 � �/

� 2��

�2
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�
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�

�
/
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�

�
/ C U.a; b; c.�/

�

�
/

. (4.29)

The solution for this ODE is straightforward:

C.�/ D c.�/X
p

�2 � 1
C ��c.�/
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�

��

C D , (4.30)

where the integration constant D is determined by the boundary condition. Setting
C.0/ D 0, we obtain

D D 2��
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.

Plugging the solution for D in (4.30) and simplifying leads to
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c.�/ � c.0/
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#

. (4.31)

Case 2: �=� is a Positive Integer

Under the constraints that � ¤ ˙1 and .�=�/ 2 N, the solution after the two
substitutions (4.8) and (4.9) is18:

G.�/ D exp

�
�

2�
.
p

�2 � 1 � �/�

�

�
�

��
�
p

�2 � 1

�

�1�b

18 Polyanin and Zaitsev (2003), p. 222.
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�
�
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�
p

�2 � 1

�

�

C C�
2 U

�

a � b C 1; 2 � b; ��
�
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�2 � 1

�
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.

Hence, B.�/ is given by

B.�/ D c.�/

�

�
�

p
�2 � 1

� 1

�

C 2.1 � b/�

�2

C 2

�2

C�M 0�a � b C 1; 2 � b; c.�/
�

�

�C U 0�a � b C 1; 2 � b; c.�/
�

�

�

C�M
�
a � b C 1; 2 � b; c.�/

�

�

�C U
�
a � b C 1; 2 � b; c.�/

�

�

� .

Again, we apply the recurrence relations for Kummer functions in (4.27) and
obtain

B.�/ D c.�/

�

�
�

p
�2 � 1

� 1

�

C 2�

�2
C 2c.�/.a � b C 1/

�

�
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�
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�
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�
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�

�

�

C�M
�
a � b C 1; 2 � b; c.�/

�

�

�C U
�
a � b C 1; 2 � b; c.�/

�

�

� ,

(4.32)

with

C� D C�
1

C�
2

D
2.a � b C 1/U

�
a � b C 2; 3 � b; c.0/

�

�

�C d � U
�
a � b C 1; 2 � b; c.0/

�

�

�

2 � a�bC1
2�b

M
�
a � b C 2; 3 � b; c.0/

�

�

� � d � M
�
a � b C 1; 2 � b; c.0/

�

�

� ,

d D 1 � �
p

�2 � 1
� 2�

�c.0/
.

We set the solution for B.�/ in (4.7) and get the following ODE for C.�/:

dC.�/

d�
D �Xi
e��� C �� i


�
e��� .

p
�2 � 1 � �/ C 2�2�

�2

� 2��

�2

C�M 0.a � b C 1; 2 � b; c.�/
�

�
/ C U 0.a � b C 1; 2 � b; c.�/

�

�
/

C�M.a � b C 1; 2 � b; c.�/
�

�
/ C U.a � b C 1; 2 � b; c.�/

�

�
/

.

(4.33)
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The solution of this ODE under consideration of the boundary condition C.0/ D 0 is

C.�/ D 	
c.�/ � c.0/


 �
�

X
p

�2 � 1
C ��

��

�

1 � �
p

�2 � 1

��

C 2�2��

�2

� 2��

�2
ln

"C�M.a � b C 1; 2 � b; c.�/
�

�
/ C U.a � b C 1; 2 � b; c.�/

�

�
/

C�M.a � b C 1; 2 � b; c.0/
�

�
/ C U.a � b C 1; 2 � b; c.0/

�

�
/

#

:

(4.34)

Solution for B and C in the Square-Root Stochastic Volatility
Framework with Perfectly Correlated Brownian Motions

If we have perfectly correlated Brownian motions of the underlying and variance
processes (i.e. � D ˙1), the solution of (4.9) is given in terms of Bessel functions.19

G.�/ D exp

�

�� �

2�
�

�

�

�
�
2�

� �
eC1J �

�

�
�

�

s

�

�
2��

�
� 2��

�
� 1

��

C eC2Y �
�

�
�

�

s

�

�
2��

�
� 2��

�
� 1

���

, (4.35)

where J and Y are the bessel functions of the first and second kind, respec-
tively. We make the backward substitutions as in section “Solution for B and C
in the Square-Root Stochastic Volatility Framework with Imperfectly Correlated
Brownian Motions” and obtain the wanted function

B.�/ D ��i


�
e��� C �

�2
� 2

�2

eCJ 0
�
�

�
g.�/

�C Y 0
�
�

�
g.�/

�

eCJ �
�

�
g.�/

�C Y �
�

�
g.�/

� , (4.36)

with

g.�/ D �

�

s

i
 e���

�
2��

�
� 2��

�
� 1

�

.

The recurrence relations for the two Bessel functions are20

J 0
�
�

�
g.�/

� D
�

J �
� �1

�
g.�/

� � �

�g.�/
J �

�

�
g.�/

�
�

@g.�/

@�
,

19 Polyanin and Zaitsev (2003), Table 15.
20 Abramowitz and Stegun (1970), p. 361
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Y 0
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g.�/

� D
�

Y �
� �1

�
g.�/

� � �

�g.�/
Y �

�

�
g.�/

�
�

@g.�/

@�
.

Plugging the recurrence relations in (4.36) and simplifying leads to

B.�/ D ��i
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e��� C �

�2
g.�/

eCJ �
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g.�/

�C Y �
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� , (4.37)

with
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D
��i
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�
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�
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�
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 J �
�

�
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� .

The ODE for C.�/ (4.7) together with the solution for B.�/ (4.36) is

dC.�/
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D �X i
 e��� � ��� i
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� .

(4.38)

The solution of this ODE with respect to the boundary condition is straightforward:

C.�/ D �
e��� � 1
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�� i
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�
g.0/

�

#

:

(4.39)

Comparison of Computation Time Using Runge-Kutta Algorithms
and Hypergeometric Functions with Gauss Laguerre Quadrature

In the square-root stochastic volatility model (see Sect. 4.1), we have the possibility
to calculate the characteristic function either with Kummer or Bessel functions or
numerically with solvers from the Matlab� ODE suite. As explained in Sect. 3.6,
ode45 (a Runge-Kutta solver) and ode113 (a predictor-corrector method) turn out
to be superior with respect to computation time and accuracy. Among these two
solvers, ode113 proved to be faster for our tested ODE systems and parameter
settings. Nevertheless, we decided to compare the computation time of the hyper-
geometric functions with the ode45 Runge-Kutta solver, because it is the method
which is mainly used in the literature.

The calculation with Bessel functions in Matlab� is straightforward and fast,
while the calculation using Kummer functions is not. The type of hypergeometric
function which is appropriate depends on the parameter settings (see Sect. 4.1.2).
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In case of Bessel functions, the average computation time for one integration
node of a Gauss-Laguerre quadrature (see Sect. 3.6) with overall 50 nodes on a 2x
2.8 GHz Pentium� Dual Core workstation are the following (while the results are
virtually identical): 0.29 seconds for a Runge-Kutta calculation compared to 0.01
seconds for the calculation with Bessel functions.21 This is a sizeable speedup of
computation, but unfortunately, the use of Bessel functions refers to the special case
while the need for Kummer functions applies to the standard case.

For the calculation with Kummer functions, we use the Matlab� translation of
a fortran77 source code for the calculation of the generalized hypergeometric func-
tion. The original fortran77 code has been written by W.F. Perger from the Michigan
Technological University. B. Barrowes from the MIT translated the code and made
the Matlab� code available via the Matlab� Central File Exchange (Barrowes
2004). To adapt the code to our problem, we additionally implemented a MapleTM

call for the calculation of the Kummer function of the second kind U.a; b; z/ for
integer values of b.

The average computation time for one integration node is the following (again,
the results are virtually identical): 0.28 seconds for a Runge-Kutta calculation
compared to 1.89 seconds for the calculation with the generalized hypergeomet-
ric function. The computation time subject to different values of 
 is displayed in
Fig. 4.5 and Fig. 4.6. Each experiment has been repeated 25 times and the average
time of the replications entered the graphs in the two figures. The parameter val-
ues are identical with the setting of the Monte Carlo simulation in Sect. 4.1.3 of

Fig. 4.5 Computation time per integration node of the ode45 Runge-Kutta algorithm

21 Remember that the integration nodes of a Gauss Laguerre quadrature are not equidistant. The
concentration of the nodes decreases with 
. Since the computation time per node increases with

, the arrangement of the integration nodes is an advantage regarding the overall computation time.
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Fig. 4.6 Computation time per integration node when using Kummer functions

the following chapter: S D 80; S D 85; � D 1; T � t D 0:5; � D 0:2;
p

V D
0:2; � D 1, � D �0:5; � D 0:05. This setting refers to the special case 1 solution of
Sect. 4.1.2. The computation time of the general case solution and the special case
1 solution is very similar. The two plots …1 and …2 refer to calculations of (3.52)
and (3.50), respectively.

Note that the Runge-Kutta calculation time is virtually identical for the general
case and the two special cases. When using hypergeometric functions, a special
case solution is based on Bessel functions. The calculation with Bessel functions is
so fast that the differences of the computation time subject to 
 are so small that
they can be neglected. Hence, we did not implement a graph which compares the
computation time for the special case 2 solution.

A comparison of Fig. 4.5 and Fig. 4.6 shows that the calculation with Runge-
Kutta algorithms is up to ten times faster compared with Kummer functions. The
exact reason for the sharp increase of computation time for 
 � 66 in Fig. 4.6
could not be resolved, it seems to be due to convergence difficulties in the ’hyper’
subroutine of the translated fortran code.

Barrowes reports that for the Kummer function, a considerable speedup of com-
putation with a factor of approximately 85 can be achieved when using the original
fortran source code. This would lead to an average calculation time for one integra-
tion node of 0.02 seconds. We did not test the original code since this would require
the installation of fortran on a linux machine, which was beyond the scope of this
work. It should be expected that the use of Runge-Kutta fortran code would also lead
to a speedup compared to Runge-Kutta Matlab� code. Hence, when the solution for
the characteristic function involves Kummer functions, we basically used numerical
ODE solvers (ode45 and ode113) for the calculation of option and futures prices.

Appendix



Chapter 5
Integration of Jump Components

Jumps are a feature which may occur both in the underlying and in the subordi-
nated processes. They show typically negative correlation, i.e., a downward jump in
the underlying process is associated with an upward jump in the variance process.
The negative correlation of Brownian motions in the stochastic volatility case or
of jumps in the case of pure jump or jump-diffusion models is known as leverage
effect.1

The first approach of incorporating jumps in derivative pricing models traces
back to Merton (1976), though he did not work with any form of a subordinated
volatility process. Bates (1996b) makes use of the characteristic function approach
of Heston (1993) and adds lognormal jumps to a CIR stochastic volatility model.
Bakshi, Cao and Chen (1997) allow for jumps in the (log-)underlying process, for
stochastic volatility and stochastic interest rates. They provide an empirical analysis
of jump-diffusion option pricing models without mean reversion of the underly-
ing. Bates (2000) also tests his jump-diffusion model in an empirical survey.2 The
authors point out that the incorporation of jumps is especially important for the cor-
rect valuation of short-term options, since they can explain the non-zero prices of
options which are out of the money and have only a few days left to maturity. The
drawback of continuous diffusion processes in this context is that they have too lit-
tle time to come back in the money and therefore result in an exercise probability
which is virtually zero. In contrast to pure diffusion processes, a jump-diffusion
process exhibits a non-zero probability for a jump event even in a small time
interval so that the model matches the empirical observation of option prices. The
importance of jump components in the valuation model weakens with increasing
maturity since in the long run, the jump-diffusion and the pure diffusion model with
stochastic volatility both generate a skewed probability distribution of Xt with fat

1 The leverage effect is especially important for financial assets. When dealing with commodity
price processes, a price increase may also lead to an increase in volatility.
2 BCC (1997) and Bates (2000) applied their analysis on non-mean-reverting assets. Mean rever-
sion in the assumed model causes a distribution which is closer to normal since the pressure to
come back to the mean inhibits both fat tails and a large skewness.

B. Lutz, Pricing of Derivatives on Mean-Reverting Assets,
Lecture Notes in Economics and Mathematical Systems,
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tails.3 Hilliard and Reis (1998, 1999) apply the framework of Bates (1996a, 1996b)
on the valuation of commodity futures and options. However, the commodity price
processes in Hilliard and Reis are not mean-reverting.

Duffie, Pan and Singleton (2000) generalize the approach of BCC (1997) and
define the class of affine jump-diffusions. They allow for normally distributed jumps
in the log-underlying process, exponentially distributed jumps in the variance pro-
cess and for correlation between these two jump components under the restriction
that both jumps occur simultaneously. It is also possible to incorporate �-distributed
jumps in the variance process, which can be seen as a generalization of exponen-
tial distributed jumps. For the insertion of �-distributed jumps, we refer to Kispert
(2005).

DPS (2000) did not incorporate mean reversion in the (log-)underlying process.
Following Kamat and Oren (2002) and Kispert (2005), we apply the framework
of Duffie et al. (2000) on mean-reverting assets. However, the authors combined
jumps with mean reversion or jumps with stochastic volatility, but did not associate
mean reversion with stochastic volatility. Due to the use of Runge-Kutta-algorithms,
we are able to solve for characteristic functions which incorporate mean reversion
of the underlying, stochastic volatility, and jumps in the underlying and volatility
processes. In the context of commodity derivative pricing, the combination of these
three features is new in this study, at least to our knowledge.

A recent work in this context is provided by Geman and Roncoroni (2006) who
incorporate jumps in a mean-reverting electricity price process. The corresponding
jump process is regime-shifting, which covers quite well the empirical properties of
the electricity price process, but inhibits closed-form or semi-closed form solutions.
We do not apply regime-shifting jump processes since the regime shift inhibits the
solution by means of ODE integration. Furthermore, the authors did not implement
a subordinated stochastic volatility process.

For the specification and technical properties of Poisson processes, we refer to
the second paragraph in Sect. 3.1.1.

5.1 Simulation of Poisson Processes

We tested our Runge-Kutta solutions of the following subsections with
Monte-Carlo simulations of the SDE systems. In the following, we illustrate shortly
the simulation of distributions for jump-diffusion processes.

Let us suppose a compound Poisson process with intensity � D 5 in the time
interval T � t D 0:5. The expected number of jumps according to (3.17) is therefore
2.5. The number of jumps per trajectory is taken from a pseudo random number

3 To generate comparable results, the volatility in the pure diffusion model will be larger than in
the jump-diffusion model to compensate for the absence of jumps. The shape of the empirical
distribution of returns depends on the time scale over which returns are calculated. For large time
scales, the empirical distribution of returns approaches a normal distribution (Cont 2001).
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generator for a Poisson distribution with parameter �.T � t/.4 For the simulation
of jumps in the log-underlying process with mean reversion of the underlying (see
Sect. 5.2.2), it is important to know where exactly in the time interval the process
jumps since the jump affects the subsequent behavior of the drift term because of
the existence of autocorrelation when assuming an OU-process.

For non-mean-reverting processes as in Bates (1996) or DPS (2000), one could
continue by identifying the amount of each jump. One is not interested in the exact
simulation of the time of a jump event since it does neither affect the drift term nor
the Brownian motion.

The same considerations are valid when we simulate jumps in the subordinated
variance process (see Sects. 5.3 and 5.4). One has to determine the exact jump time
because the jump in the variance process affects the subsequent behavior of the
log-underlying process.

With the number of jumps given, one can now identify the time of each jump
by another pseudo random number which is uniformly distributed in the considered
time interval .0I T �. Since the appropriate Matlab� random number generator ‘rand’
simulates a uniformly distributed random variable in the interval .0I 1�, the adaption
is simply done by multiplication of the results with T. A jump at time 0 is not
allowed, but this realization is excluded by the random number generator. Some tra-
jectories for a Poisson process according to (3.16) with the above parameter settings
are plotted in Fig. 5.1.

Fig. 5.1 Trajectories of a poisson process with intensity � D 5

4 It is also possible to simulate the number of jumps by a pseudo random number generator for
a Binomial distribution with parameters nt and �.T � t /=nt (where nt denotes the number of
time steps per path). The Binomial distribution can be applied since for each small time step, there
occurs either one jump or no jump. For large nt , the Binomial distribution approaches the Poisson
distribution (cf. Bronstein et al. (2001), p. 778). With 2,500 time steps, the results for the two
alternatives are virtually identical.
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Monte-Carlo simulations of processes where the jumps have an impact on the
subsequent behavior are quite vulnerable to an imprecise specification of the time
discretization scheme. Therefore, we applied the derivative-free jump-adapted dis-
cretization scheme of Bruti-Liberati and Platen (2006).5 We need the criterion
of weak convergence since we are interested in an approximation of the density
function at maturity and not in a pathwise approximation which would be use-
ful for hedging simulations or the valuation of path-dependent derivatives such as
American options.

As in the continuous case, the jump-adapted scheme is based on an equidistant
discretization of the time interval. Contrary to the simulation of continuous pro-
cesses, the jump times are additionally inserted in the scheme which leads to the
following modifications: First, the time steps before and at the jump interval are
smaller than the other time steps, and second, the number of time steps for a sim-
ulated path is no longer constant but depends on the number of jump events. By
this means, the process can only jump at a discretization time and not between the
time steps. The order of a discretization scheme can be improved by a Taylor series
expansion of the SDE under account. The fact that the discretized process in the
jump-adapted scheme exhibits only jumps at a discretization time allows a negli-
gence of the jump term in the Taylor series expansion. The insertion of a jump step
is shown in Fig. 5.2.

Let us consider the following SDE as being discretized (cf. also (3.26)):

dXt D
�

a.Xt ; V / � 1

2
V

�

dt C p
V dW X

t C dP X
t .

Fig. 5.2 Jump-adapted time discretization scheme

5 Note that the simulation paths in Figs. 5.1 and 5.3 are obtained with the Euler scheme which is
both of strong and weak order 1.
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The jump-adapted Euler scheme for this SDE is given by

XtkC1�

D Xtk C
�

a.Xtk ; V / � 1

2
V

�

�tk C p
V �W X

tk
(5.1)

XtkC1
D XtkC1�

C P X
tkC1

� P X
tkC1�

, (5.2)

with �tk D tkC1�tk , k D 0; 1; ::; nCnJ , �W X
tk

∼ N.0; �tk /, where n is the number
of basis time steps and nJ is the number of jumps in the simulated trajectory.6 When
no jumps occurs at time tkC1, then we have XtkC1

D XtkC1�

.
The discretization scheme described by (5.1) and (5.2) achieves an order of con-

vergence of 1. Although this is sufficient for a fast test of the results, one can increase
the order of convergence by applying the jump-adapted order 2 derivative-free
scheme.7

The usage of weak Taylor schemes with equidistant time steps and an incor-
poration of the jump in the Taylor series expansion as shown in another section
in Bruti-Liberati and Platen (2006) is also possible but much more complex.8 The
jump-adapted order 2 derivative-free scheme of the authors also achieves an order of
convergence of 2. Hence, the cost of weak Taylor schemes seems not to be covered
by its benefit.

Finally, one has to identify the amount of which the process jumps upwards or
downwards. In Fig. 5.3, we plotted trajectories for lognormal distributed jumps as

Fig. 5.3 Trajectories of a compound poisson process with intensity � D 5

6 As already discussed in Chap. 4, the number of basis time steps is 2,500.
7 Cf. Bruti-Liberati and Platen (2006), p. 14.
8 This alternative scheme is not jump-adapted.
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in (5.5) with the same jump times as in Fig. 5.1 and parameters � D 5; T � t D
0:5; �J D 0:1 and �J D 0:4. The jump sizes are determined by draws from a
pseudo random number generator for standard normal random variables Qz, keeping
in mind that a normally distributed random variable with arbitrary mean �J and
variance �J is acquired by �J C �J � Qz.9

5.2 Lognormal Jumps of the Underlying

5.2.1 Non-Mean-Reverting Assets

Firstly, let us illustrate shortly the simple case of independent jumps in the under-
lying when the asset shows no mean reversion. To keep things simple, we take the
Black and Scholes (1973) price process of the underlying under the risk-neutral
measure Q

dSt D r St dt C � St dW S
t C St dP S

t , (5.3)

where r denotes the return of the risk-free bond and the jump component is defined
as compensated process

P S
t D

NtX

kD1

J S
k � �S �J t . (5.4)

Nt is a poisson process with intensity �S defined by (3.16).10 As explained in
Sect. 3.1.1, the jump component is modeled as compensated process in (5.4) so
that the incorporation of the jump term does not change the expected value of X

and we keep the martingale property of the discounted derivative process under
Q. J S

k denotes the jump size of the k-th jump which is lognormally distributed
via11

ln.1 C J S/ � N.ln.1 C �J / � 1

2
�2

J ; �2
J / . (5.5)

�J is the expected jump size and �J its volatility. The jump process is assumed to
be independent from the continuous part. We plug (5.4) in (5.3). Itô’s lemma for the

9 More information concerning the simulation of jump processes is given in Cont and Tankov
(2003).
10 The application to more sophisticated square-root or OU stochastic volatility models is
straightforward.
11 This specification of lognormal jumps traces back to Bates (1996b, 2000). BCC (1997) and DPS
(2000) also incorporated this type of jump in a square-root stochastic volatility model.
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transform Xt D ln.St / leads to

dXt D .r � 1

2
�2 � �X �J / dt C � dW X

t C dNt ln.1 C J S / , (5.6)

where �X D �S , dW X
t D dW S

t is only a change of notation.
We omit the FPDE for this simple model setup. The guess for the characteristic

function of the diffusion component is ˆd D expfi
Xt C B.�/g. This leads to the
ODE

dB.�/

d�
D i


�

r � 1

2
�2 � �X �J

�

� 1

2

2�2 .

A straightforward integration leads to the Black-Scholes characteristic function
(with an adapted drift term)12

ˆd D exp

�

i
Xt C i


�

r � 1

2
�2 � �X �J

�

� � 1

2

2�2�

�

. (5.7)

Since the jump component is independent from the diffusion component, we can
apply the solution for the characteristic function of the diffusion component ˆd and
multiply it with the characteristic function of the jump component ˆJ X

according
to (3.18)13:

ˆ.
; t; T / D ˆd .
; t; T / � ˆJ X

.
; t; T / , (5.8)

with

ˆJ X

.
; t; T / D exp

�

.T � t/�X .expŒi
fln.1 C �J / � 1

2
�2

J g � 1

2
�2

J 
2� � 1/

�

.

(5.9)

5.2.2 Mean-Reverting Assets

Let us now consider jumps when the underlying price process under Q shows
mean reversion. As pointed out in Das (2002) and previously in Sect. 5.1, the jump
affects the subsequent behavior of the mean-reverting drift term and is therefore not
independent from the continuous part. The incorporation of jumps with the multi-
plication of characteristic functions according to (5.8) is not appropriate. Following

12 The drift term adaption traces back to the specification of the jump process as compensated
process (5.4).
13 A more detailed discussion concerning the multiplication of characteristic functions for inde-
pendent factors is given in Zhu (2000).
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(3.1), we specify the price process of the underlying as

dSt D �fS � Stg St dt C
p

Vt St dW S
t C St dP S

t , (5.10)

where the jump component is defined by (5.4) and (5.5). We plug (5.4) in (5.10) and
obtain

dXt D .�fX � Xt g � 1

2
Vt � �X �J / dt C

p
Vt dW X

t C dNt ln.1 C J S / ,

(5.11)

where �X D �S , dW X
t D dW S

t as in the previous subsection.
Now consider for example the square-root stochastic volatility model or the OU

stochastic volatility model as discussed in Sects. 4.1 and 4.2. For the square-root
model, the FPDE is given by

@ˆ

@t
C .�fX � Xtg � 1

2
Vt � �X�J /

@ˆ

@X
C �.� � Vt/

@ˆ

@V
C 1

2
Vt

@2ˆ

@X2

C 1

2
�2 Vt

@2ˆ

@V 2
C �Vt �

@2ˆ

@X@V
C �X

E
QŒ.ˆ.Xt C J X / � ˆ.Xt//� D 0 ,

where J X D ln.1 C J S /. We apply the exponential affine guess (4.5) for ˆ and
obtain the following set of ODEs.

dB.�/

d�
D �1

2
i
e��� C 1

2
.i
/2e�2�� � �B.�/ C 1

2
�2B2.�/ C ��i
e���B.�/

dC.�/

d�
D �

�X � �X �J

�
i
e��� C ��B.�/ C �X

E
Q
	
expfi
e���J X g � 1




(5.12)

We observe that the ODE for B.�/ is identical to (4.7) in Sect. 4.1. The remaining
expectation in the ODE for C.�/ can be solved because the jump J X is assumed to
be normally distributed with parameters ln .1 C �J / � 0:5�2

J and �2
J . The resulting

ODE is given by

dC.�/

d�
D �

�X � �X �J

�
i
e��� C ��B.�/C

C �X exp

�

i
e��� Œln.1 C �J / � 1

2
�2

J � � 1

2

2e�2�� �2

J

�

� �X . (5.13)

The three nested exponential functions of the integration variable � inhibit a closed-
form solution for (5.13). Hence, we solve the ODE system with a Runge-Kutta-
algorithm.

For the OU stochastic volatility model, the jump term affects only the func-
tion D.�/. The ODEs for B.�/ and C.�/ are given in (4.20), and the ODE for
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D.�/ changes to

dD.�/

d�
D �

�X � �X �J

�
i
e��� C ��C.�/ C �2B.�/ C 1

2
�2C 2.�/C

C �X exp

�

i
e��� Œln.1 C �J / � 1

2
�2

J � � 1

2

2e�2�� �2

J

�

� �X , (5.14)

Since there is no closed-form solution available, the computation will be done with
numerical integration methods.

5.2.3 Comparison with the Monte-Carlo Solution

Following the jump-adapted derivative-free time discretization scheme of
Bruti-Liberati and Platen (2006) as described in Sect. 5.1, we simulated the SDE
system with an underlying process according to (5.11) and subordinated CIR vari-
ance process as in (4.1).14 The parameter values are S D 80, S D 85, � D 1,
T � t D 0:5, � D 0:2,

p
V D 0:2, � D 1, � D �0:5, � D 0:05, �J D 0:1,

�J D 0:3, �X D 2.
The results of the MC simulation are shown in Fig. 5.4. A comparison with

the continuous square-root stochastic volatility model in Fig. 4.3 shows that the
incorporation of the jump has a large impact on the shape of the distribution. The dis-
tribution of ST shows positive skewness (2.358) and a much higher kurtosis (17.470)
compared to the continuous model with a skewness of �0:083 and a kurtosis of
3:173, which is close to a normal distribution (see also Sect. 4.1.3). The expected
number of jumps in the considered time interval T � t D 0:5 is 1. Though the
process is driven back to the long-term equilibrium level S D 85 after a jump,
the impact of the mean reversion in the drift term is much smaller, since the mean
reversion cannot remove jumps which occur shortly before maturity. This property
results in a smaller value for the RK solution F of the futures price compared to
the continuous model since jumps occur both upwards and downwards and weaken
the impact of the mean-reverting drift term which, in our case, pushes the process
upwards to the equilibrium level S D 85.

The higher variance and kurtosis influence the confidence interval for EŒST �. The
confidence interval is larger and the MC value EŒST � D 81:1426 is not that close
to the Runge-Kutta solution F D 81:1338 as in Chap. 4. Nevertheless, the semi-
analytical value lies within the confidence interval [81.1227; 81.1624]. Obviously,
option values are highly increased compared to the reference model in Sect. 4.1 due
to the higher volatility caused by the jumps.

14 In the following, we focused on CIR variance as reference model. Since the impact of the
model extensions is similar for both stochastic volatility models, we omit the presentation of MC
simulations for the OU stochastic volatility case.
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Fig. 5.4 Histogram, density function and confidence interval for the OU model with square-root
stochastic volatility and lognormal jumps of the underlying

5.3 Exponentially and � -Distributed Jumps
in the Variance Process

Following DPS (2000), we incorporate exponentially distributed jumps in the vari-
ance process in the square-root stochastic volatility model. The system of SDEs
reads

dXt D .�fX � Xtg � 1

2
Vt / dt C

p
Vt dW X

t

dVt D �.� � Vt /dt C �
p

Vt dW V
t C dP V

t , (5.15)

where

P V
t D

NtX

kD1

J V
k , (5.16)

with Nt being a Poisson process with intensity �V .

5.3.1 Exponentially Distributed Jumps

The jump size J V
k of the compound Poisson process P V

t is exponentially distributed
with parameter � > 0. Hence, the jumps in variance are only allowed to be positive.
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With this jump distribution, one avoids the unpleasant case of a negative variance
after a large downward jump. The first moment of this distribution is EŒJ V � D 1

�
,

the variance is given by var.J V / D . 1
�
/2.

The FPDE according to (3.36) is

@ˆ

@t
C .�fX � Xtg � 1

2
Vt /

@ˆ

@X
C �.� � Vt /

@ˆ

@V
C 1

2
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@2ˆ

@X2

C1

2
�2 Vt

@2ˆ

@V 2
C �Vt �

@2ˆ

@X@V
C �V

E
QŒ.ˆ.Vt C J V / � ˆ.Vt //� D 0 , (5.17)

with the first terms identical to Sect. 4.1 and the new jump term

�V
E

QŒ.ˆ.Vt C J V / � ˆ.Vt //� .

We apply the exponential affine guess (4.5) for ˆ in (5.17). After simplifying, we
obtain

�V exp fi
A.�/Xt C B.�/Vt C C.�/g � �EQ
	
exp

˚
B.�/ J V

�
 � 1
�

.

The remaining expectation is solved under the constraint that the distribution of
J V is exponential (see also DPS (2000)). After dividing by ˆ, we obtain for the
jump term

�V
�
E

Q
	
exp

˚
B.�/ J V

�
 � 1
� D �V

�
�

� � B.�/
� 1

�

. (5.18)

We notice that the jump term is not added to the terms containing Xt or Vt and
therefore the jump affects only the function C.�/. The corresponding ODE is

dC.�/

d�
D �Xi
e��� C ��B.�/ C �V

�
�

� � B.�/
� 1

�

. (5.19)

Since there is no closed-form solution available for (5.19), we have to solve the
ODE system with numerical integration methods.

5.3.2 � -Distributed Jumps

Let us now consider the incorporation of �-distributed jumps. As mentioned before,
this jump setup traces back to Kispert (2005) and can be seen as a generalization of
exponential distributed jumps. The jump in variance is now assumed to be �.�; �/-
distributed (� > 0, � > 0). For � D 1, the �.�; 1/-distribution is an exponential
distribution with parameter � . As in the case of the exponential distribution, this
jump specification allows only for positive jumps with EŒJ V � D �

�
and var.J V / D

�

�2 . For this type of variance jump, the proceeding is very similar to exponential
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Fig. 5.5 Histogram, density function and confidence interval for the OU model with square-root
stochastic volatility and exponential distributed jumps in the variance process

variance jumps and the ODE for C.�/ is given by15

dC.�/

d�
D �Xi
e��� C ��B.�/ C �V

"�

1 � 1

�
B.�/

���

� 1

#

. (5.20)

5.3.3 Comparison with the Monte-Carlo Solution

Due to the similarity of the model setups, we decided to provide the MC simulation
results only for exponentially distributed jumps. A comparison between exponential
and � jumps is given in Sect. 5.4.2. The parameter values are the following: S D 80,
S D 85, � D 1, T � t D 0:5, � D 0:2,

p
V D 0:2, � D 1, � D �0:5, � D 0:05,

� D 200, �V D 2. The expected number of jumps per path in the time interval T � t

is therefore 1 and the expected jump size is 0:005.
Due to the relatively small jump event, the incorporation of the exponential jump

in the variance process does not change that much than jumps in the underlying
process. The results of the MC simulation are shown in Fig. 5.5 and are similar to
the continuous model in Sect. 4.1. The shape of the distribution is close to normal

15 Cf. Kispert (2005).
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with a skewness of �0:055 and a kurtosis of 3:178 and only slightly different from
the square-root stochastic volatility model without jumps (skewness of �0:083 and
kurtosis of 3:173). An at-the-money call option is therefore only somewhat more
expensive than in the reference model (4.6726 compared to 4.5770).

Due to the small kurtosis, the confidence interval Œ81:7887I 81:8044� is smaller
than in Sect. 5.2.3. The MC value for EŒST � is 81:7966 and close to the Runge-Kutta
solution F D 81:7956.

5.4 Jumps in Both the Underlying and Variance Process

5.4.1 Independent Jumps

Now consider the case where jumps are allowed both in the underlying and the
variance process. The system of SDEs is given by

dXt D
�

�fX � Xtg � 1

2
Vt

�

dt C
p

Vt dW X
t C dP X

t

dVt D �.� � Vt /dt C �
p

Vt dW V
t C dP V

t , (5.21)

with P X
t and P V

t specified according to (5.4) and (5.16).
When the two jump processes are assumed to be independent from each other

and from the continuous part, we face the following FPDE:

@ˆ
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2
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2
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E

QŒ.ˆ.Xt ; Vt C J V / � ˆ.Xt ; Vt //�

C �X
E

QŒ.ˆ.Xt C J X ; Vt / � ˆ.Xt ; Vt //� D 0 .

Again, the ODE for B.�/ is identical to Sect. 4.1 and the two jump terms together
with the adaption of the drift term are incorporated in the ODE for C.�/. In the case
of exponential distributed variance jumps, we obtain

dC.�/

d�
D �

�X � �X�J

�
i
e��� C ��B.�/ C �V

�
�

� � B.�/
� 1

�

C �X exp

�

i
e��� Œln.1 C �J / � 1

2
�2

J � � 1

2

2e�2���2

J

�

� �X . (5.22)
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And for �-distributed variance jumps, the ODE reads

dC.�/

d�
D �

�X � �X �J

�
i
e��� C ��B.�/ C �V

"�

1 � 1

�
B.�/

���

� 1

#

C �X exp
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i
e��� Œln.1 C �J / � 1

2
�2

J � � 1

2

2e�2�� �2

J

�

� �X . (5.23)

Comparison with the Monte-Carlo Solution

As in the previous section, the MC simulation deals with exponential distributed
variance jumps. The parameter settings are S D 80, S D 85, � D 1, T � t D 0:5,
� D 0:2,

p
V D 0:2, � D 1, � D �0:5, � D 0:05, � D 200, �X D 2, �V D 2,

�J D 0:1, �J D 0:3. As in every setting in this chapter, the number of jumps
averages out at 1 both for the underlying and the subordinated process.

The shape of the distribution of ST and the 95% confidence interval for F

are shown in Fig. 5.6. As expected, the shape of the distribution is similar to
Sect. 5.2.3, but with a higher skewness (2.612 compared to 2.358) and kurtosis
(24.021 compared to 17.470) due to the additional jump in variance.

The model with both jumps results in a high variance of the MC sample. There-
fore, the 95% confidence interval Œ81:1141I 81:1541� is the largest of our models.
The Runge-Kutta solution for F is 81:1287 and somewhat close to the MC solu-

Fig. 5.6 Histogram, density function and confidence interval for the OU model with square-root
stochastic volatility and independent jumps in the log-underlying and variance process
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tion which is 81:1341. Due to the high variance caused by the two jump processes,
an at-the-money call is more expensive than in Sect. 5.2.3 (8:4711 compared to
8:4149).

5.4.2 Correlated Jumps

DPS (2000) also incorporate the case where the jump sizes of the jumps in Xt and
Vt are allowed to be correlated. In this model, the two jumps occur always simul-
taneously. Hence, P X

t and P V
t refer to only one Poisson process with intensity

��. This Poisson process is again assumed to be independent from the diffusion
component.

Exponentially Distributed Variance Jumps

The jump size J V is exponentially distributed with parameter � . When a certain
jump J V

k is realized, the corresponding jump J S
k is distributed according to

ln.1 C J S
k / � N

�

ln.1 C �J / � 1

2
�2

J C �J � J V
k ; �2

J; �

�

. (5.24)

The FPDE is given by
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 D 0 .

Note that the drift term correction is now (see DPS (2000))

��� �J � C �J

� � �J

dt ,

which incorporates both expected jump sizes and their correlation. With �J D 0 we
have ���J dt as in Sect. 5.2.

The jump components are again incorporated in the ODE for C.�/:
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 � �� . (5.25)
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To solve for the first expectation in (5.25), we set A.�/ D exp.���/ in (5.25)
and use the distribution law in (5.24) to obtain for the jump term

��
E

Q

�

expfi
e��� .ln.1 C �J / � 1

2
�2

J C �j J V
k / � 1

2

2�2

J e�2�� C B.�/J V
k g
�

� ��.

(5.26)

Since J V
k is exponentially distributed with parameter � , one can solve the remaining

expectation to obtain for (5.26)16
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2
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2
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� � i
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The ODE for B.�/ is again identical to (4.7) in Sect. 4.1 and the ODE for C.�/

is given by
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� �� . (5.28)

�-Distributed Variance Jumps

Now consider the jump sizes J V
k to be �-distributed with parameters � and � as in

the previous sections. The distribution law for a price jump contingent on a realized
variance jump as described in (5.24) holds analogously.

The FPDE is given by
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16 See also DPS (2000).
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The drift term correction for this type of jump specification is17

���
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B
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1 C �J


1 � �J

�

��
� 1

1

C
A dt .

Note that for � D 1, the drift term correction is identical to the previous paragraph
and for �J D 0, the drift term correction is again given by ���J dt as in Sect. 5.2.18

The proceeding is similar to the previous paragraph. Equations (5.25) (with dif-
ferent correction term) and (5.26) hold analogously. When the variance jump in
(5.26) is �-distributed, the ODE for C.�/ is given by
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�
fi
e����J C B.�/g
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� �� . (5.29)

Both (5.28) and (5.29) are solved with numerical integration routines.

Comparison with the Monte-Carlo Solution

We firstly run a MC simulation for exponentially distributed variance jumps with
parameter values S D 80, S D 85, � D 1, T � t D 0:5, � D 0:2,

p
V D 0:2,

� D 1, � D �0:5, � D 0:05, � D 200, �� D 2, �J D 0:1, �J D 0:3, �J D 0:5. As
in the previous section, the expected number of jump events per path is 1. Both the
underlying and the variance jump refer to one jump event.

We choose a positive �J to account for the fact that in commodity markets, an
upward price jump is likely to be associated with an upward jump in volatility and
vice versa. The so-called leverage effect which denotes negative correlation between
price and volatility movements mainly is a feature of financial asset markets.

The results are displayed in Fig. 5.7. We observe that correlated simultaneous
jumps have a smaller impact than independent jumps. Hence, the results are closer
to the model with lognormal jumps. We notice a somewhat higher skewness (2.424
compared to 2.358 in Sect. 5.2.3) and kurtosis (18.767 compared to 17.470 in
Sect. 5.2.3) due to the additional simultaneous jump in variance.

17 Cf. also DPS (2000).
18 The equality of the correction terms for � D 1 is required since the �.�; 1/-distribution is an
exponential distribution with parameter � .
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Fig. 5.7 Histogram, density function and confidence interval for the OU model with square-root
stochastic volatility and correlated jumps with exponentially distributed variance jumps

Fig. 5.8 Histogram, density function and confidence interval for the OU model with square-root
stochastic volatility and correlated jumps with �-distributed variance jumps
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The value for F is 81.1239 and close to the value with lognormal jumps
(81:1338). The Runge-Kutta solution lies within the confidence interval Œ81:0949I
81:1735�, but is not that close to the MC solution which is 81:1342. An at-the-money
call is slightly more expensive than in the model with lognormal jumps (8:4681

compared to 8:4149).
In the following, we shortly present the results in the case of �-distributed vari-

ance jumps. The parameter setting is S D 80, S D 85, � D 1, T � t D 0:5, � D 0:2,p
V D 0:2, � D 1, � D �0:5, � D 0:05, � D 100, � D 2, �� D 2, �J D 0:1,

�J D 0:3, �J D 0:5. Hence, the variance jumps exhibit both a higher expected value
and a higher standard deviation compared with exponentially distributed jumps with
parameter � D 200.

The results are displayed in Fig. 5.8. The shape of the distribution is very simi-
lar to the setting with exponentially distributed jumps. The skewness is 2:465 and
the kurtosis is 18:668 (both values are slightly higher than in Fig. 5.7). The RK
value for F is 81:0932, the MC value is 81:0859 with associated confidence interval
Œ81:0456I 81:1262�. Due to higher variance, an at-the-money call is more valuable
(C D 8:6295).



Chapter 6
Stochastic Equilibrium Level
of the Underlying Process

The values of S and X denote the mean values, i.e. the long-run equilibrium lev-
els, of the price process and the log-price process, respectively. In the preceding
chapters, these parameters are held constant, which implies that in the long-run,
every shock in the price process is removed due to the mean reversion. In this sec-
tion, we model the mean of the price process itself as an additional stochastic factor
X, which is equivalent to the assumption that there exist shocks in the price process
which persist.

We address both a mean-reverting process and a Brownian motion process with
(presumably positive) drift as subordinated equilibrium level process. While the
former accounts for additional risk in price variations, the latter can represent
inflation effects. The combination with jumps in the equilibrium level process as
discussed in Sect. 6.3.2 may account for regime shift risk. For instance, the crude
oil price behavior in the last few years can be modeled according to either a large
value of the drift component �X or a large upward jump in the equilibrium level
process.

6.1 Constant Volatility

6.1.1 Mean-Reverting Equilibrium Level

We substitute the constant parameter X of the log-price process with the stochastic
equilibrium level X. The SDEs of the log-price process and subordinated equilib-
rium level process are modeled as follows:

dXt D .�fXt � Xt g � 1

2
Vt/ dt C

p
Vt dW X

t

dXt D �X.�X � Xt / dt C �X dW X
t , (6.1)

where the two Brownian motions are allowed to be correlated via dW X
t � dW X

t D
�X dt . The equilibrium level follows itself a mean reverting process. This model
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setup has already been proposed in Realdon (2007) for commodity price processes.1

Korn (2005) specifies the equilibrium level process also as Ornstein–Uhlenbeck pro-
cess, but models the log-price process similar to Schwartz and Smith as additionally
composed process of a short-term and a long-term component. The FPDE for (6.1)
is given by
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2
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@X@X
D 0 . (6.2)

As in Sect. 4.1.2, the guess for ˆ is exponential affine and of the form ˆ D
expfi 
 e��� Xt C B.�/ Xt C C.�/g. Under the restriction that � ¤ �X, the solution
for B.�/ is given by2

B.�/ D �i


� � �X
.e��X� � e��� / . (6.3)

Realdon presents the ODE for C.�/ and solves for this function using numerical
Runge-Kutta integration. However, it is possible to express the solution for C.�/

analytically:

C.�/ D i


2�
Vt .e��� � 1/ C ��Xi


� � �X
.1 � e��X� / C �X�Xi


� � �X
.e��� � 1/

C 
2

4�
Vt

�
e�2�� � 1

�C �2
X�2
2

2.� � �X/2

�
1

2�X

�
e�2�X� � 1

�

� 2

�X C �

�
e�.�XC�/� � 1

�C 1

2�

�
e�2�� � 1

�
�

C �X�X�
2

� � �X

p
Vt

�
1

�X C �

�
e�.�XC�/� � 1

� � 1

2�

�
e�2�� � 1

�
�

. (6.4)

Special Case: � D �X

The special case solution presented in this paragraph is not included in Realdon.
Under the restriction that the two adjustment speed parameters � and �X are equal,

1 However, the model setup in (6.1) does not entirely coincide with Realdon due to the term
�0:5Vt dt in the process for Xt . As already mentioned in Chap. 4, the additional term seems to
be more reasonable when the model setup is based on the price process of the underlying with
subsequent log-transformation.
2 See Realdon (2007).
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the solutions in (6.3) and (6.4) are not defined. The solutions for the two functions
B.�/ and C.�/ are given as follows:

B.�/ D �i
�e��� , (6.5)

C.�/ D i


�
.e��� � 1/

�
1

2
Vt � �X�X

�

� ��X�Xi
e��� C 1

4

2�X�e�2��

�


�X C ���X C 2�X

p
Vt

�
C 
2

4�

�
e�2�� � 1

�
�

Vt C 1

2
�2

X C �X

p
Vt �X

�

(6.6)

Realdon (2007) points out that this model is very tractable for the computation of
options on futures since the distribution of XT and XT conditional on initial values
Xt ; Xt is Gaussian, but he is not able to express the variance of XT in closed form.

6.1.2 Brownian Motion with Drift

Now consider a different specification of the subordinated equilibrium level process:

dXt D
�

�fXt � Xt g � 1

2
Vt

�

dt C
p

Vt dW X
t

dXt D �X dt C �X dW X
t . (6.7)

Apart from the term � 1
2

Vt dt , the specification in (6.7) is similar to Schwartz and
Smith (2000), though they work with a price process which is additionally composed
of a zero mean Ornstein–Uhlenbeck process for the deviations from the long-run
equilibrium and the attractor itself which follows the same SDE as in (6.7).3 The
drift in the subordinated process can be taken as inflation effect, when working with
non-inflation-adjusted data.4

The setting in (6.7) is not fully equivalent to the setup in Schwartz and Smith, as
one can see in the following.5 The two processes in Schwartz and Smith are

d
� D ���
�dt C �
� dW

�

t (6.8)

3 Korn (2005) also comments on the equivalence of (6.7) to the Schwartz and Smith setup.
4 A similar specification of the subordinated process for the long-term equilibrium level is given in
Pilipović (1998). This model setup does not incorporate stochastic volatility.
5 Schwartz and Smith (2000) demonstrate that their model setup is equivalent to the stochastic
convenience yield model of Gibson and Schwartz (1990).
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for the short-term deviations and

d�� D ���dt C ���dW
��

t (6.9)

for the long-term equilibrium level.6 The definitions of the equilibrium dynamics
in (6.7) and (6.9) are identical. As for the price process, since Xt D 
�

t C ��
t , the

dynamics are given by

dXt D d
�
t C d��

t

D ����
� C ���

�
dt C �
� dW


�

t C ���dW
��

t . (6.10)

We observe that the volatility terms will be equivalent for

p
Vt dW X

t D �
�dW

�

t C ��� dW
��

t :

The drift term in (6.10) will be equivalent to (6.7) if

��
�
t � 1

2
Vt D ���
�

t C ���

holds.7 Since the equivalence of the equilibrium levels requires ��� D �X to hold,
it is not entirely possible to express the setup in (6.7) in terms of the parameters
of Schwartz and Smith (2000), at least as long as ��� D �X ¤ � 1

2
Vt , which is a

reasonable restriction.
To calculate the characteristic function, we set up the correspondent FPDE to

(6.7) which is given by

@ˆ

@t
C
�

�fXt � Xtg � 1

2
Vt

�
@ˆ

@X
C �X

@ˆ

@X

C 1

2
Vt

@2ˆ

@X2
C 1

2
�2

X

@2ˆ

@X2
C �X

p
Vt �X

@2ˆ

@X@X
D 0 . (6.11)

The guess for ˆ is the same as in Sect. 6.1.1. The solutions for the functions B.�/

and C.�/ with respect to the boundary conditions are given as follows:

B.�/ D i
 .1 � e��� / (6.12)

6 For notational convenience, we arrange the Schwartz and Smith model parameters in this
subsection with an asterisk.
7 Note that the short term deviations 
�

t are linked to the model parameters in (6.7) via 
�

t D
Xt � Xt .
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C.�/ D �Xi
� � 1

2
�2

X
2� C i


�
.e��� � 1/

�
1

2
Vt C �X C i
�2

X

��X

p
Vt �Xi


i
C 
2

4�

�
1 � e�2��

� h
2�X

p
Vt �X � Vt � �2

X

i
. (6.13)

6.2 Integration of Square-Root Stochastic Volatility

6.2.1 Mean-Reverting Equilibrium Level

In this section, the process assumptions as described in Sect. 6.1 are extended by
square-root stochastic volatility. For arithmetic reasons, we slightly modify the
volatility of the equilibrium level process. We arrive at a three factor model driven
by the following system of SDEs:

dXt D .�fXt � Xt g � 1

2
Vt/ dt C

p
Vt dW X

t

dXt D �X.�X � Xt / dt C �X

p
Vt dW X

t

dVt D �.� � Vt /dt C �
p

Vt dW V
t . (6.14)

The Brownian motions are allowed to be pairwise correlated via

dW X
t � dW V

t D �dt

dW X
t � dW X

t D �Xdt

dW X
t � dW V

t D �XV dt .

The FPDE for this setting reads

@ˆ

@t
C
�

�fXt � Xtg � 1

2
Vt

�
@ˆ

@X
C �X

@ˆ

@X
C �.� � Vt /

@ˆ

@V

C 1

2
Vt

@2ˆ

@X2
C 1

2
�2

X

@2ˆ

@X2
C 1

2
�2Vt

@2ˆ

@V 2
C �Vt �

@2ˆ

@X@V

C �XVt �X
@2ˆ

@X@X
C �XV Vt�X�

@2ˆ

@V @X
D 0 . (6.15)

We apply a guess for ˆ of the form ˆ D expfi
e���Xt C B.�/Xt C C.�/Vt C
D.�/g. The solution for B.�/ is given by (6.3), respectively by (6.5), when � D �X

holds. Unfortunately, two subordinated mean-reverting processes inhibit a closed-
form solution for C.�/ and D.�/ in terms of hypergeometric functions. The ODEs
for the two remaining functions are given by
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dC.�/

d�
D �1

2
i
e��� C 1

2
.i
/2e�2�� C 1

2
�2

XB2.�/ C �X�Xi
e���B.�/

C Œ��i
e��� � � C �XV ��XB.�/� C.�/ C 1

2
�2C 2.�/ (6.16)

dD.�/

d�
D ��C.�/ C �X�XB.�/ . (6.17)

6.2.2 Brownian Motion with Drift

Now consider the integration of square-root stochastic volatility in the SDE system
defined by (6.7).8

dXt D .�fXt � Xt g � 1

2
Vt/ dt C

p
Vt dW X

t

dXt D �X dt C �X

p
Vt dW X

t

dVt D �.� � Vt /dt C �
p

Vt dW V
t . (6.18)

Again, the Brownian motions are allowed to be pairwise correlated as in the previous
subsection. The FPDE is similar to (6.15). For this model setting, it is possible to
derive a solution for ˆ in terms of hypergeometric functions similar to Sect. 4.1. The
insertion of the corresponding partial derivatives in (6.15) leads to the well-known
solution B.�/ D i
.1 � e��� / together with a system of two ODEs:

dC.�/

d�
D �1

2
i
e��� C 1

2
.i
/2e�2�� C 1

2
�2

X.i
/2 .1 � e��� /
2

C �X�X.i
/2e��� .1 � e��� / C Œ��i
e��� � �

C�XV ��Xi
 .1 � e��� /� C.�/ C 1

2
�2C 2.�/

dD.�/

d�
D ��C.�/ C �Xi
 .1 � e��� / , (6.19)

with boundary conditions C.0/ D D.0/ D 0.
Consider the first in (6.19). We make the same transformation G.�/ D expf� R 1

2

�2C.�/ d�g and substitution � D i
 e��� as in Sect. 4.1.2 to obtain a linear
homogenous second order equation of the form

8 The volatility of the equilibrium level process is modified as in the previous subsection.
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�2�2 d2G.�/

d�2
C �

	
�2 f�� � �XV ��Xg C � f� C �XV ��Xi
 � �g
 dG.�/

d�

C 1

2
�2

�

�2

�
1

2
C 1

2
�2

X � �X�X

�

C �

�

�X�Xi
 � i
�2
X � 1

2

�

C1

2
�2

X.i
/2

�

G.�/ D 0 . (6.20)

Now substitute G.�/ D �pH.�/, where9

p D 1

2�

�

�XV ��Xi
 � � ˙
q

.�XV ��Xi
 � �/2 � �2
X�2.i
/2

�

. (6.21)

The substitution with one of the two possible values for p as defined by the ˙-sign
in (6.21) leads to

�2�
d2H.�/

d�2
C � Œ� f�� � �XV ��Xg C 2�p C � C �XV ��Xi
 � ��

dH.�/

d�

C
�

1

2
�2�

�
1

2
C 1

2
�2

X � �X�X

�

C � f�� � �XV ��Xg p

C1

2
�2

�

�X�Xi
 � i
�2
X � 1

2

��

H.�/ D 0 . (6.22)

For both values of p, the substitution G.�/ D �pH.�/ transforms (6.20) into
(6.22). After the backward substitutions, both alternatives should lead to the same
result. We tested both values for p and obtained the same solutions, as expected.
However, the choice of the plus sign is superior for two reasons. Firstly, our tests
did not reveal a case where the algorithm fails when the plus sign is chosen, and
secondly, the special case 1 solution can only occur when the minus sign is applied
(see also Sect. 6.2.2).10 Hence, the special case 1 solution can be omitted when p is
determined by the plus sign.

The structure of (6.22) is equivalent to (4.9) in Chap. 4. Hence, we present a
general case and two special case solutions in line with the proceeding in Chap. 4.
It is worth noting that to the best of our knowledge, the extension of a mean revert-
ing price process with both stochastic equilibrium level and stochastic volatility is
presented in the following paragraphs in the first place.

9 See Polyanin and Zaitsev (2003), p. 229.
10 Contrary, the application of the minus sign may lead to convergence difficulties in the “hyper”
subroutine of the translated Fortran code in Barrowes (2004).
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General Case Solution

The restriction for the general case solution for (6.22) is that

�2 � 1 C �2
X.�2

XV � 1/ � 2�X.��XV � �X/ ¤ 0

holds. One subset of parameter settings which fulfill this condition is obviously
� ¤ ˙1 and �XV ¤ ˙1 together with �X ¤ � � �XV .

Under the additional restriction that the parameter b which is defined below is
neither zero nor a negative integer, the solution for H.�/ is given by11

H.�/ D expfd�g ŒC1M .a; b; c�/ C C2U .a; b; c�/� , (6.23)

where

a D f

��

q
�2 � 1 � 2�X.�XV � �X/ C �2

X.�2
XV � 1/

b D 2p C 1

�
.� � � C �XV ��Xi
/

c D
�

q
�2 � 1 � 2�X.�XV � �X/ C �2

X.�2
XV � 1/

�2�

d D �

2�

�q
�2 � 1 � 2�X.�XV � �X/ C �2

X.�2
XV � 1/ � .� � �XV �X/

�

,

and

f D �

2
Œ� � � C �XV ��Xi
�

�q
�2 � 1 � 2�X.�XV � �X/ C �2

X.�2
XV � 1/

� .� � �XV �X/

�

C 1

2
�2

�

�X�Xi
 � i
�2
X � 1

2

�

.

The application of the backward substitutions G.�/ D �p H.�/, � D i
e���

and

C.�/ D � 2

�2

G0.�/

G.�/

11 Polyanin and Zaitsev (2003), p. 225.



6.2 Integration of Square-Root Stochastic Volatility 109

leads to

C.�/ D 2�

�2

�

p C d

c
g.�/

C ag.�/
Cb�1M .1 C a; 1 C b; g.�// � U .1 C a; 1 C b; g.�//

CM .a; b; g.�// C U .a; b; g.�//

�

;

(6.24)

with auxiliary function
g.�/ D c i
 e���

and integration constant

C D C1

C2

D
ag.0/U .1 C a; 1 C b; g.0// �

�

p C d

c
g.0/

�

U .a; b; g.0//

a

b
g.0/M .1 C a; 1 C b; g.0// C

�

p C d

c
g.0/

�

M .a; b; g.0//

.

The insertion of (6.24) in the second ODE in (6.19) together with the application
of the boundary condition leads to

D.�/ D 2��

�2

�

�p� C d i
 .1 � e��� / � ln

�
CM .a; b; g.�// C U .a; b; g.�//

CM .a; b; g.0// C U .a; b; g.0//

��

C �Xi


�
.�� C e��� � 1/ . (6.25)

Special Case 1 Solution

The first parameter restriction for the special case 1 solution is equivalent to the
general case condition, which implies that

�2 � 1 C �2
X.�2

XV � 1/ � 2�X.��XV � �X/ ¤ 0

holds. Additionally, we now presume that the Kummer function parameter b is zero
or a negative integer. Since b depends on p, which is itself a solution of a quadratic
equation, the condition for b being zero or a negative integer is up to the ˙-sign in
(6.21).

b D 1 ˙
q

.�XV ��Xi
 � �/2 � �2
X�2.i
/2 ¤ 0; �1; �2; : : : (6.26)
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The square root in (6.26) provides positive real numbers or imaginary numbers,
but not negative real numbers. Therefore, negative integer solutions for b are only
possible when the minus sign in (6.26), respectively in (6.21), is chosen. Our tests
did not reveal cases where the choice of the plus sign in (6.26) fails to provide
accurate solutions. Hence, we assert that a full presentation of this special case is
not needed and restrict ourselves to the general solution for H.�/12:

H.�/ D ed� .c�/1�b ŒC1M .a � b C 1; 2 � b; c�/

CC2U .a � b C 1; 2 � b; c�/� , (6.27)

with the same parameters a; b; c and d as in the previous paragraph.

Special Case 2 Solution

Under the condition that

�2 � 1 C �2
X.�2

XV � 1/ � 2�X.��XV � �X/ D 0

holds, the solution for H.�/ is given in terms of Bessel functions (see also
Sect. 4.2.3).

H.�/ D exp

�
�

2�
.�XV �X � �/ �

�

�
q
2

	C1Jq

�
2
p

z�
�C C2Yq

�
2
p

z�
�


, (6.28)

where

q D 1 � 2p � 1

�
.� � � C �XV ��Xi
/ (6.29)

z D �

2
.� � � C �XV ��Xi
/ .�XV �X � �/ C 1

2
�2

�

�X�Xi
 � i
�2
X � 1

2

�

.

Note that the Bessel functions in this subsection are of complex order and complex
argument.13 The order of the Bessel functions in (6.28) is given by (6.29). Equation

12 Polyanin and Zaitsev (2003), p. 222.
13 The Matlab� package only includes Bessel functions of real order. We tested two ways to cal-
culate complex order Bessel functions. Firstly, we implemented a MapleTM call which on the one
hand offers high accuracy, but on the other hand is conducted with long computation time (though
this calculation method is still slightly faster than numerical integration methods). Secondly, we
used Matlab� source code provided by H. Cai from Northwestern University at Chicago (Cai
(2006), this code is available via the Matlab� central file exchange). We slightly modified the code
to achieve higher accuracy. The modified code provides identical results up to the twelfth decimal
place and is about six times faster than the MapleTM function calls. However, the calculation still
takes much more time when working with complex order Bessel functions instead of real order
Bessel functions as given in Sect. 4.2.3.
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(6.29) is a real number for all reasonable parameter settings when 
 D �i holds, i.e.
in the case of the calculation of futures prices. For other values of 
, (6.29) is a com-
plex number when �XV ¤ 0, � ¤ 0 and �X ¤ 0 holds. The latter two restrictions
are less interesting since they refer to deterministic subordinated processes. Hence,
the order of the Bessel functions is always a complex number when the correlation
of the two subordinated stochastic processes is nonzero.

The application of the backward substitutions as in the first paragraph of this
subsection leads to

C.�/ D 2�p

�2
C 1

�
.�XV �X � �/ i
e��� C 2�

�2
h.�/

CJq�1 .2h.�// C Yq�1 .2h.�//

CJq .2h.�// C Yq .2h.�//
,

(6.30)

with auxiliary function
h.�/ D p

z i
 e���

and integration constant

C D C1

C2

D
2�

�2 h.0/Yq�1 .2h.0// �
h

1
�
.� � �XV �X/i
 � 2�p

�2

i
Yq .2h.0//

h
1
�
.� � �XV �X/i
 � 2�p

�2

i
Jq .2h.0// � 2�

�2 h.0/Jq�1 .2h.0//
.

Apply the solution for C.�/ as given in (6.30) in the second ODE in (6.19) to obtain

D.�/ D 2��

�2



p C q

2

�
� C ��

��
.�XV �X � �/ i
 .1 � e��� /

� 2��

�2
ln

�CJq .2h.�// C Yq .2h.�//

CJq .2h.0// C Yq .2h.0//

�

C �Xi


�
.�� C e��� � 1/ .

(6.31)

Comparison with the Monte-Carlo Solution

We simulated the evolution of the SDE system in (6.18) with the following param-
eter setting: S D 80, X D 85, � D 1, T � t D 0:5, � D 0:2,

p
V D 0:2, � D 1,

� D �0:5, � D 0:05, �X D 0:1, �X D 0:2, �XV D 0:5, �X D 0:3. The parameter
setting refers to the general case solution as given in (6.24) and (6.25).

Since we have to simulate three pairwise correlated Brownian motions, we
firstly applied a Cholesky decomposition of the correlation matrix.14 The output
of the Cholesky decomposition is a lower triangular matrix L which can be used

14 Under the restrictions that the Matrix M is Hermitian and positive definite, the Cholesky
decomposition can be applied. Since a Hermitian matrix with real entries is symmetric, these
restrictions are always fulfilled by a valid correlation matrix. The matrix is decomposed according
to M D LLT , where LT is the transpose of L.
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Fig. 6.1 Histogram, density function and confidence interval for the OU model with stochastic
equilibrium level and square-root stochastic volatility

to transform a vector of independent pseudo random numbers Qz into a vector LQz
with the wanted covariance properties. The results of the simulation are displayed
in Fig. 6.1.

The shape of the distribution is quite similar to the square-root stochastic volatil-
ity case without stochastic equilibrium level. The skewness is �0:031 compared
with �0:083 in Sect. 4.1.3, while the kurtosis is slightly larger (3:201 compared
with 3:173). The overall volatility of the underlying is also larger, which results in
a bigger confidence interval for F . The 95 % confidence interval for the spot price
at time T is Œ82:6801; 82:7109�. As expected, the analytical value F D 82:6945

lies within the confidence interval and matches quite well the MC solution which is
82:6955.

The price of a European call is higher than in the reference case (C D 5:1905

compared with 4:5770 in Sect. 4.1.3).

6.3 Other Model Extensions

There are numerous possibilities to combine the basic setup of this chapter, a
mean reverting price process with subordinated stochastic equilibrium level pro-
cess, with other stochastic factors. In this section, we discuss the combination with
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Ornstein–Uhlenbeck stochastic volatility as well as with different types of jumps as
discussed in Chap. 5. In all these cases, one needs numerical integration schemes as
discussed in Sect. 3.6 to recover the solutions of the ODE systems.

6.3.1 Ornstein–Uhlenbeck Stochastic Volatility

The adaption of the SDE system (6.18) in the previous section to Ornstein–
Uhlenbeck stochastic volatility is given as follows:

dXt D .�fXt � Xt g � 1

2
�2

t / dt C �t dW X
t

dXt D �X dt C �X dW X
t

d�t D �.� � �t /dt C � dW �
t . (6.32)

We omit the presentation of the FPDE which is very similar to Sect. 6.2.2. We apply
the exponential linear-quadratic guess

ˆ D exp
˚
i
e��� Xt C i
.1 � e��� /Xt C C.�/�2

t C D.�/�t C E.�/
�

and arrive at the wanted system of ODEs:

dC.�/

d�
D �1

2
i
e��� � 2�C.�/ � 1

2

2e�2�� C 2�2C 2.�/ C 2��i
e��� C.�/

dD.�/

d�
D 2��C.�/ � �D.�/ C 2�2C.�/D.�/ C ��i
e��� D.�/

� �X�X
2e��� .1 � e��� / C 2�X���Xi
.1 � e��� /C.�/

dE.�/

d�
D ��D.�/ C �Xi
.1 � e��� / � 1

2
�2

X
2.1 � 2e��� C e�2�� / C �2C.�/

C 1

2
�2D2.�/ C �X� ��Xi
.1 � e��� /D.�/ , (6.33)

where �X� dt D dW �
t dW X

t . As in Sect. 4.2, this ODE system has to be solved with
numerical integration methods.

Of course, it is also possible to combine a mean-reverting stochastic equilibrium
level with Ornstein–Uhlenbeck stochastic volatility. The resulting ODE system has
also to be solved with Runge-Kutta integration. Since the adaption is very similar
to the ODE system already presented in this subsection, we omit the presentation
of the ODE system for both mean-reverting stochastic equilibrium level and OU
stochastic volatility in this place.
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6.3.2 Model Extensions with Jump Components

The incorporation of jump components as discussed in Chap. 5 in the framework of
this chapter leads also to ODE systems which have to be solved with the Runge-
Kutta algorithm. The jump components affect the ODE of the function which is
associated with none of the state variables, i.e. the function corresponding with
constants.15

For lognormally distributed jumps in the price process, one has to incorporate
the term

�X exp

�

i
e���

�

ln.1 C �J / � 1

2
�2

J

�

� 1

2

2e�2�� �2

J

�

� �X . (6.34)

In case of exponentially or �-distributed jumps in the variance process, the term
(5.18) (respectively the jump term in (5.20)) is added to the ODE of the appropriate
function. Independent jumps in both the price and variance process can be incorpo-
rated by adding both terms to the ODE. Correlated jumps in the price and variance
process can be considered by adding (5.27) (respectively by adding the jump term in
(5.29) when considering �-distributed variance jumps). Note that in case of jumps in
the price process, one has also to bear in mind the drift term correction as discussed
in Chap. 5.

Finally, we consider lognormally distributed jumps in the subordinated process of
the equilibrium level. Not surprisingly, the jump term which is added to the constant
function ODE is similar to (6.34) and reads

�X expfi
.1 � e��� /

�

ln.1 C �X
J / � 1

2
.�X

J /2

�

� 1

2

2.1 � 2e��� C e�2�� /.�X

J /2g � �X , (6.35)

where �X is the intensity of the equilibrium level jump process and the jump in X is
normally distributed with parameters ln

�
1 C �X

J

� � 0:5.�X
J /2 and .�X

J /2.

15 This is the function C.�/ in Sect. 6.1.2, D.�/ in Sect. 6.2.2 and E.�/ in Sect. 6.3.1.



Chapter 7
Deterministic Seasonality Effects

Seasonality in price movements and volatility is an important difference between
certain commodity classes and standard financial assets. Especially for agricultural
commodities, one observes a repeating cyclical pattern of decreasing prices at the
harvesting period and after the harvest and a peak in prices a few months before
the harvest. Empirically, one can observe the seasonality in the term structure of
futures prices for agricultural goods such as wheat or soybeans. While agricultural
and animal products do show a seasonality effect, other groups of commodities such
as metals or other raw materials do not.1 Furthermore, electricity futures prices
share both a mean reverting and a seasonal property, due to the cyclical behavior
of consumption which is mainly driven by the seasonal evolution of temperatures.2

The case of soybeans is investigated by Richter and Sørensen (2002), who
model the soybean price process with subordinated stochastic volatility and con-
venience yield processes. They incorporate seasonality in the convenience yield
process. The price process is not mean-reverting and the seasonality effect makes an
indirect impact on prices through the convenience yield process and through a sea-
sonal impact of volatility. Richter and Sørensen provide an empirical survey with a
parameter estimation based on soybean futures and options on futures prices.

A similar model setup can be found in Sørensen (2002), who incorporates the
seasonality effect directly in the price process. The log-price process is additionally
composed of a Black and Scholes SDE, the deterministic seasonality component
and a third component which is driven by a zero mean Ornstein–Uhlenbeck process.
Sørensen provides an empirical analysis based on corn, wheat and soybean futures
prices.

A direct implementation of a deterministic seasonality component can also be
found in Lucia and Schwartz (2002), who examine the seasonal behavior of electric-
ity futures in the Nord Pool power exchange.3 They model the log-price basically as

1 See Fama and French (1987) for an empirical evidence of this finding. Seasonality in agricultural
commodity futures is consistent with studies by Chatrath et al. (2002) and Adrangi and Chatrath
(2003).
2 See e.g. Lucia and Schwartz (2002).
3 Nord Pool is the power exchange of the Nordic power market, including Denmark, Finland,
Norway and Sweden.
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a sum of a constant level parameter, a deterministic seasonal component and a zero
mean Ornstein–Uhlenbeck process.

7.1 Seasonality in the Log-Price Process

In the following, we incorporate a deterministic seasonal component directly in the
log-price process. Our approach follows Richter and Sørensen (2002) and Sørensen
(2002) as for the specification of the seasonal component, though their models can-
not be recovered within the framework of this section, since they either implement
the seasonal component in the subordinated process (see Sect. 7.2) or in the log-price
process, but without mean-reversion of the underlying.

We specify the log-price process as

dXt D .SX
t C �fX � Xtg � 1

2
Vt / dt C

p
Vt dW X

t , (7.1)

where SX
t is the deterministic seasonal component defined by

SX
t D ƒX

1 cos
�
2	t

�C ƒX
2 sin

�
2	t

�
. (7.2)

Hence, the increment of Xt is additionally determined by a seasonal component
which has the form of a sinusoidal curve subject to calendar time t which repeats its
cycle each year. The seasonal increment will be negative after and positive before
the harvesting period. The sign and the ratio of ƒX

1 and ƒX
2 determine the dis-

placement of the curve on the time-abscissa, while the absolute value of the two
parameters determines the amplitude of the curve, i.e. the overall impact of the
seasonal component.4

The impact of a seasonal component is demonstrated in Figs. 7.1 and 7.2. In
Fig. 7.1, the density evolution of a price process governed by (7.1) and (7.2) is dis-
played. The parameter values are set to ƒX

1 D ƒX
2 D 0:5, S D 80, S D 85,

� D 1,
p

V D 0:2. The darker the color of the graph, the higher is the density. The
corresponding density values are shown on the bar on the right.

One observes firstly the seasonal component, which leads to a cyclical pattern of
the density, and secondly the diffusion component, which leads to increasing uncer-
tainty with proceeding time. At least in the first months, the shape of the distribution
is clearly flattened by the diffusion component. After round about one year, the
shape of the curve remains more or less constant (apart from seasonal fluctuation)
since the diffusion is compensated by the mean reversion.

4 If both values are positive, a ratio ƒX
1 =ƒX

2 	 0 refers to a sinus curve, while a ratio of 1 refers
to a phase shift of 0:25 	 , for example. The phase shift is important to match the sinus curve with
the date of the harvesting period within the year.
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Fig. 7.1 Density evolution of a price process with seasonal component

Fig. 7.2 A trajectory with seasonality in the log-price process
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In Fig. 7.2, we demonstrate the impact of seasonality on one trajectory with both
constant and square-root stochastic volatility. The trajectory has been generated with
a strong scheme of order 1. The deterministic component consists of the drift term
in (7.1) which incorporates seasonality and mean reversion. The parameter settings
are ƒX

1 D ƒX
2 D 0:5, S D 80, S D 85, � D 1, � D 0:2,

p
V D 0:2, � D 1,

� D �0:5, � D 0:05. In the stochastic volatility case, the deviations from the cycle
around the long-run mean are larger since the variance process is driven to the mean
� D 0:05 which lies above the initial value Vt D 0:04 (which is also the value of
Vt in the constant volatility case). The displacement of the sinus curve could refer
to the situation that the actual date lies a few months after the harvesting period,
since the deterministic component has its seasonal minimum at t � 0:8; 1:8; 2:8,
etc. (t denotes calendar time in years).

7.1.1 Constant Volatility

When we suppose constant volatility, the process is fully described by (7.1) and
(7.2). The FPDE depends on terms containing Xt and on terms with constant
parameters. The usual guess is exponential affine and takes therefore the form
ˆ.t; Xt / D expfi
A.�/Xt C B.�/g. The boundary conditions are A.0/ D 1 and
B.0/ D 0. The function B.�/ fulfills the ODE

dB.�/

d�
D
�

ƒX
1 cos

�
2	.T � �/

�C ƒX
2 sin

�
2	.T � �/

�C �X � 1

2
Vt

�

i
e���

� 1

2
Vt 


2e�2�� , (7.3)

and A.�/ D e��� as in the previous model settings. The solution for (7.3) with
respect to the boundary condition is given by

B.�/ D
�

X � Vt

2�

�
	
i
 � l.�/


 � Vt

4�

�


2 C Œl.�/�2
�

C i


�2 C 4	2

�

ƒX
1

�

�

�

cos
�
2	T

� � e��� cos
�
2	.T � �/

�
�

C 2	
�
sin
�
2	T

�

�e��� sin
�
2	.T � �/

���C ƒX
2

�

2	

�

e��� cos
�
2	.T � �/

� � cos
�
2	T

�
�

C�

�

sin
�
2	T

�� e��� sin
�
2	.T � �/

�
���

, (7.4)

where l.�/ is an auxiliary function defined by

l.�/ D i
e��� .
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Typically, option prices are calculated for the actual date, i.e. t D 0. Using � D T �t

and setting t D 0, (7.4) simplifies to

B.�/ D
�

X � Vt

2�

�
	
i
 � l.�/


 � Vt

4�

�


2 C Œl.�/�2
�

C i


�2 C 4	2

�

ƒX
1

�

�
�
cos
�
2	�

� � e���
�C 2	 sin

�
2	�

�
�

C ƒX
2

�

2	
�
e��� � cos

�
2	�

��C � sin
�
2	�

�
��

. (7.5)

Hence, assuming an Ornstein–Uhlenbeck process with a seasonal increment for the
log-price without subordinated process leads to an analytic solution for the charac-
teristic function which is straightforward and fast to compute. Option and futures
prices are recovered within a fraction of a second. In fact, the incorporation of
a deterministic seasonal increment in the log-price process still enables the same
solution methods as without seasonal component, as we will see in the following.

7.1.2 Square-Root Stochastic Volatility

Now consider a log-price process specified by (7.1) and (7.2) with a subordinated
square-root stochastic volatility process as defined in (4.1). The exponential affine
guess is ˆ.t; Xt ; Vt / D expfi
A.�/Xt CB.�/Vt CC.�/g with boundary conditions
A.0/ D 1, B.0/ D 0 and C.0/ D 0 as in Sect. 4.1. The solution for the first function
is again A.�/ D e��� , while the solution for B.�/ is given by (4.11) (respectively
(4.13) or (4.15), depending on the parameter settings). The seasonal component
affects the ODE for C.�/ which is now given by

dC.�/

d�
D
�

�X C ƒX
1 cos

�
2	.T � �/

�C ƒX
2 sin

�
2	.T � �/

�
�

i
e��� C ��B.�/ .

(7.6)

The general case solution for (7.6) under the constraint that t D 0 is

C.�/ D X
	
i
 � l.�/


C 	
c.�/ � c.0/


 �
�

��

��

�

1 � �
p

�2 � 1

��

� 2��

�2

� ln

�CM.a; b; c.�/
�

�
/ C U.a; b; c.�/

�

�
/

CM.a; b; c.0/
�

�
/ C U.a; b; c.0/

�

�
/

�

C i


�2 C 4	2

�

ƒX
1

�

�
�
cos
�
2	�

�

� e���
�C 2	 sin

�
2	�

�
�

C ƒX
2

�

2	
�
e��� � cos

�
2	�

��C � sin
�
2	�

�
��

,

(7.7)
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Fig. 7.3 Histogram, density function and confidence interval for the OU model with seasonality
component in the price process and square-root stochastic volatility

with the auxiliary function c.�/ and the constants a, b and C as defined in Appendix
section “Solution for B and C in the Square-Root Stochastic Volatility Framework
with Imperfectly Correlated Brownian Motions” in Chap. 4.5 Since the solutions for
the special cases which are discussed in case 2 of sections “Case 2: �=� is a Positive
Integer” as well as in “Solution for B and C in the Square-Root Stochastic Volatility
Framework with Perfectly Correlated Brownian Motions” in Appendix of Chap. 4
are analogous, we omit their presentation in this place.

Comparison with the Monte-Carlo Solution

The results of a MC simulation are displayed in Fig. 7.3. The parameter values are
set to S D 80; S D 85; � D 1; T � t D 0:5; � D 0:2;

p
V D 0:2; � D 1,

� D �0:5; � D 0:05, ƒX
1 D ƒX

2 D 0:5. This parameter setting refers to the special
case 1 solution which is not explicitly presented in this section.6 One observes that
the distribution is shifted to the right, but a moderate seasonality effect changes the

5 The parameter conditions for the general case are � ¤ ˙1 and .�=�/ … N (see Sect. 4.1.2 and
Appendix section “Solution for B and C in the Square-Root Stochastic Volatility Framework with
Imperfectly Correlated Brownian Motions” in Chap. 4).
6 The MC solution for the corresponding square-root stochastic volatility model without seasonal-
ity effect in Appendix of Chap. 4 refers also to the special case 1 solution.
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shape of the distribution only slightly. The distribution is somewhat closer to normal
with a skewness of �0:049 and a kurtosis of 3:131.

7.1.3 Other Model Extensions

The incorporation of a seasonal component in the log-price process together with
other model extensions such as Ornstein–Uhlenbeck stochastic volatility or jump
effects as discussed in Chap. 5 is easily achieved by adapting the corresponding
ODE and solving the ODE system with a Runge-Kutta algorithm. The necessary
adaption is done e.g. as in (4.7) and (7.6) by adding the seasonal component to the
term �X as follows:

�X ! �X C ƒX
1 cos

�
2	.T � �/

�C ƒX
2 sin

�
2	.T � �/

�
.

Since the structure of the solution is largely identical, we omit the presentation of
MC simulations for these model extensions. The distribution is shifted upwards or
downwards depending on the seasonality component, but as long as these variations
account only for a fraction of the price process, the shape of the distribution is only
slightly changed.

7.2 Seasonal Impact of Volatility

7.2.1 Seasonal Variance According to Richter and Sørensen

An example for the modeling of a seasonal volatility effect is given in Richter and
Sørensen (2002). Their model setting is identical to ours except for the mean rever-
sion in the drift term. An empirical evidence of this topic is given in Crain and Lee
(1996), who report a seasonal volatility effect in wheat spot and futures markets.

The underlying log-price process is modeled as follows:

dXt D
�

�fX � Xtg � 1

2
exp

˚
2SV

t

�
Vt

�

dt C exp
˚
SV

t

�p
Vt dW X

t , (7.8)

where the seasonal component is of the same form as in the previous section.

SV
t D ƒV

1 cos
�
2	t

�C ƒV
2 sin

�
2	t

�
(7.9)

The seasonal component in (7.9) enters the log-price process via an exponential
function which ensures that the impact of volatility is always positive. The volatility
parameter itself may be deterministic or stochastic.
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In this model setting, there is no closed-form solution available, not even in the
simple case of deterministic volatility. If we assume that the model is fully described
by (7.8) and (7.9), volatility is deterministic and the exponential affine guess for
the characteristic function is ˆ.t; Xt / D expfi
A.�/Xt C B.�/g with boundary
conditions A.0/ D 1 and B.0/ D 0. The solution for the first function is again
A.�/ D e��� , while the ODE for the second function is

dB.�/

d�
D �Xi
e��� � 1

2
expf2SV

t gVt i
e��� � 1

2
expf2SV

t gVt

2e�2�� . (7.10)

Since there is no closed-form solution available for (7.10), one has to solve the ODE
system with Runge-Kutta-methods. Of course, this is also possible for more sophis-
ticated model settings, e.g. with square-root stochastic volatility.7 One can extend
every model of Chaps. 4 and 5 by simply multiplying each volatility parameter with
factor expfSV

t g (or equivalently, each variance parameter with factor expf2SV
t g) in

the ODEs and then solving the system with Runge-Kutta algorithms.

7.2.2 Modeling of Seasonality in the Variance Process

An alternative approach of a seasonal impact of volatility is a direct implementation
of a seasonal component in the variance process. By this means, we are able to
provide an analytic solution in case of deterministic volatility. To the best of our
knowledge, the discussion of this model setup is new in this work. The shape of
the variance function is different to the approach of Richter and Sørensen, since
the exponential function in (7.8) leads to large peaks, while the setting in (7.12)
describes a sinus curve with equal upward and downward movement.

The evolution of the price process is again given by

dXt D
�

�fX � Xtg � 1

2
Vt

�

dt C
p

Vt dW X
t , (7.11)

with subordinated deterministic variance

dVt D �
�
�Œ1 C SV

t � � Vt

�
dt . (7.12)

The seasonality component is defined by (7.9). The parameters ƒV
1 and ƒV

2 are
restricted to ƒV

1 2 .�1I 1/, ƒV
2 2 .�1I 1/ and jƒV

1 j C jƒV
2 j � 1, which assures that

SV
t � �1 and therefore, that Vt is always nonnegative. The FPDE for this setting is

@ˆ

@t
C
�

�fX � Xtg � 1

2
Vt

�
@ˆ

@X
C �

�
�Œ1 C SV

t � � Vt

� @ˆ

@V
C 1

2
Vt

@2ˆ

@X2
D 0 .

(7.13)

7 Richter and Sørensen (2002) implement square-root stochastic volatility, for example.
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An exponential affine guess of the form

ˆ.t; Xt ; Vt / D expfi
A.�/Xt C B.�/Vt C C.�/g

leads to the following ODEs (remember that A.�/ D e��� ):

dB.�/

d�
D �1

2
i
e��� C 1

2
.i
/2e�2�� � �B.�/

dC.�/

d�
D �Xi
e��� C ��Œ1 C SV

t �B.�/ . (7.14)

The general solution for the first ODE is

B.�/ D De��� C e���

Z
e��

�

�1

2
i
e��� C 1

2
.i
/2e�2��

�

d� , (7.15)

where D is the integration constant which is defined by the boundary condition
B.0/ D 0. The solutions for the two ODEs depends on the adjustment speed
parameters � and �.

General Case Solution

Under the constraints that � ¤ �, � ¤ 2� and t D 0, the solutions for the ODEs in
(7.14) are given by

B.�/ D a

��

�

e��� � e���

�

C b

��

�

e�2�� � e���

�

(7.16)

and

C.�/ D i
X
	
1 � e���


C a
	1

�

�
e��� � 1

�� 1

�

�
e��� � 1

�
C b
	1

�

�
e��� � 1

�

� 1

2�

�
e�2�� � 1

�
C ƒV
1 a
	
sf� m.�/ C 2	 sin.2	�/g � uf2	 sin.2	�/

C � n.�/g
C ƒV
1 b
	
wf2�

�
cos.2	�/ � e�2��

�C 2	 sin.2	�/g
� sf2	 sin.2	�/ C �m.�/g
C ƒV

2 a
	
sf� sin.2	�/ � 2	m.�/g

C uf2	n.�/ � � sin.2	�/g
C ƒV
2 b
	
wf2	

�
e�2�� � cos.2	�/

�

C 2� sin.2	�/g C sf2	m.�/ � � sin.2	�/g
, (7.17)

with the auxiliary functions

m.�/ D cos.2	�/ � e���

n.�/ D cos.2	�/ � e���
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and constants with integration parameter 


a D �� i


2.� � �/
b D � ��
2

2� � 4�
,

and without 


s D 1

�2 C 4	2
u D 1

�2 C 4	2
w D 1

4�2 C 4	2
.

Special Case 1: � D �

In this special case, we substitute the parameter �. The solution for B.�/ with respect
to the boundary condition simplifies to

B.�/ D e���

�

2

2�

�
e��� � 1

� � 1

2
i
�

�

. (7.18)

The solution for the second ODE under the constraint that t D 0 is given by

C.�/ D i
X
	
1 � e���


C � i


4�

	�
e��� � 1

��
2 � 2i


�C i

�
e�2�� � 1

�

C 2��e���
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2
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C ƒV
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2 s �
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C ƒV
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C 1

2
ƒV

1 s �� i

	
��e���

� s
˚
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2
ƒV
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s
˚
4�	m.�/

� �
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�
sin.2	�/
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, (7.19)

where

c D � �
2

4�2 C 4	2
.

Special Case 2: 2� D �

The substitution 2� D � in (7.15) leads to the special case 2 solution for B.�/:

B.�/ D i


2�
e���

�

2 C i
�� � 2 exp
˚1

2
��
�
�

. (7.20)
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Again, we present the solution for C.�/ under the constraint that t D 0:

C.�/ D i
X


1 � e� 1

2 ��
�

C i
�

2�

h�
2 C i


��
1 � e���

� � e��� i
��

C4


e�1

2 �� � 1
�i
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2
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.�2 � 4	2/

�

m.�/� 1

2
i
��e���
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�
1

�
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�
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CƒV
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�

i
	�e��� �2	

�
1
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m.�/

� sin.2	�/

�

1 C 1

2
s i
.�2 � 4	2/

��

C ƒV
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h
2�
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e� 1

2 �� � cos.2	�/
�
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i

C ƒV
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h
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�
cos.2	�/ � e� 1

2 ��
� � 2� sin.2	�/

i
, (7.21)

where

d D i
�

�2 C 16	2
.

As in the previous section, the characteristic function for deterministic volatility,
defined by (7.16) and (7.17), provides a computation of option and futures prices
within a fraction of a second. We tested the accuracy of our solutions in (7.16)
and (7.17) as well as the special cases (7.18)–(7.21) by performing Runge-Kutta
calculations of the ODE system in (7.14), which leads to virtually identical results.

Model Extensions

The combination of seasonality in the log-price process according to (7.1) and (7.2)
and seasonal deterministic volatility according to (7.9) and (7.12) is also possible
and leads to a closed-form solution for the characteristic function. The system of
ODEs is given by

dB.�/

d�
D �1

2
i
e��� C 1

2
.i
/2e�2�� � �B.�/

dC.�/

d�
D 	

�X C SX
t



i
e��� C ��

	
1 C SV

t



B.�/ , (7.22)

which is very similar to (7.14). The solution for B.�/ is unchanged and in the gen-
eral case with � ¤ �, � ¤ 2� and t D 0 given by (7.16) (respectively by (7.18)
or (7.20) for the two special cases). The solution for C.�/ under the constraint that
t D 0 corresponds to (7.17) (respectively to (7.19) or (7.21) for the special cases)
with an additional term which is given by

u i
 ƒX
1

	
�n.�/ C 2	 sin.2	�/


C u i
 ƒX
2

	
� sin.2	�/ � 2	n.�/



. (7.23)



126 7 Deterministic Seasonality Effects

Model extensions with stochastic volatility or jump features are possible, but
always require the computation of the characteristic function with Runge-Kutta-
methods. The incorporation of seasonal volatility in the models of Chaps. 4 and 5
can be done by changing the mean reversion level � of the variance (respectively
volatility) process to �Œ1 C SV

t � in the corresponding ODEs.



Chapter 8
Conclusion

In this thesis, we discussed and extended existing pricing models for derivatives
on mean-reverting assets. The pricing formulas are based on the Fourier inversion
approach of Heston (1993), whereas the specification of the underlying price process
traces back to the incomplete market setup in Ross (1997) and model 1 in Schwartz
(1997).

In Chap. 2, we discussed the sources and empirical evidence of mean reversion in
asset prices. As sources of mean reversion, we identified convenience yield effects
and negative correlation between prices and risk premia as well as interest rates. We
shortly addressed convenience yield models as a second alternative to achieve mean
reversion in prices through an additional subordinated process. Compared with the
modeling of mean reversion by an OU price process, convenience yield models
show less stringent mean reversion unless the (log-) price is directly included in the
convenience yield process. The fact that the model manages with less parameters
could be an advantage of OU price processes compared with convenience yield
models. Furthermore, the convenience yield is not an observable economic variable,
which makes it difficult to judge whether the model setup matches the empirical
facts or not.

Various studies revealed that mean reversion mainly is a feature of commodity
futures and spot prices and is at most weakly supported in financial asset markets.
The Samuelson hypothesis, which postulates that futures prices are less volatile
with increasing time to maturity, and the Kaldor-Working hypothesis, which pos-
tulates that the convenience yield depends inversely upon the level of inventories,
both are empirical facts which are an implication of mean reversion. Therefore,
these hypotheses accompany the existence of mean reversion and are supported in
commodity markets and rejected in financial asset markets.

The design of the foundations of derivative pricing in Chap. 3 was twofold: In
the first part, we showed the setup in a world with complete markets and subse-
quently demonstrated analogously the pricing of derivatives in incomplete markets.
Following Ross (1997), we assumed that the drift of the price process under the
risk-neutral measure is mean-reverting and therefore not equal to the risk-free inter-
est rate, which would be the case when markets are complete. We presented the
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128 8 Conclusion

Fourier inversion approach of Heston (1993) for the pricing of European options.
We also showed how the characteristic function can be useful for the specification
of derivative prices. The Fourier inversion approach supports a rich spectrum of
process specifications and is not restricted to Gaussian densities.

The second part of Chap. 3 focused on various numerical methods to integrate the
Fourier integral and systems of ordinary differential equations. We discussed vari-
ous algorithms to integrate the Fourier integral in option pricing formulas. For the
evaluation of a single option price, we suggested to apply a Gauss-Laguerre quadra-
ture scheme. Since the integration nodes of this algorithm are not equidistant, the
algorithm achieves moderate to high accuracy with only a few nodes per integral.1

The fact that the density of the nodes weakens with the integration parameter 


while the computation time per node increases with 
 is an additional advantage
regarding computation time.

When multiple option prices over the whole spectrum of strike prices are required,
it is convenient to apply Fast Fourier algorithms. We presented the Fast Fourier algo-
rithm which was introduced in finance by Carr and Madan (1999). This algorithm
has the deficiency that the distance of the nodes over the 
-axis and the strike axis
cannot be chosen independently. As a result of this fact, increasing the accuracy
leads to the calculation of option prices which are not needed because of unrealistic
strikes. This deficiency can be remedied with the application of the Fractional Fast
Fourier algorithm of Bailey and Swartztrauber (1991), which was adopted in finance
by Chourdakis (2004).

As for the integration of ODE systems, we argued that the choice of the correct
solver depends on the stiffness of the ODE system. Following Ekeland et al. (1998)
and Huang and Yu (2007), we chose the eigenvalues of the Jacobi matrix as indicator
of stiffness. Stiffness is supported by a negative real part of one or more eigenvalues.
The larger the absolute value of the negative real part, the higher the stiffness of the
ODE system. Our tests revealed that the ODE systems of our model setups prove
to be nonstiff or at most moderately stiff. Hence, one should choose ODE solvers
for nonstiff systems, namely the ode45 or the ode113 Matlab� algorithm. While
ode45 is based on the Dormand and Prince (1980) pair of embedded Runge-Kutta
formulae, ode113 is an Adams-Bashforth-Moulton predictor-corrector scheme. The
predictor-corrector scheme proved to be superior with respect to computation time.
It is worth noting that this solver also needs Runge-Kutta calculations at the start of
the integration to initialize.

In Chaps. 4–7, we discussed various model setups for the pricing of commod-
ity derivatives. We began with the incorporation of stochastic volatility in Chap. 4,
therefore extending the models of Ross (1997) and Schwartz (1997). We compared
our findings with a similar attempt of Tahani (2004). We were able to show that
the model setup of Tahani fails to provide realistic option prices for reasonable
parameter values, particularly the linear homogeneity property of option prices is
not fulfilled. Due to an uncoupling of the mean reversion and the equilibrium level

1 Depending on the desired accuracy, 15–40 nodes are sufficient.
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parameter, we were able to remedy the deficiencies of the Tahani model. Further-
more, we provided closed-form solutions for the square-root stochastic volatility
case, following Repplinger (2008). The solutions are given in terms of Kummer
functions for the general case and the special case 1, respectively Bessel functions
for the special case 2 which is determined by � D ˙1. Following Tahani (2004) and
Zhu (2000), we also incorporated Ornstein–Uhlenbeck stochastic volatility. In this
model setup, the guess for the characteristic function is exponential linear-quadratic.
A closed-form solution is only possible for the help functions A.�/ and B.�/, but not
for the other two help functions. Hence, the solution for the characteristic function
with OU stochastic volatility is given by numerical integration algorithms.

In the appendix of the chapter, we also compared the computation time of the
standard numerical integration algorithm ode45 with the closed-form solution in
terms of hypergeometric functions. This comparison is only possible for model
setups which incorporate square-root stochastic volatility and no jumps, i.e., the
models in Sects. 4.1.2 (square-root stochastic volatility), 6.2.2 (square-root stochas-
tic volatility and stochastic non-mean-reverting equilibrium level) and the second
paragraph in 7.1 (square-root stochastic volatility with seasonality effects). We com-
pared the computation time of ode45 with the hypergeometric function solution
of the former model. Apart from a special case, the solution is given in terms of
Kummer functions.2 Concerning computation time, the numerical algorithm ode45
proved to be approximately six times faster compared to Kummer functions.

In Chap. 5, we addressed the incorporation of jump components in the square-
root stochastic volatility framework. We followed Bates (1996a, 1996b, 2000),
Duffie, Pan and Singleton (2000) and Kispert (2005) as for the specification of the
jump elements. We incorporated lognormally distributed jumps in the price process,
exponentially and �-distributed jumps in the variance process and combinations of
price and variance jumps. Due to the use of numerical ODE integration schemes, we
are able to provide solutions for combinations of jumps with both mean reversion
in the price process and stochastic volatility. We extended the results of the above-
mentioned papers, since the authors only arranged mean reversion with jumps or
non-mean-reverting price processes with stochastic volatility and jumps.

Mean-reverting price processes reduce the uncertainty about future price distri-
butions, since every shock in the price process will be removed in the long run.
In Chap. 6, we assumed the long-run equilibrium level of the price process to be
stochastic, which is equivalent to the assumption of shocks in the price process
which persist. We discussed two setups for the subordinated stochastic equilibrium
level process: (a) an Ornstein–Uhlenbeck process and (b) Brownian motion with
drift. We compared our model setups with similar specifications in Schwartz and
Smith (2000) and Realdon (2007). We also addressed extensions of the stochastic
equilibrium level setup with stochastic volatility and jumps. For the non-mean-
reverting subordinated process together with square-root stochastic volatility, we

2 The special case is determined by � D ˙1. The solution for this special case is given in terms of
Bessel functions. The calculation with Bessel functions is much faster than numerical integration.
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were able to derive a closed-form solution based on hypergeometric functions
similar to the square-root stochastic volatility case in Chap. 4.

Chapter 7 dealt with seasonality effects both in the price and the variance
process. We firstly mentioned that seasonality effects are only important in mar-
kets with cyclical behavior, e.g., in electricity markets due to seasonal weather
changes and agricultural commodity markets due to harvest cycles. Subsequently,
we implemented a seasonal component according to Richter and Sørensen (2002)
and Sørensen (2002) in a mean-reverting log-price process. The implementation of
the seasonal term did not change the shape of the distribution of ST intensely, it is
mainly shifted upwards or downwards according to the seasonal cycle. We discussed
this model setup both with constant volatility and square-root stochastic volatil-
ity. Since the deterministic seasonal component did not change the structure of the
solution, we were able to provide closed-form solutions for both specifications of
volatility.

Subsequently, we addressed the modeling of seasonal components in the variance
process. We firstly followed Richter and Sørensen and implemented the seasonality
effect by means of an exponential function to ensure that variance remains positive.
However, a closed-form solution for this model setup is not possible, not even in the
simplest case of deterministic volatility. Hence, we applied numerical integration
methods to provide the solution for the characteristic function. We further suggested
another alternative to achieve seasonality in the variance process. This variance pro-
cess is also ensured to be nonnegative, but forgoes the use of exponential functions.3

Due to this slightly simpler model setup, we were able to provide closed-form solu-
tions both for the deterministic and the square-root stochastic volatility case. We
also outlined the extensions of the model setups in the previous chapters (i.e., OU
stochastic volatility, different jump components, stochastic equilibrium level) with
deterministic seasonality effects.

Finally, we want to address some further aspects which are left for future
research. Firstly, the empirical testing of the performance of the discussed models
would be an interesting topic. Generally speaking, the incorporation of stochastic
volatility and jump components should lead to a better empirical model perfor-
mance. It should be expected that the stochastic equilibrium level models in Chap. 6
perform better for crude oil derivatives than standard OU models. On the other hand,
the implementation of too much factors bears the risk of model overspecification.

There are also some further model extensions possible. Firstly, the assumption of
deterministic interest rates can be suspended. Models with different specifications
of stochastic interest rates can be found in Zhu (2000) as well as DPS (2000),
among others.4 Another possible extension accounts for the empirical fact that
there exist periods in which large price moves occur with high frequency, followed

3 The shape of this seasonal variance component is sinusoidal, whereas the setup of Richter and
Sørensen leads to a peaked seasonal component due to the exponential function.
4 Zhu (2000) addresses not only a square-root process, but also an OU and a double square-root
process as subordinated interest rate process.
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by other periods of low price variations. Models with a stochastic jump intensity
can capture this pattern. This model feature is already discussed in Fang (2002)
and Kangro, Pärna and Sepp (2004) for non-mean-reverting assets. Geman and
Roncoroni (2006) incorporate a deterministic jump intensity process in the context
of the pricing of electricity derivatives.
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