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Preface

Almost all design problems in engineering can be considered as optimization
problems and thus require optimization techniques to solve. However, as most
real-world problems are highly nonlinear, traditional optimization methods usually
do not work well. The current trend is to use evolutionary algorithms and meta-
heuristic optimization methods to tackle such nonlinear optimization problems.
Metaheuristic algorithms have gained huge popularity in recent years. These
metaheuristic algorithms include genetic algorithms, particle swarm optimization,
bat algorithm, cuckoo search, differential evolution, firefly algorithm, harmony
search, flower pollination algorithm, ant colony optimization, bee algorithms, and
many others. The popularity of nature-inspired metaheuristic algorithms can be
attributed to their good characteristics because these algorithms are simple, flexible,
efficient, and adaptable, and yet easy to implement. Such advantages make them
versatile to deal with a wide range of optimization problems without much a priori
knowledge about the problem to be solved.

Metaheuristic algorithms play an important role in the optimum design of
complex engineering problems when analytical approaches and traditional methods
are not effective for solving nonlinear design problems in civil engineering.
Generally speaking, these design problems are highly nonlinear with complex
constraints, and thus are also highly multimodal. These design constraints often
come from design requirements and security measures such as the stresses on the
members due to external loading, environmental factors, and usability under service
loads. A mathematical solution may be the best approach in an ideal world, but in
engineering designs, the values of a design variable such as mass or length must be
realistic; for example, quantities must be nonnegative. In addition, such design
values must correspond to something that can be manufacturable in practice.

For all engineering disciplines, optimization is crucially important in the design
process so as to find a good balance between economy and security that are the
primary goals of designs. Aesthetics and practicability are also important in
real-world applications. Civil engineering is probably the oldest engineering dis-
cipline and it has always been linked to the construction and realization of
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civilization. In fact, optimization may be more relevant in civil engineering than in
other engineering disciplines. For example, in designing a non-critical machine part
in mechanical engineering, the stresses on the part must not exceed certain limits. If
a stronger part is used, it may become too expensive. On the other hand, a weaker
part may still be able to make the machine work properly, but in time such weak
parts can be worn off or damaged. However, such parts may be easy to be replaced
at low costs. If this is the case, machine serviceability can be maintained in practice.
But in civil engineering, structural integrity and safety may impose stringent
restrictions on the structural members that may not be easily replaced. In such cases,
all design constraints and the best possible balance between security and economy
must be found without risking lives. In addition, sometimes, the minor improve-
ment may not be as important as robustness in applications. A robust design should
be able to handle uncertainties in terms of material properties, manufacturing tol-
erance, and load irregularity in service. Due to complexity and a large number of
design constraints in civil engineering, traditional methods often struggle to cope
with such high nonlinearity and multimodality. Thus, metaheuristic optimization
methods have become important tools in the optimum design in civil engineering.

This edited book strives to summarize the latest developments in optimization
and metaheuristic algorithms with emphasis on applications in civil engineering.
Topics include the overview of meteaheuristic algorithms and optimization,
structural optimization by flower pollination algorithm, steel design by swarm
intelligence, optimum seismic design of steel frames by bat algorithm, 3D truss
optimization by genetic algorithms, reactive power optimization by cuckoo search,
structural design by harmony search, asphalt pavement management, reinforced
concrete beam design, transport infrastructure planning, water distribution net-
works, capacitated vehicle routing, slope stability problems, and others. Therefore,
this timely book can serve as an ideal reference for graduates, lecturers, engineers,
and researchers in civil engineering, mechanical engineering, transport and
geotechnical engineering. It can also serve as a timely reference for relevant uni-
versity courses in all disciplines in civil engineering.

We would like to thank the editors and staff at Springer for their help and
professionalism. Last but not least, we thank our families for their help and support.

June 2015 Xin-She Yang
Gebrail Bekdaş

Sinan Melih Nigdeli
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Review and Applications of Metaheuristic
Algorithms in Civil Engineering

Xin-She Yang, Gebrail Bekdaş and Sinan Melih Nigdeli

Abstract Many design optimization problems in civil engineering are highly
nonlinear and can be challenging to solve using traditional methods. In many cases,
metaheurisitc algorithms can be an effective alternative and thus suitable in civil
engineering applications. In this chapter, metaheuristic algorithms in civil engi-
neering problems are briefly presented and recent applications are discussed. Two
case studies such as the optimization of tuned mass dampers and cost optimization
of reinforced concrete beams are analyzed.

Keywords Metaheuristic algorithms � Civil engineering � Optimization

1 Introduction

Metaheuristic algorithms play a great role in the optimum design of complex
engineering problems when analytical approaches and traditional methods are not
effective for solving nonlinear design problems in civil engineering. Generally
speaking, these design problems are highly nonlinear with complex constraints, and
thus are also highly multimodal. These design constraints often come from design
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requirements and security measures such as stresses on the members due to external
loading, environmental factors, and usability under service loads. In addition to the
design constraints, solution ranges for the design variables must be defined.
A mathematical solution may be the best approach in an ideal world, but in
engineering design, if a variable is a mass or a length, the value of the design
variable must be realistic, for example, it cannot be negative. In addition, the design
values must correspond to something that can be manufacturable in practice.

For all engineering disciplines, optimization is needed in the design in order to
find a good balance between economy and security which are the primary goals of
designs and engineers should not ignore any of these two goals. Esthetics and
practicability are the other important goals which are also important in many
specific design problems. Thus, these goals should also be considered in addition to
the primary goals, if needed.

Civil engineering is the oldest engineering discipline and it has been linked to
one of humanity’s most important needs—the construction and realization of civ-
ilization. In fact, optimization may be more relevant in civil engineering than in
other engineering disciplines. For example, in designing a machine part in
mechanical engineering, the stresses on the part must not exceed the security
measures. If we produce a stronger part, it will be too expensive. If the part is not
strong enough, it can serve, but in time, the part can be damaged. In that case, this
part may be replaced with a new one and serviceability of the machine can still be
sustained. This process is normal for mechanical engineering designs, but we
cannot replace a structural member easily in civil engineering. Also, in civil
engineering, big and complex systems are investigated. In that case, we need to
consider all design constraints and the best balance between security and economy
must be found without risking lives. Due to various design constraints, mathe-
matical optimization may not be effective in civil engineering. Thus, metaheuristic
methods are important in the optimum design of civil engineering.

In this chapter, metaheuristic algorithms used in civil engineering will be pre-
sented with some literature reviews. In addition, two optimization case studies in
applications will be presented in detail. These examples include the optimization of
reinforced concrete beams and tuned dampers for the reduction of vibrations.

2 Metaheuristic Algorithms

In engineering, an optimum design problem can be written in mathematical form as

Minimize fi xð Þ; x 2 Rn; ði ¼ 1; 2; . . .NÞ ð1Þ

2 X.-S. Yang et al.



subject to

hj xð Þ; j ¼ 1; 2; . . .; Jð Þ; ð2Þ

gk xð Þ� 0; k ¼ 1; 2; . . .;Kð Þ ð3Þ

where

x ¼ x1; x2; . . .; xnð ÞT ; i ¼ 1; 2; . . .; nð Þ ð4Þ

is the design vector containing design variables. The objective functions (fi (x)),
design constraints about equalities (hj (x)), and inequalities (gi (x)) are the function
of the design vector (x). In an optimization process using metaheuristic algorithms,
design variables are randomly assigned and then, the objective functions and design
constraints are calculated. Design constraints are generally considered by using a
penalized objective function. If a particular set of values of design variables is not
suitable for a design constraint, the objective function, which needs to be mini-
mized, should be increased with some penalty.

The set of design variables, or the design vector, is generated several times (or
the number of population) and stored as a matrix containing possible solutions. This
is the initial part of the algorithm and the process is similar for all metaheuristic
algorithms. After this initial process, the aim is to try to improve the results based
on the special principles of the algorithm of interest. These principles are different
for each metaheuristic algorithm and are often inspired by or related to a biological
or natural process. Metaheuristic algorithms inspired from observations of a process
usually provide a set of updating equations that can be used to update the existing
design variables during iteration.

In this section, several metaheuristic algorithms are summarized and the relevant
literature studies concerning these algorithms are also discussed.

2.1 Genetic Algorithm

Genetic algorithm (GA) is one of the oldest metaheuristic algorithms. It is based on
Charles Darwin’s theory of natural selection. The properties include the crossover
and recombination, mutation and selection by Holland [1]. The procedure of GA
can be summarized in the following seven steps:
Step 1 The optimization objective is encoded.
Step 2 A fitness function or criterion for selection of an individual is defined.
Step 3 A population of individuals is initialized.
Step 4 The fitness function is evaluated for all individuals.
Step 5 A new population is generated using the rules of natural selection. These

rules are crossover, mutation, and proportionate reproduction.
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Step 6 The population is evolved until a defined stopping criterion is met.
Step 7 The results are decoded so as to obtain the solutions to the design problem.

The application of GA in civil and structural engineering dates back to 1986,
when Goldberg and Samtoni used GA for the optimum design of a 10-bar truss
system [2]. Until now, GA and its variants have been successfully employed in
optimization of structural engineering problems [3]. Recent applications are
structural system identification [4], design of long-span bridges [5], topology
optimization of steel space-frame roof structures [6], truss topology optimization
[7], and many others. Transportation engineering is also a major application area of
GA. Recently, several approaches to urban traffic flow [8], traffic signal coordi-
nation problem [9], emergency logistic scheduling [10], and calibration of rail
transit assignment models are proposed [11].

2.2 Simulated Annealing

Annealing is a process in materials science. In the annealing process, a metal is
heated so that its structure can rearrange during slow cooling so as to increase the
ductility and strength of the metal. During such controlled cooling, atoms arrange
into a low energy state (crystallized state). If the cooling process is quick, a
polycrystalline state occurs which is corresponding to a local minimum energy. In
the simulated annealing (SA) algorithm, Kirkpatrick et al. [12] and Cerny [13] used
the annealing process as an inspiration.

SA has been used to solve many optimization problems in civil engineering and
the recent applications are as follows. Costa et al. employed SA for planning
high-speed rail systems [14]. Tong et al. used an improved SA in optimum
placement of sensors [15]. A genetic SA algorithm is employed in the collapse
optimization for domes under seismic excitation [16]. Server systems were
designed with an SA-based procedure by Karovic and Mays [17]. SA was also used
in thermal building optimization by Junghans and Darde [18].

2.3 Ant Colony Optimization

Ants live in a colony and the population of their colony is between 2 and 25
millions. They can lay scent chemicals or pheromone as a means to communicate.
Each ant follows pheromone trails, and when exploring the sounding, more pher-
omone will be laid from/to the food source. Their behavior can form some
emerging characteristics and the ant colony optimization algorithm was developed
by Marco Dorigo in 1992 [19].

4 X.-S. Yang et al.



Ant colony optimization (ACO) has also been applied for several structural
engineering problems [3]. Researchers continue to study new applications of civil
engineering problems by employing ACO. Recently, multi-compartment vehicle
routing problem [20], traffic engineering problems [21], determination problem of
noncircular critical slip surface in slope stability analysis [22], and multiobjective
structural optimization problems [23] were solved by ACO.

2.4 Particle Swarm Optimization

In 1995, Kennedy and Ebarhart [24] developed particle swarm optimization
(PSO) which imitates the behavior of social swarms such as ant colonies, bees, and
bird flocks. PSO is a population-based metaheuristic algorithm. In a swarm, particles
are randomly generated and new solutions are updated in an iterative manner. The
solution particles tend to move toward the current best location, while they move to
new locations. Since all particles tend to be the current best solution, the effec-
tiveness of population-based algorithm can be easily recognized if the best solution
is an approach to the true global optimality. Compared to GA, PSO uses real-number
strings and encoding or decoding of the parameters into binary strings is not needed.

Swarm intelligence applications of structural design [25] and several civil
engineering applications [26] were recently presented. Most recent applications are
the design of tall buildings [27], size optimization of trusses [28], slope stability
analyzing [29], and water distribution systems [30].

2.5 Harmony Search

Harmony search (HS) algorithm is a music-based metaheuristic algorithm. It was
developed by Geem et al. [31] after observation of a musician’s performance.
Musicians search the best harmony by playing harmonic music pieces. Similarly,
the objective function of an engineering problem can be considered as a harmony.
In a musical performance, the musician plays notes and may modify these notes
when needed. The new notes may be similar to a favorite note or a new song. The
major application of HS in civil engineering was presented by Yoo et al. [32] and
others.

2.6 Firefly Algorithm

The flashing characteristic of fireflies has inspired a new metaheuristic algorithm.
Yang [33] developed the firefly algorithm (FA) using the special rules of fireflies.
These rules are given as below.

Review and Applications of Metaheuristic Algorithms … 5



• All fireflies are unisex. Thus, a firefly will be attracted to other fireflies.
• The brightness is related to attractiveness. In that case, the less bright firefly will

move toward the brighter one. Attractiveness and brightness will decrease when
the distance increases. If there is no brighter one, the firefly will move randomly.

• The landscape of the optimization objective affects and determines the bright-
ness of individuals.

In order to improve the robustness of FA, chaotic maps were included in FA by
Gandomi et al. [34]. Since FA is a multimodal algorithm [35], it is suitable for
structural optimization [36]. FA has been employed in structural engineering
designs such as tower structures [37], continuously cost steel slabs [38], and truss
structures [39]. Liu et al. developed a new path planning method using FA in
transportation engineering [40].

2.7 Cuckoo Search

Yang and Deb [41] developed Cuckoo Search (CS) by idealizing the features of
brood parasitism of some cuckoo species as three rules. The first rule is the process
in which each cuckoo lays an egg and dumps it in a randomly chosen nest. For the
search rule, the best nest with high quality eggs will be carried over the next
generations. The number of host nests is fixed. The eggs of a cuckoo may be
discovered by the host bird with a probability between 0 and 1 for the last rule.

In structural optimization, CS has been employed in several problems [42]. Also,
CS-based design methodologies have been developed for the optimum design of
steel frames [43] and truss structures [44]. Ouaarab et al. proposed CS algorithm for
the travelling salesman problem [45].

2.8 Bat Algorithm

Yang [46] also developed the bat algorithm (BA) by idealizing the echolocation
behavior of microbats. Bats fly with varying frequencies, loudness, and pulse
emission rates, which can be used to design updating equations of the bat algorithm.
This population-based metaheuristic algorithm has been applied to structural opti-
mization problems by Yang and Gandomi [47]. Gandomi et al. investigated con-
strained problems in structural engineering [48]. Gholizadeh and Shahrezaei
investigated the optimum placement of steel plate shear walls for steel structures
and employed BA in their optimization method [49]. The BA-based method was
developed by Kaveh and Zakian [50] for the optimum design of structures.

6 X.-S. Yang et al.



Talatahari and Kaveh used an improved BA in optimum design of trusses [51].
Bekdaş et al. optimized reinforced concrete beams by employing BA [52]. Zhou
et al. used a hybrid BA with Path Relinking in order to solve capacitated vehicle
routing problem [53]. The operations of reservoir systems were optimized by a
developed methodology using BA [54].

2.9 Recent Metaheuristic Algorithms

Big bang big crunch (BB-BC) algorithm is a metaheuristic algorithm inspired by
the evolution of the universe and developed by Erol and Eksin [55]. In civil
engineering, BB-BC algorithm has been employed for truss structures [56–59],
steel frame structures [60], parameter estimation of structures [61], and retaining
walls [62].

In 2010, Kaveh and Talatahai introduced the Charged System Search (CSS), a
metaheuristic algorithm inspired from electrostatic and Newtonian mechanic laws
[63]. Recently, CSS has been applied for civil engineering problems such as
damage detection in skeletal structures [64], cost optimization of castellated beams
[65], optimum design of engineering structures [66, 67], tuned mass dampers [68],
and semi-active tuned mass dampers [69].

Krill herd (KH) algorithm is also a metaheuristic algorithm used for structural
engineering problems. [70].

Refraction of lights is also used in generation of a metaheuristic algorithm called
ray optimization [71]. Kaveh and Khayatazad employed ray optimization for size
and shape optimization of truss structures [72]. In transportation engineering
Esmaeili et al. used ray optimization in designing granular layers for railway tracks
[73].

Also, a newly developed metaheuristic algorithm called flower pollination
algorithm is very suitable for engineering problems [74]. This algorithm is pre-
sented in a chapter of this book with the topic engineering applications.

3 Optimum Design Examples

In this section, two civil engineering design problems are presented and the results
were obtained using metaheuristic methods. In the first example, HS is employed in
a multiobjective tuned mass damper methodology. For the second example, BA and
HS-based reinforced concrete beam optimum design methodologies are given.
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3.1 Example 1: A Multiobjective Optimization of Tuned
Mass Dampers for Structures Excited by Earthquakes

Tuned mass damper (TMD), which consists of a mass connected to mechanical
system with stiffness and damping elements, has passive vibration absorbers. These
devices may be used for damping of vibrations of mechanical systems under ran-
dom excitations. The performance of the device is dependent on the properties of
TMD.

The possible first study on the optimum design of TMDs was proposed by Den
Hartog for undamped single degree of freedom (SDOF) main systems [75]. The
expressions proposed by Den Hartog for harmonic excitations are still used in
practice, including the multiple degrees of freedom structures because Warburton
and Ayorinde showed that the structure may be taken as an equivalent SDOF
system if the natural frequencies are well separated [76]. For harmonic and random
excitations, Warburton derived simple expressions for frequency and damping ratio
of TMDs [77].

The simple expressions cannot be derived when damping is included in the main
system. Thus, Sadek et al. conducted numerical trials and obtained several
expressions using a curve fitting technique. Also, a modification for the expressions
was proposed for multiple degrees of freedom (MDOF) structures [78]. Rana and
Soong employed numerical optimization for tuned mass dampers in control of a
single structural mode and proposed multi-tuned mass dampers for possible control
of multiple modes [79]. Chang obtained closed-form expressions for TMDs under
wind and earthquake excitations [80]. By investigating the displacement and
acceleration response spectra of structures, an extended random decrement method
was proposed in the reduction of vibration responses [81]. Alternatively,
semi-active magnetorheological (MR) dampers were employed in the design of
TMDs by Aldemir [82]. In order to reduce the performance index value, Lee et al.
developed a numerical optimization approach for TMDs [83]. Bakre and Jangid
proposed mathematical expressions for TMD optimization using numerical sear-
ches [84].

Metaheuristic methods have been also used in optimization of TMDs positioned
on structures. The metaheuristic methods used in these optimization problems were
GA [85–89], PSO [90, 91], bionic optimization [92], HS [93–96], ACO [97],
artificial bee optimization [98], shuffled complex evolution [99], and CSS [68].

A shear building with a TMD is physically modeled in Fig. 1. The number of
stories of the structure is N. The equations of motion of the structure can be written
as

M x
::ðtÞþC _xðtÞþKxðtÞ ¼ �M 1f g xg:: ðtÞ ð5Þ
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in matrix form for ground acceleration excitations. The M, C, and K matrices are
diagonal lumped mass, damping, and stiffness matrices, respectively, and these
matrices are given in Eqs. (6)–(8). The x(t), xg

:: ðtÞ and {1} are the vectors containing
structural displacements of all stories and TMD (Eq. (9)), ground acceleration in
horizontal direction and a vector of ones with a dimension of (N + 1, 1),
respectively.

Fig. 1 Physical model of
N-story shear building
including a TMD
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M ¼ diag m1m2. . .mNmd½ � ð6Þ

C ¼

ðc1 þ c2Þ �c2
�c2 ðc2 þ c3Þ �c3

: :
: : :

: : :
�cN ðcN þ cdÞ �cd

�cd cd

2
666666664

3
777777775

ð7Þ

K ¼

ðk1 þ k2Þ �k2
�k2 ðk2 þ k3Þ �k3

: :
: : :

: : :
�kN ðkN þ kdÞ �kd

�kd kd

2
666666664

3
777777775

ð8Þ

x tð Þ ¼ x1 x2 . . . xN xd½ �T ð9Þ

In the equations, mi, ci, ki and xi are mass, damping coefficient, stiffness coefficient,
and displacement of ith story of structure. The parameters of the TMD are shown
with mass (md), damping coefficient (cd) and stiffness coefficient (kd). The dis-
placement of the TMD is xd. The period (Td) and damping ratio (ξd) of TMD are
shown in Eqs. (10) and (11).

Td ¼ 2p
ffiffiffiffiffiffi
md

kd

r
ð10Þ

nd ¼ 2cdmd

ffiffiffiffiffiffi
kd
md

r
ð11Þ

The multiobjective optimization methodology contains two stages: initial cal-
culations and iterative optimization.

At the start of the methodology, optimization constants such as structural
properties, external excitations, and ranges of design variables are defined. Then the
structure is analyzed by solving the differential equation given as Eq. (5), where we
do not know the properties of TMD. These analyses are done for structure without
TMD and we need these analyses results in order to use in the objective function.
This equation must be solved using numerical iterative analyses because the
earthquake excitation has random characteristic and cannot be formulized.
A computer code must be developed for the analyses. For the last step of initial
calculations, we need to generate possible design variables in order to conduct the
iterative optimization. In HS, the initial Harmony Memory (HM) matrix containing

10 X.-S. Yang et al.



Harmony Vectors (HVs) is generated. The number of HVs is defined with an
optimization parameter called Harmony Memory Size (HMS). HVs contain design
variables such as mass (md), period (Td) and damping ratio (ξd). These design
variables are randomly defined. For all set of design variables (each HV), the
optimization objectives are calculated. An HM matrix with HVs from 1 to Harmony
Memory Size (HMS) and an HV containing the design variables are shown in
Eqs. (12) and (13), respectively.

HM = HV1 HV2 . . . HVHMS½ � ð12Þ

HV ¼
mdi

Tdi
ndi

2
4

3
5: ð13Þ

Such multiobjective optimization has two different objectives given in Eqs. (14)
and (15). The first objective is the reduction of maximum top story displacement of
the structure to a user defined value (xmax). If xmax is not a physical value for
reduction of displacement for the selected design variable ranges, this value is
increased after several iterations. The second objective is used in order to consider
the stroke capacity of the TMD, which is now essentially converted into a constraint

j xN j � xmax ð14Þ

max xN þ 1 � xNj j½ �with TMD

max xNj j½ �without TMD
� st max ð15Þ

The iterative optimization process starts with generation of a new HV. If the
solution of a new vector is better than existing ones in HM, HM is updated by
eliminating the worst one. Since the optimization process is multiobjective, the
objective given as Eq. (15) is used in elimination. If this objective function is lower
than st_max, the other function given in Eq. (14) is considered and the main
purpose of the optimization is to minimalize the displacement of the structure
without exceeding the stroke capacity. This iterative search is done using the rules
of HS and it is finished when the criteria given by two objectives are provided.

According to HS, a new HV is constructed in two ways. With a possibility called
Harmony Memory Considering Rate (HMCR), HV is generated by a smaller range
and this range is taken around an existing vector in HM. The ratio of the small and
whole range is defined with an algorithm parameter called pitch adjusting rate
(PAR). If an existing HV is not used as a source, random generation of design
variables is done as the generation of initial vectors.

A ten-story structure was optimized as a numerical example [87]. The mass,
stiffness coefficient and damping coefficient of a story is 360 t, 6.2 MNs/m, and
650 MN/m, respectively. In optimization, the best value for a structure excited
under 44 different earthquake excitations is searched. FEMA P-695 [100] far-fault
ground motion set was used and the details of the records of this set are given in
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Table 1. The earthquake records were downloaded from Pacific Earthquake
Research Centre (PEER) database [101]. In Table 2, the ranges for the design
variables and optimum TMD parameters are shown. The st_max was taken as 1 and
xmax was taken as zero in order to find a solution minimizing the displacement.

The maximum displacement, total acceleration values, and the scaled maximum
TMD displacement (xd′) are given in Table 3 for all excitations. The most critical

Table 1 FEMA P-695 far-field ground motion records [100]

Earthquake
number

Date Name Component 1 Component 2

1 1994 Northridge NORTHR/MUL009 NORTHR/MUL279

2 1994 Northridge NORTHR/LOS000 NORTHR/LOS270

3 1999 Duzce, Turkey DUZCE/BOL000 DUZCE/BOL090

4 1999 Hector Mine HECTOR/HEC000 HECTOR/HEC090

5 1979 Imperial Valley IMPVALL/H-DLT262 IMPVALL/H-DLT352

6 1979 Imperial Valley IMPVALL/H-E11140 IMPVALL/H-E11230

7 1995 Kobe, Japan KOBE/NIS000 KOBE/NIS090

8 1995 Kobe, Japan KOBE/SHI000 KOBE/SHI090

9 1999 Kocaeli, Turkey KOCAELI/DZC180 KOCAELI/DZC270

10 1999 Kocaeli, Turkey KOCAELI/ARC000 KOCAELI/ARC090

11 1992 Landers LANDERS/YER270 LANDERS/YER360

12 1992 Landers LANDERS/CLW-LN LANDERS/CLW-TR

13 1989 Loma Prieta LOMAP/CAP000 LOMAP/CAP090

14 1989 Loma Prieta LOMAP/G03000 LOMAP/G03090

15 1990 Manjil, Iran MANJIL/ABBAR–L MANJIL/ABBAR–T

16 1987 Superstition
Hills

SUPERST/B-ICC000 SUPERST/B-ICC090

17 1987 Superstition
Hills

SUPERST/B-POE270 SUPERST/B-POE360

18 1992 Cape
Mendocino

CAPEMEND/RIO270 CAPEMEND/RIO360

19 1999 Chi-Chi, Taiwan CHICHI/CHY101-E CHICHI/CHY101-N

20 1999 Chi-Chi, Taiwan CHICHI/TCU045-E CHICHI/TCU045-N

21 1971 San Fernando SFERN/PEL090 SFERN/PEL180

22 1976 Friuli, Italy FRIULI/A-TMZ000 FRIULI/A-TMZ270

Table 2 The ranges of design variables and optimum values

Design variable Range definition Optimum values

Mass (t) Between 1 and 5 % total mass of structure 178.53

Period (s) Between 0.5 and 1.5 times of the critical
period of structure

0.9010

Damping ratio (%) Between 0.1 and 30 % 29.53
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Table 3 Maximum responses under FEMA P-695 far-field ground motion records

Earthquake
number

Component Max. (x) (m) Max. (x
:: þ xg

::
) (m/s2) xd′

Without
TMD

With
TMD

Without
TMD

With
TMD

1 1 0.37 0.30 15.80 11.01 0.94

2 0.31 0.30 12.99 10.95 1.11

2 1 0.13 0.11 6.33 5.09 0.76

2 0.22 0.18 9.21 7.22 0.95

3 1 0.26 0.19 12.79 9.81 0.87

2 0.41 0.32 19.29 14.32 0.97

4 1 0.11 0.14 5.04 5.52 1.34

2 0.13 0.14 5.46 5.27 1.16

5 1 0.11 0.07 5.33 3.23 0.71

2 0.19 0.12 7.90 4.99 0.74

6 1 0.08 0.07 4.58 4.42 1.10

2 0.07 0.09 4.41 5.15 1.14

7 1 0.11 0.10 5.91 4.93 0.93

2 0.10 0.09 5.12 4.95 0.90

8 1 0.10 0.13 5.00 5.39 1.31

2 0.08 0.08 3.27 3.09 1.20

9 1 0.15 0.14 8.44 7.25 0.96

2 0.22 0.20 9.81 9.77 1.06

10 1 0.04 0.04 2.07 2.01 1.05

2 0.04 0.03 1.99 1.60 0.94

11 1 0.18 0.14 7.42 5.12 0.86

2 0.11 0.10 5.00 3.91 0.93

12 1 0.08 0.06 6.03 4.29 0.81

2 0.14 0.12 6.14 5.42 0.95

13 1 0.15 0.16 8.95 6.84 1.11

2 0.09 0.09 5.01 5.21 1.14

14 1 0.11 0.08 6.68 6.25 0.76

2 0.12 0.13 6.08 5.90 1.08

15 1 0.12 0.10 6.06 5.21 0.89

2 0.18 0.16 9.95 7.72 0.88

16 1 0.08 0.13 5.53 5.72 1.49

2 0.08 0.09 3.35 2.82 1.05

17 1 0.12 0.11 5.11 4.82 1.16

2 0.14 0.09 6.21 4.55 0.76

18 1 0.18 0.17 8.52 7.95 1.08

2 0.14 0.13 7.70 6.76 1.05

19 1 0.16 0.13 7.67 5.69 0.99

2 0.35 0.24 13.83 10.30 0.71
(continued)
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excitation is the second component of the Duzce record. It must be noted that the
stroke objective is applied only for the critical excitation. For other excitations, the
scaled displacement value may exceed the limitation defined by st_max, but the real
displacement of TMD (xd) is always lower than the result for critical excitation.

The maximum displacement is reduced from 0.41 to 0.32 m for the critical
excitation and the top story displacement and acceleration for the critical excitation
are plotted in Fig. 2. Also, a steady-state response is observed from the plots.
According to the results, an optimum TMD solution is found and the reduction of
displacement and accelerations are excellent.

Table 3 (continued)

Earthquake
number

Component Max. (x) (m) Max. (x
:: þ xg

::
) (m/s2) xd′

Without
TMD

With
TMD

Without
TMD

With
TMD

20 1 0.11 0.08 6.65 5.38 0.76

2 0.15 0.13 7.17 6.75 1.06

21 1 0.09 0.07 4.51 3.86 0.99

2 0.06 0.04 2.81 1.83 0.68

22 1 0.08 0.07 5.38 4.42 0.99

2 0.10 0.09 5.27 4.82 1.02
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Fig. 2 The time history plots for critical excitation
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3.2 Example 2: Optimum Design of Reinforced Concrete
Beams

The design of reinforced concrete (RC) members is a challenging task in order to
maintain designs with minimum costs. In design of RC members, the experience of
the design engineers is important in the best design at minimum cost. The analyses
of RC members contain two stages: assume a cross-section and calculate the
required reinforcement. We need optimization since an assumption is needed and
also, the required reinforcement area cannot be exactly provided by using steel bars
in markets with constant/fixed sizes. Concrete and steel have different mechanical
behavior. Also, these materials differ in price. Generally, steel is expensive but we
need to use it for tensile stresses. By using numerical search, metaheuristic methods
such as genetic algorithm [102–106], charged system search [107], harmony search
[108, 109], simulated annealing [110], and big bang big crunch [111] have been
employed for optimization of RC members.

In this section, two metaheuristic algorithms are separately employed for opti-
mum designs of an RC beam subjected to flexural moment. In the optimum design,
the cross-section design and reinforcement design are done by considering the
number and size of reinforcements. The optimization objective is to estimate the
best design at minimum cost. The design procedures of ACI 318—Building Code
Requirements for Structural Concrete [112] have been carried out during the
optimization process.

Two algorithms have been used, harmony search (HS) and bat algorithm (BA).
First, design constants, the ranges of design variables, and the specific algorithm
parameters are defined. The parameters of HS are harmony memory size (HMS),
harmony memory considering rate (HMCR), and pitch adjusting rate (PAR). The
bat population (n), limits of the pulse frequency (fmin and fmax), the pulse rate (ri),
and loudness (Ai) are the parameters of BA.

In the HS approach, a randomization procedure is carried out in order to generate
an initial harmony memory matrix containing harmony vectors with possible design
variables. Similarly in the BA, displacement vectors are constructed and stored in a
matrix. The parameters representing the number of harmony and displacement
vectors are defined by HMS and n, respectively. After the generation of design
variables, the analyses of RC design are done and the flexural moment capacities
are compared with the required flexural moment. Also, steel reinforcements are
randomized and rules about the positioning are checked according to the ACI-318
design code. When the initial matrix is generated, the stopping criterion or criteria
are checked. If criterion or criteria are not satisfied, the possible solution matrix is
modified according to the rules of the algorithms.

As explained before, a new solution vector is modified by generating random
numbers from the whole solution range or a range defined around an existing one in
HS algorithm and the vector with the worst solution is eliminated from the harmony
memory matrix. Differently in the BA, all vectors of the solution matrix are
modified by using velocities calculated by random frequencies between fmin and
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fmax. The modified displacement vectors are accepted according to the criterion of
the pulse rate and loudness. If the pulse rate is smaller than a randomly drawn
number, displacement vectors are generated using the initial solution range.
Otherwise, the modified solution matrix is accepted. According to BA, the value of
the pulse rate is increased while the value of loudness is reduced.

As a numerical example, the optimum design of RC beams was investigated for
flexural moments between 50 and 500 kNm. The design variables are shown in
Fig. 3, which are breadth (bw), height (h), number (n1–n4), and size (ϕ1–ϕ4) of the
reinforcements positioned in two lines of compressive and tensile sections. The
design constants of the problem are shown in Table 4.

The optimization objective is to minimize the material cost of the beam per unit
meter. When the maximum difference in the cost of the best five designs is lower
than 2 %, the optimization process is terminated.

The optimum results of the design variables are presented in Tables 5 and 6 for
HS and BA-based methods, respectively. BA is more effective than the HS

h

bw

n1φ1

n2φ2

n3φ3

n4φ4

Fig. 3 Design variables of
RC beam

Table 4 Design constants of RC beam

Definition Symbol Unit Value

Range of the breadth bw mm 250–350

Range of the height H mm 350–500

Clear cover cc mm 35

Range of main reinforcement Φ mm 10–30

Diameter of stirrup ϕv mm 10

Max. aggregate diameter Dmax mm 16

Yield strength of steel fy MPa 420

Comp. strength of concrete f 0c MPa 20

Elasticity modulus of steel Es MPa 200,000

Specific gravity of steel γs t/m3 7.86

Specific gravity of concrete γc t/m3 2.5

Cost of the concrete per m3 Cc $ 40

Cost of the steel per ton Cs $ 400
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approach in minimizing the cost. According to results, doubly reinforcement design
is needed for flexural moments higher than 300 kNm.

4 Conclusion

There are many metaheuristic algorithms that can be effective to solve design
optimization problems in engineering. This chapter has reviewed some of the most
widely used metaheuristic algorithms in the current literature, which include genetic
algorithms, bat algorithm, harmony search, ant colony optimization, cuckoo search,
firefly algorithm, particle swarm optimization, simulated annealing, and others.
Two case studies were also presented with detailed formulations of the problem and
some promising results. All these can be thought as a timely snapshot of the vast,
expanding literature concerning design optimization in civil engineering. It is hoped
that this book may inspire more research in these areas.
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Application of the Flower Pollination
Algorithm in Structural Engineering

Sinan Melih Nigdeli, Gebrail Bekdaş and Xin-She Yang

Abstract In the design of a structural system, the optimum values of design
variables cannot be derived analytically. Structural engineering problems have
various design constraints concerning structural security measures and practicability
in production. Thus, optimization becomes an important part of the design process.
Recent studies suggested that metaheuristic methods using random search proce-
dures are effective for solving optimization problems in structural engineering. In
this chapter, the flower pollination algorithm (FPA) is presented for dealing with
structural engineering problems. The engineering problems are about pin-jointed
plane frames, truss systems, deflection minimization of I-beams, tubular columns,
and cantilever beams. The FPA inspired from the reproduction of flowers via
pollination is effective to find the best optimum results when compared to other
methods. In addition, the computing time is usually shorter and the optimum results
are also robust.
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1 Introduction

In solving optimization problems, traditional optimization methods such as
gradient-based methods may not be able to cope with high nonlinearity and mul-
timodality. Evolutionary algorithms and nature-inspired algorithms tend to produce
better results for highly nonlinear problems. Such nature-inspired metaheuristic
algorithms often imitate the successful nature of some biological, physical, or
chemical systems in nature. They often have several processes as numerical,
algorithmic steps in solving an optimization problem. Each metaheuristic algorithm
can have different inspiration from the nature and special rules according to the
process of the natural systems. Detailed information about several metaheuristic
algorithms can be found in the literature [1, 2]. Inspiration and pioneer papers of
several metaheuristic algorithms are given in Table 1.

In structural engineering, economy is one of the main goals of the design
engineering. The optimum design variables ensuring security measures and the
minimum cost cannot be found with linear equations. As the equations and system
behavior can be highly nonlinear, iterative numerical algorithms have been
employed to find a solution. Using metaheuristic algorithms, the global optimum
solution can be found more effectively.

In this chapter, the flower pollination algorithm (FPA) developed by Yang [16]
is presented. Several structural optimization problems were investigated using FPA
and the optimum results were compared with other optimization methods.

Table 1 Metaheuristic algorithms and inspirations

Algorithm Inspiration

Genetic algorithm [3, 4] Darwinian evolution in nature

Simulated annealing [5] Annealing process of materials

Ant colony optimization [6] Behavior of ants foraging

Bee algorithm [7] Behavior of bees

Particle swarm optimization [8] Swarming behavior of birds and fish

Tabu search [9] Human memory

Harmony search [10] Musical performance

Big bang big crunch [11] Evolution of the universe

Firefly algorithm [1] Flashing characteristic of fireflies

Cuckoo search [12] Brood parasitic behavior of cuckoo species

Charged system search [13] Electrostatic and Newtonian mechanic laws

Bat algorithm [14] Echolocation characteristic of microbats

Eagle strategy [15] Foraging behavior of eagles

Flower pollination [16] Pollination of flowering plants

Ray optimization [17] Refraction of light
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2 Flower Pollination Algorithm

In nature, the main purpose of the flowers is reproduction via pollination. Flower
pollination is related to the transfer of pollen, which is done by pollinators such as
insects, birds, bats, other animals or wind. Some flower types have special polli-
nators for successful pollination. The four rules of pollination have been formulated
based on the inspiration from flowering plants and they form the main updating
equations of the flower pollination algorithm [16].

1. Cross-pollination occurs from the pollen of a flower of different plants.
Pollinators obey the rules of a Lévy distribution by jumping or flying distant
steps. This is known as global pollination process.

2. Self-pollination occurs from the pollen of the same flower or other flowers of the
same plant. It is local pollination.

3. Flower constancy is the association of pollinators and flower types. It is an
enhancement of the flower pollination process.

4. Local pollination and global pollination are controlled by a probability between
0 and 1, and this probability is called as the switch probability.

In the real world, a plant has multiple flowers and the flower patches release a lot
of pollen gametes. For simplicity, it is assumed that each plant has one flower
producing a single pollen gamete. Due to this simplicity, a solution (xi) in the
present optimization problem is equal to a flower or a pollen gamete. For
multi-objective optimization problems, multiple pollen gametes can be considered.

In the flower pollination algorithm, there are two key steps involving global and
local pollination. In the global pollination step, the first and third rules are used
together to find the solution of the next step (xi

t+1) using the values from the
previous step (step t) defined as xi

t. Global pollination is formulized in Eq. (1).

xtþ 1
i ¼ xti þ L xti � g�� � ð1Þ

The subscript i represents the ith pollen (or flower) and Eq. (1) is applied for the
pollen of the flowers. g� is the current best solution. L is the strength of the
pollination, which is drawn from a Lévy distribution.

The second rule is used for local pollination with the third rule about flower
constancy. The new solution is generated with random walks as seen in Eq. (2).

xtþ 1
i ¼ xti þ e xtj � xtk

� �
ð2Þ

where xj
t and xk

t are solutions of different plants. ε is randomized between 0 and 1.
According to the fourth rule, a switch probability (p) is used in order to choose the
type of pollination which will control the optimization process in iterations.

The details of the optimization process can be seen in the pseudocode which is
given for the flower pollination algorithm.
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Objective minimize or maximize f(x), x=(x1, x2,…. xd)
Initialize a population of n flowers or pollen gametes with random numbers 
Find the best solution (g*) of the initial population
Define a switch probability (p) 
while (t<Number of iterations)
for i=1:n (n is the number of flowers or pollen in the population)

if rand<p
Global pollination using Eq.(1)

else
Local pollination using Eq.(2)

end if
Evaluate new solutions
Update the better solutions in the population

end for
Find the current best solution (g*)

end while

Flower pollination algorithm was first proposed for the optimization problems
with a single objective. Then, Yang et al. developed a multi-objective approach for
FPA [18].

3 Numerical Examples

In this chapter, six numerical examples are investigated using the FPA. They are
pin-jointed plane frame optimization, truss system optimization, vertical deflection
minimization of an I-beam, cost optimization of a tubular column, and weight
optimization of cantilever beams (two types of cantilever beams).

3.1 Pin-Jointed Plane Frame Optimization Problem

A pin-jointed plane frame with five members is given in Fig. 1. The system is
symmetrical and thus only half of the system with three members is optimized for
the minimum weight. Topology optimization is done to find the optimum values of
θ1 and θ2 angles shown in the figure. The system has a fixed base. This example
was originally given by Majid [19]. The vertical deflections of joints 1 and 2, used
in the design constraints, are defined as

D1 h1; h2ð Þj j �Max D; ð3Þ
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and

D2 h1; h2ð Þj j �Max D; ð4Þ

where θ1 and θ2 are searched within a range defined as minimum (θmin) and
maximum (θmax) limits.

The members have a constant cross-sectional area (A) and an elasticity modulus
(E). P1 and P2 loads are used in the system. The length between the supports is
defined as l.

The lengths of the members are defined in Eqs. (5)–(7) for members 1, 2, and 3,
respectively.

l1 ¼ l
2cosðh1Þ ð5Þ

l2 ¼ l
2cosðh2Þ ð6Þ

l3 ¼ l
2cosðh1Þcosðh2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 h1ð Þþ cos2 h2ð Þ � 2 cos h1ð Þ cos h2ð Þ2cosðh1 � h2Þ

p

ð7Þ

Since the members of the system have the same cross-sectional area, the total
length of the system can be taken as the optimization objective in order to minimize
the overall weight. The objective function is shown in Eq. (8).

Minimize f h1; h1ð Þ ¼
X3
i¼1

li ð8Þ

If Δ = (Δ1, Δ1)
t, KΔ = F where K is the stiffness matrix and F is the load vector.

Since K is equal to BTkB, these matrices are given in Eqs. (9) and (10).

k ¼
EA
l1

0 0
0 EA

l2
0

0 0 EA
l3

2
64

3
75 ð9Þ

Fig. 1 The optimized system [19]
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B ¼
sinðh1Þ 0

0 sinðh2Þ
1 �1

2
4

3
5 ð10Þ

Thus, the stability equation (KΔ = F) of the system can be written as

EA
sin2ðh1Þ

l1
þ 1

2l3
� 1

2l3

� 1
2l3

sin2ðh2Þ
l2

þ 1
2l3

" #
D1

D1

� �
¼

P1
2
P2
2

� �
ð11Þ

and Δ is then solved in the optimization process starting from random θ1 and θ2
values.

The optimization process has been carried out for the design constants given in
Table 2. The results of the flower pollination algorithm were compared with the
other methods employing GA [20] and CS [12].

The optimum results together with the results of other approaches are given in
Table 3. The table shows that the proposed method is effective to find better
solutions.

The numerical example is done by taking the switch probability as 0.5 and the
number of population as 5. The optimum solution is found at the 1609th iteration.
The convergence of the optimization is seen in the objective function versus iter-
ations as shown in the plot given in Fig. 2.

As seen in the optimum results, θ1 is nearly equal to θ2. Since the objective
function is the minimization of the total length, the length of the third member is
nearly zero. Thus, the method is effective to find the global optimum value.

Also, the optimization process is done for different cross-sectional areas and
force values. In all these cases, P2 is taken as half of P1. The optimum results of the

Table 2 Design constants of
numerical example

Max Δ 5 mm

θmin 0

θmax π/3 (rad)

A 100 mm2

E 200,000 MPa

P1 100 kN

P2 50 kN

L 1000 mm

Table 3 Optimum results of
the numerical example

Method θ1 (rad) θ2 (rad) F (θ1, θ2)

FPA 0.477634 0.477133 1125.87

GA 0.475784 0.472764 1125.98

CS 0.477459 0.477446 1125.92
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objective function for different cross-sectional areas and forces are given in Figs. 3
and 4, respectively. In Fig. 3, the upper limits of the angles were found as the
optima for small cross-sectional areas.

3.2 A Three-Bar Truss System Optimization Problem

A three-bar truss structure is given in Fig. 5. This problem was first presented in
Nowcki [21]. The objective function is about the minimization of the volume of the
truss structure and this function is given in Eq. (12).

Fig. 2 Objective function
versus iteration

Fig. 3 Optimum results for
different cross sections

Fig. 4 Optimum results for
different forces
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Minimize : f A1;A2ð Þ ¼ 2
ffiffiffi
2

p
A1 þA2

� �
l ð12Þ

The design variables are the cross-sectional areas of structural members. Since
the system is symmetric, only cross sections shown with A1 and A2 are optimized.
The optimization problem is carried out for stress constraints. These constraints are

g1 ¼
ffiffiffi
2

p
A1 þA2ffiffiffi

2
p

A2
1 þ 2A1A2

P� r� 0; ð13Þ

g2 ¼
A2ffiffiffi

2
p

A2
1 þ 2A1A2

P� r� 0; ð14Þ

g3 ¼
1

A1 þ
ffiffiffi
2

p
A2

P� r� 0: ð15Þ

The cross-sectional areas were searched for the ranges; 0 ≤ A1 ≤ 1 and
0 ≤ A2 ≤ 1. The length, the load, and the stress limit were taken as l = 100 cm;
P = 2 kN, and σ = 2 kN/cm2, respectively. The optimum results are summarized in
Table 4 together with the optimum results obtained by other optimization methods.

The result of Tsai [24] seems to be lower than the present results, but the result
of Tsai [24] is not acceptable because one of the design constraints (defined by g1)
is slightly violated in their study. Using the values of the design variables, the stress
on a bar does not obey the stress constraint and the security of the system is not
provided.

Fig. 5 Truss optimization
problem

Table 4 Optimization results

st_max Park et al.
[22]

Ray and
Saini [23]

Tsai
[24]

Yang and
Gandomi
[12]

Gandomi
et al. [14]

Present
study

A1 0.78879 0.79500 0.788 0.78863 0.78867 0.78853

A2 0.40794 0.39500 0.408 0.40838 0.40902 0.40866

fmin 263.8965 264.3000 263.68 263.8962 263.9716 263.8958
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3.3 Vertical Deflection Minimization Problem of an I-Beam

The FPA is also tested for the problem presented by Gold and Krishnamurty [25].
The optimization objective is to minimize the vertical deflection of an I-beam as
shown in Fig. 6.

The vertical deflection of an I-beam is depended to design load (P), length of the
beam (L), and modulus of elasticity which are taken as 600 kN, 200 cm, and
20000 kN/cm2, respectively. The load (Q) in the other direction is taken as 50 kN.

The deflection of a beam is defined by

f xð Þ ¼ PL3

48EI
ð16Þ

and the objective function of numerical example can be written as Eq. (17) when
the design constants and the moment of inertia (I) of the I-beam are defined in the
Eq. (16).

Minimize f b; h; tw; tf
� � ¼ 5000

twðh�2tf Þ3
12 þ bt3f

6 þ 2btf ðh�tf
2 Þ2

ð17Þ

According to the objective function given in Eq. (17), the design variables are h, b,
tw, and tf. The ranges of these variables are

10� h� 80;

10� b� 50;

0:9� tw � 5 and

0:9� tf � 5:

ð18Þ

The cross section of an I-beam must be <300 cm2 and the allowable bending stress
of the beam is 6 kN/cm2. In that case, the cross section and stress constraints can be
written as Eqs. (19) and (20):

g1 ¼ 2btw þ twðh� 2tf Þ� 300; ð19Þ

Fig. 6 I-beam problem
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g1 ¼
180000h

twðh� 2tf Þ3 þ 2btwð4t2f þ 3hðh� 2tf ÞÞ
þ 15000b

t3wðh� 2tf Þþ 2twb3
� 6: ð20Þ

The optimum result obtained by the flower pollination algorithm was compared
with the results by other methods such as the adaptive response surface method
(ARSM), improved ARSM [26], and cuckoo search [12]. The results are presented
in Table 5.

The optimum value of FPA has been obtained for 25 pollen agents and 5000
evaluations of design variables. With the increase in iterations, the algorithm stops
if further improvement for the optimum results cannot be obtained. In the actual
runs of the algorithm, the only improvement is the difference between the worst and
best results in this case.

Comparing to the results of CS, a minor improvement of the optimum results can
be seen, but in the engineering design, it is not very important. In addition to best
optimum results, the convergence and minimization of computational time are also
important for metaheuristic algorithms. Also, the same optimum results must be
obtained for various runs of the optimization process. For a population of 25 pollens
and for a fixed number of 5000 evaluations, the same results were obtained for
every run. For 3000 evaluations, the best optimum results are generally found. Even
to increase the number of evaluations to 15000, the maximum and minimum
objective functions are generally the same. This shows the stability and robustness
of the algorithm.

3.4 Cost Optimization of Tubular Column Under
Compressive Load

The tubular column is shown in Fig. 7 [27]. The tubular column is axially loaded
with a load (P), and the upper and the lower bounds of the columns are supported
from hinged bearings. The design constants of the optimization are shown in
Table 6.

The types of constraint about compressive and buckling are important for the
column. The compressive stress of the column must be lower than the yield stress of
the tubular column. This constraint is given as Eq. (21).

Table 5 Optimum results for
I-beam example

CS ARSM Improved
ARSM

Present
study

h 80.00 80.00 79.99 80.00

b 50.00 37.05 48.42 50.00

tw 0.9 1.71 0.9 0.9

tf 2.3216715 2.31 2.40 2.3217922

Fmin 0.0130747 0.0157 0.131 0.0130741
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g1 ¼
P

pdtry
� 1� 0 ð21Þ

The axial load must be lower than the buckling load of the column defined as the
Euler buckling load:

Pkr ¼ p2EI
l2

ð22Þ

where I is the moment of inertia of the tubular column section. When Eq. (22) is
modified for the column section, g2; the constraint is formed as given in Eq. (23):

g2 ¼
8PL2

p3Edtðd2 þ t2Þ � 1� 0: ð23Þ

The objective function is to minimize

Fig. 7 Tubular column and
A-A cross-section

Table 6 Design constants of
the tubular column

Symbol Definition Value

P Axial force 2500 kgf

σy Yield stress 500 kgf/cm2

E Modulus of elasticity 0.85x106 kgf/cm2

ρ Density 0.0025 kgf/cm3

L Length of column 250 cm
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f d; tð Þ ¼ 9:8dtþ 2d; ð24Þ

which is the sum of the material and construction costs of the tubular column.
The ranges of the design variables found in objective function can also be given

as constraints. In this example, the diameter (d) of the column must be between 2
and 14 cm, while the thickness (t) of the column is a variable between 0.2 and
0.8 cm. These ranges are formulized as the following constraints:

g3 ¼
2:0
d

� 1� 0 ð25Þ

g4 ¼
d
14

� 1� 0 ð26Þ

g5 ¼ 0:2
t

� 1� 0 ð27Þ

g6 ¼
t
0:8

� 1� 0 ð28Þ

The optimization is done for 25 pollens and 200 iterations. The total running
time of the optimization algorithm is <0.1 s. The statistical results of the opti-
mization results are shown in Table 7. Nearly the best and the worst results are
equal to each other.

The results are compared with the results by other methods and are summarized
in Table 8. The FPA-based approach is more effective than the other methods. In
addition, the convergence of the algorithm is very effective.

Table 7 Statistical results of optimization of tubular column example

No. pollen No. evals. Best Average Worst St. deviation

25 5000 26.4994969 26.499497 26.4994974 1.699 x 10−7

Table 8 Optimum results for tubular column example

Hsu and Liu [27] Rao [28] CS [12] Present study

d 5.4507 5.44 5.45139 5.451160

t 0.292 0.293 0.29196 0.291965

g1 −3.45 × 10−5 −0.8579 0.0241 9.4343 × 10−7

g2 1.32 × 10−4 0.0026 −0.1095 −4.249 × 10−7

g3 −0.6331 −0.8571 −0.6331 −0.6331

g4 −0.6107 0 −0.6106 −0.6106

g5 −0.3151 −0.7500 −0.3150 −0.3150

g6 −0.6350 0 −0.6351 −0.6350

Fmin 26.4991 26.5323 26.53217 26.49948
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3.5 Weight Optimization of Cantilever Beams

Two types of cantilever beams are optimized using FPA. In the first example,
(Fig. 8) a beam with square section is investigated. Also, the inner part of the
section is empty. The second example (Fig. 9) beam has a rectangular cross section.

3.5.1 Weight Optimization of Cantilever Beams (Example 1)

The example given by Fleury and Braibant [29] is optimized by using FPA. The
cantilever beam is shown in Fig. 8. The beam is rigidly supported from one end and
the other end is free. A vertical load is applied from the free end of the beam. The
cantilever beam is optimized for an objective function

Minimize f Xð Þ ¼ 0:0624 x1 þ x2 þ x3 þ x4 þ x5ð Þ ð29Þ

subject to

g Xð Þ ¼ 61
x31

þ 37
x32

þ 19
x33

þ 7
x34

þ 1
x35

� 1� 0: ð30Þ

Fig. 8 The cantilever beam (Example 1)

Fig. 9 The cantilever beam (Example 2)
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The beam is divided into five steps with different cross sections. The thickness
(t) is taken as 2/3, and it is fixed for each step of the cantilever beam. For all design
variables from 1 to 5 (j = 1− 5), the following ranges

0:01� xj � 100 ð31Þ

are also taken into consideration.
The optimum results were compared with the results by CS [12] and other

methods [30] as shown in Table 9.
The objective function is the same for all methods because the sensitivity of the

results of the other methods is not known. Comparing to CS, it is possible to find
the optimum results with 25 pollens and 300 search iterations while CS is per-
formed for 50 cuckoos and 2500 search iterations.

3.5.2 Cantilever Beam Optimization (Example 2)

The cantilever beam shown in Fig. 9 contains ten design variables. This example
was originally given by Thanedar and Vanderplaats [31]. The cross section of the
beam is rectangular. The first five design variables are the width (x1–x5) of the
cantilever beam. The height of the beam (x6–x10) is the other variable. The opti-
mization objective is given below.

Minimize V ¼
X5
i¼1

xixiþ 5li ð32Þ

The length of a step (li) is fixed and 100 cm in value. The optimization is done
considering 11 constraints formulized as

g1 ¼
600P
x5x210

� 14;000� 0 ð33Þ

Table 9 The optimum results of cantilever beam (Example 1)

Methods x1 x2 x3 x4 x5 Fmin

MMA 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400

GCA(I) 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400

GCA(II) 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400

CS 6.0089 5.3049 4.5023 3.5077 2.1504 1.33999

Present study 6.0202 5.3082 4.5042 3.4856 2.1557 1.33997

CONLIN CONvex LINearization, MMA method of moving asymptotes, GCA generalized convex
approximation
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g2 ¼
6Pðls þ l4Þ

x4x29
� 14;000� 0 ð34Þ

g3 ¼
6Pðls þ l4 þ l3Þ

x3x28
� 14;000� 0 ð35Þ

g4 ¼
6Pðls þ l4 þ l3 þ l2Þ

x2x27
� 14;000� 0 ð36Þ

g5 ¼
6Pðls þ l4 þ l3 þ l2 þ l1Þ

x1x26
� 14;000� 0 ð37Þ

g6 ¼
Pl3

3E
1
Is
þ 7

I4
þ 19

I3
þ 37

I2
þ 61

I1

	 

� 2:7� 0 ð38Þ

g7 ¼
x10
x5

� 20� 0 ð39Þ

g8 ¼
x9
x4

� 20� 0 ð40Þ

g9 ¼
x8
x3

� 20� 0 ð41Þ

g10 ¼
x7
x2

� 20� 0 ð42Þ

g11 ¼
x6
x1

� 20� 0 ð43Þ

The solution range ares

1� xi � 5 for i ¼ 1 to 5 ð44Þ

and

30� xi � 65 for i ¼ 1 to 5 ð45Þ

In addition, P = 50,000 kN and E = 2 × 107 N/cm2. The optimum results are
presented in Table 10. The FPA algorithm is effective to find the minimum
objective function value of the numerical example.
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4 Conclusion

From the extensive discussions in this chapter, it can be concluded that the FPA is
an effective and suitable algorithm for solving structural engineering problems. It is
also easy to implement.

For the pin-jointed plane frame optimization problem, the best optimum results
have been obtained by FPA comparing to GA [20] and CS [12]. In addition, the
problem has been solved for different loads. As the load increases, the objective
function (total length of bars) also increases.

The optimization results of three-bar truss system by the FPA have also been
compared with the results by CS [12], bat algorithm [14], and several other methods
[22–24]. The results of FPA are slightly better than the results of other methods
without exceeding the design constraints.

For the third example, the vertical deflection of an I-beam has been minimized.
An important reduction of the existing best results is not provided, but similar
results were obtained with a slight improvement using FPA. The major advantage is
the shorter computation time and the robustness of the method because the optimum
results were obtained for a much lower number of function evaluations than that in
CS [13].

The tubular column design under a compressive load is a major structural
engineering problem. The results for this example have been compared with the
results by CS [12] and several other approaches. The results obtained by FPA are
more effective than others.

The last examples are about two types of cantilever beams and the weight
optimization of structural elements has been carried out. Comparing with other

Table 10 The optimum results of cantilever beam (Example 2)

Thanedar and
Vanderplaats
[31]

Lamberti and
Pappalettere
[32]

Huang
and
Arora
[33]

BA [14] Present
study

x1 3.06 – – 2.99204 2.98211

x2 2.81 – – 2.77756 2.77002

x3 2.52 – – 2.52359 2.51546

x4 2.2 – – 2.20455 2.19861

x5 1.75 – – 1.74977 1.74722

x6 61.16 – – 59.84087 59.94777

x7 56.24 – – 55.55126 55.6512

x8 50.47 – – 50.4718 50.58328

x9 44.09 – – 44.09106 44.17907

x10 35.03 – – 34.99537 35.02744

Best
objective

63110 65352.2 63108.7 61914.9 61849.9
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methods, the improvement of the result is not physically meaningful for the first
cantilever beam example; however, the results are obtained after a much lower
number of iterations comparing with those in CS [12]. For the second cantilever
beam example with 10 variables and 11 constraints, FPA is very effective and has
obtained much better results.

All the above confirm that FPA is a feasible algorithm for optimization in
structural engineering by providing better designs with less computing time and
improving the robustness of finding the best optimum values. The effectiveness of
FPA can be attributed to the fact that it is a good combination of local search
(self-pollination) and global search (cross-pollinations). It can be expected that FPA
can be used to solve many other optimization problems.
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Use of Swarm Intelligence in Structural
Steel Design Optimization

Mehmet Polat Saka, Serdar Carbas, Ibrahim Aydogdu
and Alper Akin

Abstract In this chapter, the optimum design problem of steel space frames is
formulated according to the provisions of LRFD-AISC (Load and Resistance Factor
Design-American Institute of Steel Corporation). The weight of the steel frame is
taken as the objective function to be minimized. The design optimization problem
necessitates selection of steel sections for the members of the steel frame from the
available steel profiles lists. This turns the design optimization problem into discrete
programming problem. Obtaining the optimum solution of such programming
problems is cumbersome with mathematical programming techniques. On the other
hand with the use of recently developed metaheuristic techniques that are based on
swarm intelligence, the solution of the same problem becomes straightforward. Five
different structural optimization algorithms are developed which are based on ant
colony optimization, particle swarm optimizer, artificial bee colony algorithm,
firefly algorithm, and cuckoo search algorithm, respectively. Two real size steel
space frames; one rigidly connected and the other pin jointed are designed using
each of these algorithms. The optimum designs obtained by these techniques are
compared and performance of each version is evaluated. It is noticed that most of
swarm intelligence-based algorithms are simple and robust techniques that deter-
mine the optimum solution of structural design optimization problems efficiently
without requiring much of a mathematical struggle.
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1 Introduction

Competitiveness of today’s economy and diminishing of world’s limited resources
are forcing structural designers to come up with structures that require just sufficient
material to be built, while its response to external loads is within design code
limitations. Undoubtedly, excessive use of materials in structural design not only
yields expensive structures that cause constructors to loose tenders but also con-
sumes more of natural sources and adds more pollution to the atmosphere which
triggers global warming. Hence, it is apparent that in order to have a sustainable
development, structures are required to be designed and built using sufficient
amount of material but not more. Structural design optimization tools exactly try to
achieve this goal. They aim to design steel structures such that the steel frames have
the minimum weight (minimum material) and in the meantime the response of the
frame under the external loads that the frame may be subjected to during its lifetime
is within the design code limitations. Design of steel structures has its own features
and not similar to the design of other structures. Designer cannot use any section
she/he may desire but to select among the set of steel profiles available in practice
for beams and columns of the frame under consideration. This selection is required
to be carried out in such a way that the frame with the selected steel profiles should
have the displacements less than those prescribed in the design code and its
members have sufficient strength to satisfy the design strength limitations under the
external loads as described in steel design code provisions. In the meantime, it is the
desire of structural designer that the cost of the structure is the minimum.

In this chapter, first the design optimization problem of steel space frames
according to the provisions of LRFD-AISC (Load and Resistance factor Design—
American Institution of Steel Corporation) [1] is presented. The aim of the optimum
design is to minimize the weight of the steel frame which becomes the objective
function in the programming problem. The objective function and the design
constraints as given by LRFD-AISC are described in detail in the following sec-
tions. It should be noticed that structural steel design in practice requires selection
of steel profiles from the available steel profile list for the members of the steel
frame under consideration for design. Therefore, the structural steel design opti-
mization problem requires finding out the steel profile designations from the
available set of steel sections for the members of a steel frame such that with these
steel sections the weight of the steel frame is the minimum and its behavior under
the external loads within the limitations described in steel design code.
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The mathematical model of such optimization problem turns out to be a
nonlinear discrete programming problem. Among the mathematical programming
techniques available to obtain the solution of such discrete variables, problem is
sequential linear discrete programming algorithm [2]. This technique attempts to
obtain the solution of nonlinear discrete programming problem by solving series of
mixed-integer linear programming problems. The nonlinear problems are linearized
about an initially selected point using first-order Taylor’s series expansion.
However, because of the discrete variables the mixed-integer linear programming
technique cannot be applied directly. The discrete variables are to be redefined by
means of another set of design variables where the new design variables are to be
equal either zero or one in the solution. These additional design variables increase
the total number of variables in the problem needlessly which makes the coding of
the algorithm quite cumbersome. The success of obtaining the optimum solution is
closely related with the quality of the selection of the initial design point.
Furthermore, computational difficulties such as convergence problems can be
stumbled in large size optimization problems.

The metaheuristic techniques that are emerged in last three decades do not suffer
the above discrepancies [3–10]. They are nontraditional stochastic search and
optimization methods that quite effective in finding the optimum solution of
combinatorial optimization problems similar to the one described in the preceding
section. They do not require the gradient information of the objective function and
constraints and they use probabilistic transition rules not deterministic rules. These
methods move within a design domain randomly with the aim of reaching the
optimum solution. However, this random move is not based on a blind way of
searching for the optimum in a confined design region but it makes use of an
intelligent heuristics to guide the search. This is why stochastic search methods are
also called metaheuristic algorithms. The fundamental properties of metaheuristic
algorithms are that they imitate certain strategies taken from nature, social culture,
biology, or laws of physics that direct the search process. The strategies employed
in search of optimum solution in these techniques simulate the natural phenomena.
Among the metaheuristic algorithms, those who are based on swarm intelligence
are shown to be robust, effective, and quite powerful techniques in obtaining near
optimum solutions if not optimum in engineering design optimization problems
[10]. There are several reviews available in the literature which comprehensively
summarizes the use of metaheuristic algorithms in the design optimization of steel
skeletal structures [11–16].

In this chapter, five different structural design optimization algorithms are
developed which are based on ant colony optimization, particle swarm optimizer,
artificial bee colony algorithm, firefly algorithm, and cuckoo search algorithm,
respectively. Two real size steel space frames are designed using each of these
algorithms considering the LRFD-AISC provisions. The optimum designs obtained
by these techniques are compared and performance of each version is evaluated.
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2 Discrete Optimum Design of Steel Space Frames
to LRFD-AISC

The design of steel space frames necessitates the selection of steel sections for its
columns and beams from standard steel section tables such that the frame satisfies
the serviceability and strength requirements specified by the code of practice while
the economy is observed in the overall or material cost of the frame. When the
design constraints are implemented from LRFD-AISC, the following nonlinear
discrete programming problem is obtained.

2.1 The Objective Function

The objective function is taken as the minimum weight of the frame which is
expressed as follows:

Minimize W ¼
Xng

r¼1
mr

Xtr
s¼1

‘s ð1Þ

where W defines the weight of the frame, mr is the unit weight of the steel section
selected from the standard steel sections table that is to be adopted for group r, tr is
the total number of members in group r, ng is the total number of groups in the
frame, and ls is the length of members which belongs to group r.

2.2 Strength Constraints

For the case where the effect of warping is not included in the computation of the
strength capacity of W sections that are selected for beam–column members of the
frame, the following inequalities given in Chapter H of LRFD-AISC are required to
be satisfied:

for
Pu

/Pn
� 0:2; gs;i ¼ Pu

/Pn
þ 8

9
Mu

/bMnx
þ Mu

/bMny

� �
� 1; 0 ð2Þ

for
Pu

uPn
\0:2; gs;i ¼ Pu

2/ Pn
þ Mu

/bMnx
þ Mu

/bMny

� �
� 1; 0 ð3Þ
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whereMnx is the nominal flexural strength at strong axis (x axis),Mny is the nominal
flexural strength at weak axis (y axis), Mux is the required flexural strength at strong
axis (x axis), Muy is the required flexural strength at weak axis (y axis), Pn is the
nominal axial strength (tension or compression), and Pu is the required axial
strength (tension or compression) for member i and ‘ represents the loading case.
The values of Mux and Muy are required to be obtained by carrying out P� D
analysis of the steel frame. This is an iterative process which is quite time con-
suming. In Chapter C of LRFD-AISC, an alternative procedure is suggested for the
computations of Mux and Muy values. In this procedure, two first-order elastic
analyses are carried out. In the first, frame is analyzed under the gravity loads only
where the sway of the frame is prevented to obtain Mnt values. In the second, the
frame is analyzed only under the lateral loads to find Mlt values. These moment
values are then combined using the following equation as given in the design code:

Mu ¼ B1Mnt þB2Mlt ð4Þ

where B1 is the moment magnifier coefficient and B2 is the sway moment magnifier
coefficient. The details of how these coefficients are calculated are given in
Chapter C of LRFD-AISC [1]. Equations (2) and (3) represent strength constraints
for doubly and singly symmetric steel members subjected to axial force and
bending. If the axial force in member k is tensile force, the terms in these equations
are given as follows: Puk is the required axial tensile strength, Pnk is the nominal
tensile strength, / becomes /t in the case of tension and called strength reduction
factor which is given as 0.90 for yielding in the gross section and 0.75 for fracture
in the net section, /b is the strength reduction factor for flexure given as 0.90, Muxk

and Muyk are the required flexural strength, and Mnxk and Mnyk are the nominal
flexural strengths about major and minor axis of member k, respectively. It should
be pointed out that required flexural bending moment should include second-order
effects. LRFD suggests an approximate procedure for computation of such effects
which is explained in C1 of LRFD. In the case the axial force in member k is
compressive force, the terms in Eqs. (2) and (3) are defined as follows: Puk is the
required compressive strength, Pnk is the nominal compressive strength, and /
becomes /c which is the resistance factor for compression given as 0.85. The
remaining notations in Eqs. (2) and (3) are the same as the definition given above.

The nominal tensile strength of member k for yielding in the gross section is
computed as Pnk ¼ FyAgk where Fy is the specified yield stress and Agk is the gross
area of member k. The nominal compressive strength of member k is computed as

Pnk ¼ AgkFcr where Fcr ¼ 0:658k
2
c

� �
Fy for kc� 1:5 and Fcr ¼ 0:877=k2c

� �
Fy for

kc [ 1:5 and kc ¼ Kl
rp

ffiffiffiffiffiffiffiffiffiffiffi
Fy
	
E

q
. In these expressions, E is the modulus of elasticity,

and K and l are the effective length factor and the laterally unbraced length of
member k, respectively.
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2.3 Displacement Constraints

The lateral displacements and deflection of beams in steel frames are limited by the
steel design codes due to serviceability requirements. According to the ASCE Ad
Hoc Committee report [17], the accepted range of drift limits in the first-order
analysis is 1/750–1/250 times the building height H with a recommended value of
H/400. The typical limits on the inter-story drift are 1/500–1/200 times the story
height. Based on this report, the deflection limits recommended are proposed in
[18–20] for general use which is repeated in Table 1.

2.3.1 Deflection Constraints

It is necessary to limit the mid-span deflections of beams in a steel space frame not
to cause cracks in brittle finishes that they may support due to excessive dis-
placements. Deflection constraints can be expressed as an inequality limitation as
shown in the following:

gdj ¼ djl
duj
� 1� 0 j ¼ 1; . . .; nsm ; l ¼ 1; . . .; nlc ð5Þ

where djl is the maximum deflection of jth member under the lth load case, duj is the
upper bound on this deflection which is defined in the code as span/360 for beams
carrying brittle finishers, nsm is the total number of members where deflections
limitations are to be imposed, and nlc is the number of load cases.

2.3.2 Drift Constraints

These constraints are of two types. One is the restriction applied to the top story
sway and the other is the limitation applied on the inter-story drift.

Top Story Drift Constraint
Top story drift limitation can be expressed as an inequality constraint as shown in
the following:

Table 1 Displacement limitations for steel frames

Item Deflection limit

1 Floor girder deflection for service live load L/360

2 Roof girder deflection L/240

3 Lateral drift for service wind load H/400

4 Inter-story drift for service wind load H/300
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gtdj ¼
Dtop
� �

jl

H=Ratio
� 1� 0 j ¼ 1; . . .; njtop; l ¼ 1; . . .; nk ð6Þ

where H is the height of the frame, njtop is the number of joints on the top story, nlc
is the number of load cases, and Dtop

� �
jl is the top story drift of the jth joint under

lth load case.

Inter-Story Drift
In multi-story steel frames, the relative lateral displacements of each floor are
required to be limited. This limit is defined as the maximum inter-story drift which
is specified as hsx/Ratio where hsx is the story height and ratio is a constant value
given in ASCE Ad Hoc Committee report [14].

gidj ¼
Dohð Þjl

hsx=Ratio
� 1� 0 j ¼ 1; . . .; nst; l ¼ 1; . . .; nlc ð7Þ

where nst is the number of story, nlc is the number of load cases, and Dohð Þjl is the
story drift of the jth story under lth load case.

2.4 Geometric Constraints

In steel frames, it is desired that column section for upper floor should not have a
larger section than the lower story column for practical reasons, because having a
larger section for upper floor requires a special joint arrangement which is neither
preferred nor economical. The same applies to the beam-to-column connections.
The W section selected for any beam should have a flange width smaller than or
equal to the flange width of the W section selected for the column to which the
beam is to be connected. These are shown in Fig. 1 and named as geometric
constraints. These limitations are included in the design optimization model to
satisfy practical requirements. Two types of geometric constraints are considered in
the mathematical model. These are column-to-column geometric constraints and
beam-to-column geometric limitations.

2.4.1 Column-to-Column Geometric Constraints

The depth and the unit weight of W sections selected for the columns of two
consecutive stores should be either equal to each other or the one in the upper story
should be smaller than the one in the lower story. These limitations are included in
the design problem as inequality constraints as shown in the following:
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gcdi ¼ Di

Di�1
� 1� 0 i ¼ 2. . .nj ð8Þ

gcmi ¼ mi

mi�1
� 1� 0 i ¼ 2. . .nj ð9Þ

where nj is the number of stories, mi is the unit weight of W section selected for
column story i, mi�1 is the unit weight of W section selected for of column story
(i − 1), Di is the depth of W section selected for of column story i, and Di�1 is the
depth of W section selected for of column story (i − 1).

2.4.2 Beam-to-Column Geometric Constraints

When a beam is connected to a flange of a column, the flange width of the beam
should be less than or equal to the flange width of the column so that the connection
can be made without difficulty. In order to achieve this, the flange width of the
beam should be less than or equal to D� 2tbð Þ of the column web dimensions in the
connection where D and tb are the depth and the flange thickness of W section,
respectively, as shown in Fig. 1:

gbci ¼
Bf
� �

bi

Dci � 2 tbcð Þi
� 1� 0 i ¼ 1. . .nj1 ð10Þ

Fig. 1 Beam column
geometric constraints
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or

gbbi ¼
Bf
� �

bi

Bf
� �

ci

� 1� 0 i ¼ 1. . .nj2 ð11Þ

where nj1 is the total number of joints where beams are connected to the web of a
column, nj2 is the total number of joints where beams connected to the flange of a
column, Dci is the depth of W section selected for the column at joint i, tbð Þcj is the
flange thickness of W section selected for the column at joint i, Bf

� �
ci is the flange

width of W section selected for the column at joint i, and Bf
� �

bi is the flange width
of W section selected for the beam at joint i.

The optimum design of steel space frames problem described in preceding
sections where the objective function is given in Eq. (1) and the constraints are
depicted from Eq. (2) to (11) is a nonlinear discrete optimization problem. It is
apparent that in order to determine the optimum solution of this problem steel
designer has to find out the suitable combination of W sections that makes the
frame weight minimum and in the same time the design code provisions are all
satisfied. Here the selection of a W section from an available steel profile list is
carried out by choosing an integer number from a set which consists of integer
numbers starting from 1 to the total number of sections in the list. This integer
number is the sequence number of that particular W section. Hence, the design
solution is a set of integer numbers each of which represents the sequence number
of W section in the design pool. This is a combinatorial optimization problem.

3 Swarm Intelligence-Based Metaheuristic Optimization
Algorithms

Metaheuristic optimization algorithms differ from that of mathematical program-
ming techniques in the fact that they do not employ gradient descent or
quasi-Newton techniques but heuristic search. A heuristic exploits
problem-depended information to find a sufficiently good solution to a specific
problem, while metaheuristic is a general-purpose algorithm that can be applied
almost any type of optimization problem. In reality, metaheuristic is also heuristic,
but a more powerful one that can be viewed as upper level general method with a
guiding strategy in designing underlying heuristic. The rule of thumb selected for
exploration of the optimum solution by metaheuristic algorithms may be borrowed
from nature or social culture. In general, a metaheuristic is an iterative process with
set of concepts that are used for exploring and exploiting the search space to
determine the best solution among the alternative solutions. Metaheuristic algo-
rithms are not problem specific, approximate, and usually non-deterministic. It is
important that there should be a dynamic balance between diversification and
intensification in metaheuristic procedure. Diversification generally refers to the
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exploration of the search space and intensification refers to the exploitation of the
accumulated search experience. The balance between these two concepts is
important so as not to waste too much time in regions of the search space which
does not possess high-quality solutions while the algorithm can quickly find out the
regions of high-quality solutions [3–10].

Some of the recent metaheuristic techniques are based on swarm intelligence.
A swarm is a large number of homogenous, unsophisticated agents that interact
locally among themselves, and their environment, without any central control or
management to yield a global behavior to emerge. Biologists are amazed with for
example what an ant or bee colony achieves. Although single ant or a bee is not
smart individual, their colonies are smart. When it comes to deciding what to do
next, most ants or bees do not have any clue. However, as a swarm, they can find
the shortest route to the best food source, allocate workers to different tasks, and
defend a territory from invaders without having someone in control or as manager.
As an individual they are tiny dummies, but they respond quickly and effectively to
their environment as colonies. This is what is called swarm intelligence [10]. It is
the collective behavior of decentralized and self-organized natural or artificial
systems. Metaheuristic optimization techniques based on swarm intelligence are
made up population of simple agents interacting with one another and with their
environment as is the case in ant colonies, bird flocking, animal herding, and fish
schooling. These techniques imitate the behavior of these colonies in a numerical
optimization procedure. They employ what for example an ant colony uses to find
the shortest route between their nest and food source as a guiding mechanism in
order to search design domain to find the optimum solution of an optimization
problem. They also utilize some additional strategies to avoid getting trapped in
confined areas of search domain. Latest applications have shown that they are
robust, effective, and quite powerful in obtaining near optimum solutions if not
optimum in engineering design optimization problems [3, 10].

Performance evaluation of different metaheuristic algorithms in structural steel
design optimization is carried out in the literature [21, 22]. This chapter intends to
examine the use of swarm intelligence-based structural design optimization algo-
rithms. For this purpose, five structural design optimization algorithms are developed
each of which based on ant colony algorithm, particle swarm optimizer, artificial bee
colony algorithm, firefly algorithm, and cuckoo search algorithm. Ant colony algo-
rithm is inspired from the way that ant colonies find the shortest route between the
food source and their nest [23–25]. Particle swarm optimizer mimics the social
behavior of bird flocking [26, 27]. Artificial bee colony algorithm imitates the for-
aging behavior of honey bee colony [28, 29]. Firefly algorithm imitates the idealized
behavior offlashing characteristics offireflies. These insects communicate, search for
pray, and find mates using bioluminescence with varying flaying patterns [30–32].
Cuckoo search algorithm simulates reproduction strategy of cuckoo birds [33].

Some of the optimization problems do not have any constraints and they only
require minimizing or maximizing the objective function. However, most of the
optimization problems in practice do have constraints. Swarm intelligence-based
algorithms can only handle unconstrained optimization problems. Hence, it
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becomes necessary to transform the optimization problem with constraints into the
one which is unconstrained. This is achieved by either using a penalty function.
There are several penalty function methods. Very comprehensive review of these
techniques is covered [34]. One of the commonly used penalty functions is given in
the following:

Wp ¼ W 1þCð Þe ð12Þ

where W is the value of objective function of optimum design problem given in
Eq. (1), Wp is the penalized weight of structure, C is the value of total constraint
violations which is calculated by summing the violation of each individual con-
straint, and ε is penalty coefficient which is taken as 2.0 in this work as suggested in
[21, 22].

c ¼
Xnc
i¼1

ci ð13Þ

ci ¼ 0 if gj� 0
gj if gj [ 0



j ¼ 1; . . .; nc ð14Þ

where gj is the jth constraint function and nc is the total number of constraints in the
optimum design problem. Constraint functions for the steel frame are given through
in Eqs. (2)–(11). It should be reminded that all the constraints are required to be
normalized before they are used in the metaheuristic algorithms. A solution vector
whichmay be slightly infeasible in one ormore constraints is also included among the
feasible solutions. This is called adaptive error strategy which is explained in [35].

3.1 Ant Colony Optimization (ACO)

Ant colony optimization technique is inspired from the way that ant colonies find
the shortest route between the food source and their nest. Ants being completely
blind individuals can successfully discover as a colony the shortest path between
their nest and the food source. They manage this through their typical characteristic
of employing volatile substance called pheromones. They perceive these substances
through very sensitive receivers located in their antennas. The ants deposit pher-
omones on the ground when they travel which is used as a trail by other ants in the
colony. When there is choice of selection for an ant between two paths, it selects the
one where the concentration of pheromone is more. Since the shorter trail will be
reinforced more than the long one after a while a great majority of ants in the colony
will travel on this route. Ant colony optimization algorithm is first used in finding
the solution of traveling salesman [23–25]. The steps of ant colony optimization are
as follows:
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1. Select number of ants each of which represents a potential solution to the
optimization problem. Define a pool for each decision variable in the opti-
mization problem which consists of possible values that particular variable can
take. Assign randomly each ant to each decision variable. Calculate initial
pheromone amount (s0) as s0 ¼ 1=Zmin where Zmin is the minimum value of the
objective function without penalty violation. The pheromone and visibility
values for each decision variable are calculated defined as given below:

sij ¼ 1
s0

; vij ¼ 1
xij

; i ¼ 1; 2; . . .; nv j ¼ 1; 2; . . .; npool ð15Þ

where xij is jth value of the design variable i, nv is the total number of design
variables in the optimization problem, and npool is the total number of values in
the pool from which a value can be selected for decision variable i.

2. Each ant in the colony selects its first design variables. Ants then select values
for their decision variables from the value pool. This selection is carried out by a
decision process which depends on probability computation given below:

Pij tð Þ ¼
sijðtÞ
� �a� vij

� �b
Pndiv

j2allowed sijðtÞ
� �a� vij

� �b i ¼ 1; 2; . . .; nv j ¼ 1; 2; . . .; npool ð16Þ

where Pij tð Þ is the probability of jth value selected from the pool for decision
variable i which is assigned to ant at time t. a and b are the parameters which are
used to arrange the influence of local trail values and visibility, respectively.
This process continues until all ants assign values for their first design variables.

3. Apply local update rule at the end of the each tour. Concentration of pheromone
for values selected by ants from the pool is lowered in order to promote
exploration in the search. This corresponds to the evaporation of the pheromone
substance in the real life. The mathematical expression for this is sij tð Þ ¼
f � sijðtÞ where f is called local update coefficient whose value changes from 0 to
1. If the value of this parameter is selected close to 1, fast convergence occurs
and the algorithm may end up with a local optimum. On the other hand, if the
value is chosen close to 0 convergence difficulties arise in the problem.

4. Start assigning a value from the pool for the next decision variable. Continue
this assigning procedure until all the ants in the colony have a value for each
decision variable. At the end of the tour, apply local update rule. This procedure
continues until all ants assign values for all decision variables. At the end of this
process, each ant has a selected value for each decision variable and all together
each ant represents a candidate solution for the optimization problem.
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5. Apply global update scheme using Eq. (17):

sij tþ nð Þ ¼ q � sij tð ÞþDsij tð Þ ð17Þ

where q is constant selected between 0 and 1. 1� qð Þ represents the evaporation
amount of pheromone between time t and tþ n (the amount of time required to
complete a cycle). Dsij is the change in pheromone amount on the path
connecting decision variable i to decision variable j. Value of Dsij is represented
by the following formula:

Dsij ¼
Xm
k¼1

Dskij ð18Þ

where k represents any ant from 1 to m (where m is the number of ants) and Dskij
is the change in the pheromone for ant k. Calculation of Dskij term is described as
follows:

Dskij ¼
1
Zk

ð19Þ

where Zk is the penalized objective function value for ant k. This is the end of
one ant colony algorithm cycle. To start another cycle, all ants are returned to
their initial decision variables and above steps are replicated again.

6. Repeat steps 2–5 until the termination criterion is satisfied which generally taken
as the maximum number of iterations.

3.2 Particle Swarm Optimizer (PSO)

Particle swarm optimizer is based on the social behavior of animals such as fish
schooling, insect swarming, and birds flocking [26, 27]. The method considers an
artificial swarm which consists of particles (agents). The behavior of each agent in
the swarm is simulated according to three rules. The first is separation where each
agent tries to move away from its neighbors if they are too close. The second is
alignment where each agent steers toward the average heading of its neighbors. The
third is cohesion where each agent tries to go toward the average position of its
neighbors. This simulation is extended to have roost by [27]. They have amended
the above three rules as follows: each agent is attracted toward the location of roost;
each agent remembers where it was closer to the roost and each agent shared
information with all other agents about its closest location to the roost.

The particle swarm optimizer selects a number of particles to represent a swarm.
Each particle in the swarm is a potential solution to the optimization problem under
consideration. A particle explores the search domain by moving around. This move is
decided by making use of its own experience and the collective experience of the
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swarm. Each particle has three main parameters: position, velocity, and fitness.
Position represents the decision variables of the optimization problem, velocity
determines the rate of change of the position, and fitness is the value of the objective
function at the particle’s current position. Thefitness value is ameasure of howgood is
the solution it represents for the optimization problem. The algorithm starts solving an
optimization problem by first initializing each particle. In the initiation phase, each
particle is given a random initial position and an initial velocity. The position of a
particle represents a solution of the problem and has therefore a value, given by the
objective function.While moving in the search space, particles memorize the position
of the best solution they found. At each iteration of the algorithm, each particle moves
with a velocity that is a weighted sum of three components: the old velocity, a velocity
component that drives the particle toward the location in the search space where it
previously found the best solution so far, and a velocity component that drives the
particle towards the location in the search spacewhere the neighbor particles found the
best solution so far. There are several variants of particle swarmalgorithm.The steps of
the standard algorithm are outlined in the following:

1. Initialize swarm of particles with positions xi0 and initial velocities vi0 randomly
distributed throughout the design space. These are obtained from the following
expressions:

xi0 ¼ xminþ r xmax � xminð Þ ð20Þ

vi0 ¼ xminþ r xmax � xminð Þð Þ=Dt½ � ð21Þ

where the term r represents a random number between 0 and 1, and xmin and
xmax represent the design variables upper and lower bounds, respectively.

2. Evaluate the objective function values f(xk
i ) using the design space positions xk

i .
3. Update the optimum particle position pk

i at the current iteration k and the global
optimum particle position pk

g.
4. Update the position of each particle from xikþ 1 ¼ xik þ vikþ 1Dt where x

i
kþ 1 is the

position of particle i at iteration k + 1, vikþ 1 is the corresponding velocity vector,
and Dt is the time step value.

5. Update the velocity vector of each particle. There are several formulas for this
depending on the particular particle swarm optimizer under consideration.

vikþ 1 ¼ wvik þ c1r1
pik � xik
� �

Dt
þ c2r2

pgk � xik
� �

Dt
ð22Þ

where r1 and r2 are the random numbers between 0 and 1, pik is the best position
found by particle i so far, and pgk is the best position in the swarm at time k.w is the
inertia of the particle which controls the exploration properties of the algorithm. c1
and c2 are the trust parameters that indicate howmuch confidence the particle has in
itself and in the swarm, respectively. Usually, they are taken as 2.
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6. Repeat steps 2–5 until the stopping criterion is met.

In order to control the change of particles’ velocities, upper and lower bounds for
the velocity change are also limited to a user-specified value of vmax. Once the new
position of a particle is calculated, using Eq. (20), the particle then flies toward it.
The main parameters used in the particle swarm optimizer are the population size
(number of particles), number of generation cycles, and the maximal change of a
particle velocity of vmax.

3.3 Artificial Bee Colony Algorithm (ABC)

Artificial bee colony algorithmmimics the intelligent foragingbehavior of a honey bee
colony [28]. In the artificial bee colony algorithm, there are three types of bees which
carry out different tasks. The first group of bees is the employed bees that locate food
source, evaluate its amount of nectar, and keep the location of better sources in their
memory. These bees when fly back to hive share this information to other bees in the
dancing area by dancing. The dancing time represents the amount of nectar in the food
source. The second group is the onlooker beeswho observe the dance andmay decide
to fly to the food source if they find it is worthwhile to visit the food source. Therefore,
food sources reach in the amount of nectar attract more onlooker bees. The third group
is the scout bees that explore new food sources in the vicinity of the hive randomly. The
employedbeewhose food sourcehas been abandonedby the bees becomes a scout bee.
Overall, scout bees carry out the exploration, employed, andonlooker bees perform the
task of exploitation. Each food source is considered as a possible solution for the
optimization problem and the nectar amount of a food source represents the quality of
the solution which is identified by its fitness value. The artificial bee colony algorithm
consists of four stages. These stages are initialization phase, employed bees phase,
onlooker bees phase, and scout bees phase.

1. Initialization phase: Initialize all the vectors of the population of food sources,
xp; p ¼ 1; . . .; np using Eq. (23) where np is the population size (total number of
artificial bees). Each food source is a solution vector consisting of n variables
ðxpi; i ¼ 1; . . .; nÞ and it is a potential solution to the optimization problem under
consideration.

xpi ¼ xliþ randð0; 1Þðxui � xliÞ ð23Þ

where x‘i and xui are the upper and lower bounds on xi.
2. Employed bees phase: Employed bees search new food sources using Eq. (24):

vpi ¼ xpiþ fpiðxpi � xkiÞ ð24Þ

where k 6¼ i is a randomly selected food source, and φpi is a random number in
range [−1, 1]. After producing the new food source, its fitness is calculated. If its
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fitness is better than xpi the new food source replaces the previous one. The
fitness value of the food sources is calculated according to Eq. (25):

fitnessðxpÞ ¼
1

1þ f ðxpÞ if f ðxpÞ� 0
1þ absðf ðxpÞÞ if f ðxpÞ\0



ð25Þ

3. Onlooker bees phase: Unemployed bees consist of two groups. These are
onlooker bees and scouts. Employed bees share their food source information
with onlooker bees. Onlooker bees choose their food source depending on the
probability value Pp which is calculated using the fitness values of each food
source in the population as shown in Eq. (26):

Pp ¼ fitnessðxpÞPnp
p¼1 fitnessðxpÞ

ð26Þ

After a food source xpi for an onlooker bee is probabilistically chosen, a
neighborhood source is determined using Eq. (25) and its fitness value is computed
using Eq. (26).

4. Scout bees phase: The unemployed bees who choose their food sources ran-
domly called scouts. Employed bees whose solutions cannot be improved after
predetermined number of trials become scouts and their solutions are aban-
doned. These scouts start to search for new solutions.

5. Phases 2–4 are repeated until the termination criterion is satisfied.

3.4 Firefly Algorithm (FFA)

Firefly algorithm is based on the idealized behavior of flashing characteristics of
fireflies [30, 31]. These insects communicate, search for pray, and find mates using
bioluminescence with varying flaying patterns. The firefly algorithm is based on
three rules, and they are as follows:

1. All fireflies are unisex so they attract one another.
2. Attractiveness is propositional to firefly brightness. For any couple of flashing

fireflies, the less bright one moves toward the brighter one. Attractiveness is
proportional to the brightness and they both decrease as their distance increases.
If there is no brighter one than a particular firefly, it will move randomly.

3. The brightness of a firefly is affected or determined by the landscape of the
objective function.

Mathematical interpretation of the above rules is given in the following as
explained in [30].

Attractiveness: In the firefly algorithm, attractiveness of a firefly is assumed to
be determined by its brightness which is related with the objective function. The
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brightness i of a firefly at a particular location x can be chosen as IðxÞ / f ðxÞ where
f ðxÞ is the objective function. However, the attractiveness β is relative, and it should
be judged by the other fireflies. Thus, it will vary with the distance rij between
firefly i and firefly j. In the firefly algorithm, the attractiveness function is taken to
be proportional to the light intensity by adjacent fireflies and it is defined as follows:

bðrÞ ¼ b0e
�c rm ; ðm� 1Þ ð27Þ

where b0 is the attractiveness at r ¼ 0.
Distance: The distance between any two fireflies i and j at xi and xj is calculated

as

rij ¼ xi � xj
�� �� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xd
k¼1

xi;k � xj;k
� �2

vuut ð28Þ

where xi;k is the kth component of the spatial coordinate xi of the ith firefly.
Movement: The movement of a firefly i which is attracted to another brighter

firefly j is determined by

xi ¼ xiþ b0e
�cr2ijðxj � xiÞþ a rand� 1

2

� �
ð29Þ

where the second term is due to the attraction and the third term is the random-
ization with α being the randomization parameter. “rand” is a random number
generator uniformly distributed in [0, 1].

The parameter αt essentially controls the randomness and to some extent, the
diversity of solutions where t is the iteration number. This parameter can be tuned
during iterations so that it can vary with the iteration counter t. The expression of
αt = α0δ

t (0 < δ < 1) is suggested in [31] where α0 is the initial randomness scaling
factor, and δ is essentially a cooling factor. It is also stated in [31] that for most
applications, the values from 0.95 to 0.97 is found suitable for δ. Regarding the
initial α0, simulations show that firefly algorithm is more efficient if α0 is associated
with the scaling of design variables. Let L be the average scale of the problem of
interest, and it is set as α0 = 0.01L initially. The factor 0.01 comes from the fact that
random walk requires a number of steps to reach the target while balancing the local
exploitation without jumping too far in a few steps [31]. The parameter β controls
the attractiveness, and parametric studies suggest that β0 = 1 can be used for most
applications. However, it is mentioned in [31] that γ should be also related to the
scaling L as γ = 1/√L.

The steps of the firefly algorithm are given below:

1. Generate initial population of n fireflies xif g; i ¼ 1; 2; . . .; nð Þ randomly each of
which represents a candidate solution to the optimization problem with objective
function of f ðxÞ and decision variables xf g ¼ x1; x2; . . .; xmf gT .
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2. Compute light intensity using Eq. (27) for each firefly bf g ¼ b1; b2; . . .; bnf gT .
The distance between fireflies is computed from Eq. (28).

3. Move each firefly i toward other brighter fireflies using Eq. (29). If there is other
brighter firefly move it randomly.

4. Evaluate new solutions and update light intensity.
5. Rank the fireflies and find the current best solution.
6. Repeat steps 2–5 until the termination criterion is satisfied.

3.5 Cuckoo Search Algorithm (CSA)

Cuckoo search algorithm simulates reproduction strategy of cuckoo birds [33].
Some species of cuckoo birds lay their eggs in the nests of other birds so that when
the eggs are hatched their chicks are fed by the other birds. Sometimes, they even
remove existing eggs of host nest in order to give more probability of hatching of
their own eggs. Some species of cuckoo birds are even specialized to mimic the
pattern and color of the eggs of host birds so that host bird could not recognize their
eggs which give more possibility of hatching. In spite of all these efforts to conceal
their eggs from the attention of host birds, there is a possibility that host bird may
discover that the eggs are not its own. In such cases, the host bird either throws
these alien eggs away or simply abandons its nest and builds a new nest somewhere
else. In cuckoo search algorithm, cuckoo egg represents a potential solution to the
design problem which has a fitness value. The algorithm uses three idealized rules
as given in [33]. These are as follows: (a) each cuckoo lays one egg at a time and
dumps it in a randomly selected nest. (b) The best nest with high-quality eggs will
be carried over to the next generation. (c) The number of available host nests is
fixed and a host bird can discover an alien egg with a probability of Pa Є [0, 1]. In
this case, the host bird can either throw the egg away or abandon the nest to build a
completely new nest in a new location.

Cuckoo search algorithm initially requires the selection of a population of n eggs
each of which represents a potential solution to the design problem under consid-
eration. This means that it is necessary to generate n solution vector of xf g ¼
x1; x2; . . .; xmf gT in a design problem with m decision variables. For each potential

solution vector, the value of objective function f ðxÞ is also calculated. The algo-
rithm then generates a new solution xmþ 1

i ¼ xmi þ bk for cuckoo i where xmþ 1
i and

xmi are the previous and new solution vectors. β > 1 is the step size which is selected
according to the design problem under consideration. λ is the length of step size
which is determined according to random walk with Levy flights. A random walk is
a stochastic process in which particles or waves travel along random trajectories
which consist of taking successive random steps. The search path of a foraging
animal can be modeled as random walk. A Levy flight is a random walk in which
the steps are defined in terms of the step lengths which have a certain probability
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distribution, with the directions of the steps being isotropic and random. Hence,
Levy flights necessitate selection of a random direction and generation of steps
under chosen Levy distribution.

The algorithm given in [36] which is called Mantegna algorithm is one of the
fast and accurate algorithms which generates a stochastic variable whose proba-
bility density is close to Levy stable distribution characterized by arbitrary chosen
control parameter α (0.3 ≤ α ≤ 1.99). Using the Mantegna algorithm, the step size λ
is calculated as

k ¼ x

yj j1=a
ð30Þ

where x and y are the two normal stochastic variables with standard deviation σx
and σy which are given as

rx að Þ ¼ C 1þ að Þ sin pa=2ð Þ
C 1þ að Þ=2ð Þa2 a�1ð Þ=2

� 
1=a
and ryðaÞ ¼ 1 for a ¼ 1:5 ð31Þ

in which the capital Greek letter C represents the Gamma function

(CðzÞ ¼ R1
0
tz�1e�zdt) that is the extension of the factorial function with its argument

shifted down by 1 to real and complex numbers. If z = k is a positive integer
CðkÞ ¼ ðk � 1Þ!.

The steps of the cuckoo search algorithm are as follows:

1. Select values for cuckoo search algorithm parameters which are the number of
nests (eggs) (n), the step size parameter (β), discovering probability (pa), and
maximum number of iterations for termination of the cycles.

2. Generate initial population of n host nests xif g; i ¼ 1; 2; . . .; nð Þ randomly each
of which represents a candidate solution to the optimization problem with
objective function of f(x) and decision variables xf g ¼ x1; x2; . . .; xmf gT .

3. Get a cuckoo randomly by Levy flights using xmþ 1
i ¼ xmi þ bk and evaluate its

fitness Fi. Here λ is a random walk based on Levy flights which is calculated
from (30) to (31).

4. Choose randomly a nest among n (say j) and evaluate its fitness Fj. If Fj < Fi,
replace j by the new solution.

5. Abandon a fraction of worst nests and built new ones. This is carried out
depending on pa probability parameter. First find out whether each nest keeps its
current position using Eq. (32). R matrix stores 0 and 1 values such that anyone
of them is assigned to each component of ith nest, in which 0 means that current
position is kept and 1 implies that the current position is to be updated.
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Ri  1 if rand\pa
0 if rand� pa



ð32Þ

New nests are conducted by means of Eq. (29).

xtþ 1
i ¼ xti þ r � Ri � Perm1i � Perm2ið Þ ð33Þ

where r is random number between 0 and 1, Perm1 and Perm2 are two row
permutations of the corresponding nest, and R defines the probability matrix.

6. Rank solutions and find the current best one.
7. Repeat steps 3–6 until the termination criterion is satisfied which is usually

taken as the maximum number of iterations.

4 Design Examples

The solution algorithms presented above for the metaheuristics are performed for
two design examples. These are 568-member unbraced steel space frame and
354-bar steel-braced dome. In all the examples, the design history graphs are
plotted, demonstrating the improvement of the feasible best design during search
process with all the techniques in their best runs. The number of iterations is taken
as 50,000 to make sure that all the techniques are given an equal opportunity to be
able to find the global optimum. In all the design examples, the following material
properties of the steel are used: modulus of elasticity (E) = 208 GPa (30,167.84 ksi)
and yield stress (Fy) = 250 MPa (36.26 ksi). The values of parameters that are
required to be initially selected for swarm intelligence-based metaheuristic tech-
niques for both design examples are tabulated in Table 2.

Table 2 Search parameters of optimization algorithms

Algorithm 568-member unbraced space steel frame 354-bar steel-braced dome

ABC Total number of bees = 50
Maximum cycle number = 1000, Limiting
value for number of cycles to abandon food
source = 250

Total number of bees = 100
Maximum cycle number = 500
Limiting value for number of
cycles to abandon food
source = 100

ACO Number of ants = 100, Maximum number of
cycles = 500, β = 0.40, Minimum local
update coefficient = 0.7

Number of ants = 50, Maximum
number of cycles = 1000,
β = 0.20
Minimum local update
coefficient = 0.8

CSA Number of nests = 100, pa = 0.35 Number of nests = 50, pa = 0.90

FFA Number of fireflies = 25, β = 1.0 Number of fireflies = 30, β = 1.0

PSO Number of particles = 60
c1 and c2 = 1.8

Number of particles = 50
c1 and c2 = 1.5
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4.1 568-Member Unbraced Space Steel Frame

The first design example is selected as a three-dimensional, ten-story, four-bay steel
frame having 220 joints and 568 members which are collected in 25 independent
design variables [22]. Figure 2a–c shows 3-D, elevation, and plan views of this
frame, and member grouping details are presented in Fig. 2d. The wide-flange
(W) profile list consisting of 272 ready sections is used to size beam and column
members [1]. Inner roof beams, outer roof beams, inner floor beams, and outer floor
beams of this frame are subjected to 14.72, 7.36, 21.43, and 10.72 kN/m vertical
loads, respectively. The un-factored lateral wind loads of this frame are given in
Table 3. The drift ratio limits of this frame are defined as 0.914 cm for inter-story
drift and 9.14 cm for top story drift. Maximum deflection of beam members is
restricted as 1.69 cm.

The final designs and the cross-sectional designations for 25 member groups
obtained by each of swarm intelligence-based metaheuristic techniques are given in
Table 4. It is obvious from the results that ABC algorithm has obtained the frame
with the least weight which is 1,852.1 kN (188,862.34 kg). The second lightest
frame with a design weight of 1,899.3 kN (193,675.42 kg) is achieved by ACO
algorithm, which is 2.55 % heavier than the lightest frame. The final design attained
by PSO algorithm is the third lightest frame which is 1,922.4 kN (196,030.97 kg);
3.8 % heavier than the lightest design. The CSA and FFA algorithms locate opti-
mum solutions that are 1,984.7 kN (202,383.83 kg) and 2,089.8 kN
(213,101.09 kg) which are 7.16 and 12.83 %, heavier than the lightest one,
respectively. From these results, it is apparent that FFA algorithm has attained the
heaviest design. Moreover, from Table 4 it can be concluded that the all constraints
are almost at their upper bounds and both drift and strength constraints are domi-
nant in the optimization process for all the algorithms. The convergence history of
each algorithm is demonstrated in Fig. 3. The ABC method shows a good con-
vergence rate and comes close to the optimum design nearly after 20,000 structural
analyses. PSO algorithm also demonstrates much better convergence rate than the
other algorithms. Another interesting result that can be concluded from Fig. 3 is that
although FFA exhibits relatively rapid convergence performance to reach to the
optimum solution at early stages of design optimization, toward to the final stages
its performance deteriorates and it ends up with a local optimum.

4.2 354-Bar Steel-Braced Dome

Steel-braced dome with 40 m (131.23 ft) diameter and a height of 8.28 m (27.17 ft)
is taken as a second design example [21]. Braced dome, designed for covering the
top of an auditorium at an elevation of 10 m (32.8 ft), consists of 127 joints and 354
members and its plan, elevation, and 3-D views are shown in Fig. 4. The dome is
modeled as pin-jointed frame. Dome’s 354 members are grouped into 22
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Fig. 2 568-member unbraced space steel frame. a 3D view. b Elevation view. c Plan view.
d Member grouping
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independent design variables as shown in Fig. 4b, and these design variables are
selected from a set of 37 circular hollow steel profile section lists in LRFD-AISC
[1]. Three load cases, various combinations of dead (D), snow (S), and wind
(W) loads, are applied to the braced dome and these loads are calculated according
to ASCE 7-98 specification [37]. These three load cases, (i) D + S, (ii) D + S + W
(with negative internal pressure), and (iii) D + S + W (with positive internal
pressure), respectively, are shown in Fig. 5. For this example, unbalanced snow
loads are not considered and dead and snow loads are assumed like acting on the
projected area while wind load acts on the curved surface area. Sandwich-type
aluminum material is used for cladding and dead load pressure, including the frame
elements used for the girts, is taken as 200 N/m2. The snow load ps (kN/m

2) is
calculated using the following equation in ASCE 7-98 [37]:

ps ¼ 0:7CsCeCtIpg ð34Þ

where Cs is the roof slope factor, Ce is the exposure coefficient, Ct is the temper-
ature factor, I is the importance factor, and pg is the ground snow load. These
factors are calculated and/or chosen as follows: Cs = 1.0, Ce = 0.9, Ct = 1.0, I = 1.1,
and pg = 1.1975 kN/m2 (25.0 lb/ft2), resulting in a design snow pressure of
ps = 830 N/m2 (17.325 lb/ft2).

For the calculation of the design wind pressure pw, combined effects of internal
and external pressures acting on the roof are considered as follows:

pw ¼ qhGCp � qhðGCpiÞ ð35Þ

where qh is the first the velocity pressure, G is the gust effect factor (taken as 0.85),
Cp is the external pressure coefficient, and (GCpi) is the internal pressure coefficient.
In this equation, the first term represents the effect of external pressure while the
effect of internal pressure is represented by the second term. The braced dome is
divided into three regions to compute external wind pressure on it; they are a

Table 3 Wind loading on
568-member unbraced space
steel frame

Floor No Windward Leeward

(lb/ft) (kN/m) (lb/ft) (kN/m)

1 12.51 0.1825 127.38 1.8585

2 28.68 0.4184 127.38 1.8585

3 44.68 0.6519 127.38 1.8585

4 156.86 2.2886 127.38 1.8585

5 167.19 2.4393 127.38 1.8585

6 176.13 2.5698 127.38 1.8585

7 184.06 2.6854 127.38 1.8585

8 191.21 2.7897 127.38 1.8585

9 197.76 2.8853 127.38 1.8585

10 101.90 1.5743 127.38 1.8585
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Table 4 The optimum designs of 568-member unbraced space steel frame obtained by
swarm-based metaheuristic techniques

Group
number

ABC ACO PSO CSA FFA

1 W250X32.7 W250X38.5 W250X44.8 W360X51 W410X38.8

2 W530X85 W200X86 W200X86 W530X85 W460X82

3 W610X174 W610X174 W920X201 W690X170 W840X193

4 W310X23.8 W310X23.8 W250X25.3 W310X23.8 W250X25.3

5 W410X38.8 W410X38.8 W410X38.8 W460X52 W410X46.1

6 W310X107 W690X140 W460X158 W460X106 W530X138

7 W760X196 W920X201 W760X196 W760X196 W310X179

8 W610X174 W840X193 W690X170 W840X176 W920X488

9 W460X106 W460X106 W460X106 W460X106 W530X92

10 W530X150 W610X153 W610X92 W690X152 W840X193

11 W250X101 W460X128 W460X158 W460X106 W460X97

12 W360X122 W460X113 W410X100 W360X134 W310X107

13 W610X125 W690X170 W530X109 W610X174 W690X152

14 W460X60 W360X64 W460X60 W410X60 W530X66

15 W530X85 W250X89 W530X85 W530X85 W410X53

16 W250X80 W360X122 W310X158 W460X68 W460X97

17 W360X122 W410X114 W410X100 W360X134 W310X107

18 W530X85 W610X92 W530X85 W530X85 W610X101

19 W310X32.7 W410X38.8 W310X38.7 W360X32.9 W530X66

20 W410X46.1 W410X46.1 W410X46.1 W410X46.1 W460X68

21 W250X80 W360X72 W310X158 W200X59 W310X74

22 W200X52 W200X71 W250X49.1 W360X134 W310X60

23 W410X60 W460X60 W360X79 W200X59 W460X60

24 W310X38.7 W310X28.3 W200X35.9 W250X32.7 W200X41.7

25 W250X32.7 W310X28.3 W250X38.5 W360X32.9 W460X60

Minimum
weight (kN)

1852.1 1899.3 1922.4 1984.7 2089.8

Maximum
top story
drift (cm)

7.98 7.85 8.02 7.07 6.45

Maximum
inter-story
drift (cm)

0.913 0.901 0.913 0.859 0.803

Maximum
strength
constraint
ratio

0.925 0.991 0.993 0.903 0.983

Maximum
number of
iterations

50,000 50,000 50,000 50,000 50,000
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windward quarter, a center half, and a leeward quarter. The external pressure
coefficients Cp for each region are calculated separately by considering rise-to-span
ratio of the dome as follows: for windward quarter Cp = 0.0105, for center half
Cp = –0.907, and for leeward quarter Cp = –0.5. The internal pressure coefficient
GCpi is taken as –0.18 and +0.18 in the second and third load cases over the entire
internal surface to take into account the suction and uplift effects of the internal
pressure, respectively. The first the velocity pressure qh (N/m

2) evaluated at mean
roof height is calculated using the following equation in ASCE 7-98 [37]:

qh ¼ 0:613KzKztKdV2I ð36Þ

where Kz is the velocity exposure coefficient (Kz = 1.07 for a mean roof height of
14.14 m (46.4 ft)), Kzt is the topographic factor (Kzt = 1.087), Kd is the wind
directionality factor (Kd = 0.85), V (in m/s) is the basic wind speed (V = 40 m/s
(90 mph)), and I is the importance factor (I = 1.15). First the velocity pressure is
calculated as 1115 N/m2 for the braced dome.

The net pressures acting on different regions of the braced domes are calculated
by combining internal and external wind pressures as given Eq. (35) and these
loadings are shown in Fig. 4. The stress and stability constraints for dome members
are imposed according to LRFD-AISC specification [1]. The displacements in any
direction are limited to 11.1 cm (4.37 in.) for all nodes.

The minimum weights, maximum constraints values, and pipe section desig-
nations of the optimum designs obtained by each swarm-based metaheuristic
algorithm are illustrated in Table 5. Search histories of optimization algorithms are
shown in Fig. 6. It is clearly seen from the table and the figure that the weight of the
best design among all optimum solutions is 142.87 kN (14,568.69 kg) which is
obtained by ABC algorithm. This weight is 5.54 % lighter than weight of the best
design obtained by CSA, 4.06 % lighter than weight of the best design obtained
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Fig. 3 Search histories of
best designs of each
swarm-based metaheuristic
technique in the design
optimization of 568-member
unbraced steel space frame
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Fig. 4 354-bar steel-braced dome. a 3D view. b Top view. c Side view
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using FFA, 2.65 % lighter than weight of the best design obtained by ACO algo-
rithm, and 1.16 % lighter than weight of best design obtained by PSO algorithm.
Weights of the second and the third best designs which are obtained from PSO and
ACO are closer to each other. There is only 1.47 % weight difference between these
designs. Among all of the five metaheuristic algorithms considered in this study,
CSA has shown the worst performance. The minimum weight of the optimum
design obtained by this algorithm is 150.78 kN (15,373.34 kg). It is clear that this
design is trapped in local optimum.

Fig. 5 Loading on the design of 354-bar steel-braced dome
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Table 5 Optimum designs for 354-bar steel-braced dome

Group number ABC PSO ACO FFA CSA

1 P2 P2 P2 P2 P2

2 P3 P3 P3 P4 P4

3 P4 P3.5 P4 P3.5 P3.5

4 P3 P3.5 P3.5 P3.5 P3.5

5 P3 P3 P3 P3.5 P3.5

6 P3 P3 P3 P3 P3

7 P3 P3 P3 P3 P3

8 P2.5 P3 P2.5 P2.5 P3

9 P3 P3 P3 P3 P3

10 P3 P3 P3 P3 P3

11 P2.5 P2.5 P2.5 P2.5 P2.5

12 P2.5 P2.5 P2.5 P2.5 P2.5

13 P2.5 P2.5 P2.5 P2.5 P2.5

14 P2.5 P2.5 P2.5 P2.5 P2.5

15 P2.5 P2.5 XP2.5 P2.5 P2.5

16 P2.5 P2.5 P2.5 P2.5 P2.5

17 XP2 XP2 XP2 XP2 XP2

18 P2 P2 XP2 XP2 P2.5

19 XP2 XP2 P2 XP2 XP2

20 P2 P2.5 XP2 XP2 P2.5

21 P2 P2 P2 XP2 P2

22 P2 P2 P2 P2 P2

Minimum weight(kN) 142.87 144.53 146.65 148.67 150.78

Maximum strength ratio 0.997 0.844 0.896 0.906 0.801

Maximum displacement (cm) 1.73 1.67 1.71 1.65 1.61

Maximum no. of iterations 50,000 50,000 50,000 50,000 50,000
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5 Summary and Conclusions

Structural engineers are required to design structures optimally due to the dimin-
ishing resources and economic competition. The optimum design of a steel frame
necessitates selection of steel profiles for its members from the available steel
section list such that the behavior of the frame under the external loads is within the
limitations described by the steel design codes such as LRFD-AISC and its weight
or cost is the minimum. The mathematical modeling of this decision making
problem turns out to be discrete nonlinear programming problem. Recent studies
are shown that metaheuristic techniques are more suitable to attain the optimum
design of real size steel frames under the steel design code provisions than math-
ematical programming algorithms. In this study, five optimum structural design
algorithms are developed each of which is based on one of the recent swarm
intelligence-based metaheuristic techniques. These techniques are selected as ant
colony optimization, particle swarm optimizer, artificial bee colony algorithm,
firefly algorithm, and cuckoo search algorithm, respectively. It is shown that all
these are robust and can effectively obtain the optimum designs under the real
loading conditions as well as code provisions. However, their performance differs
in approaching to the global optimum. The experience obtained from two real size
steel frames, one is 568-member steel space frame and the other 354-bar
steel-braced dome, has shown that among the five swarm intelligence techniques,
artificial bee colony algorithm has reached the e lightest optimum designs. The
minimum weights determined by the artificial bee colony algorithm were 12.83 %
in the case of steel space frame and 5.54 % in the case of steel-braced dome lighter
than the heaviest optimum design, respectively. The heaviest optimum designs are
obtained by cuckoo search algorithm and firefly algorithm, respectively. One reason
for this good performance may be having only two parameters to be selected by
users which are the total number of bees and the limiting number of cycles to
abandon food sources. Particle swarm optimizer and cuckoo search algorithms are
also similar to artificial bee colony algorithm regarding the number of parameters.
These techniques have only two parameters to be initialized. This may be the reason
why the optimum designs attained by the particle swarm optimizer and cuckoo
search algorithm are close to the one determined by the artificial bee colony
algorithm. Having several parameters is a disadvantage due to the fact that these
parameters are required to be tuned properly for an efficient performance. Finding
the best combination of these parameters becomes another optimization problem to
be solved. Inspection of the search histories indicates the fact that particle swarm
optimizer demonstrates the second best behavior while firefly algorithm is trapped
in a local optimum. Cuckoo search and ant colony algorithms exhibit slow con-
vergence in the initial stages of the search but toward the final stages they recover
and attain optimum designs not very far from the one determined by artificial bee
colony algorithm. It should be pointed out that the swarm intelligence-based
algorithms used in obtaining the solution of two steel frame design examples are
coded according to their standard forms given by their originators. No
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enhancements are employed that might improve their performance some of which
already available in the literature. Although two real size steel frame design
examples may not be considered sufficient without carrying out statistical analysis
to draw concrete conclusions regarding the efficiency of these five algorithms, one
conclusion does certainly be made. Swarm intelligence-based metaheuristic algo-
rithms are robust, easy to program, and provide solutions to complex discrete
nonlinear programming problem of structural steel design problems in a better way
than mathematical programming techniques.
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Metaheuristic Optimization in Structural
Engineering

S.O. Degertekin and Zong Woo Geem

Abstract Metaheuristic search methods have been extensively used for optimiza-
tion of the structures over the past two decades. Genetic algorithms (GA), ant colony
optimization (ACO), particle swarm optimization (PSO), harmony search (HS), big
bang-big crunch (BB-BC), artificial bee colony algorithm (ABC) and teaching–
learning-based optimization (TLBO) are the most popular metaheuristic optimiza-
tion methods. The basic principle of these methods is that they make an analogy
between the natural phenomena and the optimization problems. In this chapter,
recently developed metaheuristic optimization methods such as self-adaptive har-
mony search and teaching–learning-based optimization are reviewed and the per-
formance of these methods in the field of structural engineering are compared with
each other and the other metaheuristic methods.

Keywords Metaheuristic optimization � Structural engineering � Truss structures

1 Introduction

A family of metaheuristic optimization methods based on swarm intelligence have
been developed in the past two decades. These methods simulate the behaviour of
different groups/swarms/colonies of animals and insects. Ant colony optimization
(ACO), harmony search (HS), particle swarm optimization (PSO), big bang-big
crunch optimization (BB-BC) and artificial bee colony optimization (ABC), teaching–
learning-based optimization (TLBO) are few examples of recent metaheuristic
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algorithms. They also are classified as population-based or nature-inspired opti-
mization methods. The main philosophy of all metaheuristic optimization methods is
the mimicking of the natural phenomenon. Design optimization of skeletal structures
using metaheuristic search methods is an important field of engineering under con-
tinuous development. The state-of-the-art utilization of metaheuristic algorithms in
weight or cost optimization of skeletal structures have been recently reviewed by
Lamberti and Pappalettere [1] and Saka [2].

The ACO was originally proposed by Dorigo et al. [3] for optimization prob-
lems. The method simulates the foraging behaviour of real-life ant colonies.
The ACO attempts to model some of the fundamental capabilities observed in the
behaviour of ants as a method stochastic combinatorial optimization [4]. In addition
to its different applications, the method has also been used for design optimization
of structural systems. ACO was used for optimization of truss structures by Camp
and Bichon [5], Capriles et al. [6], Serra and Venini [7], and Hasancebi et al. [8],
and frame structures by Camp et al. [4], Kaveh and Shojaee [9], Hasancebi et al.
[10], Kaveh and Talatahari [11].

HS was first developed by Geem et al. [12] for solving combinatorial opti-
mization problems. The method bases on the analogy between the musical process
of searching for a perfect state of harmony and searching for solutions to opti-
mization problems. HS has been used for a variety of structural optimization
problems including optimum design of truss structures [8, 13, 14], geodesic domes
[15], grillage systems [16] and steel frames [17–19].

In recent years, improved/modified HS algorithms have been developed in order
to increase the efficiency of the method. Saka and Hasancebi [20] developed an
adaptive harmony search algorithm for design code optimization of steel structures.
Hasancebi et al. [21] proposed an adaptive harmony search method for structural
optimization. Lamberti and Pappalettere [22] proposed an improved
harmony-search algorithm, where trial designs are generated including information
on the gradients of cost function for truss structure optimization. Two improved
harmony search algorithms called efficient harmony-search (EHS) algorithm and
self-adaptive harmony-search (SAHS) algorithm were proposed by Degertekin [23]
for sizing the optimization of truss structures.

The PSO method was first developed by Kennedy and Eberhart [24]. It is based
on the premise that social sharing of information among members of a species offers
and evolutionary advantage [25]. PSO has been used in optimization of skeletal
structures [26–29]. Researchers introduced new features in the standard imple-
mentation of PSO. Li et al. [28, 29] developed a heuristic particle swarm optimizer
(HPSO), which combines the PSO scheme and the HS scheme, for sizing opti-
mization of truss structures. Kaveh and Talatahari [30, 31] introduced a particle
swarmer, ant colony optimization and harmony search scheme for truss structures
with both discrete [30] and continuous variables [31].

The BB-BC proposed by Erol and Eksin [32] simulates the theories of the
evolution of the universe. According to this theory, in the big bang phase energy
dissipation produces disorder, and randomness is the main feature of this phase;
whereas, in the big crunch phase, randomly distributed particles are drawn into an
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order [33]. BB-BC algorithm was applied for sizing optimization of truss structures
[34]. In order to improve the convergence capability of standard BB-BC algorithm,
Kaveh and Talatahari [33, 35] developed hybrid BB-BC (HBB-BC) algorithm to
optimize space trusses and ribbed domes.

The ABC method was first developed by Karaboga [36] for numerical function
optimization. The ABC is an optimization method based on the intelligent beha-
viour of honey bee swarm. The ABC has successfully been applied to the size
optimization of truss structures with both continuous [37] and discrete variables
[38].

Another metaheuristic method called ‘teaching-learning-based optimization
(TLBO)’ has been proposed by Rao et al. [39] for constrained mechanical design
optimization problems. The method bases on the effect of influence of a teacher on
learners and the effect of learners with each other. Rao et al. [40] developed the
TLBO method for large-scale nonlinear optimization problems for finding global
solutions. TLBO was employed for optimum design of planar steel frames [41] and
sizing optimization of truss structures Degertekin and Hayalioglu [42].

In this chapter, the robustness of the SAHS [23] and TLBO [42] will be
investigated in the optimization of truss type structures. Three benchmark truss
structures existing in the current literature are presented to test the efficiency of the
methods. The results obtained from these methods will be compared with those of
other metaheuristic optimization algorithms recently presented in the literatures like
particle swarm optimization (PSO), heuristic particle swarm optimizer (HPSO),
hybrid particle swarm optimization (HPSO), big bang-big crunch optimization
(BB-BC), heuristic particle swarm ant colony optimization (HPSACO), hybrid big
bang-big crunch optimization (HBB-BC), artificial bee colony optimization
(ABC-AP) and improved harmony search algorithm (IHS).

The rest of this study is organized as follows. The formulation of optimum
design problem is given in Sect. 2. SAHS and TLBO methods are explained in
Sects. 3 and 4. The results obtained from the design examples are presented and
compared with other metaheuristic optimization methods in Sect. 5. Finally, con-
clusions are presented in Sect. 6.

2 Formulation of Optimum Design Problem

The minimum weight design problem for a truss structure can be formulated as
Find X ¼ ½x1; x2; . . .; xng� to minimize

WðXÞ ¼
Xng
k¼1

xk
Xmk

i¼1
qiLi ð1Þ
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subject to the following normalized constraints

gsnlðXÞ ¼
rnlj j
rnuj j � 1 � 0; 1 � n � nm; 1 � l � nl ð2Þ

gbnlðXÞ ¼
rclj j
rcuj j � 1 � 0; 1 � n � ncm; 1 � l � nl ð3Þ

gdjlðXÞ ¼
djl
�� ��
dju
�� ��� 1 � 0; 1 � j � nn; 1 � l � nl ð4Þ

xmin� xk � xmax; k ¼ 1; 2; . . .ng ð5Þ

where X is the vector containing the design variables, WðXÞ is the weight of the
truss structure, ng is the total number of member groups (i.e. design variables), xk is
the cross-sectional area of the members belonging to the group k, mk is the total
number of members in the group k, qi is the density of member i, Li is the length of
member i, gsnlðXÞ, gbnlðXÞ and gdjlðXÞ are the constraint violations for member stress,
member buckling stress and joint displacements of the structure. rnl and rcl are the
member stress and the member buckling stress of the nth member due to loading
condition l, rnu and rcu are their upper limits. djl is the nodal displacement of the jth
translational degree of freedom due to loading condition l, dju is its upper limit. nl is
the number of load conditions, nn is the number of nodes, max and min are the
upper and lower limits for cross-sectional area.

The optimum design of truss structures must satisfy optimization constraints
stated by Eqs. (2)–(5). In this study, the constraints are handled using a modified
feasible-based mechanism [30]. The efficiency of the method was previously ver-
ified for optimization of truss structures [23, 30]. The method consists of the
following four rules [30]:
Rule 1: Any feasible design is preferred to any infeasible design.
Rule 2: Infeasible designs containing slight violation of the constraints (from 0.01

in the first search to 0.001 in the last search) are considered as feasible
designs.

Rule 3: Between two feasible designs, the one having the better objective function
value is preferred.

Rule 4: Between two infeasible designs, the one having the smaller constraint
violation is preferred.
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3 Self-Adaptive Harmony Search Algorithm (SAHS)

Harmony-search (HS) algorithm for sizing optimization of the truss structures could
be explained in the following steps [23]:

Step 1. Initializing the harmony search parameters
HS parameters are assigned in this step. The number of design vectors in harmony
memory (HMS), harmony memory consideration rate (HMCR), pitch adjusting rate
(PAR) and the stopping criterion are selected in this step.

Step 2. Initializing harmony memory
All design vectors are stored in the harmony memory (HM). The HM matrix given
in Eq. (6) is filled with randomly generated design vectors as the size of the
harmony memory (HMS) in this step.

HM ¼

x11 x12 . . . x1ng�1 x1ng
x21 x22 . . . x2ng�1 x2ng
..
. ..

.
::: ..

. ..
.

..

. ..
.

::: ..
. ..

.

xHMS�1
1 xHMS�1

2 . . . xHMS�1
ng�1 xHMS�1

ng

xHMS
1 xHMS

2 . . . xHMS
ng�1 xHMS

ng

2
6666666664

3
7777777775

!
!
!
!
!
!

WðX1Þ
WðX2Þ

..

.

..

.

WðXHMS�1Þ
WðXHMSÞ

ð6Þ

In the HM, each row represents a truss design. X1, X2,…, XHMS�1, XHMS andWðX1Þ,
WðX2Þ,…, WðXHMS�1Þ, WðXHMSÞ are designs and the corresponding objective
function values, respectively. The truss designs in the HM are sorted by their
objective function values (WðX1Þ �WðX2Þ � � � � �WðXHMS�1Þ� WðXHMSÞ)
which are calculated using Eq. (1).

Step 3. Improvising a new harmony
A new harmony (i.e. new truss design) Xnew ¼ ðxnew1 ; xnew2 ; . . .; xnewng Þ is generated
using three rules: (i) HM consideration, (ii) pitch adjustment and (iii) random
generation. Generating a new harmony is called ‘improvisation’ [13].

In the HM consideration, the value of the first design variable xnew1 for the new
harmony is chosen from the HM, (i.e. fx11; x21; . . .:; xHMS�1

1 ; xHMS
1 g) or from the

possible range of values. The other design variables of new harmony
ðxnew2 ; . . .; xnewng�1; x

new
ng Þ are chosen by the same consideration. HMCR is applied as

follows:

xnewi 2 fx1i ; x2i ; . . .. . .; xHMS�1
i ; xHMS

i g
xnewi 2 Xs

(
with probability HMCR
with probability ð1� HMCRÞ ð7Þ

where Xs is the set of the possible range of values for each design variable
(xmin�Xs� xmax). The HMCR, which varies between 0 and 1, is the rate of
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choosing one value from historical values stored in the HM, while (1–HMCR) is the
rate of randomly selecting one value from the possible range of values [14]. For
example, a HMCR value of 0.95 indicates that HS algorithm will choose the design
variable from historically stored values in the HM with a 95 % probability and from
the entire possible range with a 5 % probability [13].

Any design variable of the new harmony obtained by the memory consideration
is examined to determine whether it is pitch-adjusted or not. This is performed by
the pitch adjusting rate (PAR). PAR investigates a better design in the neighbouring
of the current design and is applied as follows:

Pitch adjusting decision for

xnewi  yes with probability PAR
no with probability ð1� PARÞ

�
ð8Þ

The value of (1–PAR) sets the rate of doing nothing, whereas the value of PAR
indicates that xnewi is replaced as follows:

xnewi  xnewi þ bw� uð�1; 1Þ ð9Þ

where bw is the arbitrary distance bandwidth for continuous variable and uð�1; 1Þ
is a uniform distribution between −1 and 1. For example, a PAR of 0.1 indicates
that the algorithm will choose a neighbouring value with 10 % × HMCR probability
[13]. HMCR and PAR parameters are introduced to allow the solution to escape
from the local optima and to improve the global optimum prediction of HS algo-
rithm [13].

Step 4. Updating the harmony memory
If the new harmony Xnew ¼ ðxnew1 ; xnew2 ; . . .; xnewng Þ is better than the worst design in
the HM, judged in terms of the objective function value, the new harmony is
included in the HM and the worst harmony is excluded from the HM. In this
process, the HM is sorted again by objective function values.

Step 5. Terminating the process
Steps 3 and 4 are repeated until the termination criterion is satisfied.

The proposed SAHS algorithm differs from the standard HS algorithm as indi-
cated in the following aspects:

SAHS algorithm presented in this study dynamically updates PAR during the
search process as follows [23]:

PARðnsÞ ¼ PARmax � ðPARmax � PARminÞ
NI

� ns ð10Þ
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In SAHS algorithm, bw is completely removed and Eq. (9) is replaced as follows:

xnewi ¼ xnewi þ ½maxðHMÞi � xnewi � � uð0; 1Þ if uð0; 1Þ� 0:5 ð11Þ

xnewi ¼ xnewi � ½xnewi �minðHMÞi� � uð0; 1Þ if uð0; 1Þ[ 0:5 ð12Þ

where minðHMÞi and maxðHMÞi are the lowest and highest values of the ith design
variable in the HM. uð0; 1Þ is a uniform random number in the [0,1] range. Since
minðHMÞi and maxðHMÞi approach optimum gradually, SAHS algorithm produces
finer adjustments to the harmony.

4 Teaching–Learning-Based Optimization

The TLBO method presents a mathematical model for optimization problems based
on the simple teaching process. In the TLBO, the learners in a class are considered as
the population. The teacher is accepted as the well-versed person in his/her pro-
fession. Hence, the learner with the highest mark in a class is mimicked as a teacher.

An analogy between the TLBO and the optimization of truss structures is
established in the following way: a class is considered as a population which
contains truss designs, a learner in a class denotes a truss design in the population, a
design variable represents a subject taught to student, the grade of a student denotes
the weight of the truss design, the teacher is the truss design with the lowest weight
in the population.

Optimization of truss structures using the TLBO method consists of following
steps [42]:

Step 1. Initializing the TLBO
In this step, the class is filled with randomly generated learners (truss designs) as the
size of the population (ps).

ps ¼

x11 x12 . . . x1ng�1 x1ng
x21 x22 . . . x2ng�1 x2ng
..
. ..

.
::: ..

. ..
.

..

. ..
.

::: ..
. ..

.

xps�11 xps�12 . . . xps�1ng�1 xps�1ng

xps1 xps2 . . . xpsng�1 xpsng

2
6666666664

3
7777777775

!
!
!
!
!
!

WðX1Þ
WðX2Þ

..

.

..

.

WðXps�1Þ
WðXpsÞ

ð13Þ

In the class, each row represents a truss design. X1, X2,…, Xps�1, Xps and
WðX1Þ, WðX2Þ,…, WðXps�1Þ, WðXpsÞ are truss designs and the corresponding
weight values, respectively. It should be noted that the designs in the class are
sorted by their weight values (WðX1Þ�WðX2Þ� � � � �WðXps�1Þ�WðXpsÞ)
which are calculated using Eq. (1).
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Step 2. Teaching phase
The truss design with the lowest objective function (WðX1Þ) is assigned as the
teacher ðX teacher ¼ X1Þ. The aim of the teacher is to put effort to move the mean of
the class ðXmeanÞ. Therefore, ith design (i ≠ 1) is modified using the following
expression:

Xnew;i ¼ Xiþ rðX1 � TFX
meanÞ ð14Þ

in which Xi and Xnew;i are the current and new designs, respectively. r is the random
number uniformly distributed in the range of [0,1], TF is the teaching factor
which is either 0 or 1 [39] and Xmean is the mean of the designs calculated as the
following way:

Xmean ¼ m class
Xps
i¼1

xi1

 ! !
;m class

Xps
i¼1

xi2

 ! !
; . . .. . .;m class

Xps
i¼1

xing

 ! !" #

ð15Þ

where mð�Þ is the mean of the design variable. If the new design (Xnew;i) is better
than the current design (Xi) (i.e. WðXnew;iÞ\WðXiÞ), the new design is replaced
with the current design, Xi ¼ Xnew;i.

Step 3. Learning phase
In addition to the teacher’s effort to improve the mean of the class, the learners also
interact with each other to improve themselves. A design in the population is
randomly interacted with other designs to improve its quality. The learning phase is
applied to learn new information between the design i and j (i ≠ j) in the population
and can be expressed as [41]

Xnew;i ¼ Xiþ rðXi � X jÞ if WðXiÞ\WðX jÞ ð16aÞ

Xnew;i ¼ Xiþ rðX j � XiÞ if WðX jÞ\WðXiÞ ð16bÞ

in which X j is the randomly determined design which has to be different from Xi. If
the value ofWðXnew;iÞ is better thanWðXiÞ (i.e.WðXnew;iÞ\WðXiÞ), the new design
is replaced with the current design Xi ¼ Xnew;i.

Step 4. Terminating the search process
The steps 2 and 3 are repeated until the lightest truss design does not improve
during a predetermined number of structural analyses.

82 S.O. Degertekin and Z.W. Geem



5 Design Examples

The effectiveness and robustness of the SAHS [23] and TLBO [42] are tested using
four truss structures. The results obtained by the methods are compared with those
of HS [13], IHS [22], PSO [25], PSO, PSOPC and HPSO [28], HPSACO [31],
HBB-BC [33], BB-BC [34] and ABC-AP [37].

SAHS algorithm produces the minimum weight design for the values of 20 for
HMS, 0.90 for HMCR, 0.20 and 0.80 for PARmin and PARmax, 0.001 and 0.01
[23].

Two tuning parameters are employed in the TLBO: the population size (ps) and
the number of designs generated in the learning phase (ndlp). The best combination
of them obtained after sensitivity analysis and the minimum weight design for the
TLBO is obtained by setting ps = 30, ndlp = 4 [42].

Twenty independent runs are made for each design example involving 20 dif-
ferent initial designs because of the stochastic nature of the SAHS and TLBO. The
best designs obtained by the methods, the number of structural analyses required to
the optimum solutions, the average weight and the standard deviation of 20 inde-
pendent runs are given in the tables. The SAHS and TLBO are coded in FORTRAN
language and executed on a Intel Pentium Core 2 Duo 2.2 GHz machine.

5.1 Ten-Bar Plane Truss

The planar ten-bar plane truss, shown in Fig. 1 is the first design example. The
Young’s modulus and density of truss members are 104 ksi (1 ksi = 6.895 MPa) and
0.1 lb/in3, respectively. The allowable stress for all members is specified as 25 ksi
both in tension and compression. The maximum displacements of all free nodes in
the X and Y directions are limited to ±2. Each member is considered as a design
variable with the minimum gauge of 0.1 in2.

The results obtained by the SAHS [23], TLBO [42] and the other optimization
methods are reported in Table 1. The presented methods in this chapter found the

Fig. 1 Ten-bar plane truss
(1 in. = 2.54 cm,
1 kip = 4.448 kN)
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better designs than those of the HS [13], PSO [25] and HPSACO [31] since the
lighter designs obtained by classical HS [13], PSO [25] and HPSACO [31] violated
the design constraints while the designs obtained by the SAHS [23] and TLBO [42]

Fig. 2 Convergence histories for the ten-bar plane truss

Fig. 3 Twenty-five-bar space truss
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are feasible. Although IHS [22] required the lowest number of structural analyses, it
should be noted that the number of structural analyses required by IHS [22] is not a
significant basis of comparison to evaluate the efficiency of SAHS [23] and TLBO
[42] since the IHS [22] included gradient information that allowed the number of
function evaluations to be drastically reduced as gradient information, inherently
speed up the optimization process [23]. Convergence histories (i.e. structural weight
versus number of structural analyses) are illustrated in Fig. 2.

5.2 Twenty-Five-Bar Space Truss

The twenty-five-bar space truss, shown in Fig. 3 is one of the most popular design
examples used in the literature for comparing different optimization methods. The
Young’s modulus and the density of truss members are 104 ksi and 0.1 lb/in3,
respectively. The structure is subject to the two loading conditions given in Table 2.
The design variables of the structure and the allowable stress values for all groups
are listed in Table 3. The displacement of nodes in all directions is restricted to be
less than ±0.35 in. The minimum cross-sectional area for each group of elements is
0.01 in2.

Table 2 Loading conditions for the twenty-five-bar space truss

Node Condition 1 Condition 2

Fx Fy Fz Fx Fy Fz
1 0.0 20.0 −5.0 1.0 10.0 −5.0

2 0.0 −20.0 −5.0 0.0 10.0 −5.0

3 0.0 0.0 0.0 0.5 0.0 0.0

6 0.0 0.0 0.0 0.5 0.0 0.0

Note Loads are in kips

Table 3 Allowable stress values for the twenty-five-bar space truss

Design variables At (in.
2) Allowable compressive stress (ksi) Allowable tension stress (ksi)

A1 35.092 40.0

A2–A5 11.590 40.0

A6–A9 17.305 40.0

A10–A11 35.092 40.0

A12–A13 35.092 40.0

A14–A17 6.7590 40.0

A18–A21 6.9590 40.0

A22–A25 11.082 40.0
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The results obtained by the SAHS [23], TLBO [42] and the other optimization
methods existing in the literature are reported in Table 4. It is clear from Table 4
that the TLBO [42] developed the best design overall since the lighter design
obtained by HS [13] and HPSACO [31] violated the design constraints while the
design obtained by the TLBO [42] is feasible. Moreover, it should be noted that
although the TLBO [42] required more structural analyses than the SAHS [23] to
find the optimum design, the TLBO [42] developed a design with a weight of
545.38 lb after 6665 structural analyses while the SAHS [23] required 6941
structural analyses to find the same weight. The convergence histories are illustrated
in Fig. 4.

5.3 Seventy-Two-Bar Space Truss

The third example deals with the design of the seventy-two-bar space truss shown
in Fig. 5. The structure is subject to the loading conditions given in Table 5. The
Young’s modulus and density of the material are 104 ksi and 0.1 lb/in3, respec-
tively. The member cross-sectional areas are treated as design variables, and are
divided into 16 groups. The allowable stress for all members is specified as 25 ksi
both in tension and compression. The maximum displacements of all free nodes are
limited to ±0.25 in. The minimum cross-sectional areas are specified as 0.1 in2.

Table 6 shows the results obtained by the SAHS [23], TLBO [42] and the other
optimization methods reported in current literature [13, 25, 28, 33, 34, 37].
The TLBO [42] founded the lightest design overall because the lighter design
obtained by the HS [13] violates the design constraints. It is seen from Table 6 that
the BB-BC [34] found a minimum weight of 379.85 lb after 19621 structural
analyses for case 1 while the TLBO [42] developed the same weight after 8422
structural analyses. Figure 6 shows the convergence histories of the SAHS [23] and
TLBO [42].

Fig. 4 Convergence history
for the twenty-five-bar space
truss
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Fig. 5 Seventy-two-bar space truss: a dimensions b element and node numbering patterns for the
first storey

Table 5 Loading conditions
for the seventy-two-bar space
truss

Node Condition 1 Condition 2

Fx Fy Fz Fx Fy Fz
17 5.0 5.0 −5.0 0.0 0.0 −5.0

18 0.0 0.0 0.0 0.0 0.0 −5.0

19 0.0 0.0 0.0 0.0 0.0 −5.0

20 0.0 0.0 0.0 0.0 0.0 −5.0

Note Loads are in kips
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6 Conclusions

The SAHS and TLBO obtained results as good as or better than other metaheuristic
optimization methods in terms of both the optimum solutions and the convergence
capability. It appeared that although the TLBO developed slightly heavier designs
than the PSOPC, HPSO and ABC-AP in a few cases, it required significantly less
structural analyses than the PSOPC, HPSO and ABC-AP in all design examples. It
should be noted that standard deviation of optimized weights obtained over 20
independent runs was quite small, which is <1.0 % in all design examples, com-
pared with average optimized weight. This points out that the SAHS and TLBO are
able to find a nearly global optimum design.
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Performance-Based Optimum Seismic
Design of Steel Dual Braced Frames by Bat
Algorithm

Saeed Gholizadeh and Hamed Poorhoseini

Abstract One of the challenging problems in the field of structural engineering is
designing cost-efficient structures with improved performance subject to earthquake
loading conditions. Structural optimization procedures can be effectively employed
for performance-based optimal design of structures. In this study, bat algorithm
(BA) is utilized to implement performance-based optimum seismic design of steel
dual braced frames for various performance levels. The required structural seismic
responses are evaluated by performing nonlinear pushover analysis. The results
found by BA are then compared with those of obtained by other popular
meta-heuristics such as firefly algorithm (FA) and particle swarm optimization
(PSO) to provide an insight about its computational performance. Two numerical
examples are presented and the numerical results reveal that the BA outperforms
PSO and FA.

Keywords Meta-heuristic � Bat algorithm � Optimization � Performance-based
design � Earthquake � Steel structure � Dual braced frame

1 Introduction

One of the most important issues in designing a structural system is its sufficient
seismic resistance to ensure availability after an earthquake. In recent years, the
concepts of performance-based design were developed and applied in the frame-
work of powerful and reliable seismic design procedures. On the other hand, the
seismic performance of structural systems can be affected by a large number of
parameters and therefore, recognizing that the current design is the best solution or
still there is room for finding cost-efficient solutions is a quite difficult task. In the
face of increase in price of materials, finding cost-efficient structural designs, with
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improved performance, is one of the major concerns in the field of structural
engineering. In order to achieve this purpose, structural optimization methodologies
have been developed during the last decades. The performance-based design of
steel structures in the framework of structural optimization is a topic of growing
interest [1–4]. In the performance-based design approaches, nonlinear analysis
procedures are efficiently employed to evaluate the seismic response of structures.

Performance levels are usually divided into three categories: immediate occu-
pancy (IO), life safety (LS), and collapse prevention (CP). The IO level implies
very light damage with minor local yielding and negligible residual drifts. In the LS
level, the structure tolerates sever damage, but it remains safe for the occupants to
evacuate the building. The CP level is associated with extensive inelastic distortion
of structural members and an increase in load or deflection results in collapse of the
structure. The performance-based design methods tend to consider the nonlinear
seismic response of structures. These methods directly address inelastic deforma-
tions to identify the levels of damage during severe seismic events. A nonlinear
analysis tool is required to evaluate earthquake demands at the various performance
levels. Pushover analysis is widely adopted as the effective tool for such nonlinear
analysis because of its simplicity compared with dynamic nonlinear procedures.
The purpose of the nonlinear static pushover analysis is to assess structural per-
formance in terms of strength and deformation capacity globally as well as at the
element level during the incremental loading process [2].

The traditional performance-based design process can be effectively replaced by
an automatic advanced procedure for structural seismic design utilizing structural
optimization algorithms. In the last years, many researches have been done in the
field of performance-based optimum design of structures. However, a few resear-
ches have utilized meta-heuristics. During the last decades, meta-heuristic methods
have received considerable attention and have experienced rapid development.
Their popularity lies in their ease of implementation and their ability to find global
or near global optimum designs. Their ability to explore design space makes them
more suitable for handling complex optimization problems with highly nonlinear
objective functions with many local optima. A number of works which address
performance-based optimum design employing meta-heuristics are reviewed here.
Liu et al. [5] proposed a genetic algorithm (GA) based multi-objective structural
optimization procedure for steel frames considering weight, maximum inter-story
drift for two-performance levels, and design complexity criteria objective functions.
Fragiadakis and Lagaros [6] presented a methodology based on evolution strategies
(ES) for the performance-based optimum design of steel structures subjected to
seismic loading considering inelastic behavior and life-cycle cost to take into
account the impact of future earthquakes during the design phase. Kaveh et al. [7]
compared the computational performance of ant colony optimization (ACO) and
genetic algorithm (GA) meta-heuristics for performance-based optimal seismic
design of frame structures. Gholizadeh and Moghadas [2] proposed an improved
quantum particle swarm optimization (IQPSO) meta-heuristic algorithm for tack-
ling the problem of performance-based optimum design of steel frames. Gholizadeh
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[1] proposed a computational methodology for performance-based optimum seis-
mic design of steel moment frames including a modified firefly algorithm
(MFA) for performing optimization and a wavelet cascade-forward
back-propagation (WCFBP) new neural network for prediction the results of
nonlinear pushover analysis during the optimization process.

One of the efficient meta-heuristics which was proposed by Yang [8] is bat
algorithm (BA). The BA is based on the echolocation behavior of bats. A number of
successful applications of BA in the field of structural engineering have been
reported in literature [9–11]. The main aim of this study is to implement
performance-based optimum seismic design of dual steel frame together with
X-bracing utilizing BA. The optimization task is also achieved by firefly algorithm
(FA) and particle swarm optimization (PSO) for comparing the results. Two
illustrative examples and the numerical results reveal that BA possesses better
computational performance compared with PSO and FA.

2 Performance-Based Optimum Seismic Design

According to current design codes the strength of the structure is evaluated at one
limit-state and the serviceability is usually checked in order to ensure that the
structure will not deflect excessively. Performance-based seismic design (PBSD)
methodology differs from seismic design procedures for the design of new build-
ings specified in the current building design codes. PBSD is a design procedure in
which the seismic demands of a structure are determined at predefined performance
levels by introducing design checks at a higher level to ensure reliable and pre-
dictable seismic performance over its life. The definition of the performance
objectives is the fundamental part in PBSD. A performance objective is defined as a
given level of performance for a specific hazard level. To define a performance
objective, at first the level of structural performance should be selected and then the
corresponding seismic hazard level should be determined. In the present chapter,
IO, LS, and CP performance levels are considered according to FEMA-273 [12].
Each objective corresponds to a given probability of being exceed during 50 years.
A usual assumption [4] is that the IO, LS, and CP performance levels correspond,
respectively, to a 20, 10, and 2 % probability of exceedance in 50 year period. In
this study, the mentioned hazard levels are considered [1].

In order to achieve PBSD, the structural nonlinear responses should be evaluated
and in the present study the nonlinear static pushover analysis is conducted to
quantify seismic induced nonlinear response of structures. The displacement
coefficient method [13] is adopted in this work to evaluate the seismic demands on
building frameworks under equivalent static earthquake loading. In this method the
structure is pushed with a specific distribution of the lateral loads until the target
displacement is reached. The target displacement can be obtained from the
FEMA-356 [13] as follows:
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dt ¼ C0C1C2C3Sa
T2
e

4p2
g ð1Þ

where C0 relates the spectral displacement to the likely building roof displacement;
C1 relates the expected maximum inelastic displacements to the displacements
calculated for linear elastic response; C2 represents the effect of the hysteresis shape
on the maximum displacement response; and C3 accounts for P-Δ effects. The Te is
the effective fundamental period of the building in the direction under considera-
tion; Sa is the response spectrum acceleration corresponding to the Te.

In this study, the Open Sees [14] platform is employed to perform the pushover
analysis. In order to ensure that the obtained designs possess desirable performance,
according to the employed design code, several constraints should be considered
during the design process. These constraints can be checked in two steps as follows:

2.1 Serviceability Checks

The structure is checked for gravity loads. To perform serviceability checks, the
following load combinations (QSC

G ) are taken into account [1]:

QSC
G ¼

QD

QD þQL

1:4QD

1:2QD þ 1:6QL

8>><
>>:

ð2Þ

where QD and QL are dead and live loads, respectively.
In this work, the checks of LRFD-AISC [15] code must be satisfied as follows

for the non-seismic load combinations for all structural elements:

for
Pu

ucPn
\0:2; gr;lðXÞ ¼ Pu

2ucPn
þ Mux

ubMnx
þ Muy

ubMny

� �� �
� 1� 0;

l ¼ 1; . . .; ne
ð3Þ

for
Pu

ucPn
� 0:2; gr;lðXÞ ¼ Pu

ucPn
þ 8

9
Mux

ubMnx
þ Muy

ubMny

� �� �
� 1� 0;

l ¼ 1; . . .; ne
ð4Þ

where Pu is the required strength (tension or compression); Pn is the nominal axial
strength (tension or compression); uc is the resistance factor; Mux and Muy are the
required flexural strengths in the x and y directions, respectively; Mnx and Mny are
the nominal flexural strengths in the x and y directions; and ub is the flexural
resistance reduction factor (ub ¼ 0:9); and X is the vector of design variables.
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As the completion of the first step is prerequisite for the second one, if the
checks of the first step are not satisfied then the candidate design is rejected, else a
nonlinear pushover analysis based on the displacement coefficient method is per-
formed in order to estimate the capacity of the structure in different performance
levels. The structural capacity is associated to the maximum inter-story drift values.
The constraints of the second step can be described as follows [1]:

2.2 Ultimate Limit-State Checks

The applied PBSD concept is a displacement-based design procedure where the
design criteria and the capacity demand levels are expressed in terms of displace-
ments rather than forces [16]. To perform ultimate limit-state checks, the lateral
drifts should be determined at various performance levels. In pushover analysis, the
lateral load distribution in the height of the frame is defined as follows [12]:

Ps ¼ Vb
GsHk

sPns
m¼1 GmHk

m

� �
ð5Þ

where Ps = lateral load applied at story s; Vb = base shear; Hs, Hm = height from the
base of the building to stories s and m, respectively; Gs, Gm = seismic weight for
story levels s and m, respectively; k = constant number determined by period and in
this chapter k is chosen to be 2; ns is the number of stories.

The following component gravity forces, QPBD
G , is considered for combination

with seismic loads according to [12].

QPBD
G ¼ 1:1ðQD þQLÞ ð6Þ

In order to implement pushover analysis to evaluate the seismic demands of the
structures, the target displacement should be determined. To achieve this task, Sa
should be calculated for the three performance levels. In this case three acceleration
design spectra, which represent three different earthquake levels corresponding to
20, 10, and 2 % probability of exceeding in a 50 year period, are taken as the basis
for calculating the seismic loading for the three performance levels IO, LS, and CP,
respectively. Without loss of generality, the calculation of spectral acceleration Sia
for each design spectrum i can be expressed as:

Sia ¼
FaSisð0:4þ 3T=T0Þ if 0\T � 0:2Ti

0
FaSis if 0:2Ti

0\T � Ti
0

FvSi1=T if T [ Ti
0

; i ¼ IO, LS, CP

8<
: ð7Þ
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Ti
0 ¼

FvSi1
FaSis

ð8Þ

where T is the elastic fundamental period of the structure, which is computed here
from structural modal analysis; Sis and S

i
1 are the short-period and the first sec.-period

response acceleration parameters, respectively. Fa and Fv are the site coefficients
determined from FEMA-273 [12], based on the site class and the values of the
response acceleration parameters Sis and Si1, respectively, according to Table 1 [7].

The lateral drift constraints at various performance levels can be expressed as
follows:

gid;j ¼
dij
diall

� 1� 0; j ¼ 1; 2; . . .; ns, i ¼ IO, LS, CP ð9Þ

where dij is the jth story drift of a steel dual braced frame associated with ith

performance level; diall is the allowable values which in this study are chosen to be
0.5, 1.5, and 2.0 %, for IO, LS, and CP performance levels, respectively [12].

The plastic rotation constraints for beams and columns at various performance
levels are as follows:

gih;l ¼
hil
hiall

� 1� 0; l ¼ 1; 2; . . .; ne, i ¼ IO, LS, CP ð10Þ

where hik and hiall are the kth element plastic rotation and its allowable value
associated with ith performance level.

In FEMA-356 [13] hall for IO, LS, and CP performance levels is chosen to be hy,
6hy, and 8hy, respectively. For beams and columns hy can be computed as:

hy ¼
ZFyelb
6EIb

Beams
ZFyelc
6EIc 1� P

Pye

� �
Columns

8<
: ð11Þ

where Z is plastic section modulus, Fye is expected yield strength of the material,
E is modulus of elasticity, lb and Ib are length and moment of inertia of a beam,
respectively, lc and Ic are length and moment of inertia of a column, respectively,
P is axial force in the column at the target displacement and Pye is expected axial
yield force of the column.

Table 1 Performance level site parameters for site class of D

Performance level Hazard level Ss (g) S1 (g) Fa Fv

IO 20 %/50 years 0.658 0.198 1.27 2.00

LS 10 %/50 years 0.794 0.237 1.18 1.92

CP 2 %/50 years 1.150 0.346 1.04 1.70
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The axial deformation constraints for braces at various performance levels are as
follows:

giD;k ¼
Di
k

Di
all

� 1� 0; k ¼ 1; 2; . . .; nb, i ¼ IO, LS, CP ð12Þ

where Di
l is the axial deformation of a brace at ith performance level. Di

all for braces
in compression at IO, LS, and CP performance levels is chosen to be 0:25DC, 5DC,
and 7DC, respectively, in which DC is the axial deformation at expected buckling
load. Di

all for braces in tension at IO, LS, and CP performance levels is chosen to be
0:25DT, 7DT, and 9DT, respectively in which DT is the axial deformation at
expected tensile yielding load. nb is the number of braces.

In this study, for modeling nonlinear behavior of beams and columns a simple
bilinear stress–strain relationship with 3 % kinematic hardening is considered. For
modeling braces, uniaxial co-rotational truss element is used. As shown in Fig. 1
the hardening rule is bilinear kinematics in tension. In compression, according to
FEMA274 [17], it is assumed that the element buckles at its corresponding buckling
stress state and its residual stress is about 20 % of the buckling stress.

In this figure, σcr and σy are buckling and yield stresses, respectively and εcr and
εy are their corresponding strains. In this model, the buckling stress of braces is
computed based on the AISC-LRFD code [15] as follows:

rb ¼
ð0:658k2c Þry kc � 1:5

ð0:877
k2c

�
ry kc [ 1:5

(
; kc ¼ KL

rp

ffiffiffiffiffi
ry
E

r
ð13Þ

where λc is slenderness parameter; K is effective length factor of braces.

Fig. 1 Stress–strain relationship for braces
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2.3 Optimization Problem Statement

The main aim of a sizing structural optimization problem is usually to minimize the
weight of the structure subject to a number of design constraints. For a steel
structure with ne members that are collected in ng design groups, if the variables
associated with each design group are selected from a given profile list of steel
sections (such as W-shaped sections), a discrete optimization problem can be for-
mulated as follows:

Find:X ¼ x1 x2 � � � xi � � � xng
	 
T ð14Þ

To minimize:wðXÞ ¼
Xng

i¼1

qiAi

Xnm
j¼1

Lj ð15Þ

Subject to: gkðXÞ� 0; k ¼ 1; 2; . . .; nc ð16Þ

where xi is an integer value expressing the sequence numbers of steel sections
assigned to ith group; w represents the weight of the frame, ρi and Ai are weight of
unit volume and cross-sectional area of the ith group section, respectively; nm is the
number of elements collected in the ith group; Lj is the length of the jth element in the
ith group; gk(X) is the kth behavioral constraint and nc is the number of constraints.

In this study, the constraints of performance-based optimum seismic design
(PBOSD) problem is handled using the concept of exterior penalty functions
method (EPFM) [18]. The general approach of penalty function methods is to
minimize the objective function as an unconstrained function but to provide some
penalty to limit constraint violations. In this case, the pseudo-unconstrained
objective function is expressed as follows:

UðX; rpÞ ¼ wðXÞ 1þ PFr þ PFd þ PFh þ PFDð Þ ð17Þ

PFr ¼ rp
Xne
l¼1

ðmaxf0; gr;lgÞ2 ð18Þ

PFd ¼ rp
XIO;LS;CP

i

Xns
j¼1

ðmaxf0; gid;jgÞ2 ð19Þ

PFh ¼ rp
XIO;LS;CP

i

Xne
l¼1

ðmaxf0; gih;lgÞ2 ð20Þ

PFD ¼ rp
XIO;LS;CP

i

Xnb
k¼1

ðmaxf0; giD;kgÞ2 ð21Þ
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where U, PFσ, PFd, PFθ, PFΔ, and rp are the pseudo objective function, penalty
function for serviceability check, penalty function for drift checks, penalty function
for element plastic rotation checks, penalty function for braces’ axial deformation
checks, and positive penalty parameter, respectively.

3 Meta-Heuristic Algorithms

Meta-heuristics are popular due to their interesting characteristics for solving a wide
range of continuous, discrete, and combinatorial complex optimization problems.
Most of the meta-heuristics mimic natural phenomena to search the design space of
the optimization problems. In recent years, it was found that meta-heuristic algo-
rithms are computationally efficient even if greater number of optimization cycles is
needed to reach the optimum in comparison with gradient-based algorithms.
Furthermore, meta-heuristic algorithms are more robust in finding the global
optima, due to their random search, whereas mathematical programming algorithms
may be trapped into local optima. In this work, PSO, FA, and BA meta-heuristic
algorithms are employed to tackle the stated optimization problem. The main
concepts of the mentioned meta-heuristics are explained as follows:

3.1 Particle Swarm Optimization

PSO is a population-based meta-heuristic algorithm in which the population is
called swarm and each individual in the swarm is called particle. Each particle of
the swarm represents a potential solution of the optimization problem. This
meta-heuristic algorithm first presented by Eberhart and Kennedy [19]. The parti-
cles fly through the search space and their positions are updated based on the best
positions of individual particles in each iteration. Using following equations the
position of the particles is updated:

Vkþ 1
i ¼ xVk

i þ c1r1 Pk
best; i � Xk

i

� �
þ c2r2 Gk

best � Xk
i

� � ð22Þ

Xkþ 1
i ¼ Xk

i þVkþ 1
i ð23Þ

where Xi and Vi represent the current position and the velocity of the ith particle
respectively; Pk

best; i is the best previous position of the ith particle (called pbest) and

Gk
best is the best global position among all the particle in the swarm (called gbest);

Positive constants c1 and c2 are the cognitive and social components, respectively;
r1 and r2 are two uniform random sequences generated from range (0, 1) and ω is
the inertia weight used discount the previous velocity of the particle persevered.
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Due to the importance of ω in achieving an efficient search behavior, the
updating criterion can be taken as follows:

x ¼ xmax � xmax � xmin

kmax
� k ð24Þ

where xmax and xmin are the maximum and minimum values of x, respectively.
Also, kmax, and k are the number of maximum iterations and the number of present
iteration, respectively.

In this work, the internal parameters of PSO are as follows: c1 = 2.0, c2 = 2.0,
xmax ¼ 0:5 and xmin ¼ 0:0.

3.2 Firefly Algorithm

The FA, introduced by Yang [20], is a meta-heuristic optimization algorithm
inspired by the flashing behavior of fireflies. FA is a population-based algorithm,
which may share many similarities with PSO. Fireflies communicate, search for
pray, and find mates using bioluminescence with varied flashing patterns [21]. In
order to develop the firefly algorithm, natural flashing characteristics of fireflies
have been idealized using the following three rules [20]:

a. All of the fireflies are unisex; therefore, one firefly will be attracted to other
fireflies regardless of their sex.

b. Attractiveness of each firefly is proportional to its brightness, thus for any two
flashing fireflies, the less bright firefly will move towards the brighter one. The
attractiveness is proportional to the brightness and they both decrease as their
distance increases. If there is no brighter one than a particular firefly, it will
move randomly.

c. The brightness of a firefly is determined according to the nature of the objective
function.

The attractiveness of a firefly is determined by its brightness or light intensity
which is obtained from the objective function of the optimization problem.
However, the attractiveness β, which is related to the judgment of the beholder,
varies with the distance between two fireflies. The attractiveness β can be defined by
[22]

b ¼ b0e
�c:r2 ð25Þ

where r is the distance of two fireflies, β0 is the attractiveness at r = 0, and γ is the
light absorption coefficient.

The distance between two fireflies i and j at Xi and Xj, respectively, is determined
using the following equation:
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rij ¼ Xi � Xj



 

 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd

k¼1
ðxi;k � xj;kÞ2

r
ð26Þ

where xi,k is the kth parameter of the spatial coordinate xi of the ith firefly.
In the firefly algorithm, the movement of a firefly i towards a more attractive

(brighter) firefly j is determined by the following equation [22]:

Xi ¼ Xi þ b0e
�c:r2ijðXj � XiÞþ aðrand � 0:5Þ ð27Þ

where the second term is related to the attraction, while the third term is random-
ization with α being the randomization parameter. Also rand is a random number
generator uniformly distributed in [0, 1].

In this work, the modified equation proposed in [23] for computing α is
employed as follows:

a ¼ amax � amax � amin

tmax
� t ð28Þ

where αmax and αmin are the maximum and minimum values of α. Also, tmax and
t are the numbers of maximum iterations and present iteration, respectively.

In this work, the internal parameters of FA are as follows: β0 = 1.0, γ = 1.0,
αmax = 1.0, and αmin = 0.2.

3.3 Bat Algorithm

The BA meta-heuristic optimization algorithm is inspired from the echolocation
behavior of microbats. Echolocation is an advanced hearing based navigation
system used by bats to detect objects in their surroundings by emitting a sound to
the environment. While they are hunting for preys or navigating, these animals
produce a sound wave that travels across the canyon and eventually hits an object or
a surface and returns to them as an echo. The sound waves travel at a constant speed
in zones where atmospheric air pressure is identical. By following the time delay of
the returning sound, these animals can determine the precise distance to circum-
jacent objects. Further, the relative amplitudes of the sound waves received at each
individual ear are used to identify shape and direction of the objects. The infor-
mation collected this way of hearing is synthesized and processed in the brain to
depict a mental image of their surroundings [24].

The echolocation characteristics of microbats in BA are idealized as the fol-
lowing rules [25]:
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1. All bats use echolocation to sense distance, and they also ‘‘know’’ the difference
between food/prey and background barriers in some magical way;

2. Bats randomly fly with velocity Vi at position Xi with a fixed frequency fmin,
varying wavelength λ and loudness A0 to search for prey. They can automati-
cally adjust the wavelength (or frequency) of their emitted pulses and adjust the
rate of pulse emission r 2 [0, 1], depending on the proximity of their target;

3. Although the loudness can vary in many ways, it is assumed that the loudness
varies from a large (positive) A0 to a minimum constant value Amin;

The position and velocity of each bat should be updated in the design space
according to the following equations:

fi ¼ fmin þ fmax � fminð Þui ð29Þ

Vkþ 1
i ¼ round Vk

i þ Xk
i � X�� �

fi
� � ð30Þ

Xkþ 1
i ¼ Xk

i þVkþ 1
i ð31Þ

where fmin and fmax are the lower and upper bounds imposed for the frequency range
of bats. ui 2 [0, 1] is a vector containing uniformly distribution random numbers;
X� is the current global best solution;

A local search is implemented on a randomly selected bat from the current
population using the following equation:

Xkþ 1 ¼ Xk þ roundðejAkþ 1Þ ð32Þ

where ej is a uniform random number in [−1, 1] selected for each design variable of
the selected bat. Ak+1 is the average loudness of all the bats at the current iteration.
Also, “round” is to discrete the continuous space into an integer/discrete one.

The loudness Ai and the rate ri of pulse emission have to be updated accordingly
as the iterations proceed. As the loudness usually decreases once a bat has found its
prey while the rate of pulse emission increases, the loudness can be chosen as any
value of convenience. In this work, A0 = 1 and Amin = 0 also, r0 = 0 and rmax = 1.

Akþ 1
i ¼ aAk

i ð33Þ

rkþ 1
i ¼ r0i 1� e�c:k

� � ð34Þ

where α and γ are constants.
In this work, the internal parameters of BA are as follows: α = 0.9, γ = 0.01,

fmin = 0.0, and fmax = 1.0.
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4 Numerical Results

Two numerical examples of steel dual braced frames are presented. It is assumed
that beams and columns are rigidly connected to each other and the X-bracings are
connected to the frames with pinned ends. In these examples, the modulus of
elasticity is 204 GPa and yield stress for columns is 351.53 MPa and for beams and
bracings is 253.1 MPa. The dead load of QD = 2500 kg/m and live load of
QL = 1500 kg/m are applied to the all beams. All of the required computer programs
for performing optimization tasks are coded in MATLAB [26] platform.
Furthermore, for computer implementation a personal Pentium IV 3.0 GHz has
been used.

4.1 Example 1: Six-Story, Five-Bay Steel Dual Braced
Frame

The first example is the six-story, five-bay steel dual braced frame which is shown
in Fig. 2 with elements grouping details. In this example there are eight design
variables associated with four columns, two beams, and two bracing cross sections.

For performing optimization, the number of particles in the swarm is 50 and the
maximum number of iterations is limited to 200.

The results of optimization are presented in Table 2 and convergence histories of
the PSO, FA and BA are compared in Fig. 3.

The results of Table 2 imply that BA finds an optimal solution which is 3.62 and
1.74 % lighter than those of found by PSO and FA, respectively. It can be also
observed that FA outperforms PSO.

The convergence histories presented in Fig. 3 demonstrate that the convergence
rate of the BA is better compared with PSO and FA and in the mean time FA
possesses better convergence behavior in comparison with PSO.

Fig. 2 The six-story steel
dual braced frame with
X-bracings in bays 2 and 4
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The results reveal that axial deformation constraints for braces at IO performance
level are active and therefore dominate the optimal design while all of the other
constraints are satisfied. Figure 4 depicts the values of Δ/Δall for all braces at IO
level for the optimal design found by BA.

Table 2 Optimum designs of six-story steel dual braced frame

Design variable No. Optimum designs

PSO FA BA

1 W8 × 31 W16 × 45 W14 × 34

2 W40 × 149 W27 × 129 W36 × 135

3 W14 × 30 W14 × 30 W14 × 30

4 W24 × 68 W8 × 35 W16 × 36

5 W12 × 45 W12 × 45 W12 × 45

6 W21 × 62 W21 × 62 W12 × 58

7 W24 × 68 W18 × 71 W18 × 71

8 W18 × 46 W18 × 50 W18 × 50

Optimal weight (kg) 51092.64 50112.88 49241.98

Constraints violation 0.0 0.0 0.0

Fig. 3 Convergence histories of PSO, FA and BA for optimization of six-story steel dual braced
frame
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4.2 Example 2: Twelve-Story, Five-Bay Steel Dual Braced
Frame

Figure 5 shows the twelve-story steel frame with its elements grouping details.
Design variable vector in this example includes sixteen components which are

divided to eight columns, four beams, and four bracing group cross sections. The
number of particles in the swarm and the maximum number of iterations are chosen
to be 50 and 400, respectively.

Table 3 reports the optimal designs found by PSO, FA, and BA and their
convergence histories are depicted in Fig. 6.

Fig. 4 Δ/Δall values at IO
level for the optimal six-story
steel dual braced frame found
by BA

Fig. 5 The twelve-story steel
dual braced frame with
X-bracings in bays 2 and 4
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Table 3 Optimum designs of twelve-story steel dual braced frame

Design variable No. Optimum designs

PSO FA BA

1 W30 × 90 W30X90 W30X90

2 W36 × 160 W40 × 167 W33 × 141

3 W30 × 90 W10 × 68 W27 × 84

4 W30 × 108 W30 × 108 W27 × 84

5 W21 × 68 W12 × 45 W21 × 48

6 W24 × 76 W27 × 94 W24 × 68

7 W16 × 31 W16 × 31 W16 × 40

8 W24 × 68 W30 × 90 W21 × 48

9 W18 × 97 W8 × 67 W18 × 55

10 W8 × 67 W12 × 45 W16 × 89

11 W10 × 39 W18 × 50 W18 × 50

12 W16 × 40 W16 × 40 W18 × 50

13 W10 × 60 W10 × 60 W21 × 68

14 W16 × 50 W21 × 57 W21 × 57

15 W18 × 46 W18 × 46 W18 × 46

16 W6 × 25 W10 × 19 W6 × 25

Optimal weight (kg) 84018.92 82544.74 81274.68

Constraints violation 0.0 0.0 0.0

Fig. 6 Convergence histories of PSO, FA, and BA for optimization of twelve-story steel dual
braced frame
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The reported results in Table 3 exhibit that the optimal solution found by BA is,
respectively, 3.27 and 1.56 % lighter than the solutions found by PSO and FA. In
addition, FA converges to an optimal solution which is 1.75 % lighter than that of
PSO.

Comparison of the convergence histories of Fig. 6 signifies that the BA pos-
sesses better convergence behavior with respect to PSO and FA. Furthermore, FA is
better than PSO in terms of convergence rate.

In this example, the active constraints which dominate the design are the axial
deformation of braces and the lateral drift constraints at IO performance level. For
the BA optimal design, the values of Δ/Δall for all braces and the lateral drift profile
at IO level are given in Figs. 7 and 8, respectively.

Fig. 7 Δ/Δall values at IO level for The optimal twelve-story steel dual braced frame found by BA
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5 Conclusions

This chapter presents a comparative study on the computational performance of
popular PSO, FA, and BA meta-heuristic algorithms for tackling the problem of
performance-based optimum seismic design of steel dual braced frames. During the
optimization process two types of constraints have to be checked. To ensure ser-
viceability of the design, each structural element is checked to satisfy the
AISD-LRFD constraints for the non-seismic load combinations. While the second
type includes the check of inter-story drifts, plastic rotation of beams and columns
and the axial deformation for braces at IO, LS and CP performance levels according
to the FEMA-356 provisions for the seismic load combinations. To achieve this, the
seismic responses of structures are evaluated by conducting nonlinear pushover
analysis.

Two numerical examples including six-story and twelve-story steel dual braced
frames are presented. The optimization task is achieved using PSO, FA, and BA
meta-heuristics and the results are compared. The numerical results demonstrate
that in the first example, BA finds a solution which is 3.62 and 1.74 % lighter than
those of the PSO and FA, respectively. The results imply that the solution found by
FA is slightly better than the PSO. It is observed that axial deformation constraints
for braces at IO performance level dominate the optimal design. In the second
example, the optimal weight of BA is 3.27 and 1.56 % lighter than those of the PSO
and FA, respectively, and the solution of FA is slightly lighter than that of PSO.

Fig. 8 Drift profile at IO
level for the optimal
twelve-story steel dual braced
frame found by BA
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Moreover, the axial deformation of braces and the lateral drift constraints at IO level
dominate the optimal designs. In both numerical examples the convergence rate of
BA is better than those of the PSO and FA.

It can be finally concluded that for solving the complex and highly nonlinear
optimization problem of performance-based seismic design of steel dual braced
frames, the BA provides results which are better than those of the PSO and FA
meta-heuristics in terms of optimal weight and convergence rate. Therefore, BA can
be effectively employed to design cost-efficient steel structures with desirable
seismic performance.
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Genetic Algorithms for Optimization of 3D
Truss Structures

Vedat Toğan and Ayşe Turhan Daloğlu

Abstract Various optimization techniques have been applied to find the optimum
solutions of structural design problems in the last 50 or 60 years. Simple structural
optimization problems with continuous design variables have been solved initially
using mathematically diverse techniques. New approaches called meta-heuristic
techniques have been emerging along with the progress of traditional methods. This
chapter first introduces the mathematical formulations of optimization problems and
then gives a summary and development process of the preliminary techniques such
as genetic algorithm (GA) in obtaining the optimum solutions. The mathematical
formulations of the structural optimization problems are associated with the design
variables, loads, structural responses, and constraints. Strategies are proposed to
improve the performance of the technique to reduce the number of search and the
size of the problem. Finally, some examples related to 3D truss structures are
presented.

1 Introduction

Optimization of the structures is one of the main research areas in civil and
structural engineering. As a branch of applied and computational mathematics,
optimization usually tries to find the best-fitted solution of the problem within a
domain that contains acceptable values of design variables subject to some design
restrictions or constraints. The optimum solution of the problem may be achieved
by minimizing or maximizing a real objective function satisfying predefined
restrictions at the same time. Such a solution is supposed to be the best one among a
large feasible solution space that can satisfy all the constraints of the optimization
problem. The function to be minimized or maximized is referred to as objective
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function, while the functions to represent restrictions are called as constraints. The
design parameters of an optimization problem are called design variables. While the
geometric properties of members can be considered as design variables in structural
weight optimization, coordinates of nodal points can be treated as design variables
for shape or topology design of structures. So the objective function, constraints,
and variables can vary widely according to the type of the problem. For the min-
imum weight design of 3D truss structures, the objective function represents the
weight of the truss, variables can be the areas of cross sections of the structural
members, and the constraints may be the maximum allowable stresses and dis-
placements of nodal joints.

2 Mathematical Formulations of Optimization Problems

An optimization problem subject to some constraints can be formulated as the
following mathematical form:

min
x2 S

f ðxÞ
S ¼ xjhjðxÞ ¼ 0; j ¼ 1; . . .; p; gkðxÞ� 0; k ¼ 1; . . .;m

� � ð1Þ

where f(x), hj(x), and gk(x) are a C1 function of x 2 IRn. In addition, p and m are
the total numbers of hj(x) and gk(x), respectively. S represents the feasible set for the
optimization problem, S � IRn.

However, in the engineering field, an optimization problem can also be generally
defined as follows:

find x ¼ x1; x2; . . .; xnf g
min: WðxÞ
s:t: gkðxÞ� 0; k ¼ 1 tom

xil � xi � xiu; i ¼ 1 to n

ð2Þ

In Eqs. (1) and (2), x is an n-dimensional vector representing the design variables of
the optimization problem. Depending on the optimization type, the cross-sectional
areas of the members, the nodal coordinates of the member connections, and the
members itself are treated as the design variables. f(x) and W(x) are called objective
functions or cost functions, which usually correspond to a real number to be used to
evaluate how good a solution is. Since weight is usually adopted as the objective
function of the optimization problem in structural engineering, W(x) corresponds to
the weight of the related structure. hj(x) and gk(x) are the equality and inequality
constraints functions, respectively. In contrast, hj(x) in the engineering fields, the
type of inequality constraint functions, gk(x), are often encountered. And it generally
requires a structural analysis to obtain the structural response such as displacements,
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forces, etc. Here, xil and xiu show the lower and upper boundaries of xi. Strictly
speaking, xi might be continuous, discrete, and real but since it is preferred in
practice to select the cross-sectional areas of members from the predefined list, xi is
taken as the discrete in structural engineering applications.

3 Genetic Algorithms

To find the value of x obeying the hj(x) and gk(x) and minimizing W(x) requires an
optimization method to be employed. Optimization methods, generally speaking,
are classified as the gradient-based and gradient-free techniques. Of course, various
categorizations can be encountered for the optimization methods available in the
literature [1–3]. In fact, although they are referred with various classifications and
names, there is not much difference in the main properties of the methods. For
example, one of the most commonly used classifications is deterministic and
stochastic. While the former uses derivatives of the objective function and con-
straints in the search of the optimum solution, the latter works with probabilistic
transition rules instead of the gradient information of the objective function and
constraints [4–12]. As seen from the example, deterministic and stochastic tech-
niques are easily put into the classification of the gradient-based and the
gradient-free optimization methods, respectively.

Genetic algorithm (GA) is probably one of the first optimization methods, which
simulates the natural phenomena into a numerical algorithm. It mimics the proce-
dure known as survival of the fittest. GA was firstly proposed by Holland [13].
Since new some valuable improvements in the GA such as adaptive operators,
distinct coding schemes for the design variables, immigration, elitism, breeding,
hybridization, etc., have been presented by the researcher [19–30].

After the study of Rajeev and Krishnamoorthy [14] which was a
well-documented study for the application of the GA in the structural optimization
problems, GA has gained more popularity in this area than that proposed for the
first time. By studying Rajeev and Krishnamoorthy [14], it is realized at first glance
that GA is very primitive compared with the level recently reached. For instance,
the design variables were coded with binary scheme in the GA process proposed by
Rajeev and Krishnamoorthy [14], while at the moment the design variables are
treated as discrete and even that mixed [15–18]. Figure 1 demonstrates the binary
scheme for the design variables of the structural optimization problems. Herein, it is
assumed that the corresponding optimization problem has three design variables

1011 0100 0110
x=[ x1 x2 x3 ]

Fig. 1 Coding in binary system for design variables
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which are the cross-section areas of the grouped members. And they are selected
from 16 different sections available in practice.

When this scheme is chosen to find the value of the design variables in decimal
system, a transformation is needed. Through this transformation, the sequence
numbers of the sections related to the design variables are determined from a
predefined list sections. The steps of the transformation and mapping can be
summarized as the main steps shown in Fig. 2. After mapping with the predefined
list, the cross-section area for the related design variable is directly used in the
corresponding process, i.e., in calculating the structural responses via a structural
analyzer.

Then the structure should be analyzed to determine its responses and then the
requirements of the optimization problems defined by the constraints functions are
evaluated. The next step is to calculate the value of W(x). As mentioned before, it
shows the goodness of the solution that consists of coupling the design variables
(see Fig. 1)—the string is called as a solution. However, since the GA is an
unconstrained optimization method like other gradient-free optimization tech-
niques, W(x) also includes the value of a function known as the penalty function
which reflects the violation level of the constraints in normalized form for the
solution. Equation (3) shows the objective function, incorporating the constraints
violation as expressed in Rajeev and Krishnamoorthy [14].

20x1+21x0+22x1+23x1 20x0+21x1+22x0+23x0 20x0+21x1+22x1+23x0

1+0+4+8=13 0+2+0+0=2 0+2+4+0=6

20x1+21x0+22x1+23x1 20x0+21x1+22x0+23x0 20x0+21x1+22x1+23x0

1+0+4+8= 0+2+0+0= 0+2+4+0=

1011 0100 0110
Transformation from binary to decimal system

Mapping with pre-
Section 
no

Area(mm2) available 
in practice

1 0.45
2 0.48

6 0.95
7 1.02

13 1.35

defined list

Fig. 2 Decoding and mapping steps for the design variables represented in the binary system
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WðxÞ ¼ W 0ðxÞ 1þKCð Þ

where C ¼
Xm
k¼1

ck
ð3Þ

where K is a parameter that is taken as 10, C is the violation coefficient computed in
the following manner: if gk(x > 0, then ck = gk(x); or if gk(x ≤ 0), then ck = 0.
Finally, W′(x) represents the weight of the structure. Note that gk(.) is in the nor-
malized form expressed as σ/σa −1 ≤ 0 for stress and d/da−1 ≤ 0 for displacement.
σa and da in these expressions show the allowable values for stress and displace-
ment for the problem considered.

3.1 Genetic Operators

The search procedures of GA were based on the mechanics of natural genetics and
natural selection. With the help of the genetic operators adapted from nature, the
concept of the survival of the fittest is simulated to form a robust search mechanism.
Following the steps summarized above, the GA search procedure proposed by
Rajeev and Krishnamoorthy [14] applies two genetic operators successively.

The first one is the reproduction operator which reflects the concept of the
survival of the fittest in nature. It proceeds according to the individual fitness
calculated as follows:

Fi ¼ Wmax þWminð Þ �WiðxÞ ð4Þ

where Fi is the fitness of the ith individual in the population, Wmax and Wmin are the
maximum and minimum values of W(x) computed using Eq. (3). Thus, the indi-
viduals with higher fitness values have a higher probability to survive, whereas the
less fit ones get fewer chances of survival. And the worst fit individuals will be
removed from the population.

Then, to exchange the solution segments between the individuals in the popu-
lation, crossover operator is implemented. Double point crossover is applied to the
pairs selected randomly as an example. Figure 3 demonstrates the application of the
two genetic operators explained in Rajeev and Krishnamoorthy [14].

The genetic algorithm continues the process by following the above steps out-
lined in detail so as to modify the new population. To terminate the GA process, a
criterion based on the similarity of the individuals in the population was imposed by
Rajeev and Krishnamoorthy [14]. In addition, although mutation operator was not
implemented in [14], the GA search process employed it to preserve the diversity
among the population. Figure 4 illustrates the basic concept behind the mutation
operator. It proceeds in three steps. First, an individual within the population is
randomly selected. Then, a binary position to be changed is determined randomly.
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Pairs Site 1 Site 2 New population
4 5 10 1011  0011  1010

1 5 10 1100  0100  0111
8 2 6

5 2 6
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um
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Design variables
x1 x2 x3

1011  0100  0110

1100  0011  1011

0011  1101  0001

1011  0100  0110

1100  0011  1011

1100  0011  1011

(a)

(b)

Fig. 3 Two genetic operators given in Rajeev and Krishnamoorthy [14]. a Reproduction operator.
b Crossover operator

Available popula-
tion

Individual number 
to be exposed to 

mutation

Position 
number New individual

1011  0011  1010

8 7 1010  0011  0011
1100  0100  0111

1010 000 00111

Fig. 4 Mutation operator

120 V. Toğan and A.T. Daloğlu



After that, the corresponding position value is switched to 1 if it is equal to 0 or to 0
if it is equal to 1.

All search procedures based on GA were called simple genetic algorithms in
Rajeev and Krishnamoorthy [14] and since then, numerous modifications have been
proposed by researchers in order to improve the search and/or computational
performances of the GA in this area. For example, the coding scheme [19–21],
the penalization [22–27], and new operators [28–30] are some of them. Other
improvements based on adaptive concept have attracted more attention. The fol-
lowing section will review this concept.

4 Strategies Based on the Adaptive Concept

Some improvement or renewal in the GA operators or the GA algorithms have been
made by researchers to increase the probability of finding the global solution and to
enhance the performance of GA. Other improvements of GA are to relieve the user
from the burden of determining sensitive parameter(s) existed in GA. The vast
majorities of these efforts have been focused on the adaptive approaches in GA for
both the penalty function, and the mutation and crossover. The key idea behind the
adaptive approaches is to adjust itself automatically during the optimization pro-
cedure using genetic algorithms.

4.1 Adaptive Penalty Scheme

Although it is not a genetic operation, the penalty function is important in GA to
demonstrate the extent of the violation of the constraints quantitatively. Penalty
techniques can be classified as multiplicative or additive. A positive penalty factor
is introduced in the multiplicative case to amplify the value of the fitness function of
an infeasible individual in a minimization problem. This type of penalty has
received less attention in the evolutionary computation community, compared with
the additive type. A penalty functional is added to the objective function in the
additive case to define the fitness value of an infeasible element [24].

An adaptive penalty scheme to be able to adjust itself automatically during the
GA process is proposed by Toğan and Daloğlu [31] as follows:

fpenalty ¼ Cmax þCðrÞð Þ= Cmax þCaveð Þ CðrÞ�Cave

fpenalty ¼ Cave þCðrÞð Þ= Cave � Cminð Þ CðrÞ\Cave

fpenalty ¼ 0 CðrÞ ¼ 0 r ¼ 1; . . .; nps

ð5Þ

where fpenalty is the penalty function, C(r) is the violation value of normalized
constraints of the rth individual in the generation, and nps represents the population
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size. In addition, Cmax, Cmin, and Cave are, respectively, the maximum, minimum
and average violation values of generation. According to this formulation, Eq. (3)
becomes

WðxÞ ¼ W 0ðxÞ 1þ fpenalty
� �

: ð6Þ

The penalty function is, therefore, kept free from any predefined or user-defined
constants. Also the magnitudes of the violations are not characterized by a static
rate for both near feasible and infeasible solutions during the design process. With
the expressions in Eq. (5), the infeasible solutions will not be penalized with the
same rate of penalty. The magnitude of the penalty tends to get heavier instead, as
the level of the violation of the infeasible solution tends to get bigger. Moreover,
the magnitude of penalty increases as the violation value gets closer to Cmax. On the
other hand, it decreases as the violation value gets closer to Cmin. Thus, some
infeasible individuals that are close to the feasible region in the search space will
not disappear through the penalty scheme and they will find a chance to survive.
This may sustain the capacity of finding the global solution for design problem
using GA.

4.2 Adaptive Crossover and Mutation Schemes

Genetic operators are applied to mimic the natural evolution. Among these oper-
ators, crossover provides the genetic information exchange between the couples
randomly, and mutation enables the development of new genetic material, and both
play an effective role to reach the optimum or to get close to the optimum solution.
It is arbitrary and up to the user to incorporate the rates of these operators in
optimization process. The choices of mutation, pm, and crossover, pc, rates as well
as generating positions to be shifted by mutation and mapping the individuals for
crossover are also arbitrary.

Many refinements using adaptive controls provide significant improvements in
performance for some situations [32]. Keeping all of these in mind, it can be
concluded that the randomness on mapping for crossover, and specifying the gene
position(s) for mutation may be removed. Mutation and crossover should be
adapted for both the individual and the generation because it is possible to lose the
best-fitted individual with this random process in mutation. Therefore, in contrast to
traditional crossover and mutation operator based on randomization mechanisms,
i.e., generating the pairs, and determining position of bit shifted by mutation of the
solution, the mutation and the crossover operators can be adaptive and adjust
themselves from generation to generation since the population is renewed from
iteration to iteration. Adaptive means adjusting itself automatically depending on
the fitness value of the individual and the other individuals in the generation.
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The adaptive mutation and crossover operators suggested by Srivinas and Patnaik
[33] are modified as follows and applied by Toğan and Daloğlu [31, 34–36], for the
optimization of 2d and 3d truss structures:

pm ¼ 0:5 Wmax �WðrÞð Þ= Wmax �Waveð Þ WðrÞ�Wave

Wave �WðrÞð Þ= Wave �Wminð Þ WðrÞ\Wave

�
ð7aÞ

pc ¼ Wmax �W�ð Þ= Wmax �Waveð Þ W� �Wave

1 W�\Wave

�
ð7bÞ

Here, W(r) is the fitness of the rth individual, Wave is the average fitness value of the
population, Wmax and Wmin are the maximum and minimum fitness values of an
individual in the population, respectively, and W* is the larger of the fitness values
of the solutions to be crossed. pm and pc are mutation and crossover rates,
respectively.

After the mutation rate, pm, is determined using Eq. (7a), the numbers of design
variables, mdes, disrupted by mutation are calculated by multiplying pm with the
string length of the solution. Then design variables in the individual are arranged
according to the level of violation of normalized constraints, and they are renewed
with mdes starting with the most violated one. Thus design variables in the indi-
viduals are classified and the good individuals are kept unchanged. Also the
diversity of population is maintained since the design variables that violate the
constraints are renewed.

Unlike Srivinas and Patnaik [33], and Bekiroğlu [37], W* represents the lower
value of the two fitness values of the solutions for crossover. The reason for that is
because if the lower value of fitness is bigger than Wave, the crossover will take
place between the pairs having good fitness value, whereas when W* represents the
higher of the fitness values, there is a possibility for crossover to take place between
the pairs having bad fitness values. Since the adaptive crossover is incorporated,
information exchange between pairs can be done with various crossover points
changing from 1 to string length of the individual (flexible point crossover). The
numbers of design variables, cdes, exchanged by crossover between pairs are
specified by multiplying pc with string length for the solution. So if pc is equal to 1,
the individual of pairs will not be subjected to crossover operator.

5 Innovative Approaches in Genetic Algorithms

The enhancements developed by the researchers to increase the performance of GA
are not limited to adaptive schemes. Besides, some refinements are proposed for
making the search procedures of GA computationally effective. Member grouping
and initial population strategies are some of them as described in the next sub-
sections in detail.
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5.1 Initial Population Strategy

To start the evolution process in GA, the initial population within the solution space
is generated. All individuals constituting the initial population are selected from the
solution space of the problem notwithstanding any condition. In other words, this
step is random. However, even though the process of creating initial population
seems ordinary, it critically affects the convergence, the performance and the ability
of the GA. This case becomes more crucial for very complicated and large solution
space which is mostly encountered in the practical application of GA in the area of
structural engineering.

The idea starting the search of the solution space without a randomly generated
set is the key rationale of creating the initial population automatically. So, adopting
the list number of the maximum area of cross sections as the starting point for the
design variables leads to more efficiency than randomly generated. And it is stored
as the initial point for each group of tension members to create the initial popu-
lation. For the groups of the compression members, two or three surplus of the list
number of the member that has he maximum area of cross section in the group is
taken from the list of sections. The value of cross-sectional area and radius of
gyration of that section must be bigger than the values found previously. And the
corresponding section list number gives the initial points for each group of com-
pression members and is stored to create the initial population (see Toğan and
Daloğlu [31, 34] for more details).

5.2 Member Grouping Strategies

In the structural optimization terminologies, the design variables refer to the vari-
ables affecting the value of the objective function, and they generally represent the
areas of the cross section of the structural members. Since the GA completely
independent from the characteristic of the problem, the design variables of the
optimization problems should be coded in some encoding schemes such as binary,
decimal, real, and so on. GA evolves those solutions by creating in terms of design
variables and randomly selecting into the potential solutions space of the problem.
A set of possible feasible or unfeasible solutions construct the population or gen-
eration. Each solution in the populations is known as the individual.

For a given problem, all of the cross-sectional areas of the structural members
can be taken as design variables. In this case, however, the computation time gets
very high and the results obtained from optimization process will probably be the
local optima due to the expanded design space. Therefore in the GA applications,
member grouping is generally applied for the members of the structural system in
order to reduce the size of the problem. On the other hand, the member grouping
adopted a priori might not lead to an accurate grouping and if the number of
members of the structural systems becomes very large; i.e., for 3D roof trusses,
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transmission towers, this leads to very large string lengths, which delays conver-
gence and precludes useful exchange of information [38].

Two new member grouping strategies are proposed by Toğan and Daloğlu [31,
34] to reduce the size of the search space of the design problem as much as
possible, to increase the probability of catching the global optimum solution and
enhance the performance of the GA. The key idea behind the member grouping
strategies is to make a convenient member grouping that will end up with as few
numbers of cross sections as possible in the final set, and reduce the size of the
design space of the problem as much as possible. The efforts are also made to
relieve the user from the burden of determining the member groups.

5.2.1 First Member Grouping Strategy

The first strategy (strategy 1) is based on the one proposed by previous researchers
[31, 38, 39]. To implement this strategy, the same cross-section areas are assigned
for all the structural members first as stated in [31, 38, 39]. Then the analysis of the
structure is performed using these initial areas for each load cases. Following the
static analysis, the entire range of internal forces is divided into several ranges both
for tension and compression members. And members are grouped according to the
internal forces in the members.

An additional group is added in Toğan and Daloğlu [34] to the system for zero
force members or members with very low internal forces. Hence, all the members of
the truss structure are grouped conveniently and accurately. Moreover, a complex
solution space may be avoided under some conditions.

5.2.2 Second Member Grouping Strategy

For strategy 2, while the magnitude of the axial force is considered as the factor for
grouping the tension members [31, 38, 39], slenderness ratio is considered as the
main factor for the compression members to set the groups. Therefore, due to the
importance of slenderness ratio, it may be more convenient to group the com-
pression members according to their slenderness ratio in terms of radius of gyration
of the cross section and the effective length of the member instead of grouping them
depending on the magnitude of the axial force. This is the key idea behind strategy
2. Hence, as the tension members of the truss structure are grouped depending on
the axial forces, the compression members are grouped according to their slen-
derness ratio. An extra member group for the zero force members or members with
very low internal forces is also arranged (Toğan and Daloğlu [31, 34]).
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6 Examples

In this section, in the light of the information given in the previous sections, two
types of design examples are presented. In the first one, a 160-bar space truss is
considered as an example to demonstrate the effectiveness and robustness of pro-
posed adaptive approaches for GA and member grouping strategy over simple GA.
Later, an investigation is performed to demonstrate the efficiency, accuracy, and
reliability of the proposed initial population strategies by solving numerical
examples taken from previous studies in the literature for comparison.

The population size is taken as 40 for all the examples and real-value coding is
employed in the genetic algorithm.

At the beginning of the genetic process 40 % of the initial population is created
by using the proposed initial population strategy automatically. Therefore the
diversity of the population is preserved and the algorithm may be less likely to get
stuck at local minima and may also avoid some early convergence. It is possible to
create all the individuals of the initial population automatically. However, in this
case, the initial population consists of the same individual only and the search
performed in the solution space start in a certain region. On the other hand, as the
adaptive schemes applied for both penalty functions and mutation and crossover
operators are able to adjust itself automatically during the genetic process [31], they
completely disrupt the initial population. So, creating all the individuals in the
initial population automatically is not meaningful.

6.1 Example 1: 160-Bar Truss Tower

The 160-bar truss tower shown in Fig. 5 was optimized by Rajaev and
Krishnamoorthy [14] and Galante [40] in advance. 32 cross-section types were used
to optimize the tower and taken from the AISC Manual [41]. The members are
classified into 16 groups. Details of the member groups were presented in Galante
[40]. Rajaev and Krishnamoorthy [14] used in GA with one criterion (minimum
weight) and without taking the buckling effect into account. As Galante [40] stated,
it can be observed that the buckling effect plays an important role in truss opti-
mization. So if it is not taken into account the truss obtained will not be suitable as
load carrying structural system. Galante [40] optimized the transmission tower with
the aim of the minimum weight and minimum number of cross-section types of bars
taken from the market and also taking buckling and the slenderness limits rec-
ommended by AISC [41] into account.

The tower is optimized for the objective indicated by Galante [40] with the
proposed algorithm. All parameters needed to start the optimization process are
taken from the reference studies. The structure is optimized with the implemented
improvements in GA and two member grouping strategies for the aim of that the
final design forms three groups at one for tension and two for compression
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members. An extra member group for zero force members is not formed. This is
because of the fact that Galante [40] reported that 51 bars have a higher com-
pression stress than the limit recommended by AISC [41] to prevent buckling and
68 have higher slenderness ratio than the AISC advice. It is also observed from the
optimization process of the tower that the arrangement of an extra member group
for zero force members does not make any difference in the weight of the tower
drastically and the two member grouping strategies give the same result. Therefore,
the tower is optimized with three, four, and five member groups.

The final design obtained by the proposed strategies and the ones reported by
Galante [40] are presented in Table 1. Galante [40] used both GA and the simple
rebirth process in GA for the optimization of this example and mentioned that the
GA with the rebirth process achieves a better truss. However, the optimum designs
obtained with the proposed improvements in the algorithm ended up with a lighter
truss than the design by Galante [40]. A question may arise: as the values of design
variables presented in Table 1 for the three groups are the same, why are the
optimum weight of truss different? The answer is hidden in Fig. 6a. It is shown in
Fig. 6a that some members that belong to the first group skipped to the second
group and a better solution from the previous one is reached. However, the most
interesting result is obtained when the four member groups are adopted at two for
tension and two for compression member for this example. Although this optimum
design has more groups than the result obtained by Galante [40] and previously
performed optimization cases, in this study, it seems still reasonable to achieve that
the number of sections in the final set must be as few as possible to make fabri-
cation and workmanship easier [31, 39, 40]. The reduction in the total weight of the

Fig. 5 160-bar trussed steel transmission tower
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Table 1 Comparison of results for 160-bar transmission tower

Design
variables
(mm2)

Galante [40]
at 3 groups
by the GA

Galante [40] at 3
groups by the GA
with rebirth

This study

At 3
groups

At 3
groups

At 4
groups

At 5
groups

A1 2812 767.74 767.74 767.74 767.74

A2 3064 581.93 581.93 339.99 339.99

A3 7096 1251.61 1251.61 581.93 581.93

A4 1251.61 1251.61

A5 150.96

Weight
(kN)

15.33 14.61 14.269 12.651 10.544 10.449

Fig. 6 aMember groups for 160-bar tower, b Variation of weight for the three cases with number
of generations
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tower is about 28 % compared to the designs summarized in Table 1. As mentioned
above, when the number of groups is taken as five, the optimized weight is slightly
changed. In other words, arranging an extra group for the zero force members did
not affect the weight of the tower drastically. Hence, the design at four groups is
more meaningful than the design at five groups for the design objective. Figure 6b
shows the genetic histories of the value of the objective function taken as the weight
of tower for three optimization cases.

6.2 Example 2: 640-Bar Space Deck Truss

A trussed space deck shown in Fig. 7 has 179 joints and 640 members. The truss
was first studied by Jenkins [32] in order to assess the decimal GA on a more
substantial structural problem. Jenkins [32] found the optimum height of truss in
addition to optimum volume. The truss members were subjected to compressive
stress limitation given in BS 5950 and tensile stress limitation, 275 N/mm2. This
trussed space deck was subjected to the one loading condition, which a single load
of 300 kN was applied at the center of the upper plane (joint 90). A maximum
displacement limitation of ±40 mm was imposed on every node in vertical direc-
tion. 21 discrete values of data for each design variable were taken from rectangular
hollow steel sections with cross-sectional areas varying from 142 mm2 in intervals
to 4350 mm2. Jenkins [32] collected the members of the structure in five distinct
groups as follows: (1) upper deck longitudinal members, (2) upper deck transverse
members, (3) lower deck longitudinal members, (4) lower deck transverse mem-
bers, and (5) diagonal members connecting the upper and lower planes.

For this example, 23 pipe sections given in AISC [41] are adopted for each
design variables. The allowable tensile stress is taken as 275 N/mm2 and the
modulus of elasticity is 210 kN/mm2. The allowable compressive stress is calcu-
lated according to AISC [41] for the compression members and the maximum
deflection imposed is 40 mm. The truss is subjected to one loading condition as
specified in [32]. The optimization of the space truss is first carried out by using five
groups imposed by Jenkins [32]. Then the optimal volume of the truss is obtained
with four groups of members that were assumed as one for tension, two for com-
pression members, and one for zero force members after preliminary analysis.
Table 2 shows the optimum volume for each trial and the maximum deflection of
the truss. The algorithm proposed in this study achieved a design with the best
solution vector after approximately 29,000 searches for each trial. When four
groups for the members are adopted after the preliminary analysis, the volume of
the truss gets smaller than the result obtained by using five groups imposed by
Jenkins [32]. Moreover, nearly 50 % reduction is obtained with both the member
grouping and the new initial population strategies adopted in this study. This design
obtained with the proposed algorithm confirms the intension of “both the weight of
the structure and the number of cross section should be minimized to obtain an
economical structure” as indicated in [31, 33–36, 38–40].
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Fig. 7 640 trussed space deck truss

Table 2 Results for the 640-bar space deck truss

Variables Optimal cross-section areas (mm2)

Case 1 Case 2

A1 1096.77 568.39

A2 954.84 690.32

A3 954.84 1096.77

A4 690.32 161.29

A5 1096.77

Volume (cm3) 1298026.52 659970.80

Max. def. (mm) 29.03 39.85

Note The coded values design variables for the automatically created individuals

For case 1

Coded values Volume (cm3) Violation (stresses + displacements)

12 10 9 8 10 912520 10.503

For case 2

Coded values Volume (cm3) Violation (stresses + displacements)

9 9 12 1 602088.6 47.84
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6.3 Example 3: 1512-Bar Shed Truss

In order to demonstrate the performance, efficiency, and practical capability of the
algorithm with the proposed strategies, the design of 1512-bar shed truss is studied
as a final design problem. A shed structure illustrated in Fig. 8 covers a square field
with size of 40,000 × 40,000 mm2 and has a height of 5359 mm. The structure is
designed in a way that its sub-parts are reproduced along direction Z per 5000 mm
and are connected by lateral elements on the lower arch level in that direction. In a
sub-part each node on lower arch connects to four nodes on upper arches with
diagonals. So, it consists of 409 nodes and 1512 truss elements. The structure is
supported at two edges in the Z direction. The material density and modulus of
elasticity are 7.85 × 10–8 kN/mm3 and 210 kN/mm2, respectively. It is subjected to
a load scheme that is applied to all nodes of upper arches. 35,000 N is applied the
nodes along Z direction and it increases 10,000 N per each node level in Y direction
so that at the two nodes near symmetry axis the value is 55000 N (see Fig. 8). The
allowable value of 250 N/mm2 is employed for tensile stresses and the formulation
of buckling obeying AISC [41] considered for compressive stresses. The algorithm
is provided with 26 discrete values of data for each design variable. The structural
properties are taken from the pipe sections as given in [41]. The maximum dis-
placement limitation imposed is 50 mm.

As seen in Fig. 8, since the shed truss is a large structural system with more than
1000 members, it might be very difficult to optimize the area of individual members
if the member groups become very large. Besides, very large string length causes
the solution space of the problem to increase and becomes very complicated.
Therefore, member grouping adopted to reduce the size of the problem and initial
points to search the solution space are crucial to get an optimum design which is
closer the global optimum.

The truss is designed by adopting the four groups at one for tension, two for
compression, and one for zero members after the preliminary analysis. Table 3
gives the best solution vectors and the corresponding weight. An optimal structural

Fig. 8 1512-bar shed truss

Genetic Algorithms for Optimization of 3D Truss Structures 131



weight of 692.43 kN was obtained considering the constraints, which gives a
feasibility to construct it in practice. The algorithm obtained the optimum solution
after approximately 43,600 searches.

7 Conclusion

An optimum design approach is proposed based on the GA for truss structures with
the help of self-adaptive strategies for member grouping, penalty function, mutation
and crossover operators, and the initial population, which is then employed for the
optimization of large 3D truss structures. An investigation has been performed to
demonstrate the performance and workability of the enhanced GA (eGA). It is
shown from the design examples that the eGA works well for the large structural
systems. It is also worth pointing out that self-adaptive strategies in eGA help user
to start the GA process automatically. It can be expected that proposed eGA may
also be a useful search technique and a tool for solving discrete sizing variables of
the large 3D truss structures.
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Hybrid Meta-heuristic Application
in the Asphalt Pavement Management
System

Fereidoon Moghadas Nejad, Ashkan Allahyari Nik and H. Zakeri

Abstract This chapter presents a hybrid meta-heuristic method which combines
particle swarm optimization (PSO) and genetic algorithm (GA) search procedures
to predict the pavement condition index (PCI) based on Surveyed Inspection Units
(SIUs). Both PSO and GA are used and a comparison is made among three
approaches for evaluating the optimal arrangement of SIUs. A hybrid method was
developed to build and optimize the models. The performances of these hybrid
models were compared based on Sampling Error (SE), Total Network Inspection
Error (TNIE), inspection time based on CPU time (seconds), total number of SIUs,
and others. Based on the results of the computational experiments, one of the
proposed heuristic procedures is used for solving problems in the arrangement of
surveyed asphalt pavement inspection units. The study reveals that the hybrid
model outperforms both the PSO and the GA based models.

Keywords Pavement management � Pavement condition index � Surveyed
inspection units � Particle swarm optimization
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1 Introduction

The pavement is an important transportation infrastructure. Therefore, pavement
deterioration must be managed and optimal maintenance and rehabilitation (M&R)
actions must be selected the over a planning horizon [1–3].

These decisions are supported by an efficient system called the pavement
management system (PMS). PMS incorporates data collection, monitoring of the
current pavement characteristics, predictions of the future conditions, and prioriti-
zation of the M&R actions [4, 5].

Pavement conditions are a key component of PMS as transportation agencies
require detailed and timely information about a pavement network following
pavement inspection [6, 7]. The pavement inspection process is a basic and
important process in PMS for evaluating the true condition and selecting the right
M&R actions [8]. An inspection method consists of visual detection and distress
assessment by inspectors in a field survey [9]. In the visual inspection the branches
are divided into sections and the sections into smaller units as inspection units
which are also called sample units, respectively [10]. The inspection process is
generally costly and time consuming, and it depends on the experiences of the
inspectors. The inspectors decide whether or not all the inspection units need to be
surveyed based on the inspection manual, and the budget policies of related
agencies [11].

Therefore, two limitations characterize the inspection process. First, to survey all
the inspection units requires great effort and expertise, which is very costly and time
consuming. Second, budgets for M&R actions are constrained. To overcome these
limitations it is required that the inspection process is conducted by selecting a
specific number of inspection units as surveyed inspection units (SIUs) that can lead
to an acceptable estimation of pavement conditions. Estimation of pavement con-
ditions is based on composite indicators that consider multiple factors, such as
traffic, climate changes, and changes in the characteristics of the composing
materials. These indicators are defined by related agency for selecting M&R
strategies [12], each of them considering the threshold values for variations in the
pavement sections [13].

Several example of these indicators include the present serviceability index
(PSI), the international roughness index (IRI), the pavement condition rating (PCR),
the pavement structural condition (PSC), the present serviceability rating (PSR), the
pavement quality index (PQI), distress manifestation index (DMI), and the pave-
ment condition index (PCI) [14–16].

PCI is a more practical indicator than the others because it considers the char-
acteristics of distress such as the type, severity, and extent. The application of the
PCI is covered in several works [2, 12, 17–22].

There are two challenges in evaluating the PCI of sections. First, the selection of
the low SIUs could not define the accurate condition. Second, the survey of the
inordinate number of inspection units requires sufficient expenditure and time,
which can lead to delays in execution of M&R actions. It is therefore necessary to
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optimize the arrangement of SIUs by proposing a novel method that can simulate
the inspection process and evaluate the acceptable accurate PCI in the sections.

Evaluating the arrangement of SIUs has become an important issue in recent
years [23–29]. ASTM in the standards of D6433-11 describes a method for eval-
uating the arrangement of SIUs. This standard considers the allowable error in
calculating the PCI and the standard deviation of PCI of inspection units in the
section. The arrangement of SIUs is determined by using systematic random
sampling [27].

The proposed method using ASTM is generally unable to define the accurate
PCI with the calculated number of SIUs which leads to a high network inspection
error (NIE). This method considers the selection of additional SIUs for removing
this limitation which leads to additional inspection cost and time. The optimized
arrangement of SIUs is not achieved by this method.

However, the previous methods do not have any knowledge basis, with a lack of
consideration of the PCI in arranging the SIUs with a low PCI spectrum and high
sensitivity to length of sections, and thus there is little tradeoff between the number
and positions of SIUs. To overcome these limitations, a method for optimizing the
arrangement of SIUs should be carried out.

The survey of a pavement section requires various sampling patterns. Therefore,
to experiment with these sampling patterns increases the computation time expo-
nentially with the number of inspection units. So, the different computational
methods are required for solving the present problem with acceptable time, cost,
and inspection errors.

To determine the optimal arrangement of SIUs is to find the optimum sampling
pattern with the optimum number of SIUs and the minimum section inspection error
(SIE). Some tradeoff between the NIE-inspection time-numbers of SIUs (NSIUs) is
a complex problem, which can be a non-deterministic (NP-hard) problem based on
computational complexity in the worst case.

Exact algorithms—such as branch and bound algorithms—may achieve global
optimum solutions for small problems. However, these algorithms cannot solve
NP-hard problems in the desired time and the present problem of a pavement
network can include thousands of pavement sections. Another group of algorithms
are heuristics. Heuristics produce solutions that are close enough to optimum
solutions in an acceptable time. Artificial intelligence (AI) tools have rapidly
replaced classical methods in recent decades. Meta-heuristics are a type of AI
proposed for achieving near-optimum results faster than previously methods [30,
31]. AI tools are generally used in various civil engineering problems [32].

Recent studies focusing on these issues show that AI and PMS are comple-
mentary to each other [31, 33–38].

In the last two decades, several meta-heuristics such as the genetic algorithm
(GA) and particle swarm optimization (PSO) have been used for solving different
optimization problems. These methods are powerful optimization techniques for
solving complex problems [39–41]. PSO and GA have been used by several
researchers in pavement management problems in recent years [2, 42–45].
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Hybridization of meta-heuristics is commonly done by combining the components
of algorithms. There are different types of hybrid meta-heuristics that lead to a
variety of solutions [46].

When combining PSO and GA together, we use different conditions such as
PSO-GA, GA-PSO, PSO-PSO, GA-GA, PSO in GA, GA in PSO, PSO in PSO, and
GA in GA in this chapter.

PSO has a higher speed than GA, although the convergence of GA is better than
that of PSO. Therefore, the hybrid approach can consider characteristics of both
PSO and GA. The main purpose of this chapter is to develop various states of
hybrid PSO and GA for optimally arranging the SIUs and selecting the more precise
of them in simulating the inspection process for different constraints in a framework
as an expert system. Optimal arrangement of SIUs for the sections of a pavement
network leads to tradeoff between the minimum total network error, inspection
time, and number of SIUs.

This chapter is organized as follows. The next section gives a brief description of
PCI calculation. The data collection of a case study of a pavement network is
presented in Sect. 3. The empirical method for determining the arrangement of SIUs
is presented in Sect. 4. The importance of the present problem is described in
Sect. 4. The definitions and formulations of the problem are presented in Sect. 5.
PSO and GA are then used to optimize the arrangement of SIUs in Sects. 6 and 7,
respectively. The hybrid PSO and GA arrangers are presented in Sect. 8. Section 9
then presents and discussed the results of the various approaches and, finally,
Sect. 10 summarizes the conclusions.

2 Pavement Condition Index (PCI)

The PCI is a numerical rating index, based on a scale from 0 to 100, developed by
the collective judgment of experienced pavement engineers to assess the pavement
structural integrity, surface operational condition, and required level of
Maintenance and Rehabilitation (M&R) in a visual inspection. This inspection
collects the type, quantity, and severity of distress [47]. PCI was suggested by the
U.S. Army Corps of Engineers for airfield and road pavement and is used all over
the world by many agencies [10].

A general procedure for determining PCI of pavement sections is illustrated in
Fig. 1 by the inspection units.

An inspection unit is defined as a portion of a pavement section designated only
for the purpose of pavement inspection and identify as the shortest unit in the
pavement network [10]. Inspection unit size considers a specified area for different
pavements and is commonly determined based on the budget for agencies for the
considered network.
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The PCI of the inspection units is calculated based on measured distress char-
acteristics. The PCI of the sections is determined as the three formulas below:

Formula 1: The sizes of inspection units in the section are not equal: PCI of the
section is evaluated by area weighted averaging the PCI of SIUs according to (1)

Formula 2: The additional inspection units are required: the implementation of
(2) is required for evaluating the PCI of the section

Formula 3: A particular state of Formula 1 with an equal size of inspection units:
PCI is calculated by averaging the PCI of SIUs as in (3)

PCIs ¼
Pn

i¼1 PCIsiu � AsiuPn
i¼1 Asiu

ð1Þ

PCIsa ¼
PCIs As �

PA
i¼1 Aadd

� �
þ PCIadd �

PA
i¼1 Aadd

As
ð2Þ

PCIs ¼
Pn

i¼1 PCIsiu
n

ð3Þ

where PCIs is the PCI of section, PCIsiu is the PCI of each SIU, and Asiu is the area
of each SIU. In addition, n is the number of SIUs in the section, PCIsa is the PCI of
section with additional SIUs, and As is the total area of section. Furthermore, PCIadd
is the area weighted average PCI of additional SIUs, Aadd is the area of additional
SIUs, and A is the area of additional SIUs in the section. The PCI is used by
researchers in some existing works [2, 12, 17, 19, 21, 22].

Fig. 1 General framework for calculating the PCI of a section (Moghadas et al. 48)
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3 Data Collection

For the present research, an infield pavement survey by the inspectors is con-
ducted for data collection. This work takes about a month for a pavement network
located in district No. 16 of Tehran municipality as a case study by four
inspection teams. The characteristics of the various distresses are written in the
“infield survey forms” and the place of distresses identified by a GPS devices
(Fig. 2). A GARMIN eTrex® 30 GPS is the GPS device used for collecting the
data in-field by the surveyors.

This network is 294,851 m long and is divided into 3,925 sections based on the
average daily traffic (ADT), construction, and maintenance history, pavement
width, drainage conditions, and road type. Therefore, each 5-m unit is considered
for increased inspection accuracy and then provides an accurate database.

For simplicity of presentation, the PCI rating scale may be presented in three
categories including good (PCI = 71–100), fair (PCI = 41–70), and poor (PCI = 0–
40) with 89, 10 and 1 % normally used for illustrative results, respectively.

Fig. 2 Studied pavement network with locations of distress
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4 Empirical Method

The American Society for Testing and Materials (ASTM) presents a model for
estimating the SIUs by considering factors such as the allowable error in the PCI
calculation, standard deviation of the PCI inspection units in the section, and total
number of inspection units. This method is an empirical method for determining the
number and placement of SIUs.

In this method, the arrangement of SIUs is determined by using systematic
random sampling. Therefore, the number of SIUs is generally unable to define an
accurate PCI for the section and leads to a high inspection error for the sections in a
pavement network. For solving this challenge it is necessary to select additional
SIUs that can lead to additional cost and time.

This method has a procedure for determining the number and place of SIUs as
follows [27]:

• Identify branches of the pavement network with different uses such as roadways
and parking.

• Divide each branch into sections based on the pavements design, construction
history, traffic, and condition.

• Divide the pavement sections into sample units (inspection units).
• It is necessary to be able to relocate accurately the inspection units to allow

verification of current distress data, to examine changes in condition with time
of a particular inspection unit, and to enable future inspections of the same
inspection unit if desired.

• Select the inspection units to be surveyed as SIUs. The number of SIUs may
vary from the following: all of the sample units in the section, a number of
sample units that provides a 95 % confidence level, or a lesser number.

• The minimum number of SIUs (n) within a given section to obtain a statistically
adequate estimate (95 % confidence) of the PCI of the section is calculated using
(4) and rounding n to the next highest whole number:

n ¼ N � s2
E2

4 N � 1ð Þþ s2
ð4Þ

where E is the acceptable error in estimating the section PCI and is commonly equal
to ±5 PCI points, and s is the standard deviation of the PCI from one sample unit to
another within the section. When performing the initial inspection, the standard
deviation is assumed to be 10 for asphalt pavements. This assumption should be
checked as described below after PCI values are determined. For subsequent
inspections, the standard deviation from the preceding inspection should be used to
determine n. Here, N is the total number of sample units in the section.
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• If obtaining the 95 % confidence level is critical, the adequacy of the number of
SIUs must be confirmed. The number of SIUs was estimated based on an
assumed standard deviation. The actual standard deviation(s) can be calculated
using (5):

s ¼
Xn
i¼1

PCIi � PCIsð Þ2= n� 1ð Þ
 !1

2

ð5Þ

where PCIi is the PCI of SIUi, PCIs is the PCI of the section, and n is the total
number of SIUs.

• Calculate the revised minimum number of SIUs using (4) and the calculated
standard deviation using (5). If the revised number of SIUs is greater than the
number of inspection units already surveyed, select and survey additional ran-
dom inspection units. These inspection units should be spaced evenly across the
section.

• Repeat the process of checking the revised number of SIUs and surveying
additional random inspection units until the total number of SIUs equals or
exceeds the minimum required sample units (n) in (4), using the actual total
sample standard deviation.

• Once the number of SIUs has been determined, compute the spacing interval of
the units using systematic random sampling. The SIUs are spaced equally
throughout the section with the first sample selected at random. The spacing
interval (i) of the SIUs is calculated using (6):

i ¼ N
n

ð6Þ

The first SIU is selected at random from inspection units 1 through i. The
inspection units within a section that are successive increments of the interval i after
the first randomly selected unit are also inspected. To clarify this method, consider a
section with 20 inspection units (Fig. 3). This method conducts several tries for
achieving an acceptable PCI and to identify sampling states that have various
arrangements of SIUs. Trials of the ASTM method for the section is shown in
Table 1.

Table 1 shows that this method is required because of the extreme length of time
taken for analyzing pavement network with thousands of sections.

Fig. 3 First sampling state of a pavement section using the ASTM method
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5 Problem Definitions

With regard to the importance of determining the accurate pavement condition in
the pavement inspection process, the arrangement of SIUs is one of the most
effective variables. As the previous methods presented all over the world such as the
ASTM method (in Sect. 4) for arrangement of SIUs had limitations that finally led
to high SE in a field survey, it is necessary to develop intelligent methods for
optimizing the arrangement of SIUs in the sections of a pavement network. To
remove these limitations, two objective functions are considered in the proposed
methods which can be minimized in the error of the inspection process as follows.

5.1 Sampling Error

The inspection error or sampling error (SE) of each pavement section is evaluated
by a definition of error. In this chapter, SE is the absolute value of the difference
between the real condition and condition obtained from the proposed method. For a
pavement network with N sections, each of which includes n inspection units,
surveying all of the inspection units in field sampling leads to the exact PCI.
However, for the proposed method, it is required to select m inspection units as
SIUs. For the main purpose of this research, the objective function for sections is
formulated mathematically as (7). A comparison between the routine and optimum
inspection is shown in Fig. 2.

minEs ¼ 1
n

Xn
i¼1

PCIsi � 1
m

Xm
j¼1

PCIsj

 !
ð7Þ

Table 1 Calculation of section PCI using the ASTM method

Sampling
states

Exact PCI Number of SIUs Additional number
of SIUs

Obtained PCI SE (%)

Try 1 56.15 4 0 39.25 16.9

Try 2 6 2 56.667 0.517

Try 3 8 4 56.50 0.350

Try 4 12 8 55.833 0.317

Try 5 9 5 56.444 0.294

Try 6 12 8 56.417 0.267

Try 7 11 7 56.273 0.123

Try 8 10 6 56.20 0.050

Try 9 17 13 56.1176 0.0324
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Subject to 1�m� n where Es is the SE for each section, n is the total number of
inspection units in real sampling considered equal to the number of SIUs, and m is
the number of SIUs based on the proposed method. In addition, PCIsi is the PCI of
the ith SIU in the sth section for real sampling and PCIsj is the PCI of the jth SIU in
the sth section based on the proposed method. The constraint for this objective
function is sample m of SIUs, which is at least equal to one SIU and the maximum
equal to all of the inspection units. Figure 4 illustrates that, by increasing the
number of SIUs, the SE is decreased in the routine inspection whereas the optimum
inspection has the optimum number of SIUs by surveying a specific number of
SIUs.

5.2 Network Inspection Error (NIE)

NIE is an error in evaluating the total SE of sections in a pavement network. For
evaluating the error in the inspection of pavement network as TNIE it is necessary
to determine the variance of the SE of total sections because the variance is one of
the functions for evaluating the accuracy of methods. However, the objective
function for NIE is formulated mathematically as (8) which is applied as the main
function for the proposed algorithms:

Fig. 4 Comparison between routine and optimum inspection
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minVarðEsÞ ¼ 1
N

XN
s¼1

Es � E
� � ¼ 1

N

XN
s¼1

1
n

Xn
i¼1

PCIsi � 1
m

Xm
j¼1

PCIsj

 !
� ET

N

 !

ð8Þ

where

ET ¼
XN
s¼1

Es ¼
XN
s¼1

1
n

Xn
i¼1

PCIsi � 1
m

Xm
j¼1

PCIsj

 !
ð9Þ

E ¼ ET

N
ð10Þ

subject to

VarðEsÞ ¼ 1
N

XN
s¼1

Es � E
� � ð11Þ

Total Number of SIUs ¼
XN
s¼1

msð Þ ð12Þ

Tt ¼
XN
i¼1

Tið Þþ
XN
p¼1

Tp
� �þ XN

o¼1

Toð Þ ð13Þ

where ET is the summation of sections SE, N is the number of total sections in a
network, and Var(Es) is variance of SE, namely total network error. In addition, ms

is the total number of SIUs. The constraints for this objective function as three
fitness values are the total network error, the number of SIUs. Furthermore, Tt is the
total computational time (CPU time), including Ti as the input time, Tp as the
process time, and To as the output time.

However, based on recent studies, especially on the ASTM method, the
arrangement of SIUs is determined by the number of SIUs and using systematic
random sampling for their placement in the pavement sections.

So, the challenges lead to limitations in the application of the related methods. In
this regard, the inspection process must be implemented by intelligent methods for
eliminating these challenges. In this research, the various approaches of hybrid PSO
and GA are applied for optimizing the arrangement of SIUs in a pavement network.
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6 PSO Arranger

PSO is an optimization method for solving various complex problems. For the
present problem of this research, PSO is an arranger of the SIUs in pavement
sections. The basic idea of the PSO mimics swarm behavior of birds or fishes and
the relationship between them. PSO has several points in the search space as
particles in a swarm for updating the current condition of the individuals [49].

PSO simulates the movements of these particles and leads to the exploration of
various regions in the search space for the global optima. Unlike GA, PSO has no
evolutionary operators [50]. In the PSO arranger, the inspection process is simu-
lated for the sections of a pavement network. In this arrangement, the sampling
states are simulated as the particles and the binary coding is the section sampling.
Particles have velocities to move their positions in the search space and memory
that retains its previous best position as personal best (pbest) for remembering the
best achieved position of the search space [49]. The particles accelerate toward their
pbest and the direction of movement is toward the best particle of a topological
neighborhood. PSO arranger keeps the best value and position in particles of the
swarm which is called gbest. Particles move toward its best previous position and
toward the best particle in the swarm [50]. To ensure convergence, a parameter has
to be applied carefully and this parameter is the constriction factor [51]. Therefore,
the velocity and position are calculated from (9) and (10), respectively.

minVarðEsÞ ¼ 1
N

XN
s¼1

Es � E
� � ¼ 1

N

XN
s¼1

1
n

Xn
i¼1

PCIsi � 1
m

Xm
j¼1

PCIsj

 !
� ET

N

 !

ð14Þ

xtþ 1
id ¼ xtid þ vtþ 1

id ð15Þ

where c1, c2 are two positive constants that are called learning factors, including
cognitive and social learning parameters, respectively; r1, r2 are uniformly disturbed
random numbers within 0 and 1. vid and xid are the velocity and position of ith
particle in dimension d, respectively. The constriction factor defined in [52] can be
calculated from

v ¼ 2

2� /�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2 � 4/

p��� ��� ð16Þ

Experience has shown that the constriction factor needs a boundary for con-
trolling the solution space and facilitating better convergence. A boundary condi-
tion is reflecting walls used with the PSO arranger. In this boundary, when a
particle contacts the walls, the sign of the velocity is reversed and the particle
moves back toward the solution space [53]. In addition to continuous PSO, binary
PSO was first proposed by Kennedy and Eberhart [54]. In binary PSO, the position
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of particles is defined by a binary vector. The velocity vector is associated with the
probability of each dimension taking the value 1. A sigmoid function is considered
for changing the velocity from values 0 to 1 and conversely. r is compared with the
value of the sigmoid function in (12) and then the position updated using (13).

S vidð Þ ¼ 1
1þ exp �vidð Þ ð17Þ

xid ¼ 1; r\ S vidð Þ
0; otherwise

�
ð18Þ

where r is a random uniformly number generated within 0 and 1.
The general flowchart of the PSO arranger is shown in Fig. 5.

7 GA Arranger

In this research, a GA is considered as the arranger of SIUs in the sections of
pavement network. The first GA proposed by Holland and based on Darwin’s
evolution law became a strong tool for solving complex problems [41]. Each GA

Start

Generate initial positions and velocities of 
particles with swarm size N

Evaluating the fitness function by objective 
functions

Update positions and velocities of particles based on 
the fitness values

Stopping 
Criteria

NoYes

Optimum 
Solution

End

Determining the pbest and comparing the 
fitness value with gbest

Update pbest and gbest

Fig. 5 Flowchart of the PSO arranger
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has three main operators—selection, crossover, and mutation. In this research a
method is considered for each operator that can be used to arrange the SIUs in the
pavement sections.

7.1 Selection

The selection operator is important in GA for selecting individuals because this
operator has a significant effect on solutions convergence [55]. The selection
operator is implemented for selecting chromosomes to generate a new population
after crossover.

Tournament selection is a selection operator method which involves running
several ‘‘tournaments’’ among a set of chromosomes chosen at random from the
population. The winner of each tournament (the one with the best fitness) is chosen
for crossover operation. This operator has a parameter, namely selection pressure,
which it uses to select the better individuals based on fitness value with more
chances and it can be adjusted by changing the tournament size. If the tournament
size is lower, stronger individuals have a higher chance of being selected (Fig. 6a).
Tournaments are repeated until the mating pool for generating new offspring is
filled [56].

7.2 Mutation

Mutation is an operator for mutating the gene(s) in the parents and making addi-
tional population for achieving the optimum solution. A mutation operator can be a

Fig. 6 GA arranger operators. a Tournament selection. b Swap mutation. c Dissociated crossover
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swap mutation or an interchanging mutation. In this method, two genes are chosen
randomly and interchange the related values [57]. This method is shown in Fig. 6b.

7.3 Crossover

Dissociated crossover is a method that randomly selects two cut points in both
parents and divides each chromosome into three parts (Fig. 6c). The first part is the
genes copied in the related offspring before cut points are exchanged. The second
part is those exchanged between two parents with the genes of second offspring
equal to zero. The third part is from an exchange in the related part of the parent
[57].

The GA arranger implementation cycle is as shown in Fig. 7.

8 Hybrid PSO and GA Arrangers

Hybridization of the optimization methods is an attempt to use the advantages of a
combination of methods for better results in convergence and exploration. This
work overcomes the limitations of each individual method. The hybridization of

Start

Generating initial population 
with Size N

Evaluating the objective 
functions

Ranking the population 
based to fitness values

Selection

Ranking the population based on  fitness 
values

Crossover

Mutation

Evaluating the objective functions for 
offsprings

Combining parents with offsprings population

Selecting new population with Size N for next 
generation

Replacing the parent population by the better 
individuals as the new population

Stopping 
Criteria

No

Yes

Optimum 
Solution

End

Fig. 7 GA arranger flowchart
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PSO and GA is a commonly used hybrid optimization method [58–64]. In this
chapter, various approaches of hybrid PSO and GA are considered for optimal
arrangement of SIUs in a pavement network. These approaches are as follows.

8.1 PSO-GA Arranger

This type of hybridization starts with parameters and relationships of the PSO
arranger, and then continues by GA arranger to achieve the optimal solution. This
method follows the procedure as in Fig. 8.

Fig. 8 PSO-GA arranger procedure
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8.2 GA-PSO Arranger

This hybrid method is the same as the PSO-GA arranger but exchanges the PSO
and GA in the implementation procedure.

8.3 PSO-PSO Arranger

In the PSO-PSO arranger, the PSO arranger is implemented twice.

8.4 GA-GA Arranger

In the GA-GA arranger, the GA arranger is implemented twice.

8.5 GA in PSO Arranger

In this method, the PSO arranger begins to determine the pbest and gbest and then
the GA runs by the related operators. The algorithm continues to update the pbest
and gbest or achieve the optimal solution. The procedure for this method is illus-
trated in Fig. 9.

8.6 PSO in GA Arranger

As with the GA in PSO arranger, the PSO in GA arranger starts with the GA
arranger and continues until parameters and relationships of PSO appear.

8.7 GA in GA Arranger

The GA in GA arranger is a hybridization approach whereby two GA arrangers
operate together. It work by putting the parameters and relationships from a GA into
another GA arranger.
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8.8 PSO in PSO Arranger

This is the same as the GA in GA arranger; the PSO in PSO arranger is another
hybridization approach whereby two PSO arranger are put together. This works by
putting parameters and relationships from a PSO into another PSO arranger.

9 Results and Discussion

In the present work, the hybrid methods of GA and PSO were coded and have been
implemented in MATLAB 7.12.0 on a PC with Intel(R) Core i3 3.30 GHz CPU,
8 GB RAM, and Windows 7 operating system. These methods require parameters

Fig. 9 GA in PSO arranger procedure
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to be set properly in good implementations. Based on this issue, the parameters of
the various methods are presented in Table 2. The results of this research involve
two parts, network and project level, and evaluation of the sampling SE, number of
SIUs, implementation time (CPU time), convergence diagrams, PCI, and NIE for
proposed methods.

9.1 Network Level

For this level of study, the pavement networks with all of the sections analyze and
compare together. In this part, a comparison is made based on the minimal NIE
equal to 0.0001 and it leads to a number of SIUs and CPU time. For this work, ten
runs for each proposed method are made and the values of average, minimum, and
maximum recorded. These results are illustrated in Table 3 and 4 and Figs. 10 and
11. Figure 10 illustrates a comparison between all of the methods and Fig. 11 shows
a comparison between the hybrid methods.

Table 3 illustrates that PSO-GA has better results than others based on the
average values in the ten iterative runs. In addition, GA and PSO alone, GA in GA,
and GA-GA are weaker than the others in terms of CPU time and number of SIUs.
Based on Fig. 10, GA has higher values of CPU time and number of SIUs than the

Table 2 Best parameters for the methods

Method Parameters

PZ MN CR MR TS CF (c1) (c2)

PSO-GA 20 200 0.1 0.05 2 0.7298 1.4962 1.4962

GA-PSO 15 200 0.1 0.05 2 0.7298 1.4962 1.4962

PSO-PSO 5 200 – – – 0.7298 1.4962 1.4962

GA-GA 75 200 0.1 0.01 2 – – –

PSO in GA 70 200 0.1 0.01 2 0.7298 1.4962 1.4962

GA in PSO 15 200 0.1 0.01 2 0.7298 1.4962 1.4962

PSO in PSO 15 200 – – – 0.7298 1.4962 1.4962

GA in GA 15 200 0.1 0.05 2 – – –

GA 80 200 0.1 0.01 2 – – –

PSO 10 200 – – – 0.7298 1.4962 1.4962

Note The values of constriction factors c1 and c2 are considered by Clerc and Kennedy [40]
PZ Population or swarm size
MN Maximum number of generations
CR Crossover rate
MR Mutation rate
TS Tournament size
CF Constriction factor
c1 Cognitive learning factor
c2 Social learning factor
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Fig. 10 Comparison of the proposed methods in CPU time versus number of SIUs in the network
level

Fig. 11 Comparison between the proposed hybrid methods in CPU time versus number of SIUs
in the network level
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other methods and the other methods have good results. Figure 11 illustrates that
GA-GA and GA in GA work more weakly than other hybrid methods for the
problem of this research at the network level. PSO-GA and GA-PSO have good
solution limits. In addition to the above cases, the convergence to optimal solution
is an important issue in the optimization problems and a comparison between the
proposed methods is shown in Fig. 12.

Figure 12 illustrates that all the proposed methods have obtained good con-
verged solutions based on NIE versus iterations. However, PSO in PSO and
PSO-PSO are weaker than other methods, although PSO-GA and GA-PSO have
more acceptable convergence.

9.2 Project Level

Part of the studied pavement network is considered for studying the results and
comparing the effects of proposed methods at project level (see Fig. 13). The results
are implemented and presented in Arc Map software as Figs. 14 and 15. Figure 14
illustrates the PCI of sections for the part of pavement network at the project level

Fig. 12 Comparison of the various proposed methods in convergence to optimal solution
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Fig. 13 Pavement network of district No. 16 of Tehran municipality with the considered part

Fig. 14 PCIs of a considered part of the studied pavement network with proposed methods at
project level (PSO-GA)
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sampled by the proposed methods and Fig. 15 shows the related SE of sections for
this part. This figure is equal to the differences between Figs. 13 and 14. Figure 15
illustrates that the SE of all of the methods is acceptable for the sections of a
pavement network. The results of the considered part of the studied pavement
network is presented and summarized in Fig. 16 for comparing the effect of pro-
posed methods.

Figure 16 includes the SE and number of SIUs (NSIUs) with a comparison
between the proposed methods by these parameters. This figure illustrates that all of
the methods have acceptable SEs, and that the PSO-GA, GA-PSO, GA in PSO, and
PSO in PSO sampled lower NSIUs than other proposed methods.

Fig. 15 SEs of a considered part of the studied pavement network with proposed method at
project level
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Fig. 16 Comparison between the proposed methods in SE of the considered part of studied
pavement network. a SE in the considered part of project level. b Number of SIUs in the
considered part of project level. c SE versus number of SIUs in the considered part
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10 Conclusions

In this chapter, eight hybrid methods of GA and PSO are proposed with various
approaches derived for optimal arrangement of the SIUs with accurate PCI in a
comprehensive case study of the pavement network in two levels (network and
project levels). This problem is formulated with objectives, including SE and NIE,
and is subject to a number of constraints for optimal arrangement of SIUs in the
pavement sections of a network.

Finally, these hybrid methods are compared with the PSO and GA alone based
on various cases such as estimation accuracy of PCI, SE, convergence diagrams,
TNIE, CPU time, and total number of SIUs.

The major findings of this research are as follows:

• The hybrid methods of PSO and GA have been successful for solving the
present problem and achieved the least SE in the sections of pavement network
with optimal arrangement of SIUs. These approaches are better than PSO and
GA.

• Selecting the best approach and the comprehensive sampling procedure is
accomplished for obtaining better pavement network analysis. Based on this
issue, PSO-GA is the best approach in the network level that generates better
results in TNIE, CPU time, and total number of SIUs than other methods in
iterative runs.

• The proposed methodology of this chapter can help pavement managers and
inspectors use optimal decision making in inspection processes and sampling
plans with high accuracy, low analysis time, and low number of SIUs.

• The hybrid methods enable us to obviate the analyzing and planning problems
of the inspection process in the pavement network effectively.

• The results show that the proposed methods as well as the sampling process can
be simulated and they work for each number of inspection units in the sections
and each number of sections in a pavement network better than GA and PSO
separately.

• The proposed hybrid methods have been successful for converging to optimal
solution and work better than singularly.

• One of the challenges of the methods presented in the literature was limitation in
inspection unit PCIs spectrum in the sections. The proposed methods are shown
to work for each PCI spectrum and have removed this limitation.

• The reliability of results of hybrid methods of PSO-GA and GA-PSO in the
iterative runs is better than other methods based on the NIE, total number of
SIUs, and CPU time.

• As the PSO has characteristics such as the simplicity and lack of evolutionary
operators on the one hand and good convergence of GA with more exploration
of solutions by related operators on the other, hybrid approaches of PSO and GA
are useful for increasing the potential of solving the present problem. This issue
is shown in the results of this research. The convergence of PSO-GA and
GA-PSO is better than the other methods.
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Optimum Reinforced Concrete Design
by Harmony Search Algorithm

Gebrail Bekdaş, Sinan Melih Nigdeli and Xin-She Yang

Abstract The music-inspired metaheuristic method, called harmony search (HS),
is an effective tool in optimization of engineering design problems. HS has been
applied for the optimum design of reinforced concrete (RC) members so as to find
the best solution, balancing the usability of the design and economy. In this chapter,
the optimum design of RC members is presented after optimization of RC mem-
bers. Then, HS-based optimization applications, such as RC slender columns, RC
shear walls, and post-tensioned RC axially symmetric cylindrical walls, are also
discussed. The HS-based methods are feasible in finding the optimum design in
such problems.

Keywords Metaheuristic methods � Reinforced concrete � Optimization �
Harmony search algorithm

1 Introduction

A structural system excited by external forces is under the effect of tensile and
compressive stresses. By using brittle materials, like stone bricks, mud brick kiln,
and concrete, it will not be possible to construct a structure resisting tensile stresses.
These types of materials are effective with their compressive strength, while their
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tensile strength of the materials is nearly zero. In that case, ductile materials like
steel may be used in construction, but the major disadvantages of steel are its high
costs and environmental factors. This situation leads us to use composite structures
in which two materials with different mechanical behavior are used together. For
that reason, optimization is essential in design. Reinforced concrete (RC) structures
are the structures using concrete as a form of the whole structure and that form is
reinforced with steel bars where tensile stresses occur. In these structures, steel is
only used as slender bars while its stability and protection from environmental
factor are supported by the concrete covering the bars. The cost minimization
problem of RC members has been investigated in several studies. The most chal-
lenging issue in RC design is to provide the ductile fracture of concrete. When the
fracture is brittle, it will be not possible to absorb huge energy. Thus, the design
procedure of RC elements is nonlinear and it is not possible to estimate the best
design with the minimum cost. Also, steel bars with fixed sizes in the market and
orientation must be suitable for force transfer by forming a bond between steel and
concrete. Because of these reasons, numerical iteration methods are more suitable
than mathematical ones in the optimum design of RC members.

In finding the optimum design variables of RC members, metaheuristic methods
are very suitable. Genetic algorithm (GA) has been employed in several approa-
ches. Coello et al. [1] developed a GA-based approach for RC beams. GA is also
used in the methodology of Rafiq and Soutcombe [2] in which biaxial RC columns
are optimized. Another study employing GA is the RC design study of Koumousis
and Arsenis [3], investigating different types of structural members. Rajaev and
Khrisnamoorthy optimized frame structures consisting of RC beam and column
members by using GA-based method [4]. Rath et al. [5] used GA in cost opti-
mization while sequential quadratic programing technique is employed in the shape
optimization of RC members. Camp et al. investigated the slenderness effect of RC
column in the optimization study proposed by for RC frames employing GA [6].
T-shaped beams, investigated together with the effective slab length on the top of
the beams are optimized by Ferreira et al. [7] and different design codes are
checked.

GA is one of the oldest metaheuristic algorithms and studies combined GA with
other methods in their search for the best optimum results. It has been combined
with simulated annealing (SA) in order to optimize continuous beams by Leps and
Sejnoha [8]. By using a design database, GA was employed in the design of RC
frames by Lee and Ahn [9].

Balling and Yao [10] developed a methodology for three dimensional RC frames
subjected to different types of loads, such as dead, live, snow, and earthquake.
Ahmadkhanlou and Adeli [11] investigated RC slabs by using a methodology with
two stages. In the first stage of methodology, the neural dynamics model [12, 13]
developed by Adeli and Park is used in order to find the optimum solution of
continuous variables and then, perturbation technique is used on modification of the
optimum values to practical ones. Several optimization expressions related with the
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bending moment, steel area, and ratio of singly or doubly RC beams were devel-
oped by Barros et al. [14]. Sirca Jr. and Adeli investigated the minimum cost
optimization of prestressed concrete bridges [15]. Govindaraj and Ramasamy [16]
optimized continuous beams by selecting design variables from a typical database
of reinforcement template. Sahab et al. hybridized GA with the discretized form of
Hook and Jeeves method for optimization of RC flat slab building [17]. Statically
loaded RC frames were optimized by using GA-based method by Govindaraj and
Ramasamy [18]. Optimization of multi-bay single-story and single-bay multi-story
RC frames are done by Guerra and Kiousis [19].

Simulated annealing (SA) is also a widely employed algorithm in RC design
optimization. Paya et al. [20] employed SA in RC frame optimization. SA is also
used as a part in the methodology of Perea et al. [21]. In this research, RC frames of
bridges were optimized by using SA with a metaheuristic called threshold accepting
and two heuristic methods such as random walk and descent local search. SA is also
employed in the RC frame optimization study considering the minimization of the
value of embedded CO2 emission by Paya-Zaforteza et al. [22]. Also, Camp and
Huq employed big bang big crunch algorithm (BB-BC) for the CO2 emission
minimization of RC frames [23].

A reinforcement sizing diagram was provided for RC beams and columns by
Gil-Martin et al. [24]. The optimum depth and reinforcement design of rectangular
RC beams was investigated by Barros et al. [25]. Fedghouche and Tiliouine opti-
mized T-shaped RC beam by employing GA and the study only covers the design
of beams without steel bars under compressive forces [26].

The optimum design of RC retaining walls is also challenging because stability
of the wall subjected to soil load must be ensured. This security is generally
provided by increasing the weight of the wall, but in that case, the internal forces
increase and the economy cannot be provided. For that reason, a balanced optimum
design must be found and metaheuristic methods, such as SA [27, 28], harmony
search (HS) [29], BB-BC [30], and charged system search (CSS) [31] have been
successfully employed for optimization of RC retaining walls.

HS algorithm has also been employed for optimum RC members, such as
continuous beams [32], T-shaped beams [33], columns [34, 35], frames [36], shear
walls [37], cylindrical walls [38], post tensioning cylindrical walls [39], and biaxial
columns [40]. Kaveh and Sabzi used the combination of several metaheuristic in the
optimum design of RC frames [41]. BB-BC-based RC beam optimization was
developed by Kaveh and Sabzi [42]. SA and Tabu search were combined in order to
develop an optimum design methodology for hybrid fiber reinforced composite
plates by Rama Mohan Rao and Shyju [43]. Nigdeli and Bekdaş developed a
random search technique in optimization of RC beams [44]. Bekdaş and Nigdeli
optimized uniaxial RC beam by using random search technique [45, 46]. Jahjouh
et al. investigated continuous beams by employing Artificial Bee Colony
(ABC) [47].
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2 Harmony Search Algorithm

As designers searching for the optimum design, a musician also has a primary goal,
which is to achieve the harmony of the music and thus, the admiration of the
audience. The Harmony Search (HS) algorithm is a music-inspired algorithm,
developed by Geem et al. [48]. HS is a memory-based random search method. In
the musical performances, musicians try to find a pleasing harmony and this har-
mony is a perfect state of music performance. Similarly, researchers try to find a
global solution (a good, ideally, optimal solution of all design variables) for min-
imizing or maximizing an objective function (or objective functions in
multi-objective optimization). HS uses a stochastic random search instead of a
gradient search. HS was extended to solve both discrete variable [49] and contin-
uous variable [50] problems.

The HS method can be briefly explained in five steps for design problems.

i. In the first step, constant values of the optimization problem are defined. These
values are solution ranges of design variables, specific parameters of HS algo-
rithm, and design problem constants. The solution ranges are defined in order to
find the solution quickly by tightening the range or preventing several solution
domains for design constraints or practical design. The algorithm parameters are
harmonymemory size (HMS), harmonymemory considering rate (HMCR), and
pitch adjusting rate (PAR). Additionally, the HS algorithmwas also improved in
order to develop parameter setting free techniques [51, 52].

ii. Before using the properties of the algorithm, an initial harmony memory
(HM) matrix is constructed and it contains harmony vectors. The parameter;
HMS is the number of harmony vectors in HM and a harmony vector includes
a set of design variables, which are randomly generated by using the solution
ranges defined in the first step. Also, the optimization objective or objectives
are defined for each set of design variables. The formulation must contain the
consideration of design constraints if the constraints are violated. In design
problems, design constraints are generally seen and the exiting of these con-
straints may be the reason of using numerical optimization methods.

iii. In this step, the optimization starts. A new harmony vector is defined by using
the special rules of HS. In musical performances, musicians play a random
notes and this note may be a current popular song. In that case, a musician
may slightly chance this note in order to gain admiration by playing notes
similar to current best. Or maybe, a musician may try to play a new melody in
a performance. Musicians must use these two options. Otherwise, they may
lose their popularity if they do not produce a novel work. In optimum design,
we need to search the best result around the current best solution in order to
improve the convergence of the method, but the solution should not be a local
optimum, though there is no guarantee. For that reason, we need to generate
new solutions by using randomization in the whole domain. A new vector is
generated around the existing ones in HM or from the initial range. The value
of HMCR controls the type of the generation and it is the possibility of the
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generation done by using an existing vector in HM. The neighboring values of
a chosen vector may be defined by using a smaller solution range. The
parameter; PAR is used to reduce the solution area of design variables. The
ratio of the small range and initial range can be defined with the value of PAR.
The limits of the design variables should also be applied to ensure the solution
ranges. If the chosen vector is near to the bounds of solution ranges, the design
variables may be assigned with the values out of the range.

iv. In this step, the newly generated harmony vector is selected or not. It is
compared with the current worst vector in mean of minimization or maxi-
mization of objective functions. If the new one is better than the worst one, the
new solution is stored by eliminating the worst one. Thus, the harmony
memory is updated.

v. In the last step, the termination criterion or criteria are changed. Until this
termination criterion is provided, the optimization process continues from the
third step. The termination criterion may be a fixed number of iterations or
convergence of the design variables. It is possible to use several termination
criteria in design problems.

3 Optimum Design Examples

In this section, three applications of RC design members are presented by
employing the HS algorithm. The problems are the optimization of slender RC
columns, optimization of RC shear walls, and optimum design of post-tensioned
RC axially symmetric cylindrical walls.

3.1 Optimum Design of Slender RC Columns

In a structural system, columns are generally under the effect of axial forces. Due to
the deflection of columns under external loads, second-order effects occur, and
slenderness and buckling of the columns is the reason of this issue. Slenderness and
buckling stress can be affected by the length of the column, cross-sectional
dimensions and effective length factor in buckling (k) of columns. In this example,
HS is employed by considering the regulations of ACI318 (Building Code
Requirements for Structural Concrete) [54].

In ACI318, slenderness effects are considered by using the approximate design
procedure in which the flexure moment on the column is magnified with moment
magnification factor (δs). In this procedure, the moments of inertia of beams and
columns are, respectively, reduced with 65 and 30 % because of consideration of
cracking. Subject to the ductile design, cracking of the beam is more possible than
columns and, for that reason, the reduction of the moments of inertia of beams can
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be big. Effective length factors in buckling (k) are found according ratio; Ψ cal-
culated at both ends of columns (ΨA; upper end—ΨB; lower end). In the equation of
this ratio, E, I, and l are elasticity modulus, moment of inertia, and the length of the
corresponding RC members, respectively, as seen in Eq. (1).

WA;B ¼
P

EI=lð ÞcolumnP
EI=lð Þbeam

ð1Þ

After ΨA and ΨB are calculated, k is obtained from the set of equations given as
Eq. (2). These equations are for structural systems which are free in horizontal
direction.

Wm ¼ 0:5ðWA þWBÞ
k ¼ 20�Wm

20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þWm

p
if Wm\2

k ¼ 0:9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þWm

p
if Wm � 2

9>>>=
>>>;

ð2Þ

The moment magnification factor (δs) is calculated as

ds ¼ Cm

1� Pu
0:75Pc

ð3Þ

where Cm is the correction factor which considers the actual moment diagram to an
equivalent uniform moment diagram. It can be calculated as

Cm ¼ 0:6þ 0:4
M1

M2
ð4Þ

and Cm must be bigger than 0.4, while it is 1.0 for members with transverse loads
between supports. In Eq. (3), critical buckling load is calculated as

Pc ¼ p2EI

ðklÞ2 ð5Þ

by reducing the rigidity of the column by 75 %.
The design variables of the problem are the dimensions of the column and

amount of reinforcements (both longitudinal and shear). The column is under
loadings, such as flexural moment (M), shear force (V), and axial force (N). The
design constants are clear cover of concrete (cc), maximum aggregate diameter
(Dmax), length of column (l), elasticity modulus of steel (Es), cost of the concrete per
m3 (Cc), cost of the steel per ton (Cs), compressive strength of concrete f 0c

� �
, yield

strength of steel (fy), specific gravity of steel (γs), and specific gravity of concrete
(γc) are defined.
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After the cross-section dimensions are randomized, ductility conditions given in
Eqs. (6) and (7) are checked. Ac is the area of the cross section of columns.

V\
0:2f 0cAc

5:5Ac

(
ð6Þ

N\0:5f 0cAc ð7Þ

If the element is under brittle fracture risks, the cross-sectional dimensions are
updated before the randomization of reinforcements are done. Thus, the design
constraints, given as Eqs. (6) and (7), are considered and the computation time is
saved. Then, the number and size of reinforcement bars are done and placement
conditions are checked. If the placement requirements given in ACI318;

a/ [

1:5/avarage

40 mm
4
3
Dmax

8>>><
>>>:

ð8Þ

is not provided, reinforcements are updated by also considering a design with two
lines. ϕaverage is the average of the diameter sizes and aϕ is the clear distance
between reinforcement bars. Similarly, as done in ductility conditions, the rein-
forcements are iteratively randomized if the placement conditions are not provided.

In order to conduct a design for axial forces and magnified flexural moments, a
design methodology using random searches is conducted in production of harmony
vectors. The distance from extreme compressive fiber to neural axis (c) is iteratively
scanned for the best flexural moment and axial force combination. For the required
axial force, the corresponding flexural moment capacity is found. This flexural
moment capacity must be close and higher than the required one. The difference of
the percentage may be defined as a function of the iteration number. Thus, the
solutions far from the optimum are quickly eliminated.

After the design for axial force and magnified flexural moment, the design of
shear reinforcements is done by iteratively assigning diameter sizes. The required
distance of shear reinforcement (stirrups) is calculated for all iterations. Then, the
nominal shear strength of concrete (Vc) and nominal shear strength of reinforce-
ment (Vs) are calculated as given in Eqs. (9) and (10), respectively.

Vc ¼
ffiffiffiffi
f
0
c

q

6
bwd ð9Þ

Vs ¼ Avfyd
s

ð10Þ
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where Av represents the area of shear reinforcement spacing s. The effective depth
of the column is defined with d. Additionally, the Vs value must be lower than

0:66
ffiffiffiffi
f
0
c

q
bwd. If this constraint and total shear strength of the column is lower than

the required one, the objective function is penalized. Also, the calculated results
must be higher than the minimum shear reinforcement (Av,min) value and the dis-
tance between the bars must be lower than the maximum shear reinforcement
distance (smax) given in Eqs. (11) and (12), respectively

Avð Þmin¼
1
3
bws
fy

ð11Þ

smax

� d
4

if Vs � 0:33
ffiffiffiffi
f 0c

q
bwd

� d
2

otherwise:

8><
>:

ð12Þ

The total material cost of design (C), which is the main objective of the problem,
is also stored in the harmony vectors. The elimination of the worst solutions is done
according to the same objective function given in Eq. (13). The optimization
process is done for the maximum iteration number. As, ust, γs, Cc, and Cs are the
area of non-prestressed longitudinal reinforcement, the length of shear reinforce-
ment spacing s, the specific gravity of steel, the material cost of the concrete per m3

and the material cost of the steel per ton, respectively.

min C ¼ ðAc � AsÞCcþ ðAs þ Av

s
ustÞlcsCs ð13Þ

The loading at the upper end of the column such as axial force, flexural moment,
and shear force were taken as 2000 kN, 50 kNm, and 50 kN, respectively. Design
constants are taken as given in Table 1.

Optimum design variables are investigated by using k values between 0.5 and
2.0. The optimum results are presented in Table 2. The slenderness effects are not
effective for columns with an effective length factor in buckling (k) lower than 1.3.
In that situation, the optimum values are equal for all. Then, parallel to k, the
increase of the cost is seen.

3.2 Optimum Design of RC Shear Walls

In this example, RC shear walls are presented for optimum design considering the
total cost minimization and the design methodology is done according to ACI 318
[53]. The optimum design is scanned by randomizing the design variable show in
Fig. 1. The design variables are breadth of the shear wall (bw), reinforcements in
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columns headings and web of the shear walls. All reinforcements including the
stirrups are defined with a diameter size in mm and a distance between each bars in
mm. The proposed methodology can be by the following steps.

First step: As similarly for all design optimization problems, design constants
shown in Table 3, the ranges of design variables (also shown in Table 3), special
harmony search parameters explained in the second section and the design internal
forces of the RC shear walls (as given in Table 4) are defined.

Table 1 The design constants of column example

Definition Symbol Unit Value

Range of the breadth bw mm 250–400

Range of the height h mm 300–600

Length l mm 4500

Clear cover cc mm 30

Range of reinforcement ϕ mm 16–30

Range of shear reinforcement ϕv mm 8–14

Max. aggregate diameter Dmax mm 16

Yield strength of steel fy MPa 420

Comp. strength of concrete f 0c MPa 25

Elasticity modulus of steel Es MPa 200000

Specific gravity of steel γs t/m3 7.86

Cost of the concrete per m3 Cc $ 40

Cost of the steel per ton Cs $ 400

Table 2 Optimum results for column example

k 0.5–1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Breadth of
column (bw)
(mm)

300 300 300 300 300 300 350 350 350

Height of
column
(h) (mm)

550 550 600 600 600 600 600 600 600

Bars in each
face

1Φ18+
1Φ16

3Φ16 2Φ16 2Φ16 2Φ16 2Φ16+
1Φ18

1Φ20+
1Φ18

1Φ20+
1Φ18

4Φ16

Web
reinforcements

2Φ16 2Φ16 2Φ18 2Φ18 2Φ18 2Φ16 2Φ18 2Φ18 2Φ16

Shear
reinforcement
diameter (mm)

Φ8 Φ8 Φ8 Φ8 Φ8 Φ8 Φ8 Φ8 Φ8

Shear
reinforcement
distance (mm)

240 240 270 270 270 270 270 270 270

Optimum cost
($)

58.764 62.889 62.972 62.972 62.972 67.097 73.308 73.308 76.906
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Second step: The generations of harmony vectors are done in three substeps
named as steps a, b, and c. In these steps, iterative randomization is done in order to
ensure the ACI 318 requirements.

Step a: The breadth (bw) of the shear wall is randomized and ductility conditions
given in Eqs. (6–7) are checked. The randomization of bw continues until the
ductility conditions are met. Also, some discrete randomization is carried out in
order to assign values which are the multiples of 50 mm. In the construction yard, a
sensible production of cross-section dimensions is not possible.

Step b: Then, the reinforcements are randomized by checking the capacity of the
shear wall. The reinforcements at the column headings and web are separately
randomized. For the design shear force (V), shear reinforcement (stirrup) design is
also carried out by the procedure given in the RC column example.

Step c: In the last substep, the distance from extreme compressive fiber to neural
axis (c) is iteratively searched in order to find the best flexural moment and axial
force combination. The stress on each bar is calculated and the force equilibrium is

b w
stirrups in column headings

reinforcements in column headings

web reinforcements

stirrups in web

Fig. 1 Design variables of RC shear wall

Table 3 The design constants and solution ranges of RC shear wall example

Definition Symbol Unit Value in example

Range of the breadth bw mm 250–600

Height h mm 3000

Length l mm 4000

Clear cover cc mm 30

Range of reinforcement ϕ mm 16–30

Range of shear reinforcement ϕv mm 8–14

Max. aggregate diameter Dmax mm 16

Yield strength of steel fy MPa 420

Comp. strength of concrete f 0c MPa 25

Elasticity modulus of steel Es MPa 200000

Specific gravity of steel γs t/m3 7.86

Specific gravity of concrete γc t/m3 2.5

Cost of the concrete per m3 Cc $/m3 40

Cost of the steel per ton Cs $/t 400
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provided in the calculation of the capacity of the shear wall. The stress on concrete
section is calculated by assuming an equaling rectangular stress block as explained
in ACI 318. The same procedure with the first example is carried out in order to find
the best suitable design ensuring the axial force and the flexural moment capacity.
Finally, the total material cost of the shear wall is calculated and the cost is
penalized, if the flexural capacity of the design is lower than the required one after
several randomizations. In that case, the breadth of the design may be too small for
the design forces.

By using the three substeps including random searches, the optimization is
decreased by eliminating the results far from the optimum one. Thus, it is not
needed to use previously generated templates for reinforcement design. Generally,
the final results in harmony vectors are good designs which are physically possible
solutions and close to optimum design. By using the rules of HS, the best one is
searched in the third step.

Third step: In this step, the initial harmony memory matrix is updated by using
the rules of HS. The three substeps are also used in the generation of new harmony
vectors.

Last step: The stopping criterion is the maximum number of iterations. When the
number of iterations reaches to the maximum iteration number defined by the user,
the optimization process is terminated. The maximum iteration number is 2000 for
three loading cases, as given in Table 4.

The optimum design variables are given in Table 5. From the results, the
importance of optimization is clearly seen that the optimum design variables are far
away from the lower and upper bounds of the solution ranges. Concrete is a cheaper
material than steel, but the optimum reinforcements are not at the minimum limit.
For that reason, the required optimum with a balance between both materials is
found and the RC shear wall design with metaheuristic methods is a feasible
approach.

Table 4 Internal forces for
three cases of RC shear wall

Axial
force
[N (kN)]

Flexural
moment
[M (kNm)]

Shear force [V (kN)]

Case 1 500 25 100

Case 2 1000 50 200

Case 3 2000 100 400

Table 5 Optimum design variables of RC shear wall

Cases bw
(mm)

Reinforcements
at the column
heading

Web
reinforcements of
column heading

Web
reinforcement
of shear wall

Stirrups Cost ($)

1 250 1Φ20 + 1Φ16 1Φ18 + 1Φ16 3Φ18 + 1Φ16 Φ10/160 232.2871

2 300 1Φ26 + 1Φ22 3Φ16 1Φ18 + 3Φ16 Φ10/120 295.9118

3 450 1Φ18 + 1Φ16 1Φ18 + 1Φ16 2Φ18 + 2Φ16 Φ8/110 324.2167
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3.3 Optimum Design of Cylindrical Walls

For the third example, cost optimization of post-tensioned RC axially symmetric
cylindrical walls are presented. A typical cylindrical wall model can be seen in
Fig. 2. The optimization process can be summarized in three stages; static analyses,
RC design/cost calculation, and comparison/elimination.

Static analyses: After defining the geometry (height: H and radius of wall: r) of
wall, specific weight of the liquid, design constant, such as, material cost of
material, workmanship, yield strength of steel, parameters of HS algorithm, and
design variables intensities (P1, P2…, Pn) and locations (a1, a2…, a), thickness of
wall (h), compressive strength of concrete (f΄c), the structural analyses are done by
using the superposition method [54] to obtain internal forces, flexural moments,
shear force, and axial tension.

RC design and cost calculations: In this stage, design constraints; flexural
moment capacities in both direction, shear strength capacity, axial tension, mini-
mum steel ratios, minimum and maximum bar spacing, maximum crack width are
checked by considering the diameter of horizontal (ϕh), and vertical (ϕv) bars and
bar spacings in both direction (Sh and Sv) as design variables. By providing safety
and applicable solution, the total cost of the wall as objective function of process is
calculated as

min f ðXÞ ¼ CcVc þCsWs þCptWpt þCfwAfw ð14Þ

h

r

H

P1

Pn

P1

Pn

r

h

Pi Pi

an

ai

a1 a1

ai

an

Sh

hφ

Fig. 2 Model of cylindrical wall used in optimization process
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where

Vc ¼ pH ðrþ h
2
Þ2 � ðr � h

2
Þ2

� �
ð15Þ

Ws ¼ p/2
v

4
4pr
Sv

� �
Hcs þ

p/2
h

4
2H
Sh

� �
2prcs ð16Þ

Wpt ¼
p
Pn

i¼1 ð/ptÞ2i
4

2prcs ð17Þ

Afw ¼ 2pHð2rÞ ð18Þ

Comparison and elimination: In this stage, comparisons and eliminations are
done according to rules of HS algorithm.

The optimization process is performed for five different wall models with dif-
ferent heights considering with and without post-tensioning (P-T). Comparing the
results given in Fig. 3, although being limited difference between the costs for 6 m
and 8 m wall heights (0.09 % and 1.42 %), by increasing wall height as well as
loads, the effects of post-tensioning loads can be clearly seen (4.05 % and 6.55 %).

4 Conclusion

In this chapter, we have described the optimum designs of RC members using HS
search. The objective function and complex constraints have been formulated for
each case study. Numerical experiments have been carried out and results have been
analyzed.
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Fig. 3 The optimum results of the cylindrical wall
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From the above examples, we can see that HS can be a good tool to provide
designs with quality solutions that can be used in practical applications. Obviously,
it would be useful to see how other algorithms perform and make a detailed
comparison for these types of problems.
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Reactive Power Optimization in Wind
Power Plants Using Cuckoo Search
Algorithm

K.S. Pandya, J.K. Pandya, S.K. Joshi and H.K. Mewada

Abstract This chapter presents the application of a new meta-heuristic optimization
algorithm called cuckoo search algorithm (CSA) to solve optimal reactive power
dispatch problem (ORPD) of the power system in the presence of wind power plants
(WPP). Due to the inclusion of WPP, the ORPD problem becomes a complex
combinatorial optimization problem and it has a nonlinear objective function with
many local minima, and discontinuous and nonlinear constraint functions. CSA is
based on the obligate brood parasitic behavior of some cuckoo species in combi-
nation with the Lèvy flight behavior of some birds and fruit flies. The effectiveness
and feasibility of CSA have been tested on a 41-bus WPP test system and the
obtained results that have been compared with particle swarm optimization (PSO).
Simulation results yield that the CSA converges to better optimal solutions faster
than PSO.
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1 Introduction and Literature Survey

The penetration of wind power plants into conventional power systems has been
increased drastically all over the world in recent years to ensure higher reliability,
security, stability, and to fulfill ever increasing load demands of the power systems.
However, the electricity grid codes [1] of many utilities suggest that the wind farms
should be able to supply a sufficient amount of active power, reactive power to the
power grid, and should maintain a power factor between 0.95 lagging to 0.95
leading at the point of common coupling (PCC). To maintain the power factor
within the required feasible range, it is necessary to execute reactive power man-
agement by the transmission system operator (TSO). So in this context, TSO
performs the optimal reactive power dispatch (ORPD) in which it tries to “opti-
mally” set the values of the control variables including the reactive power output of
the generators (generator bus voltages), tap ratios of transformers, and reactive
power output of shunt compensators like capacitors/inductors so as to minimize the
total transmission active power losses, while satisfying a given set of constraints.

Up to now, many classical optimization methods and artificial intelligence
(AI) methods have been used to solve ORPD problems of small- and large-scale
power systems. Deeb et al. [2] proposed linear programming (LP) with a decom-
position approach to solve ORPD problem. Even though LP method obtains results
in less time, it does not yield a global solution in case of a large power system. It is
because of nonlinear objective function and constraints have to be linearized to
overcome the inherent limitations of LP method. Gomez et al. [3] introduced the
concept of “Decomposition” in which continuous problem and integer problems are
solved separately. As a result, the computational time required is decreased. Wu
et al. [4] suggested nonlinear predictor-corrector primal-dual interior point method
to solve ORPD problem. Kermanshahi et al. [5] used successive quadratic pro-
gramming (SQP) to optimize the allocation of reactive power sources. However,
this method requires inversion of second-order partial derivative matrix (Hessian
matrix) in each iteration, which is quite time consuming. Chattopadhyay et al. [6]
included security margin(SM) as the constraint in optimal reactive power planning
to ensure that the operating point should remain at least at a “SM” distance in
post-contingency case. However, this approach will become time consuming in
medium or large power systems as a large number of VAR support configurations
have to be considered. Yan et al. [7] proposed predictor-corrector primal-dual
interior point algorithm to solve ORPD problem. The Hessian matrix in this method
remains constant and needs to be evaluated only once in the entire optimization
process. Rabiee et al. [8] introduced the concept of “local voltage stability index” to
incorporate it into objective function of loss minimization. The objective function
based upon this index yields some improvement in voltage stability margins.

When classical methods are applied to solve small-scale power systems (i.e.,
with less than 30 buses), they can converge to the optimal solution in a reasonable
time. Also, all the methods give almost same optimal solutions. However, when
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applied to the medium- or large-scale power systems (i.e., with more than 30
buses), they suffer with the following drawbacks:

1. They may not find the global optimal solution and may get trapped into local
minima.

2. The choice of initial starting point (Initial guess) greatly affects the convergence
and as a result different optimal solutions are obtained.

3. Due to zigzagging in the search direction, the speed of these methods decreases
and thus a large number of iterations are required to get the optimal solution.

4. Linearization of the constraints and objective functions may reduce the accuracy
of the answer.

5. Hessian matrix may become singular for large-scale power system.

Due to these mentioned reasons, the applications of the classical methods in
medium- or large-scale power systems are somewhat restricted.

1.1 Artificial Intelligence Methods

In the last two decades, the use of population based meta-heuristic artificial intel-
ligence methods has been increased to solve an ORPD problem to curb the limi-
tations of classical optimization methods. In general, these methods make use of
intelligent search and probabilistic rules to find better solutions in each iteration.
Lee et al. [9] proposed an application of genetic algorithm (GA) for reactive power
planning in which the cost of available VAR sources and generator fuel costs were
minimized. Venkatesh et al. [10] used fuzzy logic method to consider the uncer-
tainty in information while minimizing losses and maximizing voltage security
simultaneously. Zhang et al. [11] solved reactive power planning using tabu search
method that uses flexible memory in obtaining global solution. Chen et al. [12]
solved multi-objective optimization in which the VAR cost, total real power loss,
and voltage deviation of the load buses from their nominal values had been opti-
mized simultaneously using simulated annealing algorithm. Zhao et al. [13] sug-
gested multi-agent based particle swarm optimization in which particles compete
and cooperate with their neighbors to find the best solution. Dai et al. [14] solved
ORPD problem using a seeker algorithm in which it uses the act of human
searching and step length is decided by fuzzy rules. El-Ela et al. [15] used ant
colony optimization algorithm and sensitivity-based approach to solve ORPD
problem. Salaan and Estoperez [16] proposed a real-time application of artificial
neural network (ANN) to optimize reactive power flow in the distribution system.
Raha et al. [17] suggested modified differential evolution (DE) algorithm to
increase convergence speed of original DE for solving ORPD problem. Saraswat
and Saini [18] used fuzzy multi-objective evolutionary algorithm to solve ORPD
problems in which crossover probability and mutation probability were dynami-
cally changed using a fuzzy logic controller.
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Due to the inclusion of wind farms into conventional power systems, additional
constraints of WPP make ORPD problem quite nonlinear and highly complex. Up
to now, the following research has been done to tackle this problem:

Villanueva et al. [19] used a probabilistic load flow method to correlate wind
power with generation and load demand. Erlich and Nakawiro [20] proposed mean–
variance mapping optimization to minimize the losses and cost of on-load tap
changing movement in wind farms. Rojas et al. [21] suggested the application of
PSO to minimize the active power losses in the wind power system.

Cuckoo search algorithm is a new meta-heuristic artificial intelligence opti-
mization method, which has been used to solve ORPD. The obtained results have
been compared with that of PSO [22]. The following sections give brief intro-
duction about CSA.

1.2 Cuckoo Search Algorithm (CSA)

It is one of the latest nature-inspired meta-heuristic algorithms, developed in 2009
by Yang and Deb [23]. CSA is based on the brood parasitism of some cuckoo
species. In addition, this algorithm is enhanced by the so-called Lèvy flights [24],
rather than by simple isotropic random walks. Some species such as the ani and
Guira cuckoos lay their eggs in communal nests, though they may remove others’
eggs to increase the hatching probability of their own eggs [25]. Quite a number of
species engage the obligate brood parasitism by laying their eggs in the nests of
other host birds. For simplicity in describing the standard cuckoo search [23], we
use the following three idealized rules: (I) Each cuckoo lays one egg at a time and
dumps it in a randomly chosen nest; (II) The best nests with high quality of eggs
(solutions) will carry over to the next generations; and (III) The number of available
host nests is fixed, and the egg laid by a cuckoo is discovered by the host bird with a
probability Pa 2 ð0; 1Þ. In this case, the host bird can either throw the egg away or
abandon the nest so as to build a completely new nest in a new location.

This algorithm uses a balanced combination of a local random walk and the
global explorative random walk, controlled by a switching parameter pa and the
local random walk can be written as [23]

xðtþ 1Þ
i ¼ xðtÞi þ as� Hðpa � eÞ � ðxtj � xtkÞ ð1Þ

where xtj and xtk are the two different solutions selected randomly by random per-
mutation, H(u) is a Heaviside function, e is a random number drawn from a uniform
distribution, and s is the step size. On the other hand, the global random walk is
carried out using Levy flights:
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xtþ 1
i ¼ xti þ a Lðs; kÞ;

Lðs; kÞ ¼ kCðkÞ sinðpk=2Þ
p

1
s1þ k

; ðs � s0 [ 0Þ:
ð2Þ

Here a[ 0 is the step size scaling factor, which should be related to the scales of
the problem of interest. According to [23], a ¼ oðL=10Þ where L is the charac-
teristic scale of the problem of interest, while in some cases a ¼ oðL=100Þ can be
more effective and avoid flying too far.

2 Wind Power Plant System

The single line diagram of a 41-bus wind power plant system is shown in Fig. 1. It
is taken from [26] and some data have been modified to consider a wind power
system of INDIA. The data are given in the format of MATPOWER 4.1 [27]. As
shown in Fig. 1, the conventional power system is represented as a slack bus
generator that is connected to bus-1. WPP is connected to the slack bus through
short transmission lines, transformers, and cables. There are in total 18 doubly fed
induction generators (DFIGs), each having the active power rating of 2.1 MW and
reactive power rating of 1.84 MVAR. Its voltage rating is 0.690 kV. This voltage is
step up to 33 kV using step-up transformer which is equipped with taps to change
the voltage on the HV side. All DFIGs are finally connected to the bus-5 via short

Fig. 1 Modified Wind Power Plant (WPP) system [26]
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transmission lines. On the same bus, the stepwise (discrete) regulated capacitor C1

is connected to provide auxiliary reactive power support. Transformer T2 steps up
33–110 kV. Bus-2 and bus-3 are connected through land and submarine cables. As
cables provide large charging currents, two shunt reactors are connected at buses 2
and 3. Reactor Xsh2 provides fixed VAR compensation, whereas Xsh1 can provide
VAR compensation in a continuous manner. Transformer T1 steps up 110–220 kV
at bus-1. Both transformers T1 and T2 are equipped with stepwise adjustable
on-load tap positions that can be changed to control reactive power flow.
A factitious load L1 is connected at bus-1, which is a point of common coupling
(PCC) at which powers coming from the grid are merged with those coming from
DFIGs. Load L1 represents a reactive power requirement (Qref) at PCC which must
be fulfilled by DFIGs and power grid in such way that active power losses of
transmission lines and cables get minimized. So the difference between the injected
reactive power (QPCC) by the DFIGs and reactive power requirement (Qref) should
be very near to zero so as to minimize the total losses of the wind power system.

Assuming that the online data about the actual status of DFIGs, transformer tap
positions, and compensating devices are available through the SCADA system,
following optimization strategy can be formulated to minimize the losses of the
wind power system.

3 Problem Formulation

The aim of optimal reactive power dispatch is to minimize the total active power
losses of the transmission system while fulfilling constraints, which can be defined
from the following objective:

min
X
k2NE

Pkloss ¼
X
k2NE

gkðv2i þ v2j � 2vivj cos hijÞ ð3Þ

where

k ¼ ði; jÞ; i 2 NB ðTotal no. of busesÞ
j 2 Ni ðNo. of buses adjacent to bus i; including bus iÞX
k2NE

Pkloss ¼ Total active power losses in the transmission system

NE : Set of numbers of transmission lines

gk ¼ Conductance of branch k(pu)

vi; vj ¼ voltage magnitude (pu) of bus i and j respectively

hij ¼ load angle difference between bus i and j(rad)

This is subject to the following constraints to be outlined in the next subsections.
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3.1 Equality Constraints

These constraints confirm that the algebraic summation of injected active powers
and algebraic summation of extracted active powers at a particular bus should be
the same, i.e., their difference must be zero. Similarly, the algebraic summation of
injected reactive powers and algebraic summation of extracted reactive powers at a
particular bus should be the same.

Active power flow balance equations at all buses excluding the slack bus:

Pgi � Pdi � vi
X
j2Ni

vjðgij cos hij þBij sin hijÞ ¼ 0 ð4Þ

Reactive power flow balance equations at all PQ buses (load buses):

Qgi � Qdi � vi
X
j2Ni

vjðgij sin hij þBij cos hijÞ ¼ 0 ð5Þ

An additional equality constraint due to inclusion of WPP is

QPCC � Qref ¼ 0 ð6Þ

Reactive power injected (QPCC) at the point of common coupling (PCC) should
be equal to the reactive power demand (Qref) so as to maintain an acceptable voltage
level at PCC as shown in Fig. 1.

3.2 Inequality Constraints

Inequality constraints ensure that the values of some variables like reactive power
output of generators, wind turbines, reactors, and capacitors should be maintained
between their lower bound and upper bound for the safe operation of the equipment.
Voltage at each bus should be typically maintained between 0.9 and 1.1 p.u. to
avoid under-voltage and Ferranti effect, respectively. The power flow in the
transmission line should be less than its maximum thermal limit to avoid any
congestion.

Reactive power generation limit for each generator bus

Qmin
gi �Qgi �Qmax

gi ; i 2 Ng
ð7Þ

reactive power generation limit for each wind turbine

Qmin
WTi �QWTi �Qmax

WTi ; i 2 NWT
ð8Þ
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reactive power limits of reactors and capacitors

Qmin
Li �QLi �Qmax

Li ; i 2 NL
ð9Þ

Qmin
Ci �QCi �Qmax

Ci ; i 2 NC ð10Þ

voltage magnitude limit for each bus

vmin
i � vi � vmax

i ; i 2 NB
ð11Þ

Transformer tap-setting constraint is

Tmin
k � Tk � Tmax

k ð12Þ

The apparent power flow limit constraint of each transmission line is

sl � smax
l ; 8l 2 NE ð13Þ

The augmented objective function (fitness function) can be formulated as
follows:

FP ¼
X
k2NE

Pkloss þDynamic Penalty Function ð14Þ

where

Dynamic Penalty Function ¼ Dynamic Penalty coefficient �
X

constraint violation
� �2

¼ ða0 þ a1tþ a2t
2 þ a3t

3 þ a4t
4 þ a5t

5Þ

�
XNG

i¼1

f ðQgiÞ
 !2

þ
XN
i¼1

f ðViÞ
 !2

þ
XNE

m¼1

f ðSlmÞ
 !2

8<
:

9=
;
ð15Þ

f ðxÞ ¼
0 if xmin � x� xmax

ðx� xmaxÞ2 if x[ xmax

ðxmin � xÞ2 if x\xmin

8<
:

9=
; ð16Þ

where ai ϵ [0,1] are user-defined constants a0 ¼ 0; a1; a2; a3; a4; a5 ¼ 1: Here, t is
the iteration number.

A dynamic penalty function [28] is used to handle the constraint violations of the
reactive power output of generator buses, wind turbines, reactors and capacitors,
bus voltage magnitudes of all buses, and line flow limits of all transmission lines. It
consists of the penalty coefficient, which is dynamically increased as the iteration
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number (t) increases. So it has the property of allowing highly infeasible solutions
early in the search space, while continually increasing the penalty imposed even-
tually move the final solution to the feasible region.

4 Step-by-Step Procedure for ORPD Using CSA
for a 41-Bus Wind Power Plant System

(1) Define and initialize randomly a total of 22 control variables as given in
Table 1 within their permissible ranges; define the size of host nests (n), the
discovery rate of alien eggs (Pa = 0.25), number of iteration (=10,000),
convergence criteria, and input the data of the 41-bus test system.

(2) Take iteration number t = 0.
(3) For each cuckoo’s egg (nest), run Newton–Raphson (NR) load flow to find

out total transmission losses.
(4) Calculate the fitness of each cuckoo’s egg using Eq. (14)
(5) Find the best nest, which gives the minimum value of the objective function.
(6) t = t + 1.
(7) Generate new nests by performing Levy flights using Eqs. (1) and (2).
(8) Evaluate the fitness (Fi) of each new nest by performing the NR load flow

analysis.
(9) Choose a nest (say, j) randomly.

(10) If (Fi > Fj), then replace j by the new solutions.
(11) A fraction (pa) of worse nests is abandoned and new nests are built at new

locations via Lèvy flights.
(12) Keep the best solutions obtained so far. Rank the solutions and find the

current best solutions.
(13) Go to step number 6 until the convergence criteria are satisfied.
(14) Coordinates of best nest give optimized values of control variables and its

fitness gives minimized value of losses.

Table 1 Control variables of the optimization problem

Sr no. Name of control variable Type of control
variable

Quantity Limits of
variables

Min. Max.

1 Reactive power output of
DFIGs (MVAR)

Continuous 18 (As there are total
18 DFIGs)

−1.84 +1.84

2 Tap positions of
Transformers

Discrete 02 (each for T1 and
T2)

−5 +9

3 Reactive power absorption
of Xsh1

Continuous 01 0 1

4 Stepwise adjustment of
capacitor C1

Discrete 01 0 5

Total control variables 22 –
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5 Simulation Results and Discussion

Simulation studies were carried out on a computer with an Intel Xeon CPU,
2.67-GHz system (dual processors), 5 GB of RAM, MATLAB 7.10 platform [The
MathWorks, Natick, Massachusetts, USA]. The 41-bus WPP is used to test the
effectiveness and efficiency of CSA. The performance of CSA has been compared
with PSO. The developed MATLAB codes can be obtained from the authors.

The reactive power requirement (Qref) at PCC is 0.2 p.u., which should be
fulfilled by the WPP system. However, the load flow analysis at the base case yields
that all bus voltages (except buses 1, 2, 3, and 4) violate their permissible upper
limits of 1.10 p.u. This is because of large mismatch between the reactive power
requirement and reactive power injection at PCC. Also, active and reactive output
powers of all DFIGs hit their maximum limits of 2.1 MW and 1.84 MVAR,
respectively. So the load flow simulation has infeasible solutions and so it is
concluded that it is a hard-to-solve optimization problem. CSA has been tested to
solve such a complex problem.

The control variables and their permissible limits are given in Table 1. It is seen
that the optimization problem consists of continuous and discrete variables. So it is
a nonlinear mixed integer optimization problem. The total number of constraints is
123, which include the equality constraints of power flow balance equations at each
bus, difference between QPCC and Qref, and inequality constraints of bus voltage
limits and line power flow limits. Load flow data are given in Table 2.

Table 3 shows the optimized results of these control variables obtained by PSO
and CSA methods. Some values of the reactive output powers of wind turbine
DFIGs are positive, which indicates that they supply reactive powers to the grid to
fulfill the reactive power demand of load L1, whereas their negative values indicate
that DFIGs absorb reactive powers from the grid to maintain the acceptable voltage
profile of the buses. T1–2 and T3–5 consist of total 15 discrete tap positions. Tap
number +2 indicates the nominal HV side voltages, i.e., 220 kV and 110 kV for T1–2

and T3–5, respectively. Tap positions from 3–9 will decrease the HV side voltage and
tap position from (1 to −5) will increase HV side voltage in a discrete step of 1.25 %.
of nominal voltage. This facilitates the voltage variation of about −10 to +10 % at
buses 1 and 3. Shunt reactor at bus 2 absorbs and capacitor C1 supplies reactive
powers in the system.

As shown in Table 4, the total active power losses obtained by CSA are 15.56 %
lesser than that of PSO. It confirms that CSA outperforms PSO in terms of the
quality of solutions. Such a high reduction in losses by CSA will decrease the cost
of losses and ensures economical operation of the power system. CSA also obtains
the lesser absolute value of reactive power mismatch (DQPCC) than PSO, which
indicates that CSA can easily fulfill an additional constraint number (6) of WPP
with a higher accuracy.

As PSO and CSA are stochastic optimization methods, the initial populations are
generated randomly and, as a consequence, they give slightly different optimized
results in every simulation. So a total of 31 independent simulations were carried
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Table 2 Load flow data in MATPOWER format

Bus data

Bus no. Pd Qd Gs Bs baseKV Vmax (pu) Vmin (pu)

1 0 0 0 0 220 1.1 0.9

2 0 0 0.5208 −12.1 110

3 0 0 0 0 110

4 0 0 0.4586 −8.0667 110

5 0 0 0 9.8965 33

6 0 0 0.0049 0

7 0 0 0.0049 0

8 0 0 0.0049 0

9 0 0 0.0049 0

10 0 0 0.0049 0

11 0 0 0.0049 0

12 0 0 0.0049 0

13 0 0 0.0049 0

14 0 0 0.0049 0

15 0 0 0.0049 0

16 0 0 0.0049 0

17 0 0 0.0049 0

18 0 0 0.0049 0

19 0 0 0.0049 0

20 0 0 0.0049 0

21 0 0 0.0049 0

22 0 0 0.0049 0

23 0 0 0.0049 0

24 −2.1 −1.84 0 0 0.69 1.05 0.95

25 −2.1 −1.84 0 0

26 −2.1 −1.84 0 0

27 −2.1 −1.84 0 0

28 −2.1 −1.84 0 0

29 −2.1 −1.84 0 0

30 −2.1 −1.84 0 0

31 −2.1 −1.84 0 0

32 −2.1 −1.84 0 0

33 −2.1 −1.84 0 0

34 −2.1 −1.84 0 0

35 −2.1 −1.84 0 0

36 −2.1 −1.84 0 0

37 −2.1 −1.84 0 0

38 −2.1 −1.84 0 0

39 −2.1 −1.84 0 0

40 −2.1 −1.84 0 0

41 −2.1 −1.84 0 0
(continued)
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Table 2 (continued)

Bus data

Generator data

Bus Pg Qg Qmax Qmin Pmax Pmin

1 0 0 1000 −1000 800 0

Branch data

fbus tbus r x b rateA ratiomax ratiomin

1 2 0.0016 0.064 0 200 1.149 0.851

2 3 0.0024 0.0104 0.06536 77.11 0 0

3 4 0.0136 0.0241 0.2115 77.11 0 0

4 5 0.032 0.1654 0 100 1.13 0.87

6 24 0.0065 1.5282 0 2.5 0 0

7 25 0.0065 1.5282 0 2.5 0 0

8 26 0.0065 1.5282 0 2.5 0 0

9 27 0.0065 1.5282 0 2.5 0 0

10 28 0.0065 1.5282 0 2.5 0 0

11 29 0.0065 1.5282 0 2.5 0 0

12 30 0.0065 1.5282 0 2.5 0 0

13 31 0.0065 1.5282 0 2.5 0 0

14 32 0.0065 1.5282 0 2.5 0 0

15 33 0.0065 1.5282 0 2.5 0 0

16 34 0.0065 1.5282 0 2.5 0 0

17 35 0.0065 1.5282 0 2.5 0 0

18 36 0.0065 1.5282 0 2.5 0 0

19 37 0.0065 1.5282 0 2.5 0 0

20 38 0.0065 1.5282 0 2.5 0 0

21 39 0.0065 1.5282 0 2.5 0 0

22 40 0.0065 1.5282 0 2.5 0 0

23 41 0.0065 1.5282 0 2.5 0 0

5 6 0.0081 0.0279 0.0024 18.3 0 0

6 7 0.0023 0.0064 4.90e-04 16.5 0 0

7 8 0.0022 0.0062 4.73e-04 16.5 0 0

8 9 0.0052 0.008 4.03e-04 11.7 0 0

9 10 0.0046 0.007 3.51e-04 11.7 0 0

10 11 0.0048 0.0074 3.70e-04 11.7 0 0

5 12 0.0019 0.0067 5.76e-04 18.3 0 0

12 13 0.0025 0.0069 5.25e-04 16.5 0 0

13 14 0.0025 0.0069 5.25e-04 16.5 0 0

14 15 0.0046 0.0071 3.57e-04 11.7 0 0

15 16 0.0046 0.0071 3.57e-04 11.7 0 0
(continued)
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Table 2 (continued)

Bus data

16 17 0.0046 0.0071 3.57e-04 11.7 0 0

5 18 0.0056 0.0193 0.0017 18.3 0 0

18 19 0.003 0.0085 6.48e-04 16.5 0 0

19 20 0.0024 0.0068 5.14e-04 16.5 0 0

20 21 0.0049 0.0075 3.77e-04 11.7 0 0

21 22 0.0048 0.0074 3.70e-04 11.7 0 0

22 23 0.0048 0.0074 3.70e-04 11.7 0 0

Profile of active power (MW) dispatch for individual wind turbines

1.9326 1.83 1.7302 1.7878 1.8567 1.6 1.8143 1.7906

1.1 1.8244 1.8278 1.2 1.325 1.74 1.3583 1.8263

1.256 1.8286

Profile of WPP reactive power (MVAR) requirement at PCC

0.2

Table 3 Optimized values
of control variables by PSO
and CSA

Bus no. Control variables PSO CSA

24 QWT24 (MVAR) 1.2387 −0.8344

25 QWT25 −1.3022 −0.9453

26 QWT26 0.1164 −0.7528

27 QWT27 −0.9368 1.5943

28 QWT28 −0.9562 0.9287

29 QWT29 −0.5498 −1.4870

30 QWT30 0.1676 −1.4363

31 QWT31 1.0119 −1.6400

32 QWT32 −1.5894 0.1722

33 QWT33 −0.3419 −1.6500

34 QWT34 0.5448 0.5943

35 QWT35 −0.3629 1.5179

36 QWT36 1.1042 −0.6667

37 QWT37 −1.0069 0.4258

38 QWT38 −0.2083 0.7845

39 QWT39 −0.1325 −1.6500

40 QWT40 1.3862 −0.5946

41 QWT41 −0.8374 −0.5770

1–2 T1–2 (p.u.) 9 9

3–5 T3–5 −2 −2

2 Xsh1 0.6103 00

5 C1 5 1
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out for both the methods and obtained losses are tabulated in Table 5. The average
(mean) value of losses obtained from CSA is quite lower than PSO. Also, the
frequency of achieving losses lesser than mean value is 13 for PSO and 20 for CSA,
which concludes that CSA is more robust than PSO in achieving the global opti-
mum solution.

Table 4 Comparisons of the optimized results of PSO and CSA

PSO CSA %PSAVE by CSA

Active power losses (MW) 1.0157 0.8576 15.56

DQPCC(pu) −0.0489 0.0168 –

Table 5 Statistical analysis of PSO and CSA over 31 independent runs

Algorithm Best losses (MW) Worst losses (MW) Mean losses (MW) F*

PSO 1.0157 1.1367 1.0783 13

CSA 0.8576 1.2814 0.9486 20

F* Frequency of achieving losses, lesser than the mean value

Table 6 Computing time for PSO and CSA

Algorithm Shortest time (s) Longest time (s) Average time (s)

PSO 74.22 75.75 74.81

CSA 72.93 76.51 75.30

Fig. 2 Convergence graphs of PSO and CSA
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The simulation times of both methods are depicted in Table 6. It is seen that
CSA is faster than PSO in obtaining global solutions.

Figure 2 shows the convergence characteristic of both methods by considering
the parameters given in Table 7. The algorithm stops when the variations of the
objective function values (Δf) are less than a given tolerance of 0.00001. It can be
seen that CSA has fewer parameters to be adjusted as compared to PSO. There is
essentially only a single parameter Pa in CSA (apart from the population size n).
So CSA is very easy to implement.

6 Conclusion

In this chapter, a CSA-based algorithm with Lèvy flights has been suggested to
solve an ORPD problem of a WPP system. A comparative study reveled that CSA
outperformed PSO in terms of the quality of solutions and execution time. It is
because PSO can converge quickly to the current best solution, but not necessarily
the global best solutions. In fact, PSO updating equations do not satisfy the global
convergence conditions, and thus there is no guarantee for global convergence. On
the other hand, it has been proved that cuckoo search satisfies the global conver-
gence requirements and thus has guaranteed global convergence properties. This
implies that for multimodal optimization, PSO may converge prematurely to a local
optimum, while cuckoo search can usually converge to the global optimum.

Furthermore, cuckoo search has two search capabilities: local search and global
search, controlled by a switching/discovery probability. Consequently, the global
optimality can be found with a higher probability. It is hoped that this powerful
algorithm may be extended to solve multi-objective OPF problems and may be
hybridized with other methods to further increase its effectiveness.

Table 7 Selected parameters of PSO and CSA

Sr no. Parameters PSO CSA

1 Population size (n) 100 05

2 Acceleration constant (C1, C2) 2.1 and 2.0 NA

3 Constriction factor 0.729 NA

4 Max. and Min. inertia weights 1 and 0.2 NA

5 Max. and Min. velocity of particles 0.003 and −0.003 NA

6 Discovery rate of alien eggs (Pa) NA 0.25

7 Convergence criteria 10,000 iterations or
Δf = 0.00001
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A DSS-Based Honeybee Mating
Optimization (HBMO) Algorithm
for Single- and Multi-objective Design
of Water Distribution Networks
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Abstract A decision support system (DSS) for long-term design of water distri-
bution networks (WDNs) herein named “dynamic design” is proposed in this work.
The proposed DSS is capable of recognizing the long-term consequences of various
WDN initial designs to achieve a desirable performance in the rehabilitation period.
Single- and multi-objective initial designs and rehabilitation problems are consid-
ered in which the design variables are the pipes’ diameters and several rehabilitation
alternatives. The DSS relies on the honeybee mating optimization (HBMO) and the
multi-objective honeybee mating optimization (MOHBMO) algorithms to minimize
the total cost of the initial implementation of a WDN and of its rehabilitation cost,
and/or maximize the WDN’s hydraulic reliability. This paper’s results show the
advantages of a DSS that considers design and rehabilitation (dynamic design) of
activities simultaneously in comparison to DSSs that minimize the initial cost of
WDNs only (normal design).

Keywords Decision support system � Single-objective optimization �
Multi-objective optimization � Honeybee mating optimization algorithm � Initial
design � Rehabilitation � Water distribution system

O. Bozorg Haddad (&) � N. Ghajarnia � M. Solgi
University of Tehran, Tehran, Iran
e-mail: obhaddad@ut.ac.ir

H.A. Loáiciga
University of California, Santa Barbara, Santa Barbara, CA, USA

M. Mariño
University of California, Davis, Davis, CA, USA

© Springer International Publishing Switzerland 2016
X.-S. Yang et al. (eds.), Metaheuristics and Optimization in Civil Engineering,
Modeling and Optimization in Science and Technologies 7,
DOI 10.1007/978-3-319-26245-1_10

199



1 Introduction

A decision support system (DSS) is a computer-based information system that
supports decision-making activities. DSSs serve management, operations, model-
ing, and planning tasks and help in making decisions, specially when there may be
rapidly changing conditions that affect the function of a knowledge-based system.
A properly designed DSS is an interactive software-based system intended to help
decision makers compile useful information from a combination of input data,
knowledge, predefined scenarios, or conceptual models to identify, analyze, solve
problems, and make decisions.

According to Keen and Marton [44], the concept of decision support has evolved
from two main areas of research: The theoretical studies of organizational decision
making done at the Carnegie Institute of Technology during the late 1950s and
early 1960s, and the technical work on interactive computer systems, were mainly
carried out at the Massachusetts Institute of Technology in the 1960s. It is con-
sidered that the concept of DSS became an area of research of its own in the mid
1970s.

In 1987, Sol et al. [68] remarked that the definition and scope of DSSs have been
migrating over the years. In the 1970s, a DSS was described as “a computer based
system to aid decision making.” In the late 1970s, the DSS movement started
focusing on “interactive computer-based systems which help decision-makers uti-
lize data bases and models to solve ill-structured problems.” In the 1980s, DSSs
were thought of as providing systems “using suitable and available technology to
improve effectiveness of managerial and professional activities,” and at the end of
the 1980s DSSs faced a new challenge concerning design of intelligent
workstations.

Nowadays, a DSS is usually used for integrated analyzing and planning of water
systems during their initial design and operational periods. Since different cir-
cumstances affecting water systems change endlessly, DSSs can help decision
makers a great deal in water system analysis and planning during the operational
period. DSSs introduce optimal operational choices intended to meet suitable
conditions from the viewpoint of consumer satisfaction, water system sustainable
development, and also economic considerations by introducing input data, defining
water system feedbacks through mathematical functions, and benefiting from dif-
ferent operational policies for the system in an interactive mode.

Water distribution networks (WDNs) are one of the most important, costly, and
vital infrastructures which exist in most urban areas. A huge amount of capital is
spent on the design of new water distribution networks (WDNs) and the rehabili-
tation of existing ones in developing and developed countries. These large capital
costs encourage further research on the optimal design of WDNs considering cost
and hydraulic benefits. It is possible to optimize a design-operation WDN project
from different perspectives using DSSs during the initial design and operation of
such systems.
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Numerous researches have been conducted in many fields of water resource
systems such as reservoir operation (e.g., [26, 27, 29]), hydrology [55], project
management (e.g., [16, 28]), cultivation rules (e.g., [14, 30]), pumping scheduling
[17], hydraulic structures [15], water distribution networks (e.g., [63, 64]), opera-
tion of aquifer systems [8], site selection of infrastructures [43], and algorithmic
developments [67]. However, only a few of these works dealt with the developing
application of the DSSs for long-term design of water distribution networks.

Any WDN generally consists of consumption nodes with known water demands,
linking pipes, pumping stations, valves, and storage reservoirs or tanks. WDNs are
designed for a predefined service life. Because nodal demands of WDNs usually
increase during the operational period, demand values corresponding to the final
year of their useful life are considered in the initial design of a WDN. This increase
can be predicted using various prediction methods. Any WDN is continuously
subjected to environmental and operational stresses that lead to its deterioration
[39]. On the other hand, because of the decay (say corrosion) of a WDN’s com-
ponents (mainly pipes) or unexpected accidents (such as pipe breakages), almost all
WDNs need rehabilitation during their useful life. Therefore, after initial design of
any WDN, rehabilitation of old components, if they exist, is needed. Improvement
of WDN design projects is possible by means of integrated DSS for their initial and
rehabilitation design. To better support this assertion a brief state of the art
regarding WDN designs is presented below.

WDNs were in past decades designed using trial-and-error methods by experi-
enced engineers. Since these methods were typically dependent on human expe-
rience and judgement and on trial-and-error attempts, optimal solution of the WDN
design problem was not expected given that it was achieved subjectively and
relying on trial-and-error methods. Several researchers have focused on the optimal
design of WDNs using linear programming (e.g., [3, 36, 45, 57]) and nonlinear
programming [31].

In spite of achieving improvements in WDN design using LP and NLP, Savic
and Walters in 1997 [61] pointed out that the hydraulic constraints of the problem
must be checked to adjust the continuous pipe size solutions to commercially
available ones. This is so because pipe diameters in LP and NLP methods were
considered to be continuous while in practical problems the designer has to choose
optimal diameters among commercially available diameters. As a result, final
solutions of LP and NLP methods had to be modified to be applicable in real
problems. Cunha and Sousa in 2001 [19] stated that conversion of the solutions into
commercial pipe diameters could decrease the optimality of the answers and might
lead to the violation of hydraulic constraints. Evolutionary optimization algorithms
(EAs) have emerged as an attractive alternative for engineering design, including
the problem of WDN design.

Savic and Walters in 1997 [61] applied the evolutionary-based genetic algorithm
(GA) to solve the problem of WDN design. They showed that evolutionary algo-
rithms overcome some of the shortcomings of LP and NLP. Evolutionary and
metaheuristic methods are efficient tools to solve nonlinear problems and do not
require linearization or calculation of partial derivatives. Investigators such as
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Cunha and Sousa in 1999 [20], Lippai et al. in 1999 [50], Eusuff and Lansey in
2003 [24], Maier et al. in 2003 [51], Geem in 2005 [32], and Suribabu and
Neelakantan in 2006 [73] reported the application of Simulated Annealing (SA),
Taboo Search (TS), Shuffled Frog Leaping Algorithm (SFLA), Ant Colony
Optimization (ACO), Harmonic Search (HS), and Particle Swarm Optimization
(PSO), respectively, in the optimal design of WDNs. These algorithms have
reported improved designs for WDNs in comparison with those calculated with
traditional mathematical methods. A few researchers have exploited EAs and
metaheuristic algorithms to solve problems of WDN calibration [60], operation
(e.g., [69, 70]), and simulation [71].

All the cited studies aimed at minimizing WDN capital costs. In this regard,
Walski in 2001 [76] lamented that in spite of numerous papers on the optimal
design of WDN in prior decades, none had managed successfully to play an
important role in the design of real WDNs. He claimed that excessive attention was
devoted to minimizing the cost of WDNs and insufficient attention was given to
their efficiency, this being the main reason why optimization methods for WDN
have largely remained confined to the theoretical realm. Over reliance on cost
minimization of WDS overlooks efficiency factors such as the reliability in meeting
water demand with a desired pressure. Thus, the optimal design of WDNs must
consider their cost and the reliability of their service.

Explicit consideration of reliability measures in WDN design is one of the most
difficult tasks faced by designers [35]. Todini in 2000 [74] introduced a resilience
index which is a surrogate for reliability and robustness of water supply. Todini in
2000 [74] applied a multi-objective design method for WDNs that minimized the
WDN cost and maximized a reliability index (Ir). Afterward, Prasad and Park in
2004 [56] used the nondominant sorting genetic algorithm (NSGA) for the
multi-objective design of water networks applying modifications on the Ir index.
The latter authors proposed a modified reliability index named network resiliency
(In), which improved the network’s reliability in comparison with the Ir index.

The above-mentioned studies focused on initial design of WDNs, while reha-
bilitation projects should also be considered during the operational period of
WDNs. The issue of WDN rehabilitation has been the subject of many investiga-
tions over the past 20 years. It is apparent that earlier works dealt primarily with
analytical solutions to single pipe problems (e.g., [18, 22, 65, 78, 77]), while later
works considered a more comprehensive network-wide approach (e.g., [5, 40–42,
46–49, 52, 62–64, 72]).

A few studies have addressed the issue of timing pipe rehabilitation alternatives
in the framework of a long-term rehabilitation plan while considering structural
integrity or hydraulic capacity (e.g., [6, 10, 37, 42, 52, 75]) of a WDN.

Engelhardt et al. in 2000 [23] highlighted the requirements of a rehabilitation
strategy in a comprehensive review. Dandy and Engelhardt in 2006 [21] used the
genetic algorithm to generate a trade-off surface that represents the compromise
between cost and reliability in the problem of WDN pipe replacement. Alvisi and
Franchini in 2009 [4] introduced a multi-objective genetic algorithm-based proce-
dure for optimal medium- and short-term scheduling of leakage detection and pipe
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replacement interventions in a water distribution system. Nafi et al. in 2008 [54]
presented a decision support system that ensures the scheduling of pipe renewal
according to available financial resources using a multi-objective approach based on
Pareto ranking and the modified genetic algorithm. Nafi and Kleiner in 2010 [53]
employed the same multi-objective genetic algorithm scheme, and focused on
low-level scheduling of individual water mains.

Roshani and Filion in 2012 [58] also focused on the optimal scheduling of WDN
rehabilitations using a multi-objective optimization framework. Their method
included the broadest set of rehabilitation methods and reduced the number of
decisions made by an optimization engine. Asset management strategies (including
adjacency to infrastructure works, economies of scale, and annual budgetary con-
straints) were considered in the model and applied to the Amherstview (Ontario,
Canada) water distribution system. They indicated that consideration of budgetary
constraints could have negative impacts on cost while applying asset management
strategies could significantly affect rehabilitation decisions and reduce cost.

The importance of the initial and rehabilitation design problems of WDNs has
prompted investigators to focus deeply on each area separately; yet, it is important
to consider the influence of initial network design on future rehabilitation. The
availability of useful models for predicting changes in network efficiency factors
(e.g., models for prediction of pipe breakage, roughness, and increasing rate of
water demand) and the ability of current computer models to execute long-term
simulation of WDNs enable the design and operation of WDNs with DSS.

This chapter explores the application of honeybee mating optimization (HBMO)
algorithm and its multi-objective version (MOHBMO) to the problem of WDN
design. The WDN design problem is the determination of optimal pipe diameters
that minimizes its total capital costs of initial design and its rehabilitation. The
chapter focuses on the application of a new methodology named dynamic design, to
pipe sizing simultaneously with rehabilitation problems, while most previous
investigations dealt with only one of those, separately. Herein, the network eco-
nomics and hydraulic capacity are analyzed simultaneously over a predefined
operation period, while explicitly considering the deterioration over time of the
structural integrity and hydraulic capacity of every pipe in the system. This
approach leads to a DSS for the simultaneous initial design and rehabilitation of
WDNs. The DSS herein developed for dynamic design of WDNs calculates cheaper
and more reliable solutions for decision makers to those solutions that address only
cost minimization of the initial WDN design.

As mentioned earlier, a DSS mainly consists of: (1) input data; (2) a modeling
software defining interactions between different system parts or components; and
(3) a decision policy or logic in order to obtain an optimal plan for system operation
or design. Input data such as nodal demands and pipes’ roughness during the useful
life of each network, nodal and reservoir elevations positions, pipe lengths, com-
mercially available diameters for pipe and their relevant unit costs, and any other
needed data are given in a database linked to the dynamic design DSS proposed
herein. WDN system interactions are modeled using a hydraulic simulation pro-
gram (EPANET 2.0) that computes the hydraulic variables of different network
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parts (such as nodal pressures or pipe velocities) which are influenced by different
initial and future conditions (such as initial and future nodal demands or pipe
roughness values or initial pipe diameters). EPANET is linked with a single-/
multi-objective HBMO algorithm. The main objective of the proposed DSS is to
design network pipes’ diameters in the initial design and in the rehabilitation period
of the WDN. Subsequent parts of this chapter discuss different components of the
proposed DSS.

2 Main DSS Planning Goal: Dynamic Design of Water
Distribution Networks

The main planning goal of the DSS used in this chapter, named dynamic design
method, is aimed at optimally designing a WDN considering the initial design and
rehabilitation through its service life simultaneously. First, several definitions of the
rehabilitation model are presented. Basic concepts of the dynamic design approach
are then discussed. The long-term hydraulic behavior of the network is simulated by
estimating the nodal demand increase of water demand and the Hazen–Williams
coefficient decrease during the operation period. Let Ni and T be the number of
pipes in the network and the number of operational years (including the year of
installation and years of operation), respectively. The following formula expresses
the number of decision variables in the optimization model in terms of the number
of rehabilitation alternatives:

NDecvar ¼ Ni� ðT � 1Þ � NAlter ð1Þ

in which NAlter = the number of rehabilitation alternatives and NDecvar = the
number of decision variables. Because rehabilitation does not commonly arise in
the 1st year of installation, the number of operational years in Eq. (1) is reduced by
one.

The DSS discussed in this chapter can choose one of the several rehabilitation
alternatives in each year of operation (except the 1st year of installation) and for
each link of a WDM. Hallhal in 1999 [37] introduced different rehabilitation
alternatives to increase the hydraulic capacity of a WDN such as replacing and
duplicating. Thus, three different options are considered as rehabilitation alterna-
tives: (1) replacing an existing pipe with a new one having a commercially available
diameter; (2) duplicating (adding) the existing link by adding a new parallel pipe;
and (3) doing nothing (DoN) with the network in that situation. Due to the con-
sidered objective function and hydraulic constraints, the DSS identifies one of the
rehabilitation alternatives to keep the nodal pressures above the predefined mini-
mum permissible value; otherwise it will choose the do-nothing (DoN) option. The
following practical constraints are also considered so as to make the policy of the
DSS realistic and practical.
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1. Implementation of any rehabilitation alternative during a few years after the start
of the operation period (β1), and during a few years before the end of the
operation period (β2) are not allowed. The reason is that a WDN must operate
correctly more than a minimum of time. Moreover, it is not logical to rehabil-
itate a network too close to the end of its service life unless one is planning to
expand the network for future years. Nafi and Kleiner in 2010 [53] have stated
that the replacement cost for pipes decreases with increasing age of pipes.
Therefore, it is not cost effective to replace pipes prematurely. On the other
hand, the risk of pipe failures increases with increasing age. Therefore, the
selection of values β1 and β2 is done based on the available budget, discount
rate, allowable risk for pipe failures, diameter of the pipe, pipe material, etc. In
this chapter β1 and β2 are assumed to be 10 and 2 years, respectively.

2. Halhal et al. in 1999 [37] contended that it is likely that there will be a limitation
on available budget to modify or add a number of components in a water
network at a specific time. Therefore, the number of rehabilitated pipes in each
year should not exceed a percentage of the total number of pipes installed during
the construction of the WDN. It is assumed that only a percentage of the pipes
(β3 %) can be rehabilitated at once. The value of β3 must be assumed based on
real social and practical conditions. This parameter depends on funds available
in each year. In this chapter it is assumed to equal 25 %.

3. After rehabilitation of each pipe it is not possible to implement any other
rehabilitation alternative on it again over a number of years following the
rehabilitation. β4 is the number of years after each rehabilitation so that during
β4 it is not possible to again rehabilitate the pipe. In other words, each reha-
bilitation activity has to ensure desirable performance of the network for at least
β4 years unless an unexpected event happens. The value of β4 is determined in
the same manner as β1. In this chapter this parameter is considered for 10 years.

4. The total number of rehabilitation activities implemented during the operation
period in the network should not exceed a maximum value equal to β5. This is
assumed based on available financial resources.

Capital costs of the network during the operation period consist of: (1) cost of
purchasing the pipes; (2) cost of excavation and installation; and (3) scrap value
(the worth of a pipe when the pipe is deemed no longer usable). In this study, the
service life of pipes is considered to be equal to the service life of the network.
Therefore, if the useful life of the network is, say, 30 years, then each pipe has a
service life equal to 30 years after it is installed.

WDN design can be divided into three main categories: (1) initial design;
(2) expansion; and (3) rehabilitation. Undoubtedly, the initial design of a network
influences its hydraulic performance in subsequent years. Thus, some designers
consider relatively large pipes in the initial design in order to attain a more reliable
condition over the design horizon. However, the existence of large pipes in the
network during its initial years of operation when nodal water demands and flow
velocities are low may lead to a substantial increase in water pressure, and, con-
sequently, to an undesirable increase of leakage and breakage rate. In addition, large
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pipes are also associated with water quality problems as the residence time of water
in the pipes being relatively long in this case. For this reason it is wise to save
construction cost in the initial construction phase using smaller pipes and expand
the WDN over time as needed.

The main goal of a dynamic design strategy is to couple rehabilitation and initial
design. Therefore, dynamic design of the network can be considered as the
simultaneous initial and rehabilitation design of the network. According to this
method a WDN is designed to meet services under present conditions and be
expandable to meet future conditions. Thus, the water demand and minimum
allowable pressure constraints are satisfied with respect to the current hydraulic and
structural conditions. The WDN is expanded over time incrementally as conditions
might require it.

The difference between dynamic and normal design of a network can be
explained by paying attention to the designer viewpoints. In normal design, the
network is initially designed without considering the network’s condition in reha-
bilitation periods. Therefore, the decisions about initial and rehabilitation designs
are made separately. In contrast, the dynamic design method predicts the network’s
condition during rehabilitation periods, and initially designs the network in a way
that facilitate rehabilitation in the future This is done by developing an optimization
algorithm that chooses optimal decision variables for initial diameters and reha-
bilitation activities simultaneously. In contrast, the optimal choices for initial design
and rehabilitation decision variables are chosen separately by separate optimization
problems in normal design.

Decrease of capital costs and the increase of the network reliability are advan-
tages of the dynamic design policy as compared to normal designs based on the
predefined characteristic of the network in the initial year of installation. Postponing
installation costs, has a positive effect on the economic calculations of the project
due to the influence that the interest rate has on the cost stream associated with
dynamic design. The dynamic design reduces capital costs in the initial design
(which is often based on condition of the final year of the design horizon) and uses
the savings for network expansion as conditions required in future years. Moreover,
dynamic design of the network prevents an undesirable increase of water pressure
using smaller pipes in the initial design and produces pipe networks with superior
levels of hydraulic reliability.

3 The Optimization Problem

Two objective functions are considered: (1) minimization of the total cost associ-
ated with initial installation and rehabilitation, and (2) maximization of hydraulic
reliability of the pipe network.

The total cost of the network (NetCost) consists the cost of the initial installation
and rehabilitation costs. The salvage value of a pipe is taken into account, also. The
second objective maximizes hydraulic reliability, and is evaluated based on the
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fuzzy reliability index of the pipe network (FRI). The value of the FRI is related to
the pressures on the nodes of the network so that the best value of the FRI is
achieved while all the nodal pressures are equal to the average of the minimum and
maximum allowable pressures for all times. Also, each node has different impor-
tance based on its water demand and on the diameter of the pipes that are connected
to the node when evaluating the FRI.

Decision variables are the pipe diameters for the initial design and the respective
rehabilitation times of all pipes with various rehabilitation alternatives. The con-
straints are: (1) minimum nodal pressure and (2) rehabilitation activity’s practical
considerations.

To compare the dynamic design method with the normal design method the
network is initially designed considering the nodal water demand of the final year of
the design horizon, using the first objective function. Afterward, the hydraulic
behavior of the network is simulated considering the increases in the nodal water
demand and roughness coefficient during WDN simulation. Rehabilitation is nec-
essary due to the usual alterations of the system overt time. WDN rehabilitation is
accomplished using the two objective functions. These two objective functions are
also considered in the dynamic design of the network. The results from the dynamic
design are compared with those from the normal initial and rehabilitation designs,
accomplished separately. Finally, the multi-objective dynamic design of the net-
work is performed using both objective functions.

Based on the preceding discussion, six different mathematical optimization
models are employed in this chapter (initial design using the first objective function,
rehabilitation using the first and second objective functions, dynamic design using
the first and second objective functions (each separately), and multi-objective
dynamic design using both objective functions). The network hydraulic analysis is
performed using the EPANET 2.0 model [59].

4 Mathematical Statement of the Optimization Problem

Equation (2) is the first objective function, the minimization of the cost of the WDN
installation and rehabilitation:

MinimizeNetCost ¼ TotalCost� CostEþ
XT
t¼1

XNj
j¼1

PFHj;t þ
XT
t¼1

PFNt þPFT

ð2Þ

in which NetCost = total network cost; TotalCost = total cost of the initial instal-
lation and rehabilitation; CostE = residual value; PFHj,t = penalty value for junction
j in year t if its pressure is below the minimum; PFNt = penalty value in year t for
practical constraint; PFT = penalty value for practical constraint (these penalty
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functions are defined in Eqs. (9)–(13); Nj = number of junctions; and T = total
number of years in the design horizon.

Equations (3)–(5) are related to the economic (cost) calculations of the model
and are defined as

TotalCost ¼
XNi
i¼1

CðDi;1Þi þ
XT�ðb2þ 1Þ

t¼b1

PNi
i¼1 Costi;t

ð1þ irÞt�1

" #
ð3Þ

CostE ¼
XT�ðb2þ 1Þ

t¼b1

PNi
i¼1 (Costi;tÞ � ððT � topi;t Þ=T)

ð1þ irÞt�1

" #
ð4Þ

Costi;t ¼ CðDi;tÞ � Li if DecVari;t 6¼ DoN
0 if DecVari;t ¼ DoN

�
ð5Þ

where C(Di,t) = cost of pipe i installed in year t with diameter D; Li = length of pipe
i; ir = discount rate; topi;t = number of operational years for the pipe that is changed
with a new one in year t in link i; DecVar = decision variable; and Ni = number of
pipes.

The second objective function is the maximization of WDN reliability,
expressed by Eq. (6). Equations (7)–(8) define the concept of fuzzy reliability index
(FRI) [33].

Maximize Reliablity (FRI) =
XT
t¼1

XNj
j¼1

frij;t

 !
�Min(frij;t)� PFT �

XT
t¼1

PFNt

ð6Þ

in which FRI = fuzzy reliability index of network, frij,t = fuzzy reliability index of
junction j in year t; Min(frij,t) = the lowest among all frij,t for all junctions and all
years. The sum and minimum values of the frij,t for all nodes of the network during
its operation period are considered in Eq. (6). The maximization of reliability in
Eq. (6) maximizes the total fuzzy reliability index of each node in all years, and, in
addition, the minimum value of frij,t (which may have a severe impact on the total
reliability of the system) is taken into consideration.

The membership value MemFj,t (obtained from Eq. 8) is multiplied by two
coefficients to yield frij,t as shown in Eq. (7). The first coefficient is a demand
coefficient that increases the importance of nodes with larger values of demand
while the second one is a coefficient introduced by Prasad and Park [56] which
guarantees having reliable loops in the network:
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frij;t ¼ MemFj;t � 1� q�j;tPNj
j¼1 q

�
j;t

 !
�

PNPj;t
r¼1 DDrj;t

NPj;t � DDMaxj;t

 !
ð7Þ

MemFj;t ¼

0 If hj;t � hlowj;t

0:01
h�j;t�hlowj;t

� �
� hj;t � hlowj;t

� �
If hlowj;t \hj;t � h�j;t

0:01þ 1:98
h��j;t�h�j;t

hj;t � h�j;t
� �

If h�j;t\hj;t � h�j;t þ h��j;t
2

0:01þ 1:98
h�j;t�h��j;t

hj;t � h��j;t
� �

If
h�j;t þ h��j;t

2 \hj;t � h��j;t

0:01
h��j;t�hhighj;t

� �
� hj;t � hhighj;t

� �
If h��j;t\hj;t � hhighj;t

0 If hj;t � hhighj;t

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð8Þ

in which MemFj,t = fuzzy membership function of junction j in year t; q�j;t = nodal
demand value for junction j in year t; DDrj,t = diameter of pipe r connected to
junction j in year t; NPj,t = number of pipes connected to junction j in year t;
DDMaxj,t = maximum diameter of pipes connected to junction j in year t; h�j;t and
h��j;t = minimum and maximum required pressures in junction j in year t, respec-

tively; hj,t = supplied pressure in junction j in year t; and hlowj;t and hhighj;t = very low
and very high allowable pressures, respectively.

As remarked earlier, the hydraulic reliability expressed by the FRI index is
identified using fuzzy logic. The fuzzy membership function is stated in Eq. (8) and
shown in Fig. 1. The best membership value belongs to the junction with pressure
equal to the average of the minimum and maximum allowable pressures as shown
in Fig. 1 and Eq. (8). In this way, the pressures of the network junctions are placed
midway between the minimum and maximum ranges, and, therefore there will be a
low probability of supplying the consumers with low pressure or damaging the
network because of having excessive pressure.

Equations (9)–(13) are constraints of the optimization model.

If DecVari;t 6¼ Don; then DecVari;tþð1;2;...;b4Þ ¼ DoN ð9Þ

PFHj;t ¼ a1 h�j;t � hj;t
� �a2

if hj;t\h�j;t
0 if hj;t � h�j;t

(
ð10Þ

PFNt ¼ a3 Ncht � b3 � Nið Þa4 if Ncht [ b3 � Ni
0 if Ncht [ b3 � Ni

�
ð11Þ

A DSS-Based Honeybee Mating Optimization (HBMO) Algorithm … 209



PFT ¼ a5 TNch � b5ð Þa6 if TNch[ b5
0 if TNch� b5

�
ð12Þ

TNch ¼
XT
t¼1

Ncht ð13Þ

where Ncht = number of changes (implemented rehabilitation alternatives) in year t;
TNch = total number of changes; and ak = constant coefficient to determine the
effect of the penalty function on the value of the objective function (without
dimension). Equation (14) expresses head loss functions:

hfi;t ¼ xLCHW�1:852
i;t D�4:871

i;t Q1:852
i;t 8i ¼ 1,2,. . .,Ni ð14Þ

in which Qi,t = flow discharge in pipe i in year t; hfi,t = head loss of pipe i in year t;
CHW
i;t = Hazen–Williams coefficient in pipe i in year t; and ω = constant coefficient

introduced by Savic and Walters [61] to be used in the Hazen–Williams equation.
Equation (15) is the geometric pattern for demand growth based on geometric

population growth developed by Seifollahi-Aghmiuni et al. in 2011 [63] and
Eq. (16) is the pattern for the decrease of the Hazen–Williams coefficient reported
by Sharp and Walski in 1988 [66].

Fig. 1 Values of the membership function related to fuzzy reliability index (FRI)
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q�j;t ¼ Exp Lnðq�j;TÞ � Kg � ðT � tÞ
� �

ð15Þ

in which Kg = geometric growth rate coefficient.

CHW
i;t ¼ 18:0� 37:2 log10

e0i þ ait
Di;t

� �
ð16Þ

where e0i = initial roughness in pipe i at the time of installation (when it was new);
ai = roughness growth rate in pipe i; and t = the number of years elapsed from initial
installation (t < T).

5 Single-/Multi-objective HBMO Algorithm

A single-objective version of the HBMO algorithm was introduced by Bozorg
Haddad et al. in 2006 [10]. The HBMO algorithm is one of the metaheuristic
algorithms inspired from the honeybees life and reproduction. The algorithm starts
with three user-defined parameters and one predefined parameter. The predefined
parameter is the number of workers, representing the number of heuristics encoded
in the program. The three user-defined parameters are the number of queens, the
queen’s spermatheca size representing the maximum number of matings per queen
in a single mating-flight, and the number of broods that will be born by all queens.
The energy and speed of each queen at the start of each mating-flight is initialized at
random. A set of queens is then initialized at random. Then a randomly selected
heuristic is used to improve the genotype of each queen, assuming that a queen is
usually a good bee. A number of mating-flights are then undertaken. In each
mating-flight, all queens fly based on their energies and speeds, where both energy
and speed are generated at random for each queen before each mating-flight
commences. At the start of a mating-flight, a drone is generated at random and the
queen is positioned over that drone. The transition made by the queen in space is
based on her speed. Therefore, at the start of a mating-flight, the speed is usually
high and the queen makes moves through long steps. While the energy of the queen
decreases, the speed decreases and, as a result, the neighborhood covered by the
queen decreases. At each step made by the queen in space, the queen mates with the
drone encountered at that step using the probabilistic rule in Eq. (17), shown below.
If the mating is successful (i.e., the drone passes the probabilistic decision rule), the
drone’s sperm is stored within the queen’s spermatheca. We may notice here that
each time a drone is generated, half of his genes are marked at random since each
drone is haploid by definition. Therefore, the genes that are transmitted to the
broods are fixed for each drone.
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The probability of mating between each drone with the queen is defined by the
following equation:

prob(Q;DÞ ¼ e
�Df
sðtÞ ð17Þ

where prob(Q;DÞ = probability of mating between drone D and queen Q, or the
probability of a successful mating; Df = value of the difference between fitness
value of the drone (f(D)) and fitness value of the queen (f(Q)); S(t) = queen’s speed
at time t. At the beginning of the mating-flight when the queen’s speed is high or
when the drone is fit enough, the probability of mating is high. After each moving
of the queen in space or after each mating, its energy and speed decrease according
to the following equations:

Eðtþ 1Þ ¼ EðtÞ � c ð18Þ

Sðtþ 1Þ ¼ a� SðtÞ ð19Þ

where a is a coefficient between (0,1) and b is the value of the energy decrease.
When all queens complete their mating-flight, they start breeding. For a required

number of broods, a queen is selected in proportion to her fitness and inseminated
with a randomly selected sperm from her spermatheca. A worker is chosen in
proportion to its fitness to improve the resultant brood. After all broods have been
generated, they are sorted according to their fitness. The best brood replaces the
worst queen until there is no brood that is better than any of the queens. Remaining
broods are then killed and a new mating-flight starts until all assigned mating-flights
are completed or convergence criteria met [9, 10]. In recent years, several inves-
tigators have implemented the HBMO algorithm to solve different problems and its
good performance has been established earlier (e.g., [1, 2, 7, 9–13, 15, 16, 38, 69]).

MOHBMO, which is the multi-objective version of the HBMO algorithm, is
inspired from the natural life of honeybees. Each bee hive can contain one or more
queens. In the mating season, queens exit the hive and perform the mating-flight by
attracting drones. The interesting point is that successful drones which were able to
mate with the queen do not necessarily belong to the queen’s hive. In other words, the
queenmight havematedwith drones belonging to other hives. In addition, two queens
might not live in the same hive. Itmeans that if a hive contains two queens, one of them
leaves the hive and migrates to another bee hive which does not contain a queen. It is
possible for the migratory queen to mate also with drones of a new hive, leading to the
replacement of honeybee genes between different bee hives. This natural process is
used to develop the multi-objective version of the HBMO algorithm.

InMOHBMO, at first two hives with two (or more) different queens are generated.
Each hive performs a single-objective optimization with one objective function and
tries to improve its queen after a predefined number of iterations. In a multi-objective
problem, the final Pareto solutions found by the algorithm will not expand more than
the area between the solutions found by solving the single-objective problem with
each objective function. Thus, to have a well-distributed and expanded Pareto it is
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necessary for two heads (maximum and minimum edges) of the Pareto to get as close
as possible to the solution found by the single-objective solution of the problem. To
ensure the aforementioned Pareto condition, a warm up (WU) period is added to the
MOHBMO algorithm [25]. During the WU period, each hive tries to improve the
queen through the global optimum of its own objective function, by performing a
considerable number of iterations. The result is in the form of two near-optimal

Start
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Randomly generate 
second hive

Single objective optimizaiotn 
with  NWU1 iterations using 

first objective function
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Fig. 2 Flowchart of the multi-objective honeybee mating optimization algorithm
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solutions, one for each of the two objective functions. These solutions are compared
with each other. If one of them dominates the other, it is then added in the non-
dominated list; otherwise both are added to the list. The queens are then replaced in
the hives. It means that the solution which is better in the first objective function will
move to the hive which improves the second objective function, and vice versa.
Again, each hive starts evolution through its own objective function using a new
queen, while at this stage the number of iterations is much less than the WU period.
After conducting a predefined number of iterations, the final solutions are again
compared and moved to the nondominant list. Each new member which is added to
the nondominant list will be compared with older ones and finally only the non-
dominant solutions remain in the list.

After updating the nondominant list, the solution having a better value of the first
objective function moves into the second hive (that improves the second objective
function), and vice versa. Once more, each hive evolves to improve its own
objective function and this repetitive procedure continues until a stopping criterion,
which is usually a predefined number of iterations, is reached. If the WU period is
successfully performed and near-optimum single-objective results are obtained, and
if the number of each hive’s iteration during the repetitive procedure and stopping
criterion are chosen properly, one can expect to obtain a well-distributed and
expanded Pareto solution. Figure 2 shows a flowchart of the MOHBMO algorithm,
in which NWU1 and NWU2 are the number of iterations in WU periods for the first
and second hives, respectively. Also, Itt1 and Itt2 define the number of each hive’s
iterations during the repetitive procedure, and Rep is the number of repetitions of
the algorithm (stopping criterion).

6 DSS Application

The DSS in this chapter contains a: (1) Policy named dynamic design method with a
new fuzzy reliability index (FRI); and (2) DSS tool which is the combination of a
single-/multi-objective optimization algorithm and a hydraulic simulator (EPANET
2.0) supported initially by long-term data such as nodal demands (predicted using
Eq. 15) and pipes’ roughness (predicted using Eq. 16) during the useful life of each
network, and any other needed data. The DSS is applied to two sample networks
named Two-Loop and Hanoi water distribution networks. The results are as follows.

6.1 The Two-Loop Network

An example of a two-loop network [3] is now considered. The network (Fig. 3)
consists of eight pipes and seven nodes (junctions). One of the nodes is the reservoir
and other ones are demand nodes. The data for this benchmark problem can be
found in Alperovits and Shamir [3].
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The minimum and maximum acceptable pressures are 30 and 60 m above
ground level, respectively. There are 14 commercially available diameters for this
network and each diameter cost has been reported by Alperovits and Shamir [3].
These costs apply to purchasing pipes and installing them. This enables the com-
parison of the results of dynamic and normal designs. The discount rate (ir) is 0.05
[10]. The design horizon (T) equals 30 years while the Kg coefficient (see Eq. 15) is
equal to 0.1. Figure 4 shows the increasing trend of nodal demands for the two-loop
network during its service life using Eq. (15).

The initial roughness (e0) and roughness growth rates (a) are found in Bozorg
Haddad et al. [10]. The Hazen–Williams coefficient for all pipes equals 130 in the
1st year [3] and it changes thereafter according to Eq. (16) as shown in Fig. 5.
Finally, the maximum number of rehabilitation activities implemented during the
operation period (β5) is assumed to be equal 10.

Using the demand data of the final operation period (year) and a Hazen–
Williams coefficient equal to 130 the design of the two-loop network was per-
formed by the normal design method with the objective function of minimizing
costs. The result obtained by the HBMO was $419,000, which has been reported by
other investigators (e.g., [20, 24, 32, 61, 73]).

Figure 6 shows the change in nodal pressure heads in the designed network
during its operation period.

It is seen in Fig. 6 that the nodal pressures in the 1st years of operation exceed
30 m. In the following years pressure heads are near 30 m and decrease in the final

Fig. 3 Schematic of the
two-loop network
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Fig. 4 Changes of nodal demands in the two-loop network during the operational period
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Fig. 5 Change of the Hazen–Williams coefficient in the two-loop network during operational
period
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without rehabilitation during operational period
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years. The rise in pressure head is caused by increased nodal water demands and
pipe roughness. The rise in pressure heads requires rehabilitation intervention.
Rehabilitation was performed using the HBMO algorithm with two objective
functions, each optimized separately. The results are shown in Fig. 7. This figure
shows the condition of the designed network, after rehabilitation with each
objective function. It is seen in Fig. 7 that after rehabilitation the pressure values are
placed in the allowable range during the operational period. In addition, rehabili-
tating the network with the aim of maximizing the fuzzy reliability index leads to
adequate nodal pressures. The post-rehabilitation pressure heads are close to the
average of the minimum and maximum pressure heads. The values of the FRI for
the designs considering the first and second objective functions are 0.58 and 0.76,
respectively.

The dynamic design of this network was also performed with the two objective
functions, each optimized separately. The HBMO algorithm was implemented with
both objective functions, each optimized separately. Figure 8 shows the pressure
conditions of the results obtained from HBMO with each objective function.
Clearly, the pressure values fall in the allowable range with either objective func-
tion. The satisfactory order and arrangement of the nodal pressures in the dynamic
design with the second objective function is noticeable, also. A comparison of
Figs. 7b and 8b shows that the dynamic design method is able to deliver nodal
pressures that are closer to the average desirable value. A comparison of Figs. 7b
and 8b shows the superiority of the dynamic design over the normal design from the
viewpoint of the reliability level.

FRI values for the solutions found with dynamic and normal designs with the
two objective functions are also listed in Table 1. The values in Table 1 establish
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Fig. 7 Nodal pressure heads in the two-loop network for normal design during the operational
period, a minimizing the total network cost; b maximizing reliability
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that the FRI values from both design scenarios (first and second objective functions)
of the dynamic design are superior to those from the normal design.

Figure 9 shows the graph of expenditures for the initial design and rehabilitation
activities of the two-loop network from the normal and dynamic designs using the
cost minimization objective function. This graphical comparison clearly shows the
difference between normal and dynamic designs. It is seen that the initial expen-
diture from the dynamic design is approximately half of the initial cost from that
associated with the normal design. On the other hand, the rehabilitation costs from
the dynamic design are larger than those corresponding to the normal design. Thus,
the dynamic design of the network is able to postpone the project’s expenditure and
consequently it is possible to decrease the total network cost of the project due to
the influence of the discount rate. Tables 2 and 3 show the diameters associated
with the initially installed and rehabilitated pipes from the dynamic design of the
two-loop network. During the rehabilitation period (10 ≤ t ≤ 28 years), numbers
labeled by a star are the pipe diameters which were replaced while numbers defined
by two stars are those which were added (duplicated).

A fact worthy of notice in Table 3 is the value of pipe diameters in year zero.
Pipe 1 has a diameter equal to 0.20 m (8 in.) while distal pipes have greater pipe
diameters such as 0.61 m (24 in.), which is not a common design. This is caused by
the use of the FRI as the objective function in such a small network. The best value

Table 1 Value of the FRI
from dynamic design and
normal design with both
objective functions in the
two-loop network

Objective function Dynamic design Normal design

Minimize cost 0.65 0.58

Maximize FRI 4.9 0.76
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Fig. 8 Nodal pressures in the two-loop network from dynamic design during the operational
period, a minimizing the total network cost; b maximizing reliability
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for nodal pressure is the mean of the minimum and maximum permissible pressure
heads in the definition of the FRI index. As a result, using the FRI as the objective
function of the optimization model, the pipe diameters are chosen in a way to
produce mean nodal pressure values for all junctions. Because in this small
example, the whole network is highly influenced by the first pipe; this pipe has been
chosen to have the minimum diameter and maximum head loss to control the
downstream nodal pressures. However, this may not happen in more realistic
networks, especially those having pump stations and valves (see next case study).
These results highlight the necessity of multi-objective dynamic design, which is
presented later on.

A comparison of expenditures is listed in Table 4, showing that the initial cost
from the dynamic design is less than that from the normal design while its reha-
bilitation cost is larger. The NetCost represents the sum of initial and rehabilitation
costs minus the residual value in Table 4. NetCost from the two-loop network’s
dynamic design is approximately 24 % less than its normal design. If the residual
value is not included, NetCost from the dynamic design is approximately 37 % less
than NetCost of normal design.

6.2 The Hanoi Network

The second problem is the WDN of Hanoi city, Vietnam which is shown in Fig. 10
[31]. This network contains 32 nodes that consists one reservoir and 34 pipes
organized in 3 loops. No pumping facilities are considered for the network since
only a single fixed-head reservoir at elevation of 100 m is available. The minimum

Fig. 9 Expenditures for the initial design and rehabilitation activities in the two-loop network
from the normal and dynamic designs using the cost minimization objective function
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and maximum permissible pressure heads are 30 and 60 m for each node,
respectively (h�j ¼ 30 and h��j ¼ 60). The Hazen–Williams coefficient value equals
130. Other relevant data are listed in Fujiwara and Khang [31]. The value of ir, e0, α
(roughness growth rate in pipes of network), and kg were chosen in the same

Table 2 Pipe diameters obtained from dynamic design with the objective of cost minimization in
the two-loop network (in mm)

Year Pipe

1 2 3 4 5 6 7 8

0 254.0 254.0 25.4 152.0 102.0 254.0 254.0 203.0

1 – – – – – – – –

2 – – – – – – – –

3 – – – – – – – –

4 – – – – – – – –

5 – – – – – – – –

6 – – – – – – – –

7 – – – – – – – –

8 – – – – – – – –

9 – – – – – – – –

10 457.0a – – – 356.0a – – –

11 – – 305.0b – – – 102.0a –

12 – – – – – – – –

13 – – – – – – – –

14 – – – – – – – –

15 – – – – – – – –

16 – – – – – – – –

17 – – – – – – – –

18 – – – – – – – –

19 – – – – – – – –

20 – – – – – – – –

21 – – – – 305.0b – – –

22 – – 457.0b – – – 25.4a –

23 – – – – – – – –

24 – – – 305.0b – – – –

25 – – – – – – – –

26 – – – – – – – –

27 – – – – – – – –

28 457.0b – – – – – – 51.0b

29 – – – – – – – –

30 – – – – – – – –
aReplaced pipes
bAdded (duplicated) pipes
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manner as done with the two-loop network. The value of β5 was assumed to be
equal to 32.

The Hanoi network was optimized with normal design to obtain its minimum
cost diameter set. The relevant network cost of this design equaled $6,000,448,
which has been the least cost reported in the literature using different optimization

Table 3 Pipe diameters obtained from dynamic design with the objective of FRI maximization for
the two-loop network (in mm)

Year Pipe

1 2 3 4 5 6 7 8

0 203.2 355.6 355.6 609.6 609.6 609.6 457.2 609.6

1 – – – – – – – –

2 – – – – – – – –

3 – – – – – – – –

4 – – – – – – – –

5 – – – – – – – –

6 – – – – – – – –

7 – – – – – – – –

8 – – – – – – – –

9 – – – – – – – –

10 355.6a – – 609.6b – – – –

11 – – – – 609.6b – – 609.6b

12 – 457.2a – – – – – –

13 – – – – – – – –

14 – – 508.0a – – – – –

15 – – – – – – – –

16 – – – – – – – –

17 – – – – – – – –

18 – – – – – – – –

19 – – – – – – – –

20 – – – – – – – –

21 406.4b – – 609.6b – – – –

22 – – – – 609.6b – – 609.6b

23 – – – – – – – –

24 – – – – – – – –

25 – – – – – – – –

26 – – – – – – – –

27 – – – – – – – –

28 – – – – – – – –

29 – – – – – – – –

30 – – – – – – – –
aReplaced pipes
bAdded (duplicated) pipes
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algorithms [34]. By considering changes in nodal demands and roughness coeffi-
cient (as done with the two-loop network), the calculated change of some of the
network’s nodal pressures is shown in Fig. 11. Only the boundary nodes of the
32-node network are graphed in Fig. 11. It is seen in Fig. 11 that the performance of
this normally designed network will decrease considerably in the final years
of operation. The nodal pressure heads in the initial years are about 90 m because of
the topographic and hydraulic conditions prevailing in the Hanoi network.
Pressure-reducing valves (PRV) and pumping stations are required to reduce the
high pressure heads.

The Hanoi network was also designed using the dynamic design concept. This
was accomplished with both objective functions, each optimized separately. Cost
and FRI values of the dynamic designed network using each objective function are
shown in Table 5. It is seen in Table 5 that the cost of a dynamically designed
network (during 30 years of operation) is less than the normal design of the Hanoi

Table 4 Optimization results from dynamic and normal designs with the objective of cost
minimization in the two-loop network

Initial design
($)

Rehabilitation cost
($)

Scrap value
($)

Net cost
($)

Normal design 419,000 96,533 69,661 445,872

Dynamic
design

180,000 265,321 104,637 340,685

Fig. 10 Schematic of the Hanoi network
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network. On the other hand, by designing the network using the FRI objective
function, a reliability index value was obtained equal to 1.36 with a cost equal to
$10,670,531.

Figure 12 depicts envelope curves of the nodal pressures of the dynamically
designed Hanoi network optimizing each objective function separately. By com-
paring Fig. 12 with Fig. 11, it is noticeable that the nodal pressures of the network
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Fig. 11 Changes of nodal pressure heads in Hanoi network from normal design without
rehabilitation during operational period

Table 5 Cost and FRI values
from the dynamically
designed Hanoi network
optimizing each objective
function separately

Objective function Cost ($) FRI

FRI maximization 10,670,531 1.36

Cost minimization 4,910,814 0.40
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Fig. 12 Envelope curve of nodal pressure in the Hanoi network from dynamic design during the
operational period, a minimizing the total network cost; b maximizing reliability
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during its useful life are kept at an acceptable level above 30 m. It is worth
mentioning that the performance of the system during the remaining years of
operation can be improved by solving the model every few years, using new data.
In this way, the model incorporates field conditions as they unfold over time.

6.3 Multi-objective Approach

The single-objective normal and dynamic designs of networks were presented and
compared for two case studies in previous sections. Yet, the nature of this problem
is multi-objective because the two objectives (cost minimization and reliability
maximization) give rise to trade-offs between them. Therefore, using a
multi-objective approach it is possible to determine those trade-offs. In this section
the results of multi-objective design of the two-loop and Hanoi networks are pre-
sented using the multi-objective honeybee mating optimization algorithm
(MOHBMO). The objectives are Eq. (2) (cost minimization) and Eq. (6) (maxi-
mization of reliability). Constraints and relationships are the same as
single-objective problems. The multi-objective solutions with normal design and
dynamic design can then be compared to assess their relative virtues or limitations.
First, however, we compare the Pareto space of normal and dynamic design
methods.

The first step is to make an initial multi-objective optimal design of the two-loop
network using the two proposed objective functions. The initial design of the
network is performed by considering the nodal demands at the end of the WDN’s
service life (nodal demands reported by Alperovits and Shamir [3]) and the results
are the network’s optimal pipe diameters. Ten runs of the MOHBMO algorithm
were conducted to initially design the two-loop network in which the algorithm
simultaneously attempts to optimize the objective functions of cost minimization
and FRI maximization. The results of these 10 different runs produced the Pareto
frontier for this problem shown in Fig. 13. It is worth mentioning that all the
answers of this Pareto are nondominant and also feasible solutions.

The two extreme Pareto points in Fig. 13 (points A and B) were obtained using
the single-objective design optimization models for the two-loop network, i.e.,
optimizing each objective function separately. Point A represents the network
designed in previous sections using the cost minimization objective function and
simulated/rehabilitated during the operational period (the results of simulation and
rehabilitation were shown in Figs. 6 and 7). The other extreme Pareto, point B,
represents a network designed using the FRI maximization objective function.
Clearly, as the reliability of the system increases, its cost increases too. The decision
maker must choose a combination of cost and reliability found on the Pareto
frontier.

In this study, the conflict resolution method proposed by Young in 1993 [79] is
used to choose a point among different solutions of Pareto. According to the conflict
resolution method, a desirability function is added to each objective function. By
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maximizing an equation based on the gradient of different points of the Pareto, the
best point is then chosen [79]. Using this method, point C, which is labeled by a
triangle in Fig. 13, is chosen. Naming A as the solution determined by the objective
function of cost minimization, B as the solution achieved by FRI maximization, and
C as the chosen answer using Young’s method [79], pipe diameters, network’s total
costs, and FRI values are shown in Table 6.

Those three designs differ with respect to pipe diameters and system reliability.
Therefore, their performances during the operational and rehabilitation period are
different from the cost and FRI reliability index viewpoints. Solution A has the
lowest cost and also the worst FRI index value. As a result, this solution is expected
to need considerable rehabilitation during the operational period. In contrast, net-
work B is more expensive but has better reliability than other Pareto solutions.

Fig. 13 Pareto frontier of cost and reliability index in the two-loop network corresponding to the
initial design

Table 6 Pipe diameters,
network cost, and FRI for
solutions A, C, and B:
two-loop network

Point Diameter (mm)

Pipe no. A C B

1 457.2 457.2 457.2

2 254.0 508.0 609.6

3 406.4 508.0 609.6

4 101.6 355.6 609.6

5 406.4 457.2 609.6

6 254.0 457.2 609.6

7 254.0 508.0 609.6

8 25.4 457.2 609.6

Cost ($) 419,000 1,090,000 3,980,000

FRI 0.02 0.97 1.2
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Therefore, this solution B requires less rehabilitation while its total cost is higher
than the cost of other Pareto solutions. Clearly, solution C is a compromise between
cost and reliability.

The comparison of the Pareto spaces of the normal and dynamic design methods
is performed using all three benchmark solutions (A, B, and C in Table 6) as
different conditions for the normal design. That is, each of three solutions is sep-
arately simulated during 30 years of the operational period and they are rehabili-
tated if any sign of failure or underperformance appears. Results of these three
normal designs are then compared with those of the dynamic designed network.

Solutions C and B were simulated during the operational period (same as
solution A in Sect. 6.1) to determine the necessity of rehabilitation for each design.
The condition and changing manner of annual nodal pressures in all three solutions
show the necessity of rehabilitation as previously shown in Fig. 6 for the least-cost
initial design of the two-loop network (point A). Nodal pressures of the design
points C and B, the same as point A, decrease considerably during the operational
years, and, therefore, all three solutions involve rehabilitation.

Rehabilitation design for solutions C and B are performed using the
single-objective HBMO algorithm with the two objective functions, each optimized
separately, as was previously done for solution A. For each case, 10 different runs
were conducted and the best results are considered. The normal design (initially
designed and then rehabilitated) of all three networks was performed using both
objective functions. Table 7 presents a comparison of results of the normal (solu-
tions A, C, and B) and dynamic designs of the two-loop network (the dynamic
designs were described in Sect. 2), using the minimum cost objective function. It is
now possible to compare the Pareto space of the normal design with that of the
dynamic design.

Figure 14 shows results of the optimization problem of the two-loop network
design for normal (solutions A, C, and B) and dynamic designs. Each pair of points
shown in Fig. 14 is relevant to the single-objective normal/dynamic design of the
two-loop network optimizing each objective function separately.

Table 7 Optimization results of normal (solutions A, C, and B) and dynamic designs showing the
values of the two objective functions

Design
type

Initial cost of
network
installation in
year zero ($)

Rehabilitation
cost ($)

Residual
value ($)

Net cost of network
installation and
rehabilitation (Normal
design) or dynamic design
($)

B 3,980,000 278,522 1,424,801 2,833,721

C 1,090,000 144,918 315,934 918,984

A 419,000 96,533 69,661 445,872

Dynamic
design

180,000 265,321 104,637 340,685
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It is seen in Fig. 14 that the dynamic design was able to improve the cost and
FRI in comparison with the normal design (solutions A, B, and C). In other words, a
single-objective design of the two-loop network to minimize the network’s cost
using the dynamic design method yielded the least cost in comparison with solu-
tions A, C, and B. Similarly, dynamic design reached a considerably better fuzzy
reliability index (FRI) than normal designs. Figure 14 indicates that if the two-loop
network is designed in a multi-objective manner, the Pareto set obtained from the
dynamic design method will dominate other Pareto sets yielded by normal designs.
In other words, the Pareto frontier from the dynamic design will dominate all other
points existing on other Paretos.

The comparison presented in Fig. 14 also shows the influence of the initial
design on the design of rehabilitation period. It is seen in Fig. 14 that the normally
designed network is worse than the dynamic design judged by economics and
hydraulic reliability, in all three initially designed networks using cost minimization
(solution A), FRI maximization (solution B), and trade-off between these two
objectives (solution C). As a result, it is concluded that economic and hydraulic
conditions of the network during its total useful life will definitely improve if the
network is initially designed by considering rehabilitation during its service life.

The third prominent feature observed in Fig. 14 is the comparison between the
broadness of the dynamic and normal-design Paretos. Figure 14 establishes that the
dynamic design Pareto is broader than the Paretos obtained from normal designs.
That is, the dynamic design provides a wider range of solutions to decision makers.
The close proximity of normal-design Pareto solutions (pair of nodes for solutions
A, C, and B) in comparison with dynamic design, renders the multi-objective
design of networks A, C, and B meaningless. Thus, in this study the MOHBMO
algorithm is useful for the multi-objective dynamic design of the two-loop network,
only.
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Fig. 14 Results of the single-objective optimization problem in the two-loop network design from
normal and dynamic designs

A DSS-Based Honeybee Mating Optimization (HBMO) Algorithm … 227



To perform the multi-objective dynamic design of the two-loop network, 10
different runs were conducted using the MOHBMO algorithm with the objective
functions of cost minimization and FRI maximization. The 10 Pareto solutions are
shown in Fig. 15. All the points on this Pareto frontier are feasible solutions. The
two extremes of the Pareto frontier presented in Fig. 15 (points D and E) are the
same points shown for the dynamic design in Fig. 14, obtained by optimizing each
objective function separately. The methodology of Young in 1993 [79] is again
used to select one of the solutions of the Pareto set of Fig. 15. The selected point
(point F) is labeled with a triangle in this figure. This solution costs $850,000 and
its FRI value is 4.43. Hence, by spending about 20 % of the cost of solution E,
solution F can supply 80 % of its reliability. In contrast, the network cost relevant to
solution F is about 2.5 times the cost of solution D while its FRI value is 7 times
greater than the FRI value of solution D.

The multi-objective dynamic design of the Hanoi network was performed using
the the MOHBMO algorithm. Once more, 10 different runs were conducted and the
combination of these 10 runs is portrayed in Fig. 16. The two extremes of this
Pareto frontier are also the solutions obtained from the single-objective design of
the Hanoi network optimizing each objective function separately. The cost of
solution H in this Pareto is equal to $4,910,814 while its FRI value is about 0.4. The
values for the cost and FRI of solution I are $10,670,531 and 1.36, respectively.

Young’s method [79] was used to choose a solution from the Hanoi network
Pareto frontier. The selected point is shown by a triangle in Fig. 16. Solution J, with
about 60 % of the cost of solution I, can supply 80 % of its reliability. In contrast,
the network cost relevant to solution J is about 1.5 times of the cost of solution H
while its FRI value is 1.7 times higher than the FRI value of solution H.

Fig. 15 Pareto frontier of cost and reliability index in the two-loop network from dynamic design

228 O. Bozorg Haddad et al.



7 Conclusion

This chapter presented a DSS for the long-term design and operation of water
distribution networks demonstrating the importance and usefulness of the simul-
taneous optimization of initial design and rehabilitation of WDNs. Changes in a
network’s condition during its operational period were simulated and initially
introduced to the DSS using equations suggested in previous studies. The simul-
taneous initial and rehabilitation design of two case studies was performed as the
main DSS planning strategy by proposing a method named dynamic design of
WDNs. The WDN optimization problem was posed as a single- and multi-objective
optimization problem with minimum cost and maximum fuzzy reliability index as
two separate objectives. The HBMO and MOHBMO algorithms were used as the
optimization tools for solving this discrete, nonlinear, complex, and large-scale
design and operation problem. Although an all-encompassing, quantitative DSS is
yet to be developed, the approach described in this chapter takes into account the
structural and hydraulic state of the network while providing a framework for the
future inclusion of other considerations as well. Results indicated that the dynamic
design method is able to decrease the total capital cost of the WDN installation and
rehabilitation while it can improve the performance of the system from the view-
point of reliability. The simultaneous initial and rehabilitation designs of the net-
work made it possible to postpone the installation cost by considering the network’s
condition in future years, leading to considerable savings in the project.
Additionally, multi-objective dynamic design of networks produces larger solution
spaces than single-objective optimization.

The DSS based on the dynamic design method encompasses three separate fields
of WDN studies, namely, initial network design, rehabilitation activities, and pre-
diction of different operational period tasks such as hydraulic conditions or

Fig. 16 Pareto frontier of cost and reliability index for the Hanoi network from dynamic design
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water-demand volumes. Each of these research fields is being separately studied by
investigators around the world. The dynamic design method is likely to evolve as
new findings emerge from new research.
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Abstract Decisions in planning for transport infrastructure are the result of com-
plex technical, political, and societal concerns. Its context of limited public funding
and large costs require that decision making is soundly supported. When addressing
real-world problems, however, it is extremely difficult to ascertain the system
configuration yielding the most value. Different alternatives exist that trade-off
interrelated factors governing the value of the configurations. Metaheuristics can be
of assistance when solving such real-world problems. This chapter presents an
application of the simulated annealing algorithm to solve an integrated approach to
high-speed rail planning. The algorithm capabilities in addressing the intricacies
imposed by large and complex problems are discussed.
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1 Introduction

1.1 Planning for Transport Infrastructure

Building and operating large transport infrastructure is expensive. Significant
investments are necessary and have to compete for the allocation of limited gov-
ernment resources. The context of public funding drives an increased demand for
addressing key social, economic, and environmental concerns. In the case of road
and railway infrastructure, the planning stage considers the appraisal of multiple
infrastructure configurations and technical solutions. Interrelations between local
characteristics and the infrastructure specifics can be established for determining the
project solutions yielding the most value. Studying different alternatives is of
paramount importance as the subsequent project design stage further details the
characteristics of the infrastructure within boundaries imposed by planning.

1.1.1 The Case of High-Speed Rail: Definition of Stations

Ridership and demand capture from other modes are decisive for HSR projects.
Amongst others, they are affected by the location of the HSR stations defining the
connections established by the system [1]. In addition to journey-related factors
such as connection time or comfort, other elements affect the decision to travel by
HSR. Accessibility to HSR stations is a major factor influencing the choice of rail
instead of other modes [1–3] and increasing the number of stations within the HSR
system increases accessibility. On the other hand, a rising number of intermediate
stations increase journey times for passengers, decreasing the attractiveness of the
HSR and having a negative impact on ridership [1, 4].

These counteracting effects for the definition of which cities to connect need to
be addressed at the planning stage [5], along with the political decisions that
ultimately enable the HSR project [6].

1.1.2 The Case of High-Speed Rail: Layout and Technical Solutions

The connection between HSR stations is established by trains circulating, as the
designation suggests, at significantly higher speeds than those operated in con-
ventional railways. Upgraded existing lines support speeds of circa 200 km/h while
specially built lines are generally equipped for speeds in excess of 250 km/h [7].

The high operating speeds require that the HSR infrastructure complies with
strict layout specifics, particularly for the radii of horizontal curves and the longi-
tudinal gradient of linear sections. Large centrifugal acceleration imposed on trains,
as a result of high speeds and small radii of horizontal curves, compromises the
quality of the service and, in extreme cases, safety. It can also increase track
degradation and reduce the components lifetime. The radii of horizontal curves
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should be as large as possible: standards define comfort values that can be
exceptionally reduced due to project difficulties until an absolute minimum radii
imposed by safety concerns [8]. Conversely, smaller longitudinal gradients desir-
able and absolute maximum gradients are established [7]. It is advantageous,
however, to implement minimum gradients that facilitate drainage. Steeper slopes
result in increased energy consumption and braking distances for downward trains
that may reduce the line capacity, particularly for freight and passenger-mixed
traffic lines.

In addition to the strict requirements imposed on the HSR layout, further diffi-
culties are imposed by the deployment site. Large variations of ground elevations,
irregular land-use patterns, heterogeneous and hazardous geotechnical conditions,
and population density are common challenges to HSR projects. These are over-
come by technical solutions including embankments, cuts, retaining walls, bridges,
and tunnels. In each case, however, strict displacement limits of the HSR tracks
need to be assured [9] through adequate correspondence between the technical
solution and the deployment site characteristics. The multiple layout possibilities
for connecting any two HSR stations coupled with the interrelations between
infrastructure and local characteristics make the HSR planning process a complex
one.

1.1.3 The Case of High-Speed Rail: Cost Overview

A comprehensive model to estimate the overall costs of intercity transportation
systems is proposed by Levinson et al. [10] considering social costs in addition to
construction, operation, and maintenance costs. Applications to HSR by Levinson
et al. in 1997 [11] suggest the HSR fares well in social costs, including pollution,
accidents, and noise compared with air travel and highways. Nonetheless, protests
against HSR configuration have occurred [12]. In Europe, United States, and China
the concerns stated include alteration of landscapes and proximity to schools, issues
for which alternative solutions can be studied at the planning stage.

Conversely, the large HSR infrastructure capital cost is the main disadvantage
compared to air travel and highway systems. Such costs, however, can vary greatly.
Based on data from worldwide HSR projects, Campos and de Rus in 2009 [12]
observe HSR construction costs ranging from €4.7 million to €65.8 million (2005)
per km. These large variations relate to intrinsic characteristics of the projects.
Topographic characteristics, HSR layout, and technical solutions and the type of
traffic explain major differences within Europe [12]. Compare the adoption of larger
longitudinal gradients in France’s HSR passenger dedicated line, avoiding the
expensive major tunnel and viaduct construction, with Germany’s ICE mixed traffic
and stricter layout restrictions coupled with corridors over mountainous terrains [5].
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1.1.4 Complexity for High-Speed Rail Decision Making

In general, the higher the operating speed is the stricter the design requirements are,
resulting in large construction and maintenance costs of an HSR system. While
large expenditures are required, the HSR has advantages over other transportation
modes and the decisions at the planning stage, varying the intermediate cities
connected, the corridors, and the technical solutions have an important influence on
the resulting costs and HSR performance.

Multiple alternatives can be studied that trade-off interrelated factors governing
the value of the HSR solutions. This can hardly be achieved without the support of
comprehensive tools capable of integrated approaches that systematically address
the complexities involved in decision making.

1.2 Optimization of Linear Transport Infrastructure

Mathematical optimization models are widely used in engineering for addressing
large and complex problems. An objective function expresses the measure of wealth
to be optimized by changing design variables and subject to constraints that define
the feasibility of the solutions. However complex the formulated models may be,
these are nonetheless representations of reality. The ability to express the real
problems depends on the simplifications assumed, in this case the representation of
the linear transport infrastructure problem. Once a satisfactory formulation is
established for the problem, it is necessary to solve the optimization model and find
the solution yielding the most value. Multiple solving techniques exist and, among
others, the choice should take into consideration the ability to deal with the model
specifics.

1.2.1 Representation of Problem Specifics

Several models have been developed for the optimization of linear transport
infrastructure, particularly for highway alignment optimization in detailed stages of
the problem.

Jong et al. in 1998 [13] propose a model for the optimization of horizontal and
three-dimensional highway alignments considering the minimization of construc-
tion costs, user costs, and location-dependent costs subject to restrictions of the
highway geometry layout and location. Geographic Information Systems
(GIS) integration is not considered [13] and difficulties exist in representing loca-
tion cost items. An important concern when modeling linear transport infrastructure
is the interrelation of the infrastructure characteristics and the site conditions that
are subject to irregular patterns and large variations. GIS integration is developed
by Jong et al. in 2000 [14] for optimization of horizontal alignments. However, by
optimizing horizontal alignments only, limitations are imposed for the highway
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construction cost formulations as these depend on the highway elevation relatively
to the ground. Other approaches have been developed that focus on modeling the
optional connection of intermediate locations and infrastructure specifics [15, 16],
environmental concerns [17, 18], or cost formulations [19–21].

At the smaller planning scale Gipps et al. in 2001 [22] develop a comprehensive
framework for the optimization of linear transport infrastructures. It considers the
influence of variable geotechnical behavior influencing the technical solutions and
their construction and maintenance costs. This is an important factor for realistically
assessing construction costs that is not considered in the preceding examples. Gipps
et al. in 2001 [22], however, do not integrate the connection of intermediate
locations and the infrastructure alignment definition, which are two intertwined
issues, particularly for HSR planning [4].

The examples presented are not exhaustive but demonstrate limitations and
capabilities of existing models. It is shown that the consideration of an integrated
three-dimensional approach including discontinuous cost items is required for
realistically modeling the problem. The lack of a comprehensive cost formulation
leads to suboptimal solutions. However, when considering comprehensive cost
formulations for the optimization of linear transport infrastructure, the cost function
becomes an implicit function of the decision variables, resulting in
non-differentiable and noisy cost functions [23]. These complexities need to be
addressed by the solving techniques.

1.2.2 Solving Techniques

Various solving techniques have been considered. Parker in 1977 [24] proposed a
method for solving highway corridor optimization combining linear programming
and shortest path algorithms. The linearity requirements allow only for a limited set of
problem costs and constraints to be considered and difficulties exist in dealing with
backward bending alignments. The latter limitation has also been observed in solving
alignment optimization problems with dynamic programming [25]. However, chal-
lenging land-use patterns or topographic conditions may impose infrastructure con-
figurations that significantly deviate from the direct straight path between two points.
Studies by Chew et al. in 1989 [26] used gradient-based search methods to solve
highway alignment optimization problem. The need to assess cost gradients has
limitations in addressing discontinuous cost functions that are needed to realistically
formulate the problem. Kang et al. in 2012 [27] further discuss this, observing lim-
itations in various search methods other than metaheuristics for addressing the
complexity of optimization models that realistically represent the problem.

Metaheuristics including particle swarm, genetic algorithms, and simulated
annealing [14, 27–30] have been successfully applied to linear transport infras-
tructure optimization problems. Among other characteristics, flexibility is provided
by metaheuristics for taking into account the specifics of real cases. In this chapter,
an application of the simulated annealing algorithm is discussed for solving a
three-dimensional approach to high-speed rail planning optimization.
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2 The Simulated Annealing Algorithm

2.1 Overview

The simulated annealing algorithm is inspired by the annealing process of materials
from high energy states into low energy states used extensively in the steel and
glass industries. In this process, the material is initially heated until reaching a high
enough temperature that allows the particles to move. Slow and controlled cooling
follows that then allows the particles to rearrange into configurations corresponding
to very low energy states. Lower temperatures represent lower energy states but
slow cooling is necessary to avoid obtaining suboptimal configurations. This
concept is expressed by the Metropolis algorithm [31] that has been generalized by
Kirkpatrick et al. in 1983 [32] to solve the travelling salesman problem. The
applications by Kirkpatrick et al. in 1983 [32] and later Cerny in 1985 [33] to solve
the travelling salesman problem draw an analogy between obtaining the lowest
energy configuration of a system and achieving the global optimum solution for the
optimization problem [34]. In the analogy, the solutions to the optimization prob-
lem correspond to the configurations of a physical system and the objective function
value of a solution corresponds to the energy of a configuration.

According to the Metropolis algorithm, if a current system configuration i of
energy Ei is rearranged into a configuration j of energy Ej, the probability p that
j will be the new current system configuration in a minimization problem is given
by Eq. (1).

p ¼ min ½1; exp ð� Ej � Ei
� �

=ðkBtÞÞ� ð1Þ

where kB is the Boltzman’s constant and t is the temperature.
Apart from the physical analogy, the simulated annealing algorithm can be

regarded as a stochastic technique that applies a probabilistic mechanism for
accepting worsening solutions [35]. As a local search technique, the simulated
annealing algorithm considers new candidate configurations obtained by perturbing
a current configuration within a neighborhood structure. This corresponds to small
changes within the vicinity of the current configuration. Therefore, if the current
configuration is suboptimal but corresponds to a local optimum, it is necessary to
accept worsening configurations in order to continue the search for a global opti-
mum. This is illustrated in Fig. 1.

Consider solving a minimization problem. By using the Metropolis algorithm, in
addition to accepting transitions that improve the objective function (Ej < Ei), the
simulated annealing also accepts worsening transitions (Ej > Ei). The probability of
accepting worse solutions in Eq. (1) is given by p = exp(−(Ej − Ei)/(kBt)) and
decreases as the algorithm progresses. This acceptance rate is governed by the
decrease of a control parameter, the temperature in Eq. (1). Even if the algorithm
performance is dissociated from underlying assumptions of physical meaning,
terminology borrowed from the annealing physical process is used [36].
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Aarts et al. in 1997 [34] and Dekkers and Aarts in 1991 [35] discuss how, in
mathematically modeling the SAA using Markov chains, for certain conditions,
asymptotic convergence to the global optimum can be proven to have probability 1.
A Markov chain can be defined as a sequence of trials from a sampling process in
which the probability of a particular trial result depends only on the previous trial
result and not on the preceding sequence according to Eq. (2) [34].

Pij kð Þ ¼ P X kð Þ ¼ j jX k � 1ð Þ ¼ if g ð2Þ

where Pij(k) is the transition probability from result i to result j at the kth trial and X
(k) is a random variable defining the result of the kth trial.

Based on these principles, simulated annealing algorithms have been successfully
implemented to solve multiple engineering problems [37]. However, Dekkers and
Aarts in 1991 [35] and Johnson et al. in 1989 [36] discuss that considering an infinite
number of homogeneous Markov chains (in which the transition probability does not
depend on the trial number k) of infinite length, as required by for the asymptotic
convergence proof, is impracticable. Thus, implementations in finite time with finite
length Markov chains at a finite number of descending values of the control
parameter are required. The convergence of the algorithm is governed by a set of
parameters defining a cooling schedule that establishes how the control parameter,
temperature, is decreased. These cannot guarantee global optimum convergence but
its probability may increase according to the specifics of the implementation [35].

2.2 Considerations for the Algorithm Implementation

The implementation of the simulated annealing algorithm involves the definition of
an initial system configuration, the neighborhood structure and the generation
process of new candidate configurations, and the cooling schedule. The following

System
Configuration (c)

Objective
Function

Value
(f)

c*cj
ci

Local Optimum
 f(ci )

f(cj ) > f(ci )

Global Optimum
f(c*)

Fig. 1 Accepting worsening system configurations to escape local optima
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subsections discuss issues to consider when defining these elements. While the
algorithm may be applied for solving multiple problems, the best annealing algo-
rithm parameters in each case depend on the problem solved and its size [36].

2.2.1 Initial System Configuration

Heuristic methods, arbitrary definition, random or best guess approaches have been
used in the literature to derive initial system configurations for implementing the
simulated annealing algorithm. It may be advantageous to start the algorithm with a
better than random configuration, particularly if it takes advantage of specific
problem structures rather than employing a general heuristic [36]. However,
heuristic defined initial configurations can add overhead time to the algorithm
implementation. On the other hand, if the algorithm implementation allows the
search of the global feasible search space of the problem, the initial system con-
figuration will not limit the search nor will it influence the quality of the solutions
produced [38]. The generation of the initial system configuration should thus
trade-off overhead and running times, taking into account the problem specifics.

2.2.2 Generating New System Configurations

The generation of new candidate system configurations within a neighborhood
structure aims at obtaining transitions that correspond to rearrangements instead of
profound transformations. The neighborhood structure imposes boundaries to the
extent of each modification of the current configuration. In addition, the degree of
freedom, the number of changes at each transition, of the process influences the
algorithm performance [39]: minor changes in the configuration transitions may
limit the algorithm to explore only a limited part of the search space while the
opposite profound changes may lead to a random behavior and not taking advan-
tage of the neighborhood structure. The procedures to generate feasible candidate
configurations of the system are required to address these concerns and further
address difficulties that may be imposed by the problem feasibility constraints.

2.2.3 Cooling Schedule

The cooling schedule defines the evolution of the control parameter (temperature)
throughout the algorithm and the number of system configurations analyzed at each
temperature step. Two main classes of schedules exist [34, 36]: static cooling
schedules and dynamic cooling schedules. Static cooling schedules implement fixed
parameters which are not changed during the algorithm implementation. Dynamic
schedules implement parameters governing the temperature decrease that are
adapted as the algorithm progresses.
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A general approach to the cooling schedule defines criteria for initial and final
system temperatures, the rate with which the initial temperature is decreased until
reaching the final temperature and a minimum number of system configurations to
be evaluated at each temperature step. Figure 2 illustrates how the cooling schedule
governs the inner loops performed within a generic implementation of the simulated

E
j
< E

i

Or

Probability p
j
= exp (E

i
 – E

j
)/t

n

of accepting c
j
is larger than

Initial Temperature t
0

Initial configuration c
i

with objective function value 
E

i
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j
as new 

current configuration

No

Generate new candidate configuration
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i
 c
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1
configurations reached?

End temperature criteria t
f
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Decrease temperature
t

n
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No

End

yes

Metropolis
Criterion

Fig. 2 Flowchart of a generic implementation of the simulated annealing algorithm
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annealing algorithm. The flowchart in Fig. 2 considers a minimization problem in
which worse solutions correspond to larger objective function values.

The initial temperature should be such that the system is considered, in analogy
with the physical annealing process, “melted”. The temperature at each step
influences the probability of accepting configurations with worse objective function
values (see Metropolis criterion in Fig. 2) and thus a sufficiently large temperature,
for which almost all system configurations are accepted, should be chosen initially.
Kirkpatrick in 1984 [40] suggested an initial temperature that allows at least 80 %
of the transitions to be accepted at the initial temperature step.

A temperature decrease occurs when equilibrium is reached at a given temper-
ature step (Fig. 2). The implementation of static geometric cooling is common [36],
where temperature at the n + 1 step, tn + 1 is given by tn + 1 = r. tn at a constant rate
0 < r < 1. The rate with at the temperature is decreased has a substantial influence
on the quality of the solutions obtained [34, 36]. If the temperature decreases too
fast, the algorithm will accept only a small number of worsening configurations and
the performance will be similar to iterative improvement, which terminates at the
first local optimum. Conversely, if the decrease rate is too small, the algorithm
performance can resemble a random search where virtually any neighboring con-
figuration is accepted.

Different cooling schedules can be implemented, including linear or logarithmic
cooling [36] or more complex dynamic schedules based on the standard deviation
of the objective function values of the Markov chain [35].

The equilibrium considered in the finite-time implementation of simulated
annealing relates to the number of transitions at each temperature step. A fixed
number of transitions per temperature can be established or adaptive schedules with
varying number of transitions can be implemented. The amount of time that the
algorithm spends between very high and very low temperatures affects the quality
of the solutions and adaptive cooling schedules can be tailored to such purpose [32,
36].

The termination criteria establish when to stop the algorithm. It relates to the
temperature value corresponding to a “frozen” state for which no further
improvements of the objective function are achieved. This has been implemented in
the literature based on different criteria, including the average value of the objective
function [35] and a minimum number of temperature decreases below a percentage
threshold of accepted transitions [36].

3 Application for Planning Transport Infrastructure

This section discusses the implementation of the simulated annealing algorithm for
a transport infrastructure planning problem. The application considers the opti-
mization model proposed by Costa et al. in 2013 [30] for high-speed rail infras-
tructure planning. The problem is formulated as the minimization of the
infrastructure construction costs while establishing trade-offs with possible
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infringement of the geometric design best practice values, overlay of sensitive
land-use areas, and the value of connecting intermediate cities.

Large, restrictive values represent the design best practice for the plan view of
the infrastructure’s horizontal angles, termed normal horizontal angles. Smaller than
normal horizontal angles are admissible when difficult circumstances are encoun-
tered, such as rough terrain or existing constructions in the deployment area. These,
however, represent future limitations to the infrastructure operation phase that
should be balanced with the costs of building bridges and tunnels or relocating
existing infrastructure as required for implementing large horizontal angles (see
Sect. 1.1.1). The model considers such trade-offs through penalties in the objective
function whenever an alignment’s horizontal angle is smaller than the normal one.
An analogous approach is considered for the longitudinal gradient of the alignment
linear sections. A penalty representing additional operation costs increases the
objective function value one aims at minimizing when gradients exceed the normal
gradient value. In the case of gradients, normal values are smaller than the limit
ones. The negative impacts of crossing sensitive areas is also considered through a
penalty in the objective function while an additional objective function term rep-
resents the overall value of connecting intermediate locations.

Constraints are defined by the regulatory safety concerns of the infrastructure
layout (limit values), legislation protected land-use areas, and the obvious con-
nection of the problem main cities. Several layers of spatial data are required that
are then combined with the HSR configuration for defining the construction costs
and the objective function value and verify the compliance with the problem
constraints.

3.1 Implementation of the Simulated Annealing Algorithm

Implementing the simulated annealing algorithm requires that choices are made
regarding the generic cooling schedule parameters but also problem-specific issues
such as what a system configuration is, its objective function value, the generation
of new candidate configurations, and how to derive an initial configuration [36].
These are here discussed for studies regarding a Portuguese high-speed rail
network.

3.1.1 Problem-Specific Definitions

A feasible system configuration for this application is an HSR line, defined by its
linear alignments, that connects the main cities Oporto, Coimbra, and Lisbon with all
longitudinal gradients smaller than a regulatory limit, all horizontal angles (as a
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proxy for radii) larger than a regulatory limit, and that does not overlay protected
land-use areas such as natural reservations or parks. Figure 3 illustrates the data
layers used [41] and the initial system configuration for implementing the algorithm.

A neighbor of any current configuration is obtained by changing, within its
neighborhood structure, two randomly chosen nodes. Preliminary tests were per-
formed considering transitions changing only one node of the HSR linear align-
ment. It was observed that the SAA was not able to comprehensively canvass the
search space of the problem when only one node was perturbed and the final
solution depended on the initial system configuration chosen.

The initial system configuration shown in Fig. 3 was arbitrarily defined. The
regulatory limits for the geometry of the HSR layout are very strict due to the high
running speeds of the trains. As such, randomly obtaining linear alignments con-
necting Oporto, Coimbra, and Lisbon that comply with layout restrictions and

Oporto

Coimbra
Lisbon

Protected 
Land Use

Elevation

Expropriation 
Class

Lithology

Rivers

Fig. 3 The initial system configuration and the respective overlays with the problem spatial data
[41]
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additionally none of its linear sections overlays protected land-use areas adds a
significant overhead to the computation time. Starting at an arbitrarily defined
configuration, studies can be performed for the algorithm implementation to assess
if the algorithm is able to comprehensively search the problem space, such that the
final configuration is independent of the initial one.

The construction cost of any configuration is obtained by summing the costs of
earthworks, expropriation, bridges, and tunnels along the infrastructure length by
comparing and overlaying the HSR configuration and the local characteristics,
including the influence of lithological conditions affecting the HSR cross-section
[30].

3.1.2 Cooling Schedule: Equilibrium and Temperature Decrease

The studies performed show how one may define the parameters of the simulated
annealing implementation governing the decrease in the temperature, the algorithm
control parameter. An adaptive geometric cooling schedule is implemented based
on existing research [30, 36, 42, 43].

The adaptability of the cooling schedule resides in the number of system con-
figurations n1 to be evaluated at each temperature step. A state of equilibrium at any
given temperature step is reached if, for n1 configurations, the optimum and the
average of the objective function value do not improve. On the contrary, if either
the optimum or the average does improve, other n1 configurations are evaluated and
equilibrium checked. Such implementation results in equilibrium criteria that adapt
throughout the implementation stages to the search performed.

When equilibrium is reach at a given temperature, the temperature is decreased
geometrically with a constant rate 0 < r < 1. The new temperature is then given as tn+1
= r · tn.

3.1.3 Cooling Schedule: Initial and Final Temperature Criteria

The initial system temperature is defined based on the elasticity of acceptance. It
represents the probability of accepting a worse new candidate configuration when at
the initial system configuration ci with objective function value Ei. The initial
temperature is thus given as t0 = −0.1Ei/ln(a). This initial system temperature
allows the acceptance of a % configurations with a 10 % larger objective function
value than the initial system configuration.

One final cooling schedule parameter is required, defining the termination cri-
teria for the algorithm. The simulated annealing algorithm is terminated when
reaching the termination temperature tf that corresponds to n2 consecutive tem-
perature decreases without improvements observed in either the optimum or the
average objective function value.
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3.2 Simulated Annealing Algorithm Performance

The formulation of the cooling schedule is not specific to the problem one aims at
solving and the same cooling schedule formulation may be used to solve different
problems. The values of the parameters implemented for each problem, however,
influence the performance of the algorithm and should be investigated.
Implementations for multiple combinations of the cooling schedule parameters
were studied, building on previous research [30], and the combination found to
produce the best results consider the following:

• Elasticity of acceptance a = 0.9;
• Minimum number of iterations per temperature n1 = 5000;
• Temperature decrease rate r = 0.8;
• Termination criterion n2 = 10.

Figure 4 shows the convergence history for the solution found with the pre-
ceding cooling schedule parameters. Initially, at the early temperature steps, current
system configurations with large objective function values are accepted. As the
algorithm advances, the acceptance rate of worse configurations decreases and the
objective function value of the current configurations converges to the optimum
configuration objective function value found by the algorithm.

The maximum objective function values of current and optimum system con-
figurations before each temperature decrease step differ and are thus plotted in
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Fig. 4 Convergence history of the simulated annealing algorithm implementation: evolution of
the last accepted configuration before a temperature decrease (current) and the best configuration
found by the algorithm (optimum) at the time of each temperature decrease
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different vertical scales. Both the current and optimum objective function values
overlap at the end of the algorithm if plotted on the same vertical scale. The
acceptance of configurations with large objective function values at the beginning
of the algorithm is required for enabling the algorithm to globally explore the
feasible search space of the problem.

One observes that the objective function value of current configurations at the
early stages of the algorithm implementation is significantly larger than that of
the best solution found. The relation between the high-speed rail configuration and
the deployment site characteristics substantiates this observation.

The three-dimensional limits for the deployment of the infrastructure are shown
in Fig. 5. A reduced rectangular area of 147.4 * 304.4 km2 frames the plan view of
the problem area and the elevation of the HSR is bounded by the depicted lower
surface and the top mesh. The lower elevation limit for the configuration corre-
sponds to 50 m below sea level and the maximum corresponds to the maximum
ground elevation in the area.

It should be noted that construction costs can vary substantially within the
problem space. For example, a given HSR plan view can have multiple longitudinal
profiles corresponding to different extents of bridges and tunnels that, due to the
large costs, can influence the overall infrastructure cost. Particularly for the cost of
bridges, the cost increases significantly with the increase in the infrastructure height
relatively to the ground elevation. In addition to the construction costs, one verifies
if the design best practice geometry values are complied with and if the intermediate
cities identified for the problem are connected. The respective values are added to
the construction cost to obtain the objective function value of any given system
configuration. Accordingly, high-speed rail configurations are found in the search
space, which vary the objective function value in orders of magnitude.

Lisbon

CoimbraOporto

Elevation

0 - 10

10.1 - 250

250.1 - 450

450.1 - 730

730.1 - 1,411.16

Fig. 5 Three-dimensional limits for the deployment of the high-speed rail and the ground
elevation (meters)
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Maier et al. in 2014 [44] discuss how large search space and complex fitness
landscapes are characteristic of real-world problems. The fitness landscape depends
on both the problem one aims at solving and the solving technique with the
respective parameters implemented, defined by Smith et al. 2002 [45] as a multi-
dimensional landscape established by the possible solutions the solving technique
progresses and correspondingly mapped to the respective fitness values.

Competing objectives are also characteristic of real-world problems. For
instance, in the case of high-speed rail planning, optimizing the geometry layout
often leads to larger construction costs that one aims at minimizing. This fact,
coupled with the computational burden arising from the complexity and size of
real-world problems, makes it difficult to identify the best convergence criteria [44].
One observes in Fig. 4 that prior to the thirtieth temperature step, over ten tem-
perature decreases occur without improvements in the best configuration found.
But, as the current configurations are improving, the algorithm progresses until
eventually in the thirty-first temperature step, the current optimum again improves
and converges to the best configuration found. The implementation of the termi-
nation criteria should ensure that the algorithm does not terminate prematurely but
also that unnecessary computations are avoided and the algorithm terminates in a
finite time [44].

The construction cost of the best configuration found, which connects two
intermediate stations, is in line with existing high-speed rail lines in the world [12]
and shows the ability of the simulated annealing algorithm in addressing the
planning of transport infrastructure. Further applications may be used to study how
different preferences for conflicting objectives influence the solutions obtained and
support decision making.

4 Conclusions

This chapter discusses how the simulated annealing algorithm may be used to
address the planning of transportation infrastructure. The specific case of
high-speed rail planning is discussed considering the location of intermediate sta-
tions, the specific requirements of the infrastructure layout, and its interrelation with
the deployment site conditions. An application to a real-world case is presented that
exemplifies decisions regarding the simulated annealing implementation. These
decisions are discussed in light of existing research.

Ultimately, solving such real-world problems aims at supporting decision
making. This may be influenced by political decisions and based on the different
perspectives of multiple stakeholders. Providing only a single best solution for a
particular set of conditions is not adequate for decision making. The application of
the optimization techniques for real-world problems should thus support the
investigation of multiple opportunities and preferences for the problem at hand.
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A Hybrid Bat Algorithm with Path
Relinking for the Capacitated Vehicle
Routing Problem

Yongquan Zhou, Qifang Luo, Jian Xie and Hongqing Zheng

Abstract The capacitated vehicle routing problem (CVRP) is an NP-hard problem
with both engineering and theoretical interests. In this paper, a hybrid bat algorithm
withpath relinking (HBA-PR) isproposed to solveCVRP.TheHBA-PRisconstructed
based on the framework of the continuous bat algorithm, the greedy randomized
adaptive search procedure (GRASP) and path relinking are effectively integrated into
the bat algorithm.Moreover, in order to further improve the performance, the random
subsequences and single-point local search are operated with certain loudness (a
probability). In order to verify the effectiveness of our approach and its efficiency and
compare with other existing methodologies, several classical CVRP instances from
three classes of CVRP benchmarks are selected to test. Experimental results and
comparisons show the HBA-PR is effective for solving CVRPs.

Keywords Bat algorithm � Capacitated vehicle routing problem � Path relinking �
GRASP � Metaheuristic algorithm

1 Introduction

The vehicle routing problem (VRP) is a classical combinatorial optimization prob-
lem that was proposed in the late 1950s and it is still a research hotspot in the field of
Operations Research. The capacitated vehicle routing problem (CVRP) was intro-
duced by Dantzig and Ramser in 1959 [1], which concerns that a set of customer
demands have to be served with a fleet of vehicles from a depot or central node, each
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vehicle has the uniform capacity and each customer has a certain demand that must
be satisfied at the minimal cost. These costs usually represent the distances, traveling
times, number of vehicles employed or a combination of these factors.

It is well-known that the CVRP is an NP-hard problem [2]. Various approaches
have been presented to solve the CVRP during the last decades, such as linear
programming [3], several metaheuristics [4–6], and many hybrid heuristics with
variable neighborhood search or constructive heuristic methods [7–10]. The over-
view of methods presented in [6] shows that at least 29 different methods for
solving CVRP exist, and all achieved more or less comparable performance.
Although several methods can produce good solutions, the computational time is
long when the scale of instances is large. Meanwhile, an abundance of methods for
the CVRP are population-based algorithms and the parameter setting of an algo-
rithm is important, however, the parameter settings of many metaheuristics have not
been considered in the literature.

The bat algorithm (BA) is a fairly new metaheuristic proposed by Yang [11, 25]
in 2010, which inspired by the intelligent echolocation behavior of micro-bats when
they forage. As we know, many new metaheuristics have been widely used and
successfully applied to solve the CVRP, though BA has not yet been applied to
solve the CVRP. However, BA has been applied to solve other problems with great
success. For example, Gandomi et al. focus on solving constrained optimization
tasks [12]. Yang and Gandomi apply bat algorithm to solve many global engi-
neering optimizations [13]. Mishra et al. proposed a model for classification using
the bat algorithm to update the weights of a functional link artificial neural network
(FLANN) classifier [14]. Meanwhile, some researchers have improved the bat
algorithm and applied it to various optimization problems. Xie et al. proposed a
DLBA bat algorithm based on differential operator and Lévy flights trajectory to
solve function optimization and nonlinear equations [15]. Wang et al. proposed a
new bat algorithm with mutation (BAM) to solve the uninhabited combat air
vehicle (UCAV) path planning problem [16]. In this paper, we propose a hybrid bat
algorithm (HBA-PR) to solve the capacitated vehicle routing problem.

The rest of this paper is organized as follows. The problem of CVRP and the
original bat algorithm are described in Sect. 2. The hybrid bat algorithm (HBA-PR)
for CVRP is described in Sect. 3. The experimental results of the HBA-PR and
comparisons with other previous algorithms are shown in Sect. 4. In the last section,
we conclude this paper and point out some future work in Sect. 5.

2 Problem Descriptions and Bat Algorithm

2.1 Capacitated Vehicle Routing Problem

The CVRP is considered to be the classical version of the VRP which designs a set
of customer demands that have to be served with a fleet of vehicles from a depot or
central node, each vehicle has a uniform capacity, and each customer has a certain
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demand; the objective is to make the expended cost as low as possible. Let G ¼
ðV ;EÞ be a complete graph with a set of vertices V ¼ f0; 1; . . .; kg; where the
vertex {0} represents the depot and the remaining ones are the customers. Each
edge eij ¼ fi; jg 2 E has a non-negative cost cij and each customer i 2 V 0 ¼ Vnf0g
has a demand di. Let S ¼ ð1; 2; . . .;mÞ be the set of homogeneous vehicles with
capacity Q. The CVRP consists of constructing a set of up to k routes in such a way
that: (1) every route starts and ends at the depot; (2) all demands are accomplished;
(3) the vehicle’s capacity is not exceeded; (4) a customer is visited by only a single
vehicle; and (5) the sum of costs is minimized. The mathematical formulas are
defined as follows [10].

min Z =
Xk
i¼0

Xk
j¼0

Xm
s¼0

cijeijs ð1Þ

s:t:
Xk
i¼0

diyis �Q; s = 1,2,. . .m;

Xm
s¼1

yis ¼ 1; i = 1,2,. . .; k;

Xk
i¼0

eijs ¼ yis; j ¼ 1; 2; . . .; k; s ¼ 1; 2; . . .;m;

Xk
j¼0

eijs ¼ yis; i ¼ 1; 2; . . .; k; s ¼ 1; 2; . . .;m

ð2Þ

where s denotes the number of vehicle, eijs ¼ 1 if vehicle s from i to j, otherwise
eijs ¼ 0; In addition, yis ¼ 1 if vehicle s is loading (active), otherwise yis ¼ 0.

2.2 Basic Bat Algorithm

The basic bat algorithm (BA) is a metaheuristic, first introduced by Yang in 2010.
In simulations of BA, under several idealized rules, the updated rules of bats’
positions xi and velocities vi in a D-dimensional search space are defined. The new
solutions xti and velocities vti at generation t are given by

fri ¼ frmin þðfrmax � frminÞb
vti ¼ vt�1

i þðxt�1
i � x�Þfri

xti ¼ xt�1
i þ vti

ð3Þ

where b 2 ½0; 1� is a random vector drawn from a uniform distribution, fri denotes
frequency of each bat. Generally, the frequency is within a range, that is
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fri 2 ½frmin; frmax�. Here x� is the current global best location (solution) which is
located after comparing all the solutions among all the n bats at each iteration.

After the position updating of bats, a random number is generated, if the random
number is greater than the pulse emission rate ri, a new position will be generated
around the current best solutions, and it can be represented by (4)

x ¼ x� þ e� Ldt; ð4Þ

where e 2 ½�1; 1� is a random number, while Ldt ¼ Ldti
� �

is the average loudness
of all the bats at current generation t.

Furthermore, the loudness Ldi and the pulse emission rate ri will be updated and
a solution will be accepted if a random number is less than loudness Ldi and
f ðxiÞ\f ðx�Þ. Ldi and ri are updated by (5).

Ldtþ 1
i ¼ a� Ldti ; r

tþ 1
i ¼ r0i � ½1� expð�c� tÞ�; ð5Þ

where a, c are constants, and f �ð Þ is the fitness function. The algorithm repeats until
the termination criterion is met.

3 Hybrid Bat Algorithm with Path Relinking for CVRP

3.1 Solution Representation in HBA-PR

Since the standard BA is a continuous optimization algorithm, the standard con-
tinuous encoding scheme of BA cannot be used to solve CVRP directly. In order to
apply BA to solve CVRP, the first step is to devise a suitable representation for the
candidate solutions in designing a hybrid bat algorithm for a particular problem.
Each individual is a sequence with integer numbers which are the order of visiting
these customers where the number 0 represents the depot. For example, if we have
the following three routes (Fig. 1):

R#1:
0

depot
0

depot
3 5 8

R#2:
0

depot

0

depot
4 9

R#3:
70

depot

0

depot

2 6 1

Fig. 1 Individuals are a
sequence with integer
numbers
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Where the coded individual with integers is 0 → 3 → 5 → 8 → 4 → 9 →
2 → 6 → 1 → 7 → 0, and the bat individual is represented as 3 → 5 → 8 → 4 →
9 → 2 → 6 → 1 → 7.

3.2 Hybrid Bat Algorithm

Aimed at the capacitated vehicle routing problem, based on the idea of the bat
algorithm, a hybrid bat algorithm is proposed here, which integrates greedy ran-
domized adaptive search procedure (GRASP) heuristic and the bat algorithm, and
path relinking as an intensification strategy to explore local trajectories connecting
elite solutions obtained by the proposed algorithm. The hybrid bat algorithm with
path relinking is named as HBA-PR.

GRASP [17, 18] is a heuristic that has already been applied to many opti-
mization problems successfully [19–21]. GRASP consists of a two phase iterative
process: a construction phase and a local search phase. In the first phase, a greedy
randomized solution is built. Since this solution is not guaranteed to be locally
optimal, a local search is performed in the second phase. The final result is simply
the best solution found over all iterations.

The construction phase can be described as a process which stepwisely adds one
element at a time to a partial (incomplete) solution. According to a greedy function,
all elements are sorted, and the Restricted Candidate List (RCL) is constructed
based on the order; and then selects element randomly from this list. In the second
phase, a local search is initialized from these points, this iterative process is repe-
ated until a termination criterion is met and the best solution found over all itera-
tions is taken as the result.

RCL is created using a parameter a to restrict the size of this list. Candidate
e 2 C is sorted according to their greedy function value f(e). In a cardinality-based
RCL, the latter is made up by the k top-ranked elements. In a value-based con-
struction, the RCL consists of the elements in the set

fe 2 C : f� � f ðeÞ� f� þ a� ðf � � f�Þg ð6Þ

where f� ¼ minðf ðeÞ : e 2 CÞ; f � ¼ maxff ðeÞ : e 2 Cg; and a 2 ½0; 1�. Since the
best value for a is often difficult to determine, a random value is often assigned. The
values for a adopted in the constructive heuristics are set using reactive strategies,
which usually leads to better performance than using fixed values [22].

In the original bat algorithm, the bat individual randomly selects a certain range
of frequency, and its velocity is updated according to their selected frequency, at
last, a new position is generated using its velocity and its own position. The idea is
that the position of bat individual is updated by adjusting its frequency of sonic
pulses. In this paper, the position updating of bat adopted GRASP to generate a new
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position, the frequency is used for restricting the size of CRL, frequency equivalent
to parameter a in GRASP, and the frequency is a variable value. In the basic bat
algorithm, the loudness Ld and the pulse emission rate r are updated accordingly as
the iterations proceed. As the loudness usually decreases, while the rate of pulse
emission increases, it indicates the bats are approaching their prey (optimum
solution). The pulse emission rate r is updated by (7)

rðtÞ ¼ ð1þ expð5=tmax ��ðt � tmax=2ÞÞ�1; ð7Þ

where t denotes the tth generation, tmax is the maximal generation. The rate r is
similar to Sigmoid function, the frequency fr is determined according to the pulse
emission rate r, which is represented by (8)

fr ¼ 1�maxð0:2;minð0:8; rÞÞ; rand[ r;
maxð0:2;minð0:8; rÞÞ; rand� r;

�
ð8Þ

where rand is a random number, and 0.2 and 0.8 are empirical parameters reference
values [18]. The frequency fr decreases gradually at first, and then increases
gradually while the generation t increases. Figure 2 is the changing curve of rate r,
and Fig. 3 is an example of frequency fr, and Algorithm 1 shows the pseudo-code of
greedy randomized construction with frequency fr.

Algorithm1. Greedy_Randomized_Construction ( fr )

S Rrand_Chosen_ Vertex( v );  // Rrandomly chosen a vertex as initial solution
\C V v ; // The candidate set C is initialized

While C ≠ ∅ do
IC Evaluate_Incremental_Costs(S);  // Incremental costs are evaluated

min min({ })ic ic IC∈ ;

max max({ })ic ic IC∈ ;

min max min{ | ( ) ( )}RCL e C ic e ic fr ic ic∈ ≤ + × − ;  // RCL is created

s ← Select_Element (RCL); // a vertex s is randomly selected from RCL
S Obtain_Min_Solution(S,s); // partial tour is updated by inserting  vertex s

\{ }C C s ; // the candidate set C is updated

end
return S

The local search phase uses the 2-Opt heuristic for exchanging. Algorithm 2
shows the local search procedure. The input parameter is an initial solution
S obtained by the Greedy_Randomized_Construction procedure. The current route
needs to divide into m sub-routes according to the load, the start, and the end of
sub-route is represented by 0, for example, S = {1, 2, 3, 4, 5, 6, 7}, sub-route is
0 → 1 → 2 → 3 → 4 → 0, and 0 → 5 → 6 → 7 → 0.
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Algorithm2. Local_Search_Phase ( S )

S S′ ;
{ }sr Construct_Sub-route( S ′ ); 

for each sub-route sr do
sr′ 2-opt ( sr );  // carry out the 2-opt operation

end
S ′ Construct_Indiviaual({ }sr′ ); 

if ( ) ( )f S f S′ < then

S S ′
end
return S

3.3 Hybrid Bat Algorithm with Path Relinking

Path relinking was originally proposed by Glover [23], Laguna and Martı́ [24] were
the first to use path relinking within a GRASP strategy. Path relinking generates
new solutions by exploring trajectories connecting an initial solution xs to an elite
guiding solution xt. The path relinking procedure consists of selecting moves that
introduce attributes contained in the guiding solution xt to the initial solution xs
until the initial solution is completely transformed in the guiding solution xt. Path
relinking may also be viewed as a constrained local search strategy applied to the
initial solution xs. Furthermore, there are several alternatives that have been con-
sidered, which involve some trade-offs between the computation time and solution
quality. These alternatives include periodical relinking, forward relinking, back-
ward relinking, back and forward relinking, mixed relinking, randomized relinking,
and truncated relinking [18].

One important issue in implementing a path relinking technique is the strategy to
construct the elite set (ES). We adopted a fixed-size elite set and a solution x is
inserted into the ES as follows.

A solution x is always inserted into ES if it is not full. Otherwise, the generated
solution x is inserted in ES only if its cost is better than the worst cost solution
found in ES, and the worst cost solution is replaced by the solution x. Algorithm 3
shows the pseudo-code for the algorithm to construct and maintain the elite set ES.
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Algorithm 3. Elite _Set( x )

if ( )cardinality ES ps≠ then // ps is the population size

{ }ES ES x

else

wES the worst solution in ES

if ( ) ( )wf x f ES< then

\{ }wES ES ES

{ }ES ES x

end
end
return ES

Algorithm 4 shows the pseudo-code of path relinking procedure, an instance is
xs ¼ 1; 2; 3; 4; 5; 6; 7f g, xt ¼ 1; 3; 4; 2; 5; 6; 7f g. According to the main process of
Algorithm 4, the first different element is position 2 in xs, after executing a
replacement operation, the new solution becomes x1 ¼ 1; 3; 4; 2; 5; 6; 7f g; the
second different element is position 3 in xs, after executing the replacement oper-
ation, the new solution is x2 ¼ 1; 2; 4; 3; 5; 6; 7f g. The third different element is
position 4 in xs, after executing the replacement operation, then x3. If x2 is only one
better than xt, then x2 will be returned.

Algorithm 4. Path_Relinking( *ES , x );

sx x ;  // initial solution

*tx ES ;  // guiding solution

*( ) ( )tf x f ES ;

Difference( ,s tx x );  // find out the difference position between sx tx

for i=1: ( )cardinality Δ do 

j Find_Position( , ,s t ix x Δ );  // find the position of the element of 

tx in iΔ which in sx

ix Replace( , ,s ix jΔ ); // replace the j position of sx with the element of 

sx in iΔ

ix Replace( , ,s t ix x Δ ); //replace the iΔ position of sx with the correspond-

ing element of tx

if ( ) ( )i tf x f x< then

* ix x ;

( ) ( )t if x f x ;

end
end
return *x
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3.4 Subsequence and Single-Point Local Search

In this paper, the loudness Ldi of bat individual i is related to its own fitness fiti, the
better the fitness, and the lower the loudness. The loudness can be described by (9)

Ldi ¼ ðfiti � fit� þ 0:1Þ=ðfit� � fit� þ 0:1Þ; ð9Þ

where constant 0.1 is used for avoiding the denominator being zero. Here, fiti is the
fitness of individual i, fit� and fit� are the minimum and maximum fitnesses in
current population, respectively. In HBA-PR, the loudness reflects the quality of an
individual. In this algorithm, there are two kinds of local searches embedded into
HBA-PR to further improve the performance, and they are the random subsequence
local search and the single-point local search. The random subsequence local search
includes random subsequence inverse and random subsequence insertion, and the
single-point local search includes single-point insert and single-point swap.

For a random subsequence insert, an origin of subsequence is randomly selected
at first, and then a length of subsequence is randomly selected, which is less than
the length of individual S. Second, after determining the subsequence S1, a random
insertion point is selelcted in the remainder of subsequence S2, S ¼ S1[S2; and
then S1 is inserted into S2 location in the insert point. An example is shown in
Fig. 3. For the random subsequence inverse, a subsequence is randomly chosen
with a random length, and then the inverse operation is performed. An example is
shown in Fig. 4.

For a single-point swap, two different positions are chosen from a permutation
randomly and are then swapped (Fig. 5). For a single-point insertion, two different
positions are chosen from a permutation randomly and the element in the first
position is inserted into the back of second element. Similarly, two instances are
shown in Figs. 6 and 7.

In the local search part, the random subsequence local search is performed
before random single-point local search. The random subsequence insert and the
random subsequence inverse operations are preformed according to loudness Ld. In
other words, if a random number is greater than the loudness Ldi; the random
subsequence insert is performed; otherwise, the random subsequence inverse is
performed. Similarly, the random single-point insert and the random single-point
swap operations are preformed with the loudness Ld. If a random number is greater
than the loudness Ldi; the insert operation is performed; otherwise, the swap
operation is performed. Note that, where a local search is operated on the current
optimal individual ES� in elite set ES, and a local search is performed for each
individual. Algorithms 5 and 6 show the pseudocodes of the subsequence and
single-point local search.
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Algorithm 5. Sub-sequence_ Local_Search ( *ES )

for i=1:ps do
if rand> iLd then

x Sub-sequence_Insert( *ES );    // perform random sub-sequence in-

sert operation
else

x Sub-sequence_ Inverse( *ES );  // perform random sub-sequence in-

verse operation
end

end
return x

Algorithm 6. Single-point_Local_Search ( *ES )

for i=1:ps do
if rand> iLd then

x  Single-point_Insert( *ES );  // perform random single-point insert operation

else
x  Single-point_Swap( *ES );  // perform random single point swap operation

end
end
return x

3.5 HBA-PR Framework for CVRP

We propose in this work to incorporate the greedy randomized adaptive search
procedure, path relinking strategies, subsequence, and single-point local search to
the bat algorithm by defining distinct ways to solve the capacitated vehicle routing
problem. This iterative process is repeated until the termination criterion is met,
Algorithm 7 shows the pseudocode of HBA-PR for CVRP.
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Algorithm 7. HBA-PR
Initialize the ps ,bat population and other parameters ; 

Evaluate fitness for each individual; 

ES Elite _Set( x );

while t<tmax do
Compute pulse emission rate by (6);

Determine frequency fr by (7);

for i=1:ps do
x Greedy_Randomized_Construction( fr );

x Local_Search_Phase ( x );

end
Evaluate fitness for each individual x ;

ES Elite _Set( x );

*ES Select_Best_Elite( ES );  // select the best individual in 

elite set ES
for i=1:ps do

x Path_Relinking( *ES , x);

end
Evaluate fitness for each individual x ;

ES Elite _Set( x );

iLd Compute_Loudness( ( )f x ) ;  //Compute loudness of each 

individual by (8);

*ES Select_Best_Elite( ES );  

x Sub-sequence_ Local_Search ( *ES ) //carry out random sub-

sequence local search
Evaluate fitness for each individual x ;

ES Elite _Set( x );

*ES Select_Best_Elite( ES );  

x Single-point_Local_Search ( *ES ) //carry out random sin-

gle-point local search
Evaluate fitness for each individual x ;

ES Elite _Set( x );

t=t+1

end
Output result and plot
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4 Numerical Simulation Results and Comparison

The performance of the proposed HBA-PR is extensively tested by a large number
of experimental studies; computational simulations are carried out with some
well-studied problems taken from the web http://www.branchandcut.org/, a refer-
ence site which contains some detailed information regarding a large number of
benchmark instances. In this paper, 12 instances from three classes of benchmarks
are selected. The first class is Augerat et al. (Set A) instances. The second class is
Augerat et al. (Set P) instances, and the third class is Augerat et al. (Set E)
instances. So far, these problems have been widely used as the benchmarks to
validate the performance of algorithms by many researchers.

All computational experiments are conducted with MATLAB 2012a, and in our
simulations, numerical experiments are run on a PC with AMD Athlon(tm) II X4
640 Processor 3.0 GHz and 2.0 GB memory. In the experiment, the termination
criterion is set as the maximum generation of tmax ¼ 200. Each instance is inde-
pendently run 15 times for comparison.

4.1 Parameter Analysis

In the subsection, the parameters of HBA-PR are determined by experiments, and
the impact of each parameter is analyzed. In particular, the HBA-PR has few
parameters; we only need to test population size ps in HBA-PR. A small ps may
lead to insufficient population information, and the diversity cannot be guaranteed.
On the other side, a large one indicates that diversity is sufficient, but the computing
time will increase and the precision of the optimal solution may have lesser
improvement. In order to evaluate the sensitivity of parameters ps, three bench-
marks selected from different benchmark set are chosen to run 10 times. These
benchmarks are A_n33_k5, E_n23_k3, and P_n19_k2, and the statistical result and
convergence curves are shown in Figs. 8, 9, 10 and 11.

The ordinate normalized fitness (log) in Figs. 8, 9 and 10 is the logarithm of
normalized fitness; the aim is to show the convergence curves clearly. The nor-
malization formula of fitness is ðfit� fit�Þ=ðfit� � fit�Þ, where fit� is the best-known
solution and fit� is the initial fitness.

Figure 8 represents the relative error of test case A_n33_k5, E_n23_k3 and
P_n19_k2 after 10 times independent runs, which shows that the sensitivity of
parameter ps. From the three test cases, the parameter ps can be determined. For
A_n33_k5 and P_n19_k2, the performance of HBA-PR is better when ps = 30. For
E_n23_k3, ps = 50 is best, but the performance is good as well while ps = 30. From
Figs. 8, 9 and 10, the information provided by population is sufficient when ps is
greater than 20; however, the convergence rate is better when ps = 30 among the
three instances. Considering the tradeoff between the stability of the algorithm and
the rate of convergence, the parameter ps took a compromising value, ps = 30.
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4.2 Comparisons of Simulation Results

In order to show the effectiveness of HBA-PR, we carry out a set of simulations to
compare HBA-PR with other state-of-the-art algorithms, i.e., a parallel version of
the classical Clarke and Wright Savings (CWS) heuristic, SR-GCWS (Simulation in
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Routing via the Generalized Clarke and Wright Savings heuristic) proposed by Juan
et al. [9], CS-GRASP proposed by Zheng et al. [10]. The results of these simula-
tions are summarized in Table 1 which contains the following information of each
instance: Vehicle Capacity, Tightness (Demand/Capacity), I_BKS is integral
best-known solution (BKS) or ‘optimal’ value according to the web http://www.
branchandcut.org/. R_BSK is verified by the real costs for the best-known solutions
according to [9] and CWS is the costs associated with the solution given by the
parallel version of the CWS heuristic, while SR-GCWS is the best solution obtain
by SR-GCWS method, and HBA-PR is our best solution, where “–” represents no
records in the literature.

From the simulation results obtained by testing HBA-PR, it demonstrates that
the proposed HBA-PR is effective to solve the CVRP, and the performance of
HBA-PR is prominent. From Table 1, all instances achieved a good quality solu-
tion, and the solutions of six instances are better than the best-known solutions
(‘optimal’ value). HBA-PR has matched 10 of the 12 best-known solutions except
for P_n51_k10 and A_n39_k6, and the average deviation from the real costs
best-known solutions is 0.057 %. HBA-PR outperforms CWS for the 12 instances.
Compare with CS-GRASP and HBA-PR, HBA-PR outperform CS-GRASP in
terms of A_n33_k5, A_n33_k6 and E_n23_k3, the other instances have same
results. The SR-GCWS and HBA-PR have similar results, and the gap is very small.

Furthermore, Fig. 12 shows the best solution found so far by using our
methodology for the A_n37_k5.vrp file, where the depot (using 1 instead of 0) is at
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the center. Analogously, Figs. 13, 14 and 15 show the best solutions found by
HBA-PR for the E-n51-k5.vrp file and P_n51_k10.vrp file. The convergence curve
for some test problems has been shown in Fig. 14. From Fig. 14, for e.g.,
A_n37_k5, it converges to an optimal solution after 43 generations, and it expends

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

1

2
3

4

5

6

7

8 9

10

11

12

13

14

15

16

17

18

19

20

21

22

2324

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

Fig. 13 Optimal routes of E_n51_k5

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

1

2
3

4

5

6

7

8 9

10

11

12

13

14

15

16

17

18

19

20

21

22

2324

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

Fig. 14 Optimal routes of P_n51_k10

A Hybrid Bat Algorithm with Path Relinking … 273



about 170 generations; for e.g., E-n51-k5 and P_n51_k10 when the algorithm
converges to an optimal solution, which demonstrates that the HBA-PR has a faster
convergence rate.

In general, the proposed HBA-PR can produce good solutions when compared
with existing heuristics for solving the CVRP, and the convergence rate of HBA-PR
is faster. These results seem to indicate that the hybrid bat algorithm with path
relinking is an effective alternative to solve the capacitated vehicle routing problem.

5 Conclusions

The capacitated vehicle routing problem is important in the fields of operations
research, which is an NP-hard problem. The bat algorithm is a continuous meta-
heuristic that cannot be used to solve the CVRP directly. In this paper, a hybrid bat
algorithm with path relinking (HBA-PR) for solving the CVRP has been presented.
This methodology, which does not require any particular fine-tuning of parameters
or configuration process, combines the classical greedy randomized adaptive search
procedure (GRASP) with the bat algorithm, and path relinking as an intensification
strategy to explore local trajectories connecting elite solutions obtained by proposed
algorithm; sub-sequence and single-point local searches are effectively integrated
into HBA-PR. The results show that our methodology is able to provide fine-quality
solutions which can compete with the ones provided by some exact and heuristic
approaches. Moreover, because of its simplicity and flexibility, we believe that this
methodology can easily be adapted to solve other variants of the vehicle routing
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problem and even to other combinatorial problems, for example, the vehicle routing
problem with time windows and the well-known traveling salesman problem,
which will form part of our further work.
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Hybrid Metaheuristic Algorithms
in Geotechnical Engineering

Y.M. Cheng

Abstract The solutions of many engineering problems can be formulated as the
optimized results of a functional. While many engineering problems are governed
by a continuous convex optimization process, this is not the case for many
geotechnical problems. Many geotechnical problems have irregular solution
domains, with the objective function being nonconvex and may not be a continuous
function. The presence of multiple local minima is common in many geotechnical
problems, and the occurrence of local zones where there is rapid changes in the
material parameters is not uncommon. The corresponding governing problems are
hence usually NP-type nonconvex optimization problem, and by nature, such
NP-type problems with the various constraints pose great difficulty in analysis.
While the classical heuristic optimization methods may work well for some of these
problems, there are also some practical cases where the classical methods may fail
to perform satisfactorily. To maintain a balance between the computation time and
accuracy, several hybrid metaheuristic algorithms are proposed by the author which
can work well for many practical geotechnical problems. In this chapter, the author
will illustrate the basic concept of hybrid metaheuristic algorithms and the appli-
cations to some difficult geotechnical problems.

Keywords Hybrid optimization � Geotechnical engineering � Wave equation �
Back analysis � Slope stability

1 Introduction

In the solution of many engineering problems, many numerical methods have been
developed over the years. The finite element method is the most popular numerical
method at present due to its versatility in many complicated problems. The fun-
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damental principle of the finite element is either the variational formulation or the
Galerkin formulation [1], which can be viewed as the minimization of energy or
functional. The determination of the shortest path, minimum functional or energy is
required for many stability problems in geotechnical engineering, as the ultimate
condition will provide the factor of safety for use by many engineers. While Denn
[2] has demonstrated that the variational principle can be used for optimization
analysis, Cheng et al. [3] and Cheng [4] have demonstrated that the optimization
process is equivalent to the variational principle and can replace it for use in a
variety of problems. Due to the needs for the determination of the optimized
solution for various engineering problems, different methods have been proposed
with success in different disciplines. Traditionally, resource allocation, packing, and
scheduling as well as many other similar problems are analyzed using linear and/or
integer programming method. Such methods usually require the objective function
and constraints to be linear functions, but the optimum solution can usually be
determined rapidly (except under very special cases). Various gradient-type
methods have been proposed and used for many engineering problems, and the
FSQP (Feasible sequential quadratic programming) and BFGS (Broyden–Fletcher–
Goldfarb–Shanno) methods which are variants of the quasi-Newton approach
appear to be very effective in many situations with very good performance. Such
gradient-type methods require the differentiability of the objective functions (can be
formed by finite difference scheme) are, however, limited by the continuity
requirement, and the global minimum may not be determined unless a good initial
is used in the analysis. In geotechnical engineering and many other disciplines
where multiple minima exist in the solution domain, the uses of the previous two
groups of methods are seldom adopted. The author has, however, used these types
of methods for global optimization in some geotechnical problems by specifying a
series of initial starting points, and such strategy appears to be necessary for some
large-scale systems where the numbers of variables are in the order of thousands.

In general, most of the practical engineering problems are constrained within
acceptable solution domain. The objective functions in many geotechnical or
transportation problems are usually NP (nonpolynomial) hard-type problems with
the features:

• The solution domain and/or the problem geometry are not regular and smooth.
The objective function is commonly nonsmooth and nonconvex, it may not be
continuous within the part of the solution domain (failure to converge or
infeasible solution).

• Multiple local minima will be present in general, and a good initial trial can be
difficult to be specified for general cases. For the one-dimensional function
defined over the domain AB as shown in Fig. 1, the global minimum is given by
point E, but points C and D may also be obtained if the optimization algorithm
cannot escape from the local minimum. If the global minimum is governed by
point B where the derivative of the function is not zero, many optimization
algorithms (particularly those gradient types) will fail to detect this point.
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• The number of control variables is not a small number (usually exceed 20 for
slope stability problem, and can exceed thousands for other stability problems)
and the solution time for each objective function determination can be
demanding. A balance between time and accuracy of solution must be main-
tained, and the solution algorithm must be robust to suit for various conditions.
In particular, the occurrence of local zones where there are rapid changes in the
material parameters is not uncommon. Such narrow zones may escape from the
optimization search easily, as equal opportunity is usually assigned to every-
where within the solution domain. A simple illustration of such condition is
illustrated in Fig. 2 (with the famous Fei Tsui Road slope failure in Hong Kong
as a practical case). It is extremely difficult to detect point g for most of the
optimization algorithms, as there is a very rapid change of the function (as well
as parameters) within a very narrow zone.

C
D

E

B

A B

Fig. 1 A simple
one-dimensional function
illustrating the problem of
local minima and global
minimum

Fig. 2 A complicated one-dimensional function with the presence of several “strong” maxima and
minima for illustration
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Due to the special requirements of the objective functions in geotechnical engi-
neering, many researchers have adopted different methods to search for the global
minimum in geotechnical engineering with various success and limitations. Finite
element limit analysis usually adopts those gradient-type methods with the use of
different initial solutions in the optimization analysis. Slope stability problem is
controlled by limitation 1 as given above, and the gradient-type method is virtually
not adopted in practice. For such problems, heuristic optimization methods are more
popular at present, and a detailed discussion is given by Cheng [5], Cheng and Li [6],
Cheng et al. [7], Cheng et al. [8, 9]. Themodern heuristic global optimizationmethods
have attracted the attention of many geotechnical engineers recently due to the sim-
plicity in implementation, satisfactory performance in many practical problems, and
increased speed in solution when the number of variables is not excessive. At present,
simulated annealing, tabu search, genetic algorithm, particle swarm optimization, fish
swarm optimization, harmony search, ant colony method, evolution algorithm, and
many other similar variants have been adopted in many geotechnical problems with
satisfaction. These methods are suitable for medium-size problems with the presence
of multiple local minima. Cheng et al. [7] have carried out a detailed comparison
between six major types of heuristic global optimization methods in slope stability
problem, and has concluded that no single method can outperform other methods
under all cases. Thatmeans, everymethod has its own advantages and limitations, and
there is no single method which is universal and can perform well under all cases.
A good optimization algorithm should preferably be insensitive to the optimization
parameters, except for some very special cases. The author has also carried out the
sensitivity analysis of these methods under different optimization parameters which is
a very useful and important work but is not commonly considered. It is also observed
that some optimization methods (ant colony and tabu search) may be less effective for
problem where the objective functions are highly discontinuous, but may be highly
efficient when the problem is relatively simple.

2 Example of Geotechnical Problems Which Require
Heuristic Optimization Analysis

There are many geotechnical problems which require the use of optimization
analysis, in particularly, the pile driving and stability problems. The control of pile
driving and the evaluation of the pile capacity are important for pile installation.
Currently, there is an increasing trend to adopt the dynamic test instead of the
classical kentledge test in order to save the cost of testing as well as examining
more piles. The pile driving wave equation for a uniform pile is given by:

@2u
@t2

¼ C2 @
2u

@x2
þR ð1Þ
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where u is the axial displacement which is a function of both the depth x and time t,
C is the speed of stress wave, R is the skin resistance of soil around the pile which is
a function of x and t. Based on the theory of characteristics, the integral along the
positive and negative directions of the characteristics line gives the following
iterative form:

Along
dx
dt

¼ C; Zi�1Vi;j þFi;j ¼ Zi�1Vi�1j þFi�1j � Rþ
i�1 ð2Þ

Along
dx
dt

¼ �C; ZiVi;j � Fi;j ¼ ZiViþ 1;j�1 þFiþ 1;j�1 � R�
i ð3Þ

whereRþ
i�1 ¼

Ru i� 1ð Þ
Ok i� 1ð Þ ui�1j � upi�1j

� �
1þ Jsi�1Vi�1;j
� � ð4Þ

R�
i ¼ Ru ið Þ

Qk ið Þ uiþ 1;j�1 � upiþ 1;j�1
� �

1þ JsiViþ 1;j�1
� � ð5Þ

Z, V, F, Q, Ru, Q, and J are the impedance, velocity of wave, force in pile, elastic
limit of skin friction, ultimate skin resistance, quake, and damping constant of the
Smith model, respectively (see [10] for details). After a time interval Dt, upward
Pu i� 1; jð Þ and downward traveling waves Pd i� 1; j� 1ð Þ become Pði;jÞ at the top
of the unit. When t ¼ jDt, considering the transmission and reflection of the upward
and downward traveling waves, and the upward and downward traveling waves of
the skin resistance R i; tð Þ, the upward and downward traveling waves at section
i are, respectively, given as follows:

Pu i; jð Þ ¼ 2 � Zi
Ziþ 1 þ Zi

Pu iþ 1; jð Þþ Ziþ 1 � Zi
Ziþ 1 þ Zi

Pd i; j� 1ð Þþ Zi
Zi�1 þ Zi

R i; jð Þ ð6Þ

Pd i; jð Þ ¼ 2 � Zi
Zi þ Zi�1

Pu i� 1; j� 1ð Þþ Zi�1 � Zi
Zi þ Zi�1

Pu i; j� 1ð Þ � Ziþ 1

Zi þ Ziþ 1
R i; jð Þ

ð7Þ

At the pile tip, the upward and downward traveling waves will be:

Pd Np;j
� � ¼ Pd Np�1;j�1

� � ð8Þ

Pu Np;j
� � ¼ �Pd Np�1;j�1

� �þR Ns;j
� �þR Nsþ 1;j

� � ð9Þ

At time t, the measured force and speed near to the top of pile are Pm jð Þ and Vm jð Þ.
If we take the location of the PDA sensors as the boundary and the measure velocity
as the boundary condition to compute the force in pile, we have
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Pu 1; jð Þ ¼ Pu 2; j� 1ð Þ ð10Þ

Pd 1; jð Þ ¼ ZVm jð ÞþPuð2; j� 1Þ ð11Þ

Therefore, the force–time curve can be obtained by:

Pc jð Þ ¼ Pd i; jð ÞþPu i; jð Þ ¼ ZVm jð Þþ 2Pu 2; j� 1ð Þ ð12Þ

The particle velocity and displacement V i; jð Þ and S i; jð Þ are given by:

V i; jð Þ ¼ Pd i; jð Þ
Zi

� Pu i; jð Þ
Ziþ 1

ð13Þ

S i; jð Þ ¼ S i; j� 1ð Þþ Dt
2

V i; j� 1ð ÞþV i; jð Þ½ � ð14Þ

If the Smith soil model is used, three parameters will be defined: the maximum
static resistance Ru, the largest elastic deformation Q, and the Smith damping
coefficient Js. Soil resistance Rði; jÞ is divided into static resistance Rsði; jÞ and
dynamic resistance Rdði; jÞ as given by

R ið Þ ¼ Rs i; jð ÞþRd i; jð Þ and Rd i; jð Þ ¼ Rs i; jð Þj jJs ið ÞV i; jð Þ ð15Þ

According to the above-mentioned formulas, force–wave curve Fc tð Þ can be cal-
culated according to the measured Vm tð Þ for different time and segments by suc-
cessive cycling of the above processes.

The force in pile based on the calculation is determined at different time step. For
matching of the signal in order to determine the pile capacity and soil parameters,
the difference between the calculated and the measured force values can be rep-
resented by an objective function F(x) as Eq. (16)

FðxÞ ¼
XNtime

j¼1

ABS Fc jð Þ � Fm jð Þð Þ ð16Þ

where x ¼ Ru ið Þ;Q ið Þ; Js ið Þ;Rt;Qt; ff ;Ws; Jmsð Þ; i ¼ 1;Npile
� �

are the unknowns
vector and Ntime is the number of time–step (usually taken as 1024). The best
solution will be given by:

MinimizeFðxÞ ¼
XNtime

j¼1

ABS Fc jð Þ � Fm jð Þð Þ ð17Þ

Based on the critical results, the pile capacity and soil parameters for the dynamic
pile test can be determined which is only 5–10 % the cost for the traditional

282 Y.M. Cheng



kentledge test. For large-strain PDA test, the force and velocity during pile driving
are measured, and a typical PDA test result in Hong Kong is shown in Fig. 3.

In the PDA backward analysis, the skin friction, soil parameters, and pile
capacity become the unknowns. It is possible to vary these parameters until the
calculated signal can match well with the measured signal. If this condition is
achieved, the pile capacity as well as the skin friction and soil parameters will be
obtained. This problem is well known to have many local minima during the
analysis, and great care and experience are required for the proper analysis. Many
engineers perform the analysis in two ways: (1) prescribed the quake and damping
constants (usually constant throughout the pile) and manually adjust the skin
resistance and end bearing capacity; (2) perform an automatic matching analysis
based on some optimization algorithm in computer program. Manual trial and error
by approach 1 by program CAPWAP (Rausche et al. [11]) is time consuming and
relies heavily on engineer’s experience, but it can avoid unreasonable results which
may come out from automatic signal matching. On the other hand, automatic signal
matching is fast in operation, but unreasonable soil parameters which can give good
signal matching cannot be avoided in the analysis. In fact, the author has observed
unreasonable output results from the optimization analysis prepared by the engi-
neers based on unconstrained automatic optimization analysis (no restraint on the
ranges of the variables), and such problem can partly be avoided by the use of
constrained optimization search. By nature of this pile driving problem, there are
many local minima in the solutions, and it is not easy to search for the global
minimum.

Besides the pile driving problem, the slope stability problem using limit equi-
librium or finite element analysis as well as the finite element limit analysis are
typical problems which require the use of various types of optimization method.
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Fig. 3 A PDA test result for pile driving in sandy soil in Hong Kong
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3 Hybrid Heuristic Optimization Methods

In view of the limitations of the classical optimization methods, the current
approach to locate the critical failure surface for slope stability analysis is by the
heuristic global optimization methods. The term heuristic is used for algorithms
which find solutions among all the possible ones, but they do not guarantee that the
best will be found; therefore, they may be considered as approximate and not
accurate algorithms. These algorithms usually find a solution close to the best one,
and they find it fast and easily. The early applications of such method in
geotechnical engineering in slope stability are due to Greco [12] and Malawi et al.
[13] using the Monte Carlo technique for locating the critical slip surface with
success for some cases, but there is no precision control on the accuracy of the
global minimum. Zolfaghari et al. [14] adopted the genetic algorithm while Cheng
[5, 15], Cheng and Li [16], and Cheng et al. [7–9, 17] have adopted and improved
many heuristic optimization algorithms for use in slope stability problems. The
author has also developed a slope stability program SLOPE 2000 which is widely
adopted for use in various countries (Hong Kong, China, Taiwan, Europe) as well
as the slope stability module in a large geotechnical analysis package GEOSUITE
2.0 (mainly used in Europe). In these two programs, the optimization algorithms
can be chosen by the users, and the algorithms include: simulated annealing (SA),
ant colony (ANT), particle swarm, and modified particle swarm (PSO), harmony
search and modified harmony search (HM), fish swarm search (FS), genetic algo-
rithm (GA) and tabu search. These basic optimization algorithms are discussed by
Cheng and Lau [18] in details and will not be repeated here. The author has also
proposed the concept of weighted random number [5] for the case of a narrow band
where the material parameters can change significantly within a narrow region.
Based on the actual application of these improved heuristic optimization algorithms
over varieties of problems in different countries, the optimization algorithms in the
two programs are now very stable and robust and can pass through very difficult
problems with only very few exceptions. A demonstration version of the program
can be downloaded from the author’s website at http://www.cse.polyu.edu.hk/
*ceymcheng/.

Heuristic algorithms are usually approximate and are not accurate algorithms.
These algorithms usually find a solution close to the best one effectively and
efficiently. Every heuristic algorithm relies on the use of some parameters for
analysis, but there is no rigorous method in determining these kinds of parameters
for general case (not to mention those where there is a sudden change of material
parameters in the solution domain). The success and efficiency of a global opti-
mization algorithm may rely on the use of these parameters. Cheng et al. [7] have
found that no single method can outperform other methods under all cases, and
every method can fail to work under some cases (not common). The performance of
a good optimization method should be relatively insensitive to the optimization
parameters. Every global optimization method can be tuned to work well if suitable
optimization parameters are adopted, but such parameters are difficult to be
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established for a general problem. For sake of safety, the author allows the users to
choose different optimization algorithms in the analysis in the above two programs,
in case the users have doubt on the acceptability of the optimized solution.

The author has come across some complicated hydropower projects in China
where there are several ‘strong’ local minima in the solution domain (similar to the
case in Fig. 2). The engineers have used different commercial programs with dif-
ferent results, and there is a lack of confidence on the results of analysis. To deal
with these cases, the author has proposed a coupled optimization procedure based
on the PSO and HS methods for this special problem. The coupled method is later
extended to other optimization algorithms to take advantage of different opti-
mization algorithms. In general, the hybrid (coupled) optimization method is more
stable and robust than the original optimization methods, at the expense of longer
computation time. In fact, the author views that there is no simple way to maintain
effectiveness and efficiency at the same time in general. Since the increase in the
computation is usually not significant, the author has also put the hybrid opti-
mization algorithm into the two programs as mentioned previously. In the following
sections, some hybrid optimization will be discussed, which will then be illustrated
by examples for assessing the performance of such hybrid methods.

4 Hybrid Particle Swarm Harmony Search Optimization

In the PSO method, the positions of the particles are updated by modifying the
corresponding velocity vectors. If the choice of ω is not appropriate, it may lead to
the trap into the local minimum, where ω is the inertia weight coefficient. In
general, a value of 0.5 for ω is used normally which is found to be adequate for
most of slope stability problem. Alternatively, a larger value of ω can be applied at
the initial search, which is then gradually reduced to a smaller value for refined
results near to the existing best position. Another approach is suggested by Wang
and Liu [19] as shown in Eq. (1) which is adopted in the present study: the current
positions of particles, the best position found so far Pi, and the best position of any
particle within the context of the topological neighborhood of the ith particle found
so far Pg.

Vkþ 1
i ¼ xVk

i þ c1r1 Pi � Xk
i

� �þ c2r2 Pg � Xk
i

� �

Xkþ 1
i ¼ Xk

i þVkþ 1
i ; i ¼ 1; 2; . . .; 2n

ð18Þ

where Xi, Vi, Pi, and Pg are the position, velocity, the difference between the ith
particle’s best position found so far and the current position, and the difference
between the best position of any particle within the context of the topological
neighborhood of the ith particle found so far. c1 and c2 are the stochastic weighting
which are chosen to be 2 while r1 and r2 are two random numbers in the range [0,1].
A larger value for ω will enable the algorithm to explore the search space, while a
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smaller value of ω will lead the algorithm to exploit the refinement of the results.
The HS method is another efficient and effective global optimization method for
many geotechnical problems which is discussed by Cheng et al. [7]. Cheng and Lau
[20] have also given a detailed procedure in the implementation of the modified
harmony search algorithm which is adopted in the present hybrid scheme. When the
problem size is large, HS can be trapped by the local minimum easily. Cheng et al.
[9] have proposed a modified harmony (MHS) search method to overcome the
limitation of the original harmony search method. The utilization of the MHS is by
generating several new harmonies than by generating a new harmony during each
iteration. Two parameters HR and PR for harmony search are required in the
analysis, and the detailed procedure is shown in Fig. 4.

If we take the above-mentioned positions (flights) from PSO as the harmonies in
the Harmony Memory in HS, a new position can also be obtained by the harmony
search procedure. In Fig. 4, zimin and zimax are the minimum and maximum values
of the ith element in vector X. zij is the jth element of Xi. Similar to the modified
PSO, Na (≤M) flights within each iteration step are allowed with different approach.
It is possible to choose Na particles randomly from the total generation rather than
based on the fitness of the particles in the modified PSO. This is a minor and simple
trick in combining the two methods. Cheng et al. [7] have tried genetic algorithm,
simulated annealing method, PSO, HM, tabu search, and ant colony search, and
have commented no single method can outperform other method under all cases.
Each optimization method has its own merits and limitations, and the combination
of two optimization methods can possibly result in a better performance under
difficult cases which will be illustrated.

The flowchart for the hybrid PSO and HS which is denoted as HS/PSO is shown
in Fig. 5. It should be noted that the flowchart in Fig. 5 is a simple combination of the
PSO and HS methods, and the author do not attempt to propose a highly complicated
procedure in combining these two methods for sake of simplicity and ease of

Fig. 4 Generation of a new harmony and the search procedure
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implementation. The step on the updating of the positions of all the particles in the
PSO method is replaced by the harmony search generation as given in Fig. 4. Such a
minor change can retain the simplicity of both optimization methods so that the
proposed algorithm is simple to use and does not require major computer memory.
The author has come across several very complicated cases in some projects, and the
presently proposed algorithm combine two optimization methods so that the coupled
algorithm will be more stable and robust for very complicated problem. It is true that
the present method will be less efficient for simple method and it is not recommended
for such purposes even though the hybrid method is still effective for such cases. The
proposed algorithm is targeted toward complicated problems (discontinuous objec-
tive function with multiple strong local minima and sudden major change in the
material properties) for which the other algorithms may fail to perform satisfactorily.

Besides the coupling of PSO and HM, it is also possible to couple the tabu
search, simulated annealing, genetic algorithm with the harmony search method,
and the author has also successfully implemented these coupling methods.

5 Hybrid Chaos Harmony Search Algorithm (CH/HS)

The chaos phenomenon is first discovered from the simulation of atmospheric
turbulence between two infinite planes by the American meteorologist Lorenz in
1963. The solution of the equation is not only stochastic but also nonperiodic if

Fig. 5 The flowchart for the
hybrid HS/PSO Optimization
method
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suitable parameters are selected, which means that a determinate equation could
yield stochastic results. Therefore, it is a kind of behavior between random and
rules. However, chaos contains refined internal structure instead of being intricate
and disordered, which can confine the systematic motion to a specific scope.
Chaotic motion shows strong randomicity, ergodicity, and regularity, and it can
change a lot even if there is only a small change to the initial conditions. Based on
the ergodicity of chaos variables, it is feasible to explore the solution space.

In order to explore the solution space by using chaos variables, the initial values
should be obtained first and then the common Logistic Map is adopted to update
them. Generally, the steps for exploring the chaos are as follows:

• If k = 0, then the initial chaos variable chaosk ¼ chk1; ch
k
2; . . .; ch

k
m

� �
, where m is

the number of designed variable. At the same time, the bounds to the variables
are defined, i.e., U ¼ u1; u2; . . .; umð Þ; L ¼ l1; l2; . . .; lmð Þ, where uj; lj are the
upper and lower bounds of the control variable, respectively.

• According to Eq. (19), the chaos variables chaosk can be projected as a point in
the variable space Rk ¼ rk1; r

k
2; . . .; r

k
m

� �
as;

rkj ¼ lkj þ ukj � lkj
� �

� chkj ; j ¼ 1; 2; . . .;m ð19Þ

• The initial values of the chaos variables are then updated using Eq. (20) before
turning back to step (2) for continuous iteration, which can find a series of
solutions, i.e., R0;R1; . . ., and from which the best one can be considered as the
solution of optimization problem

chkþ 1
j ¼ chkj � 1� chkj

� �
� 4:0; j ¼ 1; 2; . . .;m ð20Þ

It should be noted that the chaos variables have strong ergodicity and can explore
solution space from the preceding steps, but there are also such limitations as bad
application of the optimal solution and poor development capability of the algo-
rithm. However, new algorithm with strong global search ability can be developed
based on the combination of harmony algorithm and advanced exploring ability of
chaos algorithm. The author proposes three chaos exploration strategies for
research, namely simple chaos exploration strategy (SCHM), static partitioning
chaos exploration strategy (SPCHM), and dynamic partitioning chaos exploration
strategy (DPCHM).

• Simple chaos exploration strategy is to keep the variable value interval constant
during the exploration, which is given in Eq. (19), that is,

ukj ¼ uj; lkj ¼ lj; j ¼ 1; 2; . . .;m: ð21Þ

• Static partitioning chaos exploration strategy is to divide the user’s given
variable value interval into several subintervals, and with more subintervals, the
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more computational works will be required. Herein, three intervals are selected
as follows:

U1 ¼ u1; u2; . . .; umð Þ; L1 ¼ f1; f2; . . .; fmð Þ
U2 ¼ f1; f2; . . .; fmð Þ; L2 ¼ d1; d2; . . .; dmð Þ
U3 ¼ d1; d2; . . .; dmð Þ; L3 ¼ l1; l2; . . .; lmð Þ

ð22Þ

where fj ¼ uj � uj�lj
3 ; dj ¼ uj � uj�lj

3 � 2; j ¼ 1; 2. . .m. During chaos exploration,
three different initial chaos values chaosk;1; chaosk;2; chaosk;3 are formed and
then projected to a series of solutions in U1; L1;U2; L2;U3; L3, respectively. As
for chaosk;1, it has been reflected in Eq. (19) that ukj ¼ uj; lkj ¼ fj; j ¼ 1; 2; . . .;m.
The best solution among the three series is then chosen as the solution of the
optimal problem.

• Dynamic partitioning chaos exploration strategy, namely, solution space is
divided into three subintervals utilizing the worst point in the current harmony
library Rb ¼ rb1; rb2; . . .; rbmð Þ, and the center point of the other remained points

Fig. 6 The flowchart of chaos harmony search algorithm
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Ro ¼ ro1; ro;2; . . .; rom
� �

. The definition of the interval is analogous to those
depicted above except for small differences in the values of fj; dj. Herein, fj; dj
are the maximum and minimum among the worst point and the center point,
respectively. i.e., fj ¼ max rbj; roj

� �
; dj ¼ min rbj; roj

� �
.

The flowchart for the hybrid chaos harmony search method is shown in Fig. 6, in
which Tm denotes the user’s defined maximum number of iteration. Different chaos
exploring strategies will give rise to different Chaos Harmony Method. In the
process of finding local factors of safety, maximization and minimization are
simulated by the fundamental harmony method and Chaos Harmony Method,
respectively.

6 Hybrid Genetic Algorithm with Harmony Search
Strategy (GA/HS)

It is also possible to couple the genetic algorithm, harmony search, simulated
annealing algorithm, tabu search and other methods easily by simple fine tuning in
the generation of new trials. In this section, another hybrid method will be dis-
cussed, but the author will not try to discuss any more hybrid methods in this
chapter. The main reason is that most of the hybrid methods can perform better than
the simple methods, but again no single hybrid method seems to outperform other
hybrid methods under all cases, in terms of effectiveness and efficiency. Before the
discussion on the hybrid genetic harmony search, the two basic methods are
explained in more details before the hybrid method can be discussed.

6.1 Harmony Search Algorithm

In music playing, musicians repeatedly adjust the tone of the instrument in the band
(based on memory) so as to eventually reach a wonderful state of harmony. The
Harmony Search Algorithm is proposed by Geem based on the inspiration of
considering instrument i (i = 1, 2, …, m) and harmony of the instrument tone Rj

(j = 1,2, … s) analogous to the ith design variable and jth solution vector in the
optimization problem. It has been successfully adopted in the combinational opti-
mization problems such as slope stability problem, TSP, pipe laying and public
transport line, experimental parameter estimation and others. In this algorithm,
M initial solutions (i.e., harmony) are obtained first and put into the Harmony
Memory. It will then search new solutions in HM with a probability of HR while
searching outside HM with a probability of 1-HR. Thereafter, local disturbance will
be added to the new solutions with a probability of PR. If the objective function
value of the new solution is better than the worst solution in HM, then replace it.
Iteration will not stop until reaching the maximum evolution generation Tmax and
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the computational process is shown in Fig. 7. Fundamental harmony algorithm used
in this chapter adopts punishment and repair strategies to process nonfeasible
solutions. From Fig. 7, it can be seen that harmony search algorithm belongs to
single individual evolution algorithm. Although the harmony library is used to yield
new solutions, only one solution can be found in each evolution. As the approach to
form new solutions is very novel, it can be applied in other group evolution
algorithms, for example, genetic algorithm, to enhance the probability to find new
solutions during the search, and such newly combined algorithm will be of higher
global search ability.

Fig. 7 The flowchart of fundamental harmony search algorithm
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6.2 Genetic Algorithm

Genetic algorithm is an adaptive global optimization algorithm based on Darwin’s
theory of evolution and Mendel’s genetic theory, which was first proposed by J.H.
Holland. It is mainly implemented by three operators: selection, hybridization, and
mutation. Taking the critical slip surface search of soil slope as an example, the
principal procedures of genetic algorithm are as follows:

• Determine the design vector of the optimization problem, for example, X ¼
xA; xB; . . .; yn�1ð Þ ¼ z1; z2; . . .; znþ 1ð Þ in Eq. (23), and objective function value
G controlled by design vector (i.e., chromosome) X. Regarding to the opti-
mization problem of finding the minimum value of objective function, if G is
smaller, then corresponding to which the chromosome
Xi ¼ zi1; z

i
2; . . .; z

i
nþ 1

� �
(where zij denotes the jth gene of the ith chromosome

j ¼ 1; 2; . . .; nþ 1) will be a better adaptation. Then N chromosomes
X1;X2; . . .;XN satisfying constrained conditions are formed randomly and put
into the match pool with crossover probability pc and mutation probability pm.
Moreover, evolution generation t ¼ 0 and Tmax denotes the maximum evolution
generation.

Min G xA; xB; y1; y2; ::; yn�1ð Þ
XLA � xA �XUA ; XLB � xB �XUB; YLi � yi � YUi ; i ¼ 1; 2; ::; n� 1

�
ð23Þ

• N=2 pairs of parents chromosomes are formed by randomly selecting two
chromosomes out of N in the match pool. For each parent chromosomes,
crossover operation can be implemented according to pc. If yes, two offsprings
S1; S2 will be obtained by operating arithmetic crossover operator on the parent
chromosomes, and then S1; S2 are put into children’s pool.

• Mutation should be operated on each offspring in the children’s pool according
to pm. If yes, the existed offspring should be substituted by another new off-
spring formed by the nonuniform mutation operator.

• Compute the objective function value of N chromosomes in the match pool and
K chromosomes in the children’s pool, respectively. Punishment and repair
strategies should be adopted if the chromosome is not feasible.

• The objective function values of N þK chromosomes are considered to be in an
ascending sort order Gm1 ;Gm2 ; . . .;GmN þK . The probability of choosing mi

chromosome is qmi
¼ a 1� að Þi�1; a 2 0 1½ �: N chromosomes are reselected

and put into the match pool according to the probability of being chosen for
each chromosome. Specifically, those chromosomes with smaller objective
function values will be much more than the others in the match pool.

• t ¼ tþ 1, if t\Tmax, then turn back to step (2), otherwise, output the optimal
chromosome and stop iteration.
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From the above, it is clear that the match pool in the fundamental genetic algorithm
will be occupied quickly by several excellent chromosomes if the selection pressure
is extremely high, that is, a is too large. Generally, it is quite difficult to generate
offspring through crossover as well as mutation, because the mutation rate is usually
very small. On the basis of the approach prompting new solutions in harmony
search algorithm, the harmony genetic algorithm is thus proposed.

7 Genetic Algorithm with Harmony Strategy

The match pool in the genetic algorithm is considered as the harmony library HM,
and it will produce new solutions if probability HR and PR are known. The iteration
procedures of harmony genetic algorithm are as follows:

• Under the given probability HR and PR, N ¼ 2� ðnþ 1Þ initial trial
X1;X2; . . .;XN satisfying the constrained conditions are formed randomly and
put into the match pool with crossover probability pc and mutation probability
pm. At evolution generation t ¼ 0, Tmax and Phm denote the maximum evolution
generation and harmony probability, respectively.

• N=2 pairs of parents chromosomes are formed by randomly selecting two
chromosomes out of N in the match pool. For each parent chromosomes,
crossover operation can be implemented according to pc. If yes, two offsprings
S1; S2 will be obtained by operating arithmetic crossover operator on the parent
chromosomes, and then S1; S2 are put into children’s pool.

• Mutation should be operated on each offspring in the children’s pool according
to pm. If yes, the existing offspring should be substituted by another new off-
spring formed by the nonuniform mutation operator.

• According to the N chromosomes in the match pool, N � Phm new solutions
H1; . . .;HN�Phm are produced utilizing harmony algorithm, and then they are put
into the children’s pool.

• Compute the objective function value of N chromosomes in the match pool and
K chromosomes in the children’s pool, respectively. Punishment and repair
strategies should be adopted if the chromosome is not feasible.

• The objective function values of N þK chromosomes are considered to be in an
ascending order Gm1 ;Gm2 ; . . .;GmN þK . The probability of choosing mi chromo-

some is qmi
¼ a 1� að Þi�1; a 2 0 1½ �: Currently, N chromosomes are rese-

lected and put into the match pool according to the probability of being chosen
of each chromosome. Specifically, those chromosomes with smaller objective
function value will be much more than the others in the match pool.

• t ¼ tþ 1, if t\Tmax, then go back to step (2), otherwise, output the optimal
chromosome and stop iteration.
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8 Application of Hybrid Optimization Method

For the large-strain pile driving PDA test results in Fig. 3, the length and diameter
of the precast pretensioned concrete pile are 26 m and 450 mm, respectively. The
Young’s modulus of the concrete pile is back-calculated as 45,250 MPa, based on
the time for the reflected signal to travel to the pile top. From this figure, it is
directly found that the maximum impact force from the diesel hammer is 4787 kN.
Two local peaks are observed besides the first peak which is the measured force due
to direct striking by the hammer. These two local peaks represent the force reflected
from the junctions between pile segments at a depth of 12 and 24 m below pile
top. Based on the minimization of Eq. (17) using commercial program, the end
bearing, skin friction, and static pile capacity are found to be 4103, 1942, and
5853 kN, respectively, with a prescribed damping factor of 0.1 s/m and a quake of
2.5 mm using signal matching approach 1 (commonly adopted parameters using
manual trial and error). If completely automatic signal matching method is used
(signal matching approach 2 with unconstrained bounds), an even better signal
matching is obtained with a damping factor of 0.5 s/m and a quake of 1.3 mm
(which are outside the normal ranges in Hong Kong), and the static pile capacity is
estimated to be 5415 kN with some major fluctuation in the skin friction at the
middle of the pile. Multiple solutions in signal matching are commonly encountered
by many engineers, and the major differences between soil parameters and pile
capacities obtained from different set of matching are not uncommon. The static
pile capacity by the CASE analysis (Case damping factor = 0.15) is 5765 kN while
the pile capacity is found to be 6231 kN from static load test. Based on the coupled
optimization HS/PSO as discussed in this chapter, Eq. (17) is solved by assigning
an upper and lower bounds to each variable (quake, damping, soil parameters, skin
resistance, and base capacity) based on experience of the engineers, and a static pile
capacity of 5946 kN (different parameters to different segments of pile) is obtained.
Since the upper and lower bounds are established by soil mechanics principle and
experience, unrealistic values can be avoided in the signal matching process. This
approach possesses the advantages of manual control as well as automatic signal
matching, and has been found to be efficient based on some projects in Hong Kong.
Using CH/HS and GA/HS, the optimized results are virtually the same as that by
the HS/PSO. Since there is no sharp change in the soil parameters, the static pile
capacity of 5946 kN can be accepted with confidence, even though this problem has
many local minima in the solution domain.

For slope stability problem, a problem with a soft band which has been con-
sidered by Zolfaghari et al. [14], Cheng et al. [9] and Kahatadeniya et al. [21] is
shown in Fig. 8. The soil parameters for this problem are shown in Table 1. It is
noticed that the soil parameters for soil layer 3 are much lower than the other three
soils so that the failure surface will be mainly controlled by this layer of soil at the
middle of the failure surface. For minimization of the factor of safety, the minimum
value using Spencer method for this problem are 1.50, 1.11, 1.361, and 1.09 by the
genetic algorithm [14], the artificial fish swarm algorithm (AFSA) [9], the ant
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colony method [21] and HS/PSO. Again, the result by CH/HS and GA/HS are
virtually the same as that by the HS/PSO, which indicate that the performance of
these three hybrid optimization method are nearly the same for this problems. Since
the soft band soil is a strong local minimum but the thickness of this layer is
relatively small, the genetic algorithm and the ant colony method cannot escape
from the local minimum and fail to provide a good solution for this problem. On the
other hand, the artificial fish swarm algorithm and the three hybrid methods in this
chapter provide solutions which are nearly the same. In fact, it is difficult to dif-
ferentiate precisely the critical slip surfaces from the AFSA, HS/PSO, CH/HS, and
GA/HS.

For the second problem as shown in Fig. 9, it is one of the sections for a major
hydropower project in China where there are 17 layers of soil beneath the dam. The
material parameters are shown in Table 2. It is noticed that soil layers 7, 8, 11, 12,
13, and 16 have very low soil parameters, which means that they are the strong
local minima which can create problem during optimization search. The nature of
this problem is actually similar to that as shown in Fig. 2. The stability of the
foundation of the dam is extremely important, as this project is very expensive and
the failure of the dam will cause significant loss of lives and properties. Again,
many classical optimization methods fail to work well for this case, as there are
several layers of soft materials which are strong local minima affecting the direction
of search for the global minimum.
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Fig. 8 A slope stability
problem with a soft band

Table 1 Geotechnical
parameters for the soils in
Fig. 8 (γ = unit weight of soil,
c′ = effective cohesive
strength and ϕ′ = effective
angle of friction)

Layers c(kN/m3) c′ (kPa) u′ (°)

1 19.0 15.0 20.0

2 19.0 17.0 21.0

3 19.0 5.00 10.0

4 19.0 35.0 28.0
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For the present analysis, the left exit end of the failure surface is searched within
the domain of x = 260 to 330 m while the right exit end is searched within the
domain of x = 520 to 575 m according to the suggested approach by Cheng [15] and
Cheng et al. [7]. It is noticed that the failure surfaces based on the MHS and MPSO
are close to the original MHS and MPSO methods and they are not shown for
clarity. It is also noticed that the failure surfaces from all the optimization methods
are virtually the same at the right-hand side as this is strongly governed by the soil
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PSO

HS/PSO

Fig. 9 Critical slip surfaces by different global optimization methods based on the Spencer’s
method (critical failure surface by MHS and MPSO are not shown for clarity)

Table 2 Geotechnical
parameters for the problem in
Fig. 9

Layers γ (kN/m3) c′ (kPa) ϕ′ (°)

1 16.00 2000.0 56.31

2 24.00 2000.0 56.31

3 24.00 2000.0 56.31

4 26.00 1000.0 50.20

5 26.00 1400.0 54.50

6 26.00 1000.0 44.70

7 26.00 100.0 19.30

8 26.00 100.0 19.30

9 26.00 1000.0 44.70

10 26.00 1400.0 54.50

11 26.00 100.0 19.30

12 26.00 100.0 19.30

13 26.00 100.0 19.30

14 23.00 130.0 22.30

15 26.00 1400.0 54.50

16 26.00 100.0 19.30

17 26.00 1400.0 54.50
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profiles and the geometry of this project. The major differences between the failure
surfaces from different methods of optimization as shown in Fig. 9 are: (1) the
starting point of the critical failure surface from HM/PSO is x = 278.0 while it
ranges from 320.25 to 320.38 for all the other methods; (2) the exit angle of the
failure surface for HM/PSO method is smaller than all the other methods; (3) all
the optimization methods except for the HM/PSO is more attracted by soil 13 in the
analysis so that the critical failure surfaces are deeper than that by the HM/PSO. In
Table 3, it is clear that most of the global optimization methods are not satisfactory
except for the AFSA which gives a factor of safety less than 2.0 (but still not good
enough while HM, PSO are actually poor in performance) but requires 394,527
trials in the analysis. Actually, when the number of control variable is large, the
authors [8] found that HS can be inefficient and sometimes noneffective. It can be
viewed that all the optimization methods are attracted by the presence of the
“strong” local minima during the search, except for the hybrid HM/PSO, CH/HS,
and GA/HS analyzes which are less affected by the “attraction” of the local minima.
Based on the proposed coupling method, the minimum factor of safety is obtained
as 1.65 with the three hybrid optimization methods. It is noticed that the hybrid
optimization methods are more stable for problems where there are several “strong”
local minima. For the present large-scale construction work, a good result is much
more important than the time of computation, and the proposed hybrid method has
provided a good result without excessive computations.

The author has considered another case which is illustrated in Fig. 10. The
cohesive strengths of the three soils in Fig. 10 are 28.5 kPa, 0, and 28.5 kPa,
respectively, while the friction angles are 20°, 10°, and 20°, respectively (as
measured from top to bottom). In this problem, the thickness of soil layer 2 is only
0.1 m as compared with the width of the potential slip surface which is about 30 m.
This problem is more difficult than the one in Fig. 9 because the thickness of the
soft layer is extremely smaller, and this layer will control the failure. Unless the
domain transformation technique is applied, most of the heuristic optimization
algorithms will fail to obtain the critical failure surface (shown in Fig. 10) and the
minimum factor of safety (0.7603) automatically. For the present problem, the
results of analysis are shown in Table 4. It is noticed that only the hybrid method
can provide good solutions for the present problem. The special feature of this
problem is that a very minor change in the location of the trial failure surface can
have a great influence in the factor of safety, and there are many discontinuous
solutions during the optimization process. Unless the thickness of soil layer 2

Table 3 Minimum factors of safety for Fig. 9 based on Spencer method (41 control variables)

Method of global
optimization

PSO MPSO AFSA MHM HM/PSO CH/HS GA/HS

Min. FOS 2.18 2.15 1.83 1.98 1.65 1.65 1.65

No. of trials 121,124 59,288 394,527 132,098 130,156 123,063 133,238

Min. FOS at
evaluation number

99,824 35,460 219,284 98,426 112,342 112,436 120,347
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increases to 0.4 m, the classical heuristic optimization algorithms fail to perform
satisfactorily. That means, even if an engineer adopts different basic heuristic
optimization algorithms, he may still fail to obtain the critical solution which is
0.7603. It is true that problems similar to that in Fig. 10 are not common, but there
are some similar cases in Hong Kong and other countries.

For the present problem, the author has found that there are many local minimum
within the solution domain, and the factor of safety is very sensitive to the precise
location of the trial failure surface. A minor change in the location of the trial failure
surface can give rise to noticeable change in the objective function, and the present
problem is a typical difficult global optimization problem. For example, if ant
colony method is used, a factor of safety 0.903 is obtained with the optimum
solution as shown in Fig. 11. If the harmony search method is used, the factor of
safety will be 0.899. The critical failure surfaces from these two methods also differ
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Fig. 10 A difficult problem illustrating the performance of various optimization algorithms, with
the critical failure surface as shown

Table 4 Minimum factor of
safety for different methods
without using the domain
transformation technique by
Cheng [5]

Method Min. FS

SA 0.8993

HS 0.9453

MHS 0.805

PSO 0.864

MPSO 0.903

GA 0.979

Ant colony 1.068

HS/PSO 0.770

CH/HS 0.765

GA/HS 0.766
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noticeably from the critical solution by the hybrid optimization method as shown in
Fig. 10. It is of course possible to tune the parameters of the various simple
optimization methods to give the results in Fig. 10, but such tuning is not possible
unless the critical solution is known. If the thickness of the soft band is reduced to
0.1 mm, which is equivalent to a very sharp change in the soil parameters within a
very narrow region, then no optimization method can give the results in Fig. 10
unless the domain transformation technique or equivalently a random function with
more weighting for the soft band zone is used. This case can also illustrate the
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Fig. 11 A local minimum is obtained by the ant colony method for the problem in Fig. 10
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Fig. 12 Another local minimum obtained by the harmony search method for the problem in
Fig. 10
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limitations of all the heuristic optimization methods that they may not be able to
function well if there is an extremely sharp change within a very narrow region. The
limitations of the heuristic or other type of optimization methods should always be
aware of during application, and it is well known that there is no universal method
which can solve all optimization problems under all conditions (Figs. 12 and 13).

9 Discussion and Conclusion

Many geotechnical and other engineering problem can be formulated as an opti-
mization problem, for example, the stability-type problems. There are also many
engineering problems which are governed by partial differential equations but can
also be formulated as the extremum of a functional. Although many classical
problems can be solved by the use of simplex or gradient methods, there are also
many types of problems for which many local minima exist in the solution domain.
Currently, many researchers are now turning to the use of heuristic optimization
methods, which are not limited by the presence of a local minimum during the
optimization process.

The author has carried out many studies toward the use of various heuristic
optimization methods in geotechnical problems, and it is established that no single
heuristic global optimization problem can outperform other methods under all
cases. Furthermore, it is difficult to design a set of parameters which are suitable for
all types of conditions. Every method has its own merits and limitations, and even
automatic tuning of the parameters may only be suitable for some types of prob-
lems. For very complicated problems, particularly for those discontinuous problem
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Fig. 13 All optimization methods fail to obtain the critical solution for a soft band thickness of
0.1 mm
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or problems with several strong local minima, many simple heuristic optimization
methods may sometimes fail to give the best solution. In views of that, the author
has tried to combine the use of two heuristic optimization methods to give a more
stable and better performance method with less dependence on the choice of
parameters. The hybrid methods of PSO/HS, CH/HS, and GA/HS as proposed in
this chapter have taken the advantages of two optimization methods so as to give a
more stable global optimization. As demonstrated in the present chapter, the hybrid
method can perform better than the simple heuristic optimization methods for
complicated problems where there are many strong local minima and discontinuous
objective functions. From many practical applications, the author has also noticed
that the increase in the computations as compared with the simple heuristic opti-
mization methods is not major. It is true that the hybrid method is less efficient (still
effective) for many simple problems and is not recommended for such cases. For
those difficult problems where there are many local minima, the use of the hybrid
methods are however more effective at the expense of minor increase in the amount
of computations. The author views that effectiveness and efficiency cannot be
maintained simultaneously for arbitrary problems. The proposed hybrid methods
are simple enough to be adopted while the performance is more stable than the
simple methods for the difficult problems. Finally, the author would also like to
address that every method may fail to work under some very special case, and such
special case is usually obvious so that the engineers can adopt some special trick
(for example, the domain transformation method by Cheng [5]) to overcome the
very special constraints. Engineers should not rely completely on the optimization
methods without an evaluation about the nature of the problem.
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