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PREFACE

Since the early 1960s, artificial intelligence (AI) has found its way into
industrial applications — mostly in the area of expert knowledge-based decision
making for the design and monitoring of industrial products or processes. That
fact has been enhanced with advances in computer technology and the advent
of personal computers, and many applications of intelligence have been
realized. With the invention of fuzzy chips in the1980s, fuzzy logic received a
high boost in industry, especially in Japan. In this country, neural networks and
evolutionary computations were also receiving unprecedented attention in both
academia and industry. As a result of these events, “soft computing” was born.

Now at the dawn of the 21* century, soft computing continues to play a
major role in modeling, system identification, and control of systems — simple
or complex. The significant industrial uses of these new paradigms have been
found in the U.S.A and Europe, in addition to Japan. However, to be able to
design systems having high MIQ® (machine intelligence quotient, a concept
first introduced by Lotfi Zadeh), a profound change in the orientation of
control theory may be required.

The principal constituents of soft computing are fuzzy logic,
neurocomputing, genetic algorithms, genetic programming, chaos theory, and
probabilistic reasoning. One of the principal components of soft computing is
fuzzy logic. The role model for fuzzy logic is the human mind. From a control
theoretical point of view, fuzzy logic has been intermixed with all the
important aspects of systems theory: modeling, identification, analysis,
stability, synthesis, filtering, and estimation. Interest in stability criteria for
fuzzy control systems has grown in recent years. One of the most important
difficulties with the creation of new stability criteria for any fuzzy control
system has been the analytical interpretation of the linguistic part of fuzzy
controller IF-THEN rules. Often fuzzy control systems are designed with very
modest or no prior knowledge of a solid mathematical model, which, in turn,
makes it relatively difficult to tap into many tools for the stability of
conventional control systems. With the help of Takagi-Sugeno fuzzy IF-THEN
rules in which the consequences are analytically derived, sufficient conditions
to check the stability of fuzzy control systems are now available. These
schemes are based on the stability theory of interval matrices and those of the
Lyapunov approach. Frequency-domain methods such as describing functions
are also being employed for this purpose.

This volume constitutes a report on the principal elements and important
applications of soft computing as reported from some of the active members of
this community. In its chapters, the book gives a prime introduction to soft
computing with its principal components of fuzzy logic, neural networks,
genetic algorithms, and genetic programming with some textbook-type



problems given. There are also many industrial and development efforts in the
applications of intelligent systems through soft computing given to guide the
interested readers on their research interest track.

This book provides a general foundation of soft computing methodologies as
well as their applications, recognizing the multidisciplinary nature of the
subject. The book consists of 21 chapters, organized as follows:

In Chapter 1, an overview of intelligent control methodologies is presented.
Various design and implementation issues related to controller design for
industrial applications using soft computing techniques are briefly discussed in
this chapter. Furthermore, an overall evaluation of the intelligent systems is
presented therein.

The next two chapters of the book focus on the fundamentals of neural
networks (NN). Theoretical as well as various design issues related to NN are
discussed. In general, NN are composed of many simple elements emulating
various brain activities. They exploit massive parallel local processing and
distributed representation properties that are believed to exist in the brain. The
primary purpose of NN is to explore and produce human information
processing tasks such as speech, vision, knowledge processing, and motor
control. The attempt of organizing human information processing tasks
highlights the classical comparison between information processing
capabilities of the human and so called hard computing. The computer can
multiply large numbers at fast speed, yet it may not be capable to understand
an unconstrained pattern such as speech. On the other hand, though humans
understand speech, they lack the ability to compute the square root of a prime
number without the aid of pencil and paper or a calculator. The difference
between these two opposing capabilities can be traced to the processing
methods which each employs. Digital computers rely upon algorithm-based
programs that operate serially, are controlled by CPU, and store the
information at a particular location in memory. On the other hand, the brain
relies on highly distributed representations and transformations that operate in
parallel, have distributed control through billions of highly interconnected
neurons or processing elements, and store information in various straight
connections called synapses. Chapter 2 is devoted to the fundamental issues
above. In Chapter 3, supervised learning with emphasis on back propagation
and radial basis neural functions algorithms is presented. This chapter also
addresses unsupervised learning (Kohonen self-organization) and recurrent
networks (Hopfield).

In Chapters 4 — 7, several applications of neural networks are presented in
order to familiarize the reader with design and implementation issues as well as
applicability of NN to science and engineering. These applications areas
include medicine and biology (Chapter 4), digital signal processing (Chapter
5), computer networking (Chapter 6), and oil refinery (Chapter 7).

Chapters 8, 9 and 10 of the book are devoted to the theoretical aspect of
fuzzy set and fuzzy logic (FL). The main objective of these three chapters is to
provide the reader with sufficient background related to implementation issues



in the following chapters. In these chapters, we cover the fundamental concepts
of fuzzy sets, fuzzy relation, fuzzy logic, fuzzy control, fuzzification,
defuzification, and stability of fuzzy systems.

As is well known, the first implementation of Professor Zadeh’s idea
pertaining to fuzzy sets and fuzzy logic was accomplished in 1975 by
Mamedani, who demonstrated the viability of fuzzy logic control (FLC) for a
small model steam engine. After this pioneer work, many consumer products
as well as other high tech applications using fuzzy technology have been
developed and are currently available on the market. In Chapters 11 — 16,
several recent industrial applications of fuzzy logic are presented. These
applications include navigation of autonomous planetary rover (Chapter 11),
autonomous underwater vehicle (Chapter 12), management of air conditioning,
heating and cooling systems (Chapter 13), robot manipulators (Chapter 14),
desalination of seawater (Chapter 15), and object recognition (Chapter 16).

Chapter 17 presents a brief introduction to evolutionary computations. In
Chapters (18 — 20), several applications of evolutionary computations are
explored. The integration of these methodologies with fuzzy logic is also
presented in these chapters. Finally, some examples and exercises are provided
in Chapter 21. MATLAB neural network and fuzzy logic toolboxes have been
utilized to solve several problems.

The editors would like to take this opportunity to thank all the authors for
their contributions to this volume and to the soft computing area. We would
like to thank Professor Lotfi A. Zadeh for his usual visionary ideas and
support. The encouragement and patience of CRC Press Editor Nora Konopka
is very much appreciated. Without her continuous help and assistance during
the entire course of this project, we could not have accomplished the task of
integrating various chapters into this volume. The editors are also indebted to
many who helped us realize this volume. Hooman Yousefizadeh, a Ph.D.
student at FAU, has modified several versions of various chapters of the book
and organized them in camera-ready format. Without his dedicated help and
commitment, the production of the book would have taken a great deal longer.
We sincerely thank Robert Caltagirone, Helena Redshaw, and Shayna Murry
from CRC Press for their assistance. We would like to also thank the project
editor, Judith Simon Kamin from CRC Press for her commitment and skillful
effort of editing and processing several iterations of the manuscript. Finally, we
are indebted to our family for their constant support and encouragement
throughout the course of this project.

Ali Zilouchian Mo Jamshidi
Boca Raton, FL Albuquerque, NM
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INTRODUCTION

Ali Zilouchian and Mo Jamshidi

1.1 MOTIVATION

With the increasing complexity of various industrial processes, as well as
household appliances, the link among ambiguity, robustness and performance of
these systems has become increasingly evident. This may explain the dominant
role of emerging “intelligent systems” in recent years [1]. However, the
definition of intelligent systems is a function of expectations and the status of
the present knowledge: perhaps the “intelligent systems” of today are the
“classical systems” of tomorrow.

The concept of intelligent control was first introduced nearly two decades
ago by Fu and G. Saridis [2]. Despite its significance and applicability to
various processes, the control community has not paid substantial attention to
such an approach. In recent years, intelligent control has emerged as one of the
most active and fruitful areas of research and development (R&D) within the
spectrum of engineering disciplines with a variety of industrial applications.

During the last four decades, researchers have proposed many model-based
control strategies. In general, these design approaches involve various phases
such as modeling, analysis, simulation, implementation and verification. Many
of these conventional and model-based methods have found their way into
practice and provided satisfactory solutions to the spectrum of complex systems
under various uncertainties [3]. However, as Zadeh articulated as early as 1962
[4] “often the solution of real life problems in system analysis and control has
been subordinated to the development of mathematical theories that dealt with
over-idealized problems bearing little relation to theory”.

In one of his latest articles [5] related to the historical perspective of system
analysis and control, Zadeh has considered this decade as the era of intelligent
systems and urges for some tuning: “I believe the system analysis and controls
should embrace soft computing and assign a higher priority to the development
of methods that can cope with imprecision, uncertainties and partial truth.”

Perhaps the truth is complex and ambiguous enough to accept contributions
from various viewpoints while denying absolute validity to any particular
viewpoint in isolation. The exploitation of the partial truth and tolerance for
imprecision underlie the remarkable human ability to understand distortions and
make rational decisions in an environment of uncertainty and imprecision. Such



modern relativism, as well as utilization of the human brain as a role model on
the decision making processes, can be regarded as the foundation of intelligent
systems design methodology.

In a broad perspective, intelligent systems underlie what is called “soft
computing.” In traditional hard computing, the prime objectives of the
computations are precision and certainty. However, in soft computing, the
precision and certainty carry a cost. Therefore, it is realistic to consider the
integration of computation, reasoning, and decision making as various partners
in a consortium in order to provide a framework for the trade off between
precision and uncertainty. This integration of methodologies provides a
foundation for the conceptual design and deployment of intelligent systems. The
principal partners in such a consortium are fuzzy logic, neural network
computing, generic algorithms and probabilistic reasoning. Furthermore, these
methodologies, in most part, are complementary rather than competitive [5], [6].
Increasingly, these approaches are also utilized in combination, referred to as
“hybrid.” Presently, the most well-known systems of this type are neuro-fuzzy
systems. Hybrid intelligent systems are likely to play a critical role for many
years to come.

Soft computing paradigms and their hybrids are commonly used to enhance
artificial intelligence (AI) and incorporate human expert knowledge in
computing processes. Their applications include the design of intelligent
autonomous systems/controllers and handling of complex systems with
unknown parameters such as prediction of world economy, industrial process
control and prediction of geological changes within the earth ecosystems. These
paradigms have shown an ability to process information, adapt to changing
environmental conditions, and learn from the environment.

In contrast to analytical methods, soft computing methodologies mimic
consciousness and cognition in several important respects: they can learn from
experience; they can universalize into domains where direct experience is absent;
and, through parallel computer architectures that simulate biological processes,
they can perform mapping from inputs to the outputs faster than inherently
serial analytical representations. The trade off, however, is a decrease in
accuracy. If a tendency towards imprecision could be tolerated, then it should be
possible to extend the scope of the applications even to those problems where
the analytical and mathematical representations are readily available. The
motivation for such an extension is the expected decrease in computational load
and consequent increase of computation speeds that permit more robust control.
For instance, while the direct kinematics mapping of a parallel manipulator’s leg
lengths to pose (position and orientation of its end effector) is analytically
possible, the algorithm is typically long and slow for real-time control of the
manipulator. In contrast, a parallel architecture of synchronously firing fuzzy
rules could render a more robust control [7].

There is an extensive literature in soft computing from theoretical as well as
applied viewpoints. The scope of this introductory chapter is to provide an
overview of various members of these consortiums in soft computing, namely



fuzzy logic (FL), neural networks (NN), evolutionary algorithms (EA) as well as
their integration. In section 1.2, justification as well as rationale for the
utilization of NN in various industrial applications is presented. Section 1.3,
introduces the concept of FL as well as its applicability to various industrial
processes. The evolutionary computation is presented in section 1.4. Section 1.5
is devoted to the integration of soft-computing methodologies commonly called
hybrid systems. Finally the organization of the book is presented in section 1.6
of this chapter.

1.2 NEURAL NETWORKS

For many decades, it has been a goal of engineers and scientists to develop a
machine with simple elements similar to one found in the human brain.
References to this subject can be found even in 19" century scientific literature.
During the 1940s, researchers desiring to duplicate the human brain, developed
simple hardware (and later software) models of biological neurons and their
interconnection systems. McCulloch and Pitts in 1943[8] published the first
systematic study on biological neural networks. Four years later the same
authors explored the network paradigms for pattern recognition using a single-
layer perceptron. Along with the progress, psychologists were developing
models of human learning. One such model, that has proved most fruitful, was
due to D. O. Hebb, who, in 1949, proposed a learning law that became the
starting point for artificial neural networks training algorithm [9]. Augmented
by many other methods, it is now well recognized by scientists as indicative of
how a network of artificial neurons could exhibit learning behavior. In the
1950s and 1960s, a group of researchers combined these biological and
psychological insights to produce the first artificial neural network [9], [10].
Initially implemented as electronic circuits, they were later converted into a
more flexible medium of computer simulation. However, from 1960 to 1980,
due to certain severe limitations on what a NN could perform, as pointed out by
Minsky [11], neural network research went into near eclipse. The discovery of
training methods for a multi-layer network of the 1980s has, more than any
other factor, been responsible for the recent resurgence of NN.

1.2.1  Rationale for Using NN in Engineering

In general, artificial neural networks (ANNs) are composed of many simple
elements emulating various brain activities. They exploit massively parallel
local processing and distributed representation properties that are believed to
exist in the brain. A major motivation to introduce ANN among many
researchers has been the exploration and reproduction of human information
processing tasks such as speech, vision, and knowledge processing and motor
control. The attempt of organizing such information processing tasks highlights
the classical comparison between information processing capabilities of the
human and so called hard computing. The computer can multiply large numbers



at fast speed, yet it may not be capable of understanding an unconstrained
pattern such as speech. On the other hand, though a human being understands
speech, he lacks the ability to compute the square root of a prime number
without the aid of pencil and paper or a calculator. The difference between these
two opposing capabilities can be traced to different processing methods which
each employs. Digital computers rely upon algorithm-based programs that
operate serially, controlled by CPU, and store the information at a particular
location in memory. On the other hand, the brain relies on highly distributed
representations and transformations that operate in parallel, distribute control
through billions of highly interconnected neurons or processing elements, and
store information in various straight connections called synapses.

During the last decade, various NN structures have been proposed by
researchers in order to take advantage of such human brain capabilities. In
general, neural networks are composed of many simple elements operating in
parallel. The network function is determined largely by the connections between
these elements. Neural networks can be trained to perform complex functions
due to the nature of their nonlinear mappings of input to output data set.

In recent years, the NN has been applied successfully to many fields of
engineering such as aerospace, digital signal processing, electronics, robotics,
machine vision, speech, manufacturing, transportation, controls and medical
engineering [12]-[60]. A partial list of NN industrial applications includes
temperature control [20], [21]; inverted pendulum controller [22], [23]; robotics
manipulators [24]-[30] servo motor control [31]-[34]; chemical processes [35]-
[37]; oil refinery quality control [38]; aircraft controls and touchdown [12],
[39]; character recognition [16], [40]-[42]; process identification [43]-[47];
failure detection [48]; speech recognition [40]; DSP architectures [49]; truck
backer [50]; autonomous underwater vehicle [51], Communication[52];steel
rolling mill [53] and car fuel injection system [54],and medical diagnosis and
applications [15], [55]-[60]. Detailed descriptions of the works can be found in
relevant references.

1.3 FUZZY LOGIC CONTROL

The fuzzy logic has been an area of heated debate and much controversy during
the last three decades. The first paper in fuzzy set theory, which is now
considered to be the seminal paper on the subject, was written by Zadeh [61],
who is considered the founding father of the field. In that work, Zadeh was
implicitly advancing the concept of human approximate reasoning to make
effective decisions on the basis of available imprecise linguistic information
[62], [63]. The first implementation of Zadeh’s idea was accomplished in 1975
by Mamdani [64], and demonstrated the viability of fuzzy logic control (FLC)
for a small model steam engine. After this pioneer work, many consumer
products as well as other high tech applications using fuzzy technology have
been developed and are currently available in Japan, the U.S. and Europe.



1.3.1 Rationale for Using FL in Engineering

During the last four decades, most control system problems have been
formulated by the objective knowledge of the given systems (e.g., mathematical
model). However, as we have pointed out in section 1.1, there are knowledge-
based systems and information which cannot be described by traditional
mathematical representations. Such relevant subjective knowledge is often
ignored by the designer at the front end, but often utilized in the last phase in
order to evaluate design. Fuzzy logic provides a framework for both information
and knowledge-based systems. So called knowledge-based methodology is
much closer to human thinking and natural language than the traditionally
classical logic.

Fuzzy logic controller (FLC) utilizes fuzzy logic to convert the linguistic
control strategy based on expert knowledge into an automatic control strategy.
In order to use fuzzy logic for control purposes, we need to add a front-end
“fuzzifier” and a rear-end “defuzzifier” to the usual input-output data set. A
simple fuzzy logic controller is shown in Figure 1.1. It contains four
components: rules, fuzzifier, inference engine, 1 and defuzzifier. Once the rule
has been established, it can be considered as a nonlinear mapping from the input
to the output.

Out
In
> SYSTEM >

FUZZIFIER
DEFUZZIFIER FIR ¢

Figure 1.1: A Simple Structure of a Fuzzy Logic Controller.

There are a number of books related to fuzzy logic [65]-[80]. Its applications
include automatic train control [6], [67]; robotics [21], [65], [68], [71], [81]-
[83]; pattern recognition [2], [7], [67], [71], [75]; servo motor [71], [84], [85],
disk drive [86], washing machine [87], [88]; VLSI and fuzzy logic chips [6],
[68], [75], [89]; car and helicopter model [6], [65], electronics and home
appliances [71], [73], [90]; sensors [71], temperature control [2], [71]; computer
vision [71], [73]; aircraft landing systems [71], [73]; navigation and cruise
control[71], [91]-[94], inverted pendulum [63],[71],[95]-[97] and cargo ship
[98], to name a few. In this book a number of pioneer applications are also
presented.



14 EVOLUTIONARY COMPUTATION

In recent years, a variety of evolutionary computation methodologies have been
proposed to solve problems of common engineering applications. Applications
often involve automatic learning of nonlinear mappings that govern the behavior
of control systems, as well as parallel search strategies for solving multi-
objective optimization problems. These algorithms have been particularly
appealing in the scientific communities since they allow autonomous
adaptation/optimization without human intervention. These strategies are based
on the fact that the biological evolution indeed represents an almost perfect
method for adaptation of an individual to the environment according to
Darwinian concepts.

There are various approaches to evolutionary optimization algorithms
including evolution concept, genetic programming and genetic algorithms.
These various algorithms are similar in their basic concepts of evolution and
differ mainly in their approach to parameter representation. The evolutionary
optimization algorithms operate by representing the optimization parameters via
a gene-like structure and subsequently utilizing the basic mechanisms of
Darwinian natural selection to find a population of superior parameters. The
three basic principles of rules of biological evolution are explained in detail in
Chapter 17.

Genetic algorithm (GA), in particular, is an evolutionary algorithm which
has performed well in noisy, nonlinear and uncertain processes. Additionally,
GAs are also not problem specific, i.e., there is very little, if any, a priori
knowledge about the system used in design of GAs. Hence, GAs are desirable
paradigms for optimizing a wide array of problems with exceeding complexity.
The mathematical framework of GA was first developed by Holland [101], and
has subsequently been extended [102], [103]. A simple genetic algorithm
operates on a finite population of fixed-length binary strings called genes.
Genetic algorithms possess three basic operations: reproduction, cross over and
mutation. The reproduction is an operation in which the strings are copies based
on their fitness. The crossover of genes and mutation of random changes of
genes are the other operations in GA. Interested readers are referred to Goldberg
[101], Davis [102], Chapter 17 of this book, and the references therein for
comprehensive overviews of GA.

Another evolutionary computational approach is genetic programming (GP)
which would allow a symbolic-based nonlinear optimization. The GP paradigm
[103] also computationally simulates the Darwinian evolution process by
applying fitness-based selection and genetic operators to a population of parse
trees of a given programming language. It departs from the conventional GA
primarily with regard to its representation scheme. Structures undergoing
adaptation are executable hierarchical programs of dynamically varying size and
structure, rather than numerical strings. Commonly in a hybrid system such as a
GP-Fuzzy case, a population comprising fuzzy rule-bases (symbolic structures)
that are candidate solutions to the problem, evolves in response to selective



pressure induced by their relative success at implementing the desired behavior
[103].

1.5 HYBRID SYSTEMS

In many cases, hybrid applications methods have proven to be effective in
designing intelligent control systems. As it was shown in recent years, fuzzy
logic, neural networks and evolutionary computations are complementary
methodologies in the design and implementation of intelligent systems. Each
approach has its merits and drawbacks. To take advantage of the merits and
eliminate their drawbacks, several integration of these methodologies have been
proposed by researchers during the past few years. These techniques include the
integration of neural network and fuzzy logic techniques as well as the
combination of these two technologies with evolutionary methods.

The merging of the NN and FL can be realized in three different directions,
resulting in systems with different characteristics [103]- [108]:

1. Neuro-fuzzy systems: provide the fuzzy systems with automatic tuning
systems using NN as a tool. The adaptive neuro fuzzy inference
systems are included in this classification

2. Fuzzy neural network: retain the functions of NN with fuzzification of
some of their elements. For instance, fuzzy logic can be used to
determine the learning steps of NN structure.

3.  Fuzzy-neural hybrid systems: utilize both fuzzy logic and neural
networks in a system to perform separate tasks for decouple
subsystems. The architecture of the systems depends on a particular
application. For instance, the NN can be utilized for the prediction
where the fuzzy logic addresses the control of the system.

The applications of these hybrid methods to several industrial processes
including robot manipulators, desalination plants, and underwater autonomous
vehicles will be presented in this book.

On the other hand, the NN, FL and evolutionary computations can be
integrated [103], [109]-[123]. For example, the structure and parameter learning
problems of neural network can be coded as genes in order to search for optimal
structures and parameters of neural network. In addition, the inherent flexibility
of the evolutionary computation and fuzzy systems has created a large diversity
and variety in how these two complementary approaches can be combined to
solve many engineering problems. Some of their applications include control of
pH in chemical processes [110], inverted pendulum [111]-[113], cart and poles
problem [114], robot trajectory [115], truck-backing problem [116]; automotive
active suspension control [117]; temperature control of brine heater [119];
hepatitis diagnosis problem [120]; classification of flowers. [121]and position
control of servo systems [122].

In Chapter 18, evolutionary concept and fuzzy logic will be combined for
image processing applications. In Chapter 19, the application of GA-fuzzy
systems as the most common evolution-based fuzzy system will be presented.



Genetic programming is employed to learn the rules and membership functions
of the fuzzy logic controller, and also to handle selection of fuzzy set
intersection operators. Finally, Chapter 20 presents a methodology for applying
GP to design a fuzzy logic steering controller for a mobile robot.

1.6 ORGANIZATION OF THE BOOK

This book covers basic concepts and applications of intelligent systems using
soft computing methodologies and their integration. It is divided into six major
parts.

Part I (Chapters 2 — 3) covers the fundamental concepts of neural networks.
Single-layer as well as multilayer networks are briefly reviewed. Supervised and
unsupervised learning are discussed. Four different NN architectures including
back propagation, radial basis functions, Hopfield and Kohonen self-
organization are presented.

Part IT (Chapters 4 — 7) addresses several applications of NN in science and
engineering. The areas of the NN applications include medicine and biology,
signal processing, computer networking, chemical process and oil refinery.

Part III (Chapters 8 — 10) of the book covers the fuzzy set theory, fuzzy
logic and fuzzy control and stability. In these three chapters, we cover the
fundamental concepts of fuzzy sets, fuzzy relation, fuzzy logic, fuzzy control,
fuzzification, defuzification and stability of fuzzy systems.

Part IV (Chapters 11 — 16) covers various applications of fuzzy logic control
including navigation of autonomous planetary rover, autonomous underwater
vehicle, heating and cooling systems, robot manipulators, desalination and
object recognition.

Part V (Chapters 17 — 20) covers the concepts of evolutionary computations
and their applications to several engineering problems. Chapter 17 presents a
brief introduction of evolutionary computations. In the following chapters (18 —
20) several applications of evolutionary computations are explored. Furthermore
the integration of these methodologies with the fuzzy logic is presented. Finally,
some examples and exercises are provided in Chapter 21. MATLAB neural
network and fuzzy logic toolboxes can be used to solve some of these problems.
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FUNDAMENTALS OF NEURAL
NETWORKS

Ali Zilouchian

21 INTRODUCTION

For many decades, it has been a goal of science and engineering to develop
intelligent machines with a large number of simple elements. References to this
subject can be found in the scientific literature of the 19th century. During the
1940s, researchers desiring to duplicate the function of the human brain, have
developed simple hardware (and later software) models of biological neurons
and their interaction systems. McCulloch and Pitts [1] published the first
systematic study of the artificial neural network. Four years later, the same
authors explored network paradigms for pattern recognition using a single layer
perceptron [2]. In the 1950s and 1960s, a group of researchers combined these
biological and psychological insights to produce the first artificial neural
network (ANN) [3,4]. Initially implemented as electronic circuits, they were
later converted into a more flexible medium of computer simulation. However,
researchers such as Minsky and Papert [5] later challenged these works. They
strongly believed that intelligence systems are essentially symbol processing of
the kind readily modeled on the Von Neumann computer. For a variety of
reasons, the symbolic—processing approach became the dominant method.
Moreover, the perceptron as proposed by Rosenblatt turned out to be more
limited than first expected. [4]. Although further investigations in ANN
continued during the 1970s by several pioneer researchers such as Grossberg,
Kohonen, Widrow, and others, their works received relatively less attention. The
primary factors for the recent resurgence of interest in the area of neural
networks are the extension of Rosenblatt, Widrow and Hoff’s works dealing
with learning in a complex, multi-layer network, Hopfield mathematical
foundation for understanding the dynamics of an important class of networks, as
well as much faster computers than those of 50s and 60s.

The interest in neural networks comes from the networks’ ability to mimic
human brain as well as its ability to learn and respond. As a result, neural
networks have been used in a large number of applications and have proven to
be effective in performing complex functions in a variety of fields. These
include pattern recognition, classification, vision, control systems, and
prediction [6], [7]. Adaptation or learning is a major focus of neural net research
that provides a degree of robustness to the NN model. In predictive modeling,
the goal is to map a set of input patterns onto a set of output patterns. NN
accomplishes this task by learning from a series of input/output data sets



presented to the network. The trained network is then used to apply what it has
learned to approximate or predict the corresponding output [8].

This chapter is organized as follows. In section 2.2, various elements of an
artificial neural network are described. The Adaptive Linear Element
(ADALINE) and single layer perceptron are discussed in section 2.3 and 2.4
respectively. The multi-layer perceptron is presented in section 2.5. Section 2.6
discusses multi-layer perceptron and section 2.7 concludes this chapter.

2.2 BASIC STRUCTURE OF A NEURON
2.2.1  Model of Biological Neurons

In general, the human nervous system is a very complex neural network. The
brain is the central element of the human nervous system, consisting of near 10"
biological neurons that are connected to each other through sub-networks. Each
neuron in the brain is composed of a body, one axon and multitude of dendrites.
The neuron model shown in Figure 2.1 serves as the basis for the artificial
neuron. The dendrites receive signals from other neurons. The axon can be
considered as a long tube, which divides into branches terminating in little
endbulbs. The small gap between an endbulb and a dendrite is called a synapse.
The axon of a single neuron forms synaptic connections with many other
neurons. Depending upon the type of neuron, the number of synapses
connections from other neurons may range from a few hundreds to 10°.

The cell body of a neuron sums the incoming signals from dendrites as well
as the signals from numerous synapses on its surface. A particular neuron will
send an impulse to its axon if sufficient input signals are received to stimulate
the neuron to its threshold level. However, if the inputs do not reach the required
threshold, the input will quickly decay and will not generate any action. The
biological neuron model is the foundation of an artificial neuron as will be
described in detail in the next section.

Output Signals
From Other
Axons

Synaﬁ§\es

Dendlrites

Axon Terminals

Cell Body

Figure 2.1: A Biological Neuron.



2.2.2 Elements of Neural Networks
An artificial neuron as shown in Figure 2.2, is the basic element of a neural

network. It consists of three basic components that include weights, thresholds,
and a single activation function.

X1
Activation

function
X2
Summing T
Junction
Xn )
] Threshold
Synaptic
Weights

Figure 2.2: Basic Elements of an Artificial Neuron.

2.2.2.1 Weighting Factors

The values W, ,W, ;W3 ,.....,W, are weight factors associated with each node
to determine the strength of input row vector X = [x; X, x3.....,xn]T. Each input is
multiplied by the associated weight of the neuron connection X'W. Depending
upon the activation function, if the weight is positive, X'W commonly excites
the node output; whereas, for negative weights, X' W tends to inhibit the node
output.

2.2.2.2 Threshold
The node’s internal threshold 6 is the magnitude offset that affects the

activation of the node output y as follows:

y = \Ww)-6,
(2.1)

2.2.2.3 Activation Function

In this subsection, five of the most common activation functions are
presented. An activation function performs a mathematical operation on the
signal output. More sophisticated activation functions can also be utilized
depending upon the type of problem to be solved by the network. All the
activation functions as described herein are also supported by MATLAB
package.



Linear Function
As is known, a linear function satisfies the superposition concept. The
function is shown in Figure 2.3.

A f©

Figure 2.3: Linear Activation Function.

The mathematical equation for the above linear function can be written as
y=f(u)=au (2.2)

where o is the slope of the linear function 2.2. If the slope o is 1, then the linear

activation function is called the identity function. The output (y) of identity
function is equal to input function (u). Although this function might appear to
be a trivial case, nevertheless it is very useful in some cases such as the last
stage of a multilayer neural network.

Threshold Function

A threshold (hard-limiter) activation function is either a binary type or a
bipolar type as shown in Figures 2.4 and 2.5, respectively. The output of a
binary threshold function can be written as:

0 7/ u<O0

yv=fw)= (2.3)
1  u=0



A f(v

Figure 2.4: Binary Threshold Activation Function.

A fw

+1

Figure 2.5: Bipolar Threshold Activation Function.

The neuron with the hard limiter activation function is referred to as the
McCulloch-Pitts model.

Piecewise Linear Function

This type of activation function is also referred to as saturating linear function
and can have either a binary or bipolar range for the saturation limits of the
output. The mathematical model for a symmetric saturation function (Figure 2.6)
is described as follows:

-1 7 wu<-1

1 7 u21
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Figure 2.6: Piecewise Linear Activation Function.

Sigmoidal (S shaped) function
This nonlinear function is the most common type of the activation used to
construct the neural networks. It is mathematically well behaved, differentiable
and strictly increasing function. A sigmoidal transfer function can be written in
the following form:
1
I+e

S ()=

0< /(<1 (2.5)

o

Figure 2.7: A Sigmoid Activation Function.

where o is the shape parameter of the sigmoid function. By varying this

parameter, different shapes of the function can be obtained as illustrated in
Figure 2.7. This function is continuous and differentiable.



Tangent hyperbolic function
This transfer function is described by the following mathematical form:

o — o

e

S=2"C 1< /(<] (2.6)
e +e

— o

It is interesting to note that the derivatives of Equations 2.5 and 2.6 can be
expressed in terms of the individual function itself (please see problems
appendix). This is important for the learning development rules to train the
networks as shown in the next chapter.

Figure 2.8: A Tangent Hyperbolic Activation Function.

Example 2.1:
Consider the following network consists of four inputs with the weights as
shown

A
\
<

X3=5

O e
—C

X4=38

Figure 2.9: Neuron Structure of Example 2.1.



The output R of the network, prior to the activation function stage, is
calculated as follows:

A’:WT.Xz[l 1 -1 2]. =14 Q2.7)

With a binary activation function, and a sigmoid function, the outputs of the
neuron are respectively as follow:

y(Threshold) = 1;
y(Sigmoid) = 1.5%2*
23 ADALINE

An ADAptive LINear Element (ADALINE) consists of a single neuron of the
McCulloch-Pitts type, where its weights are determined by the normalized least
mean square (LMS) training law. The LMS learning algorithm was originally
proposed by Widrow and Hoff [6]. This learning rule is also referred to as delta
rule. It is a well-established supervised training method that has been used over
a wide range of diverse applications [7]- [11]. Curve fitting approximations can
also be used for training a neural network [10]. The learning objective of curve
fitting is to find a surface that best fits to the training data. In the next chapter
the implementation of LMS algorithms for backpropagation, and curve fitting
algorithms for radial basis function network, will be described in detail.

The architecture of a simple ADALINE is shown In Figure 2.10. It is
observed that the basic structure of an ADALINE is similar to a linear neuron
(Figure 2.2) with the activation function f(.) to be a linear one with an extra
feedback loop. Since ADALINE is a linear device, any combination of these
units can be accomplished with the use of a single unit.

During the training phase of ADALINE, the input vector Xe R"

X=[x, x, x; - x,] as well as desired output are presented to the

network. The weights are adaptively adjusted based on delta rule. After the
ADALINE is trained, an input vector presented to the network with fixed
weights will result in a scalar output. Therefore, the network performs a
mapping of an n dimensional mapping to a scalar value. The activation function
is not used during the training phase. Once the weights are properly adjusted, the
response of the trained unit can be tested by applying various inputs, which are
not in the training set. If the network produces consistent responses to a high
degree with the test inputs, it said that the network could generalize. Therefore,
the process of training and generalization are two important attributes of the
network.
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Figure 2.10: ADALINE.

In practice, an ADALINE is usually used to make binary decisions.
Therefore, the output is sent through a binary threshold as shown in Figure 2.4.
Realizations of several logic gates such as AND, NOT and OR are common
applications of ADALINE. Only those logic functions that are linearly separable
can be realized by the ADALINE, as is explained in the next section.

2.4 LINEAR SEPARABLE PATTERNS

For a single ADALINE to function properly as a classifier, the input pattern
must be linearly separable. This implies that the patterns to be classified must be
sufficiently apart from each other to ensure the decision surface consists of a
single hyperplane such as a single straight line in two-dimensional space. This
concept is illustrated in Figure 2.11 for a two-dimensional pattern.

(€&

Figure 2.11: A Pair of Linearly Separable (a), and Non-Linearly Separable
Patterns (b).




A classic example of a mapping that is not separable is XOR (the exclusive or)
gate function. Table 2.1 shows the input-output pattern of this problem. Figure
2.12 shows the locations of the symbolic outputs of XOR function corresponding
to four input patterns in X1-X2 plane. There is no way to draw a single straight
line so that the circles are on one side of the line and the triangular sign on the
other side. Therefore, an ADALINE cannot realize this function.

Table 2.1: Inputs/Outputs Relationship for XOR.

X1 X2 Output

0 0 0

0 1 1

1 0 1

1 1 0

A X2
LA o
5
T A > X1
5 1

Figure 2.12: The Output of XOR in X1-X2 Plane.

One approach to solve this nonlinear separation problem is to use
MADALINE (Multiple ADALINE) networks. The basic structure of a
MADALINE network consists of combining several ADALINE with their
correspondence activation functions into a single forward structure. When
suitable weights are chosen, the network is capable of implementing
complicated and nonlinear separable mapping such as XOR gate problems. We
will address this issue later in this chapter.

2.5 SINGLE LAYER PERCEPTRON
2.5.1 General Architecture

The original idea of the perceptron was developed by Rosenblatt in the late
1950s along with a convergence procedure to adjust the weights. In Rosenblatt’s
perceptron, the inputs were binary and no bias was included. It was based on
the McCulloch-Pitts model of the neuron with the hard limitation activation
function. The single layer perceptron as shown in Figure 2.13 is very similar to
ADALINE except for the addition of an activation function.
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Figure 2.13: A Perceptron with a Sigmoid Activation Function.

Connection weights and threshold in a perceptron can be fixed or adapted
using a number of different algorithms. Here the original perceptron
convergence procedure as developed by Minsky and Papert[5] is described.
First, connection weights W, W,,...,W, and the threshold value W, are
initialized to small non-zero values. Then, a new input set with N values
received through sensory units (measurement devices) and the input is
computed. Connection weights are only adapted when an error occurs. This
procedure is repeated until the classification of all inputs is completed.

2.5.2 Linear Classification

For clarification of the above concept, consider two input patterns classes C1
and C2. The weight adaptation at the kth training phase can be formulated as
follow:

1. If k member of the training vector x(k) is correctly classified, no correction
action is needed for the weight vector. Since the activation function is
selected as a hard limiter, the following conditions will be valid:

W (k+ 1)=W (k) if output>0 and x (k)e C1 , and
W(k+1)=W(k) if output<0 and x(k)e C2.

2. Otherwise, the weight should be updated in accordance with the following
rule:

W(k+1)=W(k)+n x(k) if output>0 and x(k)e C1
W(k+1)=W(k)-n x(k) if output<0 and x(k)e C2

Where 1 is the learning rate parameter, which should be selected between 0

and 1.



Example 2.2:

Let us consider pattern classes C1 and C2, where C1: {(0,2), (0,1)} and C2:
{(1,0), (1,1)}. The objective is to obtain a decision surface based on perceptron
learning. The 2-D graph for the above data is shown in Figure 2.14
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2
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1

Figure 2.14: 2-D Plot of Input Data Sets for Example 2.2.

Since, the input vectors consist of two elements , the perceptron structure is
simply as follows:

0
7 wo
X1(k) Wi(k)
. Output
S i
L — | vk
X2(k) W2(k)

Figure 2.15: Perceptron Structure for Example 2.2.

For simplicity, let us assume =1 and initial weight vector W(1)=[0 0]. The
iteration weights are as follow:

Iteration I: w7 (1).x(1) =0 o]m =0

Weight Update: w2)=m1+1)= {8} + [g} = {0}



Iteration 2: 7 @a2)=[0 2] |=2>0

Weight Update: W3)=W(2)

Iteration 3: W (3.3)=[0 2]

1]
10]
Weight Update: w4 ="m3) - 1(3)2{(2)} [} { }

Iteration 4: W (4).q4)=|-1 2][ }

Weight Update: ~ W(5)= W (4)— n(4) = {_21} - E} = [_12}

Now if we continue the procedure, the perceptron classifies the two classes
correctly at each instance. For example for the fifth and sixth iterations:

Iteration 5: W (5).4(5) = [—2 1][2} =2> 0:Correct Classification

Iteration 6: W (6).1M6) = [—2 l]{ﬂ =1> 0:Correct Classification

In a similar fashion for the seventh and eighth iterations, the classification
results are indeed correct.

1
Iteration 7: W (T).x(7) = [—2 I]LJ = -2 < 0:Correct Classification

1
Iteration §: W (8).48) = [—2 I]L} =—1<0:Correct Classification

Therefore, the algorithm converges and the decision surface for the above
perceptron is as follows:

d(x)=-2X,+X,=0 2.8)

Now, let us consider the input data {1,2}, which is not in the training set. If
we calculate the output:

y=w x=[-2 1]m =-3<0 (2.9)

The output Y belongs to the class C2 as is expected.
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Figure 2.16: Decision Surface for Example 2.2.

2.5.3  Perceptron Algorithm

The perceptron learning algorithm (Delta rule) can be summarized as
follows:

Step 1: Initialize the weights W, W,...W, and threshold 6 to small random

values.
Step 2: Present new input X1, X2,..Xn and desired output d, .

Step 3: Calculate the actual output based on the following formula:

V= f (2()@%—@) (2.10)

Step 4: Adapt the weights according to the following equation:
W new )=W, (old )+, —y)x,0=7<N @11

Where m is a positive gain fraction less than 1 and d, is the desired output.
Note that the weights remain the same if the network makes the correct decision.
Step 5: Repeat the procedures in steps 2—4 until the classification task is

completed.

Similar to ADALINE, if the presented inputs pattern is linearly separable,
then the above perceptron algorithm converges and positions the decision



hyperplane between two separate classes. On the other hand, if the inputs are not
separable and their distribution overlaps, then the decision boundary may
oscillate continuously. A modification to the perceptron convergence procedure
is the utilization of Least Mean Square (LMS) in this case. The algorithm that
forms the LMS solution is also called the Widrow-Hoff. The LMS algorithm is
similar to the procedure above except a threshold logic nonlinearity, replaces the
hard limited non-linearity. Weights are thus corrected on every trail by an
amount that depends on the difference between the desired and actual values.
Unlike the learning in the ADALINE, the perceptron learning rule has been
shown to be capable of separating any linear separable set of the training
patterns.

2.6 MULTI-LAYER PERCEPTRON
2.6.1 General Architecture

Multi-layer perceptrons represent a generalization of the single-layer
perceptron as described in the previous section. A single layer perceptron forms
a half-plane decision region. On the other hand multi-layer perceptrons can
form arbitrarily complex decision regions and can separate various input
patterns. The capability of multi-layer perceptron stems from the non-linearities
used within the nodes. If the nodes were linear elements, then a single-layer
network with appropriate weight could be used instead of two- or three-layer
perceptrons. Figure 2.17 shows a typical multi-layer perceptron neural network
structure. As observed it consists of the following layers:

Figure 2.17: Multi-layer Perceptron.



Input Layer: A layer of neurons that receives information from external
sources, and passes this information to the network for processing. These may
be either sensory inputs or signals from other systems outside the one being
modeled.

Hidden Layer: A layer of neurons that receives information from the input
layer and processes them in a hidden way. It has no direct connections to the
outside world (inputs or outputs). All connections from the hidden layer are to
other layers within the system.

Output Layer: A layer of neurons that receives processed information and
sends output signals out of the system.

Bias: Acts on a neuron like an offset. The function of the bias is to provide a
threshold for the activation of neurons. The bias input is connected to each of
the hidden and output neurons in a network.

2.6.2  Input-Output Mapping

The input/output mapping of a network is established according to the
weights and the activation functions of their neurons in input, hidden and output
layers. The number of input neurons corresponds to the number of input
variables in the neural network, and the number of output neurons is the same as
the number of desired output variables. The number of neurons in the hidden
layer(s) depends upon the particular NN application. For example, consider the
following two-layer feed-forward network with three neurons in the hidden layer
and two neurons in the second layer:

Figure 2.18: An Example of Multi-layer Perceptron.



As is shown, the inputs are connected to each neuron in hidden layer via their
corresponding weights. A zero weight indicates no connection. For example, if
Wp; =0, it is implied that no connection exists between the second input (i) and
the third neuron (n;). Outputs of the last layer are considered as the outputs of the
network.

The structure of each neuron within a layer is similar to the architecture as
described in section 2.5. Although the activation function for one neuron could be
different from other neurons within a layer, for structural simplicity, similar
neurons are commonly chosen within a layer. The input data sets (or sensory
information) are presented to the input layer. This layer is connected to the first
hidden layer. If there is more than one hidden layer, the last hidden layer should be
connected to the output layer of the network. At the first phase, we will have the
following linear relationship for each layer:

where 4 is a column vector consisting of m elements, #; is an mxn weight

matrix and X is a column input vector of dimension n. For the above example,
the linear activity level of the hidden layer (neurons n; to n3) can be calculated
as follows:

@y =W+ wyh
@y =Wl + Wyb (2.13)

@3 = W3+ Wyh

The output vector for the hidden layer can be calculated by the following
formula:
O, =F 4 (2.14)

where A, is defined in Equation 2.12, and O, is the output column vector of the

hidden layer with m element. F' is a diagonal matrix comprising the non-linear
activation functions of the first hidden layer:

[0 0 0 0
0 A0 0
F=| . 3 . 2.15)

0 0 .. 0 /£0)

For example, if all activation functions for the neurons in the hidden layer of
Figure 2.18 are chosen similarly, then the output of the neurons n; to n; can be
calculated as follows:



O, =/a,)
O, = fay,)
O = fay)
In a similar manner, the output of other hidden layers can be computed. The

output of a network with only one hidden layer according to Equation 2.14 is
as follows:

(2.16)

0,=G.4,

2.17)
(2.18)

Where A4, is the vector of activity levels of output layer and O, is the q output of

the network. G is a diagonal matrix consisting of nonlinear activation functions of
the output layer:

[g() 0 0 0
0 gz(~) 0
G = . (2.19)
. .0
0 0 0 g0

For Figure 2.18, the activity level of output neurons n sandn 5canbe

calculated as follows:

{”21 =0, + M0y, + W50y, (2.20)

@, =50, + W50, + 15,0y,

The two outputs of the network with the similar activation functions can be
calculated as follows:

{01 = Yay) 2.21)

O, = gay,)

Therefore, the input-output mapping of a multi-layer perceptron is
established according to relationships 2.12-2.22. In sequel, the output of the
network can be calculated using such nonlinear mapping and the input data sets.
2.6.3  XOR Realization

As it was shown in section 2.4, a single-layer perceptron cannot classify the
input patterns that are not linearly separable such as an Exclusive OR (XOR)
gate. This problem may be considered as a special case of a more general non-

linear mapping problem. In the XOR problem, we need to consider the four
corners of the unit square that correspond to the input pattern. We may solve the



problem with a multi-layer perceptron with one hidden layer as shown in Figure
2.19.

X2

0,
Figure 2.19: Neural Network Architecture to Solve XOR Problem.

In the above configuration, a McCulloh-Pitts model represents each neuron,
which uses a hard limit activation function. By appropriate selections of the
network weights, the XOR could be implemented using decision surfaces as
shown in Figure 2.20.
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Figure 2.20: Decision Surfaces to Solve XOR Problem.

Example 2.3:

Suppose weights and biases are selected as shown in Figure 2.21. The
McCulloh-Pitts model represents each neuron (binary hard limit activation
function). Show that the network solves XOR problem. In addition, draw the
decision boundaries constructed by the network.
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Figure 2.21: Neural Network Architecture for Example 2.3.

In Figure 2.21, suppose the outputs of neurons (before activation function)
denote as Oy, Oy, and O;. The outputs of the summing points at the first layer
are as follow:

01 =X —Xp +0.5 (222)
02 =X —X) -0.5 (223)

With the binary hard limited functions, the output y,; and y , are shown in
Figures 2.22 and 2.23.

A X2

X1-X2+0.5=0

Figure 2.22: Decision Surface for Neuron 1 of Example 2.3.
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Figure 2.23: Decision Surface for Neuron 2 of Example 2.3.

The outputs of the summing points at the second layer are:
O3 =y1=yy-1 (2.24)
The decision boundaries of the network are shown in Figure 2.24. Therefore,

XOR realization can be accomplished by selection of appropriate weights using
Figure 2.19.

4 X2

>X1

Figure 2.24: Decision Surfaces for Example 2.3.



2.7 CONCLUSION

In this chapter, the fundamentals of neural networks were introduced. The
perceptron is the simplest form of neural network used for the classification of
linearly separable patterns. Multi-layer perceptron overcome many limitations of
single-layer perceptron. They can form arbitrarily complex decision regions in
order to separate various nonlinear patterns. The next chapter is devoted to several
neural network architectures. Applications of NN will be presented in Chapters
4-7 and Chapter 15 of the book.
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31 INTRODUCTION

Interest in the study of neural networks has grown remarkably in the last two
decades. This is due to the conceptual viewpoint regarding the human brain as a
model of a parallel computation device, a very different one from a traditional
serial computer. Neural networks are commonly classified by their network
topology, node characteristics, learning, or training algorithms. On the other
hand, the potential benefits of neural networks extend beyond the high
computation rates provided by massive parallelism of the networks. They
typically provide a greater degree of robustness or fault tolerance than Von
Neumann sequential computers.  Additionally, adaptation and continuous
learning are integrated components of NN. These properties are very beneficial
in areas where the training data sets are limited or the processes are highly
nonlinear. Furthermore, designing artificial neural networks to solve problems
and studying real biological networks (Chapter 4) may also change the way we
think about the problems and may lead us to new insights and algorithm
improvements.

The main goal of this chapter is to provide the readers with the conceptual
overviews of several neural network architectures. The chapter will not delve
too deeply into the theoretical considerations of any one network, but will
concentrate on the mechanism of their operation. Examples are provided for
each network to clarify the described algorithms and demonstrate the reliability
of the network. In the following four chapters various applications pertaining to
these networks will be discussed.

This chapter is organized as follows. In section 3.2, various classifications of
neural networks according to their operations and/or structures are presented.
Feedforward and feedback networks are discussed. Furthermore, two different
methods of training, namely supervised and unsupervised learning, are
described. Section 3.3 is devoted to error back propagation (BP) algorithm.
Various properties of this network are also discussed in this section. Radial
basis function network (RBFN) is a feedforward network with supervised
learning, which is the subject of the discussion in section 3.4. Kohonen self-
organizing as well as Hopfield networks are presented in sections 3.5 and 3.6,
respectively. Finally section 3.7 presents the conclusions of this chapter.



3.2 NN CLASSIFICATIONS
3.2.1 Feedforward and Feedback Networks

In a feedforward neural network structure, the only appropriate connections
are between the outputs of each layer and the inputs of the next layer. Therefore,
no connections exist between the outputs of a layer and the inputs of either the
same layer or previous layers. Figure 3.1 shows a two-layer feedforward
network. In this topology, the inputs of each neuron are the weighted sum of the
outputs from the previous layer. There are weighted connections between the
outputs of each layer and the inputs of the next layer. If the weight of a branch is
assigned a zero, it is equivalent to no connection between correspondence nodes.
The inputs are connected to each neuron in hidden layer via their
correspondence weights. Outputs of the last layer are considered the outputs of
the network.

Input Y Layer N Layer N
1 2 Output

Figure 3.1: General Structure of Two-Layer Feedforward Network.

For feedback networks the inputs of each layer can be affected by the
outputs from previous layers. In addition, self feedback is allowed. Figure 3.2
shows a simple single layer feedback neural network.

Input|::> Layer >O
utput
b p

Delay

Figure 3.2: General Structure of a Sample Feedback Network.

As observed, the inputs of the network consist of both external inputs and the
network output with some delays. Examples of feedback algorithms include the
Hopfield network, described in detail in section 3.6, and the Boltzman Machine.



An important issue for feedback networks is the stability and convergence of the
network.

3.2.2  Supervised and Unsupervised Learning Networks

There are a number of approaches for training neural networks. Most fall
into one of two modes:

- Supervised Learning: Supervised learning requires an external teacher to
control the learning and incorporates global information. The teacher may be a
training set of data or an observer who grades the performance. Examples of
supervised learning algorithms are the least mean square (LMS) algorithm and
its generalization, known as the back propagation algorithm[1]-[4], and radial
basis function network [5]-[8]. They will be described in the following sections
of this chapter.

In supervised learning, the purpose of a neural network is to change its
weights according to the inputs/outputs samples. After a network has established
its input output mapping with a defined minimum error value, the training task
has been completed. In sequel, the network can be used in recall phase in order
to find the outputs for new inputs. An important factor is that the training set
should be comprehensive and cover all the practical areas of applications of the
network. Therefore, the proper selection of the training sets is critical to the
good performance of the network.

- Unsupervised Learning: When there is no external teacher, the system must
organize itself by internal criteria and local information designed into the
network. Unsupervised learning is sometimes referred to as self-organizing
learning, i.e., learning to classify without being taught. In this category, only the
input samples are available and the network classifies the input patterns into
different groups. Kohonen network is an example of unsupervised learning.

3.3 BACK PROPAGATION ALGORITHM

Back propagation algorithm is one of the most popular algorithms for training a
network due to its success from both simplicity and applicability viewpoints.
The algorithm consists of two phases: Training phase and recall phase. In the
training phase, first, the weights of the network are randomly initialized. Then,
the output of the network is calculated and compared to the desired value. In
sequel, the error of the network is calculated and used to adjust the weights of
the output layer. In a similar fashion, the network error is also propagated
backward and used to update the weights of the previous layers. Figure 3.3
shows how the error values are generated and propagated for weights
adjustments of the network.

In the recall phase, only the feedforward computations using assigned
weights from the training phase and input patterns take place. Figure 3.4 shows
both the feedforward and back propagation paths. The feedforward process is



used in both recall and training phases. On the other hand, as shown in Figure
3.4(b), back propagation of error is only utilized in the training phase.

In the training phase, the weight matrix is first randomly initialized. In
sequel, the output of each layer is calculated starting from the input layer and
moving forward toward the output layer. Thereafter, the error at the output layer
is calculated by comparison of actual output and the desired value to update the
weights of the output and hidden layers.

Desired
Value 1

Desired
Value 2

Desired

+ Valuer
(De—

Figure 3.3. Back Propagation of the Error in a Two-Layer Network.

a) Forward propagation (Training and Recall Phase)

b) Backward propagation (Training Phase)

Figure 3.4: Forward Propagation in Recall and Training Phase and
Backward Propagation in Training Phase.



There are two different methods of updating the weights. In the first method,
weights are updated for each of the input patterns using an iteration method. In
the second method, an overall error for all the input output patterns of training
sets is calculated. In other words, either each of the input patterns or all of the
patterns together can be used for updating the weights. The training phase will
be terminated when the error value is less than the minimum set value provided
by the designer. One of the disadvantages of back propagation algorithm is that
the training phase is very time consuming.

During the recall phase, the network with the final weights resulting from
the training process is employed. Therefore, for every input pattern in this phase,
the output will be calculated using both linear calculation and nonlinear
activation functions. The process provides a very fast performance of the
network in the recall phase, which is one of its important advantages.

3.3.1 Delta Training Rule

The back propagation algorithm is the extension of the perceptron structure
as discussed in the previous chapter with the use of multiple adaptive layers. The
training of the network is based on the delta training rule method. Consider a
single neuron in Figure 3.5.

The relations among input, activity level and output of the system can be
shown as follows:

Figure 3.5: A Single Neuron.

a =wy twyip Fwyiy e+ w i, 3.1

or in the matrix form:
a=wy+W'I (3.2)
o= f(a) (3.3)

where W and [ are weight and input vectors of the neuron, @ is activity level
of the neuron and o is the output of the neuron. w, is called bias value.



Suppose the desired value of the output is equal to d. Error e can be defined as
follows:

e 2%(0’—0)2 (3.4)

by substituting Equations 3.2 and 3.3 into Equation 3.4, the following relation
holds:

e = (d = fwy + WD)} (3.5)
The error gradient vector can be calculated as follows:
e =—d —0)f"(wy +WT DI (3.6)
The components of gradient vector are equal to:
a"—e =~ =0)f"(wy + W )1, (3.7)
W .

J
where f'(.) is derivative of activation function. To minimize the error the
weight changes should be in negative gradient direction. Therefore we will have

A W=- nle (3.8)

where N is a positive constant, called learning factor. By Equations (3.6) and
3.7, the AW is calculated as follows:

AV =-n(d-o)f'(a)] (3.9)
For each weight j Equation 3.9 can be written as:
bw; ==(d —o) [ (a)]; j=012,..,n (3.10)

Therefore we update the weights of the network as:
Wj (new) :Wj(old)+AWj j:O,l,Z,...,n (311)

For Figure 3.3, the Delta rule can be applied in a similar manner to each
neuron. Through generalization of Equation 3.11 for normalized error and using
Equation 3.10 for every neuron in output layer we will have:

f)(d,- _Oj)f’(aj)xj
2
vl
where X OR"is the input vector to the last layer, xj is the j"" element of X and
||-|| denotes L2-Norm.

The above method can be applied to the hidden layers as well. The only

difference is that the o; will be replaced by y;in 3.12. y; is the output of

hidden layer neuron, and not the output of network.

One of the drawbacks in the back propagation learning algorithm is the long
duration of the training period. In order to improve the learning speed and avoid
the local minima, several different methods have been suggested by researchers.
These include addition of first and second moments to the learning phase,
choosing proper initial conditions, and selection of an adaptive learning rate.

To avoid the local minima, a new term can be added to Equation 3.12. In
such an approach, the network memorizes its previous adjustment, and,

Wj (new) :Wj (old) +

j=012,.,n 3.12)



therefore it will escape the local minima, using previous updates. The new
equation can be written as follows:
f)(dj _Oj)f'(aj)xj +
2
]
where o is a number between 0 and 1, namely the momentum coefficient.

Nguyen and Widrow [9] have proposed a systematic approach for the proper
selection of initial conditions in order to decrease the training period of the
network. Another approach to improve the convergence of the network and
increase the convergence speed is the adaptive learning rate. In this method, the
learning rate of the network () is adjusted during training. In the first step, the
training coefficient is selected as a large number, so the resulting error values
are large. However, the error will be decreased as the training progresses, due to
the decrease in the learning rate. It is similar to coarse and fine tunings in
selection of a radio station.

In addition to the above learning rate and momentum terms, there are other
neural network parameters that control the network’s performance and
prediction capability. These parameters should be chosen very carefully if we
are to develop effective neural network models. Two of these parameters are
described below.

W (new) = W (old ) + afw; (new) = w (old)] (3.13)

Selection of Number of Hidden Layers

The number of input and output nodes corresponds to the number of network
inputs and desired outputs, respectively. The choice of the number of hidden
layers and the nodes in the hidden layer(s) depends on the network application.
Selection of the number of hidden layers is a critical part of designing a network
and is not as straightforward as input and output layers. There is no
mathematical approach to obtain the optimum number of hidden layers, since
such selection is generally fall into the application oriented category. However,
the number of hidden layers can be chosen based on the training of the network
using various configurations, and selection of the configuration with the fewest
number of layers and nodes which still yield the minimum root-mean-squares
(RMS) error quickly and efficiently. In general, adding a second hidden layer
improves the network’s prediction capability due to the nonlinear separability
property of the network. However, adding an extra hidden layer commonly
yields prediction capabilities similar to those of two-hidden layer networks, but
requires longer training times due to the more complex structures. Although
using a single hidden layer is sufficient for solving many functional
approximation problems, some problems may be easier to solve with a two-
hidden-layer configuration.

Normalization of Input and Output Data Sets

Neural networks require that their input and output data be normalized to
have the same order of magnitude. Normalization is very critical for some
applications. If the input and the output variables are not of the same order of
magnitude, some variables may appear to have more significance than they
actually do. The training algorithm has to compensate for order-of-magnitude



differences by adjusting the network weights, which is not very effective in
many of the training algorithms such as back propagation algorithm. For
example, if input variable i; has a value of 50,000 and input variable i, has a
value of 5, the assigned weight for the second variable entering a node of hidden
layer 1 must be much greater than that for the first in order for variable 2 to have
any significance. In addition, typical transfer functions, such as a sigmoid
function, or a hyperbolic tangent function, cannot distinguish between two
values of x; when both are very large, because both yield identical threshold
output values of 1.0.

The input and output data can be normalized in different ways. In Chapters 7
and 15, two of these normalized methods have been selected for the appropriate
applications therein.

The training phase of back propagation algorithm can be summarized in the
following steps:

1. Initialize the weights of the network.

2. Scale the input/output data.

3. Select the structure of the network (such as the number of hidden layers
and number of neurons for each layer).

4. Choose activation functions for the neurons. These activation functions
can be uniform or they can be different for different layers.

5. Select the training pair from the training set. Apply the input vector to the
network input.

6. Calculate the output of the network based on the initial weights and input
set.

7. Calculate the error between network output and the desired output (the
target vector from the training pair).

8. Propagate error backward and adjust the weights in such a way that
minimizes the error. Start from the output layer and go backward to input
layer.

9. Repeat steps 5—8 for each vector in the training set until the error for the
set is lower than the required minimum error.

After enough repetitions of these steps, the error between the actual outputs
and target outputs should be reduced to an acceptable value, and the network is
said to be trained. At this point, the network can be used in the recall or
generalization phases where the weights are not changed.

Network Testing

As we mentioned before, an important aspect of developing neural networks
is determining how well the network performs once training is complete.
Checking the performance of a trained network involves two main criteria: (1)
how well the neural network recalls the output vector from data sets used to train
the network (called the verification step); and (2) how well the network predicts
responses from data sets that were not used in the training phase (called the
recall or generalization step).

In the verification step, we evaluate the network’s performance in specific
initial input used in training. Thus, we introduce a previously used input pattern



to the trained network. The network then attempts to predict the corresponding
output. If the network has been trained sufficiently, the network output will
differ only slightly from the actual output data. Note that in testing the network,
the weight factors are not changed: they are frozen at their last values when
training ceased.

Recall or generalization testing is conducted in the same manner as
verification testing; however, now the network is given input data with which it
was not trained. Generalization testing is so named because it measures how
well the network can generalize what it has learned, and form rules with which
to make decisions about data it has not previously seen. In the generalization
step, we feed new input patterns (whose results are known to us, but not to the
network) to the trained network. The network generalizes well when it sensibly
interpolates these new patterns. The error between the actual and predicted
outputs is larger for generalization testing and verification testing. In theory,
these two errors converge upon the same point corresponding to the best set of
weight factors for the network.

In the following subsection, two examples are presented to clarify various
issues related to BP.

Example 3.1:
Consider the network of Figure 3.6 with the initial values as indicated. The
desired values of the output are d, =0 &, =1. We show two iterations of

learning of the network using back propagation. Suppose the activation function
of the first layer is a sigmoid and activation function of the output is a linear
function.

1

fx)= O () = f00 = f(x)] (3.14)

1+e™”

i =1

Figure 3.6: Feedforward Network of Example 3.1 with Initial Weights.

Iteration Number 1:
Step 1: Initialization: First the network is initialized with the values as shown
in Figure 3.6.

Step 2: Forward calculation, using Equations (3.1-3.3):
J[&i fw[d. 15 £0.0 0.600+0.80 = £(0.9)=0.7109

i =rov [1].0y= ra.1n=0.7503



oo s, [d./F 0.500.7109+ 0.7 10.7503 =0.88066
ofif rw,[1.77 0.600.7109+ 0.5 00.7503=0.80169

Step 3: According to Equation 3.5 the errors are calculated as follows:
x[0] =a, —K o =0-0.88066 = -0.88066

&[] =4, -1 =1-0.80169 =0.19831

Step 4: The updated weights of the network are calculated according to
Equations 3.10 and 3.11 as follows:

Wygo e Wygo oy 30 k{010 £ (k[0]) 0/[0] =

0.5+1 [0 —0.88066) +0.2072 [0.7109 =0.3694

WkOl (new) = s 6809 Wklo(new) =0.6301 Wkll(new) =05138
Wigg (new)= W i oty + n LI[0]* ZwA =

0.#1 [ [J(0.50-0.88066+0.6[10.19831)=-0.2213

ij (new) = 0.6 Wj02 (new) =0.4787 leo(new) =-0.3173

Iteration Number 2: For this iteration the new weight values in Iteration 1
are utilized. Steps 2—4 of the previous iteration are repeated.

Step 2:
o] =05640 N1 =0.5163  dd =04991 ] =0.6299

Step 3:
Ne[0] =-0.4991 A1 =0.3701

Step 4:
WkOO (new) = 0.3032 ka (new) = 05025 WklO (new) = 0.6774

Wkll(new) = 05751 WjOO (new) = 017248 ij (new) = 0.6
WjOZ (new) = B2 B leo(new) = -04015 lel(new) =0.3
lez (new) = 0.2985

The weights after the two iterations of training of the network can be
calculated as follows:

1fo] =0.5878 11 =0.5257 dq =0.4424 ¢} =0.7005

Table 3.1 summarizes the results for the training phase. As can be seen, the
values of the output are closer to the desired value and the error value has been
decreased. Training should be continued until the error values become less than
a predetermined value as set by the designer (for example, 0.01). It should be
noted that the selection of small values for maximum error level will not
necessarily lead to better performance in the recall phase.



Table 3.1: Summary of Outputs and Error Norm after Iterations

Error Initial Iteration 1 Iteration 2
Output 1 -0.8807 -0.4991 -0.4424
Output 2 0.1983 0.3701 0.2995

Error Norm 0.9027 0.6213 0.5342

Choosing a very small value for this maximum error level may force the
network to learn the inputs very well, but it will not lead to better overall
performance.

Example 3.1 is also solved using MATLAB as shown in Chapter 21. Below
is the output result of the program.

Final _[3-0.00881  Input Layer [3-0.0255 0.6 0.6473]
Ouput 0103708 Weight — H0.0763 03 077611

Hidden Layer [0.1170 0.28970 Bias _ [3-0.12550

Weight — [0.4987 041598  Weight +0.1237H

As observed, only four iterations are needed to complete the training task for
this example. (In this case, the training sets include only one input output set, so
each epoch is equivalent to an iteration.) The initial weights of the network for
the program are selected as indicated in this example. The final values of the
outputs are equal to -0.0088 and 1.0370. These values are close enough to the
desired values. The training error is less than 0.001, which the network has
achieved during the training phase.

Example 3.2: Forward Kinematics of Robot Manipulator

In this example a simple back propagation neural network has been used to
solve the forward kinematic of a robot manipulator. Therefore, 6, 0, are the
inputs with X, Y as the outputs of the network. A set of 200 samples is applied
to the network in the training phase.

AY

0, X

Figure 3.7: The Robot Manipulator.



The relation between (8, and 6,) and (X and Y) is as follows:
X =1, cos6, +1, cos(6, +8,)
Y =1/, sinf, +/, sin(8, +6,)
Figure 3.8 shows how the error of the network changes until the performance
goal has been met.

(3.15)

Performance is 0.000722006, Goalis 0.001

10° L Training

Goal

0 1 2 3 n 5 6 7
7 Epochs

Figure 3.8: The Error of the Network During Training.

After the network has established input and output mapping during the
training phase, new inputs are applied to the network to observe its performance
in the recall phase. Figure 3.9 shows the simulation result of the network.

Figure 3.9: The Network Output and Prediction of the Neural Network
Using the Back Propagation Algorithm.



34 RADIAL BASIS FUNCTION NETWORK (RBFN)

The back propagation method as described in the previous section, has been
widely used to solve a number of applications [1],[2]. However, despite the
practical success, the back propagation algorithm has serious training problems
and suffers from slow convergence [3]. While optimization of learning rate and
momentum coefficient parameters yields overall improvements on the networks,
it is still inefficient and time consuming for real time applications [4].

Radial Basis Function Networks (RBFN) provide an attractive alternative to
BP networks [5]. They perform excellent approximations for curve fitting
problems and can be trained easily and quickly. In addition, they exhibit none of
the BP’s training pathologies such as local minima problems. However, RBFN
usually exhibits a slow response in the recall phase due to the large number of
neurons associated in the second layer [6],[7]. One of the advantages of RBFN
is the fact that linear weights associated with the output layer can be treated
separately from the hidden layer neurons. As the hidden layer weights are
adjusted through a nonlinear optimization, output layer weights are adjusted
through linear optimization.

RBFN approximation accuracy and speed may be further improved with a
strategy for selecting appropriate centers and widths of the receptive fields. The
redistribution of centers to locations where input training data are meaningful
can lead to more efficient RBFN [8].

In this section, the fundamental idea pertaining the RBFN is presented.
Furthermore, two examples are provided to clarify the training and recall phases
associated with these networks. The network is inspired by Cover’s theorem as
explained below.

Cover’s Theorem[6]: A complex pattern classification problem cast in a high
dimensional space nonlinearity is more likely to be linearly separable than in a
low dimensional space.

Example 3.3:

Consider the XOR problem as presented previously. As it was shown in
chapter 2, an XOR gate cannot be implemented by a single perceptron due to
nonlinear separabality property of the input pattern. However, suppose, the
following pair of Guassian hidden functions are defined:

hl (x) - e—Hx—mHZ u, = [H]B

. (3.16)
hy (x):e—Hx—qu U, = %B

a

If we calculate 7, (x), h, (x) for the above input patterns we will have the

Table 3.2. Figure 3.10 shows the graph of the outputs in the %, — A, space.



Table 3.2: Mapping of XY to /4, —h,

Input pattern: X h;(x) h,(x)
(1, 1) 1 0.1353
(0,1) 0.3678 0.3678
(0,0) 0.1353 1
(1,0) 0.3678 0.3678

Ay
1
A (1)

Decision

(0.1)
(1,0)

0.3678

0.1353

0.3678
0.1353

Figure 3.10: XOR Problem in A, —#, Space.

As can be seen, the XOR problem in A, — 4, space is mapped to a new
problem, which is linearly separable. Therefore, Guassian functions can be used
to solve the above interpolation problem with one layer network. The above
interpolation problem can be generalized as: Suppose there exist N points
(Xy,...,Xy ) and a corresponding set of N real values (d;, d, d3, ..., d;); find a

function that satisfies the following interpolation condition:
F(x,)=d, i=12,...,N (3.17)

Figure 3.11: A Simple Radial Basis Network.

Figure 3.11 shows a simple radial basis network. This network is a
feedforward network similar to back propagation, but it has totally different
performance. The first difference is the initial weights. Despite random initial
selection of the weights in back propagation, here the initial weights are not
chosen randomly. The weights of each hidden layer neuron are set to values that



produce a desired response. Such weights are assigned so that the network gives
the maximum output for inputs equal to its weights. The activation functions h;
can be defined as follows:

N2 2
ho=e /% (3.18)
where D; is defined as the distance of the input to the center of the neuron which
is identified by the weight vector of hidden layer neuron i. Equation (3.19)

shows this relation:

EDI'Z =(x _”i)T(x_”i)
Ok :input  vector (3.19)
E@- :Weight vector of hidden layer neuron i

Therefore, the final contribution of the neuron will decrease for the inputs,
which are far from the center of the neuron. With this fact in mind, it is
reasonable to give the values of each input of the training set to a neuron, which
will result in faster training of the network. The main part of the training of the
network is adjusting the weights of the output layer. Figure 3.12 shows a single

neuron.
u,o

X h(x)

Figure 3.12: A Simple Radial Basis Neuron

Function h(x) as shown in Figure 3.13 can be defined as follows:

_(x—u)2

(3.20)

x-u/s

Figure 3.13: The Graph of h(x).



As both graph and formula show:

O h(x)=1 xX=u
E h(x) =0 |x—u|>30 (3.21)
E) <h(x) <1 |x—u| <30

The above formula indicates that each neuron only possesses contributions
from the inputs that are close to the center of the weight function. For other
values of x, the neuron will have zero output value with no contribution in the
final output of the network. Figure 3.14 shows a radial basis neuron with two
inputs, X; and X,.

U,o

X
Y

Figure 3.14: A Simple Radial Basis Neuron with Two Inputs.

Figure 3.15 shows the three-dimensional graph of this neuron. As is seen, the
fundamental idea is similar. As Figure 3.15 shows, the function is radially
symmetric around the center U.

Training of the radial basis network includes two stages. In the first stage,
the center U; and diameter of receptive 0; of each neuron will be assigned. At the
second stage of the training, the weight vector W will be adjusted accordingly.
After the training phase is completed, the next step is the recall phase in which
the outputs are applied and the actual outputs of the network are produced.

h(x.y
G

0.
g ..

g

Figure 3.15: Graph of h(x,y) for the Neuron with Two Inputs.



Finding the center U; of each neuron

One of the most popular approaches to locate the centers U; is to divide the
input vector to some clusters and then find the center of each cluster and locate a
hidden layer neuron at that point.

Finding the diameter of the receptive region

The value of 0 can have significant effect on the performance of the
network. There are different approaches to find this value. One of the popular
methods is based on the similarity of the clustering of the input data. For each
hidden layer neuron, the RMS distance of each neuron and its first nearest
neighbor will be calculated; this value is considered as 0. The training phase of
RBFN can be summarized as follows:

1. Apply an input vector X from the training set.
Calculate the output of the hidden layer.

3. Compute the output Y and compare it to the desired value. Adjust each
weight W accordingly:

wy (n+1) =wy (n)+[7,(xj Y, )xl- (3.22)

4. Repeat steps 1 to 3 for each vector in the training set.
5. Repeat steps 1 to 4 until the error is smaller than a maximum acceptable
amount.

The advantage of radial basis network to back propagation network is faster
training. The main problem of back propagation is its lengthy training; therefore
radial basis networks have caught a lot of attention lately. The major
disadvantage of radial basis network is that it is slow in the recall phase due to
its nonlinear functions.

Example 3.4:

This example is the same as Example 3.1, where p and o are input and output
consecutively. We try to solve the problem using the radial basis network by
MATLAB. The details of the program are provided in Chapter 21. The output
of the program is shown below. As is observed, the output is very accurate for
the same input values. Also, execution of this simple code shows that the
network’s training is very fast. The answer can be obtained quickly, with high
accuracy. The output of the network to a similar input is also shown. o is the
output for the new applied input p , which is close to p. It can be seen that this

value is close to the output of the training input.

an 00 d1.1 0O 0 0

0 5_0,,0 ~

p= S)D 0= %E P= D—O.SD 0= %).9266%
HE 509 H



Example 3.5:

In this example the inverse kinematics of the robot manipulator of Example
3.2 is solved by RBFN, using MATLAB program. Figure 3.16 compares the
actual path and the network prediction of this example. The actual path is shown
with circles and the network output with +. As can be seen, the network can
predict the path very accurately. In comparison with back propagation,
prediction of RBFN is more accurate and the training of this network is much
faster. However, due to the number of neurons, the recall phase of the network is
usually slower than back propagation.

Figure 3.16: Output of the RBFN and Actual Output of the System.

3.5 KOHONEN SELF-ORGANIZATION NETWORK

The Kohonen self-organization network uses unsupervised learning and
organizes itself to topological characteristics of the input patterns. The
discussion in this section will not seek to explain fully all the intricacies
involved in self-organization networks, but rather seek to explain the simple
operation of the network with two examples. Interested readers can refer to
Kohonen[10], Zurada[l1], and Haykin and Simon[12] for more detailed
information on unsupervised leaning and self-organization networks.

Learning and brain development phenomena of newborns are very
interesting from several viewpoints. As an example, consider how a baby learns
to focus its eyes. The skill is not originally present in newborns, but they
generally acquire it soon after birth. The parents cannot ask their baby what to
do in order to make sense of the visual stimuli impinging on the child’s brain.
However, it is well known that after a few days, a newborn has learned to
associate sets of visual stimuli with objects or shapes. Such remarkable learning
occurs naturally with little or no help and intervention from outside. As another



example, a baby learns to develop a particular trajectory to move an object or
grab a bottle of milk in a special manner. How can these phenomena happen?

One possible answer is provided by a self-learning system, originally
proposed by Teuvo Kohonen [10]. His work provides a relatively fast and yet
powerful and fascinating model of how neural networks can self-organize. In
general, the term self~organization refers to the ability of some networks to learn
without being given the correct answer for an input pattern. These networks are
often closely modeled after neurobiological systems to mimic brain processing
and evolution phenomena.

A Kohonen network is not a hierarchical system, but consists of a fully
interconnected array of neurons. The output of each neuron is an input to all
other inputs in the network including itself. Each neuron has two sets of weights:
one set is utilized to calculate the sum of weighted external inputs, and another
one to control the interactions between different neurons in the network. The
weights on the input pattern are adjustable, while the weights between neurons
are fixed.

The other two networks that have been discussed so far in this chapter (BP
and RBFN) have neurons that receive input from previous layers and generate
output to the next layer or the external world. However, the neurons in the
network have neither input nor output to the neurons in the same layer. On the
contrary, the Kohonen network receives not only the entire input pattern into the
network, but also numerous inputs from the other neurons with the same layer.
A block diagram of a simple Kohonen network with N neurons is shown in
Figure 3.17.

Figure 3.17: A Two Dimensional Kohonen Network.

Notice that the input is connected to all the nodes and there are
interconnections between the neurons of the same layer. During each
presentation, the complete input pattern is presented to each neuron. Each
neuron computes its output as a sigmoidal function on the sum of its weighted
inputs. The input pattern is then removed and the neurons interact with each
other. The neuron with the largest activation output is declared the winner



neuron and only that neuron is allowed to provide the output. However, not only
the winning neuron’s weight is updated, but also all the weights in a
neighborhood around the winning neuron. The neighborhood size decreases
slowly with each iteration [11].

3.5.1 Training of the Kohonen Network

When we construct a Kohonen network, we must do two things that have not
been generally required by the other networks. First, we must properly initialize
the weight vectors of the neurons. Second, the weight vectors and the input
vectors should be normalized. These two steps are vital to the success of the
Kohonen network. The procedure to train a Kohonen self-organization is as
follows:

1. Normalize the random selected weights W;.

Present an input pattern vector x to the network. All neurons in the
Kohonen layer receive this input vector.

3. Choose the winning neuron as the one with the largest similarity
measure between all weight vectors W; and the input vector x. If the
shortest Euclidean distance is selected as similarity measure within a
cluster, then the winning unit m satisfies the following equation:

e =, = minfJx - w, } (3.23)

where m is referred to as the winning unit.

4. Decrease the radius of Nm region as the training progress, where Nm
denotes, as a set of index associated with the winning neighborhood
around the winner unit C. The radius of Nm region can be fairly large
as the learning starts and slowly reduced to include only the winner and
possibly its immediate neighbors.

5. The weight of the winner unit and its neighborhood units are obtained
as follows:

(Wi )new = (Wz )old +ta |_x - (VVz )old J (3.24)

where, Wi is the weight vector, x is the input pattern vector and a is the
leaning rate (0<a<l) Since a depend on the size of neighborhood
function, Equation (3.25) can be rewritten as

(VVZ )new = (VVI )old +a Nci I.x - (VVI )oldJ (325)

where the function N, can be chosen appropriately such as a Gaussion
function or a Mexican hat function.

6. Present the next input vector. Repeat steps 3—5 until the training phase
is completed for all inputs.

In order to achieve a good convergence for the above procedure, the learning
rate O, as well as the size of neighborhood Nc should be decreased gradually
with each iteration. As was mentioned before, at the beginning of the training
phase, the selected region around the winner unit might be fairly large.
Therefore, a substantial portion of the network can learn each pattern. As the



training proceeds, the size of the neighborhood slowly decreases, so fewer and
fewer neurons learn with each iteration. Finally the winner itself will adjust its
weights. After the completion of this procedure, the network is trained for the
next input vector in a similar fashion.

Kohonen self-organization network has some interesting capabilities that can
be extremely useful. One possible application is vector quantization. The
network can also be used to perform dimension reduction and feature extraction
as well as classification.

In MATLAB, the leaning rate, o, and the neighborhood size are altered
through two phases: an ordering phase and a tuning phase.

3.5.2  Examples of Self —Organization

In this subsection, two examples of self-organization maps are provided. The
detailed description of examples can be found in chapter 21

Example 3.6: 1-D self-organization Mapping

Consider 200 2-Element unit vectors spread uniformly between 0 and 180 as
shown in Figure 3.18. We now consider a 1-D self-organization map with 20
neurons.
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Figure 3.18: Original Distribution of the Input of the Kohonen Network.

Figure 3.19 shows the weights of the Kohonen self-organizing network after
training. It can easily be observed that the weights of the network have the
pattern of the input. In the other words, the network is being adjusted to the form
of the pattern of input of the network.
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Figure 3.19: Weights of the Kohonen Self-organizing Network.

Example 3.7: 2-D Self-organization Mapping

Suppose we have created 2000 input vectors randomly (Figure 3.20). We
will define a two-dimensional map of 35 neurons to classify these input vectors.
The two dimensional map is five neurons by seven neurons in horizontal and
vertical directions, respectively. The map is then trained for 5,000 presentation
cycles in the MATLAB. The results are displayed in Figure 3.22. The details of
the program are given in Chapter 21.
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Figure 3.20: Initial Inputs of the Network of Example 3.7.
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Figure 3.21: Initial Weights of the Network.
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Figure 3.22: Weights of the Kohonen Self-organizing Network after
Training (Example 3.7).



3.6 HOPFIELD NETWORK

Hopfield rekindled interest in neural networks by his extensive work on
different versions of the Hopfield network [13],[14]. The network can be
utilized as an associative memory or to solve optimization problems. One of the
original network [13], which can be used as a content addressable memory is
described in this chapter. The network is a typical recursive model in which
nodes are connected to one another. Figure 3.23 shows a Hopfield network.

>
0,
>
0,
O«
>

Figure 3.23: Hopfield Network.

As is shown, the output of each neuron consists of the inputs from other
neurons, with the exception of itself. Therefore, the activity level of the neurons
can be calculated using the following formula:

a; :;Wiioj +yi _T[ izl, 2, ey N (326)

or in the vector form as:
a, =W,0+u; -T, i=1, 2, .., n (3.27)

where:
Wy=[wy wo o ow,] =2, L n (3.28)

Wi is the weight vector for the i-th input of the neural network and the i-th
element of this vector is equal to zero. On the other hand,



—_

i=1, 2, ., n (3.29)

QS
1
OOoEog
=35
Oooogog

@0
is the output vector of the neural network. Equation 3.27 in the matrix form can
be rewritten as follows:
A=WO+I-T i=1 2, .., n (3.30)
The weight matrix W is a symmetric matrix with all diagonal elements equal
to zero. If the activation function of the neuron is a sign function, we will have:

_ ol i a; <0
EH if a; >0

The output transition between old value and new value will happen at certain
times. At that time, if the value of the additive weighted sum of a neuron is
greater than threshold of that neuron, the new output of that neuron will remain
or change to +1, otherwise it will remain or change to —1.

Considering this fact, we can define the state of the network, which is the
value of the outputs at one time. For example, 0=[t -1 1 - 1] is a state of the
network. For each neuron we have two values. Therefore 2” states exist for a
network with » neurons.

In a Hopfield network, we apply an input at certain times and then it will be
removed. This causes transitions in states of the network. These transitions
continue until the network reaches to a stable point, which is called an attractor.
An important point about this network is that at each time one neuron will
calculate its activity level and change its output. In other words, updating of the
outputs of the neuron is being done in an asynchronous fashion. Therefore to
calculate activity level of the next neuron, and find the output of that neuron, we
use some updated value for the output of the other neurons. The updating order
of the neurons is random. It depends on random propagation delays and noise.
When using the formula in matrix form, we should be careful, because it offers
synchronous or parallel updating. If we consider E=[I -], each state of the

0;

(3.31)

system is an edge of the graph in E” space. After applying an input pattern, the

state of the network goes from edge to adjacent edge until it reaches an attractor
of 2" edges. An attractor should satisfy the equation:

sgn[4,]1=0, (3.32)

Where 4, and O, are activity level and output at the attractor. Note that if

the network satisfies this equation, the next state of the network is equal to its
present state and therefore no transition will happen until a new input pattern is
applied to the network.

As mentioned earlier, input will be applied momentarily and then will be
removed. Considering this fact and using Equation 3.30, Equation 3.32 will
change to:



0, =sgn[WO, —T] (3.33)
If we define the energy function for the system as:
E=-L0"Wo+u0-170=-2 5 Swi00,-3io,+3T0; (334
2 25 j3 i=1 i=l
J#i
The gradient of the energy can be calculated from Equation 3.34 as:
DE=—%(W’+W)O—;1T+TT =-wo-u" +717 (3.35)

Here we have used the fact that the weight matrix is symmetric. The energy

increment is equal to:
AE =(OE)" AO

(3.36)

As discussed earlier outputs will be updated one at a time. Therefore only

i-th output will be updated,

po=[0 - o o]" (3.37)
The energy increment will be equal to:
DE = (-1, 0~ " +T,")ho, = =400, (3.38)

It is obvious that for positive 4;, Ao; 20 and for negative 4;, No; <0.

Looking at Equation 3.38 it can be seen that AE <0. Therefore it can be
concluded that state transitions of the network are in a way that the energy is
either decreased or retained. This means that the attractors are the edges with
lowest levels of energy. Following is an example to clarify these ideas.

Example 3.8:
Shows the state transitions and attractors in a fourth order Hopfield network.
Consider the weight matrix as follows:

oo -1 -1 20

O

O

=1 0 -1
=0 O 3.39
%—1 1 —1% ( )
m -1 -1 0p

Considering the threshold and external inputs equal to zero, energy level can

be calculated as follows:

E:%OTWO (3.40)
or:

o0 -1 -1 20,0

0 M O

1 101 =g,
E=-— O O 41
2[0l %2 % 04]91 1 0 -103,0 (341)

O M0

2

-1 -1 0940



After simplification we will have:
E =-01(—02 —0; +204)—02 (03 —04)+ 0504 (3.42)

Now if we consider all the states of the network starting
from[—l -1 -1 —l] to [1 11 l],we can calculate all the energy levels of

the network. The result will be the levels 1, 1, -1 3,-1,3,-7,1,1,-7,-1, 3, 3, -1,
3, 1 respectively. Therefore the energy levels are —7, -1, 1, 3. The two states
with the lowest energy level -7 are [—1 11 —1] and [1 -1 -1 1]. We can

see that these states are attractors of the network. In other words, they satisfy
Equation 3.33. If we try any other state of the network, we will see that they do
not satisfy this equation, which means that they are not attractors of the network.

In other words, the attractors are the states with minimum levels of energy.
In fact we can see that the transition in the network will be from an state to
another state with a lower or the same level of energy. On the other hand, we
know that the transition is asynchronous. Therefore, at each single step we will
go from one state to its adjacent state. These transitions are in the direction of
reduction of energy level until we reach a state with a minimum level of energy,
which is the attractor of the network. Figure 3.24 shows the state transition of
the network.

Figure 3.24: State Transition of the Hopfield Network to Reach to a Stable
State.

3.7 CONCLUSIONS

In this chapter, four different neural networks were presented. Several numerical
examples were provided to demonstrate the effectiveness of these networks. The



described networks consist of highly parallel building blocks that illustrate NN
design principles. They can be used to construct more complex systems. In
general, the NN architectures cannot compete with the conventional techniques
at performing precise numerical operations. However, there are large classes of
problems that often involve ambiguity, prediction, or classifications that are
more amenable to solution by NN than other available techniques. In the
following chapters several of these problems will be addressed in detail.
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APPLICATIONS OF NEURAL
NETWORKS IN MEDICINE AND
BIOLOGICAL SCIENCES

Faramarz Valafar
4.1 INTRODUCTION

In this chapter, we will discuss applications of artificial neural networks (ANNs)
in medicine and biological sciences. In particular, we will discuss ANN
solutions to classical engineering problems of detection, estimation,
extrapolation, interpolation, control, and pattern recognition as it pertains to
these sciences. We will discuss some of these applications in detail to introduce
the readers to typical problems that researchers face in the area.

Research in ANNs’ applications as an alternative to classical engineering and
mathematical techniques in medicine and biological sciences has intensified in
recent years. Since the early 1990s, many applications of ANNs have replaced
classical solutions to the engineering problems mentioned above. This is also
true in medicine and biological sciences. [1 — 20] To discuss applications and
accomplishments of ANNs in medicine and biological sciences, we will first
introduce a few standard measures that will be used throughout this chapter to
compare or report various results. These measures have been recommended and
used to evaluate physicians and healthcare workers by various organizations,
and therefore are good measures for evaluating the performance of any
automated system that is designed to assist these healthcare professionals.

4.2. TERMINOLOGY AND STANDARD MEASURES

The American Heart Association (AHA) recommends the use of four measures
to evaluate procedures for diagnosing CAD. [21] Since these measures are
useful in other areas of diagnosis as well, we will be using them in evaluating
most diagnostic systems.

*
sensitivity ..TPF :M 4.1)
TP+ FN
TN *100
specificity ..INF =————— (4.2)
pecificity TN + FP

PA = sensitivity * P(D)+ specificity * [1 - P(D)] (4.3)



_ sensitivity * P(D)
sensitivity * P(D)+ (1 00 - speciﬁcity)* [1 - P(D)]

PV (4.4)

Where TP stands for true positive, FN stands for false negative, TN stands
for true negative, and F'P stands for false positive. Sensitivity, or true-positive
fraction (TPF), is the probability of a patient who is suffering from a disease to
be diagnosed as such. Specificity, or true-negative fraction (TNF), is the
probability that a healthy individual is diagnosed as such by a diagnosis
mechanism for a specific disease. PA is the predictive accuracy, or the overall
percentage of correct diagnosis. PV is the predictive value of a positive test, or
the percentage of those who have the disease and have tested positive for it.
P(D) is the a priori probability of a patient who is referred to the diagnosis
procedure actually having cancer.

In addition to TPF and TNF, we define two other related values. False-
positive fraction (FPF) is the probability of a healthy patient being incorrectly
diagnosed as having a specific disease. And false-negative fraction (FNF) is the
probability that a patient who is suffering from a disease will be incorrectly
diagnosed as healthy. In this way, the following relations can be established:

FPF =1-TNF (4.5)
FNF =1-TPF (4.6)

To clarify the terminology and symbols, let us consider the following example.

Example 4.1:

Let us assume that 100 patients were referred to the mammography
department for diagnosis of breast cancer. Let us further assume that of the 100
individuals, 38 actually had a cancerous tumor, and the remaining 62 either did
not have any tumor or did not have one that was malignant (cancerous). Let us
further assume that a diagnosis procedure (manually conducted by physicians,
by an automated system, or by both) correctly diagnosed 32 of the 38 cancer
sufferers as having breast cancer. It, however, misdiagnosed six of those as
being cancer free. Let us also assume that the procedure correctly classified 58
of the 62 cancer-free patients as such, and misclassified the remaining 4 as
having breast cancer. Finally, let us assume that on the average, 35 % of those
who are referred to the mammography procedure actually have breast cancer.

In this example TP = 32, FN = 6, TN = 58, FP = 4, and P(D) = 0.35.
Hence,

Sensitivity= TPF = % =84.21% = FNF=1-8421=15.79%,
Specificity= TNF = ng*j(io =93.55% = FPF=1-93.55=6.45%,
PA=8421%0.35+93.55%[1-0.35]=90.28%,

84.21%0.35

=87.55%

= 84.21 *0.35+(100—93.55) *[1 —0.35]



In this example the overall system accuracy is 90.28 %, while the predictive
value of a positive test is at 87.55 %.

Another commonly used measure of ANNs’ performance that has found its
way into the medical community (among others) is the receiver operating
characteristic (ROC) curve. [22,23]. ANNSs that perform pattern recognition or
detection could be viewed as a receiver system (in the sense of a radar signal
receiver) that receives a noisy signal and attempts to identify it. In the radar
example, identification of the signal could mean classifying an aircraft as friend
or foe. In medical decision-making, it usually means the diagnosis of a patient
as healthy or sick. For simplicity, let us assume that the ANN has one output
neuron. The following discussion can be expanded to cover multi output ANNs
as well.

An important variable in the performance of the ANN is the threshold value
0 of the output neuron. If 6=1, all incoming signals in radar technology would
be classified as noise. In medical technology, it would translate into having a
negative diagnosis for all patients and, thus, categorizing them as healthy. If
6=0, we would be classifying all patients as sick. In the first case, the
probability of detection, or TPF, would have a value of zero, but so would the
probability of false alarm, or FPF. In the second case, TPF would have a value
of one, as would FPF. Neither of these receivers (detectors) would be desirable.
The ROC curve gives an idea as to how the receiver would perform for all
values of threshold (6) between 0 and 1.

Let us assume that /(ZIHV) is the conditional probability density function of

z, the activation level of the output neuron, given that the input to the network
contains a signal (patient actually is carrying the disease) (hypothesis Hj).

Similarly, /(ZIH”) is the conditional probability density function of z, given

that the input to the network does not contain any signal (patient is actually
healthy) (noise only, hypothesis H,). A hypothetical example of these two
density functions is shown in Figure 4.1.

With 6, being the alarm threshold, the probability of detection, or TPF, and

the probability of positive error, or F/PF, can then be calculated as follows:

7PH(8,) = ;[ A\ 4#) 4.7)
FPH8,)= j' /\4#,) 2 (4.8)

Figure 4.2 shows the TPF and FPF graphs for the probability density
functions of the hypothetical example shown in Figure 4.1.

Definition 4.1: The ROC curve of a system is the plot of that system’s TPF
curve versus its FPF curve. The operating variable of



the three curves is 6y, the alarm threshold.

Conditional Probability Density functions of the activation
level of the Output Neuron

——f(4Hs) Patient is actually sick.

f(ZHn) Patient is actually healthy

02 03 04 o

0.5

Activation Level of the Output Neuron (2)

0.6

Figure 4.1: Hypothetical Conditional Probability Density Functions of the
Activation Level z of the Output Neuron, Given that the Patient is Known to be

Sick (H;) or Healthy (H,,).

Hypothetical TPF and FPF Curves Versus the Output
Threshold.
TPF
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Figure 4.2: The True Positive Fraction and the False Positive Fraction
Functions of the Hypothetical Example Shown in Figure 4.1, Plotted vs. the

Alarm Threshold of the Output Neuron.

The ROC plot of the hypothetical example can now be plotted according to

Definition 4.1. Figure 4.3 shows the ROC

plot for the hypothetical example of



Figure 4.1. This figure also shows a worst case classifier (dashed line), and a
theoretical best case classifier.

The ROC curve demonstrates an important property of any detection system:
namely, that the probability of “true positive” is directly related to the
probability of “false positive.” They rise and fall together. The ideal classifier
is one whose TPF is one for all values of FPF, including when 6,=/ and FPF=0
(the red curve in Figure 4.3). The worst classifier is one that has no
discrimination. A positive detection always has equal probability of being true
or false. In other words, TPF = FPF for all values of 6,. This, in turn, would
produce the dashed line ROC curve shown in Figure 4.3.

A consolidated measure that is a good representation of the overall quality of
the receiver, and of the model used to build the receiver, is the area under the
ROC curve. This area is commonly referred to as A,. [23] This area varies
between 0.5 (worst receiver) and 1 (best receiver). The area under the
hypothetical ROC curve of the example in Figure 4.1 is 97.49 %. Furthermore,
the best operating point of a receiver can be determined from the ROC curve by
determining the point with a maximum distance from the diagonal line of the
worst case classifier. In Figure 4.3, the label “Ideal Operating Point” shows this
point of the hypothetical receiver. As can be seen from the figure, the best
operating point of the hypothetical receiver has a TPF value of about 84 %, and
FPF value of about 3.5 %.

ROC Plot
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Figure 4.3: ROC Plots of a Hypothetical Receiver, a Theoretical Best Case
Receiver, and a Worst Case Receiver.

The measures introduced in this section are particularly helpful in comparing
the performance of most diagnosis procedures (systems) and therefore will be
used in several parts of this chapter.



4.3 RECENT NEURAL NETWORK RESEARCH ACTIVITY IN
MEDICINE AND BIOLOGICAL SCIENCES

ANNs have enjoyed success in various areas of medicine and biological
sciences. ANNs have been successfully applied to areas such as radiology [16],
cancer research, [12,14,24-29] biochemical spectrum analysis, [30] sleep
disorder, [31] cardiac disease, [1,2,15,18,19] biochemistry of a disease, [4,5]
HIV and AIDS, [5,29] epilepsy, [6,20] vision, [7] motor control, [8] lunge
disease, [10,11] pathology and laboratory data analysis, [13,14] diagnosis
decision support, [17,18,32] and many more.

In the following we present a brief summary of three research projects as
examples of some of the most active research areas in ANNs’ applications in
medicine and biological sciences. These three applications are only meant to
give an indication as to the breadth of the activity areas, and to demonstrate the
typical problems (and give some ideas as to possible solutions) that researchers
often face when dealing with real world data in the areas of medicine and
biological sciences. It is also our hope that through these examples we can
indicate the level of achievement of the ANN research community in various
fields.

4.3.1 ANNSs in Cancer Research

Pattern recognition using ANNSs in cancer research is likely to be the most
active area in terms of application of ANNs in medicine. ANNs have been used
extensively in various roles in cancer research anywhere from tumor detection
and analysis, [24,25,26] to the detection of biochemical changes in the body due
to cancer, [29] to analysis of follow-up data in primary breast cancer, [27] to
visualizing anticancer drug databases. [28] Among various types of cancer and
detection methods, breast cancer diagnosis by the means of ANN classification
of mammography images has been one of the most widely studied.

T.C.S.S. André and A. C. Roque [24] offer one of the most recent studies in
this area. The authors have developed a medical decision support system using
neural networks to aid in the diagnosis of breast cancer. This system uses digital
mammogram images to classify a case as having one of three possible outcomes:
suspicion of malignant breast cancer, suspicion of benign breast cancer, or no
suspicion of breast cancer. André and Roque [33] used a staged (layered) neural
network with a set of identical single layer networks as the input layer. These
input layer networks used localized receptive fields without overlapping in the
mammogram image. The hidden and the output layers of the network were each
a single layer of perceptrons. The input layer was first trained, with regions
taken from several mammograms, to become a feature extractor using the
competitive learning algorithm. [33] The perceptron layers were then trained
with the backpropagation learning algorithm.

The authors report a 7PF of 0.75, and an FPF value of 0.06 for the optimum
operating point of the ANN system described above. Furthermore, they report



an A, value of 0.84 for their system. To put this value in perspective, it should
be mentioned that 4, values typically fall in the 0.80 to 0.90 range for
mammography analysis. In a similar study, Wu et al. [34] report an A4, value of
0.84 for a group of attending radiologists, and an 4, value of 0.80 for a group of
resident radiologists.

Wau et al. [34] also conducted a similar study using a neural network trained
with the backpropagation algorithm. They used a set of features of
mammogram images that were selected by experienced radiologists as the input
signal to the neural networks. In this case, they report an A4, value of 0.95 for
textbook cases, and an 4. value of 0.89 for clinical cases.

4.3.2  ANN Biosignal Detection and Correction

Applications of signal detection techniques have been used in biological
sciences to detect a single signal, or a group of signals, buried in various types
of noise and nonrelevant biosignals for several decades. Applying pattern
recognition techniques to spectroscopic data, for instance, has been used to help
in structural elucidation of known molecules, and to significantly reduce the
enormous duplicate work otherwise conducted in the area. Pattern recognition
tools can therefore be employed to build search engines for spectral databases of
various types of molecules.

An example of this can be seen in detecting the signature of one, or a group
of complex carbohydrates in gas chromatography-electron impact mass
spectroscopy (GC-EIMS), or nuclear magnetic resonance (NMR) spectra. [30]

Complex carbohydrates have been linked to biochemical functions of all
cells, [35 — 37] such as cell recognition (e.g., initial steps in host pathogen and
symbiotic relationships), intercellular adhesion (lectins and selectins), biosignal
processes (oligosaccharins), developmental regulation, antibody binding,
immune system modulation, and hormonal regulation. Consequently, complex
carbohydrates, or the receptors that bind them, are also involved in many
diseases, including autoimmune diseases, inflammatory diseases, and cancer. A
tool to rapidly elucidate the chemical structures of complex carbohydrates can
be instrumental in research to understand their biological functions. The
presence of specific carbohydrates or their “uncommon” relatives, for instance,
could be indicative of disease, the stage of a disease, or the presence of an
antibody.

In this context, signal correction techniques could be used to correct the
incoming biosignals and to compare them to a prerecorded clean library of
signals. In this way, signal detection and correction techniques are used to
discover and clean biosignals, and subsequently identify complex carbohydrates
from which they originated. In this section, we discuss an artificial neural
network solution to biochemical signal detection and identification, as well as
biochemical signal correction for complex carbohydrates. [30]



Identification Of Complex Carbohydrate Structures from Their Spectral
Signatures Using ANNS.

Structural and functional elucidation of complex carbohydrates is a key part
of an increasing number of biomedical inquiries into these molecules. The
structural determination of complex carbohydrates is the mandatory prerequisite
to determining their functions. But the enormous chemical complexity and
diversity of complex carbohydrates makes their structural elucidation a
particularly challenging, lengthy task, and one that scientists would not wish to
duplicate unnecessarily. Therefore, the primary need for the scientist faced with
finding out the identity, chemical characteristics, and other attributes of a
carbohydrate is to know whether that carbohydrate has already been analyzed by
others and, if so, what is known about its chemistry, biology, and conformation.
F. Valafar and H. Valafar [30] have developed a system for automated
identification of complex carbohydrates using their chemical spectra that can
provide this type of information.
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Figure 4.4 (a) A 'H-NMR Time-Domain Signal of an N-linked
Oligosaccharide. (b) The Fourier Transformed Frequency-Domain Spectrum of
the Same Oligosaccharides.



In the following, we discuss Valafar’s method in identifying complex
carbohydrate structures from their '"H-NMR spectra using artificial neural
networks. In most classical signal processing methodology, the process of
structural elucidation of a chemical compound from its '"H-NMR spectrum first
involves individual signal detection of elementary components (proton or 'H
signals). The second step in this process is the task of combining the detected
individual signals in order to identify the structure of the carbohydrate in
question. Valafar’s use of ANNs in this process combines the two steps; the
ANN performs both steps at the same time.

"H-NMR spectra, in general, suffer from environmental, instrumental, and
other types of variations that manifest themselves in a variety of aberrations.
Low signal-to-noise ratio, [38 — 40] baseline drifts, [41 — 43] frequency shifts
due to temperature variations, line broadening and negative peaks due to phasing
problems, and malformed peaks (or peaks overlapped more than usual) due to
inaccurate shimming are among the most common aberrations. Figure 4.4
demonstrates a clean 'H-NMR spectrum of an N-linked complex carbohydrate.

As can be seen from Figure 4.4, large peaks not relevant to the structural
elucidation of the complex carbohydrate usually dominate 'H-NMR spectra of
complex carbohydrates. These peaks include that of the solvent (heavy water in
this case, HDO) and that of the standard. The proton signals (drifts) are
typically in the order of 100 times weaker than the large peaks. Furthermore,
most of these signals heavily overlap in the “hump” region of the spectrum,
leaving the region unusable for structure elucidation.

For the purpose of automated identification of these spectra, elimination of
the above mentioned aberrations becomes essential, as they can lead to
erroneous identification. [41-45] A variety of signal processing techniques

have been applied to "clean up" 'H-NMR spectra. For instance, signal
averaging' and apodization’ have become standard ways of improving the
signal-to-noise ratio. To correct baseline problems, a number of techniques
have been used such as parametric modeling using a priori knowledge, [41,42]
optimal associative memory (OAM), [42] spectral derivatives, [46] polynomial
fitting, partial linear fitting, [47] and Bayesian analysis. [48] For peak detection
(and solvent peak suppression), methods such as Bayesian analysis [48,49] and
principal component analysis [50,51] can be mentioned. For signal-to-noise

" In signal averaging a spectrum is recorded several times. Each recorded signal
is referred to as a “transient”. The final spectrum is the arithmetic average of all
the transients. The hope is that by using signal averaging the zero mean
components of the noise present in the signal will be averaged out.[44]

* Apodization is a type of low (high) pass filtering performed in the time
domain. Apodization is performed by speeding up or slowing down the rate of
decay of time domain exponential functions. This is accomplished by
multiplying the time domain signal by another function. This technique allows
the improvement of the signal-to-noise ratio at the cost of the reduction in signal
resolution (or vice versa).[44]



ratio problems, various types of filters (including adaptive filters such as
matched filters [44,51]) in addition to standard apodization and signal averaging
have also been used. A number of other mathematical techniques have also
been introduced to address other specific types of aberrations encountered in
'H-NMR spectra.

Although many of these signal processing techniques have enjoyed success,
they remain solutions to specific types of aberrations. In order to produce
sufficiently “clean” spectrum overall, one needs to use several of these methods
to eliminate the aberrations present in a real spectrum. Furthermore, most of
these techniques produce side effects that are magnified when improperly
processed by a second signal processing algorithm, which can lead to false
identification. Moreover, after the initial signal processing steps have been
taken, the task of identifying the processed spectrum remains. This is not a
trivial task as frequently the quality of the processed spectrum remains poor,
requiring a sophisticated identification system.

Valafar and Valafar [30] have developed an artificial neural network system
that addresses many of the above mentioned problems while identifying
'H-NMR spectra of complex carbohydrates. Although the procedure still
requires a minimal amount of preprocessing, it has significantly reduced the
number of preprocessing steps while increasing the overall identification
accuracy.

In this project, the authors developed an ANN system for a library of N-
linked oligosaccharides, and one for xyloglucan oligosaccharides. While
xyloglucans are plant cell wall oligosaccharides, the N-linked oligosaccharides
are present in most animal biochemistry. Since the two systems used similar
methods to develop an ANN identification system, we will only discuss here the
development of the N-linked ANN identifier.

Preprocessing. Initial testing indicated that without preprocessing all
selected methods for identification purposes would perform poorly. Therefore,
it was decided to use some minimal preprocessing techniques to eliminate some
aberrations before the identification stage. These preprocessing steps included
baseline correction, high frequency noise reduction, and water and solvent peak
elimination. These steps were respectively accomplished by a first derivative
technique, a low-pass filter in the form of a specially designed averaging
moving window, and a bin selection technique. The ANN eliminated the
remaining aberrations in the process of identification. In other words, the ANN
was able to learn during training to be insensitive to the remaining aberrations.
Additionally, since each 'H-NMR spectrum contained anywhere from 4K to
16K of data, an interpolation technique was used to normalize the length of all
"H-NMR vectors to 5000. This would reduce (in most cases) the resolution of
the spectrum to 2 points per Hertz, which is as low as Nyquist’s theorem [51]
would permit. The 5000-point vector covered the region between 1 and 5.5 ppm.
The corrected spectra then were introduced to the ANN for training purposes.



Figure 4.5 shows the estimated a posteriori probability density functions [51]
of the inter-> and intra-class® correlation coefficients between the raw (not
processed) 'H-NMR spectra of the N-linked data set’ as defined by Bayes’
theorem. [51] The required a priori density functions by Bayes’ theorem were
estimated using the nonparametric approach of Parzen density estimation. [52]
Figure 4.6 shows the estimated a posteriori density functions of the
preprocessed spectra from the same data set. As can be seen from the graphs,
the overlap of the two density functions has been reduced from 56 to 43 %. This
means that the “classical” signal preprocessing has simplified the identification
task, and a Bayes' classifier, in combination with correlation coefficient analysis,
now carries a 43 % uncertainty factor vs. the previous 56 %. Moreover, the
probability density functions behave closer to expected (one large peak per
density function, and smooth decay everywhere else in the function) after
preprocessing.
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Figure 4.5 Estimated Distribution of Inter- and Intra-class Correlation
Coefficients of Raw (Not Processed) 'H-NMR Spectra of 109 '"H-NMR Spectra
of 23 N-linked Oligosaccharides.

ANN design

The authors used a two stage feedforward network with sigmoidal artificial
neurons [33] in the hidden and output layers. The input layer of the network
contained 5000 fan out neurons. The output layer contained 67 neurons

? By “class” we refer to the set of all spectra for a specific compound. In other
words, each class in the xyloglucan experiment contained two spectra. In the N-
linked database, 20 oligosaccharides were represented by five spectra, and the
remaining three had three spectra, giving rise to five-member and three-member
classes respectively. An “inter-class” correlation coefficient is the correlation
coefficient between the spectra of two different oligosaccharides.

* “Intra-class” correlation coefficient is the correlation coefficient between two
different spectra of the same oligosaccharide.

> The estimated Bayes’ a posteriori distribution functions for the xyloglucan

data set were similar to those shown here for the N-linked data set, and for space
consideration are not shown here.



corresponding to the 67 oligosaccharides in the library. The number of the
hidden neurons was empirically determined to be 27.

To develop the best performing ANN, several criteria were set forward: 1)
the developed ANN was to have a very low FPF. In other words, if a spectrum
of a complex carbohydrate was not present in the training library, the system
should not try to find the closest match in the library. The outcome should be
that the carbohydrate does not exist in the library; 2) the system needed to be
tolerant of aberrations, and to be able to identify carbohydrates from its library
even in the presence of relatively low signal-to-noise ratio. This translated into
a high value for the area under the ROC curve, 4,. This also meant a high TPF
value and 3) in the case of a mixture, the system was to indicate the
carbohydrate of the highest ratio in the mixture.
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Figure 4.6 Histogram of the Correlation Coefficient Distribution of the
Preprocessed 'H-NMR Spectra of 109 "H-NMR Spectra of 23 N-linked
Oligosaccharides.

With these goals in mind, a large number of training simulations were
conducted. A large number of permutations were tried, namely, by varying the
learning step size update policy, the number of hidden neurons, and the level of
input noise. Valafar et al. dynamically manipulated the spectra during training
by introducing some input noise in order to simulate the natural variability of
these spectra. The noise simulated varying coupling constants due to
temperature, line shape problems due to incorrect shimming, and minor baseline
drifts. [53]

Table 4.1 shows the results of the best performing ANN in comparison with
three other methods. The table shows the results of the experiments for both the
N-linked and xyloglucan oligosaccharides.

Method A: Correlation coefficient analysis; Method B: Singular value
decomposition; Method C: Correlation coefficient analysis and Bayesian
classifiers; Method D: Backpropagation ANN.

The ANN system also showed less sensitivity to signal to noise degradation.
Table 4.2 shows the degradation of identification accuracy of the four methods
with increasing noise.



Table 4.1: Number of Correctly Identified N-linked and Xyloglucan
Oligosaccharide Spectra (Total Number of Spectra is in Parentheses) by Four
Different Identification Techniques after the Spectra Were Preprocessed as
Described Above.

N-linked Oligosaccharides Xyloglucan Oligosaccharides
Method Training Testing Training Testing
(67 spectra) | (134 spectra) (20 spectra) (20 spectra)
A 41 69 9 12
B 43 72 10 11
C 44 78 10 13
D 67 128 20 20

Table 4.2: Percentage Correct Identification of the Four Systems with
Increasing Noise During Testing in the N-linked Oligosaccharide Database.

Testing Noise Level
Method 0% 5% 10% 15% 20%
A 51.49 41.86 37.21 34.88 27.91
B 53.73 46.51 39.53 34.88 25.58
C 58.21 53.49 46.51 37.21 32.55
D 95.52 95.35 81.40 62.79 39.53

4.3.3  Decision-making in Medical Treatment Strategies

Decision-making techniques can be used in medicine to solve various
problems. Specifically, ANN pattern recognition engines have enjoyed
significant success in medical decision-making. [1 — 20] Although, the ANN
systems developed in this area demonstrate great potential benefit to the
healthcare community, due to the numerous remaining challenges, the area
remains one of the most active. To introduce the difficulties that researchers
face in this area, we discuss here an ANN system designed to assist physicians
in deciding on the best treatment strategy. Specifically, we will describe a
research project conducted by H. Valafar et al. [32] to develop an ANN system
to decide whether a beneficial, and yet at times harmful, medication
(Hydroxyurea) should be prescribed in battling the symptoms of sickle cell
anemia (SCA).

Predicting a sickle cell anemia patient’s response to Hydroxyurea. Sickle
cell anemia is a genetic disease mostly affecting African Americans in the US.,
although the disease is not limited to people from African origin worldwide.
Treatment with Hydroxyurea (HU) partially alleviates disease symptoms in
many patients with SCA.

Treatment with HU alleviates the clinical course in many patients with sickle
cell anemia. [54] Most patients respond to HU with an increase in the fetal



hemoglobin (HbF) concentration of blood by either increasing the amount of
HDF in their F-cells and/or by increasing the proportion of F-cells. The response
to HU varies from patient to patient. If the magnitude of the HU-elicited
increase in the %HbF (with respect to the total Hb) of the patient’s blood could
be predicted, “non-responders” could be identified. Although Hydroxyurea is
effective for many patients, it is ineffective, and at times harmful, for others.
Therefore, it is desirable to devise a tool with which physicians can predict, with
a high percentage of accuracy, the outcome of the treatment before the
medication is administered. Hence, the ultimate goal of the project is to predict
the response level of a given patient to Hydroxyurea, using only the
pretreatment data of a patient.

To develop such a system, the first question that needs to be answered is:
What data should be used for the prediction/decision-making task? In this
particular project, the authors relied on the expertise and experience of the
physicians who were involved in sickle cell anemia research. The final set of
data to be used for prediction contained the results of a standard blood test, in
addition to some genetic information. A detailed list of the parameters that were
used can be seen in Table 4.3.

Selection of the parameters listed in Table 4.3 was based solely on educated
guesses on the physicians’ parts (such as the genetic information), and some
earlier simple statistical analysis of various data. Therefore, it could be expected
that some of the 23 parameters might not be relevant to the problem at hand. It
is also quite possible that not all relevant parameters are included in the study.

Data preprocessing. Many medical databases, especially those that go years
into patients’ past history and treatment, are in printed or written form. The first
step in this research was to create an electronic database usable by the modeling
team. This process was accomplished at the Medical College of Georgia. All
patients’ data were entered into a widely available spreadsheet. These data then
were sent to the modeling team for analysis.

Soon after the first round of analysis was completed, the following problems
were observed:

1) Missing data. A quick look at the data revealed that much of the data was
missing. For instance, if the patient was feeling well in that particular
month, certain measurements (tests) were not conducted. Furthermore,
there were instances where the patient simply did not show up for follow-up
tests because he/she was feeling okay. In some instances, the paperwork
containing the data for the early stages of the treatment was misplaced and
lost. There were two types of missing data in our databases. In some
instances, certain variables (pieces of data) were missing from a monthly
record. In others, an entire monthly record was missing.

2) Incorrect data. Simple statistical correlation analysis revealed that there
were some severe outliers. Most of these were traced back to human error.
But there were also data that simply were off the chart, but not traceable to



any human error. All the human errors were corrected. However, the
nontraceable extreme outliers were excluded from the study.

3) Invalid or corrupt data. In some cases, there were patients who became
pregnant against the doctor’s advice, or underwent a blood transfusion due
to other complications in the middle of the treatment period. The data of
such patients were excluded from the study as the effects of such events on
a patient’s blood chemistry and his or her ability to respond to Hydroxyurea
was unclear.

Table 4.3 A Description of the 23 Parameters for Which Data was Obtained
from the Patients. From H. Valafar, et al., [32].

Parameter Description Units
Age Age of patient at the time of analysis Days
Sex Male/Female F=1, M=2
NAGG o Globin gene number None
BAN Number of BAN haplotypes 1,2, or 3*
None
BEN Number of BEN haplotypes 1,2, or 3*
None
CAM Number of CAM haplotypes 1,2, or 3*
None
SEN Number of SEN haplotypes 1,2, or 3*
None
WGT Weight of patient Kg
%HbF Fetal hemoglobin, as % total None
hemoglobin
HbF Fetal hemoglobin, absolute value g/L of blood
Hb Total hemoglobin concentration g/dL of blood
RBC Red blood cell count x 10"/ Liter
PCV Packed cell volume (hematocrit) Liter / Liter
RDW % Variation in the size of red cells None
Retic Reticulocytes x 10
MCV Mean cell (erythrocyte) volume Femtoliters
MCH Mean cell hemoglobin Picograms
WBC White cell count x 10’ / Liter
Polys Polymorphonuclear leukocytes x 10’ / Liter
Plats Platelet count x 10’ / Liter
Bili Bilirubin concentration in blood mg/dL
NRBC Nucleated red blood cells seen in Number per
peripheral blood WBC
Duration Duration of treatment a patient received Days
to arrive at the maximum %HDbF level

*The actual values were 0,1,or 2, but 0 could not be used (see last paragraph
under ANN Analyses).



Problem definition. Further problems arose as the team prepared for the first
round of modeling experiments. One of the more fundamental problems, and
often one that is usually difficult to solve in medical decision-making problems,
was with the definition of the problem (problem statement). After further close
examination of the data, it was realized that the definition of the problem was
inadequate and that the experiments were destined to either fail, or to produce
results that were medically useless. The original statement of the problem was
as follows: “Develop a system that can accurately distinguish positive
responders from the nonresponders using pretreatment data.” Furthermore, a
“positive responder” was defined to be “a patient whose initial percentage HbF
(%HDF) doubles at some point during the treatment.”

After looking at the data, it was soon realized that while this definition may
work for patients whose initial %HDbF is, say 7%, or higher, it does not work so
well for patients whose initial %HbF is 1% or 2%. In other words, while
Hydroxyurea treatment might increase a patient’s initial %HbF value from 1%
to 2% at some point during treatment, it is not very likely that he/she would
experience any benefits (reduced number of hospital visits, or reduced severity
of symptoms) as a result of this minor increase. This meant that even in the
bestcase scenario that a system with 100% accuracy (in separating the patients
who can double their initial %HbF from those who cannot due to Hydroxyurea)
was developed, its results would be clinically meaningless. This is because
doubling the %HDbf value does not translate into reduced symptoms or hospital
visits for many or all patients. A new definition for a “positive response” had to
be devised.

After extensive study of published articles on Hydroxyurea and its
alleviation of symptoms, two possible definitions were suggested:

1) Dynamic patient threshold. 1t was suggested that each patient has a
different level of % HDF, beyond which his/her symptoms begin to taper
off. A patient would be categorized as a positive responder if his/her %HbF
level increased above this dynamic threshold as a result of the treatment.
This dynamic level needs to be calculated or estimated for each patient via
some type of computational means. Although this measure is probably the
more accurate measure of positive response, it was soon realized that in
order to estimate accurately each patient’s threshold, one would need to
have the response model in hand. Since the response model was the final
goal of the project, this definition seemed impractical and was therefore
abandoned.

2) Static threshold. The team agreed that the next best definition was that of a
static threshold across all patients. This threshold was determined by
consulting existing publications and the collaborators at MCG. All these
sources seemed to agree that most patients experienced some type of relief
of symptoms when their %Hbf rose about 15%. [55,57] Hence, if a
patient’s HbF concentration rose above 15% of total Hb during treatment,
he/she was categorized as a positive responder, and all others as
nonresponders. Three patients were excluded from this study, as their



initial % HbF was higher than 15. This threshold divides the final 83
patients included in the study into 58% responders and 42% non-
responders.

Missing Data. The problem of missing data arises in medicine quite often. The
most common causes of missing data are 1) patients who do not come into
clinics for further tests when they start feeling better or, if they do come in, the
nurses and the physicians who record the data are not as motivated to record all
available information; and 2) data are commonly recorded on paper and,
therefore, sometimes are misplaced and/or lost. While these are the two main
causes of missing data, there are others that need not be mentioned here.

In general, regardless of the reason for missing data, the missing data can be
categorized into two classes: 1) missing record: in some instances, the data for
an entire record are missing. A common cause of this type of missing data in
the case of SCA is due to patients who do not report to the clinic for their
monthly tests when they experience some relief in their symptoms. In such
cases, no data for that month are available for the patient; and 2) missing data
points: In some instances, specific parameters in each record are missing. An
example of this in the case of SCA would be when a patient who is feeling better
reports to the clinic for a monthly test. In some such cases, not all the tests are
conducted, or properly recorded. Human error is also a common source of this
type of missing data.

The first type of missing data did not cause many problems in our
experiments. This is because only the initial parameters of the patient (from
before the beginning of the treatment) were used and the highest level of
percentage HbF during treatment to train the artificial neural network. For this
reason, missing intermittent data were not harmful to our experiments, except in
cases when the highest percentage HbF was also missing. In the cases where the
highest percentage HbF value was missing, all data of that patient were excluded
from the study.

The second type of missing data could be potentially much more
problematic, as it is much more likely for the value of some parameters to be
missing at the initial recording before the beginning of the treatment. Since the
initial values are vital information, all patients who were missing more than two
initial parameters were dropped from the study. The patients whose data were
missing one or two initial parameters were kept in the study as long as the level
of initial percentage HbF was not missing. To fill in the missing parameters,
some experiments were conducted with a few extrapolation algorithms.
However, it was discovered that the best way to deal with the few missing
parameters was to fill them in with zeroes. This is simply because Delta rule
[33] and backpropagation algorithms were used to train our neural networks,
and, as can easily be determined from weight update formulas, when the input
parameter is zero, no learning is conducted in the first stage of the network.
This was the best way to make use of the data without presenting the network
with erroneous data.



Compliance. Compliance is one of the biggest problems in medical research.
The simple cause of it is that some patients stop taking the medication, or at
least reduce the dosage without instructions from the physician when they start
feeling better. This can lead to corrupt data (for our purposes), as a patient
could be falsely identified as a nonresponder. This was the case in our study.
Our initial systems suffered from a relatively high FNF. From formula 4.6, it
can easily be seen that this causes TPF to be reduced, and therefore 4., the arca
under the ROC curve, to be lower than expected. As a result, it could lead to the
false conclusion that the identification technique or system architecture is
inadequate, while the source of the problem really lies in the data.

In the case of many medications, compliance can be measured by the
variation in one or many biochemical parameters. This was the case with HU
and SCA patients. One of HU’s side effects is that it increases the volume of
red blood cells. [58] Among the final 83 patients who were all categorized as
compliant and were included in this study, the mean cell volume increased by an
average of 22% as a result of HU treatment. This is in line with other studies.
[55,56,58,59] The variable mean cell volume (MCV) is thus a good measure of
compliance. This variable was analyzed for each patient. It was decided that six
patients were not compliant and so their data were excluded from the study.

Figure 4.7 shows the bin distribution function of MCV before and after HU
treatment. As can be observed, the distribution has clearly moved to higher
values after the treatment and has a higher mean.

# of patients

Mean cell (erythrocyte)
volume (Femfoliter)

Figure 4.7: Distribution of Average Volume of the Red Blood Cells of 83
Sickle Cell Patients before and after Treatment with HU. From H. Valafar, et al.,
[32].

Neural network prediction model. An ANN using 23 input neurons, 4 hidden
neurons, and 1 output neuron was used for the 15% threshold experiment. This
neural network produced an output value higher than 0.5 if the patient was
predicted to be a responder, and an output of less than 0.5 if the patient was
predicted to be a nonresponder.



The threshold experiment was designed to eliminate the possibility that the
ANN could simply “memorize” the values of the parameters of each patient.
This was accomplished by training ANNs with the parameter values of 82 of the
patients, and then using the values of the patient whose parameters had not been
seen by the ANN, to test the ANN. This procedure was repeated 83 times and
each time an ANN was trained. (A different patient was left out of the training
each time) The result of this experiment is presented in Figure 4.8. Seventy
patients were correctly classified as responders or nonresponders while 13 were
misclassified. Thus, 84% of the responses were predicted correctly. This
experiment was repeated five times with, on average, 86.6 correct predictions
with a standard deviation of +/-2.0.

Variable selection. Researchers in the medical fields are also frequently faced
with the problem of variable selection. In most cases, there is not enough
information to select the relevant variables for a certain modeling/pattern
recognition problem in medicine. Also, one of the reasons that researchers seek
a mathematical model for a disease is to use it to determine the relevant
variables. This information can be extremely helpful in understanding how the
disease works, develops in the body, or is fought against by the body’s immune
system. In the latter case, if the immune system is failing to effectively fight the
disease, information about relevant variables could lead to new medications that
either help the body in eliminating the disease, or at least reduce its symptoms
(e.g., the case of sickle cell anemia).
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Figure 4.8: The Prediction by ANNs of Which Patients Would Respond to HU
by an Increase in Their HbF Concentration to the Point Where it Accounts for
15% or More of Their Total Hb. ANNs Were Trained with the Values of the
Parameters of 82 Patients and then Tested with the Values of the Parameters of
the Patient that Had Not Been Used to Train the ANN. This Procedure Was
repeated 83 times, each time Leaving Out a Different Patient and Training the
ANN With the Data from the Other 82 Patients to Give the Values in the Figure.
Patients Whose HbF Concentration Did Not Reach 15% of the Total Hb Should
have generated an ANN “output” of less than 0.5, while patients whose HbF
Concentration Exceeded 15% of the Total Hb Should Have Generated an ANN
Output of More Than 0.5. From H. Valafar, et al., [32].



Valafar et al. designed their variable selection experiments in the SCA’s case
to identify which of the 23 parameters are most important or influential in
assisting ANNs to predict those patients that will respond to HU treatment.
Determining the importance of each of the 23 parameters was accomplished by
employing two different methods. The first method consisted of a recursive
elimination process in which a different set of parameters was taken out of the
training set. The ANNs were trained with the values of the remaining
parameters. The software measures the degradation of performance due to the
missing parameters. This experiment is an exhaustive elimination process in
which the removal of every combination of parameters (2>-1=8,388,607
combinations) is evaluated. The degradation (or importance) of the parameters
observed is the averages of ten experiments (two different seeds for the random
number generator, and five runs per seed). The final effect of removing each
set of parameters is calculated by averaging the performance degradation of the
ten ANNSs trained without that set of parameters.

The second method of parameter selection is an adaptive technique that takes
into effect the synaptic connection strengths of each variable. This algorithm is
initiated by setting equal values for each parameter. During the course of
training, these values are updated to reflect the strength of the synaptic
connection(s) associated with each parameter. This, in turn, is an indication of
the contribution of each parameter towards the discovery of the correct answer.
Thus, at the end of the training the contribution of each parameter reveals its
importance in the solution of the problem. Each training session was repeated
five times to eliminate any random behavior of the system.

Although the above two methods are distinctly different methods for
parameter selection, both algorithms produced similar results in extracting the
relevant parameters. For this reason, we will only discuss the results of the
second method from this point forward.

The 23 parameters and their scores, which are proportional to their
contributions in predicting the response to HU treatment, are listed in Table 4.4.
This table contains the averaged data for over five different training sessions.
The lack of any particularly influential contributors indicates that no one
parameter contains the information needed to predict the response to HU.
Therefore, based on the given contributions, it is reasonable to assume that the
information needed for a successful classification is distributed among a number
of parameters, perhaps even a fairly large number of parameters.

The ANNs whose testing results are shown in Figure 4.8 used the values of
all 23 parameters. A separate experiment was carried out to determine if the
values of just ten of the twenty-three parameters listed in the previous section
could be used while maintaining the ANN’s full ability to identify responders
and non-responders. This experiment used the top ten parameters listed in Table
4.4. The ability to eliminate unnecessary parameters has the potential for
reducing the problem size by more than 50%, and might assist in elucidating the
mechanisms by which ANNs function.



Table 4.4 The Effectiveness of Each of the 23 Parameters to Assist ANNs in
Predicting the Response of Patients to HU Treatment. From H. Valafar, et al.,
[32].

Parameter Score
Duration 0.083
RDW 0.063
WBC 0.059
Plats 0.053
MCV 0.053
Polys 0.052
WGT 0.050
SSEN 0.045
Retic 0.043
Sex 0.042
SCAM 0.041
NAGG 0.041
Hb 0.040
SBAN 0.040
MCH 0.035
RBC 0.034
SBEN 0.034
Bili 0.034
Age 0.033
HbF 0.032
%HbF 0.031
PCV 0.031
SNBRC 0.030

The ANN trained only with the 10 selected variables had remarkably similar
results to the one trained with all 23 variables. Except for 2 of the 83 patients,
the results of the 2 networks were very similar. The network trained with ten
variables produced outputs that were more clearly defined. The mean of the
probability density function of the output z of the smaller network was higher
for positive responders, and lower for nonresponders. By the same token, the
standard deviation of both curves was smaller than those of the larger network.
Furthermore, the two patients whose classification changed by using the smaller
network were both marginally classified by the larger network. One was
correctly classified as a responder, and one incorrectly as a nonresponder. With
the smaller network, the first patient was incorrectly classified as a
nonresponder; the second patient was correctly classified as a responder.
Therefore, the TPF, FPF, and the ROC curves remained identical for both
networks.



44 SUMMARY

Artificial neural networks have distinct features that can be advantageous in
modeling natural phenomena in biology and medicine. Applications of ANNs in
these fields are sure to help unravel some of the mysteries in various diseases
and biological processes. In the SCA case, the ANN developed for the variable
selection process helped pinpoint the parameters that possibly play an important
role in understanding the works of SCA. This could lead to a significant
increase in the life expectance of SCA sufferers.

Research in applications of ANNs in medicine and biological sciences
currently remains strong. With more systematic data collection routines
implemented in healthcare facilities, systems such as the ones described in this
chapter are sure to find their way into doctors’ offices and hospital laboratories.
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APPLICATION OF NEURAL
NETWORK IN DESIGN OF DIGITAL
FILTERS

Dali Wang and Ali Zilouchian

5.1 INTRODUCTION

Any action on a signal that modifies the spectral content of the signal is called
filtering. This includes the enhancement or suppression of certain features of the
signal and is usually achieved by the use of linear time invariant systems. There
are situations where the system may change with time in a particular manner;
such systems are called adaptive filters. In this section, we describe fixed filters
only.

There are two broad classes of digital filters. The first class is called finite
impulse response (FIR) filters, since their response to an impulse dies away in a
finite number of samples. FIR filters are developed as non-recursive structures
and are inherently simpler to design.

The second class of digital filters is recursive filters. The impulse responses
of recursive filters are composed of sinusoids that exponentially decay in
amplitude. This makes their impulse responses infinitely long. Because of this
characteristic, recursive filters are called infinite impulse response (IIR) filters.

An IIR filter can be represented by either difference equation or state space
form. The state space form in general involves more numbers of coefficients
than a transfer function unless it is represented as one of the canonical forms.
However, there are many benefits from using a state space model in the
analysis, design, and implementation of digital filters. First, the state space
model, with the exception of canonical structures, is more robust than a transfer
function representation. In other words, it exhibits less coefficient sensitivity.
Second, various forms of state space models possess distinctive properties that
are desirable in different applications. For instance, the balanced realization
exhibits superior performance in the context of minimizing scaling and round-
off noise. Third, the major part of modern control theory is based on the state
space model. Furthermore, the difference function representation could be
uniquely determined by the state space form representation. The reverse is not
necessarily true. In this chapter, the state space model will be utilized for the IIR
filter design.

In the above filter representations, all inputs, outputs or states are function of
a single variable, which is time in most cases. We call these types of filters one-
dimensional (1-D) filters. There are other types of filters in which the inputs,
outputs and states are the function of more than one variable. One example is



the filter used in image processing. Therein, the inputs and outputs values are
the function of two variables, i.e., horizontal and vertical coordination. The
digital filters used in this case are two-dimensional (2-D) filters. The same
concept can be extended to M-D filters and signals. In this chapter, we will start
with the design of 1-D IIR filter. The design process using neural networks
(NN) is presented in detail for 1-D IIR filters. Then the concept is extended to 2-
D filters. If the dimension of the filter is not explicitly specified, 1-D filters are
implied in this work.

5.2 PROBLEM APPROACH
5.2.1 Neural Network for Identification

There are numerous techniques developed for digital filter design, both in
frequency domain and in time domain. Most of these methods are analytical
techniques. They work well with well-defined filter formats and the availability
of accurate design data, such as the input and output of the filter. What if the
data set used to design filter is noisy, or there is a need for customization in the
filter’s representation? This is where the NN based design technique comes into
the picture.

The capability of neural networks as universal approximators has been
extensively studied for system identification and modeling during the last two
decades [1] — [20]. Most of the proposed methods are based on two types of NN
architectures, back propagation and Hopfield recurrent neural network [1], [2],
[10]. However, most of these identification techniques result in NN weight
matrices which do not necessarily correspond to the parameters of the original
system, such as in the works of Narendra and Parthasarathy [15], and Poggio
and Girosi [16].

In this chapter, a novel NN architecture for design of recursive digital filters
from input/output data in the state space form is presented. We use internal
hidden neurons to encode the temporal properties of sequential inputs and
outputs as the iterative states of the given process. The dynamic nature of the
system is implicitly constructed within the internal neurons of the proposed
model, which previous approaches have not addressed. Since the structure of
the process is built into NN, we can obtain a particular state space structure as
the result of the identification, such as controllability canonical, observability
canonical forms, etc. [8]. Such flexibility is important in various
implementations of linear discrete systems, such as computation complexity,
memory requirement and overflow analysis. The significance of this work is in
two fold. First, obtaining the state space model of a linear system is the basis for
many engineering applications where a fast on-line, flexible, and robust solution
is required [21]-[25]. Second, applying NN to this complex linear system
modeling problems can be an aid to understanding and developing new
architecture of NN for more general linear and nonlinear programming



problems [12], [14]. In fact, the proposed identification scheme has been
extended to general 2-D digital filters design problems in section 5.5 where an
analytical solution is difficult to obtain.
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Figure 5.1: A General Network Structure.

5.2.2 Neural Network Structure

The operation of an IIR filter can be specified by the equation
1) D Q -
}/(/7): 2 bjx(”_l)_zaj)’(”_l) (5.1
=0 =l

The above difference equation provides us a procedure for determining the
current output in terms of the present and past inputs as well as past output. An
IIR filter can also be represented in state space form:

X (n+1)=AX(n)+ Bu(n)
y(n) = CX(n)+ Du(n) (5.2)

where ue R”, ye RY, Xe R" are input, output and state vectors, respectively. A,
B, C, D are matrices of appropriate dimensions. The main objective of this work
is to obtain 4, B, C, D through NN by the training of an NN with available
input/output data.

The proposed NN structure is a recurrent network from an error propagation
viewpoint. The general network architecture is shown in Figure 5.1. For
simplicity, the optional activation functions are not explicitly shown on the
figure. The hidden neurons provide internal representations of the system via
their self-feedback and connection with other neurons. These units memorize



the status of the previous internal state, which are mapping information of
previous states into present output. From such a viewpoint, the neural network
is a recurrent network. However, the adjustment of the weights is based on the
desired output values and actual outputs. Therefore, it can be considered as an
error back propagation in the sense of training method.

In order to correlate the NN model with the state space model in Equation
5.2, an NN structure is proposed as shown in Figure 2. The association between
various parameters of NN (weights, denoted as Ann, Ban, Can, Dan for easy
correlation) and the above state space model (A, B, C, D) can be observed from
the proposed NN structure. A sub-section of Axn, By, Can, Dan is shown in
Figure 5.3 for a single neuron. The weights between hidden neurons (solid
nodes) provide the representation of matrix A. The weights between input
neurons (gray nodes) and hidden neurons and the weights between the hidden
neurons and output neurons (empty nodes) represent the mapping of B and C,
respectively. The weights between the input and output neurons map to D.

unit delay
VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV unit 1< .
A |
hidden x(n) S x(n+1)
neurons .| | s
-dy(n)
—_— >
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input output
neurons — neurons
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Figure 5.2: The Network Structure Designed
for System Identification.
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Figure 5.3: A Single Neuron.



5.3 A TRAINING ALGORITHM FOR FILTER DESIGN

The training objective is based on the instantaneous error value of a single
input/output data pair. The algorithm can be implemented as a real time
algorithm since the training could be accomplished as each input/output sample
is fed to NN. The derivation of the algorithm is briefly presented in this section.
It is different with conventional error back propagation since it possesses a
recurrent process built into the network. The off line training algorithm can also
be derived for system identification [8].

5.3.1 Representation

Consider an NN consisting of p external input connections, q external output
connections and N hidden units. The various neurons can be classified into three
categories: input neuron set ue R” denoted as 7, hidden neuron set xe R" denoted
as H, and output neuron set ye R? denoted as O. At discrete time n, let u(n)
denote the p x 1 input vector, x(n) denote the N x 1 vector as hidden neuron
values, and s,(n) denote the q x 1 output vector of NN. As shown in Figure 3, a
neuron j is either an output neuron or a hidden neuron prior to the delay. For
such a neuron j which is connected to other neurons such as i, the corresponding
activation value and output value are presented as follows:

(1) = ) (D —d. (5.3a)
7% ];‘Lw,,(ms,(n) /() -
’7‘(”) = Z w/’/‘(”)si(”) .
R ewUr (5.3¢)
5/-(”) = (P/f(’"j(”))

JeHJo

where wj;(n) is the weight between two neurons, @) denotes the activation
functions for hidden neurons (¢.(-)) and output neurons (¢,(-), di(n) is the
desired outputs value at time n.

5.3.2 Training Objective

The on-line training objective is to minimize the mean-squared output of the
NN at any instant discrete time n,

(s) = %Z s, (7) (5.3d)
e

where s,(n) is the output error at time n, which is the difference between the
actual and desired outputs.



5.3.3 Weight Adjustment

A dynamic approach to minimize the cost function Equation 5.3d is to make
the NN evolve its weight space along a trajectory that descends against the
gradient of €(n). This condition implies that for all ie HUO, je HUI:

o, (1+1)= 0,6 H Ao, (1) (5.4a)
__, Jem)

where M is a learning rate which should be selected small enough to make
weight change adiabatically and maintain the stability of the model.

The error gradient in Equation 5.4b could be obtained based on Equations 5.3c,
and 5.3d:

oe(n) de (7) ’ or,(n)
aa)y(ﬂ) - )EZOS ( )860,,(/7) }EZOS.V(”)(Py (}Ty(”)) 90,(7) (5.5)

The derivatives in the right hand side of Equation 5.5 are the gradients of
output neuron value vs. NN weights. They are obtained using the following
equations. From Equations 5.3

Iry(n) 9@ 4(7) - 5,(7)
wl/(”) 1378 860#(”)
leﬂuggef/u/
ds;(7)
; . 5.6
A’;/( (90) ( ) ‘(”)) " /f;} 8601‘/(”) wﬂ(ﬂ)) (5.6)

ds, (7)
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where 8(i-y) is the Kronecker delta function that equals to 1 when i = y and 0
otherwise. The above derivation is based upon the following observation:

=0(/— ) s () + . (7)
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ow,(n)

kel

0 otherwise
5.7)

Thus, we can obtain the gradients of output neuron values v.s. NN weights
as given in Equation 5.8, which are functions of neuron values, weights and the
gradients of hidden neuron value v.s. weights at instant discrete time n.



Iry7) . or.(n)
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€0,
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The gradients of hidden neuron value v.s. weights in Equation 5.8 are
obtained as follow

orn) @4 (7= sy (7=1)) _
W herrUrs 860,](/1)
feHQré:/je,Hu/ (5.9)
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The observation similar to Equation 5.7 is also applied here. The n is
assumed to be sufficiently small such that w;(n)=w;(n-1).

The iterative process defined by Equation 5.9 provides the values needed in
Equation 5.8. In sequel, the derivative value required in Equation 5.5 can be
obtained. The weight update process in Equation 5.4 is accomplished with all
the neuron value and derivative values at discrete instant time n.

5.3.4 The Training Algorithm

Based on the previous discussion, the proposed algorithm can be
summarized as follows:

1. Initialize NN by random assignment of initial weights, zero value for

all the weight gradients and hidden neuron values.

2. Present an input, desired output vectors pair to the NN.
Calculate the activation level of all neurons, including hidden neurons
and output neurons.
Calculate the output error using Equation 3.3d.
Calculate weight gradients using Equation 5.9, 5.8, and 5.5.
Update the NN weights by equations 5.4a and 5.4b.
Repeat steps 2 to 6 for a new input/desired output pair. Multiple
epochs may be required until the error criterion is bounded to a pre
specified value.

w

No v ok

5.4 IMPLEMENTATION ISSUES
5.4.1 Identifying a System in Canonical Form
There are infinite state-space structures with the same transfer function for a

linear system or digital filter. The representation of Equation 5.2 can be
transformed into different forms, such as controllability canonical form,



observability canonical form, normal structure or balanced structure. These
special forms can be built into NN by utilizing special network structures. By
selection or elimination of certain weight connections in advance, we can obtain
the system representation in such a particular form. This, on the other hand,
simplifies the network design and reduces the number of free parameters
compared to a fully connected network.

5.4.2  Stability, Convergence, Learning Rate and Scaling

The stability of recurrent networks has been extensively studied [4]. In
general, for the asymptotically convergence of the network, the learning rate m
should be assigned a small value. However, for fast convergence and local
minimum avoidance, a large learning rate 1 is preferred. To resolve such two
conflicting requirements, an adaptive learning rate scheme may be adapted
similar to NN MATLAB Toolbox[27]. There are advantages by starting with a
low learning rate and adaptively changing it. In order to improve the stability
and convergence of the network, the input and desired output data are scaled to a
proper range of value before being fed into the network.

55 2-D FILTER DESIGN USING NEURAL NETWORK
5.5.1 Two-dimensional Signal and Digital Filters

There are many signals that are inherently two-dimensional (2-D) in nature
and for which 2-D signal processing techniques are required. Included in this
group of signals are photographic data, medical X-rays, seismic data, gravity
and magnetic data, etc. Many of fundamental ideas of 1-D signal processing
may readily be extended to 2-D case. However, there are some very important
concepts of 1-D systems that are not directly extendible to 2-D systems.

One major difference between 1-D and 2-D systems is that we can introduce
global and local state in the 2-D cases. The global state (which is of infinite
dimension in general) preserves all the past information, while the local state
gives us a size of recursion to be performed at each step by a 2-D system. This
leads to the definitions of global as well as local controllability, observability
and as a result, the minimality of 2-D systems.

Similar to their 1-D counterparts, the 2-D recursive digital filters have the
advantage of computation efficiency and memory reduction capabilities in
comparison with non recursive digital filters. The 2-D state space models have
been mainly used for the spatial domain representation of the 2-D causal
recursive digital filters (CRDF). Kung et al. [38] have shown that the Roesser’s
model [37] is the most general form and the other representations can be
imbedded in the Roesser’s model.

Roesser’s local state space (LSS) model divides the local state into a
horizontal and a vertical state which are propagated in horizontal and vertical



directions respectively. It is defined by the equations

(i+1,) _|4 4\ Gp| | B . =AY+ BU
L/‘(I;HI)} L@ AJL”(U) s enm A

(5.10)
win=la Cz]ﬁ(ljf’]ww;/) =Cx+0U
x (Z/
where;
i is an integer-valued vertical coordinate,
j is an integer-valued horizontal coordinate,
xh(i, J) €R" is the horizontal state vector,
x'(i, j) R is the vertical state vector,
u(i, j) eR’ is the input vector,
¥(i, j) €R? is the output vector,
and A, As, As, A4, By, By, Ci, C,, D are real matrices of appropriate
dimensions.

5.5.2  Design Techniques

During the last two decades various design techniques have been proposed
for 2-D recursive digital filters, either in frequency domain or in spatial domain
[28], [30]-[36], [40]. However, most of those techniques are for a special class of
2-D filters called as separable-in-denominator digital filters (SDDF) [31-33],
[36]. This is due to the fact that a SDDF filter shares some important properties
of 1-D counterpart such as stability, minimality conditions and absence of
singularity of the second kind. Therefore, many 2-D spatial design techniques
have been developed using SDDF as the extensions of corresponding 1-D
techniques [31-33]. There are relatively few techniques developed on
identification and design of general 2-D recursive digital filters. One of the
earliest methods was proposed by Shanks [39] et al., and Aly and Fahmy [30].
However, the problem of general 2-D identifications using an analytical solution
has not been addressed due to its mathematically complex nature.

The NN approach designed for a 1-D recursive filter could be extended for
general 2-D recursive digital filters. By a similar measure, an NN model has
been developed to approximate an arbitrary 2-D system response and obtain the
LSS model parameters from NN structure. The distinction of the proposed
identification technique in comparison with existing methods lies in its two
fold flexibility. First, the filter's input and resulting output could be selected
arbitrarily by the designer in spatial domain. In other words, the proposed
technique can be uniformly applied for identification of a 2-D filter with an
impulse response, a step response or a response to a random 2-D input signal.
Second, the method is applicable to a general Roesser's LSS model as well as
specific classes of 2-D filters, such as separable in denominator filters.



5.5.3 Neural Network Approach

By using a similar NN structure proposed for a 1-D recursive filter as shown in
Figure 5.1, we could develop a technique for 2-D recursive filter design.
Consider the general Roesser’s LSS model (5.10), an NN structure, which
combines recurrent and feedforward processes similar to an LSS 2-D model. In
order to correlate the proposed NN model with LSS model (5.10), an NN
structure is shown in Figure 5.4. Hidden neurons are classified into two different
types related to the vertical and horizontal states with their self feedback loops
and connections. The correlation between various coefficients in model (5.10)
and weight connections as shown in Figure 5.4 can be easily observed. The
weights between input neurons and hidden neurons (®, ®.) are represented by
matrices B, B, respectively. The weights between similar hidden neurons (®an,
.y) are established by matrices A, and A4 respectively. The weights between
two different classes of hidden neurons (®uy, ®.) are provided by the inter-
connection matrices A, and Aj; respectively. The weights between hidden
neurons and output neurons (Myn, ®y) are represented by matrices C; and C,.
Finally, the weights between input and output neurons (®y,) are related to each
other by the elements of matrix D. Therefore, by proper generation of various
weights in the proposed NN model, the identification of LSS model (5.10) can
be achieved.
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Figure 5.4: The Neural Network Structure for a 2-D System Identification

A general 2-D system identification algorithm is developed based on the NN
structure. It is a pattern mode learning since the weights are updated after the
presentation of each training sample data. The technique distinguishes itself



from an ordinary NN training algorithm in two aspects. First, there are two
classes of hidden neurons in the proposed NN structure. They are related to each
other via weight connection but develop their values in distinct ways. Second,
the neuron outputs are the function of two independent variables, instead of one
variable, as is related to a 1-D case. Due to the feedback of hidden neurons, the
NN architecture is a recurrent one. In addition, there are feedforward
information processes such as the direct path from input to hidden neurons and
hidden to output neurons. The adjustments of the weights are based on the
desired output values and NN actual outputs. Therefore, it can also be
considered as a supervised learning network in the sense of training method.
The details of the algorithm are presented here. Interested readers can refer to
Wang [8].

5.6 SIMULATION RESULTS
5.6.1 1-D Filters

Three numerical examples are provided herein; each emphasizes different
aspects of the proposed algorithm. The following L2 and Lee norm [24], [26]
error criteria are defined for error analysis.

€ —max|H HNN|/max|H|
ndT

%zaf HNN)ZE/Z/%z(H)Zd/Z

where H and Hyy are the impulse responses of the original system and identified
system, respectively, and T is the given trajectory (from discrete time ny to n;)
along which the error norms are calculated.

Example 5.1:

The system to be identified is a 5™ order Chebyshev type I filter with 0.8
decibel of ripple in the passband and 0.5 as cutoff frequency [26]. The transfer
function of the filter is given as:

0.0247 z° + 0.1237 z* + 0.2473 2 + 0.2473 7 +0.1237 z +0.0247

T(z)=
1.0000 z° -1.0925 z* +1.6014 2> -1.1520 z2 + 0.6420 z- 0.2074

First, we generate 200 random input data whose amplitudes are uniformly
distributed in the range of [-1, 1] and obtain the corresponding output. An NN
with single input, single output and five neurons in hidden layer is trained using
input/desired output pairs for 200 epochs. The final training mean squared error
in Equation 5.3d is 1.0169E-03. The identified filter tusing NN is:



0.0579 0.3237 0.0910 -0.8210 0.0541
-0.1457 0.4156 0.5757 0.0925 -0.0298
Ay =10.1962 -0.4314 0.1408 0.0872 -0.5384
0.7494 0.3956 -0.11250.2536 0.0094
0.0246-0.2153 0.5508 -0.0211 0.2364

By =[ 03272 0.6079 0.4382 -0.1568 0.0296]"
Cyy =[-0.2413 0.4809 0.0930 0.6673 0.0279)

D,y = 0.0247

The transfer function of the identified filter is:

0.02469 7 +0.1231z* +0.246 2 + 0.2431 22 +0.1196 z+ 0.02023
2 -1.104z* +1.607 2> -1.163 z> + 0.6461 z - 0.209

Ty (z2)=

The impulse responses of both the original system (H) and NN identified
system (Hxy) are obtained for 40 samples. The two error values are €, = 0.39
percent and €_ = 0.277 percent respectively.

For comparison, the system is identified with the same set of data by two
other well known methods, least square [24], and subspace [27]. The
comparison is shown in Table 5.1. To verify the robustness of the proposed
method, the same system is identified in two noisy conditions. In the first case,
the measurement contains zero-mean white noise whose variance is 5 percent of
the maximum amplitude of the response. In the second case, in addition to white
noise, the measurement also contains 5 percent density of wild (spike) noise
whose amplitude is equal to 10 percent of the maximum amplitude of the
response. The error norms of the proposed identification technique in
comparison to available techniques are shown in Tables 5.2 and 5.3. The results
show that the proposed technique provides more robust solutions under noise,
especially wild noise condition.

Table 5.1: Error Norms of Example 5.1 under Noise Free Conditions

N. N. Lease Square Subspace
€ 3.90e-03 3.67e-15 1.93e-15
€., 2.77e-3 3.77e-15 2.52e-15

Table 5.2: Error Norms of Example 5.1 under White Noise Conditions

N. N. Lease Square Subspace
€ 3.52e-02 8.30e-2 4.95e-2
€. 3.56e-2 7.15e-2 3.71e-2

Table 5.3: Error Norms of Example 5.1 under White Noise +
Spike Noise Conditions

N. N. Lease square Subspace
€ 5.34r-2 1.21e-01 9.07e-2
€., 5.29¢-2 8.98e-2 6.48¢e-2




Example 5.2:

This example is presented in order to demonstrate the use of an
observability canonical state space form as the result of identification. By
selection and elimination of some weights in advance, the observability
canonical form is obtained. The filter to be identified is governed by the
following state space model.

-0.0051 0.2043 -0.7014
A= 05641 0.0923 0.3789
0.4642 -0.6482 -0.3021

B=[0.4121 0.8415 0.2693]

C=[0 05373 0.4676]

The corresponding transfer function is as follows:

0.5781 22 +0.1419 z +0.1103

Tz)==3 2
z°+0.2149 z“ +0.4291 z—0.3562

In order to obtain the observability canonical form, some weight connections
between hidden neurons were eliminated in advance. In addition, some of the
connections were taken out of update process by assigning a unity weight in the
beginning of the training phase. The NN is trained with 300 random generated
inputs. The identified system is given as:

0 0 0.3568 T
By :[0.1099 0.1413 0.5781]
Ay =110 -0.4248
01 -0.2139
Cyu = lO 0 1J

The corresponding transfer function matrix is presented as:

T ()= 23781 2> +0.1413 z +0.1099
NN 3.,02139 2404284 ,_0 3536

The two error values for 50 samples impulse response are €, = 0.03686
percent and €_ = 0.03827 percent respectively. For comparison, the same system
is identified with least square and subspace methods. In addition, two noise
conditions are considered similar to the above example. The error norm
comparisons are shown in the Tables 5.4, 5.5 and 5.6.

Table 5.4: Error Norms of Example 5.2 under Noise Free Conditions

N.N. Lease square Subspace
€ 3.69¢-4 1.47e-15 1.26e-15
€., 3.83e-4 1.20e-15 9.60e-16




Table 5.5: Error Norms of Example 5.2 under White Noise Conditions

N. N. Lease Square Subspace
€ 1.39¢-02 3.26e-2 1.45e-2
€. 1.40e-2 2.46e-2 1.40e-2

Table 5.6: Error Norms of Example 5.2 under White Noise +
Spike Noise Conditions

N. N. Lease Square Subspace
€ 2.86e-2 1.01e-01 4.18e-2
€. 2.69¢-2 6.88¢e-2 4.67¢-2

Example 5.3:

This example is provided in order to emphasize the effectiveness of the
proposed model for multi-input and multi-output systems. The filter to be
identified is a two inputs, two outputs system governed the following state
space form as provided by Taylor [26]:

[.0.5484 04138 0.2432 0.6010 0.1577 |
A=|-0.4776 -0.5864 0.0900| AZ=[0.1769 0.9879
0.0472 -0.2550 -0.2294 0.8284 0.2572
C_'o 02194 0.6960]  _[0.6962 0.6695 |
| 0.1016  0.6347 0.7948 0.7529  0.2500 |

The corresponding transfer function matrix can be derived as:

0.69622° +1.56522* +1.17692+0.3906  0.75292° +1.85892° +1.35962+0.4297

o) = 22 +1.36422° +0.79102+0.09359 22 +1.36422° +0.79102+0.09359
0.66952° +1.30912% +0.71972+0.1067  0.25002° +1.18852* +0.75102+0.1146

22 +1.36422% +0.79102+0.09359 22 +1.36422° +0.79102+0.09359

The NN is trained with 200 random generated inputs for 200 epochs. The
system identified by NN is:

-0.8939 0.3002 03030
0.8840 0.4722 1.0046
Ay =1-0.5009 -0.3405 0.2023 B, =
1.0047 1.1123 1.2534
-0.0768 -0.7551 -0.1298
[0.3337 -0.5623 0.5832 _[0.6962 0.6695
" 10.3683 -0.2553 0.6237 10,7529 0.2500

The corresponding transfer function matrix is:

0.69622° +1.56522 +1.1772+0.3906  0.75292° +1.8592% +1.362+0.4297

7(9=| 7 +13642°+0.7912+0.09358 2 +1.3642° +0.7912+0.09358
w 0.66952° +1.30922 +0.71972+0.1067  0.252° +1.1892% +0.75092+0.1146

22 +1.3642%+0.7912+0.09358 22 +1.3642°+0.7912+0.09358




The two error values measured for the first 50 samples of impulse response
are calculated in vector form:
.082 9.1
{7 082 9 05].10_4

e =

oo

2.995 8.033

5817 7.546| |
4320 9.211

5.6.2 Two-dimensional Filters

Two numerical examples are provided for 2-D recursive filter, each emphasis
different aspects of the proposed algorithm. The following L, and L., norm [29]-
[32] error criteria are defined for error analysis:

&, = max|H(i, /) = Hyy (i, )| /maxlﬂ(i,j)l
NS [(oary i
O
& =05 (H(,))~Hy@)*0 /0% (HGGH)H O
& o ] G@.ma ]
MNR = Maximum Negative Ripple
where H(i,j) and Hyn(i,j) are the impulse responses of the original system and
identified system, respectively, A’={(i,j) | 0 < i< M’, 0 £j < N’} is the given
region where the error norms are calculated.

Example 5.4: First Quarter Gaussian Filter

The prototype model used by Aly and Fahmy in [30] for designing a 2-D
causal recursive filter is presented here. It is a first quadrant Gaussian 2-D scalar
filter described by the following impulse response:

H(i, j) = 0256322 exp{—0.103203 i —4) +(j —-4)*]}
with most of its energy in the first-quadrant. The seclected region for
identification consists of A={(i,j) | 0 <1< 10, 0 <j < 10}. The same region was
used for error norm calculation: A’=A.

The proposed NN consists of one input neuron, one output neuron, and two
groups of hidden neurons, each with three neurons. After 80 epochs of training,
the identified 2-D filter in Roesser’s LSS model of order (3,3) is given as,

[13.0059¢0  -1.8840e0 2.2325e0 8.8268¢-1 -3.1194e-1 -6.4903e-10
52.0812e0 -9.6880e-1  2.0168e0 1.4857e0  -5.2382e-1 -1.0898e0 B
_ [9.1445¢-1  6.9213e-1 -1.3040e-1| 3.5259%¢-1 -1.2248e-1 -2.5830e-10
W 51.7607e-1 1.2241e-1 -1.5569¢-1| 4.8882¢-1 -2.7540e-1 -1466376-1%
E4.4500e—1 -2.8219¢-1 3.2107e-1| 8.4165¢-1 1.2692e0 4.78496—1%

§4.559e-1 3.1093e-1 -3.8792e-1]|-8.6954e-1 -8.7703e-1 1.4460e-1Q

BNN:[-6.6533e-3 -1.1209¢-2 -2.6681e-3 | -1.0466e-1 6.0182¢-2 -1A4947e-1]r

CNN:[3.87306+1 -2.9244e+1 1.8910e+1 | -1.2433¢0 4.3619¢-1 9.11526-1]



D,,, = 9.4009¢ - 03

Table 5.7 is presented to compare the error measurements of our design to
that of Aly and Fahmy [30]. Notice that the total order realization of our design
(3 +3 =6) is the same theirs (4 + 2 = 6).

Table 5.7: Simulation Experiments for Example 5.4

€2 % €., % MNR
Our Design 3.71 5.16 Always positive
Design [Aly and Fahmy] 10.78 9.19 0.04479

Example 5.5: A (2, 2) 2-D Digital Filter

This example is presented to illustrate the identification of a 2-D system
using various responses. The random input response as well as the impulse
response are utilized to identify the given 2-D filter. The 2-D filter to be
identified is governed by the following state space model (D=0):

1.0000e-1 2.0000e-1 | O -1.0000e - 1
_|-1.0000e-1 0 1.0000e-1 0
| 1.0000e-1 0 2.0000e-1 0

0 1.0000e-1| 1.0000e-1 1.0000e-1

£=[1.0000¢0 1.0000€0 | 5.0000e - 1 1.0000e0]7
€=[1.0000¢0 5.0000¢- 1| 5.0000e-11.0000¢0]

First, we generated 50 x 50 random input data within region A={(i,j) |0 < i
<49, 0 £j <49} whose amplitude was uniformly distibuted in the range of [-1,
1] and then obtained the corresponding output. An NN with single input, single
output and a total of four (two for each type) hidden neurons is trained using
genenated input/desired output pairs for 40 epochs. The identified filter is:

H22048¢-1  3.7549¢-2 | 5.5330¢-2 6.1638¢-21

NN—E4.58536-3 -6.2183¢-2 | 5.4698¢-2 9.2342e-2%
[31.7303¢-2  8.1130e-2 | 7.5142¢-2 1.1919¢-1

(14.9556e -2 -7.4836e-2‘-5.5614e-2 7.9612e-201

Byy =[1.0399¢0 7.2060e-1 | 7.7643e-1 5.8653¢-1]"
Cyy =[7.6376e-1 9.7999¢-19.9556¢-1 8.1350e-1]
In the second phase, the same NN was trained with the impulse response

defined in the region A={(1,j) |0<1<9,0<j < 9} for 40 epochs. The state-
space form of the identified filter is as follow:



01.0641e-1 7.7004e-2 | -1.2062¢-2  5.3092e-20]
H9.1873¢-2 8.5081e-2‘ 2.9856¢-2 7.1189%-20]
ANN=%3.84496—3 6.9885¢-2 | 8.1948¢-2 8.9764e-23
H6.8676e-4 7.1595¢-2 | 8.3222¢-2 9.0390e-2F

Byy =[1.2555¢0 3.1189e-1]1.1109¢0 4.4088e-1]"
Cyy =[1.078460  4.6248¢-1| 8.4716e-1 6.9503¢- ]

The region for error norm calculation is A’={(i,j) |0 <1< 19,0 <j < 19} for
both of designed filters. In Table 5.8, a comparison of the error analysis of two
different training results is shown. It is observed that a random input response
provides a more accurate model in comparison to an impulse response. A similar
conclusion is obtained based on other simulation results, due to the fact that the
responses generated by a large amount of random inputs contains more
information compared to the impulse responses.

Table 5.8: Results of Example 5.5

€2 % £, % MNR
(original -5.5¢e-3)
Design with a random response 0.166 0.115 -5.8e-03
Design with an impulse response 2.82 3.14 always > 0

5.7 CONCLUSIONS

In this chapter, a novel NN technique is introduced for the design of recursive
digital filters in the state space form. Instead of using spatial representation of
time by delayed input/output feedback, we use hidden neurons to encode the
temporal properties of the system. Through the self feedback of hidden neurons
as well as the interconnection between the neurons in the input, hidden, and
output layers, the proposed NN structure mimics the dynamics of a linear
discrete system or digital filter. The proposed method also provides flexibility
in selection of various state-space forms such as controllability and observability
canonical forms as an identification model.

The NN approach is also extended for the design of general 2-D recursive
digital filters where an analytical solution is not necessarily available. An
attractive feature of the proposed algorithm is that the LSS model structure to be
identified could be predefined in the design stage. This feature not only provides
us with flexibility in selection of the structure of a 2-D filter, but also facilitates
analyses on several implementation issues of 2-D filter, such as computation
efforts and memory requirement. Furthermore, the proposed method herein
places no limitation on the type of response to be approximated. Namely, any



type of responses with sufficient data points could be used as a training sample
for filter identification.

The effectiveness as well as robustness of this method have been
demonstrated by simulations experiments for both single input/single output
and multi-input/multi-output digital filters.

REFERENCES

1. Hopfield, J.J., Neural Networks and Physical Systems with Emergent
Collective Computational Abilities, Proc. Nat. Acad. Sci., Vol. 79,
2554 — 2558, April 1982.

2. Hopfield, J.J., Neurons with Graded Response have Collective
Computational Properties Like Those of Two State Neurons, Proc.
Nat. Acad. Sci., Vol. 81, 3088 — 3092, May 1984.

3. Elman, J.L., Finding Structure in Time, Cognitive Science, Vol. 14,
179 — 211, 1990.

4. Pineda, F.J., Dynamics and Architecture for Neural Computation, J.
Complexity, Vol. 4, 216 — 245, 1988.

5. Pineda, F.J., Recurrent Back Propagation and the Dynamical Approach
to Adaptive Neural Computation, Neural Computation, Vol. 1, 161 —
172, 1989.

6. Robinson, A.J. and Fallside, F. A Recument Error Propagation Network
Speech Recognition System, Computer Speech and Language 5, 259 —
274, 1991.

7. Irwin, K., Warwick G.W. and Hunt, K.J., Neural Networks for Control
and Systems, IEE Publication, 1992.

8. Wang, D. Identification and Approximation of 1-D and 2-D Digital
Filters, Ph.D Dissertation, Florida Atlantic University, Boca Raton, FL,
May, 1998.

9. Wang, D. and Zilouchian, A., Identification of Discrete Linear Systems
in State Space Form Using Neural Network, Proc. of Second IEEE Int.
Caracas Conf. on Devices, Circuits and Syst., Venezuela, 338 — 342,
March, 1998.

10. Rumelhart, D.E. and McClelland, J.L.(eds.), Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, Vol. 1,
MIT Press, Boston, MA, 1986.

11. Galvan, J.B. and Perezllzabe, M.J., Two Neura Networks for Solving
the Linear System Identification Problem, Proc. of IEEE Conf. on
Neural Networks, 3226 — 3231, 1993.

12. Cichocki, A. and Unbehauen, R., Neura Networks for Solving Systems
of Linear Equations and Related Problems, IEEE Trans. on Circuits
and Syst., Vol. 39, No.2, 124 — 137, Feb., 1992.

13. Mammone, R.J. and Zeevi, Y., Neural Networks, Theory and
Application, Academic Press, NY, 1990.



14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.
28.

29.

Lippman, M.P. and Chua, L.O., Neural Networks for Nonlinear
Programming, IEEE Trans. on Circuits and Syst., Vol. 35, No.5, 554 —
562, May 1988.

Narendra, K.S. and Parthasarathy, K., Identification and Control of
Dynamic Systems Using Neural Networks, IEEE Trans. on Neural
Networks, Vol. 1, No. 1, 4 — 27, March, 1990.

Poggio, T. and Girosi,F., Network for Approximation and Learning,
Proc. of IEEE, 1481 — 1495, Sept., 1990.

Jamshidi, J. (ed.), Circuits, Systems & Information, TSI Press,
Albuquerque, NM, 1991.

Horton, M.P., Real-time Identification of Missile Aerodynamics Using
a Linearised Kalman Filter Aided by an Artificial Neural Network, /EE
Proc. Control Theory Appl., Vol. 144, No. 4, 299 — 308, July, 1997.
Hampel, F.R., Rondhetti, E.M., Roussew, P., and Stahel, W.A., Robust
Statistics - the Approach Based on Influence Functions, John Wiley &
Sons, NY, 1987.

Wang, D. and Zilouchian, A., Identification of 2-D Recursive Digital
Filters in State-Space Form Using Neura Network, Int. J. of Intelligent
Automation and Soft Computing .

Silverman, L.M., Realization of Linear Dynamic Systems, [EEE
Transaction on Automatic Control, AC-16, 554 — 567, 1971.

Wang, D. and Zilouchian, A., Model Reduction of Discrete Linear
Systems via Frequency Domain Balanced Structure, /[EEE Trans. on
Circuits and Syst. Vol. 47, No. 6, 830-838, July 2000.

Moonen, M., Moor, B. D., Vandenberghe, L., and Vandewalle, J., On-
and Off-line Identification of Linear State-Space Models, Int. J.
Control, Vol. 49, No. 1, 219 — 232, 1989.

Ljung, L., System Identification, Theory for the User, Prentice-Hall,
Inc., Englewood Cliffs, NJ, 1987.

Wang, D. and Zilouchian, A., Model Reduction of 2-D Separable-in-
Denominator Systems via Frequency Domain Balanced Realization,
Proc. of 37th IEEE Conf. on Decision and Control, Tampa, FL, 2179 —
2184, 1998.

Taylor, F.J., Digital Filter Design Handbook, Marcd Dekker Inc., NY,
1983.

MATLAB Toolbox, The Mathwork Inc., Boston, MA, 1998.

Ramos, J., A Subspace Algorithm for Identifying 2-D Separable in
Denominator Filters, IEEE Trans. on Ciraiits and Syst., Vol. 41, No. 1,
63 — 67, January, 1994.

Hinamoto, T. and Maekawa, S., Spatial-Domain Design of a Class of
Two-Dimensional Recussive Digital Filter, IEEE Trans. on ASSP, Vol.
32, No. 1, 153 — 162, February, 1984.



30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Aly, S.H. and Fahmy, M.M., Spatial-Domain Design of Two-
Dimensional Recursive Digital Filters, IEEE Trans. on Circuits and
Syst., Vol. 27, No. 10, 892 — 901, October, 1980.

Lashgari, B., Siverman, L.M., and Abramatic, J., Approximation of 2-
D Sepamble in Denominator Filters, IEEE Trans. on Circuits and Syst.,
Vol. 30, No. 2, 107 — 121, February 1983.

Hinamoto, T. and Maekawa, S., Design of 2-D Separable in
Denominator Filters Using Canonic Local State-Space Models, /[EEE
Trans. on Circuits and Syst., Vol. CAS-33, No. 9, 922 — 929,
September, 1986.

Lin,L., Kawamata, M., and Higuchi,T., Design of 2-D Separable-
Denominator Digital Filter Based on the Reduced-Dimensional
Decomposition, IEEE Trans. on Circuits and Systems, Vol. CAS-34,
No. 8, 934 — 941, August, 1987.

Raymond, D.M., and Fahmy, M.M., Spatial-Domain Design of Two-
Dimensional Recursive Digital Filters, IEEE Trans. on Circuits and
Syst., Vol. 36, No. 6, 901 — 905, June, 1989.

Bose, T. and Chen, M., Design of Two-Dimensional Digital Filters in
the Spatial Domain, IEEE Trans. on Signal Processing, Vol. 41 No. 3,
1464 — 1469, March, 1993.

Attasi, S., Modeling and Recursive Estimation for Double Indexed
Sequences, in System Identification: Advances and Case Studies,
Mehra, R.K., and Lainiotis, D.G., (eds.), Academic Press, NY, 1976.

Roesser, R.P., A Discrete State-Space Model for Linear Image
Processing, IEEE Trans. on Automatic Control, Vol. AC-20, 1 — 10,
February 1975.

Kung, S., Levy, B.C., Morf, M., and Kailath, T., New Results in 2-D
Systems Theory, Part II: 2-D State-Space Models - Realization and the
Notions of Contmwllability, Obsewvability, and Minimality, Proc. of the
IEEE, Vol. 65, No. 6, 945 — 959, June, 1977.

Shanks, J.L., Treitel, S., and Justice, J.H., Stability and Synthesis of
Two-Dimensional Recursive Filters, /[EEE Trans. on Audio Electro-
Acoust., Vol. AU-20, 115 — 128, June, 1972.

Hinamoto, T., Realizations of a State-Space Model from Two-
Dimensional Input-Output Map, IEEE Trans. on Circuits and Syst.,
Vol. CAS-27, No. 1, 36—44, Jan., 1980.



APPLICATION OF COMPUTER
NETWORKING USING NEURAL
NETWORK

Homayoun Yousefizadeh

6.1 INTRODUCTION

This chapter investigates the application of perceptron neural networks in
modeling traffic sources in packet based computer communication networks. It
is motivated by recent measurement studies that indicate the presence of
significant statistical features in packet traffic belong to the fractal nature of the
processes rather than their stochastic nature. The chapter first provides an
illustration of the statistical features of the measured traffic over the Internet. It
then outlines a learning scheme based on back propagation algorithm for a class
of perceptron neural networks that can be used to capture several of the fractal
properties observed in actual data. The most important conclusion of this chapter
is that, despite the existence of numerical difficulties, neural networks may
allow building of accurate models to predict the behavior of packet traffic
sources.

6.2 SELF SIMILAR PACKET TRAFFIC

Teletraffic analysis of the computer communication networks is one of the most
important applications of mathematical modeling and queuing theory. Recently,
the widespread deployment of packet switching has generated a set of
challenging problems in queuing theory. The problem of bursty traffic packet
arrival modeling is considered one of the most important problems in this
category. Given that performance models are only reliable when their
underlying assumptions are satisfied, the problem of obtaining an accurate
model of packet traffic is particularly important in all packet based networks.
Although numerous models of packet arrival processes have been proposed
during the past few years, there is still a lack of complete understanding of the
features in packet traffic. This is partly due to uncertainties in the traffic
characteristics of the emerging networks and services, and partly due to the
difficulties in characterizing the traffic arrival models and resource usage
patterns in the emerging networks.

Analyses of traffic data from networks and services such as ISDN traffic,
Ethernet LANs, common channel signaling network (CCSN) and variable bit
rate (VBR) video have convincingly demonstrated the presence of features such
as self-similarity, long range dependence, slowly decaying variances, heavy-
tailed distributions and fractal dimensions. These features, indeed, are more
characteristic of fractal processes than those of conventional stochastic



processes. Conventional traffic processes from regular telephone traffic or the
Poisson and Poisson-based models seem to be Markovian in nature,
characterized by exponential decays. The types of packet traffic with the above
mentioned characteristics are interpreted to be bursty in nature. To be more
specific, Leland and Wilson from Bellcore research center have presented a
preliminary statistical analysis of Ethernet traffic, on the presence of
"burstiness" across a wide range of time scales [2]: traffic spikes ride on the
longer term ripples that, in turn, ride on longer term swells, etc. This is also
explained in terms of self-similarity, i.e., self-similar phenomena show structural
similarities across all or at least a very wide range of time scales [3-5]. The
degree of self-similarity measured via the Hurst parameter typically depends on
the utilization level of the transmission medium and can be used to measure
burstiness of the traffic.

As another important difference between the aggregated bursty traffic and
the so called Poisson-like conventional models, it could be mentioned that the
aggregated traffic is expected to become less bursty or smoother as the number
of traffic sources increases based on the conventional models, but it has very
little to do with the reality. In fact, contrary to commonly held views, it has been
observed that the burstiness of LAN traffic intensifies as the number of traffic
sources increases. Conventional characterizations suppose that packet traffic
consists of alternating active and silent periods with well-defined statistics. On
the contrary, measurement studies have noted that there is no actual burst length,
and bursts occur over many time scales. At every step, examination of the data
shows that the bursts resolve into bursts over smaller time scales. This burst-
within-burst structure captures the fractal properties observed in actual traffic
data.

6.2.1 Fractal Properties of Packet Traffic

The main objective of the current section is to establish a foundation for a
statistically well-defined property of time series called self-similarity.
Intuitively, self-similar phenomena display structural similarities across too
many time scales. Measuring a single parameter called the Hurst parameter
usually specifies the degree of self-similarity. The following discusses
mathematical and statistical properties of the self-similar processes.

Second-Order Self-similarity
Let

X=(X,:t=012,.) (6.1)
be a covariance stationary stochastic process with mean p, variance o, and

autocorrelation function T(k), £ =0. In particular suppose X has an
autocorrelation function of the form

tk)y~a k™,  as ko (6.2)

where 0<f<1 and constants aj, a,, ... denote finite positive integers. For each



m=1,2,3, .. let
X =(x,™ k=123, (6.3)

denote the new covariance stationary time series with corresponding
autocorrelation function ™ obtained by averaging the original series X over

nonoverlapping blocks of size m, i.e., for each m =1,2.3,..., X ™ is given by

Xk(m) =1/ m(X ey ¥+ X3, k=1 (6.4)

The process X is called exactly second-order self-similar with self-similarity
parameter H=1-B/2 if the corresponding X™ has the same correlation structure
as X, ie., ©™(k) =1(k) forall m=1,2, 3,...and k = 1, 2, 3, ... X is called
asymptotically second-order self-similar with self-similarity parameter H=1-3/2
if T™(k) agrees asymptotically with t(k) given by (6.2), for large m and k. In
other words, X is exactly or asymptotically second-order self-similar if the
aggregated processes X™ are the same as X or become indistinguishable from X
with respect to their correlation functions. Fractal Gaussian noise (FGN) is a
good example of an exactly self-similar process with self-similarity parameter
H, 1/2 < H < 1. Fractional Arima processes with the parameters (p, d, q) such
that 0 < d < 1/2 are examples of asymptotically second-order self-similar
processes with self-similarity parameter d + 1/2. Mathematically, self-similarity
manifests itself in a number of equivalent ways as follow.

(1) The variance of sample mean decreases more slowly than the reciprocal
of the sample size. This is called slowly decaying variance property meaning.

var(X ™) ~a,mP), m L w0< B <1 (6.5)

(2) The auto-correlation decay hyperbolically rather than exponentially fast,
implying a nonsummable autocorrelation function §,T(k)=oo. This is called
long range dependence property which means (k) satisfies relation (6.2).

(3) The spectral density f(.) obeys a power law near the origin. This is the
concept of 1/f noise with the meaning

fQA)=kA”Y (6.6)

as A » oo with 0<y<land y=1-83.

It looks like the most striking feature of self-similar processes is that their
aggregated process X™ possesses a nondegenerate correlation function as
m — oo This is in stark contrast to typical packet traffic models considered in
literature, all of which have the property that their aggregated processes Xm

tend to second order pure noise, i.e., 7 -0 as m — 00. As an equivalent
method of description, they may be characterized by the following properties:

=  The sample mean variance decreases like the reciprocal of the sample mean.

= The autocorrelation function decreases exponentially fast, implying a
summable autocorrelation function. This, in fact, is equivalent to the short
range dependence property.



=  The spectral density is bounded at the origin.

The concept of self-similar processes provides a very elegant explanation of
an empirical law commonly referred to as the Hurst effect. In order to describe
the Hurst effect, it should be mentioned that for a given set of observations

X =(X:k=0,,2,..,n) with sample mean X(n) and sample variance S%(n), the
rescaled adjusted range or the R/S statistic is given by

Rm) _ 1 e W) —mi
S(n)—S(n)[max(O,Wl,Wz, W) —min(0, W, W, -, W,)]

W, =(X,++X)—kX(n), k=1

6.7)

While many naturally occurring time series appear to be well represented by
the relation E[R(n)/S(n)]~k1nH , as n — oo, with Hurst parameter H typically
about 0.73, observations X, from a short range dependent model are known to

satisfy E[R(n)/S(n)] ~ k;n'?, as n — oo . This discrepancy is usually referred to as
the Hurst effect.

Degree of Self-similarity

In this part, methods of estimating self-similarity degree are introduced
based on the properties of covariance stationary second-order self-similar
processes, namely slowly decaying variances, long-range dependence, and a
spectral density obeying a power-law. Hence the problem may be approached in
three ways:

= Time-domain analysis based on the R/S statistic;
= Analysis of variances of the aggregated processes;
= Periodogram-based analysis in the frequency domain.

The objective of the first method is to estimate the Hurst parameter H via the
Hurst effect. Briefly, the approach consists of plotting log(R(n)/S(n))vs.

log(n) in the logarithmic scale that results in a plot called "rescaled adjusted
range plot" or the "pox diagram of R/S." For a well-defined parameter H, a
typical rescaled adjust range plot starts with a transient zone showing the nature
of short range dependence and continues with a steady state part which is a
straight line with a certain slope. There are also some fluctuations around that
line. In fact, if such asymptotic behavior appears, then graphical R/S analysis

may be used to estimate the self-similarity degree. An estimate H of self-
similarity parameter H is given by the line's asymptotic slope, which can take
any value between "2 and 1. The most useful feature of the R/S analysis is its
relative robustness against changes of marginal distribution.

In the second method, the variances of the aggregated second-order self-
similar processes X ™, m =1, decrease linearly in log-log plots against m, with
slopes arbitrarily flatter than m. This behavior is, in fact, seen for the large



values of m as the representative of time. The so called variance time plots are
obtained by plotting log(var(X ) against '™  and by fitting a simple least
squares line through the resulting points in the plane. Values of the estimate g of
the asymptotic slope between -1 and 0 suggest self-similarity with a degree of
H=1-p/2.

In contrast to the previous two methods, the third method takes advantage of
the presence of limit law for a more refined data analysis like the existence of
confidence levels for H. This is simply done by using maximum likelihood types
estimates (MLE) based on the periodogram-based analysis in the frequency
domain. As an example, Whittle's approximate MLE may be mentioned to be
used for the approximate Gaussian processes. A combination of an MLE-type
approach and the one above of the mentioned aggregation methods lead to an
operational procedure for obtaining confidence intervals for the self-similarity

parameter H. Plots of the point estimates H™ of H" vs. m with their
specified confidence level will typically vary a lot for small aggregation levels
but will stabilize after a while and fluctuate around a constant value, the final
estimate of self-similarity parameter H. For a complete discussion, see Leland
and Wilson [2].

Mathematical Explanation of Self-similarity

Mathematically, self-similarity in measurements from aggregated traffic of
Ethernet, ISDN, CCSN, and VBR traffic can be explained by a simple
aggregation argument: aggregating many elementary renewal reward processes
representing individual user traffic produces self-similarity in limit as the
number of users increases. First, let us define the concept of infinite variance
syndrome. A random variable is said to exhibit an infinite variance syndrome or
is called heavy tailed if

PU = u]~u""L(u) (6.8)

where L(u) is a slowly varying function at infinity and 0 <a < 2. The crucial
property that distinguishes the renewal reward process source model from the
commonly assumed source model is that the interrenewal arrivals, i.e., the
lengths of the active/inactive periods, are heavy tailed or, in terms of Mandelbort
terminology, exhibit the infinite variance syndrome. A number of evidence
supports the existence of infinite variance syndrome in packet traffic
measurements. Hellstern and Wirth[9] have observed that the extreme variability
of ISDN data cannot be adequately captured using traditional packet traffic
models but instead is best described by the concept of heavy-tailed distributions.
Duffy and Willinger[14] have observed the same evidence in the CCSN traffic
studies. They have noticed that the call holding time distribution for calls
originating during high traffic periods is heavy tailed with an estimated value of
about 2.0, and for calls originating during light traffic periods, the estimated
value drops down to about 1.0. Erramilli et al., [10] first proposed the idea of
using fractal dimensions to characterize the fractal-like nature of the traffic
measurements. Intuitively, a dimension is an indication of the extent to which a



set, e.g., arrival times, fills the space in which it is embedded [11-13] . As an
example, the so-called correlation dimension associated with a measure, known
as correlation integral, is an appropriate tool to characterize the behavior of self-
similar sets.

6.2.2 TImpacts of Fractal Nature of Packet Traffic

Fractal characterization is, in fact, applicable to many aspects of teletraffic
systems such as arrival, service time, buffering, quality of service, and queuing.
Although, theoretically, classical Markovian models can always be used to
describe any finite set of traffic measurements, the resulting systems are very
complex and highly parameterized in case of fractal processes. Hence, it is better
to use simpler and more effective models. In this section, the major findings
from the most recent real network environment measurements are summarized.

Heavy-Tailed Service Densities

Heavy-tailed densities as a characteristic of fractal processes are suitable for
modeling a number of applications such as call holding times [15], and
individual call records [16]. In general, they are expected to be seen in switched
data services as well as packet based services when there are resources that need
to be held for duration of a call or a session. As an example, constant bit rate
(CBR) services in ATM networks may be mentioned. From the practical point
of view, there are numerous difficulties in accurately engineering these services
even when the well known insensitivity of the Erlang-B results is used to
characterize the service time. The major problem here is the very slow rate of
convergence that allows considerable deviations from the theory over time
scales of engineering interest. For a more detailed discussion see Smith[16—22].

Assuming there is a convergence, the rate of convergence problem may be
resolved by extending the length of period; however, for long interval
observations, the assumptions about the stationarity of arrival processes do not
hold and hence the Erlang-B results are not applicable. Intuitively, it looks like
the service rate over smaller time intervals can be much greater than the long
term and rate conditioned on a departure; hence fractal scaling of the service
processes should be applicable here.

Packet Loss

Packet loss processes are very well known to be highly bursty although
usually characterized by their long term rates. The limitations of using long term
rates in order to describe bursty processes and the problem of serial correlation
in losses have been identified to be due to the periodicities in the arrival process.
The work was done by Ramaswami et al [6], Erramilli et al [10], and
Mandelbort [17]. Briefly, any packet loss rate measurement is likely to be
arbitrary over a wide range of time scales, and the long term rate is probably too
low to be meaningful. On the contrary, with the cases of transmission errors and
packet arrivals, fractal characterizations are applicable in describing packet loss
processes. In order to illustrate the above-mentioned point, Erramilli et al., have



analyzed the loss processes in simulations driven by Ethernet traffic traces. The
study has relied on correlation analysis for different data sets. It has measured
the burstiness of the loss process using the fractional correlation dimension. The
study has shown that when the packet loss occurs, it occurs at much higher rates
than the long term rates, and hence there will be a considerably more impact on
the applications than that indicated by the long term rate. In addition, other
fractal parameters such as the Hurst parameter are also applicable to the loss
process. Please see Erramili et al., [3] for further details.

Fractal Queuing

The presence of fractal properties in actual arrival, service time, and QoS
processes may serve as a motivation for the development of the fractal queuing
to analyze the performance implications of the processes with long range
dependence. One possibility is that if fractal properties impact performance
indirectly by biasing the long term traffic measurements, then they can be
counted on to transform inputs to conventional queuing models. The direct
analysis of models that use fractal characterizations as the input is another
possibility, although the lack of a Markovian structure makes such models
extremely difficult to analyze. There are, however, three promising approaches:
the first one is based on a self-similar stochastic model, specifically, fractal
Brownian motion[17], the next one is based on dynamical system approach
using chaos theory, and the last one based on the neural networks theory. While
the first two approaches are only mentioned briefly here, the last one is the main
focus of this chapter and will be discussed in detail.

6.3 NEURAL NETWORK MODELING OF PACKET TRAFFIC

Neural networks as a class of nonlinear systems are able to learn and to perform
tasks done by other systems. They are suitable for speech and signal processing,
pattern recognition, system modeling, and servomechanism control. They
acquire requisite information based on the examples supplied to them. The
various kinds of neural networks generally have energy functions. The learning
procedure of neural networks is, indeed, nothing more than decreasing these
energy functions until reaching local minimum levels. Neural networks are
robust in the sense that if there is a relatively small error in the system, the
network will continue its desired action. This characteristic of the neural
networks makes them quite suitable for the traffic modeling task discussed
below. In this chapter, perceptron neural networks, along with their learning
algorithm back propagation, are utilized as the traffic modeling tool.

6.3.1 Perceptron Neural Networks and Back Propagation Algorithm

The perceptron network is arguably the most popular neural network
architecture, and certainly the trigger of the current widespread explosion of
activity in the field. The function of the perceptron network is to reproduce
certain target output patterns at the last layer of nodes. The task is achieved by



adjusting the weighting functions of each interconnecting link according to a
rule which compares the activity patterns at output nodes with the desired target
patterns and propagates the difference back through the network leading to a
small adjustment to each link’s weighting function. A simple feedforward
perceptron network does not have any feedback connection between two
different layers or a layer with itself. In this situation, the input data from the
input layer appears in the output layer via the interface of hidden layers.
Feedforward networks with no feedback connection between two different
layers are generally considered because of their nonlinear properties. Figure 6.1
shows a typical perceptron network.

Perceptron neural networks can be used to model teletraffic patterns. The
modeling procedure relies on attempting to predict the dynamical behavior of
the describing system after learning corresponding dynamics. The network
usually obtains the information required for the learning procedure from a
number of available samples.

Figure 6.1: A Typical Perceptron Neural Network.

In the following section, an approach capable of dealing with the fractal
properties of the aggregated traffic is introduced. This approach takes advantage
of perceptron neural networks with back propagation learning algorithm. It
provides an elegant solution for self-similar traffic modeling and has the
advantage of simplicity compared to the previously mentioned approaches
namely stochastic and deterministic nonlinear chaotic map models. It is,
motivated by the desire of having a relatively simple model of the complex
packet traffic generation process. As opposed to stochastic and chaotic modeling
approaches, it does not introduce a parameter that describes the fractal nature of
traffic and hence need not cope with the complexity of estimating Hurst
parameters or fractal dimensions. The approach simply takes advantage of using
a fixed structure nonlinear system that is able to predict either the number of
packets generated by a traffic source or the number of arrived packets in a buffer



after getting trained by accessing to a number of samples of the generation or
arrival pattern.

The back propagation algorithm (BPA) performs simple gradient descent to
reduce the mismatch between the desired and actual outputs. The BPA uses all
of the Processing Elements (PEs) and adjusts their total interconnections by
propagating the output layer error to the preceding layer via the existing
connections. The operation is then repeated until reaching the input layer. In
other words, output error moves from each layer to the preceding layer - just
opposite the direction of the movement of the original information - until
reaching the input layer.

The back propagation network used for the task of modeling consists of an
input layer with up to eight neurons, four hidden layers with twenty neurons in
each layer, and an output layer with one neuron. The inputs of the network are
eight consecutive samples of the traffic pattern and the output of the network is
the ninth sample, which is supposed to be predicted. In the learning phase
information may come back through the network in order to update the
weighting functions. The network may also be heteroassociative or auto
associative. The following notation briefly describes the traffic modeling task
using back propagation algorithm for the choice of sigmoid output transfer
function. Please see references [23,24] and Chapter 3 for a complete discussion
about perceptron networks and back propagation algorithm.

lc : The learning coefficient
x; [s] : The present output state of the j-th PE from the layer §

wy [s]: Weighting function of the connection between layer s —1 i-th PE and

layer S j-th PE
I; [s] : The combined input of the j-th PE from layer §

SU; [s]) : The output transfer function of the j-th PE from layer S
e; [s] : The derivative of the absolute error function with respect to the combined

input of the j-th PE from layer s

*  Propagate the input / in the forward direction through the network until
reaching to the output o . During propagation of this information through
the network, all of the combined inputs /; and output states x; for each PE
are set.

*  For each PE in the output layer calculate the scaled local error (d;, —o;)

and obtain the variations of weighting functions from relations (6.9) and
(6.10), respectively.

ec(0)=(a, =0, )e £(1,)s 1= 1) (6.9)

Dwyls]=le e [s]x[s -1 (6.10)



e For each PE in layer s, which is located below the output layer and above
the input layer, obtain the scaled relative error and the variation in
weighting functions from relations (6.11) and (6.10), respectively.

ej[s]=xj[s].(l—x]H)%{e,[s+1wkj[-s+]1} (6.11)

» Update all of the weighting functions by adding the variations to the old
values.

Inserting momentum terms, derivative corrections, and fast back propagation
techniques are also deployed to enhance the convergence speed of the algorithm.
The number of samples required for the training procedure in general depends
on the complexity of the source and network dynamics. The use of neural
networks provides a simpler approach for the task of modeling because it works
based on indirect learning of the source or network dynamics. The learning
schema relies on the information available in a number of samples.

6.3.2 Modeling Individual Traffic Patterns

In the proposed approach, a fixed structure perceptron neural network is used
for the task of modeling. The network consists of an input layer with up to eight
neurons, four hidden layers with twenty neurons in each layer, and an output
layer with one neuron. The inputs of the network are eight consecutive samples
of the traffic pattern and the output of the network is the ninth sample, which is
supposed to be predicted. Based on the richness of the dynamic, it might be
possible to reduce either the number of the neurons in the input layer or the
number of hidden layers, but as the standard structure, the above mentioned
structure is used unless otherwise stated. In the following, three different
approaches based on the type of input samples used for training of the neural
network are introduced.

The first method makes direct use of the available traffic samples. In order
not to deal with very large numbers, the sample with value one is inserted to the
neural network when the source is active and the sample with value zero is
inserted in the neural network when the source is passive. This, indeed, is the
normalized version of the peak packet generation rate divided by the peak rate.

The method suffers from a major drawback though. Since the samples
provided for the network are discrete values equal to either zero or one, the
network learning speed is very low. In fact, having a continuously distributed
sample spectrum over the interval [O,l] leads to having a much faster learning
procedure.

The second method can be used in cases of generating artificial traffic
patterns by chaotic maps. The approach simply accomplishes the task of
modeling by inserting a level of indirection, i.e., the neural network concentrates
on predicting consecutive samples of the chaotic map as the packet traffic
generator. It is motivated by the fact that the evolution of a state variable over a
discrete time period for simple classes of chaotic systems can be used to model
packet traffic sources. The modeling task relies on establishing a relationship



between the state variable and the source activity. One elegant approach is to
consider the source to be active and generating traffic at a peak rate if the state
variable exceeds a threshold, and to be idle otherwise. This is specially attractive
when one tries to predict the behavior of ON-OFF source models. Please see
Yousefizadeh[1] for further details. By modeling the chaotic map and generating
its samples, it would be very easy to generate the same artificial traffic pattern
using the same threshold value as far as the neural network is able to follow the
corresponding chaotic map. This, indeed, is a combination of the approaches
introduced in prior research work as neural network modeling of chaotic maps
and as chaotic modeling of bursty traffic [7,8].

The third method provides a sophisticated and elegant learning approach for
well-behaved sources. A well-behaved source is defined as a source that does
not generate more than a specified number of packets in a time frame, i.e., there
is an upper limit on the number of packets generated by the source. The most
significant point about this approach is that it uses the real traffic samples where
the samples have been arranged to create a continuous range of numbers
distributed in [o,1] interval. Suppose that the source generates no more than a
specified number of traffic packets, say Pin a period of time 7. Then,
considering an origin for the time, the cumulative distribution function of the
traffic pattern for the period 7 is defined as the number of packets generated
since the beginning of the time divided by the maximum number of packets
p/ P . Obviously, this is a monolithic increasing function starting at zero and

ending at one. Note that if the source generates a number of packets less than the
maximum number, a monolithic function ending at a value less than one will be
observed. The samples of these functions can be used to provide the desired
sample set. At the end of the period, the desired output is compared with the
network output and if the value of error has not entered the acceptable bound,
the training procedure is repeated. Relying on these three training algorithms,
the fixed structure neural network is used to model a number of artificial traffic
patterns generated by single and double intermittency chaotic maps described as:

Single:
E.F+x +ex,” : (0<x,<d) l-c-d
=0 x, —d Where ¢ = ———— (6.12)

a o (d<x, <)) d"

H 1-d

Double
+x, +ex,” <x, < 1-¢ -

r, = BErT e, 02, D) \pere ¢, = 17870 (513
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Single and double intermittency maps represent a class of piecewise
linear/nonlinear maps that can be used to generate an artificial self-similar traffic
pattern. In either case, the source is generating packets at a maximum rate for as
long as the map is in the active period d <x, <1. The main objective of the



packet generation model is the steady state behavior of the idle periods that are
related to many fractal properties observed in actual data and corresponded to
self-similar patterns. Interestingly enough, both single and double intermittency
maps show fractal properties namely, slowly decaying variances, long range
dependence, and 1/f noise. Yousefizadeh[1] includes further details. The
generated traffic patterns can, hence, be considered self-similar patterns. Figures
6.2 and 6.3 show the single and double intermittency maps.

The use of artificial traffic patterns provides the possibility of comparing the
results obtained from all three approaches. Figures 6.4 and 6.5 show the
modeling results in the case of single and double intermittency maps for initial
conditions x; =0.1 and x; = 0.3, respectively. The number of samples required
for training of the neural network before reaching the sync stage is 698,500 in
the case of single intermittency map and 889,710 in the case of double
intermittency map. Comparing all three approaches, it seems that the second
approach provides the best results in terms of tracking. Comparing the first and
third approaches, it is easy to observe that the third approach provides more
reliable results as it is able to follow the traffic in a longer period of time.

As can be seen from the figures, the familiar ON-OFF follow-up learning
pattern is observed, i.e., the neural net learns to follow the traffic pattern after
approximately 700,000 and 890,000 iterations in cases of single and double
intermittency maps, respectively, and is able to stay within the acceptable error
bound for the next 60 samples in the case of the third learning algorithm. The
network then goes out of sync and needs to be trained again in order to be able
to follow the pattern properly.
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Figure 6.2: Single Intermittency Map Shown for m =5 and 4 =0.7.
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Figure 6.3: Double Intermittency Map Shown for m =5 and 4 =0.7.
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Figure 6.4: Results of Modeling the ON-OFF Traffic Pattern Generated by
Single Intermittency Map for the Initial Condition x, =0.1. The Horizontal

Axis Displays the Time while the Vertical Axis Displays the Normalized Packet
Generation at a Peak Rate.
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Figure 6.5: Results of Modeling the ON-OFF Traffic Pattern Generated by
Double Intermittency Map for the Initial Condition x, =0.3. The Horizontal

Axis displays the Time while the Vertical Axis Displays the Normalized Packet
Generation at a Peak Rate.

6.3.3 Modeling Aggregated Traffic Patterns

In the following discussion, each source is assumed to generate packets with
a pattern following the double intermittency map packet generation model
described in the previous section. By using different initial conditions and/or
different threshold values, different traffic patterns are obtained for different
sources.

For example, the model may be considered as an ATM queuing system with
a number of Virtual Channels (VCs) with each VC belonging to a traffic source.
In these models, the queuing behavior is separated into burst and cell scale
components as the result of relying on cell rates rather than interarrival time.

There is a finite capacity buffer corresponding to each source, which keeps
the generated packets before they get transmitted. The occupancy of each buffer
is determined by the flow of cells from the corresponding source and the rate at
which the cells are serviced. In this model a queue is identified by its buffer
capacity C, » and its server capacity O, - In each queue, the generation rate

is compared with the service rate to determine whether the size of the queue is
increasing or decreasing as well as whether the queue is losing cells.

Here, the objective is to model the traffic pattern of the queue. Using the
following notation

1(i, k) : The input rate of the i-th channel at time k.
O(i, k) : The output rate of the i-th channel at time k.



0O(i, k) : The queuing rate of the i-th channel at time k.
L(i, k) : The loss rate of the i-th channel at time k.
C(i,k) : The queue size of the i-th channel at time k.

the state of the queue for each channel is specified by

1, k) =0G, k) +QG, k) + L(i, k) (6.14)
at any instant of time as shown in Figure 6.6. Note that besides Q values that
could be positive or negative, all the other values are always positive.
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Figure 6.6: The Queuing Diagram of the I-th Source at Time k.

Originally, all of the queues are empty. A queue begins to form when the source
input rate exceeds the service rate. Hence, the queue rate QO(i, k) and the loss rate
L(i, k) remain zero as far as the input rate is less than or equal to the service rate,
ie.,
O(i, k) = E“”") R < O (6.15)
DOmax : [(ia k) = Omax
The queue size C(i,k) begins to increase as soon as the input rate exceeds
the service rate S, . While the queue is not empty, the output rate is always
equal to the queue server capacity and the total queuing rate is the difference
between the input rate and queue server capacity. The loss rate is zero at this
stage.
The queue size keeps increasing and finally becomes full if the input rate

remains higher than the queue server capacity. In that situation, the queuing rate
is zero and the excess input rate is the cell loss rate as

L(i,k) = I(i,k) + O(i, k) (6.16)

with O(i, k) = O,,, - The effect of a change in the input rate is not immediately

apparent if there are packets in the queue waiting to be transmitted. It is the
queuing rate that changes according to

0@,k +1) =0G, k) +1(G,k +1) = I(i, k) (6.17)



The queue size begins to decrease in size when the input rate becomes less
than the server capacity, i.e., 1(i,k) <Op,, , and the queuing rate goes below

zero as the result, i.e., Q. <0. The queue becomes empty if this situation
lasts. The output rate is obtained from the following equation,

00,  C(,k)=0
OG,k)=0 . .
JG.k)  Ci,k)=0

After providing a brief queuing analysis for individual queues, now it is time
to take look at the system from a high level point of view. For the rest of this
section and the following two sections, it is assumed that a number of sources
are sharing the total bandwidth available from the main channel. Each source
has an ON-OFF model and is generating traffic at a peak rate when it is active.
The source becomes active as soon as the state variable of the describing chaotic
map goes beyond the threshold value and becomes passive as soon as the state
variable goes below the threshold. The double intermittency map is chosen to be
the chaotic map used for the packet generation as it generates a self-similar
traffic pattern. The traffic pattern of each source is separated from the other one
by choosing a different initial condition.

(6.18)
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Figure 6.7: A sample network used to demonstrate the modeling power of
neural networks for modeling aggregated level bursty traffic.

The following scenario illustrates neural network modeling of bursty traffic
at the aggregated level. In order to be able to access an aggregated traffic
pattern, a system consisting of 100 individual sources and a queue as indicated
in Figure 6.7 is considered. This might be realized as an example of a real
network with a number of nodes sending their packets to the network gateway.
The traffic pattern might include a variety of different packets such as telnet, ftp,
rlogin, mail, etc. The arrived packets are stored in a relatively large size buffer
before being forwarded to corresponding destinations. In order to be able to
simulate the real network, each individual source is replaced by an artificial
generator following an ON-OFF pattern. The generated traffic, hence, can be
considered self-similar. It is important to note that the objective here is merely to



predict the traffic pattern arrived at the gateway. A fixed structure perceptron
neural network is used for the task of modeling. The network consists of an
input layer with eight neurons, three hidden layers with twenty neurons in each
layer, and an output layer with one neuron. This is the same typical structure as
indicated in Figure 6.1. The inputs of the network are eight consecutive samples
of the traffic pattern and the output of the network is the ninth sample that is
supposed to be predicted.

The traffic pattern of each source is obtained from double intermittency map
and is distinguished from the other sources by assigning a different threshold
value to the corresponding map. Figure 6.8 shows the result of a neural network
modeling task. Again, the familiar tracking period followed by a divergent
behavior is observed. The only difference is that self-similarity increases the
speed of convergence at the aggregated level. It is important to note that the
burstiness of the aggregated level traffic increases as the trained network can
follow the pattern for a smaller number of samples before going out of sync. In
this example, the neural network learning algorithm converges approximately
after 280,000 iterations and is able to follow the main pattern for the next 55
arrivals.
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Figure 6.8: Aggregated traffic modeling results with neural networks.

Knowing that a statistically self-similar traffic pattern exhibits a fractal-like
behavior in the sense that aggregated streams of such traffic pattern typically
intensify burstiness instead of smoothing it, the observed result is very
interesting. The result shows self-similarity provides an extra source of
information that can be interpreted as some kind of correlation among the
generated traffic patterns. The conclusion is that the simple nonlinear dynamic
of neural networks is able implicitly to capture self-similarity and hence neural
networks may be viewed as suitable generators of self-similar traffic.



6.4 APPLICATIONS OF TRAFFIC MODELING

In this section, the applications of the modeling scheme introduced earlier are
investigated. Consider a system that consists of a number of sources sharing the
space available in a central buffer and generating packets following an ON-OFF
source model. Figure 6.9 shows the structure of a multiple source queuing
system. The challenge is the dynamic assignment of the buffer space such that
the probability of loss is minimized. In this study, two different scheduling
algorithms are considered. These are fixed time division multiplexing (FTDM)
and statistical time division multiplexing (STDM). In FTDM each source takes
advantage of a fair portion of the buffer space and there is no sharing, while in
STDM the unused portion of buffer space assigned to each source might be used
to service packets generated by other sources.
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Figure 6.9: The structure of a multiple source queuing system.
6.4.1 Packet Loss Prevention

The first application of this section introduces a dynamic buffer management
algorithm relying on the modeling power of neural networks. There are a
different number of buffer management algorithms studied in literature. The
simplest method is complete sharing in which the buffer space is shared among
all the existing sources without enforcing any capacity allocation mechanism.
This method introduces an unfair consumption of buffer by greedy sources
while providing the lowest loss rates. The second method is called complete
partitioning in which the available capacity of the buffer is equally shared
among the existing sources. This method has the best fairness characteristic
while it greatly suffers from efficiency degradation by introducing the highest
loss rate. In the presence of a specified scheduling algorithm, a threshold buffer
management algorithm is introduced as the third alternative solution. In a
threshold method, each source has its own fixed portion of the buffer space that
can only be used for buffering packets generated by that specific source. There
is also an additional portion of the buffer completely shared among the existing
sources. This method is called partial sharing. A dynamic buffer management
algorithm is classified under the threshold methods with the ability to adjust the
buffer size of each source dynamically. In order to show the performance of the



modeling approach, four different buffer management scenarios are compared
in the presence of FTDM and STDM scheduling algorithms.

* The first scenario happens when complete sharing (CS) mechanism is
enforced. This is a simple queuing mechanism in which all of the generated
packets are directly sent to the central buffer and wait there until getting
transmitted. This method introduces maximum efficiency for the available
buffer space. The drawback is that the space may not be used fairly. Hence,
a source with a high output rate is able to consume a big portion of the
buffer space and cause the queue to overflow.

* The second method is a simple implementation of complete partitioning (CP)
scheme in the presence of FTDM and STDM in which the capacity of the
central buffer is distributed equally among the sources. The most important
characteristic of the method is that the buffer space is distributed fairly.
FTDM suffers from a possible low efficiency rate compared to STDM, i.e.,
sources with lower generation rates may not use the whole portion of the
bandwidth assigned to them while sources with higher generation rates have
packets ready to be transmitted. This does not happen when STDM is
employed as the unused portion of the server bandwidth is used if there is
any packet ready to be transmitted.

* The third method is a simple implementation of static partial sharing (SPS)
scheme that has equal portions for the sources with an additional shared
portion that can be shared among all the sources.

e The fourth method, known as dynamic neural sharing (DNS), is the dynamic
assignment of the buffer space relying on the results obtained from the
perceptron network prediction algorithm, i.e., adjusting the buffer space
according to the packet generation pattern of each source. This is a
generalization of the third method, keeping the shared portion size fixed and
adjusting the buffer space size of each source dynamically.

It is important to mention that for the last three methods, there is a separate
queue for each source, which holds the packets generated by that source. The
difference between the third and the fourth scenario is that, in the third scenario,
the buffer space assigned to each source is fixed and each source is able to send
its generated packets to either its own buffer or the shared buffer if space is
available, while in the fourth scenario, the portion of the buffer space assigned
to the source with a higher packet generation rate is increased in case other
sources are not generating enough packets to use their assigned share of the
buffer space.

In order to investigate the performance of the method, a triple source system
is used. The traffic patterns of the first, second, and third source consist of an
artificial pattern generated by 30, 40, and 50 individual double intermittency
map packet generators, respectively. The traffic generated by each source is
collected and sent to the corresponding buffer in a round robin manner. It is
especially important to note that there is a slight difference among the number of
packets generated by each source as the result of having a different number of
ON-OFF packet generators per source. In order to evaluate the performance of



different methods, the overall and per-source loss probability of the system for
different choices of buffer size with a fixed service rate are compared. The
buffer space can be shared among all of the sources or may be divided into equal
portions for individual source usage. The server bandwidth may also be used
according to FTDM or STDM scheduling mechanisms.

Figures 6.10 through 6.13 show the total and single source packet loss
probability vs. packet size diagram for the triple source queuing system in the
presence of FTDM and STDM scheduling algorithms. The single source is the
source with the lowest generation rate to compare the fairness of different
schemes. The simulation results have been obtained from an iterative algorithm
with a total number of ten million iterations per choice of buffer size. Applying
a continuous learning algorithm, the fixed structure neural network has been
able to follow the traffic pattern within the specified error range between 20 and
30 times covering an average of 50 samples per time. Worth mentioning is that
the performance of various methods is very different as the result of applying
different methods for traffic management of a heavily utilized system. It is
clearly observed from the figures that, for both FTDM and STDM using neural
sharing scheme, the total loss rate compared to complete partitioning scheme as
well as per-source loss rate compared to complete sharing scheme are reduced.
The results may be interpreted as a sign that the neural sharing scheme has come
up with a solution between the two extreme cases. Comparing SPS and DNS
results shows the higher efficiency of the latter method. This is a significant
improvement compared to the other three schemes.
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Figure 6.10: The Total Packet Loss Probability vs. Buffer Size Diagram for the
Triple Source Queuing System Using CP, SPS, and DNS in Presence of FTDM.
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Figure 6.11: The Single Source Packet Loss Probability vs. Buffer Size
Diagram for the Triple Source Queuing System Using CP, SPS, and DNS in
Presence of FTDM.
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Figure 6.12: The Total Packet Loss Probability vs. Buffer Size Diagram for the
Triple Source Queuing System Using CP, SPS, DNS, and CS in Presence of
STDM.
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Figure 6.13: The Single Source Packet Loss Probability vs. Buffer Size
Diagram for the Triple Source Queuing System Using CP, SPS, DNS, and CS in
Presence of STDM.

6.4.2 Packet Latency Prediction

The second application introduces a neural based approach for predicting the
queuing delay as the dominant delay factor observed in a finite buffer used as an
interface for transmitting a number of packets generated by a number of sources
in a multiple source system. Hence, it might be considered as a part of packet
scheduling algorithms that is able to estimate packet latency. Packet latency
prediction is addressed by counting on the predictive power of neural networks
directly. Packet latency is defined as the time each packet spends in the queue
before getting transmitted.

Again, consider the above triple source system sharing the buffer space of
the central buffer following complete sharing scheme in the presence of STDM
scheduling. For the case of packet latency estimation, the system load varies
based on the value of service rate. The case chosen as the objective here is to
determine the queuing delay of the generated packets. Supposing each packet
carries a sequence number indicating the order in which it was sent to the central
buffer, the objective is then to predict the average number of time units a packet
spends in the queue before leaving the buffer. The task is approached by
applying the neural network modeling scheme to predict the total number of
generated packets. Knowing the buffer service rate, average latency can be
calculated directly from the arrival rate of the buffer. The dominant average
latency factor in most of the cases is the queuing latency. This, indeed, is a



problem of predicting the state of the queue. Again the prediction tool is the
fixed structure neural network that is supposed to learn the dynamic of the
arrival pattern of the buffer.

The real and estimated average latency vs. service time diagram for the triple
source queuing system is shown in Figure 6.14. The typical system consists of
120 sources generating traffic according to an ON-OFF pattern and sending the
generated packets to a central buffer. The buffer size is assumed to be fixed and
large enough to prevent loss. The average latency has been calculated over all of
the time periods in which the neural network is able to follow the arrival pattern
of the central buffer.

As can be observed from Figure 6.14 the estimation results are quite
acceptable within the three percent error range as long as the averaging period is
long enough in order for the neural network to be able to follow the traffic
pattern a number of times within the specified error bounds and as long as the
buffer service rate does not exceed an existing threshold value. As a matter of
fact, it is observed that the average packet latency drops very sharply with an
order of ten or more choosing a value beyond the threshold value. As the result
of having very small average latencies, the neural network latency estimation
findings are not acceptable for service rate values beyond the threshold value.
The value of the threshold generally depends on the dynamics of the system and
for the triple source system is the normalized value 13. Rememeber that for this
complete sharing case, the modeling scheme relies on the combined dynamics of
all of the sources to achieve the latency estimation as there is only one queue in
the system. It is important also to note that the same qualitative approach may be
used in cases of having separate queues.
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Figure 6.14: Estimated Average Latency (EAL) and Measured Average Latency
(MAL) of the Packets vs. Service Rate Diagram for the Triple Source Queuing
System. CS Buffer Management and STDM Scheduling Have Been Employed.



6.4.3 Experimental Observations

The following section briefly discusses some of the practical findings in the
implementation of the algorithm, which are the direct conclusion of dealing with
complicated nonlinear dynamics.

The specific problem can be explained by the chaotic nature of traffic, i.e.,
that traffic patterns with self-similar characteristics have been shown to exhibit
chaotic behavior. Please see Erramilli et al.[3] for a detailed discussion. To
explain the problem, it can be simply said that, although it is possible to reach to
a very small network error at some steps during the learning phase, if the
network error is studied for further samples, it is observed that this error begins
to grow as time proceeds. The reason is summarized in the chaoticness of the
system, i.c., since the nonlinear network wants to model a chaotic system, it
becomes chaotic itself. In this situation, a small error may be considered as a
small difference between two close initial conditions of the desired output and
the network output and as a characteristic of a chaotic system. The error begins
to grow very soon, which is nothing more than high sensitivity to the variations
of initial conditions. As a matter of fact, this can be interpreted as a good sign
for the network that has been trained to model a chaotic map and has become
chaotic itself. One way to relieve the effect of having an error component that
grows over time is to repeat periodically the learning phase followed by the
recalling phase; otherwise the results exceed the acceptable error range. In
practice, after the first learning phase with a several million examples, the neural
network can predict less than 100 samples before requiring repetition of the
learning phase as in the previous recalling phase and so on to bring the results
within the acceptable error range.

Based on the same line of reasoning, all of the convergence results are
affected strongly by the choice of initial conditions. It can be said that the initial
values of the parameters play a crucial role in the convergence of the algorithm.
It is even possible to have a divergent algorithm, if the initial values of the
parameters are chosen unsuitably. As a practical result, it is better to set the

initial values of the parameters on small numbers, e.g., Wy = 0.01 i, -

Finally, it has to be mentioned that the choice of initial conditions has
another important impact on the performance of the application. The issue can
be addressed by saying that in case of loss prevention application, it is very
important for the algorithm to be able to predict the traffic pattern generated by
all the sources. The very wild behavior of a self-similar traffic pattern generally
leads to an out-of-sync prediction power for different initial conditions, i.e., the
acceptable error bounds are not reached after having the same number of
iterations for all the sources. The only way of dealing with this problem is to
choose the initial conditions suitably and find the time intervals by which all of
the traffic patterns can be predicted by the neural network.

6.5 SUMMARY

This chapter was dedicated to the application of neural networks in



modeling self-similar traffic patterns of computer communication networks.
Neural networks rely on the information available in a number of samples in
order to capture complex dynamics of packet traffic phenomena. This feature
makes them practical for the task of modeling, as they do not need to deal with
analytical complexities involved with stochastic and chaotic systems' approach.

Neural networks are used to predict the behavior of the ON-OFF source
models based on some threshold levels. This, in particular, can be related to the
prior research work in which neural networks are used to predict the complex
behavior of a class of discrete-time chaotic maps. Artificial load generation is,
hence, an elegant application of neural networks in this area. The approach
allows the generation of complex traffic patterns using relatively simple models
that can be incorporated into traffic streams. There is a scope to investigate
efficient software implementation. The statistical features of generated traffic
can be compared to those of real traffic in order to show that there are some
match points for the generated traffic.

Neural networks are additionally used for modeling of the single and
aggregated traffic patterns. A traffic pattern may either correspond to a single
source or a number of sources. Multiplexing and splitting of traffic streams
where each source is modeled by a neural network is the method used for
dynamic buffer management and packet loss reduction. This approach can, in
fact, introduce an interesting application in ATM networks supporting a number
of virtual channels. Neural networks are also used to predict the latency time for
the packets generated by a traffic source. The latter includes the time each
packet spends in the queue before transmission.
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APPLICATION OF NEURAL
NETWORKS IN OIL
REFINERIES

Ali Zilouchian and Khalid Bawazir

7.1 INTRODUCTION

In response to demands for increasing oil production levels and more stringent
product quality specifications, the intensity and complexity of process
operations at oil refineries have been exponentially increasing during the last
three decades. To alleviate the operating requirements associated with these
rising demands, plant designers and engineers are increasingly relying upon
automatic control systems. It is well known that model based control systems
are relatively effective for making local process changes within a specific range
of operation [1]. However, the existence of highly nonlinear relationships
between the process variables (inputs) and the product stream properties
(outputs) have bogged down all efforts to come up with reliable mathematical
models for large scale crude fractionation sections of an oil refinery. In addition,
the old inferred property predictors are neither sufficiently accurate nor reliable for
utilization of advanced control applications [2]. On the other hand, the
implementation of intelligent control technology based on soft computing
methodologies such as neural network (NN), fuzzy logic (FL), and genetic
algorithms (GA) can remarkably enhance the regulatory and advanced control
capabilities of various industrial processes such as oil refineries [3]-[11].

Presently, in the majority of oil refineries (such as Ras Tanura located in
Saudi Arabia), product samples are collected once or twice a day according to
the type of analysis to be performed and supplied to the laboratory for analysis.
If the laboratory results do not satisfy the specifications within an acceptable
tolerance, the product has to be reprocessed to meet the required specification
[2]. This procedure is costly in terms of time and dollars. In the first phase, an
off-line specification product should be first routed to a holding facility. In the
second phase, the process should be tuned before any further processing is
carried out. In order to resolve this problem in a timely fashion, a continuous
on-line method for predicting product stream properties and consistency with
and pertinence to column operation of the oil refinery are needed.

In general, on-line analyzers can be strategically placed along the process
vessels to supply the required product quality information to multivariable
controllers for fine tuning of the process. However, on-line analyzers are very
costly and maintenance intensive. To minimize the cost and free maintenance
resources, alternative methods should be considered.



In this chapter, the utilization of artificial neural network (ANN) technology
for the inferential analysis of a crude fractionation section of the Ras Tanura Oil
Refinery at Dhahran is presented. The implementation of several neural network
models using back propagation algorithm based on collection of real-time data
for a three-months operation, of the plant is presented. The proposed neural
network architectures can accurately predict various properties associated with
crude oil production. The simulation results for modeling of several products
such as naphtha 95% cut point and naphtha Reid vapor pressure are analyzed.
The results of the proposed work can ultimately enhance the on-line prediction
of crude oil product quality parameters for the crude fractionation processes of
various oil refineries.

The chapter is organized as follows. Section 7.2 covers various steps
pertaining to collection of plant data that are used during the training and
verification phases of the neural network program. A systematic procedure to
construct a NN model is also presented in this section. In section 7.3, selection
of appropriate data sets as well as data analysis procedures are discussed.
Section 7.4 is devoted to various steps in the implementation phase of neural
network models in the crude oil fractionation process. In sections 7.5 and 7.6,
the training procedures as well as the results of modeling for naphtha 95% Cut-
point and naphtha Reid vapor pressure products are analyzed. It is shown that
the proposed NN models predict products qualities well within the specified
error goals in both training and verification phases. Various implementation
issues such as model building, model data analysis, effects of neuron
distribution on training, and model robustness are also discussed in this section.
Finally, section 7.6 summarizes the contributions of this chapter.

7.2 BUILDING THE ARTIFICIAL NEURAL NETWORK

The mathematical algorithms developed to model neurons can be adapted for
many useful predictions in processing plants. The complexity of the pattern to
be recognized dictates the complexity of the required algorithm. Some very
useful predictions can be constructed in processing plants using algorithms
whose coefficients are discovered through training. Figure 7.1 is a graphical
representation of the artificial neural network structure.

A neural network predictor is built by discovering the weights as shown in
Figure 7.1. NyK; through N|K;, are the corresponding weights of the first

neuron. The output Qp is the predicted inferred process stream property (%H5S,

95% cut-point, etc.)The coefficients of the model are discovered by training a
neural network program using back propagation algorithms [12, 13, 17]. The
inputs of NN consist of plant data such as temperature, flow rate and pressure
where, the respective product quality is considered as desired output of the
program model. The neural network program will be trained by adjusting the
weight coefficients until the difference between the predicted product quality
and the measured product quality is within acceptable limits. When the



coefficients have been determined, they should be tested by comparing the
predicted quality to the measured quality for data sets which were not used in
finding the coefficients. The process of finding the ANN coefficients is called
training the network [13], [14].
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Figure 7.1: Graphical representation of ANN structure.

7.2.1 Range of Input Data

Neural networks will not be an accurate predictor if the operating
inputs/output data are outside their training data range. Therefore, the training
data set should possess sufficient operational range including the maximum and
minimum values for both input/output variables.



7.2.2  Size of the Training Data Set

A minimum of two valid data sets is required for each coefficient in the
training algorithm. A large number of valid data sets provide much better
accuracy in the prediction phase. However, some training data sets are not valid
either due to the dynamic nature of a process or as the result of inaccuracies in
data acquisition techniques. A large data set will average out various
inaccuracies within a system.

7.2.3  Acquiring the Training Data Set

The least intrusive technique for obtaining the training data set is to take data
during the course of normal operations. This procedure probably will not
satisfy the required variations in some process variables. However, plant tests
can be accomplished by varying the process variables within the region of
interest to complete the gaps within the required data. In general, it is not
necessary to have field analyzers to develop a neural network predictor for a
stream quality. Samples can be taken and sent to the laboratory for analysis at
the same time that data (flow, temperature, and pressure) are taken from field
transmitters.

7.2.4  Validity of the Training Data Set

In many industrial applications accuracy is not as important as repeatability.
For example, a network trained for a pressure transmitter with a 15 pound per
square inch (PSI), zero shift will predict accurately - unless the transmitter is re-
calibrated; however, the lack of repeatability exhibited in data taken from hand-
written shift logs has proven too unrepeatable to use as a training set. The
training data set can be taken from the Distributed Control System (DCS) or the
supervisory control and data acquisition computer.

Many of the processes have significant time constants and dead times [8].
Unless it is desired to include these time constants and dead times in the
prediction, the process should have been operating at steady-state for a period
equal to at least two time constants before including the operating data in the
data set. Flow and pressure inputs should be averaged to eliminate the problem
of signal noise.

7.2.5  Selecting Process Variables

Initial process variable selection is not critical; almost anything upstream of
the measurement point could be useful. As many process variables should be
included as can be handled. The training process will automatically determine
which are important and which can be deleted from the calculation.

For example, the process variables shown in Figure 7.2 are selected to
predict Reid vapor pressure (RVP) in the bottom of a stripper column. Their



relative importance, determined by neural network training, is shown in Table 1.
If those process variables chosen initially do not give the required accuracy of
prediction, less important variables should be dropped and other parameters
added.
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Figure 7.2: Process Variable Selection in the Stripper Column.



Table 7.1: Relative Importance of Process Variables Determined by NN

FEED FLOW RATE F-1 4%
REFLUX FLOW RATE F-2 8 %
OVERHEAD PRESSURE P-1 6 %
FEED TEMPERATURE T-1 13 %
REBOILER RETURN TEMPERATURE T2 |127%
TRAY 2 TEMPERATURE T-3 | 36%
COLUMN TOP TEMPERATURE T-4 5%
DISTILLATE FLOW RATE F-3 2%

7.3 DATA ANALYSIS

The first step in data analysis is to ensure that all column parameters are
collected properly. Data unavailable due to transmitter downtime or calibration
at the time of data collection should be identified. Since artificial neural
networks require that all model parameters be available all the time, unavailable
data for any of the parameters force the elimination of the complete data set that
is collected at that time. This includes lab data, which is not collected at the
scheduled sampling time. The definition of a complete data set includes all
process parameters plus one lab value. Lab analyzed properties (95% cut-point,
sulfur content, freeze point, etc.) are analyzed individually to generate neural
network models.

Once a complete set of parameters is collected, the neural network model
can then be used to do a complete data analysis. the neural network model
allows the user to specify which data set will be used for model building
(teaching phase), and which for model verification (testing phase). A statistical
method can be used to eliminate a suspected bad lab data set. The main
assumption of the statistical method is that there has to be a correlation between
model inputs (process parameters) and model output (lab value).

7.3.1 Elimination of Bad Lab Values

Bad lab values can be identified as follows: The neural network model is
given three data sets for model verification (out of 180 data sets), and the rest of
the data sets are used for model building. All data sets are switched between
model verification mode to model building mode until all data are tested. At any
point during the above process, if any of the three model verification points fall
outside the lab repeatability, the degree of deviation from repeatability is
recorded. At the end of this analysis, all deviant points are completely removed
from model building. Thus, it can be established that all remaining data sets
conform to the general trend of the correlation.



As a final step, each of the deviant points is again individually added to the
model and tested as a verification point by itself. If this point still falls outside
lab repeatability, then it is permanently eliminated. Otherwise, the point is
returned to the model.

The elimination of data sets during this step does not necessarily reflect only
bad lab value. It is possible that the lab analysis is done correctly; however,
either the snapshot of the process values taken do not coincide with the time of
sampling by operators, or the plant is not operating at steady state conditions at
the time of sampling.

7.3.2  Process Parameters and Their Effect on NN Prediction

All identified process parameters do not necessarily have an effect on each of
the lab values (properties). The final step of data analysis is to identify the
most important process parameters that have a significant effect on the inferred
analysis and eliminate those parameters which have little or no effect. Two
methods can be used to perform the elimination process. The first is using
engineering judgment to realize which process parameters can have little or no
effect on the model. An example of this is to remove all naphtha stabilizer
parameters when the network is being used to model riesel sulfur.

The second method is to utilize the neural network model itself. The neural
network program can generate an analysis of the final weights given to each of
the process parameters to fit the data. This method of elimination, however, is
not as straightforward as one might expect. The neural network model relies
more on process parameters with a large degree of variance. It is possible that
the most important parameter that affects a particular lab data set keeps the same
value in all the generated data sets. The neural network program will ignore
such a parameter. Thus elimination should not include variables which, from an
engineering point of view, should have a contribution on the inferred analysis.

For example, a fuel gas density analyzer in the plant under investigation
gives density measurements (used for heating value) about five minutes after
they would be useful to improve furnace (and the affected crude column)
stability. Data for the fuel gas supply pressure, burner gas pressure (P-236),
burner gas pressure (P-120), heater coil outlet temperature (T-178), and gas
pressure controller output to valve (PC-120 VO) are used as the inputs for a
neural network training set — with the output of the density analyzer (A-156) as
the stream quality to be predicted. The block diagram of the plant is shown in
Figure 7.3. The data sets are used to train a neural network predictor with five
hidden sigmoidal neurons. The training result can be found in reference [3].
However, the output of NN model indicates that the algorithm does not predict
the stream quality (gas density) with enough accuracy to be useful. It was
concluded that an input which would prevent the predicted quality from varying
when the measured quality is constant is not in the training set.



If the missing input (fuel gas flow rate) is added to the data set, the algorthm
predicts gas density by using the difference in deferential pressure resulting
from flow through a fixed and a variable orifice — and becomes useful for
eliminating upsets introduced by rapid fuel gas density (and heat of combustion)
fluctuations. The simulation results indeed have shown an accurate model
prediction after adding the fuel gas flow rate to the data set [3]. Note that it is
necessary to align data from different inputs to get a data set whose elements
occur simultaneously.
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Figure 7.3: Block Diagram of Fuel Gas Supply System.
(F.G. K.O.= Fuel Gas Knock Out)



7.4 IMPLEMENTATION PROCEDURE

The major steps that are involved in implementing the ANN predictor are shown

in Figure 7.4.

|Identify the Application|

|Identify Inputs to Model|

|Define Range of Variables |

| Collect Plant Data |

v

| Run Training Program |

Plant Test Model

Results
Better Data Not Not Enough Data

Enough
Variation

Model OK

On-Line
Application

No

Y Y
Excel On-Line DCS
Spreadsheet Program

Figure 7.4: Major Steps for Implementing of ANN in the Crude Oil
Fractionation Process.

7.4.1 Identifying the Application

The first step for construction of an NN model is the appropriate
identification of a potential application. For example, suppose Ethane is burned
as fuel gas and propane with 2% ethane can be sold for $18/barrel in the market.
The operating objectives of a de-ethanizer unit will be to minimize the propane



in the overhead product and maintain slightly less than 2% Ethane in the
column bottoms.

On the other hand, if ethane, with 1.5% propane sells for $16/barrel and
propane is used as fuel gas, the operating objectives of the de-ethanizer will be
different from the above case: to minimize ethane in the column bottoms and
keep the propane in the overhead as near 1.5% as possible, without exceeding
the sales limit. To achieve either set of the above objectives, a continuous
measurement of propane in the column overhead and ethane in the bottoms is
necessary.

7.4.2  Model Inputs Identification

The neural network algorithm will not match a random number set. For
prediction model to work, there must be some relationships between
input/output variables [9], [11]. Training will quantify such a relationship. If a
neural network will not train with a good data set, a significant variable may not
have been included in the data set. If a rigorous mathematical equation can be
written between the inputs and the output, a neural network is unnecessary.

As an example, a double product (overhead and bottoms) distillation
column as shown in Figure 7.5 has two variables: the heat balance and the
material balance, which determine its separation capability, and two product
quality variables: heavy key in the overhead (propane in the de-ethanizer
overhead product) and the light key in the bottoms (ethane in the de-ethanizer
bottoms). Those process measurements, flows, pressures, and temperatures,
which could be used to calculate the heat and material balances, should be
chosen as inputs to the neural network. To predict propane in the de-ethanizer
overhead we start with the input variables as shown in Table 7.2.

Table 7.2: Process Variables for Propane Prediction
(MBD = Million barrels per day; MPPH = Thousand pounds per hour)

Process Variable Tag Range
Tray 27 temperature TI-6 100-300 °F
Overhead Temperature TI-5 100-300 °F
Reflux Temperature TI-7 100-300 °F
Feed Temperature TI-4 0-200 °F
Reflux Rate FI-2 0-20MBD
Distillate Rate FI-3 0-10MBD
Feed Rate FI-6 0-80MBD
Reboiler Steam FI-4 0-30MPPH
Bottoms Product FI-5 0-80MBD

A good starting point for ethane prediction in the bottoms would use the
process variables as shown in Table 7.3.



Table 7.3: Process Variables for Ethane Prediction
(MBD= Million barrels per day, MPPH= Thousands pound per hour)

Process Variable Tag Range
Tray 1 temperature TI-1 100-400 °F
Bottoms Temperature TI-3 100-400 °F
Tray 18 Temperature TI-8 100-300 °F
Feed Temperature TI-4 0-200 °F
Re-boiler Return Temperature TI-2 100-400 °F
Distillate Rate FI-3 0-10MBD
Feed Rate FI-6 0-80MBD
Re-boiler Steam FI-4 0-30MPPH
Bottoms Product FI-5 0-80MBD

If the plant data include significant variation in each of these process
variables and the neural network coefficients for a process variable are very
small, that process variable can be dropped from the model. If the network will
not train, and other conditions are met, other process variables based on
engineering experience should be included in the model.

7.4.3  Range of Process Variables

The range of the process variables in the training data set should include the
entire operating range. The data set should include data for each process variable,
evenly distributed throughout the range for which prediction is desired.

7.5 PREDICTOR MODEL TRAINING

For the naphtha 95% cut point and naphtha Reid vapor pressure stream
properties, the plant data, including the stream quality desired to predict, are
collected in a Microsoft Excel™ spreadsheet to facilitate data manipulation. The
data are then scaled to a fraction of the transmitter range so that they are
confined to a sub-interval of [0...1]. A practical region for the data is chosen to
be [0.1...0.9]. In this case each input or output parameter p is normalized as pp
before being applied to the neural network according to:

pn=[(0.9-0.1)/ (pmax - Pmin )] * (P - Pmin ) ~ 0.1

where pmax and pmin are the maximum and minimum values, respectively, of
data parameter p. The spreadsheet file is then converted to text file and loaded
into the MATLAB™ neural network toolbox [14]. The MATLAB software
program uses a back propagation training algorithm to adjust the weights of the



network in order to minimize the sum-squared error of the network. This is done
by continually changing the values of the network weights in the direction of
steepest descent with respect to the error [11]-[17]. The change in each weight is
proportional to that element’s effect on the sum-squared error of the network.
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Figure 7.5: De-ethanizer Column Process Flow Diagram.



Initially, one hidden layer with five neurons is built (additional neurons
and/or layers can be added if necessary) and all weights are randomly initialized
to small numbers. Next, training parameters are defined. These parameters
include the following: maximum number of training iterations and acceptable
error between desired and predicted values.

The neural network program using back propagation training algorithm
starts training and through this process it will look for the specified error on a
multidimensional surface. By selecting the minimum error to be a very small

number (10_3 for example) the program will end up in one of the following
states:

I.  Minimum error goal is matched before exceeding the limit on
maximum allowed iterations. In this case, the objective of the training
is successfully met.

2. Program cannot achieve this minimum error but, in the process, it
locates the global minimum (optimum solution). In this case, the
number of hidden neurons and/or the number of hidden layers can be
increased to achieve the desired minimum error.

3. Training diverges. The error increases as the training process
continues. (Training data sets are not valid.) In this case it is necessary
to construct valid data sets.

7.6 SIMULATION RESULTS AND DISCUSSIONS

As discussed earlier, the objective of the proposed work is to eliminate the
dependency on laboratory and/or on-line sample analyzers for sampling of
product qualities. The goal can be achieved by the construction of neural
networks to predict those particular product qualities to meet the more stringent
market specifications. In doing so, the neural network model, from a practical
viewpoint, should adhere to two constraints: The optimization of process control
and the reduction on the cost of maintenance and operations, which would
ultimately result in an increase in profit [3].

First, the neural network model accuracy of prediction should be consistent
and within the defined acceptable tolerance of the desired product quality it is
set to predict. It is highly crucial to have a neural network that provides accurate
predictions. It is a plant requirement to have the neural network predicted output
fed as one of the inputs to a multivariable controller. This will provide the
controller with the knowledge of the final product quality, and how close to or
far from the desired set point it is. With the aid of this knowledge, the contwller
will act promptly to keep the process in its targeted path, thus eliminating any
off-specs product from taking place.

Secondly, it is a requirement to have the neural network running on-line
with fast execution time during both training and prediction phases. The
multivariable controller is gathering information about the process and at the
same time it is looking at the neural network to provide its prediction. The



controller will perform its tight control actions as long as the neural network
prediction is made available to the controller at the right moment, not a couple
of minutes late. Also, operational objectives often change to meet market needs
and in doing so the desired process set points have to change as well to provide
the desired product specifications. Retraining the neural network on the new sets
of process variables and desired product properties is inevitable. The faster the
neural network program predicts after retraining, the faster it provides its output
to the controller [3], [9].

7.6.1 Naphtha 95% Cut Point

Modeling of the naphtha 95% cut point property was carried out using a
back propagation neural network algorithm. Various configurations, in terms of
the number of hidden layers and the number of hidden neurons, have been
tested. For the application presented here, two-layer networks consisting of a
single hidden layer and an output layer have proved to be adequate. Although a
three-layer network is theoretically capable of modeling more general and
arbitrary functions than a two-layer network [17], the naphtha 95% cut point
data used in training and verification modes were sufficiently well behaved that
three-layer networks did not perform better than the ones consisting of two
layers.

To demonstrate the modeling capability of a back propagation network, 85
data sets were analyzed. Each data set consisted of 33 process variables as
inputs to the model and one product quality (naphtha 95% cut point) as an
output. A total of 70 data sets were used in the training phase and 15 data sets
were used in the verification phase. Table 7.4 summarizes the simulation results.

For the first case, a single hidden layer consisting of five neurons was
utilized. The model could not achieve the desired error goal of 0.01 after
performing 10,000 iterations, which was the maximum allowed number of
iterations. A maximum error of 7.84°F at training phase was obtained. . In the
verification phase, a maximum error of 11.59°F. was detected. Figures 7.6 and
7.7 shows the results of the training and verification phases, respectively.

For further investigation, a first-momentum term was added to the back
propagation algorithm. However, the model still could not achieve the desired
error goal after 10,000 iterations as shown on the table. Finally, with the same
model as above, an adaptive learning rate was added, and the neural network
model achieved the desired sum squared error goal of 0.01 in 3180 iterations.

Next, the number of hidden neurons was increased. Table 7.5 also shows the
training and verification results using eight neurons in the hidden layer. The
model was able to achieve an acceptable error in the training phase of 1.35°F but
failed to achieve comparable results in the verification phase where the
maximum absolute error was 6.82°F. Further increase in the number of hidden
neurons only improved the results in the training phase. The verification phase



continued to show error values too significant to be accepted for good prediction
of the Naphtha 95% cut point property.

The next step in the simulation was to increase the number of hidden layers.
Two hidden layers were selected and the number of neurons in each layer was
varied. Figures 7.8 and 7.9 show the training and verification results using eight
neurons in the first hidden layer and four neurons in the second hidden layer.
The result shows slight improvement in the verification phase but more accurate
prediction is still required. It can be noticed that in the training phase the models
performed well, however, in the verification phase all the tested models could
not predict with enough accuracy. It was suspected that the neural network
models were memorizing the relationship between the inputs and the output
since they were trying to adhere to a very small error goal in the training phase.

Table 7.4: Initial Simulation Results for Naphtha 95% Cut Point

Training Phase Verification Phase
Hidden
Neurons Error goal | Iterations | Final SSE | Max. Error | Final SSE Max.
°F Error
‘F
5 BP 0.01 10000 0.045 7.84 0.45 11.59
SM 0.01 10000 0.031 1.57 0.22 7.92
5 0.01 3180 0.01 2.17 0.28 5.49
8 0.01 4563 0.01 1.35 0.25 3.29
10 0.01 2088 0.01 1.83 0.27 7.95
8-4 0.01 4302 0.01 1.33 0.14 4.81

It is important to prevent the neural network model from memorizing the
input/output relationship. A neural network with enough hidden neurons given
enough iterations and a very small error goal will actually memorize a given
relationship between model inputs and outputs. In other words, a network
memorizes relationships between outputs and inputs when the model building
points are allowed to conform to a degree much less than lab repeatability. It
means that an acceptable sum squared error goal in the training phase should
generate a degree of accuracy very close to lab repeatability. A typical value
used for lab repeatability for the naphtha 95% cut point is 3.6'F. If one insists
on achieving a degree of accuracy greater than lab repeatability, the network
memorizes the relationship during the training process; this is known as
overfitting. When overfitting occurs, each data point during the training is fit
perfectly but the network is not able to predict with the same accuracy during
the verification phase. A two-layer network with 12 neurons in the hidden layer
was trained with an error goal of 0.05 (Table 7.5) to yield a maximum error of
1.7 °F in the training phase. The maximum error in the verification phase was
5.79°F. The network could not generalize. It memorized the relation between
inputs and outputs in the training phase and did not follow the general trend of
the relation between inputs and targets.



Table 7.5: Simulation Results for Naphtha 95% Cut Point

Training Phase [| Verification Phase
Hidden ||Error goal [[Iterations || Final SSE || Max. Error |[Final SSE||Max. Error
Neurons ‘F F
5 0.1 374 0.1 3.21 0.091 4.17
0.3 196 0.3 6.61 0.432 13.76
8 0.1 238 0.1 2.87 0.097, 3.29
0.05 681 0.05 1.8 0.111 3.99
0.01 5686 0.01 1.37 0.161 4.7
12 0.1 385 0.1 3.18 0.117 4.87
0.05 1237 0.05 1.7 0.145 5.79
5-2 0.1 269 0.1 3.03 0.098 5
0.2 211 0.2 3.81 0.127 5.45

Table 7.5 shows a summary of the simulation results. The best model
architecture (in terms of better prediction in both training and verification
modes) consists of eight neurons in one hidden layer. Both hidden and output
layers use sigmoidal activation functions as the nonlinear element for their
neurons. The model is trained to achieve a sum squared error goal of 0.1. The
sum squared error goal in the verification mode is 0.097.

In this application it is important that the neura network output is equal to or
less than the acceptable error. As mentioned earlier, the acceptable error value is
based on lab repeatability. For the naphtha 95% cut point, this value is 3.6'F.
Further data analysis is performed to look at the absolute error in each data set
in both the training and verification modes. The maximum absolute error in the
training data sets is 2.87 F, whereas in the verification mode the maximum
absolute error is 3.29°F.
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Figure 7.6: L, Error Norm in the Training Phase.
(Hidden Layer Neurons: 5, Error Goal=0.01, Max. Error=7.84°F)



VERIFICATION RESULTS

340,00
335.00
33000
ﬁ. 33500
E IFon

nso

=

nm0a0 ™
1 F 3 &4 S5 & T B &8 131913 13 14 15 1F W
DATA SET
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7.6.2 Naphtha Reid Vapor Pressure

To demonstrate the modeling capability of a back propagation algorithm for
RVP prediction parameters, 83 data sets were analyzed. Each data set consisted
of seven process variables (Table 7.6) as inputs to the model and one product
quality (Reid vapor pressure) as an output. A total of fifty five data sets were
used in the training phase and 28 data sets are used in the verification phase.

Table 7.6: Inputs to the RVP Neural Network Model
Process Variables

FEED FLOW RATE

REFLUX FLOW RATE
OVERHEAD PRESSURE

FEED TEMPERATURE
REBOILER RETURN TEMP.
TRAY 2 TEMPERATURE
COLUMN TOP TEMPERATURE

The best model architecture (in terms of better prediction in both training
and verification modes) consisted of five neurons in one hidden layer. Both
hidden and output layers use sigmoidal activation functions as the nonlinear
element for their neurons. The model is trained to achieve a sum squared error
goal of 0.1. The sum squared error goal in the verification mode is 0.097. The
maximum absolute error in the training data sets is 0.21 psi, whereas in the
verification mode the maximum absolute error is 0.48 psi. The detail work can
be found in reference [3].

7.7 CONCLUSIONS

In this chapter, various neural network architectures are proposed for the
prediction of product quality of an oil refinery. The important parameters
involved in acquiring valid data sets are considered. Close attention is paid to
the proper selection of the input data. Finally, two product quality properties,
namely, naphtha 95% cut point and naphtha Reid vapor pressure, were
successfully modeled using neural network.

After the generation of the neural network models, the central processing
computer system of an oil refinery may use them on-line. Using the NN model
on-line is straightforward except for one point of caution. The network was
trained within a specific range for the different process variables and the lab
data. It is important to realize that while neural network models are excellent
interpolators, they can be bad extrapolators due to the non-linearity of the
correlation generated. It is, therefore, important to check process param eters
used in the prediction and to make sure that these parameters fall within the
range that was used to create the model. If parameters fall out of range, then the
predicted lab value is questionable. Lab data collected while process parameters



are outside the range can be used to further expand the window of operation of
the neural network model. As the variability in plant operation increases, and
the network window expands, the generation models can become more and
more reliable.
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INTRODUCTION TO FUZZY SETS:
BASIC DEFINITIONS AND
RELATIONS

Mo Jamshidi and Aly El-Osery

8.1 INTRODUCTION
One of the more popular new technologies is intelligent control, which is
defined as a combination of control theory, operations research, and artificial
intelligence (Al). Judging by the billions of dollars worth of sales and close to
2000 patents issued in Japan alone since the announcement of the first fuzzy
chips in 1987, fuzzy logic still is perhaps the most popular area in Al. Thanks to
tremendous technological and commercial advances in fuzzy logic in Japan and
other nations, today fuzzy logic continues to enjoy an unprecedented popularity
in the technological and engineering fields including manufacturing. Fuzzy logic
technology is being used in numerous consumer and electronic products and
systems, even in the stock market and medical diagnostics. The most important
issue facing many industrialized nations in the next several decades will be
global competition to an extent that has never before been posed. The arms race
is diminishing and the economic race is in full swing. Fuzzy logic is but one
such front for global technological, economical, and manufacturing competition.
In order to understand fuzzy logic it is important to discuss fuzzy sets. In
1965, Zadeh [1] wrote a seminal paper in which he introduced fuzzy sets, i.e.,
sets with unsharp boundaries. These sets are generally in better agreement with
the human mind that works with shades of gray, rather than with just black or
white. Fuzzy sets are typically able to represent linguistic terms, e.g., warm, hot,
high, low. Nearly ten years later Mamdani [2] succeeded in applying fuzzy logic
for control in practice. Today, in Japan, U.S.A, Europe, Asia and many other
parts of the world fuzzy control is widely accepted and applied. In many
consumer products like washing machines and cameras, fuzzy controllers are
used in order to obtain intelligent machines (Intelligent Machine Quotient--
MIQ®) and user friendly products. A few interesting applications can be

mentioned: control of subway systems, image stabilization of video cameras,
image enhancement and autonomous control of helicopters. Although the U.S
and Europe hesitated in accepting fuzzy logic, they have become more
enthusiastic about applying this technology.

Fuzzy set theory is developed comparing the precepts and operations of
fuzzy sets with those of classical set theory. Fuzzy sets will be seen to contain
the vast majority of the definitions, precepts, and axioms that define classical
sets. In fact, very few differences exist between the two set theories. Fuzzy set
theory is actually a fundamentally broader theory than current classical set



theory, in that it considers an infinite number of degrees of membership in a
set other than the canonical values of 0 and 1 apparent in classical set theory. In
this sense, one could argue that classical sets are a limited form of fuzzy sets.
Hence, it will be shown that fuzzy set theory is a comprehensive set theory.

Conceptually, a fuzzy set can be defined as a collection of elements in a
universe of information where the boundary of the set contained in the universe
is ambiguous, vague, and otherwise fuzzy. It is instructive to introduce fuzzy
sets by first reviewing the elements of classical (crisp) set theory.

This chapter is organized as follows. Section 8.2 briefly describes classical
sets, followed by introduction to classical set operations in section 8.3.
Properties of classical sets are given in section 8.4. Section 8.5 is a quick
introduction to fuzzy sets. Fuzzy set operations and properties are given in
sections 8.6 and 8.7, respectively. Section 8.8 presents fuzzy vs. classical
relations. Finally, a conclusion is given in section 8.9.

8.2 CLASSICAL SETS

In classical set theory, a set is denoted as a so-called crisp set and can be
described by its characteristic function as follows:
U U —{0,1} (8.1)

In Equation 8.1, U is called the universe of discourse, i.c., a collection of
elements that can be continuous or discrete. In a crisp set each element of the
universe of discourse either belongs to the crisp set (U= 1) or does not belong to
the crisp set (uc=0).

Consider a characteristic function ficy,, representing the crisp set hot, a set
with all hot temperatures. Figure 8.1 graphically describes this crisp set,
considering temperatures higher than 40°C as hot. (Note that for all temperatures
T, we have Te U).

:uC ot

0 40 T

Figure 8.1: The Characteristic Function ¢y

8.3 CLASSICAL SET OPERATIONS

Let 4 and B be two sets in the universe U, and pyu(x) and pig(x) be the
characteristic functions of A4 and B in the universe of discourse in sets
A and B, respectively. The characteristic function ti4(x) is defined as follows:

1, xed

= 2
HaD {0, xe A (8.2)

and pp(x) is defined as



(5= 1, xe”? (8.3)
Halo)= 0, xel?
Using the above definitions, the following operations are defined [3].

Union The union between two sets, i.e., C=A4UB , where U is the union
operator, represents all those elements in the universe which reside in either the
set A or set B or both [4], (see Figure 8.2). The characteristic function uc is
defined in Equation 8.4.

Figure 8.2: Union.

Vyel:u,= max[uA(x),uE(x)] (8.4)
The operator in Equation 8.4 is referred to as the max-operator.

Intersection The intersection of two sets, i.e., C'= 415, where () is the
intersection operator, represents all those elements in the universe U which
reside in both sets 4 and B simultaneously (see Figure 8.3). Equation 8.5 shows
how to obtain the characteristic function fic.

Vyel:u,= min[,ud(x),yb,(x)] (8.5)
The operator in Equation 8.5 is referred to as the min-operator.

U

Figure 8.3: Intersection.

Complement The complement of a set 4, denoted 4 , is defined as the collection
of all elements in the universe which do not reside in the set 4 (see Figure 8.4).
The characteristic function T is defined by Equation 8.6.



VoeU:u, =1-p ,(x)

8.4 PROPERTIES OF CLASSICAL SET

Figure 8.4: Complement.

(8.6)

Properties of classical sets are very important to consider because of their
influence on the mathematical manipulation. Some of these properties are listed

below [5].
Commutativity:
AUB=8U A4
ANB=BN A4
Associativity:
AJUo)=Usnuc
ANBNO =4ANHNC
Distributivity:
AUBNC)=(4UBN(4UC)
ANBUC) = (AN BUANC)
Idempotency:
AU A= 4
AN A=A
Identity:
AU¢p= A4
ANX = 4
ANg=9¢
AUX =X

(8.7)
(8.8)

(8.9)
(8.10)

(8.11)
(8.12)

(8.13)
(8.14)

(8.15)
(8.16)
(8.17)
(8.18)



Excluded middle laws are very important since they are the only set
operations that are not valid for both classical and fuzzy sets. Excluded middle
laws consist of two laws. The first, known as Law of Excluded Middle, deals
with the union of a set 4 and its complement. The second law, known as Law of
Contradiction, represents the intersection of a set A and its complement. The
following equations describe these laws:

Law of Excluded Middle
AJA=x (8.19)

Law of Contradiction

ANA=¢ (8.20)

8.5 FUZZY SETS
The definition of a fuzzy set [1] is given by the characteristic function

1,20 —[0,1] (8.21)

In this case the elements of the universe of discourse can belong to the fuzzy
set with any value between 0 and 1. This value is called the degree of
membership. If an element has a value close to 1, the degree of membership, or
truth value is high. The characteristic function of a fuzzy set is called the
membership function, for it gives the degree of membership for each element of
the universe of discourse. If now the characteristic function fiz,, is considered,
one can express the human opinion, for example, that 37°C is still fairly hot, and
that 38°C is hot, but not as hot as 40°C and higher. This result in a gradual
transition from membership (completely true) to non-membership (not true at
all). Figure 8.5 shows the membership function g, for the fuzzy set Fj,,.

:uF hot

0 35 40 45 T
Figure 8.5: The Membership Function fizs

8.5.1 Fuzzy Membership Functions

The membership functions for fuzzy sets can have many different shapes,
depending on definition. Figure 8.6 provides a description of the various
features of membership functions. Some of the possible membership functions
are shown in Figure 8.7.
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Figure 8.6: Description of Fuzzy Membership Functions [4].

Figure 8.7 illustrates some of the possible membership functions, we have:
(a) the I'-function: an increasing membership function with straight lines; (b) the

L-function: a decreasing function with straight lines; (c) A-function: a triangular

function with straight lines; (d) the singleton: a membership function with a
membership function value 1 for only one value and the rest is zero. There are
many other possible functions such as trapezoidal, Gaussian, sigmoidal or even

arbitrary.
A A

1

» | L »
> T T »
v )
(a) T-function (left shoulder) (b) L-function(right shoulder)
A A
1 T
Ll o >
(c) A-function (triangular) (d) Singleton

Figure 8.7: Examples of Membership Functions.

A notation convention for fuzzy sets that is popular in the literature when the
universe of discourse U, is discrete and finite, is given below for a fuzzy set 4
by



M (x) u () o, (x) (8.22)
A=——— 4 — -

.
~ X x, x

7 7

and, when the universe of discourse U is continuous and infinite, the fuzzy set 4
is denoted by

u, () (8.23)
A= j ?
~ x
8.6 FUZZY SET OPERATIONS

As in the traditional crisp sets, logical operations, e.g., union, intersection, and
complement, can be applied to fuzzy sets [1].

Union The union operation (and the intersection operation as well) can be
defined in many different ways. Here, the definition that is used in most cases is
discussed. The union of two fuzzy sets 4 and B with the membership functions

pa(x) and Hp(x) is a fuzzy set C', written as C= 4 U B, whose membership
function is related to those of 4 and B as follows:

(8.24)
Vyel:u, = max[,u/{(x),,ub,(x)]

Haus A B
l ... I

0

Figure 8.8: Union of Two Fuzzy Sets.

Intersection According to the min-operator the intersection of two fuzzy sets
Aand £ with the membership functions u ,(x)and p ,(x), respectively, is a

fuzzy set C, written as C'= A() B, whose membership function is related to

those of 4 and 2 as follows:

) (8.25)
Vyel:iu, .= m1n|:,u A(x),,uf;(x)]
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Figure 8.9: Intersection of Two Fuzzy Sets.

0

Complement The complement of a set .4, denoted 4, is defined as the

collection of all elements in the universe which do not reside in the set 4 .

VreUip =1-p,(») (8.26)

v

0
Figure 8.10: Complement of a Fuzzy Set.

Keep in mind that even though the equations of the union, intersection, and
complement appear to be the same for classical and fuzzy sets, they differ in the
fact that M 4(X) and Hp(X) can take only a value of zero or one in the case of

classical set, while in fuzzy sets they include the whole interval from zero to
one.

8.7 PROPERTIES OF FUZZY SETS

Similar to classical sets, fuzzy sets also have some properties that are important
for mathematical manipulations [5,6]. Some of these properties are listed below.

Commutativity:
AUB=8U 4 (8.27)

AN B=BN 4 (8.28)



Associativity:

AUBUO)=4UBUC (8.29)
ANBNCO)=UANBNC (8.30)

Distributivity:
AUBNO=(4UBNUAUC) (831)
ANBUCO)=(ANBUMUNC) (8.32)

Idempotency:
flU :4 = :4 (8.33)
AN4=4 (834)

Identity:

1:1U¢ szl (8.35)
ANX =4 (8.36)
AN =¢ (8.37)
AUX =X (8.38)

Most of the properties that hold for classical sets (e.g., commutativity,
associativity, and idempotence) hold also for fuzzy sets except for following two
properties [5]:

1. Law of contradiction (AﬂZ?q)): One can easily notice that the

intersection of a fuzzy set and its complement results in a fuzzy set with
membership values of up to _ and thus does not equal the empty set (as in
the case of classical sets) as shown in Figure 8.11.

fane
1
0

Figure 8.11: Law of Contradiction.



2. Law of excluded middle ( A\J A # U): The union of a fuzzy set and its

complement does not give the universe of discourse (see Figure 8.12).

Haus | 4 4

1

“ Y

Figure 12: Law of Excluded Middle.

8.7.1  Alpha-Cut Fuzzy Sets

It is the crisp domain in which we perform all computations with today s
computers. The conversion from fuzzy to crisp sets can be done by two means,
one of which is

alpha-cut sets.
Given a fuzzy set 4 , the alpha-cut (or lambda cut) set of 4 is defined by

z%={4MA@2@} (8.39)

Note that by virtue of the condition on K4(X) in Equation 8.39, i.e., a

common property, the set 4, in Equation 8.39 is now a crisp set. In fact, any
fuzzy set can be converted to an infinite number of cut sets.

8.7.2  Extension Principle

In fuzzy sets, just as in crisp sets, one needs to find means to extend the
domain of a function, i.e., given a fuzzy set 4 and a function f{-), then what is

the value of function f{ 4 )? This notion is called the extension principle which

was first proposed by Zadeh.
Let the function f be defined by

S U=V (8.40)



where U and V are domain and range sets, respectively. Define a fuzzy set
A cUas,

8.41
A:{&+&+...+&} (841

le Z12 ”}7

Then the extension principle asserts that the function f'is a fuzzy set, as well,
which is defined below:

MM K, (8.42)
B: = Ry
b=/ {f<u1>+./(u2>+ +f<u,,>}

The complexity of the extension principle would increase when more than
one member of u; X u, is mapped to only one member of v; one would take the
maximum membership grades of these members in the fuzzy set 4 .

Example 8.1

Given two universes of discourse U;=U,={1,2, ,10} and two fuzzy sets
(numbers) defined by

(=]

Approximately 2 = =) +—+ 08

-]
N | —

and
Approximately 5 = 03'—6.4- %4. ;—

It is desired to find approximately 10

SOLUTION:

The function /"= # X u#,:— v represents the arithmetic product of these two

fuzzy numbers and is given by
" . " 05 1 08 0.6 0.8 1) min(0.50.6)
approximately 10"= | —+—+— |X| —+ —+ = |=———+
1 2 3 3 4 5 3
min(0.5,0.8) + min(0.5,1) + min(1,0.6) N min(1,0.8) +
4 5 6 8
min(1,1) N min(0.8,0.6) N min(0.8,0.8) 4 min(0.8,1)
10 9 12 15
05 05 05 06 08 06 1 0.8 0.8
= ——+—
3 4 5 6 8 9 10 12 15




The above resulting fuzzy number has its prototype, i.e., value 10 with a
membership function 1 and the other 8 pairs are spread around the point (1, 10).

Example 8.2
Consider two fuzzy sets (numbers) defined by
Approximately 2 = 0'—5+ 1—+ 0—5
1 2 3
and
. 08 09 1
Approximately 4 = 7+ —+—

3 4
It is desired to find approximately 8

SOLUTION:
The function /"= # X u#,:— v represents the arithmetic product of these two

fuzzy numbers and is given by

05 1 0.5) (0.8 0.9 1)_ min(0.5,0.8)
e+ X+ = ——+
1 2 3 2 3 4 2
min(0.5,0.9) + max[min(0.5,1), min(1,0.8)] N
3 4
max[min(1,0.9), min(0.5,0.8)] + min(1,1) + min(0.5,0.9) +
6 8 9
min(0.5,1) E_’_E 0.8 09 1 E_’_E
2 3 9 12

12 4 6 '8

"approximately 8"= (

8.8 CLASSICAL RELATIONS vs. FUZZY RELATIONS

Classical relations are structures that represent the presence or absence of
correlation or interaction among elements of various sets. There are only two
degrees of relationship between elements of the sets in a crisp relation, namely,
the relationships completely related or not related . Fuzzy relations, on the
other hand, are developed by allowing the relationship between elements of two
or more sets to take an infinite number of degrees of relationship between the
extremes of completely related and not related [6,7].
The classical relation of two universes U and ¥ is defined as

UxV={(uv\ueU,ver} (8.43)

which combines Vue U and Vve V in an ordered pair and forms unconstrained

matches between u and v. That is, every element in universe U is related
completely to every element in universe V. The strength of this relationship



between ordered pairs of elements in each universe is measured by the
characteristic function, where a value of unity is associated with complete
relationship and a value of zero is associated with no relationship, i.e., the
binary values 1 and 0.

As an example, if U={1,2} and V={a,b,c}, then UxV={(1,a), (1,b), (1,c),
(2,a), (2,b), (2,c)}. The above product is said to be crisp relation, which can be
expressed by either a matrix expression

a b c

R=UXV et (8.44)
= X = .
211 1 1

Or in a so-called Sagittal diagram (see Figure 8.13)

U 4

Figure 8.13: Sagittal Diagram.

Fuzzy relations map elements of one universe to those of another universe,
through Cartesian product of the two universes. Unlike crisp relations, the
strength of the relation between ordered pairs of the two universes is not
measured with the characteristic function, but rather with a membership function
expressing various degrees of the strength of the relation on the unit interval
[0,1]. In other words, a fuzzy relation R is a mapping:

RUXV—10,1] (8.45)

The following example illustrates this relationship, i.e.,

u,f(u, V)= ui,xig(u, V)= min(ui,(u),u?(V)) (8.46)



Example 8.3

. 02 09 03 05 1
Consider two fuzzy sets 4 =——+— and 4,=—+—+—.

X1 X ~ N Y2 V3
Determine the fuzzy relation between these sets.

SOLUTION:
The fuzzy relation R is

min(0.2,0.3) min(0.2,0.5) min(0.2,1)
R=AXx A4, = x[03 0.5 1]=| | ‘ . =
~ 0.9 min(0.9,0.3) min(0.9,0.5) min(0.9,1)

02 02 02
103 0.5 09

Let R be a relation that relates elements from universe U to universe V, and
let §be a relation that relates elements from universe ¥ to universe W. Is it
possible to find the relation 7 that relates the same elements in universe U that
R contains to elements in universe /¥ that § contains? The answer is yes, using

an operation known as composition.
In crisp or fuzzy relations, the composition of two relations, using the max-
min rule, is given below. Given two fuzzy relations R(u,v) and S(v,W), then

the composition of these is

{ ‘ } (8.47)
7= Ro.§'= maxymin(it (1 V).t 5()

or using the max-product rule, the characteristic function is given by

M (et w) = ’?j‘yx{#k(”’ V) lg(v, w)} (8.48)

The same composition rules hold for crisp relations.

Example 8.4

Consider two fuzzy relations

0.6 0.8 0.3 0.1
R= and §'=
~ 10.7 0.9 ~ 102 0.8



It is desired to evaluate Ro.S and So R

SOLUTION:
Using the max-min composition for RoS we have

0.3 0.8:|

RoS=
- - |:O.3 0.8

where, for example, the element (1,1) is obtained by max{min(0.6,0.3),
min(0.8,0.2)}=0.3.

For So R we get the following result

03 03
So R= E Y

0.7 08] -

Using the max-product rule, we have

0.18 0.64
oS =
~ 1021 0.72

where, for example, the element (2,2) is obtained by max{(0.7)(0.1),
(0.9)(0.8)}=0.72.
For § ° 13 we get the following result

0.18 0.24
So R= RS
~ 1056 0.72] -

8.9 CONCLUSION

In this chapter a quick overview of classical and fuzzy sets was given. Main
similarities and differences between classical and fuzzy sets were introduced.
In general, set operations are the same for classical and fuzzy sets. The
exceptions were excluded middle laws. Alpha-cut sets and extension principle
were presented followed by a brief introduction to classical vs. fuzzy relations.
This chapter presented issues that are important in understanding fuzzy sets and
their advantages over classical sets. A set of problems at the end of the book
will further enhance the reader s understanding of these concepts.
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INTRODUCTION TO FUZZY
LOGIC

Mo Jamshidi, Aly El-Osery, and Timothy J. Ross
9.1 INTRODUCTION

The need and use of multilevel logic can be traced from the ancient works of
Aristotle, who is quoted as saying, “There will be a sea battle tomorrow.” Such a
statement is not yet true or false, but is potentially either. Much later, around AD
1285-1340, William of Occam supported two-valued logic but speculated on
what the truth value of “if p then ¢” might be if one of the two components, p or
¢, as neither true nor false. During the time period of 1878-1956, Lukasiewicz
proposed a three-level logic as a “true” (1), a “false” (0), and a “neuter” (1/2),
which represented half true or half false. In subsequent times, logicians in China
and other parts of the world continued on the notion of multi-level logic. Zadeh,
in his seminal 1965 paper [1], finished the task by following through with the
speculation of previous logicians and showing that what he called “fuzzy sets”
were the foundation of any logic, regardless of the number of truth levels
assumed. He chose the innocent word “fuzz” for the continuum of logical values
between 0 (completely false) and 1 (completely true). The theory of fuzzy logic
deals with two problems 1) the fuzzy set theory, which deals with the vagueness
found in semantics, and 2) the fuzzy measure theory, which deals with the
ambiguous nature of judgments and evaluations.

The primary motivation and “banner” of fuzzy logic is the possibility of
exploiting tolerance for some inexactness and imprecision. Precision is often
very costly, so if a problem does not require precision, one should not have to
pay for it. The traditional example of parking a car is a noteworthy illustration.
If the driver is not required to park the car within an exact distance from the
curb, why spend any more time than necessary on the task as long as it is a legal
parking operation? Fuzzy logic and classical logic differ in the sense that the
former can handle both symbolic and numerical manipulation, while the latter
can handle symbolic manipulation only. In a broad sense, fuzzy logic is a union
of fuzzy (fuzzified) crisp logics [2]. To quote Zadeh, “Fuzzy logic’s primary aim
is to provide a formal, computationally-oriented system of concepts and
techniques for dealing with modes of reasoning which are approximate rather
than exact.” Thus, in fuzzy logic, exact (crisp) reasoning is considered to be the
limiting case of approximate reasoning. In fuzzy logic one can see that
everything is a matter of degrees.

This chapter is organized as follows. In section 9.2, a brief introduction to
predicate logic is given. In section 9.3, fuzzy logic is presented, followed by
approximate reasoning in section 9.4.



9.2 PREDICATE LOGIC

Let a predicate logic proposition P be a linguistic statement contained within a
universe of propositions that are either completely true or false. The truth value
of the proposition P can be assigned a binary truth value, called 7(P), just as an
element in a universe is assigned a binary quantity to measure its membership in
a particular set. For binary (Boolean) predicate logic, T(P) is assigned a value of
1 (truth) or 0 (false). If U is the universe of all propositions, then T is a
mapping of these propositions to the binary quantities (0,1), or

T:U - {0,1} (9.1)

Now let P and Q be two simple propositions on the same universe of
discourse that can be combined using the following five logical connectives

(1) disjunction (V)
(i1) conjunction (A)
(iii) negation (-)

(iv) implication (—)
(v) equality (<> or =)

to form logical expressions involving two simple propositions. These
connectives can be used to form new propositions from simple propositions.

Now define sets 4 and B from universe X where these sets might represent
linguistic ideas or thoughts. Then a propositional calculus will exist for the case
where proposition P measures the truth of the statement that an element, x, from
the universe X is contained in set 4 and the truth of the statement that this
element, x, is contained in set B, or more conventionally

P: truth that x € 4

Q: truth that x € B, where truth is measured in terms of the truth value, i.e.,
Ifx € A, T(P)= 1; otherwise T(P)= 0.

If x € B, T(Q) = 1; otherwise T(Q) = 0, or using the characteristic function
to represent truth (1) and false (0):

, xeA

= 2
Xa(x) {0, A 92)

The above five logical connectives can be used to create compound
propositions, where a compound proposition is defined as a logical proposition
formed by logically connecting two or more simple propositions. Just as one is
interested in the truth of a simple proposition, predicate logic also involves the
assessment of the truth of compound propositions. Given a proposition
P:xl A,P:x[ A, the resulting compound propositions are defined below in
terms of their binary truth values:



Disjunction:
PvO=xeAorB

9.3
Hence, T(P v Q) = max(T(P),T(Q)) )
Conjunction:
PAO= xe Aand B 94
Hence, 712 A 0) = min(7(7), 10)) ©H
Negation: _ _
If T(P)=1, then T(P)=0; If T(P)=0, then T(P) =1 9.5)
Equivalence:
P—>Q0=xe€AB 96
Hence, T(P & Q) = T(P) = T(Q) 0
Implication:
P>Q=x¢AorxeB
9.7

Hence, T(P — Q)=T(PUQ)

The logical connective implication presented here is also known as the
classical implication, to distinguish it from an alternative form due to
Lukasiewicz, a Polish mathematician in the 1930s, who was first credited with
exploring logic other than Aristotelian (classical or binary) logic. This classical
form of the implication operation requires some explanation.

For a proposition P defined on set 4 and a proposition Q defined on set B,
the implication “P implies Q” is equivalent to taking the union of elements in
the complement of set 4 with the elements in the set B. That is, the logical
implication is analogous to the set-theoretic form.

P— Q=AUBistrue = either "notin A" or "in B" (9.8)

So that (P — Q) <> (P v Q)

T(P—>Q)=T(PvQ)=max(T(P), T(Q)) (9.9)
This is linguistically equivalent to the statement, “P implies Q is true” when
either “not A” or “B” is true [6]. Graphically, this implication and the analogous
set operation are represented by the Venn diagram in Figure 9.1. As noted, the
region represented by the difference 4 \ B is the set region where the implication
“P implies Q” is false (the implication fails). The shaded region in Figure 9.1
represents the collection of elements in the universe where the implication is
true, i.e., the shaded area is the set:



A\B=AUB=(ANB)
Ifx is in A and x is not in B then
A — B = fails A\B (difference)

(9.10)

Figure 9.1: Classical Implication Operation (Shaded Area is Where Implication
Holds) [2].

Now, with two propositions (P and Q) each being able to take on one of two
truth values (true or false, 1 or 0), there will be a total of 2° = 4 propositional
situations. These situations are illustrated in Table 9.1, along with the
appropriate truth values for the propositions P and Q and the various logical
connectives between them in the truth table.

To help understand this concept, assume you have two propositions P and Q.
P: you are a graduate student and Q: you are a university student. Let us
examine the implication “P implies Q”. If you are a student in general, and a
graduate student in particular, then the implication is true. On the other hand,
the implication would be false if you are a graduate student without being a
student. Now, let us assume that you are an undergraduate student; regardless
whether you are graduate or not, then the implication is true (since in the case
you are not a graduate student does not negate the fact that you are an
undergraduate). Then, we come to the final case: you are neither a graduate nor
undergraduate student. In this case the implication is true, because the fact that
you are not a graduate or undergraduate student does not negate the implication
that for you to be a graduate student you have to be a student at the university.

Table 9.1
P 0 P PvQ PAO | PO | PO
True True False True True True True
True False False True False False False
False True True True False True False
False False True False False True True

Suppose the implication operation involves two different universes of
discourse, P is a proposition described by set 4, which is defined on universe X,




and Q is a proposition described by set B, which is defined on universe Y. Then
the implication “P implies Q” can be represented in set theory terms by the
relation R, where R is defined by

R=(AxB)UA xY)=1F A, THEN B 9.11)
IfxeA (wherexe X, Ac X)
Thenye B (whereyeY, BCY)

where 4 X B and 4 X Y are Cartesian products [3].

This implication is also equivalent to the linguistic rule form: IF 4, THEN B.
The graphic shown in Figure 9.2 represents the Cartesian space of the product X
x Y, showing typical sets 4 and B, and superimposed on this space is the set

theory equivalent of the implication. That is,

P—>Q=IFxeA, thenyeB, orP>Q0=AUB 9.12)

Y

&

B X
Figure 9.2: Cartesian Space Demonstrating IF 4 THEN B [3].

The shaded regions of the compound Venn diagram in Figure 9.2 represent
the truth domain of the implication, IF 4, THEN B (P implies Q).

9.2.1 Tautologies

In predicate logic it is useful to consider compound propositions that are
always true, irrespective of the truth values of the individual simple
propositions. Classical logic compound propositions with this property are
called tautologies. Tautologies are useful for deductive reasoning and for
making deductive inferences. So, if a compound proposition can be expressed
in the form of a tautology, the truth-value of that compound proposition is
known to be true. Inference schemes in expert systems often employ
tautologies. The reason for this is that tautologies are logical formulas that are
true on logical grounds alone [3].

One of these, known as Modus Ponens deduction, is a very common
inference scheme used in forward chaining rule-based expert systems. It is an



operation whose task is to find the truth-value of a consequent in a production
rule, given the truth-value of the antecedent in the rule. Modus Ponens
deduction concludes that, given two propositions, ¢ and a-implies-b, both of
which are true, then the truth of the simple proposition b is automatically
inferred. Another useful tautology is the Modus Tollens inference, which is used
in backward-chaining expert systems. In Modus Tollens an implication between
two propositions is combined with a second proposition and both are used to
imply a third proposition. Some common tautologies are listed below.

BUB& X 9.13)
AUX & X (9.14)
AUX o X (9.15)
(AA(A—>B)— B (Modus Ponens) (9.16)
(BA(A>B)— A (Modus Tollens) 9.17)

9.2.2 Contradictions

Compound propositions that are always false, regardless of the truth-value of
the individual simple propositions comprising the compound proposition, are
called contradictions. Some simple contradictions are listed below.

BNB& ¢ (9.18)
AN < ¢ (9.19)
ANg o ¢ (9.20)

9.2.3 Deductive Inferences

The Modus Ponens deduction is used as a tool for inferencing in rule-based
systems. A typical IF-THEN rule is used to determine whether an antecedent
(cause or action) infers a consequent (effect or action). Suppose we have a rule
of the form,

IF A, THEN B (9.21)

This rule could be translated into a relation using the Cartesian product sets A
and B, that is

R=(AxB)UA xY) (9.22)
Now suppose a new antecedent, say 4°, is known. Can we use Modus

Ponens deduction to infer a new consequent, say B’, resulting from the new
antecedent? That is, in rule form



IFA', THEN B ? (9.23)

The answer, of course, is yes, through the use of the composition relation.
Since “A implies B” is defined on the Cartesian space X X Y, B’ can be found
through the following set-theoretic formulation,

B=AoR=A(AxB)UA xY)) (9.24)
Modus Ponens deduction can also be used for the compound rule,
IF 4, THEN B,ELSE C (9.25)
Using the relation defined as,
R=(AxB)UA xC) (9.26)

and hence B'= A"°R .

Example 9.1

Let two universes of discourse be described by X={1,2,3,4,5,6} and
Y={1,2,3,4} and define the crisp set A={2,3} on X and B={3,4} on Y. Determine
the deductive inference IF 4, THEN B.

SOLUTION
Expressing the crisp sets in Zadeh’s notation,

A_9+l+l+O
1 2 3 4
0 0 1 1 0 0
B=—4+—+—4+—+—+
1 2 3 4 5 6

Taking the Cartesian product A X B which involves taking the pairwise min
of each pair from the sets 4 and B [3]

1 23 456

1 /00 0 O0O0O0
AxB=2 |0 0 1 1 0 O
3100 1 100

4 10000 0O

Then computing A x ¥



7-1,0,0.1
1 2 3 4
11 1 1 1 1

Y=-+—+—+—+—+—
1 2 3 4 5 6
123456
1111111

Axy=2 10 00 0 0 0
31000000
40111111

again using pairwise min for the Cartesian product.

The deductive inference yields the following characteristic function in matrix
form, following the relation,

123456
1111111
R=(AxBUAxY)=2 |0 01 1 0 0
3001100
4 (11 1111

9.3 FUZZY LOGIC

The extension of the above discussions to fuzzy deductive inference is
straightforward. The fuzzy proposition P has a value on the closed interval

[0,1]. The truth-value of a proposition P is given by
T({’) =u,(x) where0<pu, <1 (9.27)

Thus, the degree of truth for P:x € Ais the membership grade of x in 4. The

logical connectives of negation, disjunction, conjunction, and implication are
similarly defined for fuzzy logic, e.g., disjunction.

Negation:
T(P)=1-T(P) (9.28)
Disjunction:
PvOQ=xeAor B

(9.29)
Hence, T(Pv Q) = max(T(P),T(Q))



Conjunction:
PAQ=x€A and B

) (9.30)
Hence, T(PA Q) = min(T(P),T(Q))
Implication:
P—>Q0=xis A, thenxis B
T B o (9.31)
T(P— Q)=T(PvQ)=max(T(P),T(Q))
Thus, a fuzzy logic implication would result in a fuzzy rule
P—>Q=Ifxis A, thenyis B (9.32)
and the equivalent to the following fuzzy relation
R=(AxB)UAXY) (9.33)
with a grade membership function,
(9.34)

/J;_e = max{(,u/} ) A .Uz_g(Y)),(l - .u,i; (x))}

Example 9.2
Consider two universes of discourse described by X={1,2,3,4} and
Y={1,2,3,4,5,6}. Lettwo fuzzy sets 4 and B be given by

A_%+l+%
-2 3 4
g 041,06 02
~ 2 3 4 5

It is desired to find a fuzzy relation R corresponding to IF 4', THEN B'.

SOLUTION
Using the relation in Equation 9.33 would give

2 3 5

1 4 6
00 0 0 0 0
AxB=2 |0 04 08 06 02 0
0 04 1 06 02 0
0 03 03 03 02 0



Axy=2 (02 02 02 02 02 02
) O o o0 o 0 o0
4 107 07 07 07 07 0.7

and hence R = max{Ax B,Ax Y}

1 2 3 4 5 6
1 1 1 1 1 1

02 04 08 06 02 02

1
2
310 04 1 06 02 O
4 107 07 07 0.7 07 0.7

R=

9.4 APPROXIMATE REASONING

The primary goal of fuzzy systems is to formulate a theoretical foundation for
reasoning about imprecise propositions, which is termed approximate reasoning
in fuzzy logic technological systems [4,5].

Let us have a rule-based format to represent fuzzy information. These rules
are expressed in conventional antecedent-consequent form, such as

Rule 1: IFxis A, THEN yis B (9.35)

where A4 and B represent fuzzy propositions (sets).
Now let us introduce a new antecedent, say A', and we consider the

following rule:
Rule2: IFxis 4', THEN yis B' (9.36)

From the information derived from Rule 1, is it possible to derive the
consequent Rule 2, B'? The answer is yes, and the procedure is a fuzzy

composition. The consequent B' can be found from the composition operation

B'= AR (9.37)

Example 9.3
Reconsider the fuzzy system of Example 9.2. Let a new fuzzy set 4' be

It is desired to find an approximate reason

given by 4'= 0'—5+ 1—+%

(consequent) for the rule IF 4', THEN B'.



SOLUTION
The relations 9.33 and 9.37 are used to determine B'.

=A4°R=[05 05 08 0.6 05 0.5]

or
, 05 05 08 06 05 05
B=—t—t—+t—+—+—
~ 1 2 3 4 5 6

where the composition is of the max-min form.

Note the inverse relation between fuzzy antecedents and fuzzy consequences
arising from the composition operation. More exactly, if we have a fuzzy
relation R:A — B, then will the value of the composition 4oR=B? The

answer is no, and one should not expect an inverse to exist for fuzzy
composition.  This is not, however, the case in crisp logic, i.e.,
B'= AR = Ao R =B, where all these latter sets and relations are crisp [5,6].

The following example illustrates the nonexistence of the inverse.

Example 9.4
Let us reconsider the fuzzy system of Example 9.2 and 9.3. Let A‘ A and

evaluate B'.

SOLUTION
we have

B=A‘ R A R_ﬁ 04+08+06+E 2;atB

- 1 2 3 4 5 6
which yields a new consequent, since the inverse is not guaranteed. The reason
for this situation is the fact that fuzzy inference is imprecise, but approximate.
The inference, in this situation, represents approximate linguistic characteristics

of the relation between two universes of discourse.

9.5 CONCLUSION

This chapter introduced, very briefly, classical and fuzzy logic. For more in
depth details, readers are encouraged to read Ross [3]. Most of the tools needed
to form an idea about fuzzy logic and its operation have been introduced. These
tools are essential in understanding the next chapter addressing fuzzy control
and stability.
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FUZZY CONTROL AND
STABILITY

Mo Jamshidi and Aly El-Osery

10.1 INTRODUCTION

The aim of this chapter is to define fuzzy control systems and cover relevant
results and development. Traditionally, an intelligent control system is defined
as one in which classical control theory is combined with artificial intelligence
(AI) and possibly OR (Operations Research). Stemming from this definition,
two approaches to intelligent control have been in use. One approach combines
expert systems in Al with differential equations to create the so called expert
control, while the other integrates discrete event systems (Markov chains) and
differential equations [1]. The first approach, although practically useful, is
rather difficult to analyze because of the different natures of differential
equations (based on mathematical relations) and Al expert systems (based on
symbolic manipulations). The second approach, on the other hand, has well
developed and solid theory, but is too complex for many practical applications.
It is clear, therefore, that a new approach and a change of course are called for
here. We begin with another definition of an intelligent control system. An
intelligent control system is one in which a physical system or a mathematical
model of it is being controlled by a combination of a knowledge-base,
approximate (humanlike) reasoning, and/or a learning process structured in a
hierarchical fashion. Under this simple definition, any control system which
involves fuzzy logic, neural networks, expert learning schemes, genetic
algorithms, genetic programming or any combination of these would be
designated as intelligent control.

Among the many applications of fuzzy sets and fuzzy logic, fuzzy control is
perhaps the most common. Most industrial fuzzy logic applications in Japan, the
U.S., and Europe fall under fuzzy control. The reasons for the success of fuzzy
control are both theoretical and practical [1].

From a theoretical point of view, a fuzzy logic rule-base, can be used to
identify both a model, as a “universal approximation,” as well as a nonlinear
controller. The most relevant information about any system comes in one of
three ways—a mathematical model, sensory input/output data, and human
expert knowledge. The common factor in all these three sources is knowledge.
For many years, classical control designers began their effort with a
mathematical model and did not go any further in acquiring more knowledge
about the system, i.e., designers put their entire trust in a mathematical model
whose accuracy may sometimes be in question. Today, control engineers can
use all of the above sources of information. Aside from a mathematical model



whose utilization is clear, numerical (input/output) data can be used to develop
an approximate model (input/output nonlinear mapping) as well as a controller,
based on the acquired fuzzy IF-THEN rules.

Some researchers and teachers of fuzzy control systems subscribe to the
notion that fuzzy controls should always use a model free design approach and,
hence, give the impression that a mathematical model is irrelevant. As indicated
before, the authors, however, believe strongly that if a mathematical model does
exist, it would be the first source of knowledge used in building the entire
knowledge base. From a mathematical model, through simulation, for example,
one can further build the knowledge base. Through utilization of the expert
operator’s knowledge which comes in the form of a set of linguistic or semi-
linguistic IF-THEN rules, the fuzzy controller designer would get a big
advantage in using every bit of information about the system during the design
process.

On the other hand, it is quite possible that a system, such as high dimensional
large-scale systems, is so complex that a reliable mathematical tool either does
not exist or is very costly to attain. This is where fuzzy control (or intelligent
control) comes in. Fuzzy control approaches these problems through a set of
local humanistic (expert-like) controllers governed by linguistic fuzzy IF-THEN
rules. In short, fuzzy control falls into the category of intelligent controllers,
which are not solely model-based, but also, knowledge-based.

From a practical point of view, fuzzy controllers, which have appeared in
industry and in manufactured consumer products, are easy to understand, simple
to implement, and inexpensive to develop. Because fuzzy controllers emulate
human control strategies, they are easily understood even by those who have no
formal background in control. These controllers are also very simple to
implement.

This chapter is organized as follows. Section 10.2 is a basic definition of
fuzzy control systems and their components. Section 10.3 introduces different
methods to fuzzy control design and provides an example. Section 10.4 is an
analysis of fuzzy control systems. Section 10.5 addresses the stability of fuzzy
control systems, and the conclusion is given in Section 10.6.

10.2 BASIC DEFINITIONS

A common definition of a fuzzy control system is that it is a system which
emulates a human expert. In this situation, the knowledge of the human operator
would be put in the form of a set of fuzzy linguistic rules. These rules would
produce an approximate decision, just as a human would. Consider Figure 10.1,
where a block diagram of this definition is shown. As shown, the human
operator observes quantities by observing the inputs, i.e., reading a meter or
measuring a chart, and performs a definite action (e.g., pushes a knob, turns on a
switch, closes a gate, or replaces a fuse) thus leading to a crisp action, shown
here by the output variable y(f). The human operator can be replaced by a
combination of a fuzzy rule-based system (FRBS) and a block called defuzzifier.
The input sensory (crisp or numerical) data are fed into FRBS where physical



quantities are represented or compressed into linguistic variables with
appropriate membership functions. These linguistic variables are then used in
the antecedents (IF-Part) of a set of fuzzy rules within an inference engine to
result in a new set of fuzzy linguistic variables or consequent (THEN-Part).
Variables are then denoted in this figure by z, and are combined and changed to
a crisp (numerical) output y*(f) which represents an approximation to actual
output y(?).

It is therefore noted that a fuzzy controller consists of three operations: (1)
fuzzification, (2) inference engine, and (3) defuzzification.

Inputs : Human Expert +tgu>

Rule Set
Approximate
Inputs ) Inference z . Output
— > Fuzzification ——» . —— > Defuzzification ‘(1;)
Engine y

Figure 10.1: Conceptual Definition of a Fuzzy Control System.

Before a formal description of fuzzification and defuzzification processes is
made, let us consider a typical structure of a fuzzy control system which is
presented in Figure 10.2. As shown, the sensory data go through two levels of
interface, i.e., the analog to digital and the crisp to fuzzy and at the other end in
reverse order, i.e. fuzzy to crisp and digital to analog.

et »  PLANT Oytput
Sensors
D/A[F/C Infere.nce C/F |A/D 4—‘
ngine

Figure 10.2: Block Diagram for a Laboratory Implementation of a Fuzzy
Controller.

Another structure for a fuzzy control system is a fuzzy inference, connected
to a knowledge base, in a supervisory or adaptive mode. The structure is shown
in Figure 10.3. As shown, a classical crisp controller (often an existing one) is
left unchanged, but through a fuzzy inference engine or a fuzzy adaptation
algorithm the crisp controller is altered to cope with the system’s unmodeled
dynamics, disturbances, or plant parameter changes much like a standard
adaptive control system. Here the function %(-) represents the unknown
nonlinear controller or mapping function 4:¢ — u which along with any two



input components e; and e, of e represents a nonlinear surface, sometimes
known as the control surface [2].

Desired
Output
Y4

Control

Output
u PLANT P

/

U=h(e)
Controller
(crisp)

/

Fuzzy
Adaptation
Algorithm

(Inference Engine)

A

Figure 10.3: An Adaptive (Tuner) Fuzzy Control System, Fuzzification.

The fuzzification operation, or the fuzzifier unit, represents a mapping from a
crisp point x = (x; x, ... x,)'€X into a fuzzy set 4e X, where X is the universe
of discourse and T denotes vector or matrix transposition”. There are normally
two categories of fuzzifiers in use. The first is singleton and the second is
nonsingleton. A singleton fuzzifier has one point (value) x, as its fuzzy set
support, i.e., the membership function is governed by the following relation:

I, x=x,eX (10.1)
0, x;txpeX

Uy (x) :{

The nonsingleton fuzzifiers are those in which the support is more than a
point. Examples of these fuzzifiers are triangular, trapezoidal, Gaussian, etc. In
these fuzzifiers, u ,(x)=1at x=x,, where x, may be one or more than one point,

and then u ,(x) decreases from 1 as x moves away from x, or the “core” region
to which x, belongs such that H,(x,)remains 1 (see Section 10.5). For

example, the following relation represents a Gaussian-type fuzzifier:

(x—x,) (x—x,) (10.2)

Uy (x) =expy— 2
(o2

*
For convenience, in this chapter, the tilde (~) sign that was used earlier to express fuzzy sets will
be omitted.



where the variance, 6% , is a parameter characterizing the shape of 1 ,(x) .

10.2.1 Inference Engine

The cornerstone of any expert controller is its inference engine, which
consists of a set of expert rules, which reflect the knowledge base and reasoning
structure of the solution of any problem. A fuzzy (expert) control system is no
exception and its rule base is the heart of the nonlinear fuzzy controller. A
typical fuzzy rule can be composed as [3]

IF A is A, AND Bis B, OR Cis C, (10.3)
THEN U'is U,

where 4, B, C and U are fuzzy variables, 4,, By, C; and U, are fuzzy linquistic
values (membership functions or fuzzy linguistic labels), “AND”, “OR”, and
“NOT” are connectives of the rule. The rule in Equation 10.3 has three
antecedents and one consequent. Typical fuzzy variables may in fact, represent
physical or system quantities such as: “temperature,” “pressure,” “output,”
“elevation,” etc. and typical fuzzy linguistic values (labels) may be “hot”, “very
high,” “low,” etc. The portion “very” in a label “very high” is called a linquistic
hedge. Other examples of a hedge are “much,” “slightly,” “more,” or “less,”
etc. The above rule is known as Mamdani type rule. In Mamdani rules the
antecedents and the consequent parts of the rule are expressed using linguistic
labels. In general in fuzzy system theory, there are many forms and variations
of fuzzy rules, some of which will be introduced here and throughout the
chapter. Another form is Takagi-Sugeno rules in which the consequent part is
expressed as an analytical expression or equation.

Two cases will be used here to illustrate the process of inferencing
graphically. In the first case the inputs to the system are crisp values and we use
max-min inference method. In the second case, the inputs to the system are also
crisp, but we use the max-product inference method. Please keep in mind that
there could also be cases where the inputs are fuzzy variables.

Consider the following rule whose consequent is not a fuzzy implication

IF x, is 4 AND x, is 4, THEN y'is B, fori=12,... (10.4)

where 4 and 4; are the fuzzy sets representing the ith-antecedent pairs, and
B* are the fuzzy sets representing the ith-consequent, and / is the number of
rules.

Case 10.1: Inputs x; and x, are crisp values, and max-min inference method is
used. Based on the Mamdani implication method of inference, and for a set of
disjunctive rules, i.e, rules connected by the OR connective, the aggregated
output for the / rules presented in Equation 10.4 will be given by



:uBi (y) = maX[mll’l[[JAl, (xl)a ‘uAé (x2)]]s fori= 1729"'31 (105)

Figure 10.4 is a graphical illustration of Equation 10.5, for /=2, where All and
A% refer to the first and second fuzzy antecedents of the first rule, respectively,

and B! refers to the fuzzy consequent of the first rule. Similarly, Alz and A22
refer to the first and second fuzzy antecedents of the second rule, respectively,

and B’ refers to the fuzzy consequent of the second rule. Because the
antecedent pairs used in general form presented in Equation 10.4 are connected
by a logical AND, the minimum function is used. For each rule, minimum value
of the antecedent propagates through and truncates the membership function for
the consequent. This is done graphically for each rule. Assuming that the rules
are disjunctive, the aggregation operation max results in an aggregated
membership function comprised of the outer envelope of the individual
truncated membership forms from each rule. To compute the final crisp value of
the aggregated output, defuzzification is used, which will be explained in the
next section.

Rule 1
uA‘lT ﬂA; A #B‘ T
m_', / /\\ :m // AN
X1 X2 y

m A/’

X1 X2 y
Figure 10.4

Case 10.2: Inputs x; and x, are crisp values, and max-product inference method
is used. Based on the Mamdani implication method of inference, and for a set of
disjunctive rules, the aggregated output for the / rules presented in Equation 10.4
will be given by

My (¥)= ml_aX[uA;- (1) 2 i (x)], fori =1,2,....1 (10.6)



Figure 10.5 is a graphical illustration of Equation 10.6, for /=2, where All and
A; refer to the first and second fuzzy antecedents of the first rule, respectively,

and B' refers to the fuzzy consequent of the first rule. Similarly, Alz and A22
refer to the first and second fuzzy antecedents of the second rule, respectively,

and B? refers to the fuzzy consequent of the second rule. Since the antecedent
pairs used in general form presented in Equation 10.4 are connected by a logical
AND, the minimum function is used again. For each rule, minimum value of the
antecedent propagates through and scales the membership function for the
consequent. This is done graphically for each rule. Similar to the first case, the
aggregation operation max results in an aggregated membership function
comprised of the outer envelope of the individual truncated membership forms
from each rule. To compute the final crisp value of the aggregated output,
defuzzification is used.

Rule 1
ﬂAll ,uA% 'Y 'uB' A

v
v

Rule 2 4@4

'uAE ,UAZZ . U, 4 /
B

Figure 10.5

10.2.2 Defuzzification

Defuzzification is the third important element of any fuzzy controller. In this
section, only the center of gravity defuzzifier, which is the most common one, is
discussed. In this method the weighted average of the membership function or
the center of gravity of the area bounded by the membership function curve is
computed as the most typical crisp value of the union of all output fuzzy sets:

B fy-#A(y)dy

Yo = (10.7)
J#A (y)dy



10.3 FUZZY CONTROL DESIGN

One of the first steps in the design of any fuzzy controller is to develop a
knowledge base for the system to eventually lead to an initial set of rules. There
are at least five different methods to generate a fuzzy rule base [4]:

1. Simulate the closed-loop system through its mathematical model,
Interview an operator who has had many years of experience controlling the
system,

3. Generate rules through an algorithm using numerical input/output data of
the system,

4. Use learning or optimization methods such as neural networks (NN) or
genetic algorithms (GA) to create the rules, and

5. In the absence of all of the above, if a system does exist, experiment with it
in the laboratory or factory setting and gradually gain enough experience to
create the initial set of rules.

Example 10.1

Consider the linearized model of the inverted pendulum Figure 10.6, described
by the equation given below,

. 0 1 0
X = X + u
1579 0 1.46

with /=0.5m, m=100g, and initial conditions xT(0)=[6(0) 60" =1 0]".
It is desired to stabilize the system using fuzzy rules.

Figure 10.6: Inverted Pendulum.

Clearly this system is unstable and a controller is needed to stabilize it. To
generate the rules for this problem only common sense is needed, i.e., if the pole
is falling in one direction then push the cart in the same direction to counter the



movement of the pole. To put this into rules of the form Equation 10.4 we get
the following:

IF@ is¢ Positive AND 6 is é_Positive THEN uisu_ Negative
IF 6 is ¢ Negative AND 6 is éiNegative THEN u isu_Positive

where the membership functions described above are defined in Figure 10.7.

¢ Negative ¢_Positive ¢ Negative ¢ Positive
‘ L >
1.57 0 1.57 6
u
u_Negative u_Positive
Y u

Figure 10.7: Membership Functions for the Inverted Pendulum Problem.

As shown in Figure 10.7, the membership functions for the inputs are half-
triangular, while the membership function of the output is singleton. By
simulating the system with fuzzy controller we get the response shown in Figure
10.8. It is clear that the system is stable. In this example only two rules were
used, but more rules could be added in order to get a better response, i.c., less
undershoot.

10.4 ANALYSIS OF FUZZY CONTROL SYSTEMS

In this section, some results of Tanaka and Sugeno [5] with respect to analysis
of feedback fuzzy control systems will be briefly discussed. This section would
use Takagi-Sugeno models to develop fuzzy block diagrams and fuzzy closed-
loop models.

Consider a typical Takagi-Sugeno fuzzy plant model represented by
implication P’ in Figure 10.9.



P':TF x(k)is A AND...x(k—n+1)is A\ AND
u(k)is B] AND... ANDu(k —m+1)is B! (10.8)
THEN x'(k+D)=ay+ajx(k)+...+ a,x(k—n+1)+
biu(k)+...+blu(k—m+1)

(b)
Figure 10.8: Simulation Results for Example 10.1: (a) 6(¢) , and (b)é OF

u(k) x(k+1)
— Pi - >

Figure 10.9: Single-Input, Single-Output Fuzzy Block Represented by ith
Implication P'.

where P, (i=12,...,1) is the ith implication, [, is the total number of
o ; _ i _

implications, a,, (p=12,....n) and by, (¢=12,...,m) are constant
consequent parameters, k is time sample, x(k),...,x(k—n+1) are input
variables, n and m are the number of antecedents for states and inputs,
respectively. The terms A; and B; are fuzzy sets with piecewise-continuous

polynomial (PCP) membership functions. PCP is defined as follows.



Definition 10.1

A fuzzy set 4 satisfying the following properties is said to be a piecewise-
continuous polynomial (PCP) membership function A(x) [4]:

W (x), xe€lpy,pl

(@ A= (109)
‘US(X), X € [ps—l’ps]
where w(x)e [0,1] for xe [p;.;, pil, i=1,2,...,s, and
=00 Py<P 1< o P | <P <00,
b = cix’ (10.10)
j=0
where ch are known parameters of polynomials ;(x).
Given the inputs
x(k) ..[x(k) x(k—=1)..x(k—n+1)]"
(10.11)

u(k) . [uk) u(k-=1)..utk—m+D]"

Using the above vector notation, Equation 10.11 can be represented in the
following form,

P":IF x(k) is A" AND u(k) is B’
. B (10.12)
THEN x'(k+1)=aj+ Y alx(k—p+1)+ Y blu(k—q+1)
p=1 g=1
where A’ E[A,i AéA,’l] B E[Bf BéB,’n] ", and "x(k)isA'" are
equivalent to antecedent “x(k) is 4] AND...x(k—n+1)is 4 ».

The final defuzzified output of the inference is given by a weighted average of
x'(k+1) values:

]
Y wix'(k+1)
x(k+l)=2p (10.13)

v

i=1



where it is assumed that the denominator of Equation 10.13 is positive, and
x'(k+1) is calculated from the ith implication, and the weight w' refers to the
overall truth value of the ith implication premise for the inputs in Equation
10.12.

Since the product of two PCP fuzzy sets can be considered as a series
connection of two fuzzy blocks of the type in Figure 10.9, it is concluded that
the convexity of fuzzy sets in succession is not preserved in general. Now let us
consider a fuzzy control system whose plant model and controller are
represented by fuzzy implications as depicted in Figure 10.10. In this figure, 7(k)
represents a reference input. The plant implication P’ is already defined by
Equation 10.12, while the controller’s jth implication is given by

C/:1F x(k) is D’ AND u(k) is F’
(10.14)

THEN f/(k+1)=c{+ Y cix(k—p+1)

p=1
whereD’ =[Df D]...D]|", ¥'=[F F...F,|". and of course u(ky=r(k)k).
The equivalent implication S is given by
S7:TF x(k) is (A’ AND D) AND v*(k) is (B' AND F’)

THEN xY(k+1)=al —b'c] +b'r(k)+ (10.15)

i (a) —b'c))x(k—p+1)

p=1

where i=1,...,5;, j=l,...,, and [, and /, are the total number of implications for
the plant and the controller, respectively. The term v*(k) is defined by

v (k) =[r(k) = " (x(k)). r(k—1)—e" (x(k = 1)), (10.16)

cr(k=m+ 1) =" (x(k—m+D)|"
where ¢’(-) is the input-output mapping function of block €’ in Figure 10.10, i.e.,
fiky=e (x(k)).

PLANT (i)

(k) T L
d P u(k) gi x(k+1)
flk)  cONTROLLER ]
(@

Figure 10.10: A Fuzzy Control System Depicted by Two Implications and its
Equivalent Implication [4].



Example 10.2
Consider a fuzzy feedback control system of the type shown in Figure 10.10
with the following implications:

P':1F x(k)is A' THEN x'(k +1)=1.85x(k)—0.65x(k —1)+ 0.35u(k)
P2 :1F x(k)is A*> THEN x?(k +1) = 2.56x(k) — 0.135x(k —1) + 2.22u(k)
C":TF x(k)is D' THEN f'(k+1) = kj x(k) — kyx(k —1)

C? :IF x(k)is D* THEN f?(k +1) = klx(k)—kix(k —1)

It is desired to find the closed-loop implications $”, /=1,2, and j=1,2.

SOLUTION
Noting that u(k)=r(k)-f(k) in Figure 10.10 and the implications in Equation

10.15, we have

S TF x(k)is (4" AND D") THEN x''(k +1) = (1.85—0.35k] )x(k) +
(—0.65—0.35k})x(k —1)+0.357(k)

$'? . 1F x(k)is (4' AND D*) THEN x'?(k +1) = (1.85—-0.35k})x(k) +
(—0.65—0.35k3 )x(k — 1)+ 0.35r(k)

S2'IF x(k)is (4> AND D") THEN x?'(k +1) = (2.56 — 2.22k] )x(k) +
(—0.135 - 2.22k3)x(k — 1)+ 2.22r(k)

§%2 :IF x(k)is (4> AND D*) THEN x*(k +1) = (2.56 — 2.22k} )x(k) +
(—0.135—2.22k3 Yx(k —1) +2.22r(k)

10.5 STABILITY OF FUZZY CONTROL SYSTEMS

One of the most important issues in any control system fuzzy or otherwise is
stability. Briefly, a system is said to be stable if it would come to its equilibrium
state after any external input, initial conditions, and/or disturbances have
impressed the system. The issue of stability is of even greater relevance when
questions of safety, lives, and environment are at stake as in such systems as
nuclear reactors, traffic systems, and airplane autopilots. The stability test for
fuzzy control systems, or lack of it, has been a subject of criticism by many
control engineers in some control engineering literature [6].



Almost any linear or nonlinear system under the influence of a closed-loop
crisp controller has one type of stability test or as other. For example, the
stability of a linear time-invariant system can be tested by a wide variety of
methods such as Routh-Hurwitz, root locus, Bode plots, Nyquist criterion, and
even through traditionally nonlinear systems methods of Lyapunov, Popov, and
circle criterion. The common requirement in all these tests is the availability of a
mathematical model, either in time or frequency domain. A reliable
mathematical model for a very complex and large-scale system may, in practice,
be unavailable or unfeasible. In such cases, a fuzzy controller may be designed
based on expert knowledge or experimental practice. However, the issue of the
stability of a fuzzy control system still remains and must be addressed. The aim
of this section is to present an up-to-date survey of available techniques and tests
for fuzzy control systems stability.

From the viewpoint of stability a fuzzy controller can be either acting as a
conventional (low-level) controller or as a supervisory (high-level) controller.
Depending on the existence and nature of a system’s mathematical model and
the level in which fuzzy rules are being utilized for control and robustness, four
classes of fuzzy control stability problems can be distinguished. These four
classes are:

Class 1: Process model is crisp and linear and fuzzy controller is low level.

Class 2: Process model is crisp and nonlinear and the fuzzy controller is low
level.

Class 3: Process model (linear or nonlinear) is crisp and a fuzzy tuner or an
adaptive fuzzy controller is present at high level.

Class 4: Process model is fuzzy and fuzzy controller is low level.

Figures 10.11-10.14 show all four classes of fuzzy control systems whose
stability is of concern. Here, we are concerned mainly with the first three
classes. For the last class, traditional nonlinear control theory could fail and is
beyond the scope of this section. It will be discussed very briefly. The
techniques for testing the stability of the first two classes of systems (Figures
10.11 and 10.12) are divided into two main groups—time and frequency.

Time-Domain Methods

The state-space approach has been considered by many authors [7]-[15]. The
basic approach here is to subdivide the state space into a finite number of cells
based on the definitions of the membership functions. Now, if a separate rule is
defined for every cell, a cell-to-cell trajectory can be constructed from the
system’s output induced by the new outputs of the fuzzy controller. If every cell
of the modified state space is checked, one can identify all the equilibrium
points, including the system’s stable region. This method should be used with
some care since the inaccuracies in the modified description could cause
oscillatory phenomenon around the equilibrium points.
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Figure 10.11: Class 1 of Fuzzy Control System Stability Problem.
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Figure 10.12: Class 2 of Fuzzy Control System Stability Problem.
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Figure 10.13: Class 3 of Fuzzy Control System Stability Problem.
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Figure 10.14: Class 4 of Fuzzy Control System Stability Problem.

The second class of methods is based on Lyapunov’s method. Several
authors, [5], [10], [11], [13] [16]-[23], have used this theory to come up with
criterion for stability of fuzzy control systems. The approach shows that the time



derivative of the Lyapunov function at the equilibrium point is negative semi
definite. Many approaches have been proposed. One approach is to define a
Lyapunov function and then derive the fuzzy controller’s architecture out of the
stability conditions. Another approach uses Aiserman’s method [7] to find an
adopted Lyapunov function, while representing the fuzzy controller by a
nonlinear algebraic function u=f(y), when y is the system’s output. A third
method calls for the use of so called facet functions, where the fuzzy controller
is realized by boxwise multilinear facet functions with the system being
described by a state space model. To test stability, a numerical parameter
optimization scheme is needed.

The hyperstability approach, considered by other authors [24]-[26] has been
used to check stability of systems depicted in Figure 10.11. The basic approach
here is to restrict the input-output behavior of the nonlinear fuzzy controller by
inequality and to derive conditions for the linear part of the closed-loop system
to be satisfied for stability.

Bifurcation theory [13] can be used to check stability of fuzzy control
systems of the class described in Figure 10.12. This approach represents a tool
in deriving stability conditions and robustness indices for stability from small
gain theory. The fuzzy controller, in this case, is described by a nonlinear vector
function. The stability in this scheme could only be lost if one of the following
conditions becomes true: (1) the origin becomes unstable if a pole crosses the
imaginary axis into the right half-plane—static bifurcation, (2) the origin
becomes unstable if a pair of poles would cross over the imaginary axis and
assumes positive real parts—Hopf bifurcation—or (3) new additional
equilibrium points are produced.

The last time-domain method is the use of graph theory [13]. In this approach
conditions for special nonlinearities are derived to test the BIBO stability.

Frequency-Domain Methods

There are three primary groups of methods which have been considered here.
The harmonic balance approach, considered in references [27]-[29], among
others, has been used to check the stability of the first two classes of fuzzy
control systems (see Figures 10.11 and 10.12). The main idea is to check if
permanent oscillations occur in the system and whether these oscillations with
known amplitude or frequency are stable. The nonlinearity (fuzzy controller) is
described by a complex-valued describing function and the condition of
harmonic balance is tested. If this condition is satisfied, then a permanent
oscillation exists. This approach is equally applicable to MIMO systems.

The circle criterion [8],[26],[301,[31] and Popov criterion [32],[33] have
been used to check stability of the first class of systems (Figure 10.11). In both
criteria, certain conditions on the linear process model and static nonlinearity
(controller) must be satisfied. It is assumed that the characteristic value of the
nonlinearity remains within certain bounds, and the linear process model must
be open-loop stable with proper transfer function. Both criteria can be
graphically evaluated in simple manners. A summary of many stability
approaches for fuzzy control systems has been presented in Jamshidi[4].



10.5.1 Lyapunov Stability

One of the most fundamental criteria of any control system is to ensure stability
as part of the design process. In this section, some theoretical results on this
important topic are detailed.

We begin with the ith Takagi-Sugeno implication of a fuzzy system:

P':TF x(k)is A] AND...x(k—n+1)is 4}

. S , (10.17)

THEN x'(k+1)=ay+ax(k)+...+a,x(k—n+1)
with i=1,...,/. It is noted that this implication is similar to Equation 10.12 except
since we are dealing with Lyapunov stability, the inputs u(k) are absent. The
stability of a fuzzy control system with the presence of the inputs will be
considered shortly. The consequent part of Equation 10.17 represents a set of
linear subsystems and can be rewritten as [5]

P':TF x(k)is A] AND...x(k—n+1)is 4}

(10.18)
THEN x(k+1) = A ;x(k)
where x(k)is defined by Equation 10.11 and nxn matrix A, is
o 00 (10.19)
A;=10 1 0 o0
|00 - 1 0]

The output of the fuzzy system described by Equations 10.17-10.19 is given by

!
Y w'Ax(k)
x(k+1)=H—— (10.20)

2w

i=1
where w' is the overall truth value of the ith implication and / is the total number
of implications. Using this notation we then present the first stability result of
fuzzy control systems [5].

Theorem 10.1

The equilibrium point of a fuzzy system Equation 10.20 is globally
asymptotically stable if there exists a common positive definite matrix P for all
subsystems such that



ATPA, -P<0 for i=1,..,1 (10.21)

It is noted that the above theorem can be applied to any nonlinear system which
can be approximated by a piecewise linear function if the stability condition
(10.21) is satisfied. Moreover, if there exists a common positive definite matrix
P, then all the A; matrices are stable. Since Theorem 10.1 is a sufficient
condition for stability, it is possible not to find a P > 0 even if all the A; matrices
are stable. In other words, a fuzzy system may be globally asymptotically stable
even if a P > 0 is not found. The fuzzy system is not always stable even if all
the A;’s are stable.

Theorem 10.2

Let A; be stable and nonsingular matrices for i=1,...,l. Then A;A; are stable
matrices for i,j=1,...,1, if there exists a common positive definite matrix P such
that

ATPA,-P<0 for i=1,...,1 (10.22)

Example 10.3
Consider the following fuzzy system:

P! :1F x(k)is A' THEN x'(k+1)=1.2x(k)—0.6x(k —1)
P? :1F x(k)is A*> THEN x?(k+1) = x(k)—0.4x(k —1)

where A’ are fuzzy sets shown in Figure 10.15. It is desired to check the
stability of this system.

‘uA1 ,qu

v

[ R,

-1 0 1 -1 0

Figure 10.15: Fuzzy Sets for Example 10.3.

SOLUTION
The two subsystems’ matrices are

1.2 -0.6 1 -04
A] = 5 A2 =
1 0 1 0

The product of matrix A A; is

AA, :(

0.6 -0.48
I -04



whose eigenvalues are A;,=0.1%j0.48 which indicates that A;A, is a stable
matrix. Thus, by Theorem 10.2 a common P exists, and if we use P with the

following,
2 -12
P =
(—1.2 1 )

then both equations Al-TPAi -P<0 for i=L2 are simultaneously satisfied.

This result was also verified using simulation. Figure 10.16 shows the
simulation result, which is clearly stable.

L1}
a8l |

od

Figure 10.16: Simulation Result for Example 10.3.

Thus far, the criteria which have been presented treat autonomous (either closed-

loop or no input) systems. Consider the following non-autonomous fuzzy
system:

P':TF x(k)is A AND...AND x(k—n+1)is 4, AND
u(k)is B AND...ANDu(k —m+1)is B},
THEN x'(k+1) = a} +a|x(k)+...+a x(k—n+1)+
biu(k)+...+b. x(k—m+1)

(10.23)

Here, we use some results from Tahani and Sheikholeslam [23] to test the
stability of the above system. We begin with a definition.

Definition 10.2
The nonlinear system

x(k+1) = f[x(k), u(k), k1, y = g[x(k), u(k), k] (10.24)
is totally stable if and only if for any bounded input u(k) and bounded initial

state xo, the state x(k) and the output y(k) of the system are bounded, i.e., we
have



For all |[x,||< e and forall [u(k)|< e = [x(k)| <o and [y(k)|<e  (10.25)

Now, we consider the following theorem:

Theorem 10.3
The fuzzy system Equation 10.23 is totally stable if there exists a common
positive definite matrix P such that the following inequalities hold

ATPA,-P<0 for i=1,..,L (10.26)
where A; is defined by Equation 10.19. The proof of this theorem can be found
in Sheikholeslam [34].

Example 10.4
Consider the following fuzzy system:

P':1F x(k)is A' THEN x!(k +1) = 0.85x(k) —0.25x(k — 1) + 0.35u(k)
P2 :1F x(k)is A THEN x*(k+1) = 0.56x(k) — 0.25x(k — 1) + 2.22u(k)

where A’ are fuzzy sets shown in Figure 10.17. It is desired to check the
stability of this system. Assume that the input u(k) is bounded.

,UA1‘ ‘uA2

0 0.3 0.6 0 0.4 0.7
Figure 10.17: Fuzzy Sets for Example 10.4.

SOLUTION
The two subsystems’ matrices are

0.85 -0.25 0.56 -0.25
A] = N A2 =
1 0 1 0

If we choose the positive definite matrix P

3 -1
P =
-1 1
then it can be easily verified that the systems is totally stable.
The product of matrix A A; is

AA - 023 -0.21
271056 -0.25



The eigenvalues of product of matrix AA, eigenvalues are A;,=0.0124;0.25
which indicates that A; A, is a stable matrix.

10.5.2  Stability via Interval Matrix Method

Some results on the stability of time varying discrete interval matrices by Han
and Lee [35] can lead us to some more conservative, but computationally more
convenient, stability criteria for fuzzy systems of the Takagi-Sugeno type shown
by Equation 10.17. Before we can state these new criteria some preliminary
discussion will be necessary.
Consider a linear discrete time system described by a difference equation in state
form:

x(k+1) =(A+G(k)x(k), x(0)=x, (10.27)
where A is an nxn constant asymptotically stable matrix, x is the nx1 state
vector, and G(k) is an unknown nxn time varying matrix on the perturbation
matrix’s maximum modulus, i.€.,

|G(k)|SGm, for all & (10.28)

where the || represents the matrix with modulus elements and the inequality
holds element-wise. Now, consider the following theorem.

Theorem 10.4
The time varying discrete time system Equation 10.27 is asymptotically stable if
p(Al+G,) <1 (10.29)

where p( : )stands for spectral radius of the matrix. The proof of this theorem
is straightforward, based on the evaluation of the spectral norm ||X(k1| or x(k)

and showing that if condition Equation 10.29 holds, then lim ||x(k)||=0.
k— o
The proof can be found in Han and Lee [35].

Definition 10.3
An interval matrix A, (k) is an nXxn matrix whose elements consist of intervals
[bj.cy] forij=1,...,n,i.e.,
(D11, ¢11] (b1, 1,
A= 5 el (10.30)
[bnl’cnl] [bnn’cnn]

Definition 10.4
The center matrix, A. and the maximum difference matrix, A,, of A(k) in
Equation 10.30 are defined by

_ 10.31
A =B+C’ C-B ( )

c



where B={b;} and C={c;}. Thus, the interval matrix A,/(k) in 10.30 can also be
rewritten as
A (k)=[A.—A,, A, +A,]=A_ +AA(k) (10.32)

with [AA(K)| <A, .

Lemma 10.1
The interval matrix Ay(k) is asymptotically stable if matrix A, is stable and
p(|AC|+Am)<1 (10.33)

The proof can be found in Han and Lee [35]. The above lemma can be used to
check the sufficient condition for the stability of fuzzy systems of Takagi-
Sugeno type given in Equation 10.18. Consider a set of m fuzzy rules like
Equation 10.18,

IF x(k)is AL AND...x(k —n+1)is A}
THEN x(k +1)= Ax(k)
(10.34)
IF x(k)is 4" AND...x(k—n+1)is 4
THEN x(k +1) = A, x(k)
where A; matrices for i=1,...,m are defined by Equation 10.19. One can now
formulate all the m matrices A;, i=1,...,m as an interval matrix of the form 10.30

by simply finding the minimum and the maximum of all elements at the top row
of all the A; matrices. In other words, we have

la,,aq] lay.a,] -+ la,.a,,] la,.a,]
1 0 - 0 0
(10.35)
A= 0 1 0 0
0 0 - 1 0

where a; and a;, for i=1,...,n are the minimum and maximum of the respective

element of the first rows of A;in Equation 10.19, taken element by element.
Using the above definitions and observations, the fuzzy system Equation 10.34
can be rewritten by

IF x(k)is A AND...x(k—n+1)is A (10.36)
THEN x(k +1) = A'x(k)
where i=1,...,m and Ai[ is an interval matrix of form Equation 10.35 except that

a, = a; = a;- Now, finding the weighted average, one has



/
Y wiAx(k)
x(k+1)=EH—eF——. (10.37)

v

i=1
Theorem 10.5
The fuzzy system Equation 10.37 is asymptotically stable if the interval matrix
A[(k) is asymptotically stable, i.e., the conditions in Lemma 10.1 are satisfied.

Example 10.5
Reconsider Example 10.3. It is desired to check its stability via the matrix
interval approach

SOLUTION
The system’s two canonical matrices are written in the form of an interval
matrix (10.30) as
[1,1.2] [-0.6,-0.4]
AI (k)= ( 1 0 )

The center and maximum difference matrices are

1.1 0.5 0.1 0.1
A = > Am =
¢ 1 0 0 0

Then, condition 10.33 would become,

A+ A o 1.2 0.6
p(| c|+ m)_p 1 0

Thus the stability of the fuzzy system under consideration is inconclusive. In
fact, it was shown to be stable.

j:1.58>1

Consider the following fuzzy system:
P":IF x(k) is A' THEN x'(k+1)=0.3x(k)+0.5x(k —1)
P*:1F x(k) is A> THEN x?(k +1)=0.2x(k) +0.2x(k —1)

where A’ are fuzzy sets shown in Figure 10.17. It is desired to check the
stability of this system using matrix interval method.

SOLUTION
The two subsystems’ matrices are

03 05 02 02
A] = 5 A2 =
I 0 I 0

The systems’ two canonical matrices are written in the form of an interval
matrix 10.30 as
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Figure 10.18: Simulation Result for Example 10.6.

[0.2,0.3] [0.2,0.5]
A/(k) = ( 1 0 j

The center and maximum difference matrices are

025 035 0.05 0.15
A, = LA, =
<1 o 0 0

Then, condition 10.33 would become,
03 0.5
plA|+A,)=p Lo =0.873<1

Thus the system is stable. This result was also verified by simulation (see
Figure 10.18).

10.6 CONCLUSION

This chapter introduced the building blocks of fuzzy control systems. Both
Mamdani rules and Takagai-Sugeno rules were presented. Stability analysis of
Takagi-Sugeno type fuzzy systems was addressed. Fuzzy control systems are
very desirable in situations where precise mathematical models are not available
and the human involvement is necessary. In that case fuzzy rules could be used
to mimic human behavior and actions.
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SOFT COMPUTING APPROACH
TO SAFE NAVIGATION OF
AUTONOMOUS PLANETARY
ROVERS

Edward Tunstel, Homayoun Seraji, and Ayanna Howard

11.1 INTRODUCTION

During the past decade, the National Aeronautics and Space Administration
(NASA) has been engaged in the conceptualization and implementation of space
flight missions to planet Mars. As an integral part of its initiatives to explore the
planet’s surface, NASA has opted to employ mobile robots that are designed to
rove across the surface in search of clues and evidence about the geologic and
climatic history of the planet. These planetary rovers must have mobility
characteristics that are sufficient for traversing rough and rugged terrain.
Moreover, due to the extreme remoteness of their operating environment, Mars
rovers must be capable of operating autonomously and intelligently.

The first autonomous planetary rover, named Sojourner, was deployed on
Mars in the summer of 1997. This planetary rover was a part of the payload on
the NASA Mars Pathfinder lander, which also carried a stereo imaging system,
various science instruments, and a telecommunications system that served as a
communications relay between Earth and the rover. Sojourner was used to
demonstrate the viability of exploring planetary surfaces using mobile robot
technology; its mission was limited to minimal scientific surface exploration
confined to an area in close proximity to the lander. At NASA, the focus of
ongoing research for subsequent rover deployments is on enhanced mobility and
increased autonomy. In 2003, NASA plans to launch a follow up Mars mission
that will use two rovers to explore distinct regions of the planet’s surface. These
Mars exploration rovers will have greater mobility and autonomy than Sojourner
since they are expected to traverse up to 100 meters each Martian day and to
conduct exploration independent of a surface lander. The longer-term
technology requirements for future Mars missions call for rovers that are
capable of traversing distances on the order of kilometers over high risk and
challenging terrain. This chapter describes fundamental research aimed at
achieving such long term objectives through application of soft computing
techniques for safe and reliable autonomous rover navigation

11.1.1 Practical Issues in Planetary Rover Applications

Autonomous rovers designed for planetary surface exploration must be
capable of point-to-point navigation in the presence of varying obstacle
distributions (rocks, boulders, etc.), surface characteristics, and hazards.
Mobility and navigation hazards include extreme slopes, sand/dust-covered pits,



ditches, cliffs and otherwise unstable surfaces. As in the Mars Pathfinder
mission scenario, the navigation task can be facilitated by knowledge of a series
of waypoints (path sub goals) furnished by mission operations personnel or an
automated path planner, which lead to designated intermediate goals. Waypoints
can be selected with the aid of images taken at the scene local to the rover. This
mode of operation may also prevail on the 2003 rover mission, albeit with
significantly longer traverse distances to locations viewable within the images
captured by the rovers’ onboard cameras. The round trip communication time
delay between Earth and Mars, coupled with lack of frequent opportunities for
communication with landed resources on Mars, makes direct control of a Mars
rover all but impractical. Supervised autonomous control of the rover must
therefore be achieved without the luxury of continuous or frequent remote
communication between the Earth-based mission operations facility and the
Mars rover.

Advanced rovers must have autonomy sufficient to avoid hazards and
negotiate (if necessary) challenging terrain if they are to be of practical use for
carrying out the goals of scientific exploration in an environment as harsh as the
Martian surface. In essence, a capacity for safe navigation and survivability is
required for the types of long-duration missions included on the NASA
“roadmap” for Mars exploration. For typical missions, rover autonomy
capabilities must be provided under significant constraints on power,
computation, weight, and communications bandwidth. To further increase the
challenge, many popular and fast state-of-the-art processors that enable
advanced capabilities in laboratory research robots are infeasible for planetary
rover applications. This is due to the fact that space flight projects require the
use of proven, radiation-hardened or otherwise space-flight-qualified electronics
that will survive and operate in the harsh temperature and radiation extremes of
space. The meager availability of fast and/or powerful space-qualified
processors for onboard computation intensifies the need for efficient algorithms
for implementing the necessary onboard autonomy.

In order to advance rover navigation capabilities beyond those of Sojourner,
and even the twin Mars exploration rovers planned for the NASA 2003 Mars
mission, advanced algorithms and computational approaches to autonomy and
intelligent control must be pursued that comply with the practical constraints.
Our research has revealed that the various components of soft computing hold
promise as strong candidate technologies that can enable significant advances.
The flexibility in applying soft computing techniques, individually or as a hybrid
system, facilitates the formulation of efficient solutions to the problems of safe
rover navigation in challenging terrain. We have developed a fuzzy-logic-based
reasoning and control framework that is complemented by neural networks and
visual perception algorithms to realize a practical rover navigation system.

In the following sections, we describe the various components of the safe
navigation system and several ways in which soft computing techniques have
been applied to solve different aspects of the rover navigation problem. Section
11.2 provides a high level description of the navigation system and its fuzzy
logic foundation. In section 11.3, fuzzy logic methods for reasoning about rover



vehicle health and safety are described. Next, a methodology for factoring
perception of terrain quality into the navigation logic is presented in section
11.4. Section 11.5 describes the fuzzy behavior-based approach and elemental
motion behaviors of the system. The soft computing algorithms have been
implemented on a commercial mobile robot used as a testbed for outdoor
navigation research. In section 11.6, we discuss experimental investigations with
this robot that demonstrate the various component technologies. This is
followed by a summary and concluding remarks.

11.2 NAVIGATION SYSTEM OVERVIEW

Upon viewing images of the Martian landscape (see Figure 11.1), one would
agree that the terrain could be difficult to traverse even for a human driver of an
off-road vehicle. The difficulty of the problem increases by orders of magnitude
for an autonomous robotic rover. Nonetheless, human driver performance is a
worthy goal to strive for in the design of a rover navigation system. In our
design, we exploit the fact that fuzzy logic provides a viable means for
endowing a computing system with human-like algorithmic reasoning
capabilities. In part, we have sought to develop fuzzy inference systems for
navigation that emulate human judgment and reasoning as derived from off-road
driving heuristics [1] and loose analogies to rating systems used by rock
climbers to assess the difficulty of traversing rough terrain [2].

Figure 11.1: Mars Pathfinder Landing Site, 1997.

The safe navigation system is comprised of the various modules and
components shown in Figure 11.2. With the exception of the low-level rover
motion control system, each component is implemented using soft computing
techniques — primarily fuzzy reasoning and control along with artificial neural
networks, embedded within a behavior-based structure. The system consists
primarily of modules dedicated to rover safety reasoning and strategic
navigation control. These are accompanied by associated perception and
actuation functionality. The safety reasoning module focuses on vehicle



survivability and health, while the strategic navigation module focuses on
mission and goal-directed motion from place to place.
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Figure 11.2: Modular System Diagram.
11.2.1 Fuzzy Behavior-Based Structure

We have adopted a fuzzy behavior-based approach [3] for implementation of
the knowledge-based reasoning and control components. The architectural
design is based on the premise that autonomous navigation functionality can be
decomposed into a finite number of special purpose task achieving and decision-
making behaviors. The basic building block, then, of the navigation strategy is a
behavior. A behavior represents a mapping, from perceptions or goals to actions
or decisions, aimed at achieving a given desired objective. That is, behaviors
may be of two general types: control behaviors and decision behaviors. Fuzzy
control behaviors are encoded as fuzzy rule bases with distinct control policies
governed by fuzzy inference. The control behaviors are typically simple and
self-contained behaviors that serve a single purpose while operating in a reactive
(nondeliberative) or reflexive (memoryless) fashion. Within each control
module, fuzzy control behaviors perform nonlinear mappings from different
subsets of the available sensor suite to set-points for common actuators. If X
and U are input and output universes of discourse of a behavior with a rule base
of size n, the usual fuzzy IF-THEN rule takes the following form

IF xis C,, THEN u is A, (11.1)

where x and u represent input and output fuzzy linguistic variables, respectively,
and C; and 4, (i = 1...n) are fuzzy subsets denoting linguistic values of x and u,
which represent possible conditions and actions. In our case, the input x refers
to sensory data; u refers to motion control variables that influence rover
translation and rotation. The control variables serve as set points for low level
classical PID (proportional integral derivative) motor controllers. In general, the
rule antecedent consisting of the condition x is C; could be replaced by a
compound fuzzy proposition consisting of conjunctions, disjunctions, or
complements of similar propositions. Similarly, the rule consequent consisting



of the action u is A; could be composed of multiple rule base output
propositions. Equation 11.1 represents a typical rule that expresses the actions
taken by an expert human driver based on the prevailing conditions.

The control behaviors can be executed individually or concurrently to
produce intelligent behavior for goal-directed navigation. Concurrent execution
of fuzzy behaviors is facilitated by fuzzy decision-making modules, which
combine the individual capabilities by implementing a fuzzy set theoretic
approach to inferring control gains and computing control inputs for the rover.
Within each decision module, fuzzy decision behaviors map perceptual and goal
information to appropriate gains based on the current situation or context.
Reasoning is governed by rules of the following form

IF xis S,, THEN w is G, (11.2)

where x and w are fuzzy linguistic variables that represent sensor/goal data and
control behavior gains, respectively. Here, Sy and Gy are fuzzy subsets of x and
w, which represent possible navigational situations and adjustable gains.

Implementation details of each component are presented in the following
sections. In the next section, we discuss relevant rover health and safety issues.
We then describe how fuzzy logic can be applied to provide an intrinsic safety
cognizance and a capacity for reactive mitigation of navigation risks. Having
described how a nominal level of safety assurance can be achieved, we move on
in subsequent sections to discuss higher-level cognitive components of the
system that provide the strategic navigation capabilities necessary to perform
mission- and goal-directed tasks.

11.3 FUZZY-LOGIC-BASED ROVER HEALTH AND SAFETY

Built-in safe operation and health cognizance are essential for autonomous
traversal through challenging terrain over extended time and distance. In many
existing systems [4, 5], it is common to consider basic monitoring of individual
hardware components for proper operation, but without explicit autonomous
reaction or counteraction by the rover. Efficient management of onboard
resources, such as power and science data storage capacity and regulation of
energy and internal temperature are common concerns for maintaining vehicle
health [5-7]. In addition to vehicle health, operational safety is of primary
importance. Navigation systems have also been developed which account for
some measure of risk mitigation with respect to accidental damage (as due to
tipover) and/or vehicle entrapment [8, 9]. However, few field mobile robot
systems have been reported in the literature that feature efficient implementation
of both active vehicle health and safety countermeasures.

11.3.1 Health and Safety Indicators

The ability of a system to provide substantial safety countermeasures depends
upon its capacity for assessing vehicle status with respect to the operating



environment. Various observable states, events, and terrain features can be
considered for online assessment of a rover’s operational status. Table 11.1 lists
a number of possible health and safety indicators (HSIs) associated with rover
on-board subsystems, which convey some aspect(s) of rover operational well
being as it relates to safe terrain traversal. At any given moment, the amount of
power available to a rover system is perhaps the strongest indicator of its
operational health. Solar energy is the primary power source for planetary
rovers, although some systems have the luxury of rechargeable batteries. The
attitude (pitch and roll) of the vehicle chassis can be monitored in order to avoid
instabilities associated with ascent/descent of slopes, traversal of rocky terrain,
and turning within vehicle curvature constraints. In addition to surface
irregularities, the type and condition of the terrain surface provide clues for
safety assessment. Human automobile drivers are able to perceive certain road
conditions (e.g., oil slicks, pot holes, and ice patches) as measures of safety,
which can be reacted to in order to reduce the risk of potential accidents. In a
similar manner, rover potential safety can also be inferred and reacted to based
on knowledge of the terrain type or condition. Wheel-soil interactions are
important mobility considerations in natural terrain. Excessive wheel slip
reduces the effective traction that a rover can achieve and, therefore, its ability
to make significant forward progress (not to mention the dramatic effect it can
have on the accumulation of errors in estimated position and orientation over
distance and time). On soft soils, such as sand, excessive wheel slip can often
lead to wheel sinkage and eventual entrapment of the vehicle. Unfortunately,
wheel slip and sinkage are often difficult to measure and estimate in a simple
manner. Some progress has been made, however, in developing statistical
estimation approaches for planetary rovers [10]. One simple approach involves
the detection of drive motor stall via current sensing. A detected stall condition
for one or more drive motors could be indicative of sinking, trapped, or stuck
wheels. However, additional reasoning beyond speculation of the possible
causes of a stalled motor would likely be necessary to assess the actual vehicle
status. Other HSIs can be considered that are related to critical internal
environmental conditions such as temperatures of hardware components that are
sensitive to thermal variations. In addition, general dynamic and kinematic
states can be monitored for compliance with vehicle mechanical capabilities and
constraints.

Table 11.1: Rover Health and Safety Indicators.

Health Safety
Available power Chassis attitude
Component failure or anomaly Terrain type or condition
Component temperature Wheel slip and sinkage
Drive motor stall Dynamic/kinematic compliance

Ultimately, a comprehensive autonomous vehicle health and safety system is
desired to increase rover survivability. Perhaps consideration of all items in
Table 11.1 would make this possible, but such complete observability is rare in
practice. To this end, we have concentrated on providing some of the elements



necessary to approach the ultimate goal. As a baseline set of HSIs, we have
considered chassis attitude, terrain type and condition, and available power.

The safety module will also incorporate a reasoning approach to homeostatic
regulation of onboard resources. That is, the addition of automated mechanisms
for self-regulation of internal operating condition is planned. A capability such
as this is analogous to self regulating functions provided by parts of human or
animal physiology. An example of how this can be done is discussed in Arkin
[11], where a homeostatic control approach for mobile robots is proposed based
on an analogy with the mammalian endocrine system. In that work, internal
sensing is used to stimulate behavioral reactions through gain modulation and
parameter adjustment, which contribute to regulation of energy and internal
temperature. In our navigation system, this can be achieved through rover speed
modulation and adjustment of relevant fuzzy set membership function
parameters, to contribute to power efficiency and thermal regulation. A related
approach applied to planetary rover prototypes is described by Huntsberger and
Rose [6]. Reactions to power and internal temperature threshold violations are
automatically invoked in response to internal sensing. The reactions consist of
halting rover motion to cool down or recharge batteries via solar panels, and
activating internal heaters to warm up when necessary.

At this stage of development, the safety module employs concise fuzzy
systems that provide autonomous reasoning to facilitate maintenance of stable
vehicle attitude (pitch and roll) and wheel traction on rough terrain. The system
employs off-road driving heuristics to facilitate avoidance of hazardous vehicle
configurations and excessive wheel slip. In each case, our system is designed to
produce safe speed recommendations associated with the current perception of
the safety status of the rover. In the following section, we discuss the associated
soft computing solutions.

11.3.2 Stable Attitude Control

For indoor mobile robots, mobility and navigation problems can often be
addressed in two dimensions since the typical operating environments consist of
flat and smooth floors. In sharp contrast to this, mobility and navigation
problems for outdoor rough terrain vehicles are characterized by significantly
higher levels of difficulty. This is due to the fact that complex motions in the
third dimension occur quite frequently as the vehicle traverses undulated terrain,
encountering multidirectional impulsive and resistive forces throughout. The
problem is more pronounced for vehicles with more or less rigid suspensions
than it is for vehicles with articulated chassis. In any case, sufficient measures
must be taken to maintain upright stability of the vehicle in both static and
dynamic configurations.

For safety monitoring, the rover is outfitted with a two-axis inclinometer/tilt-
sensor to measure pitch and roll. It is model CXTAO02, manufactured by
Crossbow Technology, Inc., which features +/- 75° range and 0.05° resolution.
In this case, perhaps the simplest approach is to stop rover motion when either
axis senses tilt beyond a critical threshold. In a few instances this may be



sufficient. More often than not, however, dynamic effects such as momentum
will quickly defeat the simplest approach and cause the rover to reach marginal
stability (a point at which the vehicle begins to tip over), or worse yet, to
actually tip over. Even though planetary rovers are typically driven at low
speeds (e.g., maximum average speed of ~0.3 m/s), more sophistication is
required beyond binary threshold reactions. We have elected to formulate a
strategy in which the recommended safe speed for the rover is proportionately
modulated in reaction to changes in attitude (pitch and roll). When the rover
travels on a relatively level surface, a maximum safe speed is recommended. As
pitch and/or roll approaches extremes near marginal stability, gradual reductions
in safe speed are recommended (including the stop condition). At attitudes
between these extremes, recommended safe speeds are computed by
interpolation via fuzzy sets and logical inference.

By considering various off-road driving heuristics for traversing rock fields,
ravines, and hills (up-, down-, and side-hill), a set of fuzzy logic rules is
formulated to maintain stable rover attitudes for safe navigation. Fuzzy subset
partitions and membership function definitions for pitch and roll are derived
based on subjective assessment of the problem. Pitch is represented by five
fuzzy sets with linguistic labels {NEG-HIGH, NEG-LOW, ZERO, POS LOW,
POS-HIGH}, while roll is partitioned using three fuzzy sets with linguistic
labels {NEG, ZERO, POS}. Here, positive and negative are abbreviated by
“pos” and “neg,” respectively. Bounds on the universe of discourse for attitude
measurements are chosen in accordance with the rover stability constraints and
the level of acceptable risk. The rules and input membership functions for the
stable attitude control component are shown in Figure 11.3. As is typical in
fuzzy control systems, the membership functions, used to express uncertainty in
the variables of each system component, take on triangular and/or trapezoidal
shapes.
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Figure 11.3: Rules and Input Membership Functions for Attitude Control.

Fifteen fuzzy logic rules are employed to map the range of stable attitudes to
safe driving speed recommendations. In addition to these rules, a crisp rule is
applied to handle the extreme cases when marginal stability is reached and the
safest reaction is to stop the motion. However, in contrast to the binary
threshold scheme, as marginal stability is approached the rover speed is



smoothly decreased to near zero due to the interpolation provided by the fuzzy
logic rules.

11.3.3 Traction Management

In the absence of some measure of control, wheeled vehicles are prone to loss
of traction under certain conditions. On dry paved roads, traction performance
is perhaps maximal for most wheeled vehicles due to the high coefficient of
friction/adhesion between the road and tread (whether rubber or metal as in the
case of some rover wheels). On off-road terrain, however, a variety of surface
types are typically encountered including sand, gravel, densely packed soil, ice,
mud, and so on. Based on current knowledge about the surface of Mars, rovers
may encounter additional types of hard and soft surfaces on which rover wheels
are susceptible to slippage. As mentioned above, loss of traction due to
excessive wheel slip can lead to wheel sinkage and ultimately, vehicle
entrapment. Frequent loss of traction during a traverse from one place to another
will also detract significantly from the ability to maintain good position
estimates. To improve mobility and navigation performance of rovers, a
mechanism for regulating or minimizing wheel slip is highly desirable.

The problem of traction control is not new. It is a common problem in
automobile and general transportation vehicle design with a variety of effective
solutions. In many cases, solutions are derived from analyses based on the
following equation for wheel slip ratio, A, which is defined nondimensionally as
a percentage of vehicle forward speed, v:
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Here, r,, is the wheel radius and , is the wheel rotational speed. Equation 11.3
expresses the normalized difference between vehicle and wheel speed.
Therefore, when this difference is nonzero, wheel slip occurs. The objective of
traction control is to regulate A to maximize traction. This is a relatively
straightforward regulation task if v and w, are observable. Wheel speed is
typically available from shaft encoders or tachometers. However, it is often
difficult to measure the actual over-the-ground speed for off-road wheeled
vehicles. The problem is further complicated by nonlinearities and time varying
uncertainties due to wheel-ground interactions. Despite this, effective solutions
have been found for automotive applications. In fact, fuzzy logic is a common
tool for antilock (deceleration) and antislip (acceleration) control [12-15]. In
these cases, measurement of v is facilitated by the even surface on which the
vehicle travels. For example, in Arkin [11] an accelerometer is used to measure
vehicle speed and the slip ratio is estimated based on deceleration of the four
wheels. In Bauer and Tomizuka [13], the measurement of vehicle speed is
facilitated by the use of magnetic markers alongside the road in an intelligent
highway automation system. In this case, the vehicle speed is measured
according to travel time between markers. For application to an electrically



driven locomotive, the solution in Palm and Storjohann [14] makes use of a
model of the friction-slip relationship, which is fixed for the wheel-rail
interaction. On outdoor terrain, the friction-slip relationship varies with surface
type. In large part, the available solutions are not directly transferable to off-road
vehicle applications for which the terrain is uneven as opposed to being
relatively flat, as is the case for automobiles and locomotives.

The use of an accelerometer to measure off-road vehicle speed is problematic
since the gravity effects of traversing longitudinal and lateral slopes will
interfere with the measurement. For an accelerometer used to measure
horizontal acceleration, any off horizontal vehicle tilt will be sensed as a change
in acceleration; as a result, the integrated velocity will be in error. This is
realized in Van der Burg and Blazevic [16] where an alternative traction control
concept for rovers is considered. In that case, a non-driven “free wheel” is
proposed for measuring actual vehicle speed. Another promising solution was
proposed for rovers with an articulated chassis, which enables active control of
the vehicle center of gravity. For those vehicles, the use of accelerometers in
concert with rate gyroscopes is suggested [17].

In our work, we have elected to take a simple linguistic approach that does not
rely on accurate sensing of vehicle speed. Instead, visual perception of terrain
surface type is used to infer an appropriate speed of traversal. Results from
traction tests performed on the actual rover are used to determine appropriate
speeds for a range of potential surface types. In particular, the rover is tested on
different terrain surfaces (e.g., sand, gravel, densely packed soil, etc.) to
determine the maximum speeds achieved before the onset of wheel slippage.
Given this information, commanded vehicle speed can be modulated during
traversal based on visual classification of the terrain surface type just ahead of
the rover. This is analogous to the perception-action process that takes place
when a human driver notices an icy road surface ahead and decelerates to
maintain traction. For the rover, such speed modulation allows management of
traction by mitigating the risk of wheel slippage.

Given the results of actual traction tests, the formulation of fuzzy rules to
achieve speed modulation is relatively straightforward. The success of the
traction management approach depends more heavily on the ability to perceive
and classify the various terrain surface types. The problem of off-road surface
type identification would be quite formidable for systems equipped with only
proximity sensors, range finders, and/or tactile probes. However, visual image-
based classification has been found to be particularly promising [18]. We will
now describe an artificial neural network solution to this problem that provides
qualitative information about the expected surface traction ahead of the rover.
This information is used to infer tractive rover speeds via fuzzy inference.

11.3.3.1 Neuro-Fuzzy Solution

Distinct terrain surfaces reflect different textures in visual imagery. The
ability to associate image textures to terrain surface properties such as traction,
hardness, or bearing strength has clear benefits for safe autonomous navigation.
To provide this capability, we make use of an onboard camera pointed such that



its field of view (FOV) covers an area on the ground in front of the rover. In
this way, the projected image provides a downward looking view of the surface
as illustrated in Figure 11.4a. Using a neural network (Figure 11.4b), texture
analysis is performed on image data acquired by the camera. That is, a neural
network classifier, trained to associate texture with several surface types,
provides the information needed to make any necessary adjustments to wheel
speed in order to maintain traction on the classified surface. Based on typical
surfaces that the rover may encounter, three texture prototypes are selected:
sand, gravel, and compacted soil (Figure 11.5).
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Figure 11.4: (a) Camera Mounted on Rover; (b) Neural Network for Surface
Classification.

The method proceeds as follows. Assuming the section of the image just
ahead of the front wheels is free of obstacles, a set of 40x40 pixel image blocks
is randomly selected from a camera image of size 320x280 pixels. To reduce
the large data dimensionality inherent in typical vision-based applications, a
filtering step is performed. This permits effective extraction of features
embedded in the surface image data set in real time. The image blocks are
normalized to compensate for lighting variations and the data is used to train the
neural network classifier. After training the network on typical image data
representing different surface prototypes, we utilize it to classify the surface
types during run time.

Figure 11.5: Terrain Surface Texture Images: Gravel, Sand, Compacted Soil.

The neural network is trained to provide texture prototype outputs in the unit
interval [0, 1], with O corresponding to surfaces of very low traction (e.g., ice)
and 1 corresponding to surfaces of high traction (e.g., dry cement). This is a



design decision motivated by a desire to establish some correlation to actual
wheel-terrain coefficients of friction. In this way, we can make a qualitative
association between neural network output and expected traction in front of the
rover. In the sequel, we will refer to the texture prototype output as the traction
coefficient, denoted by C,.

Wheel-terrain friction coefficients for a variety of tread and surface types are
widely published in the literature on vehicle mechanics. However, published
friction coefficients for identical tread and surface types vary from source to
source. This is due to the fact that measured values depend heavily on the
variety of tests and conditions from which they were generated. Nevertheless,
common ranges of friction coefficients for given tread and surface types are
widely agreed upon. The following are typical estimates of the friction
coefficient for rubber tires on various surfaces: icy road/snow (0.1), sand (0.3),
slippery/wet road (0.4), hard unpaved road (0.65), grass (0.7), and dry paved
road (0.8-1.0).

Given the uncertainty in associating exact friction coefficients with certain
terrain surface types, and the loose correlation provided by the traction
coefficient, we elect to reason about traction using fuzzy logic. The range of
traction coefficients, [0,1], obtained from the neural network classifier is
partitioned using three fuzzy sets with linguistic labels {LOW, MEDIUM,
HIGH}. Triangular membership functions are used which are equally
distributed throughout the universe of discourse. Based on these definitions, the
following simple fuzzy logic rules are applied to manage rover traction on
varied terrain:

e IF C,is LOW, THEN v is SLOW.
¢ IF C,is MEDIUM, THEN v is MODERATE.
e |F C,is HIGH, THEN v is FAST.

Here, membership functions for the rover speed v are defined over the range
of tractive speeds that result from traction tests on various surface types. Note
that the neural network can be trained to map its inputs directly to the actual
range of tractive speeds (rather than the range of C,). However, in this neuro-
fuzzy approach, fuzzy inference serves to accommodate uncertainties in both the
surface classification and the subsequent specification of tractive speed.

In summary, the stable attitude and traction management components of the
safety module combine to provide active countermeasures to potential vehicle
tip over and excessive wheel slip. The minimum of the rover speeds inferred by
the two components is issued as the safe speed recommendation vy,,. The
interface between the safety module and the strategic navigation module is
depicted in Figure 11.6. As indicated by the diagram, safe speeds recommended
by the safety module are compared to the strategic speed recommendations, and
the safest speed is issued as the commanded set point for the motion control
system. The determination of safe rover speed is independent of the behavior
fusion process (discussed later) that produces the strategic navigation speed.
This allows recommended safe speeds to override strategic speeds, if necessary,



to ensure vehicle safety. This is also the approach taken in Murphy and
Dawkins [19] where it is asserted that distributing speed control across all
behaviors makes it difficult to ensure that the interactions will yield a safe speed.
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Figure 11.6: Safety and Strategic Navigation Module Interface.
11.4 TERRAIN-BASED FUZZY NAVIGATION

In dealing with day-to-day processes, humans make subjective decisions based
on qualitative information. Their perception of processes is based on qualitative,
rather than quantitative, assessments obtained from imprecise and approximate
measurements. The human control strategy for a process typically consists of
simple, intuitive, and heuristic rules based on prior experience that are brought
to bear to affect the process. For instance, in the process of driving a car, the
human driver turns the steering wheel to the right if the car veers too far to the
left, and vice versa. The driver intuitively determines the degree of course
correction based on driving experience, rather than resorting to mathematical
modeling and formulation of the process. His actions are based on how far from
the lane the car has moved and on how fast the car is moving. Similarly, the
driver adjusts the speed of the car based on his subjective judgment of the road
conditions, e.g., the car speed is decreased in off-road driving on a bumpy and
rough terrain but is increased on a smooth and flat surface. This human control
strategy exhibits characteristics of reactivity, set point tracking, and regulation,
all perceptually guided by qualitative situational assessments. As mentioned
earlier, it is highly desirable to capture the essence of the tight perception-action
control loop exhibited by human drivers for implementation in autonomous
navigation strategies for planetary rovers.

To develop intelligent navigation controllers, we formulate simple and
intuitive fuzzy logic rules that capture the attributes of human driver reasoning
and decision-making. Robust navigation behavior in practical rover systems can
be achieved when perception uncertainty and actuator imprecision is
accommodated by the rover control system. Such is the case when fuzzy logic
control and decision systems are employed. That is, the linguistic values in the
rule antecedents can be chosen to convey the imprecision associated with on-
board sensor measurements, while those in the rule consequents can represent
the vagueness inherent in the reasoning processes and the imprecision inherent
in actuator operation. Having developed a number of desired navigation



behaviors in this way, one may rely upon the computational mechanisms of
fuzzy logic to provide robust inference and approximate reasoning under
practical uncertainties. The operational strategies of the human expert driver
then, can be transferred via fuzzy logic tools to the robot navigation strategy in
the form of several fuzzy behaviors. The main advantages of such a navigation
strategy lie in the ability to extract heuristic rules from human experience and to
obviate the need for an analytical model of the process. To complement this
methodology, we have developed soft computing solutions for robust qualitative
assessment of terrain traversability, which permits further advancement toward
achieving human driver performance. Our approach is enabled by intelligent
visual perception using terrain imagery captured by cameras onboard the rover.

11.4.1 Visual Terrain Traversability Assessment and Fuzzy Reasoning

Outdoor navigation systems for autonomous field mobile robots must consider
terrain characteristics in order to support safe and efficient traversal from place
to place. Two important attributes that characterize the difficulty of a terrain for
traversal are the slope and roughness of the region. In current methods of terrain
assessment [20-24], terrain traversability is defined as an analytical function of
the terrain slope and roughness in the region local to the vehicle. The slope is
determined by finding the least squares fit of a geometric plane covering the
region, while the roughness is calculated as the residual of the best plane fit.
Once the traversability of each region is evaluated, a traversable path for the
robot to follow is then constructed. These analytical representations of the
terrain traversability rely on accurate interpretation of the sensory data, as well
as an exact mathematical definition of the traversability function. Here, we
present an alternative approach based on fuzzy reasoning. Real time terrain
assessment is achieved by computing physical properties of the terrain (such as
roughness and slope) using data provided by stereo cameras mounted on the
rover. The terrain properties are then used to infer traversability according to a
recently introduced measure called the fuzzy traversability index [25, 26]. The
fuzzy traversability index is a simple measure for quantifying the suitability of a
natural terrain for traversal by a mobile robot. It can be inferred from
knowledge of physical terrain properties, but it also depends on the properties of
the robot mobility mechanism, which determines its hill and rock climbing
capabilities. In order to quantify the roughness and slope of a region, image
processing algorithms are applied for terrain feature extraction as described
below.

11.4.1.1 Terrain Roughness Extraction

During navigation, images of the viewable scene are periodically captured by
the rover vision system. An algorithm is applied to a pair of stereo camera
images that determines the sizes and concentration of rocks/ditches in the
viewable scene. These parameters are used to infer terrain roughness, 3, which is

represented by fuzzy sets with linguistic labels {SMOOTH, ROUGH,
ROCKY}. Equally spacing trapezoidal membership functions are used.



The rock size and concentration parameters are represented in terms of a two-
parameter vector I = [Fynail, Targe], Where Iyna denotes the concentration of small
rocks and 1y, represents the concentration of large rocks contained within the
image. In order to compute these parameters, a horizon line extraction program
is run that identifies the peripheral boundary of the ground plane. This, in
effect, recognizes the point at which the ground and the landscaped backdrop
intersect. The algorithm then identifies target objects located on the ground
plane using a region growing method [27]. In effect, target objects that differ
from the ground surface are identified and counted as rocks for inclusion in the
roughness assessment. The denser the rock concentration, the higher the
calculated roughness of the associated region. Figure 11.7 shows an example
output of the rock identification algorithm.

Original Image Horizon Line Extraction Rock Detection

Figure 11.7: Visual Terrain Roughness Extraction.

To determine the number of small and large rocks contained within the image,
the number of pixels that comprise a target object are first enumerated. Those
targets with a pixel count less than a user defined threshold are labeled as
belonging to the class of small rocks and those with a count above the threshold
are classified as large rocks. The threshold is determined based on the
mechanical characteristics of the rover, such as wheel size, wheel base, body
height, and so on. This defines fuzzy sets with linguistic labels {SMALL,
LARGE}, which represent the rock sizes, R;. All such labeled target objects are
then grouped according to their sizes in order to determine the small and large
rock concentration parameters. These values are then used to populate the two-
parameter vector r, which is characterized by fuzzy sets with linguistic labels
{FEW, MANY} and used as input for the following fuzzy logic rules, where R,
represents the rock concentration:

IF R, is FEW AND R; is SMALL, THEN f3 is SMOOTH.
IF R, is FEW AND R; is LARGE, THEN f is ROUGH.

IF R, is MANY AND R; is SMALL, THEN f is ROUGH.
IF R, is MANY AND R, is LARGE, THEN f is ROCKY.

The terrain roughness is thus derived directly from the rock size and
concentration parameters of the associated image scene.



11.4.1.2 Terrain Slope Extraction

Slope characterizes the average incline/decline of the ground surface to be
traversed. To obtain the surface slope, an innovative approach is utilized to
obtain depth information from two uncalibrated cameras. The process involves
training a neural network to learn the relationship between slope and correlated
image points that lie along the horizon line.

Given a pair of camera images, the algorithm first locates correlated points by
determining the position of the largest rocks located along the horizon line and
centered within both images (Figure 11.8). Once these points are extracted, the
pixel locations in the two images are used as inputs to a trained neural network
for slope extraction.

Figure 11.8: Determination of Correlated Image Points.

Using our algorithm, we wish to find a relationship between corresponding
image points located along the horizon line and the slope of the viewable terrain.
Initially, we train the network by finding a set of weights that will give us the
desired slope output. We utilize a three-layer feedforward neural network with
error backpropagation. In this process, we present a set of correlated image
points and the corresponding slope value to the network. Given this input, the
network will calculate the output, which is then compared with the desired slope
parameter. The difference between the network slope output and the desired
slope value is then used to change the network weights, thus minimizing
network error. In this way, the network can learn the desired relationship
between correlated image points and slope.

Our network has four input nodes corresponding to the image positions of the
correlated points in the two images, and one output node corresponding to the
terrain slope parameter. The hidden layer has two processing elements. After
training the network on typical imagery data representing different positive and
negative sloped examples, we utilize it to extract the slope during run time. The
network output provides the terrain slope parameter, o, whose magnitude is then

converted into the linguistic representation {FLAT, SLOPED, STEEP}, with
membership functions similar to those defined for .



11.4.1.3 Fuzzy Inference of Terrain Traversability

Once the slope and roughness parameters of the region are determined from
the camera images, the fuzzy traversability index, T, is inferred and used to
classify the ease of terrain traversal. The index is represented by three
trapezoidal fuzzy sets with linguistic labels {LOW, MEDIUM, HIGH}. The
fuzzy traversability index is defined in terms of the terrain slope o and the
terrain roughness by a set of simple fuzzy logic relations summarized in
Figure 11.9. Observe that this approach to terrain assessment gives an intuitive,
linguistic definition of terrain roughness and traversability as used by a human
observer, in contrast to the mathematical definitions (as the residual of the least
squares plane fit and as analytical functions of slope and roughness) used
previously [20-24]. This representation has the advantage of being robust and
tolerant to uncertainty and imprecision in measurements and in the interpretation
of sensor data. It conveys sufficient qualitative information about the terrain to
permit intelligent assessment of traversability. In addition, it can be easily
extended to include consideration of additional terrain features in the reasoning

process.

D % FLAT SLOPED STEEP

SMOOTH | HIGH MED LOW

ROUGH | MED LOW LOW

ROCKY | LOW LOW LOW

Figure 11.9: Fuzzy Rule Table for Traversability Index.
11.5 STRATEGIC FUZZY NAVIGATION BEHAVIORS

The robot navigation strategy presented in this section is comprised of three
simple motion behaviors: seek-goal, traverse-terrain, and avoid-obstacle. These
behaviors operate at different perceptual resolutions. The fuzzy logic rules for
the seek-goal behavior make use of global information about the goal position to
make recommendations for rover speed and steering. The fuzzy logic rules for
the traverse-terrain behavior incorporate the regional information about the
terrain quality to produce recommendations for rover speed and steering. The
fuzzy logic rules for the avoid-obstacle behavior utilize local information about
en route obstacles to generate the appropriate speed and steering
recommendations. The output of each behavior is a recommendation over all
possible control actions from the perspective of achieving that behavior's
objective. Each control recommendation is represented by a fuzzy possibility
distribution over the space of speed and steering commands. To facilitate
behavioral rule formulation, the rule set for each motion behavior has been de-
coupled into turn rules and move rules. In the final stage before commanding
rover actuators, the individual fuzzy recommendations from the three behaviors
are aggregated and defuzzified to yield crisp control inputs. This process of



behavior fusion is facilitated by the use of weighting factors inferred from
navigational contexts. The approach yields an autonomous navigation strategy
for the rover that requires no a priori information (e.g., maps) about the
environment. We will now describe in detail the individual fuzzy control
behaviors and the behavior fusion approach to realizing goal-directed
navigation.

11.5.1 Seek-Goal Behavior

The problem addressed in this section is to navigate a rover on a natural
terrain from a known initial position to a user-specified goal position. The rover
control variables for this behavior are the translational speed v and the rotational
speed w,. The vehicle speed v is represented by four fuzzy sets with linguistic
labels {STOP, SLOW, MODERATE, FAST}. Triangular membership functions
are defined which are equally distributed throughout a range of allowable rover
speeds. Similarly, the rover turn rate @ is represented by five fuzzy sets with
linguistic labels {FAST-LEFT, SLOW-LEFT, ON-COURSE, SLOW-RIGHT,
FAST-RIGHT}, defined by equally spaced triangular membership functions
over a range of allowable turn rates.

The fuzzy navigation rules for the seek-goal behavior direct the rover to
initially perform an in place rotation toward the goal to nullify the heading error,
¢, which is the relative angle by which the rover needs to turn to face the goal
directly. Once the rover is aligned with the goal direction, it then proceeds
toward the goal position. A similar rule set can also be formulated for robots that
cannot perform in place rotation.

The fuzzy rules for rover rotational motion are listed below, where the
heading error input ¢ is represented by five fuzzy sets with linguistic labels
{GOAL-FAR LEFT, GOAL-LEFT, GOAL-HEAD ON, GOAL-RIGHT,
GOAL-FAR RIGHT}. The turn rules are followed by a list of fuzzy rules used
for rover translational motion, where the position error input (goal distance) d is
represented by four fuzzy sets with linguistic labels {VERY NEAR, NEAR,
FAR, VERY FAR}. The universe of discourse for both ¢ and d is partitioned by
an equal distribution of triangular membership functions.

e IF ¢ is GOAL-FAR LEFT, THEN wis FAST-LEFT.

e IF ¢ is GOAL-LEFT, THEN wis SLOW-LEFT.

e IF ¢ is GOAL-HEAD ON, THEN wis ON-COURSE.

e IF ¢ is GOAL-RIGHT, THEN @ is SLOW-RIGHT.

e IF ¢ is GOAL-FAR RIGHT, THEN wis FAST-RIGHT.

e IF dis VERY NEAR OR ¢ is NOT GOAL-HEAD ON, THEN v is STOP.
e IF dis NEAR AND ¢ is GOAL-HEAD ON, THEN v is SLOW.

e IF dis FAR AND ¢ is GOAL-HEAD ON, THEN v is MODERATE.

e IF dis VERY FAR AND ¢ is GOAL-HEAD ON, THEN v is FAST.

The first rule for translational motion keeps the rover stationary while it is
correcting its heading. In the remaining translational motion rules, the rover is



aligned with the goal direction and moves with a speed proportional to its
distance from the goal.

11.5.2 Traverse-Terrain Behavior

This section presents fuzzy logic rules that use the fuzzy traversability index
to infer the vehicle turn rate and speed while moving on natural terrain. It is
assumed that the robot can only move in the forward direction (i.e., reverse
motion is not allowed). The visual sensor coverage area of the terrain region in
front of the rover spans 180°. This sensor horizon is partitioned into three 60°

sectors, namely: front, right, and left of the rover position, each extending
outward to a distance of up to five meters. The indices for the three sectors, s,

T, T, are inferred in real time from the values of terrain slope and roughness

extracted by the onboard vision system. The fuzzy rules for determining rover
steering direction based on the terrain traversability data are summarized in
Figure 11.10a (R:RIGHT, L:LEFT, O:No Turn). The rule table in Figure 11.10b
corresponds to steering behavior for obstacle avoidance (discussed below).
These rules emulate the steering actions of the human driver during an off-road
driving session.

Examining Figure 11.10a, we see that a turn maneuver is not initiated when
either the front region is the most traversable, or the right and left regions have
the same traversability indices as the front region. Also, observe that the
preferred direction of turn is chosen arbitrarily to be LEFT, i.e., when the rover
needs to turn to face a more traversable region, it tends to turn left. The choice
of LEFT instead of RIGHT is arbitrary, but selection of a preferred turn
direction is essential to avoid the possibility that simultaneous left and right
rotations can result in a no-turn recommendation even though there may be an
impassable region directly ahead of the rover.

tl“T high med low | % dl'if F H v |d
bigh| 0 | 0 [ 0 Flo]|]of[n
pned | 0 | O | O |high Hlo|o|o]F
| 0 [ 0 | O YH( o | o | o
hish| L | L | L F|L |[L [L
med | B[ O [ O Jmed H|{E|[o]|]o]HW
r | B [ O | O vH| R | 0 | 0O
high| L [ L | L F|L [L [L
med | B2 [ L | L |low H|{E|[L [L |
ww | E [ E | O VH| R | R | O
{a) (b}

Figure 11.10: Turn Rules for (a) Traverse-Terrain and (b) Avoid-Obstacle.



Once the direction of traverse is chosen based on the relative values of T, the
rover speed v can be determined based on the value T+ of the traversability index
T in the chosen region. This determination is formulated as a set of two simple
fuzzy logic rules for speed of traverse: IF 1+ is LOW, THEN v is STOP, and IF
T+ is MEDIUM, THEN v is SLOW. The effect of these rules is analogous to that
of the human driver adjusting the car speed based on the surface conditions.

11.5.3. Avoid-Obstacle Behavior

In this section, fuzzy logic rules are presented which govern rover behavior
based on the local information about en route obstacles, such as large rocks. In
general, obstacles may belong to any variety of mobility and navigation hazards
such as extreme slopes, sand/dust-covered pits, crevasses, cliffs and otherwise
unstable terrain. Also included are so called negative obstacles such as ditches
and craters, and their complements such as ridges and boulders. Rocks that are
considered obstacles are those with sizes that exceed the obstacle climbing
threshold for which the rover is designed. In the case of the Mars rover
Sojourner, the threshold was 1.5 wheel diameters. Without loss of generality,
we may refer to the general category of untraversable patches of terrain as
navigation obstacles. This local obstacle information is acquired online and in
real time by the proximity sensors mounted on the rover. For space robotics
applications, different types of proximity sensors can be used, ranging from low-
resolution infrared sensors to high-resolution and longer-range laser detectors
[28]. A wider range of options is available for use in more general mobile robot
applications [29]. The range of reliable operation of proximity sensors is
typically 20 to 50 cm, which is about an order of magnitude shorter than that of
regional sensor coverage. Note, however, that precise measurement of the
obstacle distance is not needed, because of the multivalued nature of the fuzzy
sets used to describe it.

In the present implementation, it is assumed that there are three groups of
proximity sensors mounted on the robot facing the three different directions of
front, right, and left. These sensors report the distances between the robot and
the closest front obstacle dj, the closest right obstacle d,, and the closest left
obstacle d; within their ranges of operation. The three obstacle distances are
continuously measured and updated during rover motion. The steering and speed
rules for avoiding obstacles use this local information to maneuver the robot
around the obstacles and to avoid potential collisions. Each obstacle distance dj;
d,, or d; is represented by the three fuzzy sets with linguistic labels {VERY
NEAR, NEAR, FAR}. Equally distributed trapezoidal membership functions
are defined for each obstacle distance. Typically, different fuzzy set bounds are
defined on the universe of discourse for the front obstacle distance and side (left
and right) obstacle distances so that front and side collision detection will have
different sensitivities.

The behavioral objectives of the obstacle avoidance rules are to direct the
rover to: (a) turn to face a region with the least nearby obstacles, and (b) adjust
its speed of motion depending on the distance to the closest front obstacle. The



goal of the steering rule set is to steer the robot clear of all obstacles. This goal is
accomplished by sensing the three obstacle distances and reacting according to
the fuzzy logic rule sets summarized above in the Figure 11.10b. The following
points are noted about the above steering rules. First, when dyis FAR, i.e., the
front of the rover is clear of obstacles, the rover will not collide with any
obstacles and no corrective action needs to be taken. Therefore, the collision
avoidance steering rules are activated only when the situation is otherwise.
Second, observe that the preferred direction of turn is chosen to be LEFT, i.e.,
when the rover needs to turn to avoid an impending collision, it tends to turn
left. The choice of LEFT instead of RIGHT is arbitrary, but selection of a
preferred turn direction is essential to avoid the possibility that simultaneous left
and right obstacles can result in a no-turn recommendation even though there
may be an obstacle in front of the vehicle.

The speed rules for collision avoidance are very simple. Basically, the robot
is required to slow down as it approaches the closest front obstacle. Again, note
that when the front obstacle distance is FAR, collision avoidance is not activated
and no corrective action needs to be taken. There are two fuzzy logic rules as
follows: IF dris VERY NEAR, THEN v is STOP, and IF dyis NEAR, THEN v is
SLOW.

11.5.4. Fuzzy-Behavior Fusion

The decision-making process used to combine recommendations from
multiple behaviors is commonly referred to as behavior coordination [3]. The
most common approach is behavior arbitration, which employs a prioritization
scheme wherein the control recommendation of only one behavior among
several competing behaviors is taken while recommendations from the
remaining behaviors with lower priorities are ignored. In contrast to this
switching type of arbitration, we advocate using a more comprehensive blending
scheme. The preferred coordination scheme permits more than one behavior to
influence the resultant control action to the extent governed by variable gains or
weighting factors assigned dynamically according to the prevailing context — a
scheme referred to as behavior fusion. Behavior fusion is facilitated by fuzzy set
theoretic computations; however, nonfuzzy implementations are also possible
[8]. Thus, in the proposed approach, weight rules combine elemental behaviors,
not through fixed priority arbitration, but rather through a generalization of
dynamic gains that are determined based on consideration of the situational
status of the rover. The weight rules continuously update the behavior weighting
factors during rover motion based on the prevailing conditions.

The gains or weighting factors s”, ¥, and a" represent the strengths by which
the seek-goal, traverse-terrain, and avoid-obstacle recommendations are taken
into account to compute the final control actions v and @ . These weights are
represented by two fuzzy sets with linguistic labels {NOMINAL, HIGH}. Three
sets of decision rules for the respective motion behavior gains are listed below.

e IF dis VERY NEAR, THEN s" is HIGH.
e [F dis NOT VERY NEAR, THEN s" is NOMINAL.



IF d is NOT VERY NEAR AND d,is NOT VERY NEAR, THEN ¢" is HIGH.
IF d is VERY NEAR OR d;is VERY NEAR, THEN " is NOMINAL.

IF d is NOT VERY NEAR, THEN a" is HIGH.
IF d is VERY NEAR, THEN 4" is NOMINAL.

At each control cycle, the above sets of gain rules are used to calculate the
three crisp weighting factors using the center-of-gravity (centroid)
defuzzification method. Note that with this defuzzification method, overlapping
areas between adjacent truncated membership functions in the aggregated fuzzy
set are counted twice. The resulting crisp weights are then used to compute the
final control actions for the rover speed and turn rate.

Fuzzy recommendations from the seek-goal, traverse-terrain, and avoid-
obstacle behaviors are weighted by the corresponding behavior gains prior to
defuzzification, as shown in Figure 11.11. The weighted fuzzy outputs for the
individual behaviors are aggregated into single fuzzy possibility distributions for
both rover speed and turn rate. The final control actions for each cycle are
computed using the center-of-gravity defuzzification method.
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Figure 11.11: Fuzzy-Behavior Fusion.

11.6 ROVER TESTBED AND EXPERIMENTAL RESULTS

Field tests using the Pioneer AT (All-Terrain) rover are conducted on rough
terrain near JPL (Pasadena, California) to test the reasoning and decision-
making capabilities provided by the fuzzy logic navigation strategy. This
commercially available rover is kinematically quite different from planetary
rovers designed for Mars. Nonetheless, with certain enhancements it is suitable
as a testbed for developing advanced technology and algorithms for infusion



into flight rover navigation systems. The Pioneer AT rover, shown on the left of
Figure 11.12, is enhanced with additional onboard processing capability, 8-input
image multiplexer, a vision system for real time terrain assessment, and a tilt
sensor (mentioned in Section 11.3.2). The vision system consists of eight
CMOS NTSC video cameras. Six cameras are mounted on a raised platform
and used for terrain-based navigation. The right side of Figure 11.12 shows the
physical layout of the camera platform used specifically to provide terrain
imagery data. These six cameras are placed such that the lens centers are 740
mm above the ground and the optical axis of each camera is tilted down by 8°.

The intersecting origin of all cameras is centered above the support polygon
formed by the rover wheel ground contact points. In addition, the stereo
baseline length is set to 500 mm. This camera placement scheme provides the
rover a viewable distance of ~5 m spanning a field of view of ~180°. The
remaining two cameras are mounted on a mast below the raised platform and

pointed towards the ground for obstacle detection and surface type
classification.

Figure 11.12: Enhanced Pioneer AT with Terrain Assessment Vision System.

The processing power onboard the rover consists of a 333 MHz Pentium II
processor housed in a CompactPCI chassis running the Linux Operating System.
The system has also been tested using a laptop computer running Windows 95.
Resident on the computer are the image processing algorithms and the fuzzy
logic computation engine (written in the C language) used to calculate the
translational and rotational speed commands issued to control the wheel motors.
Using this hardware platform, rover field tests are performed outdoors in natural
terrain. We shall now present field test and experimental results for the safety
module and the strategic navigation module.

11.6.1 Safe Mobility

In this section, we describe two field tests and associated laboratory
experiments performed to evaluate the effect of the safe attitude and traction
components. The first test considers reactions to rover pitch and roll during
traversal. The second test is concerned with mitigation of wheel slippage.



For the stable attitude test, an obstacle-free swath of undulated terrain is
chosen. The rover is commanded to traverse the swath with and without the
stable attitude component activated. Without active stable attitude management,
the rover traverses the terrain at a nominally fast speed recommended by the
strategic navigation system based on the fact that no significant obstacles are
present. With active attitude management, the rover traverses the terrain at
various reduced speeds in response to changes in its pitch and roll according to
the fuzzy logic rules in Figure 11.3. This reactivity reduces the risk of
approaching marginal tilt stability, which leads to tip over. It also enhances the
ability of rigid suspension vehicles (such as the Pioneer AT) to maintain wheel
contact with the ground. A comparative effect of the stable attitude component
is shown in Figure 11.13. The left picture corresponds to the test without active
attitude management; it shows a case where the rear right wheel loses contact
with the ground. The right picture shows the rover at the same approximate
location with all wheels making ground contact while actively modulating its
speed to maintain stable attitude.

To further illustrate the effect of safe attitude management, we exercise the
component in a laboratory experiment where the rover traverses a swath of
terrain for ten meters. Synthetic attitude measurements are generated by
sinusoidal functions of random amplitude to emulate changes in pitch and roll
experienced on a hypothetical undulated and rough terrain. The amplitudes are
uniformly distributed random numbers bounded by the maximum stable pitch
and roll of the rover. It is assumed that the strategic navigation module
recommends a constant normalized speed of 75 percent (of maximum allowable
speed) throughout the traverse. The results of this experiment are shown in
Figure 11.14 in plots of pitch, roll and vy, (normalized) vs. distance. The
strategic speed is shown in the speed distance plot as a dashed line. Observe that
Vsafe 1s modulated low in response to near-extreme attitudes. This is most
apparent when both pitch and roll are simultaneously large in magnitude.

To test safe traction management, a benign portion of terrain comprising two
distinct surface types (hard compact soil and gravel) is chosen on which the
rover will be susceptible to wheel slippage when traversing the surface transition
at nominally fast speeds. The scenario is depicted in Figure 11.15 where the
rover is about to transition from a hard compact soil to gravel surface. The rover
is commanded to traverse the transition with and without the safe traction
management component activated. Again, without active traction management,
the rover traverses the terrain at a nominally fast speed. With active traction
management, the rover reduces its speed upon encountering a surface of lower



perceived traction (as classified by the vision-based neural network classifier
described earlier) according to the fuzzy logic rules presented in section
11.3.3.1. This reactivity mitigates the risk of excessive wheel slippage during
transitions between and traversal on surfaces of different traction characteristics.
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Figure 11.14: Speed Modulation for Attitude Management.

Figure 11.15: Rover Approaching Surface Type Transition.

To further illustrate the effect of the safe traction management, we exercise
the component in a laboratory experiment where the rover traverses a 12 meter
swath of terrain consisting of different surface types for which the traction
coefficient C, is 0.5 for 5 m, 0.2 for 3 m, and 0.9 for 4 m. We assume, for the
sake of discussion, that these values correspond to sand, gravel, and concrete,
and that the surface texture camera has a ground surface view horizon out to 0.3
m in front of the rover wheels. In this experiment, the strategic navigation
module recommends a constant normalized speed of 80 percent throughout the
12 m traverse. The result is shown in Figure 11.16 where the recommended



rover speeds are plotted vs. distance; the strategic speed is shown as a dashed
line. Images of the three terrain surface types corresponding to distance are inset
in the figure as well. As expected, changes in perceived traction result in
reactive management of the safe speed recommended by the safe traction
component to avoid the risk of excessive wheel slippage. Note that our
laboratory experiment accounts for a reaction delay between classification of the
surface type and the actual change in set points for vy,. Thus far, our tests have
revealed that v, is consistently lower than the strategic speed, thus exhibiting
the caution of the safety module in reaction to cognizance of vehicle safety and
changing “road” conditions.
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Figure 11.16: Speed Modulation for Traction Management.

11.6.2 Safe Navigation

The strategic navigation module was also tested in the field. In this section,
we present results of a point-to-point navigation run in natural terrain. To
navigate from a starting position to a user-specified goal position, the rover
employs three navigation behaviors — seek-goal, traverse-terrain, and avoid-
obstacle. The goal position is located approximately 20 m in front of the rover.
Directly in between the starting and the goal positions are two regions having
low traversability — one region contains a highly sloped hill and the other
contains a large cluster of rocks. Figure 11.17 shows the path traversed by the
rover from its original starting position until it has autonomously reached the
specified goal position using its onboard fuzzy logic navigation rules. The rover
begins by first analyzing the traversability of the three partitioned 60° sectors

(left, front, right) of the terrain located in front of the rover. The front and left
sectors (which contain the large sloped hill) are found to have low traversability.
The rover therefore turns toward the right sector, which is found to be highly
traversable, and proceeds to enter the safe region. Once in the safe region, the
rover turns and navigates toward the goal, while ensuring that it is still
physically located in the highly traversable sector; this corresponds to the last
scene in the top row of images in Figure 11.17. Note that the viewpoint of the



camera recording the path in Figure 11.17 is different for the top and bottom
rows of images. Images on the top row are captured from a location behind the
rover; the bottom row of images is captured from a location ahead of the rover.

After traversing a distance of about 10 m from start, the rover stops, turns
toward the goal, and re-analyzes the traversability of the terrain ahead of it This
time the front sector is found to have low traversability due to the large cluster
of rocks located in this area. The left region is found to have low traversability
due to the large sloped hill, and the right region is once again found to have high
traversability. The rover thus turns to the right and proceeds into the safe region.
At the point when the rover is within 1.5 m of the goal, the weight on the
traverse-terrain recommendation is reduced automatically, and the seek-goal
behavior becomes dominant. At this point, the rover heads directly toward the
goal and stops when it is reached.

Figure 11.17: Navigation Path using Strategic Navigation Behaviors. Top-left
Image Shows the Initial Position; Bottom-right Image Indicates Goal
Achievement.

As shown in the sequence of test images, the navigation system directs the
rover through the safest traversable regions. The combination of terrain
assessment, safety, and strategic navigation modules in the safe navigation
system thus demonstrates the viability of soft computing algorithms for enabling
safe traversal of the rover on challenging terrain.

11.7 SUMMARY AND CONCLUSIONS

Safe and autonomous long range navigation of a rover on hazardous natural
terrain offers significant technical challenges. An autonomous planetary rover
must be able to operate intelligently with minimal interaction with mission
operators on Earth. To accomplish this goal, the rover must have the onboard
intelligence needed to traverse highly unstructured, poorly modeled terrain with
a high level of robustness and reliability. For operation over extended time and
distance, some capacity for built-in safe operation and health cognizance is
required. The rover onboard software intelligence must be capable of
supporting real time navigation and motion planning based on poor and noisy



sensor data. At the same time, it must be realizable in practical rover computing
hardware. As such, efficient algorithms are essential for intelligent control.

As a goal, we have focused on achieving human driver performance through
the application of soft computing techniques. This chapter presents the current
state of development of a safe rover navigation system designed with this goal in
mind. Various components of the safe navigation system are described in detail.
Several soft computing solutions to different aspects of the rover navigation
problem are also presented. Through this research and application experience,
we have found that fuzzy logic provides a natural framework for expressing the
human reasoning and decision-making processes for driving a rover on
hazardous terrain. The human driving strategy can be transferred easily to the
onboard rover navigation system and executed in real time.

Robot navigation strategies based on fuzzy logic offer major advantages over
analytical methods. First, the fuzzy rules that govern the robot motion are easily
understandable, intuitive, and emulate the human driver's experience. Second,
the tolerance of fuzzy logic to imprecision and uncertainties in sensory data is
particularly appealing for outdoor navigation because of the inevitable
inaccuracies in measuring and interpreting the terrain quality data, such as slope
and roughness. And third, the fuzzy logic strategy has a modular structure that
can be extended very easily to incorporate new capabilities, whereas this
requires complete reformulation for analytical methods. Multiple fuzzy
behaviors can be blended readily into a unified navigation strategy that permits
smooth interpolation between behaviors, thereby avoiding abrupt and
discontinuous behavioral transitions.

The addition of the onboard terrain sensing and traversability analysis,
coupled with the traverse-terrain behavior that takes advantage of this
information, is a significant and novel contribution. These capabilities allow the
navigation system to take preventive measures by looking ahead and preventing
the rover from potential entrapment in rock clusters and other impassable
regions and thus, guiding the vehicle to circumnavigate such regions. The
technology described herein will lead to survivable rover systems that are of
practical use for performing long duration missions involving long range
traversal over challenging and high risk terrain.
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AUTONOMOUS UNDERWATER
VEHICLE CONTROL USING
FUZZY LOGIC

Feijun Song and Samuel M. Smith

12.1 INTRODUCTION

In this chapter, we will discuss the applications of fuzzy logic in autonomous
underwater vehicle (AUV) control. In particular, we will discuss a special type
of fuzzy logic controller named sliding mode fuzzy controller (SMFC) that
combines the advantages of sliding mode control and fuzzy logic control. We
will show how to design and tune a sliding mode fuzzy controller. The
application of such controller structure to AUV control will also be shown.

As an emerging technique for oceanography measurement and littoral
survey, AUVs have drawn much attention from researchers with different
backgrounds. The pitch and heading control of an AUV forms the basis of any
successful mission. However, the environment that a mission has to face gives
many difficulties in the controller design. Wave and current are two basic
environmental factors that are generally treated as external disturbance by a
controller designer. Sensor measurement in such an environment also lends
itself to noise. Furthermore, an AUV system is a real time distributed system
that consists of many different components; therefore, sampling rate becomes
another problem for the controller designer. Thus, robustness must be
considered in the controller design yet the controller still needs to perform well.

Most current robust controller design methodologies require a system model.
An AUV system is highly nonlinear and difficult to model, this adds more
difficulties to the controller design. During the past several years of research and
practice, we found that SMFC is a plausible control scheme for AUVs in tough
environments. To discuss the application of SMFC in AUVs, we first briefly
introduce the dynamics of an AUV, then the sliding mode control. The structure
of SMFC is presented in detail, followed by the presentation of at sea
experimental results. We conclude this chapter with a discussion of the
advantages of SMFC.

12.2 BACKGROUND

Pitch and heading control are low level controls in AUV control architecture.
Many control strategies have been adopted; among them are neural network
control [1], sliding mode control [2,3], supervisory control [4], linear quadratic
gaussian/loop transfer recovery method [5], self-tuning control [6], fuzzy logic
control [7], etc. However, it is difficult to design time optimal controllers for



AUVs due to the fact that most optimal control design methodologies require
analytical system models (equations of motion) of the AUVs, which is highly
nonlinear and difficult to obtain.

Generally, for time optimal control, there exists a nonlinear switching curve
where the bang-bang control should switch its sign. The curve also represents
the maximal vehicle maneuvering capabilities in terms of time. A time optimal
controller should be able to control the AUVs so that the same switching curve
is always followed. A fuzzy logic controller can approximate this nonlinear
switching curve since fuzzy systems are universal function approximators
[8,9,10,11].

Sliding mode control is known for its robustness to the external disturbance
and system modeling error. In order to have a controller that is not only time
optimal, but also robust, a combination of sliding mode control and fuzzy logic
control is needed. This results in the SMFC, in which each fuzzy rule output
function is exactly a sliding mode controller. The slope of the sliding mode
controller in each rule is determined by the approximate slope of the nonlinear
switching curve in that partition of the phase plane that the rule covers. The
nonlinearity of the switching curve thus is approximated by the fuzzy rules.

The approximation property of fuzzy logic control and robustness property
of sliding mode control make the SMFC idea for AUV time optimal and robust
control under rough sea state. However, as in fuzzy logic cotnroller design, the
parameters for a SMFC are difficult to determine. An experimental method is
presented in this chapter to determine those parameters. The method makes the
design of controllers for complex highly nonlinear systems possible without any
analytical representations of the system.

The method is based on Pontryagin’s maximum principle [12]. Starting from
a steady state under maximal rudder or stern plane deflection, an AUV’s open
loop pitch or heading response generally is a nonlinear curve in a phase plane.
This curve represents the maximal vehicle maneuvering capabilities in terms of
time. It also represents the switching line where the bang-bang control should
switch its sign. A time optimal controller should be able to control the AUV so
that the same switching curve is always followed. The parameters of a SMFC
should be selected such that the experimental switching curve is approximated.

A pitch and a heading controller have been designed with at sea open loop
experimental data generated by the Ocean Explorer (OEX) series AUVs. The at
sea closed loop experimental data justified the methodology used to determine
the controller parameters.

12.3 AUTONOMOUS UNDERWATER VEHICLES (AUVs)

OEX series AUVs were developed at the Ocean Engineering Department of
Florida Atlantic University. The vehicle is depicted in Figure 12.1. It is 7.14 feet
long with basic payload and 21 inches in diameter. The maximum cross
sectional area is 2.4053 ft*. Weight in air is 714.2 Ibs and displaced weight is
716.7 lbs. Hull volume is 11.1931 ft. Following is a brief description of the
basic vehicle configuration.



. A tear-drop shaped fiber glass hull based on a modified version of the
Gertler Series 58 Model 4154 body shape;

. Aft-mounted cruciform control surfaces;

. A 3-bladed propeller 18 inches in diameter;

. Intelligent Ni-Cd battery packs. The battery packs can supply up to 12
hours of continuous missions at 3-knot cruising speed;

. Main computer and electronics board (MC68030 at 50 MHz on the
VME bus). Each of the components is embedded with a LonWorks
Neuron node, and the control communication is achieved via LonTalk
protocol;

. Sensors include Watson AHRS-C302RS (3-axis acceleration, angles
and rates), SIMRAD mesotech 809 (altitude), Druck PTX 1649 (water
depth), Sonic Speed (water speed), Differential Global Positioning
System, LBL and USBL positioning system.

In OEX series AUVs, the control of heading and pitch is achieved through
the adjustment of rudder and stern plane. We will design two time optimal
controllers for pitch and heading control of OEX series AUVs. The inputs for
the pitch controller are the pitch error and pitch error rate. The output of the
pitch controller is the deflection of the stern plane. The inputs for the heading
controller are heading error and heading error rate. The output of the heading
controller is the deflection of the rudder.

For a detailed system dynamics of the AUV, please refer to reference

[13,14].
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Figure 12.1: OEX Series AUVs.
12.4  SLIDING MODE CONTROL

A sliding mode controller (SMC) is a variable structure controller (VSC).
Basically, a VSC includes several different continuous functions that can map
plant state to a control surface; the switching among different functions is
determined by plant state that is represented by a switching function.

Without loss of generality, consider the design of a sliding mode controller



for the following second order system:
X = f(x,x,t) +bu(t) (12.1)
Here we assume b > 0. u(t) is the input to the system. The following is a
possible choice of the structure of a sliding mode controller [15,16]:
u =ksgn(s) +u,, (12.2)
where u,, is called equivalent control which is used when the system state is in

the sliding mode [16,17]. k is a constant. &k is the maximal value of the
controller output. s is called switching function because the control action
switches its sign on the two sides of the switching surface s =0. s is defined as
[15,18]:

s=é+Ae (12.3)
where e=x—x, and x, is the desired state. A is a constant. sgn(s) is a sign
function, which is defined as:

sgn(s):g_1 if s<0 (12.4)
Hi1 i s>1

The control strategy adopted here will guarantee the system trajectories
move toward and stay on the sliding surface s =0 from any initial condition if
the following condition is met:

s§ < -nls| (12.5)
where 1] is a positive constant that guarantees the system trajectories hit the

sliding surface in finite time [15].
Using a sign function often causes chattering in practice. One solution is to
introduce a boundary layer around the switch surface [17]:

u = ksat (i) +tu, (12.6)
2
where constant factor ¢ defines the thickness of the boundary layer. g4¢ (i) isa
@

saturation function that is defined as:

0

i » ‘1
s @ @

é%gn( 5 ‘i
Q 4

This controller is actually a continuous approximation of the ideal relay
control [15,16]. The consequence of this control scheme is that invariance of
sliding mode control is lost. The system robustness is a function of the width of
the boundary layer.

<1

sat (2 = (12.7)
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A variation of the above controller is to use a hyperbolic tangent function

instead of a saturation function [3,19]:



u = k tanh( %) +u, (12.8)

Figure 12.2 shows different sliding control laws for a two-dimensional
system, Their corresponding control surfaces are shown in Figure 12.3.

It is proven that if k& is large enough, the sliding model controllers in
equations 12.2, 12.6 and 12.8 are guaranteed to be asymptotically stable [16,19].

12.5 SLIDING MODE FUZZY CONTROL (SMFC)

Pontryagin’s maximum principle states that for two-dimensional time optimal
controller design, there exists a nonlinear switch curve so that the control can
have maximal value on one side of the switching curve and minimal value on
the other side of the curve. The nonlinear switching curve often has the form
depicted in Figure 12.4. Figure 12.4 also shows there can be a switching band
around the switching line to alleviate chattering.

e
Switching line v \'/v\

- Trajectory

Figure 12.4: A Nonlinear Switching Curve.

There are two problems associated with nonlinear time optimal controller
design: First, how to get the true switching curve because for nonlinear systems,
this switching curve is very difficult to get analytically. The second problem is
how to approximate the nonlinear curve.

To solve the first problem, we could use system open loop experimental
data. Under the maximal control command, the system output should be
saturated after a period of time. The nonlinear open loop response can be used as
a switching curve since it represents the system’s fastest response. For example,
if the maximal rudder angle is delivered to an AUV constantly, then the yaw rate
of the AUV will be gradually saturated as segment AB in Figure 12.5. The
delivering of minimal rudder angle in the opposite direction generates the
segment CD shown in Figure 12.5.

This open loop response actually represents the maximal maneuvering
capability of the AUV. In other words, the curves AB and CD are the quickest
way the AUV can move. These curves can be used as switching curves in time
optimal controller design.

Another approach to obtain this nonlinear switching line is to use computer
aided controller automatic design and optimization methods. We have developed
a very efficient and effective cell state space based search algorithm to
automatically optimize a general type of controller. For a detailed description of



this algorithm and other related materials, please refer to references
[20,21,22,23,24].
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Figure 12.5: Open Loop Step Response for Maximal and Minimal Rudder.

The advantage of the open loop experimental approach for obtaining a
nonlinear switching line is that a mathematical model of the system is not
necessary. However, due to sensor noise and other factors, the experimental
switching line might not be exact, which leads to a less optimal controller.
Computer aided automatic method can achieve higher accuracy, but a
computational model is always needed.

Once the switching line is obtained, the next step is to approximate this line.
Obviously, traditional linear controller design can only linearly approximate this
nonlinear curve. We could very well use a Takagi-Sugeno (TS) type fuzzy logic
controller to approximate this nonlinear curve. Fuzzy logic controller has been
proven to be able to approximate any nonlinear curve with arbitrary accuracy
[9].

Generally, a time optimal controller is not robust. The performance of a time
optimal controller degrades severely with the external disturbance, measurement
noise, or system dynamics changes. To add robustness to a time optimal
controller, we need to combine sliding mode control and fuzzy logic control.

In a TS type FLC, the rule output function typically is a linear function of
controller inputs. The mathematical expression of this function is similar to a
switching function. This similarity indicates that the information from a sliding
mode controller can be used to design a fuzzy logic controller, resulting in a
sliding mode fuzzy controller. Wu proposed such an approach in which
parameters in the output functions for different rules that cover different
partitions of the state space are determined by different sliding mode controllers
that also cover the corresponding partitions of the state space [25]. The resulting
controller is still a typical TS type FLC. In fact, since a fuzzy system can
seamlessly connect different control strategies into one system, one can take an
even more direct approach to incorporate sliding mode controllers into a fuzzy
logic controller [26]. In Xu’s approach, each rule is a sliding mode controller.
The SMC in each rule can have various forms. The boundary layer and the
coefficients of the sliding surface become the coefficients of the rule output
function.

The i th rule for an SMFC is expressed as follows:



>+Ae+c.
IF ¢ is 4, and ¢ is B,, THEN u, = ksat(*— =50

Notice that the rule output function is not necessarily a saturation function. It
could be a sign function or hyperbolic tangential function too. The fuzzification
of e and ¢ are illustrated in Figure 12.6.

Y PS
NS e
2 I s
Y \
. \). ! >
|\ \\\ \\ e
\\\\\: :j '_\
NS

Figure 12.6: Fuzzification of e and e.

The constant coefficients of A, and ¢, are determined by the open loop

experimental data. They are determined in such a way that the slope of the
nonlinear switching curve is followed. Usually, the at sea data has oscillation
that reflects the environmental disturbance and measurement noise. The
magnitude of the oscillation can be used to determine the coefficient ¢ .

Notice that in Figure 12.4 the switching curve can be either a function of e,
or a function of ¢. Fewer rules are needed to approximate this one-dimensional
function. This is how an SMFC reduces the rule base size. A typical rule for the
simplified rule base is the following:

s+ Ae+c,
IF e is 4, THEN u, = ksar(SF ATy

We will use this simplified rule to construct a pitch and a heading controller
for an AUV.

12.6 SMFC DESIGN EXAMPLES

A sliding mode fuzzy pitch controller and a sliding mode fuzzy heading
controller have been designed for the OEX series AUVs. The inputs to the
sliding mode fuzzy heading controller are heading error and heading error rate.

The output is rudder deflection. Figure 12.7 shows the fuzzy sets for the
heading errors. There are no fuzzy sets for heading error rate. Table 12.1 shows
the rule base of the heading controller.
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Figure 12.7: Fuzzy Sets for Heading Error.

Tablel2.1: Rule Base for the Sliding Mode Fuzzy Heading Controller

5 rules for the sliding mode fuzzy heading controller, £ = 20 degree
Antecedents Output Functions
Heading error e Thickness @ Slope A, Offset ¢,
PB 2.5 0.01 13.5
PM 3.0 1.50 1.0
ZERO 3.0 2.00 0.0
NM 3.0 1.50 -1.0
NB 2.5 0.01 -13.5
NB NM ZERO PM PB
1.0
0.5

-60 -7 -4 3 0 3 4 7 60 deg;ee
Universe of Discourse

Figure 12.8: Fuzzy Sets for Pitch Error.

The inputs to the pitch controller are pitch error and pitch error rate. The
output is stern plane deflection. Figure 12.8 shows the fuzzy sets for the pitch
errors. There are no fuzzy sets for pitch error rate. Table 12.2 shows the rule
base of the pitch controller.

Figure 12.9 and Figure 12.10 show the control surface and its contour of the
sliding mode fuzzy heading controller. Figures 12.11 and 12.12 show the control
surface and its contour of the sliding mode fuzzy pitch controller.

Again, we need to emphasize that although the parameters in Table 12.1 and
Table 12.2 are from AUV experimental data, there should be trials and errors
before we determine the final values. The offset ¢, helps to adjust the contour of
the resultant control surface. Each time we come to a set of parameters, the

corresponding control surface and contour will be plotted. The parameters will
be ajdusted slightly to generate a better shaped control surface and contour.



Table 2: Rule Base for the Sliding Mode Fuzzy Pitch Controller

5 rules for the sliding mode fuzzy pitch controller, £ = 20 degree
Antecedents Output Functions
Pitch error e Thickness @ Slope A, Offset ¢,
PB 1.5 0.01 13.5
PM 3.0 2.00 1.5
ZERO 3.0 3.00 0.0
NM 3.0 2.00 -1.5
NB 1.5 0.01 -13.5

Another issue that must be clarified here is that although the original values
for the controller parameters are from experimental data, the tuning (trial and
error) was done in a simulation environment where the OEX series AUVs were
modeled by a six degree-of-freedom (DOF) nonlinear model. Each time the
controller parameters were adjusted, the new controller would be tested in the
simulation environment. The final controller was then ported to vehicles for at-
sea tuning. The at sea tuning of the controller took about one week. The use of
simulation toolbox for controller tuning will be covered in other publications.

The design and tuning of an SMFC are summarized in the following steps:

Step 1: Determine a nonlinear switching line and its necessary boundary as
in Figure 12.4. As discussed before, there are two ways to find such a line and
its boundary. The first way is to use experimental open loop system repsonse to
the maximal physical control command. The difference among repeated
experiments will give us a rough idea of how thick the boundary layer should
be. This difference generally reflects typical sensor noise level, typical external
disturbance level and system parameter changes, etc. A properly selected
boundary will conpensate for those changes in real control. The second way to
find a switching line is to use a system model. With a system model, the system
response to the maximal physical control command can be easily obtained and
be used in determining the switching line. However, with a system model, the
thickness of a boundary layer is not so easy to obtain since there is no means to
reflect sensor noise level and external disturbance by model computation. In this
case, the specifications of the sensors used in the system can be utilized to
determine the thickness of a boundary layer, that is, to determince @.

Step 2: Fuzzify the controller inputs as in Figure 12.7 and Figure 12.8. In
this step, we need to determine the number of membership functions for each
controller input. We also need to determine what kind of membership function
should be used. This step is very important to the successful approximation of
the nonlinear switching line found in step 1. Intuitively, the more the
membership functions, the better the approximation. However, more
membership functions mean more rules and more computation complexity. A
rule of thumb is to have at least three and at most nine membership functions for
each controller input [27]. Generally, for a number of membership functions less
than five, gaussian type functions are prefered. Triangle functions are adequate
if the number of membership functions is more than five [28].



Step 3: Construct a rule base. After all the controller inputs have been
fuzzified, a rule base can be constructed. Some rule reduction method can be
applied here although sliding mode fuzzy control already has the potential to
reduce a rule base.

Step 4: Choose a defuzzification method. Since real physical systems often
require a crisp control command, we need to defuzzify a controller output. There
are many defuzzification methods [29,30,31,32]. The most adopted one is
averaged sum.

Step 5: Determine rule output function parameters. That is, determine
different @, A, and ¢,. Once the controller inputs are fuzzified and the
switching line is obtained, the only way to better approxmiate the switching line
is to tune the rule output function parameters. Often, initial values for @, A, and

¢; are chosen based on the switching line and boundary layer found in step 1.
After that, the parameters are tuned to have a better approximation. A trial and
error method is often adopted in this step. A few guildelines on how to tune
these parameters are given later in this chapter. If the slidng mode fuzzy
controller can not approximate the switching line satisfactorily by tuning @, A,
and ¢, only, the designer may need to increase the membership functions for
each controller input. In this case, the design goes back to step 2.

z: 52>

e
5%
S
$95055585%5%%

2
AR5
SEAREReK582
SR RES505055%5
sl e, %, Q9527527558582
SRR
e
SSRSILILLN

230
X0
‘\‘:‘:“:‘

iff:tzg,.
S
s
S
B D
5
RS
7SR RANIKENEXEREN
QKNSRI
!
[/ RRRREREEREKAS
ORI
RS
P
00\‘\‘\0
l' "2:“‘
SIS
re e, '
$2 0,0'.0' % 2 o" e s "’

Figure 12.9: Control Surface of the Sliding Mode Fuzzy Heading Controller.
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Figure 12.10: Contour Plot of the Control Surface in Figure 12.9.
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Figure 12.11: Control Surface of the Sliding Mode Fuzzy Pitch Controller.



15

10

pitch error rate (degree/second)
(==}

-10

-15
-60 -40 -20 0 20 40 60

pitch error (degree)

Figure 12.12: Contour Plot of the Control Surface in Figure 12.11.

Step 6: Check the designed sliding mode fuzzy controller performance with
a system model. If a system model is not available, this step can be skipped. In
this step, the controller rule output function parameters can be further tuned in
order to have a better performance instead of a better approximation. This step
can save lots of field test efforts if the controllers are properly tuned.

Step 7: Field experiments. This is the last step in the controller tuning. Once
the controller design is done and all the rule ouput function parameters are tuned
in the steps above, the performance of the controller should be tested with the
real system. In this step, controller input membership functions are generally
unchaged, but the rule output function parameters can be further tuned to have
satisfactory field performance.

12.7 GUIDELINES FOR ONLINE ADJUSTMENT

One of the advantages of SMFC over conventional TS type fuzzy logic control
is that all the parameters in a sliding mode fuzzy controller have their own
physical meanings, making the online adjustment of a sliding mode fuzzy
controller much easier than the online adjustment of a fuzzy logic controller.
One can use the experience and knowledge on sliding mode control to adjust the
rule output functions of a sliding mode fuzzy controller. Furthermore, the
structure of a sliding mode fuzzy controller also opens the door to the online



adaptive control. As one may notice, the parameters of a typical TS type FLC
have no physical meaning. An online adaptive fuzzy controller scheme often
involves complicated adaptation on every piece of rule in each adaptation
iteration. However, with a sliding mode fuzzy controller, one can adapt only one
rule, or a subset of the rule base. The computation would be much less, which is
another attractive feature in real time systems.

Below are some salient features associated with sliding slope A and
thickness of boundary layer ¢ that can be used as guidelines for sliding mode

fuzzy controller online adjustment.
12.7.1 Sliding Slope A Effects

Sliding slope will have much influence on how fast the controller responds.
The bigger the sliding slope, the faster the controller and the less stable it tends
to be.

When the slope is larger, the controller is more robust, but the chattering
might be worse. This is equivalent to a high gain controller; the rise time could
be smaller, the overshoot bigger, and the settling time larger; the robustness to
varying sample rates is worse, whereas the robustness to parameter variations
and disturbance is better.

12.7.2 Thickness of the Boundary Layer ¢ Effects

When thickness of the boundary layer is larger, chattering decreases or
disappears; robustness to varying sample rates could be better, but robustness to
parameter variations and disturbance could be worse; the steady-state error can
be larger.

12.8 AT SEA EXPERIMENTAL RESULTS

Figure 12.13 shows at sea test data. The commanded heading was first set to 20°
and then to 200°. The heading controller successfully controlled the vehicle to
the desired heading. There is a two degree oscillation in the at sea heading data.
This is normal since the sea environment is not clean.

Figure 12.14 shows the performance of the pitch controller. Since in the at
sea test the vehicle cannot have a constant pitch with limited sea depth, the
performance of the pitch controller was tested through the depth controller. In
OEX series AUVs, the depth control is done through the pitch control. The
control output from the depth controller is a desired pitch angle. It is the
responsibility of the pitch controller to drive the vehicle to the desired pitch. The
depth controller used in the test is a linear proportional-derivative controller. In
Figure 12.14, the pitch controller successfully drives the vehicle to a five meter
depth.
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Figure 12.13: At Sea Test for Sliding Mode Fuzzy Heading Controller.
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Figure 12.14: At Sea Depth Test for Sliding Mode Fuzzy Pitch Controller.



12.9 SUMMARY

The structure of sliding mode fuzzy control was presented in this chapter. A
sliding mode fuzzy controller inherits the interpolation property of fuzzy logic
control and robustness property of sliding mode control, therefore making it
ideal for time optimal robust control. The at sea experimental data shows that
sliding mode fuzzy control can be successfully applied to AUVs, therefore
making them another alternative for the robust time optimal control problem.
Moreover, since the physical meaning of the rule output function parameters for
a sliding mode fuzzy controller is straightforward, the online tuning is made
easy. This is exactly why sliding mode fuzzy control is adopted in AUV
development at Florida Atlantic University.
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APPLICATION OF FUZZY
LOGIC FOR CONTROL OF
HEATING, CHILLING, AND
AIR CONDITIONING SYSTEMS

Reza Talebi -Daryani

13.1 INTRODUCTION

The building energy management (BEMS) concept was introduced in the early
1970s during the world’s first big energy crisis. The oil crisis was the driving
force of the intelligent building. It was the first sign of the rising awareness that
energy twesources ae exhaustible. The second driving force of intelligent
building was the raising awareness of environmental pollution by inefficient
consumption of energy in production lines as well as in buildings in the
beginning of the 1980s.

The expansion of computer technology in the early 1980s introduced a
“smart” or “intelligent” building which was one step towards a new digital
computer era. It provided energy efficiency as well as optimum environmental
conditions. Managing the high tech buildings in an energy efficient manner and
to the occupants’ satisfaction would have become an impossible task without
intelligent control systems. On the other hand, an intelligent building is one that
creates an environment that maximizes the efficiency of the occupants of the
building while at the same time allowing effective management of energy
resources with minimum costs. The intelligence of a building depends on the
elements that go to make up its intelligence. There are at least three attributes
that an intelligent building should possess:

1. The building should know what is happening inside and immediately
outside.

2. The building should decide the most efficient way of providing a convenient
comfortable and productive environment for the occupants.

3. The building should ,, response* quickly to occupants’ requests.

These attributes may be translated into a need for various technology and
management systems. The successful integration of these systems will produce
the intelligent building containing a building automation system in order to
enable the building to respond to external climate factors and conditions.
Simultaneous sensing, control, and monitoring of the internal environment and
storage of the data generated as knowledge of the building performance in a
central computer system, is an important feature of an intelligent building .[1]



This chapter is organized as follows. Section 13.2 describes general features
of the building energy management systems. Section 13.3 is devoted to the
Fuzzy control vs distributed digital control (DDC) for an air condition system.
Section 13.4 discuss the fuzzy control for the operation of a complex chilling
system. The description of various fuzzy control blocks are presented in this
section. Fuzzy control for energy management of a heating center is introduced
in section 13.5. Finally section 13.6 provides the conclusion of this chapter.

13.2 BUILDING ENERGY MANAGEMENT SYSTEM (BEMS)

13.2.1 System Requirements

The thermodynamic processes involved either intend to ensure the
well being of the occupants of the building or consist of ancillary production
conditions of a physical nature. This should be controlled by means of a
technical future-oriented automation system which is physically ideal,
economical, cost effective and efficient in terms of energy consumption. An
integrated building automation system should also include all other technical and
administrative processes that may be automated for reasons of security and
rationalization, in order to increase the productivity of the building. The
assignment of the BEMS is to run the building in such a way that following
requirements as the state of the art should be fulfilled: [2]

reducing the energy consumption and environmental pollution

security for man, machine, production and environment

improving the efficiency of the process and reducing processing time
improving transparency of the process features by useful instrumentation
operation-oriented maintenance management of technical installations in
order to increase machine running time and reduce maintenance costs
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historical and dynamic data processing, presentation, and analysis

ensuring the well being of the occupants in order to improve productivity
ensuring ancillary production and research-oriented climate conditions
reducing energy consumption by optimal operation of the system.

To realize all of these functions, it is evident that a powerful control and
automation system with different levels of information processing , as shown in
Figure 13.1, must be installed in the building.

A perfect integrated building automation system allows both physical and
functional access to all the data in the building. Integration cannot be said to
exist unless data communication among the various systems is possible in
accordance with requirements. For this purpose, an analysis of information
requirements is essential i.e., safe access to the right information in a structured
fashion at the right place.

Functions suited to inclusion in an integrated building energy management
system could be, for example as shown in Figure 13.2:

- heating, ventilation, air conditioning, cooling (HVAC) - automation systems
in buildings

- supervisory systems for energy management and operational tasks

- automation and networking of production facilities

- video monitoring and personal surveillance

- clocking-in systems, fire alarms

- optical and acoustic information processing

- lighting control, elevator control

- further administrative, communication and data processing functions

- maintenance and facility management.
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Figurel3.2: Application Field for Integrated Building Automation System.



13.2.2 System Configuration

At the heart of building energy management is the building supervisory
control system, which consists of a hierarchically organized, function oriented
control system having separate intelligent automation units. The following
aspects have to be taken into account:

each level must be able to operate independently
data interchange must be reduced to a minimum

o the operational readiness of machinery may not be impaired by a breakdown
in communication interchange.

Regarding the control aspects, a powerful supervisory system is based on
distributed intelligence. The distributed intelligence concept is a concept where
intelligent outstations (controllers) are connected with each other by a
communication bus (network). The building supervisory control systems with
it’s distributed intelligent is configured into four hierarchical Information
processing levels, as shown in Figure 13.1.

13.2.3 Automation Levels

1. Information and Management Level

At this level, physical and technical data relating to the building and
emanating from the lower control and automation levels may be accessed in a
condensed form and processed. In the main, this is done on workstations using
user-friendly software interfaced to the various automation levels. The initial
function of this level is to analyze the operating status of the systems.

2. Supervisory Control Level

The main function of this level is to control, monitor and log the processes
within the building as a whole, but it serves also for configuring automation units
and measurements and control units at a level three and setting their parameters.
Further functions at level two are:

- data processing, data recording
- maintenance management of technical installations
- energy management

3. Automation Level

The automation level houses the distributed intelligence for mathematical -
and physical-based operation functions as outstation multicontrollers. The
purpose of the distributed digital control (DDC) is to monitor and control the
most important statuses and processes within the building.

The control system, which also provides programmable controller (PLC)
functions, allows a logical link to be set up in the form of time or status
elements, in order to guarantee optimum performance and security of



installations. This level consists of a number of DDC controller outstations. Each
panel is fully programmable and autonomous in operation. They coordinate
communication upwards to the central computer, horizontally to other
outstations.

4. Field Level

This level is the most basic level and houses the sensors and actuators which
are, to a large extent, directly linked to the automation systems at level three.
Most of these sensors and actuators are only available as analogue units so
communication with levels two and one is only possible via level three. Within
the field of application of the intelligent building, more and more bus-
compatible-systems will be available on the market in future.

13.3 AIR CONDITIONING SYSTEM: FLC vs DDC

The aim of the realized project, introduced here, was the application of a
temperature cascade control system based on fuzzy logic for a common non
linear air conditioning. The inner controller of the cascade control system has
fuzzy PID characteristics.

In order to reduce the number of rules, the integral part of the controller is
realized in the output of the fuzzy controller. The realization of the integral part
through a second output is a unique solution with three advantages : reduction of
rules, easy adjustment of the integral part, and use of the additional information
of the input.

The additional inputs besides temperature are also to be fuzzified in order to
give the controller a better characteristic for fine tuning.

The controller is adjustable over the whole output range independently from
the nonlinear working characteristics of the process. The inner controller consists
of 99 rules. The fuzzy controller can be adjusted independent of a working point
so that the adjustment for the whole output range is optimal.

Fuzzy controller is superior to the digital controller for open loops with
intensive nonlinear characteristics like the air supply system. The resulting
improvement of the fuzzy control loop behavior is proved by comparing the
system result with the loop response of a digital control system.

13.3.1 Process Description

The air conditioning system (Figure.13.3), with its control loops for a
temperature cascade control, is used for education and research on building
energy management systems. In its structure it is equivalent to common
industrial applications. The room temperature ¥ is controlled by conditioned
supply air. The supply air system consists of motorized dampers (Damp), a
preheat exchanger (Ph), a chillier (Ch) and a second heat exchanger (Sh) to



condition the air temperature. The steam humidifier (Hu) and filter (Fi) are not
taken into account for the temperature control. [3]

Fan @ exhaust air system 3
supply air system ®
—If,%l Ph Fi Ch Hu Sh Fan

Damp |

Figure 13.3: Cascade Control Schematic of an Air Conditioning System.

13.3.2 Process Control

The open loop of the supply air temperature of an air conditioner is known
within the HVAC- system as one of the most difficult controlled open loops on
account of its large degree of time delay and the nonlinear characteristics of the
heat exchangers, as shown in Figure 13.4.

Figure 13.5 illustrates the open loop gain of the system as a function of the
control valve position. In order to compensate the nonlinear behavior of the
system, a cascade controller is used in order to compensate for the nonlinear
characteristic of the heat exchanger and improve the control loop behavior.
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Figure 13.4: Heat Exchanger Operation Characteristic [4].

The structure of the cascade controller shown in Figure 13.3 permits a
subdivision of the open loop and the solving of the control problem in several



steps with simpler control circuits. The nonlinearity of the open loop is partially
compensated outwards by the cascading of the room air temperature loop, but the
nonlinear characteristics of the heat exchangers still remain.
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Figure 13.5: Nonlinear Open Loop Gain of the Heat Exchanger.

13.3.3 Digital PID Controller

Equation 13.1.a describes a digital PID controller for A/C system:[3]
. + * + * + *
Ve TV T R T % T e (13.1.2)
We can generalize the Equation 13.1a in the following way:

Yk =Ppyg +qpFeg +q;Fex +q; Fex, (13.1.b)

The structure of Equation 13.1b has some generalized features: there are
only three free determinable parameters, qo, qi, g2, for the optimal working
behavior of the control loop. If there is an integral part in the control algorithms,
we have to introduce the parameter P; with the value of 1.

A digital controller for the air conditioning system is optimized by means of
practical adjustment rules of Takahashi. The response behavior of the processes
were received and evaluated [3]. The disadvantage of this method is that the
control loop is only optimized for a fixed working point.

Now we can recognize that optimal control loop behavior is only guaranteed
when we extend the parameters of the PID controller in order to cover the whole
range of the working point of the controlled process.

The following method ensures an enhanced DDC/PID algorithms The
current set point error ek in combination with qo is presenting the current state of
the process, where the set point errors e .; and e ., are presenting the passed



states of the process, and therefore are presenting the dynamic behavior of the
system. In order to optimize the control loop behavior, it is important to extend
Equation 13.1.b with further set point errors of the control loop. Additional
information about the control loop behavior can be obtained if we also consider
all the control output values (Y «.1...y «n) to any state of the system which occur
the set point errors. Now we have to extend the PID algorithms as follows.

Yi=P1iattD, Vi, Y40 418 ot g6 (13.2)

Equation 13.2 consists of n optimization parameters. Using Equation 13.2 for
real AC control problems is a time consuming process, because there are many
optimization parameters which have to be evaluated and calculated. Now we can
realize that the experimentally oriented optimization methods and all other
empirical methods used by the control industry will fail, in order to fulfil the
requirements for the PID algorithm of n degree.

The consequence is that almost all nonlinear control loops have in fact a
stable dynamically behavior for the whole working range of the process, but the
quality of the control loop is very poor because of the very weak gain factor of
the control loop.

The target is to enable an operator to adjust an air conditioning controller
optimally for the whole working range. It will be described in the following
section how to implement an HVAC technician’s knowledge and experience
onto a controller by using fuzzy logic. The linguistic variables and rules of a
Fuzzy controller are similar to the technician’s memory power and therefore
easier to formulate than any abstract mathematical formula. Local changes in the
sets of rules generate local changes in the characteristics of the fuzzy controller.

13.3.4 Fuzzy Cascade Controller

For a fuzzy PID supply air temperature controller the following four input
variables as shown in Figure 13.6 are utilized:[3]

e set point error e;
e differential of process variable (dx/dt);

difference of set point error Ae (increase or decrease) ; and
reference output u,.

The set point error (e) is defined as the difference between the set point ref.
and the process value x (¥;)according to Equation 13.3 for a maximum range of
emax = £ SK with seven sets. If the actual set point error (e) is on a larger scale,
the set point error (e) will be determined on € = emax, SO that, apart from these
limits, the controller generates a maximal output.

€= rer-x (133)



The fuzzy system supports a maximal of seven sets with A-, [1-, Z- and S -
functions. For fine control, thin sets are utilized around the set point, e = 0
(ns, zr, ps). The set width increases with distance from the set point for rough
control. In case of a large set point error the control system should first bring the
process variable quickly with a rough control near to the set point. Second the
controller has to zoom in carefully with a fine control. This fine tuning method
for the sets helps to avoid the overshoot and undershoot of the process variable.
Because of the extreme nonlinear characteristic of the preheat exchanger, the
definition range of the set point error is + 5 K. If the process variable is moving
with a maximal speed towards the set point for a big set point response, the
controller has to start very soon with the control mode, i.e. at + 5 K set point
error before reaching the set point.

For surpressing noise changes of the output signal caused by noise signals in
the range e = +0.08, the Il-function is chosen for the set zero (zr). The valve is
spared by such a defined dead band, otherwise any slight set point error will
cause a change of the controller output. Subsequent to this dead band the value
of the set point error e will be smaller than + 0.15 K.
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Figure 13.6: Fuzzy PID Supply Air Temperature Controller.



The second input differential of process value (dx/dt) is calculated by
Equation 13.4 and is determined in the range * (1 K/10s). This is congruent with
the real maximal speed of the process variable. For the second input variable
there are also seven sets defined:

(dx/dt)= ’M (13.4)

with x(k)= process variable in cycle, x(k-1) = process variable in cycle k-1,
Tc= scan time.

The third input is difference of set point error ( Ae), calculated according to
Equation 13.5 (Aem.x is defined in the range +(1K/10s), according to the
differential of process variable). Only two sets are defined for this variable. It is
possible to recognize with this input variable whether the process variable is
moving towards the set point (set n) or whether the set point error is increasing
(set ). This additional information is necessary for set e = zero because it accepts
negative and positive measured values.

The input difference of set point error  Ae is associated with the patches
e = zr N (dx/dt) = ns or ps only. For example the set point error is positive but
still within the set e = zero. That means the process value is a bit too deep
(set Ae = negative). The set (dx/dt) = positive small shows an increasing process
value. In this case the output signal should not change as the process value
zooms into the set point. If the set point error is negative within the set
e = zero, the process value is slightly too high. On an increasing process value
the set dx/dt is still positive small. But in this case the set point error is
increasing (set Ae = positive). The controller output must be reduced, in order to
avoid on overshooting of the process value:

Ae(k):| elk) |—T|ce(k—1) | (13.5)

The fourth input is the reference output (uo) which is not utilized in common
PID controllers. The reference output shows the controller which unit is the
active one (= heat exchanger, chiller or damper). By combining the specific rules
for each unit the controller behavior can be adapted locally in its control range by
changing single rules. The Fuzzy controller utilizes the following two outputs:

e change of controller output Au and
e change of reference output Au .

The defuzzification results from the method of the center of gravity. The
output change of controller output Au is defined in the range £50% and contains
7 singletons.



The fuzzy PD characteristics are included in this variable. The addition of
the Fuzzy PD output (Au) to the reference output u, gives the complete output of
the inner controller:
U = U TAU (13.6)

The inner controller output (uwwi) is a positional signal in contrast to a speed
signal. Note that the end position 4095 bit of the total controller output is
possible immediately only if the reference output (uo) is 2047 or larger.
In this application a sequence wiring with four units is utilized. Therefore a
change of the fuzzy controller output of percent causes a bounce over two units
only. The second output change of the reference output (Auo) is defined in the
range £2% and contains 7 singletons. This variable generates the fuzzy integral
characteristics. The integral characteristics are implemented in the calculation of
the reference point uo. The reference output is calculated as:

ug(k)=u,(k -1)+Au, (13.7)

Within the rule base the sets of set point error and the sets of differential of
process variable (dx/dt) are associated with the sets of change of rference
output (Aug). In comparison the common realization of the integral part is in need
of an additional variable a the nput which is clculated through the
rectangular integration Equation 13.8. These statements correspond because Aug
of Equation 13.7 and (Tc¢/Tn).e(k) of Equation 13.8 are nearly the same.

()= e =1y 2-elk) (138

Au is calculated once per scan time cycle which corresponds to the scan
time Tc and the integral acting time Tn of is a digital integral control algorithm,
and presented in the order of the membership functions of Au,. The realization of
the integral part through a second output shows three major advantages:

e reduction of rules;
e casy adjustment of the integral part; and
¢ use of the additional information of the D-input.

The reduction of rules is a result of an removed integral input to the output of
the fuzzy controller. It is self evident that the handling of a controller with fewer
rules is easier, but there is another aspect for the optimization which gives a
rather easy adjustment of the integral part.

After a set point bounce or any disturbances, the controller has to bring the
reference output uy near to the next available steady condition quickly. The sets
of change of reference output Au, are associated with the sets of the variable e
and additionally with the sets of the variable (dx/dt). The control behavior is
clearly improved by using the additional information of the D-input.



The Fuzzy Lead Controller with PI characteristics

The lead controller for room temperature control loop has considerably fewer
input variables and therefore fewer rules than the inner controller for the supply
temperature control loop. Instead of the fuzzy PID characteristics, a fuzzy PI
characteristics is implemented only (Figure.13.7). The fuzzy lead controller
utilizes one input and two outputs:

set point error of the room temperature ey;
change of reference set point Arefy; and
e set point change Aref.

The input ey, is defined for a range of+ 4 K with 7 sets. The output set point
change Aref is defined in the range £ 100 percent and contains 7 singletons.
Because of the large range of the set point change, both end positions, 15°C and
35°C, are immediately available. Within this output there is a fuzzy PI behavior
only implemented. In order to realize the integral characteristics the same
method as for the inner controller is used (Equation. 13.9).

refy (k)= 1o (k —1)+ dref (13.9)

The second output change of reference set point Ar, generates the fuzzy
integral behavior, with a scan time of 30 s. This variable is defined for a range
of + 0,6K =+ 3% and contains 7 singletons. This fuzzy controller has seven rules
only. Each rule associates one input set with two output sets.

Fuzzy lead controller

fuzzy processor

set of rules centre
of gravity

PLC

PLC i
calcu- MIN-MAX- 1 ?gtl]c (31
lation [XXMj r operator output of outputs
of inputs Aref,
€ q reﬁ(\la] ™
set 1|
vl Jlipoint T
CITOT © |
output
J’ Argfo L refy
fUZZi- fuZZy defuzzi_
fication inference fication

..1
[¢]
l.—n

©
—
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13.3.5 DDC vs FLC

To compare the control loop behavior, the method of control time (T¢)
measurement is chosen here. The inner controller is optimized for set point
responses. The control time Tc is 900 s with the digital controller (Figure 13.8)
whereas the fuzzy controller needs only 460 s (Figure. 13.9) for the same task.
The reason for this large time difference is the big overshoot The fuzzy
controller brings the process variable to the new set point and avoids an
overshooting of the process variable as a result of the specific rules.
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134  FUZZY CONTROL FOR THE OPERATION MANAGEMENT
OF A COMPLEX CHILLING SYSTEM

The optimization potentials for the operation of a chilling system within
building supervisory control systems are limited to the abilities of the
programmable logical controller (PLC) functions with their binary-logic-
oriented operations. Little information about thermal behavior of the building
and the chilling system is considered by the operation of chilling systems with
plc-based control strategies. The main goal of this project was, to replace the plc
strategy by fuzzy control. A concept of knowledge engineering by measuring
and analyzing of system behavior is necessary, since no expert knowledge exists
for formulating the fuzzy rules.

The focus of the optimization strategy by Fuzzy control is to ensure an
optimal operation of a chilling system. Optimal operation means:

e reducing operation time and operation costs of the system; and
e reducing cooling energy generation and consumption costs.

Different optimization strategies have been defined for developing proper
fuzzy controllers. Missing expert knowledge and online measurement of
different physical values and their evaluation are the basis for the fuzzy control
system. Few rules for each controller are necessary in order to have fine tuning
of the fuzzy control system. Three fuzzy controllers are necessary in order to
reach maximum efficiency by operation of different components of the chilling
system. The realized fuzzy control system is able to forecast the maximum
cooling power of the building and also to determine the cooling potential of the
outdoor air. Operation of the systems by fuzzy control enormously reduces the
cost of cooling power. The system has been successfully commissioned and
remarkable improvement of the system behavior has bee reached. This project
opens new application fields for the market of building automation. [5]

13.4.1 Process Description

The chilling system described here supplies chilled water to the air
conditioning systems (AC systems) installed in different research laboratories
and computer rooms at the Max Plank Institute for Radio Astronomy in Bonn.
The amount of cooling power for the building is the sum of internal cooling and
the external cooling load, which depends on outdoor air temperature (To.) and
sun radiation through the windows. The cooling machines installed here use the
compression cooling method. The principle of a compression cooling machine
can be described in two thermodynamic processes. In the first step of the cooling
process, the heat energy will be transferred from the system to an evaporator of
the chilling system and therefore the liquid gas will evaporate by absorbing the
heating energy. After the compression of the heated gas in the second part of the
process, the gas condenses again by cooling the gas through the air cooling



system. The chilling system as shown in Figure 13.10 consists of these
components: three compression cooling machines, three air cooling systems and
two cooling load storage systems. During the operation of the cooling machines,
the air cooling systems will be used in order to transfer the condensation energy
of the cooling machine to the outdoor air space. If the outdoor air temperature is
much lower than user net return temperature on heat exchanger one, the air
cooling system should serve as a free cooling system.

The additional cooling load storage systems are installed in order to load
cooling energy during the night, and therefore reduce the cost of electrical power
consumption. They also supply cooling energy during the operation time, if a
maximum cooling energy is needed and cannot be provided by existing cooling
machines. In both cases the cooling storage system does not reduce energy
consumption, but rather the cost of energy consumption.[4]
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Figure 13.10: Schematic Diagram of the Chilling System.

13.4.2 Process Operation with FL.C

Thermal Analysis of the Building and Chilling System

The aim of the thermal analysis of the building is to find measurable
information for the current cooling load. Measurement of current cooling power
of the building as shown in Figure 13.11 has proved that there is not a
significant correlation between outdoor air temperature To. and the current
cooling power. The current cooling power will increase if T gets higher than
23°C. In the summertime, when the T, increases to about 34°C, the current
cooling power will be more influenced by the Tou. So the T can be used for



forecasting the maximum cooling power. Additional information needed for
analyzing the thermal behavior of the building is the return temperature of the
user net (Tr..). Any change of total cooling load will influence the Tr-,, and is
an important input for the fuzzy controller.
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Figure 13.11: Course of Current Cooling Power and Outdoor Air

Temperature.

The Design of the Fuzzy Control System

Considering the cooling potential of the outdoor air, the free cooling system
should run before the cooling load storage system (CLS) and cooling machines.
This has to be considered by the fuzzy controller for the operation of cooling
machines. The CLS should run during the daytime before any cooling machine,
if the cooling load of the building is expected to be low. Optimization strategy
for the discharge of CLS will ensure that there will not be a peak in the electrical
power. The cooling machines should run at their lowest level.

Three different FLC have been developed with a total number of just 70
rules. The designed software -based FLC with the SUCOsoft fuzzy tech tool[6],
has been translated into a graphical-orientated mathematical and logical
programming language.[7] All the operation instructions implemented in the
Supervisory level of a BEMS will be transferred to the chilling system through
the automation level, as shown in Figure 13.1.[8]

13.4.3  Description of the Different Fuzzy Controllers

Fuzzy Control Block 1

The optimal starting point for the discharge of the cooling load storage
system depends on the maximum cooling power demand, which can differ every
day. For calculation of the maximum cooling power, To, must be processed by
this fuzzy controller, since the maximum cooling power in the summertime will
be influenced by Tou.. A feedback of current cooling power calculated by Fuzzy
control block 2 (as shown in Figure 13.12) is also necessary, in order to estimate
the maximum cooling power. The input variables of the controller 1 are:



Out door air temperature Ty
Differential of Toy: dTou /dt;
Current cooling power of the cooling machines.
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The second fuzzy variable is calculated by Equation 13.10:

dr,, ! dt =(T,,(k)* T, (k=1)) /TC (13.10)

out
Th.

With T,y (K) = Outdoor air temperature by K
air temperature by k-1 ™ cycle, TC = Scan time.

cycle, Tout ( k-1) = Outdoor

Fuzzy Control Block 2

The fuzzy controller 2 is the important part for the optimization of the
Control system in order to use the cooling potential of the outdoor air before
starting any cooling machine. This controller consists of 21 rules with the 3 input
variables:
e Set point error el at heat exchanger 1,
e Set point error “e2* at heat exchanger 2,
¢ Difference between user net return temperature( Tr.u,) , and Tse poin: A Tr-un

The third input variable presents the difference between user net return
temperature and Set point, which is determined by Equation 13.11:

A T, =T, — T, point (13.11)

Calculation of A Tr-y, is necessary because Tse pintis variable and, therefore,
AT, contains the real information about the cooling load of the building. If el
is zero, or negative, then the capacity of the free cooling system is sufficient for
the required cooling power. The output signal of FC 2 will be zero. In other
cases, FC 2 is responsible for the operation of the cooling machines. In cases,
where the capacity of the free cooling system is not enough, e will have values
of NS, so other rules will determine the output of the controller. In that case the
third input variable A Tr.,,, is more weighted for the output value of the
controller, because ATr-un represents the real alternation of the cooling load.

Fuzzy Control Block 3

This control block is necessary in order to use the cooling potential of the
outdoor air and run the air cooling systems of the cooling machines as free
cooling systems. The cooling potential depends on the difference between user
net return temperature Tr.,, and the outdoor air temperature Tow. The input
variables of the control block 3 are:

Difference between Tr.,, and set point, ATty
Set point error el at heat exchanger 1;
o Different between Toy, and Tr-yn, AT oy

An important aspect for the formulation of the rules for this controller is the
cooling potential of the system, which is represented by the input variable 3,
ATout. The higher the value of this variable is, the fewer free cooling system



components are necessary in order to supply the demanded oooling power for
the building. Producing the cooling power by free cooling system reduces the

cost of the cooling energy and the operation time of the cooling machines. This
controller consists of 29 rules.

13.4.4 System Performance and Optimization with FLC

Figure 13.13 shows the course of user net supply temperature before the
optimization of the system operation by fuzzy control. The alternation of the
supply temperature is between 10.5°C and 4.8°C. The reason for such a set point
error range is in the discontinuous operation of the system by PLC. Figure
13.14 presents the course of the supply temperature after commissioning the
fuzzy control system. The course of the supply temperature indicates a
remarkable improvement of the system behavior. This relatively constant supply
temperature will ensure research conditions in the building.

Operation of free cooling systems by fuzzy control could reduce the cost of
energy production by factor 27 in comparison with the cost of cooling machines.
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Figure 13.13. Course of Supply Temperature with PLC Operated System.
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13.5 APPLICATION OF FUZZY CONTROL FOR ENERGY
MANAGEMENT OF A CASCADE HEATING CENTER

Generation and consumption of heat power for domestic demand should
consider economical and ecological aspects. Optimal demand - oriented heat
power generation by a cascade heat center requires sustainable evaluation of
measurement information of the whole system.

Fuzzy logic provides, by evaluation of the thermal behavior of the heating
system, a powerful rule base for decision making in order to guarantee optimal
operation of the heating system. Analysis of the dynamically thermal behavior of
the building and the heating center is necessary, in order to select existing
measurement information as input variables for different fuzzy controllers.

The supply temperature control loop of the system is designed and
commissioned as a nonlinear fuzzy PID controller for a nonlinear thermal
process. This kind of controller can be described as a robust control system.

The control system is optimized through the whole working range of the
system and ensures a maximum of control loop quality by a very short
response time of any alternation in the process, and at a negligible overshooting
of the process value during the control operation. The whole system consists of
three different fuzzy controllers with the following functions: a fuzzy PID
controller for a hot water supply temperature control loop;
a fuzzy controller for optimal evaluation of heat power demand;
and a fuzzy co ntroller for the operation of a cascade heat center with high
efficiency and lowest contaminated exhaust emission. This control and operation
system provides demand -oriented heating energy with minimum fuel
consumption and therefore with a minimum of contaminated exhaust gas
emission.

13.5.1 The Heating System

Description of the Heating System

The heating system (which has to be optimized as written here) supplies
heating power and domestic hot water for a public school. The system is known
as a cascade heat center as demonstrated in Figure 13.15. The system consists of
two heaters with controllable gas burners and a hot water boiler. The heating
system supplies through a hot water distributor, heating energy for autonomous
sub control loops and for a hot water boiler.

The control loops in different zones of the building are a digital control
system and are already in operation. The zone-oriented control loops operate
only during the lecturing and business hours. After business hours, or in
summertime, the heating systems should only provide heat energy for the hot
water boiler in an efficient way from economical and ecological points of view
as described previously.



Operation of the Heating System

Reducing fuel consumption by optimal operation of the system means
simultaneously reducing the operating cost of the system and reducing
environmental pollution. Investigation by [9,10] as illustrated in Figure 13.16
shows the thermal efficiency of the system by low range operation capacity of
the heater. Reducing the environmental pollution is only possible when the
system-operation-oriented -emission of the exhaust gas is as little as possible. As
we can see from Figure 13.17, the emission of contaminated exhaust gas has its
maximum at start and stop phase of the operation. The main goal of the project
described here was to reduce the heat capacity of the system by an intelligent
control and operation strategy, and also reduce the frequency of the start/stop
operation mode of the system.
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Figure 13.15: Simplified Flow Diagram of a Cascade Heating Center.
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13.5.2  FLC for System Optimization

State of the Operation Strategy for a Cascade Heating Center

One of the operating strategies is the serially operated heating system.
Release of the second heater is guaranteed when the first heater reaches
maximum operating capacity. This kind of operating mode reduces the unwanted
start/stop phases of the second heater, and therefore guarantees reduced
pollution. The disadvantages of this operating strategy lie in the reduced thermal
efficiency of the first heater.

The second operating strategy is the parallel operation of the system. As soon
as the first heater reaches its basis capacity of the demanded heat energy, the
second heater will be released for simultaneous operation. As soon as there is
less demand for heating energy, the second heater will stop, then start again
when the demand of heating energy increases. The disadvantages of this
operation strategy lie in the high frequency for the start/stop phase of the second
heater, and the resulting increase in emission of the contaminated exhaust gases.

Optimal Operation Strategy for the Heating System

As soon as the controller output indicates a heat energy, the first heater starts
with its lowest operating range (12.5 % heat energy). In the next phase, the first
heater is in control mode. As soon as the first heater provides a total heat
capacity of 25 % (this is a significant value), that each heater can operate in its
basis power range of 12.5 % .

This operating strategy ensures that none of the heaters will reach its
maximum capacity, and the start/stop frequency of heater 2 will be very low. To
reach this goal of optimal operation, different fuzzy-logic-based evaluation of
the thermal behavior of the system is necessary, which will be described in the
following section. Figure 13.18 illustrates the different start /stop phase of the
system.[11,12]
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Figure 13.18: Operation Strategy for a Cascade Heating Center.

13.5.3 FLC Description

In order to realize the described optimization strategy by fuzzy control, it is
important to determine the precise start/stop operating range of the heating
system. The lowest operation range of the first heater should be modified by a
hysteresis in order to reduce the frequency of start/stop by varying the low
energy demand. Release of the heater from lowest operation mange to the
variable operation range must also consider the real demand of heating energy.

If the outdoor air temperature is very low, the fuzzy control system must
release the control mode of the heater immediately. If the gradient of the heat
demand is not as big, the fuzzy control system should release the control mode
of the heaters with a time delay.

This strategy ensures that for a long period of time the heater will be in
stationary operation mode and the exhaust emission will be reduced.

The release of the second heater at lower outdoor air temperature should be
immediate, in order to avoid the operation of the first heater in a high range of
heat capacity. If the control mode of the first heater is in operation at mild
outdoor air temperature, the release of the second heater should also delay in
order to reduce to start/stop frequency of the second heater.

The open loop of the supply temperature of a heating system has a big time
delay and nonlinear characteristics. Therefore the same type of fuzzy PID
controller will be implemented for control loop as has been used for the supply
air temperature control loop as, described in section 13.3.

The fuzzy control system introduced here is a software solution within an
existing industrial building energy management system. Figure 13.19 shows the
fuzzy control System for optimal operation of the system.



Fuzzy-Control-Block 1
This control block controls the system’s supply temperature set point with
PID characteristics. This controller has four input variables:

e set point error e, calculated by Equation 13.3; and

o differential of process value (dx/dt), calculated by Equation 13.4; and
o difference of set point error Ae , calculated by Equation. 13.5.

The fourth input is the reference output (ug). The controller can be adjusted
independently of a working point. Fuzzy controller I utilizes two outputs:

e change of controller output Au; and
e change of reference output Au.

The integral characteristics are implemented in the calculation of the
reference point ug . [3]

Fuzzy Control Block I1

This fuzzy controller calculates the current power demand capacity and
burner delay time. The following input variables are fuzzified by the fuzzy
control block II:
e QOutdoor air temperature Bou;
e  Set point temperature; and
e  Current flow capacity cg

The fuzzy controller utilizes two outputs:

e Heating power demand value Q t
e  Burner control delay time dt.

The definition range of the first input variable is between -12°C and
+22°C. The second input variable is the set point, which indicates the highest set
point of all the active control loops. The current flow capacity cg, of the system
as the third input variable can be calculated by Equation 13.12:

> (cf () (13.12)
oft == %100
Cfiotal

C: represents the flow capacity of each control value by the current valve
position so that the total flow capacity is easily calculated by measuring all
control valve positions in the system. The calculated current heating power
demand by this fuzzy control block is the input variable for fuzzy control III as a
release criterion for the start phase of the heating system.

The second output variable of the fuzzy control block II serves as a time
delaying system for release of the variable control mode of the first heater. The
control mode of the heater will be rrleased earlier by low outdoor air
temperature than by mild outdoor air temperature.
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Figure 13.19: Fuzzy Control System for the Cascade Heating Center.



Fuzzy Control Block 111

This fuzzy controller determines the start/stop points of the heaters. The third
fuzzy control block is the important part of the fuzzy system for the
determination of the precise start/stop modus of the two heaters.

The following input variables are used by the fuzzy control block III:

Current Heating power demand value Q t;

Controller output ys from fuzzy control block I;

Changing of the controller output dy from fuzzy control block 1; and
Heating power demand gradient e r.

The fuzzy controller utilizes two outputs:

e threshold value Qfgl for heater 1 and
e threshold value Qfg2 for heater 2.

The first input value, i.e., current heating power demand value Q t, is the
most important factor for the evaluation of the start/stop - point of the heaters.
The second input value has been calculated by the first
control block and determines the position of the control range of the heaters. As
soon as this value is higher than 40 percent, the start phase of the second heater
will be released. The third input presents the set point error of the system as well
as its dynamic behavior. The fourth indicates the gradient of the thermal energy,
which is necessary in order to keep the set point temperature of the system
constant. The crisp value of this input is calculated as:

er=ref—x_r (13.13)

Where, in Equation 13.3, ref = reference set point temperature, and x r: =
system return temperature.

For the determination of the start/stop point of the heaters the threshold
values of both heaters are evaluated by the Fuzzy controller 111, as the output
values. The calculation of the crisp number of the threshold values is realized by
Equation 13.14 . As soon as the threshold value Qfgl for heater 1 is over a limit
of 12.5 % of the total energy demand, the heater’s start phase will be released.
Decreasing of the threshold value Qfgl for heater 1 under 12.5 % of the total
energy demand , is a crisp signal for stopping of the heater 1.

Ofgw = Ofgw -1+ dOfg (13.14)

with Qfgy.;y: = threshold value Qfg by cycle k-1 and dQfg: = change of the
threshold value Qfg .

The release of the second heater is due to the output value of the fuzzy
control block I, when its value reaches 40 percent.



To prove the reliability of the fuzzy control block III, Qfg2 has been
calculated for different outdoor air temperatures as shown in Figure 13.20. For
this experiment, the alternation of the outdoor air temperature had to be
simulated. As we can see from Figure 13.20, increasing the threshold value
Qfg2 is quite fast by lower outdoor air temperatures (here -5°C). At higher
outdoor air temperatures, e.g., 2°C, to reach the Qfg2 is slow, and at
a Vou = 10°C, very slow.

100 + ( 50
Qfg2at '
%0 + t ¢ Qf2at gou=20c | 4
) = out=_5°
g0 STA0| J 9O =-5 CK 40
- Y2
570 ‘ . R
5 I\ ! start point heater 2 set point —
Q.ﬁo \[_.:;’\/7" e 30 §
Y I\

)

o

1]

—

—40 L P control output value | 20

o Oy

—30 - 115

= 20 L :'\ supply- Qfg2at Yout=10°C | 0

® , temperature

(0]

.10 - v +5

5 LL/\

20 - : : : 0
20 220 420 620 820 1020

time [sek]

Figure13.20: Course of Qfg2 at Different Outdoor Air Temperatures.
13.5.4 Temperature Control: Fuzzy vs Digital

In order to compare the features of the fuzzy system with the existing
DDC system, the heating system was operated during summertime for providing
domestic hot water in the building. For providing hot water only the first heater
was in operation. Heater 1 had four start/stop phases as shown in Figure 13.21
where this system was operated by DDC system. For the same process, & we
can see from Figure 13.22, the fuzzy control-operated heater has only one start/
stop phase. Considering the pollution effect of the heaters, this is a remarkable
improvement of the systems’ features from an ecological point of view.

Operation of the system with fuzzy control ensures that the release of the
control mode of the heater is time-delay-oriented (ca. 300 sec.), which avoids
shooting the supply temperature over the set point and reduces the mumber of
the start/stop phases of the heater. Also, the working point of the fuzzy PID
controller could keep very low (0%) in order to reduce the speed of the
controller output for low energy demand.



Figure 13.21 shows the system’s behavior for control and operation mode
realized by digital control system. Figure 13.22 shows the system’s behavior for
control and operation mode realized by fuzzy control system.
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Figure 13.21: Heating System’s Behavior Operated by Digital Control.
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Figure 13.22: Heating System’s Behavior Operated by Fuzzy Control.



13.6 CONCLUSIONS

The objective of building energy management system (BEMS) is to achieve
more efficient building operation at reduced labor and energy costs while
providing a safe and more comfortable working environment for building
occupants. In the process of meeting these objectives, the BEMS has evolved
from a simple supervisory control system to a totally integrated computerized
control and management system.

Today’s BEM system requires use of soft computing methodologies in order
to cope with the automation and control problems of the intensive nonlinear
technological processes in buildings. The first step in reaching this goal was
developing a control system for an air conditioning system based on Fuzzy
logic. A new fuzzy PID characteristic has been developed. The realization of the
integral part of the fuzzy PID through a second output is a unique solution with
three advantages: reduction of rules, easy adjustment of the integral part and use
of the additional information of the D-input.

The control system is optimized through the whole working range of the
process and ensures a maximum of control loop quality by a very short response
time of any alternation in the process and at a negligible overshooting of the
process value during the control phase. The fuzzy controller showed enormous
advantages in processes with intensive nonlinearity and is superior to the digital
controller. Proving the applicability of fuzzy logic for energy management
tasks, two new operation and optimization strategies for a complex chilling and
heating system have been realized and implemented into the existing industrial
BEMS. The focus of the optimization strategies for both projects was

- reducing operation time and operation costs of the system;

- reducing cooling energy generation - and consumption costs;

- forecast the maximum cooling power of the building;

- determine the cooling potential of the outdoor air;

- optimal evaluation of heat power demand of the system;

- optimizing the heating system’s thermal features from the economical and
ecological point of view and reducing fuel consumption; and

- Increasing thermal efficiency of the system by lowest exhaust emission.

Based on the thermal analyses of the building and the chilling and heating
systems, different optimization strategies have been defined for developing
proper fuzzy controllers. Analyzing and evaluating the thermal behavior of the
system was necessary in order to formulate proper input and output variables for
different fuzzy controllers.

The developed fuzzy control and operation system could fulfill all the
formulated requirements, and has been successfully commissioned ; remarkable
improvement of the system behavior has been reached. The projects described in
this chapter open new application fields for fuzzy logic and fuzzy control in the
market of building automation and building management.
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APPLICATION OF ADAPTIVE
NEURO-FUZZY INFERENCE
SYSTEMS TO ROBOTICS

Ali Zilouchian and David Howard

14.1 INTRODUCTION

During the past three decades, fuzzy logic has been an area of heated debate and
much controversy. Zadeh, who is considered the founding father of the field,
wrote the first paper in fuzzy set theory [1], which is now considered to be the
seminal paper of the subject. In that work, Zadeh was implicitly advancing the
concept of human approximate reasoning to make effective decisions on the
basis of available imprecise linguistic information [1]-[3]. The first
implementation of Zadeh’s idea was accomplished in 1975 by Mamdani, which
demonstrated the viability of fuzzy logic control (FLC) for a small model steam
engine [4]. After this pioneer work, many consumer products as well as other
high tech. applications have been developed using fuzzy technology. A list of
industrial applications and home appliances based on FLC can be found in
several recent references [5]-[13].

However, the design of an FLC relies on two important factors: the
appropriate selection of knowledge acquisition techniques, and the availability
of human experts. These two factors subsequently restrict the application
domains of FLC. In this chapter, the application of adaptive neuro fuzzy
inference systems (ANFIS) [14]-[16] to robot manipulators is presented to
overcome such restrictions. Both kinematics and control of robot manipulators
are addressed to demonstrate the applicability of ANFIS in the design,
implementation, and control of industrial processes.

Within the past fifteen years, the utilization of NN and FL to aid the contwls
as well as kinematics mapping of robotic manipulators has been investigated by
many researchers [17]-[35]. Ngyen, Patel, and Khorasani describe the solution
of forward kinematics equations using NN [17]. The authors therein have used
four different neural networks including back propagation and counter
propagation to check their hypothesis. Wang and Zilouchian [18] presented the
solution of the forward and inverse kinematics using Kohonen self organization
neural network. Further investigations have been conducted in the area of NN to
solve the kinematics equations as well as the control of robot [19]-[24].



On the other hand, the FL has been utilized for the solution of inverse
kinematics as well as control of robot manipulators by several investigators
[24]-[36]. Nedungadi [24]-[25] presented the inverse kinematics calculations of
a four-degree of freedom (DOF) planner robot using Fuzzy Logic. Kim and Lee
[26] investigated the inverse kinematics of redundant robot using fuzzy logic.
Further, in 1993, Xu and Nechyba [27] proposed a general method for the
calculation of inverse kinematics equations of an arbitrary n-DOF manipulator
through FL approach. Lim, and Hiyama [28] presented the initial work related
to control of robot manipulators using FL. In addition, Martinez, Bowles, and
Mills[29] propose a fuzzy logic position system for a thee-DOF articulated robot
arm. The mapping between a robot’s end effector coordinate and joint angle was
also successfully implemented using fuzzy logic [30]. Lea, Hoblit, and Yashvant
[31] have implemented fuzzy logic controller for a remote manipulator system
of the space shuttle. Kumbla, and Jamshidi [32] evaluated the hierarchical
control of a robotic manipulator using fuzzy logic, which also included a fuzzy
solution to the inverse kinematics equations. Several other researchers including
Nianzui, Ruhui, and Maoji [33], Moudgal, et al., [34] and Lee [35] have also
investigated the control of robot manipulators using fuzzy logic.

In this chapter, an alternate and attractive approach for solution of inverse
kinematics as well as the control of a robotic manipulator is presented. The
control of a robotic manipulator is hampered by complex kinematics and non-
linear motion. The proposed solution will solve these problems by using: (i) the
simple forward kinematics equations to train a fuzzy associative memory (FAM)
to map the inverse kinematics solution, and (ii) test data from the DC motor to
train the fuzzy controller. The individual ANFIS controller for each joint
generates the required control signals to a DC servomotor to move the
associated link to the new position. The proposed hierarchical controller is
compared to a conventional proportional-derivative (PD) controller. The
simulation experiments indeed demonstrate the effectiveness of the proposed
method. The detailed work can be found in the Howard’s thesis [36]. The
chapter is organized as follows. In section 14. 2, the concept of ANFIS is
introduced. In section 14.3, the solution of inverse kinematics using ANFIS is
presented. Section 14.4 pertain to the controller design of a microbot with
ANFIS. Finally, section 14.5 includes the conclusions and remarks related to the
proposed method.

14.2 ADAPTIVE NEURO-FUZZY INFERENCE SYSTEMS

An adaptive neuro-Fuzzy Inference System (ANFIS)[14]-[16] is a cross
between an artificial neural network and a fuzzy inference system (FIS). An
artificial neural network is designed to mimic the characteristics of the human
brain and consists of a collection of artificial neurons. An adaptive network is a
multi-layer feed-forward network in which each node (neuron) performs a



particular function on incoming signals. The form of the node functions may
vary from node to node. In an adaptive network, there are two types of nodes:
adaptive and fixed. The function and the grouping of the neurons are dependent
on the overall function of the network. Based on the ability of an ANFIS to
learn from training data, it is possible to create an ANFIS structure from an
extremely limited mathematical representation of the system. In sequel, the
ANFIS architecture can identify the near-optimal membership functions of FLC
for achieving desired input-output mappings. The network applies a
combination of the least squares method and the back propagation gradient
descent method for training FIS membership function parameters to emulate a
given training data set. The system converges when the training and checking
errors are within an acceptable bound.

The ANFIS system generated by the fuzzy toolbox available in MATLAB
allows for the generation of a standard Sugeno style fuzzy inference system or a
fuzzy inference system based on sub-clustering of the data [37]. Figure 14.1
shows a simple two-input ANFIS architecture.

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
TP
~ vy
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i

Figurel4.1: ANFIS Architecture for a Two-Input System.

The above ANFIS architecture is based on a Sugeno fuzzy inference
system. The sugeno FIS is similar to Mamadani format except the output
memberships are singleton spikes rather than a distributed fuzzy set. Using
singleton output simplifies the defuzzification step.

The ANFIS network shown in Figure 14.1 is composed of five layers. Each
node in the first layer is a square (adaptive) node with a node function computed
as follows:
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O; =y (1) (14.1)
Where T is the first input vector and 1 is the membership function for that

particular input. Layer two only consists of circle (fixed) nodes. The output of
each node is the product of the two membership functions:

O} =W, = W (T) g (P) (14.2)
Layer three only contains circle (fixed) nodes with their normalized firing
strengths in the following form:

o] =w; i

-_ =12
S 2 (14.3)

The fourth layer (square nodes) is computed from the product of consequent
parameter set and the output of the third layer as:
O, =Wip,T +q,P+r,) (14.4)

Finally, layer five, consisting of circle nodes is the sum of all incoming
signals.

O, =2 Wif; (14.5)

The above adaptive architecture is functionally equivalent to Sugeno fuzzy
model. This ANFIS structure can update its parameters according to the gradient
descent procedure. Other ANFIS structures corresponding to different types of
FIS and defuzzification mechanism h are also proposed by the researcher [16].
However, throughout this chapter, we shall utilize the above first order Sugeno
fuzzy model for the microbot application due to its transparency and efficiency.

14.3 INVERSE KINEMATICS

In general, most of controllers in robots require the inverse kinematics solution
to determine the required joint angles. The inverse kinematics solution provides
each joint angle based on the position of the end effector [38]. Due to the
design of most robots, there are multiple joint angles that provide the same end
effector position.

There are various methods to generate the inverse kinematics equations such
as inverse transform, iterative and geometric approach [38]-[40]. The method
used in this chapter is based on the using the position vector “p” described
below as outlined in wolovich [38]:

Py eciCy + o0y
Py |=| €516+ fs1053 (14.6)
)2 h+es, + f5,,

Solving these equations gives the following solutions to the inverse kinematics
problem:
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The above inverse kinematics equations show the multiple solutions for the
microbot joint angles. In this section two different inverse kinematics solutions
using FL. and ANFIS are discussed. As was already mentioned, the main
advantage of such methods is the establishment of the inverse kinematics
mapping without any access to the robot kinematics equations.

14.3.1 Solution of Inverse Kinematics Using Fuzzy Logic

In this section, the inverse kinematics of the micro-robot using fuzzy rules
will be developed. Equations 14.6 from the appendix describe the forward
kinematics model of the microbot. For some nominal robot configuration 6, 0,
05, the first variations of Equation 14.6 is given as:

P
P, = TP 50, + TP 80, + P 60, (14.10a)
/6 S0 VR
P
5P, _ TP 86, + TPy 86, + TPy 60, (14.10b)
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In Equation 14.10, 86, ,60, and &8, are small variations of the joint angles
from their corresponding nominal values (66; <<l ). Accordingly, 14.11 is the

linearized version of 14.6 for a given operation point; similar to the method
proposed in Nedungadi [24]. Therefore, Equations 14.11and 14.12 provide
useful information for the development of heuristic fuzzy rules in order to
achieve the desired end effector position of the robot. In order to develop the
rules, the following seven fuzzy sets are defined:

Positive Big (PB)
Positive Medium (PM)
Positive Small (PS)
Zero 2
Negative Small (NS)
Negative Medium (NM)
Negative Big (NB)

Due to the fact that equation 14.11 represents the linearized kinematics of the
microbot in the nominal operation point, the principle of superposition is
utilized when these equations are applied to the individual angle variations.
This superposition concept will be utilized to develop the FAM for the

microbot. The following fuzzy rules are proposed in order to determine 00, for

a given ()Rc ,OPy andOB .

Table 14.1: Fuzzy Rules.

00, NB NM NS Z PS PM PB

NB PB | PM PS
NM PB | PM PS
NS PB | PM PS
V4 Z Z Z
PS NB | NM NS
PM NB | NM NS
PB NB [ NM NS

NS NM [ NB
NS NM [ NB
NS NM [ NB
Z Z Z
PS PM | PB
PS PM | PB
PS PM | PB

N [N NN [N NN

Notice the entries of the FAM are obtained through graphical inspection of a
three-dimensional gr.'zl})h. Similar tables should be developed for B, and C,; in
1

order to determine ©% . Each entry in the FAM represents a fuzzy associative
memory rule of the following form:



If (A, is NM) and (OP. is PS) then 86, is NS

Thus each of 3 banks (i.e., look up tables) A, B, C comprises 49 rules, which
results in 147 rules in order to determine the inverse kinematics solution.
However, the rules can be reduced in order to reduce the computation effort.
However, the above method does not provide a systematic approach for the
solution of inverse kinematics. In order to build the banks A, B, C, we need to
obtain a 3-D graphical representation of FAM. It can be constructed and
implemented similar to Kim and Lee [26]. In the next section, an alternate
methodology (ANFIS) is proposed.

14.3.2 Solution of Inverse Kinematics Using ANFIS

In this method, a set of training samples is collected from measurements.
This is done by moving the robot to different desired end effector positions (Py,
Py, P,), and measuring the corresponding angles. By utilization of such data an
ANFIS is trained with a sufficient number of data points. The block diagram of
the proposed method is shown is Figure 14.2 as follows:

Microbot

an Py> PZ c ; \ >

> 2
Ayrs( Q 2

»

Figure 14.2: ANFIS Inverse Kinematics Block Diagram.

In the training phase, the membership functions and the weights will be
adjusted such that the required minimum error is satisfied. In sequel the trained
ANFIS can be utilized in order to provide fast and acceptable solutions of the
inverse kinematics of the Microbot for various applications, such as on-line
control of the robot.

14.3.3 Simulation Experiments

The ability to determine the requirement joint angles has been discussed
previously, which also showed one way of generating the solutions to the
inverse kinematics equations. The following method is an alternate approach to
mapping the inverse kinematics solutions. The forward kinematics equations
are relatively straightforward and easy to generate. The method chosen uses the
forward kinematics equations to generate a collection of data relating the joint



angles to the resulting Cartesian coordinates of the end effector. These data are
then used to generate and train an ANFIS.

The method used to generate the training data is similar to using the
microbot manipulator to create its own inverse kinematics solution. Instead of
solving the inverse kinematics equation, various angles are applied to the robot
and the resultant Cartesian coordinates (P, Py & P,) are determmined. This output
is directly related to the angles input, and is one solution to inverse kinematics
equation. This allows the ability to select the desired angles at the design stage
and creates a unique mapping between the angles and the resultant Cartesian
coordinates. This method allows the creation of the inverse mapping based on
actual information from the manipulator.

In the microbot manipulator the angle 0, is dependent on the X and Y. This
is confirmed by the physical configuration of the robot. In the simulation, the
test data were created from the possible ranges of X and Y. Figure 14.3 shows
the desired mapping between X, Y and 6,.

Figure 14.3: Desired 6, Mapping.

The following method was used to obtain the fuzzy mapping for 6,. The first
step was to allow the ANFIS algorithm to generate the membership functions
and number of rules. Next, the ANFIS was trained with the test data and the
resultant accuracy was determined. Figure 14.4 shows the initial membership
functions and the resultant mapping after training for 50 epochs. The initial
fuzzy inference system resulted in an overall root mean squared accuracy of
0.4374, which was not considered acceptable.

The ANFIS was then regenerated using a greater number of membership
functions. The membership functions presently used are
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Figure 14.5: 6; Membership Functions.

These membership functions produce an output surface, which is shown
below. Also included is the surface showing the error between the fuzzy angle
and the desired angle.The maximum error was 6.93° and occurred with X, Y
equal to [-0.7, 0.058]. The RMS error was 0.0134. The error associated with



the base joint (0:) is very critical since, with the design of the microbot
manipulator, there is no other joint that can directly compensate for this error.

Error

Figure 14.6: 0, Surfaces.

The same method was used to generate the fuzzy mapping for 6, Both of
the angles 0, & 6; are dependent on X, Y and Z. Based on the training data, the
mapping between X, Y, Z, and 6, are presented as follow:

(a) (b) (©

Figure 14.7. Desired 6, Mapping.



To generate the inverse kinematics mapping for 6, & 03, the ANFIS
algorithm generated the initial membership functions and number of rules. The
ANFIS was trained with the test data containing X, Y and Z and the
corresponding angle 0, or 0;. Figures 14.8 and 14.9 shows the present
membership functions and surfaces for 6, respectively:
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Figure 14.8: 6, Membership Functions.
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The desired inverse kinematics mappings for 6; are presented in figures
14.10 (a, b, c). Figure 14.11 shows the present membership functions. The
resultant inverse kinematics mapping surfaces for 6; are also shown (Figure
14.12). Figures 14.13 and 14.14 show the errors between the desired angles and
the fuzzy generated angles for 6, and 65, respectively.



Figure 14.10: Desired 6; Mapping.
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Figure 14.14: 65 Error Plots.

Since the inverse kinematics solutions for angles 0, or 0; are
interdependent, the impact of the error is more difficult to describe. Figure
14.15 shows the impact of the overall error using all three fuzzy angles to
determine the final end effector position. Each figure represents multiple end
effector positions with the links of the manipulator shown. The desired link
position and the resultant position due to the fuzzy angles are also shown in
Figure 14.15.

14.4 CONTROLLER DESIGN OF MICROBOT

Robotic manipulator control is predominately motion control using classical
servomechanism control theory [38]. Due to the non-linearity of the
manipulator motion a wide variety of controls schemes have been devised.
Classical schemes include computed torque, resolved motion, PID decoupled,
model reference adaptive and resolved motion adaptive, to name a few [38]-



[41]. These schemes can be very complicated and require intensive computer
resources. For instance, the computed torque technique uses the Legrange-Euler
or Newton-Euler equations of motion of the manipulator to determine the
required torque to servo each joint in real time to track the desired trajectory as
closely as possible [40]. Model reference adaptive control requires an accurate
reference model of the manipulator to compare against and an adaptive
mechanism to store the adjustable feedback gains. For comparison purposes,
the simple PD decoupled control scheme will be used, which is described in the
following sections. The corresponding end effector position’s error surfaces are
shown in Figure 14.16.
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Figure 14.15: Overall Error Impact.

14.4.1Design of a Conventional Controller

In this subsection, the design of a conventional controller for the microbot is
presented. The controller is designed considering each joint as uncoupled, and
usually neglects the effects of motion. To provide a comparison for the fuzzy
controller, the microbot manipulator will be controlled with a conventional
proportional-derivative type controller. Figure 14.16 shows the schematic of the
conventional proportional-derivative type controller used in MATLAB to



generate the comparisons. The proportional-derivative values for the individual
joint were determined by considering each joint as uncoupled from the other,
and calculating the approximate corresponding values. The proportional-
derivative values were then fine tuned on-line and shown in Table 14.2.

In a conventional controller, the designer would normally generate the
required trajectory of the individual links and end effector. These trajectories are
based on the function of the manipulator, object avoidance, velocities and
desired accelerations. For these simulations, the desired trajectory is not
required since overall performance is being evaluated. Also, in the proposed
conventional controller the required joint angles are calculated using the
complex inverse kinematics equations. The inverse kinematics Equations 14.7-
14.9 are utilized in the conventional controller to convert the desired Cartesian
coordinates of the end effector into joint angles. There is no way to determine
the comparative computing resources used to solve the inverse kinematics
equations during the simulations, so no quantitative comparison will be made.

Table 14.2: Conventional Control Action: P-D Values.

Initial Values Final Values
Proportional | Derivative Proportional Derivative
Joint/Motor 1 100 5 100 8.5
Joint/Motor 2 139 8.5 150 15
Joint/Motor 2 153 10.4 153 10.4
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Figure 14.16: Conventional P-D Controller.




Based on the physical limitations of the microbot robot the joints have a
defined acceptable range. The base, 0,, can rotate from -170° to 170°. The
elbow joint 0, and the forearm joint 05 can also be adjusted from -170° to 170°.
However, due to the existence of the floor, the links and end effector have the
additional constraint of not going below an elevation of zero. This is accounted
for in the conventional controller by selecting the inverse kinematics solution of
0. to be the positive angle and using MATLAB saturation modules.

Based on the allowable ranges of the joints and the possible uses for a
microbot robot, various position changes have been selected to test the fuzzy
controller. These desired changes were simulated in Matlab and provide a wide
range of change including multiple joint movements at one time. The plot of
the simulation results for the conventional controller is shown in section 14.4.3,
with the fuzzy logic controller results.

14.4.2 Hierarchical Control

One of the advantages of fuzzy logic control is that the controller can be
designed in the same way a person would think of doing the contol. In the case
of a robotic manipulator point-to-point or trajectory position control, one could
think of a supervisor telling the end effector where to go by specifying the
required joint angles. In sequel, each joint could individually move to the
desired angle. Therefore, the proposed approach is a hierarchical control
scheme. A fuzzy mapping of the inverse kinematics solution will supervise the
individual joints. A fuzzy controller will direct each individual joint to the
desired position as shown in Figure 14.17.
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Figure 14. 17: Hierarchical Fuzzy Controller.



14.4.3. ANFIS Controller for Microbot

In this subsection, the ANFIS controller is proposed in conjunction with the
switching curve for each joint of the robot in order to provide the desired end
effector position of the microbot. Due to the interaction and coupling between
the links of the manipulator, applying a constant torque to each joint will
simplify the control of the other joints. In addition, applying the maximum
torque should produce the fastest response. To produce a fast response, the
premise is to apply a maximum torque in the required direction, then at the last
possible instance apply a braking torque to stop the motion. One method of
determining when to apply the maximum torque is called "switching surfaces."

The concept of sliding surface (“switching curve” or “variable structure™) for
nonlinear systems is well known and was originated by several Russian
mathematicians (e.g., Aizerman and Gantmacher, Filippov). However, the
application of the switching surface creates chattering [39]. In order to smooth
out such effects, the ANFIS algorithm has been utilized. For each joint of
Microbot, the switching curve is a relation between the position error and the
rate of change of position. The switching curve can be generated analytically if
an accurate model of the motor and joint is known. However, in most cases such
a model is unknown. The practical method is to determine the switching curve
by using the actual manipulator. In this method, the maximum torque is applied
to the manipulator and the resultant position error vs the rate of change of
position is plotted. This plot is then inverted to obtain the switching curve as
shown in Figure 14.18. For a DC motor application, for all conditions on one
side of the curve, a maximum positive voltage is applied. The other side of the
switching curve receives a maximum negative voltage. The switching curve is
therefore a very steep transition surface that could induce instability or
chattering in the controller. To reduce the possibility and effects of this
chattering, a transition region is created. The transition region is essentially
twice the distance that the manipulator can travel during one sampling period.
The size of the transition region can be determined from the data that created the
switching curve. The next step in the algorithm is to generate test data and
produce the fuzzy equivalent of the switching curve for each joint. The
resultant surfaces are shown in Figure 14.19. The switching curve is the basis of
the proposed fuzzy controller, but to enable the FLC to handle a dynamic
system with improved response, gains are applied to the inputs of the FLC.
These gains essentially allow the transition region (not curve) to rotate and
account for a fast or slowly changing process. The value of the gains will be
determined using the functioning system and tuned on-line.

The same algorithm was used to create the fuzzy inference systems for the
remaining joints. The simulation results for point-to-point control of microbot
(cases 1 — 4) compare the conventional PD controller to the fuzzy logic
controller of the robot utilizing the switching curve surfaces.



Figure 14.18: Switching Curve for Base Joint and Motor.

Figure 14.19: 3-D Switching Curve for Base Joint and Motor.
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Figure 14.20: Simulation Results: Case 1.
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The results of comparing the P-D controller with the fuzzy logic controller
(shown in Figures 14.20 through 14.23) show that the FLC performs well.
However, the simulation also displays that coupling exists between the elbow
and the shoulder joints of the microbot manipulator. One method of accounting
for this coupling is to use a feed-forward controller for each of the joints as
described in Howard[36].

Table 14.3: Point-to-Point Control of the Microbot

Desired final position Actual final position with Actual final position
PID controller with ANFIS controller
X Y 7 X Y Y4 X Y 7
1 0.0 0.15 0.812 1504 .0154 816 1517 1521 .8095
21 0433 -433 0.412 4296 -.4296 4199 -4334 4315 4076
3 0 0 0.9 0. 0 .899 .0003 0 9
4 i 0 0.2 0.699 0 214 0.7 .0015 .1962
5¢ 0.15 0.15 0.812 .1499 .1499 8111 1525 1509 .8101
6 0.0 0.5 0.5 0.0 4972 2056 .0016 4943 1933

To evaluate the FLC in terms of robustness and sensitivity, additional case
studies were performed. The original case 1 was performed again with a 100%
increase in mass of link 3. Additionally, case 1 was performed again with a
change in the time constant (25%) of the elbow joint motor. The simulation
results show the effectiveness of the ANFIS for these cases also. Due to space
limitation these cases are not reported here and can be found in reference [36].

Cases 1 through 4 demonstrate the controller performance for the end
effector point-to-point control of the microbot. In order to determine the overall
performance of the FLC, case 5 was created using a planned trajectory. The
desired trajectory in this case is to move the end effector from the home position
(0.7, 0, and 0.2) to an intermediate position (0.5, 0, and 0.2), then to the final
position (0, 0.5, and 0.2) via a circular trajectory.

Case 5 simulated a simple trajectory following scenario. Figure 14.24
displays the PID controller against the FLC with the fuzzy inverse kinematics.
In Figure 14.25, the Cartesian positions (X,Y,X) of the end effector are shown.
Figure 14.26 compares the PD and FLC using fuzzy inverse kinematics
solutions. In addition, case 5 has been simulated for PID and FLC utilizing the
calculated inverse kinematics, and Figure 14.27 displays the results. Figure
14.27 shows that while the end point error is slightly higher during the transit,
the FLC is actually superior to the P-D controller. Analysis of both figures




(14.26 and 14.27) indicates the significant difference is due to fuzzy inverse
kinematics portion. Therefore, the inverse kinematics of the robot should be
solved analytically in order to increase the accuracy of the trajectory
performance. It should be point it out here, that an analytical solution of inverse
kinematics is indeed much more accurate that the NN solution if the inverse
kinematics equations are available. Otherwise, the NN inverse kinematics could
be utilized. Of course the proper selection of data for the mapping of the inverse
kinematics using NN is an important consideration.

Table 14.4: Position Error (L, Norm)

Desired final position Error

Case X Y Z PD ANFIS
1 0.15 0.15 0.812 .0048 .0044
2 0.433 -.433 0.412 .0125 .0063
3 0 0 0.9 0.009 .0003
4 7 0 0.2 .0191 .0056
5 0.15 0.15 0.812 .0011 .0039
6 0.0 0.5 0.5 0116 0178
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Figure 14.24: Case 5: Simulation Results (Angle Plots).



Figurel4.25: Case 5: Simulation Results (X, Y, Z Plots).
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14.5 CONCLUSIONS

In this chapter, ANFIS has been utilized to generate the solutions to inverse
kinematics equations of a microbot as well as providing a basic contoller. ~ The
overall goal was to create a simple algorithm that could be used to control
robotic manipulators with a minimum of theoretical modeling. The simulation
experiments indicated that the mappings created by neuo-fuzzy algorithm
adequately produced the solutions to the inverse kinematics equations. The
fuzzy associative memories (FAMs) were utilized for the selection of a
minimum number of rules and membership functions, and could be increased to
improve the accuracy. By the use of the ANFIS algorithm, the training of the
FAMs was relatively easy and straightforward.

The individual ANFIS controller for each joint generates the required control
signals to a DC servomotor to move the associated link to the new position. The
proposed hierarchical controller is compared to a conventional proportional-
derivative (PD) controller. The simulation experiments indeed demonstrate the
effectiveness of the proposed method. The analysis performed showed that the
FLC had superior performance in regard to robustness of parameter changes.
The proposed FLC performed essentially the same, in regard to changes in
weight of the end effector and changes in the motor time constants, as the
conventional P-D controller. Finally, the intention was to provide a simple
algorithm to control a robotic manipulator with minimal or no modeling of the
system. Hierarchical control was chosen since this method is very similar to the
human thought process. ANFIS was chosen due to the adaptive nature and use
of training data to create a fuzzy inference system.

Overall, the algorithm is (1) build the desired manipulator; (2) use the
manipulator to generate training data for the mapping between the Cartesian
space and the joint angle space; (3) use the manipulator to create the switching
curves for the implementation of ANFIS controller of the individual joints and
(4) fine tune the controller to achieve the desired performance.
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APPLICATION OF SOFT
COMPUTING FOR
DESALINATION TECHNOLOGY

Mutaz Jafar and Ali Zilouchian

15.1 INTRODUCTION

This chapter will discuss the application of artificial neural networks (ANNs)
and fuzzy logic control (FLC) in the desalination industries, with particular
emphasis on implementation of soft computing to a real-time direct seawater
intake reverse osmosis (RO) plant. The chapter discusses the following as well:

*  The use of back propagation learning techniques as well as radial basis
function networks (RBFN) to predict critical water parameters for three
different types of water intakes;

*  Techniques for learning strategy for RBFN that involve a combination
of supervised and unsupervised learning for redistribution of centers of
receptive fields;

* The design of an intelligent control software environment for the
development of a hybrid combination of NN, and Fuzzy Logic
Controller (FLC) for real time RO plants;

*  The implementation of the designed soft computing methodology for a
prototype direct seawater intake RO plant; and

e The use of adaptive neuro-fuzzy inference system (ANFIS) for
optimization of membership functions of the variables

At a time of intensive demand for producing fresh water at a reasonable cost,
addressing automation, process control and cost optimization of desalination
plants have become increasingly evident. large scale desalination processes must
perform at high standards due to the increasing cost of high water quality
production, equipment utilization, and rising government regulations on labor
protection and the environment.

In this chapter, the recent innovation and technological advances in the
design, implementation and application of soft computing methodologies to
several desalination processes are addressed. Such advances are mainly due to
the recent developments of intelligent control design approaches for the
integration of sensory information, computation, human reasoning and
decisionmaking. The principal partners in such an intelligent system include
fuzzy logic (FL), and neural network (NN). In particular, the application of these
approaches to RO desalination plants is presented. Various issues related to the
design and implementation of soft computing methodologies including the
trade off among tolerance, precision and uncertainty are also addressed.

The application of NN for quality control of RO plants is one of the main



subjects of this chapter. Two NN predictive models are proposed based on
back propagation and RBFN algorithms. These models are applied to three
different types of RO feed intakes plants in order to verify the applicability of
the NN models. The predictive models are studied using actual operating data
for all three RO processes in order to predict various parameters of the plants
including system recovery, total dissolved solids and ion concentration in brine
stream. A proposed NN predictive model is presented based on redistributed
RBFN centers using integration of supervised learning of centers and
unsupervised learning of output layer weights. Extensive simulations are
presented to demonstrate the effectiveness of the proposed method.

As a case study, the design and implementation of an intelligent control
methodology for a direct Atlantic Ocean RO system located in Boca Raton,
Florida, is also presented in this chapter. The operation of the prototype plant
indeed demonstrated the effective and optimum performance of the proposed
design for two types of membrane modules, spiral wound (SW) and hollow fine
fiber (HFF), under forced diverse operating conditions. The system achieved a
constant recovery of 30% and salt passage of 1.026% while salt concentration of
six major salts as kept below their solubility limits at all times. The
implementation of the proposed intelligent control methodology achieved a 4%
increase in availability and reduction in manpower requirements as well as
reduction in overall chemical consumption of the plant. Therefore, it is believed
that implementing the developed control strategy can decrease the cost of
producing fresh water.

This chapter is organized as follows: in section 15.2, the general background
on desalination technology is provided with emphasis on the RO process.
Section 15.3 presents the use of NN for prediction applications. Section 15.4
presents three case studies of prediction of critical parameters for RO plants.
Section 15.5 will discuss implementation of a novel soft computing
methodology to a seawater plant using a hybrid combination of FLC and NN.
The final section of this chapter will discuss implementation of ANFIS to
optimize different membership functions.

15.2 GENERAL BACKGROUND ON DESALINATION AND
REVERSE OSMOSIS

Desalination methods are classified into two major processes: thermal and
non-thermal. Thermal distillation involves phase changes and it includes multi-
stage flash (MSF), vapor-compression (VC), and multi-effect (ME) [1].
Nonthermal processes do not involve phase change and include reverse osmosis
(RO), electrodialysis (ED) and ion exchange (IE). Other less significant and cost
intensive processes include vacuum freezing and refrigerant freezing [1], [2].

RO is defined as the separation of one component of a solution from another
component by means of pressure exerted on a semipermeable membrane. RO
achieves the finest level of filtration available by acting as a barrier to all
dissolved salts, organic as well as most inorganic molecules with a molecular
weight greater than 100. On the other hand, water molecules can pass freely



through the membrane creating a purified product stream. Rejection of dissolved
salts is typically 95 to 99% achieved at transmembrane pressure that ranges from
200 pounds per square inch (PSI) for brackish water to 1000 PSI for seawater.
RO is applied to various applications such as brackish and seawater desalination,
wastewater purification, biomedical separations, and food and beverage
processing [1-3]. For an ideal aqueous electrolyte solution, Vant Hoff’s law [1]
theoretically defines the osmotic pressure (79 by a relation of the form:

m=nRTx /v, (1s5.1)

where 7 is the number of ions per molecule of solute, R is the universal gas
constant, 7 is the absolute temperature, x; is the salt mole-fraction, and v,, is the
molar volume of the water. Equation 15.1 gives reasonable approximations of
osmotic pressures for many solutions. Figure 15.1 shows the osmotic pressure as
a function of total dissolved solids (TDS) of sodium nitrate, chloride, sulfate and
seawater at 25°C.

15.2.1 Ciritical Control Parameters

Permeate flux, system recovery, and TDS are three of the most important
factors that indicate the performance of the RO system. As an example, a low
permeate flow combined with high salt passage could indicate colloidal fouling,
metal oxide fouling or membrane scaling. Low permeate flow combined with
normal salt passage may indicate biological fouling of the membrane. It is
therefore essential for early detection of potential problems and proper
adjustment of operating variables in such a way that fouling or scaling does not
occur [6].

Control parameters may vary from the desired values causing harmful, and
possibly severe, effects on membrane elements and the materials and
components of the RO system [7]. Therefore, it is essential to identify any
operating conditions that might lead to system failure. The following parameters
have a direct effect on an RO system performance.

15.2.1.1 Temperature

Temperature variations have a determining factor on the osmotic pressure,
membrane compaction rate, and hydrolysis rate. In general higher temperatures
will increase the internal osmotic pressure and therefore lead to lower recovery
ratio and permeate concentration. To estimate the effect of temperature on
permeate flow rate of an element provided that the pressure remains constant,
the temperature correction factor (TCF) can be found from using [4]:

Dy _ S S S
0, EXPUG (273+T)] (15.2)

TCF =

where Q,s is the permeate flow rate at 25°C, Qr is the permeate flow rate at
actual temperature T and U is a membrane factor.



15.2.1.2 Pressure

The effective net pressure is one of the most critical parameters to the RO
membrane since the membrane element comes directly after the high pressure
pump. System pressure provides brine pressure for the designed mass transfer of
water and salts and affects compaction rate of the module. In general, the
pressure is adjusted to achieve the desired recovery and salt rejection. A more
general definition to Vann Hoff’s law [5] for osmotic pressure is defined as:

T =1.205®(T +273.15)2m; (15.3)

where m; is the molal concentration of ionic and nonionic constituents in the

feed and @ is the osmotic coefficient, which can be calculated based on the
operating conditions [5]. The mean osmotic pressure (AT) can be determined
from feed osmotic pressure (77, ) and brine (77 ) as:

_nptm,
2

ATt (15.4)

The effective driving pressure (P.) is defined as the difference between the
applied pressure (P;) reduced by pressure losses (P;) due to piping and mean
osmotic pressure reduced by product osmotic pressure (77, ):

Py =(P, —P)-Am-m, (15.5)

The effects of temperature and pressure variations are shown in Figure 15.2
for FILMTEC FT30 membrane [4] using a synthetic seawater solution.

15.2.1.3 Recovery
Recovery is defined as:

_ Permeate Flow _ DS, ~1DS feed
Feed Flow DSy, —~TDS

(15.6)

product

where TDS is the total dissolved solids of the ions considered.

15.2.1.4 Feed pH

Feed pH affects the permeate flux, salt rejection, hydrolysis and alkaline
scale control. Cellulose acetate (CA) reacts slowly with water that forms alcohol
and an acid. The rate of this reaction depends on feed temperature and pH and is
defined as hydrolysis [8,9]. A pH control can maximize the lifetime of cellulose
acetate membranes by operating at pH 6 or less, and therefore minimizing the
hydrolysis rate. For Aramid membranes pH control can minimize the carbonate
scale formation.
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15.2.1.5 Salt Rejection

Cationic and anionic ions are usually repelled from the surface of the
membrane to a distance proportional to its valence. This is due to the
phenomena of di-pole that is formed between the charged ion and a surface with
an equal and like charge. This electro-chemical interaction between the
membrane and the salts causes the rejection of the salts. The net effect of the
repulsion of the salts is the formation of a thin layer of pure water at the surface,
which in turn is pushed through the pores by the applied pressure [9].
Membranes usually achieve high overall salt rejections (97%); however, small
variations exist for each cation and anion. Mathematically, salt passage can be
defined as:

Permeate Salt Concentration 9

% Salt Passage = - 100 (15.7)
Feed Salt Concentration
% Salt Rejection =100 — Salt Passage (15.8)
The permeate concentration can be defined as [4]:
_ — Sg
C, —Cﬁ..pf.TCF.Q— (15.9)

p
where @, is the permeate flow, Sp is membrane surface area, p, is

concentration polarization, TCF is temperature correction factor, and Cy, is brine
side concentration. Effects of pH and feed water salinity on permeate flux and
salt rejection for FT30 membrane is shown in Figure 15.3 for a synthetic
seawater solution.

15.2.1.6 Scaling
Scaling and colloidal and biological fouling of the RO membranes can
seriously impair system performance by lowering salt rejection and product
recovery [4], [5]. Certain waters frequently contain troublesome constituents
such as barium, hydrogen sulphide, or strontium. These constituents have to be
controlled and kept at minimum levels in order to maintain the RO plant at a
proper operation level. Basically, there are two parameters, which should be
measured, monitored, and controlled: scaling and silt density index (SDI).
Calcium sulphate and calcium carbonate scaling prevention involves calculation
and prediction techniques in order to keep salts below their solubility index.
Molal concentrations of all ions of the feed must be measured and/or predicted
in order to determine the stability index.
The ion product (IP) of a salt A,B,, where A and B are the molal
concentrations, is defined as [4]:
IP=A"B" (15.10)

And the ionic strength of feed water I, and that of the concentrate stream /.
are defined as [5]:



%[m[.zf] (15.11)

1
1, IJ'I—Y (15.12)
where mi is the i™ ion concentration in mol/kg and z; is the charge associated
with it. Based on the index calculations and the type of ion being considered in
addition to other limiting factors determined by the system, operating variables
of the plant have to be adjusted in such a way that scaling will not occur. The
precipitation of the dissolved salts should be kept below the solubility limit by
adjusting parameters such as pH of the feed and system recovery.
The following are the most common salts that have a scaling potential in RO
desalination:

e Calcium Carbonate (CaCOs)
e Calcium Sulfate (CaSQOy,)

e Barium Sulfate (BaSQO,)

e Strontium Sulfate (SrSO,)

*  Calcium Fluoride (CaF,)

* Silica (SiO,)
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Figure 15.3: Effects of Feed Water Salinity and pH on Permeate Flux
and Salt Rejection (Courtesy of The Dow Chemical Company, 1993).

15.3 PREDICTIVE MODELING USING NEURAL NETWORKS

In the development of predictive model for desalination plants, application of
NN is essential due to non-linearity and complexity of interactions between
operating variable [7]. In particular, prediction of product quality of RO process
variables is a key factor to decreasing membrane degradation and the overall
efficiency of an RO system. We next consider three case studies for different
types of RO feed intakes.



Predictive modeling can be more efficient if scaling and cross validation are
carried out prior to training the network. In scaling, the input and output training
vectors are normalized in such a way that they fall within a specific range. In the
work presented, training vectors were normalized to the range of [-1,1], and
having a zero-mean. The input normalization variable P,,,, is given by:

= 200F = Fuin)
o (Pmax _Pmin ) -1

Any future input-target vectors are normalized by the same method. The
output network is then converted back to the original values.

On the other hand, cross validation provides a guided criterion for selection
of network parameters and validation of the training data set chosen [17]. When
a training set is picked from the available data, there is a need to validate the
model on a data set that is different from the training set. Overfitting can occur
when too many parameters are selected, while underfitting can occur when few
parameters are used. The particular model that gives the best performance, is
then trained on the full training data set and generalization is then tested on the
verification set. The available data is partitioned to two sets, training and test set.
The training set is further partitioned into two sets: training and validation. The
network is then simulated with the selected training data set.

The first step in back propagation learning is to initialize synaptic weight and
threshold levels for the different nodes. Wrong choice of initial weights and
threshold levels can lead to a premature saturation [10]. This effect causes delay
in convergence and is different from local minima. On the other hand, proper
choice of initial values can lead to a more generalized approximating network.
Throughout the back propagation simulation presented, the network was
initialized based on the technique of Nguyen and Widrow [11].

(15.13)

15.3.1 Redistributed Receptive Fields of RBFN

Redistributions of centers to locations where input training data possess
significant effects can lead to more efficient RBFN. The proposed method
herein is based on clustering of input space vectors and computing weights of
Euclidian distances. Histogram equalization within each cluster will determine
the center and width of each receptive field. The supervised part of the algorithm
includes redistribution of the centers and widths of receptive fields over the
input space and computation of weight and bias matrix. The unsupervised part
of the algorithm includes computation of the output weight and bias matrix.
Figure 15.4 shows a general structure of RBFN network. Summary of the
various steps involved in the adaptive receptive field training is shown in Figure
15.5.

15.3.1.1 Data Clustering

Clustering partitions a data set into subgroups that have similar input-output
pairs. K-means and fuzzy C-means clustering are two of the most common
methods that are frequently used with radial basis. Specht [13] used an effective
clustering method based on determination of radius of influence. Training data



are first normalized to a value between [-1,1]. A radius of influence (r) is then
specified, and the first point establishes a new cluster center at x;. Each vector x
in the input space is considered one at a time and if a sample with an absolute
distance x-x; to the nearest cluster is >r, then the vector center becomes the
center of the new cluster. If the absolute distance of x-x; of the sample is less
than the distance to any other cluster center and is <r, the vector is assigned to
that cluster. This procedure performs clustering in a noniterative way and
requires only one pass through the training set.

15.3.1.2 Histogram Equalization

Histogram equalization is a method used in digital image enhancement
techniques. Basically, histogram equalization stretches the contrast of an image by
uniformly redistributing the gray values. For the selected &” output running sums
of the i input vector are evaluated by:

k
= 3 (15.14)

A plot of running sums is evaluated and the number of radial basis functions
evenly divides the Y-axis. The values of the resultant input vector will be used to
determine the new Euclidian distances over the input space.

Once the Euclidian distances are determined, the first layer weights are then
computed. This involves solving N nonlinear equation of the form,

"x—xa"i :vl_gl[xi _xori]2 (15.15)

where ||x—x0, || is the desired Euclidian distance of the /" cluster, N is the

number of clustering centers, x; is the average mean of the input cluster, and x;
are the weights to be calculated. The next step involves solving N nonlinear
equations to solve for the weight matrix. The method of generalized reduced
gradient nonLinear optimization (GRG2) code developed by Ladson and Waren
[14] is used for solving the set of nonlinear equations. The solution to the
minimization of the function yy in Equation 28 determines the set of weights x;.

N 2
)%=;W—%H (15.16)

15.3.1.3 Widths of Receptive Fields

In all of the simulations carried out on different data sets, it was found that
the choice of a single global width value (0?) gave better results than separate
widths for each cluster [15]. The value of 6 in our study was set at the average
standard deviation of the input vector histogram.
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154 CASE STUDIES
15.4.1 Example 15.1: Beach Well Seawater Intake

The system is two train membrane seawater type that is operated by the
Water Desalination Department of the Kuwait Institute for Scientific Research
in Doha, Kuwait. Each line is designed to operate independently to produce 300
cubic meter per day (m’/D) fresh water fed from a common seashore well.
Average feed temperature of the beach well was 24°C. Feed flow was at 35m’/h
passing through a pretreatment stage of chemical dosing which included anti-
scalant, sulfuric acid and sodium meta-bi-sulfate followed by a bag filtration.
Average feed pressure to the membrane was 58 and 70 bar for train one and two,
respectively. Feed conductivity from the well was 54 micro Siemens per
centimeter (mS/cm) with an SDI <2. In this example we shall predict the
permeate TDS using a nine-element input vector consisting of temperature, feed
TDS, feed flow, pH, SDI, permeate TDS, permeate conductivity, feed pressure,
and brine pressure.

Output +



15.4.1.1 Simulation Results

To determine the number of layers and the corresponding number of hidden
neurons for the back propagation network, the criterion used is smallest number
of neurons that yield a minimum RMS error with least number of iterations.
Baugham and Liu [12] found that adding a second layer to the network could
significantly improve the performance of the network, while adding a third layer
required longer training. The values of the learning rate n and momentum
coefficient o were arbitrarily set at small values. The network was simulated on
500 training data set for various numbers of hidden neurons in each layer. The
number of layers chosen was two and the number of neurons in each layer was
selected based on the lowest RMS error.

Proper choice of the learning n and momentum coefficient o could yield
convergence that has good generalization characteristics with least number of
iterations. An experimental procedure is used here for the determination of the
two coefficients. Using a two hidden layer with 28:13 configurations, Figure
15.6 shows the results for the RMS error for a[1{0.05, 0.1,0.5} for two values of
learning rate parameter n0.1, 0.6}.

The learning curves indicate that the smaller values of learning rate resulted
in slower convergence to the set error minimum. Increase of momentum
coefficient gave a faster convergence while too high of a momentum rate caused
instability (a0 = 0.85 not shown here). Learning rate of 0.1 and momentum
coefficient of 0.5 resulted in fast convergence and lowest overall RMS error
minimum. Results of the cross validation curves are shown in Figure 15.7.

The results, in general, are satisfactory since the test and validation errors
have similar characteristics. No over or underfitting is visible and, therefore, we
conclude that the training set and parameters chosen are adequate.

The simulation was carried out using MATLAB R11 with neural network
toolbox v3.0 [16]. L, and L o0 norms error criteria were used for comparison
and error analysis [18]. Figures 15.8 and 15.9 show the predicted TDS of the
product water using back propagation and RBFN. Table 15.1 summarizes the
error norms for the two methods.
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Figure 15.6: Learning Curve for Varying Momentum Coefficient (n = 0.3).
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Figure 15.9: Redistributed RBFN Prediction of Permeate TDS.
15.4.2 Example 15.2: A Ground Water Intake

The system is a two-stage RO system that is operated by the City of Boca
Raton Public Utilities in Boca Raton, Florida. The number of parallel pressure
vessels was four in stage one, and two in stage two, and each vessel had seven
elements. The membrane element type used was Hydronautics ESNA.
Membrane material was Polyamide, assembled as a thin film composite with a
negative charge. The size of each element was 4 by 40 inches and the total
active membrane area was 400 ft*. Maximum element recovery was 21% while
the salt rejection was 80%. Maximum operating pressure for the plant was 400
PSI while the maximum SDI allowed was 4. Plant capacity was 37 gallon per
minute (GPM) fed from the well at 43.75 GPM to meet the designed system
recovery, which was set at 85% at 25°C.

The feed was ground water set at 44 GPM fed to a pretreatment station of
dual media filter, composed of silica and garnet, and 5-pm cartridge filter.
Chemical addition composed of scale inhibitor and sulfuric acid for pH
adjustment to range between 6.0 and 6.4. The plant was operated and tested over
a two-year period for the first study. Input variables used in the input vector
included feed temperature, feed flow, feed conductivity, feed pressure, and
permeate conductivity. We attempted to predict the permeate flow rate as our
output variable. The model for both back propagation and RBFN was developed
in similar manner as in Example 15.1. Results of back propagation and RBFN
predictions of permeate flow are shown in Figures 15.10 and 15.11. Summary of
comparison between the two algorithms is shown in Table 15.2.



15.4.3 Example 15.3: A Direct Seawater Intake

The system is a surface seawater intake located at the Florida Atlantic
University research facility at Gumbo Limbo Research Park in Boca Raton,
Florida. The schematic diagram of the RO plant built at FAU research
laboratory is shown in Figure 15.12. The intake line is 4 inches wide and is 700
yards deep into the Atlantic Ocean. Two membrane elements were used for the
research study: spiral wound (SW) and hollow fine fiber (HFF) membranes.

The membrane type of the HFF configuration was a B10 Aramid made by
Du Pont chemical. The membrane can achieve salt rejection higher than 98.5%
under a nominal operating pressure of 800—1000 psi. Temperature range allowed
is 32-95°F and the pH allowable range is 4-9. Permeate Productivity is 250
GPD with maximum and minimum brine rates of 2400 and 800 GPD,
respectively. Pressure vessel material is filament-wound fiberglass epoxy and
weighs 10 Kg when filled with water.

The membrane type of the SW configuration was a cellulose triacetate (CT)
made by Toyobo. The membrane can achieve salt rejection of 99.4% under a
nominal operating pressure of 60 bar. Temperature range allowed is 5-40°C; pH
allowable range is 3—-8. Permeate productivity is 792 GPD with maximum and
minimum brine rates of 2 and 10 m*/day, respectively. Pressure vessel material
is fiberglass epoxy and weighs 23 Kg when filled with water. Feed conductivity
from the ocean ranged between 57-59 mS/cm with an SDI <4. The pre-
treatment stage included sulfuric acid for pH adjustment to range of 5.5-7,
followed by a 5-micrometer cartridge filter. Average feed temperature from the
ocean inlet was 27.6°C and average feed pressure to the membrane was 60 bar.

We shall attempt to predict the recovery of the RO system, which will be
used as part of the fuzzy control methodology described in the next section. A
ten-variable input vector was used for this simulation and it consisted of feed
temperature, feed flow, pH, feed conductivity, pressure inlet, transmembrane
pressure, salt passage, permeate flow, permeate conductivity, and permeate
pressure. RBFN prediction of system recovery is shown in Figure 15.12.

15.4.3.1 Scaling Simulation
The ionic strength of feed water was determined from feed water analysis of
major constituents as:

If :%{([Ca ++] +[Mg++] +[SO4__]) x4 +([Na+] +[K*]+[HCO3_]+[C17])} (15.17)

The ionic strength of the concentrate /. can be calculated from the predicted
system recovery using equation 15.12.

Solubility product (K,) of all salts can be determined as a function of the
ionic strength I.. The predicted I, is shown in Figure 15.13 for the HFF
membrane system as a function of Iy.

Calcium Sulfate
The ionic product (IP.) for calcium sulfate (CaSQ,) in the concentrate stream
can be calculated from the predicted recovery Y as:



1 . 1
x[(" SO X
XS0

IP, =[("Ca™*") , ] (15.18)

Results of the ion product IP, are compared with the solubility product Ksp
for CaSO,. For the example above at 28% recovery, Ksp is equal to 1.8¢”.
Therefore, Ipc=0.45 Ksp and no scaling will occur at this point. If IP, > 0.8 K,
scaling will form and the system must go into a lower pH set point or lower
recovery.

Barium Sulfate

This salt is the most insoluble alkaline sulfate, and may lead to precipitations
when present in feed water. The ionic product (IP,) for barium sulfate (BaSOy,)
in the concentrate stream can be calculated from the predicted recovery Y as:

IP, =[("Ba™"), xl_lY]x[(mSO“__)f x—] (15.19)

Figure 15.14 shows the RBFN-predicted 1P, value for calcium sulfate and
barium sulfate of the Aramid membrane (HFF).

Calcium Carbonate

CaCOs; can be determined using the Stiff and Davis Stability Index (S&DSI)
by finding the difference between the value of the pH of the concentrate and the
pH at which the stream is saturated with calcium carbonate:

S & DSIc = pHc - pHs (15.20)

A negative value of S&DSI, indicates that CaCOj; tends to dissolve; however, if
the calculations turns out to be positive, adjustments must be made to the
system. The addition of sulphuric acid to the feed solutions converts the
carbonate ion bicarbonate and converts bicarbonate to CO, and therefore
decreases the S&DSI, by the following reaction [5]:

H,50, +2HCO; - 2H,0 +2CO0, +S0; (15.21)

Strontium Sulfate
Predictions of SrSO, are performed in a similar manner to CaSQO, using the
following equations:

IP, =[("Sr™") , x !

1-Y

IX[(" SO, ) p x—] (15.22)

1-Y
Silica
Dissolved silica SiO, ions are present in most feed waters and can

polymerize and cause scaling to the membrane when supersaturated. The SiO,
concentration in the brine is calculated from:

$i0;, = Si0, - !

(15.23)



Table 15.2: Summary of Error Norms for Example 15.2 (permeate prediction)

Method £00 I Total Neurons Remarks
Back propagation 2.084 | 0.876 45 0=0.45; n=0.2
Redistributed RBFN| 2.3 0.582 5 RI=0.3; 0°=0.92
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Figure 15.10: Actual and Predicted Permeate Flow for
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15.5 FUZZY LOGIC CONTROL

RO desalination is a nonlinear process, which has to operate under specific
conditions that are of utmost importance for plant operation optimization. The
nonlinearity relates to changing process characteristics such as feed total
dissolved solids and pH, which in turn cause changes to product quality and
quantity parameters such as salt rejection and recovery. An RO desalination
system is usually designed based on a defined set of data analysis such as flow,
temperature, and feed water composition. However, in reality, plant operation
has to be flexible in order to respond to changing variables. Integration of key
process information into the control strategy’s decisionmaking and prediction
can yield an increase in the lifetime of the membranes, availability, and
efficiency and optimize plant performance.

The nature of the membrane separation process and the characteristics of the
membrane system impose a number of constraints on the system [19], [20].
These constraints require continuous monitoring and control if the system is to
perform economically over a long period. The main operational constraints for
RO desalination are as follow:

1. Pretreatment control for suspended solids to obtain biological and
chemical stability;

2. Operation between a minimum temperature to provide required flux
and a maximum temperature allowed by the membrane specifications;

3. Operation between minimum brine flow to avoid concentration
polarization and maximum flow with respect to desired recovery;

4. Operation at a pressure to obtain desired mass transfer and equalization
of pressure drop; and

5. Chemical characteristics of feed water and dynamics of mass transfer.

Loss in salt rejection and loss of permeate flow are the main problems
encountered in RO plant operation. It is of utmost importance that corrective
measures are taken as early as possible [21]. Some of the parameters, such as
temperature and feed water salinity change naturally. Other parameters may
change as a consequence of other changes that are present in the system. Once
the problem has been identified, causes must be identified and corrective
measures must be taken by the system. The RBFN predictions of recovery and
salt rejection described in previous sections were used as part of the input to the
FIS. Measured values from sensor information make up the remaining input
values to the FIS. These inputs include the following:

Temperature

Feed TDS

Feed pH

Feed flow

Feed pressure

Brine pressure
Permeate conductivity
Salt rejection

NN B DD -



9. Recovery
10. Predicted Scale Index
The fuzzy system was implemented using Mamdani architecture [22] with
the following FIS properties:

And method: min
Or method: max
Implication: min
Aggregation: max
Defuzzification: centroid

The hardware system configuration is shown in Figure 15.15 and consisted
of a fuzzy controller and a Siemens PLC interface to the controlled plant. A
programmable logic controller (PLC) controlled input-output interface signals,
and provided for data transfer to the fuzzy controller. The PLC included two 16-
channel analog input and output cards and eight 32-channel digital input and
output cards. The CPU used 32-bit architecture for all arithmetic and
comparison operations and an expanded register set. Figure 15.16 shows the
schematic diagram of the developed fuzzy controller. Figure 15.17 shows the
process layout of the prototype RO plant built at FAU research laboratories with
feed intake from the Atlantic Ocean.
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Figure 15.15: Hardware Setup for the RO Plant.
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Figure 15.17: Process Layout of the Implemented RO System.

15.5.1 Chemical Dosing Control

There are two factors that can influence the acid dosing required: desired pH
value and the actual and/or predicted scaling. The pH set point was set to a value
determined by S&DSI to be equal to —0.1 for minimum carbonate scaling of the
HFF membrane, and by the lowest hydrolysis rate for the CTA membrane. Two
methods were used for scaling calculations: predicted and actual ion
concentration in the brine stream. In the predicted method, RBFN was used to
predict the ion product and ion strength of the brine stream and compared with
the solubility product of the particular salt in question as discussed previously.
The fuzzy controller provided an external analog input to the acid-dosing pump
based on the defuzzified output conclusion.



15.5.1.1 Fuzzy Rule Base

The rule base consisted of fuzzy rules based on two inputs and one output.
The set point is determined by the pH value desired, the output of the system
consisted of external dosing rate signal to the acid pump, whereas the inputs to
the fuzzy system were as follows:
Error = the pH set point minus the process pH.
Error change = difference between present error of process output (el) and error
of previous output (e2).

15.5.1.2 Membership Functions

Having formulated the control variables, we next define the membership
functions of the linguistic set. Figures 15.18 and 15.19 show the membership of
the linguistic properties for each attribute. Input membership functions were
either triangular or trapezoidal, whereas singleton membership functions were
used for output attributes throughout. The block diagram of the fuzzy controller
for the chemical dosing pump is shown in Figure 15.20.

15.5.1.3 Decision Matrix

The rules are formulated and combined to form a decision table for the fuzzy
controller to accommodate different situations transpired by the system. Table 4
shows the rule base for the two inputs and output of the dosing rate. The
defuzzified output is converted to a crisp value using the centroid method. The
decision surface for the fuzzy control of chemical dosing for the two inputs is
shown in Figure 15.21.

15.5.1.4 Results and Discussion

Changes in pH set point as a result of ion index calculations and
disturbances, such as feed pH and feed flow rate and overall system recovery,
were tested and recorded. The results of these changes contributed vital
information for controller tuning and improvement of system operation. Figure
15.23 shows the pH value, control activity, and error signal for chemical dosing

pump.
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Figure 15.18: Membership Functions of the Seven Linguistic Properties
for the Attribute “Error”.
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Table 15.3: Look-Up Table for Chemical Dosing Pump

A Error
Error HN SN N Z P SP LP
LN VH H H H SH SH SL
N VH SH H SH M M LP
MN L SH SH SH M SL LP
z L M SH M SL SL LP
MP L M M SL SL L VL
P SL M M L L L VL
LP SL SL SL L L VL VL
Error
) — Lookup Process —er
Table
AError 4}
Rule Base

Figure 15.20: Block diagram of the Fuzzy Controller for the Chemical.

Changes in feed TDS and temperature may cause changes to system recovery
and scaling potential and could result in carbonate saturation. Changes to feed
TDS were induced by feeding the brine stream back into the feed line in forcing
variables to change from the normal range tested by the fuzzy controller’s
response to changes in critical variables in order to raise the feed TDS to
simulate changes in the operating conditions. Heating the feed pipe induced
change in feed temperature and raised the temperature to approximately 30°C.
Higher temperatures increased the S&DSI from —0.1 to 0. This change in the



stability index indicated possible scaling potential of CaCO; and, therefore,
needed to be adjusted. The pH set point was lowered from 7.0 to 6.4; as a result
the CaCOs; ion concentration remained constant over the operational period as
shown in Figure 15.22.
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Figure 15.21: Decision Surface for the Fuzzy Control of Chemical Dosing
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15.5.2 High-Pressure Control

Control of effective high pressure applied depends on water and salt fluxes,
total dissolved solids, brine discharge, permeate flow, permeate conductivity,
and feed temperature. The task of the fuzzy controller is to adapt to changes in
these variables by recalculating new high pressure applied, taking into account
the maximum allowable operating pressure of the membrane. The defuzzified
output signal of the fuzzy controller was externally fed into a high pressure
valve in the brine stream. This in turn determined the percentage of the opening
or closing of the valve based on the six-input variables.

15.5.2.1 Fuzzy Rule Base

The rule base consisted of rules for the six inputs and one output. The set
point for normal pressure was determined based on initial values of
conductivity, temperature and the effective applied pressure as described
previously. Each parameter causes changes to other variables and, therefore, the
pressure needs to be adjusted accordingly in order to compensate for these
changes and provide a constant water quality — in this case salt rejection.

15.5.2.2 Decision Matrix
The rules are formulated and combined to form a decision table for the fuzzy
controller. Examples of such rules are as follows:

1) If temperature is warm and feed TDS is medium and permeate TDS is
normal and salt passage is high and feed pressure is medium and salt
passage is slightly high, then output is low.

2) If feed TDS is slightly low and permeate flow is high and temperature
is normal or temperature is warm and permeate TDS is medium low
and salt passage is slightly low and feed pressure is normal and
permeate flow is very high, then output is slightly low.

The rules are combined further to form the decision making for the fuzzy
controller that accommodates different situations of the six inputs experienced
by the system. Table 15.4 lists the look up matrix for two-variable input
vectors. The corresponding decision surface is shown in Figure 15.24.



15.5.2.3 Results and Discussion

Changes in temperature, feed TDS, permeate flow, permeate TDS, and
overall system recovery were tested and recorded. Figure 15.25 shows the
conductivity, temperature, and control activity for the high pressure pump. The
system response was then tested by induced variations in TDS and temperature.
Higher feed TDS was induced by feeding the brine concentrate back into the
feed line, resulting in increasing the feed TDS from 37500 ppm to
approximately 40000 ppm. Effects of these changes on permeate flow and
control activity are shown in Figure 15.26. The feed pressure raised from 60 bar
to 63 bar, which resulted in higher permeate flow and compensated for the
changes. Lower TDS was induced by feeding permeate water into the feed
stream. This resulted in reduction in the concentration of the feed from 37500
ppm to approximately 33000 ppm. Effects of lower feed water TDS on permeate
flow and control activity for high pressure were also tested. Lower feed
temperature was induced by cooling the feed water pipe. This reduced the
temperature by approximately 5°C. The water was allowed to go back to a
normal range of 27°C. Effects of these changes and the high-pressure control
activity are shown in Figure 15.27. Changes in feed TDS and feed temperature
had diverse effects on the quality of the product. The salt rejection changed
drastically and caused variations in feed parameters. The results of control
activity of the high pressure due to these changes kept the salt rejection constant
over this period. Figure 15.28 shows the salt rejection at constant level of
98.97%. The permeate flow changed due to changes in TDS and feed
temperature; however, the flow control signal kept the recovery constant. This
will be discussed in detail in the next section.

15.5.3 Flow Rate Control

Control of effective flow rate depends on permeate flow, transmembrane
pressure, scaling index, and recovery. The task of the fuzzy controller is to adapt
to changes in these variables and control the flow rate required for the feed to
the RO membrane. The system continuously monitores and adjusts the flow rate
by adjusting the speed (rpm) of the motor drive. This is done in such a way to
ensure that the recovery remains constant over the normal operational period.
Low permeate flow combined with high salt passage indicates that scaling might
occurs; therefore, the recovery in this case must be lowered. A high differential
pressure across the membrane is caused by the salts deposits or fouling of the
membrane on the feed side. The signal from the FLC drove a variable speed
frequency converter, which in turn determined the flow rate required.

15.5.3.1 Fuzzy Rule Base for Flow Control

The rule base consisted of rules for the inputs such as differential pressure
(AP), feed TDS, salt passage and permeate flow. The set point for normal feed
flow was determined based on initial values of pressure, temperature, and
recovery ratio. Each parameter caused changes to other variables and therefore,
the flow was adjusted accordingly in order to compensate for these changes and



provide a constant water quantity. The output of the system consisted of an
external signal to the frequency controller, which in turn provided a signal (rpm)

to the motor based on concluded output.

Table 15.4: Look-Up Table of Valve Position for Temperature
and Permeate Flow

Permeate Flow
Temperature V Low Low M Low S-Low Design High V. _High
V_Cold VH H H MH MH ML ML
Cold VH H H MH ML ML ML
Medium MH MH MH M M L L
Warm ML ML M M ML L L
Hot L L ML ML L L VL
V_Hot L L ML ML L VL VL
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Figure 15.24: Decision Surface for Control of Valve Position for
Temperature and Permeate Flow.
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Figure 15.27: Effect of Low Temperature on Permeate Flow and
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k2
=}

Salt Passage (%0)

—
=}

1o i T=0 T=0 T30 T&a TEd =0 T20 [
Time (sec)

Figure 15.28: Salt Rejection of the RO System Under Changed
Conditions.

15.5.3.2 Decision Matrix
The rules are formulated and combined to form a decision table for the fuzzy
controller. Examples of such rules are as follows:

1) If recovery is low and permeate flow is low and AP is medium low or
low and TDS is high and scale is medium and salt passage is normal
then speed is fast.

2) If permeate flow is low and feed TDS is medium and AP is high and
temperature is normal and permeate TDS is low and salt passage is
high and feed pressure is high then speed is medium low.

3) If AP is high and permeate flow is slightly low and recovery is
medium-low and TDS is normal and salt passage is normal and feed
pressure is medium high and scale is medium then speed is slow.



The rules are combined further to form the decisionmaking for the fuzzy
controller that accommodates different situations of the six inputs experienced
by the system.

15.5.3.3 Results and Discussion

The speed control response was tested by induced variations in feed TDS,
temperature, flow, and recovery. Effects of these changes and the motor speed
control activity are shown in Figure 15.29. The resulting control activity of the
motor speed kept the recovery and the scale index of the sulfates constant over
the operational period. The system was tested further on high feed TDS for
longer period to induce scale formation. The control activity of both the pH and
the motor speed kept the solubility index at minimum. Figure 15.30 shows the
ion product for CaSO, and overall system recovery.

15.6 APPLICATION OF ANFIS TO RO PARAMETERS

FLC and NN can be integrated to get the strength of each system and provide for
the adaptability and learning aspect to FLC [23]. One of the successful methods
of such integration is done through adaptive neuro-fuzzy inference system
(ANFIS), which can identify the near-optimal membership function for
achieving desired input-output mapping [24]. The network applies a
combination of the least squares method and the back propagation gradient
descent method for training FIS membership function parameters to emulate a
given training data set. The system converges when the RMSE training and
checking error are within limits.

15.6.1 ANFIS Simulation Results

The training data were divided into two sets: training and checking. Each set
contained the desired input-output pairs of the form (Input vector, desired
output). The 200-point input vector included differential pressure and permeate
flow as input vector set and recovery as the desired output. Other input-output
vector pairs included temperature, feed pressure, feed conductivity, and
permeate conductivity as input vectors and salt rejection as the desired output
vector. Figure 15.31 shows the training and checking root-mean-square error.
The initial and resultant final membership functions for two inputs are shown in
Figures 15.32 and 15.33. The results of ANFIS were used to refine the
membership functions of different attributes and resulted in better system
responses of the FLC.

15.7 CONCLUSION

The main feature of the developed intelligent system is its ability to diagnose
and respond to critical variations of key operating parameters to avoid
permanent damage to equipment, materials, or modules. In addition, the system
utilized output of NN predictions of ion product concentration in the brine



stream, as well as online calculated ion concentrations, to control the scale
formation of different salts. The control system adapted for changes in the TDS,
temperature, permeate flow, feed flow, and pH and was able to keep the
recovery ratio at 30% and salt rejection at 98.97% throughout the operational
period. This also kept the solubility concentration well below the saturation
limits for all salts considered. Furthermore, the control of the pH value kept the
CaCQj; ion concentration constant over the operational period.

The use of adaptive neuro-fuzzy inference provided valuable information for
optimal membership functions for key variables. The final membership
functions were utilized in the actual running of the FLC and provided better and
smoother operation, due to overlapping in the regions considered.
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Figure 15.29: Effect of High Permeate Flow on Recovery and Motor
Speed Control Signal.




Recovery (%)

IPc for Ca§04 (10-3)

TG FYS] TZ0 T=0 T30 TE0 TE0 =0 TE0 [=]
Time (sec)
40
20
] LFX¥] T30 T=0 140 &0 TE0 =0 TE0 =3
Time (sec)

Figure 15.30: Ion Product for CaSO4 (Top), and Recovery (Bottom),
Under Changed Conditions.

0.165

018 . . T N W
0 50 100 150 200 250 300
epach
Figure 15.31: ANFIS Training (Top), and Checking
(Bottom) Error Curves for Salt Rejection.

AN

Figure 15.32: Initial Membership Functions for Temperature
and Feed Pressure.



L0 1.0

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

0 0
6.5 T ITE I8 8.5 ol 62 64 b
Figure 15.33: Final Membership Functions Using ANFIS for
Temperature (Left), and Feed Pressure (right).

REFERENCES

1. Hanbury, W.T., Hodgkeiss, T., and Morris R., Desalination
Technology, Porthan Limited, Glasgow, UK, 1993.

2. Ben Hamida A., Seawater Pretreatment for Reverse Osmosis Plants,
The Int. Symp. on Pretreatmenrt of Feedwater for Reverse Osmosis
Desalination Plants, March 31-April 2, Kuwait, 1997.

3. Spiegler, K.S. and El-Sayed, Y.M., A4 Desalination Primer, Balaban
Desalination Publications, Santa Maria Imbaro, Italy, 1994.

4. FILMTECH FT30 Membrane Elements Technical Manual, The DOW
Chemical Company, December 1993.

5. DuPont PERMASEP Products Engineering Manual, Wilmington, DE,
1994.

6. Jafar, M. and Abdel-Jawad, M., Design, Implementation, and
Evaluation of a Fully Automated Reverse Osmosis Plant, Desalination
and Water Reuse, 8(3): 18—19, 1998.

7. Jafar M., Zilouchian, A., Ebrahim, S., and Safar, M., Design and
Evaluation of Intelligent Control Methodology for Reverse Osmosis
Plants, Proc. of the ADA Biannual Conf., Williamsburg, VA, 1998.

8. Lonsdale, H.K., Merten, U., and R.L. Riley, Applied Polymer Science,
Vol. 9 pp. 1341-1362, 1965.

9. Lorch, W., ed., Handbook of Water Purification, John Wiley & Sons,
2" Edition, 1986.

10. Lee, Y.C. and Kim, M., The Effects of Initial Weights on Premature
Saturation in Back Propagation Learning, Int. Joint Conf. on Neural
Networks, Vol. 1, pp. 765-770, Seattle, 1991.

11. Nguyen, D. and Widrow, B., Improving the Learning Speed of 2-Layer
Neural Networks by Choosing Initial Values of the Adaptive Weights,
Proc. of the Int. Joint Conf. on Neural Networks, Vol 3, pp. 21-26,
1990.

12. Baughman, D. R. and Liu, Y. A., Neural Network in Bioprocessing and

Chemical Engineering, Academic Press, San Diego, CA, 1995.



13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

Specht D.F., A General Regression Neural Network, IEEE Trans. on
Neural Networks, 2(6): 568—576, 1991.

Lasdon L., Plummer, J., and A. D. Waren , Non-Linear Programming:
Mathematical Programming for Industrial Engineers, Indus. Eng., 20,
pp- 385-485, 1996.

Wettschereck D. and Dietterich, T., Improving the Performance of
Radial Basis Function Networks by Learning Center Locations, in
Bruce Spatz, ed., Morgan Kaufmann Publishers, Inc., San Mateo, CA,
1133-1140, 1992.

MATLAB Neural Networks Toolbox, Version 3, The Mathworks Inc.
Stone, M., Cross-Validatory Choice and Assessment of Statistical
Predictions J. Royal Stat. Soc., B36, 111-133, 1974.

Ljung, L., System Identification: Theory for the User, Prentice-Hall,
Inc., Englewood Cliffs, NJ, 1987.

Mindler, A. B. and Epstein, A., Measurement and Control in Reverse
Osmosis Desalination, Desalination, Elsevier Science Publishers B.V.,
Amesterdam, The Netherlands, 343-379, 1986.

Mclhenny, W. F., Measurement and Control of Feed Water and
Product Water Composition, Desalination, Elsevier Science Publishers
B.V., Amesterdam, The Netherlands, 445-460, 1986.

Jafar, M. and Zilouchian, A., Design and Implementation of a Real-
Time Fuzzy Controller for a Prototype Reverse Osmosis Plant, Proc. of
the WAC2000 congress on Automation, Maui, June 2000.

Mamdani, E.H., Application of fuzzy algorithms for control of simple
dynamic plant, /EEE Proc., Vol. 121, No. 12, 1974.

Lin C.-T. and Lee, C. S. G., Neural-Network-Based Fuzzy Logic
Control and Decision System, [EEE Trans. on Computers,
40(12):1320-1336, December 1991.

Wang, L.-X. and Mendel, J. M., Back Propagation Fuzzy Systems as
Non-Linear Dynamic System Identifiers, Proc. of the IEEE Int. Conf.
on Fuzzy Sys., San Diego, March 1992.



COMPUTATIONAL
INTELLIGENCE APPROACH
TO OBJECT RECOGNITION

K. C. Tan, T. H. Lee, and M. L. Wang
16.1 INTRODUCTION

Object recognition is an important function required in many intelligent
applications, such as autonomous vehicles, medical diagnosis, security, military
target detection, and etc., [1-3]. These systems are often equipped with multiple
sensors, which can generate data regarding different properties of the scene of
interest. The object recognition problem can be described as identifying the
corresponding object based upon the image data acquired from these multiple
sensors. In many cases, visual information is the most powerful single source of
sensory information available to a system for measurement and object
recognition. The data received from these different sensors, however, often
incomplete, distorted, noisy, or vague. Moreover, the objects to be recognized
can have very different appearances in different conditions, such as viewing
positions, photometric effects (lighting condition), background environment of
objects, or changes in the shapes of objects, which further add to the difficulty of
the problem in object recognition. Therefore, the need of a highly intelligent,
reliable and efficient processing system to recognize objects from these
imperfect data is obvious.

Current research on the topic of object recognition can be roughly divided
into three categories, based upon the concept that regularity across different
views of one object must be exploited in order to recognize an object by
matching the images of the object to the stored internal representation [1]. These
approaches differ in their assumptions and ways of obtaining these regularities.
The first is the invariant properties method [4], which assumes that certain basic
properties remain invariant under the transformations or changes that one object
is allowed to make. The second is called alignment method [5], which
recognizes an object by aligning the images of the object with the corresponding
stored model. The third approach is the object decomposition method [6], which
is based on the principle that an object is constituted by generic components and
the recognition of the object relies on the recognition of these components on
their own.

Object recognition by decomposition of objects into constituent parts
assumes that each object can be broken into a smaller set of generic components.
All the objects in the recognition space can then be described by the different
combination of these basic generic components. Generally, recognition by
decomposition method is achieved in two steps. First, the image data are
transformed to the generic parts that describe the objects, which is often



achieved by edge detectors or segmentation algorithms [5], [7]—10]. The second
step is to combine these parts into a complete object. For this, the approach of
hierarchical features [11], [12] may be employed to repeat the decomposition
process by breaking certain parts into simpler parts. Some low-level parts can be
identified first, and then groups of simple parts are identified together to form
higher order parts. For example, straight line segments are detected as the most
basic parts and then parts such as corners and vertices are obtained according to
the already-detected line segments. Combining these corners, vertices can
identify higher-level structures, such as triangles. Another approach is structural
descriptions [7], [13], which employs relations defined among different parts to
transit the parts to objects. This method assumes that relations among different
parts of an object are easier to capture and thus can be used to recognize an
object. For example, the total number of parts of a given type may be invariant
of the object: a triangle always has three lines, three vertices, and no free line
termination; a human face always has two eyes, one nose, and one mouth at
respective positions.

It is often difficult to recognize objects using parts extracted from multiple
data sources with high confidence value, since data acquired from the imaging
devices are usually imperfect, e.g., the same object can have different images if
the imaging devices are put in different positions. Besides the noise influence
that exists in almost every stage of image acquisition, objects for recognition in
the real world are also often surrounded by environmental objects, which could
result in significant degradation on the image quality. Object recognition using
decomposition method has received significant attention over the years [7],[8],
[13]-[16] and has found physiological supports from research work on the visual
cortex of animals [14], [17]-[18]. However, most of these works only focused on
low level feature extraction (part decomposition) methods via advanced image
processing algorithm. Other procedures such as combining features resulting
from the feature extraction and adaptive adjustment of these feature extractors
are often ignored.

This chapter presents the state-of-art computational intelligent technique for
modulation of feature extractors and high level intelligent combination of
features, based upon the use of fuzzy logic and artificial neural networks. The CI
based approach is appropriate since fuzzy logic provides a means of dealing
with uncertainty, inexactness, and imprecision, which are often encountered
during the data acquisition process in object recognition. On the other hand, the
artificial neural network is a distributed computing model largely inspired from
studies on mechanisms of human neural systems [19]. It is naturally suited for
the task of feature extraction and has been found to offer better results than
traditional symbolic computing approaches for many problems.

16.2 OBJECT RECOGNITION BY NEURAL FEATURE
EXTRACTION AND FUZZY COMBINATION

Based on studies in biology areas, a biological vision system performs
substantial pre-processing of image data to focus attention and exclude any



irrelevant information [17]. Preference is often given to elements in which the
observer is paying attention. Given the same stimulus, the response of certain
neurons might increase dramatically due to the focus of attention. It is believed
that this preferential treatment of stimulus having interest is caused by state
dependent signals, which are originated from visual areas other than the retina,
and are said to modulate the response of neurons to any object on which the
attention is focused. The signals may come from areas in the visual cortex, or
from the higher processing areas in the parietal and temporal lobes. This
phenomenon is called state dependent modulation [17] and is applied in the area
of processing to superimpose its findings or expectations over other areas. This
modulation results in the elevation of areas of interest and suppression of any
unneeded information from the visual data.
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Figure 16.1: A Prototype of Object Recognition by Neural Feature Extractions
and Fuzzy Structural Description.

An efficient approach by means of artificial neural network and fuzzy
reasoning is proposed in this article to generate the state dependent modulation
signals and to improve the feature extraction process. As shown in Figure 16.1,
objects are pre-recognized to obtain the category knowledge of image under
observation and to yield the information for the creation of state dependent
modulation signals. This involves the normalization of image size, filtering of
the image, and categorization. A feature may be defined as a rectangular two-
dimensional window with a width of M; and height of »,. Different features may
have different window sizes and the image to be processed by the feature
extractor is preprocessed to a normalized size and scale of brightness. The
brightest pixel in an image has a value of 255 and the darkest a value of 0. The
feature extraction process is achieved using a multi-layer neural network to
process the information acquired from the imaging devices. After the features
have been extracted from the image data, the results are further processed with
feature fusion processing, which uses fuzzy reasoning to combine the results
based on predefined fuzzy structural description rules to yield the object



recognition results. These fuzzy rules are stored in a rule-base for fuzzy
reasoning as well as for the construction of the required modulation signals and
structural descriptions. Note that different objects have their respective fuzzy
rules and, hence, the recognition process can be executed in parallel for faster
execution time if desired.

16.2.1 Feature Extraction by Neural Network

An Artificial neural network (ANN) is a computing model that uses
statistical properties instead of logical rules to transform information. It is
inspired by the research on neuron physiology and relies on parallel processing
of sub-symbols. The basic computation units, neurons, are modeled as a unit that
can output a stimulus pulse when the input pulses to this neuron reach a
threshold value. The stimulus may come from other neurons or directly from the
environment. The stimulus from other neurons is transferred in weighted
connections between the neurons. In practical applications, the network
topology of these interconnected neurons is often modeled as layered structure.

The proposed neural network for feature extraction has three layers, i.e., one
input layer, one hidden layer and one output layer [19]. The neurons in the input
layer are directly connected to the inputs with appropriate weights without any
activation functions. The neurons in the input layer are fully connected to the
neurons in the hidden layer in the forward direction. The activation functions in
the hidden layer are chosen as “tangent sigmoid” functions. The neural network
has one neuron per input image pixel in the input layer. The image data acquired
to be fed to the neural network can be viewed as a two dimensional matrix with
each cell giving the gray scale of the corresponding pixel. Since inputs to the
neurons in input layers are a one-dimensional array, the two dimensional image
data is thus transformed such that every column of the cells is connected
sequentially so as to form a single new long column. The feature extraction
network is presented with a set of training image samples, which are selected so
that some of them give different views of the features which vary in contrast,
brightness, perspective of view, etc. Also, other training samples are used to
provide feature extraction neural network for learning to distinguish images that
are not views of a feature of interest. Here, the back propagation algorithm [20]
is used to train the weights and biases of the neural network based on
comparison of output values of the network and the target output values, so as to
give a confidence value of one to views of a feature, and a zero otherwise.

To apply the trained neural networks for feature recognition, the image to be
recognized is first normalized to a fixed size. One specific rectangle area of the
image is then clipped out from the image and the data are passed on to the input
layer of the neural network. The neuron network works out the confidence value
in this specific patch of image data for occurrence of the feature that it had
previously learned. Note that the position of the rectangle is controlled by the
mechanism of state dependent modulation, and the final output of the feature is a



value between [0, 1] which stands for the confidence of the desired feature
detected in the input data.

16.2.2 Fuzzy State Dependent Modulation

The idea of state dependent modulation is to focus the attention, or to
concentrate the computational power, on stimulus of interests while ignoring or
give lower priority to other irrelevant stimulus. The focus of processing depends
on the objects on which the attention is focused and the intention of the
observer. In the case of object recognition, a system is required to obtain
information regarding the specifics of objects that can help to recognize the
objects. In the method of recognition by decomposition, especially, the process
before feature combination is to extract features that can be further used in
making decisions. In applications such as autonomous robot, computational
power available for object recognition may be very limited. In order to reduce
the computational effort needed, a good approach is to schedule the feature
extraction processes according to different priorities. Features that are likely to
be useful should be discovered with higher priority, and a larger portion of
computational power should be allocated to these feature extractors. One way of
generating these priority allocation signals is to use the state dependent
modulation signals.

As mentioned in a previous section, the technique of artificial neural network
can be applied to recognize certain features of an object from an image for
feature extraction. Since features are defined in rectanglular windows and the
positions are unknown to the feature extractor, a tedious and time consuming
trial-and-error procedure is therefore needed to determine the position of
features in an image. This, however, could be largely overcome with the use of
fuzzy reasoning [21] as adapted in this work, where state modulation signals are
generated via the approach of fuzzy reasoning. As shown in Figure 16.2, the
priorities and positions of focus centers of feature extractors can be defined by
fuzzy sets. For example, if a face image is presented and used for the
recognition, the priority of EYE feature extractor can be regulated by a fuzzy set
of HIGH PRIORITY; the focus position of left eye should be at the top left in a
human face or, more specifically, a fuzzy set named LEFT EYE POSITION.
The featured extractor is then modulated to focus its computation on left eye
position to extract the left eye feature from a face image running at a higher
priority.

A fuzzy rule that modulates the feature extraction process in face recognition
may be written as

IfFACE OBJECT is YES

then EYE EXTRACTOR PRIORITY is HIGH PRIORITY

if FACE _OBJECT is YES

then EYE EXTRACTOR POSITION is LEFT_EYE POSITION

where LEFT EYE POSITION, YES are two fuzzy sets that give the degree of a
face being presented in an image and the degree of an image being at the left eye



position. HIGH PRIORITY is the measure of priority assigned to a feature
extractor for allocation of the computational power. Here, the degree of an
image is the human face given by another processing module (object pre-
recognition), which gives a maximum confidence value of one and a minimum
confidence value of zero. In the definition of LEFT EYE POSITION, the degree
of membership is given by calculating the percentage divergence of a 2-D

position coordinate from the original coordinate.
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Figure 16.2: State Dependent Modulation by Fuzzy Reasoning.

16.2.3 Combination of Features Extracted from Multiple Sources with
Fuzzy Reasoning

Fuzzy reasoning is an inference process that is capable of processing data in
a way similar to human decision-making. By employing linguistic variables,
fuzzy rules provide a high level and efficient interface for building a system
with human knowledge. In a fuzzy inference system, the implication rule is
represented in a fuzzy relation, and the inferred conclusion is obtained by
applying the compositional rule of inference to the fuzzy implication relation.
These two properties allow fuzzy reasoning capable of making reasonable
inference even when the conditions of an implication rule are only partially
satisfied.

The problem in image data fusion based on the decomposition and feature
extraction model can be expressed as follows: Given a number of L images /,(j =
1,..., L) representing different data on the observed scene, a feature extraction
operation is made to extract a set of features out of them. The value that
associates i™ feature Fi(i = 1,..., N) extracted from the /™ image 1; is expressed as
M;;. At this processing stage, the image data input spaces are transformed to a
feature space. The measures of M are then combined to make decisions
regarding the images to be recognized based on the fuzzy structural description
of objects. Note that each object has a set of rules that describe the object in
generic features and different objects have their respective fuzzy rule sets.



This process can be formulated as: For an object £, a decision C, = F(M,,
Ms,..., Mj,..., M;y) that yields the degree of an object being detected is given
by evaluating its fuzzy description rules. An object is said to be recognized
when the feature measures obtained match a set of fuzzy description rules of an
object. Employment of information from multiple images is achieved in both the
antecedent clauses of fuzzy rules and the defuzzification stage. The Mamdani
fuzzy reasoning model [21] may be employed, which consists of the following
linguistic rules that describe a mapping from U; X U, X...x U, to W:

R;: IF x,is A;y and... and x, is A;- THEN y is C; (16.1)
where x(j = 1, 2, ..., r) are the input variables, y is the output variable, and 4;
and C; are fuzzy sets for x; and y respectively. Given inputs of the form:
X1 iSA’],)CZ iSA'z,...,)C,.iSA’r (162)

where A", A%,..., A', are fuzzy subsets of U, x U, X...x U,, the contribution of
rule R; to the output of Mamdani model is a fuzzy set whose membership
function is computed by

Ko, () = (@ Day, O... Oa,) O, (7) (16.3)

where a; is the matching degree (i.e., firing strength) of rule R;, and a;; is the
matching degree between x; and R;’s condition about x;:

aij = supi/_jA,j (xj) DIJA!/ (xj)} (164)

where [ denotes the “min” operator. The final output of the model is the
aggregation output from all rules using the max operator:

B () = maxttie, ) ey es By 0] (16.5)

Note that the output C is a fuzzy set, which can be defuzzified into a crisp
output using a defuzzification method, such as the center-of-area (COA)
approach [21].

For example, a face may be recognized based on the detection of left eye,
right eye, and mouth at the proper positions of an image. A typical rule to
combine the feature extraction may be

if (LeftEyeFound is HHGH CONFI) and (RightEyeFound is LOW _CONFI)
then FACEFOUND is FACE_ FOUND_MID_ CONFI

where HIGH CONFI, FACE FOUND MID CONFI, and LOW _CONF in the
antecedent clause are linguistic variables that represent the fuzzy sets whose
membership functions determine the degree of features for the respective class
detected. Here, the fuzzy operator “OR” is chosen to combine all information for
the same feature from different sensors, while the fuzzy operator “AND” is used
to make the recognition process more selective and reliable.



16.3 A FACE RECOGNITION APPLICATION

In this section, a face recognition problem is studied to validate the proposed
neural-fuzzy based object recognition methodology. The block diagram of the
proposed methodology is shown in Figure 16.3. Two gray scale images are
acquired by capturing a human face before the cameras in different conditions
and then normalized to a fixed size. The input images are normalized to a fixed
size of 120 x 100, and 256°0f gray level: maximum of 255 for the brightest
pixel, and minimum of 0 for the darkest pixel. The two images for the same face
after the normalization are illustrated in Figure 16.4.
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Figure 16.3:Block diagram of the Neuro-fuzzy Based Face Recognition System.
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Figure 16.4: The Input Image for Face Recognition.



Results obtained after the pre-recognition process of an image are used to
generate the state dependent modulation signals for the feature extractors. The
priorities are graded as 16 levels, in which a priority value of 0 gives the highest
computational power to a feature extractor while a value of 15 gives the lowest.
The fuzzy rules that are used to generate the sate dependent modulation signals
are given as follows:

If FACE_OBJECT is YES
then EYE EXTRACTOR is HIGH PRIORITY
else EYE EXTRACTOR is LOW_PRIORITY

If FACE OBJECT is YES
then MOUTH EXTRACTOR is HIGH PRIORITY
else MOUTH EXTRACTOR is LOW PRIORITY

The membership functions of YES, HIGH PRIORITY, and LOW PRIORITY
are showed in Figures 16.5(a) and 16.5(b), respectively.

05 .

(a) Membership Function of YES.

HIGH PRIORITY LOW PRICRIT.

nap 1

D | 1
0 3 10 13

(b) Membership functions of HIGH PRIOIRITY and LOW _PRIORITY

Figure 16.5: Membership Functions of the State Dependent Modulation Signals.



The result of the object pre-recognition is given as 0.82 and the fuzzy
reasoning for allocating different computational power for the three feature
extractors is given in Table 16.1. Here the three extractors are assigned the same
highest computation priority, as desired. Three neural networks are constructed
and trained to extract the three features from these images. The structure of these
neural networks is summarized in Table 16.2. In each neural network, all
neurons are arranged in layers and fully connected in the feed-forward direction.
The neural network for left eye has a total of 26 x 14 = 104 input neurons, and
each pixel in the window that defines the feature has a corresponding input
neuron in the input layer. The hidden layer has 30 neurons, and the “tangent
sigmoid” activation function is used [19]. The output layer has only one neuron,
where simple “linear” transfer function is employed.

The neural network for extraction of right eye has exactly the same number
of neurons, type of transfer functions, and number of layers. Similarly, the
neural network for mouth extraction has 39 x 20 = 780 neurons at the input layer
and 100 neurons at the hidden layer, respectively. The training of these three
neural networks to recognize the features is performed using standard supervised
back-propagation algorithm [20], which gives a value of 1 when the feature is
presence and a value of 0 otherwise.

Table 16.1: Reasoning Results of State Dependent Modulation

Extractor Priority Priority (0 - 15)
(before rounding) (after rounding)
Left eye 1.62 1
Right eye 1.62 1
Mouth 1.62 1

Table 16.2: Structure Summary of the Neural Feature Extraction

Neural Network| Left Eye Extractor |Right Eye Extractor| Mouth Extractor
Neurons In 26 x 14 =104 26 x 14 =104 39 x20 =780
Input Layer None None None
Neurons In 30, 30, 100,

Hidden Layer | Tangent sigmoid | Tangent sigmoid | Tangent sigmoid
Neurons In 1, 1, 1,
Output Layer Linear Linear Linear
Training Standard Standard Supervised Standard
Method Supervised BP BP Supervised BP

The neural network feature extractors are then executed, which give values
between [0, 1] indicating the confidence degree for each feature to be present in
the image. The feature extraction results are then combined to obtain an overall
recognition output, which indicates the confidence level for recognizing a face
from these two images, i.e., a value of one means maximum confidence that a
face is recognized and a value of zero stands for the lowest confidence. In this



application, the fuzzy description rules used for the combination of feature
extraction results are given as follows:

if (Fy, 1s HIGH _CONFI) or (F,, is HIGH _CONFI))
and ((F\, is HIGH _CONFI) or (Fy, is HIGH CONFI))
and ((F\3 is HIGH _CONFI) or (Fy; is HIGH CONFI))
then FaceFound is HIGH _CONFI

if (Fy1 is LOW_CONFTI) or (F,; is LOW _CONFI))
and ((F1p is LOW _CONFI) or (Fy, is LOW _CONFI))
and ((Fy3 is HIGH _CONFI) or (Fy3 is HIGH _CONFY))
then FaceFound is LOW _CONFI

if (F11 is LOW_CONFI) or (F3; is LOW _CONFI))

and ((F12 is HIGH _CONFI) or (Fy, is HHGH _CONFI))
and ((F13 is HIGH _CONFI) or (Fy; is HIGH _CONFI))
then FaceFound is MID CONFI

if (Fy, is HIGH_CONFI) or (F,, is HIGH _CONFI))
and ((F1, is LOW _CONFI) or (Fy is LOW _CONFI))
and ((Fy3 is HIGH _CONFI) or (Fy3 is HIGH _CONFY))
then FaceFound is MID CONFI

where Fy(i = 1, 2; j = 1, 2, 3) represents the j™ feature extracted from the /"
image. The associated fuzzy membership functions are given in Figure 16.6, and
the overall results of the fuzzy combinations are shown in Table 16.3. It can be
seen that the results give a high confidence value of 0.9 for the first image and a
low value of 0.06 for the second image, as expected. The overall confidence
value of 0.72 for the face recognition indicates that the recognized image
resembles the original image satisfactorily, which is consistent with the quality
of the two images as shown in Figure 16.4.

MIDDLE CONFIDENCE

LOW CONFIDENC HIGH CONFIDENCE

0sfF

LS N

a 01 0z 03 04 05 06 ar 0g 04 1

Figure 16.6: Membership Functions for the Fuzzy Combination of Features.



Table 16.3: Results of the Fuzzy Combination

Feature 1* Image 2" Image
Left Eye 0.90 0.06
Right Eye 0.48 0.96
Mouth 0.91 0.71
Face Recognition Result 0.72

16.4 CONCLUSIONS

A CI based object recognition methodology by decomposition, neural feature
extraction, and fuzzy structural description from multiple sensory data has been
presented. The originality of this article lies in: (1) the feature extraction process
is modulated by state dependent modulation signals inspired by biological
discovery, and (2) the combination of feature extraction results is realized by
fuzzy description rules to address the inherent ambiguity in image data or object
description. State dependent modulation has been employed to generate signals
for facilitating the feature extraction process by scheduling the computational
power between different feature extractors. The validity of the proposed neural-
fuzzy based object recognition technique has been illustrated via an application
example of face recognition.

It should be noted that object recognition by decomposition requires the
objects to have parts clearly distinguishable, which may not be the case for
certain applications. For example, the current decomposition method cannot be
easily applied to objects that do not decompose into parts naturally, i.e., the
decomposition of a loaf of bread. Also, it may be difficult to determine by which
criteria the objects should be decomposed. Low-level description based on
simple generic parts, such as edges and line segments, often results in structural
description that is highly complex, while high-level description often fails to
provide enough distinction between different objects.

In most decomposition descriptions, the constituent parts of an object are
usually considered to have similar significance to the recognition process.
However, this assumption is generally untrue for many applications. For
example, in the recognition of human faces, the recognition of eyes is generally
more important than other parts of the face. This kind of knowledge should be
transferred to the stages of intelligent structural description and recognition.
Also, the knowledge of structural description is mostly based upon human
perception and cognition, which are built upon the sensory inputs of human
beings. It is obvious that the recognition machines have totally different sensory
inputs varying many fold from human beings.” How to bridge these gaps and to
develop a specific knowledge for machine systems will be an interesting topic
for further explorations.
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AN INTRODUCTION TO
1 EVOLUTIONARY
COMPUTATION
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171 INTRODUCTION

Simulated evolution is quickly becoming the method of choice for complex
problem solving especially when more traditional methods cannot be efficiently
applied or produce unsatisfactory solutions [1]. Simulated evolution has been
shown to be a robust method for developing solutions to a wide variety of
complex optimization and machine learning problems [2-7].

Evolutionary computation (EC) is the field of research devoted to the study
of problem solving via simulated evolution. Over the past 30 years the field of
EC has itself been evolving. Originally, the first generation of EC consisted of
three evolution-based paradigms: evolution strategies [8], evolutionary
programming [9], and genetic algorithms (GAs) [4]. Each of these evolutionary
techniques was developed for solving distinct problems [1, 10, 11].

The second generation of EC techniques consisted of a number of new and
equally exciting paradigms. The two most prominent of second generation ECs
were methods that evolved populations of data structures rather than string
representations [6], and GAs that evolved populations of programs (known as
genetic programming) [5, 12]. At present, a third generation of ECs has emerged
with the addition of cultural algorithms [13], DNA-based computing [14],
particle swarm optimization [15], and ant colony optimization [16]. Each of
these methods, like the other ECs of previous generations, has been used to
solve a wide variety of problems.

This chapter will focus on two of the more popular types of EC, GAs and
genetic programming. In section 17.2 we provide an overview of genetic search
and in section 17.3 we present the fundamental theorem that has been used to
explain the search behavior of GAs [17]. In Section 17.4, we provide a brief
introduction to the field of genetic programming and in section 17.5 we provide
a brief summary.

17.2 AN OVERVIEW OF GENETIC SEARCH

GAs [4], as do all EC techniques, differ from more traditional search algorithms
in that they work with a number of candidate solutions rather than just one
candidate solution or partial solution. Each candidate solution of a problem is
represented by a data structure known as an individual. An individual has two
parts: a chromosome and a fitness. The chromosome of an individual is made up
of genes. The values that can be assigned to a gene of a chromosome are



referred to as the alleles of that gene. A group of individuals collectively
comprise what is known as a population. For most GAs, the size of the
population remains constant for the duration of the search.

Individuals selected from the current population, called parents, are selected
based on their fitness and are allowed to create offspring. Usually, individuals
with above average fitness have an above average chance of being selected.
After selection, reproductive operators such as crossover and mutation are
applied to the parents. In crossover, parents contribute copies of their genes to
create a chromosome for an offspring. This is analogous to the way offspring of
living organisms are created as a genetic mixture of their parents. Mutation
requires only one parent. An offspring created by mutation usually resembles its
parent with the exception of a few altered genes.

After the children have been created, the candidate solutions that they
represent are evaluated and each child receives a fitness. Before the children can
be added to the population, some individuals in the current population must die
and be removed to make room for the children. Usually, individuals are removed
based on their fitness with below average individuals having an above average
chance of being selected to die. This process of allowing individuals to procreate
or die based on their relative fitness is called natural selection. Individuals that
are better fit are allowed to live longer and procreate more often.

An interesting aspect of GAs (and EC in general) is that the initial population
of individuals need not be very good. In fact, each individual of an initial
population usually represents a randomly generated candidate solution. By
repeatedly applying selection and reproduction, GAs evolve satisfactory
solutions quickly and efficiently.

GAs can be characterized in terms of eight basic attributes: (1) the genetic
representation of candidate solutions, (2) the population size, (3) the evaluation
function, (4) the genetic operators, (5) the selection algorithm, (6) the
generation gap, (7) the amount of elitism used, and (8) the number of duplicates
allowed.

17.2.1 The Genetic Representation of Candidate Solutions

For most GAs, candidate solutions are represented either by binary or real
coded chromosomes. In binary coded chromosomes [17], every gene has two
alleles. In real coded chromosomes [2, 6, 18], each variable of a chromosome is
represented by one gene. These genes may be assigned any value from a k-
valued set of alleles. Thus, for real coded chromosomes the set of alleles
corresponds to the domain of values that can be assigned to a variable (gene).

It is difficult to compare these two types of representation because,
depending on the problem, one representation may be more appropriate than the
other. However, one advantage of using a binary coded representation is that a
large amount of research has been done on binary coded GAs. Real coded
representations have the advantage of being closer to the way candidate
solutions are expressed in a problem. Real coded representations typically allow
for more accurate solutions as well.



17.2.2 Population Size

The population size [19] is the number of individuals that are allowed in the
population maintained by a GA. If the population size is too large, the GA tends
to takes longer to converge upon a solution. However, if the population size is
too small, the GA is in danger of premature convergence upon a suboptimal
solution. This is primarily because there may not be enough diversity in the
population to allow the GA to escape local optima.

17.2.3 Evaluation Function

The evaluation function of a GA is used to determine the fitness of an
individual. Figures 17.1 and 17.2 show the process that most GAs go through in
assigning a fitness value to an individual. The evaluation function used in
Figures 17.1 and 17.2 determines the fitness of an individual to be f{d(x)) =
d(x)’, where the evaluation function is f{x) = x’ for 2 = x > 1. For binary coded
representations, d(ub,lb,l.x) = (ub-Ib) decode(x)/2'-1 + Ib, where ub denotes the
upper bound of an input value to the evaluation function f, /b denotes the lower
bound of an input value to the evaluation function f, decode returns the integer
equivalent of the binary representation, and / denotes the user specified length of
the chromosome.

In Figure 17.1, the binary coded chromosome, also known as a genotype, of
an individual must first be decoded into a candidate solution (phenotype [3]) that
the individual represents. Next, the candidate solution is evaluated and the result
of the evaluation is assigned as the fitness of the individual. In Figure 17.2, the
real coded chromosome of an individual is actually a phenotype. No decoding is
necessary.

Individual Individual
Chromosome: 00101 Chromosome: 00101
Fitness = 27727 Fitness = 1.35

v A
d(2,1,51,.0106101)= L f(1.16)=135

Figure 17.1: The Fitness Assignment Process for Binary Coded
Chromosomes (ub=2, Ib=1, [=5).



Individual Individual
Chromosome: 1.16 Chromosome: 1.16

Fitness = 7?7?77 Fitness = 1.35

\ 4
£(1.16) = 1.35

Figure 17.2: The Fitness Assignment Process for Real Coded
Chromosomes.

17.2.4 Genetic Operators

Offspring are created as a result of applying genetic operators to individuals
that are selected to be parents. There are basically two types of operators used in
genetic algorithms: crossover and mutation [2, 4, 17]. Crossover operators create
offspring by recombining the chromosomes of selected parents. Mutation is used
to make small random changes to a chromosome in an effort to add diversity to
the population.

Genetic operators tend to be problem specific; however, the two crossover
operators that will be presented have enjoyed a fair amount of success on a
variety of different problems. These operators were originally developed for
binary coded representations but can be applied to real coded representations as
well.

17.2.4.1 Single Point Crossover

The most common type of crossover operator is called single point crossover
[17]. This operator takes two parents and randomly selects a single point
between two genes to cut both chromosomes into two parts. This point is known
as a cut point. The crossover operator then takes the first part of the first parent
and combines it with the second part of the second parent to create the first
child. Then, in similar fashion, the crossover operator takes the second part of
the first parent and combines it with the first part of the second parent to create a
second child. Figure 17.3 shows an example of how the single point crossover
operator works. The cut point in Figure 17.3 is between the third and fourth
genes. The first three genes of Parent] are combined with the last four genes of
Parent2 to create Childl. To create Child2, the first three genes of Parent2 are
combined with the last four genes of Parentl. Notice that single point crossover
can only generate a subset of all possible offspring of two parents. This is
because two parents can only be crossed over at one point. For example, Parentl
and Parent2 are unable to produce 1010011 because this would require more
than one cut point. Figure 17.4 shows how single point crossover can be applied



to real coded representations. In Figure 17.4, the alleles for each gene are taken
from the set {0, 1, ..., 9}. As in Figure 17.3, the cut point is between the third
and fourth genes.

17.2.4.2  Uniform Crossover

Parentl 1000010
Parent 2 1110001
Chil d1 1000001
Chil d2 1110010

Figure 17.3: An Example of Single Point
Crossover Between the Third and Fourth Genes
Applied to Binary Coded Chromosomes.

Parent 1 0123456
Parent 2 7890123
Chil d1 0120123
Chil d2 7893456

Figure 17.4: An Example of Single Point

Crossover Between the Third and Fourth Gene

Applied to Real Coded Chromosomes.
Another type of crossover used in many GAs is called uniform crossover [11].
In uniform crossover, the value of each gene of an offspring’s chromosome is
randomly taken from either parent. This process can be repeated to create a
second offspring. Uniform crossover is able to produce all possible offspring of
two parents. Notice in Figure 17.5 that the value of each gene of Childl has
been taken randomly from one of the corresponding genes of the parents. Also
notice that Childl could not have been created using single point crossover.
Figure 17.6 shows how uniform crossover can be applied to real coded
chromosomes.

Parent 1 1000010
Parent 2 1110001
Chil d1 1010011

Figure 17.5: An Example of Uniform Crossover
Applied to Binary Coded Chromosomes.



Parent 1 0123456
Parent 2 7890123
Chil d1 0893156

Figure 17.6: An Example of Uniform Crossover
Applied to Real Coded Chromosomes.

17.2.4.3 Mutation

In mutation, each gene of an offspring is mutated based on, p,, the mutation
rate [17]. In Figure 17.7, Childl and Child2 are created via single-point
crossover and mutation. The cut point is between the third and fourth gene. Each
gene of each offspring is mutated with a mutation rate of 0.01. Notice that
Childl was 1000001 after Parentl and Parent2 were crossed but had its fourth
gene mutated making it 1001001. Similarly, Child2 was 1110010 after Parentl
and Parent2 were crossed but had its first and fifth genes mutated, making it
0110110. Notice that even though the mutation rate is 0.01 it is possible for
more than one gene to be mutated because every gene is mutated with the same
probability. Figure 17.8 is the same as Figure 17.7 except that single point
crossover with a mutation rate of 0.01 is performed on real coded chromosomes.
Notice that the fourth gene of Childl and the first and fifth genes of Child2 are
mutated by randomly selecting a value from alleles of those genes. A better
method of mutating real coded chromosomes is to use Gaussian mutation rather
than uniform mutation [3].

Parent1 1000010
Parent 2 1110001
Chil d1 1001001
Chil d2 0110110

Figure 17.7: An Example of Single-point Crossover
Between the Third and Fourth Genes with a Mutation
Rate of 0.01 Applied to Binary Coded Chromosomes.

17.2.5 The Selection Algorithm

Every GA has a subprocedure, called its selection algorithm [20], which is
used to select parents from the current population to be mated with one another



to create children that are then evaluated and included in the next population of
individuals.

The selection of an individual to become a parent is primarily based on
fitness. The better an individual’s fitness the greater its chance of being selected
to be a parent. The rate at which a selection algorithm selects individuals with
above average fitness is commonly referred to as its selective pressure [6]. The
rate at which individuals with below average fitness are selected is commonly
referred to as the algorithm's diversity of selection. If the selection algorithm
does not provide enough selective pressure, the population will fail to converge
upon a solution. If there is too much selective pressure, the population may not
have enough diversity and converge prematurely.

GA researchers have developed a variety of selection algorithms that provide
the type of harmony between selective pressure and diversity needed to enable
GAs to search efficiently and robustly. There are basically three types of
selection algorithm: (1) proportionate selection, (2) linear rank selection, and (3)
tournament selection.

Parent 1 0123456
Parent 2 7890123
Chil d1 0125123
Chil d2 4 89 3056

Figure 17.8: An Example of Single point Crossover
Between the Third and Fourth Gene with a Mutation
Rate of 0.01 Applied to Real Coded Chromosomes.

17.2.5.1 Proportionate Selection

In proportionate selection [20], individuals are selected based on their fitness
relative to all other individuals in the population. Proportionate selection works
as follows. First, S, the sum of the fitnesses of the individuals in the population,
is computed. Then a number, R, is randomly selected within the interval [0..5].
Once R has been randomly selected, the fitnesses of individuals chosen at
random are added to an accumulator, 7, until 7 = R. The individual whose
fitness, when added to T causes T = R, is selected to be a parent. To select
another parent another R is randomly selected, 7 is reset to zero, and the process
is repeated.

This process of selecting parents is similar to spinning a roulette wheel to
determine which individual is chosen to be a parent. The better is an individual's
fitness the bigger is the piece of the roulette wheel that is taken up by the
individual and the greater is the probability that it will be selected as a parent.

One advantage of using proportionate selection is that its selective pressure
varies with the distribution of fitness within a population. A disadvantage is that,



as the population converges upon a solution, the selective pressure decreases.
This loss of selective pressure may not allow the GA to find better solutions.

17.2.5.2 Linear Rank Selection

In linear rank selection [2, 6, 17, 20, 21], the current population of
individuals is first sorted from best to worst by order of the fitness they received
from the evaluation function. Then each individual in the population is assigned
a new fitness, called its subjective fitness (to distinguish it from the candidate
solution’s raw fitness which is often called its objective fitness), based on
applying a linear ranking function to the rank of the individual within the current
population. Equation 17.1 is an example of a linear ranking function where max
and min represent the maximum and minimum subjective fitness determined by
the user, 7 is the rank of an individual, P is the population size and sf{r) is the
subjective fitness assigned to the individual ranked r in a population:

sf(r)= (P-r)(max-min)/(P-1) + min. (17.1)

The slope of the above linear ranking function is (max-min)/(P-1). By
assigning values to max, min, and P the user is able to determine the slope of the
linear ranking function which in turn determines the selective pressure of linear
rank selection.

Once subjective fitness values are assigned to the individuals in a population,
parents are selected by spinning a roulette wheel similar to the roulette wheel
used in proportionate selection. An advantage of using linear rank selection is
that the selective pressure, once determined by the user, remains constant.
However, a disadvantage is that the population must be sorted. Another
disadvantage is that individuals with the same fitness will not have the same
probability of being selected.

17.2.5.3 Tournament Selection

In tournament selection [6], one parent is selected by randomly comparing b
individuals in the current population and selecting the individual with the best
fitness. A second parent may be selected by repeating the process. The selection
pressure of tournament selection increases as b increases. Perhaps the most
widely used type of tournament selection method is called binary tournament
selection. In binary tournament selection, » is equal to two. Of the three
selection algorithms presented, tournament selection is the most popular method
because of its simplicity.

17.2.6 Generation Gap

The generation gap [2, 17] is a real number between 0.0 and 1.0 that
represents the fraction of the current population that gets replaced by the
offspring. For example, let the population size be 20 and the generation gap be
1.0. This means that, each generation, 20 offspring will be created and that these
20 offspring will replace the 20 individuals of the current population. When the
generation gap is somewhere between 0.0 and 1.0 it is necessary to determine



which individuals in the current population die. Various approaches have been
developed [11] for selecting which individuals will be allowed to be present in
the next population and which individuals will be replaced. The most common
and probably the easiest strategy is to replace the worst individuals of a
population. It is not uncommon to see GAs which only replace one or two
individuals per generation. These types of GAs are called steady state GAs.

17.2.7 Elitism

Elitism [2, 17] can also be considered as a real value between 0.0 and 1.0.
This value represents the fraction of the best individuals of a population that will
not get selected to die. For example, if the population size is 20 and the elitism is
0.1, the best two individuals of the current population do not get replaced.

17.2.8 Duplicates

Individuals that represent the same candidate solution are known as duplicate
individuals. It has been shown [2] that eliminating duplicates increases the
efficiency of a genetic search and reduces the danger of premature convergence.

17.3 GENETIC SEARCH

The simple genetic algorithm (SGA) [17, 19, 23] is a well known class of GA.
SGAs are called simple because they use a binary coded representation,
proportionate selection, single-point crossover, mutation, a generation gap of
1.0, elitism of 0.0, and allow an unlimited number of duplicates. Robust
parameter settings [22] for population size, crossover, and mutation are within
the intervals of [20..50], [0.6..0.95] and [0.001..0.09]. In SGAs, once these
parameters are set they remain static.

The Schema Theorem [4] has been used by many GA researchers [2, 17, 20,
23, 24] to explain the quick and efficient search of SGAs and GAs in general. A
schema is a similarity template that resembles a chromosome with the value of
each gene being either the ‘don't care’ symbol, #, or a value from the set of
alleles of that gene. Chromosomes that belong to the set defined by a schema are
called instances or representatives of that schema. A schema has six properties:
its base, its defining length, its order, the number of instances it defines, the
number of instances it defines within a population, and the average fitness of the
instances it defines within a population.

The base of a schema is the cardinality of the largest domain of values (or set
of alleles) for a variable (or gene) of a candidate solution (or chromosome). For
example, schemata represented by binary coded chromosomes are base 2
schemata. This means that each position of a base 2 schema can take on one of 3
values which make up its alphabet: the 2 values in the set of alleles for each
gene and the “don't care” symbol, #. In general, base n schemata represent
chromosomes where the cardinality of the set of alleles for each gene is n. This



means that each position of a base n schema can take on one of (n+1) values
which make up its alphabet.

To illustrate the other five properties of schemata, let H = #1##10 be a base 2
schema with the alphabet {#, 0, 1}. The defining length of H, &(H), is the
distance between the outermost nonwildcard values. The defining length of H is
6-2=4 because the outermost nonwildcard values correspond to the second and
the sixth positions when counting from left to right.

The order of a schema, o(H), is the number of nonwildcard symbols in the
schema. Therefore o(H) is equal to 3. The number of instances of a schema is a
function of its defining length and order. A schema, H, represents exactly P
binary coded instances where / is the length of each chromosome. The number
of instances of a schema, denoted m(H,?), and the average fitness of those
instances, denoted f(H,?), for any population ¢ are two properties of a schema
that are dynamic. As individuals of a population die and are replaced, the
number of instances that some schemata represent within a population may
increase or decrease. As schemata gain and lose instances, their average fitness
will tend to fluctuate as well.

To demonstrate how SGAs search based on the Schema Theorem, let f;,4()
represent the average fitness of all schemata with at least one instance in
generation ¢, let p, represent the rate that single-point crossover is used, and let
Dy represent the mutation rate. Also, assume that better individuals have larger
fitness values assigned to them.

A selection algorithm that selects binary coded individuals based on fitness
also implicitly selects schemata based on their average fitness. If an individual
has an above average fitness, then that individual has an above average chance
of being selected to reproduce. Similarly, if a schema has a “better than
average” fitness then it has a “better than average” chance of being present in
the next generation. For now let us envision an SGA with no genetic operators.
The selection algorithm of this SGA selects a new population from the old
population. For example, if the population size were 20 then the 20 parents
selected would form the next population. Since SGAs allow duplicates, a
population would eventually evolve where every member is a duplicate. For this
SGA, we can predict the number of instances of schema H there will be in a
population at generation #+/ by the following equation:

mH,+1) = m(H,) fHY / fonel0). (17.2)

The fraction f{H,t) / f,.,(t) represents the probability that an instance of / will be
selected to be a parent.

Since better than average individuals have a better than average chance of
being selected to be a parent, let us suppose that at generation ¢ there is a
schema, H, whose average fitness exceeds the average fitness of all schemata
within the population by some constant ¢ (where ¢>0). We can rewrite the
previous equation as:

m(H,t+1)=m(H,1) (fave(t)+farg(t)) / fave()- (17.3)
By factoring out f;,.(?) we can reduce Equation 17.2 to:
m(H,t+1)=m(H,t)(1+c). (17.4)



Now suppose that there is at least one instance of H at generation t=0. Then
m(H,0)>0, and we can rewrite Equation 17.4 in the following manner:

m(H,t)=m(H,0)(1+c)" (17.5)

Equation 17.5 shows that a selection algorithm that selects individuals in
proportion to their fitness actually allocates exponentially increasing trials to
above average schemata. In GAs, this process of allocating exponentially
increasing trials to above average schemata is done for a large number of
schemata at the same time and is referred to as implicit parallelism [24, 25].

GAs need to use genetic operators in order to create new individuals;
however, genetic operators can disrupt schemata. A disrupted schema is one that
loses instances due to the application of genetic operators. In order to predict
how many instances of a schema will be present in a population at generation
t+1, the probability that a schema does not get disrupted must be figured into
Equation 17.2. Let py represent the crossover rate and let p, represent the
mutation rate.

The probability that schema H does not get disrupted by using single point
crossover depends on the number of cut points within an individual's
chromosome, &(H), and py. A chromosome with / genes has /-1 cut points. A
schema is disrupted via single point crossover when a cut point is generated
between its two defining positions. The probability of H surviving single point
crossover, Sy(H), is

Sy(H) =1- [pyS (H)/(I-1)]. (17.6)

Mutation can also disrupt a schema when it changes the value of a
nonwildcard symbol within the schema. This depends on o(H) and p,. The
probability that /7 will survive mutation, S,(H), is

Su(H) = (1- pp )*™. (17.7)

By figuring the probability that a schema will not be disrupted by single
point crossover and mutation into Equation 17.2, we can predict a lower bound
on the number of instances of a schema that will be in the population at
generation ¢+/ by the following equation:

m(H,t+1) 2m(H,0) [H)0) Sy(H) Su(H) . (17.8)

Equation 17.8 is called the Schema Theorem. It is also known as the
Fundamental Theorem of Genetic Algorithms. By observing Equation 17.8 more
closely one can see that some schemata have a greater probability of losing
instances while others have a greater probability of gaining instances. In fact,
one can see that the schemata with the greatest probability of gaining instances
are those schemata that have a short defining length, a low order, and have an
above average fitness. This observation forms the basis of what is known as the
building block hypothesis. This hypothesis says that GAs converge upon
solutions by actually building them from the bottom up. The Fundamental
Theorem of Genetic Algorithms shows how building blocks of a particular



problem can be placed together to build larger building blocks ultimately
resultingin the GA's development of a solution.

17.4 GENETIC PROGRAMMING

Genetic programming is an attempt to apply the given notion, “How can
computer programs learn to solve problems without being explicitly
programmed?” [26]. According to Koza [5], founder of genetic programming,
allowing computers to seek solutions in the form of programs is the basis for
achieving nonexplicit programming.

17.4.1 Structure Representation

The structures undergoing adaptation in genetic programming are noted as
hierarchically formed programs (individuals represented in parse tree form)
which dynamically change size and shape. The set of possible structures in
genetic programming is primarily based on the set of all possible valid
compositions that can be constructed from the set of n problem dependent
functions from F = {f;, f5, ..., f,} and the set of n terminals from 7 = {7,, t,,..., t,}.

Arithmetic operations, conditional operators, mathematical and Boolean
operations, or any defined functions specific to the problem may describe
functions within the function set. They may also refer to standard programming
operations. Each respective function takes a prespecified number of arguments,
primarily based upon its operability, which can be either terminals or other
functions.

Terminals within the terminal set may represent a variety of atoms that are
generally problem dependent. These atoms are either represented in constant or
variable form. Generally, terminals can be viewed as the inputs to the as-yet-
undiscovered computer program.

Consider the following function (F) and terminal (7) sets: F' = {+ -, sqrt},
and T = {4, B, C, 1. The representation of a possible structure that may be
generated from these sets is shown in Figure 17.9. We refer to this type of
representation as a rooted point labeled tree with ordered branches. Note that
the internal points in the tree are denoted by functions, and terminals denote the
external points (leaves).

17.4.2 Closure and Sufficiency

When determining the function and terminal sets, the satisfaction of the
closure and sufficiency properties is desirable. The closure property requires that
each element being a member of the chosen function set be able to accept any
function or terminal in their respective sets. More specifically, each function
should be well defined. In practical problems, however, this property is difficult
to satisfy. Thus special approaches or provisions are frequently used to preserve
closure. Consider a problem where the division operator is present in the
function set. One case, when zero is randomly chosen as the divisor, is



considered undefined. The use of a protected division operator is a simple
approach that effectively guarantees closure. Consequently, when zero is
encountered, the use of the operator automatically returns a value of one.

The second desirable property that should be satisfied is sufficiency. The
terminal and function sets chosen for a problem being capable of generating a
solution to the problem characterizes sufficiency. Expert knowledge of a
particular problem generally allows the user’s chosen sets to satisfy this
requirement.

17.4.3 Fitness Evaluation

The fitness measure for a given application can be described as the driving
mechanism for the evolutionary process. This measure basically determines the
probability of an individual surviving to the age of reproduction and
successfully reproducing. The nature of the fitness measure varies with the
problem. Considering that it is fully defined, the fitness measure should be
capable of evaluating any individual that it encounters within a run. Usually
fitness is evaluated over a set of fitness cases that is generally chosen to
sufficiently represent the domain space. This serves as the basis for generalizing
evolved individuals to the entire search space.

ONOFTHIO.

(A +B) O[sqrt (3.142) + B]

Figure 17.9: Illustration of Parse Tree Structure.

17.4.4 Genetic Operators

The initial populations in genetic programming are produced by randomly
generating computer programs composed of functions and terminals appropriate
to the problem domain. Thus, the initial population is a blind search of the
search space of the problem represented as computer programs. However,
breeding of successive generations is done by using three primary genetic
operators: Darwinian reproduction, crossover (sexual recombination), and
mutation. The use of Darwinian reproduction increases the probability of
stronger individuals (programs having higher fitness) receiving multiple copies
in the next generation while the weaker individuals receive fewer copies and
eventually become extinct. The use of crossover provides variation in the
population by producing offspring that are essentially a product of genetic
material taken from its two parents. Figure 17.10 shows an example of this type
of recombination using the same function and terminal sets used in Figure 17.9.



Note that, unlike the ordinary genetic algorithm, genetic programming allows
the flexibility of mating individuals to cross material at different points. This
provides greater flexibility in sampling the search space as well as enhances the
opportunity for genetic programming to deliver some counterintuitive solutions.

Finally, to reintroduce diversity in a population that may tend to converge
prematurely, the mutation operator is introduced. Mutation is implemented by
performing random alterations in the program structures.

17.5 SUMMARY

In this chapter we provided a brief introduction to the field of EC and an
overview of GAs. We also presented the fundamental theorem of GAs, the
Schema Theorem, which describes the behavior of genetic search. Finally, we
provided a brief overview of another EC technique for which research interest is
rapidly growing, genetic programming.

Presently, there is a promising trend underway. Researchers are now
combining evolutionary, neural, and fuzzy computing techniques to form hybrid
systems that are even more efficient and robust [27, 28]. In the chapters to
follow, the reader will be introduced to a number of these exciting new hybrids.

Parent 1 Parent 2 Offspring

Q) @, 0,
) ) OBENO, G ()

O Pe® ® Da® ) @
o) (o) G

Figure 17.10: Crossover in Genetic Programming.

ACKNOWLEDGMENTS

This work is partially funded by grants from NASA Autonomous Control
Engineering Center (ACE) at North Carolina A&T SU under grant # NAG2-
1196 and NASA Dryden Flight Research Center under grant # NAG4-131. The
authors wish to thank the ACE Center and NASA Dryden for their financial
support. A portion of the research described in this chapter was performed at the
Jet Propulsion Laboratory, California Institute of Technology, under contract
with the National Aeronautics and Space Administration.

REFERENCES

1. Back, T., Hammel, U., and Schwefel, H.P., Evolutionary Computation:
Comments on the History and Current State., [EEE Trans. on
Evolutionary Computation, Vol. 1, No. 1, 3-17, 1997.



10.

11.

12.

13.

14.

15.

16.

17.

18.

Davis, Lawrence, Handbook of Genetic Algorithms, Van Nostrand
Reinhold, New York, 1991.

Fogel, D. B., Evolutionary Computation: Toward a New Philosophy of
Machince Intelligence, IEEE Press, 1995.

Holland, J. H., Adaptation in Natural and Artificial Systems, University
of Michigan Press, Ann Arbor, MI, 1975.

Koza, J.R., Genetic Programming: On the Programming of Computers
by Natural Selection, MIT Press, Cambridge, MA, 1992.

Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution
Programs, nd ed., Artificial Intelligence Series, Springer-Verlag,
Berlin, 1994.

Spears, W.M., De Jong, K.A., Béck, T., Fogel, D.B., and De Garis, H.,
An Overview of Evolutionary Computation, Proc. of the 1993
European Conf. on Machine Learning, 442-459, 1993.

Back, T., Hoffmeister, F., and Schwefel, H.-P., A Survey of Evolution
Strategies, Proc. of the Fourth Int. Conf. on Genetic Algorithms, 2-9,
Morgan Kaufmann Publishers, San Francisco, CA, 1991.

Fogel, L.J., Owens, A.J., and Walsh, M.l., Artificial Intelligence
Through Simulated Evolution, John Wiley & Sons, NY, 1966.

De Jong, K. and Spears, K., On the State of Evolutionary Computation,
Proc. of the Fifth Int. Conf. on Genetic Algorithms, 618-623, Morgan
Kaufmann Publishers, San Francisco, CA, 1993.

Syswerda, G., Uniform Crossover in Genetic Algorithms. Proc. of the
Third Int. Conf. on Genetic Algorithms, 2-9, Morgan Kaufmann
Publishers, San Francisco, CA, 1989.

De Garis, H., Genetic Programming: Modular Evolution of Darwin
Machines, Proc. of 1990 Int. Joint Conf. on Neural Networks, 194-
197, 1990.

Reynolds, R.G., An Introduction to Cultural Algorithms, Proc. of
Evolutionary Program, (EP-94), 131-139, San Diego, CA, 1994.
Adleman, L.M., Molecular Computation of Solutions to Combinatorial
Problems, Science, Vol. 266, 1021-1024, 1994.

Kennedy, J. and Eberhart, R., Particle Swarm Optimization, Proc. of
the 1995 IEEE Int. Conf. on Neural Networks, 1942-1948, 1995.
Dorigo, M. and Gambardella, L.M., Ant Colony System: A
Cooperative Learning Approach to the Traveling Salesman Problem,
IEEE Trans. on Evolutionary Computation, Vol. 1, No. 1, 53-66, 1997.
Goldberg, D. E., Genetic Algorithms in Search, Optimization &
Machine Learning, Addison-Wesley Publishing Company, Inc.,
Reading, MA, 1989.

Eshelman, L. J. and Schaffer, J. D., Real-Coded Genetic Algorithms
and Interval Schemata, in Foundations of Genetic Algorithms II,
Whitley, L.D., (ed.) Morgan Kaufman Publishers, San Francisco, CA,
1993.



19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Schaffer, J. D., Caruna, R., A., Eshelman, L.A., and Das, R., A Study
of Control Parameters Affecting Online Performance of Genetic
Algorithms for Function Optimization, Proc. of the Third Int. Conf. on
Genetic Algorithms, 51-60, Morgan Kaufmann Publishers, San
Francisco, CA, 1989.

Baker, J. E., Reducing Bias and Inefficiency in the Selection
Algorithm, Proc. of the Second Int. Conf. on Genetic Algorithms and
Their Appl., 14-21, Erlbaum, Cambridge, MA, 1987.

Whitley, D., The Genitor Algorithm and Selection Pressure: Why
Rank-Based Allocation of Reproductive Trials is Best, Proc. of the
Third Int. Conf. on Genetic Algorithms, 116-121, Morgan Kaufmann
Publishers, San Francisco, CA, 1989.

Grefenstette, J.J., Optimization of Control Parameters for Genetic
Algorithms, [EEE Trans. on Sys., Man & Cybern. SMC-16, Vol. 1,
122-128, 1986.

Bridges, C. L. and Goldberg, D. E., An Analysis of Reproduction and
Crossover in a Binary-Coded Genetic Algorithm, Proc. of the Second
Int. Conf. on Genetic Algorithms, 9-13, Erlbaum, Cambridge, MA,
1987.

Grefenstette, J. J. and Baker,L. How Genetic Algorithms Work: A
Critical Look at Implicit Parallelism, Proc. of the Third International
Conference on Genetic Algorithms, 20-27, Morgan Kaufmann
Publishers, San Francisco, CA, 1989.

Vose, M.D., Generalizing the Notion of Schema in Genetic Algorithms,
Artif. Intell., 50, 385-396, 1991.

Samuel, A., Some Studies in Machine Learning Using the Game of
Checkers, IBM J. of Res. and Develop., 3(3),210-229, 1959.
Homaifar, A. and McCormick, E., Simultaneous Design of
Membership Functions and Rule Sets for Fuzzy Controllers Using
Genetic Algorithms, IEEE Trans. on Fuzzy Systems, Vol. 3, No. 2, 129-
139, 1995.

Yao, X., Evolving Artificial Neural Networks, Proc. of the IEEFE,
87(9), 1423-1447, September, 1999.



EVOLUTIONARY CONCEPTS
FOR IMAGE PROCESSING
APPLICATIONS

Madjid Fathi and Lars Hildebrand

18.1 INTRODUCTION

This chapter describes how evolutionary concepts can be used to improve the
performance of operators for image processing applications. The evolutionary
concepts are based on evolution strategies, which are ailmost unknown outside
Europe and explained in more detail here. Evolution strategies provide a good
alternative to genetic algorithms if real valued problems have to be solved. This
chapter gives an overview of evolution strategies. These principles are
described using mathematical formulas as well as two- and three-dimensional
example diagrams. The second part of this chapter consists of two applications
examples in which evolutionary concepts are applied.

182 OPTIMIZATION TECHNIQUES
18.2.1 Basic Typesof Optimization M ethods

The term “optimization” is understood as the process by which the most favor-
able parameters for a system are chosen with respect to the system’s objective
function while taking the restrictions into account. If the structure of such asys-
tem can be formulated in the form of a mathematical model and a quantitative
description of the optimal state can be given, then optimization procedures can
be developed to determine the values of the parameters needed to reach the opti-
mal state of the system. If the optimal state is defined by a single value or a set
of individual values, then the optimization procedure used is called parameter
optimization. If the optimum is defined by afunction, then the procedure used is
called functional optimization. If, in the following discussion, the word optimi-
zation is used, it will always refer to parameter optimization.

The optimization is either alinear or a nonlinear optimization depending on
the kinds of restrictions. Nonlinear optimizations can be further divided into two
classes: convex and concave. For a characterization of these classes, see[1].



18.2.2 Deterministic Optimization Methods

All optimization methods in which the changes in the variables during an opti-
mization phase are determined in a deterministic fashion are united under the
general term “deterministic optimization methods’. This means that for an ini-
tial state Z,, of an optimization problem, the state Z; can always be reached in
the same manner. The path from the initial state Z to the optimal state Z .,
is always reached through the same intermediate states Z; . A complete opti-
mization isuniquely characterized by the optimization method used, the corre-
sponding control parameters, and the states Z, and Z . In the following
text, afew examples of deterministic methods are given [2]

18.2.2.1 Minimization in the Direction of the Coordinates

Given isthe function F(X) and a starting point x,. Starting at this point,
the minimum X, is searched for in a specific direction. From this new point, a
new minimum X, is searched for in a new direction, etc. Any direction at all
can be chosen, but it must be ensured that the sequence of directions chosen
includes all dimensions of the search space. One possible sequence of search
directionsisgivenin[3]: The unit vectors of the coordinate system are chosen
one after the other as the direction for the search. If the search has gone
through al elements of the base vector, then one starts again with the first ele-
ment chosen. This procedure ends when the distance between two vectors
found, %, _,; and X;, does not exceed a certain length €, i.e. HX —X; H <e
where Hki -X H |sthe distance between the two points X, _; and X; inthe
n-di mensional space.

18.2.2.2 Minimization in the Direction of the Seepest Sope

Again, the function F(X) and a starting point X, are given. To reach the
minimum of the function F(X) from apoint, one only hasto follow the neg-
ativegradient b = —VF(X) . The minimum X, inthedirection of VF(X,) is
determined, and from this point the minimum X, in the direction of VF(X,)
is determined, etc. These steps are repeated until a point XO ; isreached which
corresponds to the minimum within a certain tolerance range

One characteristic of this method is that the search directions are always
perpendicular to each other because the search for the minimum near x; inthe
direction b;_; means that the derivative of the function in the dlrectlon of
bj_, isOat X, i.e. B|_1VF(X) = 0 istrue, meaning that the gradient is
perpendicular to Bl _1. A disadvantage of this method is that the direction of
the search cannot be adjusted according to the function, resulting in the fact
that the method converges to the minimum slowly [3]. Path of optimization is
in the direction of the steepest slope.



18.2.2.3 Smplex Minimization

The EVOP (Evolutionary Operation) optimization method has been
expanded by Spendley, Hext, and Himswoth to become the so called simplex
method [4] - [6]. When applying the simplex method in an n-dimensional
space, the simplest geometric figure that can be made with n+ 1 vertices is
drawn, although this figure cannot be drawn in an n—1-dimensional space
anymore. A simplex in atwo- dimensional space is atriangle, asimplex in a
three-dimensional space is a tetrahedron, and for higher dimensional spaces,
thereis no visual representation of the corresponding simplex anymore. A reg-
ular smplex is a simplex for which all vertices of the figure are equidistant
from each other.

Starting with arandomly chosen regular ssimplex, the values of the function
at the n+ 1 vertices of the simplex are evaluated. The point with the worst
value of the function is thrown out, and a new vertex point is determined
which corresponds to the projection of this point through the center of gravity
of the surface defined by the remaining n points. In the course of the optimi-
zation process, it can occur that the reflected point is the worst point of the
new simplex. In this case, the process will oscillate. In order to avoid this, the
second worst point will be reflected instead of the worst point. If the process
approaches the optimum, then the succession of new simplexes will rotate
around one vertex. If the succession of rotating simplexes reaches the initial
simplex of the rotation, then the length of the edges of the last smplex are
halved and the process continues until a certain break criteriais reached.

A disadvantage of this optimization method is the fact that the size of the
simplexes can only be reduced, thereby reducing the step size when approach-
ing the optimum. An enlargement of the ssimplex is not taken into account, and
if the size of the initial simplex istoo small or one of the smplexes created
during alocal optimization liesin an area of steeply doped gradients, then the
process will converge slowly.

18.2.3 Probabilistic Optimization M ethods

In contrast to the deterministic optimization methods, probabilistic optimi-
zation methods contain at least one random component or a corresponding cal-
culation step [7] - [11]. At thispoint, it isimportant not to assume that the term
random means without having any specific plan in mind. The term probabilis-
tic is not used to identify methods that randomly evaluate points in the search
space without following a certain strategy or without learning after each step.
An example of such a method is the blind search method thought out by
Brooks. This method will be explained in a little more detail here in order to
differentiate it from probabilistic optimization methods [11].

The starting point is an n-dimensional vector which is restricted by n
intervals a; < Xi < b;, where a;#b, and ie {1,..,1 . The minimum of



F(X) within the bounds of thisinterva is to be determined. A few points are
chosen at random and evaluated to do this. The probability density for points
outside the interval bordered by a; < Xl < b; are set to 0, and inside this area
the densities are evenly distributed so that the following istrue:

p(X) = 17V, foral a; <x'<b, ’ (18.1)

0, else

whereby V isthe volume of the n-dimensional space created by the interval.
Thisis calculated using

n
V= Hi:l(bi_ai)' (18.2)

The point with the smallest value of the function is considered to be the
optimum. Due to the random control characteristic of this optimization
method, only one probability can be given which describes whether or not the
optimum will be found within N attempts. To determine this, a new volume v
is selected which contains al points in the search space that fulfill the condi-
tions for the optimum. The probability that the optimum can be found within
N attemptsisthen determined by

p=1-(1-vW" (18.3)

For low dimensional search spaces, this method appears to be promising.
For a desired determination probability p of 0.99 and a target volume v
where v = V/100, the number of attempts N can be determined using

N = n(d-p) (18.)
In(l - \—\;)

resulting in N = 459. In addition, the effect of a reduction of the volume on
the length of the interval can be determined with

0 189

For v = V/100 and n = 2, thisresultsin avaue of 0.1 for the reduced
interval length d. This means that when we assume that the optimal values
correspond to 1% of the two-dimensional search space, and that these are to be
found with a probability of 0.99, then 459 random values within the search
space must be evaluated. The borders of the interval which contains the opti-



mum are reduced to 10% of the original interval area. 90% of the defined area
per interval can be excluded from the search. Unfortunately, this method fails
when optimization problems of higher order dimensions are attempted to be
solved. For n = 10 and assuming the same conditions as above, thisresultsin
the same number of attempts N, but the interval areais not reduced to 10% of
the original interval, rather it is now 63%. In order to achieve a 90% reduction
in t_q% interval area, we would have to reduce the target volume by a factor of
10 " of the search space. The numl:l)gr of attempts can be determined using
(18.4) and becomesthen N= 4,6 - 107" .

Schwefel has shown that a blind search for all probabilities p> p_,i;ical
With P itical = 063 is a less effective search method than the grid method,
which has an optimal behavior for non directional probabilistic methods [11].
In spite of this, methods such as the blind search are till useful as dl search
steps can be carried out at the same time, and, when processed in paralel, this
method results in agood run time behavior.

If one removes the requirement that all attempts must be made independent
of each other, then one has a directional probabilistic method. These methods
are able to “learn” in which direction to search by allowing previous attempts
to influence the current attempt. A few of the methods from this field will be
presented in the following section: (1+1)-, (u+1)-, and (u, A) - evolution
strategies.

183 EVOLUTION STRATEGIES

Evolution strategies are based on the fact that biological evolution represents
an almost perfect method to adapt an individual to the environment. The fun-
damental evolutionary concepts were transferred to the technical field of opti-
mization methods by Rechenberg in 1964 [12, 13]. These fundamental
concepts will be explained in this section.

18.3.1 Biological Evolution

In 1859, Darwin produced the theory that all creatures have developed
from more primitive forms over along period of time [14]. He observed three
basic principles of nature:

1. Nature creates a potential overpopulation of life forms. In spite of this,
the size of a population does not generally change very much.

2. Nolifeformisanidentical copy of another life form. There are always
at least afew minor differences.

3. Changes in alife form that have proven to be favorable can often be
found in their offspring.



Darwin derived the following from his observations. There exist life forms
which have been able to survive better in their environment than others. The
reason for this can be found in the minute differences between individual life
forms. These differences can be passed on to later generations.

Through Mendel’s research, the basic principles of inheritance were recog-
nized. In 1865, he formulated three laws:

1. Reciprocity:
When two pure breed (Fg generation) individuals, i.e, individuals
which are not the result of cross breeding and which differ in at least
one aspect, are crossed, then the members of the following generation
(F1 generation) will have auniform, equal appearance.

2. Division:
The second filial generation F, is not uniform. The appearance of indi-
vidual, inherited characteristics occurs according to a numerical model
discovered by Mendel. The possible ratios are 3:1, 1:2:1 and 9:3:3:1,
whereby the individual numbers stand for the various combinations of
characteristics in the offspring.

3. Recombination:
Mendel’s third law states that genes can be assembled in new combina
tions. This recombination is extremely significant with respect to the
variety of forms which a given life form may take and is therefore the
basis for evolution.

The formulation of these laws raised many questions concerning the
encoding and replication of genetic information. Through the research con-
ducted by Avery (1944) and Watson and Crick (1953), the significance of
nucleic acids, aswell as the assembly and structure of the two most important
representatives of the nucleic acids (deoxyribonucleic acid - DNA and ribonu-
cleic acid - RNA), were discovered. With only a few exceptions, DNA con-
sists of a two-stranded winding chain (double helix) of deoxyribose and
phosphate, as well as the purine bases adenine (A), cystosine (C), guanine (G)
and thymine (T). The combination of these purine bases in groups of 3 results
in about 20 amino acid codes.

These amino acids then constitute the basis for the polypeptides and there-
fore for the synthesis of proteins. Chromosomes constitute the carrier for the
DNA, and a complete set of chromosomes is called a genome. The basic
mechanism for inheritance is the division of the DNA double helix into indi-
vidual strands, the interpretation of these strands, and the synthesis of the
encoded amino acids. At the same time, the DNA double helix can duplicate
itself due to the complimentary character of the double helix. A single strand
of DNA can complete itself and become a DNA molecule again. These com-
plex processes have a tendency to go wrong, i.e., a mutation can occur. Possi-



ble mutation forms are genome mutations (a change in the number of
chromosomes), chromosome mutations (a change in the structure of the chro-
mosome), and gene mutations (a change in the nucleic acids). These basic
principles, such as the encoding of all information concerning a life form,
duplication, mutation, and selection have been carried over into the field of
technical optimization in the form of evolution strategies.

18.3.2 Mechanismsof Evolution Strategy

In this section, the transfer of the basic biological evolutionary principles
to the field of optimization will be explained. This transfer is a direct transfer
in many cases, but it will be shown that only a portion of the principles of bio-
logical evolution are applicable to evolution strategies. In the field of evolu-
tion strategies, single potential solutions of an optimization problem are
regarded asindividuals. A set of individuals which belong to the same optimi-
zation step in the optimization process builds a population. In order to differ-
entiate between the populations, each population is classified as being a
generation. The various operations, for example recombination, mutation, and
selection, are carried out during the transition from one generation to the next.
As evolution strategies are probabilistic optimization methods, a few terms
from probability theory have to be used, see[15].

The encoding of an individual serves as the basis for all further examina
tions. Given is an n-dimensional optimization problem in R'. Anindividual

I" isdescribed asapointinan (n + s+ a) -dimensional space by:

1= (%68 e Rx Rx[-r, 1], (18.6)

for se (L ...,n and ae (0,...,(n(n=1))/2) , where
X = (Xp,...,x,) € R isthe object variable and ¢ = (64, ...,0;) € R
and & = (0, ..., 00,) € [-m, ] arethe strategy variables.

The object variable x gives the position of the individual T in the search
space. In addition to the position of the individud, there are two other pieces
of information belonging to each individual 1 which are called the strategy
components. The component G gives the step size in each of the coordinate
directions of the search space, and using the component @ , the angle between
the various step directions can be set. The importance of the strategy compo-
nents will be explained using an example after having defined the step size
and the mutation operation.

An individual T must be assigned a fitness value ¥(I) = ¥(x) e R
which states the “goodness’ of an individual regarding the optimization prob-
lem, and which therefore has a direct influence on the individual"s chance for
survival. The function ¥ isonly determined using the object variable x. The
influence of 6 and o on the fitness of an individual can only be indirectly
determined through the fitness of the object variable X. A new individua T



can be created by mutating the individual T . The following is true for the
mutation:

Mut(x, G, o)

(MUL(R), Mut(), mut(a))

mut( I 187

Equation (18.7) states that an individual I is mutated by mutating each of
its components, the object variable %, and the strategy variables 6 and a..
Each of these components is mutated differently. _

The step vector 6 is mutated by mutating all coordinates 6' according to

S S (TN(0, 1) +TN;(0, 1))
o e

=0 , (18.8)

where ie (1, ...,s) . Theterm ©'N(0, 1) isdetermined once for the individ-
ual, and the term tN;(0, 1) is calculated anew for each coordinate o; .
Schwefel recommends the following to determine the values of the parameters
T and v [11]:

1 1
= R 18.9
T N Ky (18.9)

The angle vector o, is mutated by mutating the elements o' according to
ot = al +BN(0, 1), (18.10)

where i€ (1,...,a). Theterm N;(0, 1) is determined for each coordinate
o' . Schwefel also recommends a value for the parameter B [11]:

B = 0,873(rad)=5°. (18.11)

After having introduced the mutation functions for the strategy parameters,
the mutation of the object variables X can be defined using them. The object
vector X is mutated using

X = x+N(0, C(c', o)) (18.12)

whereby (0, a’) specifies the covariance of an n-dimensional normal distri-
bution. In the following, atwo-dimensional example will be given which dem-
onstrates the effect of each of the mutation steps of an individual ' on an
offspring [’. The section of the search space shown in the diagrams ranges
over the interval [—4,4] x [-4,4] € I on both the x- and the y -axes (the x -
and y -axes are shown without any specific units). The probability p(l’) that
the offspring I will be assigned a particular location in this section of the
search space is represented in the diagram for p() > 0,01 by avariationin
the gray scale in the area near . In Figure 18.1, ¢' = 1 and o) = 0 for



ie(l,..,n)adje(1,...,.n(h=-1)/2).

.
—
T2
77 R 7=
AT ZFA AT 7~
T Ly A e S
A o o
NS FH 7
‘ NI ZTS

= =
‘\\s{g ——

LS Vo
IR IAIFZFS 4
AT
S
-~ ....

Figure 18.1: Mutation with ¢ = (1, 1)' and o = (0) .

By changing the strategy parameters 6 and o, the probability p(I’) of a
possible new individual I at a certain location can be influenced. The values
of the coordinates 6' and ¢ contain the step sizesin the direction of the corre-
sponding coordinate i, and the ratio 61/G2 determines the shape of the
ellipse around I". Figure 18.2 shows p(I’) for 6 = (2, 1)T.
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Figure 18.2: Mutation with 5 = (2, 1)" and & = (0).

Additionally, if one allows the ellipse described by I and G to be rotated
by defining a rotation angle o, then the shape and location of the ellipse can



be adjusted as shown in Figure 18.3.
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Figure 18.3: Mutation with 5 = (2,1)" and @ = (-0.7) .

In summary, a change in the step size vector 6 changes the shape of the
ellipse, and a change in the orientation vector o, rotates the ellipse around the
origin of the coordinate system. The dlipse determines the probability of a
given position of the new individual T for agiveninitia position of the indi-
vidual T .

If one applies this concept to an n-dimensiona space, then G describes a
hyperellipse in which each element 8{ describes the length of an axis of the
ellipse, and in which each element o/ of o describes the angle of rotation
between two coordinate axes. Figure 18.4 shows the control possibilities for
the two-dimensional case once again.

Figure 18.4: Meaning of the Strategy Parameters ¢ and o, in IR .



The position of an individua in the search space is changed by the muta-
tion. The step size for this change in position is the standard deviation. At the
beginning of an optimization, the individuals should be well spread out
throughout the search space so that possible optima can be quickly found.

The mutation operation is not able to find these optima even inits optimum
form as the limited standard deviation decreases the possibility that large step
sizes can be used, and a mutation of the step size to obtain a larger value can
require the computation of several generations. For this reason, the recombi-
nation operator was introduced. Similar to chromosome mutation in biology,
the information inherited from the previous generations is also mutated,
whereby inheritance information from two individuals is exchanged between
the individuals. Aswith mutation, strategy and object variables can be recom-
bined in many ways.

A new individual T’ can be created by recombination using at |east two
individuals I'; and T, from a parent generation P(t) with w individuals.
Thefollowing istrue for the recombination:

= rec(P(1))
rec(fq, ..., I‘u) i (18.13)

(rec(xy, ..., Xu), rec(oy, ..., Oy), rec(oy, ..., o)

Before the individual recombination operations are described, an extra
function used to index the individuals will be introduced. The function G,
producesavalueintheinterval [1,n] e IN for agiven n> 0. The choice of
this value is determined by a discrete, constant distribution over the range
[1,n]. In contrast to the various mutation operations, the recombination
operations are very similar to each other as each operator can be applied to
each component of an individual. Four recombination methods are generally
used:

1. Discrete recombination: Two parents I, and ', are chosen from the
set of al parents. An offspring I is created by selecting the corre-
sponding element from either 'y or T, for al elementsof I:

i1, 1) s,
[2

f(F,Fy) = f 1,13 =% |, (18.14)
re.rg ) \ig

where rl = rGu and r2 = FGH.



2. Global discrete recombination:
For each element of the offspring I, one parent individual T is chosen
from the set of al parents. In contrast to discrete recombination, the set
of possible parentsis not limited to two individuals:

M, s,
2 2 P2

f(Fy, B = f RSN I (18.15)
rp, ..t ) e

3. Intermediate recombination:
Two parents 'y and [, are chosen from the set of all parents. An off-

spring " is created by selecting for all elements of [ the average val-
ues of the elementsfrom ', and T'5:

MP.13) ((f +13)/2
2 2 2 2

f(Fy, Fp) = f .13 | (f +13)72) (18.16)
e (Tf +13)/2

where [} = FGH and I, = FGH.

4. Global intermediate recombination:
For each element of the offspring I, two parent individuals are chosen
from the set of all parents. An dlement of [ is then the average value
of the corresponding elements from 'y and I',:

1 1
N (g, +T8, )/2

2 rg +rg )/2
f(Fy, oo B) = f SORN T P LR SN (18.17)

... (rgH +rgu )/2



The difference between discrete and intermediate recombination is shown
in Figures 18.5 and 18.6. In addition to the recombination, the influence of
N(0, 1) mutationsis also shown.
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Figure 18.5: Probabilities for the Position of a New Individual.
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Figure 18.6: Probabilities for the Position of a New Individua Through
Mutation and I ntermediate Recombination.



By choosing a parameter y= 1/2 (see Equation (18.18)), it is possible to
transfer the individual s recombined using intermediate recombination to asin-
gle parent. The influence of each parent is then determined by:

I =9 +(@-yrh ,whereye [0,1] c IR, (18.18)

Up to now, only methods that alter single individuals have been intro-
duced. In the next section, three different types of evolution strategies will be
discussed. Schwefd introduced the following notation to differentiate among
the three types [11]. An evolution strategy with u parent individuals and A
offspring is designated with (u+) . If the parents and the offspring are taken
into consideration during the selection process, then it is a (u+A) strategy.
When only the offspring are taken into consideration, thenitisa (u,A) strat-
egy. This notation has been extended by Schoéneburg [16] and Back/Hoffmeis-
ter [17] in order to reflect further characteristics of the natural selection
process. These extensions will not be discussed in this paper, though, as they
serve more to make evolution strategies better reflect natura evolution than to
improve the speed and probability of convergence.

18.3.3 The (1+1) Evolution Strategy

As the name says, this variation of an evolution strategy deals with one
parent and one offspring. An individual [ e IR x IR, consists of the compo-
nents X and ¢ . The object component x describes the position of the individ-
ual in the search space, and the strategy component ¢ consists of a single
element which contains the standard deviation, and therefore the step size, for
each element X' of X for an N(0, 6) normal distribution. The following algo-
rithm represents an implementation of such a strategy.

1 t=0;

2 initidize (t):= {(X0)};

3 evauate Y (P(t)=¥(X) ;

4 whiletermination_criteria T(P(t)) not fulfilled
5 X, 0") = mut((X, 0));

6 evaluate ¥ (X') ;

7 if ¥(X)<¥Y(X)

8 then (t+1):= {(X,0")};
9 else P(t+1)=P(t) ;

10 ti=t+1,;

11 end

The mutation operation (line 5) is carried out in two steps:



mut = mut){’muta. (18.19)

In thefirst step, a new standard deviation is computed using

o/c,if p>1/5
G = muta(c?) = mut,(c) =1c-c,ifp<1/5 (18.20)
o,ifp=1/5

Schwefel recommends ¢ = 0.817 [11], which he derived from the opti-
mal standard deviation for the sphere model, as the value of the constant c.
The parameter p must be reevaluated for each generation, and gives ratio of
successful mutations to the total number of mutations. In the second step, the
object component X is mutated using the new standard deviation by determin-
ing anew eement X' for al elements i from X according to

X1 = x1+N(0,0"). (18.21)

The selection operation (lines 7 - 9) selects the individual with the best fit-
ness ¥ value from the parents and offspring. As this selection is a so called
+ -selection, it is possible that a parent with a high fitness value W will sur-
vive over many generations. At regular intervals, the survival behavior of the
parents and offspring are checked (18.20). If the fitness value of the offspring
istoo high (p> 1/5) then the search space is enlarged. It is assumed here that
the reason for the large number of successful mutationsis that we are far away
from the optimum. If, however, a parent individual survivestoo many genera-
tions p< 1/5, then the step sizeis decreased in order to reduce the size of the
search space. This “1/5 success rule” has been empirically determined by
Rechenberg [12]. One disadvantage of this rule is that for optimization prob-
lems which do not achieve a reasonable success rate due to their topology, the
step size will constantly decrease upon each application of the deterministic
operation mut; , so that the evolution strategy will eventually stagnate at a
local optimum.

18.3.4 The (u+1) Evolution Srategy

As the (1+1) evolution strategies only contain one parent per generation,
the recombination concept taken from biological evolution cannot be applied.
In order to apply recombination, Rechenberg developed the (u+1) evolution
strategy where > 1 [12]. Thisvariation has i parents and produces one off-
spring from these parents. Due to the +-selection, one parent (usually the par-
ent with the lowest fitness value W) is replaced by the offspring when at |least
one of the parent individuals has a lower fitness value than the offspring. If



one compares this method to the extended simplex method, then one realizes
that both methods operate according to the principle of “throw the worst point
out”. Rechenberg did not find a satisfactory extension of his*1/5 success rule”
for the mutation operation, and therefore only the recombination operation
will be introduced in this section. A combination of mutation and recombina-
tion operationsin connection with a high quality control of the strategy param-
eters can be found in the following section. The following algorithm
represents an implementation of such a strategy.

1 t=0;

2 initidize P(t):= {X,, ...,)‘(u};

3 evauate Y (P(1) = (P(Xy), ..., ¥(X));

4 whiletermination_criteria T(P(t)) not fulfilled
5 X = rec(P(t));

6 evaluate ¥ (X' ;

7 P(t+1):= sl " {XTUP() ;

8 ti=t+1,

9

end

The recombination operation (line 5) creates one offspring from p parent
individuals. This is done by applying the recombination operations (18.14) to
(18.17). The selection operation selﬁ *1 selects the best p from the popula
tion ({X'} U P(t)) which contains u+ 1 individuals. The discussion of the
(u+1) evolution strategy ends here, as it has only served to present the inter-
mediate step between the (1+1)- and the (1,A) evolution strategies.

18.3.5 The (u,A) Evolution Srategy

Anindividual T consists of the components X, ¢ and o..The start popula
tion P(0) isinitialized by assigning random vectors from the search space to
the object component X, (1,...,1)"T to the strategy component o and
(0, ..., 0)T to the strategy component a (line 2). The evaluation of an indi-
vidual is done through the evaluation of the object component ¥(X) (lines4
and 9). The recombination operation (line 6) is carried out A timesin order to
produce A offspring from p parents (see Equation (18.13)). All of the recom-
bination types given in Equation (18.14) through Equation (18.17) may also
be applied. Schwefel recommends a global intermediate strategy for the strat-
egy components and a discrete recombination for the object components [11].
This recommendation should be reevaluated according to the specific applica
tion, however. A general statement as to which recombination typeis suited to
which component does not exist. After producing A offspring through the



recombination, the offspring are mutated according to (18.7). Mutations car-
ried out according to Equation (18.8) through Equation (18.12) can occur
depending on the complexity of the strategy components. The number of indi-
viduals in a population is not changed by the mutation, so that the selection
operation (line 10) selects w individuas from A individuals. These u indi-
viduals will become the parent individuals in the next generation. The follow-
ing algorithm represents an implementation of such a strategy.

1 t:=0;
2 initidize P(t):= {Tq(t), ... T (t} ;
3 llwhere Tie R'x Rx[-nn]” foral i = (1, .., )/

/
4 evaluate W(P(1)) = (W(Xy(1), ... ¥ (X, (D)) ;
5 whiletermination_criteria T(P(t)) not fulfilled
6 V(ke {1, ... 0 ):T(t):= rec(P(t));
7 Vike {1, ... R )17 (t):= mut(P’(t));
8 P (t):= {1"1(t), ... T"A(t} ;
9 evauate W(P'(t)) = (Y(X", (1), ..., ¥ (X, (1))

10 P(t+1):= sel’ (P'(1) ;
11 ti=t+1;
12 end

The (u,A) evolution strategy is the only strategy of those presented in this
paper in which one is able to comprehensively adapt the strategy parameters
of the optimization problem, and therefore adapt the strategy to the topology
of the optimization problem. The basis for this is the ratio of the number of
elements contained in the strategy components o and o to the number of par-
ent individuals 1 and offspring A . In order to be able to adapt the strategy
components, at least (s+a)/10 offspring should be produced per genera
tion. One problem is the quadratic growth of the number of orientation angles
o' with i = n(n—1)/2 for optimization problems of higher dimensions.
Thisfact has lead to the exclusion of the use of the orientation angles for opti-
mi zation problems with approximately ten dimensions or more. For these opti-
mization problems, the only adaptation carried out is the adaptation using
various step sizes.

184 IMAGE PROCESSING APPLICATIONS

The authors have shown that the use of single methods from the field of com-
putational intelligence, as well as the use of combinations of methods, can
lead to powerful applications. Examples can be found for the design of com-
posite materials [18, 19], the optimization of fuzzy rule-based systems [20] -



[22], or the combined application of neural networks, evolution strategies, and
fuzzy logic [23] - [25]. The following two examples are image processing
applications, in which the combined use of evolution strategies and fuzzy
logic allows a powerful extension of the image processing operators [26, 27].

18.4.1 Generating Fuzzy Setsfor Linguistic Color Processing

This section describes how fuzzy based color processing can benefit from
optimization techniques. The exampleis part of mechanical engineering appli-
cation, in which the quality of welding spots hasto be determined [27] - [30].

18.4.1.1 Resistance Spot Welding

Resistance spot welding is a welding process that uses the inherent resis-
tance of metal workpiecesto join two sheets of metal by the flow of electrical
current. Typical areas are the automotive, aerospace, and engineering industry.
Resistance spot welding can easily be automated and in most cases only assis-
tant helpers or robots are needed to supply the material. This fact has lead to
the economical success of resistant spot welding as well as to the need for
quality testing systems. Most of the quality testing systems have to destroy the
welding joint in order to obtain quality measures like longitudinal and trans-
verse tensile strength, bend strength, or hardness. Microscopic and macro-
scopic examination of the joint also require destructive operations.
Nondestructive tests often need large and expensive equipment, like gamma or
X-ray tubes, or are too sensitive to be used directly at the welding machine,
like most ultrasonic sensors [31].

Human experts are able to check the quality of a welding spots using opti-
cal criteria. Color is one of the most important criteria. Typical areas that carry
quality information are a blue or red inner and outer spot, and the impact zone
with its color. Standard techniques of image processing are able to detect these
different areas in the images. Figure 18.7 shows two examples, one for good
quality and one for poor quality [27].

Figure 18.7: Example of a Good (Left) and Poor (Right) Welding Spot.



It can be seen that color carries alot of information, but processing of color
information is a complex task. One approach is the modeling of color informa-
tion using sophisticated fuzzy sets to hold linguistic color names [27].

18.4.1.2 Linguistic Color Processing

Many color representations are based on technical demands. Examples are
the red, green, and blue division of colors for televisions or the cyan, magenta,
and yellow division for the printing media. These two representations reflect
the additive and subtractive mixing of afew base colors to obtain alarge set of
displayable or printable colors. Technical representations are suitable for dis-
playing colors, but fail if a deeper understanding of color is needed.

Human description of colors is not based on the additive or subtractive
mixing of base colors[27, 32]. It is more oriented by characteristics like hue,
brightness or lightness. Apart from technical color models, another class of
color models exists that fulfills these human demands.

The HSI-model iswell suited for the linguistic processing of color because
colors that are similar for humans are grouped together and thereis aclear dis-
tinction of colorsand grays[33] - [35]. The 3-dimensiona model can be easily
reduced to a 2-dimensional one, by simply dropping the intensity coordinate
when the pure and light colors are important, or by dropping the saturation
coordinate when pure and dark colors are important. These operations result in
the HS- and HI-sub models that are used throughout approach.

A fuzzy set over the HS-color modd is defined by eight points. Each point
contains two components to represent the angle (hue) and the radius (intensity
or saturation). This results in an extension of the polar coordinate system of
the HS-color space towards a cylindrical coordinate system. Each point repre-
sents one corner of the fuzzy set. This shape is chosen to reduce the computa
tional demands and to accelerate computation time. A typical shape of such a
fuzzy set is shown in Figure 18.8 [27]:

Co
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Figure 18.8: Fuzzy Set for Linguistic Color Processing.



If al significant colors are labelled, one can build a fuzzy rule system that
alows a linguistic oriented way of expressing quality assessments. Below is
an extract of such arule system [22].

IF
THEN
IF
THEN
IF
THEN
IF
THEN
IF
THEN
IF
THEN
IF
THEN

COLOR_OF_INNER_SPOT IS
QUALITY IS
COLOR_OF OUTER_SPOT IS
QUALITY IS
COLOR_OF IMPACT_ZONEIS
QUALITY IS
COLOR_OF INNER_SPOT IS
QUALITY IS
COLOR_OF OUTER_SPOT IS
QUALITY IS
COLOR_OF OUTER_SPOT IS
QUALITY IS
COLOR_OF IMPACT_ZONEIS
QUALITY IS

BLUE
GOOD
LIGHT_BLUE
GOOD
DARK_RED
GOOD
LIGHT_RED
POOR

BLUE

POOR

RED

POOR
LIGHT_RED
POOR

This set of rules can be evaluated using standard fuzzy techniques in com-
bination with the described methods to calculate the membership values of
colors. Any fuzzy system that allows addition of new functions for the calcula-
tion of membership values can be extended to benefit from fuzzy color pro-
cessing. The colorsthat exist in asampleimage, aswell astheir frequency, can
be expressed using a frequency distribution. Two examples of frequency dis-
tributions are shown in Figures 18.8 and 18.10 [36, 37]:

Figure 18.9: Typical Frequency Distribution of a Good Sample Point.
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Figure 18.10: Typical Frequency Distribution of a Poor Sample Point.

To generate proper fuzzy sets an evolution strategy can be used. The object
parameters are the definition points of the fuzzy set. The whole object vector
consists of eight two-dimensional coordinates, yielding a 16-figure vector.
The dimension is average so different step sizes for each figure in the vector
can be used. The fitness function calculates the difference of the frequency
distribution and the surface of the optimized fuzzy set. The smaller the differ-
ence, the better is the fitness value. As aresult, fuzzy sets are created which
are agood approximation of the sampled color frequency, as shown in Figures
18.11 and 18.12.

Figure 18.11: Dark Color as Fuzzy Set for Linguistic Color Processing.



Figure 18.12: Light Color as Fuzzy Set for Linguistic Color Processing.
18.4.2 Developing Specialized Digital Filters

A common task during image processing is the enhancement of certain
image features. Thistask is performed if adirect analyzing of the imageis not
possible (arrow in Figure 18.13). Well known are the techniques for edge
detection, or the use of digital filters to enhance vertical or horizontal lines
[38, 39]. These filters yield only poor results, however, if more complex fea
tures have to be detected. The following paragraph shows how digital filtersin
combination with evolution strategies can be used to generate image enhance-
ment methods that are able to detect circular features.

preprocessing

enhancement

description

Figure 18.13: Image Processing.



18.4.2.1 Digital Image Filters

Digital image filters use a matrix of filter coefficients that is applied to
each pixel in the input picture. The pixel and its neighbors are used to calcu-
late the value of the output pixel. The whole processis described by the coeffi-
cients of the filter matrix.

input image digital filter output picture
Figure 18.14: Digital Filter.
Some matrix filters are well known, the Frei/Chen-, Sobel-, Prewitt-, or

Kirsch filter [38, 39]. The result of these filters applied to a welding spot
image is shown in the next figures.

Figure 18.15: Frei/Chen Digital Filter.



Figure 18.16: Frei/Chen Digita Filter.

Figure 18.17: Prewitt Digital Filter.

Figure 18.18: Kirsch Digital Filter.

It can be seen that all four filters are not able to enhance the circular struc-



ture, that is necessary for the image description. Due to the fact, that the filter
matrix can be expressed as areal valued vector, the use of evolution strategies
to optimize the filter matrix is possible and alows a faster optimization com-
pared to other types of evolutionary algorithms, e. g. genetic algorithms.

18.4.2.2 Optimization of Digital Filters

The matrix can be rearranged to build a vector, as shown in Figure 18.19.
The low dimensionality allows the use of al types of self adaptation and evo-
lution strategy variants. The fitness function compares the filtered image with
acontrol image, in which the relevant features are enhanced by hand.

fiy) 1ol [ fi3 (f11. 12, f13,
fo1,fo0,f23

f31,f32, 33

(f12.f12. 113, f21,F22, 123 31,32, fa3)

Figure 18.19: Rearranging a Matrix to a Vector.

After the optimization a new filter matrix is created that enhances circular
features as shown in Figure 18.20. The values for the amtrix elements after the
optimization took place are :(7.77, -11.31, 0.13, -8.32, 10.77, 3.52, -6.11,
14.41, -5.35).

185 CONCLUSION

Image processing techniques can be optimized and enhanced in many ways.
This chapter demonstrates the use of specialized digital filters and the use of
fuzzy logic for linguistic oriented techniques. The use of fuzzy logic is a pow-
erful extension and alows the use of human-like feature descriptions, as
shown for linguistic color processing. Fuzzy sets that are used can be gener-
ated and optimized using evolutionary concepts, in this case the use of evolu-
tion strategies.

If the numerical values of some image processing operators can be altered,
evolutionary concepts can be used to find optimal values for these operators.
The example shown uses this technique to generate high specialized digital fil-



ters for feature detection in images.

Figure 18.20: Optimized Filter for Detection of Circular Features.
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EVOLUTIONARY FUZZY
SYSTEMS

Mohammad -R. Akbarzadeh-T. and A. -H. Meghdadi

19.1 INTRODUCTION

Fuzzy logic has been described as a practical, robust, economical, and intelligent
alternative for modeling and control of complex systems. This long list of
superior traits, however, can only be realized if quality expert knowledge exists
and is made available to the control engineer. This is while, in conventional
applications of fuzzy logic, there is not yet a systematic way of acquiring such
expert knowledge. Quality expert knowledge often does not exist, for example,
in remote environments that humans have not experienced such as the surface of
Mars or the hazardous environment of an underground nuclear waste storage
tank. Even when such expert knowledge does exist, it is not clear whether the
expert would be able to objectively present his knowledge in terms of a
constrained set of rules and membership functions, and whether such expertise
would indeed be optimal. In solving this paradox, fuzzy logic has been
complemented by various strategies such as neural networks, fuzzy clustering,
gradient based methods, and evolutionary optimization algorithms.

Evolutionary optimization algorithms have been particularly appealing
various scientific circles, primarily because such algorithms allow autonomous
adaptation/optimization of fuzzy systems without human intervention, are not
easily trapped in locally optimal solutions, allow parallel exploitation of an
optimization parameter space, and do not require gradient evaluation of the
objective function. Evolutionary fuzzy systems are hybrid fuzzy systems in
which evolutionary optimization algorithms are used to optimize/adapt fuzzy
expert knowledge. The evolutionary optimization algorithms operate by
representing the optimization parameters via a gene-like structure and
subsequently utilizing the basic mechanisms of Darwinian natural selection to
find a population of superior parameters.

There are various approaches to evolutionary optimization algorithms
including evolution strategies, evolutionary programming, genetic programming
and genetic algorithms. These various algorithms are similar in their basic
concepts of evolution and differ mainly in their approach to parameter
representation [1]. Genetic algorithms (GA), in particular, is an evolutionary
method which has performed well in noisy, nonlinear, and uncertain
optimization landscapes typical of fuzzy systems. In this chapter, we will
explore further why and how GA is used for optimization of fuzzy systems and,
in particular, fuzzy controllers. Various issues such as determining the set of
parameters, designing the transformation function for representing the parameter



space in genetic domain, creating the initial population, and determining the
fitness function will be discussed. Finally, application of GA will be illustrated
in optimizing fuzzy control of a DC motor.

19.1.1 The Problem Statement and Design Outline

Based on the universal approximation theorem [2], we know that, for every
continuous and nonlinear/linear function g, a fuzzy system fexists which can
approximate g to any desirable degree of accuracy. In other words, if there exists
a desirable nonlinear function g which meets a given system’s performance
criteria, there also exists a fuzzy function f closely approximating g . Fuzzy
controller design can therefore be viewed as a complex optimization problem in
the search space of all possible nonlinear controllers. The type and
characteristics of this search space determines the best optimization method to
automate this design process. These characteristics include a large parameter
space, a non-differentiable objective function involving uncertainty and noise,
and, finally, multi modality and deceptiveness, i.e., similar sets of membership
functions and rule sets may perform quite differently.

Genetic algorithms are particularly suitable for such optimization and hence
automating the above design process. As we will see later in this chapter,
genetic algorithms can easily encode a large number of parameters, are based on
function evaluation as compared with gradient evaluation, always keep and
combine a population of potential solutions in parallel and hence can easily
avoid local optima, and, due to their guided evolutionary mechanism, are more
computationally efficient when compared with random search [3].

In many ways, GA can be likened to a piece of sculpting wax, its designer to
a sculptor, and the whole design process of a GA to an art. Like a sculptor, a GA
designer has great many choices which, when combined, create a unique GA. As
a sculptor patiently forms the base, the body, the hands, and finally the head of
his creation, the GA designer has to complete several stages of design before a
genetic algorithm is completely defined and capable of optimizing a particular
system.

As illustrated in Figure 19.1, the first step involves identifying the
parameters that need to be optimized. Reducing the number of free parameters
usually reduces the complexity of the optimization task, thereby achieving a
faster convergence of the optimization algorithm. However, genetic algorithms
can typically handle a large number of parameters efficiently. Also, by
constricting too many of the parameters, we might just be eliminating the
optimal solution set from the GA search landscape. So a careful trade off exists
between complexity of the optimization task and convergence of the genetic
algorithm.

Genetic algorithms operate on populations of individuals that are usually
binary strings. Since in most applications a phenotype (a solution in problem
parameter space) consists of real numbers, an encoding function is required to
map the phenotype to its representation in GA space (genotype). Step II is,
therefore, to determine this encoding (interpretation) function. In designing this



interpretation function, a higher number of bits per real number produces a
higher degree of accuracy in the representation, but also a longer GA string
(increased complexity). Additionally, an interpretation function should be
designed to minimize competing conventions and deception. The problem of
competing conventions arises when two or more completely different genotypes
(individuals in GA domain) represent one phenotype (an individual in problem
domain). In such cases, crossover of such individuals is not likely to yield
improved individuals. Due to a high number of parameters and their interaction
in fuzzy logic systems, the interpretation function and design of fitness function
can significantly affect performance of a genetic algorithm.

Step III is creation of the initial population, or the starting points of the

Step I. What are the free
parameters of the system?

v

Step II. What is the
interpretation function?

v

Step III. What is the initial
population?

v

Step IV. What are the critical
measures of performance and how
are they integrated to form a fitness
function?

Figure 19.1: The Four Stages of Design.

optimization process. As with any optimization task, GA can be expected to
perform better when provided with a fitter initial population. As we will see,
however, this issue is not as trivial as it may seem. In fact, there are occasions
when a GA performs poorly even with a highly fit initial population.

Step 1V is defining the fitness function (objective function). Since the theme
of GA is the “survival of the fittest,” GA is inherently an optimization algorithm
(as compared with a minimization algorithm). So, the improved individuals in a
given population are assigned higher fitness values. Every candidate solution for
a problem is evaluated to determine the degree of fitness for that solution. Since
the type of the fitness function determines the shape of the search space and
since there is a great degree of freedom in choosing a fitness function, design of
fitness function has a large impact on the performance of the algorithm.



As we will see in this chapter, the inherent flexibility of the evolution based
optimization algorithms and the large number of the free parameters in a fuzzy
system have created a large diversity and variety in how these two
complementary approaches are coupled. Different methods vary in their answers
to the above questions. For the rest of this chapter, we will use GA as the
optimization algorithm and name the resulting hybrid system as GA-fuzzy
system. GA-fuzzy systems are in fact the most common evolution based fuzzy
system.

19.2 FREE PARAMETERS

Fuzzy expert knowledge can be divided into two basic components: Domain
knowledge and Meta Knowledge. The Domain knowledge is generally the
conscious operating knowledge about a particular system such as the
membership functions and the fuzzy rule set. The Meta knowledge is the
unconscious knowledge that is also needed to completely define a fuzzy system
such as the mechanism of executing the fuzzy rules, methods of implication, rule
aggregation, and defuzzification.

Most of the existing methods in evolutionary fuzzy systems attempt to
optimize parameters of the domain knowledge only (namely membership
functions and rule set) while ignoring the effect of meta knowledge.
Consequently, there are 4 basic methods of optimization as follows

1) Automatic optimization of membership functions while there is a
fixed and known rule set;

2) Automatic selection of the rule set with fixed membership functions;

3) Optimization of both the membership functions and rule set in two
steps. First selecting the optimal rule set with fixed known
membership functions and then tuning the membership functions with
the resulting rule set; and

4) Simultaneous optimization of fuzzy rule set and membership
functions.

Note that the number of membership functions or rules can also be optimized
in the algorithm. There may be various reasons for a method to be selected.
Some of those advantages and disadvantage are mentioned below:

1) Since the rule set and membership functions are codependent, they
should be defined simultaneously. This can lead to more optimal
solutions. [4][5];

2) Since the performance of a fuzzy system is more dependent on fuzzy
rules rather than membership functions, fine tuning of the fuzzy system
is better possible by tuning of membership functions. So it seems that it
is better first to select the optimal rule set (coarse tuning) and then tune
the membership functions (third method);

3) Even though various methods exist to encode both the rule base and
membership functions, such encoding can have several potential
difficulties. In addition to the level of complexity and large number of



optimization parameters, the problem of competing conventions may
arise and the landscape may unnecessarily become multi-modal.

19.2.1 Competing Conventions

Competing conventions means that there are different chromosomes
representing the same exact nonlinear function in the evaluation space. In other
words, there is more than one string in GA domain (genotype), which
corresponds to only one solution in problem domain (phenotype). To illustrate
this, consider the following example from Akbarzadeh[3].

Example 19.1:
Consider two fuzzy rules related to temperature control of a room:

* Individual A says: “If temperature is hot, turn on the cooler”
e Individual B says: “If temperature is cold, turn on the cooler”

Under normal circumstances, these two rules are expected to be
contradictory. If evaluated using same membership functions, one will result in
proper control compensation and the other will result in an uncomfortably cold
room. However, consider if parameters defining the membership functions for
the fuzzy sets cold and hot temperatures are interchanged for individual B,
which may happen if both rules and membership functions are optimized
simultaneously. Then both of these rules are essentially the same nonlinear
function with same control action for same input variables.

As will be illustrated in the example, even though the GA might produce two
highly fit individuals (with two competing conventions), the genetic operators,
such as crossover, will not yield fitter individuals if both membership functions
and rules are to be evaluated under the same string structure. Consider the
following two individuals:

* Individual A says: “If temperature is hot, turn on the cooler”
* Individual B says: “If temperature is cold, turn on the heater”

Both of these individuals are expected to perform well in an evaluation. Now
let us perform a crossover operator by interchanging part of the genetic code
corresponding to the output as follows:

e Individual A says: “If temperature is 4ot, turn on the heater”
e Individual B says: “If temperature is cold, turn on the cooler”

Obviously, these two individuals will not fare well in a performance
evaluation. As is illustrated here, the design of the transformation function can
significantly alter the behavior of GA.

19.3 DESIGN OF INTERPRETATION (ENCODING) FUNCTION

In this section, we will explore various possible ways that genetic algorithms
can optimize membership functions and rules of a fuzzy expert system.



19.3.1 Membership Functions (MF)

Fuzzy partitioning is the process of partitioning a variable’s universe of
discourse [u-,u+] by defining fuzzy sets. Figure 19.2 shows a fuzzy partitioning
with five fuzzy sets.

A
0

u u’
Figurel9.2: Fuzzy Partitioning of a Variable’s Universe of
Discourse by Fuzzy Sets.

One may choose to partition a fuzzy variable’s universe of discourse with
any desirable number of fuzzy sets. Membership functions can be all or some
part of a genetic representation (chromosome) of the system. Their genetic
representation is named MFC (membership function chromosome).

Every fuzzy set in a fuzzy partitioning is defined by its type and shape as
shown below;

*  Type of the membership functions: triangular, trapezoidal, gaussian, ...
*  Shape of the membership function: important points and parameters of
a membership function such as left base, center, base width, etc.

Thus the encoding problem is divided into two parts:

1. Selection of free parameters:

Selecting free parameters is in fact a compromise between more optimal
solutions and less complex spaces. Higher numbers of free parameters may
yield a higher fit final solution, but also yield a more complex landscape with
higher multimodality and more difficulty in finding the optimal parameters in
the landscape. Consequently, the GA designer has to decide which parameters
to fix and which parameters to tune. For example, we can assume only
triangular membership functions with fixed base width and tune the center of
the membership functions. Triangular membership functions are widely used in
evolutionary fuzzy systems. So we discuss them separately.



2. Encoding of Chosen Parameters:
Several methods exist for encoding MF parameters; among them, binary
string encoding is the most common.

19.3.1.1 Triangular Membership Functions

There are different types of coding methods for triangular membership

functions as discussed below,

1. In this method a triangular membership function is defined by its three
parameters: left base, center, and right base. A binary string MFC is
developed as shown in the figure below where each parameter is
encoded as a binary string.

2. Symmetric triangular membership functions are assumed here; thus two

Left base Center Right base

00011| 00100 | 00101

Left Base Center Right Base

Figure 19.3: Binary Encoded Triangular Membership
Function Chromosome.

parameters are sufficient to define a membership function, left base
(starting point) and right base (ending point).

Left base  Right base

| ()()()II|()()I()I |

Left Base Right Base

Figure 19.4: Symmetric Triangular Membership Function and Its MFC.

3. In this method, triangular membership functions are symmetric and have
fixed centers, only their base widths are tuned. Thus for every
membership function, there is only one encoded parameter.

Base Width 001101

Center
Base Width

Figure 19.5: Genetic Representation of Symmetric Triangular
Membership Function with Fixed Center.




4. In this method, triangular membership functions with fixed base width are
assumed and only their centers are encoded and tuned. Thus there is only
one free parameter.

Center 000101

N

Figure 19.6: Genetic Representation of Triangular Membership Functions
with Fixed Base Width.

Center

5. In this method, symmetric triangular membership functions are assumed
while their centers and widths are encoded and tuned, yielding two free

parameters.
Center Base Width Base Width
001110 000101
< Center

Figure 19.7: Genetic Representation of Symmetric Triangular
Membership Functions by Its Center and Base Width.

Here, the MFs are assumed to be normalized, i.e., y-axis is fixed.

19.3.1.2 Non-triangular Membership Functions

To use other types of membership functions, another parameter in an MFC
is needed in order to completely define the membership functions. This
coding, for example, includes an index referring to the available types of

001 | Triangular membership

function
010 | Trapezoidal membership

function
011 | Gaussian membership

function Starting Point Ending Point
100 | Sigmoidal membership

function 010 00011 00101

Type Starting Ending
Point Point

Figure 19.8: Non-triangular Membership Function.



membership functions. To simplify the problem we may use only symmetric
membership functions and thus encode every membership function with three
parameters, the type of the function, starting point and ending point, with a
fixed ratio of points in between starting and ending points.

19.3.1.3 General Method of MF Encoding:

To define and encode any unknown membership function, a method
presented in [6] is presented here. In this method all the membership functions
in a domain of a variable are encoded together in a matrix form. Every column
of this matrix is a gene and is associated with a real value x in the domain X.
The gene is a vector having n elements, where n is the number of the
membership functions in that partition. Every element is the membership value
of all membership functions at x. In practice, a finite number of the points in
the partition are considered and thus this method is a discrete representation of
the membership functions. Thus, if p points in the domain are considered and
there are n membership functions, n*p parameters are encoded. The figure
below is a genetic representation of the domain where @ and b are the starting
and ending points of the domain. Although this method is very general and can
be implemented for every membership function in the domain, it has the
disadvantage that the number of the encoded parameters can be very large and
thus enlarge the search space.

Hi(a) Hi(d)
i(x:) |77
Chromosome = i H
U7(x ]) -4 4444444444444
>x p’l(a) l’lﬂﬂ))
a X7 b First Gene ... Last Gene

Figure 19.9: Genetic Representation of a Fuzzy Partitioning.

19.3.2 Rule Encoding

Rule set encoding can be more complicated than membership function
encoding. An important problem is the simultancous cooperation and
competition of the fuzzy rules in a fuzzy rule set. This means that, although each
rule is in competition with others for being selected in the rule set, the impact of
each rule in the system is dependent on other rules that concurrently exist in the
rule set. For example, two fuzzy rules may be highly fitted if they both exist in
the rule set while neither of the two rules may be desirable separately. Rule set
optimization is widely used in fuzzy classification problems, which can be
generally categorized as either the Michigan approach or the Pittsburgh
approach.



The Michigan approach:

In this approach every individual in the GA is a fuzzy rule encoded as a
string with fixed length. The GA operates on the individual rules and more fit
rules are combined together via genetic operators to create the next population
of rules. The fitness function is designed so as to show the fitness of one rule.
The method was first introduced by Holland and Retain in 1983. The most
important disadvantage of this method is the problem of competing convention.

The Pittsburgh approach:

In this approach, every individual in the GA is a fuzzy rule set encoded as a
string with variable length. Fitness function, therefore, operates on the rule sets
and higher fit rule sets are combined via genetic operators to produce rule sets
with higher fitness. This method is more desirable because of the competing
convention problem. This method was first developed in 1980 by Smith and
named LS-1. For the rest of this chapter, we will use this approach.

19.3.2.1 A Control System Problem Formulation:

Consider a fuzzy system with » inputs and / output, referral to as multi input
single output (MISO). Let i input have m; fuzzy sets as input membership
functions and the only output variable to have p fuzzy sets as output
membership functions. The MISO can be easily generalized to multi input multi
output (MIMO).

—>
—p»| Controller —p
—>

Figure 19.10: MISO Control System.

Thus we have R fuzzy rules where the maximum number of the rules in the
system will be:

RS Ry =[] (19.1)
i=1

R could be either a fixed or free number. Each rule is associated with a
selection of the n-input membership functions and /-output membership
functions from the possible MFs. Thus parameters of the fuzzy rules are indices
rather than real variables. The indices specify which membership functions are
to be selected for the antecedent and consequent parts of the fuzzy rules.

Now let us define the following for the MISO fuzzy system:

x; - i" input to the system.
m;: the number of the fuzzy variables (membership functions) for the i/ input.
y : output of the system (single output).



IMF(ij)=IMF; : the membership function of the fuzzy variable of the i input
in the j” rule in a rule set.

OMEF: the membership function of the output fuzzy variable in the " rule.

n: the number of the inputs to the system.

q: the number of the fuzzy variables of the output.

R: the number of rules.

And:
ISET(i) : ordered set of the membership functions corresponding to fuzzy
variables of the i input.

ISET()={IMF(i,1),IMF(i,2), ..., IMF(im)}, i=1,...,n (19.2)

OSET: ordered set of the membership functions corresponding to fuzzy variables
of the output. (19.3)
OSET={OMF (1), OMF (2)...OMF (q)} )

Thus fuzzy rule set of the system can be shown as below:
Rule /, Rule 2... Rule...Rule R
where the j” rule can be represented as:
If (x;is IMF; & x5 is IMFy & ... & x,is IMF,;) Then yis OMF}
where
IMF;[JISET (i), OMF, JOSET, and 1< k < q, (19.4)

For the case of two-input, one-output system, the fuzzy rule set—also known
as fuzzy associative memory (FAM)—can be shown graphically in a table every
cell shows the output membership function of a fuzzy rule with known input
membership functions.

Example 19.2
Referring to Figure 19.11, the fuzzy if-then rules of the rule set are

If (x1 is IMF;; & x; is IMF;,;) then y is OMF,

If (x1 is IMF;; & x; is IMF,5) then yis OMF

If (x1 is IMF;; & x; is IMF,5) then y is OMF;
IMF, IMF IMF 3 IMF 4

IMF, OMF, OMF, OMF ;3 OMF 4

IMF; OMF OMF; OMF, OMF's

IMF>; OMF; OMF,,; OMF OMF,

IMF 5, OMF 4 OMF OMF; OMF 5

Figure 19.11 A Sample Fuzzy Rule Set Table
for m2:m1:4.



If R<R,,.., some of the cells in the table are don’t care and can be shown with a
0 or * in the cell. In the case of more input variables, the table can be extended
to higher dimensional arrays.

Regarding the above table, every fuzzy rule set is defined with R, free
parameters, where R, is defined previously. These parameters are indices that
represent an output membership function among ¢ membership functions in
OSET. We can use only indices of the membership functions and build a matrix
of indices named P.

Pis | P14 | P13 | P12 | Puu

P25 | P24 | P23 | P22 | P21

D3s | P34 | P33 | P32 | P31

P45 | P44 | P43 | P42 | P

Pss | P54 | P53 | Ps2 | Psi

Figure 19.12: Two- Dimensional Array of
Indices, P.

P=[pul=[p(kD], pullZ 0<pu<q (19.5)

kO 1,my],10(1,m,]
Similarly, in the case of three inputs, we have a three dimensional array P such
that:

P=Array[ps]=p(s,k1) 19.6
PywlZ ,0spu=q (19.6)

sOf1,ms] , kOf1,my] , I0[1,m;]

Genetic Representation

Having the indices array of the rule set, P, it is possible to use either string or
array representation of the rule set. Naturally, in the case of nonstring
representation, genetic operators should be modified so as to be useful for that
representation. One of the simple array representations of the rule set is the
matrix representation in two input systems. We will discuss the matrix
representation, which has been introduced in Kinzel et al.[6].

a) String representation:
String representation of the rule set table can be obtained in two steps:

Step 1: encoding all the elements of matrix P (defined previously). Binary
encoding is a common method to encode the parameters. S is the resulting
matrix after encoding. (19.7)

Su=Decimal to_Binary(py)
" ¢ (19.8)



S=/si] . kO[Lms], 10[1,m,] (19.8)

Step 2: Obtaining the string representation of the table using the rows of the S
matrix as follows:

Chromosome = 8718712873 8S1m1S821822823...8m 00 oen oen Sm21Sm22 «--Smomi (199)
Number of the bits in every chromosome will be
N=(]m)*K (19.10)
i=1
where K is the number of the bits in every element of S (sy), and is the greatest
integer in the following inequality: (19.11)

K zlog,(q +1)

where ¢ is the number of the output fuzzy sets.
The genetic operators in this type of representation can be the same as the
standard genetic algorithms.

b) Matrix representation:

Because of the matrix nature of the rule set, a matrix representation seems to
be more efficient. A matrix chromosome and a set of genetic operators are
needed to operate on this chromosome. We will discuss the method presented in
reference [6] for two input systems. Kinzel et al. used the previously defined
array of indices as the chromosome (Figure 19.12).

Crossover @

Pis | P14 | P13 | P12 | Pl Pis | P14 | P13 | P12 | P
P2s | P24 | P23 | P22 | P21 P25 | P24 | P23 | 422 | P21
Ps3s | P34 | P33 | P32 | P31 Pss | P32 | 433 | 932 | 931
Pa4s | Paa | P43 | P42 | Pai P45 | Paa | P13 | 42 | P
Pss | Psa | P53 | P52 | Psi Pss | Psa | P53 | Ps2 | Psi
qis | 914 | 913 | 412 | 411 qis | 914 | 413 | 912 | 11
925 | 924 | 923 | 422 | 921 qzs | 924 | 923 | P22 | 921
935 | 93¢ | 933 | 432 | 431 q3s | 934 | P33 | P32 | P31
9a5 | Ge4 | 943 | 442 | 941 Q45 | 944 | 943 | Pa2 | Quu
qss | 454 | 953 | 952 | 451 qss | 954 | 953 | 952 | 451
Parents Offspring’s

Figure 19.13: Point-Radius Crossover.



In this method, a Point-Radius crossover is used where each crossover is
determined with a circle with known center and radius. The region in the table
that is surrounded by the circle is exchanged with the similar region in the other
chromosome (Figure 19.13).

Example 19.3:

Consider a two input system where the set of output membership functions is
OSET={A4, B, C, D, E}. Notice that it is not necessary to use integers for the
indices. Here, every output fuzzy set is determined with an alphabet between 4
and E. Figure 19.13 shows two sample chromosomes and the crossover
operation between them.

Mutation in this method is simply the alternation of one index in the table
with a different index in OSET. Figure 19.14 is an example of the mutation
operator in the matrix representation.

B D B C A B D B C A

A E A D E A E A B E
Mutation

C B E C D C B E C D

A B A C A 9 A B A C A

D D B E D D D B E D

Figure 19.14: Mutation.

Note: Genetic programming (GP) also seems to be a good alternative to GA
for optimization of fuzzy rules. This is because optimization of fuzzy rules has a
symbolic nature as compared with optimization of numeric information (such as
in membership functions). Here, we want to find the optimum arrangement of a
few objects in a table just like making a puzzle.

Rule Firing Strength

Although it is common to consider only the antecedent and consequent parts
of a fuzzy rule as the free parameters of optimization, it is possible to introduce
other parameters as well. Lee and Esbensen [7] introduced degree of hedging as
another free parameter. Let W(Xy, Xo, ... , X, ) be the rule firing strength for a
fuzzy rule. A free parameter named p is used to increase or decrease the rule
firing strength and is named degree of hedging. The modified firing strength is
obtained as below:

Modified Firing Strength = u” (x;, X3, ..., X, ). (19.12)



19.4  THE INITIAL POPULATION

In many applications of genetic algorithms, initial population is chosen
purely randomly. Many times this is an obligation because there is no initial
knowledge about the system. However, since human knowledge is often
available and also applicable in fuzzy system, it may be reasonable to include
such knowledge in an initial population in order to decrease the time needed to
reach the optimal solution, even though such knowledge may not be optimal.
But nonrandom initial population is not al/ways better than random initial
population even though such a population may initially exhibit a higher average
fitness. The following example by Lee and Takagi[8] shows how and whether a
random initial population can be more desirable than nonrandom initial
populations.

Example 19.4

Lee and Takagi used a genetic fuzzy controller for an inverted pendulum.
Inverted pendulum is a system consisting of an inverted beam (pole) on a
moving cart. The task of the controller is to stabilize the pole angle8 and the cart
position x by applying the force F' to the cart. The inverted pendulum is a
nonlinear system with an unstable equilibrium point and thus is a common
platform for testing in control systems technology.

Figure 19.15 Inverted Pendulum System.

Simulation results in four different cases are sketched in Figure 19.16
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Figure 19.16: Evolution of Fitness Function for 1000 generation.



(a) Symmetrical rules (even number of rules) — human knowledge initial
population.

(b) Symmetrical rules (even number of rules) — random initial population.

(c) Non-symmetrical rules - human knowledge initial population.

(d) Non-symmetrical rules - random initial population.

It can be seen that GA with random initial population in case (b) reaches its
optimum value in less time than case (a) where initial population is selected
based on human knowledge. Also, symmetrical rules are more preferable.

In the above example, the reason for the faster convergence of the random
initial population is because of the lack of diversity in initial population. Due to
the stochastic nature of the GA, it is very important to have sufficient diversity
in the initial population such that GA can exploit the landscape properly and
efficiently. Therefore, incorporating a priori expert knowledge in optimization
process needs be done with consideration for diversity. Akbarzadeh and
Jamshidi in 1998 proposed a method for maintaining diversity in initial
population while utilizing a priori expert knowledge. The following section from
Akbarzadeh [3] discusses the grandparenting method.

19.4.1 Grandparenting: A Method of Incorporating a priori Expert
Knowledge

The method presented here is based on a grandparenting scheme where the
grandparent is the genotype representation of one expert’s control strategy in the
form of a fuzzy controller.

Acquire expert knowledge

v

Transform expert knowledge “Grandparent”
To GA domain (String of numbers)

Is the
population size
sufficient?

Perform mutation on the
“Grandparent”

Add the new string to the initial
population STOP

Figure 19.17: The Grandparenting Technique in Creating Initial
Population.




All members of the initial population are binary mutations of the
grandparent. Figure 19.17 illustrates the process of creating the initial
population. The mutation rate is a significant factor since, as the mutation rate
increases, diversity among members of the initial population increases as well.

One important concern about this approach is the diversity issue. If all
members of the initial population are to be derived from one individual (the
grandparent), will there be enough diversity among them such that the GA may
exploit the landscape properly? In fact, this is one of the reasons why one might
ignore the initial knowledge altogether and start with a totally random
population. Let us look at two extreme situations.

e One extreme: The mutation rate is set to zero. Hence all members of
population are exactly alike (no diversity). The initial population will
consequently have a high average fitness and very low diversity. Individuals in
the initial population cannot recombine to create more fit individuals unless the
mutation rate in the algorithm is set to a high value. This is because all members
are alike and therefore crossover is not a productive operator. This sort of initial
population often leads to premature convergence.

* Second extreme: The mutation rate is set to one. In this case, a totally
random initial population is created with a low average fitness and a high
diversity. This type of initial population will in general result in a faster learning
rate, but since the initial fitness is low, it will take a long time to converge.

From above, it is clear that in most cases, mutation rate should be set to a
value between zero and one. The lower mutation rate indicates a higher degree
of confidence that the optimal string is in close proximity/similarity to the
grandparent’s string. In other words, if the expert knowledge is already
performing well and we only require fine tuning, exploiting the whole parameter
vector space may not be necessary. In exchange, by setting mutation rate to a
low value, we ensure faster convergence, which helps the implementation of GA
in a real time system environment.

In contrast, the higher mutation rate indicates a low degree of confidence in
the expert and the need for exploring the rest of the representation space more
fully and with a higher diversity. Depending on the complexity of the problem,
this means a poorly fit initial population and longer convergence time. However,
it may be the only feasible alternative if expert knowledge is not available. In
short, the grandparenting technique adds a control variable, the mutation rate, as
a new parameter by which the GA designer can weight diversity vs.
convergence and average fitness of the initial population.

The following example from Akbarzadeh [3] illustrates the mechanism of the
grandparenting method and its benefits in a higher fit initial condition and faster
convergence.



Example 19.5

Determine the parameters, b;, such that the following fitness function, f(B), is
maximized:

8
f(B)=B.B" = be (19.13)
i=1

where, B = [b,, b,,...,b;...,bs] is a an 8-bit binary row vector. Also given is an
expert opinion about the possible values for the optimal solution B¥
Bexpert:[l’171’071’171’1]'

Solution: Intuitively, the solution may be clear to the reader:
B*=[1,1,1,1,1,1,1]. However, it is interesting to see how GA finds the optimal
solution automatically, and furthermore how the grandparenting method
enhances the GA performance in contrast with the method of random initial
population. Using the standard random initial population and from the law of
averages, it can be concluded that the average fitness of a random initial
population is f;,;;,=4 for the above problem. Now let us compare the above with
the grandparenting method. The grandparenting method requires an expert
opinion. In our situation, the expert (or the grandparent) offers the following as a
possible solution: B .y, = [1,1,1,0,1,1,1,1]. The fitness of this grandparent is
seven, which is, as expected, higher than average fitness of random initial
population. Figure 19.18 illustrates the evolution of an initial population
generated through the proposed grandparenting technique.

Fitness of Expert=7.0

Expert: 11101111

Initial Condition Average Fitness=6.5
P(mutation)=0.25 Maximum Fitness=7.0

| 11101110 | 11101101 11101111 | 11111011 |

Reproduction | —
\
| 11111011 | 11101101 11111011 | 11101111 |
Intermediate
Crossover Population
\
11110110 11101011 11101011 1111111
Average Fitness=6.5 First Generation
Maximum Fitness=8.0 P(mutation)=0.01

Figure 19.18: An Example of the Grandparenting Method.

The initial population developed through the “grandparenting” technique has
an average fitness of fiy = 6.5 which is significantly higher than average



fitness of a random initial population. In this example, the P,,41i0,=0.25 is used
for creating the initial population. Furthermore, the optimal solution B* is found
in only one generation as compared to several generations required if starting
with a random initial population. Note that the intermediate population is not
counted since it is an “intermediate” step in creating the new population and its
fitness is not evaluated.

The above example illustrates the method by which grandparenting tech-
nique utilizes a priori expert knowledge to improve the fitness of individuals
within the initial population while keeping diversity in the population, hence
improving the performance of GA. Moreover, in many control systems, there is
usually access to more than one expert. Often, views and opinions of various
experts are different. This difference in opinion, although complicating the
process of knowledge acquisition, is not a weakness; is, in fact, the strength of
biological systems. The evolution in nature is not limited to manipulating genes
and chromosomes. In fact, the diversity in human minds is indeed the strength of
man where each human may differ in perspective and opinion if faced with the
same constraints and criteria. It is therefore no surprise that, if several experts
are interviewed in regard to a control system, each would give us differing
heuristics. The grandparenting idea provides ability to combine multiple experts’
opinions in the above process by repeating the process for each expert. Hence,
the resulting population will consist of variations of multiple expert systems
competing with each other for the right to survival.

19.5 FITNESS FUNCTION

In any genetic algorithm, fitness function plays an important rule because GA
depends on fitness function to guide the direction of its search. There is no
general way to define a fitness function for a problem; however, it is often
designed such that the more desirable solutions correspond to higher fitness. So,
the GA optimization is usually regarded as a search for the parameters which
maximize the fitness function. Obviously, a fitness function needs to include all
the pertinent parameters which need to be optimized (free parameters). One of
the objectives of the optimization problem is to find the systems with higher
performance, so it is common to include some of the performance measures of
the system into the fitness function. Other requirements can also be considered.
For example in Example 19.6, the number of rules is included in the fitness
function as a measure of complexity to reduce the number of rules in the system.

Example 19.6:

In a simple control system, the shape of the step response can be a good
measure of the controller operation. A fast and accurate response with lower
overshoot is often desired. So a fitness function can be of the form below:

1

!
fitness :J;’ e2+—y2+1dt (19.14)



where e represents the error between desired and system response and Y
represents overshoot. ¢; and ¢ are the starting and ending time of simulation.

A more general form for a normalized fitness function regarding time domain
response has been proposed in Akbarzadeh [3]:

- 1 B (19.15)

tf _ti i klpl2 +k21722 +"’+knpr12 +y

f(P1>D2ses PR) =

where p;, i=1,...,n are time varying system parameters, k; are positive constant
multipliers as weighting functions to emphasize or de-emphasize a parameter
significance, and Yy is a positive constant which sets the slope of the fitness
function near its optimal solution. A common problem with many fitness
functions is that once the algorithm nears the neighborhood of the optimal
solution, it cannot reach the optimal point because it cannot accurately
differentiate between near-optimal and optimal solutions. The nearer the slope
of the fitness function is to its optimal solution, the more it can distinguish
between optimal and near-optimal solutions. The proposed fitness function has
the advantage that this slope can be controlled by y. Smaller values of vy
correspond to greater slopes.

Example 19.7:

Lee and Takagi [8] introduced a fitness function for the inverted pendulum
control problem (Example 19.4). The objective of controlling the inverted
pendulum is to balance the system in the shortest amount of time for a specific
range of initial conditions. The fitness function for a trial is evaluated in two
steps:

Stepl: first define a score function of ending time (z,,) for the trial, based on
the termination conditions. It is possible to consider three different termination
conditions. Figure 19.19 illustrates how the scoring function evaluates the score
for a trial.

Score(tenq)

A a;(tmax-tena) +az. reward

\

o reward

b. tena

| >

max tend

Figure 19.19: Scoring Function for Inverted Pendulum.



Condition 1: the system balanced the pole before time is expired.

(‘9|Sgo long <t< tmax) (1916)
Condition 2: time is expired and the system could not balance the pole.
(<0190 1<tond =tnax) (19.17)
Condition 3: the pole fell over before ending time. (19.18)
(|6|290 tend <t< tmax)

The score function has been defined as:

score(tyy)= ai(tua-ted ta,. reward if condition 1

score(t,g)=reward if condition 2 (19.19)

score(tyg)=b. to if condition 3

where 6 is the angle of the pole, € is a real number defined so that for |0 |< &
the system is considered as stable, and a; , a, , b and reward are constants.
(Figure 19.19)

The general idea is that if the system balances the pole (condition 1), a
shorter time for ¢,,, is ranked higher, but if the pole falls over, a longer time for
t..g means that it is kept from falling for a longer period of time and thus is
ranked higher.

Step 2: The fitness function is not only a function of the score. To consider
steady state error and to penalize systems according to the number of the rules in
the system, fitness function is defined as below:

Lend
(score(te,,d) te %l 9! |)

(19.20)

fitness =

number of rules + offset .

The steady state error is a summation of the pole angle displacement weighted
with constant ¢. Offset,,,; is a parameter which controls the degree of penalty
for the number of rules.

Figure 19.20: The Drive System of the Separately Excited DC Motor.

19.6 SPEED REGULATION OF A DC MOTOR

In this section, we will examine one of the recent successful applications of GA-
fuzzy systems in detail. The following example is adapted from Akbarzadeh et
al. [16].



In this example, a GA fuzzy system is simulated for velocity control of a DC
motor. Due to its excellent speed control characteristic, the DC motor has been
widely used in industry even though its maintenance costs are higher than the
induction motor. As a result, speed control of the DC motor has attracted
considerable research and several methods have evolved. Proportional-integral
(PI) and Proportional-integral-derivative (PID) controllers have been widely
used for speed control of the DC motor. Kim and Baek [17] surveyed the current
state of the PI, PID and command matching controllers for speed regulation of
DC motors. To reduce the loading effect and minimize time delay, they added a
feed-forward controller to the PID controller. In Iracleos and Alexandridis[18],
the feedback gains of a PI controller are first nominally determined and
thereafter tuned using fuzzy logic. Yousef [19] determined a fuzzy logic based
controller with superior performance over a DC motor PI controller. Yousef
controlled both speed and current variables. In Fisher et al. [20] three different
intelligent control architectures are considered. There, a feedforward/feedback
control strategy is used to ensure effective, high performance tracking of
reference speed trajectories.

The above works indicate successful utilization of fuzzy logic over
nonfuzzy PI and PID controllers in regulating DC motor drive systems. Yet, for
best response, the above approaches have no capability to search for an optimal
knowledge base. Here, an automatic way of searching for optimal knowledge is
proposed and applied to the speed regulation problem.

This section is organized as follows. First, the system model of a DC motor
is formulated. Next, the simulation results of the corresponding system are
compared with nonfuzzy PID and nonoptimized fuzzy PID controllers.

Let us now congider a separately excited DC motor as is shown in Figure
19.20. Where @\f) is rotational speed, i, (t) armature circuit current, T, (t)
constant torque-type load, g (;) armature circuit resistance, [ coefficient of
viscous-friction, k torque coefficient, J moment of inertia, and L, armature
circuit inductance. In state space form, if we let

x,(6) =i, (0, %, (1) =axt),ut) =V, (). () = T; 1) (19.21)

be our choice of state and control variables, then the state space model of the
system can be represented by the following:

x(0)=[x, ), x, )" (19.22)
X(6) = AX(¢)+Bule)+ Ed(r).
w1ty =cx(r) (19.23)
and:
O-R, -kO
07" o 10 00 O
A=0k  Ligp=0  Oc=[o 1 E=310 (19.24)
g4 g 05 e
B J B



where the load torque is considered as disturbance input.

Numerical Values
The DC motor under study has the following specifications and parameters:
a) Specifications: I hp, 220 Volts, 4.8 Amperes, 1500 rpm
b) Parameters:

R, =225Q.L, =46.5mH.J =0.0Tkg.m®,B =0.002N.m. > k =1.1—L
rad sec.rad

19.6.1 The Control Architecture

The control architecture used here is the standard application of genetic
algorithms on fuzzy controllers with proportional, integral, and derivative
variable inputs, with the difference that the idea of grandparenting is used to
shape the initial population. Through the GA, various combinations of candidate
solutions are evaluated and the best, fittest, solution is chosen to control the
actual system. The GA has the capability to alter the shape of the membership
functions of individual inputs. Figure 19.21 illustrates a block diagram of the
closed loop control system.
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Figure 19.21: GA Optimized Fuzzy PID Control Architecture for a DC Motor.
19.6.2 Results

Here, three different controllers are simulated and compared. The first
simulation involves a model based PID controller as discussed by Kim and Baek
[17]. The corresponding control law is as follows:

)= s o~ g44) (19.25)
where , _ ;074 is the reference input, P=1.1712, 0=13.236, R=0.03. The

sec

second simulation is a fuzzy PID control law u(t) based on a nonoptimized a
priori expert knowledge.
ult) = f(e,e‘,J'e) (19.26)

where f'is a nonlinear function determined by the fuzzy associative



memory and parameters of input and output membership functions, e=w, -w,

¢=a, -, and:

fe =i(“r -l (19.27)

In the third simulation, GA is used to optimize parameters of the above
fuzzy controller. In order to minimize the parameter set, GA is applied to
optimize only the input membership parameters of the fuzzy controller as is
shown in Figure 19.21. Other parameters in the knowledge base are not allowed
to vary. This will reduce simulation processing time and will still demonstrate
the potential utility of GA. The following fitness function was used to evaluate
various individuals within a population of potential solutions:

[/ 1

fitness = / - \dt
Iy = fJ (klez +hyo® +hay’ +1r

(19.28)

where e and e represent the errors in angular position and velocities, y
represents overshoot, and &, k,, and k3 are design parameters. Consequently, a
fitter individual is an individual with a lower overshoot and a lower overall error
(shorter rise time) in its time response. The above fitness function is normalized
such that a fitness of 1 represents a perfectly fit individual with zero error and
overshoot. Similarly, a divergent response receives a fitness of zero. In this
simulation, the following values were used

ky =255k, =150 sky; =1 -

Figure 19.22 shows the maximum and average fitness of each GA
generation. A total of 40 generations were simulated; each generation included
100 individuals. The performance measure never reaches steady state since it is
constantly trying out new directions of search through mutation. As is shown in
Figure 19.22, the curve for the maximum fitness converges very quickly, i.e.,
within the first two generations. However, the fitness of the whole population
converges within 20 generations. The mutation rate for creating the initial
population was set to 0.1. Thereafter, the mutation rate was set to 0.033. The
probability of crossover was set to 0.6.

Maximum Fiiness __ Average Fitness —.— Fuzzy .. GA-Fuzzy __PID —.—
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Figure 19.22: Plot of Maximum and Figure 19.23: Comparison of PID,
Average Fitness Values of GA for a Fuzzy PID, and GA-Optimized Fuzzy

DC Motor. PID Controllers for a DC Motor.



Figure 19.23 illustrates the three controllers’ time responses. The GA
optimized fuzzy controller is a significant improvement over the initial fuzzy
controller based on crude expert knowledge. While keeping the same rise time,
the GA optimized controller has no oscillations and almost no overshoot. When
compared with the model based PID controller, the GA-optimized fuzzy
controller also shows significant improvement. In this respect, the overshoot and
rise time are reduced by over 50%.

19.7 CURRENT PROBLEMS AND CHALLENGES

Real time implementations
The capabilities of evolutionary algorithms will be highly increased if they can
be implemented online. Even with the aid of new computers with high
computational speeds, real time GA implementation is still a challenging
problem. Such real time evolutionary algorithms can have many applications
such as in design of more intelligent robots with a higher degree of autonomy.
For example, robots used for hazardous material handling or space robots
commonly operate in unstructured and noisy environments. Such robots often
need to be locally controlled with an intelligent controller [21] and with little or
no contact with a human supervisor. Online evolutionary methods can enable
these robots to learn from past experiences and evolve their performance and
adapt themselves to the environment while in operation. Therefore, one of the
important research activities is to develop and implement genetic algorithms
with higher levels of computational efficiency.

GA Optimizer

r(t) / u(t)
o) Con%er System YO |

L

Figure 19.24: Online Genetic Optimizer for Control System.

Side effects of evolutionary fuzzy systems

G.V. Tan and X. Hu [10] introduced some of the undesired side effects that
can surface when using evolutionary fuzzy systems. The main problem is that
evolutionary optimization algorithms may drastically alter the control system



architecture (acting autonomously) to the extent that the resulting system would
no longer be identifiable by a human operator. This is particularly true for fuzzy
systems where an intuitive human understanding of the control system is a
significant aspect of a control system. Indeed, the meaningful relation between
membership functions and associated fuzzy rules may be lost from a human
point of view. Figure 19.25 shows a fuzzy partition after optimization that is
meaningless for humans.

To overcome this problem, some constraints should be included in the
optimization algorithm such as limiting the system to a symmetric rule set and
uniformly distributed membership functions for a more meaningful fuzzy
system.

mfl mf3 mf2 rmf4 mig mfs

Figure 19.25: An Example of Optimized Fuzzy Partitioning.

19.8 SUMMARY AND RESULTS

As we enter the era of more complex systems, the need for more intelligent and
ultimately autonomous controllers arises. This need is currently being addressed
by applying fuzzy logic to bridge the gap between machine number processing
capability and human thinking. Even though the power of original thinking and
innovation is what we look for in intelligent and autonomous systems, fuzzy
logic, in its conventional form, does not provide that power. That is why we
equip fuzzy logic with nature based evolutionary algorithms in search of
machine self innovation. Through genetic operations such as mutation and
crossover, GA is able to invent and recombine new search paths.
In this chapter, several design aspects of such fuzzy and GA improved fuzzy

controllers were discussed. Following summary remarks can be made:

*  Genetic algorithms fill the existing gap between fuzzy logic and its
application to complex systems by removing the need for optimal human
expert knowledge, and instead allowing machine self innovation.

* GA is a relatively robust alternative for automatic design and optimization
of fuzzy systems. Successful applications of such hybrid GA fuzzy
architecture are abundant in the literature.



*  There is not a unique approach to implementation of GA fuzzy systems.
Various approaches often differ in their selection of free parameters, genetic
representation of the parameters, and fitness functions.

*  Selection of free parameters for optimization is a compromise between
more complex and larger search spaces and less optimal solutions.

* The main parameters of a fuzzy system that are usually selected for
optimization are membership function parameters and fuzzy if-then rule
parameters. They can be optimized simultaneously or in steps.

»  After selection of the free parameters and the way they are optimized, the
most important parts of the optimization are
- Genetic representation of the parameters
- Definition of the genetic operators
- Definition of the fitness function for evaluation of the solutions.

- Selection of the initial population.

* The time needed for optimization and the computational time in every
generation is an important property of an optimization algorithm because
real time implementation of the algorithm would be possible if the
computation delay were small enough.
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GENETIC AND EVOLUTIONARY
METHODS FOR MOBILE ROBOT
MOTION CONTROL AND PATH
PLANNING

Abdollah Homaifar, Edward Tunstel, Gerry Dozier, and Darryl Battle

20.1 INTRODUCTION

A variety of evolutionary algorithms, operating according to Darwinian
concepts, have been proposed to solve problems of common engineering
applications.  Applications often involve automatic learning of nonlinear
mappings that govern the behavior of control systems, as well as parallel search
strategies for solving multiobjective optimization problems. In many cases,
hybrid applications of soft computing methods have proven to be effective in
designing intelligent control systems. This chapter presents two instances of
such hybrid applications to problems of mobile robot control. In particular,
evolutionary computation and fuzzy logic are combined to solve robot motion
control and path planning problems. The first part of the chapter describes a
methodology for applying genetic programming (GP) to design a fuzzy logic
steering controller for mobile robot path tracking. Genetic programming is
employed to learn the rules and membership functions of the fuzzy logic
controller, and also to handle selection of fuzzy set intersection operators (t-
norms). The second part of the chapter describes an application of fuzzy logic
to enhance the performance of an evolutionary robot path planning system. In
this case, fuzzy logic is employed in the selection phase of the simulated
evolution process.

20.2 GENETIC PROGRAMMING FOR PATH TRACKING CONTROL

In applications of genetic and evolutionary methods, the data structures of
individuals being evolved are different depending upon the specific type of
evolutionary algorithm employed. Genetic programming is a method of program
induction introduced by Koza [1]. It has been demonstrated to be useful as an
approach to learning fuzzy logic rules for mobile robot control and navigation
[2, 3]. It has also proven useful for the classical cart centering control problem
[4]. The data structures undergoing adaptation in GP are noted as hierarchically
formed programs of a given host programming language. In the host language,
individuals are represented as parse trees, which dynamically change size and
structure during simulated evolution.

The set of possible structures produced by GP is primarily based on the set of
all possible valid compositions that can be constructed from the set of n problem
dependent functions defined in a function set, F' = {f}, f5, ..., f,}, and the set of m



terminals (function arguments, variables, and/or constants) defined in a terminal
set, T= {t], b, ..., l‘m}.

In order to appreciate the utilization of GP for the design of fuzzy logic
controllers, we introduce the steering control problem next and follow it by
discussing some of the important implementation issues to be considered for the
application of GP.

20.2.1 Path Tracking Formulation

The first of two control problems examined in this chapter is a path tracking
problem, which was formulated by Hemami et al. [5, 6] for a class of low speed
(less than 2 m/s) tricycle-model vehicles. Essentially, the control objective is to
successfully navigate a mobile robot or automated guided vehicle along a
desired path in a two-dimensional environment. We wish to automatically
design a multiple input, single output fuzzy controller that will achieve this
objective. The inputs consist of a measurable position error, &;, and a measurable
orientation error, &, associated with path following in the plane (see Figure
20.1). The output is the steering angle, d, which is the corrective control action
that would cause the errors to approach zero and, thus, force the robot to follow
the desired path. The position error is taken as the deviation of the center of
gravity, C, or any other desired point of the robot from the nearest point on the
path. The orientation error is the angular deviation of the robot from the tangent
of the desired path.

]
desired \%L'
" Q

Figure 20.1: Tracking Control and Error Variables.

Hemami et al. derived a state-space kinematic model for this robot where the
state vector comprised the pose errors described. The resulting kinematic model
is repeated herein for clarity in the discussion that follows. The reader is
referred to reference [5] or [6] for details of the derivation, which culminates in
the following:

£,0 O V,0&,0 MC/MP @, 0
= 5+ 20.1
% [ ok H Hiae é}t * i 20D

where ¥, is forward linear velocity of the robot, and % and I% are rates of
change of the effects of path curvature. In Hemami et al. [6] it is concluded



(based on dynamic analysis of the same vehicle) that for small steering angle, 0
(tan & = J), Equation (20.1) approximates the slow dynamics of the vehicle
when its forward velocity is low. In the simulations presented later, we have
simplified the robot kinematic model by taking this small steering angle
approximation into account. Furthermore, we apply the controller to straight
line path following and, therefore, neglect the model effects of path curvature.
Such a simplification does not preclude autonomous tracking of reasonably
complicated paths since multisegment paths can be defined to be piecewise
linear.

To allow for control of the mobile robot, some means of measuring the input
information is needed to feed into the system in order to generate a desired
output. Thus the system under control is assumed to have some suitable sensory
apparatus. For our implementation, we assume that the robot has dead-
reckoning/odometry sensors that provide access to the error states at all times, or
permit calculations thereof. This sensory input data is then mapped to control
outputs according to the desired control policy. In path following simulations,
the position and orientation errors in Equation (20.1) are updated using the
fourth-order Runge-Kutta method, which is widely used in computer solutions
to differential equations [7].

20.2.2 GP Solution

The path tracker to be learned by GP is a two input, single output fuzzy
controller that will map the error states into a proper steering angle at each time
step. A population of candidate solutions is created from which a solution will
emerge. The allowance for rule bases of various sizes enhances the diversity of
the population.  That is, the GP system creates individuals in the initial
population that each have possibly different numbers of rules within a finite
range (15-30) specified before a run. In the process of learning fuzzy control
rules and membership functions, GP manipulates the linguistic variables directly
associated with the controller. Given a desired motion behavior, the search
space is contained in the set of all possible rule bases that can be composed
recursively from a set of functions and a set of terminals. The function set
consists of membership function definitions (describing controller inputs),
components of the generic fuzzy if-then rule, and common fuzzy logic
connectives. More specifically, these include functions for fuzzy sets, rule
antecedents and consequents, fuzzy set intersection and union, and fuzzy
inference. The terminal set is made up of the input and output linguistic
variables and the corresponding membership functions associated with the
problem.

Selection of appropriate t-norms is automated, thereby giving the GP system
greater control of the evolutionary design. That is, the influence of GP is
extended to include selection of the type of t-norm employed to compute the
conjunction of fuzzy propositions in the antecedent of a rule. The two most
commonly used t-norms for fuzzy control are Mamdani's min and Larsen's
product [8]. T-norms for each conjunctive rule are selected at random by GP for



rule bases in the initial population, and are carried along based on fitness in
successive generations.

To achieve the goal of evolving membership functions and rules for FLCs,
the GP system must conform to strong syntactic constraints when breeding
individuals. Special rules of construction were introduced in Tunstel and
Jamshidi [2] and later extended using algorithms described in references [9] and
[10]. We refer the reader to Homaifar et al. [11] for a detailed description of the
resulting syntactic rules, the full design algorithm, and other GP implementation
issues related to fuzzy controller design.

20.2.2.1 Controller Fitness Evaluation

Each rule base in the current population is evaluated to determine its fitness
value for steering the robot from initial locations near the desired path to final
locations on the path such that steady state and final pose errors are minimized.
This evaluation involves frequent simulation of the robot’s motion from each of
a finite number of initial conditions until either the goal state is achieved or the
allotted time expires. The initial conditions are referred to as fitness cases in the
GP community. For this problem we use eight different initial conditions, which
is a logical choice given the pair-wise symmetry of the possible error categories
illustrated in Figure 20.2. Consider error category (d), which represents a case
where the robot is located on the left of the desired path with a negative heading
orientation. There also exists a symmetric case where the robot is located on the
right of the desired path with a positive heading orientation. These symmetric
cases are each represented by error category (d). The same holds for categories
(a), (b) and (c) illustrated in the figure, yielding a total of eight fitness cases that
fully describe the possible combinations of errors with respect to the path.

The fitness function is a measure of performance used to rank each
individual relative to others in the population. We compute path tracking
performance by summing the Euclidean norms (normalized) of the final error
states plus the average control effort (&) over all eight fitness cases. Thus, the
following fitness function drives the evolution process

Raw Fitness = % (e2+e2+52), (20.2)
i=1

where £y and &£y are the position error and orientation error existing at the end
of each fitness case simulation. The objective of this fitness function is to
minimize final path tracking errors as well as the control effort expended. As
such, a perfect fitness score is zero and, in general, lower fitness values are
associated with better controllers.

Simulations show that adding average control effort as part of the path
tracking metric significantly reduces undesired steering oscillations. Fitness
functions based solely on final error states sometimes yielded impractical
controllers that exhibited rapid oscillations in the steering control signal, which
would cause damage to the steering mechanism of a real mobile robot.

The path tracking success of an individual in the population is also based on
its ability to minimize the error states to within the following specified



tolerances, | &4 |<0.15m and | &g |<0.26 radians, for each fitness case. A fitness

case simulation in which these tolerances are satisfied is considered a hit, or
successful trial. Thus, each individual has the potential of receiving a total of
eight hits during fitness evaluation for this path tracking problem.

: tangent to path | —0—

(a) sd:O,£e<O (b) £d<0,£e:0
(c) £d<0, se<0 (d) £d>0, £e<0

Figure 20.2. Error Categories for Path Tracking Control Problem.
20.3 PATH TRACKING SIMULATION RESULT

In this section, we present representative results of simulated path tracking
performance for an evolved controller. Results are presented, in particular, for a
fuzzy controller designed with t-norms selected randomly during co-evolution of
rules and membership functions. Selection of appropriate t-norms is one of
several design decisions that could lengthen the manual trial-and-error
procedure typically used by FLC designers. We elect to automate this decision
and thereby give the GP system greater control of the evolutionary design. To
achieve this, the GP system is allowed to choose at random between the two
common t-norms mentioned above. T-norms for each conjunctive rule are
selected at random by GP for rule bases in the initial population, and are thus
carried along based on fitness in successive generations.

The simulated robot is based on Hemami's kinematic model with dimensions
taken from the Heathkit Hero-1 mobile robot. The Hero-1 has a tricycle wheel
configuration in which the front wheel is driven by a DC motor and steered by a
stepper motor. Its two rear wheels are passive. Dimensions employed are 0.3 m
for the wheelbase, and 0.2 m for the offset from the rear axle to the front wheel.
These dimensions correspond to the constant lengths 2d and MP of Figure 20.1,
respectively. All simulations were conducted assuming a controller sampling-
rate of 20 Hz and run for a maximum of 10 seconds. In each case, the robot
travels at a constant nominal forward speed of 1.5 m/s unless otherwise stated.

All GP runs for the path tracking problem were executed on a 260 MHz
MIPS DECstation using a restructured version of the simple genetic
programming in C (SGPC) system [12]. Five consecutive runs (initialized using
different random number generator seeds) were executed using the GP control



parameters listed in Table 20.1. About one hour of computation time is required
for a run of this magnitude.

Table 20.1: GP Control Parameters.

Parameter Value
Population size 200
Number of generations 50
Mutation probability 0.001
Crossover probability 0.600
Maximum mutation depth 4
Reproduction probability 0.399
Maximum new tree depth 5
Maximum depth after crossover 7

A rule base of 25 rules emerged as the fittest among all five runs. This rule
base used five conjunctive rules, three employing the Mamdani t-norm and two
employing the Larsen t-norm. The evolved input membership functions
associated with the best rule base are shown in the left half of Figure 20.3.
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Figure 20.3: Co-Evolved Input Membership Functions and Fixed Output
Membership Functions.

Co-evolved rules are listed in Table 20.2, where the notations NB, NS, Z, PS,
and PB represent fuzzy linguistic terms of “negative big,” “negative small,”
“zero,” “positive small,” and “positive big,” respectively. Terms describing the
inputs, & and &g, are preceded with the prefixes “p” and “o,” respectively. The
fixed output membership functions are shown in the right half of Figure 20.3,
where the linguistic terms are labeled without prefixes.



Table 20.2: Best Evolved Rule Base.

1 IF o7. THEN NS

2 IF pPB THEN Z

3 IF pNB THEN Z

4 IF pPS THEN NB

5 IF pNS and oPS THEN NS (Mamdani’s min)
6 IF pNB THEN PB

7 IF oNS THEN Z

8 IF oNB THEN PS

9 IF pNS THEN NS

10 | IF pNS and oZ THEN PB (Larsen’s prod)
11 IF oPB THEN NB

12 | IF pNS and oPB THEN NB (Larsen’s prod)
13 | IF pPS THEN NS

14 IF oNS THEN PB

15 | IF pPB THEN NB

16 | IF oZ THEN PS

17 IF oNB THEN PB

18 | IF pNS and oNS THEN PB (Mamdani’s min)
19 | IF pNS THEN Z

20 IF oPS THEN NB

21 | IF pZ THEN PS

22 | IF pPB and oZ THEN Z (Mamdani’s min)
23 IF pPB THEN PS

24 | IF oPS THEN PS

25 | IF oNS THEN PS
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Figure 20.4: Co-evolved FLC Path Tracking Performance.

The evolved controller received a raw fitness of 0.1091 with 8 hits. In
Tunstel and Jamshidi [2], an FLC designed manually, through a lengthy process
of trial and error, is presented which also used 25 rules.
refinement of membership functions and rules were invested before arriving at a

Hours of iterative



suitable design. In comparison, the hand derived FLC received a comparable
raw fitness (0.08 with 8 hits) for the identical tracking problem. Figure 20.4
shows the temporal responses of position error, orientation error, and control
effort for the evolved controller and for the hand derived controller. This result
corresponds to error category (d) of Figure 20.2, with initial conditions of &4 =

0.8 mand €5 =-0.9 rad. As was shown in Hemami et al.[6], this error category
is the most general for studying path tracking by tricycle-type vehicles, in the
sense that corrective vehicle steering from states in other error categories
ultimately leads to vehicle error status in category (d) or its counterpair. The
evolved controller achieved comparable response characteristics to those of the
hand derived controller using an equivalent number of rules.

20.3.1 Evolved Controller Robustness

Given the capability to evolve FLCs that can effectively follow paths, an
important next step is to examine their robustness to practical perturbations. To
test the noise robustness of the evolved controller, simulations were performed
with the imposition of a noise signal upon the sensor measurement related to
heading (orientation). We assume that the error states are derived from sensor
measurements which, due to their imperfect nature, introduce an additive
sinusoidal noise signature of small amplitude and low frequency (relative to the
controller sampling frequency) that corrupts the orientation error. For this
investigation we impose the sensor noise signal, n(z) = 0.15cos(3¢) with ¢t = kT,
where £=1,2,3,... is the sampling instant, and T is the sampling period. Thus, the
noise amplitude is bounded by 0.15 radians (10°), and at any sampling instant
the corrupted orientation error signal lies in the range of (£4* 0.15) radians.

In addition to the additive noise, we also increased the constant nominal
forward speed of the robot by 20%, which resulted in a simulated speed of 1.8
m/s. A typical result is shown in Figure 20.5, which illustrates the performance
of both the evolved controller and the hand derived controller when induced
with noise and an increased vehicle speed. While the oscillatory effects of the
added noise are clearly evident in the steady state response, the controller
successfully navigates the robot onto the path and maintains the steady state
errors within the tolerances specified earlier. Thus, this evolved fuzzy controller
exhibits path tracking robustness to the imposed perturbations. This result is
representative of temporal responses for each of the remaining fitness cases. In
simulations completed thus far, the most robust fuzzy controllers were those
evolved when GP was allowed to randomly select t-norms.

The performance assessment of the evolved controller with regard to
robustness is based upon the assumption that low frequency oscillations within
the control signal of amplitude less than 0.026 radians (1.5°) are practical. In
light of this assumption, the results indicate that the evolved FLC was able to
navigate the robot along the desired path with the imposed perturbation of
sensor noise and the increase in the robot’s nominal speed.
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204 EVOLUTIONARY PATH PLANNING

Thus far, we have discussed genetic programming techniques for solving a
mobile robot tracking problem. We now move on to a related application of
evolutionary methods for mobile robot motion planning. Mobile robots that are
capable of tracking paths can be used effectively in mapped environments where
specific paths from location to location can be designated. If autonomy is
desired, the robot software should be capable of using map-based information to
plan suitable paths in the operating environment. In the very least, a facility for
offline path planning should be available to generate suitable paths for the robot.
What constitutes a suitable path depends on the specific features of the
application and robot functionality. A single objective, or multiple objectives,
may be imposed to define suitable paths for a given application. Many path
planning systems consider shortest paths as the primary criterion. However, the
shortest path may not always be the most efficient. For example, path
smoothness could be of considerable importance. In general, the path planning
problem can often be posed as a multiobjective optimization problem.
Depending on the nature of the objectives to be met for suitable paths, the
formulation of an effective closed-form, multiobjective function to be optimized
could be quite difficult. As a way to circumvent such difficulties, a
multiobjective selection method has been developed for use with an
evolutionary path planning system.

The remainder of this chapter presents an approach to path planning that
employs evolutionary methods to find suitable paths in a robot’s operating
environment. The main attributes and evolutionary mechanisms of the path
planner are described. In addition, a technique for enhancing path planning
performance using fuzzy logic in the evolutionary process is presented.



20.4.1 Evolutionary Path Planning System

In this section, we present the salient attributes of an evolutionary path
planning system called GEPOA (global evolutionary planning and obstacle
avoidance system), which has been applied to robot planning problems [13].
GEPOA uses steady state reproduction, flat crossover [14] with Gaussian
mutation, and uniform mutation in an effort to develop feasible paths. In each
generation of path evolution, two parents are selected using tournament
selection with a tournament size of two. If the first parent selected represents an
infeasible path, it is repaired 50 percent of the time using a method called
visibility-based repair (VBR), described below. If the first parent selected is
feasible then the two parents create one offspring, which replaces the worst
individual in the population. The following attributes of GEPOA will be briefly
described: environment and path representation, visibility-based repair, path
evaluation and selection functions, and evolutionary operators.

20.4.1.1 Environment and Path Representation

An obstacle within the robot’s environment is represented as a set of
intersecting line segments. Each line segment connects two distinct vertices.
Associated with each vertex within the environment is a value, which represents
the number of obstacles that contain it. This value is referred to as the
containment value (CV) of a vertex. If a vertex lies along the boundary of an
environment its CV is assigned a value of infinity. Figure 20.6 provides an
example of how obstacles are represented in GEPOA. Notice that the four-sided
obstacle (Obstacle 1) is represented by only two lines in GEPOA.

An individual in the evolving population of candidate paths (CPs) contains
four fields. The first field is a chromosome, which contains a gene
corresponding to the Cartesian coordinates of each node of the path (where
nodes of a path are connected by a straight-line segment). The second field is
called the seed. The seed of an individual is the gene that will be crossed or
mutated to created an offspring. Initially, an individual will have only three
genes: the start gene, the seed gene, and the destination gene. Repair genes are
inserted into the chromosome by the VBR algorithm each time a straight-line
segment of an individual is found to pass through an obstacle. The third field is a
value referred to as the violation distance. The violation distance represents the
Euclidean distance of the CP, which cuts through one or more obstacles. The
fourth field records the Euclidean distance of the path from the start to
destination genes.

20.4.1.2. Visibility-Based Repair of Candidate Paths

VBR facilitates construction of valid paths through free space and is
performed as follows. When an obstacle, o;, lies along a straight-line segment
between two nodes P and Q, each line of o; is checked to see if it is intersected
by PQ. If a line of o; is intersected by PQ, then a repair node is created using
the following set of rules:

1. ifthe CVs of a line's vertices are both equal to one, then the repair node



is selected to be a point along an extension (the distance outside an
obstacle at which a repair node is placed is a user-specified parameter);
2. if the CVs of a line's vertices are different, then the repair node is
selected to be a point just outside the vertex which has the lower CV;
3. if the CVs of a line's vertices are greater than one and equal, then the
repair node is selected to be a point just outside of the vertex which is
farther from the point of intersection.

Conventional representation GEPOA Representation

v(1,1) v(1,2) v(1,1) v(1,2)
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Figure 20.6: Obstacle Representation in GEPOA.
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Figure 20.7: Visibility Based Repair of Paths.




Figure 20.7 shows an example of how VBR can be used to transform an
infeasible path into one that is feasible. In Figure 20.7a, an infeasible path XPT
is shown. The path XPT is infeasible because the line segment XP passes
through Obstacle 1 and the line segment PT passes through Obstacle 3. Before
proceeding further, notice that each vertex in the environment shown in Figure
20.7a has a CV of one.

Using VBR, the line segment XP can be repaired to X4AP. Since XP intersects
Line 1 of Obstacle 1, a repair node corresponding to a point just outside either
v(1,1) or v(1,3) must be selected. By applying Rule 1, Node A4, which
corresponds to a point just outside vertex v(1,1), is selected as the repair node.
Similarly, the line segment PT can be repaired to PBCT. Again Rule 1 must be
applied to Line 1 and Line 2 of Obstacle 3. The repair node that results from the
intersection of PT and Line 1 is Node B. The repair node that results from the
intersection of PT and Line 2 is Node C. Figure 20.7b shows the result of using
VBR on XPT. The repaired, feasible version of XPT is XAPBCT.

Given a candidate path, the VBR algorithm used by GEPOA works as
follows. Each obstacle within the environment is checked with each straight
line segment from the start gene to the destination gene of the candidate path
until a segment is found that passes through the obstacle. The infeasible segment
is repaired via VBR and the process is repeated using the next obstacle. As an
example of how this repair algorithm works, notice once again Figure 20.7.
When given the path XPT the algorithm works as follows. Obstacle 1 is
checked to see if it is violated by segment XP. Since it is, a repair gene (Node
A) is generated and Obstacle 2 is then considered. Obstacle 2 is checked to see if
it is “cut” by segment XA4. Since it is not cut by segment X4, Obstacle 2 is
checked with segment AP then segment P7. Since there are no more segments to
inspect, Obstacle 3 is considered. Obstacle 3 is checked to see if it is cut by
segments X4, and AP. Finally, Obstacle 3 is checked to see if it is cut by PT.
Since it is, two repair genes are generated (Nodes B and C) and the algorithm
terminates.

Since this repair algorithm considers an obstacle only once, it is possible for
a repair gene to be generated that creates a line segment that cuts through a
previously considered obstacle. Therefore, a candidate path may need to be
repaired by this VBR algorithm more than once.

20.4.1.3. Path Evaluation, Selection, and Evolutionary Operators

The evaluation function computes the Euclidean distance of each straight line
segment of the path that an individual represents as well as the violation
distance. GEPOA uses a modified version of tournament selection, with a
tournament size of two, to select individuals to become parents. The selection
process is as follows. Two individuals are randomly selected from the current
population. If the violation distances of the two are different, then the individual
with the smaller violation distance is selected to be a parent. If the violation
distances are the same then the individual with the smaller overall distance is
selected to be a parent.



GEPOA uses two operators along with VBR to create and/or refine
individuals. The two operators are as follows: (1) a version of Radcliffe's flat
crossover [14], which we refer to as seed crossover and (2) a version of uniform
mutation, which we refer to as uniform seed mutation. Seed crossover proceeds
as follows. Given two seed genes s; = (X3,y;) and s, = (X,y»), a seed gene for an
offspring is created as follows:

Sofr = (rnd(X1,X2) + N(0,4.0) rnd(y,,y,)+ N(0,4.0)) (20.3)

where rnd is a uniform random number generator and N(0,4.0) is a Gaussian
random number with zero mean and a standard deviation of 4.0. The resulting
offspring has a chromosome containing three genes: a gene corresponding to the
node representing the current position of R(X), the seed node, and the
destination node. The offspring then undergoes VBR and may have additional
repair genes added by the VBR algorithm. In uniform seed mutation, either the
x or y coordinate of a parent is mutated using uniform mutation to create a seed
gene for an offspring. A resultant offspring created by seed mutation is similar
to one created by seed crossover in that it also has a chromosome containing
three genes. Once again the offspring undergoes VBR and may have additional
repair genes added by the VBR algorithm.

20.5 PATH EVOLUTION WITH FUZZY SELECTION

During evolution of candidate paths the selection of the parent paths that
undergo reproduction is based on several objective criteria. This section
describes a tournament selection procedure that employs fuzzy logical inference
to enhance the performance of the GEPOA system. The fuzzy tournament
selection algorithm (FTSA) selects CPs to be parents and undergo reproduction
based on:

1. the Euclidean distance of a path from the origin to its destination,

2. the sum of the changes in the slope of a path,

3. the average change in the slope of a path.

As such, the overall objective of the FTSA is to allow evolutionary path
planners to evolve CPs that feature minimal distances from start to destination,
minimal sums of the changes in slope (SCS), and minimal average changes in
slope (ACS). Given two candidate paths (CP; and CP,) that are randomly
chosen from the current population, the FTSA takes six inputs — the path
distances, the SCS, and the ACS. It returns one output in the continuous interval
[-1, 1], which corresponds to the CP that should be selected to be a parent. Any
output less than zero indicates that CP, is to be selected, while any output
greater than zero indicates that CP; is to be selected.

20.5.1 Fuzzy Inference System

Let (d}, s, a;) and (d,, 55, ay) denote the distance, SCS, and ACS for CP; and
CP,, respectively. These six inputs are converted into three derived parameters,



d, s, and a, whose computed values lie in [-1,1] according to the following
expressions:

Eﬂzdl_dz s=2 azal_"za (20.4)
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Note that for values of d, s, and @, which are less than zero, the more
desirable attribute belongs to CP; and vice versa for CP,. Each of the derived
inputs has a domain partitioned by three fuzzy subsets defined using overlapping
membership functions. Figure 20.8 shows the three membership functions,
where x is d, s, or a. If the value of x is nonpositive then it is a member of the
fuzzy set “less than,” LT, which represents the set of all tuples (x; ,x,) such that
x; <Xx,. Similarly, values of x that are nonnegative are members of the fuzzy set
“greater than,” GT, and represent the set of tuples (x; ,x,) for which x; > x,. All
values of |x| < X are members of the fuzzy set “equal,” EQ, representing the set
of all tuples (x; ,x;) for which x; and x, are approximately equal. By varying the
value of X, the FTSA has the ability to focus on optimizing a particular
objective. In the sequel, X'is D, S, or 4.

The fuzzy rules are formulated as listed below. For each of the seven rules, P
represents the singleton consequent of the rule. If the consequent of a rule is (P
= -1), then the rule has specified that CP; should be selected to be a parent.
Similarly if a rule's consequent is (P = 1) then it has specified that CP, should be
selected. The defuzzification method used is the Mean of Maxima.

« IFdisLTTHENP=-1

« IFdis EQ(D) AND sis LT THEN P = -1

« IFdis EQ(D) AND s is EQ(S) AND ais LT THEN P = -1

« IFdis EQ(D) AND s is EQ(S) AND a is EQ(4) THEN P= 0
« IFdis EQ(D) AND s is EQ(S) AND a is GTTHEN P= 1

« IFdis EQ(D) ANDsis GTTHEN P= 1

« IFdis GTTHENP= 1
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Figure 20.8. FTSA Membership Functions for L7, EQ(X), and GT.



20.5.2 Experimental Example

Here, we present an illustrative example of the utility of the FTSA for
enhancing the GEPOA path planning system described above. For fuzzy
tournament selection to be effectively used in this type of system, it must be able
to adequately rank individuals of a population. Hereafter, let GEPOA+FTS
denote GEPOA with fuzzy tournament selection.

Using a hypothetical environment consisting of obstacles distributed
throughout enclosed free space, we compared paths evolved by GEPOA and
GEPOA+FTS. The parameters for each of these algorithms were as follows: the
population size was 20, the flat crossover rate with Gaussian mutation (standard
deviation = 4.0) was 0.66, and the uniform mutation rate was 0.34. After the
initial population was created, both algorithms were allowed to run for 500
generations, thus, creating a total of 520 individuals. For GEPOA+FTS, we set
D=0.15,5=0.15,and 4 =0.15.

Flot of GEPOA Population at Generation 0 Piot of GEPOA Populstion st Genration 500

5
A ——
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Figure 20.9: Path Population of GEPOA: Generation 0 (left); after
Generation 500 (right).
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Figure 20.10: Path Population of GEPOA+FTS: Generation 0 (left); after
Generation 500 (right).



The left halves of Figures 20.9 and 20.10 show the initial populations that were
randomly generated by GEPOA and GEPOA+FTS, respectively. Since GEPOA
and GEPOA+FTS use a visibility based algorithm to repair infeasible paths, it is
not uncommon for feasible (but suboptimal) paths to appear in the initial
population.

The right half of Figure 20.9 shows the population of paths developed by
GEPOA after 500 steady state generations. Notice that GEPOA has converged
upon the two equal and shortest paths; however, these paths are quite rugged. By
contrast, the right half of Figure 20.10 shows the population of paths developed
by GEPOA+FTS after 500 steady state generations. First of all notice that
GEPOA+FTS has converged upon a number of good paths. Notice also that
among the paths evolved with GEPOA+FTS, the shortest path is still
represented. The fact that it is infeasible is not a major concern because it has a
chance of being repaired! Not only does fuzzy tournament selection allow
evolutionary search to converge upon the best path, but it also allows for a great
deal of valuable and much needed diversity.

20.6 SUMMARY AND CONCLUSIONS

GP was successfully applied to discover FLCs capable of navigating a mobile
robot to track straight-line paths in the plane. The overall performance of the
best evolved rule bases was comparable to that of a manually designed rule base
that utilized more rules in most instances. Instances of simultaneous evolution
of membership functions and rules showed that GP was capable of evolving a
FLC that demonstrated satisfactory responsiveness to various initial conditions
while utilizing minimal human interface. Suboptimal solutions with respect to
the employed fitness function were consistently found, demonstrating that GP
performs well as a global adaptive search method. Further automatic
improvement towards optimal solutions can be made by synthesizing a hybrid
between GP and a localized search method such as hill climbing [15, 16].

GP was also applied to larger population sizes facilitated by the dramatic
speed increase of our coding implementation in C vs. the previously investigated
LISP implementation. The 82% increase in speed of evolution alone serves as a
strong basis for practical application of GP in the controller design process. The
approach provides a means for expeditious design of FLCs that can be directly
applied to a physical system. Alternatively, human experts can use the rapidly
evolved FLCs as design starting points for further manual refinement [4]. To
assess the practicality of the GP solutions, robustness characteristics of evolved
FLCs were examined. The controllers evolved with random selection of fuzzy t-
norms were particularly robust when subject to imposed perturbations of sensor
noise and an increase in nominal robot speed. The results support the notion
that a genetically evolved fuzzy logic controller can have practical utility.

Fundamental features of the GP system include manipulation of linguistic
variables directly associated with the fuzzy system (as opposed to numerical
encoding/decoding), a syntactic structure that provides context preservation via



structure preserving genetic operators, and provision for evolving rule bases of
various sizes in a single population. These features were inherited from our
previous implementation in LISP. Beyond these, the implementation proposed
herein provides several improvements and extensions that make GP a more
powerful tool for FLC design. Namely, we have dramatically improved upon
the required speed of evolution and extended the system to handle full FLC
design, including evolution of the most appropriate t-norms for the controlled
system.

In the second part of the chapter we presented an evolutionary algorithmic
approach to robot path planning. It serves as an effective means of
circumventing the difficulties associated with formulating complex
multiobjective functions for suitable paths. A multiobjective selection method
based on fuzzy logic was applied with an evolutionary path planning system.
The fuzzy tournament selection algorithm can be used for multiobjective path
planning by almost any evolutionary based motion planning system. Despite the
simple nature of the fuzzy inference system employed, the FTSA exhibits
complex behavior. The approach allows evolutionary search to converge upon a
diversity of optimal and/or near optimal paths. The availability of alternative
feasible paths is important in the event that a local navigation system cannot
traverse a particular global path. This can happen, for example, when
unfavorable conditions are sensed locally, replanning becomes necessary, or
task constraints intervene.
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PROBLEMS AND MATLAB
PROGRAMS
Ali Zilouchian and Mo Jamshidi

21.1 INTRODUCTION

This appendix serves two purposes. First, it provides readers with problems and
exercises related to NN and FL and their applications. Second, it presents the
MATLAB programs and solutions to problems in the text. The problems are
identified based on the subject matter as discussed in the book.

21.2 NEURAL NETWORK PROBLEMS

Chapter 2

1. Consider following the sigmoid function:

f(x)=

l+e™™

(a) What are the upper and lower limit of this function for constant o?
Obtain the value of f(x) at x=0

(b) Show that the derivative of f(x) with respect to x is given by:

af

L= f W= af @lI-f ()
X

(¢) How would you modify f(x) such that its value at x=0 is equal
(1) 0.125; (i1)0.8
(d) What is the value of f’(x) at the origin?

2. Consider the following hyperbolic activation function

ox —0x
e —e
g(x)=

e® +e”

ox
(a) What are the upper and lower limits of this function?

(b) Show the derivative of g(x) is given as

d ,
L g () =201- g ()]
dx



(c) What is the value of g’(x) at the origin?
3. Consider the activation function f(x) shown below:

A f(x)

v

-b

(a) Formulate f(x) as a function of x
(b) Obtain f(x) if either a or b or both are allowed to approach zero.

4. A neuron m receives sensory information from five inputs with the values
of 8, -10, 4, -2 and 5. The synaptic weights of neuron m are 0.8, 2.0, 1.0, -

0.9 and 0.6. Calculate the output of neuron for the following three
situations:

(a) The neuron is a linear model

(b) The neuron is represent by a McCulloch-Pitts model. (Hard limit
activation function with negative threshold zero)

(¢) The neuron is represented based on a sigmoid function as follows:

1

S = 1+ exp(—x)

5. Consider the following network:
91:0

0,=1



Obtain the output Y for the following cases:

(a) All the neurons are represented by a McCulloch-Pitts model (hard limit
activation function with negative threshold zero)

(b) All the neurons are represented based on a sigmoid activation function.

6. Suppose you would like to implement the following logic gates using NN
(a) OR gate
(b) AND gate
(c) XOR gate

for each case, could you utilize one (or two) hidden layer(s) with linear
activation function to achieve your goal?

If your answer is yes, justify your answer.

If your answer is no, suggest an alternative solution.

Chapter 3
1. Consider a multi layer feed forward network, all the neurons, which operate

in their linear regions. Justify the statement that such a network is
equivalent to a single layer feed forward network.

2. Consider the following network with the inputs and outputs as follow:

1;=0.8, i,=1, 1;=0.9 with d,=d,=1

(a) Derive a step-by-step procedure using back propagation algorithm for
two complete iterations of the network with the sigmoid activation
functions at the first stage and linear function at the output stage with
the initial weights as shown.

(b) Solve (a) using MATLAB.

(c) Solve (a) using MATLAB with tangent hyberbolic activation function
at the first stage and the linear function at the output stage.



(d) Suppose you select different initial conditions. Are the final weights the
same? Justify your answer.

(e) Generate three different random initial weights. Obtain the final weight
of the network after training with 0.1 error goal. Compare your results.

Suppose for problem 2, the inputs and the outputs are as follow:
i1: 12 , i2:3, i3:8 and d(,: 9, d|:1

Solve the problem with appropriate scaling of the inputs and outputs data
sets.

Repeat problem 2 for a radial basis function network.
Compare the radial basis functions neural network and back propagation in
term of various aspects such as training phase, recall phase, convergence,

and applications.

Consider a two link serial robot manipulator as shown:

(a) Write the forward kinematics equation for the robot.

AY

4 6

» X

(b) Show how an NN architecture can be used to solve the forward
kinematics problem. Is the solution unique?

(c) How do you solve inverse kinematics of the robot using NN. Is the
solution unique? Justify your answer,

7. Consider the two-link robot manipulator of the previous example with
L;=2(m), and L, =3(m).

(a) Generate at least 100 data points for x and y, given the following
trajectory:
01=0.005%t
02=0.005%t
where Oland 02 are uniformly distributed in the first quarter and the
range of t is from 0 to 500.



(b) Use two different back propagation algorithms (with the adaptive rate
and one hidden layer) to solve the forward kinematics problem of the
two link robot. The first 80 data points from data set as generated in
part (a) should be used in the training phase.

(¢) Change the number of hidden layers to 2 and solve the problem as
indicated in (c).

(d) Use radial basis network to solve (b).
(e) Compare your results for (b)-(d).
(f) Confirm the fidelity of your trained NN using the remaining 20 data

sets for each part (b-¢). Draw the error plots for the comparison.

Consider a Hopfield network made up of five neurons, which is required to
store the following three fundamental memories:

§‘1:[+1 +1 +1 +1 +1]°
Co=f1 -1 -1 +1 -1
Ou=[-1 +1 -1 +1 +1]f
(a) Evaluate the 5-by-5 synaptic weight matrix of the network.

(b) Demonstrate that all three fundamental memories,&1, £2,and &3 satisfy
the alignment condition, using asynchronous updating.

(c) Show that
=1 -1 -1 -1 —1]f
Oo=[-1 +1 +1 -1 +1]
Os=[+1 -1 +1 -1 -1]"
are also fundamental memories of the Hopfield network.

Consider a simple Hopfield network made up of two neurons. The synaptic
weight matrix of the network is

G

The threshold applied to each neuron is zero. The four possible states of the
network are

T T
Sy=[1 +1] .85, =[-1 +1]

S, =[-1 -1] TS4:[+1 ~1] !
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21.3

(a) Using the alignment (stability condition), show that states S2 and S4
are stable.
(b) What are the statuses of Sland S3?

Consider a simple Hopfield network made up of four neurons. The synaptic
weight matrix of the network is given as:

0 1 1 -1

1 0 1 -1
W=

1 1 0 -1

-1 -1 -1 O

The threshold applied to each neuron is zero. There are 2°4=16 possible
states of the network.

(a) Using the alignment stability condition, obtain the stable states
(fundamental memories).

(b) Show the architectural graph of the Hopfield network.

(c) Suppose the network is initialized at x0=[1, 1, 1, 1]. Show that the
network will converge to the nearest fundamental memory (equilibrium
state) after iteration.

FUZZY LOGIC PROBLEMS

Chapter 8

1.

Design membership functions to describe the linguistic terms “tall”,
“average”, and “short”.

03 1 02 05 06 02

Let4=—+4+—+— and B=—+—+—_ Find the following:
~ 1 2 3 ~ 1 2 3
() AUB
by ANB
() AUB
(d) ANB
1 09 08 075 05 0.1 0
Let A=—+—+—+—+—+—+—.
~ xl xz X3 X4 xs x6 X7

Find the a-cut sets A, Agg, Ao, and Ag.



4.

For fuzzy sets A, B, and C defined on the universe
X={0,1,2,3,4,5,6,7,8}

A={0.1/2,0.7/3, 1/4, 0.3/5, 0.2/6}
B={0.2/1, 0.3/2, 0.6/3, 1/4,0.7/5, 0.4/6, 0.1/7}
C={.4/2, 8/4,1/5, .6/7, 4/3}

Answer the following questions:

(a) Compute the intersections and unions of the fuzzy sets A, B, and C.

(b) Determine the intersection and union of the complements of fuzzy set B
and C.

(c) What are the cardinalities and relative cardinalities of the above fuzzy
sets?

(e) Which of the above fuzzy sets are convex and which are not?
0.1 03 02 05
+——+——+—=

Consider two fuzzy sets 4; = —
- X Xy X3 Xy

and

05 1 03
Ay =—+—+—.
~ N Y2 V3

Determine the fuzzy relation among these sets.

Consider two fuzzy relations

1 01 03 05 07 02
R=[08 06 09|and S=[02 04 09
0 03 02 " 107 06 0.1

It is desired to evaluate Ro S using (a) min-max, and (b) max-product.

Let S and R be the matrix representation of fuzzy relations

0.6 03 0.1 0.5 0.8
R= and S=|0.8 0.9
0.8 09 02 0.5 0.1

Calculate R o S,R oS & (RU S)o S using (a) min-max, and (b)
max-product.



Chapter 9

1. Prove the truth value of the modus ponens deduction
(AA(A—>B)—>B (Modus Ponens)

2. Prove the truth value of the modus tollens inference
(BA(A—>B)— A4 (Modus Tollens)

3. Let two universes of discourse be described by X={3,4,5,6} and Y={1,2,3}
and define the crisp set A={4,5} on X and B={1,3} on Y. Determine the
deductive inference IF A, THEN B.

4. Let three universes of discourse be described by X={5,6,7}, Y={1,2,3,4,5}
and define the crisp set A={5,6} on X, B={1,3,5} on Y and C={1,6} on Y.
Determine the deductive inference IF A, THEN B, ELSE C.

Chapter 10

1. Given 3 fuzzy sets

,UA()Q

Hp (J’)A




Uc(z) A

-2 0 1 z

Find the consequent, z, of the following rule
IFxis ANBAND yis AUBTHEN zis CUC

2. Design a set of fuzzy rules to control a braking system of a car. Use car
speed and distance from an object as the input fuzzy variable, and the
strength of braking as the output variable.

3. A fuzzy system is represented by

P':IFx(k—1)is A' THEN x'(k+1)=2x(k)—0.5x(k —1)
P? :IF x(k—1)is A% THEN x*(k +1) = —x(k)—0.5x(k—1)
where A', i=1,2 are shown in Chapter 10, Figure 10.15. Check if the system

is stable by Lyapunov’s method. Use x(0)=-1 and x(1)=0 and verify your
answer by simulation.

4. Consider a fuzzy feedback control system of the type shown in Chapter 10
Figure 10.10 with the following implications:

P':1F x(k)is A' THEN x'(k +1) =1.85x(k) — 0.65x(k — 1)+ 0.35u(k)

P? :1F x(k)is A*> THEN x*(k +1) = 2.56x(k) — 0.135x(k —1) + 2.22u(k)

C' :TF x(k)is A' THEN f'(k +1) = k{x(k) — kyx(k —1)

C? :1F x(k)is A* THEN f2(k +1) = kfx(k) — k3 x(k —1)

where Ai, i=1,2 are shown in Chapter 10, Figure 10.17.

Find the closed-loop implications Sij, i=1,2, and j=1,2. Notice that in this case

only three rules are needed to describe the closed-loop system. Also find the
appropriate feedback gains to stabilize the system.



21.4

APPLICATIONS

1. Consider a nonlinear multivariable dynamic process with two inputs and two
outputs. The actuator inputs and the measured outputs data as well as the
desired outputs of the plant are provided.

(a) Draw an identification block diagram to obtain the model of the physical

(b)

process by NN. What are the advantages/disadvantages to utilized your
proposed method in comparison to conventional identification
algorithms?

Suppose you would like to control the given process, explain how you
would design a NN controller to achieve your goals. What type of NN
algorithm would you utilize for your proposed design and why? Draw
the block diagram of your design and various steps to achieve the
design goals.

(c) How would you design a controller using both the NN and conventional

methodologies? Draw the block diagrams and explain your design
strategy.

Consider the D.C. motor given in the figure below. Suppose the transfer

function and the tacho-generator of the DC motor are given as:

_8G) _Km
GO = Ve ~ 502

Vo(H)=KT 0(t)

Knm=100, K1=20

D/ &

FUZZY |

| | CONTROLLER 1 A/D

Digitsd Camniiar ’

L — — - - —



(a)
(b)

(©

(d)
(©)

3.

A

Design a fuzzy controller for angular velocity control of the system.
Please provide step-by-step implementation procedures for the
controller design.

Simulate the system using simulink and fuzzy toolbox.

For two various inputs (e.g. step inputs and ramp) simulate your design.
How is the robustness of your proposed fuzzy controller in the present
of 10% on DC gain (K), and pole variations?

Consider a three-link serial robot manipulator (planar) as shown :

(a)
(b)

(©)

(d)

Write the forward kinematics equation for the robot.

How do you solve inverse kinematics of the robot using ANFIS? Is the
solution unique?

Simulate the inverse kinematics of the robot for the given values (L1=1
m, L2=1.5 m, L3=1.2 m) using fuzzy logic toolbox.

Draw three dimension plots of joint angles v.s. x and y similar to fuzzy
demo plots in fuzzy logic toolbox.



(e) Obtain the errors (both L2 and Linf) in comparison with the original
values.

4. Consider the controller design for a central air condition system. Suppose
you would like to have a steady room temp. around 84° F. The outside
temperature can be varied relative to the room temperature depending upon
various seasons and weather conditions. The ranges of changes include
“very cold”, “cold”, “medium”, “hot”, and “very hot” temperature.

(a) Design a fuzzy logic controller (FLC) for this system. Draw the major
block diagrams for the process as well as FLC.

(b) Show step-by-step your FLC design.
21.5 MATLAB PROGRAMS

Example 3.1:
The following is the MATLAB code for Example 3.1. A simple feed forward
network has been defined and trained to map the input P to output T.

P=[1;0; 1]; % Input Sample

T=[0; 1]; %Desired Output

% Creating the network

net=newff([0 1 ;0 1 ;0 1],[2 2],{'tansig' 'purelin'},'traingd');
net.iw{1,1}=[0.1 0.6 0.8;0.2 0.3 0.9]; % Input Weights
net.b{1}=[0; 0]; % Input Threshold Weights = 0
net.Iw{2,1}=[0.5 0.7;0.6 0.5]; % Hidden Layer weights
% Printing the Weights

input_layer weight = net.iw{1,1}

Hidden layer weight = net.Iw{2,1}

Bias weights = net.b{1}

Initial Output=sim(net,P);

% Setting Training Parameters

net.trainParam.lr = 0.5;

net.trainParam.epochs = 50;

net.trainParam.goal = 0.001;

net = train(net,P,T); % Training the Network

% Evaluating the results

Final_Output = sim(net,P)

input_layer weight = net.iw{1,1}

Hidden layer weight = net.Iw{2,1}

Bias weights = net.b{1}

Example 3.2:

The following MATLAB code is for Example 3.2. It is trained to solve the
forward kinematics of a robot manipulator. A path is defined in an excel file for
the following trajectory:



6,=0.03 t
6,=0.03 t

The network is trained and then the result is compared to the desired value.

% Reading the training set from excel file.

A = wklread("A:\hmwk55.wk1',0,3,'D1..E201");

B = wklread('A:\hmwk55.wk1',0,6,'G1..H201");
Theta=A";

X=B

% Creating the Network

net = newff([-pi pi;-pi pi],[ 15 2],{'tansig' 'purelin'});

% Setting Training Parameters

net.trainParam.goal = 0.001;

net.trainParam.epochs = 50;

net = train(net, Theta,X); % Training the network
Output=sim(net,Theta); % Evaluating the output to the same input data
plot(Output(1,:),0Output(2,:),'k+', X(1,:),X(2,:),k0");

% Plotting the desired value and output of the Network

Example 3.3:

The following is the MATLAB code for solving Example 3.3. In the example,
the problem 3.1 has been solved using a radial basis function network. Then the
results have been evaluated for an input similar to the training input.

P=[1; 0; 1] % Input Sample

T=[0; 1] % Desired Output

net = newrb(P,T) % Defining RBFN

Output=sim(net,P) % Evaluating Output

P1=[1.1; -0.3; 0.9]; % A Sample Input other than training set
Output=sim(net,P1) % Output of the network for sample Input

Example 3.4:
This is the MATLAB code for Example 3.4. It solves forward kinematics of
robot manipulator of problem 3.2 using an RBFN.

% Reading the training set from excel file.

A = wklread('A:\hmwk55.wk1',0,3,'D1..E201");

B = wklread('"A:\hmwk55.wk1',0,6,'G1..H201");

Theta=A";

X=B";

net = newrb(Theta,X,0.001); % Creating and Training of the Network
Output=sim(net, Theta); % Calculating the Output
plot(Output(1,:),0Output(2,:),'k+',X(1,:),X(2,:),'’ko"); % Plotting the Result



Example 3.5:

The following is the MATLAB code for Example 3.5. A Kohonen network
has been defined and trained with an input path. It can be seen that the weights
of the network are in the form of the training path.

angles = -0.5*pi:0.5%pi/99:0.5*pi;
P=[sin(angles);cos(angles)];

figure(1);

plot(P(1,:),P(2,:),'’k+");

net=newsom([0 1;0 1],[10]);
net.trainParam.epochs=1200;
net=train(net,P);

figure(2);
plotsom(net.iw{1,1},net.layers{1}.distances)

Example 3.6:

The following is the MATLAB code for Example 3.6. In this example 1000
random input points have been generated. Then a Kohonen network has been
trained using this input set. The plot of the weights after training shows that the
weights of the network have a uniform distribution.

figure(1);

T=rands(2,1000); % Creating 1000 Random Inputs

plot(T(1,:),T(2,:),'’k+"); % Plotting the original random input pattern
net=newsom([0 1;0 1],[5 6]);

figure(2);

plotsom(net.iw{1,1},net.layers{1}.distances); % Plotting the Initial Weights
net.trainParam.epochs=1500;

net=train(net,T); % Training the Network

figure(3);

plotsom(net.iw{1,1} net.layers{1}.distances); % Plotting the Final Pattern
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