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quantum mechanical free electron theory of metals covered in Chapter 4. Sommer-
feld was the Director of Institute of Theoretical Physics, specially established for
him, at Munich University.
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PREFACE

THIRD EDITION

The textbook represents a first course in elec-
tronic materials and devices for undergraduate
students. With the additional topics in the accom-
panying CD, the text can also be used in a gradu-
ate introductory course in electronic materials for
electrical engineers and material scientists. The
third edition is an extensively revised and ex-
tended version of the second edition based on re-
viewer comments, with many new and expanded
topics and numerous new worked examples and
homework problems. While some of the changes
appear to be minor, they have been, nonetheless,
quite important in improving the text. For exam-
ple, the intrinsic concentration n; in Si is now
taken as 1 X 10'° cm™3, instead of the usual value
of 1.45 X 10'° cm™3 found in many other text-
books; this change makes a significant difference
in device-related calculations. A large number of
new homework problems have been added, and
more solved problems have been provided that
put the concepts into applications. Bragg’s dif-
fraction law that is mentioned in several chapters
is now explained in Appendix A for those readers
who are unfamiliar with it.

The third edition is one of the few books on
the market that has a broad coverage of electronic
materials that today’s scientists and engineers
need. I believe that the revisions have improved
the rigor without sacrificing the original semi-
quantitative approach that both the students and
instructors liked. Some of the new and extended
topics are as follows:

Chapter 1 Thermal expansion; atomic
diffusion
Chapter 2 Conduction in thin films; inter-

connects in microelectronics;
electromigration

Planck’s and Stefan’s laws; atomic
magnetic moment; Stern—Gerlach
experiment

Field emission from carbon nan-
otubes; Griineisen’s thermal
expansion

Piezoresistivity; amorphous semi-
conductors

LED:s; solar cells; semiconductor
lasers

Debye relaxation; local field in
dielectrics; ionic polarizability;
Langevin dipolar polarization;
dielectric mixtures

Pauli spin paramagnetism; band
model of ferromagnetism; giant
magnetoresistance (GMR); mag-
netic storage

Sellmeier and Cauchy dispersion
relations; Reststrahlen or lattice
absorption; luminescence and
white LEDs

Bragg’s diffraction law and X-ray

diffraction; luminous flux and
brightness of radiation

Chapter 3

Chapter 4

Chapter 5
Chapter 6

Chapter 7

Chapter 8

Chapter 9

Appendices

ORGANIZATION AND FEATURES

In preparing the text, I tried to keep the general
treatment and various proofs at a semiquantitative
level without going into detailed physics. Many
of the problems have been set to satisfy engineer-
ing accreditation requirements. Some chapters in
the text have additional topics to allow a more de-
tailed treatment, usually including quantum me-
chanics or more mathematics. Cross referencing
has been avoided as much as possible without too
much repetition and to allow various sections and

Xi



Xii PREFACE

chapters to be skipped as desired by the reader.

The text has been written to be easily usable in

one-semester courses by allowing such flexibility.
Some important features are

» The principles are developed with the mini-
mum of mathematics and with the emphasis
on physical ideas. Quantum mechanics is part
of the course but without its difficult mathe-
matical formalism.

o  There are more than 170 worked examples or
solved problems, most of which have a prac-
tical significance. Students learn by way of
examples, however simple, and to that end
nearly 250 problems have been provided.

» Even simple concepts have examples to aid
learning.

e Most students would like to have clear dia-
grams to help them visualize the explanations
and understand concepts. The text includes
over 530 illustrations that have been profes-
sionally prepared to reflect the concepts and
aid the explanations in the text.

o The end-of-chapter questions and problems
are graded so that they start with easy concepts
and eventually lead to more sophisticated
concepts. Difficult problems are identified
with an asterisk (*). Many practical applica-
tions with diagrams have been included.
There is a regularly updated online extended
Solutions Manual for all instructors; simply
locate the McGraw-Hill website for this text-
book.

o  There is a glossary, Defining Terms, at the end
of each chapter that defines some of the con-
cepts and terms used, not only within the text
but also in the problems.

o The end of each chapter includes a section Ad-
ditional Topics to further develop important
concepts, to introduce interesting applications,
or to prove a theorem. These topics are in-
tended for the keen student and can be used as
part of the text for a two-semester course.

» The end of each chapter also includes a table
CD Selected Topics and Solved Problems to

enhance not only the subject coverage, but
also the range of worked examples and
applications. For example, the selected topic
Essential Mechanical Properties can be used
with Chapter 1 to obtain a broader coverage
of elementary materials science. The selected
topic Thermoelectric Effects in Semiconduc-
tors can be used with Chapters 5 and 6 to un-
derstand the origin of the Seebeck effect in
semiconductors, and the reasons behind volt-
age drift in many semiconductor devices.
There are numerous such selected topics and
solved problems in the CD.

o The text is supported by McGraw-Hill’s text-
book website that contains resources, such as
solved problems, for both students and in-
structors. Updates to various articles on the
CD will be posted on this website.

CD-ROM ELECTRONIC
MATERIALS AND DEVICES:
THIRD EDITION

The book has a CD-ROM that contains all the fig-
ures as large color diagrams in PowerPoint for
the instructor, and class-ready notes for the stu-
dents who do not have to draw the diagrams dur-

- ing the lectures. In addition, there are numerous

Selected Topics and Solved Problems to extend
the present coverage. These are listed in each
chapter, and also at the end of the text. I strongly
urge students to print out the CD’s Illlustrated
Dictionary of Electronic Materials and Devices:
Third Student Edition, to look up new terms and
use the dictionary to refresh various concepts.
This is probably the best feature of the CD.
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CHAPTER

I

Elementary Materials
Science Concepts!

Understanding the basic building blocks of matter has been one of the most intriguing
endeavors of humankind. Our understanding of interatomic interactions has now
reached a point where we can quite comfortably explain the macroscopic properties of
matter, based on quantum mechanics and electrostatic interactions between electrons
and ionic nuclei in the material. There are many properties of materials that can be ex-
plained by a classical treatment of the subject. In this chapter, as well as Chapter 2, we
treat the interactions in a material from a classical perspective and introduce a number
of elementary concepts. These concepts do not invoke any quantum mechanics, which
is a subject of modern physics and is introduced in Chapter 3. Although many useful
engineering properties of materials can be treated with hardly any quantum mechanics,
it is impossible to develop the science of electronic materials and devices without
modern physics.

1.1  ATOMIC STRUCTURE AND ATOMIC NUMBER

The model of the atom that we must use to understand the atom’s general behavior
involves quantum mechanics, a topic we will study in detail in Chapter 3. For the pres-
ent, we will simply accept the following facts about a simplified, but intuitively satis-
factory, atomic model called the shell model, based on the Bohr model (1913).

The mass of the atom is concentrated at the nucleus, which contains protons and
neutrons. Protons are positively charged particles, whereas neutrons are neutral particles,
and both have about the same mass. Although there is a Coulombic repulsion between
the protons, all the protons and neutrons are held together in the nucleus by the

! This chapter may be skipped by readers who have already been exposed to an elementary course in materials
science.
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L shell with
two subshells ..

Nucleus

Figure 1.1 The shell model of the carbon atom,

in which the electrons are confined to certain shells
and subshells within shells. 1522522p2 or [He)2s22p?

strong force, which is a powerful, fundamental, natural force between particles. This
force has a very short range of influence, typically less than 107> m. When the protons
and neutrons are brought together very closely, the strong force overcomes the elec-
trostatic repulsion between the protons and keeps the nucleus intact. The number of
protons in the nucleus is the atomic number Z of the element.

The electrons are assumed to be orbiting the nucleus at very large distances com-
pared to the size of the nucleus. There are as many orbiting electrons as there are pro-
tons in the nucleus. An important assumption in the Bohr model is that only certain or-
bits with fixed radii are stable around the nucleus. For example, the closest orbit of the
electron in the hydrogen atom can only have a radius of 0.053 nm. Since the electron
is constantly moving around an orbit with a given radius, over a long time period
(perhaps ~107!2 seconds on the atomic time scale), the electron would appear as a
spherical negative-charge cloud around the nucleus and not as a single dot represent-
ing a finite particle. We can therefore view the electron as a charge contained within a
spherical shell of a given radius.

Due to the requirement of stable orbits, the electrons therefore do not randomly
occupy the whole region around the nucleus. Instead, they occupy various well-
defined spherical regions. They are distributed in various shells and subshells within
the shells, obeying certain occupation (or seating) rules.? The example for the carbon
atom is shown in Figure 1.1.

The shells and subshells that define the whereabouts of the electrons are labeled
using two sets of integers, n and £. These integers are called the principal and orbital
angular momentum quantum numbers, respectively. (The meanings of these names
are not critical at this point.) The integers » and ¢ have the valuesn = 1,2, 3, ..., and
£=0,1,2,...,n— 1,and £ < n.Foreach choice of n, there are n values of ¢, so higher-
order shells contain more subshells. The shells corresponding to n =1,2,3,4,...

2 In Chapter 3, in which we discuss the quantum mechanical model of the atom, we will see that these shells and
subshells are spatial regions around the nucleus where the electrons are most likely to be found.
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Table 1.1  Maximum possible number of electrons in the shells and
subshells of an atom

Subshell

£=0 1 2 3
n Shell s P d f
l K 2
2 L 2 6
3 M 2 6 10
4 N 2 6 10 14

are labeled by the capital letters K, L, M, N, ..., and the subshells denoted by

£=0,1,2,3,...arelabeled s, p, d, f.... The subshell with £ = 1 in the n = 2 shell is
thus labeled the 2 p subshell, based on the standard notation n<.

There is a definite rule to filling up the subshells with electrons; we cannot simply
put all the electrons in one subshell. The number of electrons a given subshell can take
is fixed by nature to be® 2(2¢ + 1). For the s subshell (£ = 0), there are two electrons,
whereas for the p subshell, there are six electrons, and so on. Table 1.1 summarizes the
most number of electrons that can be put into various subshells and shells of an atom.
Obviously, the larger the shell, the more electrons it can take, simply because it contains
more subshells. The shells and subshells are filled starting with those closest to the
nucleus as explained next.

The number of electrons in a subshell is indicated by a superscript on the subshell
symbol, so the electronic structure, or configuration, of the carbon atom (atomic num-
ber 6) shown in Figure 1.1 becomes 1522522p2. The K shell has only one subshell,
which is full with two electrons. This is the structure of the inert element He. We can
therefore write the electronic configuration more simply as [He]2s22p2. The general
rule is put the nearest previous inert element, in this case He, in square brackets and
write the subshells thereafter.

The electrons occupying the outer subshells are the farthest away from the nucleus
and have the most important role in atomic interactions, as in chemical reactions, be-
cause these electrons are the first to interact with outer electrons on neighboring
atoms. The outermost electrons are called valence electrons and they determine the
valency of the atom. Figure 1.1 shows that carbon has four valence electrons in the
L shell.

When a subshell is full of electrons, it cannot accept any more electrons and it
is said to have acquired a stable configuration. This is the case with the inert ele-
ments at the right-hand side of the Periodic Table, all of which have completely
filled subshells and are rarely involved in chemical reactions. The majority of such
elements are gases inasmuch as the atoms do not bond together easily to form a

| 3 We will actually show this in Chapter 3 using quantum mechanics.
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liquid or solid. They are sometimes used to provide an inert atmosphere instead of
air for certain reactive materials.

In an atom such as the Li atom, there are two electrons in the 1s subshell and one
electron in the 2s subshell. The atomic structure of Li is 1s22s!. The third electron is
in the 25 subshell, rather than any other subshell, because this is the arrangement of
the electrons that results in the lowest overall energy for the whole atom. It requires
energy (work) to take the third electron from the 2s to the 2p or higher subshells as
will be shown in Chapter 3. Normally the zero energy reference corresponds to the
electron being at infinity, that is, isolated from the atom. When the electron is inside
the atom, its energy is negative, which is due to the attraction of the positive nucleus.
An electron that is closer to the nucleus has a lower energy. The electrons nearer the
nucleus are more closely bound and have higher binding energies. The 1522s! con-
figuration of electrons corresponds to the lowest energy structure for Li and, at the
same time, obeys the occupation rules for the subshells. If the 2selectron is somehow
excited to another outer subshell, the energy of the atom increases, and the atom is
said to be excited.

The smallest energy required to remove a single electron from a neutral atom
and thereby create a positive ion (cation) and an isolated electron is defined as the
ionization energy of the atom. The Na atom has only a single valence electron in
its outer shell, which is the easiest to remove. The energy required to remove this
electron is 5.1 eV, which is the Na atom’s ionization energy. The electron affinity
represents the energy that is needed, or released, when we add an electron to a neu-
tral atom to create a negative ion (anion). Notice that the ionization term implies the
generation of a positive ion, whereas the electron affinity implies that we have cre-
ated a negative ion. Certain atoms, notably the halogens (such as F, Cl, Br, I), can
actually attract an electron to form a negative ion. Their electron affinities are neg-
ative. When we place an electron into a Cl atom, we find that an energy of 3.6 eV is
released. The Cl™ ion has a lower energy than the Cl atom, which means that it
is energetically favorable to form a Cl~ ion by introducing an electron into the
Cl atom.

There is a very useful theorem in physics, called the Virial theorem, that allows
us to relate the average kinetic energy KE, average potential energy PE, and average
total or overall energy E of an electron in an atom, or electrons and nuclei in a mole-
cule, through remarkably simple relationships,*

E=RE+PE and KE=-LPE [1.1]

For example, if we define zero energy for the H atom as the H* ion and the
electron infinitely separated, then the energy of the electron in the H atom is —13.6
electron volts (eV). It takes 13.6 eV to ionize the H atom. The average PE of the electron,
due to its Coulombic interaction with the positive nucleus, is —27.4 eV. Its average KE
turns out to be 13.6 eV. Example 1.1 uses the Virial theorem to calculate the radius of
the hydrogen atom, the velocity of the electron, and its frequency of rotation.

4 While the final result stated in Equation 1.1 is elegantly simple, the actual proof is quite involved and certainly not
trivial. As stated here, the Virial theorem applies to a system of charges that interact through electrostatic forces only.
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VIRIAL THEOREM AND THE BOHR ATOM Consider the hydrogen atom in Figure 1.2 in which M
the electron is in the stable 1s orbit with a radius r,. The ionization energy of the hydrogen atom
is 13.6 V.

a. Ittakes 13.6 eV to ionize the hydrogen atom, i.e., to remove the electron to infinity. If the
condition when the electron is far removed from the hydrogen nucleus defines the zero
reference of energy, then the total energy of the electron within the H atom is —13.6 eV.
Calculate the average PE and average KE of the electron.

b. Assume that the electron is in a stable orbit of radius r, around the positive nucleus. What
is the Coulombic PE of the electron? Hence, what is the radius r, of the electron orbit?

¢. What is the velocity of the electron?
What is the frequency of rotation (oscillation) of the electron around the nucleus?

SOLUTION
a. From Equation 1.1 we obtain
E=PE+KE=lPE
or PE =2E =2 x (-13.6eV) = —27.2 eV

The average kinetic energy is
KE = —1PE=13.6¢V

b. The Coulombic PE of interaction between two charges Q; and Q, separated by a distance
r,, from elementary electrostatics, is given by

pp 2102 _ (o) e’
dme,r, 4rg,r, are,r,
where we substituted Q; = —e (electron’s charge), and Q, = +e (charge of nucleus).

Thus the radius r, is

(1.6 x 107" C)?
47 (8.85 x 10-12 Fm~1)(—27.2eV x 1.6 x 10~19 J/eV)

=529x 107" m or 0.0529 nm

which is called the Bohr radius (also denoted a,).

r, = —

Stable orbit has radius r, Figure 1.2 The planetary model of the hydrogen atom in which
the negatively charged electron orbits the positively charged
nucleus.
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c. Since KE = 1m,v?, the average velocity is
KE 13.6 eV x 1.6 x 1019 J/eV 6 1
v = i = 7 =) =2.19%x10°ms
FMe 5(9.1 x 10-3! kg)
d. The period of orbital rotation T is

2nr, 27(0.0529 x 10~°
T = Tl _ 7 x m) = 1.52 x 107 '® seconds
v 2.19 x 10 m s~!

The orbital frequency v = 1/T = 6.59 x 10 s~! (Hz).

1.2 ATOMIC MASS AND MOLE

We had defined the atomic number Z as the number of protons in the nucleus of an
atom. The atomic mass number A is simply the total number of protons and neutrons
in the nucleus. It may be thought that we can use the atomic mass number A of an atom
to gauge its atomic mass, but this is done slightly differently to account for the exis-
tence of different isotopes of an element; isotopes are atoms of a given element that
have the same number of protons but a different number of neutrons in the nucleus.
The atomic mass unit (amu) « is a convenient atomic mass unit that is equal to - of
the mass of a neutral carbon atom which has a mass number A = 12 (6 protons and
6 neutrons). It has been found that u = 1.66054 x 10~?7 kg.

The atomic mass or relative atomic mass or simply atomic weight M, of an
element is the average atomic mass, in atomic mass units, of all the naturally occurring
isotopes of the element. Atomic masses are listed in the Periodic Table. Avogadro’s
number N, is the number of atoms in exactly 12 grams of carbon-12, which is
6.022 x 10% to three decimal places. Since the atomic mass My, is defined as liz of the
mass of the carbon-12 atom, it is straightforward to show that N, number of atoms of
any substance has a mass equal to the atomic mass M, in grams.

A mole of a substance is that amount of the substance which contains exactly
Avogadro’s number N, of atoms or molecules that make up the substance. One:
mole of a substance has a mass as much as its atomic (molecular) mass in grams.
For example, 1 mole of copper contains 6.022 x 102 number of copper atoms and
has a mass of 63.55 grams. Thus, an amount of an element which has 6.022 x 10?
atoms has a mass in grams equal to the atomic mass. This means we can express
the atomic mass as grams per unit mole (g mol~!). The atomic mass of Au is
196.97 amu or g mol~!. Thus, a 10 gram bar of gold has (10 g) / (196.97 g mol™~!)
or 0.0507 moles.

Frequently we have to convert the composition of a substance from atomic per-
centage to weight percentage, and vice versa. Compositions in materials engineering
generally use weight percentages, whereas chemical formulas are given in terms of
atomic composition. Suppose that a substance (an alloy or a compound) is composed
of two elements, A and B. Let the weight fractions of A and B be w4 and wp, respec-
tively. Let n4 and n g be the atomic or molar fractions of A and B; that is, n 4 represents
the fraction of type A atoms, np represents the fraction of type B atoms in the whole
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substance, and n4 + np = 1. Suppose that the atomic masses of A and B are M4 and
Mp. Then n, and np are given by

wa/My Weight to
nap = and ng=1-—nyu 1.2] atomic
wa/Ma+ wp/Mp percentage

where w4 + wp = 1. Equation 1.2 can be readily rearranged to obtain w4 and wp in
terms of n4 and np.

COMPOSITIONS IN ATOMIC AND WEIGHT PERCENTAGES Consider a Pb—Sn solder that is m
38.1 wt.% Pb and 61.9 wt.% Sn (this is the eutectic composition with the lowest melting point).

What are the atomic fractions of Pb and Sn in this solder?

SOLUTION

For Pb, the weight fraction and atomic mass are respectively w4 = 0.381 and M, =207.2 g
mol~! and for Sn, wz = 0.619 and M = 118.71 g mol~'. Thus, Equation 1.2 gives

wa/My (0.381)/(207.2)

A A Ma+wp/Ms  0.381/207.2+ 0.619/118.71
= 0.261 or 26.1 at.%
ws/Mpg (0.619)/(118.71)
and ng =

wa/M, +wg/Ms _ 0.381/207.2 + 0.619/118.71
= 0.739 or 73.9 at.%
Thus the alloy is 26.1 at.% Pb and 73.9 at.% Sn which can be written as Pby 26; Sng 739.

1.3 BONDING AND TYPES OF SOLIDS

1.3.1 MOLECULES AND GENERAL BONDING PRINCIPLES

When two atoms are brought together, the valence electrons interact with each other
and with the neighbor’s positively charged nucleus. The result of this interaction is
often the formation of a bond between the two atoms, producing a molecule. The
formation of a bond means that the energy of the system of two atoms together must
be less than that of the two atoms separated, so that the molecule formation is ener-
getically favorable, that is, more stable. The general principle of molecule formation
is illustrated in Figure 1.3a, showing two atoms brought together from infinity.
As the two atoms approach each other, the atoms exert attractive and repulsive
forces on each other as a result of mutual electrostatic interactions. Initially, the at-
tractive force F4 dominates over the repulsive force Fg. The net force Fy is the sum
of the two,

Fy = F4+ Fp Net force

and this is initially attractive, as indicated in Figure 1.3a.
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Figure 1.3 () Force versus interatomic separation and (b) potential energy versus interatomic separation.

Net force and
potential
energy

Net force in
bonding
between
atoms

The potential energy E (r) of the two atoms can be found from®

. dE

N dr
by integrating the net force Fy. Figure 1.3a and b shows the variation of the net force
Fy(r) and the overall potential energy E(r) with the interatomic separation r as the
two atoms are brought together from infinity. The lowering of energy corresponds to

an attractive interaction between the two atoms.

The variations of F,4 and Fg with distance are different. Force F, varies slowly,
whereas Fp varies strongly with separation and is strongest when the two atoms are
very close. When the atoms are so close that the individual electron shells overlap,
there is a very strong electron-to-electron shell repulsion and Fx dominates. An equi-
librium will be reached when the attractive force just balances the repulsive force and
the net force is zero, or

FN=FA+FR=O [1.3]

In this state of equilibrium, the atoms are separated by a certain distance r,, as
shown in Figure 1.3. This distance is called the equilibrium separation and is effec-
tively the bond length. On the energy diagram, Fy = 0 means dE /dr = 0, which
means that the equilibrium of two atoms corresponds to the potential energy of the

| 5 Remember that the change dE in the PE is the work done against the force, dE = Fy dr.
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system acquiring its minimum value. Consequently, the molecule will only be formed
if the energy of the two atoms as they approach each other can attain a minimum. This
minimum energy also defines the bond energy of the molecule, as depicted in Fig-
ure 1.3b. An energy of E, is required to separate the two atoms, and this represents the
bond energy.

Although we considered only two atoms, similar arguments also apply to bonding
between many atoms, or between millions of atoms as in a typical solid. Although the
actual details of F4 and Fg will change from material to material, the general princi-
ple that there is a bonding energy E, per atom and an equilibrium interatomic separa-
tion r, will still be valid. Even in a solid in the presence of many interacting atoms, we
can still identify a general potential energy curve E(r) per atom similar to the type
shown in Figure 1.3b. We can also use the curve to understand the properties of the
solid, such as the thermal expansion coefficient and elastic and bulk moduli.

1.3.2 COVALENTLY BONDED SOLIDS: DIAMOND

Two atoms can form a bond with each other by sharing some or all of their valence
electrons and thereby reducing the overall potential energy of the combination. The co-
valent bond results from the sharing of valence electrons to complete the subshells of
each atom. Figure 1.4 shows the formation of a covalent bond between two hydrogen
atoms as they come together to form the H, molecule. When the 1s subshells overlap,
the electrons are shared by both atoms and each atom now has a complete subshell. As
illustrated in Figure 1.4, electrons 1 and 2 must now orbit both atoms; they therefore
cross the overlap region more frequently, indeed twice as often. Thus, electron sharing,

H atom H atom Figure 1.4 Formation of a covalent bond
Electron shell J— between two H atoms, leading to the H, molecule.
; < Electrons spend a majority of their time between the
é%} two nuclei, which results in a net attraction between
ls! @ ' @ the electrons and the two nuclei, which is the origin
! of the covalent bond.

@
(oo
’ A B [ Wt

Covalent bond

H-H molecule
2 1

AN
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(a) Covalent bonding in methane, CHy4, which involves four hydrogen atoms sharing electrons with one carbon

atom.

Each covalent bond has two shared electrons. The four bonds are identical and repel each other.

(b) Schematic sketch of CH4 on paper.

(c) In three dimensions, due to symmetry, the bonds are directed toward the corners of a tetrahedron.

on average, results in a greater concentration of negative charge in the region between
the two nuclei, which keeps the two nuclei bonded to each other. Furthermore, by syn-
chronizing their motions, electrons 1 and 2 can avoid crossing the overlap region at the
same time. For example, when electron 1 is at the far right (or left), electron 2 is in the
overlap region; later, the situation is reversed.

The electronic structure of the carbon atom is [He]2s%2p? with four empty seats in
the 2p subshell. The 2s and 2p subshells, however, are quite close. When other atoms
are in the vicinity, as a result of interatomic interactions, the two subshells become
indistinguishable and we can consider only the shell itself, which is the L shell with a
capacity of eight electrons. It is clear that the C atom with four vacancies in the L shell
can readily share electrons with four H atoms, as depicted in Figure 1.5, whereby the C
atom and each of the H atoms attain complete shells. This is the CH4 molecule, which
is the gas methane. The repulsion between the electrons in one bond and the electrons
in a neighboring bond causes the bonds to spread as far out from each other as possi-
ble, so that in three dimensions, the H atoms occupy the corners of an imaginary
tetrahedron and the CH bonds are at an angle of 109.5° to each other, as sketched in
Figure 1.5.

The C atom can also share electrons with other C atoms, as shown in Figure 1.6.
Each neighboring C atom can share electrons with other C atoms, leading to a three-
dimensional network of a covalently bonded structure. This is the structure of the pre-
cious diamond crystal, in which all the carbon atoms are covalently bonded to each
other, as depicted in the figure. The coordination number (CN) is the number of near-
est neighbors for a given atom in the solid. As is apparent in Flgure 1.6, the coordina-
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Figure 1.6 The diamond crystal is a
covalently bonded network of carbon atoms.

Each carbon atom is bonded covalently to four
neighbors, forming a regular three-dimensional
pattern of atoms that constitutes the diamond
crystal.

Due to the strong Coulombic attraction between the shared electrons and the pos-
itive nuclei, the covalent bond energy is usually the highest for all bond types, leading
to very high melting temperatures and very hard solids: diamond is one of the hardest
known materials.

Covalently bonded solids are also insoluble in nearly all solvents. The directional
nature and strength of the covalent bond also make these materials nonductile (or non-
malleable). Under a strong force, they exhibit brittle fracture. Further, since all the va-
lence electrons are locked in the bonds between the atoms, these electrons are not free
to drift in the crystal when an electric field is applied. Consequently, the electrical con-
ductivity of such materials is very poor.

1.3.3 METALLIC BONDING: COPPER

Metal atoms have only a few valence electrons, which are not very difficult to remove.
When many metal atoms are brought together to form a solid, these valence electrons
are lost from individual atoms and become collectively shared by all the ions. The
valence electrons therefore become delocalized and form an electron gas or electron
cloud, permeating the space between the ions, as depicted in Figure 1.7. The attrac-
tion between the negative charge of this electron gas and the metal ions more
than compensates for the energy initially required to remove the valence electrons
from the individual atoms. Thus, the bonding in a metal is essentially due to the
attraction between the stationary metal ions and the freely wandering electrons
between the ions.

The bond is a collective sharing of electrons and is therefore nondirectional. Con-
sequently, the metal ions try to get as close as possible, which leads to close-packed
crystal structures with high coordination numbers, compared to covalently bonded
solids. In the particular example shown in Figure 1.7, Cu® ions are packed as closely
as possible by the gluing effect of the electrons between the ions, forming a crystal

13
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Positive Free valence
metal ion electrons
cores forming an

electron gas

Figure 1.7 In metallic bonding, the valence electrons from the metal atoms form a “cloud of
electrons,” which fills the space between the metal ions and “glues” the ions together through
Coulombic aftraction between the electron gas and the positive metal ions.

structure called the face-centered cubic (FCC). The FCC crystal structure, as
explained later in Section 1.8, has Cu* ions at the corners of a cube and a Cu* at the
center of each cube-face. (See Figure 1.31.)

The results of this type of bonding are dramatic. First, the nondirectional nature
of the bond means that under an applied force, metal ions are able to move with re-
spect to each other, especially in the presence of certain crystal defects (such as
dislocations). Thus, metals tend to be ductile. Most importantly, however, the “free”
valence electrons in the electron gas can respond readily to an applied electric field
and drift along the force of the field, which is the reason for the high electrical con-
ductivity of metals. Furthermore, if there is a temperature gradient along a metal bar,
the free electrons can also contribute to the energy transfer from the hot to the cold
regions, since they frequently collide with the metal ions and thereby transfer energy.
Metals therefore, typically, also have good thermal conductivities; that is, they eas-
ily conduct heat. This is why when you touch your finger to a metal it feels cold be-
cause it conducts heat “away” from the finger to the ambient (making the fingertip
“feel” cold).

1.3.4 IONICALLY BONDED SOLIDS: SALT

Common table salt, NaCl, is a classic example of a solid in which the atoms are held
together by ionic bonding. Ionic bonding is frequently found in materials that nor-
mally have a metal and a nonmetal as the constituent elements. Sodium (Na) is an al-
kaline metal with only one valence electron that can easily be removed to form an Na*
ion with complete subshells. The ion Na* looks like the inert element Ne, but with a
positive charge. Chlorine has five electrons in its 3p subshell and can readily accept
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Cl ClI~
Na
3 Nat
. | ' ) . . < 3s !
Closed K and L shells Closed K and L shells < r ’!
(a) (b)
ClI-
Nat

Figure 1.8 The formation of an ionic bond l<—~ r, —)I

between Na and Cl atoms in NaCl.
The aftraction is due to Coulombic forces. (c)

one more electron to close this subshell. By taking the electron given up by the Na
atom, the Cl atom becomes negatively charged and looks like the inert element Ar with
a net negative charge. Transferring the valence electron of Na to Cl thus results in two
oppositely charged ions, Na™ and Cl~, which are called the cation and anion, respec-
tively, as shown in Figure 1.8. As a result of the Coulombic force, the two ions pull
each other until the attractive force is just balanced by the repulsive force between the
closed electron shells. Initially, energy is needed to remove the electron from the Na
atom; this is the energy of ionization. However, this is more than compensated for by
the energy of Coulombic attraction between the two resulting oppositely charged ions,
and the net effect is a lowering of the potential energy of the Nat and Cl~ ion pair.

When many Na and Cl atoms are ionized and brought together, the resulting col-
lection of ions is held together by the Coulombic attraction between the Nat and ClI~
ions. The solid thus consists of Na* cations and C1~ anions holding each other through
the Coulombic force, as depicted in Figure 1.9. The Coulombic force around a charge
is nondirectional; also, it can be attractive or repulsive, depending on the polarity of
the interacting ions. There are also repulsive Coulombic forces between the Na* ions
themselves and between the Cl~ ions themselves. For the solid to be stable, each Na*
ion must therefore have Cl™ ions as nearest neighbors and vice versa so that like-ions
are not close to each other.

The ions are in equilibrium and the solid is stable when the net potential energy
is minimum, or dE/dr = 0. Figure 1.10 illustrates the variation of the net potential
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Figure 1.9

(a) A schematic illustration of a cross section from solid NaCl. Solid NaCl is made of CI~ and Na
ions arranged alternatingly, so the oppositely charged ions are closest to each other and attract
each other. There are also repulsive forces between the like-ions. In equilibrium, the net force acting
on any ion is zero.

(b) Solid NaCl.
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Figure 1.10 Sketch of the potential @
energy per ion pair in solid NaCl.

Zero energy corresponds to neutral Na >
and Cl atoms infinitely separated.

energy for a pair of ions as the interatomic distance r is reduced from infinity to less
than the equilibrium separation, that is, as the ions are brought together from infinity.
Zero energy corresponds to separated Na and Cl atoms. Initially, about 1.5 eV is
required to transfer the electron from the Na to Cl atom and thereby form Na* and
Cl1™ ions. Then, as the ions come together, the energy is lowered, until it reaches a
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minimum at about 6.3 eV below the energy of the separated Na and Cl atoms. When
r = 0.28 nm, the energy is minimum and the ions are in equilibrium. The bonding
energy per ion in solid NaCl is thus 6.3/2 or 3.15 eV, as is apparent in Figure 1.10. The
energy required to take solid NaCl apart into individual Na and Cl atoms is the atomic
cohesive energy of the solid, which is 3.15 eV per atom.

In solid NaCl, the Na* and Cl~ ions are thus arranged with each one having op-
positely charged ions as its neighbors, to attain a minimum of potential energy. Since
there is a size difference between the ions and since we must avoid like-ions getting
close to each other, if we want to achieve a stable structure, each ion can have only six
oppositely charged ions as nearest neighbors. Figure 1.9b shows the packing of Na*
and CI~ ions in the solid. The number of nearest neighbors, that is, the coordination
number, for both cations and anions in the NaCl crystal is 6.

A number of solids consisting of metal-nonmetal elements follow the NaCl ex-
ample and have ionic bonding. They are called ionic crystals and, by virtue of their
ionic bonding characteristics, share many physical properties. For example, LiF, MgO
(magnesia), CsCl, and ZnS are all ionic crystals. They are strong, brittle materials with
high melting temperatures compared to metals. Most become soluble in polar liquids
such as water. Since all the electrons are within the rigidly positioned ions, there are no
free or loose electrons to wander around in the crystal as in metals. Therefore, ionic
solids are typically electrical insulators. Compared to metals and covalently bonded
solids, ionically bonded solids have lower thermal conductivity since ions cannot read-
ily pass vibrational kinetic energy to their neighbors.
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IONIC BONDING AND LATTICE ENERGY The potential energy E per Na*—Cl~ pair within the
NaCl crystal depends on the interionic separation r as

eeM B
+ — [1.4]
4me,r 1™

E(r)=—

where the first term is the attractive and the second term is the repulsive potential energy, and
M, B, and m are constants explained in the following. If we were to consider the potential
energy PE of one ion pair in isolation from all others, the first term would be a simple Coulom-
bic interaction energy for the Nat—Cl~ pair, and M would be 1. Within the NaCl crystal, how-
ever, a given ion, such as Na%t, interacts not only with its nearest six Cl~ neighbors (Figure
1.9b), but also with its twelve second neighbors (Na*), eight third neighbors (C17), and so on,
so the total or effective PE has a factor M, called the Madelung constant, that takes into account
all these different Coulombic interactions. M depends only on the geometrical arrangement of
ions in the crystal, and hence on the particular crystal structure; for the FCC crystal structure,
M = 1.748. The Na*—Cl~ ion pair also have a repulsive PE that is due to the repulsion between
the electrons in filled electronic subshells of the ions. If the ions are pushed toward each other,
the filled subshells begin to overlap, which results in a strong repulsion. The repulsive PE de-
cays rapidly with distance and can be modeled by a short-range PE of the form B/r™ as in the
second term in Equation 1.4 where for Na*—Cl~,m = 8 and B = 6.972 x 10~% J m®. Find the
equilibrium separation (r,) of the ions in the crystal and the ionic bonding energy, defined as
—E(r,). Given the ionization energy of Na (the energy to remove an electron) is 5.14 eV and
the electron affinity of Cl (energy released when an electron is added) is 3.61 eV, calculate the
atomic cohesive energy of the NaCl crystal as joules per mole.

Energy per
ion pair in an
ionic crystal
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SOLUTION

Bonding occurs when the potential energy E(r) is a minimum at r = r, corresponding to the

equilibrium separation between the Na* and CI~ ions. We differentiate E (r) and set it to zero
atr =r,,

dE(r) eM mB

dr  4me,r?  pmtl

=0 atr=r,

Solving for r,,

4re,Bm 1"V
r,=| —2— [1.5]

eM
Thus,

[47:(8.85 x 10~ Fm~1)(6.972 x 10-% J m“)(8)]”‘8‘”

r, =
(1.6 x 10-19C)2(1.748)

 =0.281 x 10°m or 0.28 nm

The minimum energy E,;, perion pair is E(r,) and can be simplified further by substituting for
B in terms of r,:

M B M 1
Epin = — 4 —_ = 1-— [1.6]
dme,r, ry dme,r, m
Thus,
o (1.6 x 10™1° C)2(1.748) ( 1)
T 47(8.85 x 10~12 Fm-1)(2.81 x 10-1° m) 8
=—1.256 x 10713 ] or —7.84 eV

This is the energy with respect to two isolated Na* and C1~ ions. We need 7.84 eV to break
up a Na*—Cl~ pair into isolated Na* and C1~ ions, which represents the ionic cohesive energy.
Some authors call this ionic cohesive energy simply the lattice energy. To take the crystal apart
into its neutral atoms, we have to transfer the electron from the Cl~ ion to the Na* ion to obtain
neutral Na and Cl atoms. It takes 3.61 eV to remove the electron from the Cl~ ion, but 5.14 eV is
released when it is put into the Na* ion. Thus, we need 7.84 eV + 3.61 eV but get back 5.14 eV.

Bond energy per Na—Cl pair = 7.84 eV + 3.61 eV — 5.14 eV =6.31 eV
The atomic cohesive energy in terms of joules per mole is
Econesive = (6.31 eV)(1.6022 x10~'° J/eV)(6.022 x 102 mol ~!) = 608 kJ mol~!

1.3.5 SECONDARY BONDING

Covalent, ionic, and metallic bonds between atoms are known as primary bonds. It
may be thought that there should be no such bonding between the atoms of the inert
elements as they have full shells and therefore cannot accept or lose any electrons, nor
share any electrons. However, the fact that a solid phase of argon exists at low temper-
atures, below — 189 °C, means that there must be some bonding mechanism between the
Ar atoms. The magnitude of this bond cannot be strong because above —189 °C solid
argon melts. Although each water molecule H,O is neutral overall, these molecules
nonetheless attract each other to form the liquid state below 100 °C and the solid state
below 0 °C. Between all atoms and molecules, there exists a weak type of attraction, the



1.3 BONDING AND TYPES OF SOLIDS

Cl

H - <A
0 A B

a- %
I a> D D f
= -
A B
(a) (b) (c)

Figure 1.11

(a) A permanently polarized molecule is called an electric dipole moment.

(b) Dipoles can attract or repel each other depending on their relative orientations.
(c) Suitably oriented dipoles attract each other to form van der Waals bonds.

so-called van der Waals—London force, which is due to a net electrostatic attraction be-
tween the electron distribution of one atom and the positive nucleus of the other.

In many molecules the concentrations of negative and positive charges do not coin-
cide. As apparent in the HCI molecule in Figure 1.11a, the electrons spend most of their
time around the Cl nucleus, so the positive nucleus of the H atom is exposed (H has ef-
fectively donated its electron to the CI atom) and the Cl-region acquires more negative
charge than the H-region. An electric dipole moment occurs whenever a negative and a
positive charge of equal magnitude are separated by a distance as in the H*—C1~ mole-
cule in Figure 1.11a. Such molecules are polar, and depending on their relative orienta-
tions, they can attract or repel each other as depicted in Figure 1.11b. Two dipoles
arranged head to tail attract each other because the closest separation between charges on
A and B is between the negative charge on A and the positive charge on B, and the net
result is an electrostatic attraction. The magnitude of the net force between two dipoles
A and B, however, does not depend on their separation r as 1/r2 because there are both
attractions and repulsions between the charges on A and charges on B and the net force
is only weakly attractive. (In fact, the net force depends on 1/r*.) If the dipoles are
arranged head to head or tail to tail, then, by similar arguments, the two dipoles repel
each other. Suitably arranged dipoles can attract each other and form van der Waals
bonds as illustrated in Figure 1.11c. The energies of such dipole arrangements as in Fig-
ure 1.11c are less than that of totally isolated dipoles and therefore encourage “bonding.”
Such bonds are weaker than primary bonds and are called secondary bonds.

The water molecule H,O is also polar and has a net dipole moment as shown in
Figure 1.12a. The attractions between the positive charges on one molecule and the
negative charges on a neighboring molecule lead to van der Waals bonding between
the HO molecules in water as illustrated in Figure 1.12b. When the positive charge of
adipole as in H,O arises from an exposed H nucleus, van der Waals bonding is referred
to as hydrogen bonding. In ice, the H,O molecules, again attracted by van der Waals
forces, bond to form a regular pattern and hence a crystal structure.

Van der Waals attraction also occurs between neutral atoms and nonpolar mole-
cules. Consider the bonding between Ne atoms at low temperatures. Each has closed
(or full) electron shells. The center of mass of the electrons in the closed shells, when
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(a) (b)

Figure 1.12 The origin of van der Waals bonding between water molecules.
(a) The H20O molecule is polar and has a net permanent dipole moment.

(b) Atiractions between the various dipole moments in water give rise to van der
Waals bonding.

Time averaged electron (negative
charge) distribution

Closed L shell

Tonic core

Instantaneous electron (negative Synchronized fluctuations

(nucleus + K shell) charge) distribution fluctuates about of the electrons

the nucleus

Figure 1.13 Induced-dipole-induced-dipole interaction and the resulting van der Waals force.

averaged over time, coincides with the location of the positive nucleus. At any one in-
stant, however, the center of mass is displaced from the nucleus due to various motions
of the individual electrons around the nucleus as depicted in Figure 1.13. In fact, the
center of mass of all the electrons fluctuates with time about the nucleus. Consequently,
the electron charge distribution is not static around the nucleus but fluctuates asym-
metrically, giving rise to an instantaneous dipole moment.

When two Ne atoms, A and B, approach each other, the rapidly fluctuating negative
charge distribution on one affects the motion of the negative charge distribution on the
other. A lower energy configuration (i.e., attraction) is produced when the fluctuations
are synchronized so that the negative charge distribution on A gets closer to the nu-
cleus of the other, B, while the negative distribution on B at that instant stays away
from that on A as shown in Figure 1.13. The strongest electrostatic interaction arises
from the closest charges which are the displaced electrons in A and the nucleus in B.
This means that there will be a net attraction between the two atoms and hence a low-
ering of the net energy which in turn leads to bonding.

This type of attraction between two atoms is due to induced synchronization of
the electranic mationg aronnd the naiclei and we refer to thic ac indured-dinnle—indured-
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Table 1.2  Comparison of bond types and typical properties {general trends)

Bond Melt. Elastic
Bond Typical Energy Temp. Modulus Density
Type Solids (eV/atom) O (GPa) (g em™3) Typical Properties
Ionic NaCl 32 801 40 2.17 Generally electrical insulators. May
(rock salt) become conductive at high temperatures.
MgO 10 2852 250 3.58 High elastic modulus. Hard and brittle but
(magnesia) cleavable.
Thermal conductivity less than metals.
Metallic Cu 3.1 1083 120 8.96 Electrical conductor.
Mg 1.1 650 44 1.74 Good thermal conduction.
High elastic modulus.
Generally ductile. Can be shaped.
Covalent Si 4 1410 190 2.33 Large elastic modulus.

Hard and brittle.

C (diamond) 7.4 3550 827 3.52 Diamond is the hardest material.

Good electrical insulator.

Moderate thermal conduction, though
diamond has exceptionally high
thermal conductivity.

van der PVC 212 4 1.3 Low elastic modulus.
Waals: (polymer) Some ductility.
hydrogen HO (ice) 0.52 0 9.1 0.917 Electrical insulator.
bonding Poor thermal conductivity.

Large thermal expansion coefficient.

van der Crystalline 0.09 —189 8 1.8 Low elastic modulus.
Waals: argon Electrical insulator.
induced Poor thermal conductivity.
dipole Large thermal expansion coefficient.

dipole. It is weaker than permanent dipole interactions and at least an order of magni-
tude less than primary bonding. This is the reason why the inert elements Ne and Ar
solidify at temperatures below 25 K (—248 °C) and 84 K (—189 °C). Induced di-
pole-induced dipole interactions also occur between nonpolar molecules such as H,,
I, CHy, etc. Methane gas (CH,4) can be solidified at very low temperatures. Solids in
which constituent molecules (or atoms) have been bonded by van der Waals forces are
known as molecular solids; ice, solidified CO, (dry ice), O,, H,, CHy, and solid inert
gases, are typical examples.

Van der Waals bonding is responsible for holding the carbon chains together in
polymers. Although the C-to-C bond in a C-chain is due to covalent bonding, the in-
teraction between the C-chains arises from van der Waals forces and the interchain
bonding is therefore of secondary nature. These bonds are weak and can be easily
stretched or broken. Polymers therefore have substantially lower elastic moduli and
melting temperatures than metals and ceramics.

Table 1.2 compares the energies involved in the five types of bonding found in ma-
terials. It also lists some important properties of these materials to show the correlation
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with the bond type and its energy. The greater is the bond energy, for example, the
higher is the melting' temperature. Similarly, strong bond energies lead to greater
elastic moduli and smaller thermal expansion coefficients. Metals generally have the
greatest electrical conductivity since only this type of bonding allows a very large
number of free charges (conduction electrons) to wander in the solid and thereby con-
tribute to electrical conduction. Electrical conduction in other types of solid may
involve the motion of ions or charged defects from one fixed location to another.

1.3.6 MIiIXED BONDING

In many solids, the bonding between atoms is generally not just of one type; rather, it
is a mixture of bond types. We know that bonding in the silicon crystal is totally cova-
lent, because the shared electrons in the bonds are equally attracted by the neighboring
positive ion cores and are therefore equally shared. When there is a covalent-type bond
between two different atoms, the electrons become unequally shared, because the two
neighboring ion cores are different and hence have different electron-attracting abili-
ties. The bond is no longer purely covalent; it has some ionic character, because the
shared electrons spend more time close to one of the ion cores. Covalent bonds that
have an ionic character, due to an unequal sharing of electrons, are generally called
polar bonds. Many technologically important semiconductor materials, such as III-V
compounds (e.g., GaAs), have polar covalent bonds. In GaAs, for example, the electrons
in a covalent bond spend slightly more time around the As®* ion core than the Ga*t?
ion core.

Electronegativity is a relative measure of the ability of an atom to attract the elec-
trons in a bond it forms with another atom. The Pauling scale of electronegativity assigns
an electronegativity value X, a pure number, to various elements, the highest being 4 for
F, and the lowest values being for the alkali metal atoms, for which X are less than 1. In
this scheme, the difference X 4 — X p in the electronegativities of two atoms A and B is
a measure of the polar or ionic character of the bond A-B between A and B. There is ob-
viously no electronegativity difference for a covalent bond. While it is possible to calcu-
late the fractional ionicity of a single bond between two different atoms using X 4 — X,
inside the crystal the overall ionic character can be substantially higher because ions can
interact with distant ions further away than just the nearest neighbors, as we have found
out in NaCl. Many technologically important semiconductor materials, such as III-V
compounds (e.g., GaAs) have polar covalent bonds. In GaAs, for example, the bond in
the crystal is about 30 percent ionic in character (X a5 — Xga = 2.18 — 1.81 = 0.37).In
the ZnSe crystal, an important II-VI semiconductor, the bond is 63 percent ionic
(Xse — Xzn = 2.55 — 1.65 = 0.85).°

Ceramic materials are compounds that generally contain metallic and nonmetallic
elements. They are well known for their brittle mechanical properties, hardness, high

6 Chemists use “lonicity = 1 — exp[0.24{Xs — Xg]]” to calculate the ionicity of the bond between A and 8. While
this is undoubtedly useful in identifying the trend, it substantially underestimates the actual ionicity of bonding within
the crystal itself. (it is left as an exercise to show this fact from the above X4 and X values.) The quoted ionicity
percentages are from J. C. Phillips’ book Bonds and Bands in Semiconductors, New York: Academic Press, 1973,
By the way, the units of X are sometimes quoted as Pauling units, after its originator Linus Pauling.
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melting temperatures, and electrical insulating properties. The type of bonding in a
ceramic material may be covalent, ionic, or a mixture of the two, in which the bond be-
tween the atoms involves some electron sharing and, to some extent, the partial forma-
tion of cations and anions; the shared electrons spend more time with one type of atom,
which then becomes a partial anion while the other becomes a partial cation. Silicon
nitride (Si3N,4), magnesia (MgO), and alumina (Al,O5) are all ceramics, but they have
different types of bonding: SizN, has covalent, MgO has ionic, and Al,0O3; has a mix-
ture of ionic and covalent bonding. All three are brittle, have high melting tempera-
tures, and are electrical insulators.
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ENERGY OF SECONDARY BONDING Consider the van der Waals bonding in solid argon.
The potential energy as a function of interatomic separation can generally be modeled by the
Lennard-Jones 6-12 potential energy curve, that is,

E(r)=—Ar %+ Br

where A and B are constants. Given that A = 8.0 x 10777 Jm® and B = 1.12 x 10~!3 J m'?,
calculate the bond length and bond energy (in eV) for solid argon.

SOLUTION

Bonding occurs when the potential energy is at a minimum. We therefore differentiate the
Lennard-Jones potential E(r) and set it to zero at r = r,, the interatomic equilibrium separa-
tion or

dE
o =6Ar " —12Br 3 =0 atr =r,
,
that is,
2B
ré==—
¢ A
or
2B 7S
[
A

Substituting A = 8.0 x 1077 and B = 1.12 x 10~"* and solving for r,, we find
r,=375x10""m or 0.375 nm

When r = r, = 3.75 x 107!1% m, the potential energy is at a minimum and corresponds to
= Evond, 80

8.0 x 10777 1.12 x 10713

Epog = |—Ar=¢ + Br-12| = |-
g = | —Ar;® + Br;?| (375 x 10-10)5 T (3.75 x 10-0)12

that is,
Epond = 1.43 x 1072 or 0.089 eV

Notice how small this energy is compared to primary bonding.
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ELASTIC MODULUS The elastic modulus, or Young’s modulus Y, of a solid indicates its abil-
ity to deform elastically. The greater is the elastic modulus, the more effort is required for the
same amount of elastic deformation given a constant sample geometry. When a solid is sub-
jected to tensile forces F acting on two opposite faces, as in Figure 1.14a, it experiences a stress
o defined as the force per unit area F/A, where A is the area on which F acts. If the original
length of the specimen is L,, then the applied stress o stretches the solid by an amount § L. The
strain ¢ is the fractional increase in the length of the solid § L/L,. As long as the applied force
displaces the atoms in the solid by a small amount from their equilibrium positions, the defor-
mation is elastic and recoverable when the forces are removed. The applied stress o and the re-
sulting elastic strain ¢ are related by the elastic modulus Y by

Definition of
elastic o=7Ye¢ Nn.7]
modulus The applied stress causes two neighboring atoms along the direction of force to be further
separated. Their displacement ér(= r — r,) results in a net attractive force § Fy between two
neighboring atoms as indicated in Figure 1.14b (which is the same as Figure 1.3a) where Fy is
the net interatomic force. § Fy attempts to restore the separation to equilibrium. This force § Fy,
however, is balanced by a portion of the applied force acting on these atoms as in Figure 1.14a.
If we were to proportion the area A in Figure 1.14a among all the atoms on this area, each atom
would have an area roughly r2. (If there are N atoms on A, Nr? = A.) The force § Fy is there-
fore o r2. The strain ¢ is 6r/r,. Thus, Equation 1.7 gives
SFy or
=0 = —
r2 To
Clearly, Y depends on the gradient of the Fy versus r curve at r,, or the curvature of the
minimum of E versus r at r,,
Elastic 2
modulus and Y = —l— [ﬂ} = l [E_ﬁf_] [1.8]
bonding T'o dr r=ry ro dr r=ro
Ij‘f’ Y « dFyldr
Solid ©
>
ks
F AC DF g
«—L +0L——> 0 <
2
3
o)
2
(a) (b)

Figure 1.14

(a) Applied forces F stretch the solid elastically from L, to L, + 8L. The force is divided among chains of
atoms that make the solid. Each chain carries a force §Fn.

(b) In equilibrium, the applied force is balanced by the net force 8 Fn between the atoms as a result of
their increased separation.
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The bonding energy Epong is the minimum of E versus r at r, (Figure 1.3b) and can be re-
lated to the curvature of E versus r which leads to’

Evond

3
rs

Y~ f [1.9]

where f is a numerical factor (constant) that depends on the crystal structure and the type of
bond (of the order of unity). The well-known Hooke’s law for a spring expresses the magnitude
of the net force 6 Fy in terms of the displacement §r by § Fy = B|8r| where B is the spring con-
stant. Thus Y = B8/r,.

Solids with higher bond energies therefore tend to have higher elastic moduli as appar-
ent in Table 1.2. Secondary bonding has both a smaller Ey,,g and a larger r, than primary
bonding and Y is much smaller. For NaCl, from Figure 1.10, Epyg = 6.3 €V, r, = 0.28 nm,
and Y is of the order of ~50 GPa using Equation 1.9 and f = 1; and not far out from the
value in Table 1.2.

25

Elastic
modulus and
bond energy

14 KINETIC MOLECULAR THEORY

14.1 MEAN KINETIC ENERGY AND TEMPERATURE

The kinetic molecular theory of matter is a classical theory that can explain such seem-

ingly diverse topics as the pressure of a gas, the heat capacity of metals, the average
speed of electrons in a semiconductor, and electrical noise in resistors, among many
interesting phenomena. We start with the kinetic molecular theory of gases, which
considers a collection of gas molecules in a container and applies the classical equa-
tions of motion from elementary mechanics to these molecules. We assume that the
collisions between the gas molecules and the walls of the container result in the gas
pressure P. Newton’s second law, dp/dt = force, where p = mv is the momentum, is
used to relate the pressure P (force per unit area) to the mean square velocity v2, and
the number of molecules per unit volume N/V. The result can be stated simply as

PV = iNmv? [1.10]

where m is the mass of the gas molecule. Comparing this theoretical derivation with
the experimental observation that

N
PV = (——)RT
Ny

where N, is Avogadro’s number and R is the gas constant, we can relate the mean
kinetic energy of the molecules to the temperature. Our objective is to derive Equa-
tion 1.10; to do so, we make the following assumptions:

1. The molecules are in constant random motion. Since we are considering a large
number of molecules, perhaps 102 m~3, there are as many molecules traveling in
one direction as in any other direction, so the center of mass of the gas is at rest.

| 7 The mathematics and a more rigorous description may be found in the textbook’s CD.

Kinetic
molecular
theory for
gases
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2. The range of intermolecular forces is short compared to the average separation of
the gas molecules. Consequently,

a. Intermolecular forces are negligible, except during a collision.

b. The volume of the gas molecules (all together) is negligible compared to the
volume occupied by the gas (that is, the container).

3. The duration of a collision is negligible compared to the time spent in free motion
between collisions.

4. Each molecule moves with uniform velocity between collisions, and the accelera-
tion due to the gravitational force or other external forces is neglected.

5. On average, the collisions of the molecules with one another and with the walls of
the container are perfectly elastic. Collisions between molecules result in exchanges
of kinetic energy.

6. Newtonian mechanics can be applied to describe the motion of the molecules.

We consider a collection of N gas molecules within a cubic container of side a. We
focus our attention on one of the molecules moving toward one of the walls. The
velocity can be decomposed into two components, one directly toward the wall v,, and
the other parallel to the wall v,, as shown in Figure 1.15. Clearly, the collision of the
molecule, which is perfectly elastic, does not change the component v, along the wall,
but reverses the perpendicular component v,. The change in the momentum of the
molecule following its collision with the wall is

Ap = 2muv,

where m is the mass of the molecule. Following its collision, the molecule travels back
across the box, collides with the opposite face B, and returns to hit face A again. The
time interval At is the time to traverse twice the length of the box, or At = 2a/v,.
Thus, every At seconds, the molecule collides with face A and changes its momentum
by 2muv,. To find the force F exerted by this molecule on face A, we need the rate of

Figure 1.15 The gas molecules in the
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change of momentum, or

Ap  2mv,  mv?

At Qajvy)  a

The total pressure P exerted by N molecules on face A, of area a2, is due to the
sum of all individual forces F, or

Total force  mv2 +mv}, +--- + mvly

a? a3

m
_m. 5 2 2
_a3(vxl+vx2+"'+va)

that is, -
mNv?
|4

where ;xi is the average of v? for all the molecules and is called the mean square
velocity, and V is the volume a°.

Since the molecules are in random motion and collide randomly with each other,
thereby exchanging kinetic energy, the mean square velocity in the x direction is the
same as those in the y and z directions, or

P =

NcN I

02— p2 =
vy = vy =

For any molecule, the velocity v is given by

T2 2 L 22— A2
v _vx+vy+vz-3vx

The relationship between the pressure P and the mean square velocity of the mol-

ecules is therefore

Nmu?
P =

3v

where p is the density of the gas, or Nm/V . By using elementary mechanical concepts,
we have now related the pressure exerted by the gas to the number of molecules per
unit volume and to the mean square of the molecular velocity.

Equation 1.11 can be written explicitly to show the dependence of PV on the mean
kinetic energy of the molecules. Rearranging Equation 1.11, we obtain

2 1 —
PV = —N(—mvz)
3 2

where %mﬁ is the average kinetic energy KE per molecule. If we consider one mole of
gas, then N is simply N4, Avogadro’s number.
Experiments on gases lead to the empirical gas equation

N
PV = (-——)RT
Na

where R is the universal gas constant. Comparing this equation with the kinetic theory
equation shows that the average kinetic energy per molecule must be proportional to

1 —
= —pv? 1.11
3pv (1.11]
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the temperature.

KE = ~m? = 2kT [1.12]
2 2 ‘
where k = R/N , is called the Boltzmann constant. Thus, the mean square velocity is
proportional to the absolute temperature. This is a major conclusion from the kinetic
theory, and we will use it frequently.

When heat is added to a gas, its internal energy and, by virtue of Equation 1.12, its
temperature both increase. The rise in the internal energy per unit temperature is called
the heat capacity. If we consider 1 mole of gas, then the heat capacity is called the
molar heat capacity C,,. The total internal energy U of 1 mole of monatomic gas (i.e.,
a gas with only one atom in each molecule) is

U=N (—1 2)——31\7 kT
= mv =

A ) ) A

SO, from the definition of C m, at constant volume, we have

C v _3 Nak & R [1.13]
"Tdr 2V T2 :
Thus, the heat capacity per mole of a monatomic gas at constant volume is simply
% R. By comparison, we will see later that the heat capacity of metals is twice this amount.
The reason for considering constant volume is that the heat added to the system then in-
creases the internal energy without doing mechanical work by expanding the volume.
There is a useful theorem called Maxwell’s principle of equipartition of energy,
which assigns an average of %kT to each independent energy term in the expression for
the total energy of a system. A monatomic molecule can only have translational kinetic
energy, which is the sum of kinetic energies in the x, y, and z directions. The total en-
ergy is therefore
1 1 1
E = Emvf + Emvi + —2-mvf
Each of these terms represents an independent way in which the molecule can be
made to absorb energy. Each method by which a system can absorb energy is called a
degree of freedom. A monatomic molecule has only three degrees of freedom.
According to Maxwell’s principle, for a collection of molecules in thermal equilib-
rium, each degree of freedom has an average energy of %kT , so the average kinetic en-
ergy of the monatomic molecule is 3(3kT).
A rigid diatomic molecule (such as an O, molecule) can acquire energy as transla-
tional motion and rotational motion, as depicted in Figure 1.16. Assuming the moment of
inertia I, about the molecular axis (along x) is negligible, the energy of the molecule is

2 L o 1 5, 1, 1,
E = e + Fmvy + Fmv; + Elya)y + 7 Lo

where I, and I, are moments of inertia about the y and z axes and w, and w, are angular
velocities about the y and z axes (Figure 1.16).
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This molecule has five degrees of freedom and hence an average energy of
S(3T). Its molar heat capacity is therefore 2 R.

The atoms in the molecule will also vibrate by stretching or bending the bond,
which behaves like a “spring.” At room temperature, the addition of heat only results
in the translational and rotational motions becoming more energetic (excited), whereas
the molecular vibrations remain the same and therefore do not absorb energy. This oc-
curs because the vibrational energy of the molecule can only change in finite steps; in
other words, the vibrational energy is quantized. For many molecules, the energy
required to excite a more energetic vibration is much more than the energy possessed
by the majority of molecules. Therefore, energy exchanges via molecular collisions
cannot readily excite more energetic vibrations; consequently, the contribution of mo-
lecular vibrations to the heat capacity is negligible.

In a solid, the atoms are bonded to each other and can only move by vibrating about
their equilibrium positions. In the simplest view, a typical atom in a solid is joined to
its neighbors by “springs” that represent the bonds, as depicted in Figure 1.17. If we
consider a given atom, its potential energy as a function of displacement from the
equilibrium position is such that if it is displaced slightly in any direction, it will expe-
rience a restoring force proportional to the displacement. Thus, this atom can acquire
energy by vibrations in three directions. The energy associated with the x direction, for
example, is the kinetic energy of vibration plus the potential energy of the “spring,” or
%m vﬁ + %Kxx2, where v, is the velocity, x is the extension of the spring, and K, is the
spring constant, all along the x direction. Clearly, there are similar energy terms in the
y and z directions, so there are six energy terms in the total energy equation:

1, 1 5 1 5 1 2, 1 2, Lo o
E = Emvx+§mvy+-2-mvz +5Kxx +§Kyy +5KZZ
We know that for simple harmonic motion, the average KE is equal to the average

PE. Since, by virtue of the equipartition of energy principle, each average KE term has

29
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Figure 1.17

(a) The balland-spring model of solids, in which the springs represent the interatomic bonds. Each ball (atom) is linked to
its neighbors by springs. Atomic vibrations in a solid involve three dimensions.

CHAPTER 1 ¢ ELEMENTARY MATERIALS SCIENCE CONCEPTS

(a) (b)

(b) An atom vibrating about its equilibrium position. The atom stretches and compresses its springs to its neighbors and
has both kinetic and potential energy.

Dulong—Petit
rule

an energy of %kT, the average total energy per atom is 6(%kT). The internal energy U
per mole is

1
U= NAG(EkT) = 3RT

The molar heat capacity then becomes

dU -1 1
Chn=—=3R=25JK" mol
dT
This is the Dulong—Petit rule.

The kinetic molecular theory of matter is one of the successes of classical physics,
with a beautiful simplicity in its equations and predictions. Its failures, however, are
numerous. For example, the theory fails to predict that, at low temperatures, the heat
capacity increases as T> and that the resistivity of a metal increases linearly with the
absolute temperature. We will explain the origins of these phenomena in Chapter 4.

SPEED OF SOUND IN AIR  Calculate the root mean square (rms) velocity of nitrogen molecules
in atmospheric air at 27 °C. Also calculate the root mean square velocity in one direction (vems,)-
Compare the speed of propagation of sound waves in air, 350 m s™', with v . and explain the
difference.

SOLUTION
From the kinetic theory
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so that

[3kT
Urms =
m

where m is the mass of the nitrogen molecule N,. The atomic mass of nitrogen is M, =
14g mol™!, so that in kilograms

2M,(1073)
m=
Ny

[ 3kNAT ]1/2 [ 3RT ]1/2
Vs = | ———————= e T TN
- 2M,(10-3) 2M, (1073)

Thus

a [3(8.314 J mol~' K~')(300 K)

1/2
— ] =517ms™!
2(14 x 103 kg mol ™)

Consider an rms velocity in one direction. Then

Vrms.x = \/E= ,/%ﬁ: %vm =298 ms™!

which is slightly less than the velocity of sound in air (350 m s™!). The difference is due to the
fact that the propagation of a sound wave involves rapid compressions and rarefactions of air,
and the result is that the propagation is not isothermal. Note that accounting for oxygen in air
lowers vps_ .. (Why?)

SPECIFIC HEAT CAPACITY Estimate the heat capacity of copper per unit gram, given that its R3E1 1413 W

atomic mass is 63.6.

SOLUTION

From the Dulong—Petit rule, C,, = 3R for N, atoms. But N, atoms have a mass of M, grams,
so the heat capacity per gram, the specific heat capacity c;, is

3R 25Jmol™' K™!
Cs = =
M, 63.6 g mol ™!
~039Jg ' K™ (The experimental value is 0.38 J g~! K~1.)

142 THERMAL EXPANSION

Nearly all materials expand as the temperature increases. This phenomenon is due to
the asymmetric nature of the interatomic forces and the increase in the amplitude of
atomic vibrations with temperature as expected from the kinetic molecular theory.
The potential energy curve U(r) for two atoms separated by a distance r is shown
in Figure 1.18. In equilibrium the PE is a minimum at Uy, = —U, and the bonding
energy is simply U,. The atoms are separated by the equilibrium separation r,. However,
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Energy
1 U(r) = PE
ro Interatomic separation, r
0 A >
U
Unmin =-U, --==)

Figure 1.18 The potential energy PE curve has a minimum when the atoms in the solid attain
the interatomic separation at r = r,.

Because of thermal energy, the atoms will be vibrating and will have vibrational kinetic energy. At
T= T, the atoms will be vibrating in such a way that the bond will be stretched and compressed
by an amount corresponding to the KE of the atoms. A pair of atoms will be vibrating between B
and C. Their average separation will be at A and greater than r.

< )
' Stage A

State B, KE =0,
E=U,

Figure 1.19 Vibrations of atoms in the solid.

We consider for simplicity a pair of atoms.
State A Total energy is E = PE + KE, and this is

constant for a pair of vibrating atoms

executing simple harmonic motion. At B and

C, KE is zero {atoms are stationary and about
State C, KE =0, 15 reverse direction of oscillation) and PE is
E=Uc maximum.

according to the kinetic molecular theory, atoms are vibrating about their equilibrium
positions with a mean vibrational kinetic energy that increases with the temperature as
%kT. At any instant the total energy E of the pair of atoms is U 4+ KE, and this is con-
stant inasmuch as no external forces are being applied. The atoms will be vibrating
about their equilibrium positions, stretching and compressing the bond, as depicted in
Figure 1.19. At positions B and C, U is maximum and the KE is zero; the atoms are
ctationarv and ahout to reverse their direction of oscillation. Thus at B and C the total
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energy E = Ug = U and the PE has increased from its minimum value Uy, by an
amount equal to KE. The line BC corresponds to the total energy E. The atoms are
confined to vibrate between B and C, executing simple harmonic motion and hence
maintaining £ = U + KE = constant.

But the PE curve U(r) is asymmetric. U(r) is broader in the r > r, region. Thus,
the atoms spend more time in the r > r, region, that is, more time stretching the bond
than compressing the bond (with respect to the equilibrium length r,). The average
separation corresponds to point A,

1
Fav = §(rB+rC)

which is clearly greater than r,. As the temperature increases, KE increases, the total
energy E increases, and the atoms vibrate between wider extremes of the U(r) curve,
between B’ and C’. The new average separation at A’ is now greater than that at
A:ry > ry. Thus as the temperature increases, the average separation between the
atoms also increases, which leads to the phenomenon of thermal expansion. If the PE
curve were symmetric, then there would be no thermal expansion as the atoms would
spend equal times in the r < r, and r > r, regions.

When the temperature increases by a small amount 87, the energy per atom in-
creases by Cyom 67 where Cyon 1s the heat capacity per atom (molar heat capacity
divided by N). If Caom 87 is large, then the line B'C’ in Figure 1.18 will be higher up
on the energy curve and the average separation A’ will therefore be larger. Thus, the
increase dr,, in the average separation is proportional to §7. If the total length L, is
made up of N atoms, L, = Nr,,, then the change §L in L, is proportional to N §T or
L, 8T . The proportionality constant is the thermal coefficient of linear expansion, or
simply, thermal expansion coefficient A, which is defined as the fractional change in
length per unit temperature,

1 &L
A= — . — [1.14]
L, 8T

If L, is the original length at temperature T, then the length L at temperature 7,

from Equation 1.14, is

L = L,[1+NMT —-T,)] [1.15]

We note that A is a material property that depends on the nature of the bond. The
variation of r,, with T in Figure 1.18 depends on the shape of the PE curve U(r). Typ-
ically, A is larger for metallic bonding than for covalent bonding.

We can use a mathematical procedure (known as a Taylor expansion) to describe
the U(r) versus r curve in terms of its minimum value Up,;,, plus correction terms that
depend on the powers of the displacement (r — r,) from r,,

Ur) = Upin + a2(r = 15)> +as(r —r,)> + -+ [1.16]

where a, and a5 are coefficients that are related to the second and third derivatives of U
at r,. The term a;(r — r,) is missing because dU/dr =0 at r = r, where U = Upp.
The Upin and ay(r — r,)? terms in Equation 1.16 give a parabola about Uy, which is a
symmetric curve around r, and therefore does not lead to thermal expansion. The average
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location at any energy on a symmetric curve at r, is always at r,. It is the a3 term that
gives the expansion because it leads to asymmetry. Thus, A depends on the amount of
asymmetry, that is, a;/a,;. The asymmetric PE curve in Figure 1.18 which has a finite
cubic a3 term as in Equation 1.16 does not lead to a perfect simple harmonic (sinu-
soidal) vibration about r, because the restoring force is not proportional to the dis-
placement alone. Such oscillations are unharmonic, and the PE curve is said to possess
an unharmonicity (terms such as a3;). Thermal expansion is an unharmonic effect.

The thermal expansion coefficient normally depends on the temperature, A = A(T),
and typically increases with increasing temperature, except at the lowest temperatures.
We can always expand A(T') about some useful temperature such as 7, to obtain a
polynomial series in temperature terms up to the most significant term, usually the T2
containing term. Thus, Equation 1.14 becomes

=MT)=A+B(T-T)+C(T-T) +--- [1.17]
L,dT
100 7 HDPE?T
- pc..-—PMMA
50 A PET —#
. ] .
. Zn—i
I
Y Al n
- Cu—-!
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Figure 1.20 Dependence of the linear thermal expansion coefficient A (K™ ')
on temperature T K) on a log-log plot.

HDPE, high-density polyethylene; PMMA, polymethylmethacrylate (acrylic); PC,
polycarbonate; PET, polyethylene terephthalate (polyester); fused silica, SiO2;
alumina, Al,O3.

SOURCE: Data extracted from various sources including G. A. Slack and S. F. Bartram,
J. Appl. Phys., 46, 89, 1975.
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where A, B, and C are temperature-independent constants, and the expansion is about
T,. To find the total fractional change in the length AL/L, from T, to T, we have to
integrate A(T') with respect to temperature from T, to T. We can still employ Equation
1.15 provided that we use a properly defined mean value for the expansion coefficient
fromT,to T,

L = Lo[1+ AT — T,)] [1.18]
where X = gls [ MT)dT [1.19]

Figure 1.20 shows the temperature dependence of A for various materials. In very gen-
eral terms, except at very low (typically below 100 K) and very high temperatures
(near the melting temperature), for most metals A does not depend strongly on the tem-
perature; many engineers take A for a metal to be approximately temperature indepen-
dent. There is a simple relationship between the linear expansion coefficient and the
heat capacity of a material, which is discussed in Chapter 4.
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VOLUME EXPANSION COEFFICIENT  Suppose that the volume of a solid body at temperature
T, is V,. The volume expansion coefficient ay of a solid body characterizes the change in its
volume from V,, to V due to a temperature change from 7, to T by

V=V, +av(T - T,)] [1.20]

Show that ay is given by
ay =31 [1.21]

Aluminum has a density of 2.70 g cm~3 at 25 °C. Its thermal expansion coefficient is 24 x
1078 °C~!. Calculate the density of Al at 350 °C.

SOLUTION

Consider the solid body in the form of a rectangular parallelepiped with sides x,, y,, and z,.
Then at 7,,,

Vo = X6¥020
andat T, V = [x(1+ 2 AT)I[y,(1 + 2 AT)1z,(1 + 2 AT)]
= X,Y020(1 + A AT)?
that is V = Xx,¥20[1 + 31 AT +30*(AT)* + A3(AT)%]

We can now substitute for V from Equation 1.20, use V, = x,y,z,, and neglect the
A2(AT)? and A3(AT)? terms compared with the A AT term (A < 1) to obtain,

V = Vo[l +3MT — T,)] = Vo[l + av(T — T,)]

Since density p is mass/volume, volume expansion leads to a density reduction. Thus,

Po
1% 1+ay(T —T,) Pol ay{( o)l

For Al, the density at 350 °C is
p = 2.70[1 — 3(24 x 107°)(350 — 25)] = 2.637 gcm ™3

EXAMPLE 1.8

Volume
expansion

Volume
expansion
coefficient
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EXAMPLE 1.9

Thermal
expansion
coefficient of
Si

EXPANSION OF Si The expansion coefficient of silicon over the temperature range 120-
1500 K is given by Okada and Tokumaru (1984) as

A= 3.725 x 10761 — ¢ 37Bx1073T-124)] 4 5 548 » 10-10T [1.22]

where A isin K~! (or°C~!) and T is in kelvins. At a room temperature of 20 °C, the above gives
A = 2.51 x 107® K~!. Calculate the fractional change AL /L, in the length L, of the Si crystal
from 20 to 320 °C, by (a) assuming a constant A equal to the room temperature value and
(b) assuming the above temperature dependence. Calculate the mean A for this temperature range.

SOLUTION

Assuming a constant we have

AL
= MT = Tp) = (2.51 x 1079 °C1)(320 — 20) = 0.753 x 1073 or 0.075%

o

With a temperature-dependent A(T'),

AL T
= MT)dT
L,

o

3204273 i
= f {3.725 x 1076[1 — ¢~ >B5x107°(T 1287 4 5548 x 107197} dT
204273

The integration can either be done numerically or analytically (both left as an exercise) with the
result that

AL
= 1.00 x 1073 or 0.1%

o

which is substantially more than when using a constant A. The mean X over this temperature
range can be found from

AL — -3 =
=MT -T, or 1.00 x 1077 = A(320 — 20)

o

which gives A = 3.33 x 1076 °C~'. A 0.1 percent change in length means that a 1 mm chip
would expand by 1 micron.

1.5 MOLECULAR VELOCITY AND ENERGY
DISTRIBUTION

Although the kinetic theory allows us to determine the root mean square velocity of
the gas molecules, it says nothing about the distribution of velocities. Due to random col-
lisions between the molecules and the walls of the container and between the molecules
themselves, the molecules do not all have the same velocity. The velocity distribution of
molecules can be determined experimentally by the simple scheme illustrated in Figure
1.21. Gas molecules are allowed to escape from a small aperture of a hot oven in which
the substance is vaporized. Two blocking slits allow only those molecules that are mov-
ing along the line through the two slits to pass through, which results in a collimated
beam. This beam is directed toward two rotating disks. which have slightlv displaced
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Effusing gas atoms Velocity selector

Hot oven

Detector

Rotating disks

Figure 1.21 Schematic diagram of a Stern-type experiment for determining the distribution of
molecular speeds.
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slits. The molecules that pass through the first slit can only pass through the second if
they have a certain speed; that is, the exact speed at which the second slit lines up with
the first slit. Thus, the two disks act as a speed selector. The speed of rotation of the disks
determines which molecular speeds are allowed to go through. The experiment therefore
measures the number of molecules AN with speeds in the range v to (v + Av).

It is generally convenient to describe the number of molecules d N with speeds in
a certain range v to (v + dv) by defining a velocity density function rn, as follows:

dN =n, dv

where 7, is the number of molecules per unit velocity that have velocities in the range

v to (v + dv). This number represents the velocity distribution among the molecules

and is a function of the molecular velocity n, = n,(v). From the experiment, we can

easily obtain n, by n, = AN/Av at various velocities. Figure 1.22 shows the velocity

density function n, of nitrogen gas at two temperatures. The average (v,,), most prob-

able (v*), and rms (v,,s) speeds are marked to show their relative positions. As ex-

pected, these speeds all increase with increasing temperature. From various experi-  paxwell—
ments of the type shown in Figure 1.21, the velocity distribution function n, has been  gyjrzmann
widely studied and found to obey the following equation: distribution

m \*/? 5 muv? for molecular
v°exp - —2—]-6? 1.23]  speeds
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where N is the total number of molecules and m is the molecular mass. This is the
Maxwell-Boltzmann distribution function, which describes the statistics of particle
velocities in thermal equilibrium. The function assumes that the particles do not interact
with each other while in motion and that all the collisions are elastic in the sense that
they involve an exchange of kinetic energy. Figure 1.22 clearly shows that molecules
move around randomly, with a variety of velocities ranging from nearly zero to almost

* infinity. The kinetic theory speaks of their rms value only.

What is the energy distribution of molecules in a gas? In the case of a monatomic
gas, the total energy E is purely translational kinetic energy, so we can use £ = %m v2,
To relate an energy range dE to a velocity range dv, we have dE = mv dv. Suppose
that ng is the number of atoms per unit volume per unit energy at an energy E. Then
ng dE is the number of atoms with energies in the range E to (E + dE). These are also
the atoms with velocities in the range v to (v + dv), because an atom with a velocity v

has an energy E. Thus,
ngdE =n, dv

. (dv)
=n,| —
E dE

If we substitute for n, and (dv/dE), we obtain the expression for ng as a function

of E:
2 1 \*? E
ng = ——N (——) E'/? exp (— ﬁ) [1.24]

i.e.,

ml/2 kT

Thus, the total internal energy is distributed among the atoms according to
the Maxwell-Boltzmann distribution in Equation 1.24. The exponential factor
exp(— E/kT) is called the Boltzmann factor. Atoms have widely differing kinetic en-
ergies, but a mean energy of %kT . Figure 1.23 shows the Maxwell-Boltzmann energy
distribution among the gas atoms in a tank at two temperatures. As the temperature
increases, the distribution extends to higher energies. The area under the curve is the
total number of molecules, which remains the same for a closed container.

Equation 1.24 represents the energy distribution among the N gas atoms at any time.
Since the atoms are continually colliding and exchanging energies, the energy of one

Figure 1.23 Energy distribution of gas

molecules at two different temperatures. A Average KE at T,
The shaded area shows the number of
molecules that have energies greater than T,

Ea. This area depends strongly on the
temperature as exp(—Ex/kT).

Average KE at T,

Number of atoms per unit energy, n,

E, Energy, E
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atom will sometimes be small and sometimes be large, but averaged over a long time,
this energy will be %kT as long as all the gas atoms are in thermal equilibrium (i.e., the
temperature is the same everywhere in the gas). Thus, we can also use Equation 1.24 to
represent all possible energies an atom can acquire over a long period. There are a total
of N atoms, and ng dE of them have energies in the range E to (E + dE). Thus,

N

When the probability in Equation 1.25 is integrated (i.e., summed) for all energies
(E = 0to 00), the result is unity, because the atom must have an energy somewhere in
the range of zero to infinity.

What happens to the Maxwell-Boltzmann energy distribution law in Equation 1.24
when the total energy is not simply translational kinetic energy? What happens when we
do not have a monatomic gas? Suppose that the total energy of a molecule (which may
simply be an atom) in a system of N molecules has vibrational and rotational kinetic en-
ergy contributions, as well as potential energy due to intermolecular interactions. In all
cases, the number of molecules per unit energy » ¢ turns out to contain the Boltzmann fac-
tor, and the energy distribution obeys what is called the Boltzmann energy distribution:

Probability of energy being in E to (E + dE) = [1.25]

Boltzmann
Rg E
W =C exp (— ﬁ) [1.26] energy
distribution

where E is the total energy (KE + PE), N is the total number of molecules in the sys-
tem, and C is a constant that relates to the specific system (e.g., a monatomic gas or a
liquid). The constant C may depend on the energy E, as in Equation 1.24, but not as
strongly as the exponential term. Equation 1.26 is the probability per unit energy that
amolecule in a given system has an energy E. Put differently, (ng dE)/N is the fraction
of molecules in a small energy range E to E + dE.

MEAN AND RMS SPEEDS OF MOLECULES Given the Maxwell-Boltzmann distribution law m
for the velocities of molecules in a gas, derive expressions for the mean speed (v,,), most prob-

able speed (v*), and rms velocity (v,s) of the molecules and calculate the corresponding val-

ues for a gas of noninteracting electrons.

SOLUTION
The number of molecules with speeds in the range v to (v 4+ dv) is
3/2 2
dN =n dv=47rN(—~'—n—-) vzexp(——ﬂ) dv
’ 2wkT 2kT

By definition, then, the mean speed is given by

vdN vn, dv 8kT
av = ffa'N = ffn 70 -V om Mean speed

v

where the integration is over all speeds (v = 0 to oo0). The mean square velocity is given by

= _ Jv?dN _ [vPn,dv  3kT

B de_ [ n,dv T om
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so the rms velocity is

3kT
m

Urms -

where n,/N is the probability per unit speed that a molecule has a speed in the range v to
(v + dv). Differentiating n, with respect to v and setting this to zero, dn,/dv = 0, gives the po-
sition of the peak of n, versus v, and thus the most probable speed v*,

172
m

Substituting m = 9.1 x 10~3! kg for electrons and using T = 300 K, we find v* =
95.3kms™!, v,, = 108 km s~ !, and v, = 117 km s}, all of which are close in value. We
often use the term thermal velocity to describe the mean speed of particles due to their thermal
random motion. Also, the integrations shown are not trivial and they involve substitution and
integration by parts.

1.6 HEAT, THERMAL FLUCTUATIONS, AND NOISE

Generally, thermal equilibrium between two objects implies that they have the same
temperature, where temperature (from the kinetic theory) is a measure of the mean
kinetic energy of the molecules. Consider a solid in a monatomic gas atmosphere such
as He gas, as depicted in Figure 1.24. Both the gas and the solid are at the same temper-
ature. The gas molecules move around randomly, with a mean kinetic energy given
by 2mv2 3kT where m is the mass of the gas molecule We also know that the atoms
in the solid v1brate with a mean kinetic energy given by IMv? = §kT where M is the
mass of the solid atom and V is the velocity of vibration. The gas molecules will collide
with the atoms on the surface of the solid and will thus exchange energy with those solid
atoms. Since both are at the same temperature, the solid atoms and gas molecules
have the same mean kinetic energy, which means that over a long time, there will be no
net transfer of energy from one to the other. This is basically what we mean by thermal
equilibrium.

If, on the other hand, the solid is hotter than the gas, Tjg > Ty, and thus
L M V2> m v2, then when an average gas molecule and an average solid atom collide,

Solid Figure 1.24 Solid in equilibrium in air.
¢ Q During collisions between the gas and solid atoms,
Gas Kineti ,
inefic energy is exchanged.
“O;O»,O’
j atom
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Compression  Extension
>A4x

Equilibrium

Figure 1.25 Fluctuations of a mass attached to a spring, due to
random bombardment by air molecules.

energy will be transferred from the solid atom to the gas molecule. As many more gas
molecules collide with solid atoms, more and more energy will be transferred, until the
mean kinetic energy of atoms in each substance is the same and they reach the same
temperature: the bodies have equilibrated. The amount of energy transferred from the
kinetic energy of the atoms in the hot solid to the kinetic energy of the gas molecules
is called heat. Heat represents the energy transfer from the hot body to the cold body
by virtue of the random motions and collisions of the atoms and molecules.

Although, over a long time, the energy transferred between two systems in thermal
equilibrium is certainly zero, this does not preclude a net energy transfer from one to
the other at one instant. For example, at any one instant, an average solid atom may be
hit by a fast gas molecule with a speed at the far end of the Maxwell-Boltzmann dis-
tribution. There will then be a transfer of energy from the gas molecule to the solid
atom. At another instant, a slow gas molecule hits the solid, and the reverse is true.
Thus, although the mean energy transferred from one atom to the other is zero, the in-
stantaneous value of this energy is not zero and varies randomly about zero.

As an example, consider a small mass attached to a spring, as illustrated in Fig-
ure 1.25. The gas or air molecules will bombard and exchange energy with the solid
atoms. Some air molecules will be fast and some will be slow, which means that there
will be an instantaneous exchange of energy. Consequently, the spring will be com-
pressed when the bombarding air molecules are fast (more energetic) and extended
when they are less energetic. This leads to a mechanical fluctuation of the mass about
its equilibrium position, as depicted in Figure 1.25. These fluctuations make the mea-
surement of the exact position of the mass uncertain, and it is futile to try to measure
the position more accurately than these fluctuations permit.

If the mass m compresses the spring by Ax, then at time ¢, the energy stored as po-
tential energy in the spring is

1
PE@t) = EK(Ax)z [1.27]
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where K is the spring constant. At a later instant, this energy will be returned to the
gas by the spring. The spring will continue to fluctuate because of the fluctuations in
the velocity of the bombarding air molecules. Over a long period, the average value of
PE will be the same as KE and, by virtue of the Maxwell equipartition of energy theo-
rem, it will be given by

1K(A )? 1kT [1.28]
p— X = - .
2 2

Thus, the rms value of the fluctuations of the mass about its equilibrium position is

(Ax) ‘/ kT [1.29]
X)ms =\ = .
K

To understand the origin of electrical noise, for example, we consider the thermal
fluctuations in the instantaneous local electron concentration in a conductor, such as
that shown in Figure 1.26. Because of fluctuations in the electron concentration at any
one instant, end A of the conductor can become more negative with respect to end B,
which will give rise to a voltage across the conductor. This fluctuation in the electron
concentration is due to more electrons at that instant moving toward end A than toward
B. At a later instant, the situation reverses and more electrons move toward B than
toward A, resulting in end B becoming more negative and leading to a reversal of the
voltage between A and B. Clearly, there will therefore be voltage fluctuations across
the conductor, even though the mean voltage across it over a long period is always
zero. If the conductor is connected to an amplifier, these voltage fluctuations will be
amplified and recorded as noise at the output. This noise corrupts the actual signal at
the amplifier input and is obviously undesirable. As engineers, we have to know how
to calculate the magnitude of this noise. Although the mean voltage due to thermal
fluctuations is zero, the rms value is not. The average voltage from a power outlet is
zero, but the rms value is 120 V. We use the rms value to calculate the amount of aver-
age power available.

Consider a conductor of resistance R. To derive the noise voltage generated by R
we place a capacitor C across this conductor, as in Figure 1.27, and we assume that both
are at the same temperature; they are in thermal equilibrium. The capacitor is placed as
a convenient device to obtain or derive the noise voltage generated by R. It should be
emphasized that C itself does not contribute to the source of the fluctuations (it gener-
ates no noise) but is inserted into the circuit to impose a finite bandwidth over which we
will calculate the noise voltage. The reason is that all practical electric circuits have
some kind of bandwidth, and the noise voltage we will derive depends on this band-
width. Even if we remove the capacitor, there will still be stray capacitances; and if we
short the conductor, the shorting wires will have some inductance that will also impose
a bandwidth. As we mentioned previously, thermal fluctuations in the conductor give
rise to voltage fluctuations across R. There is only so much average energy available in
these thermal fluctuations, and this is the energy that is used to charge and discharge the
external capacitor C. The voltage across the capacitor depends on how much energy
that can be stored on it, which in turn depends on the thermal fluctuations in the con-
ductor. Charging a capacitor to a voltage v implies that an energy E = ;Cv? is stored on
the capacitor. The mean stored energy E in a thermal equilibrium system can only be
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Figure 1.26 Random motion of conduction Figure 1.27 Charging and discharging of

electrons in a conductor, resulting in electrical a capacitor by a conductor, due to the

noise. random thermal motions of the conduction
electrons.

1kT, according to the Maxwell energy equipartition theorem. Thus E(¢), the mean en-
ergy stored on C due to thermal fluctuations, is given by

E(t) = ;Cv(t)? = 3T
We see that the mean square voltage across the capacitor is given by

()? ul [1.30]
v = — .
C

Interestingly, the rms noise voltage across an RC network seems to be independent
of the resistance. However, the origin of the noise voltage arises from the electron fluc-
tuations in the conductor and we must somehow reexpress Equation 1.30 to reflect this
fact; that is, we must relate the electrical fluctuations to R.

The voltage fluctuations across the network will have many sinusoidal components,
but onlv those helow the cutoff freauencv of the RC network will contribute to the mean

43



Root mean
square noise
voltage
across a
resistance

CHAPTER 1 ¢ ELEMENTARY MATERIALS SCIENCE CONCEPTS

square voltage (that is, we effectively have a low-pass filter). If B is the bandwidth of the
RC network,? then B = 1 /(27 RC) and we can eliminate C in Equation 1.30 to obtain

v(t)? = 2nkTRB

This is the key equation for calculating the mean square noise voltage from a re-
sistor over a bandwidth B. A more rigorous derivation makes the numerical factor 4
rather than 2. For a network with a bandwidth B, the rms noise voltage is therefore

VUms = V4kTRB .31]

Equation 1.31 is known as the Johnson resistor noise equation, and it sets the
lower limit of the magnitude of small signals that can be amplified. Note that Equa-
tion 1.31 basically tells us the rms value of the voltage fluctuations within a given
bandwidth (B) and not the origin and spectrum (noise voltage vs. frequency) of the
noise. The origin of noise is attributed to the random motions of electrons in the
conductor (resistor), and Equation 1.31 is the fundamental description of electrical
fluctuations; that is, the fluctuations in the conductor’s instantaneous local electron
concentration that charges and discharges the capacitor. To determine the rms noise
voltage across a network with an impedance Z (jw), all we have to do is find the real
part of Z, which represents the resistive part, and use this for R in Equation 1.31. |

NOISE IN AN RLC CIRCUIT Most radio receivers have a tuned parallel-resonant circuit, which
consists of an inductor L, capacitor C, and resistance R in parallel. Suppose L is 100 uH; C is
100 pF; and R, the equivalent resistance due to the input resistance of the amplifier and to the
loss in the coil (coil resistance plus ferrite losses), is about 200 k2. What is the minimum rms
radio signal that can be detected?

SOLUTION

Consider the bandwidth of this tuned RLC circuit, which can be found in any electrical engi-
neering textbook:

B=-fg
Q

where f, = 1/[27+/LC] is the resonant frequency and Q = 27 f,CR is the quality factor. Sub-
stituting for L, C, and R, we get, f, = 107 /27 = 1.6 x 10® Hz and Q = 200, which gives
B = 107 /[27(200)] Hz, or 8 kHz. The rms noise voltage is

Urms = [4kTRB]'/? = [4(1.38 x 1072 J K~!)(300 K)(200 x 10* Q)(8 x 10* Hz)]'/?
=51x10°V  or S51uV

This rms voltage is within a bandwidth of 8 kHz centered at 1.6 MHz. This last informa-
tion is totally absent in Equation 1.31. If we attempt to use

kT 1/2
Urms = F

| 8 A low-pass filter allows all signal frequencies up to the cutoff frequency B to pass. B is 1/(27RC).
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we get

[(1.38 x 1072 J K1) (300 K)
Umms =

1/2
— 6.4V
100 x 10-2 F ] H

However, Equation 1.30 was derived using the RC circuit in Figure 1.27, whereas we now
have an LCR circuit. The correct approach uses Equation 1.31, which is generally valid, and the
appropriate bandwidth B.
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17 THERMALLY ACTIVATED PROCESSES

1.7.1 ARRHENIUS RATE EQUATION

Many physical and chemical processes strongly depend on temperature and exhibit what
is called an Arrhenius type behavior, in which the rate of change is proportional to
exp(—E4/kT), where E 4 is a characteristic energy parameter applicable to the particular
process. For example, when we store food in the refrigerator, we are effectively using the
Arrhenius rate equation: cooling the food diminishes the rate of decay. Processes that ex-
hibit an Arrhenius type temperature dependence are referred to as thermally activated.

For an intuitive understanding of a thermally activated process, consider a vertical fil-
ing cabinet that stands in equilibrium, with its center of mass at A, as sketched in Figure
1.28. Tilting the cabinet left or right increases the potential energy PE and requires exter-
nal work. If we could supply this energy, we could move the cabinet over its edge and lay
it flat, where its PE would be lower than at A. Clearly, since the PE at B is lower, this is a
more stable position than A. Further, in going from A to B, we had to overcome a poten-
tial energy barrier of amount E 4, which corresponds to the cabinet standing on its edge
with the center of mass at the highest point at A*. To topple the cabinet, we must first pro-
vide energy® equal to E 4 to take the center of mass to A*, from which point the cabinet,
with the slightest encouragement, will fall spontaneously to B to attain the lowest PE. At
the end of the whole tilting process, the internal energy change for the cabinet, AU, is due
to the change in the PE (=mgh) from A to B, which is negative; B has lower PE than A.

Suppose, for example, a person with an average energy less than E 4 tries to topple
the cabinet. Like everyone else, that person experiences energy fluctuations as a result
of interactions with the environment (e.g., what type of day the person had). During
one of those high-energy periods, he can topple the cabinet, even though most of the
time he cannot do so because his average energy is less then E 4. The rate at which the
cabinet is toppled depends on the number of times (frequency) the person tries and
the probability that he possesses energy greater than E 4.

As an example of a thermally activated process, consider the diffusion of impu-
rity atoms in a solid, one of which is depicted in Figure 1.29. In this example, the
impurity atom is at an interatomic void A in the crystal, called an interstitial site. For
the impurity atom to move from A to a neighboring void B, the atom must push the
host neighbors apart as it moves across. This requires energy in much the same way

? According fo the conservation of energy principle, the increase in the PE from A to A* must come from the
external work.
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Figure 1.28 Tilting a filing cabinet from ux = PE =mgh

state A to its edge in state A* requires an en- Unstable (activated state)
Metastable

ergy Ea.
I - ~

After reaching A*, the cabinet spontaneously
drops to the stable position B. The PE of state
B is lower than A, and therefore state B is
more stable than A.

/

T T T > X
System coordinate, X = Position of center of mass

Figure 1.29 Diffusion of an
interstitial impurity atom in a crystal
from one void to a neighboring
void.

The impurity atom at position A

must possess an energy Ea to push U=U
the host atoms away and move A 7B A B > X
into the neighboring void at B. Displacement

as does toppling the filing cabinet. There is a potential energy barrier E4 to the mo-
tion of this atom from A to B.

Both the host and the impurity atoms in the solid vibrate about their equilibrium po-
sitions, with a distribution of energies, and they also continually exchange energies,
which leads to energy fluctuations. In thermal equilibrium, at any instant, we can expect
the energy distribution of the atoms to obey the Boltzmann distribution law (see Equa-
tion 1.26). The average kinetic energy per atom is vibrational and is 3kT which w1ll not
allow the impurity simply to overcome the PE barrier E 4, because typlcally Es> kT

The rate of jump, called the diffusion, of the impurity from A to B depends on two
factors. The first is the number of times the atom tries to go over the potential barrier,
which is the vibrational frequency v,, in the AB direction. The second factor is the prob-
ability that the atom has sufficient energy to overcome the PE barrier. Only during those
times when the atom has an energy greater than the potential energy barrier
E, = Uy — Uy will it jump across from A to B. During this diffusion process, the
atom attains an activated state, labeled A* in Figure 1.29, with an energy E 4 above
U, so the crystal internal energy is higher than U,. E, is called the activation energy.
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Suppose there are N impurity atoms. At any instant, according to the Boltzmann
distribution, n g d E of these will have kinetic energies in the range E to (E + dE), so
the probability that an impurity atom has an energy E greater than E4 is

Number of impurities with E > E4

Probability (E > E,4) =
tlity ¢ 4) Total number of impurities

where A is a dimensionless constant that has only a weak temperature dependence.
The rate of jumps, jumps per seconds, or simply the frequency of jumps # from void
to void is

Rat
U = (Frequency of attempt along AB)(Probabilityof E > E,) th‘;:n{ erl;
E .
kT process

Equation 1.32 describes the rate of a thermally activated process, for which in-
creasing the temperature causes more atoms to be energetic and hence results in more
jumps over the potential barrier. Equation 1.32 is the well-known Arrhenius rate
equation and is generally valid for a vast number of transformations, both chemical
and physical.

1.7.2 AtoMiC DIFFUSION AND THE DIFFUSION COEFFICIENT

Consider the motion of the impurity atom in Figure 1.29. For simplicity, assume a two-
dimensional crystal in the plane of the paper, as in Figure 1.30. The impurity atom has
four neighboring voids into which it can jump. If 6 is the angle with respect to the
x axis, then these voids are at directions 8 = 0°, 90°, 180°, and 270°; as depicted in
Figure 1.30. Each jump is in a random direction along one of these four angles. As the
impurity atom jumps from void to void, it leaves its original location at O, and after N
jumps, after time ¢, it has been displaced from O to O'.

Let a be the closest void-to-void separation. Each jump results in a displacement
along x which is equal to a cos 8, with 8 = 0°, 90°, 180°, or 270°. Thus, each jump

After N jumps

Figure 1.30 An impurity atom has four site choices for diffusion to a neighboring interstitial vacancy.
After N jumps, the impurity atom would have been displaced from the original position at O.
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results in a displacement along x which can be a, 0, —a, or 0, corresponding to the four
possibilities. After N jumps, the mean displacement along x will be close to zero, just
as the mean voltage of the ac voltage from a power outlet is zero, even though it has an
rms value of 120 V. We therefore consider the square of the displacements. The total
square displacement, denoted X2, is

X% = a%cos?6; + a’cos®f, + -+ - + azcos20

Clearly, 6 = 90° and 270° give cos?6 = 0. Of all N jumps, N are § =0 and
180°, each of which gives cos?8 = 1. Thus,

1
X% = 5azN

There will be a similar expression for Y2, which means that after N jumps, the
total square distance L? from O to O’ in Figure 1.30 is

L*=X*+Y*=a’N
The rate of jumping (frequency of jumps) is given by Equation 1.32

E4
¥ = v,A exp T

so the time per jump is 1/¢. Time ¢ for N jumps is N/¢. Thus, N = ¢t and
L?> = a®9t = 2Dt [1.33]

where, by definition, D = %azﬂ, which is a constant that depends on the diffusion
process, as well as the temperature, by virtue of ©#. This constant is generally called the
diffusion coefficient. Substituting for 1%, we find

E

1 v
D = —-a’v,A exp(— —A>
2 kT

or

kT

where D, is a constant. The root square displacement L in time ¢, from Equation 1.33,
is given by L = [2Dt]'/2. Since L? is evaluated from X? and Y2, L is known as the
root mean square (rms) displacement.

The preceding specific example considered the diffusion of an impurity in a void
between atoms in a crystal; this is a simple way to visualize the diffusion process. An
impurity, indeed any atom, at a regular atomic site in the crystal can also diffuse around
by various other mechanisms. For example, such an impurity can simultaneously ex-
change places with a neighbor. But, more significantly, if a neighboring atomic site has
a vacancy that has been left by a missing host atom, then the impurity can simply jump
into this vacancy. (Vacancies in crystals are explained in detail in Section 1.9.1; for the
present, they simply correspond to missing atoms in the crystal.) The activation energy
E 4 in Equation 1.34 is a measure of the difficulty of the diffusion process. It may be as
simple as the energy (or work) required for an impurity atom to deform (or strain) the
crystal around it as it jumps from one interstitial site to a neighboring interstitial site, as
in Figure 1.29; or it may be more complicated, for example, involving vacancy creation.

E
D =D, exp(—— —A) [1.34]
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Various Si semiconductor devices are fabricated by doping a single Si crystal with
impurities (dopants) at high temperatures. For example, doping the Si crystal with
phosphorus (P) gives the crystal a higher electrical conductivity. The P atoms substi-
tute directly for Si atoms in the crystal. These dopants migrate from high to low dopant
concentration regions in the crystal by diffusion, which occurs efficiently only at suf-
ficiently high temperatures.

49

DIFFUSION OF DOPANTS IN SILICON The diffusion coefficient of P atoms in the Si crystal
follows Equation 1.34 with D, = 10.5 cm? s~! and E, = 3.69 eV. What is the diffusion coef-
ficient at a temperature of 1100 °C at which dopants such as P are diffused into Si to fabricate
various devices? What is the rms distance diffused by P atoms in 5 minutes? Estimate, as an
order of magnitude, how many jumps the P atom makes in 1 second if you take the jump dis-
tance to be roughly the mean interatomic separation, ~0.27 nm.

SOLUTION
From Equation 1.34,

D=D Ea) _ 251
= D, exp T T = (10.5cm“s™ ") exp| —

(3.69¢eV)(1.602 x 1097 eV~ ]
(1.381 x 10-BJK~1)(1100 + 273 K)

=3.0x 107 Pcm?s™!
The rms distance L diffused in a time t = 5min = 5 x 60 seconds is
L=+2Df=[23.0x 10"Bcm?s 1)(5x 605)]/2 =13 x 10"5cm or 13um

Equation 1.33 was derived for a two-dimensional crystal as in Figure 1.30, and for an impurity
diffusion. Nonetheless, we can still use it to estimate how many jumps a P atom makes in
1 second. From Equation 1.33, 9 =~ 2D/a? ~ 2(3.0 x 107"m?s7!)/(0.27 x 10~ m)? = 823
jumps per second. It takes roughly 1 ms to make one jump. It is left as an exercise to show that
at room temperature it will take a P atom 10 years to make a jump! (Scientists and engineers
know how to use thermally activated processes.)

EXAMPLE 1.12

1.8 THE CRYSTALLINE STATE

1.8.1 TYPES OF CRYSTALS

A crystalline solid is a solid in which the atoms bond with each other in a regular pat-
tern to form a periodic collection (or array) of atoms, as shown for the copper crystal
in Figure 1.31. The most important property of a crystal is periodicity, which leads to
what is termed long-range order. In a crystal, the local bonding geometry is repeated
many times at regular intervals, to produce a periodic array of atoms that constitutes
the crystal structure. The location of each atom is well known by virtue of periodicity.
There is therefore a long-range order, since we can always predict the atomic arrange-
ment anywhere in the crystal. Nearly all metals, many ceramics and semiconductors,
and various polymers are crystalline solids in the sense that the atoms or molecules are
positioned on a periodic array of points in space.
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Figure 1.31

CHAPTER 1 ¢ ELEMENTARY MATERIALS SCIENCE CONCEPTS

FCC unit cell

(a) (b) (c)

(a) The crystal structure of copper which is facecentered cubic (FCC). The atoms are positioned at well-defined sites
arranged periodically, and there is a long-range order in the crystal.

(b) An FCC unit cell with close-packed spheres.

(c) Reduced-sphere representation of the FCC unit cell.
Examples: Ag, Al, Au, Ca, Cu, y-Fe (>912 °C), Ni, Pd, Pt, Rh.

All crystals can be described in terms of a lattice and a basis.!® A lattice is an infi-
nite periodic array of geometric points in space, without any atoms. When we place an
identical group of atoms (or molecules), called a basis, at each lattice point, we obtain
the actual crystal structure. The crystal is thus a lattice plus a basis at each lattice
point. In the copper crystal in Figure 1.31a, each lattice point has one Cu atom and the
basis is a single Cu atom. As apparent from Figure 1.31a, the lattice of the copper crys-
tal has cubic symmetry and is one of many possible lattices.

Since the crystal is essentially a periodic repetition of a small volume (or cell) of
atoms in three dimensions, it is useful to identify the repeating unit so that the crystal
properties can be described through this unit. The unit cell is the most convenient
small cell in the crystal structure that carries the properties of the crystal. The repeti-
tion of the unit cell in three dimensions generates the whole crystal structure, as is ap-
parent in Figure 1.31a for the copper crystal.

The unit cell of the copper crystal is cubic with Cu atoms at its corners and one Cu
atom at the center of each face, as indicated in Figure 1.31b. The unit cell of Cu is thus
said to have a face-centered cubic (FCC) structure. The Cu atoms are shared with
neighboring unit cells. Effectively, then, only one-eighth of a corner atom is in the unit
cell and one-half of the face-centered atom belongs to the unit cell, as shown in Fig-
ure 1.31b. This means there are effectively four atoms in the unit cell. The length of the
cubic unit cell is termed the lattice parameter a of the crystal structure. For Cu, for
example, a is 0.362 nm, whereas the radius R of the Cu atom in the crystal is 0.128 nm.

19 Lattice is a purely imaginary geometric concept whose only requirement is that the infinite array of points has
periodicity. In many informal discussions, the term lattice or crystal lattice is used to mean the crystal structure itself.
These concepts are further developed in Section 1.13 under Additional Topics.
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O Figure 1.32 Body<entered cubic (BCC) crystal
) structure.
, (@) A BCC unit cell with close-packed hard spheres
r representing the Fe atoms.
| / (b} A reduced-sphere unit cell.
Layer B
Layer A Layer A
(a) - (b) (c) (d)

Figure 1.33 The hexagonal close-packed (HCP) crystal structure.

(a) The hexagonal close-packed (HCP) structure. A collection of many Zn atoms. Color difference distinguishes layers
(stacks).

(b) The stacking sequence of closely packed layers is ABAB.
(c) A unit cell with reduced spheres.
(d) The smallest unit cell with reduced spheres.

Assuming the Cu atoms are spheres that touch each other, we can geometrically relate
a and R. For clarity, it is often more convenient to draw the unit cell with the spheres
reduced, as in Figure 1.31c.

The FCC crystal structure of Cu is known as a close-packed crystal structure
because the Cu atoms are packed as closely as possible, as is apparent in Figure 1.31a
and b. The volume of the FCC unit cell is 74 percent full of atoms, which is the maxi-
mum packing possible with identical spheres. By comparison, iron has a body-
centered cubic (BCC) crystal structure and its unit cell is shown in Figure 1.32. The
BCC unit cell has Fe atoms at its corners and one Fe atom at the center of the cell. The
volume of the BCC unit cell is 68 percent full of atoms, which is lower than the max-
imum possible packing.

The FCC crystal structure is only one way to pack the atoms as closely as possible.
For example, in zinc, the atoms are arranged as closely as possible in a hexagonal sym-
metry, to form the hexagonal close-packed (HCP) structure shown in Figure 1.33a.
This structure corresponds to packing spheres as closely as possible first as one layer A,
as shown in Figure 1.33b. You can visualize this by arranging six pennies as closely as
possible on a table top. On top of layer A we can place an identical layer B, with the
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/
S
a
Zn
a C a

Figure 1.34 The diamond unit cell Figure 1.35 The zinc blende (ZnS)
which is cubic. The cell has eight cubic crystal structure.
atoms. Many important compound crystals have
Gray Sn {a-Sn) and the elemental the zinc blende structure. Examples:
semiconductors Ge and Si have this AlAs, GaAs, GaP, GaSb, InAs, InP,
crystal structure. InSb, ZnS, ZnTe.

spheres taking up the voids on layer A, as depicted in Figure 1.33b. The third layer can
be placed on top of B and lined up with layer A. The stacking sequence is therefore
ABAB. . .. A unit cell for the HCP structure is shown in Figure 1.33c, which shows
that this is not a cubic structure. The unit cell shown, although convenient, is not the
smallest unit cell. The smallest unit cell for the HCP structure is shown in Figure 1.33d
and is called the hexagonal unit cell. The repetition of this unit cell will generate the
whole HCP structure. The atomic packing density in the HCP crystal structure is 74 per-
cent, which is the same as that in the FCC structure.

Covalently bonded solids, such as silicon and germanium, have a diamond crystal
structure brought about by the directional nature of the covalent bond, as shown in
Figure 1.34 (see also Figure 1.6). The rigid local bonding geometry of four Si—Si
bonds in the tetrahedral configuration forces the atoms to form what is called the
diamond cubic crystal structure. The unit cell in this case can be identified with the
cubic structure. Although there are atoms at each corner and at the center of each face,
indicating an FCC-like structure, there are four atoms within the cell as well. Thus,
there are eight atoms in the unit cell. The diamond unit cell can actually be described
in terms of an FCC lattice (a geometric arrangement of points) with each lattice point
having a basis of two Si atoms. If we place the two Si atoms at each site appropriately,
for example, one right at the lattice point, and the other displaced from it by a quarter
lattice distance a /4 along the cube edges, we can easily generate the diamond unit cell.
In the copper crystal, each FCC lattice point has one Cu atom, whereas in the Si crys-
tal each lattice point has two Si atoms; thus there are 4 x 2 = 8 atoms in the diamond
unit cell.

In the GaAs crystal, as in the silicon crystal, each atom forms four directional
bonds with its neighbors. The unit cell looks like a diamond cubic, as indicated in
Figure 1.35 but with the Ga and As atoms alternating positions. This unit cell is termed
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Ratio of radii = 1 Ratio of radii = 0.75

Nearest neighbors =6 Nearest neighbors =4 A two-dimensional crystal of
pennies and quarters

Figure 1.36 Packing of coins on a table top to build a two-dimensional crystal.

the zinc blende structure after ZnS, which has this type of unit cell. Many important
compound semiconductors have this crystal structure, GaAs being the most commonly
known. The zinc blende unit cell can also be described in terms of a fundamental FCC
lattice and a basis that has two atoms, Zn and S (or Ga and As). For example, we can
place one Zn at each lattice point and one S atom displaced from the Zn by a/4 along
the cube edges. '

In ionic solids, the cations (e.g., Na*) and the anions (Cl1™) attract each other
nondirectionally. The crystal structure depends on how closely the opposite ions can be
brought together and how the same ions can best avoid each other while maintaining
long-range order, or maintaining symmetry. These depend on the relative charge and
relative size per ion.

To demonstrate the importance of the size effect in two dimensions, consider iden-
tical coins, say pennies (1-cent coins). At most, we can make six pennies touch one
penny, as shown in Figure 1.36. On the other hand, if we use quarters!! (25-cent coins)
to touch one penny, at most only five quarters can do so. However, this arrangement
cannot be extended to the construction of a two-dimensional crystal with periodicity.
To fulfill the long-range symmetry requirement for crystals, we can only use four quar-
ters to touch the penny and thereby build a two-dimensional “penny—quarter” crystal,
which is shown in the figure. In the two-dimensional crystal, a penny has four quarters
as nearest neighbors; similarly, a quarter has four pennies as nearest neighbors. A con-
venient unit cell is a square cell with one-quarter of a penny at each corner and a full
penny at the center (as shown in the figure).

The three-dimensional equivalent of the unit cell of the penny—quarter crystal is the
NaCl unit cell shown in Figure 1.37. The Na* ion is about half the size of the C1~ ion,
which permits six nearest neighbors while maintaining long-range order. The repetition
of this unit cell in three dimensions generates the whole NaCl crystal, which was de-
picted in Figure 1.9b.

A similar unit cell with Nat and Cl~ interchanged is also possible and equally
convenient. We can therefore describe the whole crystal with two interpenetrating FCC

1 Although many are familiar with the United States coinage, any two coins with a size ratio of about 0.75 would
work out the same.
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Figure 1.37 A possible reduced-
sphere unit cell for the NaCl (rock salf]
crystal.

An alternative unit cell may have Na*
and CI" interchanged. Examples:
AgCl, CaO, CsF, LiF, LiCl, NaF, NaCl,
KF, KCl, MgO.

Figure 1.38 A possible reduced-sphere
unit cell for the CsCl crystal.

An alternative unit cell may have Cs* and

Cl" interchanged. Examples: CsCl, CsBr,
Csl, TICI, TIBr, TII.

unit cells, each having oppositelyl charged ions at the corners and face centers. Many
ionic solids have the rock salt (NaCl) crystal structure.

When the cation and anions have equal charges and are about the same size, as
in the CsCl crystal, the unit cell is called the CsCl structure, which is shown in
Figure 1.38. Each cation is surrounded by eight anions (and vice versa), which are at

Table 1.3 Properties of some important crystal structures

aand R Number of Atomic
Crystal (R is the Radius Coordination  Atoms per Packing
Structure of the Atom) Number (CN) Unit Cell Factor Examples
Simple cubic a=2R 6 1 0.52 No metals (Except Po)
BCC a= % 8 2 0.68 Many metals: a—Fe, Cr, Mo, W
FCC a= 47% 12 4 0.74 Many metals: Ag, Au, Cu, Pt
HCP a=2R 12 2 0.74 Many metals: Co, Mg, Ti, Zn
¢ = 1.633a
Diamond a= % 4 8 0.34 Covalent solids:
Diamond, Ge, Si, «-Sn
Zinc blende 4 8 0.34 Many covalent and ionic solids.
Many compound semiconductors.
ZnS, GaAs, GaSb, InAs, InSb
NaCl 6 4 cations 0.67 Tonic solids such as NaCl, AgCl,
LiF, MgQO, CaO
4 anions (NaCl) Tonic packing factor depends on
relative sizes of ions.
CsCl 8 1 cation Ionic solids such as CsCl, CsBr, Csl

1 anion
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the corners of a cube. This is not a true BCC unit cell because the atoms at various
BCC lattice points are different. (As discussed in Section 1.13, CsCl has a simple cubic
lattice with a basis that has one Cl~ ion and one Na™ ion.)

Table 1.3 summarizes some of the important properties of the main crystal struc-

tures considered in this section.

THE COPPER (FCC) CRYSTAL Consider the FCC unit cell of the copper crystal shown in
Figure 1.39.

a.

How many atoms are there per unit cell?
If R is the radius of the Cu atom, show that the lattice parameter a is given by a = R2+/2.
Calculate the atomic packing factor (APF) defined by

Volume of atoms in unit cell
APF =

Volume of unit cell

Calculate the atomic concentration (number of atoms per unit volume) in Cu and the den-
sity of the crystal given that the atomic’mass of Cu is 63.55 g mol~! and the radius of the
Cu atom is 0.128 nm.

SOLUTION

a.

There are four atoms per unit cell. The Cu atom at each corner is shared with eight other
adjoining unit cells. Each Cu atom at the face center is shared with the neighboring unit
cell. Thus, the number of atoms in the unit cell = 8 corners (% atom) + 6 faces (% atoms) =
4 atoms.

Consider the unit cell shown in Figure 1.39 and one of the cubic faces. The face is a square
of side a and the diagonal is v/a2 + a2 or a~/2. The diagonal has one atom at the center of
diameter 2R, which touches two atoms tered at the corners. The diagonal, going from
corner to corner, is therefore R + 2R +e;n.7'hus, 4R =av2 and a = 4R/«/§g= R2V2.
Therefore, a = 0.3620 nm.

APF — (Number of atoms in unit cell) x (Volume of atom)

Volume of unit cell

4 4?2
4x-3—7rR3 ?JTR:,’ ~ 425

2 (R2V2)?  32V2)7

Figure 1.39 The FCC unit cell.

- %th of an atom The atomic radius is R and the lattice
parameter is a.

—Half of an atom

«——8 —>
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d. In general, if there are x atoms in the unit cell, the atomic concentration is

Number of atoms in unit cell x
n = — ]
a Volume of unit cell a3

Thus, for Cu
4

= = 8.43 x 10? ¢cm™3
(0.3620 x 10-7 cm)? x weem

N

There are x atoms in the unit cell, and each atom has a mass of M, /N, grams. The density

pis
X (Mat)
_ Mass of all atoms in unit cell _ Nga
- Volume of unit cell - a’
L M, 8.43 x 10% cm~?)(63.55 g mol !
that is, p = mTH ( X g )=8.9gcm“3

Ny4 6.022 x 102 mol !

The expression p = (n,My)/ N, is independent of the crystal structure.

1.8.2 CRYSTAL DIRECTIONS AND PLANES

There can be a number of possibilities for choosing a unit cell for a given crystal struc-
ture, as is apparent in Figure 1.33c and d for the HCP crystal. As a convention, we gen-
erally represent the geometry of the unit cell as a parallelepiped with sides a, b,and ¢
and angles «, B, and y, as depicted in Figure 1.40a. The sides a, b, and ¢ and angles
a, B, and y are referred to as the lattice parameters. To establish a reference frame
and to apply three-dimensional geometry, we insert an xyz coordinate system. The
x,y, and z axes follow the edges of the parallelepiped and the origin is at the lower-
left rear corner of the cell. The unit cell extends along the x axis from O to a, along y
from O to b, and along z from O to c.

For Cu and Fe, the unit-cell geometry has a = b =c,a = 8 = y = 90°, and
cubic symmetry. For Zn, the unit cell has hexagonal geometry, with a = b # c,
a = B =90°, and y = 120°, as shown in Figure 1.33d.

In explaining crystal properties, we must frequently specify a direction in a crys-
tal, or a particular plane of atoms. Many properties, for example, the elastic modulus,
electrical resistivity, magnetic susceptibility, etc., are directional within the crystal. We
use the convention described here for labeling crystal directions based on three-
dimensional geometry.

All parallel vectors have the same indices. Therefore, the direction to be labeled
can be moved to pass through the origin of the unit cell. As an example, Figure 1.40b
shows a direction whose indices are to be determined. A point P on the vector can be
expressed by the coordinates x,, y,, z,, Where x,, y,, and z, are projections from point
P onto the x, y, and z axes, respectively, as shown in Figure 1.40b. It is generally con-
venient to place P where the line cuts a surface (though this is not necessary). We can
express these coordinates in terms of the lattice parameters a, b, and c, respectively.
We then have three coordinates, say x,, y;, and z;, for point P in terms of a, b, and c.
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b4
f Unit cell geometry
c

”ﬂ& / b,
Y a/

a b—-——~—+‘/

Unit cell

(a) A parallelepiped is chosen to describe (b) Identification of a direction in a crystal.
the geometry of a unit cell. We line the

X, y, and z axes with the edges of the

parallelepiped taking the lower-left rear

corner as the origin.

[001] [111]

[010]

[100] | 110] [1i0)  *
i g .

[111]

(c) Directions in the cubic crystal system.

[111]

(i1 1T (111] Family of <1115 directions

Figure 1.40

For example, if
1 1

X ’ ’z arc —a, b, —C
[ yO o 2 2
then P is at
. 1 i 1
X1, » < Le., e Ly
1, Y1, 21 > >

We then multiply or divide these numbers until we have the smallest integers (which
may include 0). If we call these integers , v, and w, then the direction is written in square
brackets without commas as [uvw]. If any integer is a negative number, we use a bar on
top of that integer. For the particular direction in Figure 1.40b, we therefore have [121].
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Some of the important directions in a cubic lattice are shown in Figure 1. 40c. For
example, the x, y, and z directions in the cube are [100], [010], and [001], as shown.
Reversing a direction simply changes the sign of each index. The negative x, y, and z
directions are [100], [010], and [001], respectively.

Certain directions in the crystal are equivalent because the differences between
them are based only on our arbitrary decision for labeling x, y, and z directions. For
example, [100] and [010] are different simply because of the way in which we labeled
the x and y axes. Indeed, directional properties of a material (e.g., elastic modulus,
and dielectric susceptibility) along the edge of the cube [100] are invariably the same
as along the other edges, for example, [010] and [001]. All of these directions along
the edges of the cube constitute a family of directions, which is any set of directions
considered to be equivalent. We label a family of directions, for example, [100], [010],
[001], ..., by using a common notation, triangular brackets. Thus, (100) represents
the family of six directions, [100], [010], [001], [100], [010], and [001] in a cubic crys;//
tal. Similarly, the family of diagonal directions in the cube, shown in Figure 1.40c, is
denoted (111).

We also frequently need to describe a particular plane in a crystal. Figure 1.41
shows a general unit cell with a plane to be labeled. We use the following convention,
called the Miller indices of a plane, for this purpose.

We take the intercepts x,, y,, and z, of the plane on the x, y, and z axes, respec-
tively. If the plane passes through the origin, we can use another convenient parallel
plane, or simply shift the origin to another point. All planes that have been shifted by
a lattice parameter have identical Miller indices.

We express the intercepts x,, ¥,, and z, in terms of the lattice parameters a, b, and
c, respectively, to obtain x;, y;, and z,. We then invert these numbers. Taking the rec-
iprocals, we obtain

1 1 1

x1'y1 21
We then clear all fractions, without reducing to lowest integers, to obtain a set of

integers, say &, k, and £. We then put these integers into parentheses, without commas,
that is, (hk¢). For the plane in Figure 1.41a, we have

Intercepts x,, y,, and z, are 3a, 1b, and oo c.

Intercepts x1, y1, and z;, in terms of a, b, and c, are 1, 1, and .

Reciprocals 1/x1, 1/y;, and 1/z; are 1/3,1/1,1/00 = 2,1, 0.

This set of numbers does not have fractions, so it is not necessary to clear frac-
tions. Hence, the Miller indices (hk£) are (210).

If there is a negative integer due to a negative intercept, a bar is placed across the
top of the integer. Also, if parallel planes differ only by a shift that involves a multiple
number of lattice parameters, then these planes may be assigned the same Miller
indices. For example, the plane (010) is the xz plane that cuts the y axis at —b. If we
shift the plane along y by two lattice parameters (2b), it will cut the y axis at b and
the Miller indices will become (010). In terms of the unit cell, the (010) plane is the
same as the (010) plane, as shown in Figure 1.41b. Note that not all parallel planes are
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{b) Various planes in the cubic lattice.

Figure 1.41 Labeling of crystal planes and typical examples in the cubic lattice.

identical. Planes can have the same Miller indices only if they are separated by a mul-
tiple of the lattice parameter. For example, the (010) plane is not identical to the (020)
plane, even though they are geometrically parallel. In terms of the unit cell, plane (010)
is a face of the unit cell cutting the y axis at b, whereas (020) is a plane that is halfway
inside the unit cell, cutting the y axis at %b. The planes contain different numbers of
atoms. The (020) plane cannot be shifted by the lattice parameter b to coincide with
plane (010).

It is apparent from Figure 1.41b that in the case of the cubic crystal, the [hk£]
direction is always perpendicular to the (hk£) plane.

Certain planes in the crystal belong to a family of planes because their indices dif-
fer only as a consequence of the arbitrary choice of axis labels. For example, the in-
dices of the (100) plane become (010) if we switch the x and y axes. All the (100),
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(010), and (001) planes, and hence the parallel (100), (010), (001) planes, form a fam-
ily of planes, conveniently denoted by curly brackets as {100}.

Frequently we need to know the number of atoms per unit area on a given plane
(hk). For example, if the surface concentration of atoms is high on one plane, then
that plane may encourage oxide growth more rapidly than another plane where there
are less atoms per unit area. Planar concentration of atoms is the number of atoms
per unit area, that is, the surface concentration of atoms, on a given plane in the crys-
tal. Among the {100}, {110}, and {111}, planes in FCC crystals, the most densely
packed planes, those with the highest planar concentration, are {111} planes and the
least densely packed are {110}.

FCC unit cell /L (012)

MILLER INDICES AND PLANAR CONCENTRATION Consider the plane shown in Figure 1.42a,
which passes through one side of a face and the center of an opposite face in the FCC lattice. The
plane passes through the origin at the lower-left rear corner. We therefore shift the origin to say
point O’ at the lower-right rear corner of the unit cell. In terms of a, the plane cuts the x, y, and
z axes at oo, —1, %,_ respectively. We take the reciprocals to obtain, 0, —1, 2. Therefore, the
Miller indices are (012).

To calculate the planar concentration n . On a given (hk€) plane, we consider a bound
area A of the (hk{) plane within the unit cell as in Figure 1.42b. Only atoms whose centers lie
on A are involved in n . For each atom, we then evaluate what portion of the atomic cross
section (a circle in two dimensions) cut by the plane (hk¢£) is contained within A. Consider the
Cu FCC crystal with a = 0.3620 nm.

The (100) plane corresponds to a cube face and has an area A = a2. There is one full
atom at the center; that is, the (100) plane cuts through one full atom, one full circle in two
dimensions, at the face center as in Figure 1.42b. However, not all corner atoms are within A.
Only a quarter of a circle is within the bound area A in Figure 1.42b.

Number of atoms in A = (4 corners) x (4 atom) + 1 atom at face center = 2

Z

N (b) (100} plane (c) (110) plane

(a) (OT2) plane

Figure 1.42 The (012) plane and planar concentrations in an FCC crystal.
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Planar concentration n 100y of (100) is

i 43)+1 2 2 153 at )
=47 = 15. ms n
(100) a2 a? ~ (0.3620 x 10-° m)? aloms nm
Consider the (110) plane as in Figure 1.42c. The number of atoms in the area A =
(a)(a «/5) defined by two face diagonals and two cube sides is

2

(4 corners) x (% atom) + (2 face diagonals) x (3 atom at diagonal center) = 2
Planar concentration on (110) is

4(z)+2(3) 2
n = = = 10.8 atoms nm 2
WOT T @2 V2

Similar for the (111) plane, ny;;) is 17.0 atoms nm~2. Clearly the (111) planes are the most
and (110) planes are the least densely packed among the (100), (110), and (111) planes.
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1.8.3 ALLOTROPY AND CARBON

Certain substances can have more than one crystal structure, iron being one of the best-
known examples. This characteristic is termed polymorphism or allotropy. Below
912 °C, iron has the BCC structure and is called «-Fe. Between 912 °C and 1400 °C,
iron has the FCC structure and is called y -Fe. Above 1400 °C, iron again has the BCC
structure and is called §-Fe. Since iron has more than one crystal structure, it is called
polymorphic. Each iron crystal structure is an allotrope or a polymorph.

The allotropes of iron are all metals. Furthermore, one allotrope changes to another at
a well-defined temperature called a transition temperature, which in this case is 912 °C.

Many substances have allotropes that exhibit widely different properties. More-
over, for some polymorphic substances, the transformation from one allotrope to
another cannot be achieved by a change of temperature, but requires the application of
pressure, as in the transformation of graphite to diamond.

Carbon has three important crystalline allotropes: diamond, graphite, and the
newly discovered buckminsterfullerene. These crystal structures are shown in Fig-
ure 1.43a, b and c, respectively, and their properties are summarized in Table 1.4.
Graphite is the carbon form that is stable at room temperature. Diamond is the stable
form at very high pressures. Once formed, diamond continues to exist at atmospheric
pressures and below about 900 °C, because the transformation rate of diamond to
graphite is virtually zero under these conditions. Graphite and diamond have widely
differing properties, which lead to diverse applications. For example, graphite is an
electrical conductor, whereas diamond is an insulator. Diamond is the hardest sub-
stance known. On the other hand, the carbon layers in graphite can readily slide over
each other under shear stresses, because the layers are only held together by weak
secondary bonds (van der Waals bonds). This is the reason for graphite’s lubricating
properties.

Buckminsterfullerene is another polymorph of carbon. In the buckminsterfullerene
molecule (called the “buckyball”), 60 carbon atoms bond with each other to form a
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Covalently bonded layer

- Cubic crystal Layers bonded by van der
Waals bonding
Covalently -— Covalently bonded
bonded network layer
of atoms
C/ —— Hexagonal unit cell
(a) Diamond unit cell (b) Graphite

The FCC unit cell of the Buckminsterfullerene (C6O) molecule (the

Buckminsterfullerene crystal. Each “buckyball” molecule)
lattice point has a Cgo molecule

(c) Buckminsterfullerene

Figure 1.43 The three allotropes of carbon.

perfect soccer ball-type molecule. The Cgp molecule has 12 pentagons and 20 hexa-
gons joined together to form a spherical molecule, with each C atom at a corner, as
depicted in Figure 1.43c. The molecules are produced in the laboratory by a carbon arc
in a partial atmosphere of an inert gas (He); they are also found in the soot of partial
combustion. The crystal form of buckminsterfullerene has the FCC structure, with
each Cgy molecule occupying a lattice point and being held together by van der Waals
forces, as shown in Figure 1.43c. The Buckminsterfullerene crystal is a semiconductor,
and its compounds with alkali metals, such as K3Cgp, exhibit superconductivity at low
temperatures (below 18 K). Mechanically, it is a soft material.

Diamond, graphite, and the fullerene crystals are not the only crystalline
allotropes of carbon, and neither are they the only structural forms of carbon. For
example, lonsdaleite, which is another crystalline allotrope, is hexagonal diamond
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Table 1.4 Crystalline allotropes of carbon {p is the density and Y is the elastic modulus or Young's modulus)

Buckminsterfullerene
Graphite Diamond Crystal
Structure Covalent bonding within layers. Covalently bonded network. Covalently bonded Cgg
Van der Waals bonding Diamond crystal structure. spheroidal molecules held in
between layers. Hexagonal an FCC crystal structure by
unit cell. van der Waals bonding.
Electrical Good electrical conductor. Very good electrical Semiconductor. Compounds
and Thermal conductivity insulator. Excellent with alkali metals
thermal comparable to metals. thermal conductor, about (e.g., K3Cgp) exhibit
properties five times more than silver superconductivity.
or copper.
Mechanical Lubricating agent. Machinable. The bardest material. Mechanically soft.
properties Bulk graphite: Y = 827 GPa Y =~ 18 GPa
Y ~ 27 GPa p=325gcem™ p=165gcm™
p=225gcm™?
Comment Stable allotrope at atmospheric High-pressure allotrope. Laboratory synthesized.
pressure Occurs in the soot of partial
combustion.
Uses, Metallurgical crucibles, welding Cutting tool applications. Possible future semiconductor
potential electrodes, heating elements, Diamond anvils. Diamond or superconductivity

uses

electrical contacts, refractory
applications.

film coated drills, blades,
bearings, etc. Jewelry. Heat
conductor for ICs. Possible
thin-film semiconductor
devices, as the charge
carrier mobilities are large.

applications.

in which each C atom covalently bonds to four neighbors, as in diamond, but the
crystal structure has hexagonal symmetry. (It forms from graphite on meteors when
the meteors impact the Earth; currently it is only found in Arizona.) Amorphous
carbon has no crystal structure (no long-range order), so it is not a crystalline
allotrope, but many scientists define it as a form or phase of carbon, or as a struc-
tural “allotrope.”” The recently discovered carbon nanotubes are thin and long
carbon tubes, perhaps 10 to 100 microns long but only several nanometers in diam-
eter, hence the name nanotube. They are tubes made from rolling a graphite sheet
into a tube and then capping the ends with hemispherical buckyballs. The carbon
tube is really a single macromolecule rather than a crystal in its traditional sense!?;
it is a structural form of carbon. Carbon nanotubes have many interesting and
remarkable properties and offer much potential for various applications in electron-
ics; the most topical currently being carbon nanotube field emission devices.
(Chapter 4 has an example.)

12t is possible to define a unit cell on the surface of a carbon nanotube and apply various crystalline concepts, as
some scientists have done. To date, however, there seems to be no single crystal of carbon nanotubes in the same
way that there is a fullerene crystal in which the Cso molecules are bonded to form an FCC structure.
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1.9 CRYSTALLINE DEFECTS AND THEIR
SIGNIFICANCE

By bringing all the atoms together to try to form a perfect crystal, we lower the total
potential energy of the atoms as much as possible for that particular structure. What
happens when the crystal is grown from a liquid or vapor; do you always get a perfect
crystal? What happens when the temperature is raised? What happens when impurities
are added to the solid?

There is no such thing as a perfect crystal. We must therefore understand the types
of defects that can exist in a given crystal structure. Quite often, key mechanical and
electrical properties are controlled by these defects.

1.9.1 POINT DEFECTS: VACANCIES AND IMPURITIES

Above the absolute zero temperature, all crystals have atomic vacancies or atoms
missing from lattice sites in the crystal structure. The vacancies exist as a requirement
of thermal equilibrium and are called thermodynamic defects. Vacancies introdufe
disorder into the crystal by upsetting the perfect periodicity of atomic arrangements.

We know from the kinetic molecular theory that all the atoms in a crystal vibrate
about their equilibrium positions with a distribution of energies, a distribution that closely
resembles the Boltzmann distribution. At some instant, there may be one atom with suffi-
cient energy to break its bonds and jump to an adjoining site on the surface, as depicted in
Figure 1.44. This leaves a vacancy behind, just below the surface. This vacancy can then
diffuse into the bulk of the crystal, because a neighboring atom can diffuse into it.

This latter process of vacancy creation has been shown to be a sequence of events
in Figure 1.44. Suppose that E, is the average energy required to create such a
vacancy. Then only a fraction, exp(—E,/kT), of all the atoms in the crystal can have

(a) Perfect crystal
without vacancies

iYoxele
000000
00000
00000
00000

(b) An energetic
atom at the surface
breaks bonds and
jumps on to a new
adjoining position on
the surface. This
leaves behind a
vacancy.
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O0O0O0O0
O00OO0O0O
O0O0O0O0

(c) An atom in the
bulk diffuses to fill
the vacancy thereby
displacing the
vacancy toward the

bulk.
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(d) Atomic diffusions
cause the vacancy to

diffuse into the bulk.

Figure 1.44 Generation of a vacancy by the diffusion of an atom to the surface and the subsequent
diffusion of the vacancy into the bulk.
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Figure 1.45 Point defects in the crystal structure.
The regions around the point defect become distorted; the lattice becomes strained.

sufficient energy to create vacancies. If the number of atoms per unit volume in the
crystal is N, then the vacancy concentration #, is given by’3

E,
n,=N exp(—ﬁ) [1.35]

At all temperatures above absolute zero, there will always be an equilibrium con-
centration of vacancies, as dictated by Equation 1.35. Although we considered only
one possible vacancy creation process in Figure 1.44 there are other processes that also
create vacancies. Furthermore, we have shown the vacancy to be the same size in the
lattice as the missing atom, which is not entirely true. The neighboring atoms around a
vacancy close in to take up some of the slack, as shown in Figure 1.45a. This means
that the crystal lattice around the vacancy is distorted from the perfect arrangement
over a few atomic dimensions. The vacancy volume is therefore smaller than the vol-
ume of the missing atom.

Vacancies are only one type of point defect in a crystal structure. Point defects
generally involve lattice changes or distortions of a few atomic distances, as depicted in
Figure 1.45. The crystal structure may contain impurities, either naturally or as a con-
sequence of intentional addition, as in the case of silicon crystals grown for microelec-
tronics. If the impurity atom substitutes directly for the host atom, the result is called a
substitutional impurity and the resulting crystal structure is that of a substitutional
solid solution, as shown in Figure 1.45b and c. When a Si crystal is “doped” with small
amounts of arsenic (As) atoms, the As atoms substitute directly for the Si atoms in the
Si crystal; that is, the arsenic atoms are substitutional impurities. The impurity atom
can also place itself in an interstitial site, that is, in a void between the host atoms, as

13 The proper derivation of the vacancy concentration involves considering thermodynamics and equilibrium
concepts. In the actual thermodynamic expression, the pre-exponential ferm in Equation 1.35 is not unity but a factor
that depends on the change in the entropy of the crystal upon vacancy creation. For nearly all practical purposes
Equation 1.35 is sufficient.

Equilibrium
concentration
of vacancies
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(a) Schottky and Frenkel defects in an ionic (b) Two possible imperfections caused by ionized

substitutional impurity atoms in an ionic crystal.

Figure 1.46 Point defects in ionic crystals.

carbon does in the BCC iron crystal. In that case, the impurity is called an interstitial
impurity, as shown in Figure 1.45d.

In general, the impurity atom will have both a different valency and a different
size. It will therefore distort the lattice around it. For example, if a substitutional im-
purity atom is larger than the host atom, the neighboring host atoms will be pushed
away, as in Figure 1.45b. The crystal region around an impurity is therefore dis-
torted from the perfect periodicity and the lattice is said to be strained around a
point defect. A smaller substitutional impurity atom will pull in the neighboring
atoms, as in Figure 1.45c. Typically, interstitial impurities tend to be small atoms
compared to the host atoms, a typical example being the small carbon atom in the
BCC iron crystal.

In an ionic crystal, such as NaCl, which consists of anions (C17) and cations
(Na™), one common type of defect is called a Schottky defect. This involves a miss-
ing cation—anion pair (which may have migrated to the surface), so the neutrality is
maintained, as indicated in Figure 1.46a. These Schottky defects are responsible for
the major optical and electrical properties of alkali halide crystals. Another type of de-
fect in the ionic crystal is the Frenkel defect, which occurs when a host ion is dis-
placed into an interstitial position, leaving a vacancy at its original site. The interstitial
ion and the vacancy pair constitute the Frenkel defect, as identified in Figure 1.46a.
For the AgCl crystal, which has predominantly Frenkel defects, an Ag" is jin an inter-
stitial position. The concentration of such Frenkel defects is given by Equation 1.35,
with an appropriate defect creation energy E gefe instead of E,.

Ionic crystals can also have substitutional and interstitial impurities that become
ionized in the lattice. Overall, the ionic crystal must be neutral. Suppose that an Mg>*+
ion substitutes for an Na* ion in the NaCl crystal, as depicted in Figure 1.46b. Since
the overall crystal must be neutral, either one Na* ion is missing somewhere in the
crystal, or an additional CI™ ion exists in the crystal. Similarly, when a doubly charged
negative ion, such as 0O2-, substitutes for Cl~, there must either be an additional cation
(usually in an interstitial site) or a missing C1~ somewhere in order to maintain charge
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neutrality in the crystal. The most likely type of defect depends on the composition of
the ionic solid and the relative sizes and charges of the ions.

67

VACANCY CONCENTRATION IN A METAL The energy of formation of a vacancy in the alu-
minum crystal is about 0.70 eV. Calculate the fractional concentration of vacancies in Al at
room temperature, 300 K, and very close to its melting temperature 660 °C. What is the vacancy
concentration at 660 °C given that the atomic concentration in Al is about 6.0 x 10?2 cm™3?

SOLUTION

Using Equation 1.35, the fractional concentration of vacancies are as follows:
At 300 °C,

n, ( E) { (0.70 eV)(1.6 x 10~%° Jev-‘:]
— =exp| —— ) = exp| —
N P\ kT (1.38 x 10~ JK~1)(300 K)
=17 x 10712
At 660 °C or 933 K,
n, ( E) [ (0.70 eV)(1.6 x 10712 J ev—l)]
— =exp| —— ] =exp|— |
N kT (1.38 x 10-2 JK~1)(933 K)
=17 x 1074

That is, almost 1 in 6000 atomic sites is a vacancy. The atomic concentration N in Al is about
6.0 x 1022 cm~3, which means that the vacancy concentration n, at 660 °C is

n, = (6.0 x 102 cm™3)(1.7 x 107%) = 1.0 x 10" cm™®

The mean vacancy separation (on the order of n"'/) at 660 °C is therefore roughly 5 nm. The
mean atomic separation in Al is ~0.3 nm (~ N~!/3), so the mean separation between vacancies
is only about 20 atomic separations! (A more accurate version of Equation 1.35, with an en-
tropy term, shows that the vacancy concentration is even higher than the estimate in this exam-
ple.) The increase in the linear thermal expansion coefficient of a metal with temperature near
its melting temperature, as shown for Mo in Figure 1.20, has been attributed to the generation
of vacancies in the crystal.

EXAMPLE 1.15

VACANCY CONCENTRATION IN A SEMICONDUCTOR The energy of vacancy formation in the
Ge crystal is about 2.2 eV. Calculate the fractional concentration of vacancies in Ge at 938 °C, just
below its melting temperature. What is the vacancy concentration given that the atomic mass My,
and density p of Ge are 72.64 g mol~! and 5.32 g cm~3, respectively? Neglect the change in the
density with temperature which is small compared with other approximations in Equation 1.35.

SOLUTION
Using Equation 1.34, the fractional concentration of vacancies at 938 °C or 1211 K is

ny ( ) [ (2.2eV)(1.6 x 1072 JeV™Yh
— =exp|——) =exp| - —
N kT (1.38 x 10-8 JK™)(1211 K)

which is orders of magnitude less than that for Al at its melting temperature in Example 1.15;
vacancies in covalent crystals cost much more energy than those in metals.

] =7.0x 1071
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The number of Ge atoms per unit volume is

N 5.32 g cm—3)(6.022 x 103 g mol ™!
N = /;WA = ( g 7;(64 = g ) =4.41 x 10%? cm™3
at . g mo

so that at 938 °C,

n, = (4.4 x 102 cm3)(7.0 x 10719 = 3.1 x 103 cm™3

Only 1 in 10° atoms is a vacancy.

1.9.2 LINE DEFECTS: EDGE AND SCREW DISLOCATIONS

A line defect is formed in a crystal when an atomic plane terminates within the crystal
instead of passing all the way to the end of the crystal, as depicted in Figure 1.47a. The
edge of this short plane of atoms is therefore like a line running inside the crystal. The
planes neighboring (i.e., above) this short plane are dislocated (displaced) with respect
to those below the line. We therefore call this type of defect an edge dislocation and
use an inverted T symbol. The vertical line corresponds to the half-plane of atoms in
the crystal, as illustrated in Figure 1.47a. It is clear that the atoms around the disloca-
tion line have been effectively displaced from their perfect-crystal equilibrium posi-
tions, which results in atoms being out of registry above and below the dislocation. The
atoms above the dislocation line are pushed together, whereas those below it are pulled
apart, so there are regions of compression and tension above and below the dislocation
line, respectively, as depicted by the shaded region around the dislocation line in Fig-
ure 1.47b. Therefore, around a dislocation line, we have a strain field due to the
stretching or compressing of bonds.

The energy required to create a dislocation is typically in the order of 100 eV per
nm of dislocation line. On the other hand, it takes only a few eV to form a point defect,

Compression

Tension

v

Edge dislocation line

(a) Dislocation is a line defect. The dislocation (b) Around the dislocation there is a strain field as
shown runs into the paper. the atomic bonds have been compressed above

and stretched below the dislocation line.

Figure 1.47 Dislocation in a crystal. This is a line defect, which is accompanied by lattice distortion and hence a
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(a) A screw dislocation in a crystal (b) The screw dislocation in (a) as viewed from above

Figure 1.48 A screw dislocation, which involves shearing one portion of a perfect crystal with respect to another, on one

side of a line (AB).

which is a few nanometers in dimension. In other words, forming a number of point
defects is energetically more favorable than forming a dislocation. Dislocations are not
equilibrium defects. They normally arise when the crystal is deformed by stress, or
when the crystal is actually being grown.

Another type of dislocation is the screw dislocation, which is essentially a shearing
of one portion of the crystal with respect to another, by one atomic distance, as illustrated
in Figure 1.48a. The displacement occurs on either side of the screw dislocation line.
The circular arrow around the line symbolizes the screw dislocation. As we move away
from the dislocation line, the atoms in the upper portion become more out of registry
with those below; at the edge of the crystal, this displacement is one atomic distance, as
illustrated in Figure 1.48b.

Both edge and screw dislocations are generally created by stresses resulting from
thermal and mechanical processing. A line defect is not necessarily either a pure edge
or a pure screw dislocation,; it can be a mixture, as depicted in Figure 1.49. Screw dis-
locations frequently occur during crystal growth, which involves atomic stacking on
the surface of a crystal. Such dislocations aid crystallization by providing an additional
“edge” to which the incoming atoms can attach, as illustrated in Figure 1.50. To
explain, if an atom arrives at the surface of a perfect crystal, it can only attach to one
atom in the plane below. However, if there is a screw dislocation, the incoming atom
can attach to an edge and thereby form more bonds; hence, it can lower its potential
energy more than anywhere else on the surface. With incoming atoms attaching to the
edges, the growth occurs spirally around the screw dislocation, and the final crystal
surface reflects this spiral growth geometry.

The phenomenon of plastic or permanent deformation of a metal depends
totally on the presence and motions of dislocations, as discussed in elementary books
on the mechanical properties of materials. In the case of electrical properties of metals,

/
/
/
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Figure 1.49 A mixed Figure 1.50 Screw dislocation aids Growth spiral on the surface of a

dislocation.

crystal growth because the newly arriving ~ Polypropylene crystal due to screw dislocation

atom can attach to two or three atoms aided crystal growth.

instead of one atom and thereby form (S:OUR&/E: Ph°'§ by Phi'ﬂp.Geil.' Courtesy of
more bonds. ase VVestern Reserve University.

we will see in Chapter 2 that dislocations increase the resistivity of materials, cause
significant leakage current in a pn junction, and give rise to unwanted noise in various
semiconductor devices. Fortunately, the occurrence of dislocations in semiconductor
crystals can be controlled and nearly eliminated. In a metal interconnection line on a
chip, there may be an average of 10%-10° dislocation lines per mm? of crystal, whereas
a silicon crystal wafer that is carefully grown may typically have only 1 dislocation
line per mm? of crystal.

1.9.3 PLANAR DEFECTS: GRAIN BOUNDARIES

Many materials are polycrystalline; that is, they are composed of many small crys-
tals oriented in different directions. In fact, the growth of a flawless single crystal
from what is called the melt (liquid) requires special skills, in addition to scientific
knowledge. When a liquid is cooled to below its freezing temperature, solidifica-
tion does not occur at every point; rather, it occurs at certain sites called nuclei,
which are small crystal-like structures containing perhaps 50 to 100 atoms. Figure
1.51a to c depicts a typical solidification process from the melt. The liquid atoms
adjacent to a nucleus diffuse into the nucleus, thereby causing it to grow in size to
become a small crystal, or a crystallite, called a grain. Since the nuclei are ran-
domly oriented when they are formed, the grains have random crystallographic
orientations during crystallite growth. As the liquid between the grains is con-
sumed, some grains meet and obstruct each other. At the end of solidification, there-
fore, the whole structure has grains with irregular shapes and orientations, as shown
in Figure 1.51c.

It is apparent from Figure 1.51c that in contrast to a single crystal, a polycrys-
talline material has grain boundaries where differently oriented crystals meet. As indi-
cated in Figure 1.52, the atoms at the grain boundaries obviously cannot follow their
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The photograph of the surface of a synthetic diamond
grown on the (111} surface of natural diamond from
sodium carbonate solvent at 5.5 GPa and 1600 °C.

SOURCE: Courtesy of Dr. Hisao Kanda, National
Institute for Materials Science, lbaraki, Japan.

Dislocations can be seen by examining a thin slice of the
sample under a transmission electron microscope (TEM).
They appear as dark lines and loops as shown here in a
Ni-Si alloy single crystal. The loop dislocations are
around Ni3Si particles inside the crystal. The sample had
been mechanically deformed, whicIZ generates
dislocations.

SOURCE: Courtesy of Professor John Humphreys,
UMIST, England. {J. Humphreys and V. Ramaswamy in
High Voltage Electron Microscopy, ed. P. R. Swann.
C. J. Humphreys and M. J. Goringe, New York:
Academic Press, 1974, p. 26.)

Left: A polycrystalline diamond film on the {100} surface of a single crystal silicon wafer. The film thickness is
6 microns and the SEM magnification is 6000.

Right: A 6-micron-thick CVD diamond film grown on a single crystal silicon wafer. SEM magpnification is 8000.
| SOURCE: Courtesy of Dr. Paul May, The School of Chemistry, University of Bristol, England.
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P}{tﬁ Crystallite
i
| Grain
Liquid Grain
% § boundary
(a) Nucleation (b) Growth (c) The solidified polycrystalline solid

Figure 1.51

Solidification of a polycrystalline solid from the melt. For simplicity, cubes represent atoms.

Foreign impurity

Self-interstitial-type atom

/—Void, vacancy

V— Strained bond

<<— Grain boundary

[~— Broken bond
(dangling bond)

Figure 1.52 The grain boundaries have broken bonds, voids, vacancies,
strained bonds, and interstitial-type atoms.

The structure of the grain boundary is disordered, and the atoms in the grain
boundaries have higher energies than those within the grains.

natural bonding habits, because the crystal orientation suddenly changes across the
boundary. Therefore, there are both voids at the grain boundary and stretched and bro-
ken bonds. In addition, in this region, there are misplaced atoms that do not follow the
crystalline pattern on either side of the boundary. Consequently, the grain boundary
represents a high-energy region per atom with respect to the energy per atom within
the bulk of the grains themselves. The atoms can diffuse more easily along a grain
boundary because (a) less bonds need to be broken due to the presence of voids and
(b) the bonds are strained and easily broken anyway. In many polycrystalline materi-
als, impurities therefore tend to congregate in the grain boundary region. We generally
refer to the atomic arrangement in the grain boundary region as being disordered due
to the presence of the voids and misplaced atoms.
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Since the energy of an atom at the grain boundary is greater than that of an
atom within the grain, these grain boundaries are nonequilibrium defects; conse-
quently, they try to reduce in size to give the whole structure a lower potential en-
ergy. At or around room temperature, the atomic diffusion process is slow; thus, the
reduction in the grain boundary is insignificant. At elevated temperatures, however,
atomic diffusion allows big grains to grow, at the expense of small grains, which
leads to grain coarsening (grain growth) and hence to a reduction in the grain
boundary area.

Mechanical engineers have learned to control the grain size, and hence the me-
chanical properties of metals to suit their needs, through various thermal treatment cy-
cles. For electrical engineers, the grain boundaries become important when designing
electronic devices based on polysilicon or any polycrystalline semiconductor. For
example, in highly polycrystalline materials, particularly thin-film semiconductors
(e.g., polysilicon), the resistivity is invariably determined by polycrystallinity, or grain
size, of the material, as discussed in Chapter 2.

194 CRYSTAL SURFACES AND SURFACE PROPERTIES

In describing crystal structures, we assume that the periodicity extends to infinity
which means that the regular array of atoms is not interrupted anywhere by the pres-
ence of real surfaces of the material. In practice, we know that all substances have real
surfaces. When the crystal lattice is abruptly terminated by a surface, the atoms at the
surface cannot fulfill their bonding requirements as illustrated in Figure 1.53. For sim-
plicity, the figure shows a Si crystal schematically sketched in two dimensions where
each atom in the bulk of the crystal has four covalent bonds, each covalent bond

Surface
Surface atoms

) Reconstructed  Absorbed
Dangling bond surface oxygen H H, §
~ ¢ A
O

’)rz‘k.

Figure 1.53 At the surface of a hypothetical two-dimensional crystal, the atoms cannot fulfill
their bonding requirements and therefore have broken, or dangling, bonds.

Bulk crystal

Some of the surface atoms bond with each other; the surface becomes reconstructed. The surface
can have physisorbed and chemisorbed atoms.
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having two electrons.'* The atoms at the surface are left with dangling bonds, bonds
that are half full, only having one electron. These dangling bonds are looking for atoms
to which they can bond. Two neighboring surface atoms can share each other’s dan-
gling bond electrons, that is, form a surface bond with each other. This bonding be-
tween surface atoms causes a slight displacement of the surface atoms and leads to a
surface that has been reconstructed.

Atoms from the environment can also bond with the atoms on the crystal surface.
For example, a hydrogen atom can be captured by a dangling bond at the surface to
form a chemical bond as a result of which hydrogen becomes absorbed. Primary
bonding of foreign atoms to a crystal surface is called chemisorption. The H atom in
Figure 1.53 forms a covalent bond with a Si atom and hence becomes chemisorbed.
However, the H,O molecule cannot form a covalent bond, but, because of hydrogen
bonding, it can form a secondary bond with a surface Si atom and become adsorbed.
Secondary bonding of foreign atoms or molecules to a crystal surface is called
physisorption ( physical adsorption). Water molecules in the air can readily become
adsorbed at the surface of a crystal. Although the figure also shows a physisorbed H,
molecule as an example, this normally occurs at very low temperatures where crystal
vibrations are too weak to quickly dislodge the H, molecule. It should be remarked
that in many cases, atoms or molecules from the environment become adsorbed at the
surface for only a certain period of time; they have a certain sticking or dwell time. For
example, at room temperature, inert gases stick to a metal surface only for a duration
of the order of microseconds, which is extremely long compared with the vibrational
period of the crystal atoms (~107'? seconds). A dangling bond can capture a free
electron from the environment if one is available in its vicinity. The same idea applies
to a dangling bond at a grain boundary as in Figure 1.52.

At sufficiently high temperatures, some of the absorbed foreign surface atoms can
diffuse into the crystal volume to become bulk impurities. Many substances have a nat-
ural oxide layer on the surface that starts with the chemical bonding of oxygen atoms to
the surface atoms and the subsequent growth of the oxide layer. For example, aluminum
surfaces always have a thin aluminum oxide layer. In addition, the surface of the oxide
often has adsorbed organic species of atoms usually from machining and handling. The
surface condition of a Si crystal wafer in microelectronics is normally controlled by first
etching the surface and then oxidizing it at a high temperature to form a SiO, passivat-
ing layer on the crystal surface. This oxide layer is an excellent barrier against the dif-
fusion of impurity atoms into the crystal. (It is also an excellent electrical insulator.)

Figure 1.53 shows only some of the possibilities at the surface of a crystal. Gener-
ally the surface structure depends greatly on the mode of surface formation, which
invariably involves thermal and mechanical processing, and previous environmental
history. One visualization of a crystal surface is based on the terrace-ledge-kink
model, the so-called Kossel model, as illustrated in Figure 1.54. The surface has
ledges, kinks, and various imperfections such as holes and dislocations, as well as
impurities which can diffuse to and from the surface. The dimensions of the various im-
perfections (e.g., the step size) depend on the process that generated the surface.

14 Not all possibilities shown in Figure 1.53 occur in practice; their occurrences depend on the preparation method
of the crystal.
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Atom on
surface

Screw

dislocation
Atomic arrangements on a reconstructed (111)  Figure 1.54 Typically, a crystal surface has many types of
surface of a Si crystal as seen by a surface imperfections, such as steps, ledges, kinks, crevices, holes, and
tunneling microscope. dislocations.

SOURCE: Courtesy of Burleigh Instruments,
Inc.

19.5 STOICHIOMETRY, NONSTOICHIOMETRY, AND DEFECT STRUCTURES

Stoichiometric compounds are those that have an integer ratio of atoms, for exam-
ple, as in CaF, where two F atoms bond with one Ca atom. Similarly, in the compound
ZnO, if there is one O atom for every Zn atom, the compound is stoichiometric, as
schematically illustrated in Figure 1.55a. Since there are equal numbers of O*~ anions
and Zn** cations, the crystal overall is neutral. It is also possible to have a nonstoi-
chiometric ZnO in which there is excess zinc. This may result if, for example, there is
insufficient oxygen during the preparation of the compound. The Zn?* ion has a radius
of 0.074 nm, which is about 1.9 times smaller than the O~ anion (radius of 0.14 nm),
so it is much easier for a Zn?* ion to enter an interstitial site than the O?~ ion or the Zn
atom itself, which has a radius of 0.133 nm. Excess Zn atoms therefore occupy
interstitial sites as Zn?* cations. Even though the excess zinc atoms are still ionized
within the crystal, their lost electrons cannot be taken by oxygen atoms, which are all

OO00OO00O0 OO0OO00OO0 Qo=
0Qo0Q00O o000 o=

000000  0VD0OO0 InEmw ™™™

000000 000QQO
Q00000 QOo0Oo00O0

(a) Stoichiometric ZnO crystal with (b) Nonstoichiometric ZnO crystal with
equal number of anions and excess Zn in inferstitial sites as Zn**
cations and no free electrons cations

Figure 1.55 Stoichiometry and nonstoichiometry and the resulting defect structure.
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O?~ anions, as indicated in Figure 1.55b. Thus, the nonstoichiometric ZnO with excess
Zn has Zn** cations in interstitial sites and mobile electrons within the crystal, which
can contribute to the conduction of electricity. Overall, the crystal is neutral, as the
number of Zn?* ions is equal to the number of O?~ ions plus two electrons from each
excess Zn. The structure shown in Figure 1.55b is a defect structure, since it deviates
from the stoichiometry.

1.10 SINGLE-CRYSTAL CZOCHRALSKI GROWTH

The fabrication of discrete and integrated circuit (IC) solid-state devices requires semi-
conductor crystals with impurity concentrations as low as possible and crystals that
contain very few imperfections. A number of laboratory techniques are available for
growing high-purity semiconductor crystals. Generally, they involve either solidifica-
tion from the melt or condensation of atoms from the vapor phase. The initial process
in IC fabrication requires large single-crystal wafers that are typically 15 cm in diam-
eter and 0.6 mm thick. These wafers are cut from a long, cylindrical single Si crystal
(typically, 1-2 m in length).

Large, single Si crystals for IC fabrication are often grown by the Czochralski
method, which involves growing a single-crystal ingot from the melt, using solidifi-
cation on a seed crystal, as schematically illustrated in Figure 1.56a. Molten Si is held
in a quartz (crystalline SiO,) crucible in a graphite susceptor, which is either heated by

Argon gas o—
Pull shaft

Rotation

Seed

100)
) crystal Flat (
Growing I Plane
crystal Si ingot
Quartz
ibl
e Cut wafer
Graphite — Single-crystal Si ingot (about 2 m) /
susceptor Molten
Graphite — Si
resistance [100]
heater Direction
Ground edge or flat
To pump Gas outlet
(b) The crystallographic orientation of the silicon
(a) Schematic illustration of the growth of ingot is marked by grounding a flat. The ingot can
a single-crystal Si ingot by the Czochralski be as long as 2 m. Wafers are cut using a rotating annula
technique. diamond saw. Typical wafer thickness is 0.6-0.7 mm.

Fiaure 1.56
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Silicon ingot being pulled from the melt in a
Czochralski crystal drawer.

I SOURCE: Courtesy of MEMC Electronic
Materials, Inc.

a graphite resistance heater or by a radio frequency induction coil (a process called RF
heating).!> A small dislocation-free crystal, called a seed, is lowered to touch the melt
and then slowly pulled out of the melt; a crystal grows by solidifying on the seed crys-
tal. The seed is rotated during the pulling stage, to obtain a cylindrical ingot. To sup-
press evaporation from the melt and prevent oxidation, argon gas is passed through the
system.

Initially, as the crystal is withdrawn, its cross-sectional area increases; it then
reaches a constant value determined by the temperature gradients, heat losses, and the
rate of pull. As the melt solidifies on the crystal, heat of fusion is released and must be
conducted away; otherwise, it will raise the temperature of the crystal and remelt it.
The area of the melt—crystal interface determines the rate at which this heat can be con-
ducted away through the crystal, whereas the rate of pull determines the rate at which
latent heat is released. Although the analysis is not a simple one, it is clear that to ob-
tain an ingot with a large cross-sectional area, the pull speed must be slow. Typical
growth rates are a few millimeters per minute.

The sizes and diameters of crystals grown by the Czochralski method are obviously
limited by the equipment, though crystals 20-30 cm in diameter and 1-2 m in length are
routinely grown for the IC fabrication industry. Also, the crystal orientation of the seed
and its flatness with melt surface are important engineering requirements. For example,
for very large scale integration (VLSI), the seed is placed with its (100) plane flat to the
melt, so that the axis of the cylindrical ingot is along the [100] direction.

Following growth, the Si ingot is usually ground to a specified diameter. Using
X-ray diffraction, the crystal orientation is identified and either a flat or an edge is
ground along the ingot, as shown in Figure 1.56b. Subsequently, the ingot is cut into
thin wafers by a rotating annular diamond saw. To remove any damage to the wafer
surfaces caused by sawing and obtain flat, parallel surfaces, the wafers are lapped
(ground flat with alumina powder and glycerine), chemically etched, and then pol-
ished. The wafers are then used in IC fabrication, usually as a substrate for the growth
of a thin layer of crystal from the vapor phase.

The Czochralski technique is also used for growing Ge, GaAs, and InP single crys-
tals, though each case has its own particular requirements. The main drawback of the
Czochralski technique is that the final Si crystal inevitably contains oxygen impurities
dissolved from the quartz crucible.

| 5 The induced eddy currents in the graphite give rise to I2R heating of the graphite susceptor.
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1.11  GLASSES AND AMORPHOUS SEMICONDUCTORS

1.11.1 GLASSES AND AMORPHOUS SOLIDS

A characteristic property of the crystal structure is its periodicity and degree of sym-
metry. For each atom, the number of neighbors and their exact orientations are well
defined; otherwise, the periodicity would be lost. There is therefore a long-range
order resulting from strict adherence to a well-defined bond length and relative bond
angle (or exact orientation of neighbors). Figure 1.57a schematically illustrates the
presence of a clear, long-range order in a hypothetical two-dimensional crystal. Tak-
ing an arbitrary origin, we can predict the position of each atom anywhere in the crys-
tal. We can perhaps use this to represent crystalline SiO, (silicon dioxide), for exam-
ple, in two dimensions. In reality, a Si atom bonds with four oxygen atoms to form a
tetrahedron, and the tetrahedra are linked at the corners to create a three-dimensional
crystal structure.

Not all solids exhibit crystallinity. Many substances exist in a noncrystalline or
amorphous form, due to their method of formation. For example, SiO; can have an
amorphous structure, as illustrated schematically in two dimensions in Figure 1.57b. In
the amorphous phase, SiO; is called vitreous silica, a form of glass, which has wide
engineering applications, including optical fibers. The structure shown in the figure for
vitreous silica is essentially that of a frozen liquid, or a supercooled liquid. Vitreous
silica is indeed readily obtained by cooling the melt.

Many amorphous solids are formed by rapidly cooling or quenching the liquid to
temperatures where the atomic motions are so sluggish that crystallization is virtually |
halted. (The cooling rate is measured relative to the crystallization rate, which depends |
on atomic diffusion.) We refer to these solids as glasses. In the liquid state, the atoms |

e Silicon (or arsenic) atom O Oxygen (or selenium) atom

(a) A crystalline solid reminiscent of (b} An amorphous solid reminiscent of
crystalline SiO, (density = 2.6 g cm™3) vitreous silica (SiO,) cooled from the melt
(density = 2.27 g cm™)

Figure 1.57 Crystalline and amorphous structures illustrated schematically in two
dimensions.
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have sufficient kinetic energy to break and make bonds frequently and to bend and twist
their bonds. There are bond angle variations, as well as rotations of various atoms around
bonds (bond twisting). Thus, the bonding geometry around each atom is not necessar-
ily identical to that of other atoms, which leads to the loss of long-range order and the
formation of an amorphous structure, as illustrated in Figure 1.57b for the same mater-
ial in Figure 1.57a. We may view Figure 1.57b as a snapshot of the structure of a liquid.
As we move away from a reference atom, after the first and perhaps the second neigh-
bors, random bending and twisting of the bonds is sufficient to destroy long-range order.
The amorphous structure therefore lacks the long-range order of the crystalline state.

To reach the glassy state, the temperature is rapidly dropped well below the melt-
ing temperature where the atomic diffusion processes needed for arranging the atoms
into a crystalline structure are infinitely slow on the time scale of the observation. The
liquid structure thus becomes frozen. Figure 1.57b shows that for an amorphous struc-
ture, the coordination of each atom is well defined, because each atom must satisfy
its chemical bonding requirement, but the whole structure lacks long-range order.
Therefore, there is only a short-range order in an amorphous solid. The structure is a
continuous random network of atoms (often called a CRN model of an amorphous
solid). As a consequence of the lack of long-range order, amorphous materials do not
possess such crystalline imperfections as grain boundaries and dislocations, which is a
distinct advantage in certain engineering applications.

Whether a liquid forms a glass or a crystal structure on cooling depends on a com-
bination of factors, such as the nature of the chemical bond between the atoms or mol-
ecules, the viscosity of the liquid (which determines how easily the atoms move), the
rate of cooling, and the temperature relative to the melting temperature. For example,
the oxides SiO,, B»O3, GeO,, and P,O5 have directional bonds that are a mixture of co-
valent and ionic bonds and the liquid is highly viscous. These oxides readily form
glasses on cooling from the melt. On the other hand, it is virtually impossible to
quench a pure metal, such as copper, from the melt, bypass crystallization, and form a
glass. The metallic bonding is due to an electron gas permeating the space between the
copper ions, and that bonding is nondirectional, which means that on cooling, copper
ions are readily (and hence, quickly) shifted with respect to each other to form the
crystal. There are, however, a number of metal-metal (CugsZr33) and metal-metalloid
alloys (FegoB2o, PdgoSiy) that form glasses if quenched at ultrahigh cooling rates of
105-108 °C s~!. In practice, such cooling rates are achieved by squirting a thin jet of
the molten metal against a fast-rotating, cooled copper cylinder. On impact, the melt is
frozen within a few milliseconds, producing a long ribbon of metallic glass. The
process is known as melt spinning and is depicted in Figure 1.58.

Many solids used in various applications have an amorphous structure. The ordi-
nary window glass (SiO-)o g(Na;O)o» and the majority of glassware are common exam-
ples. Vitreous silica (SiO;) mixed with germania (GeQ,) is used extensively in optical
fibers. The insulating oxide layer grown on the Si wafer during IC fabrication is the
amorphous form of SiO,. Some intermetallic alloys, such as FeggBg 2, can be rapidly
quenched from the liquid (as shown in Figure 1.58) to obtain a glassy metal used in low-
loss transformer cores. Arsenic triselenide, As,Ses, has a crystal structure that resembles
the two-dimensional sketch in Figure 1.57a, where an As atom (valency III) bonds with
three Se atoms, and a Se atom (valency VI) bonds with two As atoms. In the amorphous
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Inert gas pressure

Quartz tube

Molten alloy

Heater coil

Jet of molten metal
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Figure 1.58 It is possible to rapidl Melt spinning involves squirting a jet of molten metal onto a
g p pidly pinning quirting a j
quench a molten metallic alloy, thereby rotating cool metal drum. The molten jet is instantly solidified into a

glassy metal ribbon which is a few microns in thickness. The
process produces roughly 1 to 2 kilometers of ribbon per minute.

| SOURCE: Photo courtesy of the Estate of Fritz Goro.

bypassing crystallization, and forming a
glassy metal commonly called a metallic
glass.

The process is called melf spinning.

phase, this crystal structure looks like the sketch in Figure 1.57b, in which the bonding
requirements are only locally satisfied. The crystal can be prepared by condensation
from the vapor phase, or by cooling the melt. The vapor-grown films of amorphous
As;,Se;s are used in some photoconductor drums in the photocopying industry.

1.11.2 CRYSTALLINE AND AMORPHOUS SILICON

A silicon atom in the silicon crystal forms four tetrahedrally oriented, covalent bonds
with four neighbors, and the repetition of this exact bonding geometry with a well-
defined bond length and angle leads to the diamond structure shown in Figure 1.6. A
simplified two-dimensional sketch of the Si crystal is shown in Figure 1.59. The crys-
tal has a clear long-range order. Single crystals of Si are commercially grown by the
Czochralski crystal pulling technique.

-~ Itis also possible to grow amorphous silicon, denoted by a-Si, by the condensa-

tion of Si vapor onto a solid surface, called a substrate. For example, an electron
beam is used to vaporize a silicon target in a vacuum; the Si vapor then condenses on
a metallic substrate to form a thin layer of solid noncrystalline silicon. The techniques
which is schematically depicted in Figure 1.60, is referred to as electron beam
deposition. The structure of amorphous Si (a-Si) lacks the long-range order of
crystalline Si (c-Si), even though each Si atom in a-Si, on average, prefers to bond
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(@) Two-dimensional (b) Two-dimensional schematic (c) Two-dimensional schematic
schematic representation of the structure representation of the structure of
representation of a of amorphous silicon. hldrogenclted amorphous silicon.
silicon crystal. The structure has voids and The number of hydrogen atoms

dangling bonds and there is shown is exaggerated.
no long-range order.

Figure 1.59 Silicon can be grown as a semiconductor crystal or as an amorphous semiconductor film. Each line
represents an electron in a bond. A full covalent bond has two lines, and a broken bond has one line.

Figure 1.60 Amorphous silicon, a-Si, can be

Heated substrate Deposition
chamber prepared by an electron beam evaporation of
51 film silicon.
Evaporated Si atoms El‘?g“ggbzam Silicon has a high melting temperature, so an
lg;alg:eticyﬁeld energetic electron beam is used to melt the crystal in
Vacuum the crucible locally and thereby vaporize Si atoms.
Si atoms condense on a substrate placed above the
Silicon for crucible, to form a film of a-Si.
deposition Electron gun
Nl

v

Vacuum
pump

with four neighbors. The difference is that the relative angles between the Si-Si
bonds in a-Si deviate considerably from those in the crystal, which obey a strict
geometry. Therefore, as we move away from a reference atom in a-Si, eventually the
periodicity for generating the crystalline structure is totally lost, as illustrated
schematically in Figure 1.59. Furthermore, because the Si—Si bonds do not follow the
equilibrium geometry, the bonds are strained and some are even missing, simply be-
cause the formation of a bond causes substantial bond bending. Consequently, the
-a-Si structure has many voids and incomplete bonds, or dangling bonds, as schemat-
ically depicted in Figure 1.59.

One way to reduce the density of dangling bonds is simply to terminate a dangling
hond neino hvdrnoen Since hvdranoen nnlv hac ane electran it can attach iteelf tn a
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amorphous silicon, a-Si:H, is 4 L Electrode ]
generally prepared by the Vacuum
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molecules in a radio frequency ¢
(RF) plasma discharge. RF power
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dangling bond, that is, passivate the dangling bond. The structure resulting from hy-
drogen in amorphous silicon is called hydrogenated amorphous Si (a-Si:H).

Many electronic devices, such as a-Si:H solar cells, are based on a-Si being de-
posited with H to obtain a-Si:H, in which the hydrogen concentration is typically 10 at.%
(atomic %). The process involves the decomposition of silane gas, SiHj, in an electrical
plasma in a vacuum chamber. Called plasma-enhanced chemical vapor deposition
(PECVD), the process is illustrated schematically in Figure 1.61. The silane gas mole-
cules are dissociated in the plasma, and the Si and H atoms then condense onto a sub-
strate to form a film of a-Si:H. If the substrate temperature is too hot, the atoms on the
substrate surface will have sufficient kinetic energy, and hence the atomic mobility, to
orient themselves to form a polycrystalline structure. Typically, the substrate temperature
is ~250 °C. The advantage of a-Si:H is that it can be grown on large areas, for such ap-
plications as photovoltaic cells, flat panel thin-film transistor (TFT) displays, and the
photoconductor drums used in some photocopying machines. Table 1.5 summarizes the
properties of crystalline and amorphous silicon, in terms of structure and applications.

Table 1.5 Crystalline and amorphous silicon

Crystalline Si (c-Si)

Amorphous Si (a-Si)

Hydrogenated a-Si (a-Si:H)

Structure

Typical preparation

Density (g cm™)

Electronic
applications

Diamond cubic.

Czochralski technique.

2.33

Discrete and integrated
electronic devices.

Short-range order only. On average,
each Si covalently bonds with four
Si atoms.

Has microvoids and dangling bonds.

Electron beam evaporation of Si.

About 3-10% less dense.
None

Short-range order only.
Structure typically contains
10% H. Hydrogen atoms
passivate dangling bonds and
relieve stra;n/%m bonds.

Chemical vapor deposition
of silane gas by RF plasma.

About 1-3% less dense.

Large-area electronic devices such
as solar cells, flat panel displays,
and some photoconductor drums
used in photocopying.
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1.12  SOLID SOLUTIONS AND TWO-PHASE SOLIDS

1.12.1 ISOMORPHOUS SOLID SOLUTIONS: ISOMORPHOUS ALLOYS

A phase of a material has the same composition, structure, and properties everywhere,
so it is a homogeneous portion of the chemical system under consideration. In a given
chemical system, one phase may be in contact with another phase. For example, at 0 °C,
iced water will have solid and liquid phases in contact. Each phase, ice and water, has a
distinct structure.

A bartender knows that alcohol and water are totally miscible; she can dilute
whisky with as much water as she likes. When the two liquids are mixed, the molecules
are randomly mixed with each other and the whole liquid is a homogenous mixture of
the molecules. The liquid therefore has one phase; the properties of the liquid are the
same everywhere. The same is not true when we try to mix water and oil. The mixture
consists of two distinctly separate phases, oil and water, in contact. Each phase has a
different composition, even though both are liquids.

Many solids are a homogeneous mixture of two types of separate atoms. For ex-
ample, when nickel atoms are added to copper, Ni atoms substitute directly for the Cu
atoms, and the resulting solid is a solid solution, as depicted in Figure 1.62a. The
structure remains an FCC crystal whatever the amount of Ni we add, from 100% Cu to
100% Ni. The solid is a homogenous mixture of Cu and Ni atoms, with the same struc-
ture everywhere in the solid solution, which is called an isomorphous solid solution.
The atoms in the majority make up the solvent, whereas the atoms in the minority are
the solute, which is dissolved in the solvent. For a Cu-Ni alloy with a Ni content of
less than 50 at.%, copper is the solvent and nickel is the solute.

The substitution of solute atoms for solvent atoms at various lattice sites of the
solvent can be either random (disordered) or ordered. The two cases are schematically
illustrated in Figure 1.62a and b, respectively. In many solid solutions, the substitution
is random, but for certain compositions, the substitution becomes ordered. There is a

(a) Disordered substitutional (b) Ordered substitutional (c) Interstitial solid solution.
solid solution. Example: solid solution. Example: Example: Small number of C
Cu-Ni alloys ({100} planes) Cu-Zn alloy of composition atoms in FCC Fe (austenite).

50% Cu-50% Zn. ({110} planes) ({100} planes)

Figure 1.62 Solid solutions can be disordered substitutional, ordered substitutional, and interstitial
substitutional.

Only one phase within the alloy has the same composition, structure, and properties everywhere.
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distinct ordering of atoms around each solute atom such that the crystal structure re-
sembles that of a compound. For example, 8’ brass has the composition 50 at.% Cu-
50 at.% Zn. Each Zn atom is surrounded by eight Cu atoms and vice versa, as depicted
in two dimensions in Figure 1.62b. The structure is that of a metallic compound be-
tween Cu and Zn.

Another type of solid solution is the interstitial solid solution, in which solute
atoms occupy interstitial sites, or voids between atoms, in the crystal. Figure 1.62c
shows an example in which a small number of carbon atoms have been dissolved in a
y -iron crystal (FCC) at high temperatures.

1.12.2 PHASE DIAGRAMS: Cu-Ni AND OTHER ISOMORPHOUS ALLOYS

The Cu-Ni alloy is isomorphous. Unlike pure copper or pure nickel, when a Cu-Ni
alloy melts, its melting temperature is not well defined. The alloy melts over a range of
temperatures in which both the liquid and the solid coexist as a heterogeneous mixture.
It is therefore instructive to know the phases that exist in a chemical system at various
temperatures as a function of composition, and this need leads to the use of pha}‘se
diagrams.

Suppose we take a crucible of molten copper and allow it to cool. Above its melt-
ing temperature (1083 °C), there is only the liquid phase. The temperature drops with
time, as shown in Figure 1.63a, until at the melting or fusion temperature at point L
when copper crystals begin to nucleate (solidify) in the crucible. During solidification,
the temperature remains constant. As long as we have both the liquid and solid phases
coexisting, the temperature remains constant at 1083 °C. During this time, heat is
given off as the Cu atoms in the melt attach themselves to the Cu crystals. This heat
is called the heat of fusion. Once all the liquid has solidified (point Sy), the tempera-
ture begins to drop as the solid cools. There is therefore a sharp melting temperature
for copper, at 1083 °C.

If we were to cool pure nickel from its melt, we would observe a behavior similar
to that of pure copper, with a well-defined melting temperature at 1453 °C.

Now suppose we cool the melt of a Cu—Ni alloy with a composition'$ of 80 wt.%
Cu and 20 wt.% Ni. In the melt, the two species of atoms are totally miscible, and
there is only a single liquid phase. As the cooling proceeds, we reach the temperature
1195 °C, identified as point Ly, in Figure 1.63a, where the first crystals of Cu-Ni
alloy begin to appear. In this case, however, the temperature does not remain con-
stant until the liquid is solidified, but continues to drop. Thus, there is no single melt-
ing temperature, but a range of temperatures-averwhich both the liquid and the solid
phases coexist in a heterogeneous mixture. We find that when the temperature
reaches 1130 °C, corresponding to point Sy, all the liquid has solidified. Below
1130 °C, we have a single-phase solid that is an isomorphous solid solution of Cu and
Ni. If we repeat these experiments for other compositions, we find a similar behavior;
that is, freezing occurs over a transition temperature range. The beginning and end

| ®In materials science, we generally prefer to give alloy composifion in wt.%, which henceforth will simply be %.
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Figure 1.63 Solidification of an isomorphous alloy such as Cu-Ni.
(a) Typical cooling curves.
(b) The phase diagram marking the regions of existence for the phases.

of solidification, at points L and S, respectively, depend on the specific composition
of the alloy.

To characterize the freezing or melting behavior of other compositions of Cu—Ni
alloys, we can plot the tempera‘t’;?J: for the beginning and end of solidification ver-
sus the composition and identify those temperature regions where various phases
exist, as shown in Figure 1.63b. When we join all the points corresponding to the be-
ginning of freezing, that is, all the L points, we obtain what is called the liquidus
curve. For any given composition, only the liquid phase can exist above the liquidus
curve. If we join all the points where the liquid has totally solidified, that is, all the
§ points, we have a curve called the solidus curve. At any temperature and compo-
sition below the solidus curve, we can only have the solid phase. The region between
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Figure 1.64 Cooling of a 80% Cu-20% Ni alloy from the melt to the
solid state.

the liquidus and solidus curves marks where a heterogeneous mixture of liquid and
solid phases exists.

Let’s follow the cooling behavior of the 80% Cu-20% Ni alloy from the melt at
1300 °C down to the solid state at 1000 °C, as shown in Figure 1.64. The vertical
dashed line at 20% Ni represents the overall composition of the alloy (the whole *
chemical system) and the cooling process corresponds to movement down this dashed
line, starting from the liquid phase at L.

When the Cu-Ni alloy begins to solidify at 1195 °C, at point L, the first solid that
forms is richer in Ni content. The only solid that can exist at this temperature has
a composition S;, which has a greater Ni content than the liquid, as shown in Fig-
ure 1.64. Intuitively, we can see this by noting that Cu, the component with the lower
melting temperature, prefers to remain in the liquid, whereas Ni, which has a higher
melting temperature, prefers to remain in the solid. When the temperature drops fur-
ther, say to 1160 °C (indicated by X in the figure), the alloy is a heterogeneous mixture
of liquid and solid. At this temperature, the only solid that can coexist with the liquid
has a composition S,. The liquid has the composition L,. Since the liquid has lost some
of its Ni atoms, the liquid composition is less than that at L;. The liquidus and solidus
curves therefore givj the compositions of the liquid and solid phases coexisting in the
heterogeneous mixture during melting.

At 1160 °C, the overall composition of the alloy (the whole chemical system) is
still 20% Ni and is represented by point X in the phase diagram. When the temperature
reaches 1130 °C, nearly all the liquid has been solidified. The solid has the composi-
tion S3, which is 20% Ni, as we expect since the whole alloy is almost all solid. The
last drops of the liquid in the alloy have the composition L3, since at this temperature,
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Table 1.6 Phase in the 80% Cu-20% Ni isomorphous alloy

Temperature, °C Phases Composition Amount

1300 Liquid only Lo = 20% Ni 100%

1195 Liquid and solid Ly =20% Ni 100%
S) =36% Ni First solid appears

1160 Liquid and solid Ly = 13% Ni 53.3%
S, = 28% Ni 46.7%

1130 Liquid and solid Ly = 7% Ni The last liquid drop
S3 = 20% Ni 100%

1050 Solid only S4 = 20% Ni 100%

only the liquid with this composition can coexist with the solid at ;. Table 1.6 sum-
marizes the phases and their compositions, as observed during the cooling process
depicted in Figure 1.64. By convention, all solid phases that can exist are labeled
by different Greek letters. Since we can only have one solid phase, this is labeled the
a-phase.

During the solidification process depicted in Figure 1.64, the solid composition
changes from S; to S, to S3. We tacitly assume that the cooling is sufficiently slow to
allow time for atomic diffusion to change the composition of the whole solid. There-
fore, the phase diagram in Figure 1.63b, which assumes near equilibrium conditions
during cooling, is termed an equilibrium phase diagram. If the cooling is fast, there
will be limited time for atomic diffusion in the solid phase, and the resulting solid
will have a composition variation. The inner core will correspond to the solidification
at S) and will be Ni rich. Since the solidification occurs quickly, the Ni atoms do not
have time to diffuse out from the inner core to allow the composition in the solid to
change from S; to S, to Ss. Thus, the outer region, the final solidification, will be Ni
deficient (or Cu rich); its composition is not S3 but less, because S is the average com-
position in the whole solid. The solid structure will be cored, as depicted in Figure
1.65. The cooling process is then said to have occurred under nonequilibrium condi-
tions, which leads to a segregation of the elements in the grains. Under nonequilibrium
cooling conditions we cannot quantitatively use the equilibrium phase diagram in Fig-
ure 1.63b. The diagram can only serve as a qualitative guide.

The amounts of liquid and solid in the mixture can be determined from the phase di-
agram using the lever rule, which is based on the fact that the total mass of the alloy

Last solidification Figure 1.65 Segregation in a grain due to rapid
Ni deficient cooling (nonequilibrium cooling).

Curich

First so@ion

(S,) Nirich

Grain boundary
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remains the same throughout the entire cooling process. Let W, and W be the weight
(or mass) fraction of the liquid and solid phases in the alloy mixture. The composi-
tions of the liquid and solid are denoted as C, and Cg, respectively. The overall
composition of the alloy is denoted Cp, which is the overall weight fraction of Ni in the
alloy.

If we take the alloy to have a weight of unity, then the conservation of mass means
that

W+ Wsg=1

Further, the weight fraction of Ni in both the liquid and solid must add up to the com-
position Cy of Ni in the whole alloy, or

CLWL+ CsWs = Cp

We can substitute for Wy in the above equation to find the welght fraction of the
liquid and then that of the solid phase, as follows:

CS—CO C'0"CL
W, = -S5O d = We=0T"°%L [1.36]
Lt=c-c, = S=Ci—

To apply Equation 1.36, we first draw a line (called a tie line) from L, to S, cor-
responding to C; and Cjg, as shown in Figure 1.64. The line represents a “horizontal
lever” and point X at Cy at this temperature is the lever’s fulcrum. The lengths of the
lever arms from the fulcrum to the liquidus and solidus curves are (Co — C;) and
(Cs — Cyp), respectively. The lever must be balanced by the weights W; and W; at-

tached to the ends. The total length of the lever is (Cs — C.). At 1160 °C, C, = 0.13
(13% Ni) and Cs = 0.28 (28% Ni), so the weight fraction of the liquid phase is

Cs—Co 0.28 —0.20
W, = =29 _ =0533 or 53.3%
Cs—C, 0.28-0.13

Similarly, the weight fraction of the solid phase is 1 — 0.533 or 0.467.

1.123 ZONE REFINING AND PURE SILICON CRYSTALS

Zone refining is used for the production of high-purity crystals. Silicon, for example,
has a high melting temperature, so any impurities present in the crystal decrease the
melting temperature. This is similar to the depression of the melting temperature of
pure Ni by the addition of Cu, as shown by the right-hand side of Figure 1.63b. We can
represent the phase diagram of Si with small impurities as shown in Figure 1.66. Con-
sider what happens if we have a rod of the solid and we melt only the left end by ap-
plying heat locally (using eating, for example). At the same time, we move the
melted zone toward the right by moving the heater. We therefore melt the solid at A
and refreeze it at B, as shown in Figure 1.67a.

The solid has an impurity concentration of Cp; when it melts at A, the melt ini-
tially also has the same concentration C;, = Co. However, at temperature T, the melt
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Figure 1.66 The phase diagram of Si with

impurities near the low-concentration region.

(a) Heat is applied locally starting at one
end. The impurity concentration in the
refrozen solid at Bis Cg < Cp. The
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Figure 1.67 The principle of zone refining.
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begins to solidify. At the start of solidification the solid that freezes has a composition
Cp, which is considerably less than Cy, as is apparent in Figure 1.66. The cooling at B
occurs rapidly, so the concentration Cp cannot adjust to the equilibrium value at the
end of freezing. Thus, the solid that freezes at B has a lower concentration of impuri-
ties. The impurities have been pushed out of the solid at B and into the melt, whose im-
purity concentration increases from C; to Cy.

Next, refreezing at B’, shown in Figure 1.67b, occurs at a lower temperature Ty,
because the melt concentration Cy is now greater than Co. The solid that freezes at B’
has the concentration Cpg, shown in Figure 1.66, which is greater than Cp but less than
Co. As the melted zone is floated toward the right, the melt that is solidified at B, B’,
etc., has a higher and higher impurity concentration, until its impurity content reaches
that of the impure solid, at which point the concentration remains at Co. When the
melted zone approaches the far right where the freezing is halted, the impurities in the
final melt appear in the last frozen region at the far right. The resulting impurity con-
centration profile is schematically depicted in Figure 1.67c. The region of impurity
concentration below Cy is the zone refined section of the rod. The zone refining proce-
dure can be repeated again, starting from the left toward the right, to reduce the impu-
rity concentration even lower. The impurity concentration profile after many passes
is sketched in Figure 1.67d. Although the profile is nonuniform, due to the segregation
effect, the impurity concentrations in the zone refined section may be as low as a factor
of 107°.

1.124 BINARY EUTECTIC PHASE DIAGRAMS AND Pb~Sn SOLDERS
[ ]
When we dissolve salt in water, we obtain a brine solution. If we continue to add more

salt, we eventually reach the solubility limit of salt in the solution, and the excess salt
remains as a solid at the bottom of the container. We then have two coexisting phases:
brine (liquid solution) and salt (solid), as shown in Figure 1.68. The solubility limit of
one component in another in a mixture is represented by a solvus curve shown
schematically in Figure 1.68 for salt in brine. In the solid state, there are many ele-
ments that can only be dissolved in small amounts in another solid.

Lead in the solid phase has an FCC crystal structure, and tin has a BCT (body-
centered tetragonal) structure. Although the two elements are totally miscible in any

Figure 1.68 We can only dissolve so much salt in

brine (solution of salt in water). Brine

Salt

Eventually we reach the solubility limit at Xs, which
depends on the temperature. If we add more salt, then
the excess salt does not dissolve and coexists with the
brine. Past Xs we have two phases, brine {solution) and
salt {solid).

Temperature

>

Wt.% salt
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Figure 1.69 The equilibrium phase diagram of the Pb-Sn alloy.

The microstructures on the left show the observations at various pojnts during the cooling of a 90%
Pb-10% Sn from the melt along the dashed line (the overall alloy composition remains constant at
10% Sn).

proportion when melted, this is not so in the solid state. We can only dissolve so much
Sn in solid Pb, and vice versa. We quickly reach the solubility limit, and the resulting
solid is a mixture of two distinctly different solid phases. One solid phase, labeled «,
is Pb rich and has the FCC structure with some Sn atoms dissolved in the crystal. The
amount of Sn dissolved in « is given by the solvus curve of Sn in « at that temperature.
The other phase, labeled 8, is Sn rich and has the BCT structure with some Pb atoms
dissolved in it. The amount of Pb dissolved in B is given by the solvus curve of Pb in
B at that temperature.

The existence of various phases and their compositions as a function of tem-
perature are given by the equilibrium phase diagram for the Pb—Sn alloy, shown in
Figure 1.69. This is called an equilibrium eutectic phase diagram. The liquidus
and solidus curves, as usual, mark the borders for the liquid and solid phases. Be-
tween the liquidus and solidus curves, we have a heterogeneous mixture of melt
and solid. Unlike the Cu—Ni case, the melting temperature of both elements here
is depressed with alloying. The liquidus and solidus curves thus decrease from
both ends, starting at A and B. They meet at a point E, called the eutectic point,
at 61.9% Sn and 183 °C. This point has a special significance: No liquid can
exist below this temperature, so 183 °C is the lowest melting temperature of the
alloy.

91



92

Eutectic
transformation

CHAPTER 1 ¢ ELEMENTARY MATERIALS SCIENCE CONCEPTS

In addition, we must insert the solvus curves at both the Pb and Sn ends to mark
the extent of solid-state solubility and hence identify the two-phase solid region. The
solvus curve for the solubility limit of Sn in Pb meets the solidus curve at point C,
19.2% Sn. Similarly, the solubility limit of Pb in Sn meets the solvus curve at D. A
characteristic feature of this phase diagram is that CD is a straight line through E at
183 °C. Below 183 °C, between the two solvus curves, we have a solid with two
phases, @ and 8. This is identified as « + 8 in the diagram.

The usefulness of such a phase diagram is best understood by examining the phase
transformations and microstructures during the cooling of a melt of a given composi-
tion alloy. Consider a 90% Pb—10% Sn alloy being cooled from the melt at 350 °C
(point L) where there is only one phase, the liquid phase. At point M, 315 °C, few nu-
clei of the a-phase appear in the liquid. The composition of the a-phase is given by the
solidus curve at 315 °C and is about 5% Sn. At point N, 290 °C, there is more a-phase
in the mixture. The compositions of the liquid and «-phases are given respectively by
the liquidus and solidus curves at 290 °C. At point O, 275 °C, all liquid has been solid-
ified into the a-phase, which then has the composition 10% Sn.

Between M and O, the alloy is a coexistent mixture of the liquid phase (melt) and
the solid a-phase. At point P, 175 °C, we still have only the a-phase. When we reach
the solvus curve at point Q, 140 °C, we can no longer keep all the Sn dissolved in the
a-phase, as we have reached the solubility limit of Sn in «. Some of the Sn atoms must
diffuse out from the «-phase; they do so by forming a second solid phase, which is the
B-phase. The B-phase nucleates within the a-phase (usually at the grain boundaries,
where atomic diffusion occurs readily). The B-phase will contain as much dissolved
Pb as is allowed by the solubility of Pb in the B-phase, which is given by the solvus
curve on the Sn side and marked as point Q’, about 98% Sn. Thus, the microstructure
is now a mixture of the o and 8 phases.

As cooling proceeds, the two phases continue to coexist, but their relative propor-
tions change. At R, 50 °C, the alloy is a mixture of the ¢-phase given by R'(4% Sn) and
the B-phase given by R”(99% Sn). The relative amounts of ¢ and 8 phases are given
by the lever rule. Figure 1.69 illustrates the microstructure of the 90% Pb-10%
Sn alloy as it is cooled.

An interesting phenomenon can be observed when we cool an alloy of the eu-
tectic composition 38.1% Pb—61.9% Sn from the melt. The cooling process and the
observed microstructures are illustrated in Figure 1.70; the microstructures are on
the right. The temperature—time profile is also depicted in Figure 1.70. At point L,
350 °C, the alloy is all liquid; as it cools, its temperature drops until point E at
183 °C. At E, the temperature remains constant and a solid phase nucleates within
the melt. With time, the amount of solid grows until all the liquid is solidified and the
temperature begins to drop again. This behavior is much like that of a pure element,
for which melting occurs at a well-defined temperature. This behavior only occurs
for the eutectic composition (61.9% Sn), because this is the composition at which the
liquidus and solidus curves meet at one temperature. Generally, the liquid with the
eutectic composition will solidify through the eutectic transformation at the eutec-
tic temperature, or

L61.9% sn = @192% sn + Bor5% sn (183 °C) [1.37]
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Figure 1.70 The alloy with the eutectic composition cools like a pure element, exhibiting a single solidification

temperature at 183 °C.

The solid has the special eutectic structure. The alloy with the composition 60% Pb-40% Sn when solidified is a mixture

of primary o and eutectic solid.

The solid that forms from the eutectic solidification has a special microstructure,
consisting of alternating plates, or lamellae, of « and B8 phases, as shown in Fig-
ure 1.70. This is called the eutectic microstructure (or eutectic solid). The formation
of a Pb-rich «-phase and an Sn-rich B8-phase from the 61.9% Sn liquid requires the
redistribution of the two types of atoms by atomic diffusion. Atomic diffusions are eas-
ier in the liquid than in the solid. The formation of a solid with alternating « and 8 lay-
ers allows the Pb and Sn atoms to diffuse in the liquid without having to move over
long distances. The eutectic structure is not a phase itself, but a mixture of the two
phases, @ and 8.

When cooled from the melt, an alloy with a composition between 19.2% Sn and
61.9% Sn solidifies into a mixture of «-phase and a eutectic solid (a mixture of ¢ and

B phases). Consider the cooling of an alloy with a composition of 40% Sn, starting
fram tha liAanid nhaca 7 at 28N 9 ac chnum in Rianra 1 TN At nnaint M (I28°N  tha
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first solid, the «-phase, nucleates. Its composition is about 15% Sn. At N, 210 °C, the
alloy is a mixture of liquid, composition 50% Sn, and «-phase, composition 18% Sn.
The composition of the liquid thus moves along the liquidus line from M toward E.
At 183 °C, the liquid has the composition 61.9% Sn, or the eutectic composition, and
therefore undergoes the eutectic transformation indicated in Equation 1.37. There is
still ¢-phase in the alloy, but its composition is now 19.2% Sn; it does not take part in
the eutectic transformation of the liquid. During the eutectic transformation, the tem-
perature remains constant. When all the liquid has been solidified, we have a mixture
of the preexisting «-phase, called primary o (or proeutectic «), and the newly
formed eutectic solid. The final microstructure is shown in Figure 1.70 and consists of
a primary « and a eutectic solid; therefore, two solid phases, « and 8, coexist.

During cooling between points M and O, the alloy 60% Pb—40% Sn is a mixture
of melt and «-phase, and it exhibits plastic-like characteristics while solidifying. Fur-
ther, the temperature range for the solidification is about 183 °C to 235 °C, or about
50 °C. Such an alloy is preferable for such uses as soldering wiped joints to join
pipes together, giving the plumber sufficient play for adjusting and wiping the joint.
On the other hand, a solder with the eutectic composition (commercially, this is 40%
Pb—60% Sn solder, which is close to the eutectic) has the lowest melting temperature
and solidifies quickly. The liquid also has good wetting properties. Therefore, 40%
Pb-60% Sn is widely used for soldering semiconductor devices, where good wetting
and minimal exposure to high temperature are required.

EXAMPLE 1.17

THE 60% Pb~40% Sn ALLOY Cogsider the solidification of the 60% Pb—40% Sn alloy. What
are the phases, compositions, and weight fractions of various phases existing in the alloy at
250°C, 210°C, 183. 5 °C (just above 183 °C), and 182.5 °C (just below 183 °C)?

SOLUTION

We again refer to the phase diagram in Figure 1.70 to identify which phases exist at what tem-
peratures. At 250 °C, we only have the liquid phase. At 210 °C, point N, the liquid and the a-phase
are in equilibrium. The composition of the a-phase is given by the solidus line; at 210 °C,
C. = 18% Sn. The composition of the liquid is given by the liquidus line; at 210 °C, C, = 50%
Sn. To find the weight fraction of « the alloy, we use the lever rule,

_CL—-Cp 50-40
T CL-C, 50-18
From W, + W, = 1, we obtain the weight fraction of the liquid phase, W, =1 — 0.313 =0.687.
At 183.5 °C, point O, the composition of the «-phase is 19.2% Sn corresponding to C
and that of the liquid is 61.9% Sn corresponding to E. The liquid therefore has the eutectic
composition. The weight fractions are
CL—-Co _ 619 - 40
CL—-C, 61.9-192

W, =1-0.513 = 0.487

As expected, the amount of a-phase increases during solidification; at the same time, its
composition changes along the solidus curve. Just above 183 °C, about half the alloy is the solid
a-phase and the other half is liquid with the eutectic composition. Thus, on solidification, the liquid

W, = 0.313

W, = = 0.513
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Table 1.7  The 60% Pb-40% Sn alloy

Temperature (°C) Phases Composition Mass(g) Microstructure and Comment

250 L 40% Sn 100
235 L 40% Sn 100 The first solid (a-phase) nucleates in the
o 15% Sn 0 liquid.
210 L 50% Sn 68.7 Mixture of liquid and o phases. More solid
o 18% Sn 31.3 forms. Compositions change.
183.5 L 61.9% Sn 48.7 Liquid has the eutectic composition.
o 19.2% Sn 513
182.5 a 19.2% Sn 73.4 Eutectic (o and S phases) and primary
B 97.5% Sn 26.6 a-phase.

| Assume mass of the alloy is 100 g.

undergoes the eutectic transformation and forms the eutectic solid. Just below 183 °C, therefore,
the microstructure is the primary «-phase and the eutectic solid. Stated differently, below 183 °C,
the @ and B phases coexist, and 8 is in the eutectic structure. The weight fraction of the eutectic
phase is the same as that of the liquid just above 183 °C, from which it was formed. The weight
fractions of & and 8 in the whole alloy are given by the lever rule applied at point P, or

Csg—Co  97.5-40
Cs—C, 97.5-19.2
Co—Cy  40-19.2
Cs—C, 97.5-19.2

The microstructure at room temperature will be much like that just below 183 °C, at which
the alloy is a two phase solid because atomic diffusions in the solid will not be sufficiently fast

to allow the compositions to change. Table 1.7 summarizes the phases that exist in this alloy at
various temperatures.

= 0.734

W,
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An infinite periodic array of geometric points in space defines a space lattice or sim-
ply a lattice. Strictly, a lattice does not contain any atoms or molecules because it is
simply an imaginary array of geometric points. A two-dimensional simple square
lattice is shown in Figure 1.71a. In three dimensions, Figure 1.71a would correspond
to the simple cubic (SC) lattice. The actual crystal is obtained from the lattice by plac-
ing an identical group of atoms (or molecules) at each lattice point. The identical group
of atoms is called the basis of the crystal structure. Thus, conceptually, as illustrated in
Figure 1.71ato c,

Crystal = Lattice + Basis
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(a) A simple square lattice. The unit cell is a square with a side a.
(b) Basis has two atoms.
(c) Crystal = Lattice + Basis. The unit cell is a simple square with two atoms.

(d) Placement of basis atoms in the crystal unit cell.

The unit cell of the two-dimensional lattice in Figure 1.71a is a square which is
characterized by the length a of one of the sides; a is called a lattice parameter. A
given lattice can generate different patterns of atoms depending on the basis. The lat-
tice in Figure 1.71a with the two-atom basis in Figure 1.71b produces the crystal in
Figure 1.71c. Although the latter crystal appears as a body-centered square (similar to
BCC in three dimensions), it is nonetheless a simple square lattice with two atoms
comprising the basis. Suppose that the basis had only one atom; then the crystal would
appear as the simple square lattice in Figure 1.71a (with each point now being an
atom). The patterns in Figure 1.71a and c are different but the underlying lattice is the
same. Because they have the same lattice, the two crystals would have certain identi-
cal symmetries. For example, for both crystals, a rotation by 90° about a lattice point
would produce the same crystal structure.

To fully characterize the crystal, we also have to specify the locations of the basis
atoms in the unit cell as in Figure 1.71d. By convention, we place a Cartesian coordi-
nate system at the rear-left corner of the unit cell with the x and y axes along the square
edges. We indicate the coordinates (x;, y;) of each ith atom in terms of the lattice
parameters along x and y. Thus, the atoms in the unit cell in Figure 1.71d are at (0, 0)
and at (3, 3). The CsCl unit cell in Figure 1.38 appears as BCC, but it can be described
by a SC lattice and a basis that has one Cl~ ion and one Cs* ion. The ions in the SC
unit cell are located at (0, 0, 0) and at the cell center at (3, 3, 3). Similarly, the NaCl
crystal in Figure 1.37 is an FCC lattice with a basis of Na™ and CI~ ions.

The diamond unit cell of silicon is an FCC lattice with two Si atoms constituting
the basis. The two Si atoms are placed at (0, 0, 0) and (5, 3, 3). Most of the important
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III-V compound semiconductors such as GaAs, AlAs, InAs, InP, etc., which are
widely used in numerous optoelectronic devices, have the zinc blende (ZnS) unit cell.
The zinc blende unit cell consists of an FCC lattice and a basis that has the Zn and S
atoms placed at (0, 0, 0) and (3, 3, 3), respectively.

We generally represent the geometry of the unit cell of a lattice as a parallelepiped
with sides a, b, ¢ and angles «, B, y as depicted in Figure 1.40a. In the case of copper
and iron, the geometry of the unit cell hasa = b = ¢, = B = y = 90°, and cubic

Unit Cell Geometry
Cubic system
a=b=c "
a=B=y=90° p.
Many metals, Al, Cu, Fe, Pb. Many "
ce;ansucs(;rzi sermcqnductors, NaCl, CsCl, Simple cubic Body-centered Face-centered
LiF, Si, s cubic cubic

Body-centered
tetragonal

Tetragonal system
a=b#c Simple
a=p=y=90° tetragonal
In, Sn, barium titanate, TiO,
[
Orthorhombic system
azb#c
ncc % % %
S, U, P1, Ga (< 30°C), iodine, cementite
(Fe; C), sodium sulfate

Simple Body-centered Base-centered Face-centered
orthorhombic orthorhombic orthorhombic orthorhombic

Hexagonal system Rhombohedral system
a=b#c a=b=c ]
a=£=90°v=120° a=B=y#90
Cadmium, magnesium, zinc,

hite Arsenic, boron, bismuth, antimony,
grap Hexagonal mercury (< -39°C)

Monoclinic system

azb#c Triclinic system

a=p=90°%v=90° azb#c
a#fB#y#90°

oa-Selenium, phosphorus, p ium di
lithium sulfate, Simple Base-centered otassium dicromate

tin fluoride monoclinic monoclinic

e
R

s

Rhombohedral

3

Triclinic

Figure 1.72 The seven crystal systems (unitcell geometries) and fourteen Bravais lattices.
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symmetry. For Zn, the unit cell has hexagonal geometry witha = b # ¢, a = 8 = 90°,
and y = 120° as shown in Figure 1.33d. Based on different lattice parameters, there are
seven possible distinct unit-cell geometries, which we call crystal systems each with a
particular distinct symmetry. The seven crystal systems are depicted in Figure 1.72 with
typical examples. We are already familiar with the cubic and hexagonal systems. The
seven crystal systems only categorize the unit cells based on the geometry of the unit
cell and not in terms of the symmetry and periodicity of the lattice points. (One should
not confuse the unit-cell geometry with the lattice, which is a periodic array of points.) !
In the cubic system, for example, there are three possible distinct lattices corresponding j
to SC, BCC, and FCC which are shown in Figure 1.72. All three have the same cubic °
geometry:a =b=canda = 8 =y = 90°. |
Many distinctly different lattices, or distinct patterns of points, exist in three
dimensions. There are 14 distinct lattices whose unit cells have one of the seven
geometries as indicated in Figure 1.72. Each of these is called a Bravais lattice. The
copper crystal, for example, has the FCC Bravais lattice, but arsenic, antimony, and bis-
muth crystals have the rhombohedral Bravais lattice. Tin’s unit cell belongs to the |
tetragonal crystal system, and its crystal lattice is a body-centered tetragonal (BCT)
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DEFINING TERMS

Activated state is the state that occurs temporarily
during a transformation or reaction when the reactant
atoms or molecules come together to form a particular
arrangement (intermediate between reactants and
products) that has a higher potential energy than the re-
actants. The potential energy barrier between the acti-
vated state and the reactants is the activation energy.

Activation energy is the potential energy barrier
against the formation of a product. In other words, it is
the minimum energy that the reactant atom or mole-
cule must have to be able to reach the activated state
and hence form a product.

Amorphous solid is a solid that exhibits no crys-
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short-range order in the sense that the nearest neigh-
bors of an atom are well defined by virtue of chemical
bonding requirements.

Anion is an atom that has gained negative charge by
virtue of accepting one or more electrons. Usually,
atoms of nonmetallic elements can gain electrons eas-
ily to become anions. Anions become attracted to the
anode (positive terminal) in ionic conduction. Typical
anions are the halogen ions F~, Cl~, Br~,and I".

Atomic mass (or relative atomic mass or atomic
weight) M, of an element is the average atomic mass,
in atomic mass units (amu), of all the naturally occur-
ring isotopes of the element. Atomic masses are listed
in the Periodic Table. The amount of an element that
has 6.022 x 102 atoms (the Avogadro number of
atoms) has a mass in grams equal to the atomic mass.

Atomic mass unit (amu) is a convenient mass mea-
surement equal to one-twelfth of the mass of a neutral
carbon atom that has a mass number of A = 12 (6 pro-
tons and 6 neutrons). It has been found that amu =
1.66054 x 10?” kg, which is equivalent to 1073/N,,
where N, is Avogadro’s number.

Atomic packing factor (APF) is the fraction of vol-
ume actually occupied by atoms in a crystal.

Avogadro’s number (N,) is the number of atoms in
exactly 12 g of carbon-12. It is 6.022 x 10%. Since
atomic mass is defined as one-twelfth of the mass of
the carbon-12 atom, the N4 number of atoms of any
substance has a mass equal to the atomic mass My, in
grams.

Basis represents an atom, a molecule, or a collection
of atoms, that is placed at each lattice point to generate
the true crystal structure of a substance. All crystals are
thought of as a lattice with each point occupied by a
basis.

Bond energy or binding energy is the work (or en-
ergy) needed to separate two atoms infinitely from
their equilibrium separation in the molecule or solid.

Bulk modulus KX is volume stress (pressure) needed
per unit elastic volume strain and is defined by
p = —KA, where p is the applied volume stress (pres-
sure) and A is the volume strain. K indicates the extent
to which a body can be reversibly (and hence elasti-
cally) deformed in volume by an applied pressure.
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Cation is an atom that has gained positive charge by
virtue of losing one or more electrons. Usually, metal
atoms can lose electrons easily to become cations.
Cations become attracted to the cathode (negative ter-
minal) in ionic conduction, as in gaseous discharge.
The alkali metals, Li, Na, K, ..., easily lose their va-
lence electron to become cations, Lit, Na*, K*, ...

Coordination number is the number of nearest
neighbors around a given atom in the crystal.

Covalent bond is the sharing of a pair of valence
electrons between two atoms. For example, in H,, the
two hydrogen atoms share their electrons, so that each
has a closed shell.

Crystal is a three-dimensional periodic arrangement
of atoms, molecules, or ions. A characteristic property
of the crystal structure is its periodicity and a degree of
symmetry. For each atom, the number of neighbors and
their exact orientations are well defined; otherwise the
periodicity will be lost. Therefore, a long-range order
results from strict adherence to a well-defined bond
length and relative bond angle (that is, exact orienta-
tion of neighbors).

s Crystallization is a process by which crystals of a sub-
stance are formed from another phase of that substance.
Examples are solidification just below the fusion tem-
perature from the melt, or condensation of the molecules
from the vapor phase onto a substrate. The crystalliza-
tion process initially requires the formation of small
crystal nuclei, which contain a limited number (perhaps
10°-10*) of atoms or molecules of the substance.
Following nucleation, the nuclei grow by atomic diffu-
sion from the melt or vapor.

Diffusion is the migration of atoms by virtue of their
random thermal motions.

Diffusion coefficient is a measure of the rate at
which atoms diffuse. The rate depends on the nature of
the diffusion process and is typically temperature de-
pendent. The diffusion coefficient is defined as the
magnitude of diffusion flux per unit concentration
gradient.

Dislocation is a line imperfection within a crystal that
extends over many atomic distances.

Edge dislocation is a line imperfection within a crys-
tal that occurs when an additional, short plane of atoms
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does not extend as far as its neighbors. The edge of this
short plane constitutes a line of atoms where the bond-
ing is irregular, that is, a line of imperfection called an
edge dislocation.

Elastic modulus or Young’s modulus (Y) is a mea-
sure of the ease with which a solid can be elastically
deformed. The greater Y is, the more difficult it is to
deform the solid elastically. When a solid of length £ is
subjected to a tensile stress o (force per unit area), the
solid will extend elastically by an amount §¢ where
8£/¢ is the strain ¢. Stress and strain are related by
o = Ye,s0Y is the stress needed per unit elastic strain.

Electric dipole moment is formed when a positive
charge + Q is separated from a negative charge — Q of
equal magnitude. Even though the net charge is zero,
there is nonetheless an electric dipole moment formed
by the two charges —Q and + Q being separated by a
finite distance. Just as two charges exert a Coulombic
force on each other, two dipoles also exert an electro-
static force on each other that depends on the separa-
tion of dipoles and their relative orientation.

Electron affinity represents the energy that is needed
to add an electron to a neutral atom to create a negative
ion (anion). When an electron is added to Cl to form
Cl—, energy is actually released.

Electronegativity is a relative measure of the ability
of an atom to attract the electrons in a bond it forms
with another atom. The Pauling scale of electronega-
tivity assigns an electronegativity value (a pure num-
ber) X to various elements, the highest being 4 for F,
and the lowest values being for the alkali metal atoms,
for which X are less than 1. The difference X4 — Xp
in the electronegativities of two atoms A and B is a
measure of the polar or ionic character of the bond
A-B between A and B. A molecule A-B would be
polar, that is, possess a dipole moment, if X, and Xp
are different.

Equilibrium between two systems requires mechani-
cal, thermal, and chemical equilibrium. Mechanical
equilibrium means that the pressure should be the same
in the two systems, so that one does not expand at the
expense of the other. Thermal equilibrium implies that
both have the same temperature. Equilibrium within a
single-phase substance (e.g., steam only or hydrogen
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gas only) implies uniform pressure and temperature
within the system.

Equilibrium state of a system is the state in which
the pressure and temperature in the system are uniform
throughout. We say that the system possesses mechan-
ical and thermal equilibrium.

Eutectic composition is an alloy composition of two
elements that results in the lowest melting temperature
compared to any other composition. A eutectic solid has
a structure that is a mixture of two phases. The eutectic
structure is usually special, such as alternating lamellae.

Face-centered cubic (FCC) lattice is a cubic lattice
that has one lattice point at each corner of a cube and
one at the center of each face. If there is a chemical
species (atom or a molecule) at each lattice point, then
the structure is an FCC crystal structure.

Frenkel defect is an ionic crystal imperfection that
occurs when an ion moves into an interstitial site,
thereby creating a vacancy in its original site. The im-
perfection is therefore a pair of point defects.

Grain is an individual crystal within a polycrystalline
material. Within a grain, the crystal structure and ori-
entation are the same everywhere and the crystal is ori-
ented in one direction only.

Grain boundary is a surface region between differ-
ently oriented, adjacent grain crystals. The grain bound- .
ary contains a lattice mismatch between adjacent grains.

Heat is the amount of energy transferred from one sys-
tem to another (or between the system and its surround-
ings) as a result of a temperature difference. Heat is nota
new form of energy, but rather the transfer of energy
from one body to another by virtue of the random mo-
tions of their molecules. When a hot body is in contact
with a cold body, energy is transferred from the hot body
to the cold one. The energy that is transferred is the ex-
cess mean kinetic energy of the molecules in the hot
body. Molecules in the hot body have a higher mean ki-
netic energy and vibrate more violently. As a result of the
collisions between the molecules, there is a net transfer
of energy (heat) from the hot body to the cold one, until
the molecules in both bodies have the same mean kinetic
energy, that is, until their temperatures become equal.

Heat capacity at constant volume is the increase in the
total energy E of the system per degree increase in the



temperature of the system with the volume remaining
constant: C = (0 E/dT)y. Thus, the heat added to the
system does no mechanical work due to a volume
change but increases the internal energy. Molar heat
capacity is the heat capacity for 1 mole of a substance.
Specific heat capacity is the heat capacity per unit mass.

Interstitial site (interstice) is an unoccupied space
between the atoms (or ions, or molecules) in a crystal.

Ionization energy is the energy required to remove an
electron from a neutral atom; normally the most outer
electron that has the least binding energy to the nucleus
is removed to ionize an atom.

Isomorphous describes a structure that is the same
everywhere (from iso, uniform, and morphology,
structure).

Isotropic substance is a material that has the same
property in all directions.

Kinetic molecular theory assumes that the atoms and
molecules of all substances (gases, liquids, and solids)
above absolute zero of temperature are in constant
motion. Monatomic molecules (e.g., He, Ne) in a gas
exhibit constant and random translational motion,
whereas the atoms in a solid exhibit constant vibra-
tional motion.

Lattice is a regular array of points in space with a dis-
cernible periodicity. There are 14 distinct lattices pos-
sible in three-dimensional space. When an atom or
molecule is placed at each lattice point, the resulting
regular structure is a crystal structure.

Lattice parameters are (a) the lengths of the sides of
the unit cell, and (b) the angles between the sides.

Mechanical work is qualitatively defined as the en-
ergy expended in displacing a constant force through a
distarce. When a force F is moved a distance dx, work
done dW = F - dx. When we lift a body such as an
apple of mass m (100 g) by a distance # (1 m), we do
work by an amount F Ax = mgh (1J), which is then
stored as the gravitational potential energy of the
body. We have transferred energy from ourselves to
the potential energy of the body by exchanging energy
with it in the form of work. Further, in lifting the apple,
the molecules have been displaced in orderly fashion,
all upwards. Work therefore involves an orderly dis-
placement of atoms and molecules of a substance in
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complete contrast to heat. When the volume V of a
substance changes by dV when the pressure is P, the
mechanical work involved is P dV and is called the
PV work.

Metallic bonding is the binding of metal atoms in a
crystal through the attraction between the positive
metal ions and the mobile valence electrons in the
crystal. The valence electrons permeate the space be-
tween the ions.

Miller indices (hk{) are indices that conveniently
identify parallel planes in a crystal. Consider a plane
with the intercepts, x;, y;, and z;, in terms of lattice
parameters a, b, and c. (For a plane passing through
the origin, we shift the origin or use a parallel plane.)
Then, (hk¢) are obtained by taking the reciprocals of
X1, y1, and z; and clearing all fractions.

Miscibility of two substances is a measure of the mu-
tual solubility of those two substances when they are in
the same phase, such as liquid.

Mole of a substance is that amount of the substance
that contains N, number of atoms (or molecules),
where N, is Avogadro’s number (6.023 x 102%). One
mole of a substance has a mass equal to its atomic
(molecular) mass, in grams. For example, 1 mole of
copper contains 6.023 x 10?* atoms and has a mass of
63.55 g.

Phase of a system is a homogeneous portion of the
chemical system that has the same composition, struc-
ture, and properties everywhere. In a given chemical
system, one phase may be in contact with another phase
of the system. For example, iced water at 0 °C will have
solid and liquid phases in contact. Each phase, solid ice
and liquid water, has a distinct structure.

Phase diagram is a temperature versus composition
diagram in which the existence and coexistence of var-
ious phases are identified by regions and lines. Be-
tween the liquidus and solidus lines, for example, the
material is a heterogeneous mixture of the liquid and
solid phases.

Planar concentration of atoms is the number of
atoms per unit area on a given (hk£) plane in a crystal.

Polarization is the separation of positive and negative
charges in a system, which results in a net electric di-
pole moment.
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Polymorphism or allotropy is a material attribute
that allows the material to possess more than one crys-
tal structure. Each possible crystal structure is called a
polymorph. Generally, the structure of the polymorph
depends on the temperature and pressure, as well as on
the method of preparation of the solid. (For example,
diamond can be prepared from graphite by the applica-
tion of very high pressures.)

Primary bond is a strong interatomic bond, typically
greater then | eV/atom, that involves ionic, covalent, or
metallic bonding.

Property is a system characteristic or an attribute that
we can measure. Pressure, volume, temperature, mass,
energy, electrical resistivity, magnetization, polarization,
and color are all properties of matter. Properties such as
pressure, volume, and temperature can only be attributed
to a system of many particles (which we treat as a con-
tinuum). Note that heat and work are not properties of a
substance; instead, they represent energy transfers in-
volved in producing changes in the properties.

Saturated solution is a solution that has the maximum
possible amount of solute dissolved in a given amount
of solvent at a specified temperature and pressure.

Schottky defect is an ionic crystal imperfection that
occurs when a pair of ions is missing, that is, when
there is a cation and anion pair vacancy.

Screw dislocation is a crystal defect that occurs when
one portion of a perfect crystal is twisted or skewed with
respect to another portion on only one side of a line.

Secondary bond is a weak bond, typically less than
0.1 eV/atom, which is due to dipole—dipole interac-
tions between the atoms or molecules.

Solid solution is a homogeneous crystalline phase
that contains two or more chemical components.

Solute is the minor chemical component of a solution;
the component that is usually added in small amounts
to a solvent to form a solution.
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Solvent is the major chemical component of a solution.

Stoichiometric compounds are compounds with an
integer ratio of atoms, as in CaF,, in which two fluo-
rine atoms bond with one calcium atom.

Strain is a relative measure of the deformation a ma-
terial exhibits under an applied stress. Under an ap-
plied tensile (or compressive) stress, strain & is the
change in the length per unit original length. When a
shear stress is applied, the deformation involves a
shear angle. Shear strain is the tangent of the shear
angle that is developed by the application of the shear-
ing stress. Volume strain A is the change in the vol-
ume per unit original volume.

Stress is force per unit area. When the applied force
F is perpendicular to the area A, stress o0 = F/A is
either tensile or compressive. If the applied force is
tangential to the area, then stress is shear stress,
T =F/A.

Thermal expansion is the change in the length or vol-
ume of a substance due to a change in the temperature.
Linear coefficient of thermal expansion A is the
fractional change in the length per unit temperature
change or AL/L, = A AT. Volume coefficient of ex-
pansion «y is the fractional change in the volume per
unit temperature change; ay ~ 3A.

Unit cell is the most convenient small cell in a crystal
structure that carries the characteristics of the crystal.
The repetition of the unit cell in three dimensions
generates the whole crystal structure.

Vacancy is a point defect in a crystal, where a nor-
mally occupied lattice site is missing an atom.
Valence electrons are the electrons in the outer shell
of an atom. Since they are the farthest away from the
nucleus, they are the first electrons involved in atom-
to-atom interactions.

Young’s modulus see elastic modulus.

QUESTIONS AND PROBLEMS

1.1 Virial theorem The Li atom has a nucleus with a +3e positive charge, which is surrounded by a full
1s shell with two electrons, and a single valence electron in the outer 2s subshell. The atomic radius of
the Li atom is about 0.17 nm. Using the Virial theorem, and assuming that the valence electron sees the
nuclear +3e shielded by the two 1s electrons. that is. a net charge of +e. estimate the ionization energy
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of Li (the energy required to free the 2s electron). Compare this value with the experimental value of
5.39 eV. Suppose that the actual nuclear charge seen by the valence electron is not +¢ but a little higher,
say +1.25e, due to the imperfect shielding provided by the closed 1s shell. What would be the new ion-
ization energy? What is your conclusion?

Atomic mass and molar fractions

a. Consider a multicomponent alloy containing N elements. If w), w2, ..., wy are the weight frac-
tions of components 1,2,..., N in the alloy and M, M,,..., My are the respective atomic
masses of the elements, show that the atomic fraction of the ith component is given by

o wi /M;
M= L0z N
M M My

b. Suppose that a substance (compound or an alloy) is composed of N elements, A, B, C, ... and
that we know their atomic (or molar) fractions na,npg, nc,.... Show that the weight fractions
wa, wg, Wc, ... are given by

WA = naMy
AT WAMa +ngMp +ncMc + -
ngMp
wp =

naMas +ngMp +ncMc + -+

¢. Consider the semiconducting II-VI compound cadmium selenide, CdSe. Given the atomic masses
of Cd and Se, find the weight fractions of Cd and Se in the compound and grams of Cd and Se
needed to make 100 grams of CdSe.

d. A Se-Te-P glass alloy has the composition 77 wt.% Se, 20 wt.% Te, and 3 wt.% P. Given their
atomic masses, what are the atomic fractions of these .constituents?

The covalent bond Consider the H; molecule in a simple way as two touching H atoms, as depicted
in Figure 1.73. Does this arrangement have a lower energy than two separated H atoms? Suppose that
electrons totally correlate their motions so that they move to avoid each other as in the snapshot in Fig-
ure 1.73. The radius r, of the hydrogen atom is 0.0529 nm. The electrostatic potential energy of two
charges Q| and @, separated by a distance r is given by Q) Q2/(4mwe,r). Using the virial theorem as in
Example 1.1 consider the following:

a. Calculate the total electrostatic potential energy PE of all the charges when they are arranged as
shown in Figure 1.73. In evaluating the PE of the whole collection of charges you must consider all
pairs of charges and, at the same time, avoid double counting of interactions between the same pair
of charges. The total PE is the sum of the following: electron 1 interacting with the proton at a dis-
tance r, on the left, proton at r, on the right, and electron 2 at a distance 2r, + electron 2 interact-
ing with a proton at r, and another proton at 3r, + two protons, separated by 2r,, interacting with
each other. Is this configuration energetically favorable?

b.  Given that in the isolated H atom the PE is 2 x (—13.6 eV), calculate the change in PE in going from

two isolated H atoms to the H, molecule. Using the virial theorem, find the change in the total energy
and hence the covalent bond energy. How does this compare with the experimental value of 4.51 eV?

Nucleus o f Nucleus

Figure 1.73 A simplified view of the covalent bond in H,.
Hydrogen Hydrogen A snapshot at one instant.
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Ionic bonding and CsCl  The potential energy E per Cs*—Cl~ pair within the CsCl crystal depends on
the interionic separation r in the same fashion as in the NaCl crystal,

M B
dre,r  r™

[1.38]

E(r)= -

where for CsCl, M = 1.763, B = 1.192 x 10~1% J m® or 7.442 x 10~5 eV (nm)°, and m = 9. Find
the equilibrium separation (r,) of the ions in the crystal and the ionic bonding energy, that is, the
ionic cohesive energy, and compare the latter value to the experimental value of 657 kJ mol~!.
Given that the ionization energy of Cs is 3.89 eV and the electron affinity of Cl (energy released
when an electron is added) is 3.61 eV, calculate the atomic cohesive energy of the CsCl crystal as
joules per mole.

Madelung constant If we were to examine the NaCl crystal in three dimensions, we would find that
each Na* ion has

6 CI™ ions as nearest neighbors at a distance r
12 Na' ions as second nearest neighbors at a distance r+/2
8 Cl1~ ions as third nearest neighbors at a distance /3
and so on. Show that the electrostatic potential energy of the Na* atom can be written as

2 2
E(r)=——i—-[6 12 8 m]=_eM

dre,r B -:/_5 + -ﬁ - dmre,r

where M, called the Madelung constant, is given by the summation in the square brackets for this par-
ticular ionic crystal structure (NaCl). Calculate M for the first three terms and compare it with
M = 1.7476, its value had we included the higher terms. What is your conclusion?

Bonding and bulk modulus In general, the potential energy E per atom, or per ion pair, in a crystal
as a function of interatomic (interionic) separation r can be written as the sum of an attractive PE and a
repulsive PE, .

E(r)=~%+;% [1.39]

where A and n are constants characterizing the attractive PE and B and m are constants characteriz-
ing the repulsive PE. This energy is minimum when the crystal is in equilibrium. The magnitude of
the minimum energy and its location r, define the bonding energy and the equilibrium interatomic
(or interionic) separation, respectively.

When a pressure P is applied to a solid, its original volume V|, shrinks to V by an amount
AV =V — V,. The bulk modulus K relates the volume strain AV/V to the applied pressure P by

AV

P=-K
Vo

[1.40]

The bulk modulus X is related to the energy curve. In its simplest form (assuming a simple cubic
unit cell) K can be estimated from Equation 1.39 by

1 | d?E
K = %[m]r_r [].4]]

where c is a numerical factor, of the order of unity, given by b/ p where p is the number of atoms or ion
pairs in the unit cell and b is a numerical factor that relates the cubic unit cell lattice parameter a, to the
equilibrium interatomic (interionic) separation 7, by b = a2 /r3.

a. Show that the bond energy and equilibrium separation are given by

1/(m—n)
E A i n and Bm
. -_—— rn = —
bond ry m ° An
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b.  Show that the bulk modulus is given by

An mnEpond

K = m-—n or K =
9crhit3 ( )

9cr?

c.  For a NaCl-type crystal, Na* and CI~ ions touch along the cube edge so that r, = (a,/2). Thus,
a’ = 23r3 and b=23=8. There are four ion pairs in the unit cell, p =4. Thus,
¢ =b/p = 8/4 = 2. Using the values from Example 1.2, calculate the bulk modulus of NaCl.

Van der Waals bonding Below 24.5 K, Ne is a crystalline solid with an FCC structure. The inter-
atomic interaction energy per atom can be written as

6 12
EGr) = —2¢ [14.45 ("7) ~12.13 (%) ] (eV/atom)

where ¢ and o are constants that depend on the polarizability, the mean dipole moment, and the extent
of overlap of core electrons. For crystalline Ne, ¢ = 3.121 x 1073 eV and o = 0.274 nm.

a. Show that the equilibrium separation between the atoms in an inert gas crystal is given by
ro = (1.090)0 . What is the equilibrium interatomic separation in the Ne crystal?

b. Find the bonding energy per atom in solid Ne.
¢. Calculate the density of solid Ne (atomic mass = 20.18).

Kinetic molecular theory

a. Inaparticular Ar-ion laser tube the gas pressure due to Ar atoms is about 0.1 torr at 25 °C when the
laser is off. What is the concentration of Ar atoms per cm? at 25 °C in this laser? (760 torr = 1 atm =
1.013 x 10° Pa.)

b. In the He—Ne laser tube He and Ne gases are mixed and sealed. The total pressure P in the gas is
given by contributions arising from He and Ne atoms:

P = Phe 't Pre

where Py and Pne are the partial pressures of He and Ne in the gas mixture, that is, pressures due to
He and Ne gases alone,

() = ()

NA Vv NA |4

In a particular He-Ne laser tube the ratio of He and Ne atoms is 7:1, and the total pressure is about 1 torr
at 22 °C. Calculate the concentrations of He and Ne atoms in the gas at 22 °C. What is the pressure at an
operating temperature of 130 °C?

Kinetic molecular theory Calculate the effective (rms) speeds of the He and Ne atoms in the He-Ne
gas laser tube at room temperature (300 K).

Kinetic molecular theory and the Ar-ion laser An argon-ion laser has a laser tube that contains Ar
atoms that produce the laser emission when properly excited by an electrical discharge. Suppose that the
gas temperature inside the tube is 1300 °C (very hot).

a. Calculate the mean speed (vay), rms velocity (Vrms = \/v__z), and the rms speed (Vs x = \/;é)
in one particular direction of the Ar atoms in the laser tube, assuming 1300 °C . (See Exam-
ple 1.10.)

b. Consider a light source that is emitting waves and is moving toward an observer, somewhat like a
whistling train moving toward a passenger. If f, is the frequency of the light waves emitted at the
source, then, due to the Doppler effect, the observer measures a higher frequency f that depends on
the velocity var of the source moving toward the observer and the speed ¢ of light,

f=fo(1+3"—‘)
C
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It is the Ar ions that emit the laser output light in the Ar-ion laser. The emission wavelength A, = ¢/f,
is 514.5 nm. Calculate the wavelength A registered by an observer for those atoms that are moving with
a mean speed v,y toward the observer. Those atoms that are moving away from the observer will result
in a lower observed frequency because va, will be negative. Estimate the width of the wavelengths (the
difference between the longest and shortest wavelengths) emitted by the Ar-ion laser.

Vacuum deposition Consider air as composed of nitrogen molecules N».

a.

What is the concentration n (number of molecules per unit volume) of N2 molecules at 1 atm and
27°C?

Estimate the mean separation between the N, molecules.

Assume each molecule has a finite size that can be represented by a sphere of radius ». Also as-
sume that £ is the mean free path, defined as the mean distance a molecule travels before col-
liding with another molecule, as illustrated in Figure 1.74a. If we consider the motion of one N;
molecule, with all the others stationary, it is apparent that if the path of the traveling molecule
crosses the cross-sectional area S = 7(2r)?, there will be a collision. Since ¢ is the mean dis-
tance between collisions, there must be at least one stationary molecule within the volume S¢,

§=m(2r) (a) A molecule moving with a
velocity v travels a mean distance
Any molecule with ¢ hetween collisions. Since the
center in § gets hit. ¢ollision cross-sectional area is S,
Molecule in the volume $¢ there must be at
least one molecule.
Consequently, n(S¢) = 1.

Semiconductor

Evaporated T fMetal fil
metal atoms
Hot
Vacuum filament
Vacuumi®jl
pump

(b) Vacuum deposition of metal
electrodes by thermal evaporation.

Figure 1.74

Walter Houser Brattain (1902-1987), experimenting with metal contacts on copper oxide (1935)
at Bell Telephone Labs. A vacuum evaporation chamber is used to deposit the metal electrode.

| SOURCE: Bell Telephone Laboratories, courtesy AIP Emilio Segré Visual Archives.
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as shown in Figure 1.74a. Since n is the concentration, we must have n(S€) =1 or
£=1/ (7t4r2n). However, this must be corrected for the fact that all the molecules are in motion,
which only introduces a numerical factor, so that

1

b= —————
2124 7r2n

Assuming a radius r of 0.1 nm, calculate the mean free path of N, molecules between collisions at
27 °C and 1 atm.

Assume that an Au film is to be deposited onto the surface of a Si chip to form metallic interconnec-
tions between various devices. The deposition process is generally carried out in a vacuum chamber
and involves the condensation of Au atoms from the vapor phase onto the chip surface. In one pro-
cedure, a gold wire is wrapped around a tungsten filament, which is heated by passing a large current
through the filament (analogous to the heating of the filament in a light bulb) as depicted in Fig-
ure 1.74b. The Au wire melts and wets the filament, but as the temperature of the filament increases,
the gold evaporates to form a vapor. Au atoms from this vapor then condense onto the chip surface,
to solidify and form the metallic connections. Suppose that the source (filament)-to-substrate (chip)
distance L is 10 cm. Unless the mean free path of air molecules is much longer than L, collisions
between the metal atoms and air molecules will prevent the deposition of the Au onto the chip sur-
face. Taking the mean free path £ to be 100L, what should be the pressure inside the vacuum system?
(Assume the same r for Au atoms.)

Heat capacity

a.

Calculate the heat capacity per mole and per gram of N; gas, neglecting the vibrations of the mole-
cule. How does this compare with the experimental value of 0.743 J g=! K~!?

Calculate the heat capacity per mole and per gram of CO;, gas, neglecting the vibrations of the
molecule. How does this compare with the experimental value of 0.648 J K=! g~!? Assume that
the CO; molecule is linear (O—C-0) so that it has two rotational degrees of freedom.

Based on the Dulong-Petit rule, calculate the heat c.apacity per mole and per gram of solid silver.
How does this compare with the experimental value of 0.235J K~! g1

Based on the Dulong—Petit rule, calculate the heat capacity per mole and per gram of the silicon
crystal. How does this compare with the experimental value of 0.71 J K=! g=1?

Dulong-Petit atomic heat capacity Express the Dulong—Petit rule for the molar heat capacity as
heat capacity per atom and in the units of eV K~! per atom, called the atomic heat capacity. Csl is
an ionic crystal used in optical applications that require excellent infrared transmission at very long
wavelengths (up to 55 pum). It has the CsCl crystal structure with one Cs* and one I~ ion in the unit
cell. Given the density of CsI as 4.51 g cm™3, calculate the specific heat capacity of CsI and com-
pare it with the experimental value of 0.2 J K~! g~!. What is your conclusion?

Dulong-Petit specific heat capacity of alloys and compounds

a.

Consider an alloy AB, such as solder, or a compound material such as MgO, composed of na,
atomic fractions of A, and n g, atomic fractions of B. (The atomic fraction of A is the same as its
molar fraction.) Let M4 and Mp be the atomic weights of A and B,ing mol~!. The mean atomic
weight per atom in the alloy or compound is then

M=n AMAo +npMp
Show that the Dulong—Petit rule for the specific heat capacity ¢, leads to

Cnm 25 Lo
¢ =— = —————— JK
T M naMs+npMp g

Calculate the specific heat capacity of Pb—Sn solder assuming that its composition is 38 wt.% Pb
and 62 wt.% Sn.
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c.  Calculate the specific heat capacities of Pb and Sn individually as c;4 and c;p, respectively, and
then calculate the c; for the alloy using

Cs = CsAWA + CspwpB
where w4 and wp are the weight fractions of A (Pb) and B (Sn) in the alloy (solder). Compare your

result with part (a). What is your conclusion?

d. ZnSe is an important optical material (used in infrared windows and lenses and high-power CO,
laser optics) and also an important II-VI semiconductor that can be used to fabricate blue-green
laser diodes. Calculate the specific heat capacity of ZnSe, and compare the calculation to the
experimental value of 0.345 J K~! g~!.

Thermal expansion

a. If A is the thermal expansion coefficient, show that the thermal expansion coefficient for an area is
2). Consider an aluminum square sheet of area 1 cm?. If the thermal expansion coefficient of Al at
room temperature (25 °C) is about 24 x 1076 K~!, at what temperature is the percentage change
in the area +1%?

b. A particular incandescent light bulb (100 W, 120 V) has a tungsten (W) filament of length 57.9 cm

- and a diameter of 63.5 pm. Calculate the length of the filament at 2300 °C, the approximate oper-

ating temperature of the filament inside the bulb. The linear expansion coefficient A of W is approx-
imately 4.50 x 107® K~ at 300 K. How would you improve your calculation?

Thermal expansion of Si  The expansion coefficient of silicon over the temperature range 120-1500 K
is given by Okada and Tokumaru (1984) as
A= 3725 x 1076[1 — ¢37Bx107°(T~124) 4 5,548 » 107107

where A is in K~! (or °C~!) and T is in kelvins.
a. By expanding the above function around 20 °C (293 K) show that,

A = 2.5086 x 19-6 + (8.663 x 107°)(T — 293) — (2.3839 x 107 11)(T — 293)?
b.  The change 8p in the density due to a change 87 in the temperature, from Example 1.5, is given by
8p = —poay 8T = —3p,A 8T
Given the density of Si as 2.329 g cm™3 at 20 °C, calculate the density at 1000 °C by using the full

expression and by using the polynomials expansion of A. What is your conclusion?

Thermal expansion of GaP and GaAs

a. GaP has the zinc blende structure. The linear expansion coefficient in GaP has been measured as
follows: A = 4.65 x 1076 K~! at 300 K; 5.27 x 107® K~! at 500 K; 5.97 x 10~ K~! at 800 K.
Calculate the coefficients, A, B, and C in

dL

— — — — 2 .o
LodT—A(T)-—A+B(T T,)+C(T -T,)" +

where T, = 300 K. The lattice constant of GaP, a, at 27 °C is 0.5451 nm. Calculate the lattice con-
stant at 300 °C.

b.  The linear expansion coefficient of GaAs over 200-1000 K is given by
A=4.25x107% + (5.82 x 107%)T — (2.82 x 10~12)T2

where T is in kelvins. The lattice constant a at 300 K is 0.56533 nm. Calculate the lattice constant
and the density at —40°C.

Electrical noise Consider an amplifier with a bandwidth B of 5 kHz, corresponding to a typical
speech bandwidth. Assume the input resistance of the amplifier is | MQ2. What is the rms noise voltage
at the input? What will happen if the bandwidth is doubled to 10 kHz? What is your conclusion?
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Thermal activation A certain chemical oxidation process (e.g., SiO;) has an activation energy of
2eVatom™'.

a. Consider the material exposed to pure oxygen gas at a pressure of 1 atm at 27 °C. Estimate how
many oxygen molecules per unit volume will have energies in excess of 2 eV? (Consider the
numerical integration of Equation 1.24.)

b. If the temperature is 900 °C, estimate the number of oxygen molecules with energies more than
2 eV. What happens to this concentration if the pressure is doubled?

Diffusion in Si The diffusion coefficient of boron (B) atoms in a single crystal of Si has been
measured to be 1.5 x 10718 m? s~! at 1000 °C and 1.1 x 10716 m? s~ at 1200 °C.

a. What is the activation energy for the diffusion of B, in eV/atom?
b. What is the preexponential constant D, ?

¢.  What is the rms distance (in micrometers) diffused in 1 hour by the B atom in the Si crystal at
1200 °C and 1000 °C?

d.  The diffusion coefficient of B in polycrystalline Si has an activation energy of 2.4-2.5 eV/atom and
D, = (1.5-6) x 107 m? s~1. What constitutes the diffusion difference between the single crys-
tal sample and the polycrystalline sample?

Diffusion in SiO, The diffusion coefficient of P atoms in SiO; has an activation energy
of 2.30 eV/atom and D, = 5.73 x 10~° m? s~!, What is the rms distance diffused in 1 hour by P atoms
in SiO; at 1200 °C?

BCC and FCC crystals

a. Molybdenum has the BCC crystal structure, a density of 10.22 g cm™3, and an atomic mass of
95.94 g mol~!. What is the atomic concentration, lattice parameter @, and atomic radius of molyb-
denum?

b. Gold has the FCC crystal structure, a density of 19.3 g cm™3, and an atomic mass of 196.97 g
mol~!. What is the atomic concentration, lattice paraméter @, and atomic radius of gold?

BCC and FCC crystals

a. Tungsten (W) has the BCC crystal structure. The radius of the W atom is 0.1371 nm. The atomic
mass of W is 183.8 amu (g mol™!). Calculate the number of W atoms per unit volume and density
of W.

b. Platinum (Pt) has the FCC crystal structure. The radius of the Pt atom is 0.1386 nm. The atomic
mass of Pt is 195.09 amu (g mol~!). Calculate the number of Pt atoms per unit volume and density
of Pt.

Planar and surface concentrations Niobium (Nb) has the BCC crystal with a lattice parameter
a = 0.3294 nm. Find the planar concentrations as the number of atoms per nm? of the (100), (110), and
(111) planes. Which plane has the most concentration of atoms per unit area? Sometimes the number of
atoms per unit area ngface On the surface of a crystal is estimated by using the relation ngyrface = nﬁl/l?k,
where npyx is the concentration of atoms in the bulk. Compare ngyface values with the planar concen-
trations that you calculated and comment on the difference. [Note: The BCC (111) plane does not cut
through the center atom and the (111) has one-sixth of an atom at each corner.]

Diamond and zinc blende Si has the diamond and GaAs has the zinc blende crystal structure. Given
the lattice parameters of Si and GaAs, @ = 0.543 nm and a = 0.565 nm, respectively, and the atomic
masses of Si, Ga, and As as 28.08, 69.73, and 74.92, respectively, calculate the density of Si and GaAs.
What is the atomic concentration (atoms per unit volume) in each crystal?

Zinc blende, NaCl, and CsCl

a. InAsisalll-V semiconductor that has the zinc blende structure with a lattice parameter of 0.606 nm.
Given the atomic masses of In (114.82 g mol™!) and As (74.92 g mol™!), find the density.

b.  CdO has the NaCl trystal structure with a lattice parameter of 0.4695 nm. Given the atomic masses
of Cd (112.41 g mol~!) and O (16.00 g mol~!), find the density.
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¢.  KCl has the same crystal structure as NaCl. The lattice parameter a of KCl is 0.629 nm. The atomic
masses of K and Cl are 39.10 g mol~! and 35.45 g mol~!, respectively. Calculate the density of KClI.

1.27  Crystallographic directions and planes Consider the cubic crystal system.
a. Show that the line [hk{] is perpendicular to the (hk¢) plane.
b.  Show that the spacing between adjacent (hk€) planes is given by

a

VRZ+ K2+ 2

1.28  Siand SiO,
a. Given the Si lattice parameter a = 0.543 nm, calculate the number of Si atoms per unit volume, in
-3
nm~.

b. Calculate the number of atoms per m? and per nm? on the (100), (110), and (111) planes in the Si
crystal as shown in Figure 1.75. Which plane has the most number of atoms per unit area?

c.  The density of SiO; is 2.27 g cm™3, Given that its structure is amorphous, calculate the number of
molecules per unit volume, in nm~3. Compare your result with (a) and comment on what happens
when the surface of an Si crystal oxidizes. The atomic masses of Si and O are 28.09 and 16, re-
spectively.

(100) plane (110) plane (111) plane

Figure 1.75 Diamond cubic crystal structure and planes.
Determine what portion of a black<olored atom belongs to the plane that is hatched.

1.29  Vacancies in metals

a. The energy of formation of a vacancy in the copper crystal is about 1 eV. Calculate the con-
centration of vacancies at room temperature (300 K) and just below the melting temperature,
1084 °C. Neglect the change in the density which is small.

b. The following table shows the energies of vacancy formation in various metals with close-packed
crystal structures and the melting temperature 7,,. Plot E;, in eV versus. T,, in kelvins, and explore
if there is a correlation between a and T,,. Some materials engineers take E, to be very roughly
10kT,,. Do you think that they are correct? (Justify.)

Metal
Al Ag Au Cu Mg Pt Pb Ni Pd
Crystal FCC FCC FCC FCC HCP FCC FCC FCC FCC

E, (evV) 070-0.76 1.0-1.1 0.90-098 1-1.28 0.89 1.3-1.5 050 1.63-1.79 1.54-1.85
T, CC) 660 962 1064 1085 650 1768 328 1455 1555
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Vacancies in silicon In device fabrication, Si is frequently doped by the diffusion of impurities
(dopants) at high temperatures, typically 950—-1200°C. The energy of vacancy formation in the Si crys-
tal is about 3.6 eV. What is the equilibrium concentration of vacancies in a Si crystal at 1000 °C? Ne-
glect the change in the density with temperature which is less than 1 percent in this case.

Pb-Sn solder Consider the soldering of two copper components. When the solder melts, it wets both
metal surfaces. If the surfaces are not clean or have an oxide layer, the molten solder cannot wet the sur-
faces and the soldering fails. Assume that soldering takes place at 250 °C, and consider the diffusion of
Sn atoms into the copper (the Sn atom is smaller than the Pb atom and hence diffuses more easily).

a.

The diffusion coefficient of Sn in Cu at two temperatures is D = 1.69 x 10~° cm? hr~! at 400 °C
and D = 2.48 x 10~7 cm? hr™! at 650 °C. Calculate the rms distance diffused by an Sn atom into
the copper, assuming the cooling process takes 10 seconds.

What should be the composition of the solder if it is to begin freezing at 250 °C?

What are the components (phases) in this alloy at 200 °C? What are the compositions of the phases
and their relative weights in the alloy?

What is the microstructure of this alloy at 25 °C? What are weight fractions of the & and B phases
assuming near equilibrium cooling?

Pb-Sn solder Consider 50% Pb—50% Sn solder.

a.

Sketch the temperature-time profile and the microstructure of the alloy at various stages as it is
cooled from the melt.

At what temperature does the solid melt?

What is the temperature range over which the alloy is a mixture of melt and solid? What is the
structure of the solid?

Consider the solder at room temperature following cooling from 182 °C. Assume that the rate of
cooling from 182 °C to room temperature is faster than the atomic diffusion rates needed to change
the compositions of the & and 8 phases in the solid. Assuming the alloy is 1 kg, calculate the masses
of the following components in the solid: .

1. The primary o.

2. « in the whole alloy.

3. « in the eutectic solid.

4. B in the alloy. (Where is the B-phase?)

Calculate the specific heat of the solder given the atomic masses of Pb (207.2) and Sn (118.71).

Walter Houser Brattain (1902-1987), one of the inventors of the
transistor, looking at a vacuum evaporator used for depositing metal film
electrodes on semiconductors (1937).

| SOURCE: AIP Emilio Segré Visual Archives, Brattain Collection.
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Highly magnified scanning electron microscope (SEM) view of

IBM's six-level copper interconnect technology in an integrated

circvit chip. The aluminum in transistor interconnections in a

silicon chip has been replaced by copper that has a higher
conductivity (by nearly 40%) and also a better ability to carry Ty
higher current densities without electromigration. Lower copper
interconnect resistance means higher speeds and lower RC

constants (1997).

I SOURCE: Courtesy of IBM Corporation.

SEM view of three levels of copper interconnect metallization in
IBM’s new faster CMOS integrated circuits (1997).

| SOURCE: Courtesy of IBM Corporation.




CHAPTER

2

Electrical
and

Thermal Conduction
in Solids

Electrical conduction involves the motion of charges in a material under the influence
of an applied electric field. A material can generally be classified as a conductor if it
contains a large number of “free” or mobile charge carriers. In metals, due to the na-
ture of metallic bonding, the valence electrons from the atoms form a sea of electrons
that are free to move within the metal and are therefore called conduction electrons. In
this chapter, we will treat the conduction electrons in metal as “free charges” that can
be accelerated by an applied electric field. In the presence of an electric field, the con-
duction electrons attain an average velocity, called the drift velocity, that depends on
the field, By applying Newton’s second law to electron motion and using such con-
cepts as mean free time between electron collisions with lattice vibrations, crystal de-
fects, impurities, etc., we will derive the fundamental equations that govern electrical
conduction in solids. A key concept will be the drift mobility, which is a measure of the
ease with which charge carriers in the solid drift under the influence of an external
electric field.

Good electrical conductors, such as metals, are also known to be good thermal
conductors. The conduction of thermal energy from higher to lower temperature re-
gions in a metal involves the conduction electrons carrying the energy. Consequently,
there is an innate relationship between the electrical and thermal conductivities, which
is supported by theory and experiments.

13
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CHAPTER 2 ¢ ELECTRICAL AND THERMAL CONDUCTION IN SOLIDS

2.1 CLASSICAL THEORY: THE DRUDE MODEL

2.1.1 METALS AND CONDUCTION BY ELECTRONS

The electric current density J is defined as the net amount of charge flowing across a
unit area per unit time, that is,

A
A At

where Agq is the net quantity of charge flowing through an area A in time A¢. Figure 2.1
shows the net flow of electrons in a conductor section of cross-sectional area A in the
presence of an applied field E,. Notice that the direction of electron motion is opposite
to that of the electric field E, and of conventional current, because the electrons experi-
ence a Coulombic force eE, in the x direction, due to their negative charge.

We know that the conduction electrons are actually moving around randomly' in
the metal, but we will assume that as a result of the application of the electric field Z,,
they all acquire a net velocity in the x direction. Otherwise, there would be no net flow
of charge through area A.

The average velocity of the electrons in the x direction at time ¢ is denoted v, (2).
This is called the drift velocity, which is the instantaneous velocity v, in the x direc-
tion averaged over many electrons (perhaps, ~102 m™3); that is

1
de = N[vx] + sz + vx3 + e + va] [2.]]

where v,; is the x direction velocity of the ith electron, and N is the number of
conduction electrons in the metal. Suppose that » is the number of electrons per unit
volume in the conductor (n = N/V). In time At, electrons move a distance
Ax = vy, At, so the total charge Ag crossing the area A is enA Ax. This is valid
because all the electrons within distance Ax pass through A; thus, n(A Ax) is the total
number of electrons crossing A in time At.
The current density in the x direction is
Ag enAvy, At
Jy = = = envyy
A At A At
This general equation relates J, to the average velocity v,, of the electrons. It must be
appreciated that the average velocity at one time may not be the same as at another
time, because the applied field, for example, may be changing: E, = E,(r). We there-
fore allow for a time-dependent current by writing

J (1) = envg, (t) [2.2]

To relate the current density J, to the electric field Z,, we must examine the effect
of the electric field on the motion of the electrons in the conductor. To do so, we will
consider the copper crystal.

" All the conduction electrons are “free” within the metal and move around randomly, being scattered from vibrating
metal ions, as we discuss in this chapter.
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«
A
Figure 2.1 Drift of electrons in a
> . .
conductor in the presence of an applied
J 6
o—> x electric field.
d
Electrons drift with an average velocity vy
o in the x direction.

The copper atom has a single valence electron in its 4s subshell, and this electron
is loosely bound. The solid metal consists of positive ion cores, Cu™, at regular sites,
in the face-centered cubic (FCC) crystal structure. The valence electrons detach them-
selves from their parents and wander around freely in the solid, forming a kind of elec-
tron cloud or gas. These mobile electrons are free to respond to an applied field, creat-
ing a current density J,. The valence electrons in the electron gas are therefore
conduction electrons.

The attractive forces between the negative electron cloud and the Cu* ions are re-
sponsible for metallic bonding and the existence of the solid metal. (This simplistic
view of metal was depicted in Figure 1.7 for copper.) The electrostatic attraction be-
tween the conduction electrons and the positive metal ions, like the electrostatic attrac-
tion between the electron and the proton in the hydrogen atom, results in the conduction
electron having both potential energy PE and kinetic energy KE. The conduction elec-
trons move about the crystal lattice in the same way that gas atoms move randomly in a
cylinder. Although the average KE for gas atoms is %kT s this is not the case for electrons
in a metal, because these electrons strongly interact with the metal ions and with each
other as a result of electrostatic interactions.

The mean KE of the conduction electrons in a metal is primarily determined
by the electrostatic interaction of these electrons with the positive metal ions and
also with each other. For most practical purposes, we will therefore neglect the
temperature dependence of the mean KE compared with other factors that control
the behavior of the conduction electrons in the metal crystal. We can speculate
from Example 1.1, that the magnitude of mean KE must be comparable to the
magnitude of the mean PE of electrostatic interaction? or, stated differently, to the
metal bond energy which is several electron volts per atom. If « is the mean speed
of the conduction electrons, then, from electrostatic interactions alone, we expect
im.u* to be several electron volts which means that « is typically ~10° m s™'. This
purely classical and intuitive reasoning is not sufficient, however, to show that the
mean speed u is relatively temperature insensitive and much greater than that
expected from kinetic molecular theory. The true reasons are quantum mechanical
and are discussed in Chapter 4. (They arise from what is called the Pauli exclusion
principle.)

2There is a theorem in classical mechanics called the virial theorem, which states that for a collection of particles,
the mean KE has half the magnitude of the mean PE if the only forces acting on the particles are such that they
follow an inverse square law dependence on the particle—particle separation [as in Coulombic and gravitational
forces).
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Vibrating Cu* jons

(a) A conduction electron in the electron gas moves (b) In the presence of an applied field, £, , there
about randomly in a metal (with a mean speed v) is a net drift along the x direction. This net drift
being fre uenﬂ);l and randomly scattered by along the force o? the field is superimposed on
thermal v(i‘brotions of the atoms. In the absence of the random motion of the electron. After many
an applied field there is no net drift in any direction.  scattering events the electron has been displaced

by a net distance, A x , from its initial position
toward the positive terminal.

Figure 2.2 Motion of a conduction electron in a metal.

In general, the copper crystal will not be perfect and the atoms will not be sta-
tionary. There will be crystal defects, vacancies, dislocations, impurities, etc., which
will scatter the conduction eltctrons. More importantly, due to their thermal energy,
the atoms will vibrate about their lattice sites (equilibrium positions), as depicted in
Figure 2.2a. An electron will not be able to avoid collisions with vibrating atoms;
consequently, it will be “scattered” from one atom to another. In the absence of an
applied field, the path of an electron may be visualized as illustrated in Figure 2.2a,
where scattering from lattice vibrations causes the electron to move randomly in the
lattice. On those occasions when the electron reaches a crystal surface, it becomes
“deflected” (or “bounced”) back into the crystal. Therefore, in the absence of a
field, after some duration of time, the electron crosses its initial x plane position
again. Over a long time, the electrons therefore show no net displacement in any one
direction.

When the conductor is connected to a battery and an electric field is applied to the
crystal, as shown in Figure 2.2b, the electron experiences an acceleration in the x
direction in addition to its random motion, so after some time, it will drift a finite dis-
tance in the x direction. The electron accelerates along the x direction under the action
of the force ¢Z,, and then it suddenly collides with a vibrating atom and loses the
gained velocity. Therefore, there is an average velocity in the x direction, which, if cal-
culated, determines the current via Equation 2.2. Note that since the electron experi-
ences an acceleration in the x direction, its trajectory between collisions is a parabola,
like the trajectory of a golf ball experiencing acceleration due to gravity.

To calculate the drift velocity vy, of the electrons due to applied field E,, we first
consider the velocity v,; of the ith electron in the x direction at time ¢. Suppose its last
collision was at time ¢;; therefore, for time (¢t — #;), it accelerated free of collisions, as
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Velocity gained along X Present time V2 — 4x2 Vi3 = Uy3
Vx1 — Ux)

Last collision
Electron 2

117

Electron 3

> time

- > time —> time
A Free time ¢ 1 t A

Figure 2.3 Velocity gained in the x direction at time t from the electric field (£,) for three electrons.
There will be N electrons to consider in the metal.

indicated in Figure 2.3. Let u,; be the velocity of electron i in the x direction just after
the collision. We will call this the initial velocity. Since eE,/m, is the acceleration of
the electron, the velocity v,; in the x direction at time ¢ will be

e’E
“(t — ;)
me

Ui = Uyxi +

However, this is only for the ith electron. We need the average velocity v, for all
such electrons along x. We average the expression fori = 1 to N electrons, as in Equa-
tion 2.1. We assume that immediately after a collision with a vibrating ion, the electron
may move in any random direction; that is, it can just as likely move along the nega-
tive or positive x, so that u,; averaged over many electrons is zero. Thus,

ek,

(t—1)

Vgxy = l[vxl + v+ + va] =
N n,
where (¢ — t;) is the average free time for N electrons between collisions.

Suppose that 7 is the mean free time, or the mean time between collisions (also
known as the mean scattering time). For some electrons, (¢ — ¢;) will be greater than
7, and for others, it will be shorter, as shown in Figure 2.3. Averaging (¢ — ¢;) for N
electrons will be the same as t. Thus, we can substitute t for (¢ — ¢;) in the previous
expression to obtain -

de = —Ex [2.3]

Equation 2.3 shows that the drift velocity increases linearly with the applied field.
The constant of proportionality et /m, has been given a special name and symbol. It is
called the drift mobility «,, which is defined as

de = ud fx [2.4]
where

et
Mg = — [2.5]
m e
Equation 2.5 relates the drift mobility of the electrons to their mean scattering
time t. To reiterate, t, which is also called the relaxation time, is directly related to

Drift velocity

Definition of
drift mobility

Drift mobility
and mean free
time
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the microscopic processes that cause the scattering of the electrons in the metal; that is,
lattice vibrations, crystal imperfections, and impurities, to name a few.

From the expression for the drift velocity vy, the current density J, follows im-
mediately by substituting Equation 2.4 into 2.2, that is,

Jy =enuyE, [2.6]

Therefore, the current density is proportional to the electric field and the conduc-
tivity o is the term multiplying £,, that is,

o =eniy [2.7]

It is gratifying that by treating the electron as a particle and applying classical me-
chanics (F = ma), we are able to derive Ohm’s law. We should note, however, that we
assumed 7 to be independent of the field.

Drift mobility is important because it is a widely used electronic parameter in
semiconductor device physics. The drift mobility gauges how fast electrons will drift
when driven by an applied field. If the electron is not highly scattered, then the mean
free time between collisions will be long, t will be large, and by Equation 2.5, the
drift mobility will also be large; the electrons will therefore be highly mobile and be
able to “respond” to the field. However, a large drift mobility does not necessarily
imply high conductivity, because o also depends on the concentration of conduction
electrons n.

The mean time between collisions t has further significance. Its reciprocal 1/t
represents the mean frequency of collisions or scattering events; that is, 1/t is the
mean probability per unit time that the electron will be scattered (see Example 2.1).
Therefore, during a small time interval §¢, the probability of scattering will be é¢/t.
The probability of scattering per unit time 1/t is time independent and depends only
on the nature of the electron scattering mechanism.

There is one important assumption in the derivation of the drift velocity v, in
Equation 2.3. We obtained v,, by averaging the velocities v,; of N electrons along x
at one instant, as defined in Equation 2.1. The drift velocity therefore represents the
average velocity of all the electrons along x at one instant; that is, v, is a number av-
erage at one instant. Figure 2.2b shows that after many collisions, after a time interval
At > t, an electron would have been displaced by a net distance Ax along x. The
term Ax/At represents the effective velocity with which the electron drifts along x. It
is an average velocity for one electron over many collisions, that is, over a long time
(hence, At > 1), so Ax/At is a time average. Provided that Ar contains many colli-
sions, it is reasonable to expect that the drift velocity Ax /At from the time average for
one electron is the same as the drift velocity v,, per electron from averaging for all
electrons at one instant, as in Equation 2.1, or

Ax
—_— v
At dx
The two velocities are the same only under steady-state conditions (At > t). The
proof may be found in more advanced texts.
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PROBABILITY OF SCATTERING PER UNIT TIME AND THE MEAN FREE TIME If 1/7 is defined QL 1413A

as the mean probability per unit time that an electron is scattered, show that the mean time be-
tween collisions is 7.

SOLUTION

Consider an infinitesimally small time interval dt at time ¢. Let N be the number of unscattered
electrons at time ¢. The probability of scattering during dt is (1/t) dt, and the number of scat-
tered electrons during dt is N(1/t) dt. The change dN in N is thus

1
dN = —N(—) dt
T

The negative sign indicates a reduction in N because, as electrons become scattered, N de-
creases. Integrating this equation, we can find N at any time ¢, given that at time ¢t = 0, Ny is
the total number of unscattered electrons. Therefore,

t
N =Ny exp(——)
T

This equation represents the number of unscattered electrons at time ¢. It reflects an expo-
nential decay law for the number of unscattered electrons. The mean free time 7 can be calcu-
lated from the mathematical definition of ¢,

- JJ tNdt
1=~ =
Jo Ndt
where we have used N = Ny exp(—t/t). Clearly, 1/t is the mean probability of scattering per
unit time.

Unscattered
electron
concentration

Mean free
time

ELECTRON DRIFT MOBILITY IN METALS Calculate the drift mobility and the mean scattering
time of conduction electrons in copper at room temperature, given that the conductivity of copper
is5.9 x 10° Q! cm™!. The density of copper is 8.96 g cm™ and its atomic mass is 63.5 g mol~".

SOLUTION

We can calculate 4, from o = enu, because we already know the conductivity o . The number
of free electrons n per unit volume can be taken as equal to the number of Cu atoms per unit
volume, if we assume that each Cu atom donates one electron to the conduction electron gas in
the metal. One mole of copper has N4 (6.02 x 10%*) atoms and a mass of 63.5 g. Therefore, the
number of copper atoms per unit volume is

dN,4
My

n=

where d = density = 8.96 g cm™3, and M,, = atomic mass = 63.5 (g mol™!). Substituting for
d,N,,and M,,, we find n = 8.5 x 10?? electrons cm™3.
The electron drift mobility is therefore

o 59x10°Qecm™!

R = on = (1.6 x 10- C)(8.5 x 102 cm-3)]

=434cm?V-lg-!

EXAMPLE 2.2
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From the drift mobility we can calculate the mean free time t between collisions by using
Equation 2.5,
_ pam, (434 x107*m? V71s7H(9.1 x 107 kg)

T = = 25x 107"
e 1.6 x 10~1°C

Note that the mean speed u of the conduction electrons is about 1.5 x 10® m s™!, so that
their mean free path is about 37 nm.

391141 %2 DRIFT VELOCITY AND MEAN SPEED What is the applied electric field that will impose a drift

velocity equal to 0.1 percent of the mean speed u(~10% m s~') of conduction electrons in
copper? What is the corresponding current density and current through a Cu wire of diameter
1 mm?

SOLUTION

The drift velocity of the conduction electrons is vy, = wsE,, where w4 is the drift mobility, which
for copper is 43.4 cm? V™! 57! (see Example 2.2). With vy, = 0.0014 = 10° ms~!, we have
o 103 -1
L T° =23x10°Vm~' or 230kVm~
L 43.4 x 10~ m2V-lg-1

This is an unattainably large electric field in a metal. Given the conductivity o of copper, the
equivalent current density is

Jy=0E=059%x10"Q 'mHR23x10°Vm™)
=14x10% Am™? or 1.4 x 107 A mm™2

This means a current of 1.1 x 107 A through a 1 mm diameter wire! It is clear from this
example that for all practical purposes, even under the highest working currents and volt-
ages, the drift velocity is much smaller than the mean speed of the electrons. Consequently,
when an electric field is applied to a conductor, for all practical purposes, the mean speed is
unaffected.

30111 X:R DRIFT VELOCITY IN A FIELD: A CLOSER LOOK There is another way to explain the observed

Distance
traversed
along x before
collision

dependence of the drift velocity on the field, and Equation 2.3. Consider the path of a conduc-
tion electron in an applied field £ as shown in Figure 2.4. Suppose that at time ¢ = 0 the elec-
tron has just been scattered from a lattice vibration. Let u,; be the initial velocity in the
x direction just after this initial collision (to which we assign a collision number of zero). We
will assume that immediately after a collision, the velocity of the electron is in a random direc-
tion. Suppose that the first collision occurs at time ¢#,. Since e¢E, /m, is the acceleration, the dis-
tance s, covered in the x direction during the free time #;, will be

1/eE
S| = Uxity + 5( - )tl2

€

At time t,, the electron collides with a lattice vibration (its first collision), and the velocity
is randomized again to become u,,. The whole process is then repeated during the next interval
which lasts for a free time ¢, and the electron traverses a distance s, along x, and so on. To find
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s Figure 2.4 The motion of a single
! electron in the presence of an electric
: field £. During a time interval 1, the

€ > electron traverses a distance s; along x.
s=Ax ‘ After p collisions, it has drifted a distance

f Distance drifted in total time At s=AX.

above distances sy, s, . .. for p free time intervals,

s=si+Sa+ 8, = (Ut + Uty + -+ Ugpt,] + %(ezx)[t12+t,2+-°-+t3] [2.8]
4

Since after a collision the “initial” velocity u, is always random, the first term has u, val-

ues that are randomly negative and positive, so for many collisions (large p) the first term on the

right-hand side of Equation 2.8 is nearly zero and can certainly be neglected compared with the

second term. Thus, after many collisions, the net distance s = Ax traversed in the x direction is

given by the second term in Equation 2.8, which is the electric field induced displacement term.
If £2is the mean square free time, then

s = = pt
2\ m,

= 1
where t2=;[t,2+t,2+---+tlf]

Suppose that 7 is the mean free time between collisions, where t = (¢, + 2, +--- +¢,)/p.
Then from straightforward elementary statistics it can be shown that 2 = 2(¢)? = 272, So in
terms of the mean free time t between collisions, the overall distance s = Ax drifted in the
x direction after p collisions is

5 (pt?)

S =
e

Further, since the total time At taken for these p scattering events is simpiy pt, the drift
velocity vy, is given by Ax/At ors/(prt), that is,

[2.9]

I
|
e

Vdx

This is the same expression as Equation 2.3, except that t is defined here as the average
free time for a single electron over a long time, that is, over many collisions, whereas previously
it was the mean free time averaged over many electrons. Further, in Equation 2.9 v,, is an
average drift for an electron over a long time, over many collisions. In Equation 2.1 v, is the

Distance
drifted after p
scattering
events

Mean square
free time
definition

Drift velocity
and mean free
time
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average velocity averaged over all electrons at one instant. For all practical purposes, the two
are equivalent. (The equivalence breaks down when we are interested in events over a time
scale that is comparable to one scattering, ~10~'* second.)

The drift mobility u, from Equation 2.9 is identical to that of Equation 2.5, u, = et/m,.
Suppose that the mean speed of the electrons (not the drift velocity) is u. Then an electron
moves a distance £ = ut in mean free time t, which is called the mean free path. The drift
mobility and conductivity become,

el e’nt

and o =enpy =
meu mou

Mg =

[2.10]

Equations 2.3 and 2.10 both assume that after each collision the velocity is randomized.
The scattering process, lattice scattering, is able to randomize the velocity in one single scatter-
ing. In general not all electron scattering processes can randomize the velocity in one scattering
process. If it takes more than one collision to randomize the velocity, then the electron is able to
carry with it some velocity gained from a previous collision and hence possesses a higher drift
mobility. In such cases one needs to consider the effective mean free path a carrier has to move

to eventually randomize the velocity gained; this is a point considered in Chapter 4 when we
calculate the resistivity at low temperatures.

2.2 TEMPERATURE DEPENDENCE OF RESISTIVITY:
IDEAL PURE METALS

When the conduction electrons are only scattered by thermal vibrations of the
metal ions, then 7 in the mobility expression u,; = et/m, refers to the mean time
between scattering events by this process. The resulting conductivity and rqsistivity
are denoted by o7 and pr, where the subscript T represents “thermal vibration scat-
tering.”

To find the temperature dependence of o, we first consider the. t‘emperature
dependence of the mean free time 7, since this determines the drift mobility. An elec-
tron moving with a mean speed u is scattered when its path crosses t.he Cross-
sectional area S of a scattering center, as depicted in Figure 2.5. The scattering center

Figure 2.5 Scattering of an electron from S = ma?
the thermal vibrations of the atoms. /

The electron travels a mean distance ¢ = vt
between collisions. Since the scattering cross-
sectional area is S, in the volume S¢ there
must be at least one scatterer, N, (Sut) = 1.

A vibrating
metal atom




EETR

2.2 TEMPERATURE DEPENDENCE OF RESISTIVITY: IDEAL PURE METALS

may be a vibrating atom, impurity, vacancy, or some other crystal defect. Since 7 is
the mean time taken for one scattering process, the mean free path ¢ of the electron
between scattering processes is ut. If N; is the concentration of scattering centers,
then in the volume S¢, there is one scattering center, that is, (Sut) N; = 1. Thus, the
mean free time is given by

1

= 2.11
SuN; 2.11

T

The mean speed u of conduction electrons in a metal can be shown to be only
slightly temperature dependent.® In fact, electrons wander randomly around in the
metal crystal with an almost constant mean speed that depends largely on their con-
centration and hence on the crystal material. Taking the number of scattering centers
per unit volume to be the atomic concentration, the temperature dependence of  then
arises essentially from that of the cross-sectional area S. Consider what a free electron
“sees” as it approaches a vibrating crystal atom as in Figure 2.5. Because the atomic
vibrations are random, the atom covers a cross-sectional area a2, where a is the am-
plitude of the vibrations. If the electron’s path crosses wa?, it gets scattered. Therefore,
the mean time between scattering events t is inversely proportional to the area wa?
that scatters the electron, that is, T & 1/wa?.

The thermal vibrations of the atom can be considered to be simple harmonic
motion, much the same way as that of a mass M attached to a spring. The average
kinetic energy of the oscillations is ;M a*w?, where w is the oscillation frequency.
From the kinetic theory of matter, this average kinetic energy must be on the order
of 2kT . Therefore,

%Maza)2 ~ %kT

s0 a? « T. Intuitively, this is correct because raising the temperature increases the am-
plitude of the atomic vibrations. Thus,

1 1 C
T X — X — or T=—
ma? T T

where C is a temperature-independent constant. Substituting for 7 in uy = et/m,, we
obtain

eC
m,T

MHa =

So, the resistivity of a metal is
1 1 m,T

Pr = =
or enuy e*nC

3 The fact that the mean speed of electrons in a metal is only weakly temperature dependent can be proved from
what it called the Fermi-Dirac stafistics for the collection of electrons in a metal (see Chapter 4). This result contrasts
sharply with the kinetic molecular theory of gases (Chapter 1), which predicts that the mean speed of molecules is
proportional to vT. For the time being, we simply use a constant mean speed v for the conduction electrons in a
metal,
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that is,

where A is a temperature-independent constant. This shows that the resistivity of a pure metal
wire increases linearly with the temperature, and that the resistivity is due simply to the scatter-
ing of conduction electrons by the thermal vibrations of the atoms. We term this conductivity
lattice-scattering-limited conductivity.

TEMPERATURE DEPENDENCE OF RESISTIVITY What is the percentage change in the resistance
of a pure metal wire from Saskatchewan’s summer to winter, neglecting the changes in the di-
mensions of the wire?

SOLUTION
Assuming 20 °C for the summer and perhaps —30 °C for the winter, from R o« p = AT, we have

Rsummer - Rwimer _ Tsummer - Twinter _ (20 + 273) - (—30 + 273)
Rsummer Tsummer (20 + 273)

= 0.171 or 17%

Notice that we have used the absolute temperature for 7. How will the outdoor cable power
losses be affected?

EXAMPLE 2.6

DRIFT MOBILITY AND RESISTIVITY DUE TO LATTICE VIBRATIONS Given that the mean speed
of conduction electrons in copper is 1.5 x 10° m s™! and the frequency of vibration of the cop-
per atoms at room temperature is about 4 x 10'2 s~!, estimate the drift mobility of electrons and

the conductivity of copper. The density d of copper is 8.96 g cm~3 and the atomic mass M, is
63.56 g mol~!.

SOLUTION

The method for calculating the drift mobility and hence the conductivity is based on evaluating
the mean free time 7 via Equation 2.11, that is, ¢ = 1/SuN;. Since 7 is due to scattering from
atomic vibrations, N, is the atomic concentration,

dN, _ (8.96 x 10° kg m™%)(6.02 x 10” mol ")
M, 63.56 x 10~3 kg mol ™!

=85x 10® m™3

N, =

The cross-sectional area S = wa? depends on the amplitude a of the thermal vibrations as
shown in Figure 2.5. The average kinetic energy KE,, associated with a vibrating mass M
attached to a spring is given by KE,, = ; Ma’w?, where w is the angular frequency of the
vibration (w = 274 x 102 rad s™!). Applying this equation to the vibrating atom and equating
the average kinetic energy KE,, to %kT, by virtue of equipartition of energy theorem, we have
a* = 2kT/Mw? and thus

., 2mkT 27(1.38 x 1072 JK~1)(300 K)

S=nma = —
Mw? (63.56 x 1073 kg mol

6.022 x 1023 mol~!

=3.9 x 107% m?

)(2:: x 4 x 1012 rad s~ )2
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Therefore,
I 1
SuN;, (3.9 x 1072 m?)(1.5 x 105 m s~1)(8.5 x 1028 m—3)
=2.0x 107"s
The drift mobility is
et (1.6 x 107 C)(2.0 x 107 ¥5)
Ha= . = (9.1 x 10~ kg)

=35x10m?V!ls ! =35cm?V-!s!

The conductivity is then
o =enuy = (1.6 x 107 C)(8.5 x 102 cm™3)(35cm?V~'s7h)
=48x10°Q 'em™!

The experimentally measured value for the conductivity is 5.9 x 10° Q7! cm™!, so our
crude calculation based on Equation 2.11 is actually only 18 percent lower, which is not bad for
an estimate. (As we might have surmised, the agreement is brought about by using reasonable
values for the mean speed « and the atomic vibrational frequency w. These values were taken
from quantum mechanical calculations, so our evaluation for T was not truly based on classical
concepts.)
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2.3.1 MATTHIESSEN’S RULE AND THE TEMPERATURE
COEFFICIENT OF RESISTIVITY ()

The theory of conduction that considers scattering from lattice vibrations only works
well with pure metals; unfortunately, it fails for metallic alloys. Their resistivities are
only weakly temperature dependent. We must therefore search for a different type of
scattering mechanism.

Consider a metal alloy that has randomly distributed impurity atoms. An electron
can now be scattered by the impurity atoms because they are not identical to the host
atoms, as illustrated in Figure 2.6. The impurity atom need not be larger than the host
atom; it can be smaller. As long as the impurity atom results in a local distortion of the
crystal lattice, it will be effective in scattering. One way of looking at the scattering
process from an impurity is to consider the scattering cross section. What actually
scatters the electron is a local, unexpected change in the potential energy PE of the
electron as it approaches the impurity, because the force experienced by the electron
is given by

_d(PE)
dx

F =

For example, when an impurity atom of a different size compared to the host atom is
placed into the crystal lattice, the impurity atom distorts the region around it, either by
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Strained region by impurity exerts a
scattering force F = — d(PE) /dx
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Figure 2.6 Two different types of QG g Gn Q ﬁ (_O) Q

. . . T
scattering processes involving T
scattering from impurities alone and g‘@g@* @’Q

from thermal vibrations alone.

pushing the host atoms farther away, or by pulling them in, as depicted in Figure 2.6.
The cross section that scatters the electron is the lattice region that has been elastically
distorted by the impurity (the impurity atom itself and its neighboring host atoms), so
that in this zone, the electron suddenly experiences a force F = —d(PE)/dx due to a
sudden change in the PE. This region has a large scattering cross section, since the dis-
tortion induced by the impurity may extend a number of atomic distances. These impu-
rity atoms will therefore hinder the motion of the electrons, thereby increasing the
resistance.

We now effectively have two types of mean free times between collisions: one, 17,
for scattering from thermal vibrations only, and the other, ;, for scattering from im-
purities only. We define 77 as the mean time between scattering events arising from
thermal vibrations alone and 7; as the mean time between scattering events arising
from collisions with impurities alone. Both are illustrated in Figure 2.6.

In general, an electron may be scattered by both processes, so the effective mean
free time 7 between any two scattering events will be less than the individual scatter-
ing times 77 and ;. The electron will therefore be scattered when it collides with either
an atomic vibration or an impurity atom. Since in unit time, 1/7 is the net probability
of scattering, 1/t is the probability of scattering from lattice vibrations alone, and
1/7; is the probability of scattering from impurities alone, then within the realm of
elementary probability theory for independent events, we have

1 1 1
= — = [2.13]
T r Tr

In writing Equation 2.13 for the various probabilities, we make the reasonable as-
sumption that, to a greater extent, the two scattering mechanisms are essentially inde-
pendent. Here, the effective mean scattering time 7 is clearly smaller than both 7 and
7;. We can also interpret Equation 2.13 as follows: In unit time, the overall number of
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collisions (1/7) is the sum of the number of collisions with thermal vibrations alone
(1/77) and the number of collisions with impurities alone (1/1;).

The drift mobility u,; depends on the effective scattering time 7 via uy = et/m,,
so Equation 2.13 can also be written in terms of the drift mobilities determined by the
various scattering mechanisms. In other words,

1 1 1
—_— = — 4 — [2.14]

7] KL  HKr

where w1, is the lattice-scattering-limited drift mobility, and w; is the impurity-
scattering-limited drift mobility. By definition, u; = ety /m, and u; = et;/m,.
The effective (or overall) resistivity p of the material is simply 1/enu4, or
1 1 1
+

enplyq enur enuj

which can be written
p = P01 <+ Pr [2.]5]

where 1/enp is defined as the resistivity due to scattering from thermal vibrations,
and 1/enpu is the resistivity due to scattering from impurities, or

1 1
T = and Pr =
enpr enpy

The final result in Equation 2.15 simply states that the effective resistivity p is the
sum of two contributions. First, oy = 1/enu [ is the resistivity due to scattering by ther-
mal vibrations of the host atoms. For those near-perfect pure metal crystals, this is the
dominating contribution. As soon as we add impurities, however, there is an additional
resistivity, p; = 1/enu, which arises from the scattering of the electrons from the im-
purities. The first term is temperature dependent because 77 oc T~ (see Section 2.2),
but the second term is not.

The mean time 7; between scattering events involving electron collisions with im-
purity atoms depends on the separation between the impurity atoms and therefore on
the concentration of those atoms (see Figure 2.6). If £, is the mean separation between
the impurities, then the mean free time between collisions with impurities alone will be
£;/u, which is temperature independent because £; is determined by the impurity con-
centration N; (i.e., £ = N, 1 3), and the mean speed of the electrons u is nearly con-
stant in a metal. In the absence of impurities, 7; is infinitely long, and thus p; = 0. The
summation rule of resistivities from different scattering mechanisms, as shown by
Equation 2.15, is called Matthiessen’s rule.

There may also be electrons scattering from dislocations and other crystal defects,
as well as from grain boundaries. All of these scattering processes add to the resistiv-
ity of a metal, just as the scattering process from impurities. We can therefore write the
effective resistivity of a metal as

P = pr + Pr [2.16]
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where pp is called the residual resistivity and is due to the scattering of electrons by
impurities, dislocations, interstitial atoms, vacancies, grain boundaries, etc. (which
means that pr also includes p;). The residual resistivity shows very little temperature
dependence, whereas pr = AT, so the effective resistivity p is given by

p~ AT + B [2.17]

where A and B are temperature-independent constants.

Equation 2.17 indicates that the resistivity of a metal varies almost linearly with
the temperature, with A and B depending on the material. Instead of listing A and B in
resistivity tables, we prefer to use a temperature coefficient that refers to small, nor-
malized changes around a reference temperature. The temperature coefficient of
resistivity (TCR) «y is defined as the fractional change in the resistivity per unit tem-
perature increase at the reference temperature 7y, that is,

1760
o = —[—’iJ [2.18]
polLdT T=T,

where p is the resistivity at the reference temperature Ty, usually 273 K (0 °C) or
293 K (20°C), and 8p = p — py is the change in the resistivity due to a small increase
in temperature, 7 = T — Ty.

When the resistivity follows the behavior p ~ AT + B in Equation 2.17, then
according to Equation 2.18, «y is constant over a temperature range Ty to 7, and Equa-
tion 2.18 leads to the well-known equation,

p = poll + ao(T — Tp)] [2.19]

Equation 2.19 is actually only valid when «q is constant over the temperature
range of interest, which requires Equation 2.17 to hold. Over a limited temperature
range, this will usually be the case. Although it is not obvious from Equation 2.19,
we should note that «y depends on the reference temperature Ty, by virtue of pg |
depending on Tj.

The equation p = AT, which we used for pure-metal crystals to find the change
in the resistance with temperature, is only approximate; nonetheless, for pure metals,
it is useful to recall in the absence of tabulated data. To determine how good the '
formula p = AT is, put it in Equation 2.19, which leads to a¢ = To‘l. If we take the
reference temperature Ty as 273 K (0 °C), then «y is simply 1/273 K stated differently,
Equation 2.19 is then equivalent to p = AT.

Table 2.1 shows that p o T is not a bad approximation for some of the familiar
pure metals used as conductors (Cu, Al, Au, etc.), but it fails badly for others, such as
indium, antimony, and, in particular, the magnetic metals, iron and nickel.

The temperature dependence of the resistivity of various metals is shown in Fig-
ure 2.7, where it is apparent that except for the magnetic materials, such as iron and
nickel, the linear relationship p « T seems to be approximately obeyed almost all the
way to the melting temperature for many pure metals. It should also be noted that for
the alloys, such as nichrome (Ni—Cr), the resistivity is essentially dominated by the
residual resistivity, so the resistivity is relatively temperature insensitive, with a very
small TCR.
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Table 2.1 Resistivity, thermal coefficient of resistivity g at 273 K (0 °C) for various metals. The
resistivity index n in p o T" for some of the metals is also shown.

Metal po (N2 m) oo (%) n Comment
Aluminum, Al 25.0 L 1.20
233
Antimony, Sb 38 T—;a 1.40
Copper, Cu 15.7 5—;;5 1.15
Gold, Au 228 —Z%—T 1.11
Indium, In 78.0 i—;-é 1.40
Platinum, Pt 98 i—;—s— 0.94
Silver, Ag 14.6 51—4— 1.11
Tantalum, Ta 117 ?;—4- 0.93
Tin, Sn 110 51—7 1.11
Tungsten, W 50 5%6 1.20
Iron, Fe 84.0 —1—:5 1.80 Magnetic metal; 273 < T < 1043 K
Nickel, Ni 59.0 T;—S 1.72 Magnetic metal; 273 < T < 627K

| SOURCE: Data were extracted and combined from several sources. Typical values.

Frequently, the resistivity versus temperature behavior of pure metals can be
empirically represented by a power law of the form

T1" Resistivity of
p=~p 0[_]7(;] [2.20] pure metals

where po is the resistivity at the reference temperature Ty, and » is a characteristic
index that best fits the data. Table 2.1 lists some typical n values for various pure met-
als above 0 °C. It is apparent that for the nonmagnetic metals, n is close to unity,
whereas it is closer to 2 than 1 for the magnetic metals Fe and Ni. In iron, for example,
the conduction electron is not scattered simply by atomic vibrations, as in copper, but
is affected by its magnetic interaction with the Fe ions in the lattice. This leads to a
complicated temperature dependence.

Although our oversimplified theoretical analysis predicts a linear p = AT + B
behavior for the resistivity down to the lowest temperatures, this is not true in reality,
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Figure 2.7 The resistivity of various metals as a function of temperature
above 0 °C.

Tin melts at 505 K, whereas nickel and iron go through a magnetic-to-
nonmagnetic (Curie) transformation at about 627 K and 1043 K, respectively.
The theoretical behavior (o ~ T) is shown for reference.

SOURCE: Data selectively extracted from various sources, including sections in Metals
Handbook, 10th ed., 2 and 3. Metals Park, Ohio: ASM, 1991.

as depicted for copper in Figure 2.8. As the temperature decreases, typically below
~100 K for many metals, our simple and gross assumption that all the atoms are
vibrating with a constant frequency fails. Indeed, the number of atoms that are vibrat-
ing with sufficient energy to scatter the conduction electrons starts to decrease rapidly
with decreasing temperature, so the resistivity due to scattering from thermal vibra-
tions becomes more strongly temperature dependent. The mean free time t = 1/SuN;
becomes longer and strongly temperature dependent, leading to a smaller resistivity
than the p o« T behavior. A full theoretical analysis, which is beyond the scope of this
chapter, shows that p oc T>. Thus, at the lowest temperature, from Matthiessen’s rule,
the resistivity becomes p = DT> + pg, where D is a constant. Since the slope of p ver-
sus T isdp/dT = 5DT*, which tends to zero as T becomes small, we have p curving
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Figure 2.8 The resistivity of copper from lowest to highest temperatures (near
melting temperature, 1358 K) on a log-log plot.

Above about 100 K, p o T, whereas at low temperatures, p « T°, and at the lowest
temperatures p approaches the residual resistivity pg. The inset shows the p vs. T
behavior below 100 K on a linear plot. {0 is too small on this scale.)

toward pgr as T decreases toward O K. This is borne out by experiments, as shown in
Figure 2.8 for copper. Therefore, at the lowest temperatures of interest, the resistivity
is limited by scattering from impurities and crystal defects.*
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MATTHIESSEN’S RULE Explain the typical resistivity versus temperature behavior of annealed
and cold-worked (deformed) copper containing various amounts of Ni as shown in Figure 2.9.

SOLUTION

When small amounts of nickel are added to copper, the resistivity increases by virtue of
Matthiessen’s rule, p = pr + pr + p1, Where pr is the resistivity due to scattering from ther-
mal vibrations; pg is the residual resistivity of the copper crystal due to scattering from crystal
defects, dislocations, trace impurities, etc.; and p; is the resistivity arising from Ni addition

4 At sufficiently low temperatures (typically, below 10-20 K for many metals and below ~135 K for certain
ceramics) certain materials exhibit superconductivity in which the resistivity vanishes (o = 0}, even in the presence of
impurities and crystal defects. Superconductivity and its quantum mechanical origin will be explained in Chapter 8.

EXAMPLE 2.7
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Figure 2.9 Typical temperature
dependence of the resistivity of
annealed and cold-worked (deformed)
copper containing various amounts of
Ni in atomic percentage.

CHAPTER 2 ¢ ELECTRICAL AND THERMAL CONDUCTION IN SOLIDS

60 _
Cu-3.32%Ni
o Cu-2.16%Ni
40 —
@ — Cu-1.12%Ni (Deformed)
2 Cu-1.12%Ni
>
2 | 100%Cu (Deformed)
=2 —100%Cu (Annealed)

SOURCE: Data adapted from J.O. Linde,
Ann Pkysik, 5, 219 {Germany, 1932). Temperature (K)

alone (scattering from Ni impurity regions). Since p; is temperature independent, for small
amounts of Ni addition, p, will simply shift up the p versus T curve for copper, by an amount pro-
portional to the Ni content, p; < Ny;, where Ny; is the Ni impurity concentration. This is apparent
in Figure 2.9, where the resistivity of Cu-2.16% Ni is almost twice that of Cu—1.12% Ni. Cold
working (CW) or deforming a metal results in a higher concentration of dislocations and therefore
increases the residual resistivity pg by pcw. Thus, cold-worked samples have a resistivity curve
that is shifted up by an additional amount pcw that depends on the extent of cold working.

EXAMPLE 2.8

TEMPERATURE COEFFICIENT OF RESISTIVITY oo AND RESISTIVITY INDEX n If ¢ is the tem-
perature coefficient of resistivity (TCR) at temperature T; and the resistivity obeys the equation

i
P = Po T,

n [ T ]n—l
g = —| —
ThLTo
What is your conclusion?
Experiments indicate that n = 1.2 for W. What is its «p at 20 °C? Given that, experimen-
tally, ®p = 0.00393 for Cu at 20 °C, what is n?

show that

SOLUTION
Since the resistivity obeys p = po(T/ Ty)", we substitute this equation into the definition of TCR,

1 [dp] n [T]"“
a0=— — = —] —
po LAT LT

It is clear that, in general, ay depends on the temperature T, as well as on the reference
temperature Tp. The TCR is only independent of T whenn = 1.
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At T = T,, we have

apTp

=1 or n=qayly
n

ForW,n =1.2,s0atT = Ty = 293 K, we have a3 x = 0.0041, which agrees reasonably
well with a3 ¢ = 0.0045, frequently found in data books.

For Cu, a3 x = 0.00393, so that n = 1.15, which agrees with the experimental value of ».

TCR AT DIFFERENT REFERENCE TEMPERATURES If ¢, is the temperature coefficient of resism
tivity (TCR) at temperature 7} and « is the TCR at T, show that

T 14 ao(Ty = Tp)

(03]

SOLUTION
Consider the resistivity at temperature T in terms of @y and «;:
p = poll + ao(T — Tp)] and p=pill + o (T - T1)]

These equations are expected to-hold at any temperature T, so the first and second equa-
tions at 7; and Ty, respectively, give ’

p1 = poll + ao(Ty — Ty)] and po = p1[l + a;(To — T1)]
These two equations can be readily solved to eliminate p, and p, to obtain

T 1+ ao(Ty — To)

TEMPERATURE OF THE FILAMENT OF A LIGHT BULB M

a. Consider a40 W, 120 V incandescent light bulb. The tungsten filament is 0.381 m long and
has a diameter of 33 wm. Its resistivity at room temperature is 5.51 x 10~® Q m. Given that
the resistivity of the tungsten filament varies at T'-2, estimate the temperature of the bulb
when it is operated at the rated voltage, that is, when it is lit directly from a power outlet,
as shown schematically in Figure 2.10. Note that the bulb dissipates 40 W at 120 V.

b. Assume that the electrical power dissipated in the tungsten wire is radiated from the sur-
face of the filament. The radiated electromagnetic power at the absolute temperature 7' can

ay

Figure 2.10 Power radiated from a light bulb is
equal to the electrical power dissipated in the
filament.
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be described by Stefan’s law, as follows:
Pragiated = 6O'SA(T“ - T04)

where o is Stefan’s constant (5.67 x 1078 W m~2 K=*), ¢ is the emissivity of the surface
(0.35 for tungsten), A is the surface area of the tungsten filament, and 7j is the room
temperature (293 K). For T4 > TO"' , the equation becomes

4
P, radiated = GUSAT

Assuming that all the electrical power is radiated as electromagnetic waves from the
surface, estimate the temperature of the filament and compare it with your answer in part (a).

SOLUTION

a. When the bulb is operating at 120V, it is dissipating 40 W, which means that the current is

Since R = pL/A, the resistivity of tungsten at the operating temperature T must be

_ R(xD*/4) _ 360 Q7 (33 x 107° m)?
- L - 4(0.381 m)

But, p(T) = po(T/To)'?, so that

80.8 x 108\ "/'?
T =T, ——
5.51 x 10-8

= 2746 K or 2473 °C (melting temperature of W is about 3680, K)

b. To calculate T from the radiation law, we note that T = [ Pragiaea /€05 A},
The surface area is

A= L(nD)=(0.381)(733 x 107%) = 3.95 x 1073 m?

=808x107"Qm

p(T)

Then,

T = [Pradia[ed ]1 ¢ [ W ]‘/4
" | eosA = 1(0.35)(5.67 x 108 Wm™2K-4)(3.95 x 10-5 m?2)
= [5.103 x 10*1"/* = 2673 K or 2400 °C

The difference between the two methods is less than 3 percent.

2.3.2 SoLID SOLUTIONS AND NORDHEIM’S RULE

In an isomorphous alloy of two metals, that is, a binary alloy that forms a solid solution,
we would expect Equation 2.15 to apply, with the temperature-independent impurity
contribution p; increasing with the concentration of solute atoms. This means that as the
alloy concentration increases, the resistivity p increases and becomes less temperature
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Table 2.2 The effect of alloying on the resistivity

Resistivity at 20 °C o at 20 °C
Material (nQ2 m) 1/K)
Nickel 69 0.006
Chrome 129 0.003
Nichrome 1120 0.0003
600
2 500 Cu-Ni alloys
8 O.'= 400—:
g %07
A > -
5 £ 200
. ‘A
E 2 100
T ; T T T 0 —T T T T T T L
0 20 40 60 80 100 0 20 40 60 80 100
100% Cu at.% Ni 100% Ni  100% Cu at.% Ni 100% Ni
(a) Phase diagram of the Cu-Ni alloy system. (b) The resistivity of the Cu-Ni alloy as a
Above the liquidus line only the liquid phase function of Ni content (at.%) at room
exists. In the L + S region, the liquid (L rand temperature.

solid (S) phases coexist whereas below the
solidus line, only the solid phase (a solid
solution) exists.

Figure 2.11 The Cu-Ni alloy system.

SOURCE: Data extracted from Metals Handbook, 10th ed., 2 and 3, Metals Park, Ohio: ASM, 1991, and M. Hansen and
K. Anderko, Constitution of Binary Alloys, New York: McGraw-Hill, 1958.

dependent as p; overwhelms pr, leading to @ « 1/273. This is the advantage of alloys
in resistive components. Table 2.2 shows that when 80% nickel is alloyed with 20%
chromium, the resistivity of Ni increases almost 16 times. In fact, the alloy is called
nichrome and is widely used as a heater wire in household appliances and industrial
furnaces.

As a further example of the resistivity of a solid solution, consider the copper— nickel
alloy. The phase diagram for this alloy system is shown in Figure 2.11a. It is clear that the
alloy forms a one-phase solid solution for all compositions. Both Cu and Ni have the
same FCC crystal structure, and since the Cu atom is only slightly larger than the Ni atom
by about ~3 percent (easily checked on the Periodic Table), the Cu-Ni alloy will there-
fore still be FCC, but with Cu and Ni atoms randomly mixed, resuiting in a solid solu-
tion. When Ni is added to copper, the impurity resistivity p; in Equation 2.15 will
increase with the Ni concentration. Experimental results for this alloy system are shown
in Figure 2.11b. It should be apparent that when we reach 100% Ni, we again have a pure
metal whose resistivity must be small. Therefore, o versus Ni concentration must pass
through a maximum, which for the Cu—Ni alloy seems to be at around ~50% Ni.
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There are other binary solid solutions that reflect similar behavior to that depicted
in Figure 2.11, such as Cu—-Au, Ag-Au, Pt-Pd, Cu-Pd, to name a few. Quite often, the
use of an alloy for a particular application is necessitated by the mechanical properties,
rather than the desired electrical resistivity alone. For example, brass, which is 70%
Cu-30% Zn in solid solution, has a higher strength compared to pure copper; as such,
it is a suitable metal for the prongs of an electrical plug.

An important semiempirical equation that can be used to predict the resistivity of
an alloy is Nordheim’s rule which relates the impurity resistivity p; to the atomic
fraction X of solute atoms in a solid solution, as follows:

pr =CX(1 - X) [2.21]

where C is the constant termed the Nordheim coefficient, which represents the effec-
tiveness of the solute atom in increasing the resistivity. Nordheim’s rule assumes that
the solid solution has the solute atoms randomly distributed in the lattice, and these
random distributions of impurities cause the electrons to become scattered as they
whiz around the crystal. For sufficiently small amounts of impurity, experiments show
that the increase in the resistivity p; is nearly always simply proportional to the impu-
rity concentration X, that is, p; oc X, which explains the initial approximately equal in-
crements of rise in the resistivity of copper with 1.11% Ni and 2.16% Ni additions as
shown in Figure 2.9. For dilute solutions, Nordheim’s rule predicts the same linear be-
havior, that is, oy = CX for X « 1.

Table 2.3 lists some typical Nordheim coefficients for various additions to copper
and gold. The value of the Nordheim coefficient depends on the type of solute and the
solvent. A solute atom that is drastically different in size to the solvent atom will result
in a bigger increase in p; and will therefore lead to a larger C. An important assumption

Table 2.3 Nordheim coefficient C (at 20 °C) for dilute alloys obtained from
pr=CXand X < 1 at.%*

Solute in Solvent C Maximum Solubility at 25 °C
(element in matrix) (n2 m) (at. %)
Au in Cu matrix 5500 100
Mn in Cu matrix 2900 24
Ni in Cu matrix 1200 100
Sn in Cu matrix 2900 0.6
Zn in Cu matrix 300 30
Cu in Au matrix 450 100
Mn in Au matrix 2410 25
Ni in Au matrix 790 100
Sn in Au matrix 3360 5
Zn in Au matrix 950 15

*NOTE: For many isomorphous alloys C may be different at higher concentrations; that is, it may
depend on the composition of the alloy.

SOURCES: D.G. Fink and D. Christiansen, eds., Electronics Engineers’ Handbook, 2nd ed.,

New York, McGraw-Hill, 1982. J. K. Stanley, Electrical and Magnetic Properties of Metals, Metals
Park, OH, American Society for Metals, 1963. Solubility data from M. Hansen and K. Anderko,
Constitution of Binary Alloys, 2nd ed., New York, McGraw-Hill, 1985.
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in Nordheim’s rule in Equation 2.21 is that the alloying does not significantly vary the
number of conduction electrons per atom in the alloy. Although this will be true for al-
loys with the same valency, that is, from the same column in the Periodic Table (e.g.,
Cu-Au, Ag—-Au), it will not be true for alloys of different valency, such as Cu and Zn.
In pure copper, there is just one conduction electron per atom, whereas each Zn atom
can donate two conduction electrons. As the Zn content in brass is increased, more con-
duction electrons become available per atom. Consequently, the resistivity predicted by
Equation 2.21 at high Zn contents is greater than the actual value because C refers to
dilute alloys. To get the correct resistivity from Equation 2.21 we have to lower C,
which is equivalent to using an effective Nordheim coefficient C.g that decreases as
the Zn content increases. In other cases, for example, in Cu-Ni alloys, we have to in-
crease C at high Ni concentrations to account for additional electron scattering mech-
anisms that develop with Ni addition. Nonetheless, the Nordheim rule is still useful for
predicting the resistivities of dilute alloys, particularly in the low-concentration region.
With Nordheim’s rule in Equation 2.21, the resistivity of an alloy of composition

X is
P = Prmarix + CX (1 — X) [2.22]

where pmanix = o1 + PR is the resistivity of the matrix due to scattering from thermal
vibrations and from other defects, in the absence of alloying elements. To reiterate, the
value of C depends on the alloying element and the matrix. For example, C for gold in
copper would be different than C for copper in gold, as shown in Table 2.3.

In solid solutions, at some concentrations of certain binary alloys, such as 75%
Cu-25% Au and 50% Cu-50% Au, the annealed solid has an orderly structure; that
is, the Cu and Au atoms are not randomly mixed, but occupy regular sites. In fact,
these compositions can be viewed as pure compound—like the solids CusAu and
CuAu. The resistivities of CusAu and CuAu will therefore be less than the same
composition random alloy that has been quenched from the melt. As a consequence,
the resistivity p versus composition X curve does not follow the dashed parabolic
curve throughout; rather, it exhibits sharp falls at these special compositions, as illus-
trated in Figure 2.12.
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NORDHEIM'S RULE The alloy 90 wt.% Au-10 wt.% Cu is sometimes used in low-voltage dc
electrical contacts, because pure gold is mechanically soft and the addition of copper increases the
hardness of the metal without sacrificing the corrosion resistance. Predict the resistivity of the
alloy and compare it with the experimental value of 108 n2 m.

SOLUTION

We apply Equation 2.22, p(X) = pay + CX (1 — X) but with 10 wt.% Cu converted to the
atomic fraction for X. If w is the weight fraction of Cu, w = 0.1, and if M,, and M, are the
atomic masses of Au and Cu, then the atomic fraction X of Cu is given by (see Example 1.2),

3 w/Mcy _ 0.1/63.55
T w/Mey + (1 —w)/Ma,  (0.1/63.55) + (0.90/197)

Given that pa, = 22.8 nQ2 m and C = 450 n2 m,
P =pa + CX(1 - X)=(22.8 nQ2 m) + (450 n2 m)(0.256)(1 — 0.256)
= 108.5nQ m

= 0.256

This value is only 0.5% different from the experimental value.

EXAMPLE 2.12

Conductivity
and mean free
path

RESISTIVITY DUE TO IMPURITIES The mean speed of conduction electrons in copper is about
1.5 x 10% m s~'. Its room temperature resistivity is 17 nQ m, and the atomic concentration Ny,
in the crystal is 8.5 x 10?2 cm~3. Suppose that we add 1 at.% Au to form a solid solution. What
is the resistivity of the alloy, the effective mean free path, and the mean free path due to colli-
sions with Au atoms only?

SOLUTION

According to Table 2.3, the Nordheim coefficient C of Au in Cu is 5500 n©2 m. With X = 0.01
(1 at.%), the overall resistivity from Equation 2.22 is

P = Pmarix + CX(1 — X) =17 nQ m + (5500 n2 m)(0.01)(1 — 0.01)
=17nQm+54.45n2 m=71.45n2 m

Suppose that ¢ is the overall or effective mean free path and r is the effective mean free time be-
tween scattering events (includes both scattering from lattice vibrations and impurities). Since
¢ = ut, and the effective drift mobility u, = etr/m,, the expression for the conductivity be-
comes

ent  e’nt

m, mou

o =enuy =

We can now calculate the effective mean free path £ in the alloy given that copper has a valency
of I and the electron concentration n = Ny,

1 _ (1.6 x 107°C)*(8.5 x 10 m~)¢

71.5%x10°Qm (9.1 x 10-3'kg)(1.5 x 106 m s~1)
which gives £ =8.8 nm. We can repeat the calculation for pure copper using o =
1/pmarix = 1/(17 x 107° @ m) to find €c, = 37 nm. The mean free path is reduced approxi-
mately by 4 times by adding only 1 at.% Au. The mean free path ¢; due to scattering from im-

~ 1N . 1. . 1
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Matthiessen’s rule in Equation 2.14:

Substituting £, = 37 nm and £ = 8.8 nm, we find £; = 11.5 nm.

We can take these calculations one step further. If N, is the impurity concentration in the
alloy, then N; = 0.01 N, = 0.01(8.5 x 102 m~3) = 8.5 x 102 m™%. The mean separation d,
between the impurities can be estimated roughly fromd, =~ 1/N ,1 /3, which gives d; ~ 1.0 nm.
It is clear that not all Au atoms can be involved in scattering the electrons since ¢; is much
longer than d;. (Another way to look at it is to say that it takes more than just one collision with
an impurity to randomize the velocity of the electron.)
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24 RESISTIVITY OF MIXTURES AND POROUS
MATERIALS

24.1 HETEROGENEOUS MIXTURES

Nordheim’s rule only applies to solid solutions that are single-phase solids. In other
words, it is valid for homogeneous mixtures in which the atoms are mixed at the
atomic level throughout the solid, as in the Cu-Ni alloy. The classic problem of
determining the effective resistivity of a multiphase solid is closely related to the
evaluation of the effective dielectric constant, effective thermal conductivity, effec-
tive elastic modulus, effective Poisson’s ratio, etc., for a variety of mixtures, includ-
ing such composite materials as fiberglass. Indeed, many of the mixture rules are
identical.

Consider a material with two distinct phases « and 8, which are stacked in layers
as illustrated in Figure 2.13a. Let us evaluate the effective resistivity for current flow

Continuous phase
Dispersed phase
\

(b) (c)

Figure 2.13 The effective resistivity of a material with a layered structure.
(a) Along a direction perpendicular to the layers.

(b) Along a direction parallel to the plane of the layers.

(c) Materials with a dispersed phase in a continuous matrix.
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in the x direction. Since the layers are in series, the effective resistance R.g for the
whole material is
Lepa | Lgpp

R = 2.23
eff A + A [ ]

where L, is the total length (thickness) of the o-phase layers, and L is the total length
of the B-phase layers, L, + Lg = L is the length of the sample, and A is the cross-
sectional area. Let x, and xg be the volume fractions of the o and B phases. The
effective resistance is defined by

Lpeff
A

Reff =

where pef is. the effective resistivity. Using x, = L,/L and xg = Lg/L in Equa-
tion 2.23, we find

Peft = XaPa + XBPOB [2.24]

which is called the resistivity—mixture rule (or the series rule of mixtures).

If we are interested in the effective resistivity in the y direction, as shown in Fig-
ure 2.13b, obviously the o and 8 layers are in parallel, so an effective conductivity
could be calculated in the same way as we did for the series case to find the parallel
rule of mixtures, that is,

Oeff = XaOa + X808 [2.25]

where o is the electrical conductivity of those phases identified by the subscript. No-
tice that the parallel rule uses the conductivity, and the series rule uses the resistivity.
Equation 2.25 is often referred to as the conductivity—-mixture rule.

Although these two rules refer to special cases, in general, for a random mixture
of phase o and phase 8, we would not expect either equation to apply rigorously.
When the resistivities of two randomly mixed phases are not markedly different, the
series mixture rule can be applied at least approximately, as we will show in Exam-
ple 2.13.

However, if the resistivity of one phase is appreciably different than the other,
there are two semiempirical rules that are quite useful in materials engineering.> Con-
sider a heterogeneous material that has a dispersed phase (labeled d), in the form of
particles, in a continuous phase (labeled c) that acts as a matrix, as depicted in Fig-
ure 2.13c. Assume that p. and p, are the resistivities of the continuous and dispersed
phases, and x. and y, are their volume fractions. If the dispersed phase is much more
resistive with respect to the matrix, that is, p; > 10p0., then

(1+ 3xa)

Peff = Pe—7— (0a > 10p.) [2.26]
(1 - xa)

5 Over the years, the task of predicting the resistivity of a mixture has challenged many theorists and
experimentalists, including Lord Rayleigh who, in 1892, published an excellent exposition on the subject in the
Philosophical Magazine. An extensive treatment of mixtures can be found in a paper by J. A. Reynolds and

J. M. Hough published in 1957 (Proceedings of the Physical Society, 70, no. 769, London), which contains nearly
all the mixture rules for the resistivity.
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On the other hand, if p; < (o./10), then

~ (1~ xa
(1 +2xa)

We therefore have at least four mixture rules at our disposal, the uses of which de-
pend on the mixture geometry and the resistivities of the various phases. The problem
is identifying which one to use for a given material, which in turn requires a knowl-
edge of the microstructure and properties of the constituents. It should be emphasized
that, at best, Equations 2.24 to 2.27 provide only a reasonable estimate of the effective
resistivity of the mixture.®

Equations 2.26 and 2.27 are simplified special cases of a more general mixture
rule due to Reynolds and Hough (1957). Consider a mixture that consists of a contin-
uous conducting phase with a conductivity o, that has dispersed spheres of another
phase of conductivity o, and of volume fraction x, similar to Figure 2.13c. The effec-
tive conductivity of the mixture is given by

Pet (pa < 0.1p,) [2.27]

= X [2.28]

It is assumed that the spheres are randomly dispersed in the material. It is left as an
exercise to show that if 0; <« o, then Equation 2.28 reduces to Equation 2.26. A good
application would be the calculation of the effective resistivity of porous carbon elec-
trodes, which can be 50-100 percent higher than the resistivity of bulk polycrystalline
carbon (graphite). If, on the other hand, o; > o, the dispersed phase is very conduct-
ing, for example, silver particles mixed into a graphite paste to increase the conductiv-
ity of the paste, then Equation 2.28 reduces to Equation 2.27. The usefulness of Equa-
tion 2.28 cannot be underestimated inasmuch as there are many types of materials in
engineering that are mixtures of one type or another.
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Mixture rule

Reynolds and
Hough rule
for mixture of
dispersed
phases

THE RESISTIVITY-MIXTURE RULE Consider a two-phase alloy consisting of phase « and phase
B randomly mixed as shown in Figure 2.14a. The solid consists of a random mixture of
two types of resistivities, p, of o and pg of . We can divide the solid into a bundle of N parallel
fibers of length L and cross-sectional area A/N, as shown in Figure 2.14b. In this fiber (infini-
tesimally thin), the o« and 8 phases are in series, so if x, = V,/V is the volume fraction of phase
a and xz is that of 8, then the total length of all o regions present in the fiber is x, L, and the
total length of 8 regions is xz L. The two resistances are in series, so the fiber resistance is

_ Po(Xal) " pa(xpgL)
T "(A/N) T (A/N)

But the resistance of the solid is made up of N such fibers in parallel, that is,

Riiver _ anaL + pﬁXﬂL
N A A

Ryoia =

6 More accurate mixture rules have been established for various types of mixtures with components possessing
widely different properties, which the keen reader can find in P. L. Rossiter, The Electrical Resistivity of Metals and
Alloys (Cambridge University Press, Cambridge, 1987).

EXAMPLE 2.13
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Figure 2.14

(a) A two-phase solid.
(b) A thin fiber cut out from the solid.

Resistivity
mixture rule
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By definition, Rsiq = perrL /A, Where per is the effective resistivity of the material, so

PeitL  PoXal + ppXsL
A A A

Thus, for a two-phase solid, the effective resistivity will be

Peft = XaPa + XpPp

If the densities of the two phases are not too different, we can use weight fractions instead of
volume fractions. The series rule fails when the resistivities of the phases are vastly different. A
major (and critical) tacit assumption here is that the current flow lines are all parallel, so that no cur-
rent crosses from one fiber to another. Only then can we say that the effective resistance is Rgpe, /N .

EXAMPLE 2.14

A COMPONENT WITH DISPERSED AIR PORES What is the effective resistivity of 95/5 (95%
Cu-5% Sn) bronze, which is made from powdered metal containing dispersed pores at 157,
(volume percent, vol.%). The resistivity of 95/5 bronze is 1 x 1077 Q m.

SOLUTION

Pores are infinitely more resistive (o, = oo) than the bronze matrix, so we use Equation 2.26,
1+ %Xd

1+ 1(0.15)
eff = P =(1x107 Qm—A——
Pett = P, T ( ) =015

=127x1077Qm

EXAMPLE 2.15

COMBINED NORDHEIM AND MIXTURE RULES Brass is an alloy composed of Cu and Zn. The
alloy is a solid solution for Zn content less than 30 wt.%. Consider a brass component made
from sintering 90 at.% Cu and 10 at.% Zn brass powder. The component contains dispersed air
pores at 157, (vol.%). The Nordheim coefficient C of Zn in Cu is 300 n€2 m, under very dilute
conditions. Each Zn atom donates two, whereas each Cu atom of the matrix donates one con-
duction electron, so that the Cu—Zn alloy has a higher electron concentration than in the Cu
crystal itself. Predict the effective resistivity of this brass component.

SOLUTION *

We first calculate the resistivity of the alloy without the pores, which forms the continuous
phase in the powdered material. The simple Nordheim’s rule predicts that

Porass = Peopper + CX(1 — X) = 1702 m + 300(0.1)(1 — 0.1) =44 nQ m

The experimental value, about 40 n€2 m, is actually less because Zn has a valency of 2, and
when a Zn atom replaces a host Cu atom, it donates two electrons instead of one. We can very
roughly adjust the calculated resistivity by noting that a 10 at.% Zn addition increases the
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conduction electron concentration by 10% and hence reduces the resistivity Oprass by 10% to
40 nf2 m.

The powdered metal has x; = 0.15, which is the volume fraction of the dispersed phase,
that is, the air pores, and p, = Pprass = 40 n€2 m is the resistivity of the continuous matrix. The
effective resistivity of the powdered metal is given by

L+ §Xa

1+ 1(0.15)
Petf = Pc—l—_“‘)a- = (40 n2 m)—l-_m

If we use the simple conductivity mixture rule, pesr is 47.1 n€2 m, and it is underestimated.
The effective Nordheim coefficient Ceg at the composition of interest is about 255 n§2 m,
which would give pprass = Po + CetfX (1 — X) = 40 n$2 m. Itis left as an exercise to show that
the effective number of conduction electrons per atom in the alloy is 1 + X so that we must divide
the pprass Calculated above by (1 4+ X') to obtain the correct resistivity of brass if we use the listed

value of C under dilute conditions. (See Question 2.8.)

= 50.6 n2 m
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24.2 Two-PHASE ALLOY (Ag—Ni) RESISTIVITY
AND ELECTRICAL CONTACTS

Certain binary alloys, such as Pb—Sn and Cu—Ag, only exhibit a single-phase alloy
structure over very small composition ranges. For most compositions, these alloys
form a two-phase heterogeneous mixture of phases o and 8. A typical phase diagram
for such a eutectic binary alloy system is shown in Figure 2.15a, which could be a

T Ty Figure 2.15 Eutectic-forming

A o alloys, e.g., Cu-Ag.
© > Liquid, L I One phase  (q) The phase diagram for a binary,
g T a o+ B region: 8 eutectic-forming alloy.
E E Two phase region only (b) The resistivity versus composition
E T o+ f for the binary alloy.
e | I . U
100%A }(1 X (% B)—> 100%B

(a)
g |, !
& ' Mixture rule :
E E Nordheim's rule L oy
Py E i
O X, Composition, X (% B) X, 100%B

(b)
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schematic scheme for the Cu—Ag system or the Pb—Sn system. The phase diagram
identifies the phases existing in the alloy at a given temperature and composition. If the
overall composition X is less than X, then at T;, the alloy will consist of phase « only.
This phase is Cu rich. When the composition X is between X, and X5, then the alloy
will consist of the two phases @ and 8 randomly mixed. The phase « is Cu rich (that is,
it has composition X;) and the phase 8 is Ag rich (composition X,). The relative
amounts of each phase are determined by the well-known lever rule, which means that
we can determine the volume fractions of & and 8, x, and xg, as the alloy composition
is changed from X, to X,.

For this alloy system, the dependence of the resistivity on the alloy composition is
shown in Figure 2.15b. Between O and X, (% Ag), the solid is one phase (isomor-
phous); therefore, in this region, p increases with the concentration of Ag by virtue of
Nordheim’s rule. At X, the solubility limit of Ag in Cu is reached, and after X, a sec-
ond phase, which is 8 rich, is formed. Thus, in the composition range X; to X,, we
have a mixture of a and B phases, so p is given by Equation 2.24 for mixtures and is
therefore less than that for a single-phase alloy of the same composition. Similarly, at
the Ag end (X, < X < 100%), as Cu is added to Ag, between 100% Ag and the solu-
bility limit at X,, the resistivity is determined by Nordheim’s rule. The expected
behavior of the resistivity of an eutectic binary alloy over the whole composition range
is therefore as depicted in Figure 2.15b.

Electrical, thermal, and other physical properties make copper the most widely
used metallic conductor. For many electrical applications, high-conductivity copper,
having extremely low oxygen and other impurity contents, is produced. Although alu-
minum has a conductivity of only about half that of copper, it is also frequently used
as an electrical conductor. On the other hand, silver has a higher conductivity than cop-
per, but its cost prevents its use, except in specialized applications. Switches often
have silver contact specifications, though it is likely that the contact metal is actually a
silver alloy. In fact, silver has the highest electrical and thermal conductivity and is
consequently the natural choice for use in electrical contacts. In the form of alloys with
various other metals, it is used extensively in make-and-break switching applications
for currents of up to about 600 A. The precious metals, gold, platinum, and palladium,
are extremely resistant to corrosion; consequently, in the form of various alloys,
particularly with Ag, they are widely used in electrical contacts. For example, Ag-Ni
alloys are common electrical contact materials for the switches in many household
appliances.

It is frequently necessary to improve the mechanical properties of a metal alloy
without significantly impairing its electrical conductivity. Solid-solution alloying im-
proves mechanical strength, but at the expense of conductivity. A compromise must
often be found between electrical and mechanical properties. Most often, strength is
enhanced by introducing a second phase that does not have such an adverse effect on
the conductivity. For example, Ag-Pd alloys form a solid solution such that the
resistivity increases appreciably due to Nordheim’s rule. The resistivity of Ag-Pd is
mainly controlled by the scattering of electrons from Pd atoms randomly mixed in the
Ag matrix. In contrast, Ag and Ni form a two-phase alloy, a mixture of Ag-rich and
Ni-rich phases. The Ag—Ni alloy is almost as strong as the Ag—Pd alloy, but it has a
lower resistivity because the mixture rule volume averages the two resistivities.
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25 THE HALL EFFECT AND HALL DEVICES

An important phenomenon that we can comfortably explain using the “electron as a
particle” concept is the Hall effect, which is illustrated in Figure 2.16. When we apply
a magnetic field in a perpendicular direction to the applied field (which is driving the
current), we find there is a transverse field in the sample that is perpendicular to the
direction of both the applied field £, and the magnetic field B,, that is, in the y direc-
tion. Putting a voltmeter across the sample, as in Figure 2.16, gives a voltage reading
Vy. The applied field £, drives a current J, in the sample. The electrons move in the —x
direction, with a drift velocity v,,. Because of the magnetic field, there is a force (called
the Lorentz force) acting on each electron and given by F, = —ev,, B,. The direction
of this Lorentz force is the —y direction, which we can show by applying the cork-
screw rule, because, in vector notation, the force F acting on a charge ¢ moving with a
velocity v in a magnetic field B is given through the vector product

F=¢gvxB [2.29]

All moving charges experience the Lorentz force in Equation 2.29 as shown
schematically in Figure 2.17. In our example of a metal in Figure 2.16, this Lorentz
force is the —y direction, so it pushes the electrons downward, as a result of which
there is a negative charge accumulation near the bottom of the sample and a positive
charge near the top of the sample, due to exposed metal ions (e.g., Cu™).
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Lorentz force

Jy =0 Figure 2.16 lllustration of the Hall effect.
@ + @ B, The z direction is out of the plane of the paper. The
y externally applied magnetic field is along the z direction.
Vy ¥ + + T+ +
| ek, x
JIx T $£x Jx ¢
> | Ve
zH
* eva B,
® ® s,
vV
+1
q=+e q=-e Figure 2.17 A moving charge experiences a
\4 v Lorentz force in a magnetic field.
(a} A positive charge moving in the x direction
experiences a force downward.
B B B (b) A negative charge moving in the —x direction
F=qvxB F=gvxB alsoexperiences a force downward.

(a) (b)
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The accumulation of electrons near the bottom results in an internal electric field
Ey in the —y direction. This is called the Hall field and gives rise to a Hall voltage
Vu between the top and bottom of the sample. Electron accumulation continues until
the increase in £y is sufficient to stop the further accumulation of electrons. When
this happens, the magnetic-field force ev,, B, that pushes the electrons down just bal-
ances the force eEy that prevents further accumulation. Therefore, in the steady state,

e‘EH = evdez

However, J, = envy,. Therefore, we can substitute for vy, to obtain eEy = J, B,/nor

Ey = (—1—)Jsz [2.30]
en
A useful parameter called the Hall coefficient Ry is defined as
Ry = £y [2.31]
Jx B,

The quantity Ry measures the resulting Hall field, along y, per unit transverse
applied current and magnetic field. The larger Ry, the greater £, for a given J and B,.
Therefore, Ry is a gauge of the magnitude of the Hall effect. A comparison of Equa-
tions 2.30 and 2.31 shows that for metals,

1
Ry=—— [2.32]
en
The reason for the negative sign is that £y = —E,, which means that £y is in the —y
direction.

Inasmuch as Ry depends inversely on the free electron concentration, its value in
metals is much less than that in semiconductors. In fact, Hall-effect devices (such as
magnetometers) always employ a semiconductor material, simply because the Ry is
larger. Table 2.4 lists the Hall coefficients of various metals. Note that this is negative

Table 2.4 Hall coefficient and Hall mobility {4 = Jo Rul) of selected metals

n Ry (Experimental) uy = |oRy|
[m—3] [m3 A—l S—]] [m2 V—l S—l]
Metal (x10%8) (x1071) (x107%
Ag 5.85 -9.0 57
Al 18.06 -35 13
Au 5.90 =72 31
Be 24.2 +3.4 ?
Cu 8.45 -55 32
Ga 15.3 —6.3 3.6
In 11.49 —2.4 29
Mg 8.60 -94 22
Na 2.56 =25 53
Magnetically operated Hall-effect
position sensor as available from SOURCES: Data from various sources, including C. Nording and J. Osterman, Physics Handbook,

Micro Switch.

Bromley, England: Chartwell-Bratt Ltd., 1982.
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for most metals, although a few metals exhibit a positive Hall coefficient (see Be in
Table 2.4). The reasons for the latter involve the band theory of solids, which we will
discuss in Chapter 4.

Since the Hall voltage depends on the product of two quantities, the current density
J, and the transverse applied magnetic field B,, we see that the effect naturally multi-
plies two independently variable quantities. Therefore, it provides a means of carrying
out a multiplication process. One obvious application is measuring the power dissipated
in a load, where the load current and voltage are multiplied. There are many instances
when it is necessary to measure magnetic fields, and the Hall effect is ideally suited to
such applications. Commercial Hall-effect magnetometers can measure magnetic fields
as low as 10 nT, which should be compared to the earth’s magnetic field of ~50 uT.
Depending on the application, manufacturers use different semiconductors to obtain the
desired sensitivity. Hall-effect semiconductor devices are generally inexpensive, small,
and reliable. Typical commercial, linear Hall-effect sensor devices are capable of pro-
viding a Hall voltage of ~10 mV per mT of applied magnetic field.

The Hall effect is also widely used in magnetically actuated electronic switches.
The application of a magnetic field, say from a magnet, results in a Hall voltage that is
amplified to trigger an electronic switch. The switches invariably use Si and are read-
ily available from various companies. Hall-effect electronic switches are used as non-
contacting keyboard and panel switches that last almost forever, as they have no me-
chanical contact assembly. Another advantage is that the electrical contact is “bounce”
free. There are a variety of interesting applications for Hall-effect switches, ranging
from ignition systems, to speed controls, position detectors, alignment controls, brush-
less dc motor commutators, etc.
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HALL-EFFECT WATTMETER The Hall effect can be used to implement a wattmeter to measurem

electrical power dissipated in a load. The schematic sketch of the Hall-effect wattmeter is shown
in Figure 2.18, where the Hall-effect sample is typically a semiconductor material (usually Si).
The load current I, passes through two coils, which are called current coils and are shown as C
in Figure 2.18. These coils set up a magnetic field B, such that B, « I,. The Hall-effect sample
is positioned in this field between the coils. The voltage V, across the load drives a current

I Wattmeter I, . /
A 4 C
T Load
Source Vi R,
l s\
L N
YI X = VL/R

Figure 2.18 Wattmeter based on the Hall effect.

Load voltage and load current have L as subscript; C denotes the current coils for sefting up a magnetic field through the

Hall-effect sample {semiconductor).
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I, = V. /R through the sample, where R is a series resistance that is much larger than the resis-
tance of the sample and that of the load. Normally, the current I, is very small and negligible
compared to the load current. If w is the width of the sample, then the measured Hall voltage is

Vy = wEy = WRHJsz 0.6 Isz x Vi

which is the electrical power dissipated in the load. The voltmeter that measures Vy can now be
calibrated to read directly the power dissipated in the load.

EXAMPLE 2.17

HALL MOBILITY Show that if Ry is the Hall coefficient and o is the conductivity of a metal,
then the drift mobility of the conduction electrons is given by

g = |o Ry [2.33]

The Hall coefficient and conductivity of copper at 300 K have been measured to be
—0.55 x 1072 m3 A~ s~ T and 5.9 x 107 Q~! m™!, respectively. Calculate the drift mobility of
electrons in copper.

SOLUTION

Consider the expression for

~1
Ry=—
éen

Since the conductivity is given by o = enu,, we can substitute for en to obtain
Ry=—2 or ps=—Ryo

which is Equation 2.33. The drift mobility can thus be determined from Ry and o.
The product of o and Ry is called the Hall mobility (. ;. Some values for the Hall mobility
of electrons in various metals are listed in Table 2.4. From the expression in Equation 2.33, we get

g =—(—=055x 107" m* A s H59x 107 Q 'm ) =32x10m?v!s!

It should be mentioned that Equation 2.33 is an oversimplification.The actual relationship
involves a numerical factor that multiplies the right term in Equation 2.33. The factor depends
on the charge carrier scattering mechanism that controls the drift mobility.

VI ALY CONDUCTION ELECTRON CONCENTRATION FROM THE HALL EFFECT Using the electron

drift mobility from Hall-effect measurements (Table 2.4), calculate the concentration of con-
duction electrons in copper, and then determine the average number of electrons contributed to
the free electron gas per copper atom in the solid.

SOLUTION

The number of conduction electrons is given by n = o/eu,. The conductivity of copper is
5.9 x 107 Q' m™!, whereas from Table 2.4, the electron drift mobility is 3.2 x 107>*m?V~!s~!, So,

(5.9 % 10" Q 'm™1)
n =
[(1.6 x 10~1° C)(3.2 x 10~3 m2 V-! s~1)]

=1.15 x 10¥ m™3

Since the concentration of copper atoms is 8.5 x 102 m™2, the average number of elec-
trons contributed per atom is (1.15 x 10 m~3%)/(8.5 x 10%® m~%) ~ 1.36.
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26 THERMAL CONDUCTION

26.1 THERMAL CONDUCTIVITY

- Experience tells us that metals are both good electrical and good thermal conductors.
E We may therefore surmise that the free conduction electrons in a metal must also play
arole in heat conduction. Our conjecture is correct for metals, but not for other mate-
rials. The transport of heat in a metal is accomplished by the electron gas (conduction
electrons), whereas in nonmetals, the conduction is due to lattice vibrations.

When a metal piece is heated at one end, the amplitude of the atomic vibrations,
and thus the average kinetic energy of the electrons, in this region increases, as de-
picted in Figure 2.19. Electrons gain energy from energetic atomic vibrations when the
two collide. By virtue of their increased random motion, these energetic electrons then
t transfer the extra energy to the colder regions by colliding with the atomic vibrations
IE there. Thus, electrons act as “energy carriers.”

The thermal conductivity of a material, as its name implies, measures the ease
with which heat, that is, thermal energy, can be transported through the medium.
Consider the metal rod shown in Figure 2.20, which is heated at one end. Heat will

t  flow from the hot end to the cold end. Experiments show that the rate of heat flow,
| Q' = dQ/dt, through a thin section of thickness §x is proportional to the temperature
gradient 8T /6x and the cross-sectional area A, so

T TTEEmeeT

Fourier’s law

Q' = —Ak— [2.34] of thermal
Sx conduction

Hot . Cold

“6«02@
f QT ‘ Hot 0T Cold

fe———

\O\*Oz > do

<> Q p Heat > | A

Heat

vVYVYY
|

Electron gas V1bratmg Cu” ions i "‘E
Figure 2.19 Thermal conduction in a metal involves Figure 2.20 Heat flow in a metal rod heated at
fransferring energy from the hot region to the cold region one end.
by conduction electrons. Consider the rate of heat flow, dQ/dt, across a
More energetic electrons (shown with longer velocity thin section x of the rod. The rate of heat flow is
vectors) from the hotter regions arrive at cooler regions, proportional to the temperature gradient §T/8x
collide with lattice vibrations, and transfer their energy. and the cross-sectional area A.

{

Lengths of arrowed lines on atoms represent the
magnitudes of atomic vibrations.
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Figure 2.21 Thermal conductivity « versus Ta
electrical conductivity o for various metals ngd'40Ag
(elements and alloys} at 20 °C. 0 T T l T l |
The solid line represents the WFL law with Gy ~ 0 10 20 30 40 50 60 70
2.44 x 108 W QK2 Electrical conductivity o (10° Q' m™!)

where « is a material-dependent constant of proportionality that we call the thermal
conductivity. The negative sign indicates that the heat flow direction is that of decreasing
temperature. Equation 2.34 is often referred to as Fourier’s law of heat conduction and is
a defining equation for «. The driving force for the heat flow is the temperature gradient
8T /5 x. If we compare Equation 2.34 with Ohm’s law for the electric current /7, we see that

Ohm’s law Of by V
electrical I =—-—Aoc— [2.35]
. Sx

conduction
which shows that in this case, the driving force is the potential gradient, that is, the elec-
tric field.” In metals, electrons participate in the processes of charge and heat transport,
which are characterized by o and «, respectively. Therefore, it is not surprising to find
that the two coefficients are related by the Wiedemann-Franz-Lorenz law,® which is

Wiedemann— K

Franz—Lorenz — = CwrL [2.36]

) oT

aw

where Cwr = 72k?/3e?* = 2.44 x 1078 W Q K2 is a constant called the Lorenz
number (or the Wiedemann-Franz-Lorenz coefficient).

Experiments on a wide variety of metals, ranging from pure metals to various
alloys, show that Equation 2.36 is reasonably well obeyed at close to room tempera-
ture and above, as illustrated in Figure 2.21. Since the electrical conductivity of pure
metals is inversely proportional to the temperature, we can immediately conclude that
the thermal conductivity of these metals must be relatively temperature independent at
room temperature and above.

7 Recall that J = o which is equivalent to Equation 2.35.

8 Historically, Wiedemann and Franz noted in 1853 that « /o is the same for all metals at the same temperature.
Lorenz in 1881 showed that k /o is proportional fo the temperature with a proportionality constant that is nearly
the same for many metals. The law stated in Equation 2.36 reflects both observations. By the way, Lorenz, who was
a Dane, should not be confused with Lorentz, who was Dutch.
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Aluminum

' Brass (70Cu-30Zn)
100 5 %

Al-14% Mg).

Thermal conductivity, x (W K1 m'1)

-
10 T T rrrrrrg T T vy

Temperature (K) Plenum, 1970.

MH

Energetic atomic vibrations [:>

Figure 2.23 Conduction of heat in insulators involves the generation and propagation of atomic

vibrations through the bonds that couple the atoms {an intuitive figure).

Figure 2.22 shows the temperature dependence of k for copper and aluminum down to
the lowest temperatures. It can be seen that for these two metals, above ~100 K, the ther-
mal conductivity becomes temperature independent, in agreement with Equation 2.36.
Qualitatively, above ~100 K, « is constant, because heat conduction depends essentially
on the rate at which the electron transfers energy from one atomic vibration to another as it
collides with them (Figure 2.19). This rate of energy transfer depends on the mean speed
of the electron u, which increases only fractionally with the temperature. In fact, the frac-
tionally small increase in u is more than sufficient to carry the energy from one collision to
another and thereby excite more energetic lattice vibrations in the colder regions.

Nonmetals do not have any free conduction electrons inside the crystal to transfer
thermal energy from hot to cold regions of the material. In nonmetals, the energy trans-
fer involves lattice vibrations, that is, atomic vibrations of the crystal. We know that we
can view the atoms and bonds in a crystal as balls connected together through springs
as shown for one chain of atoms in Figure 2.23. As we know from the kinetic molecu-
lar theory, all the atoms would be vibrating and the average vibrational kinetic energy
would be proportional to the temperature. Intuitively, as depicted in Figure 2.23, when
we heat one end of a crystal, we set up large-amplitude atomic vibrations at this hot
end. The springs couple the vibrations to neighboring atoms and thus allow the large-
amplitude vibrations to propagate, as a vibrational wave, to the cooler regions of the
crystal. If we were to grab the left-end atom in Figure 2.23 and vibrate it violently, we

— SOURCE: Data extracted from Y. S. Touloukian, et al.,
10 Thermophysical Properties of Matter, vol. 1: “Thermal
1 100 1000 Conductivity, Metallic Elements and Alloys,” New York:

MWL VYW YL MG WL YW YW AN 1 Equilibrium
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Figure 2.22 Thermal conductivity versus temperature
Al-14%Mg for two pure metals (Cu and Al) and two alloys (brass and
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would be sending vibrational waves down the ball-spring-ball chain. The efficiency of
heat transfer depends not only on the efficiency of coupling between the atoms, and
hence on the nature of interatomic bonding, but also on how the vibrational waves
propogate in the crystal and how they are scattered by crystal imperfections and by
their interactions with other vibrational waves; this topic is discussed in Chapter 4. The
stronger the coupling, the greater will be the thermal conductivity, a trend that is intu-
itive but also borne out by experiments. Diamond has an exceptionally strong covalent
bond and also has a very high thermal conductivity; « ~ 1000 W m~! K~!. On the
other hand, polymers have weak secondary bonding between the polymer chains and
their thermal conductivities are very poor; k < 1 Wm~! K™!,

The thermal conductivity, in general, depends on the temperature. Different classes
of materials exhibit different « values and also different « versus T behavior. Table 2.5

Table 2.5 Typical thermal conductivities of various classes
of materials at 25 °C

Material « (Wm1K™hH
Pure metal
Nb 52
Fe 80
Zn 113
w 178
Al 250
Cu 390
Ag 420
Metal alloys
Stainless steel 12-16
55% Cu—45% Ni 19.5
70% Ni-30% Cu 25
1080 steel 50
Bronze (95% Cu-5% Sn) 80
Brass (63% Cu-37% Zn) 125
Dural (95% Al-4% Cu-1% Mg) 147
Ceramics and glasses
Glass-borosilicate 0.75
Silica-fused (Si0O,) 1.5
S3Ny 20
Alumina (Al,O3) 30
Sapphire (Al,03) 37
Beryllium (BeO) 260
Diamond ~1000
Polymers
Polypropylene 0.12
PVC 0.17
Polycarbonate 0.22
Nylon 6,6 0.24
Teflon 0.25
Polyethylene, low density 0.3

Polyethylene, high density 0.5
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summarizes k at room temperature for various classes of materials. Notice how ce-
ramics have a very large range of « values.
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THERMAL CONDUCTIVITY A 95/5 (95% Cu-5% Sn) bronze bearing made of powdered metal
contains 15% (vol.%) porosity. Calculate its thermal conductivity at 300 K, given that the
electrical conductivity of 95/5 bronze is 10’ Q! m~!.

SOLUTION

Recall that in Example 2.14, we found the electrical resistivity of the same bronze by using the
mixture rule in Equation 2.26 in Section 2.4. We can use the same mixture rule again here, but
we need the thermal conductivity of 95/5 bronze. From « /6 T = Cwp., we have

k = o TCwi. = (1 x 107)(300)(2.44 x 1078) = 73.2Wm~' K
Thus, the effective thermal conductivity is

1 1[1+§xd]_ 1 [1+§(0.15)]

ket kell—xad (B2WmiKHL 1-0.15

so that
Kegt = 579 Wm™! K™!

26,2 THERMAL RESISTANCE

Consider a component of length L that has a temperature difference AT between its
ends as in Figure 2.24a. The temperature gradient is AT /L. Thus, the rate of heat flow,
or the heat current, is

, AT AT .
Q' = Ak = [2.37]  Fourier’s law
L. (L/cA)
This should be compared with Ohm’s law in electric circuits,
AV AV
= = [2.38] Ohm’s law
R (L/o A)
where AV is the voltage difference across a conductor of resistance R, and [ is the
electric current.
Q' = AT/0 Figure 2.24 Conduction of heat through a
<« AT —> component in (a) can be modeled as a thermal
Hot Cold <« AT ——> resistance 6 shown in (b) where Q' = AT/6.

o (o AN

0

<« L —>

(a) (b)
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In analogy with electrical resistance, we may define thermal resistance 6 by

AT

!
= — [2.39]
Q 0
where, in terms of thermal conductivity,
L
0= — [2.40]
KA

The rate of heat flow Q' and the temperature difference AT correspond to the
electric current / and potential difference AV, respectively. Thermal resistance is the
thermal analog of electrical resistance and its thermal circuit representation is shown
in Figure 2.24b.

EXAMPLE 2.20

THERMAL RESISTANCE A brass disk of electrical resistivity 50 nQ m conducts heat from
a heat source to a heat sink at a rate of 10 W. If its diameter is 20 mm and its thickness is
30 mm, what is the temperature drop across the disk, neglecting the heat losses from the
surface?

SOLUTION
We first determine the thermal conductivity:
Kk =0TCwr = (5 x 1078 Q m)~" (300 K)(2.44 x 1078 W Q K™?)
=146 Wm™' K™!
The thermal resistance is

L (30 x 10~ m) B
0 = — = =0.65KW
kA  7(10 x 1073 m)2(146 W m~! K-1)

Therefore, the temperature drop is

AT =6Q" = (0.65 K W) (10 W) = 6.5K or °C

2.7 ELECTRICAL CONDUCTIVITY OF NONMETALS

All metals are good conductors because they have a very large number of conduction
electrons free inside the metal. We should therefore expect solids that do not have
metallic bonding to be very poor conductors, indeed insulators. Figure 2.25 shows
the range of conductivities exhibited by a variety of solids. Based on typical values
of the conductivity, it is possible to empirically classify various materials into con-
ductors, semiconductors, and insulators as in Figure 2.25. It is apparent that non-
metals are not perfect insulators with zero conductivity. There is no well-defined
sharp boundary between what we call insulators and semiconductors. Conductors
are intimately identified with metals. It is more appropriate to view insulators as
high resistivity (or low conductivity) materials. In general terms, current conduc-
tion is due to the drift of mobile charge carriers through a solid by the application of
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Figure 2.25 Range of conductivities exhibited by various materials.

an electric field. Each of the drifting species of charge carriers contributes to the ob-
served current. In metals, there are only free electrons. In nonmetals there are other
types of charge carriers that can drift.

2.7.1 SEMICONDUCTORS

A perfect Si crystal has each Si atom bonded to four neighbors, and each covalent
bond has two shared electrons as we had shown in Figure 1.59a. We know from clas-
sical physics (the kinetic molecular theory and Boltzmann distribution) that all the
atoms in the crystal are executing vibrations with a distribution of energies. As the
temperature increases, the distribution spreads to higher energies. Statistically some
of the atomic vibrations will be sufficiently energetic to rupture a bond as indicated
in Figure 2.26a. This releases an electron from the bond which is free to wander in-
side the crystal. The free electron can drift in the presence of an applied field; it is
called a conduction electron. As an electron has been removed from a region of the
crystal that is otherwise neutral, the broken-bond region has a net positive charge.
This broken-bond region is called a hole (21). An electron in a neighboring bond can
jump and repair this bond and thereby create a hole in its original site as shown in
Figure 2.26b. Effectively, the hole has been displaced in the opposite direction to the
electron jump by this bond switching. Holes can also wander in the crystal by the
repetition of bond switching. When a field is applied, both holes and electrons con-
tribute to electrical conduction as in Figure 2.26¢. For all practical purposes, these
holes behave as if they were free positively charged particles (independent of the
original electrons) inside the crystal. In the presence of an applied field, holes drift
along the field direction and contribute to conduction just as the free electrons
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(a)

Figure 2.26
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< E

(b) (c)

(a) Thermal vibrations of the atoms rupture a bond and release a free electron into the crystal. A hole is left in the broken
bond, which has an effective positive charge.

(b) An electron in a
has been displaced

neighboring bond can jump and repair this bond and thereby create a hole in its original site; the hole

(c) When a field is applied, both holes and electrons contribute to electrical conduction.

Conductivity
of a semi-
conductor

released from the broken bonds drift in the opposite direction and contribute to con-
duction.

It is also possible to create free electrons or holes by intentionally doping a semi-
conductor crystal, that is substituting impurity atoms for some of the Si atoms. Defects
can also generate free carriers. The simplest example is nonstoichiometric ZnO that is
shown in Figure 1.55b which has excess Zn. The electrons from the excess Zn are free
to wander in the crystal and hence contribute to conduction.

Suppose that n and p are the concentrations of electrons and holes in a semicon-
ductor crystal. If electrons and holes have drift mobilities of 1. and w,, respectively,
then the overall conductivity of the crystal is given by

o =eply+eni, [2.41]

Unless a semiconductor has been heavily doped, the concentrations » and p are
much smaller than the electron concentration in a metal. Even though carrier drift mo-
bilities in most semiconductors are higher than electron drift mobilities in metals,
semiconductors have much lower conductivities due to their lower concentration of
free charge carriers.

EXAMPLE 2.21

HALL EFFECT IN SEMICONDUCTORS The Hall effect in a sample where there are both nega-
tive and positive charge carriers, for example, electrons and holes in a semiconductor, involves
not only the concentrations of electrons and holes, » and p, respectively, but also the electron
and hole drift mobilities, i, and w,. We first have to reinterpret the relationship between the
drift velocity and the electric field E.
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Figure 2.27 Hall effect for ambipolar
+ - + + - + conduction as in a semiconductor where there
@ @ B are both electrons and holes.
g The magnetic field B, is out from the plane of
the paper. Both electrons and holes are
I deflected toward the bottom surface of the
conductor and consequently the Hall voltage
depends on the relative mobilities and
|% concentrations of electrons and holes.

If 4. is the drift mobility and v, is the drift velocity of the electrons, then we already know that
v. = n.'E. This has been derived by considering the net electrostatic force eE acting on a single
electron and the imparted acceleration a = eE/m,. The drift is therefore due to the net force
F, = eE experienced by a conduction electron. If we were to keep e as the net force F,, acting
on a single electron, then we would have found

=HBep [2.42]
e

Ve
Equation 2.42 emphasizes the fact that drift is due to a net force F,, acting on an electron. A sim-
ilar expression would also apply to the drift of a hole in a semiconductor.

When both electrons and holes are present in a semiconductor sample, both charge carriers
experience a Lorentz force in the same direction since they would be drifting in the opposite di-
rections as illustrated in Figure 2.27. Thus, both holes and electrons tend to pile near the bottom
surface. The magnitude of the Lorentz force, however, will be different since the drift mobili-
ties and hence drift velocities will be different in general. Once equilibrium is reached, there
should be no current flowing in the y direction as we have an open circuit. Suppose that more
holes have accumulated near the bottom surface so there is a built-in electric field €, along y as
shown in Figure 2.27. Suppose that v,, and vy, are the usual electron and hole drift ve-
locities in the —y and +y directions, respectively, as if the electric field £, existed
alone in the +y direction. The net current along y is zero, which means that

Jy = Jy+ J. = epuvy, +env,, =0 [2.43]
From Equation 2.43 we obtain
PUhy = —RUgy [2.44]

We note that either the electron or the hole drift velocity must be reversed from its usual di-
rection; for example, holes drifting in the opposite directon to E, The net force acting on the
charge carriers cannot be zero. This is impossible when two types of carriers are involved and
both carriers are drifting along y to give a net current J, that is zero. This is what Equation 2.43
represents. We therefore conclude that, along y, both the electron and the hole must experience a

Drift velocity
and net force
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driving force to drift them. The net force experienced by the carriers, as shown in Figure 2.27, is
Fny = eE, — ev,, B, and —F,, = eE, + ev,, B, [2.45]

where v, and v,, are the hole and electron drift velocities, respectively, along x. In general, the drift
velocity is determined by the net force acting on a charge carrier; that is, from Equation 2.42

ev ev
Foy=—2 and  —F,=—2
Mn He
so that Equation 2.45 becomes,
ev ev
A eE, — evy, B, and 2= eE, + ev, B,
M He

where vy, and v, are the hole and electron drift velocities along y. Substituting v,, = u,E, and
Vex = MEy, these become

Uhy Vey
— =E, — upE( B, and — =%, + u.E,B, [2.46]
223 He
From Equation 2.46 we can substitute for v,, and v,, in Equation 2.44 to obtain
punEy — pusELB, = —np,E, — nulE. B,
or
Ey(pn + nite) = B.E(puy — niul) [2.47]

We now consider what happens along the x direction. The total current density is finite and
is given by the usual expression,

J. = epuy, + envey = (piy, + np.)eE, [2.48]
We can use Equation 2.48 to substitute for Z, in Equation 2.47, to obtain

eEy(np. + pun)® = B J.(pui — np?)
The Hall coefficient, by definition, is Ry = £, /J, B,, s0

2 _ oyl
Ry = —n — e [2.49)
e(pun +np.)
or
— nb?
Ry = -2—"27 [2.50]
e(p + nb)?

where b = u./u,. Itis clear that the Hall coefficient depends on both the drift mobility ratio and
the concentrations of holes and electrons. For p > nb?, Ry will be positive and for p < nb?, it
will be negative. We should note that when only one type of carrier is involved, for example,
electrons only, the J, = 0 requirement means that J, = env,, = 0, or v,, = 0. The drift veloc-
ity along y can only be zero, if the net driving force F,, along y is zero. This occurs when
eE, — ev., B, = 0, that is, when the Lorentz force just balances the force due to the built-in field.

HALL COEFFICIENT OF INTRINSIC SILICON At room temperature, a pure silicon crystal (called
intrinsic silicon) has electron and hole concentrations n = p = n; = 1.5 x 10' cm™3, and
electron and hole drift mobilities x, = 1350 cm? V™! s~! and u, = 450 cm? V~! s™!. Calcu-
late the Hall coefficient and compare it with a typical metal.
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SOLUTION

Givenn=p=n; =15x10° cm™3, u, = 1350 cm®> V-! s7!, and u; = 450 cm? V™! 57!
we have

p=be B0
U 450
Then from Equation 2.50,
Ry = (1.5 x 10" m~3) — (1.5 x 10'* m~3)(3)?

(1.6 x 10~ C)[(1.5 x 106 m~3) + (1.5 x 10'6 m~3)(3)]?
=—-208m3 A~'s!

which is orders of magnitude larger than that for a typical metal. All Hall-effect devices use a
semiconductor rather than a metal sample.
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27.2 IoNIC CRYSTALS AND GLASSES

Figure 2.28a shows how crystal defects in an ionic crystal lead to mobile charges that
can contribute to the conduction process. All crystalline solids possess vacancies and
interstitial atoms as a requirement of thermal equilibrium. Many solids have intersti-
tial impurities which are often ionized or charged. These interstitial ions can jump,
i.e., diffuse, from one interstitial site to another and hence drift by diffusion in the
presence of a field. A positive ion at an interstitial site such as that shown in Figure
2.28a always prefers to jump into a neighboring interstitial site along the direction of
the field because it experiences an effective force in this direction. When an ion with

E > E

Vacancy aids the diffusion of positive ion

CICICIONCIO)E o st
OO Qw0
®0F0

@0 ®
O® @@@
@f@o T*

Anion vacancy
acts as a donor

Na

Interstmal cation diffuses
(a) (b)

Figure 2.28 Possible contributions to the conductivity of ceramic and glass insulators.
(a) Possible mobile charges in a ceramic.
(b) An Na* ion in the glass structure diffuses and therefore drifts in the direction of the field.
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This soda glass rod when heated under a torch becomes electrically conducting. It passes
4 mA when the voltage is 50 V (2 x 25 V); a resistance of 12.5 k2| Ordinary soda glass at
room temperature is an insulator but can be quite conducting at sufficiently high temperatures.

charge gio,, jumps a distance d along the field, its potential energy decreases by
qion’Ed. If it tries to jump in the opposite direction, it has to do work g;,nEd against
the force of the field.

Deviations from stoichiometry in compound solids often lead to the generation of
mobile electrons (or holes) and point defects such as vacancies. Therefore, there are
electrons, holes, and various mobile ions available for conduction under an applied
field as depicted in Figure 2.28a. Many glasses and polymers contain a certain con-
centration of mobile ions in the structure. An example of a Na* ion in silica glass is
shown in Figure 2.28b. Aided by the field, the Na* can jump from one interstice to a
neighboring interstice along the field and thereby drift in the glass and contribute to
current conduction. The conduction process is then essentially field-directed diffusion.
Ordinary window glass, in fact, has a high concentration of Na* ions in the structure
and becomes reasonably conducting above 300—400 °C. Some polymers may contain
ions derived from the polymerization process, from the local degradation (dissocia-
tion) of the polymer itself, or from water absorption.

Conductivity o of the material depends on all the conduction mechanisms with
each species of charge carrier making a contribution, so it is given by

g = Zq,-n,-u,- [2.51]

where 7; is the concentration, g; is the charge carried by the charge carrier species of
type i (for electrons and holes ¢; = ¢), and u; is the drift mobility of these carriers. The
dominant conduction mechanism in Equation 2.51 is often quite difficult to uniquely
identify. Further, it may change with temperature, composition, and ambient condi-
tions such as the air pressure as in some oxide ceramics. For many insulators, whether
ceramic, glass, or polymer, it has been found that, in the majority of cases, the conducti-
vity follows an exponential or Arrhenius-type temperature dependence so that o is
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Figure 2.29 Conductivity versus reciprocal temperature for various low-conductivity
solids.
| SOURCE: Data selectively combined from numerous sources.

thermally activated,
Temperature

o =0, exp(——&) [2.52] dependence of
kT conductivity

where E, is the activation energy for conductivity.

Figure 2.29 shows examples of the temperature dependence of conductivity for
various high-resistivity solids: oxide ceramics, glasses, and polymers. When Equa-
tion 2.51 is plotted as log(o) versus 1/7, the result is a straight line with a negative
slope that indicates the activation energy E,. Equation 2.52 is useful in predicting
the conductivity at different temperatures and evaluating the temperature stability of
the insulator.

CONDUCTIVITY OF A SODA-SILICATE GLASS Figure 2.29 shows the temperature dependence
of 12% Na,0-88% SiO,, soda-silicate glass which has 12 mol% Na,O and 88 mol% SiO,.

Calculate the activation energy of conductivity and compare this with the activation energy

for the diffusion of Na* ions in the soda—silicate glass structure which is in the range 0.65—

0.75 eV.

SOLUTION

According to Equation 2.52 when In(o') is plotted against 1/7, the slope should be — E,; /k. If the
conductivity at temperatures 7, and T, are o, and o, respectively, then the slope of the straight
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line for 12% Na, 0—88% SiO, in Figure 2.29 is

In(o2/01) E,
Slope = ———r— = ——
(YT, — 1/Ty) k
Takingo; = 107* Q- ! m~'ando, = 107° Q! m~! in Figure 2.29, we find 1/T; = 0.00205
and 1/7, = 0.00261.Then, E, aseV is

_ In(o/01) k In(107%/10~%) 1.38 x 1072
T (YT, — YT))e  (0.00261 — 0.00205) 1.602 x 10-19

A similar calculation for the 24% Na, 0-76% SiO, gives an activation energy of 0.69 eV.
Both of these activation energies are comparable with the activation energy for the diffu-
sion of Na* ions in the structure. Thus, Na* diffusion is responsible for the conductivity.

= 0.71 eV

EXAMPLE 2.24

DRIFT MOBILITY DUE TO IONIC CONDUCTION The soda-silicate glass of composition 20%
Na,0-80% SiO, and density of approximately 2.4 g cm™> has a conductivity of 8.25x
1076 Q' m™! at 150 °C. If conduction occurs by the diffusion of Na* ions, what is their drift
mobility?

SOLUTION

We can calculate the drift mobility u; of the Na' ions from the conductivity expression
o = g;n;u; Where g; is the charge of the ion Na™*, so that it is +e, and n; is the concentration of
Na* ions in the structure. For simplicity we can take the glass to be made of (Na, ) 2(SiO02)
units. The atomic masses of Na, O, and Si are 23, 16, and 28.1, respectively. The atomic mass
of (Na;0)02(Si0;) 5 is
M, = 0.2[2(23) + 1(16)] + 0.8[1(28.1) + 2(16)]
= 60.48 g mol ™! of (Na;0)0.2(S8i03)0s
The number of (Na,0),,(Si0;)os units per unit volume can be found from the density d by
dN, (2.4 x 10°kgm™3)(6.02 x 10® mol ™)
n = =

My (10-3 kg/g)(60.48 gmol ')
= 2.39 x 10 (Na,0)0.2(Si0,)o units m>

The concentration n; of Na* ions is the concentration of Na atoms as each would be ionized.
Then n; can be expressed as n; = ny, = [atomic fraction of Na in (Na;0)(2(SiO,)og] x n.

o [ 0.2(2)
T L0224+ 1) +0.8(1+2)

](2.39 x 102 m™%) = 3.186 x 10 m™3

and

o (8.25x 107 Q~!'m™")

= =162x107“m?v-!s!
en; . (1.60 x 10-1 C)(3.186 x 102 m-?) % s

Mi =

This is an extremely small drift mobility, by orders of magnitude, compared with the typi-
cal electron drift mobility in metals and semiconductors. The reason is that the drift involves the
Na® ion jumping from one site to another by a diffusion process. This diffusion requires over-
coming a potential energy barrier, typically 0.5 to 1 eV, which limits drastically the rate of dif-
fusion by virtue of the Boltzmann factor.
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ADDITIONAL TOPICS
28 SKIN EFFECT: HF RESISTANCE OF A CONDUCTOR

Consider the cylindrical conductor shown in Figure 2.30a, which is carrying a current
I into the paper (x). The magnetic field B of I is clockwise. Consider two magnetic
field values B, and B,, which are shown in Figure 2.30a. B, is inside the core and B,
is just outside the conductor.

Assume that the conductor is divided into two conductors. The hypothetical cut is
taken just outside of B;. The conductor in Figure 2.30a is now cut into a hollow cylin-
der and a smaller solid cylinder, as shown in Figure 2.30b and c, respectively. The
currents I and I, in the solid and hollow cylinders sum to 7. We can arrange things and
choose B, such that our cut gives I} = I, = %I . Obviously, I; flowing in the inner
conductor is threaded (or linked) by both B; and B,. (Remember that B is just inside
the conductor in Figure 2.30b, so it threads at least 99% of 1,.) On the other hand, the
outer conductor is only threaded by B,, simply because I, flows in the hollow cylinder
and there is no current in the hollow, which means that B, is not threaded by I,.
Clearly, I, threads more magnetic field than /, and thus conductor (c) has a higher in-
ductance than (b). Recall that inductance is defined as the total magnetic flux threaded
per unit current. Consequently, an ac current will prefer paths near the surface where
the inductive impedance is smaller. As the frequency increases, the current is confined
more and more to the surface region.

For a given conductor, we can assume that most of the current flows in a surface
region of depth §, called the skin depth, as indicated in Figure 2.31. In the central region,

BZ
g:loTOf:l ::’E:e'“t {b) Current in hollow
pap . outer cylinder is I/2.
B,
B

(c) Current in solid
inner cylinder is 1/2.

Figure 2.30 lllustration of the skin effect.

A hypothetical cut produces a hollow outer cylinder and a solid inner cylinder. Cut is

placed where it would give equal current in each section. The two sections are in parallel so
that the currents in (b) and (c) sum to that in (q).
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6 = Skin depth /
Figure 2.31 At high frequencies, the core
region exhibits more inductive impedance
than the surface region, and the current
flows in the surface region of a conductor >
defined approximately by the skin depth, 5. 2a

the current will be negligibly small. The skin depth will obviously depend on the fre-
quency w. To find §, we must solve Maxwell’s equations in a conductive medium, a te-
dious task that, fortunately, has been done by others. We can therefore simply take the
result that the skin depth § is given by

1
0 = —— [2.53]

v %wa uw

where  is the angular frequency of the current, o is the conductivity (o is constant
from dc up to ~10'* Hz in metals), and u is the magnetic permeability of the medium,
which is the product of the absolute (free space) permeability u, and the relative
permeability u,.

We can imagine the central conductor as a resistance R in series with an inductance
L. Intuitively, those factors that enhance the inductive impedance w L over the resistance
R will also tend to emphasize the skin effect and will hence tend to decrease the skin
depth. For example, the greater the permeability of the conducting medium, the stronger
the magnetic field inside the conductor, and hence the larger the inductance of the cen-
tral region. The higher the frequency of the current, the greater the inductive impedance
oL compared with R and the more significant is the skin effect. The greater is the con-
ductivity o, the smaller is R compared with w L and hence the more important is the skin
effect. All these dependences are accounted for in Equation 2.53.

With the skin depth known, the effective cross-sectional area is given approxi-
mately by

A=ma®— n(a — 8)? ~ 2mad
where 82 is neglected (8 < a). The ac resistance r,. of the conductor per unit length is
therefore

o~ [2.54]

where p is the ac resistivity at the frequency of interest, which for all practical pur-
poses is equal to the dc resistivity of the metal. Equation 2.54 clearly shows that as w
increases, 8 decreases, by virtue of 8 o« w~!/? and, as a result, r, increases.



E 2.8 SKIN EFrFeCcT: HF RESISTANCE OF A CONDUCTOR 165

From this discussion, it is obvious that the skin effect arises because the mag-
netic field of the ac current in the conductor restricts the current flow to the surface
region within a depth of § < a. Since the current can only flow in the surface region,
there is an effective increase in the resistance due to a decrease in the cross-sectional
area for current flow. Taking this effective area for current flow as 2mad leads to
Equation 2.54.

The skin effect plays an important role in electronic engineering because it limits
the use of solid-core conductors in high-frequency applications. As the signal frequen-
cies reach and surpass the gigahertz (10° Hz) range, the transmission of the signal over
a long distance becomes almost impossible through an ordinary, solid-metal conduc-
tor. We must then resort to pipes (or waveguides).

SKIN EFFECT FROM DIMENSIONAL ANALYSIS Using dimensional analysis, obtain the generaw

form of the equation for the skin depth & in terms of the angular frequency of the current w, con-
E& ductivity o, and permeability u.

SOLUTION

The skin effect depends on the angular frequency w of the current, the conductivity o, and the
magnetic permeability u of the conducting medium. In the most general way, we can group
these effects as

-

[8] = [0)' [o P [u]

where the indices x, y, and z are to be determined. We then substitute the dimensions of each
quantity in this expression. The dimensions of each, in terms of the fundamental units, are as

L
%ﬁ follows:
’;"“
Quantity Units Fundamental Units Comment
) m m
w s7! s~
o Q1 m! C?skg™ ! m3 Q=VA'=gCyCsH!
=NmsC?=(kgms?)(msC?)
W WbA™! m™! kgmC~? Wb=Tm?=NA"! m)(m?
= (kg ms™2)(C"! s)(m)
Therefore,
| [m] = [s™'I*[C* s kg™' m™*]’[kg m C™*F

Matching the dimensions of both sides, we see that y = z; otherwise C and kg do not
Fi cancel.

For m l=-3y+4+z2
For s O=—x+y
For C or kg 0=2y—-2z or O=—-y+z
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Clearly, x = y = z = —3 is the only possibility. Then, 8 o [wo ]~'/2. It should be reem-
phasized that the dimensional analysis is not a proof of the skin depth expression, but a consis-
tency check that assures confidence in the equation.

M SKIN EFFECT IN AN INDUCTOR What is the change in the dc resistance of a copper wire of ra-
dius 1 mm for an ac signal at 10 MHz? What is the change in the dc resistance at 1 GHz? Cop-
per has pg. = 1.70 x 1078 Q m or 04 = 5.9 x 10’ Q! m~! and a relative permeability near
unity.

SOLUTION

Per unit length, r4. = pg4c/ma? and at high frequencies, from Equation 2.54, roc = pgc/2mas.
Therefore, ry./rec = a/28.
We need to find §. From Equation 2.53, at 10 MHz we have

8 = [Loowen] " = [1 x 27 x 10 x 10° x 5.9 x 107 x 1.257 x 10~6]
=2.07 x 1073 m = 20.7 um
Thus

Tac a (1073 m)

= = =24.13
rae 28 (2 x2.07 x 1075 m)

The resistance has increased by 24 times. At 1 GHz, the increase is 240 times. Furthermore,
the current is confined to a surface region of about ~2 x 10~°(20 um) at 10 MHz and
~2 x 107® m (2 um) at 1 GHz, so most of the material is wasted. This is exactly the reason why
solid conductors would not be used for high-frequency work. As very high frequencies, in the
gigahertz range and above, are reached, the best bet would be to use pipes (waveguides).

One final comment is appropriate. An inductor wound from a copper wire would have a
certain Q (quality factor) value® that depends inversely on its resistance. At high frequencies, Q
would drop, because the current would be limited to the surface of the wire. One way to over-
come this problem is to use a thick conductor that has a surface coating of higher-conductivity
metal, such as silver. This is what the early radio engineers practiced. In fact, tank circuits of
high-power radio transmitters often have coils made from copper tubes with a coolant flowing
inside.

29 THIN METAL FILMS

29.1 CoNDUCTION IN THIN METAL FIiLMS

The resistivity of a material, as listed in materials tables and in our analysis of con-
duction, refers to the resistivity of the material in bulk form; that is, any dimension of
the specimen is much larger than the mean free path for electron scattering. In such
cases resistivity is determined by scattering from lattice vibrations and, if significant,
scattering from various impurities and defects in the crystal. In certain applications,

9The Q value refers to the quality factor of an inductor, which is defined by Q = w,L/R, where w, is the resonant
frequency, L is the inductance, and R is the resistance due to the losses in the inductor.
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notably microelectronics, metal films are widely used to provide electrical conduction
paths to and from the semiconductor devices. Various methods are used to deposit thin
films. In many applications, the metal film is simply deposited onto a substrate, such
as a semiconductor or an insulator (e.g., Si0O,), by physical vapor deposition (PVD),
that is, by vacuum deposition, which typically involves either evaporation or sputter-
ing. In thermal evaporation, the metal is evaporated from a heated source in a vac-
uum chamber as depicted in Figure 1.74. As the metal atoms, evaporated from the
source, impinge and adhere to the semiconductor surface, they form a metal film
which is often highly polycrystalline. Stated differently, the metal atoms in the vapor
condense to form a metal film on a suitably placed substrate. In electron beam depo-
sition, an energetic electron beam is used to melt and evaporate the metal. Sputtering
is a vacuum deposition process that involves bombarding a metal target material with
energetic Ar ions, which dislodges the metal atoms and then condenses them onto a
substrate. The use of sputtering is quite common in microelectronic fabrication. Cop-
per metal interconnect films used in microelectronics are usually grown by electrode-
position, that is, using electroplating, an electrochemical process, to deposit the metal
film onto the required chip areas. In many applications, especially in microelectronics,
we are interested in the resistivity of a metal film in which the thickness of the film or
the average size of the grains is comparable to the mean distance between scattering
events £y, (the mean free path) in the bulk material. In such cases, the resistivity of the
metal film is greater than the corresponding resistivity of the bulk crystal. A good ex-
ample is the resistivity of interconnects and various metal films used in the “shrinking”
world of microelectronics, in which more and more transistors are packed into a single
Si crystal, and various device dimensions are scaled down.

29.2 RESISTIVITY OF THIN FILMS

Polycrystalline Films and Grain Boundary Scattering In a highly polycrys-
talline sample the conduction electrons are more likely to be scattered by grain bound-
aries than by other processes as depicted in Figure 2.32a. Consider the resistivity due
to scattering from grain boundaries alone as shown in Figure 2.32b. The conduction
electron is free within a grain, but becomes scattered at the grain boundary. Its mean
free path £gpins is therefore roughly equal to the average grain size d. If A = £cryga 1S
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Grain 1 Figure 2.32
00000 OL . (a) Grain boundaries cause scattering of
00000 OOC?O QGram 2 the electron and therefore add to the
0000000 O O O O O resistivity by Matthiessen’s rule.
0000 6 00 OQO OO O o) (b) For a very grainy solid, the electron
0]0101010X01e OO OO is scattered from grain boundary to
00000 OOOO OO grain boundary and the mean free path
A O O O o) is approximately equal to the mean
Grain O 'e) grain diameter.
boundary

(b)
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the mean free path of the conduction electrons in the single crystal (no grain bound-
aries), then

1_ 1 + 1 _ 1 +1
14 ecrystal egrains A d

[2.55]

The resistivity is inversely proportional to the mean free path which means that the
resistivity of the bulk single crystal perysal  1/A and the resistivity of the polycrys-

talline sample p o« 1/£. Thus,
A
e ()
Perystal d

Polycrystalline metal films with a smaller grain diameter d (i.e., more grainy films)
will have a higher resistivity.

In a more rigorous theory we have to consider a number of effects. It may take
more than one scattering at a grain boundary to totally randomize the velocity, so we
need to calculate the effective mean free path that accounts for how many collisions
are needed to randomize the velocity. There is a possibility that the electron may be to-
tally reflected back at a grain boundary (bounce back). Suppose that the probability of
reflection at a grain boundary is R. If d is the average grain size (diameter), then the
popular Mayadas—Shatkez formula is approximately given by!°

[2.56]

p
Pcrystal

P=3 (%)
“d\1-R

Equation 2.57a is in the form of Matthiessen’s rule and indicates that the grain bound-

ary- scattering contribution pgrins to the overall resistivity is (1.338)pcrysta. The approxi-

mate sign in Equation 2.57 implies that Matthiessen’s rule is “approximately,” though rea-

sonably well, obeyed. For copper, typical R values are 0.24 to 0.40, and R is somewhat

smaller for Al. Equation 2.57 for a Cu film with R ~ 0.3 predicts p/pcrysial = 1.20 for
d =~ 3 or a grain size d =~ 120 nm since the bulk crystal A ~ 40 nm.

~ 1+ 1338 [2.574]

where [2.57b]

Surface Scattering Consider the scattering of electrons from the surfaces of a con-
ducting film as in Figure 2.33. Take the film thickness as D. Assume that the scatter-
ing from the surface is inelastic, that is, the electron loses the gained velocity from the
field. Put differently, the direction of the electron after the scattering process is inde-
pendent of the direction before the scattering process. This type of scattering is called
nonspecular. (If the electron is elastically reflected from the surface just like a rubber
ball bouncing off a wall, then there is no increase in the resistivity.) It is unlikely that
one surface scattering will completely randomize the electron’s velocity. The mean
free path £4,¢ of the electron will depend on its direction right after the scattering

19 This is obtained by expanding the original long expression about 8 = 1 to the first term. To two decimal places,
the expansion is 1 +1.338.
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J_ Figure 2.33 Conduction in thin
'x 0
D films may be controlled by
scattering from the surfaces.

Scattering 2

-X -« > +x
Scattering 1 y Figure 2.34 The mean free
. path of the electron depends on
-y the angle 8 after scattering.

process as depicted in Figure 2.34. For example, if the angle 8 after surface scattering
is zero, (the electron moves transversely to the film length), then £4,s = D. In general,
the mean free path £,f will be D /(cos ) as illustrated in Figure 2.34.

Consider the surface scattering example in Figure 2.34 where the electron is scat-
tered from the bottom surface. If the scattering of the electron were truly random, then
the probability of being scattered in a direction back into the film, that is, in the +y di-
rection, would be 0.5 on average. However, the electron’s direction right after the sur-
face scattering is not totally random because we know that the electron cannot leave
the film; thus 6 is between —n /2 and +7/2 and cannot be between —x and +. The
electron’s velocity after the first surface scattering must have a y component along +y
and not along —y. The electron can only acquire a velocity component along —y again
after the second surface scattering as shown in Figure 2.34. It therefore takes two col-
lisions to randomize the velocity, which means that the effective mean free path must
be twice as long, that is 2D/ cos 6. To find the overall mean free path £ for calculating
the resistivity we must use Matthiessen’s rule. If A is the mean free path of the con-
duction electrons in the bulk crystal (no surface scattering), then

1 1 1 1 cosé

== = — 2.58]
£ A + Lot A + 2D [

We have to average for all possible 8 values per scattering, that is, 8 from —mx /2

to + /2. Once this is done we can relate £ to A as follows:
A 14 A
¢ aD

The resistivity of the bulk crystal is ppux o 1/A, and the resistivity of the film is

p o« 1/€. Thus,

1/

pp -1+ ;(—) [2.59]
bulk
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