Introduction to
OpenCL

Introduction to OpenCL

e OpenCL - Open Computing Language

Open, royalty-free standard

Initially proposed by Apple

Specification maintained by the Khronos Group

Developed by a number of companies

Specification: set of requirements to be satisfied = must be
implemented to use it

e Device agnostic

® Framework for parallel programming across heterogeneous platforms
consisting of:

e CPUs, GPUs and other processors (FPGA, ...)
e Similar: Nvidia’'s CUDA

Main ldea

e Main lIdea of OpenCL: Replace loops with data-parallel functions
(kernels) that execute at each point in a problem domain

Traditional vector addition loop in C

Vector addition OpenCL kernel
TEEE TEE_EEEI R L __kernel void wvec_add(
const float *xa,
__global const float =*a,
const float *b,
float *c) __global const float *b,
I 7 __global float *c)
. . {
int 1i;)) _) i
for(i=0; i<N; i++) z?tig;d_—ag[eza]glibzl[_;;l](?),
clil = alil + blil; L € gres
i y

e Code comparison - note differences:

e |Loop over N elements = N kernel instances execute in parallel
e Qualifiers: __kernel, __global

e Each kernel instance has a global identification number

Single Precision GFLOP/s

Motivation

Performance on CPU Performance on GPU
45 60
3; hVN—_ - \/ ‘ '?é‘ 50 Wﬁi
Basic ‘,"": 40 Basic
——aligned % 30 — —_— ——pligned
“Local & 20 : ~—Local
Vectorized £ 10 Vectorized
-[, . Coarsened < 0 . . . : Images
1] 200000 400000 600000 S00000 1000000 o] 200000 400000 600000 800000 1000000
Matrix order Matrix order

e AMD OpenCL Optimization Case Study: Diagonal Sparse Matrix
Vector Multiplication

AMD Phenom |l X4 965 CPU (quad core)

ATl Radeon HD 5870 GPU

Unoptimized CPU performance: 1 SP GFLOP /s
Optimized CPU performance reaches: 4 SP GFLOP/s
Optimized GPU performance reaches: 50 SP GFLOP /s

OpenCL Models

* Platform Model

* Execution Model

* Programming Model
* Memory Model

Platform Model

Processing
Element

e Platform: one Host + one or more OpenCL Devices
e OpenCL Device: divided into one or more compute units

e Compute unit: divided into one or more processing elements

e Platform model designed to present a uniform view of many different kinds
of parallel processors

Platform Model Mapped onto AMD GPU

Platform Model AMD GPU Structure

Processing
Element
(Thread

Processor) OpenCL Device (AMD Ra o

OpenCL Device

e OpenCL Device Example: AMD Radeon HD 6970

e 24 compute units (SIMD engines or processors)
e SIMD - Single Instruction, Multiple Data
e High level of parallelism within a processor

e 64 processing elements per compute unit
— 1536 total processing elements

Execution Model

Processing
Element

e OpenCL Application
e Host Code
e Written in C/C++
e Executes on host
e Submits work to OpenCL device(s)
e Device Code
e Written in OpenCL C

® Executes on device(s)

Programming Model

e Data-parallel programming:

e Set of instructions are applied in parallel to each point in some abstract
domain of indices.
® On a SIMD processor, data parallelism achieved by performing the

same task on many different pieces of data in parallel
e Compare to MPI, where different processors perform the same task in

parallel
e Example: 8x8 Matrix addition

e MPI with a 2-processor system: CPU A could add all elements from
top half of matrices, CPU B could add all elements from bottom half -

each CPU performs 32 additions serially
e OpenCL on AMD GPU: Each of the 64 processing elements on the

SIMD processor performs 1 addition

e T[ask-parallel programming:

e Multiple parallel tasks

Programming Model: Data-Parallelism

2D Range

1D Range H FE H

Lrrrrrvr) rrrrenl b I I

e Define N-Dimensional computation domain (N = 1,2 or 3)

Data-Parallelism with 1D Index Space

Work item Work Group

l / Local Size(0)
1 o I B R I |‘|||||||r|

Global Size(0)

When a kernel is submitted for execution, an index space is defined

A kernel instance (work item, CUDA: thread) executes for each point in
index space

Each work item executes the same code but the path taken and data
operated upon can vary per work item

Work items organized into work groups (CUDA: thread blocks)

e Assigned a unique work group ID
e \Work group synchronization

Data-Parallelism with 2D Index Space

Work item Work Group

Local Size(0)

(1)921S |e207

Global Size(1)

Global Size(0)

e Example: processing a 1024 x 1024 image:
Global Size(0) = Global Size(1) = 1024
1 kernel execution per pixel = 1,048,576 total kernel executions

AMD GPU: Work ltem Processing

Processing

-
-

Element .
(Thread
Processor) OpenCL Device (AMD Radeon HD 6970)

e All processing elements within SIMD engine execute same instruction
e Wavefront: block of work-items that are executed together

e \Wavefronts execute /N work items in parallel, where N is specific to the
GPU

e For AMD Radeon HD 6970, N = 64 as there are 64 processing
elements per SIMD engine
e Consequence on branching

Memory Model

Private Memory (CUDA: local)
e Private to a work item, not visible
to other work items

Local Memory (CUDA: shared)
e Shared within a work group

Constant Memory
e Visible to all workgroups, read-only

Global Memory
® Accessible to all work items and
the host

Host Memory
e Host-accessible

Work-ltem|. . .| Work-ltem Work-ltem|. . .| Work-ltem
1 M al M

Workgroup N

[4
\ Y

Global and Constant Memory
Device K T

Workgroup 1
\
4

v

Host Memory

Host

OpenCL Framework

e Platform Layer

e Allows host to discover OpenCL devices and create contexts

e Runtime

e Allows host to manipulate contexts (memory management, command
execution..)

e OpenCL C Programming Language

e Supports a subset of the ISO C99 language with extensions for
parallelism
e Device memory hierarchy = Address space qualifiers (__global,

__local..)
e Extensions for parallelism - support for work items (get_global_id), work
groups (get_group_id, get_local_id), synchronization

Vector Addition Example

e Simple example:

Vector Addition in C

void vector_add_c(const float *a,
const float *b,
float *c,

int N)
{
int 1i;
for(i=0; i<N; i++)
clil] = ali] + bl[il;
is

.

® For the OpenCL solution to this problem, there are two parts:

e Kernel code
e Host code

Vector Addition in OpenCL

Kernel code

__kernel void vec_add (__global const float x*a,
__global const float *b,
__global float *c)

// Get global identification number
// (returns a value from O to N-1)
int gid = get_global_id(0) ;

c[gid]l = algid]l + bl[gid]l;

Y // kernel executed over N work items

Vector Addition in OpenCL

Inline Kernel Code
#include <CL/cl.h> // OpenCL header file

// OpenCL kernel source code included inline in host source code:
const char *source =

"__kernel void vec_add (__global const float x*xa, \n"

s __global const float x*b, W

o __global float *c) \n"
u{ \n"
" dint gid = get_global_id(0); \n"
" cl[gid]l = algidl + blgid]l; \n"
"} \n";

void main{}{

C...)

by

Vector Addition in OpenCL

e Host program sets up the environment for the OpenCL program, creates and
manages kernels

® 5 steps in a basic Host program

Initialize device (Platform layer)

Build program (Compiler)

Create buffers (Runtime layer)

Set arguments, enqueue kernel (Runtime layer)
Read back results (Runtime layer)

kW=

Vector Addition - Host
1. Initialize device (Platform layer)

#include <CL/cl.h>
const char *source = (...)
void main(){

int N = 64; // Array length

// Get the first available platform
// Example: AMD Accelerated Parallel Processing
cl_platform_id platform;

clGetPlatformIDs (1, // number of platforms to add to list
&Zplatform, // list of platforms found
NULL) ; // number of platforms available

// Get the first GPU device the platform provides
cl_device_id device;
chetDeviceIDs(platform, CL_DEVICE_TYPE_GPU,

1, // number of devices to add
&device, // list of devices
NULL) ; // nmumber of devices available

Vector Addition - Host

1. Initialize device (Platform layer)
void main(){
...
// Contexts are used by the runtime for managing program
// objects, memory, and command queues
// Create a context and command queue on that device
cl_context context = clCreateContext/(
o, // optional (context properties)
1, // number of devices
&device, // pointer to device list
NULL, NULL, // optional (callback function for reporting errors)
NULL) ; // mno error code returned
cl_command_queue queue = clCreateCommandQueue (
context, // valid context
device, // device associated with context
o, // optional (command queue properties)
NULL) ; // mno error code returned
...
By

Vector Addition - Host

2. Build program (Compiler)

void main(){

...

// An OpenCL program is a set of OpenCL kernels and
// auxiliary functions called by the kernels

// Create program object and load source code into program object

cl_program program = clCreateProgramWithSource(context,
il // mumber of strings
&source, // strings
NULL, // string length or NULL terminated
NULL) ; // no error code returned
(oo 50)

Vector Addition - Host

2. Build program (Compiler)

void main(){

C...)

// Build program executable from program source
clBuildProgram(program,

1, // mumber of devices
&device, // pointer to device list
NULL, // optional (build options)

NULL, NULL); // optional (callback function, argument)

// Create kernel object

cl_kernel kernel = clCreateKernel (
program, // program object
"vec_add", // kernel name in program
NULL) ; // no error code returned
C...)

Vector Addition - Host

3. Create buffers (Runtime layer)

void main(){

by

C...)

// Initialize arrays
cl_float *a = (cl_float *)
cl_float *b = (cl_float *)

int i
for(i=0;i<N;i++){
alil = 1i;
b[i]l] = N-i;
¥
C...)

malloc (N*sizeof (cl_float));
malloc (N*sizeof (cl_float));

Vector Addition - Host

3. Create buffers (Runtime layer)

void main(){

(G
// A buffer object is a handle to a region of memory

cl_mem a_buffer = clCreateBuffer(context,
CL_MEM_READ_ONLY | // buffer object read only for kernel
CL_MEM_COPY_HOST_PTR, // copy data from memory referenced
// by host pointer

N*sizeof (cl_float), // size in bytes of buffer object
a, // host pointer
NULL) ; // mo error code returned

cl_mem b_buffer = clCreateBuffer(context, CL_MEM_READ_ONLY |
CL_MEM_COPY_HOST_PTR,
N*sizeof (cl_float), b, NULL) ;
cl_mem c_buffer = clCreateBuffer(context, CL_MEM_WRITE_ONLY,
N*sizeof (cl_float), NULL, NULL) ;
()

Vector Addition - Host

4. Set arguments, enqueue kernel (Runtime layer)

void main(){

C...)

size_t global_work_size = N

we

// Set the kernel arguments

clSetKernelArg(kernel, O, sizeof (a_buffer), (voidx*) &a_buffer);
clSetKernelArg(kernel, 1, sizeof(b_buffer), (voidx*) &b_buffer);
clSetKernelArg(kernel, 2, sizeof(c_buffer), (voidx*) &c_buffer);

// Enqueue a command to execute the kernel on the GPU device
clEnqueueNDRangeKernel (queue, kernel,
1, NULL, // global work items dimensions and offset
&global_work_size, // number of global work items

NULL, // number of work items in a work group
O, NULL, // don’t wait on any events to complete
NULL) ; // nmo event object returned

Vector Addition - Host

5. Read back results (Runtime layer)

void main(){

...

// Block until all commands in command—queue have completed
clFinish(queue) ;

// Read back the results

cl_float *c = (cl_float *) malloc(N*sizeof(cl_float));
clEnqueueReadBuffer (
queue, // command queue in which read command will be queued

c_buffer, // buffer object to read back
CL_TRUE, // blocking read - doesn’t return until buffer copied

o, // offset in bytes in buffer object to read from

N * sizeof(cl_float), // size in bytes of data being read

ch // pointer to host memory where data is to be read into
O, NULL, // don’t wait on any events to complete

NULL) ; // no event object returned

Vector Addition - Host

Cleanup

void main(){

...

free(a);

free(b);

free(c);

clReleaseMemObject (a_buffer) ;
clReleaseMemObject (b_buffer) ;
clReleaseMemObject (c_buffer) ;
clReleaseKernel (kernel) ;
clReleaseProgram(program) ;
clReleaseContext (context) ;
clReleaseCommandQueue (queue) ;

Optimization Strategies

Expose data parallelism in algorithms
Minimize host-device data transfer

Overlap memory transfer with computation
Prevent path divergence between work items

Number of work items per work group should be a multiple of the wavefront
size (64 for AMD Radeon HD 6970)

Use local memory as a cache

Others: memory coalescing, bank conflicts, OpenCL C vector data types..

OpenCL Resources

Khronos OpenCL specification, reference card, tutorials, etc:
http://www.khronos.org/opencl

AMD OpenCL Resources:
http://developer.amd.com /opencl

NVIDIA OpenCL Resources:
http://developer.nvidia.com /opencl

MacResearch: 6 OpenCL tutorials:
http://www.macresearch.org/opencl-tutorials

June 2011 Cern Computing Seminar:
http://indico.cern.ch /conferenceDisplay.py?confld=138427

