Message-Passing
Computing and MPI




Message-Passing Programming using User-
level Message-Passing Libraries

* Two primary mechanisms needed:

A method of creating separate processes for
execution on different computers

A method of sending and receiving messages




Single Program Multiple Data
(SPMD) model

* Different processes merged into one program.

* Control statements select different parts for each
processor to execute.

* All executables started together - static process creation

Source
file
Basic MPI way

4mpile to $~

processor
Executables | |- .._-.-._ .- ______

Processor 0 Processor p- 1




Multiple Program Multiple Data
(MPMD) Model

* Separate programs for each processor.
* One processor executes master process.

* Other processes started from within master process -
dynamic process creation.

Process 1

Start execution

Time




Basic “point-to-point”
Send and Receive Routines

* Passing a message between processes using send() and
recv() library calls:

Process 1 Process 2

T x 0 ) /y\

\ Movement
send(&x, 2); of data

/ \ recv(&y,i 1);
AN N,

Generic svntax (actual formats later)




Synchronous Message Passing

* Routines that actually return when message transfer
completed

Synchronous send routine

Waits until complete message can be accepted by the receiving
process before sending the message

Synchronous receive routine
Waits until the message it is expecting arrives
* Synchronous routines intrinsically perform two actions:
transfer data and
synchronize processes




Synchronous send() and recv()
using 3-way protocol

Time

v

Time

v

Suspend process

Both continue

Process 1

' - \
.
.
-
.
-

Request to send

Process 2

Acknowledgment

{ send( );

:

- recv( );

Message

(a) When send() occurs before recv()

Both processes
continue

Process 1

’ . ‘
-
-
.
-
.
.

Acknowledgment

N\

Request to send

Process 2

send( );

reC\;( ); }

Vd

<
d

Message

[ |

(b) When recv() occurs before send()

Suspend
process




Unsafe message passing - Example

(a) Intended Behavior

(b) Runtime Behavior
might mix user with
library messages

lib()

lib()

Process 0

send(..:,1,...); N

Csend(...,1,...);
1\

\

i Destination

Process 0

send(..:,1,...); ~

Gend(..:.ﬂ,...);

N

.
.
.
v

Process 1

i Source

Crecv(...f,o:/.--); )

l: recv(...',o,...);

Process 1

Crecv(...;,o,...); )

A

recv(...,0,...);

lib()

lib()




Asynchronous Message Passing

* Routines that do not wait for actions to complete before
returning.
Usually require local storage for messages.

* More than one version depending upon the actual
semantics for returning.

* In general, they do not synchronize processes but allow
processes to move forward sooner.

* Must be used with care.




MPI Definitions of Blocking
and Non-Blocking

* Blocking- return after their local actions complete,
though the message transfer may not have been
completed.

* Non-blocking- return immediately.

Assumes that data storage used for transfer not
modified by subsequent statements prior to being
used for transfer, and it is left to the programmer to
ensure this.

* These terms may have different interpretations in
other systems.




How message-passing routines return
before message transfer completed

* Message buffer needed between source and destination
to hold message:

Process 1 Process 2
Message :
_ ) buffer
Time| Continue| send(): :n:]]\ :
process ; ™ recy(). Read buffer




Asynchronous routines changing to
synchronous routines

* Once local actions completed and message is safely on its
way, sending process can continue with subsequent
work.

* Buffers are only of finite length and a point could be
reached when send routine held up because all available
buffer space exhausted.

* Then, send routine will wait until storage becomes re-

available - i.e then routine behaves as a synchronous
routine.




Message Tag

* Used to differentiate between different types of
messages being sent.

* Message tag is carried within message.

* If special type matching is not required, a wild card
message tag is used with recv(), so that it will match with
any send().




Message Tag 2

* Example

To send a message, x, with message tag 5 from a
source process, 1, to a destination process, 2, and

assign toy:
Process 1 Process 2
Cox 0 oy )
: Movement
send(&x, 2, 5); of data

L /(5/

Waits for a message from process 1 with a tag of 5




“Group” message passing routines

* Have routines that send message(s) to a group of
processes or receive message(s) from a group of
processes

* Higher efficiency than separate point-to-point routines,
although not absolutely necessary depending on
implementation




Broadcast

* Sending same message to all processes including the
root (the sender) process

* Multicast - sending same message to a defined
group of processes

Process 0 Process 1 Process p - 1
data data [ data

r 3 ‘\
Action
buf /

CCF—f—1
bcas.t(); bcast.(); bcast.();

| . .

Code




Scatter

* Sending each element of an array in root process
to a separate process. Contents of i, location of

array sent to iy, process.

Process 0 Process 1 Processp - 1
( data \ [ data \ ( data \
[l 0] —>[]
Action T |
buf
Code scatte:r(); scatt?r(); scatte:r();




Gather

* Having one process collect individual values from
a set of processes.

Process 0 Process 1 Processp - 1
( data \ data ( data \
1 1] —{]
Action |
buf
Code gather(); gather(); gather();




Reduce

* Gather operation combined with specified arithmetic/logical
operation.

* Alternative Action: values could be gathered and then added
together by root

Process 0 Process 1 Process p - 1
¢t (data \ ( data \ ( data \
Oo—
Action j] j
buf - —
v e . C/‘ﬁ .
Code reduice(); redu?e(); redu::e();




MPI (Message Passing Interface)

* Message passing library standard developed by group of
academics and industrial partners to foster more
widespread use and portability

* Defines routines, not implementation
MPI 1 defined 120+ functions (MPI 2 added more)
Only need few (about 20)to write programs
All MPI routines start with the prefix MPI_ (C version)

* Several free implementations exist
MPICH Argonne National Laboratory
LAM/MPI Ohio Supercomputing Center




MPI Process Creation and Execution

* Purposely not defined - Will depend upon
implementation.

Only static process creation supported in MPI version 1.

All processes must be defined prior to execution and
started together.

Originally SPMD model of computation.

MPMD also possible with static creation - each program
to be started together specified.




MPI Solution: Communicators

* Defines a communication domain - a set of processes
that are allowed to communicate between themselves.

* Communication domains of libraries can be separated
from that of a user program.

* Used in all point-to-point and collective MPI message-
passing communications.




Communicators

Defines scope of a communication operation.

Processes have ranks associated with communicator.

Initially, all processes enrolled in a “universe” called
MPI_COMM_WORLD, and each process is given a unique
rank number from O to p- 1, with p processes.

Other communicators can be established for groups of
processes.




Using SPMD Computational Model

main (int argc, char *argv[]) {

MPI_ Init(&argc, &argv);

MPI Comm rank (MPI_COMM WORLD, &myrank); /*find process rank */

if (myrank == 0)
master () ;
else
slave() ;

MPI Finalize();
}

where master() and slave() are to be executed by master [ o J
process and slave processes, respectively.




[nitializing and Ending MPI

* Initialize MPI Environment
MPI_Init(&argc, &argv)
Before calling any MPI function

argc is the argument count (main function)
argv is the argument vector (main function)

* Terminate MPI execution environment
MPI_Finalize()




MPI Point-to-Point Communication

* Uses send and receive routines with message tags as well as
communicator

* Wild card message tags available

* MPI Blocking Routines
Return when “locally complete” - when location used to hold
message can be used again or altered without affecting message
being sent.
Blocking send will send message and return -does not mean that
message has been received, just that process free to move on
without adversely affecting message.




Blocking send and receive

* Send
MPI_Send(buf, count, datatype, dest, tag, comm)
void* buf Address of send buffer
Int count Number of items to send
MPI_Datatype datatype Datatype of each item
int dest Rank of destination process
int tag Message tag
MPI_Comm comm Communicator
* Receive
MPI_Recv(buf, count, datatype, src, tag, comm, status)
void* buf Address of receive buffer (loaded)
Int count Max number of items to receive
MPI_Datatype datatype Datatype of each item
Int src Rank of source process
Int tag Message tag
MPI_Comm comm Communicator

MPI_Status™  status Status after operation (returned)




Wildcards and Status in MPI Recv

* MPI_ANY_SOURCE matches any source

* MPI_ANY_TAG matches any tag

* Status is a return value
status -> MPI_SOURCE rank of source
status -> MPI_TAG tag of message

status -> MPI_ERROR potential errors




Wildcards and Status in MPI Recv

* Example

To send an integer x from process O to process 1

int myrank;

int tag = 0;

int x;

MPI Comm rank (MPI_COMM WORLD, &myrank); /* find rank */

if (myrank == 0) {
/* input some value for x */
MPI Send(&x, 1, MPI_INT, 1, tag, MPI_COMM WORLD) ;
}
else if (myrank == 1) {
MPI Recv(&x, 1, MPI INT, 0, tag, MPI COMM WORLD, status);




Some Predefined MPI Datatypes

MP| datatype C datatype
MPI_CHAR signed char
MPI_SHORT signed short int
MPI _INT signed int
MPI_UNSIGNED CHAR unsigned char
MPI_UNSIGNED SHORT |unsigned short int
MPI_UNSIGNED unsigned int
MPI_FLOAT float
MPI_DOUBLE double




Process Rank and Group Size

* MPI_Comm_rank(comm, rank)
returns rank of calling process
* MPI_Comm_size(comm, size)
returns size of group within comm
MPI_Comm comm communicator
int* rank process rank (returned)
int* size size of group (returned)




MPI Non-Blocking Routines

* Non-blocking send-MPI_Isend()- will return “immediately”
even before source location is safe to be altered.

* Non-blocking receive-MPI_Irecv()- will return even if no
message to accept.

* The ‘I in ‘Isend” and ‘Irecv’ means Immediate
MPI_Isend(buf, count, datatype, dest, tag, comm, request)
MPI_Irecv(buf, count, datatype,src, tag, comm, request)

void* buf Address of buffer

Int count number of items to send/receive
MPI_Datatype datatype Datatype of each item

Int dest/src Rank of destination/source process
Int tag Message tag

MPI_Comm comm Communicator

MPI_Request* request Request handle (returned)




Completion Detection

* Completion detected by MPI_Wait()and MPI_Test()

MPI_Wait(request, status)

Wait until operation completes and then return
MPI_Test(request, flag, status)

Test for completion of a non-blocking operation

MPI_Request * request request handle
MPI_Status * status same as return status of MPI_Recv()
int * flag true if operation completed

(returned)




Example

* Send an integer x from process 0 to process 1 and allow
process 0 to continue

int myrank;
int tag = 0;
int x;
MPI Request req;
MPI Status status;
MPI Comm rank (MPI COMM WORLD, &myrank); /* find rank */
if (myrank == 0) {
MPI Isend(&x,1,MPI INT,1,tag,MPI COMM WORLD, &req) ;
compute () ;
MPI Wait(&req, &status);
} else if (myrank == 1) ({
MPI Recv(é&x,1,MPI INT,0,msgtag,MPI COMM WORLD, &status) ; [34:]




Send Communication Modes

* Standard Mode Send - Not assumed that corresponding
receive routine has started. Amount of buffering not defined
by MPI. Ifbuffering provided, send could complete before
receive reached.

* Buffered Mode- Send may start and return before a matching

receive. Necessary to specify buffer space via routine
MPI_Buffer_attach().

* Synchronous Mode- Send and receive can start before each
other but can only complete together.

* Ready Mode- Send can only start if matching receive already
reached, otherwise error. Use with care.




Send Communication Modes - cont’'d

* Each of the four modes can be applied to both blocking and
non-blocking send routines.

MPI_Send() MPI_Isend() Standard send
MPI_Bsend() MPI_Ibsend() Buffered send
MPI_Ssend() MPI_Issend() ynchronous send
MPI_Rsend() MPI_Irsend() Ready send

* Only the standard mode is available for the blocking and non-
blocking receive routines.

* Any type of send routine can be used with any type of receive
routine.




Collective Communication

* Involves set of processes, defined by a communicator.
* Message tags not present. Principal collective operations:
MPI_Bcast (buf, count, datatype, root, comm)

* Broadcast message from root to all processes in comm and to
itself

MPI_Scatter (sendbuf, sendcount, sendtype, recvbuf,
recvcount, recvtype, root, comm)

 Scatter a buffer from root in parts to group of processes

MPI_Gather (sendbuf, sendcount, sendtype,recvbuf,
recvcount, recvtype, root, comm)

* Gather values for group of processes including root




Collective Communication - Cont'd

MPI_Alltoall (sendbuf, sendcount, sendtype, recvbuf,
recvcount, recvtype, comm)

* Send data from all processes to all processes

MPI_Reduce(sendbuf, recvbuf, count, datatype, operation,
root, comm)

* Combines values on all processes to a single value at root

MPI_Scan (sendbuf, recvbuf, count, datatype, operation,
comm)

* Computes the partial reductions ofdata on a collection of
processes

MPI_Barrier(comm)
* Block process until all processes have called it




#include <mpi.h>
#include <stdio.h> Sample MPI program
#include <math.h>
#define MAXSIZE 100000
void main(int argc, char *argv)
{
int myid, numprocs;
int data[MAXSIZE], i, x, low, high, myresult, result;
char fn[255];
char *fp;
MPI Init(&argc, &argv);
MPI Comm size (MPI_COMM WORLD, &numprocs) ;
MPI Comm rank (MPI_COMM WORLD, &myid) ;
if (myid == 0) { /* Open input file and initialize data */
strcpy (fn, getenv(“HOME")) ;
strcat(fn, ”/MPI/rand data.txt”);

if ((fp = fopen(fn, ”“r”)) == NULL) {
printf (“Can’t open the input file: %s\n\n”, £n);
exit(l);

}
for(i = 0; i < MAXSIZE; i++) fscanf(fp,”%d”, &data[i])




Sample MPI program — cont'd

Can you guess what this program is doing?

/* broadcast data */
MPI Bcast(data, MAXSIZE, MPI INT, 0, MPI COMM WORLD) ;
/* Add my portion of data */
x = n/nproc;
low = myid * x;
high = low + x;
for(i = low; i1 < high; i++)
myresult += data[i];
printf (I got %d from %d\n”, myresult, myid);
/* Compute global sum */
MPI Reduce (&myresult, &result, 1, MPI INT, MPI SUM, O,
MPI_COMM WORLD) ;
if (myid == 0) printf(“The sum is %d.\n”, result);
MPI Finalize(); [40}




