
Message-Passing	
Computing	and	MPI

Message-Passing	Programming	using	User-
level	Message-Passing	Libraries

• Two primary mechanisms needed:
1. A method of creating separate processes for

execution on different computers
2. A method of sending and receiving messages

2

Single	Program	Multiple	Data	
(SPMD)	model
• Different processes merged into one program.
• Control statements select different parts for each

processor to execute.
• All executables started together - static process creation

3

Multiple	Program	Multiple	Data	
(MPMD)	Model
• Separate programs for each processor.
• One processor executes master process.
• Other processes started from within master process -

dynamic process creation.

4

Basic	“point-to-point”
Send	and	Receive	Routines
• Passing a message between processes using send() and

recv() library calls:

5

Synchronous	Message	Passing
• Routines that actually return when message transfer

completed
• Synchronous send routine

• Waits until complete message can be accepted by the receiving
process before sending the message

• Synchronous receive routine
• Waits until the message it is expecting arrives

• Synchronous routines intrinsically perform two actions:
• transfer data and
• synchronize processes

6

Synchronous	send()	and	recv()
using	3-way	protocol

7

Unsafe	message	passing	- Example

8

Asynchronous	Message	Passing

• Routines that do not wait for actions to complete before
returning.
• Usually require local storage for messages.

• More than one version depending upon the actual
semantics for returning.
• In general, they do not synchronize processes but allow

processes to move forward sooner.
• Must be used with care.

9

MPI	Definitions	of	Blocking
and	Non-Blocking
• Blocking- return after their local actions complete,

though the message transfer may not have been
completed.
• Non-blocking- return immediately.
• Assumes that data storage used for transfer not

modified by subsequent statements prior to being
used for transfer, and it is left to the programmer to
ensure this.

• These terms may have different interpretations in
other systems.

10

How	message-passing	routines	return	
before	message	transfer	completed

• Message buffer needed between source and destination
to hold message:

11

Asynchronous	routines	changing	to	
synchronous	routines
• Once local actions completed and message is safely on its

way, sending process can continue with subsequent
work.
• Buffers are only of finite length and a point could be

reached when send routine held up because all available
buffer space exhausted.
• Then, send routine will wait until storage becomes re-

available - i.e then routine behaves as a synchronous
routine.

12

Message	Tag
• Used to differentiate between different types of

messages being sent.
• Message tag is carried within message.
• If special type matching is not required, a wild card

message tag is used with recv(), so that it will match with
any send().

13

Message	Tag	2
• Example
• To send a message, x, with message tag 5 from a

source process, 1, to a destination process, 2, and
assign to y:

14

“Group”	message	passing	routines

• Have routines that send message(s) to a group of
processes or receive message(s) from a group of
processes
• Higher efficiency than separate point-to-point routines,

although not absolutely necessary depending on
implementation

15

Broadcast

• Sending same message to all processes including the
root (the sender) process
• Multicast - sending same message to a defined

group of processes

16

Scatter

• Sending each element of an array in root process
to a separate process. Contents of ith location of
array sent to ith process.

17

Gather
• Having one process collect individual values from

a set of processes.

18

Reduce

• Gather operation combined with specified arithmetic/logical
operation.

• Alternative Action: values could be gathered and then added
together by root

19

MPI	(Message	Passing	Interface)
• Message passing library standard developed by group of

academics and industrial partners to foster more
widespread use and portability
• Defines routines, not implementation
• MPI 1 defined 120+ functions (MPI 2 added more)
• Only need few (about 20)to write programs
• All MPI routines start with the prefix MPI_ (C version)

• Several free implementations exist
• MPICH Argonne National Laboratory
• LAM/MPI Ohio Supercomputing Center

20

MPI	Process	Creation	and	Execution

• Purposely not defined - Will depend upon
implementation.
• Only static process creation supported in MPI version 1.
• All processes must be defined prior to execution and

started together.
• Originally SPMD model of computation.
• MPMD also possible with static creation - each program

to be started together specified.

21

MPI	Solution:	Communicators
• Defines a communication domain - a set of processes

that are allowed to communicate between themselves.
• Communication domains of libraries can be separated

from that of a user program.
• Used in all point-to-point and collective MPI message-

passing communications.

22

Communicators
• Defines scope of a communication operation.
• Processes have ranks associated with communicator.
• Initially, all processes enrolled in a “universe” called

MPI_COMM_WORLD, and each process is given a unique
rank number from 0 to p- 1, with p processes.
• Other communicators can be established for groups of

processes.

23

Using	SPMD	Computational	Model

24

Initializing	and	Ending	MPI
• Initialize MPI Environment

MPI_Init(&argc, &argv)
Before calling any MPI function

argc is the argument count (main function)
argv is the argument vector (main function)

• Terminate MPI execution environment
MPI_Finalize()

25

MPI	Point-to-Point	Communication

• Uses send and receive routines with message tags as well as
communicator

• Wild card message tags available
• MPI Blocking Routines
• Return when “locally complete” - when location used to hold

message can be used again or altered without affecting message
being sent.

• Blocking send will send message and return -does not mean that
message has been received, just that process free to move on
without adversely affecting message.

26

Blocking	send	and	receive	
• Send

MPI_Send(buf, count, datatype, dest, tag, comm)
void* buf Address of send buffer
Int count Number of items to send
MPI_Datatype datatype Datatype of each item
int dest Rank of destination process
int tag Message tag
MPI_Comm comm Communicator

• Receive
MPI_Recv(buf, count, datatype, src, tag, comm, status)
void* buf Address of receive buffer (loaded)
Int count Max number of items to receive
MPI_Datatype datatype Datatype of each item
Int src Rank of source process
Int tag Message tag
MPI_Comm comm Communicator
MPI_Status* status Status after operation (returned) 27

Wildcards	and	Status	in	MPI_Recv

• MPI_ANY_SOURCE matches any source
• MPI_ANY_TAG matches any tag
• Status is a return value
• status -> MPI_SOURCE rank of source
• status -> MPI_TAG tag of message
• status -> MPI_ERROR potential errors

28

Wildcards	and	Status	in	MPI_Recv

• Example

• To send an integer x from process 0 to process 1

Some	Predefined	MPI	Datatypes

30

Process	Rank	and	Group	Size
• MPI_Comm_rank(comm, rank)
• returns rank of calling process

• MPI_Comm_size(comm, size)
• returns size of group within comm
MPI_Comm comm communicator
int* rank process rank (returned)
int* size size of group (returned)

31

MPI	Non-Blocking	Routines
• Non-blocking send-MPI_Isend()- will return “immediately”

even before source location is safe to be altered.
• Non-blocking receive-MPI_Irecv()- will return even if no

message to accept.
• The ‘I’ in ‘Isend’ and ‘Irecv’ means Immediate

MPI_Isend(buf, count, datatype, dest, tag, comm, request)
MPI_Irecv(buf, count, datatype,src, tag, comm, request)
void* buf Address of buffer
Int count number of items to send/receive
MPI_Datatype datatype Datatype of each item
Int dest/src Rank of destination/source process
Int tag Message tag
MPI_Comm comm Communicator
MPI_Request* request Request handle (returned)

32

Completion	Detection
• Completion detected by MPI_Wait()and MPI_Test()

MPI_Wait(request, status)
Wait until operation completes and then return
MPI_Test(request, flag, status)
Test for completion of a non-blocking operation

MPI_Request * request request handle
MPI_Status * status same as return status of MPI_Recv()
int * flag true if operation completed
(returned)

33

Example
• Send an integer x from process 0 to process 1 and allow

process 0 to continue

34

Send	Communication	Modes
• Standard Mode Send - Not assumed that corresponding

receive routine has started. Amount of buffering not defined
by MPI. Ifbuffering provided, send could complete before
receive reached.

• Buffered Mode- Send may start and return before a matching
receive. Necessary to specify buffer space via routine
MPI_Buffer_attach().

• Synchronous Mode- Send and receive can start before each
other but can only complete together.

• Ready Mode- Send can only start if matching receive already
reached, otherwise error. Use with care.

35

Send	Communication	Modes	– cont’d

• Each of the four modes can be applied to both blocking and
non-blocking send routines.
MPI_Send() MPI_Isend() Standard send
MPI_Bsend() MPI_Ibsend() Buffered send
MPI_Ssend() MPI_Issend() ynchronous send
MPI_Rsend() MPI_Irsend() Ready send

• Only the standard mode is available for the blocking and non-
blocking receive routines.

• Any type of send routine can be used with any type of receive
routine.

36

Collective	Communication
• Involves set of processes, defined by a communicator.
• Message tags not present. Principal collective operations:
MPI_Bcast (buf, count, datatype, root, comm)
• Broadcast message from root to all processes in comm and to

itself
MPI_Scatter (sendbuf, sendcount, sendtype, recvbuf,

recvcount, recvtype, root, comm)
• Scatter a buffer from root in parts to group of processes
MPI_Gather (sendbuf, sendcount, sendtype,recvbuf,

recvcount, recvtype, root, comm)
• Gather values for group of processes including root

37

Collective	Communication	– Cont’d

MPI_Alltoall (sendbuf, sendcount, sendtype, recvbuf,
recvcount, recvtype, comm)

• Send data from all processes to all processes
MPI_Reduce(sendbuf, recvbuf, count, datatype, operation,

root, comm)
• Combines values on all processes to a single value at root
MPI_Scan (sendbuf, recvbuf, count, datatype, operation,

comm)
• Computes the partial reductions ofdata on a collection of

processes
MPI_Barrier(comm)
• Block process until all processes have called it 38

39

40

