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Preface

Thhis book is intended for beginning courses in finite elements (FE) that are oriented to-
ward users of the method. The courses envisioned emphasize the behavior of FE and in-
clude computational work in which problems are solved by means of commercial soft-
ware and the computed results are critically examined. The instructor may often sit with
students at the computer to offer advice and to monitor their skill in modeling and assess-
ment of results. The courses would use computational problems as vehicles to teach
proper use of FE, rather than use FE as a way to solve certain problems. The book pre-
sents a modest amount of theory, discusses the nature of FE solutions, offers modeling
advice, suggests computational problems, and emphasizes the need for checking the com-
puted results. Problem areas treated are common in mechanical engineering and related
disciplines. Suggested computational problems include topics often treated in a second
course in stress analysis, such as spinning disks and elastic foundations. The computa-
tional problems usually have simple geometry, so that FE may be emphasized rather than
details of data preparation. Some instructors especially those who teach more advanced
students, may wish to devise problems of a more “real world” nature, despite their greater
complexity.

Several commercial FE programs are available for use on microcomputers and work-
stations. This book is not tailored to any particular FE program and therefore does not
discuss the formalisms of input data preparation. Suitable software will have most of the
following features: capability in static stress analysis, structural dynamics, vibration, and
heat transfer; a good library of elements; some node and element generation capability;
help screens; plotting and animation of displaced shapes; contour plotting of computed
stresses without nodal averaging. The software must be easy to use, at the expense of ver-
satility if necessary, so that time will not be wasted in learning procedures peculiar to a
certain code but having little to do with insight into the FE method.

Many powerful analytical tools are readily available in the form of computer software.
Engineers do not have time to study the theory of all these tools, and undergraduates usu-
ally study theory with little enthusiasm. For undergraduate and graduate students alike, it
appears that study of only the theory of FE confers no ability in the use of FE. Theory
cannot be ignored, however; an engineer must understand the nature of the analytical
method as well as the physical nature of the phenomenon to be studied because computer
implementation makes it all too easy to choose inappropriate options or push an analyti-
cal method beyond its limits of applicability. Fortunately, the user of FE software need
not understand all its details. Mainly, the FE user should grasp the physical problem, un-
derstand how FE’s behave, know the limitations of the theory on which they are based,
and be able and willing to check results for correctness. The checking phase relies more
on physical understanding of the problem than on knowledge of FE.

The presentation in this book presumes a knowledge of elementary matrix algebra and
the level of physical understanding that a good student should have after completing a
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vi Nonlinearity in Stress Analysis

first course in mechanics of materials. This is adequate preparation for a one-semester
course in the practice of FE, during which students will inevitably be exposed to concepts
of stress analysis not treated in an elementary mechanics of materials course. The under-
standing they gain by working with these problems will be primarily physical but will be
helpful if theory is to be studied subsequently. In my opinion students in a beginning
course learn theory only if forced to do so, and then with little understanding of it. Only
later, when the nature of a problem area has become familiar, can theory be understood
and its practical value appreciated. These remarks are not intended to imply that the book
is unsuitable for students who have advanced knowledge of stress analysis theory. In my
experience, a student at any level may be deficient in physical understanding, and gradu-
ate students make many of the modeling mistakes also made by undergraduates.

The beginning course I teach is taken by seniors. We currently discuss most of
Chapters 1 through 7 and the first four articles of Chapter 9. Isoparametric elements and
Sections 5.5 and 6.6 are omitted. For this course I find that previous exposure to the theo-
ries of elasticity, plates, shells, and vibrations is not necessary because the essential phys-
ical behavior of such problems is easily grasped: flat plates can stretch or bend; curved
plates (shells) can simultaneously stretch and bend; examples of vibration are common-
place (e.g., a bell). If courses in these areas were prerequisites, few would enroll in the
FE course. Students would then have education in neither FE nor problems to which FE
analyis is applied. Yet after graduation they will use FE whether or not they are prepared
to do so.

In addition to serving as the primary text in a first FE course, the book should be use-
ful as an adjunct text in a second FE course that considers theory in more detail, and in
other courses such as vibrations where the solution of practical problems is considered
important. It is in this context that the latter part of Chapter 9 (Vibration and Dynamics)
and Chapter 10 (Nonlinearity in Stress Analysis) seem most appropriate. Practicing engi-
neers as well as students may find that the book contains useful suggestions for modeling
and solution strategy.

Several reviewers of the manuscript made many good suggestions. Their contributions
are gratefully acknowledged. Thanks are also due to Pat Grinyer, who made it unneces-
sary for me to update my technical typing skills.

Robert D. Cook
Madison, Wisconsin
July 1994
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Notation

Symbols most often used in stress analysis appear in the following list. Matrices and vec-
tors are denoted by boldface type.

LATIN SYMBOLS

A Cross-sectional area
B Element strain displacement matrix; €= Bd
C Constraint matrix, damping matrix
D,d Nodal d.o.f., structure (global) and element, respectively
D Amplitudes of structure (global) d.o.f. in vibration
d.o.f. Degrees of freedom
E Material property matrix, as in = Eg
E Elastic modulus

f Cyclic frequency of vibration, f= w/27x
G Shear modulus
I Unit (or identity) matrix
1 Moment of inertia of cross-sectional area
J Jacobian matrix of an isoparametric element
K,k Stiffness matrix, structure (global) and element, respectively
L Length
M,m Mass matrix, structure (global) and element, respectively
N Element shape (or interpolation) function matrix
p Pressure
q Distributed load along a line or on a surface
R Vector of nodal loads applied to a structure
T A transformation matrix
T Temperature; also period of vibration (7 = 1/f)

't Thickness or time
u Vector of displacement components, u={u v w}
u,u,w Components of displacement at an arbitrary material point
Vv Volume
z Vector of scale factors of vibration modes
GREEK SYMBOLS
B Generalized coordinate (amplitude of a displacement mode)
o Coefficient of thermal expansion
£ Vector of strains; for example, €= {&. &, %,} in the xy plane
n An error measure, applied to the computed stress field
0..6,,6. Rotation angles about x, y, and z axes, respectively
v Poisson's ratio
'3 Damging ratio ¢/c. in dynamic analyses
& n, ¢ “Natural” coordinates used for isoparametric elements
p Mass density or radius of curvature
(o] Vecter of stresses; for example, 0= {0, o0, 1} inthexy plane
o, von Mises or “effective” stress
¢ Modal matrix; its columns are vibration modes D,

) Naturzl frequency of vibration (radians per second)

xi






CHAPTER ]

Introduction

This chapter introduces concepts and procedures that are discussed in detail in subse-
quent chapters. The finite element (FE) analysis procedure described in Section 1.3 is
used in example applications at the ends of Chapters 2, 3, 6, 7, 8, 9, and 10. Chapter 1
closes with a review of elementary matrix algebra, which is used throughout the book.

1.1 THE FINITE ELEMENT METHOD

The FE method was developed more by engineers using physical insight than by mathe-
maticians using abstract methods. It was first applied to problems of stress analysis and
has since been applied to other problems of continua. In all applications the analyst seeks
to calculate a field quantity: in stress analysis it is the displacement field or the stress
field; in thermal analysis it is the temperature field or the heat flux; in fluid flow it is the
stream function or the velocity potential function; and so on. Results of greatest interest
are usually peak values of either the field quantity or its gradients. The FE method is a
way of getting a numerical solution to a specific problem. A FE analysis does not pro-
duce a formula as a solution, nor does it solve a class of problems. Also, the solution is
approximate unless the problem is so simple that a convenient exact formula is already
available.

An unsophisticated description of the FE method is that it involves cutting a structure
into several elements (pieces of the structure), describing the behavior of each element in
a simple way, then reconnecting elements at “nodes” as if nodes were pins or drops of
glue that hold elements together (Fig. 1.1-1). This process results in a set of simultaneous
algebraic equations. In stress analysis these equations are equilibrium equations of the
nodes. There may be several hundred or several thousand such equations, which means
that computer implementation is mandatory.

A more sophisticated description of the FE method regards it as piecewise polynomial
interpolation. That is, over an element, a field quantity such as displacement is interpo-
lated from values of the field quantity at nodes. By connecting elements together, the
field quantity becomes interpolated over the entire structure in piecewise fashion, by as
many polynomial expressions as there are elements. The “best” values of the field quan-
tity at nodes are those that minimize some function such as total energy. The minimiza-
tion process generates a set of simultaneous algebraic equations for values of the field
quantity at nodes. Matrix symbolism for this set of equations is KD = R, where D is a
vector of unknowns (values of the field quantity at nodes), R is a vector of known loads,
and K is a matrix of known constants. In stress analysis K is known as a “stiffness ma-
trix.”
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Typical
element

Typical Fig. 1.1-1. A coarse-mesh, two-dimen-
,);zde sional model of a gear tooth. All nodes
: and elements lie in the plane of the paper.

The power of the FE method is its versatility. The structure analyzed may have arbi-
trary shape, arbitrary supports, and arbitrary loads. Such generality does not exist in clas-
sical analytical methods. For example, temperature-induced stresses are usually difficult
to analyze with classical methods, even when the structure geometry and the temperature
field are both simple. The FE method treats thermal stresses as easily as stresses induced
by mechanical load, and the temperature distribution itself can be calculated by FE.

Preprocessing and Postprocessing. The theory of FE includes matrix manipulations,
numerical integration, equation solving, and other procedures carried out automatically
by commercial software. The user may see only hints of these procedures as the software
processes data. The user deals mainly with preprocessing (describing loads, supports,
materials, and generating the FE mesh) and postprocessing (sorting output, listing, and
plotting of results). In a large software package the analysis portion is accompanied by
the preprocessor and postprocessor portions of the software. There also exist stand-alone
pre- and postprocessors that can communicate with other large programs. Specific proce-
dures of “pre” and “post” are different in different programs. Learning to use them is of-
ten a matter of trial, assisted by introductory notes, manuals, and on-line documentation
that accompanies the software. Also, vendors of large-scale programs offer training
courses. Fluency with pre- and postprocessors is helpful to the user but is unrelated to the
accuracy of FE results produced. This book emphasizes how to use the FE method prop-
erly, not how to use pre- and postprocessors.

FE Method and the Typical User. The typical user of the FE method asks what kinds
of elements should be used, and how many of them? Where should the mesh be fine and
where may it be coarse? Can the model be simplified? How much physical detail must be
represented? Is the important behavior static, dynamic, nonlinear, or what? How accurate
will the answers be, and how can they be checked? One need not understand the mathe-
matics of FE to answer these questions. However, a competent user must understand how
elements behave in order to choose suitable kinds, sizes, and shapes of elements, and to
guard against misinterpretations and unrealistically high expectations. A user must also
realize that the FE method is a way of implementing a mathematical theory of physical
behavior. Accordingly, assumptions and limitations of theory must not be violated by
what we ask the software to do. In some dynamic and nonlinear analyses. algorithms by
which theory is implemented must be understood, to avoid choosing an inappropriate al-
gorithm, and to avoid interpreting results produced by algorithmic quirks or limitations as
actual physical behavior. Despite all this understanding it is still easy to make mistakes in
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describing a problem to the computer program. Therefore it is also essential that a com-
petent user have a good physical grasp of the problem so that errors in computed results
can be detected and a judgment made as to whether the results are to be trusted or not. An
analyst unable to do even a crude pencil-and-paper analysis of the problem probably does
not know enough about it to attempt a solution by FE!

A Short History of FE Method. In a 1943 paper, the mathematician Courant described
a piecewise polynomial solution for the torsion problem [1.1].* His work was not noticed
by engineers and the procedure was impractical at the time due to the lack of digital com-
puters. In the 1950s, work in the aircraft industry introduced the FE method to practicing
engineers. A classic paper described FE work that was prompted by a need to analyze
delta wings, which are too short for beam theory to be reliable [1.2]. The name “finite el-
ement” was coined in 1960 [1.3, 1.4]. By 1963 the mathematical validity of the FE
method was recognized and the method was expanded from its structural beginnings to
include heat transfer. groundwater flow, magnetic fields, and other areas. Large general-
purpose FE software began to appear in the 1970s. By the late 1980s the software was
available on microcomputers, complete with color graphics and pre- and postprocessors.
By the mid-1990s roughly 40,000 papers and books about the FE method and its applica-
tions had been published.

Overview of the Remainder of the Book. Chapter 2 considers elements for bar and
beam problems and discusses the mathematical structure of the FE method (the “stiffness
method”). Plane problems are treated in Chapter 3. Chapter 4 discusses special methods
for element formulation and linear static analysis. After studying Chapters 1 through 4
the reader should have enough background to profit from a thorough discussion of how to
use the FE method properly, with attention to planning the model, detecting errors, and
verifying results. This material appears in Chapter 5 and is an elaboration of Section 1.3.
Chapters 6 and 7 discuss general solids, solids of revolution, plates, and shells. Tempera-
ture distribution is considered in Chapter 8, with emphasis on its use in thermal stress
analysis. Vibration and other dynamic problems occupy Chapter 9. Chapter 10 is devoted
to nonlinear problems and buckling. Example applications of the FE method appear near
the ends of most chapters.

1.2 ELEMENTS AND NODES

Finite elements resemble fragments of the structure. Nodes appear on element boundaries
and serve as connectors that fasten elements together. In Fig. 1.2-1, elements are triangu-
lar or quadrilateral areas and nodes are indicated by dots. Except for element midside
nodes along AED and nodes at A, B, and E, each node acts as a connector between two or
more elements. All elements that share a node have the same displacement components at
that node. Lines in Fig. 1.2-1 indicate boundaries between elements. Thus we see ele-
ments with corner nodes only and elements with side nodes as well. Such a mixture of el-
ement types is neither necessary nor common but serves the present discussion.
Superficially, it appears that a FE structure can be produced by sawing the actual
structure apart and then pinning it back together at nodes. Clearly, such an assemblage
would be weak and unrepresentative of the actual structure because of strain concentra-
tions at nodes, sliding of elements on one another, and even gaps that would appear be-

*Numbers in brackets indicate references listed at the back of the book.
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L ]
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Fig. 1.2-1. (a) A flat bracket modeled by several element types (more types than
would actually be used for this problem). (b) One of the elements, a “constant strain
triangle”. All nodes and elements lie in the plane of the paper.

tween some elements. To avoid these defects and to permit convergence toward exact re-
sults as more and more elements are used in the FE model, each element is restricted in
its mode of deformation. This leads us to ask what kind of behavior can be expected of
each element type. The question is answered repeatedly in subsequent chapters. For now
we discuss only the following abbreviated examples of plane elements, which are dis-
cussed in more detail in Chapter 3. .

Consider the plane triangular element in Fig. 1.2-1b. It does not matter that the origin
of coordinates has been moved from its position in Fig. 1.2-1a. The x and y direction
components of displacement of an arbitrary point within the element are given the names
u and v. In the three-node triangular element each is restricted to be a linear polynomial
in x and y:

u= B, + Box+ Bsy (1.2-1a)

U=+ Bsx+ Bey (1.2-1b)

where the ; are called “generalized coordinates.” They can be regarded as displacement
amplitudes. As examples, in Eq. 1.2-1a, 3, is the amplitude of rigid-body displacement,
and f3, and B, are amplitudes of linearly varying displacement, all in the x direction.
Alternative forms of Egs. 1.2-1 can be written by expressing the f3; in terms of nodal dis-
placements u,, U, U,, U,, Us, and v5. To do so for the element in Fig. 1.2-1b we make the
following substitutions in Egs. 1.2-1:

u=u, and v=v, at x=0 and y=0
u=u, and v=v, at x=a and y=0 (1.2-2)

u=uy; and v=vy; at x=0 and y=b

Thus, for the element in Fig. 1.2-1b, alternative forms of Eqgs. 1.2-1 are found to be

x Yy X y
u:(] - ;)ul + ;uz + Zu3 (1.2-3a)
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X ) X y
=1l - ——-=|y + =v, + =V 1.2-3b
U( a bjl a’ b’ ( )

In either form, Egs. 1.2-1 or 1.2-3, the displacement field u = u(x, y) and v = v(x, y) has
six degrees of freedom. abbreviated d.o.f. That is, six quantities define the deformed con-
figuration, namely. the six 3; in Egs. 1.2-1 or the three i, and three v; in Egs. 1.2-3. In
Chapter 3 we will explain that strains are displacement gradients. Therefore

& = % hence & = f3,
-8 :gv—\— hence g = B4 (1.2-4)
Yo =%+% hence ¥, =f;+ ;s

This three-node element is called a “constant strain triangle” because none of the strains
varies over the element. This means that the element has a very limited response—it
could not represent the linear strain field of pure bending, for example—but at least there
will be no strain concentrations at nodes. Also, from Eqgs. 1.2-3 we can conclude that ele-
ment sides will remain straight after deformation. For example, set x = O to examine side
1-3 in Fig. 1.2-1b: thus u becomes linear in y and depends only on d.o.f. u; and u,. The
same will be true along this side in the adjacent element. Because deformed sides remain
straight, elements will not gap apart or overlap when load is applied. Similarly, we can
show that v along side 1-3 is linear in y and depends only on v, and v;, whether we ex-
amine the element on the left or the element on the right of side 1-3. Summing up, it is
possible to demonstrate that the triangular element can display constant strain states and
will deform in a way that is compatible with its neighbors. The same can be demonstrated
for other shapes and types of element. It can be shown that these properties allow exact
results to be approached as a mesh is refined; that is, as more and more elements are used
to model a structure.

Let us also consider briefly a six-node triangle, such as element L somewhat above E
in Fig. 1.2-1a. It has three vertex nodes and three midside nodes. In terms of generalized
coordinates 3, its displacement field is

u= P+ fox + By + B + Bsxy + fey’

1.2-5

v =0+ Bex+ Boy + Prox’ + Brxy + By’ ( :
Deformed shapes of sides can be straight or parabolic. Some tedious algebra shows that
the deformed shape of a side depends on d.o.f. of nodes attached to that side but does not
depend on d.o.f. of nodes nor attached to that side. Accordingly, the element will be com-
patible with its neighbors because adjacent elements share the same nodes and d.o.f.
along a common side. By applying the differentiation used in Eqs. 1.2-4, we see that the
six-node element contains constant and linear terms in its strain field. Therefore this ele-
ment can model constant strain states and also linear strain states that arise in pure bend-
ing. Clearly, it is a more competent element than the constant strain triangle. It is also
more complicated, which suggests another choice faced by the user of FE: Is it better to
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use many simple elements or a few complicated elements? We postpone this matter, as
the answer is neither short nor simple.

The foregoing discussion is couched in stress analysis terminology. In plane stress
analysis the displacement field is a vector field because it has two components, u = u(x, y)
and v = v(x, ¥). In other applications the field may be a scalar field, ¢ = ¢(x, ¥) in two-di-
mensional problems and ¢ = @(x, y, z) in three-dimensional problems, where ¢ represents
temperature in a heat conduction problem, voltage in an electric field problem, and so on.
To restate the foregoing equations in scalar field terms, one may discard equations that
contain v and replace u by ¢ in equations that remain.

Equations such as Eqgs. 1.2-1 and 1.2-5 constitute the “basis” of a finite element. What
remains is to manipulate the basis to generate a “stiffness matrix” that describes element
behavior, connect elements together to produce the FE model, apply loads, impose sup-
port conditions, solve for nodal d.o.f., and use the d.o.f. to compute strains and finally
stresses. Some of these procedures are primarily computational and others require that the
analyst make decisions. Subsequent chapters contain a more complete discussion of these
matters.

Classification of Stress Analysis Problems. Elements summarized above are used for
plane problems, in which there is negligible variation of displacement and stress in the z
direction, that is, in the direction normal to the analysis plane. If displacements and
stresses may vary in a general way with all three coordinates, the object may be called a
3D solid. The special case of a solid having axial symmetry (like a bell) is usually called
a solid of revolution. Loads may or may not be axially symmetric. A flat plate that carries
in-plane loads is a plane problem, but if the plate is loaded laterally so that it bends it is
called a plate bending problem or simply a plate problem. Floor slabs and highway slabs
are examples of plates. Note that thickness must be much less than span if the object is to
be analyzed as a plate. If a plate is curved it becomes a shell. Water tanks and com-
pressed air tanks are commonly seen shells. Shells can carry both in-plane loads and lat-
eral loads; thus plane deformation and bending deformation usually appear simultane-
ously in a shell. Elements have been devised for all these problems. Thus there are plane
elements, general solid elements, axisymmetric solid elements, plate elements, and shell
elements. In addition, there are elements for bars and beams and many specialty elements
for elastic foundations, crack tips, pipe bends, and more.

1.3 MODELING THE PROBLEM AND
CHECKING RESULTS

Modeling is the simulation of a physical structure or physical process by means of a sub-
stitute analytical or numerical construct. It is not simply preparing a mesh of nodes and
elements. Modeling requires that the physical action of the problem be understood well
enough to choose suitable kinds of elements, and enough of them, to represent the physi-
cal action adequately. We want to avoid badly shaped elements and elements too large to
represent important variations of the field quantity. At the other extreme we want to
avoid the waste of analyst time and computer resources associated with over-refinement,
that is, using many more elements than needed to adequately represent the field and its
gradients. Later, when the computer has done the calculations, we must check the results
to see if they are reasonable. Checking is very important because it is easy to make mis-
takes in describing the problem to the software. The following discussion is a brief sur-
vey of these matters. Further discussion appears in subsequent chapters.
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Support conditions are very important but are often misrepresented. Consider the
problem of Fig. 1.2-1 again. Support along AE is portrayed as rigid, meaning that nodes
along AE are not allowed to move at all. This is probably unrealistic. No support is infi-
nitely stiff. It would be better to enlarge the FE model so that there are finite elements be-
low AE to represent the elasticity of the foundation. However, perhaps the intent is to an-
alyze a C-shaped part that has AE as an axis of symmetry, and reduce effort by modeling
only the upper half. Supports suited to this situation appear in Fig. 1.3-1a. These supports
are placed at all nodes along AE. Node A is fixed and other nodes along AE are allowed
to move in only the x direction. Thus we prevent rigid-body motion in the xy plane and
keep AE a straight line as symmetry requires.

The mixture of element types in Fig. 1.2-1 is unusual, but otherwise is the mesh layout
good? We cannot say for sure without knowing more about how elements behave.
However, by anticipating the results we can see that the mesh grading looks reasonable.
Stresses near B will be low and of little interest. Indeed, theory says that stresses at B are
zero because it is a point where two free surfaces intersect at an interior angle of less than
180°. Accordingly, a coarse mesh near B is acceptable: stresses near B may have a large
percentage error but this does not matter if stresses near B are small. The same is true
near D, so perhaps the mesh near D is more detailed than necessary. At C the stresses are
theoretically infinite because of the concentrated load P. In reality, one cannot apply a
load that is truly concentrated at a point. Probably load P is a convenient way of repre-
senting a load that is actually distributed over a small span, and stresses near C are not the
object of study, so the modeling near C is acceptable. Stresses near E are probably the
stresses of concern. There the stresses and stress gradients are expected to be large, so the
model properly displays a finer mesh and/or more competent elements in this area.

The FE method calculates nodal displacements, then (in present software) uses the dis-
placement information to calculate strains and finally stresses. If displacements are incor-
rect, stresses will probably be incorrect. Accordingly, we should examine the computed
displacements first. Without calculation, we anticipate that the displaced shape of our ex-
ample structure will be as shown in Fig. 1.3-1b. If the computed result is substantially
different from this we suspect an error in our model. The software will permit us to dis-
play the displaced shape superposed on the original shape, with displacements scaled up
so that they are easily visible. Additionally, we can animate the displaced shape, so that
the model appears to be vibrating slowly between its deformed and undeformed posi-

(Mesh not shown)

h
D
.
A E A E
- 0 00 000 * X
= g >
(a) (b)

Fig. 1.3-1. (a) Alternative support conditions at nodes along AE of the structure of Fig.
1.2-1. (b) Dashed lines show the anticipated deformation, greatly exaggerated.
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tions. Thus we can easily see, for example, if nodes along AE move in only the x direc-
tion as was intended.

As for stresses, the software will plot them either as contour lines or bands of different
colors. A stress contour line connects points that have the same stress. Users may elect an
option in the software that calls for averaging of stresses. This means that stresses from
individual elements are averaged at nodes before plotting, so that stress contours have no
discontinuities between elements. This is poor practice because it removes information
useful to the analyst. As we will see, unaveraged stresses are usually discontinuous across
interelement boundaries. A contour plot that displays significant interelement discontinu-
ities warns that a finer mesh is needed. This point is made in Fig. 1.3-2. In Fig. 1.3-2c,
nothing betrays a lack of perfection but small changes of direction where contour lines
cross interelement boundaries.

The separate stress contour plots (one for o,, one for oy, etc.) are examined in turn.
Based on experience, physical intuition, and knowledge of theory (including statics, me-
chanics of materials, and possibly more), it is possible to describe the expected stresses
qualitatively. For the problem of Fig. 1.3-1 we expect the following (this is not an ex-
haustive list):

* O, 1s a large compressive stress near £
* 0, is tensile near A but smaller in magnitude than o, near E
- O, 1s compressive but small in magnitude between A and E

» 0, and T, are very small along AB because of the free surface condition (computed
stresses will not be exactly zero because the solution is approximate)

Significant departures from these expectations warn of trouble with the model or short-
comings in physical understanding of the problem. Discrepancies must be corrected or
logically explained before the results can be trusted.

The analyst should also obtain analytical or experimental results for comparison with
FE results. For the problem of Fig. 1.3-1 this task is easy. Cross section AE is loaded by
direct force and by bending. The elementary formula for stress in straight beams should
provide a fair approximation, the formula for stress in curved beams should provide a
good approximation, and tabulated results are available [1.5]. Indeed, FE analysis is prob-
ably not needed for this problem. For many problems, approximate solutions can be ob-
tained from tabulated formulas in standard textbooks and handbooks [1.5]. Much of this
information is available as software, which makes it far easier to use. However, if this

50
>\§,o
40 40
40 /
30 30
50 / \< 20
20
20 30 30

(a) (b) (c)
Fig. 1.3-2. Three hypothetical sets of stress contours near a node shared by four elements.
(a) Without nodal averaging: imperfect but adequate continuity. (b) Without nodal averaging:
inadequate continuity. (c) After nodal averaging: continuity, but difficult to say whether the
raw data were good or bad.

\
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Fig. 1.3-3. Outline of a FE analysis project.

phase of verification is done after doing FE analysis, there will be a tendency, perhaps
unconscious, to obtain analytical results that agree with FE results already obtained. We
tend to find what we expect, whether it is there or not. Therefore some approximate re-
sults should be in hand before undertaking FE analysis. Figure 1.3-3 summarizes the pro-
cedure for FE analysis that is advocated in this book.

Organized and careful work will take less total time than a hurried approach that pro-
duces and propagates errors that must be discovered later and corrected. Festina lente.

1.4 DISCRETIZATION AND OTHER APPROXIMATIONS

Whatever the analysis method, we do not analyze the actual physical problem; rather, we
analyze a mathematical model of it. Thus we introduce modeling error. For example, in
elementary beam theory we represent a beam by a line (its axis) and typically ignore de-
formations associated with transverse shear. This is an excellent approximation for slen-
der beams but not for very short beams. Or, for the axial-load problem of Fig. 1.4-1a, we
would probably assume that a state of uniaxial stress prevails throughout the bar, which is
proper- if taper is slight but improper if taper is pronounced. Real structures are not so
easily classified, as they are often built of parts that would be idealized mathematically in
different ways and have cutouts, stiffeners, and connectors whose behavior is uncertain.
The foregoing considerations must be addressed in order to decide what types of ele-
ments to use and how many of them. If a beam is deep, transverse shear deformation may
become important and should be included in beam elements. If a beam is very deep, two-
or three-dimensional elements are more appropriate than beam elements. If a beam has a

hg

l?ur L ] X u sor-1,

I

(a) (b)
Fig. 1.4-1. (a) A tapered bar loaded by axial force P. (b) Discretization of the bar into four
uniform two-node elements of equal length.
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wide cross section, plate theory may be more appropriate than beam theory (then, of
course, choose plate elements rather than beam elements). If an axisymmetric pressure
vessel has a thick wall one should regard it as a solid of revolution rather than a shell of
revolution and choose axisymmetric solid elements rather than axisymmetric shell ele-
ments.

Let us consider the axially loaded tapered bar of Fig. 1.4-1a in more detail and de-
scribe how the FE method implements the mathematical model. We will assume that
a satisfactory mathematical model is based on a state of uniaxial stress. An analytical
solution is then rather easy, but we pretend not to know it and ask for a FE solution
instead. We discretize the mathematical model by dividing it into two-node elements
of constant cross section, as shown in Fig. 1.4-1b. Each element has length L, ac-
counts only for a constant uniaxial stress along its length, and has an axial deforma-
tion given by the elementary formula PL/AE. For each element, A may be taken as
constant and equal to the cross-sectional area of the tapered bar at an x coordinate
corresponding to the element center. The displacement of load P is equal to the sum
of the element deformations. Intuitively, we expect that the exact displacement is ap-
proached as more and more elements are used to span the total length L, However,
even if a great many elements are used there is an error, known as discretization er-
ror, which exists because the physical structure and the mathematical model each
have infinitely many d.o.f. (namely, the displacements of infinitely many points)
while the FE model has a finite number of d.o.f. (the axial displacements of its
nodes).

How many elements are enough? Imagine that we carry out two FE analyses, the sec-
ond time using a more refined mesh. The second FE model will have less discretization
error than the first, and will also represent the geometry better if the physical object has
curved surfaces. If the two analyses yield similar solutions, we suspect that results are not
much in error. Or, we might establish a sequence of solutions by solving the problem
more than twice, using a finer mesh each time. By study of how the sequence converges
we may be able to state with some confidence that results from the finest mesh are in er-
ror by less than (say) 5%.

After the analyst has introduced modeling error and discretization error, the computer
introduces numerical error by rounding or truncating numbers as it builds matrices and
solves equations. Usually numerical error is small, but some modeling practices can
greatly increase it.

Finally, it must be admitted that the software almost certainly contains errors [5.6].
Commercial software packages are large, versatile, and under continual revision. It is
practically impossible to get everything right. Many errors either make a software feature
inoperable or cause the program to crash, but some can lead to erroneous results. It is
tempting to blame all strange results on the software, but it is far more often the case that
we have blundered in modeling or in describing the model to the software. Strange results
are obtained so often that (to repeat) it is vital that the analyst be able to recognize that re-
sults are strange.

1.5 RESPONSIBILITY OF THE USER

FE computer programs have become widely available, easier to use, and can display
results with attractive graphics. Even an inept user can produce some kind of answer.
It is hard to disbelieve FE results because of the effort needed to get them and the
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polish of their presentation. But smooth and colorful stress contours can be produced
by any model, good or bad. It is possible that most FE analyses are so flawed that
they cannot be trusted. Even a poor mesh, inappropriate element types, incorrect
loads, or improper supports may produce results that appear reasonable on casual in-
spection. A poor model may have defects that are not removed by refinement of the
mesh.

A responsible user must understand the physical nature of the problem and the behav-
ior of finite elements well enough to prepare a suitable model and evaluate the quality of
the results. Competence in using FE for stress analysis does not imply competence in us-
ing FE for (say) magnetic field problems. Responsibility for results produced is taken by
the engineer who uses the software, not the software vendor, even if results are affected
by errors in the software.

Figure 1.5-1 is an example of discrepancies that may appear [1.6]. A pressure pulse is
applied to a straight beam with hinge supports. The loading causes the material to yield
and the beam to vibrate. Analysis seeks to track the lateral displacement of the midpoint
as a function of time. The results plotted come from ten reputable analysis codes and
were obtained by users regarded as expert. Yet if any of the curves is correct we cannot
tell which one it is. Admittedly, the problem is difficult. The results indicate “strong sen-
sitivities of both physical and computational nature” [1.6]. This example reminds us that
any analysis program is based on theory and approximation, and that a user may push the
program beyond its range of validity [1.7].

20— —>{20mm}— |
h’f\&f%&’h&’b’b’b'f‘4\¢'ﬁ’f‘ﬁ” K

1-ms pressure pulse

Displacement, mm

Time, ms

Fig. 1.5-1. Lateral midpoint displacement versus time for a beam loaded by a pressure pulse
[1.6] The material is elastic—perfectly plastic. Plots were generated by various users and vari-
ous codes.
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1.6 ELEMENTARY MATRIX ALGEBRA

One need not understand matrix algebra in order to use FE software. However, our expla-
nations of algorithms and of how elements behave are conveniently stated in matrix for-
mat. The following matrix theory is used in this book.

A matrix contains numbers, and/or symbols that represent numbers, arrayed in rows
and columns. A matrix may be denoted by boldface type, A, or by use of brackets, [A].

An AlZ A]n
_ Ay Ap Al
A= T : (1.6-1)
A A

'ml m?2 mn

Matrix A has m rows and n columns, where m and n are positive integers of any magni-
tude. If m = n, A is called square, and n is its order. Coefficients with like subscripts
(A,;, Ap, etc.) lie on the diagonal of a square matrix. If m =1, A is a row matrix (also
called a row vector); if n = 1, A is a column matrix (also called a column vector). Braces
are often used to indicate a column vector; for example, {A} means that A has only one
column. If m = n =1, A is the scalar A = A.

If two matrices A and B have the same m and the same n, they may be added or sub-
tracted term by term; for example, in C = A + B,C;=A;+ By A scalar multiplier of A
acts on every term of A; for example, AA contains AA,,, AA,,, and so on. The integral
(or derivative) of a matrix with respect to a scalar parameter, such as time, is a matrix that
contains the integral (or derivative) of every term.

The transpose of A is A but with rows and columns interchanged. Thus

Al 1 A2l ASI
A, A, A
AT =12 72 T3 (1.6-2)

A|3 A"3 A33

If AT = A, the matrix is called symmetric, and A, = A,,, A3 = A3, and so on. A symmet-
ric matrix must be square (m = n).
The product of two matrices is

A B=P where B =) A,B; (1.6-3)

Fxm mxn Ixn v
k=

for example, P,; = Ay B3 + Ax,Bas + Az Bsyt-. For multiplication, A and B must be con-
formable; that is, if A has m columns then B must have m rows. An example of multipli-

cation is
1 2[5 6 7] [21 24 9 64
3 4|8 9 1| |47 54 25 (1.6-4)

In general, AB # BA. If B is square and symmetric, so is the product P = ABA. IfAisa
column vector, then ATBA is a scalar. The transpose of a product is the product of the
transposes in reverse order; that is, if P = AB, then P” = BTAT.
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A unit matrix, or identity matrix, is denoted by L. It is a diagonal matrix of 1’s: that is,

10 -0
01 -« 0

I=|. . : (1.6-5)
00 -« 1

The inverse of a square matrix A is denoted by A™!, where A~ is constructed in such a
way that A™'A = L It is also true that AA™' = I In this book we need to know what A"
means but not how to construct A~ from A. The inverse of a product is the product of the
inverses in reverse order; that is, if P = AB, then P~! = B'A™,

A set of simultaneous linear algebraic equations may be symbolized as

KD =R (1.6-6)

where K is a square matrix of known constants, R is a column vector of known constants,
and D is a column vector of unknowns. Solution for D may be symbolized as

D=K'R (1.6-7)

In FE work, K is a “stiffness” matrix that is usually large and sparse. It would be wasteful
of storage and time to invert it. Thus D = K™'R usually means “solve for the unknowns,”
probably by some efficient form of Gauss elimination or perhaps by an iterative method.
Solving Eq. 1.6-6 for D is a major part of FE calculations, but usually the user need not
know how the software goes about it.

A square matrix is called singular if its determinant is zero. If K in Eq. 1.6-6 is singu-
lar, there is no unique solution vector D, and standard equation-solving subroutines will
fail. As examples, the following matrices are singular.

b B3R

Let K be an n by n matrix and D an n by 1 column vector. Also let D # 0, which means
that at least one coefficient D, is nonzero. Then, for all D,

if D’KD >0, Kis called positive definite (1.6-9a)

if D'KD >0, K is called positive semidefinite (1.6-9b)

A positive definite matrix is nonsingular. In stress analysis, a stiffness matrix K is posi-

tive semidefinite (and singular) if supports of the FE structure do not prevent all possible
rigid-body motions.

ANALYTICAL PROBLEMS
1.1 (a) Show that Egs. 1.2-3 follow from Egs. 1.2-1 and 1.2-2.

(b) Differentiate Eqs. 1.2-3 to obtain expressions for strains in terms of nodal dis-
placements.
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1.2 Show that sides 1-2 and 2-3 of the triangular element in Fig. 1.2-1b remain straight

1.3

1.4

1.5

1.6

1.7

as the element is deformed.

Equations 1.2-1 may be applied to each of the elements shown, and conditions analo-
gous to Egs. 1.2-2 used to express displacements u = u(x, y) and v = v(x, y) in terms
of nodal d.o.f. u; and v,. Carry out these operations. (As a partial check, note that the
resulting expressions must yield u = u; and v = v; when x = x; and y = y;, where /s 1,
2,0r3.)

) Y, U v
b b b
X, 1 Xou X, U
fe——a—> le—a —f<—a —>| a—>t<—a
(a) (b) (c) Problem 1.3

Show that side 1-3 of each of the elements in Problem 1.3 remains straight when the
element is deformed.

(a) In terms of the f3; and x and y. evaluate the strains €,, €, and ¥, associated with
the displacement field of a six-node triangle, Eq. 1.2-5.

(b) Pure moment loading is applied to a cantilever beam built of these elements, as
shown. Exact values of computed stresses are desired, if possible. Why are roller
supports placed at A and at B, rather than pin supports as shown at C?

(c) Sketch an alternative arrangement of supports at the left end of the beam that
would work just as well.

(d) Which of the §; in Eq. 1.2-5 will be zero for this particular cantilever beam prob-
lem? Which of the other f3; are related to one another, and how? Consider the
strains calculated in part (a) to answer these questions.

B F
C —_—X [
A ¢ F Problem 1.5

Elaborate on the list of stress predictions in the latter part of Section 1.3. For exam-
ple, in Fig. 1.3-1a, where do you expect that stresses 0,, O,, Or T,, should approach
zero? Also, where do you expect that these stresses may have large magnitudes, and
of what algebraic signs?

Let dimensions in Fig. 1.3-1a be g = 16 mm, /= 18 mm, £ = 28 mm, and r = 6 mm.
Also let the thickness be ¢ and the elastic modulus be E. Place roller supports along
AE, as in Fig. 1.3-1. Use mechanics of materials analysis to estimate the following in
terms of E, ¢, and load P.

(a) Stress o, at A and at E. Use straight beam theory.

(b) Stress o, at A and at E. Use curved beam theory.
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(c) The o, of largest magnitude along AE.
(d) The vertical displacement component of load P.

1.8 A bar element used for the FE model in Fig. 1.4-1b has two d.o.f., namely, the axi-
ally directed displacement at each end. Express the element displacement field in ttle
form of Eq. 1.2-1 and in the form of Eq. 1.2-3. Let x = 0 at the left end of the ele-
ment.

1.9 Assume that the bar in Fig. 1.4-1a has a rectangular cross section. Let Ak = 3h,y and
let thickness 7 (perpendicular to the paper) be constant. Evaluate the following in
terms of P, L, hy, and .

(a) The exact displacement of load P.

(b) The displacement of P using one, two, and then four uniform elements of equal
length. What is the percentage error in each case?

(c) On a set of axes showing x (abscissa) and ¢,/(P/th,) (ordinate), plot the exact ax-
ial stress and the axial stress prediction of the four-element model. By approxi-
mately what factor are stress errors reduced each time the number of elements is
doubled?

COMPUTATIONAL PROBLEMS

No specific computational problems are suggested in this chapter. However, students
may wish to get acquainted with the FE software chosen for the remainder of the course
by using it to solve simple bar and beam problems for which tabulated solutions are read-
ily available.






CHAPTER 2

Bars and Beams.
Linear Static Analysis

Stiffness matrices are developed for bar elements and beam elements. The physical
meaning of these matrices is explained. Also explained is how loads are treated, what
support conditions are appropriate for a structure built of bar or beam elements, and how
the formulation yields displacements and stresses. Finally, an example application shows
how beam elements may be used in practice.

2.1 INTRODUCTION

Static analysis omits time as an independent variable and is appropriate if deflections are
constant or vary only slowly. A structure forced to vibrate at a frequency less than about
one-third of its lowest natural frequency is a case in point. Such “quasistatic” problems
may include steady inertia loads, such as those due to spinning about an axis at constant
speed. Linear static analysis excludes plastic action and deflections large enough to
change the way loads are applied or resisted. Thus elements that fail, large rotations, and
gaps that open or close are excluded.

After doing an approximate preliminary analysis, planning how to do the computa-
tional analysis, and perhaps sketching an initial FE model, the analyst turns to software.
FE analysis requires that the following steps be taken:

1. Prepare the FE model. The analyst must
a. discretize the structure or continuum by dividing it into finite elements,
b. prescribe how the structure is loaded, and
c. prescribe how the structure is supported.
2. Perform the calculations. The software must
a. generate the stiffness matrix k of each element,

b. connect elements together, that is, assemble the element k matrices to obtain the
structure or “global” matrix K,

c. assemble loads into a global load vector R,
d. impose support conditions, and
e. solve the global equations KD = R for the vector D of unknowns. In structural
problems D contains displacement components of the nodes.
3. Postprocess the information contained in D. In stress analysis this means compute
strains and stresses.
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Step la requires that the analyst exercise judgment about what types of element to use
and how coarse or refined the mesh should be in different regions of the model. Steps 1b
and 1c are often more straightforward than step la but it is easy to be inattentive and do
them improperly. The work in step 1 is greatly assisted by the preprocessor portion of the
software. Nevertheless, this phase of the analysis will probably take considerable time.
Step 2 is carried out automatically by the software. Similarly, step 3 is automatic, al-
though the analyst must instruct the program as to which results to present and the format
of their presentation. The displaced shape and various stress contours are usually plotted.

Except for discretization and the plotting of stress contours, the foregoing FE proce-
dure is also applied to the numerical analysis of trusses and frames. These structures are
inherently discretized, in the sense that their members are already separate elements. In
our terminology, truss elements are hinged at connection points and resist only axial
force; frame elements are welded together at connection points and resist axial and trans-
verse forces and bending moments. All these members can be regarded as special cases
of what we will call a 3D beam element, which resists axial force, transverse shear force
in each of two directions, bending about each principal axis of the cross section, and
torque about the longitudinal axis of the member. The response of the member to these
loads can be formulated exactly, or at least quite accurately, using only the tools of me-
chanics of materials. In this chapter we examine beam elements, beginning with plane bar
and plane beam elements as special cases, in order to explain the nature of a stiffness ma-
trix, how loads and supports are treated, and how stresses are extracted from displace-
ments.

A crude initial model of a complicated structure is sometimes built of bars and beams
because the effort is comparatively small and information useful in subsequent FE model-
ing may appear.

2.2 STIFFNESS MATRIX FORMULATION:
BAR ELEMENT

Direct Method. Consider a uniform prismatic elastic bar of length L, Fig. 2.2-1, with
elastic modulus E and cross-sectional area A. A node is located at each end. For now we
allow only axially directed displacements. We displace first one node and then the other
and, in each case, calculate forces that must be applied to nodes in order to maintain the
displacement state. These forces are easily calculated from the elementary formula for
stretching a bar an amount 6, namely, 6 = FL/AE, which gives force F as F = (AE/L)6.
For the respective cases in Fig. 2.2-1, with 6 = u; and then 6 = u,,

AE
F11=F;1=T“1 and F12=F22=ALE—“2 2.2-1)

where F; is the force at node i (i = 1, 2) associated with displacement of node j (j =1, 2).
Next, these results are written in matrix format, allowing both nodes to displace simulta-
neously, and using the sign convention that forces and displacements are positive in the
same direction. In the present case positive is to the right. Thus

E

R N K N W S B
-5, F, 1 K, L[-11 iy K,
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Fig. 2.2-1. Nodal forces associated with deformation of a two-node bar element. (a) Node
1 displaced u, units. (b) Node 2 displaced u, units.

where F, and F, are the resultant forces applied to the bar at nodes 1 and 2, F, = F,, —
F\, and F, = —F,, + Fy,. The square matrix in the latter equation, including its scalar mul-
tiplier AE/L, is the element stiffness matrix k. Symbolically, we write Eq. 2.2-2 askd =,
where d = [u, u,]" for this element.

In Eq. 2.2-2 we see an instance of a general rule: a column of k is a vector of nodal
loads that must be applied to the element to sustain a deformation state in which the cor-
responding nodal d.o.f. has unit value and all other nodal d.o.f. are zero. For example,
with u; = 1 and u, = 0, the multiplication kd in Eq. 2.2-2 yields the first column of k:

AE[ 1 -1] (1 F hence El aE (1 £ 203
—_— = (&3 = em— u, = -
rl-1)lof s Y I T R N

where F'|, and F,, are shown in Fig. 2.2-1a.

Formal Procedure. The foregoing “direct method” can produce a stiffness matrix only
for simple elements, where formulas from mechanics of materials provide relations be-
tween nodal displacements and associated nodal loads. For most elements a general for-
mula for k must be used instead. We now take a first look at this formula, and the manip-
ulations it requires, by applying it to the bar element, which is the simplest special case.
The general formula is

k= [BTEBav (22-4)

where B is the strain-displacement matrix, E is the material property matrix (it may also
be called the constitutive matrix), and 4V is an increment of the element volume V.
Equation 2.2-4 can be derived by stating that work is done by nodal loads that are applied
to create nodal displacements, and that this work is stored in the element as elastic strain
energy. (See Eqgs. 3.1-9 and 3.1-10 for a more complete explanation.) To obtain B for the
bar element we begin by writing an expression for axial displacement u of an arbitrary
point on the bar. As shown in Fig. 2.2-2, linear interpolation of u between its nodal values
u, and u, yields

L-x x|y '
= — = Nd -
u { 3 L} {uz} or u (2.2-5)

where N is called the shape function matrix and d is the vector of element nodal d.o.f. In
the present example N contains the two individual shape functions N, = (L - x)/L and
N, = x/L. Each shape function ¥, describes how u varies with x when the corresponding
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u= Nlul + .)Vzuz

(a) (b) (c)

Fig. 2.2-2. (a,b) Shape functions N, and N, of a two-node bar element. (c) Linear in-
terpolation of axial displacement between node 1 and node 2.

d.o.f. u; is unity while the other is zero. Axial strain g, is the gradient of axial displace-
ment:

du d 1 1
—N|d=Bd here B=|-— — -
[dx } et [ L L] (2.2-6)

Thus g, = (u, — u,)/L, which is the basic definition of strain as change in length divided
by original length. Finally, for the bar problem, matrix E is simply the elastic modulus E,
a scalar, and dV is A dx. Equation 2.2-4 becomes

L
-1/L 1 1 AE| 1 -1
k = El—-— —|Adx = — 2.2-
HI/L} [ L L] * L {—1 1} (2.2-7)

0

which agrees with the stiffness matrix in Eq. 2.2-2. Note that the form of Eq. 2.2-4 guar-
antees that k will be a symmetric matrix.

Limitation. The displacement and strain fields of the element, Eqgs. 2.2-5 and 2.2-6.
clearly show a limitation of the two-node bar element: it can represent only a constant
state of strain. Linear and higher order strain variations are not represented. Accordingly.
if axial forces are applied only at nodes, the element agrees exactly with a mathematical
model that represents the bar as a straight line having constant A and E between locations
where axial forces are applied. If axial forces are instead distributed along all or part of
the length, or if the bar is tapered, then the element is only approximate. Distributed load
can still be applied, in the form of equivalent forces applied to nodes of a bar built of sev-
eral elements; then exact results are approached as more and more elements are used to
model the bar. Similarly, if a bar is tapered, so that its axial strain varies continuously, a
stepwise-constant FE model becomes more and more accurate as more and more ele-
ments are used (Fig. 1.4-1).

That the two-node element is limited to a constant strain state can also be seen when
the displacement field is written in terms of generalized coordinates f3; that is, as « = f3; +
B.x. By differentiation, €, = du/dx = J3,, a constant. In Eq. 2.2-5 the two f3; have been re-
placed by the two nodal d.o.f. u;.

2.3 STIFFNESS MATRIX FORMULATION:
BEAM ELEMENT

We begin with a plane beam element that can resist only in-plane bending and transverse
shear force. This element requires only four d.o.f. and will be called a “simple™ plane
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beam element. A plane beam element that also resists axial force requires two additional
d.o.f. It will be described later in this section and will be called a 2D beam element.
Finally, a beam element in space that resists all components of nodal force and moment
requires six d.o.f. per node and will be called a 3D beam element. This element will be
discussed last.

Direct Method, Simple Plane Beam Element. Figure 2.3-1a shows a simple plane
beam element. The element is prismatic, with elastic modulus E and centroidal moment
of inertia / of its cross-sectional area. The beam centerline has lateral displacement v =
v(x). According to elementary beam theory, v = v(x) is cubic in x for a uniform prismatic
beam loaded only at its ends; that is, by the nodal forces and moments in Fig. 2.3-1b.
Nodal d.o.f. consist of lateral translations v, and v, and rotations 6., and 6., about the z
axis (normal to the paper). We will ignore transverse shear deformatlon in our explana-
tions, although commercial software usually accounts for it.

The element stiffness matrix k can be constructed column by column, according to the
general rule stated below Eq. 2.2-2. To obtain terms in a column we must solve a stati-
cally indeterminate beam problem, but this requires only elementary methods. Consider
column 1 of k. Figure 2.3-1c shows nodal forces and moments that must be applied to
sustain a deformation state in which the first d.o.f. has unit value and all other d.o.f. are
zero. Nodal loads in Fig. 2.3-1 are labeled according to their position in k and with
proper algebraic sign: positive directions are upward for translation and force and coun-
terclockwise for rotation and moment. Clearly, not all numerical values of the k; can be
positive; for example, in Fig. 2.3-1c, forces k,; and k;, must be of opposite swn to pre-

»v »uv
v\eq £l ’ 6:2 \Ml El 5 M
1 / X 1 / X
vy L 1271 Fl L F2
(a) (b)

-
k33| vp=1 -~~9~~ —_-—”
k13 kia 2= g k34

(e) (f)
Fig. 2.3-1. (a) Simple plane beam element and its nodal d.o.f. (b) Nodal loads associated with the
d.o.f. (c—f) Deflected shapes and shape functions associated with activation of each d.o.f. in turn.
Nodal loads are labeled according to their position in k. (Reprinted from [2.2] by permission of
John Wiley & Sons, Inc.)
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serve equilibrium of vertical forces. To solve for the first column of K, that is, for the col-
umn vector [ky, k»; ks ks)7, the following conditions are used:

k 3 2
v, =1 atnode 1 1= LT oo (2.3-1a)
3EI  2EI
6, =0 atnodel ——ﬁ-‘—L—Z+'—fﬁ (2.3-1b)
2 =0 atnode 2E | EI o
Y (forces), =0 0=kyy + ks, (2.3-1¢)
S (moments)poses =0 0 =kyy +kyy —kyiL (2.3-1d)

The first two of these equations use standard beam deflection formulas and state that end
deflections and rotations produced by force k,, and moment k,, are superposed to pro-
duce unit deflection and zero rotation at node 1. These two equations yield k;; and k,, in
terms of E, I, and L. The latter two equations use statics and yield ks, and k,;; when ky,
and k,, are known. Similar arguments produce an analogous set of four equations for
each of the remaining three deformation states. Each deformation state yields terms in
one column of k. The result of this process is the element stiffness matrix,

12EI/I> 6EI/I* -12EI/L* 6EI/L?

GEI/I* 4EI/L —6EI/I* 2EIIL
k= , ) \ ) (2.3-2)
~12EI/I} -6EI/I*> 12EI/L> -6EI/L

6EI/I*> 2EIIL —6EI/L* 4EI/L
which operates on the vector of nodal d.o.f. d=[v, 6., v, 0,,]".

Formal Procedure, Simple Plane Beam Element. The special form of Eqg. 2.2-4 ap-
plicable to a beam element is

L
k= J'BTEI B dx (2.3-3)
0

where B is now a matrix that yields curvature d°v/dx” of the beam element from the prod-
uct Bd. The commonality of all forms of Eq. 2.2-4 is that in each case the expression
d’kd/2 represents strain energy in an element under nodal displacements d. In bars, strain
energy depends on axial strain; in beams, strain energy depends on curvature. Energy
principles are matters of theory that are not essential to an understanding of how elements
behave (see Eq. 3.1-9 for a brief explanation related to Eq. 2.2-4). In terms of generalized
coordinates f3; the lateral displacement v = v(x) of a plane beam element is the following
cubic in x:

v=P+fx+ ﬂ3x2 +ﬁ4x3 . (2.3-4)

The f; can be stated in terms of nodal d.o.f. by making substitutions similar to those used
in Eq. 1.2-2, for example, at x =0, v = v, and 6, = 6.,, where 6, = dv/dx. Thus an alterna-
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tive form of Eq. 2.3-4 uses shape functions #, to interpolate the lateral displacement v =
v(x) of the beam from its nodal d.o.f. d.

v=[N N, Ny NJ; ©t = Nd (2.3-5)

.The separate N, are stated in Fig. 2.3-1. They may also be found in a comprehensive tabu-
lation of beam deflection formulas, as each NV, states the deflected shape associated with a
particular end translation or rotation. Curvature of the beam element is

d*v d?
dx

- N}d =Bd (2.3-6)

where strain-displacement matrix B is the 1 by 4 row vector

(2.3-7)

>

6 12x 4 6x 6 12x 2 6x
B=|\-—Z+—F ——t+—= —S-—— -——+—7%
L L L L L[ L L L

After substitution of Eq. 2.3-7 into Eq. 2.3-3, and rather tedious multiplication and inte-
gration, Eq. 2.3-2 again results.

Limitation. Subject to the usual restrictions—that the beam is initially straight, linearly
elastic, without taper, and so on—a beam loaded by end forces and end moments has a
deflected shape v = v(x) that is cubic in x, just as described by Eq. 2.3-4 and the N, of Fig.
2.3-1. Therefore an FE model built of beam elements provides an exact solution when
force and/or moment loads are applied to its nodes. A uniformly distributed load pro-
duces a beam deflection v that is fourth degree in x. Accordingly, beam elements are in-
exact under distributed load, but exact results are approached as more and more elements
are used in the FE model.

Stress. Flexural stress is computed as ¢, = My/I, and bending moment M is computed
from curvature d*v/dx?, which in turn depends on nodal d.o.f. d.

d*v
M= E[E =EIBd (2.3-8)

Equations 2.3-4 and 2.3-8 show that M caused by d varies linearly with x in each ele-
ment.

2D Beam Element. A 2D beam element might also be called a plane frame element. It is
a combination of a bar element and a simple plane beam element. It resists axial stretch-
ing, transverse shear force, and bending in one plane. By combination of Egs. 2.2-7 and
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2.3-2, the stiffness matrix of a 2D beam element that lies along the x axis is

[ AE/L

Bars and Beams. Linear Static Analysis

0 0 -AE/L 0 0 ”
0 12E/I® 6EI/I* 0 -12EI/I 6ENL | v
L | o eEnr aEuL o  —sEUL* 2EUL | 6,
T |-4E/IL 0 0  AE/L 0 0 u, (239
0 -12EI/I® —6EI/I* O 12EI/I} —6EIL | v,
0  6ENI* 2EI/L 0 —6EI/I> 4EI/L | 6.,

where the symbols on the right are appended to show the d.o.f. on which k operates.

3D Beam Element. A beam element in a general-purpose FE program has three-dimen-
sional capability and may also be called a “space beam” element. For explanation, we in-
troduce “global” coordinate axes XYZ and let the element lie along a “local” x axis (Fig.
2.3-2). Local coordinate axes xyz may arbitrarily be oriented in global XYZ space. The x
axis is defined by the coordinates of nodes 1 and 2. The web of the beam lies in the xy
plane, which contains nodes 1, 2, and 3. Node 3 is either an extra node or another node of
the structure, whose coordinates serve to orient the xy plane in XYZ space. No d.o.f. of the
element are associated with node 3. At node 1 and at node 2 the element has six d.o.f.,
namely, three displacements and three rotations, for a total of 12 d.o.f. per element. In the
software, k of this element is formulated using d.o.f. in local coordinates; then k is trans-
formed so that global d.o.f. replace local d.o.f. at each node, in preparation for attaching
the element to adjacent elements that use the same global d.o.f. The element resists force
in any direction and moment about any axis. The following data are needed by the pro-
gram: nodal coordinates, elastic modulus E, shear modulus G, cross-sectional area A,
principal moments of inertia I,,and I_. of A, torsional constant J, and transverse shear de-
formation factors f,, and f,. Additional data are needed for stress computation, such as the
appropriate y distance in the flexure formula o, = M,y/I,,. Note that if the cross section is
noncircular, J is not the polar moment of the cross-sectional area A. J is a property of the
cross section, such that the correct relative rotation of nodes 1 and 2 under torque T is
given by TL/GJ. Often this J is much less than the polar moment of A. We will not pur-
sue further details of this element but urge careful study of beam bending and twisting
theory [2.1] as well as the software documentation.

Nodal d.o.f. in
global coordinates

Nodal d.o.f. in
local coordinates

Fig. 2.3-2. 3D beam element arbitrarily oriented in global coordinates XYZ, with nodal
d.o.f. in local and global coordinate systems.
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2.4 Properties of k and K. Avoiding Singulariry

A few words about support conditions: if a 3D beam element is used to model a can-
tilever beam along the x axis, what d.o.f. must be suppressed at the support? All six of
them, including 6,; to prevent the beam from being free to spin about its axis (even if no
torque is applied).

Release. To model a continuous beam, either straight or curved (as in Fig. 2.5-3), adja-
cent elements are rigidly connected together at shared nodes. This means that adjacent el-
ements have the same d.o.f. at nodes they share. Software usually allows the user to acti-
vate a “release” of one or more d.o.f. at a node, so that specified d.o.f. are not connected.
For example, let two 3D beam elements be connected end to end. Release of all three ro-
tational d.o.f. at the shared node makes the node a ball and socket joint. In effect, d.o.f.
are not “released” but simply left unconnected when adjacent elements are put together.

Global and Local Coordinate Systems. The user defines the geometry of a FE model in
a global coordinate system XYZ. Software typically generates an element stiffness matrix
in a local coordinate system xyz, then automatically converts to the global system for as-
sembly of elements. Global and local systems may be parallel or even coincident, in
which case nodal displacement components are the same in both systems and the distinc-
tion between systems largely disappears. In our discussions we will use global coordi-
nates X¥Z only when it is desirable to distinguish between global and local systems.

2.4 PROPERTIES OF k AND K.
AVOIDING SINGULARITY

Stiffness matrices k (element) and K (structure; global) are symmetric. This is true of any
element or structure when there is a linear relationship between applied loads and the re-
sulting deformations.

Each diagonal coefficient of k (and of K) is positive. We argue as follows. Imagine
that a certain d.o.f. d, is the only nonzero d.o.f., so that the load associated with d, is r; =
k;d;. Since d; and r; are positive in the same direction, a negative diagonal coefficient k;
would mean that a load and its displacement are oppositely directed, which is unreason-
able.

A structure that is either unsupported or inadequately supported has a singular stiff-
ness matrix K, and FE software will be unable to solve the equations KD = R for nodal
d.o.f. D. To prevent singularity, supports must be sufficient to prevent all possible rigid-
body motions. These are motions that produce no deformation of the structure. For exam-
ple, consider a one-element structure, namely, a single bar element. The formulation in
Section 2.2 allows only axial translation. In effect, all nodal d.o.f. but %, and u, have al-
ready been suppressed. If unsupported, the bar element can have the rigid-body motion
Uy = u, = ¢, a constant. This motion is prevented by prescribing u, or u, as either zero or a
nonzero value. Similarly, consider a one-element beam structure. If the four-d.o.f. simple
plane beam element of Section 2.3 is unsupported, it can have two rigid-body motions in
the xy plane, namely, lateral translation and rotation about a point, neither of which
causes the element to bend. In terms of nodal d.o.f., these motions of the beam element
can be written '

dy=[c;, 0 ¢, 01" and dg=[0 ¢, oL c,]7 (2.4-1)

where d, represents the rigid body translation v = ¢, and d represents rigid-body rotation
through a small angle ¢, about node 1. The simple plane beam element is adequately sup-
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ported if any two of its four d.o.f. are prescribed (except for prescription of only 6.; and
0.,, which would allow rigid-body translation). Essentially the same remarks apply to a
multi-element structure. Usually it is not difficult to devise supports adequate to prevent
rigid-body motion. (Support reactions can then be determined by writing only the equa-
tions of statics.) Adequate supports make a structure statically determinate. More than ad-
equate supports make the support reactions statically indeterminate. This is perfectly ac-
ceptable and does not complicate the FE process in any way.

At each node of an assembled structure, general-purpose software makes three dis-
placements and three rotations available for use as d.o.f. These are the structure or
“global” d.o.f. If at any node a global d.o.f. causes no strain in any element attached to
that node, the d.o.f. will not be resisted and the structure stiffness matrix will be singular

. . unless the offending global d.o.f. is restrained. Accordingly, part of the task of pre-
scribing support conditions is imposing zero as the value of each “unresisted” d.o.f. Thus
in modeling a 2D or 3D truss by two-node bar elements, all rotational nodal d.o.f. must
be restrained at all nodes of the structure. Rotational d.o.f. are absent from the element
formulation and a bar element has no stiffness with which to resist them. This does not
prevent bar elements from having a relative rotation between them at a node they share,
nor does it prevent a bar element from rotating in space because of unequal lateral dis-
placements at its two nodes. At a node to which 3D beam elements are connected, all six
d.o.f. are resisted by all beam elements at that node. In the absence of a release, beam ele-
ments are rigidly connected to one another at a shared node, which means that they have
no relative rotation between them az the node. No restraint of nodal rotation is needed ex-
cept in the infrequent situation of wanting to prevent the entire joint from rotating. A
frame, like a truss, can be adequately supported by prescribing translational d.o.f. only.

A structure may have a singular K because it contains a mechanism. Imagine a straight
beam, attached to a rigid support at each end, and modeled by two beam elements. Thus
there is a node at the middle of the beam, to which both elements are connected. This FE
model is stable and has no mechanism. Now if the two beam elements are replaced by
two bar elements the FE model contains a mechanism because two collinear bar elements
cannot resist a lateral force applied to the node they share. It does not matter that no such
force may be applied; K is singular regardless of the load vector. (Physically, such a load
could be sustained, but only after some lateral displacement has taken place; that is, after
nonlinearity is taken into account. The present linear analysis yields K only for the undis-
placed configuration.)

General-purpose FE software may regard all structures as three dimensional unless the
user directs otherwise. Thus by default three displacements and three rotations are active
at every node. No stiffness is associated with any d.o.f. unless it contributes to strain in at
least one element. The user must assign a numerical value to each zero-stiffness d.o.f.
Usually the assigned value is zero, thus suppressing the d.o.f. A program may automati-
cally suppress d.o.f. not included in element formulations. Thus all rotational d.o.f. would
automatically be suppressed if only bar elements were used, as in modeling a truss.
Nevertheless, to minimize mistakes and surprises, a wise user will remember that in gen-
eral there are six d.o.f. per node and will determine what the program actually does rather
than assume what it will do.

2.5 MECHANICAL LOADS. STRESSES

Loads. Load may be applied as a force or a moment at a point or as surface pressure.
Line load is conceptually intermediate to point load and surface pressure. Line load is
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force or moment distributed along a line (dimensions [force/length] for a force line load).
Another possible load is body force loading, which acts at every material point in the
body rather than only on the surface of the body. Sources of body force loading include
self-weight (gravity) loading and acceleration. Thermal loading comes from temperature
changes and is considered in the next section.

A concentrated force or moment is applied directly to a node. Moment load can be ap-
plied to a node only if at least one element connected to the node has rotational d.o.f. in
its stiffness formulation. Input data to software consists of the magnitude, direction, and
node associated with the force or moment. Distributed loading, such as pressure in a tank
or line loading along a beam, acts berween nodes and must be converted to direct nodal
loading that is in some way equivalent. Most software is able to accomplish the conver-
sion, whether or not elements are collinear or of equal length. The user need only tell the
software what the loading is and where it acts. We will not detail the theory of the
process [2.2]. The following results are for uniform loading on bar and beam elements.

Let a uniformly distributed axial force g act on a bar element, Fig. 2.5-1a. The dimen-
sions of g are [force/length]. Load g may be externally applied. Or, it may represent the
weight, or resistance to acceleration, of the element itself. The total force on an element
of length L is gL. Half of this total is applied to each node. If two collinear elements of
lengths L, and L, are connected, the node they share receives a total force gL,/2 + gL,/2 .
The final set of nodal forces on a straight bar modeled by equal-length elements appears
in Fig. 2.5-1d. Equivalent nodal forces for a distributed load ¢ that varies linearly are dis-
cussed in Section 3.9.

Theory indicates that a uniformly distributed transverse force on a beam element is re-
placed by nodal loads that consist of forces and moments (Fig. 2.5-2). The reader may
recognize these loads as support reactions for a uniform beam fixed at both ends and uni-
formly loaded. except that nodal loads are directed opposite to beam support reactions. If
elements of equal length and equal distributed load are assembled, moment loads cancel
at nodes shared by two elements. The final result for collinear elements of equal length
appears in Fig. 2.5-2d.

Note that no loads are needed at the supported ends of the structures in Figs. 2.5-1 and
2.5-2. As a general rule, load applied to a restrained d.o.f. may be omitted because such a
load is reacted directly by the support rather than acting to deform the structure.

Usually, concentrated load is not applied at a non-nodal location because this circum-
stance is awkward to treat in the software. Instead, one simply arranges the FE mesh so
that a node appears where the concentrated load must be applied. Beam elements may be
an exception to this rule: beams are comparatively simple to treat and so often analyzed
that some software is specially coded to accommodate a variety of non-nodal loadings.
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Fig. 2.5-1. Uniformly distributed axial force g on a two-node bar element and- its conversion to
equivalent nodal loads.
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Fig. 2.5-2. Uniformly distributed transverse force ¢ on a simple plane beam element and its con-
version to equivalent nodal loads.

Remarks. Nodal loads that replace distributed loading in Figs. 2.5-1 and 2.5-2 come
from FE theory and are called “kinematically equivalent” or “work-equivalent” nodal
loads for the following reason. Let any one of the nodal d.o.f. d; be nonzero, and use Eq.
2.2-5 or 2.3-5 to obtain the associated displacement field of the element. Compute work
done by load ¢ during this displacement, by integration of ug dx (for a bar) or vg dx (for a
beam) over element length L. This work is equal to work done by the nodal load associ-
ated with d, in acting through displacement d,. Work-equivalent nodal loads are also srati-
cally equivalent, meaning that they have the same resultant force and the same moment
about an arbitrarily chosen point as does the original distributed loading.

Nodal loading that is not work-equivalent is often called lumped. Lumped loading typ-
ically omits the nodal moments of work-equivalent loading. Lumped loading is often pre-
ferred for elements that have rotational d.o.f. Specifically, lumped loading is usually
preferable for arches and shells and is often preferable for beams and plates. An example
appears in Fig. 2.5-3. Nodal moments would clearly be spurious at the support nodes A
and B. Also, if elements were of unequal length, work-equivalent loading would produce
net moments at other nodes as well, but these moments would not be beneficial to accu-
racy. Work-equivalent loading and lumped loading both provide convergence toward ex-
act results as the mesh is refined.

In general, computed nodal d.o.f. are not exact. But a uniform bar or beam represented
by a FE model with work-equivalent nodal loads is an exception: computed nodal d.o.f.
are exact. This does not mean that displacements are exact between nodes or that element
stresses are exact. If the nodal loading is lumped, exact nodal d.o.f. will not be computed,
but, depending on the situation, stresses at an arbitrary point may be more exact than ob-
tained from work-equivalent loading. A user who wishes to know if software includes the
nodal moment loads of Fig. 2.5-2 can find out by study of a one-element test case, in
which computed displacements and bending moments are compared with those obtained
by elementary beam theory.

Stresses. A FE program solves for nodal d.o.f. first, then (in present software) uses them
to compute stresses. In a bar element, axial stress is o, = Eg,, where E is the elastic mod-
ulus. Axial strain €, is given by €, = Bd, where B is stated in Eq. 2.2-6. An example prob-
lem in Section 2.6 provides details of this process. Here we discuss the nature of the re-
sults. The FE model of a bar in Fig. 2.5-1d yields the displacements and stresses shown in
Fig. 2.5-4. We see that stresses are discontinuous between elements. Indeed, this is the
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Lumped nodal loads

Fig. 2.5-3. Hinged arch with distributed normal loading ¢, and a coarse-mesh FE model with stati-
cally equivalent lumped loading.

way most types of element behave. Also, we see that displacements are more accurate
than stresses. This is usually the case, because stresses are proportional to strains and
strains are derivatives of displacement. Differentiation brings out differences between
functions. For example, the two functions and y = e* and y = 1 + x look very similar over
the range 0 < x < 0.2, but the first derivatives are Yy =e*and )" = 1 (rather different) and
the second derivatives are y” = e* and y” = 0 (very different).

In Fig. 2.5-4b we see that the most accurate values of stress are element center stresses
and nodal average stresses. Unfortunately, the highest stress, o, at x = 0, is not as accu-
rate. This is typical of FE models. Stresses of greatest interest usually appear at bound-
aries, but this is not where stresses are most accurately computed.

In a beam element we solve first for bending moment M rather than solving directly
for stress. When nodal d.o.f. d are known, Egs. 2.3-6 and 2.3-7 yield the curvature
d*v/dx*, from which we obtain the bending moment M = El(d*v/dx?) and finally the flex-
ural stress 0, = My//. Note that B is a function of x for this element, so we must decide
where in the element to calculate the curvature. If software allows non-nodal loading on
beam elements, the computed bending moment in each element is an algebraic sum: the
foregoing M produced by nodal displacements and rotations, plus bending moment pro-
duced by the non-nodal loading with the element regarded as a fixed—fixed beam. Thus,
for example, a uniformly loaded beam element that happens to undergo rigid-body mo-
tion will still display the end moments ¢L*/12 seen in Fig. 2.5-2. This computation is in-
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Fig. 2.5-4. Axial displacement u and axial stress o, in a bar, computed from the FE model of Fig.
2.5-1d.
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dependent of whether loads are lumped for the purpose of constructing load vector R in
the equations KD = R. “Fixed—fixed moments” can improve results, even providing exact
bending moments in some situations, but in other situations may produce moments where
none are expected (e.g., at A and B in Fig. 2.5-3).

3D beam elements may carry axial, bending, or torsional loads. A beam element sus-
tains axial stress o, = P/A and flexural stresses 0, = M. y/I,, and o, = M,z/1,,. These con-
tributions to the resultant o, combine algebraically. Torque T about the axis of the beam
creates shear stress T = Tc/J, where ¢ and J must be appropriate to the shape of the cross
section [1.5, 2.1]. Typical software may report the following at each end of an element:
P, M,, M_, T, transverse shear forces V, and V., the resultant o, values on y-parallel and z-
parallel sides of the cross section, and shear stress associated with 7.

2.6 THERMAL LOADS. STRESSES

If a homogeneous and isotropic elastic body is uniformly changed in temperature or has a
temperature field that is linear in Cartesian coordinates, and the body is unrestrained by
external supports, then its state of stress is unchanged. Thus if the body is initially un-
stressed it remains unstressed, although it does deform. More often, temperature gradients
are more complicated, and thermal stresses arise with or without external supports.

FE thermal stresses are calculated by the following procedure, which applies to any
kind of FE model: bar, solid, shell, and so on. These steps are carried out automatically
by the software; the user need not take special action to activate them.

1. For each element, restrain all nodal d.o.f. and compute loads applied by the ele-
ment to its nodes owing to temperature change. (We will not detail the theory,
which is similar to the theory that yields work-equivalent nodal loads.)

2. Assemble the elements and element loads calculated in step 1. The result is a FE
structure, as yet undeformed, whose nodal loads are produced by temperature
changes.

3. Solve for nodal d.o.f., next compute element strains produced by these d.o.f., and
then compute stresses from strains. These calculations are exactly the same as
those used to calculate stresses produced by mechanical loads.

4. Superpose on stresses from step 3 the “initial” stresses, which are stresses that ap-
pear in step 1 when all d.o.f. are restrained and temperature change is applied.

Mechanical loads may be superposed on thermal loads. This is done in the assembly
process, step 2.

Example 1. A simple bar problem illustrates the assembly of elements. application of
loads and supports, and solution for stresses. These processes are carried out automati-
cally by FE software. Software uses numbers but we will use symbols for the sake of
clarity. Recall that software allows six d.o.f. per node, which means that in the present
example all d.o.f. but axial displacements u; must be suppressed at every node to prevent
rigid-body motions and singularity of K. To save space we will assume that this has al-
ready been done, so that only axial displacement d.o.f. u; are represented in what follows.

Let the bar in Fig 2.6-1 be uniform, with cross-sectional area A, elastic modulus £, and
coefficient of thermal expansion ¢. Mechanical loading consists of forces P as shown.
Thermal loading consists of uniform heating an amount AT. In this problem both ele-
ments have the same stiffness matrix k (Eq. 2.2-7) and the same thermal load vector rr.
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(a) (b) (c)
Fig. 2.6-1. (a) Two-element bar model loaded by externally applied forces P and by
uniform heating an amount A7. (b) Loads F = cAE AT associated with heating, ap-
plied by elements to nodes. '

Specifically, for elements 1 and 2, respectively,

AEl 1 -1 -F
k, =k, =T|:_1 1 } I =Tr :{ T} (2.6-1)

where F. = @AE AT is the force a bar would exert on confining walls when heated an
amount A7, as is shown in elementary mechanics of materials. Assembly of elements
yields the following set of global equations, whose unknowns are the axial displacement
d.o.f. uy, u,, and u5. (One may note that the physical meaning ascribed to columns of k,
and k, is also true of the following structure stiffness matrix.)

1 -10](w) [-F + R,
AE
2212 s1{u b=y K -F - P (2.6-2)
0 -1 1 ||u F, +P

where R, is the force applied to node 1 by the support. This force is regarded as an un-
known. Known mechanical loads P have been added as part of the assembly process.
Note that d.o.f. u, receives stiffness and nodal load contributions from both elements to
which it is connected. At node 2 the loads F; are equal but oppositely directed and there-
fore cancel, leaving only load —P at node 2. Load —F at node 1 is reacted by the support
and is discarded in the step we take next.

The stiffness matrix in Eq. 2.6-2 is singular because rigid-body axial translation is pos-
sible. Singularity is removed by the support condition, which is imposed by substituting
u, = 0 into Egs. 2.6-2. This leaves only u, and u; as unknown d.o.f. They are obtained by

solving the equation
AE| 2 —1|{u, -P
e = 2.6-
L ["1 1}{“3} {Fr"'P (263

By suppressing the first d.o.f. we have, in effect, discarded row 1 and column 1 from Egq.
2.6-2 to obtain Eq. 2.6-3. After solving Eq. 2.6-3, with F.= ¢ AE AT, we know the values
of all d.o.f.

u =0 u,=0L AT  u;=2al AT+££ (2.6-4)
- AE

Axial stress o, in each element is calculated from the formula

o.=FEe.+ 0y, (2.6-5)
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where E is the elastic modulus, &, is the strain computed from nodal d.o.f.. and 0, is the
initial stress the element, here caused by temperature change with all element d.o.f. re-
strained. For the respective elements, Eq. 2.6-5 is

U, — Uy

oy=E +(-Ea AT)=Ea AT-Ea AT=0 (2.6-6a)

Uy — Uy

P
O, =E +(-Ea AT)=E«x AT+£—EO( AT =— (2.6-6b)
x2 A A

Heating has caused the bar to expand but has produced no stress because thermal expan-
sion is unrestrained in the present example.

Example 2. If the foregoing example is now altered by fixing both ends of the bar, Eq.
2.6-2 reduces to a single equation. This equation and the resulting d.o.f. are

L

ZAEM2 =—P hence u,= —P—, w=u=0 (2.6-7)
- 2AE ;
and Eq. 2.6-5 yields the element stresses
Uy — Uy P

o, =E—= +(-Ea AT):_EZ—EQ AT (2.6-8a)

Uy — Uy P
0,=E—=+(-Eo0 AT) = Z‘--Ea AT (2.6-8b)

All results for displacement and stress are exact in the foregoing examples because the
loadings have not demanded a displacement field or a stress field more complicated than
the elements can represent.

Spurious Stresses. The following example shows how thermal stresses may be incor-
rectly computed. Let a two-node bar element of length L be supported at only its left end
and have a linear variation of temperature along its length, say

AT =cx (2.6-9)

where ¢ is a constant and x = 0 at node 1. This AT causes the element to expand an
amount ocL?/2, so that nodal d.o.f. are u, = 0 and u, = acL??2. Thus & = (u, - u)/L =
acl/2, and Eq. 2.6-5 yields

o,=Ee, +(-Ea AT) = Eac(%—x) ' (2.6-10)

However, this o, is incorrect. We know that the bar should be stress-free. The spurious o,
arises because of a mismatch: the temperature field is linear in x but the strain field is
constant. The correct stress, o, = 0, would be computed if AT were evaluated at the ele-
ment center, x = L/2, and this AT taken as constant over the element, just as &, in Eq. 2.2-
6 is constant over the element. Regardless of the element type (bar, plane. solid, etc.), it is
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usually best if the temperature gradient over an element is represented by a field of de-
gree no higher than that of the strain field produced by nodal d.o.f. d. This usually re-
quires that the actual AT variation be simplified for use in stress calculation. The user
need not worry about this if the software has been suitably coded. (See also the discus-
sion in Section 3.10.)

2.7 AN APPLICATION

We present an example problem, with emphasis on modeling and checking results rather
than on matrices and manipulations. The structure is a flat oval bar loaded in its own
plane, as shown in Fig. 2.7-1. Stresses and deflections of greatest magnitude are desired.
The solution strategy suggested in Section 1.3 is used in the following analysis.

Preliminary Analysis. The structure is roughly circular. Therefore a crude analytical
model of the problem is that of a circular ring having the same perimeter as the actual
oval and loaded by concentrated forces, as shown in Fig. 2.7-2. Data in Fig. 2.7-1b are
such that the radius of the substitute circular ring is r = 78.2 mm, and the pressure load
produces the force F = pt(b + ¢) = 300 N. Handbook formulas [1.5] state deflections and
bending moments in a circular ring loaded by two diametrically opposing forces. By su-
perposing two such cases, one with inward forces and the other with outward forces, we
obtain

3

5=O.143%=0.338mm and M=05Fr=11730 N-mm (2.7-1)

as the magnitudes of radial deflection and bending moment at loaded points. Hence direct
axial stress and flexural stress in the circular ring have magnitudes

o, = —I:};/—2~=3.33MPa and Gb=m
t

=174 MPa (2.7-2)

These results will be compared with FE results. This simple analysis is done before FE
analysis to avoid the natural tendency to calculate a result that agrees with what FE
analysis has led us to expect. Also, by having an approximate solution in hand, we will be

h

a=b=c=d=30mm

EYEYEYLY azboc
F F h=9.0mm
M ; t=5.0mm
R i R E =200 GPa
) v =0.28
' A2 RAL, A
F=300N
Rectangular cross section, hx ¢
(a (b)

Fig. 2.7-1. (a) Plane structure under mechanical loading. (b) Data used in the numerical
example.
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Fig. 2.7-2. Simple analytical model for approximate analysis,
! withr=R+(a+b+c+d)n.

able to immediately detect FE results that happen to be greatly in error, owing perhaps to
a blunder in data input.

FE Model and Analysis. There is symmetry of geometry, loading, and elastic properties
about horizontal and vertical centerlines. Therefore only one quadrant need be analyzed,
Fig. 2.7-3a. (Symmetry is discussed more fully in Section 4.12.) Supports shown are con-
sistent with horizontal displacement allowed at end A, vertical displacement allowed at
end D, and neither A nor D allowed to rotate. Between A and D, points will displace in
both x and y directions and cross sections will rotate.

Beam elements are appropriate for this problem. A coarse-mesh model is shown in
Fig. 2.7-3b. Portion BD is modeled by two elements, BC and CD, so that nodal force gL/2
and nodal moment gL*/12 of Fig. 2.5-2 can conveniently be applied at C.* No moment
load is needed at D because it would be reacted directly by the support. Support condi-
tions indicated in Fig. 2.7-3c allow only translation u at A and only translation v at D.
One need not also set w = 0, = 9), = 0 at nodes B and C; however, this excessive fixity
would do no harm in the present problem. Similarly, the amount of fixity at A and D is
excessive; for example, we need not restrain w, 6,, or 6, at D because similar fixity at A
will avoid the possibilities of translation in the z direction and rigid-body rotations about
x and y axes. K is rendered nonsingular by the support conditions.

Critique of FE Results. How good are the answers? Before comparing computed num-
bers with analytical approximations, and before looking at stress plots produced by the
FE method, we look at the displaced shape. We sketch an intuitive approximation,
shown dashed in Fig. 2.7-4a. Software will plot the computed displaced shape, scaled up
to be easily visible, and animated so the model can be seen to move back and forth be-
tween its original shape and its deformed shape. We should see reasonable agreement
between approximate and computed shapes. In particular, point A should move only to
the right, point D should move only upward, and the FE model should not rotate at ei-
ther point. Thus we check that the intended support conditions have indeed been im-
posed. Upon examining a list of computed numerical values of nodal d.o.f., we should
see w = 6, = 6, = 0 at all nodes. (Note: Software typically plots only straight lines be-
tween nodes. Accordingly, a deformed beam element appears straight; its actual cubic
curve is not displayed.)

If displacement results appear satisfactory after the foregoing inspection and com-
parison with analytical approximation, we proceed to examine stresses. We should
find that the direct axial component of stress is tensile at A and compressive at D,
while the flexural component of stress is tensile on the inside at A and tensile on the
outside at D.

*Lumped loading omits this moment. The reader may wish to repeat this example, using lumped
loading, to see how results are changed.
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Supports at A:
B C D U=“~=9x=9.‘.=9:=0

Supports at D:
u= \l'=9.\-=9.‘4=9:: 0

(b) (c)

Fig. 2.7-3. (a) Quadrant modeled. (b) Coarse FE model with work-equivalent nodal loads. (c)
Support conditions.

A summary of computed results for the FE model of Fig. 2.7-3b is as follows.

1, =0.135 mm vp=0.316 mm
(0)4=0 (0,)p=-3.33 MPa (2.7-3)
(Op), = 1166 MPa (0,)p=%117 MPa

where o, refers to the direct axial stress, o, = P/A, and o, refers to the bending compo-
nent of stress, o, = Vc/I. (Some software may report the algebraic sum of axial and bend-
ing stresses at top. middle, and bottom surfaces of an element.) The value of 0, at A at
first looks wrong: why is it zero? Elementary statics, Fig. 2.7-4b, shows that member AB
carries a transverse shear force but no axial force because of its 45° orientation. Accord-
ingly, (0,), = 0 at A is correct for this particular FE model.

A finer mesh for the same problem is shown in Fig. 2.7-4c. Now arc AB is modeled by
two chords rather than one, which is the most significant improvement of this mesh.
Portion BC is not refined because doing so would make no difference: this part is straight
and no loads are applied between B and C. Computed results for the finer-mesh FE model
are

u,=0.121 mm Up=0.349 mm
(0,),=1.80MPa (0,)p=-3.33 MPa (2.7-4)
(0p), = %163 MPa (0,)p =%116 MPa

These values are in reasonable agreement with results from the crude analytical approxi-
mation, Egs. 2.7-1 and 2.7-2. Also, there is good agreement between Egs. 2.7-3 and 2.7-4

Cc
C Q\ 150 N B D
T /MD

—

p o

4 150 N

150 N

(a) (b) (c)

Fig. 2.7-4. (a) Original centerline (solid) and deformed centerline (dashed) of the quadrant mod-
eled. Displacements are greatly exaggerated. (b) Free-body diagram, showing loads applied to the
quadrant modeled. (c) A refined FE model with work-equivalent nodal loads.
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except for o, at A, which is a small stress whose error has been satisfactorily explained.
We conclude that the FE results are probably reliable, although one more mesh refine-
ment and analysis would make us more comfortable with the results. Indeed, after analy-
ses based on three or more successive mesh refinements, one might plot a result such as
(0,)4 versus element size. Extrapolation to zero element size would yield a prediction of
(0,)4 for infinite mesh refinement (see Section 5.15). The value of (o,), obtained by ex-
trapolation could be used to estimate the percentage error of (0,), in each of the meshes
actually used.

Some questions about the correctness of the model remain. Truly concentrated
loads are not possible, therefore horizontal loads F are an idealization whose actual
manner of application may have to be represented more precisely. The ratio h/R is
probably small enough that transverse shear deformation is unimportant, but it does
no harm to use beam elements that include it. If 4 becomes comparable to R, beam el-
ements should be replaced by two-dimensional elements (Chapter 3). We have as-
sumed from the outset that the material is linearly elastic. Stresses are not high and
the elastic modulus suggests that the material is steel, so the assumption of linearity
appears reasonable. The problem would be much more complicated if there were
yielding.

The problem would also be much more complicated if R/h were so large that displace-
ments became large. A linear analysis uses equilibrium equations written with respect to
the initial (unloaded) geometry, while strictly they should be written with respect to the
final (loaded) geometry. Usually the distinction is negligible because displacements are
so small that the initial geometry is substantially unaltered by applied load. If displace-
ments are not small the problem is much more complicated because the final geometry is
not known in advance. Such a problem is called “nonlinear” because displacements and
stresses are not directly proportional to applied loads.

ANALYTICAL PROBLEMS

2.1 Consider a two-d.o.f. bar element, as in Fig. 2.2-1, but let the cross-sectional area
vary linearly with x from A at x =0 to 2A, at x = L.
(a) Use the direct method to generate the element stiffness matrix. Suggestion: first
compute the elongation produced by an axial force P.
(b) Use the formal procedure to generate the element stiffness matrix. Suggestion:
use Eq. 2.2-6.
(c) The stiffness matrices of parts (a) and (b) do not agree. Why?

2.2 Consider a cable element of length L under constant tension 7, as shown. Assume
that lateral deflection v is linear in x and that v << L. Use the direct method to gen-
erate a 2 by 2 stiffness matrix that operates on d.o.f. v, and v,. Suggestions: k de-
pends only on T and L; consider v; = 1 and v, =0, then v; =0 and v, = 1, while T
maintains constant direction.

fe——L——> 2 Problem 2.2
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2.3

24

2.6

2.7

2.8

2.9

Use the direct method to generate the element stiffness matrix of a prismatic shaft
element under torque loading. The d.o.f. are 6, and 6,, where 8 is an angle of rota-
tion about the axis of the shaft.

(a) Complete the derivation begun in Egs. 2.3-1; that is, generate column 1 of k for
a simple plane beam element.
(b,c,d) Similarly, generate columns 2, 3, and 4 of k.

Use Egs. 2.3-3 and 2.3-7 to generate the stiffness matrix of a simple plane beam el-
ement.

(a) In each of the simple plane beam elements shown, two d.o.f. are restrained and
only the two d.o.f. labeled remain unrestrained. In each case, generate the 2 by
2 stiffness matrix that operates on the unrestrained d.o.f. Use the direct method.

(b) Repeat part (a), but use the formal procedure (Eq. 2.3-3, with B a 1 by 2 row
matrix).

1) 9,1 ]
3. < <
> 2 ﬁ 3

Case 1 Case 2 Problem 2.6

Imagine that by experiment it is known that end force and end moment as shown in
the sketch are required in order to elevate the left end of the beam 1.0 mm without
rotating this end. Fill in as many numerical values as you can in an element stiffness
matrix that operates on nodal d.o.f. [v, 6., v, 6,]", where v, and v, are mea-
sured in millimeters. To do so, use the given data, physical argument, statics, and
symmetry considerations, but not beam deflection formulas or Eq. 2.3-2.

y, v
400N +m |
¥ tzoo N
1 mm ‘\\\\\\
s — _—x
T 1 210
: f 4 m Problem 2.7

A simply supported beam of length L under a half sine wave of distributed trans-
verse loading, ¢ = g, sin(7x/L), has the deflected shape v = v, sin(7x/L), where v,
is the center deflection. An approximate deflected shape is v = 4vq,x(L — x)/L*. If
Uge = Ugg» What are the percentage errors associated with the approximation? Exam-
ine deflection at quarter points, rotation at supports, bending moment at midspan
and at supports, and transverse shear force at supports.

A uniformly distributed axial force ¢ acts on a uniform bar, as shown. Let the FE
model consist of n two-node elements, each of length L/n. Forn=1,n=2,andn =
4, what are the percentage errors of displacement at the right end and axial stress at
the left end?

= = = ]

o B

Lr i Problem 2.9
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2.10

2.11

2.12

2.13

Bars and Beams. Linear Static Analysis

For the beam problem shown, what is the coarsest FE mesh that gives a nontrivial
result? What are the percentage errors in center deflection and end bending moment
of such a FE model? Obtain results needed to answer this question by use of

(a) elementary beam theory (applied to the FE model);

(b) matrices in Section 2.3.

q9
YYVVIVV VY

i Ly > Problem 2.10

veys e

Activate d.o.f. of a simple plane beam element one at a time; that is, v, > 0 while
6,, = v, = 0, = 0, and so on. Thus there are four cases. In each case, show that
nodal loads in Fig. 2.5-2b are work-equivalent.

Distributed lateral force g and the cantilever beam are both uniform (see sketch).
Compute the tip deflection and root bending moment using work-equivalent nodal
loading (Fig. 2.5-2b). Then repeat the calculation, this time with lumped loading
(i.e., omit the nodal moment portion of the work-equivalent loading). Compute per-
centage errors in each case. Suggestion: deflections of the FE model can be ob-
tained by use of standard beam formulas.

(a) Use a single element.

(b) Use two elements, each of length L/2.

The bar shown is confined between rigid walls. Cross-sectional area A varies lin-
early from A, to 1.64,. The bar is initially stress-free, then is uniformly heated an
amount AT. Compute stresses in a FE model that contains three elements, each of
length L;/3 and having the respective cross-sectional areas 1.14,, 1.3A0, and 1.54,.
On axes x (abscissa) and aE AT (ordinate), plot the exact stress field and the FE
stress field.

o q AO 1‘6A0

RYRRRRNYE = i

u’! Lt { f ul Lr |
Problem 2.12 Problem 2.13

COMPUTATIONAL PROBLEMS

In the following problems compute peak values of displacement and stress or bending
moment. Exploit symmetry if possible. When mesh refinement is used, estimate the max-
imum percentage error of FE results in the finest mesh. Where material properties are
needed but not stated, use those of steel.

A FE analysis should be preceded by an alternative analysis, probably based on statics
and mechanics of materials, and oversimplified if necessary. If these results and FE re-
sults have substantial disagreement we are warned of trouble somewhere.

2.14 (a) Does the software you use include transverse shear deformation in its beam ele-

ments? Disregard the software documentation; instead, devise and run test cases
to find out directly.

(b) Similarly, use test cases to discover if nodal moments due to distributed load
are applied to beam elements. (These moments may appear in R and/or in stress
computation.)
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2.16

2.17

2.18

2.19
2.20

Modify the problem of Fig. 2.7-1 by changing the following dimensions to the val-

ues indicated:

(a) ¢ =d=0, others as in Fig. 2.7-1.

(b) a =d =70 mm, others as in Fig. 2.7-1.

(c) b = c =0, others as in Fig. 2.7-1; also add a central vertical member of cross
section £ by t.

The beam shown is uniformly tapered in width. Let Poisson’s ratio be zero. Create
FE models by using elements of constant cross section, in the manner of Fig. 1.4-1,
but with beam elements. Use one, then two, then four, and so on, elements of equal
length. Choose convenient numbers for length L and force P. The problem may be
repeated using a tip moment rather than a tip force, or using a distributed load.

Members of the plane structure shown may be bars pinned together at joints to cre-
ate a truss or beams rigidly connected together at joints to create a frame. For the
frame model one may assume that rotations at the wall are either permitted or pro-
hibited. Investigate how much difference there is between the truss model and the
frame model. Assume that all members have a square cross section, b units on a
side. Let H = 120 mm, L = 160 mm, and P = 1.0 N. Consider the cases » = 5 mm,
b=15mm, and b = 30 mm.

_/{\_ Top view ‘\L L ,
i (.
, J_ | Side view l/P 1
S—OT gl L ; jCT'I L } L i
Problem 2.16 Problem 2.17

The beam structure shown has unit thickness normal to the paper. Depth 4 of the
cross section varies linearly in the axial direction. Confine displacements to the
plane of the paper. :

(@ Ly=L,=5=200mm, h,=h,=40mm, h, =20 mm.

(b) Ly=L,=5=200mm, h;=h,=20mm, h, =40 mm.

() L;=200mm, L,=0, s=80mm, h =40mm, h,=h =20 mm.

I-e——s———>{
_\l/_ P = 1N (unit load)

; !
ot TD

Ly

Ly

Problem 2.18

Problem 2.18 can be repeated with one end hinged.

Consider the problem of a beam on an elastic foundation. The foundation can be
modeled by bar elements that connect nodes of the beam to a fixed support and act
as linear springs of stiffness k = AE/L (see sketch). This is not the best foundation
model, but it is instructive to see how displacements and bending moments in the
beam converge toward exact results as the mesh is refined. Analytical solutions for
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2.21

2.22

2.23

2.24
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various kinds of loading and support on a uniform beam are available [1.5, 2.1].
Beams of finite length or with step changes in cross section may also be considered.

/— Typical beam element

Hheigile Problem 2.20
The structure shown has unit thickness normal to the paper. Depth A of the cross
section varies linearly in the circumferential direction. Confine displacements to the
plane of the paper. Some possible choices of geometry are as follows:

(a) ¢,=45° ¢,=90°, R=500mm, h,=h,=230mm.

(b) ¢,=20° ¢,=40°, R=500mm, h;=h,=230mm.

(c) ¢,=20° ¢,=90°, R=500mm, h;=h,=30mm.

@) ¢,=20° ¢,=90°, R=500mm, h,=30mm, h,=10mm.

P = 1N (unit load)

02

Problem 2.21

Problem 2.21 can be repeated with one or both ends hinged. Also, uniform or
nonuniform heating can be applied. Yet another set of problems is generated by pre-
scribing nonzero values of translational and/or rotational d.o.f. at one end.

Use the geometry shown for Problem 2.21, but orient load P so that it acts normal
to the plane of the paper, and let k represent the diameter of a circular cross section.
Thus the structure becomes a balcony beam, which has both bending and twisting
deformations. The specific configurations in Problem 2.21 can be analyzed. Or, pre-
scribed nonzero d.o.f. may now include twist.

Idealize a bicycle wheel as a planar structure having 36 radial spokes. Properties are
as follows [2.3]. Spokes: diameter = 2.1 mm, E = 210 GPa, length = 309.4 mm from
the center of the wheel to the centroidal axis of the rim cross section. Rim: A =
138.4 mm?, E = 70 GPa, v = 0.33, centroidal / of A = 1469 mm®, I/c = 176 mm’
(for stress calculation). Assume that initial tension in the spokes is sufficient to
maintain tension in every spoke when load is applied. Consider the following load-
ings.

(a) A vertical force of 490 N applied by the road.

(b) A force of 100 N applied tangentially by caliper brakes at the top of the wheel.

Neglect the mass of the wheel.



CHAPTER 3

Plane Problems

N ecessary preliminaries from solid mechanics theory are reviewed. Next, plane elements
of several tvpes are discussed, with particular attention to element displacement fields
and what they portend for element behavior. Treatment of loads and calculation of
stresses are discussed. An example application closes the chapter.

3.1 INTRODUCTION

Stress—Strain-Temperature Relations. By definition, a plane body is flat and of con-
stant thickness. Let Cartesian coordinates xy lie in the plane of the body. As explained in
elementary mechanics of materials, the plane stress—strain relation (or constitutive rela-
tion) of a linearlyv elastic and isotropic material is

£, YE -v/E 0 o, &0
g ¢ = |-vE 1E 0 o, + & (3.1-1)
Yo 0 0 1G] |1, Y0

where E is the elastic modulus, v is Poisson’s ratio, and G is the shear modulus, G =
0.5 E/(1 + v). The last column vector in Eq. 3.1-1 contains initial strains (described be-
low). Abbreviated, Eq. 3.1-1 is written € = E™'o + &,. If this equation is solved for the
stress vector o, we have

o=Ee+ o, (3.1-2)
in which o, = -Eg, and
Y 0
E = " E Slv 1 0 for plane stress (3.1-3)
"o 0 a-w2

Equations 3.1-1 and 3.1-3 pertain to a plane stress condition, in which o, = 7. = 7., = 0.
Initial strains &, caused by temperature change AT are £, = &, = & AT and ¥, = 0,
where o is the coefficient of thermal expansion. The thickness is free to increase or de-
crease in response to stresses in the xy plane. In a plane strain condition thickness change

41
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is prevented. Equation 3.1-2 still states the stress—strain relation, but E is

(1-v) \ 0
(1-v) 0 for plane strain (3.1-4)
0 0 (1-2v)/2

~ E
T (L+v)(1-2v)

and initial strains due to temperature change AT are £, = &0 = (1 + V) AT and ¥,,0=0.
As an example of plane strain, if a flat plate is bent so as to become a cylinder with z its
axis, cross sections in planes normal to the z axis are in a state of plane strain (except
very near ends of the cylinder). Stresses are independent of z in plane stress and in plane
strain conditions. As the thickness of a plane body increases, from much less to greater
than in-plane dimensions of the body, there is a transition of behavior from plane stress
toward plane strain. :

If v = 0.5 the material is incompressible. If v approaches 0.5 and plane strain condi-
tions prevail, Eq. 3.1-4 shows that strains €, and €, are associated with very large stresses
o, and o,. This circumstance may cause trouble in FE analyses because of numerical ill-
conditioning.

Equation 3.1-2 need not be restricted to isotropy. In the most general case of
anisotropy, E is a full matrix, and for a plane problem it contains six independent elastic
constants. The theory and computational processes of FE are not made more complicated
by anisotropy. However, there is often practical difficulty in obtaining numerical values
of elastic constants. Also, it is harder to judge the validity of results because response to
loads is not as easily visualized and approximate calculations become more difficult.

Stresses in plane stress problems may be called membrane stresses. They are constant
through the z-direction thickness. In contrast, the bending stresses that appear in plates
and shells vary from tension to compression through the thickness and by definition are
absent if the problem is plane. One should bear in mind that all physical structures are
three-dimensional, so that regarding a problem as plane (or as a bar, beam, plate, or shell)
implies that at least a small amount of idealization has already taken place.

Strain-Displacement Relations. FE theory makes extensive use of strain—displacement
relations. They are used to obtain a strain field from a displacement field. Recall that nor-
mal strain is defined as change in length divided by original length and that shear strain is
defined as the amount of change in a right angle. Thus in Fig. 3.1-1 we have &, = Au/Ax,
g, = Av/Ay, and ¥, = AulAy + Av/Ax. However, in general the x-direction displacement

1 | Au— fe—_ ;
! ~l |
A Ax A
* | T Au > L& g ,’
' Av ! |
I - | |
Ay : Ay ,’ A Al
: | zlr\ ’i
i | A,
_ =T Av
Ay —> |f=— ‘ T
(a) (b) (c)

Fig. 3.1-1. A rectangle of incremental size, subjected to (a) x-direction strain. (b) »-
direction strain, and (c) shear strain.
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u and the y-direction displacemcnt v are both functions of the coordinates, u = u(x, y) and
v = v(x, y) in a plane problem. Therefore we must use partial derivatives. Doing so, and
passing to the limit, we write

_ou ) o 3.1-5)
&= g 5 Yoy % > (
or, in alternative matrix formats,
& dfox 0
¢ = | 0 Jly {u} or £=0du (3.1-6)
v
Vo 8/3)1 a/ax

These strain definitions are suitable if the material has small strains and small rotations.
Otherwise the strain definitions must be more extensive [3.1].

Displacements in a plane finite element are interpolated from nodal displacements 1,
and v; as follows:

U
N, O N O o
u 1 2 e
= =Nd 3.1-7
{v} [O N0 W, } U, or u ( )

where the N, are separate shape (or interpolation) polynomials and N is called the shape
function matrix. According to Eq. 3.1-7, u depends only on the u;, v depends only on the
v,, and u and v use the same interpolation polynomials. This is a common arrangement
but it is not mandatory. An instance of Eq. 3.1-7, for a particular triangular element, ap-
pears in Eq. 1.2-3. From Egs. 3.1-6 and 3.1-7 we obtain

€=0dNd or &=Bd where B =dN (3.1-8)
Matrix B is called the strain—displacement matrix.

A General Formula for k. Several texts on mechanics of materials derive an expression
for U,, the strain energy per unit volume of an elastic material. In terms of strains and in
matrix format, this expression is U, = €’ E&?2. Upon integrating over element volume V
and substituting from Eq. 3.1-8, we obtain element strain energy U as

U=%;J87E£dv =%d7JB7EBdVd = Ld’kd (3.1-9)

One can interpret Eq. 3.1-9 as follows. Let any element d.o.f., say the ith d.o.f., be in-
creased from zero to the value d,. This is accomplished by applying to the d.o.f. a force
that increases from zero to F,. The work done is F;d,/2, just as it would be if stretching a
linear spring an amount d;. This work is stored as strain energy U. Equation 3.1-9 says
that work F,d,/2 is equal to strain energy in the element when the element displacement
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field is that produced by d; and the element shape functions. For example, if d; = u,, we
see from Eq. 3.1-7 that the element displacement field is u(x, y) = N,u, and v(x, ) = 0.
In Eq. 3.1-9, the expression

k= |B"EB dV (3.1-10)

is identified as an expression for the element stiffness matrix. Equation 3.1-10 is not re-
stricted to plane problems; it is applicable to all displacement-based finite elements. The
direct method of generating k, applied to bars and beams in Chapter 2, is not general be-
cause there are no formulas that relate nodal forces to nodal displacements for elements
of arbitrary shape.

We see from Eq. 3.1-10 that for a given E, the nature of k depends entirely on B,
which in turn is derived from N by prescribed differentiations. In other words, the behav-
ior of an element is governed by its shape functions. In subsequent sections we will ex-
amine the displacement and strain fields of several elements and use the field informa-
tion to predict how the element will behave and what its defects will be. There are practi-
cal reasons for this study. In FE modeling, one seeks a good match between behavior that
the actual structure is expected to display and behavior that elements are able to display,
and one chooses element types, shapes, and sizes accordingly. Also, an analyst who un-
derstands the limitations of element behavior will not have unrealistically high expecta-
tions of the capabilities and accuracy of the FE method.

Loads. Mechanical loads include surface tractions, body forces, and concentrated forces
and moments. Surface traction is a distributed load applied to a boundary of the structure,
that is to a boundary line in two-dimensional problems and to a boundary surface in
three-dimensional problems. Pressure loading is called a traction even though it pushes
rather than pulls on the boundary. Also, traction may act either normal or tangent to a
boundary (Fig. 3.1-2).

Body forces act throughout the volume of a structure rather than only on its surface.
Body forces are usually caused by acceleration and occasionally by a magnetic field.
Typical accelerations are the centripetal acceleration in rotating machinery and the accel-
eration of gravity, which produces self-weight loading. In one-dimensional elements
there is no distinction between body and surface loads because mathematically the ele-
ment is a line. Similarly, the self-weight of a horizontal plate can be replaced by pressure
acting normal to the plate midsurface, which represents the plate mathematically.

(Mesh not
shown)

Fig. 3.1-2. Plane body with nonzero traction along BCD.
zero traction along AB, and fixed support along DA. Axes
n and s are, respectively, normal and tangent to the
boundary.
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Concentrated forces and moments come from prescribed loads and from the reactions
of point supports. A concentrated load is a convenient substitute for a load of high inten-
sity distributed over a small area.

Thermal loads are treated within the software in the manner described in Section
2.6.

Boundary Conditions. Boundary conditions include prescribed displacements and pre-
scribed surface tractions. Usually both appear in a given problem because part of the
boundary is supported and another part is loaded. In Fig. 3.1-2, for example, displace-
ments are prescribed along DA and stresses are prescribed along ABCD. In a FE model,
nodes along AB would receive no loads, nodes along BCD would be loaded by forces
from the normal and tangential tractions, and all nodes along ABCD would be free to dis-
place. Nodes along DA would have their d.o.f. set to zero and would not be loaded by
prescribed forces. All boundary and internal nodes of the model except nodes along DA
might be loaded by forces associated with self-weight loading and would be free to dis-
place. In structural mechanics, the term “support condition” is used as a synonym for a
displacement boundary condition.

Nature of the FE Approximation. We must preface our brief discussion by writing
equilibrium equations and defining “compatibility.” Stresses are in general functions of
the coordinates, so that each stress has a rate of change with respect to x and y. In a plane
problem the rates of change satisfy the equilibrium equations [6.1]

agx" +a—;y’y—+Fx =0 and

9%, 90

g 3 +F, =0 (3.1-11)

where F and F), are body forces per unit volume. If Egs. 3.1-11 are satisfied throughout a
plane body, every differential element and the body itself are in static equilibrium. As for
deformations, they are called compatible if displacement boundary conditions are met
and the material does not crack apart or overlap itself.

Elasticity theory shows that if displacement and stress fields simultaneously satisfy
equilibrium equations, compatibility, and boundary conditions on stress, then the solu-
tion obtained is exact. How is an exact solution approached by a FE approximation?
Let elements be based on polynomial displacement fields, as in this book and indeed
as for most elements in common use. Then the compatibility requirement is satisfied
exactly within elements. Equilibrium equations and boundary conditions on stress are
not satisfied: that is, Eqgs. 3.1-11 are not satisfied at most points within the FE model,
and stress boundary conditions are not satisfied at most points on the boundary (e.g.,
in Fig. 3.1-2 the computed stresses o, and 7,, will not be precisely zero all along the
unloaded boundary AB). Stress boundary conditions and equilibrium equations are sat-
isfied in an average sense: it can be shown that integrals of the left-hand sides of Egs.
3.1-11 vanish over each element. As a mesh is repeatedly refined, pointwise satisfac-
tion of stress boundary conditions and equilibrium equations is approached more and
more closely.

The foregoing discussion also applies to three-dimensional elastic problems, for which
Egs. 3.1-11 must be expanded to include all six stresses. The nature of a FE solution is
further discussed in Section 4.8.
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3.2 CONSTANT STRAIN TRIANGLE (CST)

The CST element, Fig. 3.2-1, is perhaps the earliest and simplest finite element. In terms
of generalized coordinates f3; its displacement field is

u=p+fox+ Py

(3.2-1)
v =P+ Psx + Bey
and, from Egs. 3.1-5 and 3.2-1, the resulting strain field is
=P &=P V=Pt Phs 3.2:2)

We see that strains do not vary within the element; hence the name “‘constant strain trian-
gle” (CST for short). The element may also be called a “linear triangle” because its dis-
placement field is linear in x and y. Element sides remain straight as the element deforms.
(Element sides have the appearance of bar elements discussed in Chapter 2, but a plane
‘FE is not an assemblage of bars; a plane FE is the region bounded by its sides.)

We omit the algebra needed to recast Egs. 3.2-1 in the shape-function form of Eq. 3.1-7.
The algebra is tedious [2.2] and does not help us understand how the element behaves.
The strain field obtained from the shape functions, in the form €= Bd, is

u,
U
x ) a0 vy 0y 0 u
A :—QZ 0 x3 0 x5 0 xy U; (3.2-3)
Y X3 Y X3 Yo X Y2
U
U3

where x; and y; are nodal coordinates (i = 1. 2, 3), x;; = x; = x; and y; = v, -y (i, j =1,
2, 3), and 24 is twice the area of the triangle, 2A = X5;y3; — X3,Y21- Node numbers are
arbitrary except that the sequence 123 must go counterclockwise around the element if A
is to be positive. Again we see that strains do not vary within the element. Applying Eq.
3.1-10 we obtain the element stiffness matrix:

k = BTEB1A (3.2-4)

112

Fig. 3.2-1. A constant strain triangle. Its six nodal
xu d.o.f. are shown.
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Fig. 3.2-2. (a) Stress o, along the x axis in a beam modeled by CSTs and loaded in pure
bending. (b) Deformation of the lower-left CST in the model.

where 7 is the element thickness, assumed constant, and E comes from Eq. 3.1-3 if plane
stress conditions prevail. Integration in Eq. 3.1-10 is trivial because B and E contain only
constants.

The CST gives good results in a region of the FE model where there is little strain gra-
dient. Otherwise the CST does not work well. This is evident if we ask the CST to model
pure bending (Fig. 3.2-2). The x axis should be stress-free because it is the neutral axis of
the beam. Instead, the FE model displays o, as a square wave pattern. Also, the FE model
predicts deflections and o, stresses that are only about one-quarter of the correct values.
The inability of the CST to represent an &, that varies linearly with y is partly to blame for
this poor result. But the CST also develops a spurious shear stress when bent. This is seen
in Fig. 3.2-2b. It is proper that u, and v, appear as shown, but v, creates a shear stress
that should not be present. An expression for the shear stress can be obtained by use of
Egs. 3.1-2, 3.1-3, and 3.2-3. Despite defects of the CST, correct results are approached as
a mesh of CST elements is repeatedly refined.

3.3 LINEAR STRAIN .TRIANGLE (LST)

The LST element is shown in Fig. 3.3-1. It has midside nodes in addition to vertex nodes.
The d.o.f. are 1; and v; at eachnode i, i =1, 2, . . ., 6, for a total of 12 d.o.f. In terms of
generalized coordinates f; its displacement field is

u= P+ Box + By + fux* + Psxy + Ps)?

3.3-1
v =05+ Bex + Boy + BroX’ + Brixy + Bioy? ( )

and, from Eqs. 3.1-5 and 3.3-1, the resulting strain field is

&=+ 2Bx+ Bsy
&=Ps+ Brx+2B1y (3.3-2)
Yo = (Bs + Bs) + (Bs + 2,0)x + (2Bs + By
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(b) (c)

Fig. 3.3-1. (a) A linear strain triangle and its six nodal d.o.f. (b) Displacement mode associated
with nodal d.o.f. v,. (¢) Displacement mode associated with nodal d.o.f. vs. (For visualization only,
imagine that displacement occurs normal to the plane of the element.) (b and c reprinted from [2.2]
by permission of John Wiley & Sons, Inc.)

The strain field can vary linearly with x and y within the element; hence the name “linear
strain triangle” (LST for short). The element may also be called a “quadratic triangle” be-
cause its displacement field is quadratic in x and y. Element sides deform into quadratic
curves when a single d.o.f. is activated, as shown in Figs. 3.3-1b and 3.3-1c. The LST has
all the capabilities of the CST, few as they are, and more. For example, Eq. 3.3-2 shows
that strain &, can vary linearly with y. If the pure bending problem of Fig. 3.2-2a is solved
using LST elements, exact results for deflection and stress are obtained. Additional nu-
merical examples appear in Section 3.11.

The element stiffness matrix is most easily generated using “area coordinates.” The
procedure does not help in understanding how the element behaves. Details may be found
elsewhere [2.2]. We note only that the product B'EB is quadratic in the coordinates and
that integration required in Eq. 3.1-10 can be done either in closed form by special for-
mulas or numerically (Section 4.5). Numerical integration is necessary if element sides
are not straight but curved, that is, initially curved, when all nodal d.o.f. are zero.

3.4 BILINEAR QUADRILATERAL (Q4)

The Q4 element is a quadrilateral that has four nodes. Its nodal d.o.f. are shown in Fig.

3.4-1. In terms of generalized coordinates f3,, its displacement field is
U= P+ pPx+ Py +
B b + Bsy + Bixy (3.4-1)
v =Bs+ Bex + Boy + Pexy

The name “bilinear” arises because the form of the expressions for u and v is the product
of two linear polynomials, that is, (¢, + ¢»x)(c5 + c,y), where the ¢; are constants. There
are four parameters in each displacement expansion: four f; for u and four S; for v in Eq.
3.4-1, or four shape functions N, in Eq. 3.4-3 below. From Egs. 3.1-5 and 3.4-1, the ele-
ment strain field is

&=py+ By
& =P+ Pex (3.4-2)
Yo = (B3 + B) + Bax + Bay
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Fig. 3.4-1. A bilinear quadrilateral and its eight
v v2
nodal d.o.f.

Important aspects of element behavior can be deduced from Eqs. 3.4-1 and 3.4-2.
The strain field shows that &, is independent of x, which means that the Q4 element
cannot exactly model a cantilever beam under transverse tip force (Fig. 3.4-2a), where
axial strain varies linearly with x. Moreover, the Q4 element cannot exactly model a
state of pure bending, despite its ability to represent an &, that varies linearly with y.
Consider Fig. 3.4-2b, which shows a block of material loaded in pure bending. We
know from beam theory that shear strain ¥, is absent, that plane sections remain
plane, and that top and bottom edges become arcs of practically the same radius of
curvature, as shown by dashed lines in Fig. 3.4-2b. A Q4 element loaded in pure bend-
ing is shown in Fig. 3.4-2c. Sides rotate, as shown by dashed lines, but top and bottom
edges remain straight. This result is dictated by Eqs. 3.4-1: along edges y = constant,
displacement v is linear in x. Indeed all sides of a Q4 element deform as straight lines.
Therefore right angles in the element are not preserved under pure moment loading
and in consequence shear strain appears everywhere in the element except along the y
axis. The same result can also be seen from Eqgs. 3.4-2: the displacement mode of Fig.
3.4-2c requires that 3, be nonzero so that &, will vary linearly with y, but 3, also ap-
pears in the expression for 7,,; therefore a Q4 element that bends also develops shear
strain. (This trouble does not appear in the LST in pure bending: when S5 in Eqgs. 3.3-2
is nonzero, f3, assumes a value such that S5 + 2f3,, is zero in the shear strain expres-
sion.) '

Clearly, arguments of the preceding paragraph apply in similar fashion when bending
moments are applied to top and bottom edges of the element instead of to sides. The
physical consequence of these defects is that the Q4 element is too stiff in bending be-
cause an applied bending moment is resisted by spurious shear stress as well as by the ex-

Y /8- /\92/9\\

P = __———=1 3
\ \
Ml( // | SMl Mz( / y | §M2
X X
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/ \ / \

P / \ ! \

/
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Fig. 3.4-2. (a) A one-element cantilever beam under transverse tip loading. (b) Correct deforma-
tion mode of a rectangular block in pure bending. (c) Deformation mode of the bilinear quadrilat-
eral under bending load.
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1 % Fig. 3.4-3. Shape function N, of the bilinear quadri-
1:1// lateral. (For visualization only, imagine that dis-

placement occurs normal to the xy plane.)

pected flexural stresses. Further discussion of this problem, as well as a remedy for it, ap-
pears in Section 3.6.

If the B; in Eq. 3.4-1 are expressed in terms of nodal d.o.f., we obtain the displace-
ment field in the form of Eq. 3.1-7, where

N, = (a=x)b=y) N, = (a+x)(b-y)
4ab 4ab
y, @by (@bt G43)
3 4=
4ab 4ab

A representative shape function (N, ) is plotted in Fig. 3.4-3. Note that N, = 1 at node 2
and N, = 0 at every other node. This is true of shape functions in general, for any element
type; that is, N; = 1 at node i and N, = 0 at node j where j # i. In the format of Eq. 3.1-8,
the element strain field is

u,
U
&, . —(b-y) 0 (b-y) 0 y
&gt = —| O —(a-x) 0 —(a+x) | {° (3.4-4)
’ 4ab U,
Y —(a-x) —(b-y) —=(a+x) (b-y) -
Uy

We can again deduce that the deformation mode of Fig. 3.4-2c contains spurious shear
strain by substituting the nodal d.o.f. of this mode into Eq. 3.4-4.

Equilibrium (Egs. 3.1-11) is not satisfied at every point in the Q4 element unless B, =
Bs = 0 in Eqgs. 3.4-1, in which case a state of constant strain prevails. Despite this and
other criticism of the Q4 element, it converges properly with mesh refinement and in
most problems it works better than the CST element (which always satisfies Eqs. 3.1-11).
Examples of element behavior appear in Section 3.11.

Equations stated in this section restrict the Q4 element to rectangular shape, but this
restriction can be overcome; see Section 3.8.

3.5 QUADRATIC QUADRILATERAL (Q8)

The Q8 element is shown in Fig. 3.5-1. In terms of generalized coordinates B, its dis-
placement field is

u= P+ Pox + Pay + B’ + Psxy + Bey® + By + Bexy®

R , . (3.5-1)
v =L+ Piox + Py + PiaX” + Biay + Bray* + BisXy + Biexy”
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Fig. 3.5-1. (a) A quadratic quadrilateral. (b,c) Shape functions N, and N . (For visualization only,
imagine that displacement occurs normal to the xy plane.)

In more compact form than Eq. 3.1-7, the displacement field in terms of shape functions
N, is

u=> N v=) N (3.5-2)

where index i runs from 1 to 8, which explains the “8” in the name Q8. As examples, two
of the eight shape functions are

=31+ UA-m-+1-E)U-m-1+E (1-n*)
Ne=3(1+8)(1-1?)

(3.5-3)

where & = x/a and 1 = y/b. By looking at a typical edge, for example, the edge x = a, we
see from either Eqs. 3.5-1 or 3.5-3 that displacements are quadratic in y, which means
that the edge deforms into a parabola when any single d.o.f. on that edge is nonzero.
From Egs. 3.1-5 and 3.5-1, the element strain field is

£.= B+ 2Bx + Bsy + 2B.xy + Py’

& =P+ Bisx + 2By + ﬁxs«‘é2 +2B,6xy (3.5-4)
Yo = (B3 + Bro) + (Bs + 2B12)x + 2Bs + Bis)y
+ B + 2(Bg + Bis)xy + Brey”

Each of the three strains contains all linear terms and some quadratic terms (e.g., there is
no x” term in the €, expression). The Q8 element can represent exactly all states of con-
stant strain, and states of pure bending if it is rectangular. Nonrectangular shapes are per-
mitted; see Section 3.8. Examples of element behavior appear in Section 3.11.

3.6 IMPROVED BILINEAR QUADRILATERAL (Q6)

The principal defect of the Q4 element is its overstiffness in bending, which can be illus-
trated by comparison of the bending moments in Figs. 3.4-2b and 3.4-2c. Let the rectan-
gular block and the element have the same dimensions, elastic modulus E, and Poisson
ratio v. Then apply whatever bending moments M, and M, are necessary to make vertical

X
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};l Bilinear (Q4) elements F
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Fig. 3.6-1. Qualitative variation of

X axial stress and average transverse
shear stress in a cantilever beam
modeled by rectangular Q4 ele-
ments.

sides of the block and the element include the same angle, 8, = 8,. Moment M, is the cor-
rect value. It can be shown that M, is

m, = 1| ! +1(£j M, (3.6-1)
I+v|1=v 2\b

where a and b are dimensions shown in Fig. 3.4-1. If aspect ratio a/b increases without
limit, so does M,, which means that the Q4 element becomes infinitely stiff in bending.
This phenomenon is called “locking” [3.2]. In practice we avoid elements of large aspect
ratio, and a FE mesh does not “lock” but rather is overly stiff when bent, as explained in
Section 3.4. Qualitative results appear in Fig. 3.6-1. Deflections and axial stress in the FE
model are smaller than the exact values, and transverse shear stress is greatly in error ex-
cept along the v-parallel centerline of each element.

A remedy for the trouble is fairly simple and produces an element sometimes called
the Q6 element [2.2, 3.3]. Its displacement expansions for # and v each contain six shape
functions; that is,

4

u=Y N + (1-Eg + (1-n")g;
= (3.6-2)

U=ZNivi + (1-8g + (1-1n%)g,

i=1

where & = x/a, 11 = y/b, and the N, in the summations are shape functions of the Q4 ele-
ment, Eq. 3.4-3. In Eq. 3.6-2 we have simply augmented the displacement field of the Q4
element by modes that describe a state of constant curvature. This is easy to see for
modes associated with d.o.f. g, and g5: as shown in Fig. 3.6-2a, they allow edges of the
element to become curved. Accordingly, the Q6 element can model bending with either
an x-parallel neutral axis or a y-parallel neutral axis; indeed g, and g, can be nonzero si-
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Fig. 3.6-2. (a) Displacement modes u = (1 — 17%)g, and v = (1 — £*)g5 in the Q6 element.
(b) Incompatibility between adjacent Q6 elements. (c) No incompatibility between adja-
cent Q4 elements.

multaneously. Modes associated with d.o.f. g, and g, allow the existence of strains nor-
mal to a beam axis that appear because of the Poisson effect. From Egs. 3.1-5 and 3.6-2,
shear strain in the Q6 element is

= ON, 2 ON, 2y 2x
Vo= ) —u; + Y —ty, — Lo - g (3.6-3)
' ; oy i=1 ox b ar
In pure bending, the negative terms (2y/b*)g, and (2x/a®)g; are equal in magnitude to pos-
itive terms produced by the summations, thus permitting shear strain to vanish, as is
proper. The Q6 element can represent pure bending exactly, but only if the element is
rectangular. (This point is discussed further in connection with Fig. 3.8-2.) Qualitative re-
sults appear in Fig. 3.6-3. Axial stress is exact along the y-parallel centerline of each ele-
ment, and average transverse shear stress is exact everywhere. Further examples of ele-
ment behavior appear in Section 3.11. The Q6 element, or a differently formulated
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Fig. 3.6-3. Qualitative variation of
*  axial stress and average transverse

shear stress 2F/A = 2F/Ht in a can-
Xy tilever beam modeled by rectangular
————————————————— 1L . Q6 elements.
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element of comparable behavior, is usually the default option for a four-node quadrilat-
eral in commercial software.

The d.o.f. g, through g, are internal d.o.f. Unlike nodal d.o.f. u; and v, , they are not
connected to corresponding d.o.f. in adjacent elements. Modes associated with d.o.f. g
are incompatible. That is, under some (but not all) loadings, an overlap or a gap may ap-
pear between adjacent elements. This point is made in Fig. 3.6-2b. No gap appears with
Q4 elements under similar loading (Fig. 3.6-2c). Indeed no gaps or overlaps appear ina
physical continuum; why then is the Q6 element acceptable? It is because elements ap-
proach a state of constant strain as a mesh is repeatedly refined. In a state of constant
strain all initially straight lines, including element edges, remain straight after deforma-
tion. Then there is no incompatibility between elements. Thus mesh refinement produces
convergence toward correct results.

3.7 ELEMENTS WITH “DRILLING” D.O.F.

A “drilling” d.o.f. is a rotational d.o.f. whose vector is normal to the plane of an element.
Thus 6,, is a drilling d.o.f. at node i for an element in the xy plane. Elements with drilling
d.o.f. are not yet in common use, so we discuss them only briefly.

An element edge that has a midside node can deform into either a straight or a para-
bolic shape. As shown below, translational d.o.f. at midside can be expressed in terms of
translational and drilling d.o.f. at corners. This permits an exchange: translational d.o.f. at
midsides are traded for drilling d.o.f. at corners. Consider the LST element in Fig. 3.7-1a.
Let u, represent displacement normal to side 2-3. Normal displacement at node 5 is writ-
ten

Uys = %(“nz + Mn}) + %(923 - 922)L23 (37-1)

where 6, and 0,5 are drilling d.o.f. at nodes 2 and 3 and L,; is the length of side 2-3.
Tangential displacement at midside is written

uxS = %(us'_’ + us3) (37-2)

These equations mean, for example, that if u,, = u,; =0 and 6, =-0,, = 6, side 2-3 dis-
places into a parabola with end rotations 0 and center displacement u,s = 6L,;/4. If 6., =

(a) (b) (c)

Fig. 3.7-1. (a) Displacements normal to one side of a LST element. (b) The d.of. in a LST ele-
ment. (c) The d.o.f. in a triangular element with drilling d.o.f.
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6.5, the edge remains straight. Equation 3.7-2 constrains tangential strain &, to be constant
along edge 2-3.

Equations analogous to Egs. 3.7-1 and 3.7-2 are also written for the remaining two
sides. When these six equations are substituted into the shape functions of the LST ele-
ment, along with sine and cosine terms to relate directions n and s to directions x and y,
midside nodes disappear and their d.o.f. are replaced by drilling d.o.f. at corner nodes.
Because the three edge strains & are constrained to be constant, there is a reduction of
three d.o.f. in the process. Also, the drilling d.o.f. have a “do-nothing” aspect that makes
them less effective: if they are all equal, they have no effect on element strains. Thus we
do not have nine useful d.o.f. in Fig. 3.7-1c.

The Q8 element can be similarly treated. We then exchange a 16 d.o.f. element having
corner and midside nodes, each with translational d.o.f., for a 12 d.o.f. element having
only corner nodes, each with translational and drilling d.o.f. Again, if all drilling d.o.f. are
equal, the element displays no strain. The 12 d.o.f. element behaves rather like the Q6 ele-
ment but cannot model pure bending exactly if Poisson’s ratio v is nonzero. To see this,
consider a one-element beam that lies along the x axis. Under pure bending we should
have g, = —ve, = —v(My/EI). But g, cannot be linear in y because constraints such as Eq.
3.7-2 make &, independent of y.

FE analysis of shells provides a motivation for the use of drilling d.o.f. A shell ele-
ment combines membrane and bending actions and thus is analogous to a 3D beam ele-
ment, which combines bar and beam actions. Three displacements and three rotations are
active at each node of a shell, in order to accommodate 3D beam elements that serve as
stiffeners, and also to allow shell elements to meet at an angle, as they do along a fold
line. If flat elements are used, they model a shell as a faceted surface and accordingly all
interelement boundaries become fold lines. Since three rotational d.o.f. per node are ac-
tive at the global level it would be wasteful to omit their element-normal (drilling) com-
ponent at the element level if its inclusion can provide an improved element.

3.8 ELEMENTS OF MORE GENERAL SHAPE

Equations in Sections 3.4, 3.5, and 3.6 have a form that limits quadrilateral elements to
rectangular shape. However, commercial software allows quadrilateral elements to be of
general shape. The limitation to rectangular shape is overcome by expressing displace-
ments and strains in an auxiliary coordinate system. The theory is explained in Sections
4.4 to 4.7. For now the following brief description is sufficient.

Examples of nonrectangular elements appear in Fig. 3.8-1. Sides having side nodes
may be curved, which allows a better geometric approximation of a curved boundary. A
side node may also be shifted toward a comer. But these geometric distortions are usu-

(a) (b) (c)

Fig. 3.8-1. (a,b) Nonrectangular quadrilaterals. (c) Triangular element
with a curved side. (Note: curved sides are neither necessary nor advocated.)
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ally detrimental to accuracy. Of course we cannot model a structure of arbitrary shape
using only rectangles; we must be able to fit the actual geometry reasonably well and be
able to grade the mesh from coarse to fine near a region of interest. However, as a rule ele-
ments behave best when they are of a compact regular shape. Accordingly, it is usually
best to keep corner angles approximately equal and avoid elongated elements. LST and
Q8 elements should usually have straight sides and side nodes at midside. It is proper to
use a curved side to fit the shape of a hole or a fillet, but all element sides inrernal to the
mesh should be straight. Whether well shaped or badly shaped, all elements discussed
thus far can represent exactly any state of constant strain and will provide convergence
toward correct results as a mesh is repeatedly refined.

For one type of element in particular it is not hard to see that accuracy must decline
with increasing shape distortion. Under pure bending, top and bottom surfaces of a beam
have practically the same radius of curvature. Let a pure bending load be applied to the
distorted Q6 element shown in Fig. 3.8-2. Mode v = (1 — &g, is activated so that top and
bottom edges become arcs, as shown by dashed lines. However, the arcs have much dif-
ferent radii. The discrepancy increases as the amount of shape distortion increases.

Remember: quadrilaterals of general shape behave much like the rectangular elements
described in Sections 3.4, 3.5, and 3.6, provided that elements are well shaped as ex-
plained above.

3.9 LOADS

Mechanical loads consist of concentrated loads at nodes, surface traction, and body force.
Traction and body force loads cannot be applied directly to a FE model. Instead, they
must be converted to equivalent nodal loads in the manner now described. Here we con-
sider plane elements that have translational d.o.f. only.

In a plane problem, surface traction may act on internal and/or external boundaries of

/ /
/bL B / B F 2 1](4
2ot / {a} - el 2fa)

Fg 12

(a) (b) (c)

Fig. 3.9-1. (a) Linearly varying distributed load on a linear-displacement edge. (b,c) Work-equiva-
lent nodal loads.
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Fig. 3.9-2. Allocation of a uniformly distributed load g as work-equivalent nodal forces on edges
having linear displacement variation.

a FE mesh. A traction has arbitrary orientation with respect to a boundary but usually is
expressed in terms of components normal and tangent to the boundary. A commonly used
traction is pressure p, which acts normal to a boundary in the compressive sense.
Boundary pressure p is equivalent to a line load g = pt, where ¢ is the thickness of the
model. The dimensions of ¢ are [force/length].

In Fig. 3.9-1, traction ¢ and the edge displacement in the direction of g both vary lin-
early with the edge-tangent coordinate s. Nodal loads F, and Fp are applied to the FE
model instead of ¢. These loads are “work-equivalent,” meaning that an edge displace-
ment produced by displacements of nodes A and B causes distributed load g to do the
same work as is done by nodal loads F, and Fj in moving through the nodal displace-
ments. That is, if v” = v’(s) is the component of displacement normal to edge AB in Fig.
3.9-1, work-equivalency requires

L
Ful + Fyul =J.v’(q ds) (3.9-1)

0

where v’ = (L — s)v,/L + svg! L, for all values of v}, and vj. The mesh layout and displace-
ment field wirhin the element do not matter: if g and the edge displacement are linear,
then work-equivalent loads are as stated in Fig. 3.9-1c. Nodal loads combine at shared
nodes. This point is made in Fig. 3.9-2, where a uniform edge-tangent traction is shown
acting on elements whose edges are collinear and of the same length.

Similar results appear in Figs. 3.9-3 and 3.9-4. Traction ¢ in Fig. 3.9-3 varies quadrati-
cally with s, as does edge displacement in the direction of ¢. If edge ABC is straight and
node B is at midedge, then work-equivalent nodal loads are as stated in Fig. 3.9-3c.

q Fg

qc

B ¢C
C / | Fy
/ | Fp =§L6
.
|
|
|
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Fig. 3.9-3. (a) Quadratically varying distributed load on a quadratic-displacement edge. (b,c)
Work-equivalent nodal forces.
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Fig. 3.9-4. Allocation of a uniformly distributed load g as work-equivalent nodal forces on edges
having quadratic displacement variation and midside nodes. (See data in Fig. 3.9-3c.)

Accordingly, a uniform g produces the nodal loads shown in Fig. 3.9-4. Note that edge
nodes carry more force than corner nodes. Work-equivalent nodal loads usually provide
greater accuracy than a “lumping” in which all nodes carry the same force, although in ei-
ther case exact results will be approached as the mesh is repeatedly refined.

Figure 3.9-5 shows work-equivalent loads for a uniform body force in the negative y
direction. The total force is weight W of the element in each case. The orientation of an
element in the xy plane does not matter, but quadrilaterals must be rectangular if the
nodal loads shown are to be work-equivalent. In Fig. 3.9-5¢ and 3.9-5d we see some sur-
prises. Vertex nodes of the LST element are not loaded. Corner nodes of the Q8 element
carry upward loads, but the sum of all eight nodal loads is W, acting downward, as must
be the case.

Most software is capable of automatically calculating equivalent nodal loads of proper
magnitude and direction and combining them at shared nodes. The user need only pre-
scribe the direction and intensity of the distributed loading. Software does not require that
edges be collinear or of the same length.

A concentrated moment cannot be applied to a node of CST, LST, Q4, Q8, or Q6 ele-
ments because these elements use only translational d.o.f. This means that if a 2D beam
element is attached to plane elements in the manner shown in Fig. 3.9-6a there will be a
hinge connection at A, which transmits only force. This arrangement is a mechanism and
K will be singular. An ad-hoc arrangement that transmits both force and moment is
shown in Fig. 3.9-6b. The beam has been extended into the plane body by adding two
beam elements, AB and BC. (Adding only one beam element, AB, is an equally plausible
alternative [3.4]). Translational d.o.f. of beam elements and plane elements are connected
at nodes A, B, and C. Nodal d.o.f. 8.; at these nodes are associated with only the beam ele-
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Fig. 3.9-5. Work-equivalent nodal forces associated with element weight W, for triangular and rec-
tangular quadrilateral elements.
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Fig. 3.9-6. Connecting a 2D beam element to plane elements. (a) No moment is trans-
ferred. (b) Moment is transferred.

ments. If plane elements have drilling d.o.f. (Section 3.7) the connection of Fig. 3.9-6a
transfers moment, although such a connection is not recommended. In any case one
should not expect that stresses in the plane body will be accurately calculated near node A.
An alternative way to connect beam elements and plane elements is noted in Section
4.13.

3.10 STRESS CALCULATION. OTHER REMARKS

Stresses. After nodal d.o.f. have been computed, conventional software calculates
stresses by means of Eqs. 3.1-2 and 3.1-8, that is, o = EBd + o, This equation is applied
element by element, not globally. In general, B is a function of the coordinates, so the
user (or the author of the software) must decide where in the element stresses should be
computed. Stresses tend to be more accurate within an element than on its boundary (see
Fig. 2.5-4). This is unfortunate because stresses are usually largest at boundaries of the
structure, which of course are also boundaries of some elements. Usually it is best to cal-
culate stresses at certain points within an element, then extrapolate from these values to
obtain element boundary stresses. This matter is discussed further in Section 4.7.

An alternative method of stress calculation has been devised [3.5], but at the present
writing it is not available in commercial software. The alternative method does not use
the conventional calculation & = Bd. Instead, it computes element nodal forces r = kd,
where element nodal d.o.f. d are available from D after solving the global equations
KD = R. Then a least-squares process is used to compute an element stress field that
equilibrates r. The alternative method is more complicated than the conventional method
but has three important benefits. First, there is better accuracy when loads (rather than
nonzero displacements) are prescribed. In contrast to the conventional method, stresses
may be at least as accurate as displacements. This happens because nodal forces equili-
brate loads applied to the structure and therefore may be exact or nearly so even when
displacements are underestimated due to overly stiff elements (e.g., as in Figs. 3.6-1 and
3.11-1c). Second, the method avoids difficulties associated with matching strain fields
and temperature fields [3.6], which is described in a simple context at the end of Section
2.6. Third, the method is relatively insensitive to element shape distortions.

Software may report stresses in either local or global coordinates. For example, flex-
ural stress in a beam is reported in local coordinates because by definition flexural stress
is a normal stress in the beam’s axial direction. As another example, if a plane element is
arbitrarily oriented in space its membrane stresses will be reported with reference to local
axes xy in the plane of the element. The user of software must study the documentation to
understand how stresses are presented and what options are available.



60 Plane Problems

Some useful stress quantities are invariant; that is, they have the same numerical value
in any coordinate system. One such quantity is the von Mises, or “effective,” or “equiva-
lent” stress

[(6, —0,)% + (0, —03)* + (o ~0,)?]" (3.10-1)

1
o, =—¢
NG

where 0,, 0,, and o3 are the three principal stresses at the point in question, with o, the
algebraically largest and o5 the algebraically smallest. Equation 3.10-1 reduces to O, = 0}
if 0, is uniaxial, that is, if 0, = 0; = 0. Note that o, may exceed the magnitude of o, as,
for example, when 0; = —03. An alternative form of Eq. 3.10-1, which provides the same
value of 0,, can be written in terms of all six nonprincipal stresses (three normal and
three shear). Another invariant stress is the “stress intensity” SI,

Sl=0,-04 (3.10-2)

which is twice the maximum shear stress. Note that SI is not the stress intensity factor
used in fracture mechanics. In general, one does not associate a direction with o,. The
planes on which SI acts can be determined, but one usually does not care what they are.
Both o, and SI are used in failure theories, which state that yielding begins when o, or ST
(depending on the theory) reaches a limiting value.

Because o, represents the entire state of stress, contours of o, are often plotted and ex-
amined for their interelement continuity, as a way to visually estimate the discretization
error of computed stresses. Contours of (say) o, might be similarly informative in one
part of a FE model but not in another part because a stress other than o, is dominant
there. Symmetry of the FE model and its loads and supports provides symmetry of o,
contours but may not provide symmetry of contours of any particular stress that con-
tributes to o,.

As an option in most software, stresses may be averaged at nodes. Thus if n elements
meet at a node, the n values of (say) o, are added and the sum divided by n. Sometimes
contributions to the sum are weighted, by element volume, proximity of the element cen-
troid to the node, or some other factor. At nodes interior to the mesh, the average stress
may be the most accurate stress that the current discretization can provide. At nodes on
the boundary of the mesh, greatest stress accuracy is usually provided by extrapolation,
using a polynomial field fitted to stress values at several nearby points, including interior
nodes and/or points within elements.

However, there are good reasons nof to average stresses at nodes. Two parts joined by
a shrink fit have different normal stresses in directions tangent to the interface. An aver-
age stress would not represent the actual stress on either side of the discontinuity. A dis-
continuity of thickness or modulus also causes a discontinuity in stress. As examples, in
Fig. 3.10-1a, o, would be discontinuous at x = 0 because an x-direction force is applied to
different cross-sectional areas. In Fig. 3.10-1b, o, would be discontinuous at x = 0 be-
cause both parts have the same g, but E,&, # E,¢,. In Fig. 3.10-1c, different coordinate
systems are used for stress computation, and an average such as (0, +0,)/2 would make
no sense for a node on interelement boundary AB. Finally, stress contours based on nodal
average stresses are interelement-continuous and are thus deprived of error information.
Stress contours plotted from unaveraged stresses have discontinuities at interelement
boundaries. The amount of discontinuity is a qualitative measure of whether or not mesh
refinement is adequate (see Fig. 1.3-2).
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Fig. 3.10-1. Examples of situations in which stresses should not be averaged at a node. (a,b)
Plane elements seen in cross section, with Cartesian coordinates xyz. (c) Plane elements seen
in plan view, with interelement boundary AB.

Element Connections. Elements of different types can be connected to one another, but
not in completely arbitrary fashion. Some unacceptable connections appear in Fig.
3.10-2. The “connection” at A is in fact no connection at all because a CST element has
no side node. Connections between a two-node edge (CST and Q4 elements) and a three-
node edge (LST and Q8 elements) should be avoided, because the side node is left uncon-
nected, and clearly there is a mismatch in displaced shapes of adjacent edges: one is
straight, the other parabolic (line BC in Fig. 3.10-2). Two two-node edges should not be
connected to one three-node edge because two straight edges do not match a parabolic
edge (lines CD and EF). Also, three-node edges should not be connected so that side
nodes are joined to corner nodes: both edges deform as parabolas, but in general they are
different parabolas (along line GH). The Q6 element is by nature incompatible but be-
comes compatible with mesh refinement. Connections like those in Fig. 3.10-2 are not fa-
tal. They cause poor results locally but the effect dies away with distance, in accord with
Saint-Venant’s principle. Nevertheless, there is the danger that artificial local stress dis-
turbances will be mistaken for actual physical behavior. One could make most connec-
tions in Fig. 3.10-2 “legal” by constraining three-node edges to remain straight, but then
d.o.f. of the side node would be rendered useless. (Most software allows the user to im-
pose such constraints.)

Elements with side nodes can be formulated in a way that allows any number of side
nodes to be deleted. In Fig. 3.10-2, for example, the side node along BC could be deleted
from the LST formulation, so that adjacent element sides along BC would both be two-
node sides and would deform as straight lines. Accordingly, if done properly, elements of
many differing types can be connected (e.g., Fig. 1.2-1).

Supports. Plane elements have no resistance to forces normal to their plane and no resis-
tance to nodal moment loads (unless the elements have drilling d.o.f.). Accordingly, out-
of-plane translation and all rotations must be suppressed at all nodes of a plane FE model.
A moment load, if present, must be applied as equivalent couple-forces on a pair of

Q4 CST Q4 LsT
Q8

LST Q6

D £ Fig. 3.10-2. Examples of how not
Many poor connections! H to connect elements.
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nodes. Elements remain able to rotate in the analysis plane. Also, nodes lie in the analysis
plane and do nothing to inhibit transverse normal strain associated with the Poisson effect
in a plane stress problem.

Other Element Types. Thus far we have used as nodal d.o.f. only “low-order” quanti-
ties, such as displacement d.o.f. in bar, plane, and solid elements, and displacement and
rotation d.o.f. in beam, plate, and shell elements. Theory permits any number of d.o.f. per
node. For example, we could formulate a bar element that uses axial displacement u and
axial strain du/dx as d.o.f. at each node. Elements having such “extra” d.o.f. are not usu-
ally found in commercial software. Most current software is not structured to accommo-
date more than the essential number of d.o.f. per node. Also, interelement continuity of
derivatives is not always proper (consider du/dx in Fig. 3.10-1a). Finally, stress boundary
conditions may dictate relations among the extra d.o.f. at a boundary node but not their
numerical values, which is awkward.

Elements discussed thus far, and indeed most elements in common use, are based on
displacement fields such as Eqs. 3.2-1 and 3.3-1. There are other formulation methods,
many based on simultaneous use of separate fields for displacement and stress. Such ele-
ments have displacement d.o.f. and the user may be unaware of the nature of the element.
In any case the user should study the software documentation and try some simple test
problems in order to understand how an element behaves before using it in applications.

3.11 COMPARATIVE EXAMPLES

Plane elements of different types can be compared by using them to solve a particular
problem. We caution that a single problem does not tell all: an element type best in one
problem may not be best in another. Also, different software may contain implementa-
tions of a given element that differ because of minor adjustments (that we have not dis-
cussed) whose purpose is to enhance element behavior. The reader is encouraged to try
additional meshes for the following problem, and to try other problems as well. A partic-
ular suggestion is that FE be used to solve stress concentration problems, for which al-
most-exact results are widely available. Such problems illustrate the effects of element
type. size, aspect ratio, and mesh layout.

The test problem chosen here is that of Fig. 3.11-1a, a cantilever beam of unit thick-
ness loaded by a transverse tip force. Loads, properties, and dimensions are assumed to
be in a consistent set of units. Plane stress conditions prevail. In the calculation of tip de-
flection, 6/5 is the standard transverse shear deformation factor for a rectangular cross
section. In Fig. 3.11-1b, nodal loads on the quadratic edge come from Fig. 3.9-3c with
ga = qc =0, in accordance with the parabolic distribution of transverse shear stress that
beam theory predicts. Support conditions are consistent with a fixed end but without re-
straint of y-direction deformations associated with the Poisson effect. Stresses are calcu-
lated in the conventional way, using Eqgs. 3.1-2 and 3.1-8.

With only two nonzero d.o.f., the simple plane beam element of Section 2.3 solves the
problem exactly when transverse shear deformation is included in its formulation. As ex-
pected, CST elements perform poorly. Q4 elements are better but not good. LST elements
give an accurate deflection but a disappointing stress. Q6 and Q8 elements are the best
performers. In the rectangular Q6 element, the stress o, at x = 1 (midway between nodes)
is exact, but since o, is independent of x in this element, the same o, is reported at node
B. In most of these FE models, distortion and elongation of elements are seen to reduce
accuracy. In the latter Q8 example the amount of distortion is sufficient to provoke a
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Fig. 3.11-1. (a) Cantilever beam problem. (b) Supports and loads for FE analysis. (c)
Results from models built of various types of plane elements.
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warning from the software. Further distortion of elements may cause accuracy to decline
precipitously, not gradually as one might expect. Some arrangements of Q4 and Q6 ele-

ments are prone to locking [3.2, 3.7].

3.12 AN APPLICATION

A flat square plate contains a central circular hole, which is loaded by pressure p. The
geometry and elastic properties are depicted in Fig. 3.12-1a. Plane stress conditions pre-
vail. Magnitudes and locations of maximum principal stress are desired. The solution
strategy suggested in Section 1.3 is used in the following analysis.
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Fig. 3.12-1. (a) Flat plate with central hole loaded by internal pressure. (b) Forces that

act on one quadrant. (c) The anticipated displaced shape, greatly exaggerated, is shown
by dashed lines.

Preliminary Analysis. Before undertaking a FE analysis we examine the problem in a
physical way and make simple calculations, in order to anticipate where stresses will be
largest, prepare a good FE model, and obtain approximate results for subsequent compar-
ison with FE results.

Structure, geometry, and loading are all symmetric with respect to horizontal and ver-
tical centerlines. This means that deflections and stresses will have the same symmetries
and we can consider a single quadrant (symmetry is discussed in Section 4.12). Forces F
that act on a representative quadrant are shown in Fig. 3.12-1b. It is easy to calculate F
exactly by statics. The average normal stress on horizontal and vertical cross sections
then follows.

F=pri=7N and 0, =———=23MPa (3.12-1)
(a—rn)t

Deformations must be symmetric with respect to horizontal and vertical centerlines, and
we expect that pressure will push the slender parts further outward than the more massive
corners. Accordingly, we anticipate the deformed shape shown in Fig. 3.12-1c. We see
that the slender parts have acquired an inward curvature, which must be associated with
bending moments M in the directions shown. The associated flexural stresses will be ten-
sile on the outside, compressive on the inside, and will add algebraically to stress O, of
Eq. 3.12-1. Therefore it appears that the maximum stress may appear at B and D rather
than at A and C. But there is another possibility: because arc AEC bends outward there
will be tensile flexural stress at E. Therefore point E is another candidate for the location
of maximum stress.

FE Model and Analysis. We might choose to model only one octant, because there is
symmetry with respect to diagonals as well as centerlines. However, we choose instead to
model a quadrant because support conditions are more straightforward and computed re-
sults can be checked for anticipated symmetries about the diagonal. We arbitrarily elect
to use Q6 elements (Section 3.6), formulated in a way that permits nonrectangular shapes.
For the sake of illustration, we deliberately choose a very coarse mesh for the initial FE
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Fig. 3.12-2. (a) Coarse-mesh FE model, showing support conditions. (b) Contours of o, from
nodal average values. Stress units are megapascals (MPa). (c) Contours of o,. without nodal aver-
aging. from individual elements.

model. The model and its support conditions are shown in Fig. 3.12-2a. The mesh is sym-
metric about diagonal EF and is coarsest near corner £ where stresses are certain to be
low because F is a free corner. With the software used, nodal loads associated with pres-
sure along AEC are calculated automatically, and the only support conditions that the user
need impose explicitly are u; = 0 at nodes i along AB and v, = 0 at nodes i along CD.
Nodal translations w; and all nodal rotation d.o.f. are automatically suppressed by the
software used when it is told that the model is plane.

Critique of FE Results. Computed displacements are examined first, scaled up so as to
be easily visible, and animated. Thus, on the computer screen, we see that nodes along
AB have only y-direction displacement, nodes along CD have only x-direction displace-
ment, all displacements are symmetric about diagonal EF, and the anticipated displaced
shape indicated by dashed lines in Fig. 3.12-1c is indeed obtained. These results are in ac-
cord with the model we intended to describe to the software, so no blunder is yet in evi-
dence. We postpone discussion of the maximum stress until after results from a finer
mesh have been obtained. We qualitatively examine contour plots of the von Mises stress
0, (defined in Eq. 3.10-1). Contours plotted from nodal average stresses and from ele-
ment-by-element (unaveraged) stresses are shown in Figs. 3.12-2b and 3.12-2c. As ex-
pected, contours of o, are symmetric about diagonal EF. Aside from reflecting the
coarseness of the mesh, averaged contours give little indication that results are unreliable.
But unaveraged contours show severe interelement discontinuities. Interelement changes
in stress are comparable in magnitude to the stresses themselves! It is now obvious that
the coarse-mesh FE results are not to be trusted.

The quadrant is now modeled by a finer mesh, again using Q6 elements. The same
support conditions as before are imposed on nodes along AB and CD. This time, just to
see what happens, the mesh is made unsymmetric about the diagonal. Note that elements
are smallest near points A, B, C, D, and E, where the largest stresses are expected, and ele-
ments are largest near F, where stresses are known to be Jow. Note also that elements
near E are “squashed” in the radial direction because Fig. 3.12-2 suggests that stress gra-
dients are much higher in the radial direction than in the circumferential direction. The
displaced shape on the computer screen again appears satisfactory. Numerical values of
nodal d.o.f. u; and v, are found to be not quite symmetric about the diagonal owing to
asymmetry of the mesh. Averaged and unaveraged plots of von Mises stress o, are shown
in Fig. 3.12-3. Results are greatly improved over the coarse mesh, but unaveraged con-
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Fig. 3.12-3. Contours of o, from a finer mesh. Stress units are megapascals (MPa). (a) From nodal
average values. (b) Without nodal averaging, from individual elements.

tours still have significant interelement discontinuity. Even averaged contours show ap-
preciable changes in direction where they cross interelement boundaries near AB and CD.
Also, contour lines lack symmetry about diagonal EF and do not intersect lines of sym-
metry AB, CD, and EF at 90° angles. All this suggests a need for even more mesh refine-
ment.

Numerical results from both meshes are listed in Table 3.12-1. These numbers are ob-
tained directly from output files, not by visual inspection of displacement plots and stress
plots. Displacement results are reasonable; they show that AB and CD have shortened, as
should be expected from the combination of compressive radial loading and the Poisson
effect with circumferential tension. Computed displacements also show that the finer
mesh is more flexible than the coarse mesh. Such is usually the case but cannot be guar-
anteed for the Q6 element because it is an incompatible element (see Section 4.8). At cor-
ner F, all stresses are zero according to theory. Computed values of o, at F are small and
decrease with mesh refinement, as expected. At a point such as A, o, (not shown in Table
3.12-1) is found to be almost equal to o, at A. Theoretically, o, = o, at A. The discrep-
ancy is due to 7,,, which is small but not quite zero as theory says it should be on an axis

TABLE 3.12-1. Selected displacements and maximum principal stress 0, in the FE
models of Fig. 3.12-2 (coarse mesh) and Fig. 3.12-3 (finer mesh). Displacements are in
mm. Stresses are in MPa.

Node Coarse Mesh Finer Mesh

i 10%; 10%; op ‘ 10%y; 10%; o
A 0 2.08 2.11 0 2.28 1.92
B 0 1.78 2.28 0 1.96 3.01
C 2.08 0 2.11 2.34 0 1.84
D 1.78 0 2.28 2.01 0 3.12
E 1.22 1.22 2.68 1.27 1.24 3.16
F 0.97 0.97 0.38 0.98 1.00 0.21
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of symmetry. The average normal stress from points A and B or C and D is in satisfactory
agreement with Eq. 3.12-1. The largest o, anywhere in the structure is at A and C or at E
(we cannot be sure which without more refinement) and has a numerical value of about
3.1 MPa.

In summary, computed results are reasonable but as yet we cannot trust them. An er-
ror measure for the stress field, discussed in Section 5.16, gives n = 0.373 for the
coarse mesh and 17 = 0.183 for the finer mesh. These measures also indicate that results
are not yet to be trusted. Another mesh refinement is called for. The next mesh should
build on information in Fig. 3.12-3 by making elements smallest where stresses and
stress gradients are largest. By plotting a particular stress or a particular displacement
versus element size, as computed from three or more meshes, one could extrapolate to
zero element size, and thus obtain a predicted result for infinite mesh refinement (see
Section 5.15). Hence the percentage error of a result from a given mesh can be esti-
mated.

We may now admit that a FE analysis probably is not needed: a solution of the prob-
lem appears in [3.8], where we find the experimentally determined values o, = 2.9 MPa
at B and D and o; = 2.7 MPa at E. It is wise to ask at the outset if a FE analysis is really
necessary, as it is not a trivial task.

Related Problems. If the problem is changed to one of plane strain rather than plane
stress, computations eventually fail as Poisson’s ratio v approaches 0.5. By trial, it was
found that coarse-mesh Q6 element results in plane strain were reasonable up to v =
0.499999990 but ridiculous when v = 0.499999999. In plane stress or plane strain, and for
any value of v, if ligament thickness a — r becomes much less than a, the problem be-
comes inherently nonlinear because then stresses in ligaments are strongly influenced by
the displaced shapes of ligaments, and the displaced shapes are not known in advance. A
linear solution, as used in the foregoing example, presumes that displacements do nothing
to alter the way load is carried.

ANALYTICAL PROBLEMS

3.1 (a) Over a distance dx, stress o, changes by the amount (0o /ox)dx as shown in the
sketch. Stresses 0, and 7., experience similar changes, over distances dx and dy.
Force is stress times area, and thickness is constant. Take these remarks as sug-
gestions and derive the plane equilibrium equations, Eqgs. 3.1-11.
(b) Repeat part (a) but work in three dimensions. Thus there are three normal
stresses and three shear stresses, and there are three equilibrium equations.

Jo,
Oy + a—— dy
dx 90, &
O-X + ax X
-~ J dy|| ——
GX
—_—

b
Problem 3.1
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3.2 The cantilever beam shown is tip-loaded by a moment M. Assume that Poisson’s ra-

33

3.4

3.5

3.6

3.7

tio is zero. Use beam theory to compute the displacement components of points D,
E, and F. Regard these results as nodal displacements, and use them to compute
stresses in elements defined as follows.

(a) A CST element whose nodes are A, E, and C.

(b) A CST element whose nodes are B, D, and F.

(c) A Q4 element whose nodes are A, D, F, and C.

Express the stresses in terms of M, L, ¢, and thickness .

»v
T C: F
¢ |
Yy E)M
¢ ¢
_\K A X, u
f L { Problem 3.2

Repeat Problem 3.2 but replace moment M by a tip force P in the y direction.
Neglect transverse shear deformation.

Evaluate the stresses in Fig. 3.2-2b, as suggested in the last sentence of Section 3.2.
Let Poisson’s ratio be zero. Suggestion: obtain u, and v, from beam theory. Will the
FE model actually provide these deformations?

Let the cantilever beam of Fig. 3.2-2a be modeled by LST elements rather than CST
elements. Apply a transverse tip force in the y direction. Will computed results be
exact? Why or why not?

(a) For the element shown, determine shape function N; in terms of y and b (see
Fig. 3.3-1 for a hint).

(b) Shape function N, for this element is N, = 1 — (y/b) — (x/a)* + (y/2b)*. Show that
N, is unity at node 4 and zero at the other five nodes.

(c) Let us, v, uy, and v, be the only nonzero d.o.f. In terms of these d.o.f,, x, y, a,
and b, what are the element strains?

Problem 3.6

Generalized coordinates f3; can be expressed in terms of nodal d.o.f. by substitution:

for example, in Eq. 3.2-1 we obtain u; = 8, + f.x; + P5y;, where i = 1, 2, 3. Thus we

obtain a set of three equations that can be solved for 3,, ,, and ;.

(a) Write this set of equations in matrix format for the CST of Fig. 3.2-1. Do not
bother to solve.
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3.8

3.9

3.10

3.11

3.12

3.13

3.14

(b) Write an analogous set of four equations for the Q4 element of Fig. 3.4-1.
(c) By comparison of Egs. 3.4-1 and 3.4-3, write the f3; in the first of Egs. 3.4-1 in
terms of nodal d.o.f. u;.

A uniform beam is modeled by Q4 elements, as shown. Qualitatively, and without
calculation, plot o, and 7, along the top edge from A to C, as predicted by the ele-
ments. Also plot the exact stresses according to beam theory. Consider each of the
following loadings.

(a) Fi=0, F,=F;.

(b) F,=0, F,=-F;.

(¢) F;,>0, F,=F;=0.

(d) Repeat parts (a), (b), and (c) with Q6 elements.

Let axes x and y originate at node 1 of a Q4 element, as shown. For this choice of
axes write appropriate shape functions N, through N,, analogous to the shape func-
tions in Eq. 3.4-3.

r 1
’ F3 »u
A B C

I X l<——— 2a —>|
_\L‘ £ 4 3 $

2b

F1 ! 2 L X ou

Problem 3.8 Problem 3.9

Imagine that nodal d.o.f. in Fig. 3.4-2c are u; = u; = —c, u, = uy = ¢, where c is a
constant, and all v; = 0. Use Eq. 3.4-4 to express element strains in terms of a, b, c,
x, and y.

Let a Q8 element be a 2 by 2 square, so that a = b = 1 in Fig. 3.5-1. According to
Eg. 3.5-3, what element strains are associated with nodal d.o.f. u,, v,, ug, and vg?
Imagine that nodal d.o.f. in a rectangular Q6 element are v, = vy =c¢, v, =V, = —¢,
where c is a constant, and all i; = 0. If the element is a Q6 element, what is g, in Eq.
3.6-27

For 0 £ x < 2a in the sketch, lateral displacement v depends on v, v,, and v;. Shape
functions for these d.o.f. are provided in the sketch. Obtain the four shape functions
associated with d.o.f. v,, v;, 6, and 8, where the two drilling d.o.f. replace v..
Note: this is an exercise in manipulation, not a physical problem.

» v v = XNy,

l ) ) Ny = (x2 - 3ax + 2a2)/242
Ny = x(2a - x)/a?
vy v2 U3 N3 =xlx - a)l2a2

} a { a { Problem 3.13

Let a plane element have three or more sides, side lengths L; , midside normal dis-
placements u,; , and all corner translational d.o.f. set to zero. Show that use of
drilling d.o.f. implies the constraint 2(u,/L;) = 0, where the summation includes all
sides.
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3.15 For rectangular elements, are Q4 and Q6 results in Fig. 3.11-1 in approximate
agreement with Eq. 3.6-1? Suggestion: the coefficient of M, in Eq. 3.6-1 can be re-
garded as a factor that relates displacements in Q4 and Q6 elements subjected to the
same bending moment.

3.16 Show that the nodal loads are work-equivalent in (a) Fig. 3.9-1, (b) Fig. 3.9-3, with
g4 =45 = qc (c) Fig. 3.9-5b, and (d) Fig. 3.9-5d.
3.17 Show that nodal forces calculated according to Fig. 3.9-3c are statically equivalent
to the following loadings on a plane body of unit thickness.
(@) g4 =0, gz =0, and g = —0 (corresponding to a flexural stress distribution with
B on the neutral axis).
(b) g4 =0, g = 012, qc = 0 (corresponding to a flexural stress distribution with A
on the neutral axis).
(©) g4=qc=0, gz =T, where T acts tangent to ABC (corresponding to a shear stress
distribution on a beam of rectangular cross section).

3.18 On a straight linear element edge, what ¢ = g(x) is equivalent to a concentrated
nodal force? For example, set F, = 0 in Fig. 3.9-1.

COMPUTATIONAL PROBLEMS

In the following plane problems compute significant values of stress and/or displace-
ment, as appropriate. Exploit symmetry if possible. Choose convenient numbers and
consistent units for material properties, dimensions, and loads. When mesh refinement
is used, estimate the maximum percentage error of FE results in the finest mesh. Unless
directed otherwise, assume unit thickness, plane stress conditions, and isotropic materi-
als.

A FE analysis should be preceded by an alternative analysis, probably based on stat-
ics and mechanics of materials, and oversimplified if necessary. If these results and FE
results have substantial disagreement we are warned of trouble somewhere.

3.19 The rectangular structure shown may be modeled by Q4, Q6, or Q8 elements. Use
elements of approximately the shape shown. Space nodes uniformly along the right
edge, where uniform pressure p is applied. Do computations twice: first represent p
by equal nodal forces, then represent p by forces computed from Fig. 3.9-1 or Fig.
3.9-3, as appropriate.

¥

(R

Problem 3.19

3.20 In Problem 3.19, let p = 0 and apply instead the temperature field AT = cx, where ¢
is a constant. Then repeat the calculations, using AT = cy. Are results reasonable? If
results differ for the two thermal loadings, explain why.



Computational Problems 71

3.21

3.22

3.23

3.24

3.25

In Problem 3.19, use work-equivalent nodal loads but revise the mesh so as to
include one or more of the “poor connections™ of Fig. 3.10-2. Use additional el-
ements as necessary but maintain the rectangular shape of the body. (With a
fine mesh one can study the degree to which the effect of the connection is lo-
calized.)

One can undertake a systematic study of the effects of mesh distortion [3.7,
3.9]. For example, if the beams shown are modeled by Q4 or Q6 elements, one
could vary ¢ (or €/H) while keeping €/H (or ¢) constant. Using LST or Q8 ele-
ments, one could vary ¢ or s/H. Loading may be by tip moment or transverse tip
force.
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As a variant of Problem 3.22, use plane strain conditions, maintain a chosen mesh
distortion, and investigate what happens as Poisson’s ratio approaches 0.5.

Part (a) of the sketch shows a curved beam under pure bending load, as modeled by
a single Q8 element having two curved sides. Alternative Q8 element models can
have straight sides. The parallel sides may be tangent to arcs as in part (b), chords
of arcs as in part (c), or something in between. Also, angle 6 and the radius ratio
ry/r; may be varied. By calculation, examine the relative merits of these FE models.
For comparison, an analytical solutlon for circumferential and radial stresses is well
known [1.5, 2.1].

(a) (b) (c)
Problem 3.24

The rectangular plate shown contains a hole and is securely bonded to a rigid base
on the bottom and to a rigid bar on the top. Peak values of o, (Eq. 3.10-1) in the
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neighborhood of the hole are desired. Load the model by translating the rigid bar,
an amount (a) i, in the x direction, or (b) v, in the y direction.

fe—— (—> Problem 3.25

3.26 (a) As a variant of Problem 3.25, reinforce the hole by doubling the z-direction
thickness of material from the edge of the hole out to a radius cR, where con-
stant ¢ might be 1.3 or so.

(b) As another variant of Problem 3.25, instead of doubling the thickness of mater-
ial out to radius cR, uniformly raise the temperature of this material. Do not
change the temperature of the remainder of the structure, but omit the rigid bar
on top.

3.27 A centrally loaded beam is supported at both ends, as shown. Compute flexural
stress 0, at x = 0 on top and bottom surfaces. Compare FE results with the flexure
formula o, = My/I.

(a) Choose numerical values such as P = 1, L = 12, and various values of H in the
range 4 < H <36 [1.5]. Build the FE model using plane elements.

(b) Model the structure by a minimal number of 2D beam elements. Compare de-
flections with deflections obtained by use of plane elements in part (a).

(c) Repeat part (a) but make the right-hand support like the left, that is, impose
both x- and y-direction restraint at both supports.

3.28 (a) The “fixed support” of a cantilever beam must in reality be elastic. Assume that
the cantilever beam shown is attached to a very large plane body having the
same thickness and elastic properties as the beam. By what amount is the tip ro-
tation 6, = ML/EI of the beam increased by deformation of its support [1.5, 3.10]?

(b) Investigate the beam-to-plane connection shown in Fig. 3.9-6b. How well does
it model the elasticity of the beam’s support?

v

N
N~

Problem 3.27 Problem 3.28
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3.29 The two blocks of heights H, and H, shown are securely bonded together. Their

3.30

3.31

material properties are identical except that their coefficients of thermal expansion
o, and o, are different. Stresses due to uniform heating are desired. Supports (not
shown) apply no force. Suggestions for checking: If H, and H, are much smaller
than L, is it reasonable that stresses are independent of x except near ends? By in-
spection, whatis 7, at x =y =0 and at x = L, y = 0? What is a probable upper bound
for the magnitude of any normal stress, for example, with v = 0 to make it simpler?

N

T
1 Hy
vy,
A
oy Hy
Y
< L { Problem 3.29

A horizontal elastic medium (e.g., soil or rock) is loaded by its own weight. Assume
that the initial state of stress is hydrostatic, as in a fluid. Next, excavate a vertical cut
of height H and/or a tunnel of radius R, as shown. What is the change in the state of
stress and the final state of stress? Assume that plane strain conditions prevail. For an
alternative initial state of stress, consider uniform compression in the x direction only.

Problem 3.30

The structures shown consist of bars of square cross section (shown by double
lines) securely connected to flat sheets of the same material. Centerlines of bars and
midsurfaces of sheets lie in the same plane. Let FE models consist of plane ele-
ments of thickness ¢ and bar elements of cross-sectional area A. In sketch (a), H, +
H,=3L,L=500t, and A = (H, + H,)t are suggested. Is it reasonable to neglect the
bending stiffness of the bars? Find out by repeating the analysis with bending stiff-
ness included.

ll L

Y

7 ] — P
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A H -
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(a) (b)

Problem 3.31
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3.32

3.33
3.34

3.35

3.36

Plane Problems

A thick-walled circular cylinder under internal or external pressure can be modeled
by a row of plane elements, with two boundaries of the mesh constrained to dis-
place only radially (see sketch). Should the mesh spacing be uniform in the radial
direction, as shown? What is the effect of changing r,/r,? How many elements are
needed for (say) 95% accuracy? What should angle 6 be, and what happens if it is
too large?

/

L—-rf——>|' I Problem 3.32

Analyze the structure depicted in Fig. 1.3-1.

Problems related to the example problem in Section 3.12 are as follows.

(a) Refine the mesh yet again and obtain reliable values of ;.

(b) Model an octant of the structure rather than a quadrant.

(c) Choose other values of 1/a, or let the outline be a rectangle rather than a square.

Any of the preceding computational problems can be modified by making the mate-
rial orthotropic. For a simple choice, with n and s orthogonal principal axes of the
material, let E, = 8E, and G = 2E,, with zero Poisson ratios. Thus E becomes a di-
agonal matrix. Axes n and s may be oriented arbitrarily with respect to global axes.

Many stress concentration factors have been tabulated [1.5, 3.8], especially for
plane bodies. Textbooks on mechanics of materials usually contain some of these
results for circular holes and fillets in bars loaded in tension and in bending. A FE
analysis can be undertaken, using progressive mesh refinement near the point of
peak stress, until error is reduced to less than (say) 5%.



CHAPTER 4

Isoparametric Elements and
Solution Techniques

The chapter first discusses matrix sparsity, equation solving, and transformations. The
associated manipulations are largely internal to software and typically the user has little
control over them. The next four sections consider the popular isoparametric approach to
FE formulation. The nature of the FE method and its convergence to correct results are
then summarized. Final sections discuss infinite media, substructures, symmetry, and
constraints. The latter topics are matters of element formulation and equation manipula-
tion that are largely under the control of the FE user.

4.1 NODE NUMBERING AND MATRIX SPARSITY

Demands on computer storage and the speed of program execution are strongly influ-
enced by the way in which global stiffness coefficients K; are stored. In turn, the storage
format depends largely on how nodes and/or elements are numbered. Commercial soft-
ware can be expected to contain an algorithm that chooses an effective numbering se-
quence for internal storage and processing, but the user may have to activate it by giving
an appropriate command. In this section we summarize these considerations by means of
simple examples.

Consider the five-element, six-node structure shown at the top of Fig. 4.1-1a. The na-
ture of the physical problem is unimportant. In this example we assume that each element
has two nodes and that there is only one d.o.f. per node. Element stiffness matrices have

the forms
a b d e g h
k_, = , ko= . ks = |, etc. “4.1-1)
b ¢ e f h i

In the software, structure stiffness matrix K is formed by assembling element stiffness
matrices, taking care to place element stiffness coefficients in the proper rows and

75
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Structure: Structure:
3 5
1 2 4 5 6 1 6 2 4 3
K of the structure: K of the structure:
A B A B
B C E G H F E
Skyline
D F K J
E F G H H J 1
H I J F D
L J K B E c
Good arrangement Poor arrangement

(a) (b)

Fig. 4.1-1. Structures built of two-node elements having one d.o.f. per node
and their symbolic stiffness matrices. Nonzero coefficients are represented
by letters.

columns in the K array. Thus, for the six-d.o.f. structure in Fig. 4.1-1a, K is formed as
the sum

1 2 3 4 5 6 1 23 456 1 2 3 4 5 6
fa b 17T 17 i
b ¢ d e

h
+ + . +--- (4.1-2)

A L A W N =
o
~
S 0o

L L 4L _

in which zeros are represented by blanks. Row and column numbers of nonzero coeffi-
cients are also the numbers of nodes to which elements are connected, for example, terms
from element 2-4 appear in rows and columns 2 and 4. In Fig. 4.1-1a, the assembled K is
represented in the same format used in Eq. 4.1-2,sothat A=a,B=b,C=c+ d, and so
on. An alternative node numbering changes only the topology of K; that is, the same co-
efficients appear but in a different arrangement. An example is shown in Fig. 4.1-1b.

The assembly process illustrated by Eq. 4.1-2 can be explained as follows. From the
formula (Eq. 3.1-9), strain energy in element 1-2 is d’_, k,_»,d,_,/2, where d,_, contains
the d.o.f. of element 1-2. This is the same energy as D'K,_,D/2, where D contains all
d.of. of the structure and K,_, contains only the stiffness coefficients of element 1-2 (in
appropriate locations). Writing the strain energies of other elements in similar fashion
and summing element energies to obtain total structure strain energy, we obtain D'(K,_, +
K, .+ K, 4+ )D/2=D"KD/2.

The global stiffness matrix K is sparse, meaning that it contains a great many zeros. A
FE model having many d.o.f. may produce a K in which over 99% of the K; are zero. It
would be wasteful to store and manipulate so many zeros. Accordingly, FE software uses
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sparse-matrix formats to store and process K (and other large matrices, such as the global
mass matrix M used in dynamics). Examples of matrix topology appear in Fig. 4.1-1. In a
good arrangement. Fig. 4.1-1a, the “bandwidth” is small: nonzero coefficients cluster in a
narrow band along the diagonal. In general, there are some zero coefficients within the
band, but there are only zeros outside it. The “skyline” bounds the top of the band, as
shown in Fig. 4.1-1. Because K is symmetric and banded, we need store only its diagonal
and coefficients between the diagonal and the skyline. It is common practice to store
these K; in a one-dimensional array by working down columns of K from the skyline to
the diagonal. Thus in Fig. 4.1-1a we consecutively store A, B, C, D, E, F,G HIJ K A
separate “index” array records which of these are diagonal coefficients Kj;. In the “poor”
arrangement of Fig. 4.1-1b there are more coefficients to store one-dimensionally be-
cause of zeros below the skyline: A, G, K, H,J, I, F,0,0,D, B, E, 0, 0, 0, C. Zeros below
the skyline become nonzero as K is processed by a direct equation solver such as Gauss
elimination. In a model with more nodes the differences between “good” and “poor”
arrangements would be more striking.

The foregoing remarks presume that storage is governed by node numbering. Similar
remarks can be made if information is stored and processed in a manner governed by ele-
ment numbering. Then one speaks of “wavefront” rather than bandwidth. Numerical defi-
nitions of wavefront and bandwidth are available [4.1], but most FE users need only
know that bandwidth and wavefront are similar measures of demands on storage space
and computational effort and that smaller is better. Smaller bandwidth or wavefront usu-
ally results when consecutive node or element numbers run across the smaller dimension
of the model. Fortunately, the user need not strive for small bandwidth or wavefront
when preparing input data. Software can automatically revise node and element number-
ing so that internal processing is carried out compactly and efficiently, then convert back
to the original numbering, so that results displayed by the postprocessor have the number-
ing used by the analyst in creating the model.

4.2 EQUATION SOLVING

Time-independent FE analysis requires that the global equations KD = R be solved for D.
This may be done by a direct method or an iterative method. In a direct method—usually
some form of Gauss elimination—the number of operations required is dictated by the
number of d.o.f. and the topology of K. An iterative method requires an uncertain number
of operations; calculations are halted when convergence criteria are satisfied or an itera-
tion limit is reached.

Solution methods have been extensively studied over several years. For full discus-
sion the reader is referred to [3.1], many numerical analysis textbooks, and current re-
search papers. The following summary should be adequate for most users of FE software.

If a Gauss elimination solution is driven by node numbering, forward reduction pro-
ceeds in node number order and back substitution in reverse order, so that numerical val-
ues of d.o.f. at the first-numbered node are determined last. If the solution is driven by ele-
ment numbering, assembly of element matrices may alternate with steps of forward re-
duction. Thus some eliminations are performed as soon as enough information has been
assembled, then more assembly is carried out, then more eliminations, and so on, until all
d.o.f. have been treated. Back substitution follows. The assembly-reduction process is
like a “wave” that moves over the structure. A solver that works this way is called a
“wavefront” or “frontal” equation solver. Wavefront is a measure of the number of coef-
ficients being manipulated in one of the reduction steps.
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The computation time of a direct solution is roughly proportional to nb?, where n is the
order of K and b is its bandwidth. For three-dimensional structures the computation time
becomes large because b becomes large. Large b indicates high connectivity among d.o.f.
Here an iterative solver may be faster because high connectivity speeds convergence. In
contrast, a long slender structure has low b and low connectivity; an iterative solver
would be slow to converge but a direct solver would be fast because b is small.

Frequently, a structure must be analyzed to determine the effects of several different
load vectors R. This is done very effectively by a direct solver because most of its com-
putational effort is expended on reduction of K. As long as the structure or FE model is
not changed this need be done only once, regardless of the number of load vectors. In
contrast, an iterative solver must treat each different load case as a new problem. Despite
this disadvantage, iterative solvers may be best on parallel-processing computers. They
may also be best for some nonlinear problems, in which K changes from load step i to
load step i + 1, because solution D; may be an excellent starting approximation for solu-
tion D;,,. An iterative solver can be coded so that operations are performed on separate
elements and the results combined. Thus a global K need not be assembled, and storage
requirements are reduced.

A direct solver works well for most problems. In most current software it is the only solu-
tion algorithm available and is used as a “black box.” This situation is beginning to change.

4.3 TRANSFORMATIONS

Alternative Directions for D.O.F. The stiffness matrix of a finite element is most easily
written in a local coordinate system. As examples, it is convenient to place a bar or beam
element along the x axis and a plane element in the xy plane. But a FE model may require
an element to be arbitrarily oriented in global coordinates XYZ. Rather than formulate ele-
ment properties in global coordinates at the outset, it is easier to transform an element ini-
tially formulated in local coordinates. Transformation of this kind is carried out automati-
cally by the software; the user is not obliged to activate it. The procedure used by the
software is illustrated by the following example.

A two-node bar element is shown in Fig. 4.3-1a. Its stiffness matrix k” in local coordi-
nates xy operates on d.o.f. u} and w5 directed along the x axis. If the x axis lies in the XY
plane, the relation between local d.o.f. and global d.o.f. is contained in the transformation

Fig. 4.3-1. (a) Stiffness matrix of a bar element in local coordinates xy. Local
d.o.f. are i} and u5. (b) Transformation from local to global d.o.f. in the same
plane.
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FE model

L¢>\ " Fig. 4.3-2. Plane problem in which node i is allowed
to displace only in a direction tangent to a rigid
X, u  boundary.

matrix T of Fig. 4.3-1b. It can be shown [2.2] that the element stiffness matrix K that op-
erates on global d.o.f. [u;, v, u, v,]"is

2 2
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" If the x axis is not in the XY plane but is arbitrarily oriented with respect to XYZ axes, T
becomes a 6 by 2 matrix containing direction cosines of the x axis and k becomes a 6 by
6 matrix. It seems preferable to regard such transformations as a change in the representa-
tion of element d.o.f. rather than as a change in orientation of the element.

A similar transformation is convenient in the example of Fig. 4.3-2. The support con-
dition requires that d.o.f. at a typical node i have the relation v; = u; tan ¢,. Rather than
impose this condition as a constraint (Section 4.13), we can replace u; and v; by u}, and
ul,, which are d.o.f. in local coordinate directions, respectively, normal and tangent to the
support. The support condition then becomes simply u;, = 0. Other nodes along the sup-
port can be treated similarly, using the value of ¢ appropriate to each node. Indeed, the
directions of nodal d.o.f. can be different at every node of the structure if the user wishes
to establish a different local coordinate system at every node.

Offsets. In FE modeling we must often connect elements whose axes are parallel but not
coincident. As an example, a floor slab is connected to a supporting beam on the lower
surface of the slab. A FE model consists of plate elements and beam elements. We wish
to connect beam nodes to plate nodes, but they are separated by a vertical distance. We
can eliminate beam nodes by making them “slave” to plate nodes. The procedure, in-
voked by the user and carried out automatically by the software, is as follows [2.2, 4.2].

Y;
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Fig. 4.3-3. (a) Nodes 1 and 2 are connected to nodes 3 and 4 by rigid links (not merely
stiff, but rigid links). (b) An application.
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In Fig. 4.3-3, let the element between nodes 1 and 2 resist both bending and axial de-
formation, and let imaginary rigid links connect nodes 1 and 2 to nodes 3 and 4, respec-
tively. We allow arbitrary offsets @; and b; in x and y directions, but for simplicity omit
offsets c; in the z direction and displacements normal to the xy plane. Accordingly, the re-
lation between d.o.f. at nodes 1 and 2 and d.o.f. at nodes 3 and 4 is

(u, 1 b, T (us
v, 1 g Vs
6, 1 6.,
SU- N 4.3-2)
U, 1 b, U,
vZ 1 613 U4
6:2 L 1 B 9:4
T

in which zeros are represented by blanks. In the special case of Fig. 4.3-3b, a; =a, =0
and b, = b, = b. Let the element stiffness matrix that operates on d.o.f. at nodes 1 and 2
be called k’. It is formulated in the usual way (see Eq. 2.3-9). To transform it to a matrix
k that operates on d.o.f. at nodes 3 and 4 we carry out the transformation k = T’k’T. If lo-
cal axes xy are not parallel to global axes, another transformation analogous to Eq. 4.3-1
is performed. After assembly of k into the global K, d.o.f. at nodes 1 and 2 do not appear
in the global vector of d.o.f. D, but these d.o.f. reappear during postprocessing to obtain
stresses in the beam element.

4.4 ISOPARAMETRIC ELEMENTS: FORMULATION

The isoparametric formulation makes it possible to have nonrectangular elements, ele-
ments with curved sides, “infinite” elements for unbounded media, and singularity ele-
ments for fracture mechanics. Here we discuss only the four-node plane quadrilateral.
Other isoparametric elements have more nodes and more shape functions but are very
similar in that they use the same concepts and computational procedures.

An auxiliary coordinate system must be introduced in order that a quadrilateral may be

1

Fig. 4.4-1. Four-node plane iso-
parametric element. (Reprinted
from [2.2] by permission of John
Wiley & Sons. Inc.)
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nonrectangular. This system, called &7 in Fig. 4.4-1, is a “natural” coordinate system. Its
origin in global coordinates XY is at the average of the corner coordinates. In natural co-
ordinates £7, element sides are always defined by & = +1 and 7 = %1, regardless of the
shape or physical size of the element or its orientation in global coordinates XY. In gen-
eral, axes & and 7 are not orthogonal and they have no particular orientation with respect
to axes X and Y. Coordinates of a point within the element are defined by

X=3YNX Y=Y NY, (4.4-1)

in which X; and Y; are coordinates of the corner nodes and the shape (or interpolation)
functions N, are

N=i1-8U-m  N=i1+H1-1n)

. (4.4-2)
Ny=i(1+8(+m)  Ny=i1-U1+m

These N; are similar to the N, in Eq. 3.4-3. Given & and 77 coordinates of a point we can
use Egs. 4.4-1 to calculate its X and Y coordinates. Displacements of a point are interpo-
lated from nodal d.o.f. by use of the same shape functions:

u=Y Nu v=) Nu (4.4-3)

Displacements « and v are parallel to X and Y axes, not £ and 77 axes. The name “isopara-
metric” derives from use of the same shape functions to interpolate both coordinates and
displacements. A plane isoparametric element does not require a transformation of the
type used in Fig. 4.3-1. (Global directions X and Y are used in the present section mcrely
to avoid confusion with the local element-related directions x and y used in Section 4.3.)

In order to write the strain—displacement matrix B (Eq. 3.1-8) we must establish the
relation between gradients in the two coordinate systems. Consider one of these gradi-
ents, the strain & = ou/dX. We cannot immediately write the result because u is defined
as a function of £ and 7 rather than as a function of X and Y. We must start by differenti-
ating with respect to & and 7, and use the chain rule:

) [ ] (o
23 o d| |ox

= (4.4-4)
u| | oX oY) |ou
on on on Y
J
where J is called the Jacobian matrix. Coefficients in J can be obtained from Egs. 4.4-1,
X oN,; Y JN;
—=>) =X, — = —Y,, etc. 4.4-
%L E L R

Equation 4.4-4 can be solved for the vector on the right-hand side. Hence strain &, be-
comes

ou du
Ey = & = ]ﬁ‘ég + J$'977 (44-6)
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where J%, and J#%, are coefficients in the first row of J™! and

ou ON; Ju ON;
— = —u. d —_— = — Xy, 4.4-7
o E % u; an E u; ( )

are obtained from Eqs. 4.4-3. The remaining strains &, and ¥y, are formulated in similar
fashion, and at last the strain—displacement matrix B can be written.
The element stiffness matrix is

k=J-BTEBdV=j‘j‘BTEBt |J| d& dn (4.4-8)

-1-1

where 7 is the element thickness and |J | is the determinant of J in Eq. 4.4-4. 13| can be
regarded as a scale factor between areas; that is, dX dY = |J | d€& dn. In general, |J| isa
function of the coordinates, but for a rectangle or a parallelogram it is constant and has
the value A/4, where A is the area of the rectangle or parallelogram and the “4” is the area
in £n coordinates, where the element is always a square two units on a side.

Other plane isoparametric elements have more nodes; hence there are more shape
functions N, and more columns in B, but J is still 2 by 2 and there are still three rows in
B. For 3D solid elements J is 3 by 3 and B has six rows.

4.5 GAUSS QUADRATURE AND ISOPARAMETRIC
ELEMENTS

Integration in Eq. 4.4-8 may be done analytically by using closed-form formulas from a
table of integrals. Alternatively, integration may be done numerically. Gauss quadrature
is a commonly used form of numerical integration. It is better suited to numerical analy-
sis than closed-form formulas. To begin our explanation of Gauss quadrature, we con-
sider one-dimensional problems without particular reference to FE. Gauss quadrature
evaluates the integral of a function as the sum of a finite number of terms:

1 n
I= j«p dé  becomes =Y Wi, (@.5-1)
o i=1

where W, is a “weight” and ¢, is the value of ¢ = ¢(&) at a particular location often called
a “Gauss point.” Figure 4.5-1 shows examples of this process for Gauss rules of orders
n=1,n=2,and n = 3. Gauss points are at £ = 0, & = xa, and £ = 0, b respectively.
There exist tabulations of Gauss point locations and corresponding weights for values of
n much larger than needed for FE work [4.3].

If ¢ = ¢(&) is a polynomial, n-point Gauss quadrature yields the exact integral if ¢ is of
degree 2n — 1 or less. Thus the form ¢ = ¢, + ¢, is exactly integrated by a one-point rule,
the form ¢ = ¢, + c.& + c,& is exactly integrated by a two-point rule, and so on. Use of an
excessive number of points, for example, a two-point rule for ¢ = ¢, + ¢,&, still yields the
exact result. If ¢ is not a polynomial, but (say) the ratio of two polynomials, Gauss quad-
rature yields an approximate result. Accuracy improves as more Gauss points are used.
Convergence toward the exact result may not be monotonic.
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Fig. 4.5-1. Integration of a function ¢ = ¢(£) in one dimension by Gauss quadrature of
orders 1, 2, and 3. Gauss points are numbered.

In two dimensions, integration is over a quadrilateral and a Gauss rule of order n uses
n? points. The formula analogous to Eq. 4.5-1 is

11 n

1=[Jo& mazan =EiWin¢(é‘;,n,) 4.5-2)

~1-1 i=l j=1

where W, W, is the product of one-dimensional weights. Usually m = n; that is, the same
number of points are used in each direction. If m = n = 1, ¢ is evaluated at £ =1 =0 and
I = 4¢,. Gauss points for four-point and nine-point rules are shown in Fig. 4.5-2, and the
corresponding integrals are

I=¢+ 9+ s+ ¢ (4.5-32)

(a) (b)

Fig. 4.5-2. Gauss point locations for integration of a function ¢ = ¢(&, 1) in two di-
mensions, using orders 2 and 3. (Reprinted from [2.2] by permission of John Wiley
& Sons, Inc.)



84 Isoparametric Elements and Solution Techniques

25 40 64 -
I = §(¢1+¢3+¢7+¢9) + ﬁ((bz T4 +0s+05) + E(bs (4.5-3b)

In three dimensions, Gauss quadrature of order n over a hexahedron involves n’ points,
three summations, and the product of three weight factors. Analogous numerical integra-
tion formulas are available for integration over triangles and tetrahedra [2.2].

Consider again the plane four-node element discussed in Section 4.4. Its stiffness ma-
trix integrand B7EB¢|J| is an 8 by 8 matrix. Because it is a symmetric matrix, only 36 of
its 64 coefficients are different from one another. Each of these coefficients has the form
¢ = (&, 1) and each must be integrated over the element area. In computer programming.
a p-point integration rule requires p passes through an integration loop. Each pass re-
quires evaluation of B and |J| at the coordinates of a Gauss point, computation of the
product B’EB¢ [J] , and multiplication by weight factors. Each pass makes a contribution
to k, which is fully formed when all p passes have been completed. Clearly, there is con-
siderable computation required in this process.

For an element of general shape, each coefficient in the matrix B’EBt [J3] is the ratio
of two polynomials in & and 1. The polynomial in the denominator comes from J™': when
J of Eq. 4.4-4 is inverted, |J| becomes the denominator of every coefficient in J™' and
hence appears in the denominator of every coefficient in B. Analytical integration of k
would require the use of cumbersome formulas. Numerical integration is simpler but in
general it is not exact, so that k is only approximately integrated regardless of the number
of integration points. Should we use very few points for low computational expense or
very many points to improve the accuracy of integration? The answer is neither, for rea-
sons explained in the next section.

4.6 CHOICE OF QUADRATURE RULE. INSTABILITIES

A FE model is usually inexact, and usually it errs by being too stiff (see Section 4.8).
Overstiffness is usually made worse by using more Gauss points to integrate element
stiffness matrices because additional points capture more higher-order terms in k. These
terms resist some deformation modes that lower-order terms do not, and therefore act to
stiffen an element. Accordingly, greater accuracy in the integration of k usually produces
less accuracy in the FE solution, in addition to requiring more computation.

On the other hand, use of too few Gauss points produces an even worse situation
known by various names: instability, spurious singular mode, mechanism, kinematic
mode, zero-energy mode, and hourglass mode. Instability (not of the buckling type) oc-
curs if one or more deformation modes happen to display zero strain at all Gauss points.
One must regard Gauss points as strain sensors. If Gauss points sense no strain under a
certain deformation mode, the resulting k will have no resistance to that deformation
mode.

A simple illustration of instabilities appears in Fig. 4.6-1. Four-node plane elements
are integrated by a one-point Gauss rule. In the lower left element, with ¢ a constant, the
three instabilities shown have the respective forms (b) u = cxy, v = 0; (¢) u =0, v = —cxy;
and (d) u = cy(1 — x), v = cx(y — 1). We easily check that each of these displacement
fields produces strains &, = €, = ¥, = 0 at the Gauss point, x = y = 0. Nonrectangular ele-
ments behave in the same way. Even if the mesh had just enough supports to prevent
rigid-body motion it could still display these modes, without strain at the Gauss points,
and hence without strain energy. The FE model would have no resistance to loadings that
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Fig. 4.6-1. (a) Undeformed plane 2 by 2 four-node square elements. Gauss points are shown by
solid squares. (b,c,d) “Instability” displacement modes. (Reprinted from [2.2] by permission of
John Wiley & Sons, Inc.)

would activate these modes. The global K would be singular regardless of how the struc-
ture is loaded. These spurious displacement modes rarely appear in isolation. Usually
they are superposed on “legitimate” displacement modes, which makes them hard to
identify. »

When supports are adequate to make K nonsingular, there may yet be a near-instabil-
ity that is troublesome. Consider Fig. 4.6-2a. All d.o.f. are fixed at the support and each
element stiffness matrix is integrated with a single Gauss point. Restraint provided by the
support is felt less and less with increasing distance from it. If L is several times H, the
computed displacement of load P may be greater than the length of the bar! At the same
time displacements and stresses at the Gauss points will have good accuracy unless the
spurious displacements overwhelm the solution.

A plane eight-node element whose stiffness matrix is integrated with four Gauss
points has the “hourglass” instability shown in Fig. 4.6-2b. This mode is of no concern
because it is noncommunicable: there is no way that two adjacent elements can both dis-
play this mode while remaining connected, even if nodal d.o.f. are reversed from Fig.
4.6-2b in one of the two elements. Accordingly, a mesh of two or more such elements has
no such instability. However, a near-instability, roughly analogous to that in Fig. 4.6-2a,
is possible if adjacent elements have greatly different moduli and an edge-normal force is
applied to the stiffer element at a midside node. In this case hourglassing is only lightly
resisted by the softer element. Also, if a ninth node were added at the element center, two
additional instabilities would be possible under four-point quadrature, both of them com-
municable [2.2, 3.2].

The default option in commercial software usually calls for the smallest number of
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Fig. 4.6-2. (a) Mesh of four-node square elements with all nodes fixed at the sup-
port. Gauss points are shown by solid squares. (b) “Hourglass” instability displace-
ment mode in a single eight-node element integrated by four Gauss points.
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Gauss points that will make instability impossible. Occasionally, fewer points are used,
but then “stabilization” devices are invoked that prevent instability. A user who chooses
other quadrature rules or overrides a stabilization device must be aware of the possible
difficulties and how to avoid them. .

4.7 STRESS CALCULATION AND GAUSS POINTS

Calculated stresses o = EBd are often most accurate at Gauss points. This statement can
be made plausible by returning to the problem of Fig. 4.6-2a. As shown in Fig. 4.7-1, a
large and spurious bending deformation, associated with rotation of y-parallel element
sides, is superposed on a constant strain state that is essentially correct. The spurious de-
formation has no effect on strains at the Gauss point. In more mundane situations, and
with various element types, it is not hard to realize that strains are likely to vary over an
element and are therefore likely to be more accurate at some locations than others. It hap-
pens that the locations of greatest accuracy are apt to be the same Gauss points that were
used for integration of the stiffness matrix [3.2, 4.4]. Consider Fig. 4.7-2, for example,
which shows a portion of a beam in which shear strain is % constant along the x axis.
The shear strain calculated by FE displays a quadratic variation that is most accurate at x
coordinates of the Gauss points.

In summary, it is common practice to use an order 2 Gauss rule (four points) to inte-
grate k of four- and eight-node plane elements, and common practice to compute strains
and stresses at these same points. Similarly, three-dimensional elements often use eight
Gauss points for stiffness integration and stress calculation. Stresses at nodes or at other
element locations are obtained by extrapolation or interpolation from Gauss point values.
Thus the element stress field is represented as bi- or trilinear in isoparametric coordi-
nates; for example, in a plane element o, is represented by the form O, =c +c.t+cn+
c4&n. For eight-node elements this is a polynomial of lower degree than contained in the
B matrix and therefore some information has been discarded. Nevertheless, accuracy is
usually greatest when the element stress field is a polynomial fitted to Gauss point values.

4.8 NATURE OF FINITE ELEMENT SOLUTION

The FE method is a form of the Rayleigh-Ritz method, which is a classic approximation
technique originated by Lord Rayleigh in 1870 and generalized by W. Ritz in 1909. In the
classical Rayleigh-Ritz method one begins with a displacement assumption in terms of
generalized coordinates f3, for example, Egs. 3.2-1, 3.3-1, and 3.4-1. However, the as-
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Fig. 4.7-1. (a) Upper right-hand element in Fig. 4.6-2a. (b)
Possible displacement mode of this element.
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Fig. 4.7-2. (a) Portion of a beam modeled by a single layer of eight-node elements. (b) Shear
strain along the x axis.

sumed field applies to the entire body, not element by element in piecewise fashion; in-
deed, there are no elements and no nodes. The assumed field must satisfy compatibility
conditions within the body and displacement boundary conditions. For example, a lateral
displacement field v = v(x) for a cantilever beam without transverse shear deformation
must be single-valued and must display v = 0 and dv/dx = 0 at the support. One forms an
energy expression that includes strain energy of the body and work done by applied
loads. Minimization of the total energy with respect to the f3; yields simultaneous alge-
braic equations that can be solved for the 8. The FE method differs in that it uses a dis-
placement field defined in piecewise fashion and uses nodal d.o.f. instead of the 3. These
modifications make it much easier to write a computer program to carry out the calcula-
tions. The FE method can be regarded as a modern way of arranging procedural details of
the Rayleigh-Ritz method.

In the Rayleigh-Ritz method, the model can deform only into shapes contained in the
assumed displacement field. For example, if we assume the field v = f8,x* + B,x° for lateral
displacement of a uniform cantilever beam fixed at x = 0, the model is constrained to de-
form into only the modes v = x* and v = x°, with the respective amplitudes f, and f3,. If the
loading happens to be distributed rather than concentrated at the free end, the correct field
v = v(x) is more complicated than this. Then the assumed field has, in effect, applied con-
straints that prevent the correct displacement field from appearing. Constraints have a stiff-
ening effect. Accordingly, the Rayleigh-Ritz method yields “lower bound” displacements,
that is, displacements that are either exact or too small as compared with an exact solution
of the mathematical model (the mathematical model is beam theory in the foregoing exam-
ple). This does not mean that displacements are too small at every point; it means that
work done by applied loads is too small (recall that work is load times displacement incre-
ment, integrated over the structure volume). In other words, displacements are too small in
an average sense. If the load consists of a single force or moment, we can say with cer-
tainty that the Rayleigh-Ritz method predicts a load-parallel displacement of the loaded
point that is either exact or too small as compared with the mathematical model.

The foregoing remarks also apply to a FE solution using displacement-based elements
(like those in Chapter 3), provided that (a) nodal loads from distributed loading are ap-
plied in work-equivalent fashion , (b) elements are compatible, and (c) elements are inte-
grated exactly. These restrictions mean that if we use load lumping (Section 2.5), incom-
patible elements (Section 3.6), or (say) four Gauss points to integrate k of an eight-node
plane rectangular element or k of a four-node nonrectangular plane element, then we can-
not guarantee that computed displacements are a lower bound. Nevertheless, even if we
violate these restrictions in solving a practical problem, it is more likely that the FE
model will be too stiff than too flexible.

Additional remarks about the nature of a FE approximation appear in Section 3.1.
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4.9 CONVERGENCE REQUIREMENTS. PATCH TEST

Imagine that a given problem is solved repeatedly, each time using a finer FE mesh. Will
the sequence of solutions converge toward exact displacements, strains, and stresses? The
answer is yes provided that the elements used pass a parch test [3.2].

To perform a patch test, one builds a simple FE model, that is, a “patch” of elements,
such that at least one node is internal to the patch (rather than on its boundary), and hav-
ing just enough supports to prevent rigid-body motion. Work-equivalent loads consistent
with a constant stress state are applied. In Fig. 4.9-1a, the rectangular outline of the patch
and uniform spacing of nodes along its left and right edges make it easy to assign loads F
and 2F, which are work-equivalent loads consistent with a uniform x-direction traction.
No load is applied to the internal node. The correct response to this loading is constant
stress o, = 2F/Ht, where ¢ is the constant z-direction thickness. (We speak of stresses
rather than strains only because most software reports stresses rather than strains.) One
analyzes the “patch” model like any other FE model and examines the computed stresses.
If the stress results are exact, that is, if 0, = 2F/Hr and all other stresses are zero at all
stress calculation points, then the patch test for o, is passed. Other states of stress, that s,
O, = constant and 7, = constant for plane elements, should also be patch-tested. If an ele-
ment passes patch tests we can be sure that, when this type of element is used in the FE
model of a practical problem, exact results will be approached as the mesh is repeatedly
refined. Here “exact” means perfect agreement with the mathematical model on which
the element is based; that is, beam theory, plate theory, or whatever. In other words, prior
to convergence the FE model disagrees with its mathematical model because of dis-
cretization error, which tends to zero with mesh refinement if elements pass patch tests.
Whether or not the mathematical model is a good representation of physical reality is an-
other matter.

A successful patch test indicates that when an element is used in a mesh, rather than in
isolation, it is able to display (a) a state of constant strain, (b) rigid-body motion without
strain, and (c) compatibility with adjacent elements when a state of constant strain pre-
vails. An element that meets these requirements may be called a valid element. It is not
hard to see that these requirements must be met if there is to be convergence toward cor-
rect results with mesh refinement. Consider Fig. 4.9-1b. From A to B the exact strain &,
varies linearly with x. This variation is approximated in stair-step fashion by constant
strain elements between A and B and can be approximated arbitrarily closely by using
more and more elements. As a counterexample, if we were to use an (invalid) element
that could display only a linear variation of €, such as €, = cx, where c is a constant, we
would see a sawtooth plot of &, that would remain inexact regardless of the number of ele-
ments used. As for rigid-body motion, from B to C in Fig. 4.9-1b elements must be able
to display rigid-body motion without strain. Finally, the theoretical need for interelement
compatibility was noted in Section 3.1. A valid incompatible element (e.g., element Q6 of
Section 3.6) displays its incompatible mode only when there is a strain gradient. Its dis-
placements are compatible when it is in a state of constant strain. With repeated mesh re-
finement, the change in a strain field over an element becomes negligible in comparison
with the constant part of the strain field. Accordingly, as a mesh is repeatedly refined. ele-
ments must become compatible if they were not so already.

The foregoing arguments make it plausible that patch tests check that all convergence
requirements are met in the limit of mesh refinement, when each element must approach
a state of constant strain. This is all that is required for convergence. Passing patch tests
says nothing about the speed of convergence; that is, passing patch tests shows that an ele-
ment works, not that it works well.
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Fig. 4.9-1. (a) A patch test for o, in plane four-node elements. (b) Six-element bar under uniformly
distributed load g over portion AB.

Plate elements carry load by bending and must display constant curvature states in or-
der to pass patch tests. Applied loads must be consistent with constant states of 9*w/dx>,
0*w/9y?, and 9*w/dx dv, where w = w(x, y) is the displacement in the z direction, normal
to the plate midsurface z = 0. Constant-curvature states produce constant strain states in
z = constant layers of a plate.

One who uses FE rather than developing new elements will probably not use patch
tests to study the validity of elements. Nevertheless, patch tests can be helpful in learning
about FE and in learning how to use software because patch tests are simple, data are
easy to prepare, and exact results are known.

4.10 INFINITE MEDIA AND INFINITE ELEMENTS

Occasionally, a region of interest is embedded in a medium so large that it can be consid-
ered unbounded. For example, Fig 4.10-1a represents a thick slab supported by soil. For
the present discussion it does not matter whether the problem is two- or three-dimen-
sional. Stresses in and near the slab are desired. A coarse-mesh FE model is shown in
Fig. 4.10-1b. If arc CD is far enough from the slab, the FE model may be terminated

(a) (b)

Fig. 4.10-1. (a) Slab supported by an infinite medium, with symmetry about
the vertical centerline. (b) FE model of half the structure, with infinite elements
denoted by eo.
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there by making CD a fixed support. But how far is far enough? Too close introduces er-
ror; too far produces a large and unwieldy FE model. And if the problem is dynamic, a
fixed support will reflect waves regardless of the size of the FE model. Some way of rep-
resenting the “far field” is desirable.

One way to treat the problem is by introducing “infinite” elements [4.5, 4.6]. Instead of
fixing d.o.f. along CD in Fig. 4.10-1b, these d.o.f. are connected to a single layer of infi-
nite elements. An infinite element is produced by using special shape functions in the
isoparametric formulation, so that nodes on one side of an element are made to move off
to infinity. In Fig. 4.10-1b these sides are downward and to the right of CD and do not ap-
pear. “Mapping to infinity” has the effect of making displacements decay toward zero with
increasing distance from CD. Infinite elements can be used for various problems of con-
tinua, stress analysis being only one, and for either time-independent or harmonic wave
problems. It appears that they cannot be used for transient problems such as shock waves.

Another way to treat the problem is by using boundary elements (BE) to model the
medium that supports the slab. We make no attempt here to explain the workings of the
BE method. Suffice it to say that FE and BE models can be connected, that BE models
can easily represent infinite media, and that a BE model has nodes only on its boundary.
Thus in Fig. 4.10-1b a BE model of the soil would contact the slab directly and would
have no nodes within the region ABCD, which simplifies the task of data preparation.
Despite the reduction in number of d.o.f., the computation time of BE may be greater
than that of FE because global BE matrices are full and unsymmetric.

4.11 SUBSTRUCTURES

Substructuring is a process of analyzing a large FE model as a collection of component
FE models. It will be easier to understand why this is done if we first describe how it is
done, which is as follows.

1. Divide the FE model into two or more parts (substructures) by cutting along lines
of nodes. Preferably, cuts are made across narrow parts of the model, so as to re-
duce both the number of d.o.f. on cutting lines and the interaction between sub-
structures. For example, we choose cuts along hatched lines in Fig. 4.11-1a rather
than cuts along the middle of wings or along the fuselage.

2a O
3 4 5 ) Q
15
cll= ~ {p
) O
| c D
(a) b

Fig. 4.11-1. (a) Possible substructures la, 1b, ..., 5 of a hypothetical aircraft. (b) Castellated
beam, with typical repeating substructure ABCD. Elements of the substructures are not shown.
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Create a FE model of each substructure and obtain a set of global equations
K.D, =R, for each substructure. Begin to solve these equation sets, for example,
by Gauss elimination, until all d.o.f. nor on cutting lines have been eliminated
and only “attachment” d.o.f. D, on the cutting lines remain. D, is a small subset
of D,. Symbolize the reduced equation set for a single substructure by K, D, =
R

-

3. Assemble the reduced equation sets of all substructures, to obtain global equa-
tions K,D, = R, where D, contains all attachment d.o.f. D, of all substructures.
(This set of equations is the same reduced set that would result if all d.o.f. of the
entire structure had been assembled to form global equations KD = R, then
Gauss elimination applied until only attachment d.o.f. D, remain.) Note:
Attachment d.o.f. of mating substructures must match in number, placement,
type. and orientation.

4. Solve the equations K,D, = R, for D,. Thus attachment d.o.f. D, become known
for all substructures. Return to the substructure equations KD, = R, created and
partially solved in step 2: now solve for the remaining d.o.f. in D, by back substitu-
tion. Finally, postprocess to obtain stresses in elements.

The substructure assembly process, step 3, is the same process used to assemble individ-
ual elements of a standard FE model. In effect, a substructure is a large element that has
internal d.o.f. as well as d.o.f. on its boundary. Indeed, substructures are sometimes called
“superelements.” Other terminology may refer to attachment d.o.f. as “masters” and other
d.o.f. as "slaves.” A capability for substructuring is included in large commercial soft-
ware packages.

A substructuring approach becomes appropriate when the structure is large and can
be cut into substructures that do not interact strongly. Then individual substructures
can be repeatedly revised, in design or in FE modeling, always using the same attach-
ment d.o.f. D, originally calculated from the assembled substructures. Different de-
sign groups, even different companies, can work on different substructures. Indeed,
the location of substructure boundaries may be dictated by binding agreements be-
tween subcontractors. Only occasionally, when it is felt necessary to update the values
of the attachment d.o.f., are substructures assembled and the resulting global equations
solved. ‘

Another motivation for substructuring appears when nonlinearities such as plastic ac-
tion are confined to a single part of the structure. The linear part, whose reduced stiffness
matrix K, does not change as loading increases, can be represented by a substructure. Its
attachment d.o.f. D, are shared by the nonlinear part, whose properties and matrices must
be repeatedly revised as loading increases.

Finally, there is an advantage to substructuring if the FE model contains many repeti-
tions of the same geometry (Fig. 4.11-1b). Then the same set of reduced substructure
equations K, D, = R, applies to each of the repeating substructures. Repeated assembly of
the same K, and R, arrays, with appropriate node numbers, yields the global arrays K,
and R, of the assembled substructures.

Substructuring in static stress analysis does not introduce any additional approxima-
tion. Nor does it reduce computational effort in the very rare situation of having no re-
peating parts, no nonlinearities, and no revisions in design or modeling. Substructuring
increases the number of computer files needed to do an analysis. Clearly, it is possible to
loose track of pieces of the puzzle. The analyst is advised to plan carefully and keep
records.
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4.12 SYMMETRY

Types of symmetry include reflective, skew, axial, and cyclic. If symmetry is recog-
nized and exploited, the size of the FE model is reduced. Thus there is less input data to
prepare and less computation to do.

A structure has reflective or mirror symmetry if there is symmetry of geometry, sup-
port conditions, and elastic properties with respect to a plane. Reflective symmetry of
structure and loads is shown in Fig. 4.12-1a: if reflected by the plane x = 0, the left half
yields the right half and vice versa. One could say that reflection brings the structure and
its loads into “self-coincidence.” Analysis of either half yields a complete solution be-
cause symmetric loading on a symmetric structure produces symmetric results.

If P,= P, in Fig. 4.12-1a, the planes x =0, y = 0, x = y, and x = —y are all planes of re-
flective symmetry, and we need analyze only one octant of the structure, using P,/2 as the
load. Supports on a symmetry plane in Fig. 4.12-1a must allow only motion radially from
the origin x = y = 0 (as in Fig. 3.12-2a). A similar example appears in Fig. 4.12-1b: analy-
sis of the right (or left) half of the beam, with rotation 6, prevented at x = 0, provides a
complete solution of the problem. These examples are very simple, but one can see that if
the structure were large and complicated it would be a waste of effort to ignore symmetry
and prepare a model of the entire structure.

Note that loads as well as structure may be cut by a plane of symmetry. In Fig.
4.12-1a, if only half the structure is retained because plane x = 0 is used as a plane of re-
flective symmetry, loads P, become P,/2 on the half retained. Similarly, if a stiffening
beam (as might be used beneath a floor slab) is longitudinally bisected by a plane of re-
flective symmetry, only half its stiffness is retained.

The problem shown in Fig. 4.12-1c is antisymmetric because of the loading. Re-
flection about the plane x = 0, followed by reversal of all loads, results in self-coinci-
dence. Again, analysis of half the structure yields a complete solution. Note, however,
that support conditions differ in Figs. 4.12-1b and 4.12-1c.

Rules that help in setting the correct support conditions for reflective symmetry are as
follows. The conditions stated apply only to boundary nodes of the FE model that lie in a
plane of reflective symmetry of the entire structure. If the problem is symmetric:

1. Translations have no component normal to a plane of symmetry.
2. Rotation vectors have no component parallel to a plane of symmetry.

I | SO U b,
A= = &
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(a) (b) (c)

Fig. 4.12-1. (a) Plane structure having reflective symmetry about x = 0 and ¥ = 0 planes. (b) Beam
under symmetric load. (c) Beam under antisymmetric load.
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If the problem is antisymmetric, that is, symmetric except that loads must be reversed to
achieve self-coincidence:

1. Translations have no component parallel to a plane of antisymmetry.
2. Rotation vectors have no component normal to a plane of antisymmetry.

Figure +4.12-2 depicts these rules in terms of d.o.f. permitted rather than d.o.f. restrained.
The reader should verify that these rules hold for the special cases in Figs. 4.12-1b and
4.12-1c.

If one suspects the presence of symmetries but their nature is not clear, one may do a
coarse-mesh analysis, either of the entire structure or a part of it that is obviously treat-
able by symmetry considerations. Computed results may confirm or refute the existence
of the suspected symmetries.

Figure 4.12-3 is an example of how symmetry concepts might be applied even when
obvious symmetries are not present [5.4]. By regarding the load as the sum of symmetric
and antisymmetric parts, we obtain the cases in Figs. 4.12-3b and 4.12-3c. By superpos-
ing solutions of these two cases, we solve the original problem. Thus bending moments in
Fig. 4.12-3a are M, = M,, M, = Ms + M-, and M, = M,. We have traded one solution of
the entire structure for two solutions of half the structure. The possible advantage is that
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Fig. 4.12-3. Modeling a plane frame problem as the sum of symmetric and antisymmetric cases.
(Reproduced from [5.4] by permission of the publisher.)
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Fig. 4.12-4. Skew symmetry of a plane frame, with loads that are (a) skew symmetric and (b) skew
antisymmetric.

the two solutions differ only in loads and support conditions. Such a trade may be advan-
tageous if the structure is geometrically complicated and considerable effort is needed to
prepare input data, or if the reduction in number of d.o.f. is important.

Skew or inversion symmetry is illustrated in Fig. 4.12-4. In Fig. 4.12-4a, a half-revolu-
tion of structure and loads about the z axis (normal to the paper) results in self-coinci-
dence. In Fig. 4.12-4b, a half-revolution followed by reversal of loads results in self-coin-
cidence. In both cases only half the structure need be analyzed, but support conditions at
point O are not so readily stated as are support conditions for cases of reflective symme-
try [4.7].

Axial symmetry prevails when a solid is generated by rotation of a plane shape about
an axis in the plane. Although the structure is three-dimensional, the FE model need be
only two-dimensional. Axially symmetric bodies are common and their analysis is dis-
cussed separately (Chapter 6).

A structure that is not axially symmetric may yet exhibit a rotational repetition of
geometry, material properties, supports, and loads. This circumstance is called cyclic
symmetry (or sectorial symmetry, or rotational periodicity). An example appears in Fig.
4.12-5a. A complete solution is obtainable by analysis of one repetitive portion, such as
that in Fig. 4.12-5b. Other choices of representative repetitive portion are possible.
Although only one such portion is needed, it is convenient to speak of “attachment”
d.o.f. along AB and CD. Attachment d.o.f. along AB and CD must match exactly—in
number, placement, type, and orientation—for the reason that d.o.f. along AB and CD
must be constrained to have identical displacements. Specifically, nodes A and C must
have the same displacement components in the respective n directions and the same dis-
placement components in the respective s directions. If attachment d.o.f. carry externally
applied loads, these loads must be applied on either AB or CD, but not both, as this
would apply twice the load intended. In order to exploit cyclic symmetry, it is not neces-
sary that the body be plane or that attachment d.o.f. lie on straight lines. In general, at-
tachment d.o.f. lie on congruent curved surfaces in space, match exactly in position, and
use d.o.f. that match in their orientations with respect to these surfaces. Concepts of
cyclic symmetry need not be restricted to problems in which repetitions of form and
loading appear with rotation about an axis. Similar repetitions may appear in a long
slender structure. With appropriate loading, this would be possible in Fig. 4.11-1b. for
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Fig. 4.12-5. (a) Plane structure that exhibits cyclic symmetry. Loads are P and Q. Supports
(not shown) exert no force. (b) Typical repeating portion. Nodes on AB and CD are shown but
the FE mesh is not shown.

example. This circumstance, less common than cyclic symmetry, may be called “repeti-
tive” symmetry.

Caution. Symmetry concepts should be used sparingly and carefully in problems of vi-
bration and buckling. For example, a uniform, simply supported beam has symmetry
about its center but has anrisymmetric vibration modes as well as symmetric vibration
modes. If half the beam were analyzed, the support conditions of Fig. 4.12-1b would per-
mit only symmetric vibration modes, while the support conditions of Fig. 4.12-1¢c would
permit only antisymmetric vibration modes. Similarly, an axisymmetric solid or shell will
have many vibration modes that are not axisymmetric. Caution is also needed in static
problems that involve nonlinearity because symmetries present when loading begins may
subsequently disappear.

4.13 CONSTRAINTS

A constraint may merely prescribe the numerical value of a d.o.f. and may then be called
a “single-point constraint.” The most common example is setting a d.o.f. to zero as a sup-
port condition. In the following discussion, “constraint” is used to mean a prescribed rela-
tion among d.o.f. (sometimes called a “multipoint constraint”). The problem of Fig. 4.3-3
is an example. In that problem, d.o.f. at nodes 1 and 2 are constrained to follow d.o.f. at
nodes 3 and 4 and are replaced by d.o.f. at nodes 3 and 4 prior to assembly of elements. A
constraint is roughly the opposite of a release (Section 2.3); however, d.o.f. in a con-
straint relation need not be physically adjacent.

One way to impose constraints is to use transformation, much as described below Eq.
4.3-2, to eliminate constrained d.o.f. prior to assembly of elements. For each equation of
constraint, one d.o.f. can be eliminated. In what follows we describe how constraints may
be applied to global equations KD = R, gfter assembly of elements, to override the elastic
relation among d.o.f. to be constrained. We will describe two methods that are used in
commercial software: the Lagrange multiplier method, which imposes constraints ex-
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actly, and the penalty method, which imposes constraints approximately. First, we illus-
trate constraint equations per se, as follows.

Constraint Equations. A constraint may be used in the plane problem of Fig. 4.13-1.
The beam element has rotational d.o.f. but the plane elements do not. We wish to intro-
duce moment communication at the left end of the beam element so that node 1 is not just
a hinge connection. We may elect to make node 1 and edge 1-2 have the same rotation,
that is, 6,; = (u, — u,)/b. The equation of constraint is then

[-1— 01 -2 00 0 ---]D:O (4.13-1)
b b

where D = [u, v, 6., u, v, us; v;-]7 contains all d.o.f. active at the global
level (here we save space by listing only the d.o.f. needed in the present example). As
an alternative, we may elect to make node 1 and edge 3-1 have the same rotation, that is,
6., = (v, — v3)/a, for which the equation of constraint is

[0 1000 L ...}Dzo (4.13-2)
a a

Clearly, there are many plausible alternatives, such as using the u; and v, at nodes 2 and 3

instead, or enforcing the additional constraint that edges 1-2 and 1-3 remain perpendicu-

lar, and so on. One should not expect that any alternative will provide accurate stresses

near node 1 in the plane body. (See Fig. 3.9-6 for a different treatment of this problem.)
An equation of constraint has the general form

CD-Q=0 (4.13-3)

where C is an m by n matrix, m is the number of constraint equations (2 = 1 in Egs. 4.13-1
and 4.13-2), and n is the number of d.o.f. in the global vector D. Q is a vector of con-
stants. Often Q = 0, as is the case in Egs. 4.13-1 and 4.13-2. We will describe two ways
to impose Eq. 4.13-3 on the global equations KD = R.

Lagrange Multiplier Method. We introduce as additional variables the Lagrange multi-
pliers A=[4, A, - A,]". Each equation of constraint is written in homogeneous form
and multiplied by the corresponding A;, which yields A7{CD — Q} = 0. Next, the left-
hand side of this equation is added to the usual energy terms, which produces the modi-
fied total energy expression

I1,=3D"KD - D'R + A{CD - Q} (4.13-4)

nu
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\_ ' Fig. 4.13-1. A plane beam element joined to a plane
o~ ] quadrilateral element.
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Derivatives of I'l, with respect to the D, and the A, are set to zero, which yields

K C'| (D R 4135
c o4 |Q @139
The lower partition states the m constraint conditions, Eq. 4.13-3. If m = 0 we obtain the
usual result KD = R. Equation 4.13-5 is solved for both D and A. Despite the null subma-
trix, a Gauss elimination solution will not fail if eliminations are properly sequenced be-
cause eliminations introduce nonzero diagonal coefficients.
As an example, we impose the constraint u; = u, in Fig. 4.13-2a. After all support con-

ditions have been imposed, but not the constraint condition, global equations are as
shown in Fig. 4.13-2b. The equation of constraint is

c{”‘} =0 where Co=[ -1] (4.13-6)

Equation 4.13-5 becomes

k -k 1 u, P
-k 2k -1|<Su,p =40 (4.13-7)
1 -1 0 A 0

Solving, we obtain u, = u, = P/k, A = P. The sign of 4 is not significant, but its magni-
tude can be regarded as the force of constraint.

Penalty Method. Equation 4.13-3 is modified to read t = CD — Q, so that t = 0 implies
satisfaction of the constraints. An energy expression analogous to Eq. 4.13-4 is

I1,=3D"KD - D'R +it"at (4.13-8)

where @= [0, «, - o,] is a diagonal matrix of “penalty numbers,” chosen by the ana-
lyst and preferably dimensionless. Derivatives of I, with respect to the D; are set to zero,
which yields

[K+C'aC]ID=R + C"aQ (4.13-9)

where C’aC is called a “penalty matrix.” If & = 0, the constraints are ignored. As & be-
comes large, the penalty of violating constraints becomes large, so that constraints are
very nearly satisfied. Penalty numbers that are too large produce numerical ill-condition-
ing, which may make computed results unreliable and may even “lock” the mesh (e.g., if
the material is incompressible; see below).
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Fig. 4.13-2. (a) Two-element uniform bar. A = cross-sectional area; E = elastic
modulus. (b) Global equations KD = R, with u, and u, the only nonzero d.o.f.
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As an example, consider again the constraint v, = u, in Fig 4.13-2. There is only one
constraint and therefore only one penalty number, which is dimensionless if we elect to
write the constraint matrix as C = [@ —\/E]. Equation 4.13-9 becomes

H—kk ;lzj " O{_kk —kk:U {:} = {g} (4.13-10)

which has the solution

_2+a£
1+ k

U, =

P
— 4.13-11
. ( )

U

If =0, then u, = 2P/k and u, = P/k, which is the unconstrained elastic solution. If ¢ be-
comes large, we approach the constrained solution u, = u, = P/k. Note that if & were infi-
nite, the coefficient matrix in Eq. 4.3-10 would be singular. Thus we see that penalty
numbers must be large enough to be effective but no so large as to cause numerical diffi-
culties.

Very Stiff Elements. A stiff region or element in a comparatively flexible structure con-
tributes a penalty stiffness matrix to K, as in the example of Eq. 4.13-10. Further exam-
ples appear in Section 5.10. A very stiff region may provoke serious ill-conditioning.
Rather than attempting to manage the difficulty it is better to avoid it altogether by using
(say) the Lagrange multiplier method to make the stiff region perfectly rigid. This is a
common practical application of multipoint constraints.

Incompressible Materials. As Poisson’s ratio approaches 0.5, a material approaches in-
compressibility. If an element is incompressible, its normal strains are constrained to sum
to zero, which is the condition of no volume change. Accordingly, the number of con-
straint conditions in a FE model of an incompressible material is equal to the number of
elements times the number of Gauss points used to integrate each element. These con-
straints are not imposed after K is formed; rather they arise naturally, are incorporated in
K, and can be shown to have the form of a penalty matrix. If the penalty matrix is nonsin-
gular the mesh “locks”; that is, computed d.o.f. may be orders of magnitude too small. A
useful solution can be obtained if the penalty matrix is singular. Arguments too lengthy to
repeat here [2.2] indicate that solutions are reliable if (a) penalty terms are integrated us-
ing fewer Gauss points than used for other terms in element stiffness matrices, (b) the ra-
tio of the number of d.o.f. to the number of penalty Gauss points is approximately 2:1 for
plane problems and 3:1 for solid problems, and (c) v is such that the reciprocal of
3(1 — 2v) is between 10”” and 10”2, where p is the number of digits used in computer
words.

The foregoing remarks about incompressibility do not apply to problems of plane
stress, plate bending, and shells, for which thickness changes are unrestrained and the in-
compressibility condition is therefore not enforced.

ANALYTICAL PROBLEMS

4.1 Let the structures shown have two-node elements and one d.o.f. per node. Number
the nodes so that there are as few coefficients as possible between the skyline and
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4.3

4.4

the diagonal of K. Also, write K to the extent of showing the locations of its
nonzero coefficients for the numbering you choose.

AN
L

Imagine that the bar element in Fig. 4.3-1a is arbitrarily oriented in space, with its
orientation defined by direction cosines /, m, and n of angles between the element
axis and global axes XYZ. Write the appropriate transformation matrix T and obtain
the resulting element stiffness matrix k that operates on nodal translation d.o.f. par-
allel to X. Y, and Z axes.

Imagine that the element in Fig. 4.3-1a is a beam element, having as nodal d.o.f.
translations w, and w, normal to the xy plane and rotations 8,, and 6,, whose vec-
tors are parallel to the y axis. Write the transformation matrix T that will convert the
matrix k” that operates on these d.o.f. to a matrix k that operates on d.o.f. w, w,,
and rotations 6By; and 6,,; (i = 1, 2) about X and Y axes.

(a) (b) (c) Problem 4.1

Generalize Fig. 4.3-3a so that there are the usual six d.o.f. per node and offsets a,,
b;, and ¢; (i = 1, 2). Write the appropriate transformation matrix T.

Obtain numerical values of the four coefficients in matrix J, Eq. 4.4-4, for each of
the elements shown. Also, compute |7 and explain its significance.

6 \, Y 28— 2 f<—
4 3 1 fe—3—>
1 2 72! ;
(a) (b) (c)
Problem 4.5

4.6 For the four-node plane element discussed in Section 4.4, write coefficients in the B

matrix in terms of coefficients J¥ in J™' and derivatives of the N, with respect to &

and 7. Assume that nodal d.o.f. have the order {u, v, u, - v,}.
4.7 The “natural” coordinate system £7) in Fig. 4.4-1 is not unique. Another possible

choice is the rs system shown in the sketch. Restate the N; of Eq. 4.4-2 in terms of r
and s.

Problem 4.7
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4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

Isoparametric Elements and Solution Techniques

Gauss points and weights are symmetric with respect to the center of the integration
interval, and a two-point rule integrates the polynomial ¢ = ¢, + ¢,& + ¢;& + ¢,&
exactly. Use this information to derive the location and weight values of the two-
point Gauss rule for the integration interval —1 to +1.

If we sum over all points of a Gauss quadrature rule, we obtain >, W; = 2 in one di-
mension and 2> W;W, =4 in two dimensions, for any order of rule. Why?

Use one-, two-, and then three-point Gauss quadrature rules to integrate the follow-
ing functions over the interval £ = —1 to £ = +1. Compute the percentage error of
each result.

(@) ¢p=¢*+&

(b) ¢=cos 1.5¢

© ¢=(1-8/2+9)

Use Gauss quadrature to evaluate the integral

Use (a) one point, (b) four points, and (c) nine points. Compare each of the results
with the exact result obtained by use of a table of integrals.

(a) Let the element in Fig. 4.6-2b be a 2 by 2 square. The displacement mode
shown is then u = x(1 — 3y%), v = y(3x* — 1). Show that this mode produces zero
strains at the four Gauss points.

(b) Sketch an adjacent eight-node element whose nodal displacements are of oppo-
site sign to those in Fig. 4.6-2b. In what way are the two elements incompati-
ble?

Imagine the stiffness matrix of a simple plane beam element (four d.o.f.) is to be in-

tegrated by Gauss quadrature.

(a) Sketch the deflected shape of the beam for the instability that is possible if a
single Gauss point is used.

(b) How many Gauss points are needed to integrate k exactly? Why?

(c) Evaluate k using one-point quadrature. Show that it contains the correct bend-
ing stiffness, and explain its defects. Note: 3] =10

Consider a 24-d.o.f. solid element in the form of a cube. There are eight vertex
nodes. Each has translational d.o.f. in x, y, and z directions. If integrated by a single
Gauss point at the element center there are 12 instability modes. Using x-direction
displacements only, sketch deformed elements for four of these modes.

If a bar element is formulated in isoparametric fashion, it extends from & = -1 to
& = +1. Imagine that axial stresses are 0, and 0, at the respective Gauss points of
an order 2 rule. Based on 0, and 0,5, what is o, as a function of &, and what is the
extrapolated value of o, at each end of the element?

For the uniform cantilever beam shown, assume that the lateral displacement field is

given by v = X8/, where i = 2, 3, . . ., n. Compute strain energy U by integration
of 0.5EI(d*v/dx*)* over length L [2.1] and the total energy as IT, = U — Pv,, where
v, is v evaluated at x = L. From the equations oI1,/0;=0,i=2, 3, ..., n. compute

the fB; and v, for (a) n = 2 and (b) n = 3. Compare the computed v, and bending mo-
ment at x = 0 with predictions of beam theory.
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4.17

4.18

4.19

4.21

4.24

For the simply supported and uniformly loaded beam shown, assume that the lateral
displacement field is v = Bx(L — x). Compute strain energy U as described in
Problem 4.16 and the total energy as U minus the integral of v(g dx) over length L.
Compute 3 from dT1/df3 = 0. At the ends, middle, and quarter-points of the beam,
compare computed values of deflection, slope, and bending moment with values
predicted by beam theory.
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Problem 4.16 Problem 4.17

Repeat Problem 4.16 with load P replaced by a uniformly distributed load gq. See
Problem 4.17 for advice on calculating work associated with the load.

Proceeding as in Problem 4.17, compute the center deflections v,, and v, in
Problem 2.8. (Contrary to the simple assumption made in Problem 2.8, the present
analysis will not yield v,, = vg,.)

Consider patch tests for constant o, and constant 7, in the FE model of Fig. 4.9-1a.
Let the x-direction span be L. For convenience, place all side nodes of the patch at
midsides. What are appropriate nodal loads in each case?

As an alternative form of the patch test, one could impose all d.o.f. at all nodes, us-
ing values consistent with a constant strain state, then calculate nodal loads R =
KD. If the patch test is passed, what should be the calculated loads at the node in-
ternal to the mesh?

Let the equations that represent a substructure be

K(lﬂ K(IS Da Raa

K K] |D,) [R,
By solving for D, from the lower partition and substituting into the upper partition,
determine expressions for K, and R, in the reduced equations K,D, = R,..

(a) The beam shown is uniform and simply supported. Use elementary beam theory
and the type of superposition method suggested in Fig. 4.12-3 to determine the
deflection at the center point of the beam and at load P. Express answers in
terms of P, a, E, and I.

(b) The problem depicted in Fig. 4.12-5a can be solved by the method of Fig.
4.12-3 rather than by the method of cyclic symmetry. Describe how.

*P

A 1 0
a

f 3a T

=1 Problem 4.23

The sketch shows a plan view of a grillage, which is a planar arrangement of inter-
connected beams. Assume that all elements are identical and that nodal d.o.f. are w;,
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4.25

4.26

4.27
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(in the z direction), 6,;, and 8,;. The grillage is square and supports impose w; = 0 at

all nodes i on the boundary of the square. A z-parallel force of magnitude P acts on

nodes as described below. Describe what portion of the grillage constitutes the

smallest acceptable model, and what its boundary conditions are, if:

(a) All loads P act in the same direction.

(b) Loads P act upward for y > 0, downward for y < 0, and are omitted on y = 0.

(c) Loads P act upward in the first and third quadrants, downward in the second
and fourth quadrants, and are omitted on x and y axes.

(d) Loads P alternate in direction by octants — for example, upward between y = 0
and x = y, and downward between x = y and x = 0 — and are omitted on x and y
axes and on the lines x = y and x = —y

V.

Problem 4.24

A uniform cantilever beam of constant thickness is tip-loaded by moment and/or
transverse force. It is to be analyzed using plane elements. One need model only
half the beam, using the portion on either side of the longitudinal axis through cen-
troids of beam cross sections. Describe appropriate FE boundary conditions for
such a model.

The sketch represents a uniform rectangular plate with force P applied normal
to the plate at one corner. Imagine that the plate is supported by a uniform elas-
tic foundation and that the FE mesh (not shown) is uniform. The d.o.f. at a typi-
cal node 7 are w;, ,;, and 6,,. Describe how the entire plate can be analyzed for
lateral deflection w = w(x, y) by analyzing a single quadrant four times, each
time with appropriate loading and boundary conditions, then superposing re-
sults.

Problem 4.26

Write an equation in the form of Eq. 4.13-3 that states each of the following con-

straints.

(a) In Fig. 4.13-1, diagonal 2-3 has the rotation 6.,. The d.o.f. of the FE model are
stated below Eq. 4.13-1.

(b) Combine the constraint of part (a) with Eq. 4.13-2, so that CD = 0 has two
rows. Does CD = 0 imply Eq. 4.13-1?
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4.28

(c) In Fig. 4.13-1, line 2-1 rotates an amount e more than line 3-1, where e is a
small angle.

(d) The right-hand edge of the mesh in Fig. 4.9-1a displaces as a straight line.

The uniform beam shown is simply supported and is loaded by moment M, at its

left end.

(a) Write an equation that constrains the two end rotations to be of equal magnitude
but opposite sign.

(b) Solve for the end rotation by means of a Lagrange multiplier.

(c) Solve for the end rotation by means of the penalty method.

(MU El
[ |

; L . 1 Problem 4.28

COMPUTATIONAL PROBLEMS

4.29

4.30

4.31

4.32

Model the T-section cantilever beam shown by using separate sets of beam ele-
ments, one set for the cross of the T and the other set for the stem. Use one, then
two. then four elements along the length in each set. Make nodes of the stem slave
to nodes of the cross. Let Poisson’s ratio be zero. Compare computed values of tip
displacement and rotation with values predicted by beam theory.

Cross

P /

Stem

\
Problem 4.29

If software permits, reanalyze the beam problems of Fig. 3.11-1, using different or-
ders of Gauss quadrature to form element stiffness matrices. Do changes in quadra-
ture order have the expected effects?

If software permits, solve the problem depicted in Fig. 4.6-2a. For what value of
L/H is the displacement of P greater in magnitude than L? Are stresses accurately
computed anywhere in the model?

The structure shown is modeled by eight-node plane elements and is loaded by a
force normal to one element side at B. Use four Gauss points to evaluate k of each
element. Let elements 1 and 2 have elastic modulus E, and element 3 have elastic
modulus E,. For what value of E,/E,, is the relative displacement of nodes A and B
greater in magnitude than dimension a? When this happens, are stresses accurately
computed anywhere in the model? Use a small value for load P.

A
i
|
a

L O @ hO s

B

i S— L. L. ] Problem 4.32
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4.33 Assume that plane stress conditions prevail in Fig. 4.10-1b. Let AB be rigid and
made to translate vertically downward a small amount. Compute stresses in the
elastic medium ABCD. Investigate the effect of placing a rigid boundary CD close
to AB and then further away. If the software includes infinite elements or boundary
elements, use them to repeat the analysis that has the “close” placement of bound-
ary CD.

4.34 The sketch shows a central crack of length 2a in a flat strip of material whose width
is 2¢. If side nodes of isoparametric elements are moved to quarter points in the
manner shown, stresses vary as 7% along certain radial lines [4.8]. The r~*> varia-
tion accords with the theory of linear fracture mechanics. The mode I stress inten-
sity factor K; can be computed as

26 (7))
K, = ——| =] [4A.-A
: x+1(2£j [4Ac=A0]

where G is the shear modulus, k¥ = (3 — v)/(1 + v) for plane stress conditions or K =
3 — 4y for plane strain conditions, and A and A, are the amounts of crack opening
at C and D [4.9]. A handbook gives a formula for K:

_— S 1-0.5 (a/c)+0.326(al/c)”

K [1-(a o)°*

Assign convenient dimensions, complete the FE model, do computations, and com-
pare the computed and formula values of K;. Also, use alternative methods for cal-
culation of K; if the software provides them.
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Problem 4.34



CHAPTER 5

Modeling, Errors, and
Accuracy 1n Linear Analysis

This chapter is concerned with matching element behavior to anticipated structure be-
havior; treatment of loads, supports, and connections; planning the FE model; debug-
ging; checking results; and convergence of successive solutions. Some relevant advice is
discussed more fully in other chapters, especially for thermal analysis, dynamics, and
nonlinear problems. The present chapter deals mostly with linear static problems of struc-
tural mechanics. Matters discussed are under the direct discretion and control of the ana-
lyst and require considerable thought, in contrast to topics in Chapter 4, which are largely
internal to software and need only be properly invoked (such as a decision to usc sub-
structuring or to exploit symmetry).

Advice that follows does not fall neatly into categories. Accordingly, the division into
sections is somewhat arbitrary. Neither the sections nor their contents should be regarded
as checklists of procedural steps to be followed in every problem. Instead, the advice
should be learned well enough that appropriate parts of it come automatically to mind
when needed to deal with particular situations.

5.1 MODELING IN GENERAL

FE modeling is the simulation of physical behavior by a numerical process based on
piecewise polynomial interpolation. In order to obtain a reliable FE solution, the analyst
must first have a grasp of the problem area, be it stress analysis, thermal analysis, or
whatever. Only then can one address questions that must be answered: What physical ac-
tions are important? Is the problem time independent? Are there nonlinearities? What are
the boundary conditions? How will results be checked? And so on. If a FE analysis goes
astray it is usually because the analyst’s understanding of physical behavior, boundary
conditions, limitations of theory, FE behavior, or options in the program is insufficient to
prepare a satisfactory model. Clearly, FE modeling is more than preparing a mesh and
preprocessing.

Skill in FE modeling is based on an ability to visualize physical behavior and relate it
to element behavior. Skill is developed by practice and by critical evaluation of computed
results. The necessary knowledge base includes statics, structural theory, and FE theory.
Here the word “theory” does not imply something rarified and impractical; it means a
system of knowledge and assumptions, with rules of procedure and having predictive
value. Knowing the assumptions and limitations of a structural theory may keep us from
using it inappropriately. As an example, in elementary beam theory only axial normal

105
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stress is taken into account, so elementary beam theory should not be used for very wide
beams (use plate bending theory instead) or for short deep beams (use two-dimensional
analysis instead). One must understand the classic analysis tools, specifically including
the widely used (and widely misused) methods and formulas of elementary mechanics of
materials. Assumptions and restrictions that underlie analysis tools are also incorporated
in finite elements. For the practitioner, the main reason to study stress analysis theory is
that assumptions and restrictions are revealed and one then knows when not to use a the-
ory or a procedure. FE modeling is closely related to theory because FE is largely a way
of implementing theory. The piecewise-polynomial way in which FE modeling imple-
ments theory requires that the analyst have a sense of how various elements respond to
various loadings. A given element type might behave differently in different programs
because of special restrictions, special features, and even input data defaults. One must
also know how other aspects of the software behave. An assumption about how the soft-
ware should behave may lead to great confusion and frustration. Therefore it is necessary
to study the documentation, even though it is likely to be inscrutable in places. Increas-
ingly, documentation is part of the software and can immediately be called to the screen.

A difficult problem or a large model should not be treated all at once. It is better to
start with special cases and coarse meshes, then revise the model as necessary. If we re-
solve to start simply and expect to revise, we will have more confidence in the final re-
sults and may also reduce the total time spent on the project. Each FE model discloses in-
formation that improves the next one; for example, we can learn where stress gradients
are large and refine the next model in that area.

Output cannot be accepted at face value. Six digits in numbers and pretty stress con-
tours do not imply accuracy. It is necessary to critically examine the computed results. If
checking is begun after FE computations are complete, there is a tendency to rationalize
FE results already obtained, often at considerable effort. This tendency is reduced by hav-
ing an approximate analysis in hand before FE analysis is begun. If this is done habitu-
ally, there will be an added benefit: skills in analysis and modeling will improve, because
of thinking more deeply about problems at the outset and subsequently seeing how well
approximate analyses agree with FE analyses.

5.2 STRUCTURE BEHAVIOR AND
ELEMENT BEHAVIOR

What type of elements should I use—beam, shell, solid, or what? Triangular or quadrilat-
eral? With or without side nodes? How many? How should the mesh be graded? Are
there nonlinearities? Such questions inevitably arise. Answers may not come easily, espe-
cially for the initial FE model, but will not come at all without some understanding of
how the structure is likely to behave and how elements are able to behave. In general, one
remembers that the essence of the FE method is piecewise polynomial interpolation and
tries to select elements of such a type and size that deformation of the structure over the
region spanned by an element is closely approximated by deformation modes that the ele-
ment can represent. Alternatively, but with similar intent, one could speak of trying to
match the strain or stress field capabilities of an element to the strain or stress field in the
region of the structure spanned by the element.

As a simple example, consider cases of pure bending, Fig. 5.2-1. We know that axial
strain &, varies linearly with y across a straight member. Consider FE models in which di-
mension A4 is spanned by a single layer of plane elements (as in Fig. 3.11-1). From the
discussion in Chapter 3 we know that this behavior would be modeled badly by CSTs but
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Fig. 5.2-1. Bending moment M applied to (a) straight member and (b) curved member.

would be modeled exactly by Q6 and Q8 rectangles. If the member is curved (Fig.
5.2-1b). circumferential strain &, does not vary linearly with v [2.1]. Q6 elements would
not be exact and would be inferior to Q8 elements because &, can vary quadratically with
vin a Q8 element but only linearly with y in a Q6 element. We could not have reached all
these conclusions without understanding both structural behavior and element behavior.

In the remainder of this section we discuss aspects of structural behavior not usually
discussed in a first course in mechanics of materials, and note how structural behavior is
related to considerations in FE modeling. Similar behaviors and considerations may be
presented by objects less conveniently shaped than those in the following examples.

A standard rolled section such as an I beam. Fig, 5.2-2a, usually carries transverse
loads that cause bending. A beam is usually slender rather than short and deep. A proper
model of a slender beam is built of standard two-node beam elements, which are dis-
cussed in Section 2.3. However, if the flanges are quite wide (Fig. 5.2-2b), the flexure
formula o, = My/I becomes inaccurate. It predicts that o, is independent of z. Actually,
because of “shear lag,” o, varies appreciably across a wide flange [1.5]. The physical ac-
tion can be understood as follows. Each flange is loaded along its centerline by shear
flow g applied by the web (Fig. 5.2-2c). The resulting axial deformation is not uniform
across the flange, so neither is axial stress. A FE model that captures this behavior is built
of two-dimensional elements, Fig. 5.2-2d. These elements could be membrane elements
if the variation of o, through the thickness of a flange is negligible—but membrane ele-
ments have no y-direction stiffness, so plate elements would be more appropriate. Finally,
compressive stresses in the lower flange may reduce its stiffness, even without reaching a
local buckling condition. The effect is called “stress stiffening,” even when it decreases
stiffness rather than increasing it. Significant stress stiffening should be taken into ac-
count, but this will not happen automatically; the software must be rold to do so.

(a) (b) (c) (d)

Fig. 5.2-2. (a) Standard rolled section. (b) Beam with very wide flanges. (c) Axial deformation and
stress in upper flange. (d) FE model.
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Fig. 5.2-3. Curved beams of thin-walled section under bending load. Dashed lines show deforma-
tion in the plane of a cross section.

If a curved beam has an I section, its flanges deflect radially when bending moment is
applied (Fig. 5.2-3a). The physical action can be understood by considering a slice
spanned by arc d6: circumferential flexural stress o, has a radial component that pushes
the outer flange outward and pulls the inner flange inward. This action is reversed if mo-
ment M is reversed. For either direction of M, flanges develop flexural stress o. directed
normal to the web. Stress ¢, may be larger than the circumferential stress Op. Also, radial
motion of the flanges reduces the stiffness of the beam as seen by moments M. Standard
beam elements do not account for these effects unless provided with correction factors
[2.1, 5.1]. A FE model similar to that in Fig. 5.2-2d will be satisfactory if built of shell el-
ements, that is, if each element has both membrane stiffness and bending stiffness.

Thin-walled pipe bends are subject to the same physical action as curved I beams.
Their cross sections “ovalize” in response to bending moment (Fig. 5.2-3b). The resulting
flexural stress in the ¢ direction may exceed stress in the 6 direction. A pipe bend could
be modeled by beam elements with correction factors [5.2]. Also, a FE model built of
shell elements would be satisfactory, although tedious to prepare and having many d.o.f.
However, piping systems are so often analyzed that special pipe-bend elements have been
devised [5.3] and are often available in FE software.

A cross section of a prismatic beam has a “shear center,” which is the point through
which a transverse load must pass if the beam is to bend without twisting [2.1]. In Fig.
5.2-4a, load P on the thin-walled channel does not pass through the shear center of the
cross section. In consequence, the channel twists as well as bends. Twisting produces
shear stress. It also produces warping of cross sections; that is, it produces axial displace-
ments such that initially plane cross sections do not remain plane. At end x = 0, warping
is restrained by the support, which applies axial stresses proportional to the tendency to
warp (Fig. 5.2-4¢). If a beam formulation is to account for these effects, the usual six
d.o.f. per node must be supplemented by a “warping” d.o.f. The standard two-node beam
elements in most software cannot model warping effects. Instead, we must use a FE
model similar to that in Fig. 5.2-2d.

Figure 5.2-5 shows a thin-walled cylindrical water tank with a fixed base. Support re-
actions M, and V; on the tank are uniformly distributed around its base. The tank can be
modeled satisfactorily by cylindrical shell elements. We see that the axial flexural stress
o is large, quite localized near the base, and has steep gradients. A coarse mesh is satis-
factory near the top of the tank, but the same coarseness near the bottom may portray the
state of stress so poorly as to give little indication that a finer mesh is needed. In general,
large flexural stresses and steep gradients are to be expected near “discontinuities’* of
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Fig. 5.2-4. (a) Thin-walled channel tip loaded by force P in the plane of the web. (b) Deflection of

the tip cross section is shown by dashed lines. (c) Qualitative contributions to axial stress o, in the
upper flange at the fixed end. viewed normal to the upper flange.

stress in shells. Discontinuities are associated with line loads, supports, reinforcements,
and changes in curvature (e.g., where an ellipsoidal end cap is joined to a cylindrical
pressure vessel). The reader is urged to learn enough about shell behavior to be able to
anticipate where flexural stresses may be large [1.5, 2.1, 7.3].

Nonlinearity may appear in a variety of problems. In Fig. 5.2-6a, pressure p is carried
mostly by bending action in the plate and there is an almost linear relation between lateral
deflection and lateral pressure p until the center deflection is roughly half the thickness ¢
[7.3]. This much deflection is reached quickly if the plate is thin. With greater deflection,
membrane stresses support an increasing portion of the load. Thus the stiffness of the
plate appears to increase. The plate need not have fixed supports: the same physical ac-
tion arises whenever the deflected surface is nondevelopable, that is, cannot be unrolled
into a flat sheet without producing membrane strains (cylindrical and conical surfaces are
developable, spherical surfaces are not). To model large deflections of a plate we need
shell elements. which account for both membrane and bending strains, and a nonlinear
analysis procedure. (On the other hand, if the plate is thick, deflections will not be large
enough for the foregoing nonlinearity to arise, but transverse shear deformation may be-
come significant. One must then ask if plate elements in the software take transverse
shear deformation into account). Figure 5.2-6b is a simple buckling problem. But if there
is any imperfection, for example, an off-center load or a slight initial curvature of the col-
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Fig. 5.2-5. (a) Cylindrical tank filled with water to depth h. (b) Circumferential membrane stress.
(c) Longitudinal flexural stress.
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Fig. 5.2-6. (a) Rectangular plate loaded by lateral pressure p, seen in plan and edge views. (b)
Column loaded by axial force P.

umn, it does not buckle but instead exhibits a nonlinear load versus deflection response.
Most practical thin-walled structures are sufficiently complicated as to be “imperfect” in
the sense that a classical linear buckling analysis may give a poor estimate of the actual
collapse load. A nonlinear analysis is required instead.

In summary, one must both anticipate structure behavior and understand element be-
havior in order to make a suitable choice of elements, mesh, and analysis procedure. This
cannot be done without a physical grasp of how various structural forms respond to vari-
ous loads and support conditions, and a grasp of how elements behave and how they are
unable to behave because of limitations in their displacement fields, restrictions of the
structural theory on which they are based, or restrictions of analysis procedure (to linear-
ity and time-independence, perhaps). Because nature is three dimensional, a decision to
use bar, beam, plane, plate, or shell elements—in short any elements other than solid ele-
ments—constitutes an idealization, for which good judgment is needed.

5.3 ELEMENT TESTS AND ELEMENT SHAPES

How do elements of various shapes behave under various loads? A good way to find out
is by computational testing, choosing problems for which the solution is already known.
By doing computational tests we may incidentally learn how to use the software more ef-
fectively, and also resolve uncertainties about input conventions, defaults, output capabil-
ities, coordinate systems used for stress output, symbols and abbreviations, and explana-
tions in the documentation.

Two types of test have more to do with checking the validity of an element than show-
ing how well it works. One is the patch test, described in Section 4.9. The other 1s the
eigenvalue test, which proceeds as follows [2.2]. One computes eigenvalues of the stiff-
ness matrix of a single unsupported element. This can be done in a standard FE program
by assigning a unit mass to each d.o.f. in a vibration analysis (see Section 9.4). Squares of
the computed vibration frequencies are the desired eigenvalues. Each eigenvalue is twice
the strain energy of the element in the displacement mode corresponding to the eigen-
value. Accordingly, there should be exactly as many zero eigenvalues as there are possi-
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(a) (b) (c)

Fig. 5.3-1. Possible single-element tests. Node patterns are not shown. (a) Plane element. (b) Plate
element in bending. (c) Plate element in twisting.

ble rigid-body motions (e.g., 3 and 6 zero eigenvalues in plane and three-dimensional
problems. respectively). Too few indicates that one or more motions that should be rigid-
body motions actually cause strain. Too many indicates that the element has one or more
instabilities (Section 4.6). Ideally, an element is free of locking and instability in all situa-
tions.

A single-element test is a FE analysis like any other, except that the model consists of
a single element. By varying the aspect ratio L/h in Fig. 5.3-1a, one can determine the
sensitivity of an element to elongation. In Fig. 5.3-1b, one can determine if the plate ele-
ment tends to “lock™ as L/t becomes large and if transverse shear is taken into account as
L/t becomes small. In Fig. 5.3-1c the effects of varying L/t and L/b can both be studied.
If the element stiffness matrix is numerically integrated, the effect of changing the quad-
rature rule can be studied (if the software permits a choice in the matter).

The effects of element distortions other than aspect ratio can be studied with a FE
model having two or more elements. Figure 3.11-1 contains the beginnings of such a
study for each of several element types. Few such studies have been published [5.5], so
the analyst must learn by means of trial computations.

Element shapes that are compact and regular usually give greatest accuracy. Accord-
ingly, the ideal triangle is equilateral, the ideal quadrilateral is square, and so on. Of
course other shapes must also be used in order to represent the structure geometry and
grade a mesh from coarse to fine. But usually one should try to avoid shapes like those in
Fig. 5.3-2. The elements shown are plane, but similar distortions of plate, solid, and shell
elements are similarly detrimental. Such distortions usually reduce accuracy by making
the element stiffer than it would be otherwise. More specifically, an element that has qua-
dratic terms in its displacement field can be reduced to behaving like an element that has
only linear terms if its shape is too greatly distorted [5.5]. The amount of degradation
caused by a given distortion varies with element type, mesh arrangement, and physical
problem. Distortion usually degrades stresses more than displacements, natural frequen-
cies, mode shapes, and temperature fields [9.3]. Distorted elements can still display states
of constant strain, but their ability to represent gradients declines. Therefore, distortion is
likely to be especially detrimental in regions of stress concentration. Elements having
side nodes in addition to corner nodes are usually less sensitive to shape distortion than
elements having only corner nodes. Elements having corner nodes, side nodes, and inter-
nal d.o.f. are still better.

Deliberate distortion can be harmless, or even beneficial if used appropriately and with
care: as examples, aspect ratio matters little if strain gradients are small, and a side node
can be moved to the quarter-point location to model stresses near a crack tip [4.8]. Also,
side curvature can be used to fit a curved boundary. As an example, consider Fig. 5.3-3.
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Fig. 5.3-2. Plane elements having shape distortions that usually reduce accu-
racy. (Reprinted from [2.2] by permission of John Wiley & Sons, Inc.)

Here the curved sides span 90°, a much larger angle than would ordinarily be considered
acceptable, yet computed results are surprisingly good. The reason is that the element
shape causes the isoparametric transformation to become singular at center of curvature
O, which is exactly the point where curved-beam theory predicts infinite stress [5.5]. A
similar match of transformation and stress field singularities occurs when quarter-point
elements are used next to a crack tip (see Problem 4.34). If the element of Fig. 5.3-3 were
used within a mesh where the stress field has no singularity at the center of curvature, or
quarter-point elements were used where there is no crack tip, accuracy would be de-
creased by element distortions.

In three dimensions a “warping” distortion is possible. The four nodes of a quadrilat-
eral shell element are usually not coplanar; that is, a typical quadrilateral shell element is
warped. Similarly, warped quadrilateral membrane elements may appear in three-dimen-
sional FE models of structures built of sheet metal and stiffeners. For shell and membrane
elements alike, accuracy declines as the amount of warping increases. Warping may not
be obvious during mesh generation, but software will probably check for warping and
warn the user if it is excessive.

In addition to being careful with element shapes, one should not use abrupt changes of
element size (Fig. 5.3-4). Even if element aspect ratios in Fig. 5.3-4 are satisfactory, the
“poor” arrangement will produce a local disturbance in the stress field. Changes in ele-
ment type (e.g., triangular to quadrilateral), abrupt changes in element size, poorly shaped
elements, and poor interelement connections (Fig. 3.10-2) produce “artificial” distur-
bances in the stress field that may mistakenly be accepted as physically realistic. Particular
care should be taken to avoid such changes, transitions, and distortions in regions where
stress gradients are large and where accuracy is important.

0 N4 Fig. 5.3-3. Plane curved beam modeled by a single eight-node isopara-
M metric element.
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Poor Improved

(@) (b)

Fig. 5.3-4. Changes in element size are (a) too abrupt and (b) gradual (and much improved).

5.4 TEST CASES AND PILOT STUDIES

Test cases for which the answer is already known can be used to study convergence rate
as well as sensitivities to element shape distortion and mesh arrangement. For example,
consider a square plate with all four edges clamped, loaded in bending by uniform lateral
pressure. Analytical results for stress and deflection are well known [1.5, 7.3]. Figure
5.4-1 shows some coarse FE meshes for this problem. By comparing results from the first
two meshes and at least one additional refinement, one can determine the approximate
rate of convergence toward correct results of a certain element type—for one particular
test case. The rate may differ for other loadings and other support conditions. Results
from two meshes can be extrapolated to provide an improved result if the convergence
rate is known (see Section 5.15). Quite probably, stresses will converge more slowly than
displacements. Moving a node (Fig. 5.4-1c) provides a test of sensitivity to element shape
distortion. In the coarse meshes shown, changes in mesh arrangement can markedly
change computed results: in Fig. 5.4-1d, two symmetries of the actual problem are lost; in
Fig. 5.4-1e, the four corner elements do not deform because all of their d.o.f. are re-
strained by supports.

Different element types have different sensitivities to element distortions and mesh
arrangements. Even a single element type, such as a four-node quadrilateral, may behave
differently in different software packages because of differences in basic formulation or
different choices of “add-on” refinements [3.2]. Knowledge of element behavior, gained
from software documentation and computational testing, may enable us to use element
types and shapes most appropriate to the problem at hand.

Test cases are often used in FE research papers. Authors want to compare their new
formulations with existing methods. Accordingly, they calculate FE results for test cases
already used by other authors. In this way a set of test cases has arisen by default rather
than by design. This set of test cases has been criticized as reporting few if any bad re-
sults, perhaps because authors correct only bugs they happen to find, and because not
enough different conditions are tested [3.7]. A good set of test cases exercises all behav-
iors that an element purports to model. In a set of standard test cases proposed in 1985
[3.7], one finds that a typical test case gives results ranging from poor to good, depending
on the type of element used to solve it.

(a) (b) (c) (d) (e)

Fig. 5.4-1. Coarse meshes for a square plate that could be used in studies of convergence rate,
mesh distortion, or mesh arrangement.
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Software providers maintain extensive sets of test cases. They are used to “verify” a
new version of the software by making sure it can solve all the test cases, and solve them
at least as well as the previous version. Users can often purchase a manual that contains a
software provider’s test cases, perhaps without even purchasing the software, and use it to
learn how to use the software. Some test cases may be simple, even including patch tests,
but usually they involve more complicated geometry, loading, and support conditions.

An effort to establish a rational set of test cases has been undertaken in the United
Kingdom by NAFEMS (National Agency for Finite Element Methods and Standards).
Aims of the organization include setting FE standards and testing procedures and coordi-
nating evaluation of FE software. The numerous NAFEMS test cases are called “bench-
marks” and have the following characteristics: each uses a single element type; data prepa-
ration is straightforward; geometry, loading, and boundary conditions are unambiguous;
and each has a single well-defined result (e.g., deflection or stress at a single point, or a set
of natural vibration frequencies), known from theory or perhaps from soundly justified
computation [5.7]. Commercial software packages can be compared by applying them to a
given benchmark. Such comparisons occasionally appear in NAFEMS publications.

A pilot study is a simplified study of a larger problem, performed with a simplified
model and perhaps also with limited analysis goals. Software capabilities likely to be
used in the “real” problem can be tested. One might even insert intentional errors, to see
if software error traps will detect them [5.4]. Benefits of a pilot study are a reduction in
input and output data, a preview of structural behavior, a comparatively easy way to test
modeling idealizations such as joints and supports, detecting blunders such as incorrect
units for data, insight into what computational methods may be appropriate, and an indi-
cation of the type and amount of output to request. Pilot studies are particularly appropri-
ate with dynamic or nonlinear problems, where structural behavior may be especially
hard to foresee and the variety of computational options is large.

Simple test cases and pilot studies are highly recommended as a way to answer “what
if  questions about modeling, or to test the software and discover how it really behaves.
Software efficiency, accuracy, and ease of use for a certain type of problem can be tested.
One is likely to see some behavior at odds with expectations, and perhaps even at odds
with descriptions in the documentation.

5.5 MATERIAL PROPERTIES

Elastic constants for isotropic materials are usually easy to obtain and easy to convey
properly to the software. Constants for anisotropic materials are more difficult on both
counts. If x, y, and z are principal material directions, the stress—strain—temperature rela-
tion of an orthotropic material can be written

1 Vix V., Ty
& = +—0, - — 0, — = 0. + AT Yo =
Ex E,\‘ E: . G"‘
v, Ly
& = ——0,+ —0, -~ — 0. + a,AT Ve = = (5.5-1
Er E,\‘ - E. ' - ¥
X2 v\‘i 1 T'r
£ = ——0,— = O, + — 0.t Q. AT Y = Gu
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Fig. 5.5-1. (a) Portion of a plate with a regular pattern of holes. (b, ¢, d) A typical repeating geom-

etry. showing deformations used in computing effective elastic properties. The FE mesh is not
shown.

Not all constants in Eq. 5.5-1 are independent. Theory shows that the relations

Ev,.=Ey, Ev,=Ey, Eyv.=Eyv,_ (5.5-2)
must be satisfied by any real material. Nevertheless, there are still nine independent elas-
tic constants and three independent coefficients of thermal expansion. A general anisotropic
material has 21 independent elastic constants. It may not be easy to obtain all necessary
constants and state them properly as input, not getting them mixed up and with due re-
gard to principal material directions that may be differently oriented in different parts of
the structure.

As a minor point, incompatible and underintegrated elements may display a depen-
dence on Poisson’s ratio in problems that should be independent of Poisson’s ratio, such
as plane beam problems.

Corrugations, indentations, or perforations can have an appreciable effect upon the
stiffness of a plate or a shell. If geometric disturbances are numerous and have a regular
pattern, they can be “smeared” to produce a substitute plate or shell without geometric
disturbances but having modified elastic constants. The constants are readily available in
some cases [5.8]. If not, they can be calculated by the procedure now described by means
of an example [5.9].

Consider in-plane behavior of a perforated plate, Fig. 5.5-1a. Isolate a typical repeat-
ing portion such as ABCDE, and model it by an FE mesh (not shown in Fig. 5.5-1).
Consider three displacement states of the FE model, i = 1, 2, and 3, with each state i de-
scribed by a set of d.o.f. D; associated with a particular state of constant strain in the sub-
stitute plate. In what follows, we elect to use constant strain states of unity. Accordingly,
on boundary ABCDE of the FE model of the actual plate, some d.o.f. in each D, are pre-
scribed as follows (see Section 4.12 for a discussion of symmetry and antisymmetry con-
ditions):

Strain D.of On AB On BC On CD On DE
g =1 D, v=0 u=0 v=0 u=a
g =1 D, v=0 u=0 v=>b u=0
nyzl D3 u=0 v=0 u=>b v=0
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All d.o.f. not prescribed, whether internal to the mesh or on its boundary, are unre-
strained. Next solve three FE problems KD, = R,, i = 1,2,3, for d.o.f. in each D, that are
not prescribed and for nodal forces in each R; associated with prescribed d.o.f. For inter-
nal d.o.f. and for boundary d.o.f. that are not prescribed, nodal forces in R; are zero.
Therefore the nonzero entries in R; are the externally applied boundary forces associated
with prescribed boundary d.o.f. Fori=1,

R, =KD, (5.5-3)

When subjected to the same boundary displacements, nodal forces in the substitute (un-
perforated) plate are

R¥ =K*D,;  thatis, RY = [Z j B'EB dv]D1 (5.5-4)

where K* is the stiffness matrix of the substitute plate, here formed as the sum of element
stiffness matrices (see Eq. 3.1-10). FE discretization of the substitute plate is used here
only as a conceptual convenience; no such FE model need actually be constructed to ob-
tain material properties of the substitute plate. Also, when writing K*D; we imagine that
D, contains d.o.f. on the sides of an a by b rectangle of the substitute plate. We require
that work done by D, be the same in actual and substitute plates. Thus DR,/2 = D{R%/2,
and since BD, =g,=[1 0 0]7, Eq. 5.5-4 yields

DR, = ZjeZEe,‘.dv =E,V (5.5-5)

from which E,, = D'R,/V, where V is the volume of the substitute plate; ab times thick-
ness ¢ in the present example. In similar fashion we write D3R,/2 = DIR#%/2, and since
DIB” = 85"—' [0 1 0], Eq.5.5-4 yields

DIR, = [elEe.dv=E,V (5.5-6)

from which E,, = DIR,/V. Proceeding similarly for the remaining terms, we obtain

1 b/
E=—<{DI}[R, R, R,] (5.5-7)
Vv
D]

as the material property matrix of the substitute plate that has no geometric disturbances.
Analogous arguments can be made if properties are referred to polar or cylindrical coordi-
nates [5.9]. Flexural stiffness coefficients of a substitute plate can be determined in simi-
lar fashion, by applying unit curvature states and calculating associated nodal moments.

5.6 LOADS

A concentrated load must be applied at a node. This is required by practice, not the-
ory. With the possible exception of beam elements, standard software is not structured
to accept non-nodal concentrated loads as input data. In practice, one merely arranges
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the mesh so that there is a node at each location where a concentrated load must be
applied.

According to classical linear theories of beams, plates, and solids, at a point loaded by
concentrated normal force there is

+ finite displacement and finite stress in a beam,
- finite displacement and infinite stress in a plate, and
« infinite displacement and infinite stress in a two- or three-dimensional solid.

These confusing assertions are consequences of differing premises about the nature of
stress fields in standard linear theories of beams, plates, and elasticity. Also, a truly con-
centrated force would cause material beneath it to yield, and a linear theory must rule out
yielding. Physically, a concentrated force does not exist; it is a mathematical convenience
that represents a distributed load of high intensity that acts on a small area. Moreover,
when a concentrated force is applied to a node of a FE model, infinite displacement or
stress will never be computed. Indeed, a concentrated force on a plane FE model has a
nonunique distributed equivalent (Fig. 5.6-1a), which one would certainly not expect to
produce infinite displacements or infinite stresses. Infinite values can only be approached
as the mesh is repeatedly refined.

If axisymmetric conditions prevail, what appears to be a concentrated load on a solid
or shell of revolution shown in cross section is really a line load on a nodal circle. Software
may require such a load to be input for a 1 radian slice or perhaps for the entire circum-
ference of the nodal circle. In the latter case a radially directed line load ¢, whose dimen-
sions are [force/length], is described as a force 27rg on a circle of radius r, even though
the net force is statically equivalent to zero.

A concentrated moment cannot be applied to a node that has only translational d.o.f.
The moment can be applied as couple forces (Fig. 5.6-1b) or, alternatively, can be distrib-
uted to a group of nodes by use of constraint techniques (Section 4.13).

Distributed loads are applied to nodes as concentrated nodal loads that are statically
equivalent or perhaps work-equivalent. This matter is discussed in Section 2.5 for bars
and beams and in Section 3.9 for plane elements. Usually software can generate equiva-
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Fig. 5.6-1. (a) A concentrated force and a statically equivalent line load on a linear edge of a
plane FE model (see also Fig. 3.9-1). (b) Application of a couple when nodes have only trans-
lational d.o.f.



118 Modeling, Errors, and Accuracy in Linear Analysis

lent nodal loads from input data that describe distributed loading. If rotational d.o.f. are
present, as in beam and plate elements, software may or may not include nodal moments
in its vector of nodal equivalent loads. One can discover what the software does by run-
ning suitable one-element test problems, and comparing computed results with theoretical
results.

In linear problems, loads maintain their original orientations in space, regardless of the
magnitudes of the computed displacements. Sometimes a problem is nonlinear because of
loads called follower forces, whose directions change as the structure deforms. An exam-
ple is pressure on a membrane. Pressure always acts normal to the membrane. A nonlin-
ear analysis is required if deflection is appreciable.

In describing temperatures for a thermal-stress analysis, one may be concerned with
whether the software uses nodal temperatures or element temperatures. The distinction
becomes important if one wishes to describe a step change in temperature across an in-
terelement boundary, as might be done to simulate a shrink fit. Temperatures interpolated
from nodal values do not describe a step change.

5.7 CONNECTIONS

Connections between parts are made by bolting, welding, gluing, and so on. Realistic
modeling of connections is usually difficult, with FE or any other analysis method, be-
cause of geometric complexity and the possibilities of slippage, gap closure, and partial
loss of contacts. A fine-mesh FE model of a connection may capture its behavior accu-
rately, but such a model is not practical unless the connection itself is the object of study.
More often, connections are modeled only to the extent needed to represent their effect
on the rest of the structure. If data about connection stiffness are known, perhaps from
experiment, one might approximate a connection by using standard elements that have
modified elastic properties. For example, a bolted connection between two beams might
be modeled by a short beam element of reduced flexural stiffness EI. The following re-
marks describe other connection problems and ways of modeling them.

Section 4.3 describes how rigid offsets may be used to attach a reinforcing beam to a
plate. Constraint equations can be used for the same purpose (Section 4.13). Either tech-
nique can be applied to connections depicted in Fig. 5.7-1. The approximate models can-
not represent bending action that develops because of axial loads. The improved models
can. They use rigid links AB to model offsets and transmit moment as well as force. The
rigid-link model is still approximate: in reality AB is an elastic path, although a compara-
tively stiff one [5.4].

If done properly, plane and solid elements having only translational d.o.f. can be con-
nected. In Fig. 5.7-2a, externally applied loads on the plane portion must act in the yz
plane because this portion has no bending stiffness. To support loads having an x compo-
nent, bending stiffness and rotational d.o.f. must be added to the plane portion, which can
then be attached to the solid portion by methods described in connection with Fig. 3.9-6
or4.13-1.

With rare exceptions, plane and axisymmetric solid elements cannot be connected. In
Fig. 5.7-2b the axisymmetric portion is seen in cross section. Thus plane and axisymmet-
ric meshes look similar, and both typically use two d.o.f. per node. But axisymmetric ele-
ments are rings, not plane quadrilaterals, and what appear to be node points are actually
nodal circles. In a formulation restricted to axial symmetry, displacements in the axisym-
metric portion are independent of the circumferential coordinate. Accordingly, if some-
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Fig. 5.7-1. Offset connections and possible models. (a) Joint in a plane frame. (b) Cylindrical tubes
of different thicknesses, 1, # t,. (Reprinted from [2.2] by permission of John Wiley & Sons, Inc.)

thing is to be attached, it must also be axisymmetric in both geometry and loading. The
mismatch in Fig. 5.7-2b is roughly similar to the “poor connections” in Fig. 3.10-2.

However, an axisymmetric model can carry nonaxisymmetric loads if Fourier series
are used (see Chapter 6). By extending this procedure, axisymmetric and generally
shaped solids can be connected. The calculations are not simple and are not part of stan-
dard FE software, but they provide the only way of making a connection like that in Fig.
5.7-2b even approximately correct. '

A bolted joint in a pipe, Fig. 5.7-3, is axisymmetric in geometry except for the bolts.
As an approximate representation of the bolts, one can “smear” them around the bolt cir-
cle. The trick is to replace the bolts by an axisymmetric solid of radius r and length L that
has the same stiffness in the axial direction as bolts it replaces but zero stiffness in the
circumferential direction 8 (because bolts provide no circumferential stiffness). Consider
axial loads on the pipe in Fig. 5.7-3. Let there be n bolts around the bolt circle, each of
elastic modulus E,. Their combined axial stiffness is k, = A,E,/L, where A, = n(nd*/4).
The replacement solid has axial stiffness k, = A E,/L. The condition k, = k, yields A E, =
n(md*/4)E,. The replacement solid is connected only to nodes on flange surfaces (nodal
circles A and B in Fig. 5.7-3c). Accordingly, the replacement solid can be a single ele-
ment. Indeed, input data can describe it as a two-node bar element between nodes A and
B, having cross-sectional area A, and elastic modulus E,. This does not violate the rule
that bodies with and without axial symmetry cannot be connected because here we are
only using the description of a nonaxisymmetric element as a device to obtain the desired
type of axisymmetric element. Axial stress in a bolt is computed by multiplying its com-
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Fig. 5.7-2. (a) Plane elements can sometimes be connected to solid elements. (b) Plane and ax-
isymmetric FE models cannot be connected.

puted axial strain by its actual elastic modulus. In similar fashion one might smear the
bending stiffness of individual bolts and arrange to recover their flexural stresses from
computed displacements.

Bolt pretension can be simulated by reducing the temperature of the bolts an amount
AT. To compute AT we argue as follows, using notation of the preceding paragraph and o
as the coefficient of thermal expansion of the bolt material. Let P be the known tensile
force required in all bolt material, so that P/n is the pretension in one bolt. The tempera-
ture drop AT in the bolts produces force P in the bolt material and also a clamping force P
in the pipe flange spanned by bolts. Both parts must contract the same amount, that is,
with contraction positive

L
arar - LL_ FL (5.7-1)
AE,  AE,

where A/E,/L is the stiffness of the flange as seen by the bolts. To calculate this stiffness
one can remove the bolts, apply an axisymmetric clamping force F to the flange alone,
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Fig. 5.7-3. (a) Bolted pipe connection. (b) Axial view. (c) Axisymmetric connector AB replaces the
bolts.
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and compute the resulting displacement &, ;. Then

AE F
Bip = — = fromwhich ‘25 _ (5.7-2)
flof L 6AB

Now that A.E/L is known, Eq. 5.7-1 yields the required AT. Some rearrangements of
these calculations are possible [5.10].

The foregoing bolt representation can be useful in calculating the change in bolt stress
produced by loading. The elastic stiffness of the joint is produced more by flanges than
bolts because flanges are more massive. However, if there is a gasket between flanges,
tightening the bolts tends to rotate the flanges relative to the gasket, perhaps resulting in
partial loss of contact even before external load is applied. A load-dependent contact area
renders the problem nonlinear. If flanges are connected without the gasket, even with a
large clamping force the joint will not be as stiff as continuous material would be, owing
to the near impossibility of achieving a perfect fit and preventing slippage.

The behavior of connections can be quite important in dynamic analysis. Connections
(e.g., in a frame) are usually stiffest in deformation modes activated by the static load that
must be carried. Displacements in dynamic analysis can load connections in their more
flexible modes. If little is known about these lesser stiffnesses, so that they are carelessly
modeled, there may be appreciable disagreement between computed behavior and actual
behavior [5.9].

Structures may contain parts that can make or break contact. This situation renders the
problem nonlinear: stiffness is displacement dependent, loads are not directly propor-
tional to displacements, and an iterative solution is required. A nonlinear spring or “gap
element,” Fig. 5.7-4a, is one of many tools available for analysis of such problems. A
nonlinear spring can be used to connect nodes on adjacent parts that may come in contact.
A spring occupies the gap between parts. The gap may be zero, but this presents no obsta-
cle to modeling. A spring may span the gap anyway: if the gap is zero the spring has stiff-
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Fig. 5.7-4. (a) Possible way to describe the stiffness of a nonlinear spring. In practice, a spring
may resist force F or moment M. (b) Two examples that model gaps and contact.
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ness but no length, unless one wishes to imagine a length as a conceptual aid. The respec-
tive examples in Fig. 5.7-4b depict a gap element for elastic contact with initial slack and
a gap element for compression only with initial contact. Take care: a large spring stiff-
ness that appears when a gap closes constitutes a penalty method, which may provoke nu-
merical difficulties (Section 4.13). Gap conditions are discussed more fully in Section
10.6. Commercial software may allow different combinations of springs, gaps, sliders,
and dampers to produce a bewildering variety of nonlinear two-node elements.

5.8 BOUNDARY CONDITIONS

Boundary conditions are also called support conditions in structural mechanics. They are
often misrepresented or not described properly as input data. Care is needed because
changes in support conditions that appear minor can have a major effect on computed re-
sults. For example, in Fig. 5.8-1 the change from a roller to a hinge at B allows the sup-
ports to apply horizontal forces to the beam. The beam in Fig. 5.8-1a could be modeled
by standard two-node beam elements that lie on the line between A and B. The beam in
Fig. 5.8-1b must be modeled by plane elements, or by beam elements along the centerline
of the actual beam with vertical links to connect end nodes of the FE model to supports A
and B below them.

Some support conditions are dictated by FE technology rather than by physical consid-
erations. A restraint, such as a prescription of zero displacement or zero rotation, must
appear at a node rather than between nodes. The d.o.f. not active in the FE model must be
suppressed, whether or not they are on the boundary of the FE model. For example, typi-
cal plane elements resist two in-plane translational d.o.f. per node, but software makes six
global d.o.f. available at every node. To prevent singularity of the structure stiffness ma-
trix, rotational d.o.f. and out-of-plane translational d.o.f. must be suppressed, whether or
not loads are applied to these d.o.f. This matter is discussed more fully in Section 2.4.

Boundary conditions are often misrepresented because of carelessness or because the
physical situation does not present a clear choice. Input data as understood by the soft-
ware can be checked easily: graphic capabilities of preprocessors can depict boundary
conditions at each supported node, using symbols that show the direction of restraint and
its type (displacement or rotation). These plots should be inspected carefully for data in-
put blunders. When boundary conditions of the physical problem are unclear, it may be
possible to bound the correct solution by two analyses, each based on a different set of
boundary conditions. As a simple example, rotations at ends of a uniformly loaded beam
may be elastically restrained to an uncertain degree. Two analyses, one with simple sup-
ports and the other with fixed supports, will respectively overestimate and underestimate
the actual magnitude of bending moment at midspan.

On occasion a FE model is connected to another FE model or to a support by springs

) e — N E———
Y

Fig. 5.8-1. A beam with (a) simple supports and (b) hinge supports.
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Fig. 5.8-2. (a,b) Spring supports at uniformly spaced nodes on plane elements. (c) Two plane re-
gions with sliding contact along AB. FE meshes are not shown, but inset shows typical adjacent
nodes in parts 1 and 2.
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(Fig. 5.8-2a,b). It is reasonable to require that springs exert nodal loads consistent with
uniform stress in the FE model when edge AB is translated vertically downward. These
loads, discussed in Section 3.9, demand that stiffnesses of uniformly spaced springs have
the relative values shown in Fig. 5.8-2a,b. If springs are used to connect the face of a
solid FE model to a parallel plane support, the proper model may be counterintuitive.
Solid elements having side nodes require oppositely directed nodal loads to represent a
uniform pressure, as suggested by Fig. 3.9-5d. This means that springs attached to corner
nodes should have negative stiffness! Or, if all springs were assigned the same stiffness,
it means that computed tensile force in a spring would not necessarily imply tensile stress
in the solid at the spring location. Clearly, elements having side nodes present ample op-
portunity for confusion, so it is recommended that they not be used in association with
connecting springs.

The nature of a support or a contact between parts can sometimes be determined by
numerical trial. Imagine that parts 1 and 2 in Fig. 5.8-2c are modeled by plane elements
and that sliding is possible along AB. Should adjacent nodes in the two parts have inde-
pendent u but the same v along AB? Or does a gap appear, so that there is contact only at
A and B? One way to find out is to connect adjacent nodes in the two parts along AB by
springs or two-node bar elements, oriented vertically. The bar element that connects adja-
cent nodes at B should be very stiff so the two parts will not interpenetrate (but take note
of the cautionary remarks in Section 5.10 and remarks associated with Eq. 4.13-9). The
remaining vertical bar elements between A and B can be very soft. Thus, in effect, we
have placed a roller between the two parts at B and left the rest of AB unconnected. If
computed results show that the weak vertical bars between A and B carry (small) tensile
force, one concludes that a gap opens along AB and that the model is correct. If instead
the weak vertical bars carry compressive force, the model is incorrect; either these bars
must be made very stiff to prevent interpretation or, as a better alternative, pairs of adja-
cent nodes across AB should be constrained to have the same vertical displacement.

It is sometimes necessary to impose a nonzero displacement or rotation. In the event
that software accepts only zero values, the trick shown in Fig. 5.8-3 can be used with cau-
tion. In this example, point A is required to have the known displacement component 0,
in the s direction. The displacement component of A in the n direction is to be computed.
A spring of very large stiffness k,, say 10° times the largest diagonal coefficient in the
structure stiffness matrix, is added to the FE model. A large force, F, = k,0,, is applied as
a load in the s direction. Force F, is resisted by the stiff spring and the comparatively
flimsy FE model. Point A will have a computed deflection component in the s direction
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\F,,:kpap
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stiffness)

FE model FE model

(a) (b)

Fig. 5.8-3. (a) Displacement component 6, is to be imposed at A. (b) “Penalty method”
approximation. Caution: may introduce numerical errors.

very slightly less than 6, This trick is a penalty method (discussed in Section 4.13). It in-
vites numerical errors (see also Section 5. 10). ’
Boundary conditions are VERY OFTEN misrepresented. Be careful with them.

5.9 PLANNING THE ANALYSIS

more accurate.

An analyst competent in the problem area should plan the work to be done. One prob-
ably knows the purpose of the analysis project, which may range from analysis of a trial
design to analysis of an existing product that has failed. Accordingly, one probably has
some knowledge of the accuracy required. This knowledge may affect the number and
kind of assumptions and simplifications that will be incorporated in FE models. These de-

what simplifying assumptions are appropriate. This may sound tedious but it may save
more time than it takes, especially when a problem is complicated—and it probably is
complicated if a FE analysis is being undertaken.

Major questions about behavior include the following. Is static analysis appropriate?
Or does the problem involve vibration or shock loading? If dynamic, can damping be ig-
nored? If not, how should it be Tepresented? Might there be local or global buckling? If
material properties are temperature dependent or anisotropic, are material data available?
Are there nonlinearities, due to material yielding, gaps that may open or close, or dis-
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placements large enough to change the way loads are transmitted or applied? To pose and
answer such questions one must have an ability to visualize physical behavior and struc-
tural interactions. The answers will decide the general nature of the analysis project.

More detailed questions follow, which influence the specifics of FE models. What are
the load cases? Do they involve concentrated or distributed loads, or body forces from
self-weight or spinning? Are loads fixed in direction or do their directions change as load
increases? Do “loads” include prescribed nonzero displacements? Can symmetry be ex-
ploited? Are there elastic supports or connections of uncertain stiffness? Are there cutouts
that act as stress raisers, perhaps on a scale below mesh size? How reliable are data about
geometry, loads, supports, and material properties?

Preliminary Analysis. Prior to FE analysis, some results should be anticipated, qualita-
tively or quantitatively and preferably both. An approximate preliminary analysis may be
based on statics. mechanics of materials, formulas from handbooks, or experimental re-
sults. In almost all situations there is some way to obtain approximate results that can be
compared with FE results subsequently obtained. Even a crude analysis should be ade-
quate to detect a strange displacement pattern or stress field, or a numerical result in error
by orders of magnitude because of a blunder in data preparation. There is a tendency to
trust the computed results because FE analysis requires considerable time and effort to
accomplish. There is also a tendency to regard existing results as correct until proved oth-
erwise. Therefore predictions should be in hand before doing FE analysis, to promote the
viewpoint that FE results are the results on trial. A preliminary solution serves the pur-
pose, even if it must be crude, and may have the added benefit of providing insight that
improves the FE model. Other benefits of preliminary analysis include a sharpening of
analytical skills and perhaps even discovering that a FE analysis is not needed after all.

Start with Simple FE Models and Improve Them. What types of elements should I
use and how many of them? This may be the question suggested by a decision to use FE
analysis. A conclusive answer cannot be given at the outset, but based on anticipated
structure behavior and the known behavior and limitations of various finite elements, the
analyst can prepare a trial FE model. An adequate FE model develops from a sequence of
FE models, each of which guides development of the next, so that the last has enough ele-
ments of the proper type. The term “sequence of models” may suggest a great amount of
effort. However, the sequence may not be long and some models may differ little from
one another. The sequential approach builds confidence in the final result. It also takes
less time overall than an attempt to construct a very detailed FE model at the outset, only
to find that it is inappropriate or inadequate because some aspects of behavior were not
foreseen. As FE software becomes more widely available, pre- and postprocessors im-
prove, and computing costs decline, there is a tendency to use more and more elements in
FE models. This is unwise if done as a substitute for understanding.

There are exceptions to most rules for FE modeling. This said, the following rules are
usually helpful. Include all of the structure in the model; do not omit part of it on the as-
sumption that it is lightly stressed or does not influence the remainder of the structure.
Use a finer mesh to obtain stresses (or mode shapes of vibration) than to obtain displace-
ments (or natural frequencies of vibration). If the problem involves nonlinearity or
anisotropy, analyze a linear or isotropic version of the problem first. If there are dynamic
effects, do a static analysis first, using loads that approximate the major dynamic load. A
linear static analysis is easier to perform and interpret and may disclose flaws in the FE
model. A linear analysis may also disclose that local buckling is possible, or that stresses
are so large that plastic action will develop. Software will not automatically proceed to
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analyze for a buckling load or do an elastic—plastic analysis. The user must decide what
type of analysis is required, select appropriate options in the program, and launch the
analysis.

The foregoing suggestions lead naturally to a sequence of FE models. If a structure is
an assemblage of distinct parts, it is sometimes possible to begin with a “stick model,”
which is a model built of a few bar and beam elements. This does not mean that the initial
model should be as crude as possible, only that it should be comparatively simple. Very
likely, the analyst can foresee where stresses may be largest and use more elements in
these areas, even in the initial model. Each successive model serves to improve the next,
by showing more clearly where stresses and stress gradients are large. The sequence also
may show that there are appreciable changes from one FE model to the next, for example,
changes of stresses in a certain region or changes in statically indeterminate support reac-
tions. Such changes suggest that convergence is not yet adequate and that mesh refine-
ment is needed. The sequence of FE models may include two-dimensional models as
steps toward three-dimensional models. If possible, three-dimensional models should be
the latter models in the sequence because they are the most tedious and time consuming
to prepare and the most demanding of computer resources.

Check the Model and the Results. Modeling defects that prevent execution will proba-
bly be identified by error messages from the software. Defects that produce unreliable re-
sults must be detected by the user. Computed results must be critically examined. These
important matters are discussed in sections that follow.

Numerical Experiments for Design Purposes. In an effort to improve a structural de-
sign, one may wish to understand the effects of changes in certain design variables. For
example, one might ask how the largest stress in a trial design is related to changes in a
certain thickness ¢, a certain hole radius r, and a certain length L. Analyses using various
choices for ¢, r, and L can be undertaken after an acceptable FE model has been gener-
ated, provided that changes in the design variables are not so large as to invalidate the FE
model. Imagine that it has been decided to examine the peak stress using thicknesses 7,
and t,, radii r, and r,, and lengths L, and L,. There are eight possible combinations of
these design variables. An analysis (a “numerical experiment”) should be performed for
each of the eight, in order that the combined results may be used to predict the values of 1,
r, and L most likely to reduce the peak stress. The procedures are part of the study called
design of experiments, which has been used for years in planning a productive set of
physical experiments. It can also be used for planning numerical experiments and inter-
preting the results. See [5.17] for an introduction.

Such numerical experiments are facilitated by software having the ability to revise the
FE mesh automatically when one of the design variables is changed. Automated mesh re-
vision facilitates automated optimization, in which software seeks the values of design
variables that minimize a function such as structural weight, subject to limits on stress,
deflection, or other quantities. Software with optimization capability is becoming com-
monplace.

5.10 NUMERICAL ERROR:
SOURCES AND DETECTION

We distinguish between errors inherent in the FE process and outright mistakes. The
“mistakes” category includes choosing the wrong data, forgetting loads or supports, and
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having bugs in the software. The “errors” category includes errors always present to some
degree: modeling error (because reality is replaced by mathematical theory), discretiza-
tion error (because mathematical theory is implemented in piecewise fashion by FE meth-
ods), and numerical error (because the computer does not use an infinite number of bits to
represent each number). The present section is concerned with numerical error and how it
is related to modeling choices.

Il-Conditioning. A set of equations is ill-conditioned if small changes in the coefficient
matrix or the vector of constants produce large changes in the solution vector. Consider
the two-d.o.f. structure in Fig. 5.10-1. It is described by the equations

) k, -k, i P
KD=R is = (5.10-1)
-ky okt ks | (s 0

Each equation plots as a straight line in a uu, coordinate system. These are the solid lines
in Fig. 5.10-1. Shaded bands along the lines suggest inexactness associated with use of a
finite number of bits to represent each number in computer memory. The exact solution
of Egs. 5.10-1 is represented by the intersection of the solid lines. The numerical solution
is represented by a point somewhere in the region where the shaded bands overlap. This
region is large when k, >> k, but small when ky, >> k.

We can again conclude that the case k; >> k, may be troublesome by considering an
elimination solution of Egs. 5.10-1. Addition of the first equation to the second eliminates
and converts the second equation to

((ky + ky) = kyJu, =P (5.10-2)

which would be exactly ku, = P if the computer used an infinite number of bits to repre-
sent k, and k,. But if k, = 1.000000 and k, = 4.444444(10)7° and the computer were to
carry (say) seven digits per word, the subtraction in Eq. 5.10-2 would yield 1.000004 —
1.000000 = 0.4(10)"%; that is, only one significant digit would remain. If the computer
were to carry six digits per word, the result would be 1.00000 — 1.00000 = 0.00000, and
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Fig. 5.10-1. A two-d.o.f. structure. (a) Stiff part supported by flexible part. (b) Flexible part sup-
ported by stiff part.
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the software would probably complain that the stiffness matrix is singular. Note that this
trouble does not arise when k, >> k;.

The foregoing example shows that the case k; >> k, in Fig. 5.10-1 produces ill-condi-
tioned equations, and that the solution may be inaccurate if computer words have too few
bits. This conclusion is true for FE models in a general way: numerical error becomes
more likely when elements or regions in a FE model have large differences in stiffness,
with the stiffer part supported by the more flexible part. In the present context, “support”
means elastic resistance. The conclusion is also plausible on physical grounds. If stiffness
differences were exaggerated without limit, the stiffer part would become unsupported,
so that a static equilibrium solution would not be possible. Analogous difficulties may oc-
cur in nonstructural problems. The main danger of ill-conditioning is not that equation-
solving may fail, but that it may succeed yet produce a solution whose errors are serious
but not large enough to make it obvious that something is wrong.

Problems Susceptible to Ill-Conditioning. Some modeling practices avoid numerical
trouble while others invite it. In Fig. 5.10-2a, node A is supported by a roller that allows
motion in only the y’ direction. This type of support can be treated without numerical
trouble by constraint transformations (Section 4.3) or Lagrange multipliers (Section
4.13). An approximate but physically reasonable alternative model is that of Fig. 5.10-2b:
by adding a very stiff spring along the x” axis, we allow motion in the y” direction but al-
most prevent motion in the x” direction. Thus we create a penalty constraint (Section
4.13), which creates ill-conditioning if spring stiffness k is large because there is then a
stiff part (the spring) supported by a flexible part (the three-bar truss). Figure 5.10-2¢ has
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Fig. 5.10-2. Three-bar plane truss with various support conditions.
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a different support condition at A, but this arrangement does not create numerical trouble
even if k, and/or k, is large. The difference between Fig. 5.10-2b and Fig. 5.10-2c is that
an inclined stiff spring to ground contributes large diagonal and off-diagonal coefficients
to K, while x- and y-parallel stiff springs to ground contribute only large diagonal coeffi-
cients (d.o.f. u, and v, are x-parallel and y-parallel in both cases). Large diagonal coeffi-
cients alone cause no trouble; this is the case for k, >> k; in Eq. 5.10-1. One can make
the inclined spring contribute to only the diagonal of K, and thus avoid numerical trouble,
by adopting ¥’-parallel and y’-parallel d.o.f. at node A (u, and v/, in Fig. 5.10-2d). In other
words, d.o.f. at node A are reoriented in going from Fig. 5.10-2b to Fig. 5.10-2d. If very
stiff elements appear within a model rather than only as boundary support elements, large
off-diagonal coefficients in K are inevitable and numerical trouble is likely. This is why
offsets in Fig. 4.3-3 are made rigid and are treated by constraint transformations.

Thin-walled structures tend to produce ill-conditioned equations because their mem-
brane stiffness is much larger than their bending stiffness. The structure in Fig. 5.10-3 is
an example. It is an arch-like structure of uniform thickness t that resembles a folded strip
of paper. It is modeled by four-node elements that resist both membrane and bending de-
formations. Forces of magnitudes 1 and 2 were applied to nodes of element A, as shown.
The x-parallel membrane stress in element A was computed for several values of thick-
ness ¢, and the following results were obtained: for ¢ = 0.6(10)7%, stress error was notice-
able (roughly 5%); for 7 = 0.2(10)7, stress error was severe; for 1 = 0.1(10)78, the stiffness
matrix was declared singular by the software. The value of ¢ for which trouble appears
depends on the software and computer used. Conventionally, computed stresses are more
seriously degraded by ill-conditioning than are displacements because stresses 0 = EBd
are computed from differences in displacements, and element A has small strains but
large rigid-body motion. In other words, with regard to horizontal displacements, element
A is almost rigid but is lightly supported by the rest of the structure. One can argue that
the foregoing thicknesses ¢ are ridiculously small. Nevertheless, one should be aware of
the nature of the problem, because numerical difficulty becomes more likely as the num-
ber of d.o.f. increases. This means that if a large FE model tends to produce ill-condi-
tioned equations, mesh refinement may make results worse rather than better.

Another possible cause of ill-conditioning is a Poisson ratio near 0.5 (Section 4.13).

Testing for Trouble. Before solving equations, one can look for the largest and smallest
diagonal coefficients of K and suspect ill-conditioning if the ratio of largest to smallest

Top view

1
L.

Fig. 5.10-3. Arch-like structure mod-
+ + eled by flat shell elements. Loads are
Fixed applied to element A.
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exceeds some large number. Some software packages do this automatically. However,
such a test may be pessimistic (e.g., k, >> k, in Fig. 5.10-1 and Fig. 5.10-2¢.d). The fol-
Jowing test does not have this defect but is not an a priori test.

As coefficients of K are being processed by a direct (noniterative) equation solver, the
software may apply a diagonal decay test [5.11]. Processing an equation involves sub-
tractions that reduce the magnitudes of diagonal coefficients K;; in equations not yet
processed. This is seen in Egs. 5.10-1 and 5.10-2, where elimination of d.o.f. u, reduces
K,, from k; + k, to k,. The program can store the original value of each K; and divide it
by its reduced value just before the reduced value acts as a pivot in processing the ith
equation. If this ratio is 10", then about ~ digits of accuracy have been lost from Kj;, leav-
ing p — n accurate digits if computer words store p digits each. A small value of p —n can
either trigger a warning message or terminate execution. The test is simple and cheap.

Users occasionally examine computed support reactions to see if they are in static
equilibrium with applied loads. If they are, we have some evidence that results are not
contaminated by numerical error. However, if the structure is statically indeterminate, in-
correct reactions may still satisfy equilibrium. Satisfactory reactions may even give a
false sense of security by suggesting that everything is correct, while in fact the mesh
may be utterly inadequate (e.g., Fig. 3.2-2). '

There appears to be no single test for numerical error that is always reliable. Even the
diagonal decay test can fail to detect a significant loss of accuracy [2.2]. To avoid numer-
ical error, an analyst must understand the modeling practices that promote it and choose
alternatives where possible. In particular, it is usually best to change a very stiff region in
a model to a perfectly stiff region by exactly imposing constraint relations that make the
stiff region move as a rigid body.

5.11 COMMON MISTAKES

Mistakes include errors of judgment in FE modeling and blunders in data preparation.
Both are noted in the present section. Section 5.12 discusses more systematic searches for
errors in the model and the data. Corrections for errors are either obvious or are discussed
in other sections.

We remark (yet again) that a major mistake, which generates errors of omission and
commission, is insufficient familiarity with the physical problem, element behavior, and
analysis limitations. It is also a major mistake to ignore warning messages produced by
the software. Vigilance is needed in every step of an analysis.

Division by zero will occur as element k matrices are being generated if Poisson’s ra-
tio is 0.5 in a plane strain, axisymmetric, or three-dimensional solid problem, and if the
thickness of a plate or shell element is zero. If unspecified, the thickness of a plane ele-
ment may default to unity, depending on the software.

A singular global stiffness matrix K may be caused by any of the following:

« Material properties such as elastic moduli are zero.
« One or more nodes are not connected to any element.
« There are no supports, or supports are insufficient to prevent all rigid-body motions.

« A mechanism is created because part of the model is inadequately restrained (e.g..
the beam in Fig. 4.13-1 with no rotational connection at node 1, or no restraint of lat-
eral translation d.o.f. in a flat part of a structure modeled by plane elements having
only translational d.o.f.).

« A mechanism is created because too many releases are prescribed at a joint.
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There are large stiffness differences, as discussed in Section 5.10.

« Part of the structure has buckled. (This is possible if the “stress stiffening” effect is
included and negative stiffening has reduced the net stiffness to zero or less.)

- In nonlinear analysis, supports or connections have reached zero stiffness, so that all
or part of the structure is inadequately supported.

A singular K usually triggers an error message and stops execution of the analysis. If exe-
cution stops, or if execution continues but the results are bizarre, it is clear that some-
thing is wrong and a search for the cause is needed. It is much more dangerous if there
are errors that lead to plausible but quite inaccurate results. Some errors in this category
are as follows.

- Elements are of the wrong type, for example, shell elements are used where solid el-
ements are needed, or axisymmetric elements are used where plane elements are
needed.

« Supports are wrong in location, type, or direction. (Supports can be too many as well
as too few; for example, complete fixity instead of a hinge, or too many d.o.f. con-
strained in an attempt to impose symmetry conditions.)

« Loads are wrong in location, type, direction, or magnitude. If symmetry is exploited,
a load in a plane of symmetry may not have been divided by 2. Similarly, the stiff-
ness of a beam that straddles a plane of symmetry may not have been divided by 2.

+ Other data may be incorrect. It is easy to be off by a power of 10 or use inconsistent
units. For example, feet may not have been converted to inches, or angular velocity
may have been stated as revolutions per second instead of radians per second (or
vice versa).

+ An element may have been defined twice. The duplication is hard to detect because
it cannot be seen when elements are plotted. The result is a “hard spot” in the model.

- A connection may be physically meaningless (e.g., Fig. 5.7-2b).

A record of the status and progress of the analysis project should be maintained.
Records become important if work must be resumed after an interruption. Confusion is
the result of poor record keeping: Where did data used to prepare the model come from?
Did I remember to make changes X, Y, and Z or not? Which data files correspond to
which model? Does the title line of the analysis refer to the current model or the previous
model?

5.12 CHECKING THE MODEL

A model should be checked prior to computation, both to make success more likely and
to avoid making the checking task more distasteful by postponing it. Indeed, the model
should be checked as it is being prepared, using graphical features of preprocessors. It is
easier to correct mistakes as soon as they appear than to locate and correct them later.
Mistakes can be made anywhere, even with simple data, so everything should be checked.
Undetected mistakes can prevent execution, or lead to bizarre results, or lead to results
that are plausible but wrong. Some checking is done by the analyst and some is done au-
tomatically by software.

Checking Done By the Analyst. Nodes and elements may be generated simultaneously.
However, if nodes are entered or generated separately, they usually appear on the screen,
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with or without numbers at the user’s option. Only when the node pattern appears satis-
factory should elements be entered; thus a misplaced node is less likely to be obscured by
elements. When the element layout appears satisfactory the boundary conditions can be
applied, and so on.

Many graphical devices are available, with of course some differences between soft-
ware packages. A shrink plot (Fig. 5.12-1), in which individual elements are reduced in
size about 20%, shows immediately if an element is missing. A missing element may not
be apparent in a standard mesh plot such as Fig. 3.12-3, especially for three-dimensional
models. Other graphical devices, no less useful, include slices (sectioning), hidden lines
present or removed, views from various directions, windowing, zoom, and perspective.
These options become particularly useful with three-dimensional models. One may also
be able to scale selectively, for example, to exaggerate the smaller dimension of a slender
model. Support conditions are usually identified by special symbols that convey location,
type (displacement or rotation), and direction of the support. Loads may be plotted in an
analogous way. One may be able to plot the boundary of the model. If part of it looks like
a crack in the material, then some nodes are adjacent or coincident but unconnected, per-
haps intentionally but perhaps not.

Some checking must be done by examining a list rather than graphically. For example,
it may be important to verify the location of some nodes more accurately than a plot will
show. Material properties must be listed and also cross-sectional properties used for
beams.

Checking Done By the Software. Commercial software does some checking automati-
cally. These checks involve computing a numerical value from the input data and com-
paring it with one or more stored values that define limits of acceptability. Data items
may be graded “pass” or “fail” or in some cases “pass with warning.” Anything but
“pass” produces a warning message. “Fail” also prevents execution. These “error traps”
complement but do not replace checking done by the analyst. Software often allows a
“check run” that stops short of solving global equations or even generating them. The
check run applies automatic data checks and may also estimate storage requirements and
solution time that will be required by actual analysis. Errors that may be detected by auto-
matic data checks include the following.

« ‘A node is not connected to any element.

« Nodes are close together or coincident but not connected. The analyst must decide if
this is intentional or not.

« Elements share a node but do not use the same set of d.o.f. at the node.

« Poisson’s ratio is not in the range 0 < v < 0.5. An analogous test may detect impossi-
ble properties of an orthotropic material.

« Elements have too large an aspect ratio or corner angles that differ too greatly.

. A side node (of an element that has them) may curve the side too greatly or be too
far from midside.

« A four-node element in space is too greatly warped; that is, its nodes are too far
above and below the mean plane.

« The dihedral angle between three- or four-node elements in space is too far from
180°.
« A curved shell element spans too great an arc.

Tests for excessive element shape distortion are arbitrary. There are no universally appli-
cable criteria. What is acceptable in one situation may be unacceptable in another [9.8].
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An element is missing!
Fig. 5.12-1. A “shrink plot” of elements is but
one of many graphical tools that can be used
for checking. The mesh shown (without the
missing element) is used in Section 3.12.

Accordingly, the absence of a wamning does not guarantee that shapes are satisfactory,
nor does the issuance of a warning necessarily mean that shapes are unacceptable. Never-
theless, all warning messages should be read, and action taken where needed.

Automatic checking cannot disclose whether elements are of the appropriate type and
size. whether units are consistent, whether loads and supports are properly located, and so
on. The analyst is responsible for these matters and for the quality of the work.

5.13 CRITIQUE OF FE RESULTS

With the help of graphical tools in the postprocessor, one first examines results qualita-
tively to see if they “look strange.” For this initial examination, displacement results may
be the most informative, as described in the following paragraph. If no flaws are obvious,
results are examined in more detail and quantitatively compared with expectations. Several
expectations should already be available from preanalysis planning (Section 5.9). In com-
paring FE results with results obtained otherwise—from approximate solution, handbook
formulas, alternative software, existing similar structures, or experiment—one must be
sure that the physical situations that produce the results are substantially the same. In
comparisons between FE and experiment, for example, it is unfortunately common for
there to be differences in supports, loading, and even structure geometry, especially if an-
alysts and experimentalists do not communicate well. If FE results pass such comparisons
and also pass a critique as suggested in what follows, one must decide if further analysis
is required, and, if so, how it should be influenced by the current analysis.

Displacements should be examined first, plotted and scaled so as to be easily visible.
Typically, software plots only straight lines between nodes, so that curved shapes as-
sumed by deformed beam elements and deformed edges of plate and shell elements are
not visible. Animation of the plot makes the directions of nodal displacements apparent.
One should see that actual displacements agree with intended supports, for example, that
displacements are tangent to roller supports, have only rotation at a hinge, and are zero at
fixed boundaries. If symmetry is expected, it should be visible in the displacement field.
Usually it is obvious on physical grounds that some points will displace more than others;
this also should be visible. A gap should not “overclose” so that adjacent parts interpene-
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trate. Sectioning and views from different directions should be used as necessary. One
may also plot contours of displacements and rotations.

Deformations produced by temperature change are plotted by software as if the unde-
formed configuration exists at zero temperature. Accordingly, temperature changes should
be stated relative to a reference temperature at which the model is considered undeformed.
The reference temperature becomes the zero temperature as far as deformation plots are
concerned.

Support reactions can be examined to see if they satisfy statics, for example, to see if
the sum of computed x-direction reactions balances the intended x-direction load. If not,
it is more likely that the intended load was not applied correctly than that reactions have
been incorrectly computed. Software may automatically compute the sum of support re-
actions in each coordinate direction and the moment of the reactions about each coordi-
nate axis. Note that all reactions must be referred to the same coordinate system, and that
constraint equations (if used) may introduce fictitious forces.

It is well to recall that a linear solution is based on equilibrium equations written with
respect to the undeformed geometry. In Fig. 5.13-1, physically possible displacements
may be large enough that the spring must carry tension if static equilibrium is to prevail.
A standard linear analysis takes no notice of this possibility; it calculates a compressive
force F = Ph/b in the spring, even if computed displacements are very large, so that the
displaced configuration resembles Fig. 5.13-1b. If displacements are actually this large, a
correct solution corresponding to this configuration can only be obtained by doing a non-
linear analysis. However, if a linear (small displacement) analysis has been performed
and Fig. 5.13-1b is the result of great exaggeration of displacements solely for plotting
purposes, the linear solution may be quite accurate even though a plot such as Fig.
5.13-1b may confuse and mislead the analyst. Another example of how plots can mislead
appears in Fig. 5.13-2. The deformed shape suggests that the beam has gotten longer and
that depth h has increased toward the right end. This is only an impression that results
from great exaggeration of computed displacements. In the linear solution displacements
of the beam axis are entirely vertical; horizontal displacement components of the beam
axis are zero. In Fig. 5.13-2b the linear solution has merely been scaled up. In any cross
section, points on top and bottom surfaces (such as A and B) still have a vertical separa-
tion h. Figure 5.13-2b does not represent the deformed shape of a real beam whose de-
flections are truly large. A large-deformation shape can only be computed by an analysis
that uses the deformed shape in constructing the equations to be solved. This is nonlinear
analysis, in which displacements and stresses are not directly proportional to load. The
deformed shape produced by scaling up the usual linear solution D = K™ 'R is not correct
if deflections are indeed large.

In standard software, stresses are computed from displacement differences. Accordingly,
stresses are usually less accurate than displacements, although sometimes they are as ac-

T : ! 7 ! : F=tt

(a) (b) (c)

Fig. 5.13-1. (a) Block supported by a hinge and a soft spring. (b) Possible displaced shape pro-
duced by load P. (c) Reaction F computed by linear analysis.
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Fig. 5.13-2. (a) Cantilever beam, loaded by tip moment. (b) Deformation from
linear analysis, greatly exaggerated, as may be plotted by FE software.

curate as displacements. In either case, stresses cannot be trusted if displacements are suspect.
In vibration analysis, mode shapes cannot be trusted if natural frequencies are suspect.

An array of graphical tools is available for viewing computed stresses. Tabulated re-
sults can also be useful. Before examining stresses one must ask how they are presented
by the software. Are they referred to global or to local axes? If the latter, how are these
axes oriented? Are stress resultants (e.g., bending moments) reported? They must not be
mistaken for stresses. In beam, plate, and shell elements, stresses may be available at up-
per. middle, and lower element surfaces. Which is desired, and which surface of an ele-
ment is called its upper surface by the software? Are stresses averaged at nodes? This is
incorrect if coordinate systems do not match or if there are discontinuities of thickness or
material properties (Fig. 3.10-1). One can plot contours or shades of any individual nor-
mal or shear stress, a principal stress, the “stress intensity,” or the von Mises stress (Egs.
3.10-1 and 3.10-2). Principal stress trajectories (lines tangent to a principal stress direc-
tion) can be plotted as dashed lines, with the length of each dash proportional to the mag-
nitude of the principal stress at that location. Trajectories show the “flow” of stress and
can be used to identify the primary load-carrying path in a FE model. (Note that a stress
trajectory is not a stress contour. A stress contour is the locus of points that have the same
stress. It says nothing about the stress direction.) Stresses can be viewed on user-defined
cross sections of solid models. Usually one can scale, window, and choose different
viewpoints.

Advice that bears repeating, even belaboring, is that stress plots should be based on
unaveraged nodal stresses, so as to retain interelement discontinuities in the plotted con-
tours or shades. Discontinuities are an obvious qualitative measure of discretization error.
Contours plotted from nodal average stresses are interelement-continuous. Their appear-
ance is pleasing, but they convey discretization error only by how much they change in
direction across interelement boundaries. Examples of averaged and unaveraged contours
appear in Figs. 3.12-2 and 3.12-3. Note that contours are interelement-continuous across
the line of symmetry x = y in Fig. 3.12-2c. Accordingly, a mesh may be too coarse even
when an unaveraged stress plot shows continuity. See also the last paragraph of Section
7.6.

Some characteristics of an accurate stress field are as follows. Stress contours should
be normal to a plane of reflective symmetry (of loads as well as geometry). At a free
boundary, one of the principal stresses should be zero. At a boundary loaded only by
pressure p, one of the principal stresses should be —p. Principal stress trajectories should
be normal or tangent to free boundaries, boundaries loaded only by pressure p, and planes
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of reflective symmetry. In an axially symmetric problem, radial and circumferential nor-
mal stresses should be equal on the axis of revolution. None of these conditions is likely
to be met perfectly. The amount of imperfection is a measure of discretization error, or is
perhaps a warning of an error in the FE model. One would also suspect a error in model-
ing if there are unexpected stress gradients or stress concentrations in unreasonable
places.

The foregoing inspection is largely qualitative. Quantitative inspection involves com-
paring computed displacements and stresses with preliminary analytical results (prepared
in advance!), experimental results, predictions from formulas in textbooks and hand-
books, and whatever else may be appropriate and reasonably available. Such checks are
likely to be most useful for the earliest models in a sequence, when bluncers are most
likely and the appropriateness of some assumptions may still be in question. Inevitably,
there will be disagreements between FE results and other results used for comparison.
Reasons for any substantial disagreement must be sought. FE results are not necessarily
at fault when there is disagreement, but experience shows that most users are entirely t00
willing to accept computed results at face value [1.7].

Close inspection of results shows how the FE model can be improved. A need for
mesh refinement is indicated in regions where stress contours display considerable in-
terelement discontinuity. The closeness of stress contours is another guide: if plotted
stress contours have equal increments between them, elements that span several stress
contours should be refined more than elements that span few contours. In addition to re-
vising the FE model, it may be necessary to alter the scope of the analysis. This may hap-
pen if initial assumptions such as no buckling, no gap closure, or no plastic action are in-
consistent with the computed magnitudes of displacements and stresses.

5.14 STRESS CONCENTRATIONS. SUBMODELING

Stress Concentrations. The FE method is not very good at calculating peak stresses at
holes, fillets, and so on. Often a stress raiser is small, being roughly the size of an ele-
ment that would be used if the stress raiser were absent. Surrounding the stress raiser by a
greatly refined mesh would be a considerable chore. Sometimes a tabulated stress con-
centration factor (SCF) can be used instead, as follows. The stress raiser (e.g., a small
hole) is not modeled, but nominal stresses at its location are calculated by FE analysis.
Then, if a tabulated SCF for the local geometry and stress field is available, one need
only multiply the nominal stress by the SCF to obtain the peak stress.

If the needed SCF is not tabulated, the following alternative may be available [5.12].
The discontinuity is modeled by a coarse “local” mesh and the peak stress is computed.
To compensate for the coarseness of the mesh, the peak stress must be scaled by a factor.
The factor is computed by using the same local mesh to solve a “secondary” problem for
which results are known. The factor is equal to the ratio of exact stress to computed stress
in the secondary problem. The success of the method depends on the availability of a sec-
ondary case that is “close” to the primary case, and the ability of the analyst to recognize
it.

As an example of this method, consider stress at point E in Fig. 5.14-1a. The mesh
used is very coarse. For the load P used, the computed stress at point E is 221 (the units
do not matter here). The same local mesh is embedded in a tensile strip, Fig. 5.14-1b, as a
suitable secondary case for which the SCF is known. At point E, for the load applied, the
secondary case yields an exact stress of 130 by using the SCF and a computed stress of
92.8 from FE analysis. Hence the correction factor is 130/92.8 = 1.40. The final estimate
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Fig. 5.14-1. (a) A plane square region with a central hole. Stress at point £ is desired. (b)
“Secondary” case of locally similar geometry for which exact results are known.

of stress at point E in Fig. 5.14-1a is therefore 221(1.40) = 310. The exact stress in Fig.
5.14-1ais very nearly 337 (as computed from a highly refined mesh). To obtain the final
estimate of 310 without the correction factor, the 2 by 2 mesh in Fig. 5.14-1a must be re-
placed by an 8 by 8 mesh, with still greater refinement needed for greater accuracy.

Submodeling. A SCF is not tabulated for every kind of stress raiser. A hole or other dis-
continuity may be oddly shaped or so close to boundaries or loads that it does not lie in
the simple kind of stress field for which a SCF is tabulated. Then a refined-mesh study is
needed in order to determine the peak stresses. However, it is not necessary to revise and
reanalyze the entire FE model. Mesh refinement can be strictly local. This technique is
called submodeling.

As an example, consider the structure shown in Fig. 5.14-2a. Only a portion of the en-
tire FE mesh is shown. We assume that this mesh is too coarse to give accurate stresses

Liide

Remainder
of mesh
not shown

(a) : (b)

Fig. 5.14-2. (a) A portion of the FE mesh in a coarse-mesh plane FE model. (b)
A submodel. Dots show nodes on the cut boundary that also appear in the coarse
mesh.
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(a) (b) (c)

Fig. 5.14-3. (a) Intersection of two plates, seen in cross section. (b) FE model of plate elements,
seen edge-on. (c) FE model that combines plate and solid elements.

on the boundary of the cutout, but fine enough to give reasonably accurate displacements
near the cutout. A possible submodel is shown in Fig. 5.14-2b. It is loaded by prescribed
displacements at all nodes along BC, CD, and DA. The required displacements are ob-
tained from the coarser-mesh solution. Some of these nodal displacements must be inter-
polated, because not all nodes along BC, CD, and DA also appear in the coarser mesh.
The necessary interpolation capability is included in some commercial software. Displace-
ments are imposed only at nodes along the “cut boundary” BCDA. Thus d.o.f. are not im-
posed at any internal nodes of the submodel or at any nodes on the arc of radius r except
nodes A and B. The submodel may be refined repeatedly without ever changing the
coarser model.

Submodeling is reminiscent of substructuring, but submodeling does not require that
the coarse mesh and the submodel have identical node patterns along the cut boundary.
Submodeling also makes no provision for updating the “attachment” d.o.f. by connecting
the coarse mesh and the submodel together and solving the entire system.

A form of submodeling can be used for intersections. The intersecting plates of Fig.
5.14-3a can be regarded as part of a larger structure (not shown). A plate element model,
Fig. 5.14-3b, does not do well at resolving detail near corner C because plate elements lie
on midsurfaces of the actual plates. If bending dominates, one might apply a stress con-
centration factor to computed bending moment in the plate elements at C. Alternatively,
the submodel approach in Fig. 5.14-3c might be used. Plate and solid elements meet at A
and B and can be connected by methods discussed in Sections 3.9 and 4.13.

Clearly, submodeling requires skill in order to construct a coarse mesh that is not foo
coarse and to place boundaries of the submodel far enough from the stress raiser. In Fig.
5.14-2, “far enough” means that d.o.f. along arc CD would be almost unaffected by a de-
crease in radius r. As a partial check, stresses before and after submodeling can be com-
pared: if submodeling does little to change stresses on the cut boundary of the submodel,
we have some assurance that the cut boundary placement is acceptable. Even when skill-
fully done, stresses may be underestimated because the coarser-mesh model is likely to
err by being too stiff, which means that displacements imposed on the submodel will be
too small.

5.15 CONVERGENCE WITH MESH REFINEMENT

FE results should converge toward exact results as a mesh is repeatedly refined. This will
indeed happen if there are no blunders in FE modeling and if elements pass patch tests.
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Convergence is toward results of the corresponding mathematical model, for example, to-
ward results of beam theory if beam elements are used. Convergence will be “from be-
low”—meaning that each FE model errs by being too stiff—provided that conditions
noted in Section 4.8 are met. If, in addition, each refinement is by subdivision of existing
elements. with existing nodes retained and not repositioned, convergence will be monoto-
nic from below. The mesh in Fig. 5.15-1b is such a refinement of the mesh in Fig. 5.15-
la. Mathematically, one says that this kind of subdivision retains the old trial field as a
subset of the new one. None of this says anything about the rate of convergence. There is
little advantage to monotonic convergence with one type of element if a different type
provides nonmonotonic convergence but considerably greater accuracy for the same
number of d.o.f.

In order to say more about convergence some terms must be defined. Let / be an ap-
proximate linear size measure of an element; that is, the actual length of a bar or beam el-
ement, or A'? where A is the area of a plane or plate element, or V*** where V is the vol-
ume of a 3D solid element. Let p be the degree of the highest complete polynomial in the
element displacement field. Thus p = 1 for the CST (Eq. 3.2-1), p = 1 for the basic four-
node quadrilateral (Eq. 3.4-1), and p = 2 for the eight-node quadrilateral (Eq. 3.5-1).

Common parlance refers to “h-refinement” and “p-refinement,” in which % or p is
changed in going from the old mesh to the new. An A-refinement changes element sizes
without changing element types (so p remains constant). A p-refinement changes element
types without changing element sizes (so / remains constant). In p-refinement, nodes may
be added to existing elements and/or d.o.f. may be added to existing nodes. Examples
appear in Fig. 5.15-1. These examples are uniform refinements, in which the positions of
existing nodes are not changed. Another possibility is * r-refinement,” Fig. 5.15-1d, in
which r means “rearrange”; that is, existing nodes are moved without changing the num-
ber of elements or the number of d.o.f. Because the number of d.o.f. is not increased, r-
refinement can provide only limited improvement in accuracy. Of course none of these
refinement methods need be used in isolation. Commonly, nodes are rearranged when do-
ing h- or p-refinement, or when doing /- and p-refinement in combination. It appears that
for problems containing singularities, such as reentrant corners or cracks, p-refinement
converges much faster than h-refinement, especially if combined with r-refinement so
that mesh density is most greatly increased around singularities [5.13].

Some commercial programs are self-adaptive, which means that they are able to esti-
mate the error of a FE solution, revise the mesh, reanalyze, and repeat this cycle automat-
ically until a prescribed convergence tolerance is met. More is said about this in Section
5.16. A self-adaptive program may be based on h-refinement or on p-refinement.

SR

A uniform A uniform A possible
h-refinement p-refinement r-refinement

Original mesh
(a) (b) (c) (d)
Fig. 5.15-1. Possible refinements of a plane mesh.
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Adaptive h-refinement capability has been obtained by additions to existing codes: error-
calculation and mesh-revision modules were added, and a driver was written to repeat the
entire analysis, error-checking, mesh-revision sequence until the convergence tolerance is
met. Refinement can continue until limits of computer capacity or numerical noise are
reached. Adaptive p-refinement requires more sophisticated programming because ele-
ment types are changed in successive mesh revisions and nodes may have more than the
usual number of d.o.f. Refinement can continue until the highest-order elements coded in
the program have been used.

Sometimes computed results from two analyses can be extrapolated to yield an im-
proved result. The argument is as follows, with reference to the & method. We assume
that convergence is monotonic and that the convergence rate is known; for example, if er-
ror in a certain quantity is quartered when size of elements is halved, then error is propor-
tional to k% Figure 5.15-2a illustrates the general case of error proportional to h4, which
plots as a straight line when the abscissa is k9. The ordinate, ¢, represents the quantity of
interest, such as displacement or stress at a certain point. By simple linear extrapolation
of ¢ versus h?, we obtain

[ — q
¢m = ¢1h2 ¢2hl (515_1)
h§ —hf

as the value of ¢ expected at infinite mesh refinement, when h = 0. Figure 5.15-2b shows
that for nonmonotonic convergence, extrapolation based on values of ¢ at points such as
C and D may produce a worse result rather than an improved result. Note also that at least
three analyses are required in order to determine g, and that all of them may have to be
based on at least moderate mesh refinement if ¢ is to be determined with certainty. If suc-
cessive mesh refinements are nonuniform, it is not clear how f,, h,, and so on are to be
measured. Perhaps the h; should then pertain to the element in each mesh nearest the
point of interest. Results from three or more analyses may fail to plot as a straight line for
any value of g. Then one might opt for linear extrapolation, by using a least-squares of a
straight line to the results of three or more analyses, but with no guarantee of an im-
proved result.

One sometimes examines results from two different meshes, notes that they are in sub-
stantial agreement, and concludes that convergence is almost complete. The conclusion is
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Fig. 5.15-2. (a) Extrapolation with error proportional to k9. (b) Error is nonmonotonic in
ABCD and proportional to h?in AE. AF would be a straight line if the abscissa were h.



5.16 Error Measures and Adaptivity 141

plausible but may be false. It is possible that results from two meshes plot as points B and
C in Fig. 5.15-2b, which have the same error.

5.16 ERROR MEASURES AND ADAPTIVITY

A FE solution contains enough information to estimate its own discretization error. An
error estimate can be calculated by the postprocessor and used to guide mesh revision, so
that the next analysis will be more accurate. Cycles of analysis and mesh revision can be
repeated until a convergence test is satisfied. These ideas can be implemented in different
ways. One method uses the Z2 error estimator, named after its authors [5.14]. It pertains
to the error in computed stresses and is summarized as follows.

First, it is necessary to discuss stress fields. Consider the simple example of a uni-
formly loaded bar, Fig. 5.16-1. The element-by-element stress field is discontinuous be-
tween elements, but the stress field constructed from nodal average stresses is continuous.
Indeed, in this particular example (but not in general) the continuous field is exact, except
in elements at either end of the bar. There are other ways of constructing a continuous
stress field [5.15], but what matters for the error estimate is that the continuous field,
however constructed from discontinuous element stresses, is regarded as the most accurate
portrayal of the exact stress field that the current discretization can provide. Accordingly,
the difference between the element-by-element field and the continuous field can be re-
garded as an approximate error field. This error field is indicated by shading in Fig. 5.16-
1. Whatever the element type, when discontinuities of stress (or bending moment) appear
between elements, the amount of discontinuity is regarded as a measure of error. We
identify the various stresses as follows.

o = the element-by-element stress field (discontinuous)
o* = the averaged or smoothed stress field (continuous)

Op = 0— 0¥, the “error” stress field

A strain energy can be associated with each stress.

L E__l
jTazAdx (5.16-1a)

0

U= ZUi where U,
i=1

2

U* = Y U*  where U %—l-(o-*) Adx (5.16-1b)

]
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n L -1
U = D U;  where Up = ETchdx (5.16-1c)

i=1 0

where A is the cross-sectional area, L is the element length, and summation signs indicate
that energy contributions of all n elements of the mesh are added. With elements of arbi-
trary type, 0, 0*, and Oz become stress vectors, elastic modulus E becomes the matrix E
of elastic constants, and integration is over element volumes. Thus a typical integrand, in
Eq. 5.16-1a for example, becomes 30" E ™' o dV. Element energy errors Ug; do not indicate
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Fig. 5.16-1. A uniform bar modeled by two-node bar elements of equal length.
Stresses associated with uniform axial load g are shown.

the accuracy of stresses in individual elements; instead, they are used to guide mesh revi-
sion. A global quantity 77 is used to test for convergence, where 1 is the relative energy
error

12
n = U where 0<n<l (5.16-2)
U+U;

The denominator uses U + Uy as an approximation of the exact strain energy, in recogni-
tion of the probable overstiffness of the FE model, which makes U smaller than the exact
strain energy. Apparently, U* could be used instead of U + Up. The square root serves to
associate 7) with the stress field, as strain energy is proportional to squares and products
of stresses. Note that 7] is a global quantity and does not measure error at any particular
point. Indeed, if an analogous quantity 77, were defined for each element it too would be
unreliable as an element error measure (e.g., it could be large just because U, is small).
As examples of relative energy error, (global) values of 7 are 0.373 in Fig. 3.12-2 and
0.183 in Fig. 3.12-3. Neither value of 1 is small enough to indicate that the solution is
satisfactory.

In practice, an adaptive solution proceeds as follows. An initial analysis is followed by
postprocessing that yields Uy; for every element and the global quantity 1. If 71 is less
than a prescribed value, say, 0.05, the procedure terminates. Otherwise the mesh is re-
vised, by /4 and/or p methods and possible repositioning of nodes, so that more elements
or more d.o.f. are placed in existing elements where Uy, is comparatively large. Another
cycle of the procedure is begun by analysis of the revised FE model. With suitable coding
all of this can proceed automatically, beginning with a user-supplied FE model and termi-
nating after perhaps four cycles with a refined FE model and presumably accurate re-
sults—which the analyst must check, as usual. Figure 5.16-2 is an example of this
process. Note that there appear to be stress concentrations at A and B. It may be wise to
exclude such singularities from the region to be treated by self-adaptive analysis, as there
is little purpose in seeking improved accuracy at points where stress is known to be infi-
nite. Again, neither Ug; nor 1 works as an indicator of percentage error in a local stress
value.

The procedure by which element energy errors Up; are used to revise the mesh [5.14]
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Fig. 5.16-2. Results of an adaptive solution in a plane region using linear strain triangles [5.16].
Poisson’s ratio is 0.3. All d.o.f. along AB are set to zero. Each revision aimed at 7 =0.05.

tends to produce a mesh in which Uy, is the same in all elements. The first mesh revision
does not make all Ug; values exactly the same because the computed stress field is some-
what changed by mesh revision. The analyst can monitor error estimates in successive
mesh revisions by looking at plots of Uy; values, using different colors for different mag-
nitudes of Ug,. The postprocessor will color each element according to its Uy, value.
Accordingly, the plot will be multicolored after the first analysis, when Uy, values are
quite different. At full convergence all U, values would be equal and the plot would be
monochrome. Another way to monitor the iterative process is to inspect unaveraged
stress contours, as has been repeatedly advocated.

The foregoing arguments are built on the assumption that discontinuities in element-
by-element stress field are indicative of error. This is not necessarily so: stresses should
be discontinuous in some situations, such as at an abrupt change in thickness or modulus
or at a shrink fit interface. In such cases the region over which the stress error estimate is
computed should exclude the known discontinuities.

What if there are multiple load cases? The foregoing mesh revision procedure will
produce a different mesh for each load case. It would be more convenient to produce a
single mesh that constitutes an improvement for all load cases. A possible strategy is to
predict improved element sizes from each load case separately, using Up; values appro-
priate to each load case, then generate a mesh in which element size at every location is
the smallest of the several sizes predicted.

Software having automatic adaptive capability does much to free the analyst from the
labor of preparing meshes and altering them to make the next analysis more accurate. The
analyst must still understand the physical problem and the FE method well enough to cre-
ate a correct and adequate initial FE model. Mistakes in loads, support conditions, and so
on will propagate through adaptive cycles and produce an improved solution to the wrong
problem. Also, poor choices of element types or an initial mesh that is too coarse may not
disclose enough detail to permit the revised mesh to be an improvement. Automatic adap-
tivity seems to guarantee that final results will be adequate, but of course there can be no
such guarantee. It remains the duty of the analyst to do the work properly and to critically
examine computed results.

Concluding Remarks. The analyst is not to blame for everything that may go wrong.
Software contains errors, despite the best efforts of software vendors to sweep them out.
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Errors exist even in software developed by vendors that meet the demanding quality con-
trol and verification procedures of the Nuclear Regulatory Commission (NRC). And for
every vendor that meets NRC requirements there are many that do not. One author [5.6]
puts it strongly: “Beware of computers. And, especially beware of developers of engi-
neering software.” Regardless of the source of trouble, the engineer who uses the soft-
ware is held responsible for the results.



CHAPTER 6

3D Solids and Solids
of Revolution

This chapter considers solid elements, first for the general 3D case, then for the special
(but very common) case of axial symmetry. Each of these two cases is followed by an ex-
ample application. Axisymmetric geometry with nonaxisymmetric loading is described
last.

6.1 INTRODUCTION

The term “3D solid” is used to mean a three-dimensional solid that is unrestricted as to
shape, loading, material properties, and boundary conditions. A consequence of this gen-
erality is that all six possible stresses (three normal and three shear) must be taken into
account (Fig. 6.1-1). Also, the displacement field involves all three possible components,
u, v, and w. Typical finite elements for 3D solids are tetrahedra and hexahedra. with three
translational d.o.f. per node. Figure 6.1-1b shows a hexahedral element, about which
more will be said in Section 6.2.

Problems of beam bending, plane stress, plates, and so on, can all be regarded as spe-
cial cases of a 3D solid. Why then not simplify FE analysis by using 3D elements to
model everything? In fact, this would not be a simplification. 3D models are the hardest
to prepare, the most tedious to check for errors, and the most demanding of computer re-
sources. Also, some 3D elements would become quite elongated in modeling beams,
plates, and shells; this invites locking behavior and ill-conditioning (Sections 3.6 and
5.10).

A solid of revolution, also called an axisymmetric solid, is generated by revolving
a plane figure about an axis in the plane. Common examples include a hose nozzle
and a light bulb, although the light bulb has a very thin wall and would be properly
classed as a shell of revolution for stress analysis purposes. Loads and supports may
or may not have axial symmetry. Initially, we will consider the case where geometry,
elastic properties, loads, and supports are all axisymmetric. Consequently, nothing
varies with the circumferential coordinate 6, material points displace only radially
and axially, and shear stresses 7, and 7,_ are both zero. Thus the analysis problem is
mathematically two-dimensional. Axisymmetric finite elements are often pictured as
plane triangles or quadrilaterals, but these plane shapes are actually cross sections of
annular elements, and what appear to be nodal points are actually nodal circles (Fig.
6.1-2). ‘
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Fig. 6.1-1. (a) 3D state of stress. (b) An eight-node hexahedron FE. (c) The d.o.f. ata typical node
(i=1,2,.,8).

Stress-Strain-Temperature Relations. As usual, the constitutive relation of a linearly
elastic material is written as

oc=Ee+ 0, 6.1-1)

For an isotropic material in three dimensions, with initial stress @y produced by tempera-
ture change, Eq. 6.1-1 symbolizes the relation
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Fig. 6.1-2. (a) Axisymmetric state of stress. (b) A four-node axisymmetric element and d.o.f. at a
typical node (i=1, 2, 3, 4).



6.1 Introduction 147

where E is the elastic modulus, v is Poisson’s ratio, ¢ is the coefficient of thermal expan-
sion, AT is temperature change, and

c=————E—— and G= E
(1+v)(1-2v) 2(1+v)

(6.1-3)

In the same notation, for axial symmetry and an isotropic material, Eq. 6.1-1 symbolizes
the relation

o, (I-v)e ve ve 01fe, 1
Oy (1-v) ve 01| & Eo AT |1
o[ (-ve 0lle [ 1-2v |1 (6.1-4)
7., symmetric G ||V 0

The resemblance between Egs. 3.1-4, 6.1-2, and 6.1-4 is obvious. In particular, note that
if v approaches 0.5 a division by zero impends, inviting the troubles of locking and ill-
conditioning.

The FE method is not restricted to isotropic materials, but we will not discuss aniso-
tropic materials here. For a solid of revolution, software may require that material proper-
ties not depend on O and that 6 be a principal material direction of an orthotropic mater-
ial.

Strain-Displacement Relations. Let u = u(x, v, 2), v = v(x, y, 2), and w = w(x, y, z) be
displacement components of an arbitrary material point in the x, y, and z directions,
respectively. If strains and rotations are small, strains and displacement gradients in
Cartesian coordinates are related by the equations

ou ou
x = o Yo =7+

ox ody ox

v o ow
£ =— Yy = —+— 6.1-5
s =T % o ( )
8—'@'& =éﬁ+ﬁ
:"az 7/;: &( aZ

For a solid of revolution we switch from Cartesian coordinates to cylindrical coordinates.
If deformations are axially symmetric, the circumferential displacement component v is
zero, the radial displacement component is u = u(r, z), and the axial displacement
component is w = w(r, 7). Shear strains ¥, and ¥,. are zero. Nonzero strains in the case of
axial symmetry are

Jdu u
= — 8@ = —
-

ow Jow  du
= =
© 9z toodr 0z

6"
(6.1-6)

The expression &, = w/r is derived in Fig. 6.1-3. Note that zero circumferential displace-
ment does not imply zero circumferential strain. If desired, Egs. 6.1-5 and 6.1-6 can be
stated in matrix format, like Eq. 3.1-6.
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Hence e = “ Fig. 6.1-3. Circumferential strain
" £, when a differential arc displaces
d6 radially an amount u.

Displacements u within an element are interpolated from nodal d.o.f. d in the usual
way; that is, u = Nd, where N is the shape function matrix. If nodes have only transla-
tional d.o.f. and n is the number of nodes per element, N has 3n columns for a 3D ele-
ment and 2n columns for an axisymmetric element. Thus, for 3D solids, u = Nd is

Uy

Uy
u N 0O O N, O o - W,
vi=l0 N O 0 N, O -]t 6.1-7)
w 0 0 N O 0 N, ||V

W)

Similarly, for axisymmetric displacements in a solid of revolution, u = Nd is

U
u N O N, O - Wi
Ao N o0 N - Uy (6.1-8)
1 2

Formulas for k. Substitution of u = Nd into the strain—displacement relation yields the
strain—displacement matrix B. which in turn enters the integrand of the formula for ele-
ment stiffness matrix K, as explained in connection with Eqs. 3.1-8 and 3.1-10. With 7 the
number of nodes per element, and translational d.o.f. only, these relations for 3D solids
and solids of revolution are as follows:

General solids: Solids of revolution with
axisymmetric stress field:

=B d =B d (6.1-9a)

6x1 6x3n 3nxl 4x1 4x2n 2nx1

k :jJJBTﬁEéndxdydz k

3nx3n

HJBT&B rdrd0ds  (6.1-9b)

If nodal rotation d.o.f. are also present, additional columns appear in N and in B. and k is
of larger order.

Integration with respect to 6 in an axisymmetric problem produces a factor 2, which
is a common multiplier of both K and R in the global equation KD = R. In some software
the 27t multiplier is discarded. Then loads in R pertain to a 1-radian segment.
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Remarks. To prevent singularity of K, boundary conditions on a 3D solid must suppress
six rigid-body motions: translation along, and rotation about, each of the three coordinate
axes. In a solid of revolution with axisymmetric deformations, translation w along the z
axis is the only possible rigid-body motion. Accordingly, K will be nonsingular if w is
prescribed at only one node (or, stated more properly, around one nodal circle).

An axisymmetric radial component of load is statically equivalent to zero, but this
does not mean that it can be discarded from the load vector. It still produces deformation
and stress. Over the circumference, a radial line load of ¢ units of force per unit of (cir-
cumferential) length is regarded as contributing a radial force 2mrq of units to the load
vector, where r is the radius at which g acts. Likewise, a moment of M N-m per unit of
(circumferential) length is statically equivalent to zero but is regarded as applying a mo-
ment about the @ direction of 27xM N-m. Similar remarks can be made for the radial body
force load associated with spinning about the z axis.

An unrestrained body that is homogeneous and either isotropic or rectilinearly or-
thotropic is unstressed by temperature change if the temperature field is either constant or
linear in Cartesian coordinates xyz. An unrestrained solid of revolution that is either
isotropic or cylindrically orthotropic is not unstressed by a temperature field that is linear
in radius r of cylindrical coordinates. The solid of revolution would remain stress-free if
the temperature field is either constant or a linear function of axial coordinate z only.

Although a plane FE model and the cross section of an axisymmetic FE model look
alike, and each uses the same pattern of nodal d.o.f., it is physically meaningless to cou-
ple them together (Fig. 5.7-2b). Physically, such a connection would not produce axisym-
metric deformations in the solid of revolution. If this kind of connection is actually in-
tended. it will usually be necessary to model the solid of revolution by 3D elements.

Some software allows the analysis of a solid of revolution under loading without axial
symmetry. The technique is summarized in Section 6.6. This is usually a “stand-alone”
analysis; attachment to a 3D solid or a plane structure is not allowed.

Caution. In problems of buckling or vibration, axial symmetry of geometry, material
properties, loading, and support conditions does not guarantee axial symmetry of dis-
placement.

6.2 ELEMENTS FOR 3D SOLIDS

Most solid elements are direct extensions of plane elements discussed in Chapter 3. The
extensions consist of adding another coordinate and another displacement component.
The behavior and the limitations of specific 3D elements largely parallel those of their 2D
counterparts.

Constant Strain Tetrahedron. This element (Fig. 6.2-1a) has three translational d.o.f.
at each of its four nodes, for a total of 12 d.o.f. In terms of generalized coordinates f3;, its
displacement field is

U=+ Pox+ By +Piz
U= Ps+ Bex + By + Pz (6.2-1)
w= Lo+ Biox + By + Bz

Like the constant strain triangle (Eq. 3.2-1), the constant strain tetrahedron is accurate
only when strains are almost constant over the span of an element. The element is poor at
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Fig. 6.2-1. Common 3D elements. (a) Constant strain (four-node) tetrahedron. (b) Linear strain
(ten-node) tetrahedron. (c) Trilinear (eight-node) hexahedron. (d) Quadratic (20-node) hexahedron.

representing fields of bending or twisting if the axis of bending or twisting either inter-
sects the element or is close to it.

Linear Strain Tetrahedron. This element (Fig. 6.2-1b) has ten nodes, each with three
translational d.o.f., for a total of 30 d.o.f. Its displacement field in terms of generalized
coordinates can be obtained by adding the six quadratic modes x2, ¥%, 2%, Xy, yz, and zx to
each of the expressions for u, v, and w in Egs. 6.2-1. Like the six-node triangle (Eq.
3.3-1), the ten-node tetrahedron has a strain field that is linear in the coordinates. The el-
ement can therefore represent fields of pure bending exactly. Depending on the coordi-
nates assigned to edge nodes, edges of undeformed elements can be straight or curved.

Trilinear Hexahedron. This element is also called an eight-node brick. Its rectangular
form, shown in Fig. 6.1-1b, has the displacement field

w= P, + Box + Bay + Buz + Bsxy + Peyz + Bozx + Pexyz
v =L+ Prox+ By + Bioz + Biaxy + Brayz + Biszx + Biexyz (6.2-2)
w = By7+ Bigx + Broy + Broz + Porxy + Bayz + Baszx + Bosxyz

Each of the three displacement expressions contains all modes in the expression (c¢; +
c,%)(cs + cay)(cs + Cg2), Which is the product of three linear polynomials in which the ¢,
are constants. Each of Egs. 6.2-2 contains all linear modes, some of the quadratic modes

(3% y* and 7° are missing), and one of the cubic modes (xyz). The resemblance of Eqgs.
3.4-1 and 6.2-2 is obvious.

The hexahedral element can be of arbitrary shape if it is formulated as an isoparamet-
ric element (Section 4.4). The coordinates used are shown in Fig. 6.2-1c. The six faces of
the element are defined by & = £1, n=*£1, and { = 1. Displacement expressions can be
written as

u=Y Ny, —v= SNy, ow= > Nowi (6.2-3)

Index i runs from 1 to 8 in each summation. Shorthand for the shape functions is

N=31xEHAEMA£L) (6.2-4)

in which all signs are negative for N, all signs are positive for Ng, and so on. The formula
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for the element stiffness matrix in isoparametric coordinates is

111

k=j”Bﬁ«:B|J] dédnde (6.2-5)

=1-1-1

As in Eq. 4.4-8, IJ I can be regarded as a scale factor. Here it expresses the volume ratio
of the differential element dX dY dZ in global Cartesian coordinates to its representation
d& dn d{ in isoparametric coordinates. Equation 6.2-5 is integrated numerically, usually
by a2 by 2 by 2 Gauss quadrature rule.

Like the bilinear quadrilateral, the trilinear hexahedron cannot model beam action well
because its sides remain straight as the element deforms. If elongated, it suffers from
shear locking when bent. A remedy for locking, described for plane elements in Section
3.6, is also applicable in three dimensions. By extension of Egs. 3.6-2, we add to each of
the three displacement fields in Egs. 6.2-3 the incompatible modes (1 — &%), (1 — 1%, and
(1 - {?), each multiplied by a generalized coordinate &:- Thus a total of nine internal d.o.f.
are introduced. Thus augmented, the element is incompatible, but it is valid in the same
way the element described in Section 3.6 is valid.

Quadratic Hexahedron. This element, shown in Fig. 6.2-1d, is a direct extension of the
quadratic quadrilateral described in Section 3.5. Like the linear strain tetrahedron, edges
of undeformed elements can be straight or curved. If the element is rectangular it can
model linear strain fields exactly. Equation 6.2-5 is the formula for its stiffness matrix in
isoparametric coordinates, where B is now a 6 by 60 rectangular matrix. If k is integrated
by a2 by 2 by 2 Gauss quadrature rule, three “hourglass” instabilities of the type shown
in Fig. 4.6-2b are possible, one involving u, another v, and the third w displacements.
Three additional hourglass instabilities are also possible, in each of which displacements
on opposite faces of the element have opposite sign. In plane problems an hourglass in-
stability of a quadratic quadrilateral is noncommunicable and causes no difficulty. But in
3D problems, it is conceivable that elements will be strung end to end as in Fig. 6.2-2.
Even if one end of the model is restrained as shown, there may be a near-instability anal-
ogous to that in Fig. 4.6-2a, as shown in Fig. 6.2-2. This possibility is avoided in com-
mercial software by using a stabilization device, a special 14-point rule, or even a 3 by 3
by 3 rule (27 points) to integrate k.
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Fig. 6.2-2. (a) FE model composed of quadratic solid elements. (b) Near-instability is possible far
from the fixed end if elements are integrated by a 2 by 2 by 2 Gauss rule.
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Edge node forces: pA/3
A = area of face Corner node forces: pA/12
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Fig. 6.2-3. Nodal loads associated with uniform pressure p on a rec-
tangular face of a hexahedron with midedge nodes.

Remarks. Additional 3D elements are of course possible and are described in the docu-
mentation of commercial software. Some elements may have nodes at the middle of each
face, in addition to midedge nodes. The analyst should consult the documentation, in case
even the basic elements described above have special features or “add-ons.”

Software can be expected to compute automatically the nodal forces that represent
body force loading, or pressure loading on a face of a 3D element. This is fortunate, as
appropriate nodal forces are often not obvious. As an example, uniform pressure p on a
face of a linear strain tetrahedron with midedge nodes should be applied as forces pA/3 at
each midedge node on the face, where A is the area of the face. This distribution is work-
equivalent and is shown in Fig. 3.9-5c for an analogous plane problem. Another example
appears in Fig. 6.2-3 (note the resemblance to Fig. 3.9-5d).

Typical 3D elements do not use rotational d.o.f. Accordingly, rotational d.o.f. must be
suppressed in the global equations. Software may or may not do so automatically.

Patch tests for 3D solid elements are entirely analogous to patch tests for plane ele-
ments. However, the requirement that at least one node be within the mesh means that at
Jeast one node must be within the volume, not just along an edge or on a surface of the
solid.

Surface views do not reveal the internal structure of a 3D mesh. The user should there-
fore make full use of preprocessor graphics to check the FE model prior to analysis. To
reduce storage requirements and execution time, bandwidth or wavefront reducers should
be applied if software does not do so automatically. In examining computed displace-
ments and stresses it is helpful to view results from different directions and on different
cross sections. Most often, peak stresses appear on the surface of a solid; therefore a plot
of surface stresses should be examined.

6.3 A 3D APPLICATION

A curved beam is bent in its own plane, as in Fig. 5.2-1b. More precisely, the structure is
a portion of a ring, symmetric about an axis of revolution, spanning an arbitrary number
of degrees about the axis, and loaded by a bending moment whose vector is parallel to the
axis. Stresses of greatest magnitude are sought. The analysis problem is not axisymmetric
because radial cross sections rotate with respect to one another and radial displacements
are not independent of 6. Accordingly, we use 3D solid elements but also use cylindrical
coordinates because they conveniently fit the geometry.

The particular shape of the cross section and the FE mesh chosen are shown in Fig.
6.3-1. Stresses do not vary with 6, so only a typical slice between radial planes need be
analyzed (Fig. 6.3-1b). Bending moment M must be applied “indirectly” because we do
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Fig. 6.3-1. (a) Cross section of a curved beam, showing FE mesh in the left half. (b) The FE model
viewed parallel to the z axis.

not know what stresses it produces and therefore cannot impose appropriate nodal loads.
Instead, we will prescribe displacements, such that radial plane sections remain plane and
moment load is applied without a net force, then compute M as the moment produced by
computed circumferential stresses.

Preliminary Analysis. The straight beam flexure formula Mc/I yields the stress
8.94(10)™°M at the inside edge, in units MPa if M is in N-mm. A formula for circumferen-
tial stress in a curved beam is readily available [1.5, 2.1]. According to the formula, stress at
the inside edge is

curved beam theory, along r = 44mm: 0= 13.46(10)"M (6.3-1)

in MPa if M is in N-mm. For comparison with FE results we must return to this formula
after M is known. Might Eq. 6.3-1 be adequate? It may be, but possibly a FE analysis will
show otherwise. In deriving the formula it is assumed that a cross section does not distort
in its own plane, so that stresses do not vary in the z direction. A FE analysis contains no
such restriction and may therefore yield different results.

FE Model and Analysis. There is symmetry about a z-constant plane that contains
points ABCD, so only half the cross section need be meshed. Curved beam theory tells us
that stress gradients will be highest on the edge nearest the center of curvature. Accord-
ingly, the mesh is graded so that elements near the inner edge span a smaller radial dis-
tance. In Fig. 6.3-1b, face 1 and its nodes are merely rotated 5° to generate face 2. The
wedge between the two faces contains a single layer of eight-node 3D elements. Each el-
ement contains nine internal d.o.f. associated with incompatible displacement modes.
Prescribed nodal displacements in the radial, circumferential, and axial directions are as
follows:

Face 1 Face 2

u =0 at node A
v =0 at all nodes v =0.0001(r, — r) at all nodes

w =0 at nodes along AB w =0 at nodes along CD
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All remaining nodal d.o.f. are unrestrained. Setting u = 0 at A prevents rigid-body transla-
tion in the r direction, and setting w = 0 on ABCD imposes symmetry about the 6 plane.
The expression v = 0.0001(r, — r) causes face 2 to remain plane as it rotates about a z-
parallel axis at r = r.. The number 0.0001 is arbitrary and r, is a number such that node A
exerts no radial force on the FE model. At the outset the appropriate value of r. is un-
known. Therefore two preliminary FE analyses are performed, respectively using the ar-
bitrarily chosen values r. = 60 mm and r, = 70 mm. The respective radial reactions at A
are computed by the software as 2001 N and 357 N. By linear extrapolation, the radial re-
action at A should be zero when r, = 72.2 mm. The value r, = 72.2 mm is used in a third
and final FE analysis, which provides a radial reaction of essentially zero at A, as ex-
pected. Circumferential support reactions on face 1 produce a moment about a z-parallel
axis, which is automatically calculated by the software. This moment is doubled to yield
moment M on the entire cross section. If stresses for a prescribed moment M,, are re-
quired, one need only multiply computed stresses by the ratio M,,/M.

Critique of FE Results. The deformed shape of the cross section is shown in Fig. 6.3-2a.
Animation shows that the intended boundary conditions have indeed been enforced. On
physical grounds we argue that the deformed shape is reasonable, as follows. Radial stress
o, is known to be tensile, so it is proper that the 88-mm dimension becomes larger.
Circumferential stress Oy is, respectively, tensile and compressive on inner and outer por-
tions of the cross section, while axial stress o, is small, so that the Poisson effect should
cause inner and outer portions, respectively, to contract and expand in the z direction, as is
indeed observed. Circumferential tensile stress on the inner portion pulls material toward
the center of curvature. Outer corners of a cross section are more flexible than the central
part, so it is proper that corner £ moves inward relative to central point A. This effect is
discussed in Section 5.2 with reference to thin-walled cross sections, whose radial deflec-
tions are of course much more significant.

Material that moves radially inward while bounded by faces 1 and 2 in Fig. 6.3-1 must
shorten circumferentially. Thus a compressive strain is superposed on the tensile strain
due to flexing. Radial deflection provides greatest “stress relief” to material that deflects
farthest. Accordingly, it is reasonable that Fig. 6.3-2a shows lower circumferential stress
at £ than at A. At A and E, respectively, FE analysis yields circumferential stresses of 146

| =" Al146 120 94 E68

Deformation oy contours o, contours o, contours

(a) (b)
Fig. 6.3-2. Results computed by FE analysis: distortion of the cross section, exaggerated for plot-
ting, and unaveraged stress contours. Stress units are MPa. (Stresses shown in the right half were
actually computed by FE analysis in the left half.)
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MPa and 65 MPa. The software uses o, stresses to compute the moment M/2 on face 1 of
the FE model in Fig. 6.3-1. Thus we obtain M = 8.804(10)° N-mm. Hence Eq. 6.3-1
yields 0, = 119 MPa, in approximate agreement with the average of FE stresses at A and
E. which is (146 + 65)/2 = 106 MPa. As expected, 0, contours are more closely spaced at
smaller values of r. The neutral axis is the locus of points where 6, = 0. We see from Fig.
6.3-2a that the neutral axis is curved, in contradiction of the assumption made in mechan-
ics of materials theory.

Figure 6.3-2a shows little or no interelement discontinuity of ¢, contours. This is not
surprising, because circumferential strain is &, = (u/r) + (Ju/96)/r [6.1]. This means that
€ is essentially a plot of the displacements of face 2, which are of course interelement-
continuous. Figure 6.3-2b shows that ¢, contours are badly discontinuous. But the largest
0, is about 25 MPa, much less than the largest o, Accordingly, the plot of von Mises
stress 0, Fig. 6.3-2b, shows small to moderate discontinuities. The stress field yields the
relative energy error 1 = 0.050, an acceptably small value. We conclude that results are
reliable, at least for stress oy,

6.4 AXISYMMETRIC SOLID ELEMENTS

Except for having to account for circumferential strain &, axisymmetric elements are
very similar to plane elements. Available element shapes (in cross section) and nodal pat-
terns are as described in Chapter 3. Capabilities and shortcomings of a specific element
type are much the same as for the corresponding plane element. However. it is necessary
to discuss the effects of the additional strain term &, = u/r. Consider the very simplest ax-
isymmetric solid element, a three-node triangle. Its displacement field for axisymmetric
deformation is

u=p+Br+ Pz

(6.4-1)
w =+ Psr+ Bz

which is identical to Eq. 3.2-1 except for r in place of x, z in place of y, and w in place of
v. From Eqgs. 6.1-6 and 6.4-1, the element strain field is

l -
g =P, 89=ﬁl;+B2+ﬁ3§

€, =P Yo = Bs+Bs

(6.4-2)

Unlike its plane relative, this element is not a constant strain element because the Eg €X-
pression contains r and z. The only possible rigid-body motion is axial translation, w = B..
Strain is present if any other f; is nonzero. Rotation of the element cross section in the 7z
plane is resisted by the f;(z/r) term in the &, expression. Such a “ring rolling” deforma-
tion is produced by moment M in Fig. 6.4-1a, where M is a moment uniformly distributed
around the circumference of the element. The dimensions of M are [force-length/length]
or simply [force]. Due to M, the cross section shown rotates counterclockwise a small
amount; circumferential strains appear that are tensile in the lower part of the element and
compressive in the upper part. A plane triangular element would not resist M because the
rotation would be a rigid-body motion.

An element of arbitrary quadrilateral shape, such as that in Fig. 6.4-1b, would be for-
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(a) (b)

Fig. 6.4-1. (a) Three-node axisymmetric element loaded by circumferentially distributed
moment M. (b) Four-node axisymmetric element.

mulated as an isoparametric element. The formula for element stiffness matrix k is written
11
j f B'EBr|J|dEdnde (6.4-3)

which is like Eq. 4.4-8 except for the presence of r in place of 7, integration with respect to
6, use of a 4 by 4 array E, and the addition of a row to B that states the relation &, = ulr.
For an element with translational d.o.f. only, this relation is

1
gg = —(Nyuy + Noty + -+ + N,u,) (6.4-4)
-

where the N, are shape functions and 7 is the number of nodes per element. The multipli-
cation B'EBr produces terms that contain 1/r. This poses no difficulty for numerical inte-
gration provided that no integration points are placed on the z axis.

As for boundary conditions, prescription of w on a single nodal circle is sufficient to
prevent rigid-body motion of the FE structure and hence prevent singularity of K.
However, one should also set u = 0 at all nodes on the axis of revolution. Nonzero u at
r = 0 would mean that either a small hole appears or the material overlaps itself, both of
which are physically unreasonable. A “pinhole” would also provide a stress concentration
factor of 2.0 for circumferential stress .

Points on the axis of revolution have zero radial coordinate and zero radial displace-
ment. If stresses are computed at r = 0, instead of being extrapolated zo r = 0 from Gauss
point values, we obtain the strain calculation & = 0/0. This is an awkward situation that
can be avoided by calculating &, = du/dr instead, then equating &, to €. This trick exploits
the theoretical requirement that &, = &, for points at 7 = 0. (The requirement is met by
Egs. 6.4-2: with 8, = 5 = 0 so that u = 0 for points on r = 0, we obtain €, = ouldr = f,
and gy = u/r = f3,.) Stresses follow from Eq. 6.1-4. In commercial software these consider-
ations are hidden from the user. Nevertheless, it is of interest to run a simple test case to
discover if computed stresses o, and 0 are indeed equal at r = 0.

Axisymmetric four-node quadrilateral elements may contain incompatible modes,
which are described in Section 3.6 as a way to improve bending response. In an ax-
isymmetric element these modes may be activated even when there is no bending.
Thus there is a spurious radial bulge of each element, whose effect is to produce a
spurious shear strain ¥, everywhere in the element except at & =n=0. The bulge
tends to disappear if the element has a small cross section far from the axis of revolu-
tion. If the effect remains troublesome, the analyst can tell the software to omit the in-
compatible modes.
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Ill-conditioning of the global equations is promoted by very slender elements; that is,
elements whose cross section is very small and very distant from the axis of revolution.
The stiffness of a slender cross section in resisting strains ¢,, €., and ¥,, is much greater
than the stiffness that resists circumferential strain €, An even larger stiffness difference
is possible when slender elements have the ability to bend circumferentially, as described
in Section 6.6. Thus very slender elements may present the error-prone case of large stiff-
nesses embedded in small stiffness.

From Eq. 6.4-2 we see that strains are constant in the three-node element only if §, =
B5 =0, in which case &, = &, Constant but independent strain states are therefore not pos-
sible. Similar tendencies appear in many other element types, so that commonly used ax-
isymmetric elements fail patch tests. This does not invalidate the elements because con-
stant strain conditions in an element are approached as the mesh is refined, that is, as
elements become slender.

6.5 AN AXISYMMETRIC APPLICATION

Figure 6.5-1 shows a cross section of an axisymmetric structure, already meshed with the
elements we propose to use. The structure consists of an outer disk BEFC of constant
thickness, attached to a tapered inner disk DABE of the same material by means of a
shrink fit. Physically, the shrink fit is accomplished by heating the outer disk, slipping it
over the inner disk, and allowing both disks to return to a uniform temperature.
Dimensions are such that when the outer disk is 100°C hotter than the inner disk, the in-
ner radius of the outer disk and the outer radius of the inner disk are both precisely 400
mm. We ask:

1. What contact stresses along BE are produced by the shrink fit?

2. If the assemblage is set spinning about the z axis, at what angular velocity will the
shrink fit loosen?

In seeking answers we will find that question 1 has aspects that are not anticipated unless
we think ahead very carefully, and that question 2 is not well posed and requires some
analytical thinking.

Preliminary Analysis. We first ask for the contact pressure p caused by the shrink fit
(Fig. 6.5-2). For a simple approximation we assume that the inner disk has no taper and
that the outer disk can be treated by formulas applicable to a ring that is thin in the radial

(axis of E=200 GPa v=03
revolution) p = 7860 kg/m3 a = 12(10)-8/°C
[ 400 mm 300 mm ————————>]
A
20 mm 20 mm 781;nm
- B C Y
g
42 mm
® ’ o ® _ _ ¢ r
D E F 1\

Fig. 6.5-1. Mesh of eight-node elements on the cross section of a solid of revolution.
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h =300 mm

h AT =-100°C
Inner disk Fig. 6..5-2. Analyn.cal mod.el for
approximate analysis of shrink fit
Outer disk pressure p.

direction. Thus, in the inner disk, 0, = 0, = —p, circumferential strain is £, = (0 — v0,)/E =
-p(1 — v)/E, and radial displacement of the outer edge is u; = r;gg = —prl - v)/E. In the
outer disk (treated as a slender ring), 0p = pR/h, 0, =0, €= (05— vo)/E = pRIEh, and
u; = r,£g= pRrj/Eh, where the mean radius R has been used in calculating 0. In addition,
the shrink fit produces radial displacement u; = ar;AT at r = r; in the outer disk, where AT
=-100°C in our case. Equating , values at r =r; in inner and outer disks, we obtain

Py = PR AT 6.5-1)
E Eh

Solving for p and using the data of Figs. 6.5-1 and 6.5-2, we obtain

A .
p= ———E—Q—T—— from which p=95MPa (6.5-2)

(1—v)+—17

We elect to analyze spinning by using a ready-made formula rather than working from
first principles. The radial stress in a solid disk of constant thickness, outer radius a, mass
density p, and spinning at angular velocity @is [2.1]

3+v v, 9 9 -
o, = TPCU'(G' =r) (6.5-3)

Using a = 0.700 m and setting o, = —95 MPa at r = 0.400 m, we obtain @ = 298 rad/s as
the approximate angular velocity at which the shrink fit should loosen.

Of course the inner disk is thicker and therefore stiffer than we have assumed, which
means that the actual p can be expected to be larger than stated in Eq. 6.5-2. Also, the
structure is not symmetric about a z = constant plane. Axial components of deflection will
respond accordingly: the outer part should bend downward due to the shrink fit and up-
ward due to spinning. These flexing actions will introduce bending stresses. which near
point E will increase the magnitude of (compressive) shrink fit contact stress and increase
the magnitude of (tensile) radial stress due to spinning.

FE Model and Analysis. The cross section is represented by eight-node elements, as
shown in Fig. 6.5-1. This kind of element is known to work well. so that the mesh may
appear overly refined for an initial model, but the geometry is so simple that the mesh is
easy to generate. There are two displacement d.o.f. per node. Both are set to zero at node
D. Only the radial displacement is set to zero at other nodes along AD. All nodes not on
the 7 axis are unrestrained. Shrink fit loading is produced by stating that portion BEFC is



6.5 An Axisvmmetric Application 159

uniformly decreased in temperature by 100°C. Spinning is treated as a separate load case,
using @ = 298 rad/s as the prescribed angular velocity. Spinning creates inertia (body
force) loading, for which appropriate forces on individual nodes are <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>