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Preface

The finite element method (FEM) has become a staple for predicting and simulating
the physical behavior of complex engineering systems. The commercial finite ele-
ment analysis (FEA) programs have gained common acceptance among engineers
in industry and researchers at universities and government laboratories. Therefore,
academic engineering departments include graduate or undergraduate senior-level
courses that cover not only the theory of FEM but also its applications using the
commercially available FEA programs.

The goal of this book is to provide students with a theoretical and practical
knowledge of the finite element method and the skills required to analyze engineer-
ing problems with ANSYS®, a commercially available FEA program. This book,
designed for seniors and first-year graduate students, as well as practicing engi-
neers, is introductory and self-contained in order to minimize the need for addi-
tional reference material.

In addition to the fundamental topics in finite element methods, it presents ad-
vanced topics concerning modeling and analysis with ANSYS®. These topics are
introduced through extensive examples in a step-by-step fashion from various en-
gineering disciplines. The book focuses on the use of ANSYS® through both the
Graphics User Interface (GUI) and the ANSYS® Parametric Design Language
(APDL). Furthermore, it includes a CD-ROM with the “inpuz” files for the example
problems so that the students can regenerate them on their own computers. Because
of printing costs, the printed figures and screen shots are all in gray scale. However,
color versions are provided on the accompanying CD-ROM.

Chapter | provides an introduction to the concept of FEM. In Chap. 2, the analy-
sis capabilities and fundamentals of ANSYS®, as well as practical modeling con-
siderations, are presented. The fundamentals of discretization and approximation
functions are presented in Chap. 3. The modeling techniques and details of mesh
generation in ANSYS® are presented in Chap. 4. Steps for obtaining solutions and
reviews of results are presented in Chap. 5. In Chap. 6, the derivation of finite ele-
ment equations based on the method of weighted residuals and principle of mini-
mum potential energy is explained and demonstrated through example problems.
The use of commands and APDL and the development of macro files are presented
in Chap. 7. In Chap. 8, example problems on linear structural analysis are worked



vi Preface

out in detail in a step-by-step fashion. The example problems related to heat transfer
and moisture diffusion are demonstrated in Chap. 9. Nonlinear structural problems
are presented in Chap. 10. Advanced topics concerning submodeling, substructur-
ing, interaction with external files, and modification of ANSYS®-GUI are presented
in Chap. 11.

There are more than 40 example problems considered in this book; solutions to
most of these problems using ANSYS® are demonstrated using GUI in a step-by-
step fashion. The remaining problems are demonstrated using the APDL. However,
the steps taken in either GUI- or APDL-based solutions may not be the optimum/
shortest possible way. Considering the steps involved in obtaining solutions to en-
gineering problems (e.g., model generation, meshing, solution options, etc.), there
exist many different routes to achieve the same solution. Therefore, the authors
strongly encourage the students/engineers to experiment with modifications to the
analysis steps presented in this book.

We are greatly indebted to Connie Spencer for her invaluable efforts in typing,
editing, and assisting with each detail associated with the completion of this book.
Also, we appreciate the contributions made by Dr. Atila Barut, Dr. Erkan Oterkus,
Dr. Abigail Agwai, Dr. Manabendra Das, and Dr. Bahattin Kilic in the solution of
the example problems. Last, but not least, we thank Mr. Mehmet Dorduncu for his
careful review of the modeling steps and example problems, and for capturing the
ANSYS screen shots in this version of the book. The permission provided by AN-
SYS, Inc. to print the screen shots is also appreciated.
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Chapter 1
Introduction

1.1 Concept

The Finite Element Analysis (FEA) method, originally introduced by Turner et al.
(1956), is a powerful computational technique for approximate solutions to a va-
riety of “real-world” engineering problems having complex domains subjected to
general boundary conditions. FEA has become an essential step in the design or
modeling of a physical phenomenon in various engineering disciplines. A physical
phenomenon usually occurs in a continuum of matter (solid, liquid, or gas) involv-
ing several field variables. The field variables vary from point to point, thus pos-
sessing an infinite number of solutions in the domain. Within the scope of this book,
a continuum with a known boundary is called a domain.

The basis of FEA relies on the decomposition of the domain into a finite number
of subdomains (elements) for which the systematic approximate solution is con-
structed by applying the variational or weighted residual methods. In effect, FEA
reduces the problem to that of a finite number of unknowns by dividing the domain
into elements and by expressing the unknown field variable in terms of the assumed
approximating functions within each element. These functions (also called interpo-
lation functions) are defined in terms of the values of the field variables at specific
points, referred to as nodes. Nodes are usually located along the element boundar-
ies, and they connect adjacent elements.

The ability to discretize the irregular domains with finite elements makes the
method a valuable and practical analysis tool for the solution of boundary, initial, and
eigenvalue problems arising in various engineering disciplines. Since its inception,
many technical papers and books have appeared on the development and application
of FEA. The books by Desai and Abel (1971), Oden (1972), Gallagher (1975), Hueb-
ner (1975), Bathe and Wilson (1976), Ziekiewicz (1977), Cook (1981), and Bathe
(1996) have influenced the current state of FEA. Representative common engineering
problems and their corresponding FEA discretizations are illustrated in Fig. 1.1.

The finite element analysis method requires the following major steps:

* Discretization of the domain into a finite number of subdomains (elements).
» Selection of interpolation functions.

The online version of this book (doi: 10.1007/978-1-4939-1007-6_1) contains supplementary
material, which is available to authorized users

© Springer International Publishing 2015 1
E. Madenci, 1. Guven, The Finite Element Method and Applications in Engineering
Using ANSYS®, DOI 10.1007/978-1-4899-7550-8 1
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* Development of the element matrix for the subdomain (element).

» Assembly of the element matrices for each subdomain to obtain the global ma-
trix for the entire domain.

* Imposition of the boundary conditions.

 Solution of equations.

* Additional computations (if desired).

There are three main approaches to constructing an approximate solution based on
the concept of FEA:

Direct Approach This approach is used for relatively simple problems, and it usu-
ally serves as a means to explain the concept of FEA and its important steps (dis-
cussed in Sect. 1.4).

Weighted Residuals This is a versatile method, allowing the application of FEA
to problems whose functionals cannot be constructed. This approach directly uti-
lizes the governing differential equations, such as those of heat transfer and fluid
mechanics (discussed in Sect. 6.1).

Variational Approach This approach relies on the calculus of variations, which
involves extremizing a functional. This functional corresponds to the potential
energy in structural mechanics (discussed in Sect. 6.2).
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Fig. 1.2 Division of a domain into subdomains (elements)

In matrix notation, the global system of equations can be cast into
Ku=F (1.1)

where K is the system stiffness matrix, u is the vector of unknowns, and F is the
force vector. Depending on the nature of the problem, K may be dependent on u,
i.e., K=K(u) and F may be time dependent, i.e., F =F(?).

1.2 Nodes

As shown in Fig. 1.2, the transformation of the practical engineering problem to
a mathematical representation is achieved by discretizing the domain of interest
into elements (subdomains). These elements are connected to each other by their
“common” nodes. A node specifies the coordinate location in space where degrees
of freedom and actions of the physical problem exist. The nodal unknown(s) in the
matrix system of equations represents one (or more) of the primary field variables.
Nodal variables assigned to an element are called the degrees of freedom of the
element.

The common nodes shown in Fig. 1.2 provide continuity for the nodal variables
(degrees of freedom). Degrees of freedom (DOF) of a node are dictated by the
physical nature of the problem and the element type. Table 1.1 presents the DOF
and corresponding “forces” used in FEA for different physical problems.

1.3 Elements

Depending on the geometry and the physical nature of the problem, the domain of
interest can be discretized by employing line, area, or volume elements. Some of
the common elements in FEA are shown in Fig. 1.3. Each element, identified by
an element number, is defined by a specific sequence of global node numbers. The
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Table 1.1 Degrees of freedom and force vectors in FEA for different engineering disciplines

Discipline DOF Force vector
Structural/solids Displacement Mechanical forces
Heat conduction Temperature Heat flux
Acoustic fluid Displacement potential Particle velocity
Potential flow Pressure Particle velocity
General flows Velocity Fluxes
Electrostatics Electric potential Charge density
Magnetostatics Magnetic potential Magnetic intensity

>

|o———2

line element

rectangular
area elements

4 4
1
y y 4
L.?> L.

quadrilateral

right prism

volume elements

irregular hexahedal

Fig. 1.3 Description of line, area, and volume elements with node numbers at the element level

specific sequence (usually counterclockwise) is based on the node numbering at the
element level. The node numbering sequence for the elements shown in Fig. 1.4 are

presented in Table 1.2.

1.4 Direct Approach

Although the direct approach is suitable for simple problems, it involves each fun-
damental step of a typical finite element analysis. Therefore, this approach is dem-
onstrated by considering a linear spring system and heat flow in a one-dimensional

(1-D) domain.
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Table 1.2 Description of numbering at the element level

Element Node 1 Node 2 Node 3 Node 4
Number
1 1 2
2 3
3 4 5
Fig. 1.4 Discretization of a global node local node
domain: element and node number number
numbering 7 6 ™5 4 3 3 T2
. - . . y 5o .
e=3
SRV ERINY
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y 2 2
I z element 2 4
x local node_~ 1
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Fig. 1.5 Free-body diagram 1 k 2
of a linear spring element —so—ANNN—O0— —x
fou Sy

1.4.1 Linear Spring

As shown in Fig. 1.5, a linear spring with stiffness & has two nodes. Each node is
subjected to axial loads of f; and f, , resulting in displacements of u; and u, in
their defined positive directions.

Subjected to these nodal forces, the resulting deformation of the spring becomes

u=u —u, (1.2)
which is related to the force acting on the spring by
S =ku=k(u, —u,) (1.3)
The equilibrium of forces requires that
fr==h (1.4)

which yields
S = kuy —uy) (1.5)
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Fig. 1.6 One-dimensional heat flow

Combining Eq. (1.3) and (1.5) and rewriting the resulting equations in matrix form

yield
ko —k||u _ N ork@u® =f© (1.6)
-k k||u| A

in which u'® is the vector of nodal unknowns representing displacement and k¢
and f© are referred to as the element characteristic (stiffness) matrix and element
right-hand-side (force) vector, respectively. The superscript (e) denotes the ele-
ment numbered as ‘e’.

The stiffness matrix can be expressed in indicial form as kl;e)

k@ ~ k) (1.7)

where the subscripts ; and j (i, j =1,2) are the row and the column numbers. The
coefficients, k;e), may be interpreted as the force required at node i to produce a
unit displacement at node ;j while all the other nodes are fixed.

1.4.2 Heat Flow

Uniform heat flow through the thickness of a domain whose in-plane dimensions
are long in comparison to its thickness can be considered as a one-dimensional anal-
ysis. The cross section of such a domain is shown in Fig. 1.6. In accordance with
Fourier’s Law, the rate of heat flow per unit area in the x -direction can be written as

de
q =_kAE (1.8)

where A is the area normal to the heat flow, € is the temperature, and  is the coef-
ficient of thermal conductivity. For constant &, Eq. (1.8) can be rewritten as

qz_kAATe (1.9)
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in which A@ =6, — 6, denotes the temperature drop across the thickness denoted
by L of the domain.

As illustrated in Fig. 1.6, the nodal flux (heat flow entering a node) at Node 1
becomes

kA
9 =T(91—92) (1.10)

The balance of the heat flux requires that
9 =4 (1.11)

which yields

0 =-"2-0) (112)

Combining Eq. (1.10) and (1.12) and rewriting the resulting equations in matrix

form yield
1 -11]6
kA 1l_ )% ork©9© = q© (1.13)
Ll-1 116] o

in which 8 is the vector of nodal unknowns representing temperature and k'®
and q(e) are referred to as the element characteristic matrix and element right-hand-
side vector, respectively.

1.4.3 Assembly of the Global System of Equations

Modeling an engineering problem with finite elements requires the assembly of ele-
ment characteristic (stiffness) matrices and element right-hand-side (force) vectors,
leading to the global system of equations

Ku=F (1.14)

in which K is the assembly of element characteristic matrices, referred to as the
global system matrix and F is the assembly of element right-hand-side vectors, re-
ferred to as the global right-hand-side (force) vector. The vector of nodal unknowns
is represented by u.

The global system matrix, K, can be obtained from the “expanded” element co-
efficient matrices, k(e), by summation in the form

E
K=3Kk" (1.15)
e=1
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k@

®

Fig. 1.7 System of linear springs (top) and corresponding FEA model (bottom)

in which the parameter £ denotes the total number of elements. The “expanded” ele-
ment characteristic matrices are the same size as the global system matrix but have
rows and columns of zeros corresponding to the nodes not associated with element
(e). The size of the global system matrix is dictated by the highest number among
the global node numbers.

Similarly, the global right-hand-side vector, F, can be obtained from the “ex-
panded” element coefficient vectors, f ), by summation in the form

E
F=3 1@ (1.16)
e=l

The “expanded” element right-hand-side vectors are the same size as the global
right-hand-side vector but have rows of zeros corresponding to the nodes not asso-
ciated with element (e). The size of the global right-hand-side vector is also dictated
by the highest number among the global node numbers.

The explicit steps in the construction of the global system matrix and the global
right-hand-side-vector are explained by considering the system of linear springs
shown in Fig. 1.7. Associated with element (¢), the element equations for a spring
given by Eq. (1.6) are rewritten as

S P B A
© @], @ ] s@ (1.17)
k' ky |y 1D

in which & = k{5 = k'@ and £ = &{ = &' The subscripts used in Eq. (1.17)
correspond to Node 1 and Node 2, the local node numbers of element (e). The
global node numbers specifying the connectivity among the elements for this sys-
tem of springs is shown in Fig. 1.7, and the connectivity information is tabulated
in Table 1.3.
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Table 1.3 Table of connectivity

Element number

Local node numbering

Global node numbering

1 1 1
2 2
2 1 2
2 3
3 1 2
2 3
4 1 3
2 4

In accordance with Eq. (1.15), the size of the global system matrix is (4x4) and

the specific contribution from each element is captured as

n [

DO

O 0 1 2

k 1 1 1

Element 1: 1(11) l(f) = kél) kéz)
kyy ko 0 0

0 0

o 2

[0 0
2 ;2 (2)
LT 0 ki
Element 2: 2 2 = 2
k1 Ky 0 k)

| 0 0

n 2

0 0

3 Ol | o x®

frement3:| 11112 2l i
kyy ky 0 ky

0 0

B

0

0

3]
(
@
[3]
(

3
&)
0

[4]

(=]

o o [&]

[=] [=] ] =]

o O

I
2l_, o
3]
[4]

(1.18)

[
[2]

[4]

=k@ (1.19)

_® (1.20)
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kZl k22

0

Performing their assembly leads to

4
K= Zk(e) :k(l) +k(2) +k(3) +k(4)

e=1
” G
CAC TR
0 (ki)
K 0

OOOH

(=]

(k2 +42)

2 3 4 4
(kéz) + kéz + k1(1 ) ) kl(z)

1 Introduction

0 0
0 0

o Ek(4) (1.21)
1 2

4 4
Bk

(1.22)

0 0

0 (1.23)

4 4
k§ 1 ) kéz) ]

In accordance with Eq. (1.16), the size of the global right-hand-side vector is (4X1)
and the specific contribution from each element is captured as

M
1
Element 1: fl
Y

(2)
2
Element 2: fl
R

Element 3:

=

=

el s |
o

,fl(l) .

AV

(1.24)

=] =]

2_@ (1.25)

=] =] ] =]

0

3

OB
0

(1.26)
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0
) 0
f1(4) = ) 2o (1.27)
) /i

Y

Element 4:

Similarly, performing their assembly leads to

F= if@ =0 +£@ +£O +£@ (1.28)
e=1
or 5 A
AN PR (1.29)
ARV
Ja @

Consistent with the assembly of the global system matrix and the global right-hand-
side vector, the vector of unknowns, u, becomes

ud

U
| _Ju =i =
u= =1 , . (1.30)
U3 u§’=u§>=uf>
Uy (4)

U

1.4.4 Solution of the Global System of Equations

In order for the global system of equations to have a unique solution, the determi-
nant of the global system matrix must be nonzero. However, an examination of the
global system matrix reveals that one of its eigenvalues is zero, thus resulting in
a zero determinant or singular matrix. Therefore, the solution is not unique. The
eigenvector corresponding to the zero eigenvalue represents the translational mode,
and the remaining nonzero eigenvalues represent all of the deformation modes.

For the specific values of &9 =k =k and £ =k = k9, the global
system matrix becomes

1 -1 0 0
Kogo|l 3 20

0 0 -1 1
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Fig. 1.8 Possible solution modes for the system of linear springs

with its eigenvalues 4 =0, 4, =2, 4, =3 —+/5,and Ay =3+ J5. The correspond-
ing eigenvectors are

1 -1 -1
u(z): _1 ,u(3): 2_\/§ (4): 2+\/§

,u
-1 2445 2-45

1 1 1

(1.32)

>

1

1
u® =

1

1

Each of these eigenvectors represents a possible solution mode. The contribution of
each solution mode is illustrated in Fig. 1.8.

In order for the global system of equations to have a unique solution, the global
system matrix is rendered nonsingular by eliminating the zero eigenvalue. This is
achieved by introducing a boundary condition so as to suppress the translational
mode of the solution corresponding to the zero eigenvalue.

1.4.5 Boundary Conditions

As shown in Fig. 1.7, Node 1 is restrained from displacement. This constraint is
satisfied by imposing the boundary condition of #; =0. Either the nodal displace-
ments, u;, or the nodal forces, f;, can be specified at a given node. It is physically
impossible to specify both of them as known or as unknown. Therefore, the nodal
force f; remains as one of the unknowns. The nodal displacements, u,, u;, and u,
are treated as unknowns, and the corresponding nodal forces have values of f, =0,
f3=0,and f, =F.
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Fig. 1.9 Physically acceptable solution mode for the system of linear springs

These specified values are invoked into the global system of equations as

1 -1 0 0][y=0 fi

po| 3 2 0l w | =0 (133)
0 -2 3 —1|| u £=0
0 0 -1 1] u fi=F

leading to the following equations:

3 2 0][u 0
K912 3 —1|duy p=40 (1.34)
0 =1 1 ||u, F
and
KOy = f, (1.35)

The coefficient matrix in Eq. (1.34) is no longer singular, and the solutions to these
equations are obtained as

_F 3F 5F
2 Eer BT e T e

(1.36)
and the unknown nodal force f is determined as f; =—F. The final physically
acceptable solution mode is shown in Fig. 1.9.

There exist systematic approaches to assemble the global coefficient matrix
while invoking the specified nodal values (Bathe and Wilson 1976; Bathe 1996).
The specified nodal variables are eliminated in advance from the global system of
equations prior to the solution.



Chapter 2
Fundamentals of ANSYS

2.1 Useful Definitions

Before delving into the details of the procedures related to the ANSYS program, we
define the following terms:

Jobname A specific name to be used for the files created during an ANSY'S ses-
sion. This name can be assigned either before or after starting the ANSY'S program.

Working Directory A specific folder (directory) for ANSYS to store all of the files
created during a session. It is possible to specify the Working Directory before or
after starting ANSYSS.

Interactive Mode This is the most common mode of interaction between the user
and the ANSY'S program. It involves activation of a platform called Graphical User
Interface (GUI), which is composed of menus, dialog boxes, push-buttons, and dif-
ferent windows. Interactive Mode is the recommended mode for beginner ANSY'S
users as it provides an excellent platform for learning. It is also highly effective for
postprocessing.

Batch Mode This is a method to use the ANSYS program without activating the
GUI 1t involves an Input File written in ANSYS Parametric Design Language
(APDL), which allows the use of parameters and common programming features
such as DO loops and /F statements. These capabilities make the Batch Mode a very
powerful analysis tool. Another distinct advantage of the Batch Mode is realized
when there is an error/mistake in the model generation. This type of problem can be
fixed by modifying a small portion of the /nput File and reading it again, saving the
user a great deal of time.

Combined Mode This is a combination of the Interactive and Batch Modes in
which the user activates the GUI and reads the Input File. Typically, this method
allows the user to generate the model and obtain the solution using the Input File
while reviewing the results using the Postprocessor within the GUI. This method
combines the salient advantages of the Interactive and Batch Modes.

The online version of this book (doi: 10.1007/978-1-4939-1007-6_2) contains supplementary
material, which is available to authorized users

© Springer International Publishing 2015 15
E. Madenci, 1. Guven, The Finite Element Method and Applications in Engineering
Using ANSYS®, DOI 10.1007/978-1-4899-7550-8_2
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2.2 Before an ANSYS Session

The construction of solutions to engineering problems using FEA requires either
the development of a computer program based on the FEA formulation or the use
of a commercially available general-purpose FEA program such as ANSYS. The
ANSYS program is a powerful, multi-purpose analysis tool that can be used in a
wide variety of engineering disciplines. Before using ANSYS to generate an FEA
model of a physical system, the following questions should be answered based on
engineering judgment and observations:

*  What are the objectives of this analysis?

* Should the entire physical system be modeled, or just a portion?
* How much detail should be included in the model?

* How refined should the finite element mesh be?

In answering such questions, the computational expense should be balanced against
the accuracy of the results. Therefore, the ANSYS finite element program can be
employed in a correct and efficient way after considering the following:

* Type of problem.

* Time dependence.

» Nonlinearity.

* Modeling idealizations/simplifications.

Each of these topics is discussed in this section.

2.2.1 Analysis Discipline

The ANSYS program is capable of simulating problems in a wide range of engi-
neering disciplines. However, this book focuses on the following disciplines:

Structural Analysis Deformation, stress, and strain fields, as well as reaction forces
in a solid body.

Thermal Analysis Steady-state or time-dependent temperature field and heat flux
in a solid body.

2.2.1.1 Structural Analysis

This analysis type addresses several different structural problems, for example:

Static Analysis The applied loads and support conditions of the solid body do not
change with time. Nonlinear material and geometrical properties such as plasticity,
contact, creep, etc., are available.

Modal Analysis This option concerns natural frequencies and modal shapes of a
structure.
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Table 2.1 Degrees of freedom for structural and thermal analysis disciplines

Discipline Quantity DOF
Structural Displacement, stress, strain, reaction forces Displacement
Thermal Temperature, flux Temperature

Harmonic Analysis The response of a structure subjected to loads only exhibiting
sinusoidal behavior in time.

Transient Dynamic The response of a structure subjected to loads with arbitrary
behavior in time.

Eigenvalue Buckling This option concerns the buckling loads and buckling modes
of a structure.

2.2.1.2 Thermal Analysis

This analysis type addresses several different thermal problems, for example:

Primary Heat Transfer Steady-state or transient conduction, convection and
radiation.

Phase Change Melting or freezing.

Thermomechanical Analysis Thermal analysis results are employed to compute
displacement, stress, and strain fields due to differential thermal expansion.

2.2.1.3 Degrees of Freedom

The ANSYS solution for each of these analysis disciplines provides nodal values of
the field variable. This primary unknown is called a degree of freedom (DOF). The
degrees of freedom for these disciplines are presented in Table 2.1. The analysis
discipline should be chosen based on the quantities of interest.

2.2.2 Time Dependence

The analysis with ANSY'S should be time-dependent if:

» The solid body is subjected to time varying loads.
* The solid body has an initially specified temperature distribution.
* The body changes phase.
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Fig. 2.1 Non-linear material stress
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2.2.3 Nonlinearity

Most real-world physical phenomena exhibit nonlinear behavior. There are many
situations in which assuming a linear behavior for the physical system might pro-
vide satisfactory results. On the other hand, there are circumstances or phenomena
that might require a nonlinear solution. A nonlinear structural behavior may arise
because of geometric and material nonlinearities, as well as a change in the bound-
ary conditions and structural integrity. These nonlinearities are discussed briefly in
the following subsections.

2.2.3.1 Geometric Nonlinearity

There are two main types of geometric nonlinearity:

Large Deflection and Rotation If the structure undergoes large displacements
compared to its smallest dimension and rotations to such an extent that its original
dimensions and position, as well as the loading direction, change significantly, the
large deflection and rotation analysis becomes necessary. For example, a fishing
rod with a low lateral stiffness under a lateral load experiences large deflections
and rotations.

Stress Stiffening When the stress in one direction affects the stiffness in another
direction, stress stiffening occurs. Typically, a structure that has little or no stiffness
in compression while having considerable stiffness in tension exhibits this behavior.
Cables, membranes, or spinning structures exhibit stress stiffening.

2.2.3.2 Material Nonlinearity

A typical nonlinear stress-strain curve is given in Fig. 2.1. A linear material re-
sponse is a good approximation if the material exhibits a nearly linear stress-strain
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Fig. 2.2 Element birth and death used in a manufacturing problem

curve up to a proportional limit and the loading is in a manner that does not create
stresses higher than the yield stress anywhere in the body.
Nonlinear material behavior in ANSY'S is characterized as:

Plasticity Permanent, time-independent deformation.
Creep Permanent, time-dependent deformation.

Nonlinear Elastic Nonlinear stress-strain curve; upon unloading, the structure
returns back to its original state—no permanent deformations.

Viscoelasticity Time-dependent deformation under constant load. Full recovery
upon unloading.

Hyperelasticity Rubber-like materials.

2.2.3.3 Changing-status Nonlinearity

Many common structural features exhibit nonlinear behavior that is status depen-
dent. When the status of the physical system changes, its stiffness shifts abruptly.
The ANSY'S program offers solutions to such phenomena through the use of nonlin-
ear contact elements and birth and death options. This type of behavior is common
in modeling manufacturing processes such as that of a shrink-fit (Fig. 2.2).

2.2.4 Practical Modeling Considerations

In order to reduce computational time, minor details that do not influence the results
should not be included in the FE model. Minor details can also be ignored in order
to render the geometry symmetric, which leads to a reduced FE model. However,
in certain structures, “small” details such as fillets or holes may be the areas of
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080

Fig. 2.3 Types of symmetry conditions (from /left to right): axisymmetry, rotational, reflective/
planar, and repetitive/translational

Aol

Fig. 2.4 Different views of a 3-D body with axisymmetry and its cross section (far right)

maximum stress, which might prove to be extremely important in the analysis and
design. Engineering judgment is essential to balance the possible gain in computa-
tional cost against the loss of accuracy.

2.2.4.1 Symmetry Conditions

If the physical system under consideration exhibits symmetry in geometry, material
properties, and loading, then it is computationally advantageous to model only a
representative portion. If the symmetry observations are to be included in the model
generation, the physical system must exhibit symmetry in all of the following:

*  Geometry.

* Material properties.

* Loading.

* Degree of freedom constraints.

Different types of symmetry are:

* Axisymmetry.

* Rotational symmetry.

» Planar or reflective symmetry.

» Repetitive or translational symmetry.

Examples for each of the symmetry types are shown in Fig. 2.3. Each of these sym-
metry types is discussed below.

Axisymmetry As illustrated in Fig. 2.4, axisymmetry is the symmetry about a cen-
tral axis, as exhibited by structures such as light bulbs, straight pipes, cones, circular
plates, and domes.
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Fig. 2.5 Different views of a 3-D body with rotational symmetry

OO

Fig. 2.6 Different views of a 3-D body with reflective/planar symmetry

Rotational Symmetry A structure possesses rotational symmetry when it is made
up of repeated segments arranged about a central axis. An example is a turbine rotor
(see Fig. 2.5).

Planar or Reflective Symmetry When one-half of a structure is a mirror image
of the other half, planar or reflective symmetry exists, as shown in Fig. 2.6. In this
case, the plane of symmetry is located on the surface of the mirror.

Repetitive or Translational Symmetry Repetitive or translational symmetry
exists when a structure is made up of repeated segments lined up in a row, such as a
long pipe with evenly spaced cooling fins, as shown in Fig. 2.7.

Symmetry in Material Properties, Loading, Displacements Once symmetry in
geometry is observed, the same symmetry plane or axis should also be valid for the
material properties, loading (forces, pressure, etc.), and constraints. For example, a
homogeneous and isotropic square plate with a hole at the center under horizontal
tensile loading (Fig. 2.8) has octant (1/8th) symmetry in both geometry and material
with respect to horizontal, vertical, and both diagonal axes. However, the loading is
symmetric with respect to horizontal and vertical axes only. Therefore, a quarter of
the structure is required in the construction of the solution.
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Fig. 2.7 A 3-D body with repeti-
tive/translational symmetry

If the applied loading varies in the vertical direction, as shown in Fig. 2.9, the
loading becomes symmetric with respect to the vertical axis only. Although the ge-
ometry exhibits octant symmetry, half-symmetry is necessary in order to construct
the solution.

A similar plate, this time composed of two dissimilar materials is shown in
Fig. 2.10. The loading condition allows for quarter-symmetry; however, the mate-
rial properties are symmetric with respect to the horizontal axis only. Therefore,
it is limited to half-symmetry. If this plate is subjected to a horizontal tensile load
varying in the vertical direction, as shown in Fig. 2.11, no symmetry condition is
present.

Since a structure may exhibit symmetry in one or more of the aforementioned
categories, one should try to find the smallest possible segment of the structure that

symmetry
axis
I

Fig. 2.8 Example of quarter-symmetry
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Fig. 2.10 Example of half-symmetry with respect to horizontal axis

Fig. 2.11

would represent the entire structure. If the physical system exhibits symmetry in
geometry, material properties, loading, and displacement constraints, it is compu-
tationally advantageous to use symmetry in the analysis. Typically, the use of sym-
metry produces better results as it leads to a finer, more detailed model than would

Example of no symmetry

otherwise be possible.

A three-dimensional finite element mesh of the structure shown in Fig. 2.12 con-
tains 18,739 tetrahedral elements with 5014 nodes. However, the two-dimensional
mesh of the cross section necessary for the axisymmetric analysis has 372 quadrilat-
eral elements and 447 nodes. The use of symmetry in this case reduces the CPU time
required for the solution while delivering the same level of accuracy in the results.

material 1
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Fig. 2.12 Three-dimensional mesh of a structure (/eff) and 2-D mesh of the same structure (right)
using axisymmetry

2.2.4.2 Mesh Density

In general, a large number of elements provide a better approximation of the solu-
tion. However, in some cases, an excessive number of elements may increase the
round-off error. Therefore, it is important that the mesh is adequately fine or coarse
in the appropriate regions. How fine or coarse the mesh should be in such regions
is another important question. Unfortunately, definitive answers to the questions
about mesh refinement are not available since it is completely dependent on the
specific physical system considered. However, there are some techniques that might
be helpful in answering these questions:

Adaptive Meshing The generated mesh is required to meet acceptable energy error
estimate criteria. The user provides the “acceptable” error level information. This
type of meshing is available only for linear static structural analysis and steady-state
thermal analysis.

Mesh Refinement Test Within ANSYS An analysis with an initial mesh is per-
formed first and then reanalyzed by using twice as many elements. The two solutions
are compared. If the results are close to each other, the initial mesh configuration is
considered to be adequate. If there are substantial differences between the two, the
analysis should continue with a more-refined mesh and a subsequent comparison
until convergence is established.

Submodeling If the mesh refinement test yields nearly identical results for most
regions and substantial differences in only a portion of the model, the built-in “sub-
modeling” feature of ANSYS should be employed for localized mesh refinement.
This feature is described in Chap. 11.
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Fig. 2.13 Schematic of ANSYS levels

2.3 Organization of ANSYS Software

There are two primary levels in the ANSYS program, as shown in Fig. 2.13:

Begin Level Gateway into and out of ANSYS and platform to utilize some global
controls such as changing the jobname, etc.

Processor Level This level contains the processors (preprocessor, solution, post-
processor, etc.) that are used to conduct finite element analyses.

The user is in the Begin Level upon entering the ANSYS program. One can pro-
ceed to the Processor Level by clicking the mouse on one of the processor selections
in the ANSY'S Main Menu.

2.4 ANSYS Analysis Approach

There are three main steps in a typical ANSYS analysis:

* Model generation:
— Simplifications, idealizations.
— Define materials/material properties.
— Generate finite element model (mesh).
» Solution:
— Specify boundary conditions.
— Obtain the solution.
* Review results:
— Plot/list results.
— Check for validity.

Each of these steps corresponds to a specific processor or processors within the Pro-
cessor Level in ANSYS. In particular, model generation is done in the Preprocessor
and application of loads and the solution is performed in the Solution Processor.
Finally, the results are viewed in the General Postprocessor and Time History Post-
processor for steady-state (static) and transient (time-dependent) problems, respec-
tively. There are several other processors within the ANSYS program. These mostly
concern optimization and probabilistic-type problems. The most commonly used
processors are described in the following subsections.
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2.4.1 ANSYS Preprocessor

Model generation is conducted in this processor, which involves material defini-
tion, creation of a solid model, and, finally, meshing. Important tasks within this
processor are:

» Specify element type.

* Define real constants (if required by the element type).
* Define material properties.

* Create the model geometry.

* Generate the mesh.

Although the boundary conditions can also be specified in this processor, it is usu-
ally done in the Solution Processor.

2.4.2 ANSYS Solution Processor

This processor is used for obtaining the solution for the finite element model that is
generated within the Preprocessor. Important tasks within this processor are:

* Define analysis type and analysis options.
* Specify boundary conditions.
+ Obtain solution.

2.4.3 ANSYS General Postprocessor

In this processor, the results at a specific time (if the analysis type is transient) over
the entire or a portion of the model are reviewed. This includes the plotting of con-
tours, vector displays, deformed shapes, and listings of the results in tabular format.

2.4.4 ANSYS Time History Postprocessor

This processor is used to review results at specific points in time (if the analysis type
is transient). Similar to the General Postprocessor, it provides graphical variations
and tabular listings of results data as functions of time.

2.5 ANSYS File Structure

Several files are created during a typical ANSYS analysis. Some of these files are in
ASCII format while the others are binary. Brief descriptions of common file types
are given below.
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2.5.1 Database File

During a typical ANSYS analysis, input and output data reside in memory until they
are saved in a Database File, which is saved in the Working Directory. The syntax
for the name of the Database File is jobname.db. This binary file includes the ele-
ment type, material properties, geometry (solid model), mesh (nodal coordinates
and element connectivity), and the results if a solution is obtained. Once the Data-
base File is saved, the user can resume from this file at any time. There are three
distinct ways to save and resume the Database File:

» Use the Utility Menu.
* Click on SAVE_DB or RESUM_DB button on the ANSYS Toolbar.
* Issue the command SAVE or RESUME in the Input Field.

2.5.2 Log File

The Log File is an ASCII file, which is created (or resumed) immediately upon
entering ANSYS. Every action taken by the user is stored sequentially in this file in
command format (ANSYS Parametric Design Language (APDL)). The syntax for
the name of the Log File, which is also saved in the Working Directory, is jobname.
log. 1f jobname.log already exists in the Working Directory, ANSYS appends the
newly executed actions instead of overwriting the file. The Log File can be utilized
to:

* Understand how an analysis was performed by another user.
» Learn the command equivalents of the actions taken within ANSYS.

2.6 Error File

Similar to the Log File, the Error File is an ASCII file, which is created (or re-
sumed) immediately upon entering ANSY'S. This file captures all warning and error
messages issued by ANSYS during a session. It is saved in the Working Directory
with the following syntax for the name: jobname.err. If jobname.err already ex-
ists in the Working Directory, ANSYS appends the newly issued warning and error
messages instead of overwriting the file. This file is particularly important when
ANSYS issues several warning and error messages too quickly during an interac-
tive session. The user can then consult the Error File to discover the exact cause(s)
of each of the warnings or errors.
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2.6.1 Results Files

The results of an ANSYS analysis are stored in a separate Results File. This file is
a binary file and, depending upon the Analysis Type, the file’s extension takes a dif-
ferent form. The following syntax applies to the Results File name for the selected
Analysis Type:

Structural analysis jobname.rst
Thermal analysis jobname.rth
Fluids analysis jobname.rfl

2.7 Description of ANSYS Menus and Windows

When using the ANSYS program in Interactive Mode, the Graphical User Interface
(GUI) is activated. The GUI has six distinct components:

Utility Menu Contains functions that are available throughout the ANSY'S session,
such as file controls, selecting, graphic controls, and parameters. The ANSYS Help
System is also accessible through this menu.

Main Menu Contains the primary ANSYS functions organized by processors
(Preprocessor, Solution, General Postprocessor, etc.).

Toolbar Contains push-buttons for executing commonly used ANSY'S commands
and functions. Customized buttons can be created.

Input Field Displays a text field for typing commands. All previously typed com-
mands are stored in a pull-down menu for easy reference and access.

Graphics Window Displays the graphical representation of the models/meshes
created within ANSYS. Also, the related results are reviewed in this window.

Output Window Receives text output from the program. This window is usually
positioned behind other windows and can be raised to the front when necessary.

Figure 2.14 shows a typical ANSYS GUI with each of the preceding components
identified.

2.7.1 Utility Menu

The Utility Menu contains utility functions that are independent of ANSYS Levels
(i.e., begin and processor levels), with some exceptions. The Utility Menu contains
ten items, each of which brings up a pull-down menu of subitems. Clicking the left
mouse button on these subitems will result in one of the following:
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Fig. 2.14 Typical ANSYS GUI with separate components identified

» Bring up a submenu, indicated by the icon P> .

* Immediately execute a function.

* Bring up a dialog box, indicated by the icon ... .
*  Bring up a picking menu, indicated by the icon +.

Brief descriptions of each of the menu items under the Utility Menu are given below.

File item under Utility Menu: Contains file- and database-related functions, such as clear-
ing the database, reading an input file, saving the database to a file, or resuming a database
from a file. This menu item can be used to exit the program.

Select item under Utility Menu: Includes functions that allow the user to select a subset of
data and to create Components.

List item under Utility Menu: This menu item allows the user to list any data stored in the
ANSYS database. Also, status information about different areas of the program and con-
tents of files in the system are available.

Plot item under Utility Menu: This menu item allows the user to plot ANSYS entities such
as keypoints, lines, areas, volumes, nodes, and elements. If a solution is obtained, results
can also be plotted through this menu item.

PlotCtrls item under Utility Menu: Contains functions that control the view, style, and other
characteristics of graphic displays.

WorkPlane item under Utility Menu: Use of WorkPlane offers great convenience for Solid
Model generation. This menu item enables the user to toggle the Working Plane on and off,
and to move, rotate, and maneuver it. Coordinate system operations are also performed
under this menu item.

Parameters item under Utility Menu: Contains functions to define, edit, and delete scalar
and array parameters.

Macro item under Utility Menu: This menu item allows the user to execute Macros and data
blocks. Under this menu item, the user can also manipulate the push-buttons on the Toolbar.
MenuCtrls item under Utility Menu: Allows the user to format the menus, as well as manip-
ulate the Toolbar.

Help item under Utility Menu: Brings up the ANSYS Help System.
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2.7.2 Main Menu

The Main Menu contains main ANSYS functions and processors, such as the pre-
processor, solution, and postprocessor. It has a tree structure, where menus and
submenus can be expanded and collapsed. Similar to the Utility Menu, clicking the
left mouse button on the Main Menu items results in one of the following:

» Expand or collapse the submenus attached to the menu item, indicated by icons
and [E, respectively.

« Bring up a dialog box, indicated by the icon .

* Bring up a picking menu, indicated by the icon 2.

2.7.3 Toolbar

The Toolbar contains a set of push-buttons that execute frequently used ANSYS
functions. When the user starts ANSYS, predefined push-buttons such as QUIT,
SAVE_DB, and RESUM_DB appear in the toolbar. The user can create customized
push-buttons and delete or edit the existing ones.

2.7.4 Input Field

This field allows the user to type in commands directly as opposed to the use of
menu items. The Input Field consists of two main regions:

* Command entry box.
 History buffer.

2.7.5 Graphics Window

Al ANSYS graphics are displayed in the Graphics Window. Also, the user performs
all of the graphical “picking” in this window.

2.7.6 Output Window

All of the text output generated as a result of command responses, warnings, and er-
rors appear in the Output Window. It is positioned behind the main ANSYS window,
but can be raised to the front when necessary.
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Fig. 2.15 ANSYS Help System

2.8 Using the ANSYS Help System

Information on ANSYS procedures, commands, and concepts can be found in the
ANSYS Help System. The importance of knowing how to use the Help System
cannot be overemphasized. It can be accessed within the Graphical User Interface
(GUI) in three ways:

* By choosing the Help menu item under Utility Menu.
* By pressing the Help button within dialog boxes.
* By entering the HELP command directly in the Input Field.

The Help System is also available as a stand-alone program outside of ANSYS. The
user can bring up the desired help topic by choosing it from the system’s table of
contents or index, through a word search, or by choosing a hypertext link. The Help
System is built on the HTML platform in the form of web pages. As indicated in
Fig. 2.15, there are three tabs on the left of the Help Window: Contents, Index, and
Search. The help pages are displayed on the right side of the Help Window. Selected
topics regarding the Help System are discussed in the following subsections.

2.8.1 Help Contents

The first tab on the left side of the Help Window is the Contents Tab, as shown in
Fig. 2.16. It is a collection of several different ANSYS Manuals containing thou-
sands of pages. The Contents Tab is organized in a tree structure for easy navi-
gation. It is recommended that beginner ANSYS users take the time to read the
relevant chapters in each Manual. Throughout this book, the reader is referred to
several specific chapters in these Manuals for a thorough understanding of the top-
ics being discussed.
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Fig. 2.17 ANSYS Help System with Index tab activated

2.8.2 Help Index

The Index Tab. (Fig. 2.17) is the second tab on the left side of the Help Window.
Every single help page contained in the ANSYS Help System is exhaustively listed
under this tab. It is useful for finding which help pages are available for a given
topic. Upon typing the topic of interest, a list of help pages appears, giving the user
a chance to browse for the most-relevant help page.

2.8.3 Search in Help

The user can perform a word search of the ANSYS Manuals through the Search
Tab. (Fig. 2.18), which is the third tab on the left side of the Help Window. As a
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Fig. 2.18 ANSYS Help System with Search tab activated

result of an inquiry, a list of help pages containing the search word appears and the
user can select which pages to display.

2.8.4 Verification Manual

Although all of the ANSYS Manuals included under the Contents Tab are impor-
tant sources of information, one particular Manual deserves special emphasis, the
Verification Manual. The purpose of this Manual is to demonstrate the capabilities
of ANSYS in solving fundamental engineering problems with analytical solutions.
Another important feature of the Verification Manual is its suitability as an effec-
tive learning tool. There is a corresponding /nput File for each of the verification
problems included in this manual (in excess of 200). As mentioned earlier, the input
files contain ANSYS commands to be executed sequentially when read from within
ANSYS. Each of these commands corresponds to a specific action in the Interactive
Mode. Once the verification problem that is the closest to the problem at hand is
identified, the user can then study the corresponding /nput File and learn the essen-
tial steps in solving the problem using ANSYS. The Verification Manual also serves
as an excellent tool for learning to use ANSYS in Batch Mode.



Chapter 3
Fundamentals of Discretization

3.1 Local and Global Numbering

In solving an engineering problem with the finite element method (FEM), the do-
main is discretized by employing elements. The characteristics of the problem dic-
tate the dimensionality of the problem, i.e., one, two, or three dimensional. A brief
summary of the common element types utilized in a finite element analysis (FEA)
is presented in Fig. 3.1. Once the domain of the problem is discretized by elements,
a unique element number identifies each element and a unique node number identi-
fies each node in the domain. As illustrated in Fig. 3.2, nodes are also numbered
within each element, and are called local node numbers. The unique node number-
ing within the entire domain is called global node numbering. This is part of the
computational procedure in FEA.

3.2 Approximation Functions

The variation of the field variable, ¢(e> , over an element is approximated by an ap-
propriate choice of functions, as illustrated in Fig. 3.3. The selection of these func-
tions is the core of the finite element method. The approximation functions should
be reliable in the sense that as the mesh becomes more refined, the approximate
solution should converge to the exact solution monotonically. Oscillatory conver-
gence is unreliable because it is possible to observe an increase in error with the re-
fined mesh. Oscillatory and monotonic convergences are demonstrated in Fig. 3.4.
Common approximation functions are usually polynomials since their differentia-
tion and integration are rather straightforward compared to other functions.

In order to achieve a monotonically convergent solution, the polynomials chosen
as approximation functions must satisfy four requirements:

Requirement 1 Continuous behavior of the approximation function within the
element—no kinks or jumps.

The online version of this book (doi: 10.1007/978-1-4939-1007-6_3) contains supplementary
material, which is available to authorized users
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Fig. 3.1 Commonly used one-, two-, and three-dimensional finite elements

Requirement 2 Compatibility along the common nodes, boundaries or surfaces
between adjacent elements—no gaps between elements

The elements satisfying the continuity and compatibility requirements are called
conformal elements (Fig. 3.5).

Requirement 3 Completeness, permitting rigid body motion of the element and
ensuring (constant) variation of ¢ and its derivatives within the element.

The reason for this requirement is best illustrated by considering a cantilever
beam under a concentrated load in the middle (Fig. 3.6). As a result of this loading,
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deformation occurs only to the left of the load. The section of the beam to the
right of the load experiences only rigid-body translations and rotations (constant
displacements and zero strain), i.e., no stresses and strains occur. Therefore, the ele-
ment approximation functions must permit such behavior. Complete polynomials

satisfy these requirements.
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Fig. 3.5 Compatibility of
approximation functions

¢ll

A complete polynomial of order » in one dimension can be written in compact

form as
n+l

P(x) = ox*! (3.1
P

leading to complete polynomials of order 0, 1, and 2 (constant, linear, and qua-
dratic) as

R(x)=o
A(x) =0 +onpx (3.2)

P(x)=0o+a,x+ a3x2

Fig. 3.6 A cantilever beam loaded at the middle and its FEA model
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Fig. 3.7 Pascal’s triangle for complete polynomials

In two dimensions, the compact form for a complete polynomial of order » can be
written as

(n+1)(n+2)

2 .
P(x)= > oyx'y/ i+j<n (3.3)
k=1

Constant, linear, and quadratic complete polynomials in two dimensions can be
written as

R](xuy) = a]
R(x,y)=aq+opx+o5y (3.4)

P(x,y)=0 +a2x+a3y+a4x2+a5xy+a6y2

The Pascal triangle shown in Fig. 3.7 is useful for including the appropriate terms
to obtain complete approximating functions in any order.

The order of the polynomial as an approximation function is dictated by the total
number of nodes in an element, i.e., the number of coefficients, ¢;, in the approxi-
mation function must be the same as the number of nodes in the element.

Requirement 4 Geometric isotropy for the same behavior in each direction.

Using complete polynomials satisfies this requirement of translation and rota-
tion of the coordinate system. If the required degree of completeness does not pro-
vide a number of terms equal to the number of nodes, then this requirement can
be satisfied by disregarding the non-symmetrical terms. In the case of a 4-noded
rectangular element, the first-order complete polynomial has three coefficients, one
less than the number of nodes. In order to circumvent this deficiency, the order of
the polynomial can be increased to “complete” in the second degree, having six
coefficients, two more than the number of nodes. As a result, two of the additional
higher-order terms, which are cr,x?, asxy, and o y*, must be removed from the
approximation function.

In order to satisfy the condition of geometric isotropy, only the term oxy is
retained in the approximation function, leading to



40 3 Fundamentals of Discretization
P(x,y)=0o+ax+o3y+a,xy (3.5)

Approximation functions satisfying these four requirements ensure monotonic con-
vergence of the solution as the element sizes decrease.

The element is referred to as C° continuous when only the field variable (none
of its derivatives) maintains continuity along its boundary. If the field variable and
its ™ derivative maintain continuity, the element is C” continuous. A more exten-
sive discussion is given by Huebner et al. (2001).

3.3 Coordinate Systems

3.3.1 Generalized Coordinates

The coefficients of the approximation functions, o, are referred to as the general-
ized coordinates. They are not identified with particular nodes. The generalized
coordinates are independent parameters that specify the magnitude of the prescribed
distribution of the field variable. They have no direct physical interpretation, but
rather are linear combinations of the physical nodal degrees of freedom.

3.3.2 Global Coordinates

Global coordinates are convenient for specifying the location of each node, the
orientation of each element, and the boundary conditions and loads for the entire
domain. Also, the solution to the field variable is generally represented with respect
to the global coordinates. However, approximation functions described in terms of
the global coordinates are not convenient to use in the evaluation of integrals neces-
sary for the construction of the element matrix.

3.3.3 Local Coordinates

A local coordinate system whose origin is located within the element is introduced
in order to simplify the algebraic manipulations in the derivation of the element
matrix. The use of natural coordinates in expressing the approximation functions
is particularly advantageous because special integration formulas can often be em-
ployed to evaluate the integrals in the element matrix. Natural coordinates also play
a crucial role in the development of elements with curved boundaries (discussed
under isoparametric elements, Sect. 6.2.2.5).
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3.3.4 Natural Coordinates

A local coordinate system that permits the specification of a point within the ele-
ment by a dimensionless parameter whose absolute magnitude never exceeds unity
is referred to as a natural coordinate system. Natural coordinates are dimensionless.
They are defined with respect to the element rather than with reference to the global
coordinates. Also, the natural coordinates are functions of the global coordinates
in which the element is defined. As illustrated in Fig. 3.8, the basic purpose of the
natural coordinate system is to describe the location of a point inside an element in
terms of coordinates associated with the nodes of the element.

3.3.4.1 Natural Coordinates in One Dimension
As shown in Fig. 3.9, within a one-dimensional element (line segment), defined by

two nodes (one at each end), the location of a point P denoted by x (global coordi-
nate) on the element can be expressed in terms of length or centroidal coordinates.

Fig. 3.9 Length coordinates < L >
in one dimension
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Length Coordinates
The location of point P, x, is expressed as a linear combination of the global nodal

coordinates, x; and x,, and the length coordinates, & and &,, as

x=&x +&5x, (3.6)

As shown in Fig. 3.9, & and &, are defined as the ratios of lengths & = L,/L and
& =L,/L, with L representing the length of the line segment, L = x,—x;. Since
L=1L +L,, &, and &, are not independent of each other and must satisfy the con-
straint relation

G+é =1 @7

Solving for & and &, via these equations written in matrix form as
X N xS

&= Hnor and & = i (3.9)
Xy =X Xy =X

results in

Such coordinates, whose behavior is shown in Fig. 3.10, have the property that one
particular coordinate has a unit value at one node of the element and a zero value
at the other node(s), i.e., & (x;) =1 and & (x,)=0,and &,(x;)=0 and &,(x,)=1.

Centroidal Coordinates

As shown in Fig. 3.11, x (the location of point P) with respect to a local coordinate
system, 7, located at the centroid of the line element becomes

x=r+xl+§ (3.10)

The local coordinate r is normalized in the form & =r/(L/2) in order to achieve a
dimensionless coordinate, &, and to ensure that its range never exceeds unity. Thus,
the location of the point P becomes

x=£§+xl+£ (.11)
2 2

Substituting for L ( L = x, —x; ) and rearranging terms leads to
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Fig. 3.11 Centroidal coordi-

nates in one dimension r=-L/2 —> I r=L/~2
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x==1=-&)x +=(1+&)x, (3.12)
2 2
or
2
x:ZNl.xl. (3.13)

with N, =(1-£)/2 and N, =(1+&)/2. As shown in Fig. 3.12, N,(-1)=1 and
N,(1)=0,and N,(-1)=0 and N,(1)=1

Fig. 3.12 Variation of cen- 4

troidal coordinates within the

element Nl(f) N:(f)
1+
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Fig. 3.13 Definition of area
coordinates in a triangular
element

3.3.4.2 Natural Coordinates in Two Dimensions
Area Coordinates

As shown in Fig. 3.13, within a two-dimensional element (triangular area) defined
by three nodes, one at each apex, the location of a point P, denoted by (x, y) (global
coordinates), on the element can be expressed as linear combinations of the global
nodal coordinates, (x;,y;), (x,,»,), and (x3,;), and the area coordinates, &, &,,
and x, as

x=8&x +8x) +83x3 (3.14)
Y=En+&y +83y3
As illustrated in Fig. 3.13, &, &,, and &; are defined as the ratios of areas
& =4/4, & = A,/A, and & = 4;/4, with 4 representing the area of the triangle.

Since 4, + A4, +4; =1, &, &, and &; are not independent of each other and must
satisfy the constraint relation

Gté+é=1 (3.15)
Solving for &, &,, and &; via Eq. (3.14) and (3.15) written in matrix form as

1N 11 1](g

XpEIN Y X 16 (3.16)
Y n o s
results in
& 1 (13 =x302) Y3 X3 ||
S == oy —x¥3) ¥y X3 |qX (3.17)

24
& (Y, =x)) Vi Xy
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£,=0,6=0,§=1)
(x5, ¥3)

‘w 63:
02
N (2 32)
(s 1) &=0

{‘fl: 1s§2:09§3:0)

X

Fig. 3.14 Area coordinates within a triangular element

where X, =X,, =X,, Yup = Vi — Vn» and

I 1 1
2d=|x; X, x5 (3.18)
N 2 M

As shown in Fig. 3.14, one particular area coordinate has a unit value at one node
of the element and a zero value at the other node(s); &;(x;) =5, where &; =1 for
i=j and &; =0 for i# j.

The exact evaluation of the area integrals over a triangle can be obtained by
employing the expression

jja

m!n! (!

(m+n+/0+2) (3-19)

I=[&g&dvdy =
A

Centroidal Coordinates

In the case of a two-dimensional element with a quadrilateral shape defined by four
nodes, one at each corner, the location of a point P, denoted by (x, y), on the element
can be expressed with respect to the centroidal coordinate system (£,n7) whose ori-
gin coincides with the centroid of the quadrilateral area, as shown in Fig. 3.15. The
relationship between (x,y) and (£,77) can be expressed as

x=a,+b&+cm+d&n

(3.20)
y=a,+bS+cn+d,én
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n
o3
(x5, 33 E=-1p=1) + (¢=Ln=1)
(x“’y“)«i (¢=1n=1)
(¢=-Ln=1) .
mapping
¢ |:> ‘
1 )
Xy, V.
¥ (x;, %) 22 U -
E=-Ly=—1) €=1n=-1) E=-Ln=-1 E=1n=-1)

X

Fig. 3.15 Centroidal coordinates within a quadrilateral element

Also, these relations map a quadrilateral shape in global coordinates to a unit square

in natural (centroidal) coordinates. Evaluation of these equations along n =-1

leads to
x:ax—’_bx(g_cx_dxg (321)
y=a,+bS—c,—d¢

Eliminating the coordinate & from the resulting equations yields the linear relation-
ship between the global coordinates

y=A+Bx (3.22)

in which 4 and B are known explicitly. Considering the remaining sides of the
square in the centroidal coordinates defined by the lines n=1, £ =1, and & =-1
results in a straight-sided quadrilateral.

Evaluation of x at & =£1 and n =+1 (four corners) leads to

x=a,-b, —c, +d,
Xy =a,+b.—c,—d, (3.23)
xy=a,+b. +c +d,

X, =a,—b.+c.—d

X

Solving for the coefficients a,, b, c,, and d, substituting back into Eq. (3.20),
and collecting the terms multiplying x; gives

1 1
x= (=)A= + 21+ A-mx, (3.24)

+%(1+€)(l+n)x3 +%(l—é)(l+n)x4
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A similar operation performed on y in Eq. (3.20) yields

p=0=90-ny, 450+,

(3.25)
1 1
+Z(1+ O+ 1)y +Z(1 =1+ my,
Defining
1 1
Ny =Z(l—§)(l—n) N2=Z(1+§)(1—TI)
1 1 (3.20)
N3=Z(1+§)(1+77) N4=Z(1—§)(1+Tl)
allows Eq. (3.24) and (3.25) to be rewritten as
4 4
x=2 Ni&my, and y =3 N,(Eny, (3.27)
i=l i=1
Note that N, can be written in compact form as
1
Ni =5+ &)(A+nm;) (3.28)

with &; and 7, representing the coordinates of the corner nodes in the natural coor-
dinate system. It is worth noting that N;(¢;.n;) =9, where 6; =1 for i=j and
6, =0 for i# j. The variations of N; within a quadrilateral element are given
schematically in Fig. 3.16.

3.4 Shape Functions

Shape functions constitute the subset of element approximation functions. They
cannot be chosen arbitrarily. As discussed in the previous section, the element ap-
proximation functions are chosen to be complete polynomials with unknown gen-
eralized coordinates. For a one-dimensional element with m nodes as shown in
Fig. 3.17, the element approximation function for the field variable, ¢(x), is as-
sumed as a polynomial of order (m—1)

09 (x) =) Fax+azx’ Fax’ +oa, (X" ra,x" (3.29)
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N, =(1-8)(1-n)/4 N.=(1-6)(1-n)/4

\

2 3

element

Fig. 3.16 Variation of N, within a quadrilateral

1

Fig. 3.17 A one-dimensional o—O—O0—----- —0——0
element with m nodes
¢’l ¢2 ¢3 ¢m—l ¢m
or
¢(e) (x)= gToc (3.30)
where
g’ ={1 x X2 e xm,l} (3.31)
and
o ={o @ @ - a) (3.32)

Note that the number of generalized coordinates ( ¢;,i=1,2,...,m ) is equal to the
number of nodes within the element.

The field variable, ¢(e) (x), can also be expressed within the element through the
use of its nodal values, ¢, (i =1,m), in the form

$ () = Ny + Nygy + Ny gy + Ny +--- (3.33)
+Nm—l m—1 +Nm¢m
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or
¢(€) (x)= NT ¢ (3.34)
where
N'={N, N, Ny -~ N,} (3.35)
and
o' ={s & & - 2.} (3.36)

in which N; (i =1,m) are referred to as shape functions. These functions are associ-
ated with node i/ and must have a unit value at node 7 and a zero value at all other
nodes. Furthermore, they must have the same degree of polynomial variation as in
the element approximation function.

The explicit form of the shape functions can be determined by solving for the
generalized coordinates, «;, in terms of the nodal coordinates, x;, and nodal values,
¢, (i=L2,...,m), through Eq. (3.29), and rearranging the resulting expressions in
the form of Eq. (3.34). At each node, the field variable ¢ (x) is evaluated as

B = 0 + 00X, FaX Fax; e a, X a, X
_ 2 3 m—2 m—1
Py = Q) +0Xy + 03X, F 0, ot Xy X (3.37)
_ 2 3 m—2 m—1
Oy =0 +QaX,, + 03X, + Oy X, + o+ Ay Xy O, X
or in matrix form
[ 2 m—1"]
) Iy X X o
2 -1
? I ox, x5 o Xy 12%)
$r=1 x, xF o s o 9=Aa (3.38)
¢ 2 m—1 [04
L7 m »1 Xy Xy ot X, | m

Solving for the generalized coordinates in terms of nodal coordinates and nodal
values of the field variable yields

o= A71¢ (3.39)

Substituting for the generalized coordinates in Eq. (3.30) results in
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¢ (x)=¢g" A”'p (3.40)

Comparison of Eq. (3.40) and (3.34) leads to the explicit form of the shape func-

tions N, as

N =gl A™! (3.41)

This formulation illustrates the determination of the shape functions for a one-di-
mensional element; its extension to two dimensions is straightforward. The proper-
ties of shape functions are:

1. N;=1 atnodeiand N, =0 at all other nodes.

2 3N, =1,
i=1

3.4.1 Linear Line Element with Two Nodes

3.4.1.1 Global Coordinate

For a line element with two nodes, the field variable, ¢(e), is approximated by a
linear function (refer to Fig. 3.18) in terms of the global coordinate, x, as

¢(8) (X) =y +ayx (3.42)

This element approximation function ensures the inter-element continuity of only
the field variable. The nodal values of the function are identified by ¢, and ¢,.
Evaluation of the function at each node with coordinates x; and x, leads to

¢ =0y +ayx; and ¢, =0 +ayx, (3.43)

Fig. 3.18 Linear approxima- ¢ 4
tion for the field variable ¢
within a line element .
linear ¢(x), exact
approximation l 6.
2
]
|
|
|
|
|
. |
¢’1{ ' I 1
| |
I ]
& & > X
1 2
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N,() N;(x)

F 3 r

1 \
» X > X

X X, X X,

Fig. 3.19 Variation of linear shape functions within a 1-D line element

Solving for «; and o, and substituting for them in the element approximation
function results in

) (x) = Ny (x)y + N5 (x) (3.44)

where N, =(x, —x)/(x, —x;) and N, =(x—x;)/(xy —x;) . These functions, re-
ferred to as interpolation or shape functions, are the same as the length coordinates,
& and &,, and they also vary linearly with x (Fig. 3.19), as does the element ap-
proximation function. Because N,(x;) =0, where 6, =1 for i= and 6; =0
for i # j,

jj7

1= z N, (3.45)

3.4.1.2 Centroidal Coordinate

For a line element with two nodes, the field variable, gb(e), is approximated by a

linear function in terms of the natural (centroidal) coordinate, &, as

¢ (&)= o+ 0,8 (3.46)

This element approximation function ensures the inter-element continuity of the
field variable. The nodal values of the function are identified by ¢, and ¢,. Evalua-
tion of the function at each node with coordinates £ =—1 and & =1 leads to

d=0,—-a, and ¢, =a,+a, (3.47)

Solving for «; and o, and substituting for them in the element approximation
function results in

$E) = N (E)dy + Ny (E)d, (3.48)

where N (&)=(1-&)/2 and N,(§)=(1+&)/2. These functions, referred to as
interpolation or shape functions, vary linearly with & (Fig. 3.20), as in the case of
the element approximation function.
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Fig. 3.20 Variation of linear A
shape functions within a 1-D

line element N, 1(‘5) N. e(‘f)

Also, they have the property
1=)"N, (3.49)

because N;(&;)=0,, where 6, =1 for i=j and 6; =0 for i # j.
N ij i ij

3.4.2 Quadratic Line Element with Three Nodes: Centroidal
Coordinate

For a line element with three nodes, the field variable, q,’)(e), is approximated by a
quadratic function (schematic given in Fig. 3.21) in terms of the natural (centroidal)
coordinate, &, as

) =y + &+l (3.50)

¢ )
&(x), exact
quadratic l °
approximation : ¢,
I
I
I
|
I
e I
¢1( }I ]
I I
I I
O O > X
1 2

Fig. 3.21 Quadratic approximation for the field variable ¢ within a line element
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Fig. 3.22 Variation of quadratic shape functions within a 1-D line element

in order to ensure the inter-element continuity of the field variable. The element
nodes are identified as 1, 2, and 3, with their nodal values as ¢, ¢,, and ¢5. The
middle node is located at the center of the line element. Evaluation of the function
at each node with coordinates £ =—1, £ =0, and & =1 leads to

¢ =0y —a, oy 3.51)

Solving for «;, a,, and o5 and substituting for them in the element approximation
function results in

31 (&) = N, (&) + Ny (&) + N3 (€ (3.52)

where Ny(5)=&/[2(S=D], Ny(5)=&/[2(S+D], and N3(&) =—(c +D(E -1).
These functions, referred to as interpolation or shape functions, vary quadratically
with & (Fig. 3.22), as in the case of element approximation function.

Also, they have the property

1=>"N, (3.53)

because N;(E;) =06, where 6; =1 for i=j and 6; =0 for i # j.

ij’

3.4.3 Linear Triangular Element with Three Nodes: Global
Coordinate

Within a two-dimensional element (triangular area) defined by three nodes, one at
each apex, the variation of the field variable, q,’)(e) (x, ), can be approximated by a
linear function (as illustrated in Fig. 3.23) of the form
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Fig. 3.23 Linear approxima- 6, ¢
tion for the field variable ¢ »
within a triangular element ¢

¢“(x, y) — approximate

d(x, y) — exact

¢ ()
3

" i)
o,
.

¢(e)(x»J’) =0 topx+tazy (3.54)

This function ensures the inter-element continuity of the field variable (/5(8) (x, ).
The element nodes are identified as 1, 2, and 3 in a counterclockwise orientation,
with their nodal values as ¢, ¢,, and ¢;. The nodal coordinates are specified by

(xl,yl), (xz aJ’Z)a and (x3,y3 ).
The nodal values of the field variable must be satisfied as

¢ =0y +ayx a3y
¢ =) +0ox; +03), (3.55)

¢5 =0 + x5 +a3;

leading to the determination of the generalized coefficients in the form

a | (y3=x302) (i —xp3) (q—%0) ||¢

=55 (72— »3) (v3=n) =») [ (3.56)
a3 (3 —x,) (% —x3) (x —xp) [0
where
I x »n
24=\1 x, » 3.57)

I x »
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&(x ) &ilx, y) =1 &x. p) &x, 1) =0
&(x,, ¥,) =0 &lx, 3) =1
&(xs, 3) =0 &(xs, 13) =0
> )
i‘/

f;(x,y) ‘fs(xls }’.) =0
&xy y2) =0
&lx, ) =1

3

Fig. 3.24 Variation of linear shape functions within a triangular element

Substitution of «;, a,, and ¢4 into the expression for the element approximation
function results in

09 (x,7) = Ny (x, )y + Ny (x, ), + N (x, )by (3.58)

where the shape functions N, =§;, N, =&,, and N; =&, are the same as the area

3

coordinates with properties &;(x;,y;) =6 and Z &; = 1. Their variation within the
i=1

element is given in Fig. 3.24.

3.4.4 Quadratic Triangular Element with Six Nodes

The field variable can be approximated by a complete quadratic function within a
triangular element in the form

¢(e)(x9y)=a1 +a2x+a3y+a4x2 +a5xy+a6y2 (3593)
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Fig. 3.25 Variation of linear =0 £,=0
shape functions within a B )
triangular element

or

¢(€) (x,y)= gT(x (3.59b)
where the vectors g and a are defined by
T 2 2
g ={1 X y x xy y } (3.60)
and
o ={oy o0, o o o5 o) (3.61)

However, this representation requires a triangular element with six nodes, as shown
in Fig. 3.25, in order to determine its six unknown coefficients, ¢;.
At each node, the field variable, ¢(e) (x;, ;). s evaluated as

(¢, 1 Xoyox un ylf [ ]
9, I x, » x% X202 y% a,
O I L S e | 12 or ¢ = Ax (3.62)
@4 I x4, Xﬁ X4 V4 yi %
P51 |1 xg ye 2 xgys 2%
(96 |1 X v Xé X6e6 yg‘ o]

Solving for the generalized coordinates in terms of nodal coordinates and nodal
values of the field variable yields
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a=A"p (3.63)

Substituting for the generalized coordinates in Eq. (3.59) results in

$x)=g' A (3.64

However, ¢(‘)) (x,y) can also be expressed within the element through the use of its
nodal values ¢, as

6
6= N(x ¢ or ¢9xy)=No (3.65)

i=1

where N is the vector of shape functions, N; (i =1,6). Comparison of the last two
equations results in the explicit form of the shape functions N, as

N (3.66)

In providing the explicit forms of the shape functions, lengthy expressions are
avoided by utilizing the expressions for the area coordinates of &;, &,, and &;, as
derived in Eq. (3.17), thus leading to

N ={Qg -1)& (& D& (& D& 45& 45& 45&) G067

or
Ny =28 =De, N, =28, -De,, N3 =(26;-Dg; (3.68)
Ny =485, N5 = 48,85, Ny = 4836,

Variation of these shape functions within the element is shown in Fig. 3.26.

3.4.5 Linear Quadrilateral Element with Four Nodes: Centroidal
Coordinate

For a quadrilateral element with four nodes, the field variable, q,’)(e) (x,y), is approx-
imated by a linear function (refer to Fig. 3.27) in terms of the natural (centroidal)
coordinates, —1<£ <1 and —-1<n <1, as

$O(EN) = ay +asE +azn +a,En (3.69)

This element approximation function ensures the inter-element continuity of only
the field variable. The nodal values of the function are identified by ¢, ¢,, ¢;, and
¢,. Evaluation of the function at each node with coordinates (& =-1Ln, =-1),

(62 = 17712 = _1)5 (53 :1’n3 = 1)5 and (54 = _15774 :1) leads to
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Solving for o, a,, as, and a, results in

(3.70)
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Fig. 3.27 Bi-linear approxi-

mation for the field variable

¢ within a quadrilateral ¢, ¢
element 4

o 111 1]
a| _1|-1 1 1 -1|/4, 3.71)
as [ 4l-1 -1 1 1|4
a, 1 -1 1 -1]|¢,

and their substitution in the element approximation function yields

4
¢ (Em) =D N;(En), (3.72)

i=1

in which
N, = %(l reex1+nn,) (3.73)

with &; and 7, representing the coordinates of the corner nodes in the natural co-
ordinate system. The shape functions have the property N;(S;,n;) =05, where
6, =1 for i=j and 6; =0 for i # j . They are graphically illustrated in Fig. 3.28.

3.5 Isoparametric Elements: Curved Boundaries

The modeling of domains involving curved boundaries by using straight-sided ele-
ments may not provide satisfactory results. However, the family of elements known
as “isoparametric elements” is suitable for such boundaries. The shape (or geom-
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N, N,
n n
1
& 13
N, N,

Fig. 3.28 Variation of bi-linear shape functions within a quadrilateral element

etry) and the field variable of these elements are described by the same interpolation
functions of the same order. The representation of geometry (element shape) in
terms of linear (or nonlinear) shape functions can be considered as a mapping pro-
cedure that transforms a square in local coordinates to a regular quadrilateral (or
distorted shape) in global coordinates (Fig. 3.29) (Ergatoudis et al. 1968).

The most widely used elements are triangular or quadrilateral because of their
ability to approximate complex geometries. An arbitrary straight-sided quadrilateral
in global coordinates, (x, ), can be obtained by a point mapping from the “standard
square” defined in natural coordinates, (&,77). The mapping shown in Fig. 3.29 can
be achieved by

1

=1 -6y +%(l+€)(l—n)x2

PLaeoaemy + La-oa
4 4 (3.74)

p= A==y 41+,

+%(1+§)(1+n)y3 +%(l—§)(l+n)y4
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> X
Fig. 3.29 Mapping from a unit square to an arbitrary straight-sided quadrilateral
or
4 4
x=2 Ni(&mx; and y=3 N,(&n)y, (3.75)
i=1 i=l
in which
N, =481+ (3.76)

with (§, =—1, n=-1) (5 =1L n, =-1) (& =1 ny=1),and (§ =-1, ny=1).

In the case of an element with curved boundaries in global coordinates, quadratic
shape functions can be used to map it on to a unit square in local coordinates, as
shown in Fig. 3.30. The mapping can be achieved by

8 8
x=Y N;(En)x; and y=> N,(&n)y, (3.77)

i=1 i=1

Fig. 3.30 Mapping from a unit square to a quadrilateral with curved sides
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in which
N, 1L 1+&)(1+ 1 N5+ N,
1—4( X 71)—2( s T Vg)
1 1
N, =Z(1—§)(1+71)—5(N5 +Ne)

N3=%<l—é><1—n)—§<N6+N7> .

1 1
N, :Z(1+§)(1—77)—5(N7 +Ng)
N =%(1—€2)(1+n)

N =%(l—<§)(1—n2)

N =%(1—r§2)(1—n)

N, =§(l+é)(l—n2)

When the elements have curved boundaries, or arbitrary nodal locations (such as
the quadrilaterals), the integrals appearing in the expression for the element matrix
are most easily evaluated by using a natural coordinate system. Since it is more
advantageous to use natural coordinates, the variables of integration are changed so
that the integrals can be evaluated using natural coordinates. In two dimensions, the
integral over an arbitrary quadrilateral region of dxdy becomes an integral over a
square area of d£dn in a natural coordinate system in the form

11
[ £ (xy)dxdy= | [ g(&mla|dédn (3.79)
A -1-1

where |J | is the determinant of the Jacobian matrix relating the term dxdy to
d&édn from advanced calculus as

dxdy =|J|dédn (3.80)

The Jacobian matrix, J, is given by

ox oy
y_| 9% 9 (3.81)
ox 0Oy

on on
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whose determinant is always positive, |J | > 0, for a one-to-one mapping.

It is not necessary to use interpolation or shape functions of the same order for
describing both the geometry and field variable of an element. If the geometry is
described by a lower-order model (in comparison to that for the field variable), the
element is called a “subparametric element.” On the other hand, if the geometry
is described by a higher-order interpolation function, then the element is termed a
“superparametric” element.

3.6 Numerical Evaluation of Integrals

The evaluation of line or area integrals appearing in the finite element equations can
be performed numerically by employing the Gaussian integration method (Stroud
and Secrest 1966). This method locates sampling points (also called Gaussian
points) to achieve the greatest accuracy.

3.6.1 Line Integrals

The line integrals encountered commonly are of the form

b

= f(x)dx (3.82)

The limits of this integral can be changed by introducing a new variable as
1
x:E[(b—a)é +(b+a)] (3.83)

Thus, the integral given by Eq. (3.82) can be rewritten as
1
= [ f&wde (3.84)
-1

in which the variables £ and J are given by

2 [ (b+a)
g_b_a{x 2} (3.85)

and
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g dc b-a

= = 3.86
i (3.86)

Integrals expressed in the form of Eq. (3.84) are almost always evaluated numeri-
cally. The most commonly used Gaussian integration technique approximates the
integral in the form

1 n
I={f(HdE=Y wf(&) (3.87)
-1 i=1

The weights of the numerical integration are denoted by w;, and the number of
evaluation points, &; (referred to as the Gaussian points), depends on the order of
the polynomial approximation of the integrand.

In general, the integrand f (&) in Eq. (3.87) can be approximated as

FE) =a + o, +azEr +a & +.. 4 a,, P (3.88)

resulting in

2 2
I={f(Haé= B T (3.89)

and

n n n n
2
I = Zwif(fi): alzwi +a22wicfi+a32Wi§i +...
i=l i=1 i=1 i=1

(3.90)
+a2n 2 Wiézn_l
i=1
Equating the coefficients of the ai’s in Eq. (3.89) and (3.90) leads to

n n
Zwi =2, ZWiéi =0
i=1 i=1
2 2 X0 2 2

Wi i =—, Wi i = — (3.91)
g‘ s 3 IZ:I: s 2n—1

c 2n-1 _ O
Zwiéi =
i=1

providing 2 equations in #n unknowns for positions &; and » unknowns for weights
w;. Hence, for a polynomial of degree p =2n—1, it is sufficient to use n sampling
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points for exact integration, i.e., the exact integration is obtained if n>(p+1)/2.
This means that for “n” sampling points, a polynomial of degree (2n—1) can be
integrated exactly.

Rewriting Eq. (3.84) in its final form as

1
’:Jf(X)de;aff[b;a&bza}dé (3.92)
a -1

and assuming a third-order polynomial (p=3) approximation for /(&) in Eq. (3.92),
this integral is approximated with two sampling points (7 =2) as

I=wf(&)+wf(&) (3.93)

where —1<¢&, &, <1,and w; w,, (Gaussian weights), &, and &, are to be deter-
mined. For each coefficient of the cubic representation of (&), Eq. (3.91) yields

1
[&ds=0=wm& +w,&] (3.94a)
-1
1 2
[£2ds =5 =wél g (3.94b)
-1
1
[ede=0=w& +wé, (3.94¢)
-1
1
[dg=2=w+w, (3.94d)

-1
Multiplying Eq. (3.94c¢) by 512 and subtracting it from Eq. (3.94a) gives

w6, (522 _512) =wm6,(5 - 86 +6)=0 (3.95)

For this equality to be valid, the possibilities are:

1. w, =0 — one-term formula—reject.

2. & =0—>w, =0 one-term formula—reject.
3. & =&, &> w, =0 one-term formula—reject.
4. & =-& — ACCEPTED.

Thus, substituting for &, ==&, in Eq. (3.94) leads to
W =w, (3.96a)
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Table 3.1 Positions and weights for Gauss integration

Gauss points w; W,
n=1 0.00 200
n=2 +/1/3 1.00
n=3 0.00 X
X X
n=4 +0.339981 0.652145
+0.861136 0.347854
n=5 0.00 0.568888
x 0.478628
x 0.236926
2 1 1
2= =8 = —— (3.96b)
NG) NG) NG)
w=w, =1 (3.96¢)

The numerical integration, Eq. (3.93) becomes

R e

The Gaussian points and weights for polynomials of order up to 5 are summarized
in Table 3.1. The Gaussian points for higher order polynomial approximation are
given by Abramowitz and Stegun (1972).

An example is considered that evaluates the line integral given by

025
I= .[ e*dx (3.98)
-0.25
This integral can be rewritten as
1L
I== j etlhde (3.99)
45

Applying Gauss’s formula with n=2 integration points, this integral is approxi-
mated as

Izi[e_w‘g +eV3 120505217 (3.100)

The exact solution is / =2 xsinh(0.25) =0.505224.



3.6 Numerical Evaluation of Integrals 67

3.6.2 Triangular Area Integrals

The area integrals over a triangular region given in the form

I :_[Af(x,y)dA (3.101)

can be rewritten as

1-&,

-<
.l. f(&&)|I]dédé, (3.102)
0

1
-]
0

in which |J | is the determinant of the Jacobian matrix expressed as

X

T {(xl—m (yl—%)}zm (3.103)
oy (xy=x3) (¥, —)3)
08, 05,

relating the area coordinates (discussed in Sect. 3.3.4.2.1) to Cartesian coordinates

9 0
24 ox

o (T B
¢, oy

(3.104)

The extent of the triangular area of integration is defined by the coordinates (x;, ;)
(with i =1,2,3) of the vertices. The Gaussian approximation to the integration is
expressed as

1-&

11-¢ n
I={ [ f&.&)]dede,~24) w,f(&.5,) (3.105)

0 0 i=1
in which the weights of the numerical integration are denoted by w;,. The number
of evaluation points, &; and &,,, are referred to as the Gaussian integration points
and they depend on the order of the polynomial approximation of the integrand.
Depending on the degree of approximation, the weights and the evaluation points
are given by Huebner et al. (2001).

An example is considered that evaluates the area integral given by

I =ijydA (3.106)
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Fig. 3.31 A triangular ele- ¥ &
ment and its mapping
(s, )
1
mapping
> ) 1-§,-£ =0

(x, »)

in which the area A is defined by a triangle whose vertices are (1,1), (3,2), and
(2,3), as shown in Fig. 3.31. This integral can also be evaluated exactly by using
Eq. (3.19).

The coordinates (x,y) of a point within a triangular area can be expressed as
linear combinations of the nodal coordinates (x;,3,) (x,,¥,), and (x;,y;) and
the area coordinates &, &,, and &, as

X=X +Ex, +Exy =8 +386, + 28, =& +&,+2 (3.107a)

Y= +8y, + 8333 =6 +28, 36 =28, -8, +3 (3.107b)
with
E+E+E =1 (3.107¢)

Substituting for x and y in the integrand of Eq. (3.106) results in

11-&
[=24 [ & & -&&, ~78 +& +6)d&dé, (3.108)
00

Utilizing n =3 Gaussian points as shown in Fig. 3.32, approximation to the inte-
gration by Eq. (3.105) becomes

I = 24w f(&11,851) + W, [(E12,600) + w3/ (&13,853)] (3.109)

inwhich wy =w, =wy; =1/6, &, =1/2, &, =0, &, =1/2, &, =1/2, £, =0,and
&,3 =1/2. The area of the triangle is obtained from Eq. (3.18) as 24 =3 . Thus, the
Gaussian approximation leads to

I~ 24[w (28] — &5 —&1&y —TE + &5 +6)
W, (25122 _5222 —&1285p —T7&j, +Ep, +6)
+wy (25123 —5223 —813823 — 7813 + &3 +6)]
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Fig. 3.32 Three Gaussian (x,, ¥)
. . . 1.1

points, located at mid-sides,

for approximate integration

(flj’ 623}
(é:ll* gZI)

(x5 33)

(xzs yz) (§l2¢ §22)

and

1z3l (21—7l+6)+(2l—l—l—7l+l+6j+(—l+l+6
6|\ 4 2 4 4 4 2 2 4 2

and

1z1[6+£}=6.125 (3.110)
2l 4

For the exact evaluation, substituting for x and y in the integrand results in

I =IA(§12 F 685 +6EF +58, &) +138,&, +5&&)d. (3.111)

Utilizing the formula of Eq. (3.19) for exact integration results in

I=%(2!+6><2!+6><2!+5><1!><1!+13><1!><1!+5><1!><1!)
4 (3.112)

=3 3x2+231=2 6125
24 8

3.6.3 Quadrilateral Area Integrals

The quadrilateral area integrals appearing in the form

bd
=] f(x,y)dcdy (3.113)
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‘): (x5 ¥3) f' ?}= +1
g=-1
. \
mapping
(x5 12) [:::i::> >
~E=+1
(v, 1)
» X }?: -1
Fig. 3.33 A four-noded quadrilateral element and its mapping
can be rewritten as
11
1= [ r&m|dédn (3.114)

-1-1

in which |J | is the determinant of the Jacobian matrix expressed as

& Oy 0 0
o0& 0 0
J= & % relating s =[J] Ox (3.115)
o o o7
on 0on on oy

These integrals can be evaluated first with respect to one variable and then with
respect to the other leading to
11 n_n
1= [ r&mlaldedn =Y Y ww /& npPE.n)| (116
=S

-1-1 i=l j=

in which w; represent the weights of the numerical integration, and &; and 1, are
the Gaussian integration points. They are given by Abramowitz and Stegun (1972)
and depend on the order of the polynomial approximation of the integrand.

An example is considered that evaluates the area integral given by

1=jxydA (3.117)
A

in which the area 4 is defined by a quadrilateral whose vertices are (1,1), (3,2),
(4,4), and (2,3) as shown in Fig. 3.33.

The coordinates (x, y) of a point within a quadrilateral area can be expressed
as linear combinations of the nodal coordinates (x;,3;) (x,,5,) (x3,¥;), and
(x4,y4) and the natural coordinates & and 1 as
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Fig. 3.34 Two Gaussian n
points, in each direction, for 4
approximate integration

n=+1

fz_l ° .
e &)
> &
€n) EMN gy
~
n=-1
1
x_Z[(l—§)(1—77)+3(1+§)(1—77) (3.118)
+(1+E)A+m) +2(1-E)(1+7)]
y=4la=&)1-m+20+&)1-n) (3.119)

+4(1+E)1+m) +3(1- )1 +1)]

The Jacobian matrix is obtained as
1 1/2
J =
1/2 1
with its determinant |J|=3/4.

Utilizing two Gaussian points as shown in Fig. 3.34, the approximation to the
integration becomes

1 z%[W1W1f(§1’n1)+W1W2f(élv772)

Fwoywy f(Ey,my) + wawy (&5, )]

(3.120)

inwhich wy =w, =1& =—=1/3 & =1/3n,==1//3 and n, =1//3
The function f(&,n) is expressed as

SEmn= %[(1—5)(1—n)+3(1+§)(1—77)
+H(1+E)A+n)+2(0-E)(1+m)] (3.121)
x[1=&)(A-m)+2(1+&)A-1n)

+4(1+E)(1+1m) +3(1-E)1+n)]
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Evaluation of the function f(&,n) at Gaussian integration points results in their
numerical evaluations as

f(&,m) =11.33012702
f(&,1m,) = 6.16666667
f(&.1,) = 6.16666667
f(&,,m,) =2.66987298

Finally, the approximation to the integral from Eq. (3. 120) is determined to be
19.75.

By using Eq. (3.19), the exact evaluation of this integral can be obtained by in-
tegration over two triangular regions defined by the vertices (1,1), (3,2), and (2,3)
and (3,2), (4,4), and (2,3). The exact integration over these two regions are obtained
as 6.125 and 12.125. Their summation provides the exact integration over a quad-
rilateral defined by vertices (1,1), (3,2), (4,4), and (2,3). Thus, the exact integration
becomes 19.75.

3.7 Problems

3.1. The completeness criterion for convergence of finite element solutions requires
that the interpolating function must be able to reproduce exactly (that is, inter-
polate to the exact value at every point in the element). In particular, the ap-
proximation function ¢(x, y) is specified as

d(x,y)=a+bx+cy =ZNl-¢i

where a, b, and ¢ are arbitrary constants, ¢, are the nodal values, and N;(x,y)
are the interpolating functions.

(a) Derive a set of three equations that the interpolating functions N, (x,y)
must satisfy for completeness.

(b) Show that the standard and quadratic linear interpolation functions for a
triangular domain satisfy these requirements.

3.2. Using the coordinate transformation equations given in Sect. 3.5 for an 8-noded
quadrilateral element, determine the isoparametric element shape whose nodal
locations are
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(6,0 » o (X0)

(x)

L e =

Fig. 3.35 A triangular element and its mapping

Node no. X y
1 6.0 3.0
2 -4.0 3.0
3 -5.0 -3.0
4 4.0 -3.0
5 1.0 4.0
6 -3.0 0.5
7 0.0 -2.0
8 5.0 0.0

3.3. The isoparametric formulation is useful for triangular, as well as for quadrilat-
eral, elements. Also, the area coordinates (&, &,, &;) are commonly employed
for triangular elements instead of using the local coordinates (r, s). However,
because only two of these are independent coordinates, one of them, say &;,
can be eliminated in favor of &, and &,. Thus, for a 3-noded triangle, the inter-
polation functions are N, =&, (i=1,2,3) and the coordinate transformations,

using &3 =1-&, =&, are

x=&x +8 +(1-§ = &)x;
Y=+ (-8 -8

As illustrated in Fig. 3.35, this clearly maps a triangle with vertices (1,0), (0,1),
and (0,0) in the &, - &, plane into a triangle with vertices (x;,¥,), (x,,¥,), and
(x3,»5) in the x-y plane. Also, the integrals in the x-y plane may be related to
integrals in the &, - &, plane by

[J|d&,dg,

Explicitly determine the coordinate transformations and the Jacobian matrix for
the 6-noded triangle having the side nodes located at the midpoint of each side.
Explain how it is possible to obtain a triangular element in the x-y plane with
one or more curved sides. What is the form of the curve?
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,} , :
L) 4 @D ()
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(x40)
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Fig. 3.36 A four-noded quadrilateral element and its mapping

3.4. For a 4-noded element shown in Fig. 3.36, the mapping is achieved by

4 4
x=Y N;(&mnx; and y=)> Ni(&n)y,

i=1 i=1
where

Ny = =8)1-m), Ny =+ E)1-m)

N, =%(1+5)(l+n) Ny =%(l—é)(1+n)

(a) For this element explicitly determine the Jacobian determinant, and show
that it is strictly linear in the local coordinates & and 77 and that the term
proportional to the product &1 vanishes.

(b) Show that the Jacobian determinant becomes

1
|J| :Z[(x4 —x3)(2 =¥3) = (X = x3)(y4 = ¥3)]

foré =n=1.

(c) Using the definition of the cross-product of the vectors v; and v, shown in
Fig. 3.36, show thatat § =1 =1

J|>0if0<6<m

(d) Based on the results of parts (a) and (c), provide a short argument to show
that |J | > 0 throughout the element and, hence, the coordinate transformation
(&,11) > (x, ) is unique and invertible if the interior angles at all nodes are
less than 180°.



Chapter 4
ANSYS Preprocessor

4.1 Fundamentals of Modeling

The fundamental concepts and the Begin and Processor Levels of the ANSYS finite
element program are described in Chap. 2. Specifications of all the geometric and
material properties, as well as the generation of solid and finite element models, are
conducted at the preprocessor level.

There are two approaches for creating a finite element model: solid modeling
and direct generation. The solid modeling approach utilizes Primitives (pre-defined
geometric shapes) and operations similar to those of computer-aided design (CAD)
tools, and internally generates the nodes and the elements based on user specifica-
tions. Solid modeling is the most commonly used approach because it is much more
versatile and powerful. However, the user must have a strong understanding of the
concept of meshing in order to utilize the solid modeling approach successfully and
efficiently.

Direct generation is entirely dependent on user input for the size, shape, and con-
nectivity of each element and coordinates of each node before it creates the nodes
and elements one at a time. It requires the user to keep track of the node and element
numbering, which may become tedious—sometimes practically impossible—for
complex problems requiring thousands of nodes. It is, however, extremely useful
for simple problems as one has full control over the model.

A combination of the two approaches is not only possible, but also advantageous
in many cases. A comprehensive list of some important advantages and disadvan-
tages is given in Table 4.1.

4.2 Modeling Operations

Within the ANSYS Preprocessor, a finite element model is generated by utilizing
various operations, which are explained in this section.

The online version of this book (doi: 10.1007/978-1-4939-1007-6_4) contains supplementary
material, which is available to authorized users
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Table 4.1 Advantages and disadvantages of solid modeling and direct generation

Advantages ‘ Disadvantages

Solid modeling

Powerful (sometimes the only feasible way) If the user does not have a good understanding
in modeling three-dimensional solid volumes | of meshing, ANSYS may not be able to gener-
with complex geometry ate the finite element mesh

User data input is rather low For simple problems, using solid modeling
may be ponderous

Common computer-aided design (CAD)-type
operations such as extrusions, dragging, and
rotations are utilized which are not possible
when working directly with the nodes and
elements

With the basic (primitive) areas and volumes
(rectangular, circular etc. areas; cubic, cylin-
drical, spherical etc. volumes), the Boolean
operations (add, subtract, overlap etc.) can be
used easily to modify (or tailor) these basic
areas or volumes to obtain the desired shape

Direct generation

Provides the user with complete control Use of direct generation is extremely tedious
of placement and numbering of nodes and for solving real engineering design applica-
elements tions, especially when the problem can not be

For simple problems, the direct generation is simplified to a two-dimensional idealization

the shortest way to generate a finite element
mesh

4.2.1 Title

This operation defines the title for the ANSYS analysis. This is an optional but
recommended step in a typical ANSYS session. It helps the user to keep track of
the problems by appearing in the graphics display and output. It becomes extremely
useful when the user conducts a case study that involves the same model with
different boundary conditions, different material properties, etc. The following
menu path is used to change (or specify) the title:

Utility Menu > File > Change Title

which brings up the dialog box shown in Fig. 4.1. After entering the desired title in
the text box, clicking on OK completes the specification of the title.

4.2.2 Elements

The nodes and elements are the essential parts of a finite element model. Before
starting meshing, the element type(s) to be used must be defined (otherwise ANSYS
refuses to create the mesh). The ANSY'S software contains more than 100 different
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N\ Change Title 2
[TITLE] Enter new title | FirstAnsys Session|

OK | Cancel ] Help

Fig. 4.1 Dialog box for specifying the title

element types in its element library. Each element type has a unique number and a
prefix that identifies the element category, such as BEAM188, PLANE182, SOL-
ID185, etc. The elements that are available in ANSYS can be classified according
to many different criteria, such as dimensionality, analysis discipline, and material
behavior. ANSYS classifies the elements in 23 different groups. In this section,
the elements from four of these groups—specifically, structural, thermal, fluid, and
FLOTRAN CFD—are considered for different analysis objectives.

1. Structural: For this group of elements, the degrees of freedom at the nodes are
displacements. As shown in Fig. 4.2, the structural analysis employs plane, link,
beam, pipe, solid, and shell elements. All of the above “subgroups” of elements
include several element types with different degree-of-freedom (DOF) sets.Con-
sider the entries Quad 4node 182, Quad 8node 183, and Brick
8node 185 from the Structural Solid subgroup. The first two elements types,
Quadl82 and Quadl83, are used for two-dimensional structural problems
(plane stress, plane strain, or axisymmetric) whereas the third one is used for
three-dimensional structural problems. The difference between Quad182 and
Quad183 elements is that they have a different number of nodes per element,
which implies that they are employing different interpolation functions for the
variation of the degrees of freedom along the edges of the element. In this par-
ticular case, the variation of displacements along the element edges is assumed
to be linear for Quad 4node 182 and quadratic for Quad 4node 183,
as shown in Fig. 4.3. The interpolation functions for the Brick 8node 185
element are linear.

2. Thermal: For this group of elements, the degrees of freedom at the nodes are
temperatures. The thermal analysis employs mass, link, solid and shell sub-
groups. The element types in this group differ from each other with similar con-
siderations as explained for structural discipline. Two commonly used thermal
elements are shown in Fig. 4.4.

3. Fluid: For this group of elements, depending on the type, the degrees of free-
dom appear as a pair, velocity-pressure or pressure-temperature, at the nodes.
Included in this group are two- and three- dimensional acoustic, thermal-fluid
coupled pipe, and contained-fluid types of elements.

4. FLOTRAN CFD: This group of elements is similar to the previous one, except
it is based on the method of computational finite difference.
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SOLIDI85- 3-D BRICK
(DOF: UX, UY, UZ)

LINK 180- 3-D SPAR
(DOF: UX, UY, UZ)

PIPE288- 3-D STRAIGHT PIPE
(DOF: UX, UY, UZ,
ROTX,ROTY, ROTZ)

K

-

-

Fig. 4.2 Examples of structural elements in ANSYS

4 ANSYS Preprocessor

PLANEIS82- 2-D PLANE
(DOF: UX, UY)

BEAM188- 2-D BEAM
(DOF: UX, UY, ROTZ)

SHELL181- 3-D SHELL
(DOF: UX, UY, UZ,
ROTX,ROTY, ROTZ)

Each discipline requires the use of its own element types because the element type
determines the degree-of-freedom set (displacements, temperatures, pressures, etc.)
and the dimensionality of the problem (2-D or 3-D).
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7 N
Fig. 4.3 Linear and quadratic variations of displacements within a 2-D element

Fig. 4.4 Examples of SOLID70 - 3-D THERMAL PLANESS - 2-D THERMAL
thermal elements in ANSYS (DOF: TEMPERATURE) (DOF: TEMPERATURE))

P

—©
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-

BEAMI188- 3-D BEAM PLANESS - 2-D THERMAL
(DOF: UX, UY, UZ, (DOF: TEMPERATURE)
ROTX, ROTY, ROTZ)
K K
r S~ - L
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Fig. 4.5 BEAMI188 element for 3-D problems and PLANESS element for 2-D problems

For example, the BEAM188 clement, shown in Fig. 4.5, has six structural de-
grees of freedom (displacements and rotations in and about the x-, y-, and z-direc-
tions) at each of the two nodes, is a line element, and can be modeled in 3-D space.
The PLANESS5 element, also shown in Fig. 4.5, which has a total of four thermal
degrees of freedom (temperature at each node), is a 4-noded quadrilateral element,
and can be used only for two-dimensional problems.

In order to specify an element type, the user must be in the Preprocessor. The
menu path for element specification is
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J\ ANSYS Maultiphysics Utility Menu m

File Select List Plot PlotCtrds
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ANSYS Toolbar
SAvE_Dei RESUM_DE M PO
ANSYS Main Menu @)
[ Preferences
B Preprocessor

B Element Typ
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@ Real Constants
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Element type reference number l:l

Fig. 4.6 Defining an element type in ANSYS

Main Menu > Preprocessor > Element Type > Add/Edit/Delete

When this action is taken, a dialog box, shown in Fig. 4.6, appears with the options
of Add, Options, Delete, Close, and Help. Choosing Add brings up another dialog
box with a list of all available elements, along with the Element type reference
number. The element types that are defined in a particular ANSY'S analysis are as-
signed reference numbers. This reference number is used when creating the mesh.
If the analysis requires the use of more than one element type, switching from one
type to another one is achieved by referring to this number (this point is further
explained when discussing Element Attributes).

If the user wants to delete an existing element type, it is achieved by using the
same GUI path and choosing Delete, as shown in Fig. 4.7:

Main Menu > Preprocessor > Element Type > Add/Edit/Delete

Many element types have additional options, known as keyoptions (KEYOPT),
and are referred to as KEYOPT (1), KEYOPT (2), etc. For example, as shown in
Fig. 4.8, KEYOPT(3) for SOLID182 (4-noded quadrilateral 2-D structural ele-
ment) allows the user to specify the type of two-dimensional idealization, i.e., plane
stress, plane strain, axisymmetric, or plane stress with thickness.
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Fig. 4.7 Deleting an element
type

Defined Element Types:

PLANE182

o) o

Closel Hu;l

Another example is shown in Fig. 4.9, in which KEYOPT (7) for SOLID70
(8-noded thermal solid element for 3-D problems) permits the specification of a
standard heat transfer or a nonlinear steady-state fluid flow through a porous me-
dium.

Keyoptions are specified using the same GUI path and choosing Options from
the Element Types dialog box.

4.2.3 Real Constants

As described in Chap. 1, the calculation of the element matrices requires material
properties, nodal coordinates and geometrical parameters. Any data required for
the calculation of the element matrix that cannot be determined from the nodal
coordinates or material properties are called “real constants” in ANSYS. Typically,
real constants are area, thickness, inner diameter, outer diameter, spring constant,
damping coefficient etc. Not all element types require real constants.

!m—-nmiﬂmhhmJ ”o-nmmumhmml l
1 L [Futintegraon '
Plane stress -

Element lechnology m Element technology K1 -
Elemant behavior K3 _3 Ebement cenawor K3
[ |
Elementlormulation K6 [Pure Gisplacemnt - Elmentiormulaton  KS
NOTE Plane Ll Wl
o | Cancel | e | o |

Fig. 4.8 Keyoptions for the PLANE182 element
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T — 5 A SOLDTO dementype cptions =
Opsions for SOLIDTO, Elemant Tree Ret ho. 1 Oplions for SOLIDTO, Elernent Type Riet No. 1
Evaluation of fim cosfal K2 TSI | Ceovoton offimcosiat K2 [wgtimeme =]
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x| oo | we_| x_| cocn |

Fig. 4.9 Keyoptions for the SOLID70 element

Real constants of a particular element type are briefly explained in the “Ele-
ment Reference” of the ANSYS Help System. If the required real constants are
not specified, ANSYS issues a warning. A good example for describing the real
constants is the spring-damper element (element type COMBIN14). As shown in
Fig. 4.10, the real constants for this type consist of the spring constant (X), damp-
ing coefficient (CV1), nonlinear damping coefficient (CV2), etc. In some cases,
a complete set of real constants may not be required; in other cases, if the real
constants are not specified, ANSYS may use a default value for that particular
parameter. It is recommended that the “Element Reference” be consulted for the
particular element type.

For each real constant set, ANSYS requires a reference number. If it is not as-
signed by the user, ANSYS automatically assigns a number, as shown in Fig. 4.10.

Real constants are specified using the following GUI path:

Main Menu > Preprocessor > Real Constants > Add/Edit/Delete

This brings up the Real Constants dialog box, where clicking on Add leads to an-
other dialog box having a list of currently defined element types. Choosing the
element type for which the real constants are specified (if there are no required real
constants for the selected element type, a warning window pops up) and hitting OK
brings up a new dialog box. The real constants for that specific element type appear;
after filling in the boxes, hitting OK completes this operation.

For models having multiple element types, a distinct real constant set (that is,
a different reference number) is assigned for each element type. ANSYS issues a
warning message if multiple element types are referenced to the same real constant
set. However, there are cases where it is necessary to specify several real constant
sets for the same element type. This feature is explained further by considering a
plate composed of three different sections, as shown in Fig. 4.11. Although the ma-
terial properties are the same, each section has a different thickness. Modeling this
plane with a plane type of element, PLANE182, requires the thickness values as the
real constants. Since there are three different thicknesses, a different real constant
set is defined for each of these sections; the same element type (PLANE182) in
the Real Constants dialog box is selected. Different parts of the plane are meshed
one at a time, directing ANSYS to use the real constant set corresponding to the
specific part of the plate. This concept is further clarified when discussing Element
Attributes.
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Fig. 4.10 Real constants for the COMBIN14 clement

CAUTION 1t is the user’s responsibility to keep track of units that are used in the
analysis. The user does not need to give ANSY'S the system of units being used. The
user should decide which system of units to use and be consistent throughout the
analysis (i.e., dimensions of the input, real constants, material properties and loads).
ANSYS WILL NOT CONVERT UNITS. Also, the solution quantities are given in
terms of the units of the input.
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Fig. 4.11 A plane with three
different thicknesses; three

real constant sets are required t
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4.2.4 Material Properties

For each element type, there are a minimum number of required material properties.
This number depends on the type of analysis. The material properties may be:

* Linear or nonlinear.
 Isotropic, orthotropic, or anisotropic.
» Temperature dependent or independent.

All material properties can be input as functions of temperature. Some properties
are called linear properties because typical solutions with these properties require
only a single iteration. This means that the properties being used are neither time
nor temperature dependent, and thus remain constant throughout the analysis.

In the presence of variable material properties, the nonlinear characteristics of
the properties must be specified. For example, a material exhibiting plasticity, vis-
coplasticity, etc., requires the specification of a nonlinear stress-strain relation.

A complete list of linear material properties is given in Table 4.2 (properties
related to electrical and magnetic analyses are not included).

Each material property set has a reference number, the same as the element types
and real constants. In problems involving different materials, the user is required
to specify multiple material property sets. ANSYS identifies each material by its
unique reference number. The Help System should be consulted for the specification
of nonlinear material properties.

The following menu path is used to specify constant isotropic or orthotropic
material properties:

Main Menu > Preprocessor > Material Props > Material Models

This brings up the Define Material Model Behavior dialog box, as shown in Fig. 4.12.
On the left side of this window, material models are listed based on their material
reference numbers. On the right side, available material models are organized based
on the analysis type (e.g., structural, thermal, etc.). Figure 4.13 shows an expanded
view of the material models available under Structural analysis. As observed in
the figure, if a linear material response is to be used, then the user double-clicks
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Table 4.2 List of material properties for structural, thermal, and fluids disciplines

Label Units Description
EX Force/Area Elastic modulus, element x-direction
EY Elastic modulus, element y-direction
EZ Elastic modulus, element z-direction
ALPX | Strain/Temp Coefficient of thermal expansion, element x-direction
ALPY Coefticient of thermal expansion, element y-direction
ALPZ Coefficient of thermal expansion, element z-direction
REFT Temp Reference temperature (as a property)
PRXY | None Major Poisson’s ratio, x-y plane
PRYZ Major Poisson’s ratio, y-z plane
PRXZ Major Poisson’s ratio, x-z plane
NUXY Minor Poisson’s ratio, x-y plane
NUYZ Minor Poisson’s ratio, y-z plane
NUXZ Minor Poisson’s ratio, x-z plane
GXY Force/Area Shear modulus, x-y plane
GYZ Shear modulus, y-z plane
GXz Shear modulus, x-z plane
DAMP Time K matrix multiplier for damping
MU None Coefficient of friction (or, for FLUID29 element,
boundary admittance)
DENS Mass/Vol Mass density
C Heat/Mass x Temp Specific heat
ENTH | Heat/Vol Enthalpy
KXX Heat x Length/ Thermal conductivity, element x-direction
(Time x Area x Temp)
KYY Thermal conductivity, element y-direction
KZZ Thermal conductivity, element z-direction
HF Heat/ Convection (or film) coefficient
(Time x Area x Temp)
EMIS None Emissivity
QRATE | Heat/Time Heat generation rate (MASS71 element only)
VISC | Force x Time/Length? Viscosity
SONC Length/Time Sonic velocity (FLUID29 and FLUID30)

on the Linear option to expand. After double-clicking on the Elastic option under
Linear, three options are available for the user: isotropic, orthotropic, and aniso-
tropic. Upon double-clicking on any of these options, a new dialog box appears.
Figure 4.14 (left) shows the dialog box corresponding to the isotropic option. If the
material properties are temperature dependent, the Add Temperature button is used
for adding columns for different temperatures, as shown in Fig. 4.14 (right).
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Fig. 4.13 Expanded view of the material models under the Structural discipline

4.2.5 Element Attributes

Every element in ANSYS is identified by the element type, real constant set, material
property set, and element coordinate system. These are called element attributes. In
order to create a mesh, the element type(s) must be specified a priori and the mate-
rial properties (and real constants, depending on the element type) must be specified
in order to obtain a solution. The element coordinate system is defined internally.
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Fig. 4.14 Dialog box for isotropic properties: not temperature dependent (/eft) and temperature
dependent (right)

4.2.6 Interaction with the Graphics Window: Picking Entities

When using ANSYS through the GUI, part of the interaction between the user and
the software involves picking entities or locations in the Graphics Window. These
interactions are performed using the Pick Menus. Figures 4.15 and 4.16 show two
examples of such menus. Picking operations are performed using the left mouse
button.

When picking entities through the Pick Menu, there are five distinct fields, as
shown in Fig. 4.15:

1. Pick/Unpick Field: Using the radio-buttons, the user selects whether the entities
are to be picked or unpicked. This feature is useful when the user picks entities
other than the intended ones. Instead of using the radio-buttons, the user may use
the right mouse button to toggle between the Pick and Unpick modes.

2. Picking Style Field: By default, the user picks entities one at a time (i.e., radio-
button Single in the Pick Menu). However, if the number of entities to be picked
is a large number, the Single picking mode may become tedious, and one of the
other modes may be preferable in such situations. Available options include:

Box: The user draws a rectangle in the Graphics Window by holding down the
left mouse button; entities located inside the rectangular box are picked.

Polygon: The user draws a polygon in the Graphics Window. Vertices of the
polygon are created by single clicks on the left mouse button. The polygon is
finalized when the user clicks on the first vertex created. The entities located
inside the polygon are picked.

Circle: When the entities follow a radial pattern, it may be more convenient to
pick them through a circular region. This option permits the user to draw a
circle in the Graphics Window by holding down the left mouse button.

3. Information Field: This field provides the user with useful information such as
the number of currently picked entities, maximum number of entities that can be
picked, and the last entity number picked.
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Fig. 4.15 Pick Menu for ml i
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4. Text Field: Using this option, the user may provide text input for the entities to
be picked instead of picking them in the Graphics Window. This can be done in
two different formats:

List of Items: When the radio-button next to List of Items is selected (default),
the user may enter a list of the entity numbers to be picked, separated by com-
mas, in the text field.

Min, Max, Inc: When the radio-button next to Min, Max, Inc is selected, the
user may enter the entity numbers to be picked in the text field in the format
Minimum, Maximum, Increment. For example, if the user enters 1, 5, 2, then
ANSYS picks entities 1, 3 and 5.

5. Action Field:This field involves familiar actions, such as:

OK: Finishes the picking operation and closes the Pick Menu.

Apply: Applies the picking performed so far while keeping the Pick Menu active.

Reset: The picking operations performed so far are ignored and the configuration
is set to the one that existed when the Pick Menu appeared.
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Fig. 4.16 Pick Menu for mm mﬁl’
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Cancel: Closes the Pick Menu without performing picking.

Pick All: All of the items under consideration are picked and the Pick Menu is
closed.

Help: Displays the Help Page related to the current operation.

Picking locations is similar to picking entities, except for slight differences in the
Pick Menu. This time the menu has four fields, as shown in Fig. 4.16:

1.
2.

Pick/Unpick Field: This field is the same as explained above.

Information Field: Similar to the previous case, this field provides the user with
useful information such as the number of currently picked locations, maximum
and minimum possible picking operations, and the Working Plane and Global
Cartesian coordinates of the last location picked.

. Text Field: Using this option, the user can provide the coordinates of the location

to be picked instead of picking them in the Graphics Window. This can be done
in two different formats: Working Plane or Global Cartesian Coordinates. In
either case, the coordinates are separated by commas.

. Action Field: This field is the same as explained above, with exception of the

absence of the Pick All button.
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4.2.7 Coordinate Systems

4.2.7.1 Global Coordinate Systems

When the user starts an ANSY'S session, the coordinate system (CS) is Cartesian by
default. However, there are many situations where using other coordinate systems
(cylindrical or spherical) is more convenient. There are four predefined coordinate
systems in ANSYS: Cartesian, cylindrical, spherical, and toroidal; the first three of
them are shown in Fig. 4.17.

All of these coordinate systems have the same origin (global origin) and are
called global coordinate systems. Although the session starts with the Cartesian CS,
the user can switch to one of the other three coordinate systems at any time. The CS
currently used is referred to as the active coordinate system (active CS); any action
referring to the coordinates is performed in the active CS. For example, either a
Cartesian or cylindrical CS can be used to create the nodes at the locations shown in
Fig. 4.18. The nodes around the unit circle are equally spaced.

In reference to a Cartesian CS, Nodes 1, 2, and 6 can easily be created because
the coordinates are explicitly given as (0, 0, 0), (1, 0, 0) and (0, 1, 0), respectively.
For nodes 3, 4, and 5, trigonometric relations can be used to calculate the x-, y-, and
z-coordinates with a desired precision or round-off.

An alternative to the calculation of these coordinates is to change the active CS
from Cartesian to cylindrical. In the cylindrical coordinate system, any reference to
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Table 4.3 Nodal coordinates in Cartesian and cylindrical coordinate systems

Node Cartesian Cylindrical
X y z r % z
0 0 0 0 0 0
2 1 0 0 1 0 0
3 0.924 0.383 0 1 22.5 0
0.9239 0.3827
0.92388 0.38268
4 0.707 0.707 0 1 45 0
0.7071 0.7071
0.707106 0.707106
5 0.383 0.924 0 1 67.5 0
0.3827 0.9239
0.38268 0.92388
6 0 1 0 1 90 0

x-, y-, and z-coordinates are treated as r, 0, and z. The coordinates of the nodes 3, 4,
and 5 in the cylindrical CS are specified as (1, 22.5, 0), (1, 45, 0) and (1, 67.5, 0),
respectively.

By changing the active CS, unnecessary algebraic calculations and the potential
loss of accuracy are avoided.

The coordinates of the nodes in the Cartesian and cylindrical coordinate systems
are given in Table 4.3. The “loss of accuracy” can be observed by examining the
possible x- and y-coordinates of nodes 3, 4, and 5.

The menu path to change the active CS is given as

Utility Menu > WorkPlane > Change Active CS to

Selection of one of the top three choices in the dialog box,, i.e., global Cartesian,
global cylindrical, or global spherical, completes this operation. The CS that is cho-
sen remains active and, in turn, all the coordinates are referenced to that CS, until
the user changes it.

4.2.7.2 Local Coordinate Systems

The global coordinate systems all share the same origin (global origin) with a
predefined orientation. There are situations where changing one type of global
coordinate system to a different global coordinate system does not provide enough
convenience or sometimes makes it even more complicated.

It may turn out that what the user really needs is to change the orientation of the
CS and/or location of the origin.

In such cases, the user needs to define a CS by offsetting the origin or changing
the orientation, or both. Such a coordinate system is called a local coordinate system
(local CS). A local CS can be created by specifying either a location for the origin or
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[LOCAL] Create Local CS at Specified Location
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Fig. 4.19 Dialog box for creating a Local CS at a specified location

three keypoints or nodes. Only one CS can be active at a given time. ANSY'S requires
that Jocal coordinate systems have reference numbers that are greater than or equal
to 11. The menu path for creating a local CS at specified location is given as

Utility Menu > WorkPlane > Local Coordinate Systems > Create Local CS >
At Specified Loc +

This brings up a Pick Menu, requesting the user to enter the coordinates of the
points in the text field inside the Pick Menu, or to pick the points by clicking the
mouse pointer on the Graphics Window.

After picking the origin, clicking on OK brings up the dialog box shown in
Fig. 4.19. There are several text boxes to fill out in this dialog box. First is the refer-
ence number (by default, it is 11). If a local CS was defined previously, as a default,
ANSYS assigns the smallest available reference number that is greater than or equal
to 11. If this reference number is not desired, the user enters the new reference num-
ber for this CS.Below the reference number box, there is a pull-down menu for the
CS type: Cartesian, cylindrical, or spherical (toroidal is not discussed herein). The
coordinates of the origin of the local CS with respect to the global origin should al-
ready appear in the CS type menu. Finally, rotation angles with respect to the active
CS (not necessarily global Cartesian) are entered.

4.2.8 Working Plane

Within the ANSYS environment, regardless of the dimensionality of the problem
(2-D or 3-D), calculations are performed in a 3-D space. If the problem is 2-D, then
ANSYS uses the x-y plane, which is the z=0 plane.
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The Working Plane (WP) is a 2-D plane with the origin of a 2-D coordinate sys-
tem (Cartesian or polar) and a display grid. It is designed to facilitate solid model
generation, where many solid model entities are created by referring to the origin
of the WP.

In order to view the WP, the menu path is given as

Utility Menu > WorkPlane > Display Working Plane

A checkmark appears on the left of this menu item. Similarly, one can turn the dis-
play WP off by using the exact same menu path, resulting in the disappearance of
the checkmark. By default, only the triad that is attached to the WP is shown in the
Graphics Window. Viewing the grid is achieved by the menu path:

Utility Menu > WorkPlane > WP Settings

This brings up the WP Settings Window. Clicking on the Grid and Triad radio-
button turns on both the grid and the triad; clicking on the Grid Only radio-button
turns on only the grid. Hitting the Apply or OK button activates the new setting.

Using the two radio-buttons at the top permits a switch between the Cartesian
and cylindrical (polar) CS. The WP can be placed at any point in the 3-D space with
an arbitrary orientation. There can only be one working plane at a time. By default,
the WP is the x-y plane of the global CS.A working plane can be defined by specify-
ing either three points or nodes or keypoints.

At this point, defining a WP by three points is explained. The menu path is given as

Utility Menu > WorkPlane > Align WP with > XYZ Locations

A Pick Menu appears, prompting the user to enter the coordinates of the points in the
text field or pick the points by clicking the mouse pointer on the Graphics Window.

The user needs three noncolinear points to define a plane. The first point is the
origin of the WP. The second point defines the WP x-axis along the line defined
between the first and itself. The third point defines the direction of the positive WP
y-axis. Two examples of these operations are illustrated in Fig. 4.20. When all three
points are entered, clicking on OK in the pick menu completes the definition of the
WP by three points.

As shown in Fig. 4.21, an existing WP can be moved to a new location by provid-
ing offset distances in the x-, y-, and z-directions, which yields a WP parallel to its
previous orientation. Also, an existing WP can be rotated in all three directions, as
shown in Fig. 4.22. If the user rotates the WP about the z-axis (which is the direction
normal to the WP—mnot to the global CS), then the WP remains in the same plane
but the WP x- and y-axes rotate within the plane. These movements can be made by
the following menu path:

Utility Menu > WorkPlane > Offset WP by Increments

This brings up the Offset window. This window requires the offset values in X, Y,
and Z. In the Offset WP window, which is used for both translation and rotation,
there are six push-buttons for translation and six push-buttons for rotation. These
are used for incremental translation and rotation in and around, respectively,
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Fig. 4.20 Four nodes in 3-D
space (fop left); WP defined
on the plane defined by nodes
1,2, and 3 (fop right) and by
nodes 1, 2, and 4 (bottom)

Fig. 4.21 WP first moved 3
units in the x-direction, then
3 units in the y-direction,
and, finally, —3 units in the
z-direction
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positive and negative x-, y-, and z-axes. The increment is given by a sliding button
right below the buttons (one for translation and one for rotation). If the display
WP is turned on, the resulting incremental translation or rotation can be observed
immediately (without having to hit Apply).
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Fig. 4.22 WP rotated —45° about the x-axis (top left), +45° about the z-axis (top right), and +45°
about y-axis (bottom)

CAUTION The X and Y refer to the WP’s x- and y-axes (not global axes) and z is
the direction normal to the WP (not global CS); the positive direction is established
by the right-hand rule.

4.3 Solid Modeling

The geometrical representation of the physical system is referred to as the solid
model. In model generation with ANSY'S, the ultimate goal is to create a finite ele-
ment mesh of the physical system. There are two main paths in ANSYS to generate
the nodes and elements of the mesh: (1) direct generation and (2) solid modeling
and meshing.

In direct generation, every single node is generated by entering their coordinates
followed by generation of the elements through the connectivity information. Since
most real engineering problems require a high number of nodes and elements (i.e.,
hundreds or thousands), direct generation is not feasible. Solid modeling is a very
powerful alternative to direct generation.

Solid modeling involves the creation of geometrical entities, such as lines, areas,
or volumes, that represent the actual geometry of the problem.Once completed, they
can be meshed by ANSYS automatically (user still has control over the meshing
through user-specified preferences for mesh density, etc.). A solid model can be cre-
ated by using either entities or primitives. The entities refer to the keypoints, lines,
areas, and volumes. The primitives are predefined geometrical shapes.
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There is an ascending hierarchy among the entities from the keypoints to the vol-
umes.Each entity (except keypoints) can be created by using the lower ones. When
defined, each entity is automatically associated with its lower entities.If these enti-
ties are created by starting with keypoints and moving up, the approach is referred
to as “bottom-up” solid modeling.

When primitives are used, lower-order entities (keypoints, lines, and areas) are
automatically generated by ANSYS. Since the use of primitives involves the gen-
eration of entities without having to create lower entities, it is referred to as the
“top-down” approach.Boolean or similar operations can be applied to the primitives
to generate the complex geometries.

The bottom-up and top-down approaches can easily be combined since one may
be more convenient at a certain stage and the other at another stage. It is not neces-
sary to declare a preference between the two approaches throughout the analysis.

4.3.1 Bottom-up Approach: Entities

4.3.1.1 Keypoints

When the bottom-up solid model generation approach is used, the user starts by
generating the keypoints. The higher entities (lines, areas, and volumes) can then
be defined by using the keypoints. The keypoints necessary to create a higher-order
entity for modeling different parts of the geometry should be generated a priori.
When areas or volumes are generated using keypoints, the intermediate entities are
generated automatically by ANSY'S. The creation of keypoints on the WP and in the
active CS is explained herein.
The following menu path is suggested to create a keypoint on WP:

Main Menu > Preprocessor > Modeling > Create > Keypoints > On Working
Plane

This brings up a Pick Menu, where ANSYS expects the user to pick points on the
WP.Once the points are picked by clicking on the left mouse key, hitting on the
Apply or OK button completes this task (OK closes the Pick Menu).When using
this option, turning on the display WP with the grid visible is highly recommended.

IMPORTANT HINT When using the Pick Menu, picking the exact location might
become a real challenge and, in turn, result in the generation of unnecessary entities.
These “extra” entities might cause confusion and possible errors in the course of
the solid model generation. Whenever there is a Pick Menu, the user can hold down
(no release) the left mouse button and move the pointer on the Graphics Window.
This action shows the mouse pointer coordinates on the Pick Menu. When the target
coordinates are found, the user can release the button to finish the picking.

The following menu path is suggested to create keypoint(s) (KP) in the active
CS:
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Fig. 4.23 A straight line 1

Main Menu > Preprocessor > Modeling > Create > Keypoints > In Active CS

This brings up a dialog box with four input fields for the KP number and the x-, y-,
and z-coordinates. Once this information is supplied, hitting OK creates the KP and
exits from this dialog box.Alternatively, the Apply button can be clicked on and
more keypoints can be created.

The coordinates defining a KP can be modified as follows:

Main Menu > Preprocessor > Modeling > Move/Modify > Keypoints > Single
KP

This brings up a Pick Menu. First, KP is picked from the Graphics Window, or
its number is typed in the text field. Then, the new location is picked or the new
coordinates are typed. If a KP is modified, any mesh that is attached to that KP is
automatically cleared, and any higher-order entities that are associated with that KP
also are modified accordingly.

4.3.1.2 Lines

Lines are used for either creating a mesh with line elements or creating areas and
volumes. A straight line, an arc, and a cubic spline can be created, as shown in
Fig. 4.23 and 4.24.

Creating a True Straight Line
By using the following menu path, a straight line can be created regardless of the

active CS. The only input needed is two keypoints. The menu path is given as
2 2

Fig. 4.24 An arc (left) and a cubic spline (right)



98 4 ANSYS Preprocessor

Main Menu > Preprocessor > Modeling > Create > Lines > Straight Line

This brings up a Pick Menu, requesting keypoint numbers, which can be entered
through the text field or picked from the Graphics Window.Multiple lines can be
generated, one at a time, without closing the Pick Menu (by using Apply button).
The straight line (L1) is generated by keypoints (KP1) and (KP2).

Creating a Straight Line in the Active CS

This method creates a straight line in the active CS. If the active CS is a Cartesian
CS, then the line is a true straight line. If the active CS is a cylindrical CS, then the
line is a helical spiral. The menu path is given as

Main Menu > Preprocessor > Modeling > Create > Lines > In Active Coord

This brings up a Pick Menu, requesting the keypoints. The keypoint numbers are
supplied through either the text field or by picking them using the Graphics Win-
dow. Multiple lines can be generated, one at a time, without closing the Pick Menu.
It works the same way as creating a true straight line.

Creating an Arc

Creating an arc requires three keypoints. The arc is circular, regardless of the active
CS. It is generated between the first and the second keypoints. The third KP defines
the plane of the arc, as well as the positive curvature side. It does not have to be at
the center of the curvature. The menu path is given as

Main Menu > Preprocessor > Modeling > Create > Lines > Arcs > By End KPs
& Rad

This brings up a Pick Menu, requesting the two end keypoints. These keypoint num-
bers are supplied through either the fext field or by picking them using the Graphics
Window. Upon hitting OK in the Pick Menu, ANSYS requests the third KP, which
defines the positive curvature side. After entering it the same way and hitting OK in
the Pick Menu, a dialog box appears. The first field is the radius and the remaining
3 are the keypoints that have already been input. Entering the radius and hitting OK
completes this operation.

Creating a Spline
Several keypoints (minimum 2) are needed for creating a spline.The menu path is
given as

Main Menu > Preprocessor > Modeling > Create > Lines > Splines > Spline
Thru KPs

This brings up a Pick Menu, requesting the keypoints to be picked. When finished,

hitting OK finishes the spline creation. Multiple splines can be generated, one at

a time, without closing the Pick Menu by hitting the Apply button instead of OK.
Once the lines are defined, areas can be created by using them.
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Fig. 4.25 An area in the x-y
plane (/eft); meshed (right)

4.3.1.3 Areas

Areas are used to create a mesh with area elements and to create volumes.If the
geometry involves a 2-D domain, the area(s) is (are) required to be flat, lying on the
x-y plane. If the geometry involves 3-D bodies, then the areas that define the faces
of the volume(s) can be flat or curved. A mesh created from a flat area and volumes
created from flat and curved areas are shown in Figs. 4.25 and 4.26.

In bottom-up approach, areas can be created by using either keypoints or lines.

Creating an Area Using Keypoints

A minimum of 3 keypoints is required, and the maximum number allowed is 18.If
more than 3 keypoints are used, they must lie in the same plane (co-planar), as
shown in Fig. 4.27. The menu path is given as

Main Menu > Preprocessor > Modeling > Create > -Areas- Arbitrary >
Through KPs

which brings up a Pick Menu, requesting the keypoints to be picked. When finished,
clicking on OK creates the area.

CAUTION In the PC version, it is recommended that the input window be used.

Creating an Area Using Lines
In creating an area by lines, a minimum of 3 previously defined lines are required,
and the maximum number of lines allowed is 10. If more than 3 lines are used, they

Fig. 4.26 Volume composed of flat areas (/eff) and flat and curved areas (right)
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Fig. 4.27 Coplanarity of keypoints: 4 coplanar keypoints (/eft) and 4 noncoplanar keypoints (right)

Fig. 4.28 A meshed volume

must be co-planar.Lines must be given in a clockwise or counterclockwise order,
and they must form a simply connected closed curve. The menu path is given as

Main Menu > Preprocessor > Modeling > Create > -Areas- Arbitrary > By
Lines

This brings up a Pick Menu, requesting the lines to be picked. When finished, hitting
OK creates the area.

Another commonly used method to create areas is to use primitives as part of the
top-down approach; this is discussed in Sect. 4.3.2.

4.3.1.4 Volumes

Volumes are used to create a mesh with volume elements (Fig. 4.28). Volumes can
be created by using either keypoints or areas. If keypoints are used, the areas and
lines that are associated with the volume are automatically generated by ANSYS.
Two basic methods are presented below.
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Fig. 4.29 Eight keypoints (/eft); volume created by picking keypoints in 1-2-6-5-4-3-7-8 order
(right)

Fig. 4.30 Volumes created by picking keypoints in 1-2-6-5-4-8-7-3 order (/eft) and 1-2-6-5-7-3-
4-8 order (right)

Creating Volumes Using Keypoints

A maximum of 8 and a minimum of 4 keypoints are required to create a volume
using keypoints.Keypoints must be specified in a continuous order.If the volume
has 6 faces, two of the opposite faces are required to be specified by the user, and
keypoints defining both of these faces should be given in either a clockwise or
counterclockwise direction.

For example, a 6-faced volume, shown in Fig. 4.29, requires 8 keypoints.The
correct counterclockwise sequence of keypoints is 1-2-6-5-4-3-7-8. Incorrect
sequences, such as 1-2-6-5-4-8-7-3 or 1-2-6-5-7-3-4-8 (Fig. 4.30), have neither
a clockwise nor counterclockwise sense and fail to produce the 6-faced volume.
Figure 4.31 illustrates volumes with 4 and 5 faces (tetrahedron and triangular
prism). The menu path is given as
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Fig. 4.31 A tetrahedron, 4 faces (/eft), and a triangular prism, 5 faces (right)

Main Menu > Preprocessor > Modeling > Create > -Volumes- Arbitrary >
Through KPs

This brings up a Pick Menu, requesting the keypoints to be picked. When finished,
clicking on OK creates the volume.

Creating Volumes Using Areas

At least four areas (maximum of ten) are required to create a volume through areas.
Areas can be specified in any order. The surface defined by the area must be con-
tinuous. The menu path is given as

Main Menu > Preprocessor > Modeling > Create > -Volumes- Arbitrary > By
Areas

which brings up a Pick Menu, requesting the areas. When finished, hitting OK cre-
ates the volume.

4.3.2 Top-Down Approach: Primitives

The primitives are predefined geometrical shapes that enable the user to create a
solid model entity (area or volume) with the execution of a single menu item. The
user is not required to create keypoints and lines prior to using primitives.

4.3.2.1 Area Primitives

Area primitives are available for the generation of rectangles, circles, and polygons.
There are different ways to create each of these primitives. The basic methods are
presented here.
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Fig. 4.32 Circular area primitives

Rectangle by Dimension
The menu path is given as

Main Menu > Preprocessor > Modeling > Create > Rectangle > By Dimensions

This brings up a dialog box asking for Working Plane X and Y coordinates of the
two corners of the rectangle.After filling out the four fields in this box, clicking on
OK creates the rectangle in the Graphics Window.

Rectangle by 2 Corners
The menu path is given as

Main Menu > Preprocessor > Modeling > Create > Rectangle > By 2 Corners

This brings up a Pick Menu. There are two ways to finish this action. One way is
to use the four fields in the pick menu to input WP coordinates of one corner and
the dimensions of the rectangle. The other method is to use the left mouse button to
click on the Graphics Window to define one corner. After this, as the mouse pointer
is moved, ANSYS displays possible rectangles as outlines, with the dimensions
quantitatively indicated. When the user finds the right dimensions, a left-click cre-
ates the rectangular area.

Solid Circular Area
The menu path is given as

Main Menu > Preprocessor > Modeling > Create > Circle > Solid Circle

This brings up a Pick Menu, requesting Working Plane X and Y of the center of
the circle and its radius. They can be supplied either by filling out the fields in the
Pick Menu or using the mouse pointer. Picking the center of the circle, moving the
pointer to find the desired radius (as the mouse pointer is moved, similar to creating
rectangles by dimensions, ANSYS plots the circle’s outline with the radius identi-
fied), and clicking again finalizes the circle generation.

Circular Area by Dimensions
With this option, a solid circle, annulus, circular segment (wedge) or partial annulus
can be generated, as shown in Fig. 4.32. The menu path is given as

Main Menu > Preprocessor > Modeling > Create > Circle > By Dimensions

This brings up a dialog box requesting the outer and inner (optional) radii and start-
ing and ending angles of the circular sector. All four of the geometrical parameters
are defined with respect to Working Plane.If the starting and ending angles are
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entered as 0 and 360, ANSYS creates a full circular solid area or annulus, depend-
ing on the radius information. Otherwise, a partial solid circle (wedge) or a partial
annulus is created.If the “Optional inner radius” is left blank (or entered as 0), the
area is a solid one; otherwise, it’s an annulus.

Polygon
The menu path is given as

Main Menu > Preprocessor > Modeling > Create > -Areas- Polygon > By Vertices

This brings up a Pick Menu, requesting the vertices. All the vertices are on the
Working Plane. Naturally, the polygon must be closed; this is achieved by picking
the first point one more time after picking the last point. If the user does not pick the
first point to close the polygon and hits OK in the Pick Menu, ANSYS automatically
closes the polygon by defining a line between the last and the first point.

4.3.2.2 Volume Primitives

Volume primitives are available for generation of blocks, cylinders, prisms, spheres,
or cones. There are different ways to create each of these primitives. The basic
methods are presented here.

Block
A block is a rectangular prism. It is created using the following menu path:

Main Menu > Preprocessor > Modeling > Create > Volumes > Block > By Di-
mensions

This brings up a dialog box requesting six coordinates, the starting and ending x-, y-,
and z-coordinates in the active coordinate system. Figure 4.33 shows the isometric
view of a block created using x,=y,=z,=0, x,=1, y,=2, and z,=3.

Cylinder The user can create solid or hollow cylinders that encompass either the
entire angular range or a part thereof. Cylinders are created using the following
menu path:

Main Menu > Preprocessor > Modeling > Create > Volumes > Cylinder > By
Dimensions

Six parameters are requested in the dialog box:

RADI and RAD2: Outer and inner radii of the cylinder. If RAD?2 is not specified (or
specified as zero), then the cylinder is solid; otherwise, it’s hollow.
Z1 and Z2: Starting and ending z-coordinates.

THETAI and THETA2:Starting and ending angles, measured in degrees, with the
active coordinate system z-axis defining the axis of rotation.

Figure 4.34 (left) shows an isometric view of a hollow cylinder created using
RADI=1, RAD2=0.5, Z1=0, Z2=2, THETAI=0 and THETA2=360.When the
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Fig. 4.33 Isometric view
of a block created using
x,=y,=2,=0,x,=1,y,=2,
and z,=3

parameter THETAI is changed to 135° and the other parameters are kept the same,
the partial hollow cylinder shown in Fig. 4.34 (right) is created.

Prism

Regular prisms are created using this option. A regular prism is a volume with a
constant polygonal cross section in the Working Plane z-direction. The menu path
for creating prisms is given as

Main Menu > Preprocessor > Modeling > Create > Volumes > Prism > By Side
Length

This brings up a dialog box requesting the starting and ending z-coordinates Z1
and Z2, respectively; the number of sides (/NSIDES); and the length of each side

Fig. 4.34 Isometric view of a hollow cylinder (/eff) created using RADI=1, RAD2=0.5, Z1=0,
72=2, THETAI=0, and THETA2=360 and a partial hollow cylinder (right) when the parameter
THETAI is changed to 135
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Fig. 4.35 Isometric view of
a prism (/eft) created using
Z1=0,72=2, NSIDES=3,
and LSIDE=1 and the prism
(right) when the parameter
NSIDES is changed to 6
Fig. 4.36 Isometric view
of a solid sphere (/eft)
created using RADI =1,
RAD2=0, THETA1=0, and
THETA2=360 and the partial
hollow sphere (right) when
the parameters THETA and
THETA?2 are changed to 90°
and 270°, respectively

(LSIDE).The center of the polygonal area coincides with the Working Plane origin.
Figure 4.35 (left) shows the isometric view of a prism created using Z1=0, Z2=2,
NSIDES=3, and LSIDE=1. Figure 4.35 (right) shows the prism when the param-
eter NSIDES is changed to 6.

Sphere
The user can create solid or hollow spheres by using the following menu path:

Main Menu > Preprocessor > Modeling > Create > Volumes > Sphere > By
Dimensions

Four parameters are requested in the dialog box:

RADI and RAD2: Outer and inner radii of the cylinder. If RAD?2 is not specified (or
is specified as zero), then the sphere is solid; otherwise, it’s hollow.

THETAI and THETA2: Starting and ending angles, measured in degrees, with the
Working Plane z-axis defining the axis of rotation.

Figure 4.36 (left) shows an isometric view of a solid sphere created using RADI=1,
RAD2=0, THETA1=0, and THETA2=360. The partial hollow sphere shown in
Fig. 4.36 (right) is created when the parameters THETAI and THETA2 are changed
to 90° and 270°, respectively, while the other parameters are kept same.

Cone
Complete or partial cones may be created using this option by following the menu
path:
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Fig. 4.37 Isometric view of a cone (/eft) created using RBOT=1, RTOP=0, Z1=0, Z2=3,
THETA1=0, and THETA2=360 and the partial conical section (right) when parameters RTOP,
72, and THETAI are changed to 0.5, 2, and 135, respectively

Main Menu > Preprocessor > Modeling > Create > Volumes > Cone > By Di-
mensions

In the dialog box, six parameters are requested:

RBOT and RTOP: Bottom and top radii of the cone.If RTOP is not specified (or
is specified as zero), then a complete cone is generated. If a nonzero RTOP is
specified, then the volume generated is a conical section with parallel top and
bottom sides.

Z1 and Z2: Starting and ending z-coordinates.

THETAI and THETA?2: Starting and ending angles, measured in degrees, with the
Working Plane z-axis defining the axis of rotation.It is used for creating conical
sections.

Figure 4.37 (left) shows an isometric view of a cone created using RBOT=1,
RTOP=0, Z1=0, Z2=3, THETAI=0, and THETA2=360.The partial conical
section shown in Fig. 4.37 (right) is created when the parameters RTOP, Z2, and
THETAI are changed to 0.5, 2, and 135, respectively, while the other parameters
are kept same.

4.4 Boolean Operators

Many engineering problems possess a complex geometry, making model genera-
tion a real challenge. However, the solid model entities can be subjected to certain
operations that make model generation much easier. These operations, referred to
as Boolean operations, utilize logical operators such as add, subtract, divide, etc.
The Boolean operators are applied to generate more complex entities using simple
entities (see Fig. 4.38).
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Fig. 4.38 Examples of enti-
ties that can co-exist in 3-D
space

4.4.1 Adding

The areas to be added must be co-planar (lie in the same plane). As shown in
Fig. 4.39, the areas (or volumes) must have either a common boundary or an over-
lapping region. The original areas or volumes that are added will be deleted unless
otherwise enforced by the user. The addition of areas or volumes results in a single
(possibly complex geometry) entity, as shown in Fig. 4.40.

Adding entities can be performed by the following menu paths:

Main Menu > Preprocessor > Modeling > Operate > Booleans > Add > Lines
Main Menu > Preprocessor > Modeling > Operate > Booleans > Add > Areas

Main Menu > Preprocessor > Modeling > Operate > Booleans > Add > Volumes

4.4.2 Subtracting

Entities can be subtracted from each other to obtain new entities.Subtracting entities
can be executed through the menu paths given below:

Main Menu > Preprocessor > Modeling > Operate > Booleans > Subtract >
Lines

Main Menu > Preprocessor > Modeling > Operate > Booleans > Subtract >
Areas

Main Menu > Preprocessor > Modeling > Operate > Booleans > Subtract >
Volumes

This brings up a Pick Menu, requesting the user to pick or enter the base entity
from which to subtract. The user picks the entities to be subtracted and clicks on the
OK button to complete the operation.
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Fig. 4.39 Two areas with a common boundary

Fig. 4.40 Two areas added to
produce one area




110 4 ANSYS Preprocessor

Fig. 4.41 Two areas, Al and A2 (/ef?); the result of adding A1 and A2 (middle); and the result of
overlapping Al and A2 (right)

4.4.3 Overlap

This operation joins two or more solid model entities to generate three or more enti-
ties forming a union of the entire original group of entities, as shown in Fig. 4.41.1t
is similar to the Add operation. The only difference between the two is that internal
entities are generated in the overlapping operation.

This operation can be executed through the following menu paths:

Main Menu > Preprocessor > Modeling > Operate > Booleans > Overlap >
Lines

Main Menu > Preprocessor > Modeling > Operate > Booleans > Overlap >
Areas

Main Menu > Preprocessor > Modeling > Operate > Booleans > Overlap >
Volumes

This brings up a Pick Menu asking for the entities to be overlapped. Picking the
entities followed by hitting OK completes the operation.

4.4.4 Gluing

This operation is used for connecting entities that are “touching” but not sharing
any entities. If the entities are apart from or overlapping each other, gluing cannot
be used. The glue operation does not produce additional entities of the same di-
mensionality but does create new entities that have one lower dimensionality. This
operation can be executed through the following menu paths:

Main Menu > Preprocessor > Modeling > Operate > Booleans > Glue > Lines
Main Menu > Preprocessor > Modeling > Operate > Booleans > Glue > Areas

Main Menu > Preprocessor > Modeling > Operate > Booleans > Glue > Volumes
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Fig. 4.42 Two areas with a common boundary plotted with line numbers (/eff); they do not share
any lines as area 1 (A1) is defined by lines 1 through 4 and area 2 (A2) is defined by lines 5 through
8. After gluing (right), the areas share line 9

Before gluing the two areas shown in Fig. 4.42, there are two lines at the interface
between Area 1 (A1) and Area 2 (A2).One of these lines is attached to A1, defined
by keypoints 2 and 3, and the other one is attached to A2, defined by keypoints
5 and 8. Before gluing, these two areas do not “know” of each other’s existence
because they do not “truly” share any entities. Gluing makes sure that they share
entities.After gluing, there are two lines along the right vertical side of Al, and
two lines along the left side of A2. The lines along the right vertical side of Al are
defined by keypoints 3 and 8 and keypoints 8 and 2 whereas the lines along the left
vertical side of A2 are defined by keypoints 2 and 8 and keypoints 5 and 2. After
gluing, the two areas share one line and two keypoints.

4.4.5 Dividing

A solid model entity can be divided into smaller parts by using other solid model
entities. By default, a divided solid model entity is deleted after the operation. There
is a wide range of choices for this operation. Some of the available options are pre-
sented in Fig. 4.43—4.46.

The menu paths for these operations are given as

Volume by Area

Main Menu > Preprocessor > Modeling > Operate > Booleans > Divide > Vol-
ume by Area

Area by Volume

Main Menu > Preprocessor > Modeling > Operate > Booleans > Divide > Area
by Volume

Area by Area

Main Menu > Preprocessor > Modeling > Operate > Booleans > Divide > Area
by Area
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Fig. 4.43 A cylindrical volume is divided into two smaller cylindrical volumes by an area

Fig. 4.44 Dividing A1 by A2 (left) produces A3 and A4 (right)

Area by Line

Main Menu > Preprocessor > Modeling > Operate > Booleans > Divide > Area
by Line

Line by Volume

Main Menu > Preprocessor > Modeling > Operate > Booleans > Divide > Line
by Volume

Line by Area

Main Menu > Preprocessor > Modeling > Operate > Booleans > Divide > Line
by Area

Line by Line

Main Menu > Preprocessor > Modeling > Operate > Booleans > Divide > Line
by Line
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Fig. 4.45 Dividing an area
by a line (requires the divid-
ing line to be in the same
plane as the area)

4.5 Additional Operations

4.5.1 Extrusion

In addition to Boolean operators, extrusion of the existing entities can be used to
generate higher entities. By extruding (dragging) an entity about an axis, one can
create a new solid model entity, which is one order higher than the original one (e.g.,
lines from keypoints, volumes from areas).
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Fig. 4.46 Dividing L1 by L2 (/eft) results in L3 and L4 (right)

The commonly used feature of extrusion operation is described in Fig. 4.47,
4.48,4.49,4.50,4.51,4.52, 4.53 and 4.54. Following are the menu paths used for
these operations:

Creating Lines by Rotating a Keypoint About an Axis

Main Menu > Preprocessor > Modeling > Operate > Extrude > -Keypoints-
About Axis

Creating Lines by Sweeping a Keypoint Along a Path

Main Menu > Preprocessor > Modeling > Operate > Extrude > -Keypoints-
Along Lines

Creating Areas by Rotating Lines About an Axis

Main Menu > Preprocessor > Modeling > Operate > Extrude > -Lines- About
Axis

Creating Areas by Sweeping Lines Along a Path

L2

Fig. 4.47 Keypoints 1 and 2 (/eft) are rotated +60° around the z-axis in two increments of 30° to
create the lines (right)
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Fig. 4.48 Front view of an arc (/ef?); the arc is rotated +60° about the y-axis in two increments of
30° to create the curved areas (shown in oblique view on the right)
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Fig. 4.49 Front view of a straight line (/ef?); the line is rotated +60° about the y-axis in two incre-
ments of 30° to create the curved areas (shown in oblique view on the right)

Main Menu > Preprocessor > Modeling > Operate > Extrude > -Lines- Along
Lines

Creating Volumes by Rotating Areas About an Axis

Main Menu > Preprocessor > Modeling > Operate > Extrude > -Areas- About
Axis

Creating Volumes by Sweeping Areas Along a Path

Main Menu > Preprocessor > Modeling > Operate > Extrude > -Areas- Along
Lines

Creating Volumes by Extruding Areas
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Fig. 4.50 Front view of a straight line (/ef?); the line is rotated + 120° about the y-axis in two incre-
ments of 60° to create the curved areas (shown in oblique view on the right)

? ~

Fig. 4.51 Front view of an area (/eff); the area is rotated + 120° about the y-axis in two increments
of 60° to create the volumes (shown in oblique view on the right)

Fig. 4.52 Oblique view of a path defined by lines and an area to be swept along the path (/eff) and
the volume created by sweeping the area along the path (right)
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Fig. 4.53 Oblique view of an area to be extruded along its normal (/eff) and oblique view of the
volume created by extrusion of the area along its normal (right)

Fig. 4.54 Oblique view of an area to be offset in x, y, or z (/eft) and oblique view of the volume
created by offsetting the area in the z-direction (right)

Main Menu > Preprocessor > Modeling > Operate > Extrude > -Areas- Along
Normal

Creating Volumes by Offsetting Areas

Main Menu > Preprocessor > Modeling > Operate > Extrude > -Areas- By
XYZ Offset

4.5.2 Moving and Copying

Previously created entities can be moved or copied.Also, if a repeated symmetry or
skew-symmetry exists in the geometry, the user can create a representative entity to
create the geometry by copying it to a new location.Representative applications are
described in Fig. 4.55, 4.56, and 4.57.

The common menu paths for moving entities are specified as
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Fig. 4.55 Original line (/eff) and copies of the line created by offsets in x (L2), in y (L3), and in
both x and y (L4)(right)
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Fig. 4.56 Original area (/eft) and copies of the area created by offsets in x (A2), in y (A3), and in
both x and y (A4) (right)

Main Menu > Preprocessor > Modeling > Move/Modify > -Keypoints- Single
KP

Main Menu > Preprocessor > Modeling > Move/Modify > Lines

Main Menu > Preprocessor > Modeling > Move/Modify > -Areas- Areas



Fig. 4.57 The first volume
is copied three times with 0.4
unit offset in the x-direction
and then reflected with
respect to the x-z plane
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Main Menu > Preprocessor > Modeling > Move/Modify > Volumes

The common menu paths for copying entities are specified as
Main Menu > Preprocessor > Modeling > Copy > Keypoints
Main Menu > Preprocessor > Modeling > Copy > Lines
Main Menu > Preprocessor > Modeling > Copy > Areas

Main Menu > Preprocessor > Modeling > Copy > Volumes

4.5.3 Keeping/Deleting Original Entities

During the performance of Boolean-type operations, there are input entities (e.g.,
original areas to be added or, when dividing a line with a volume, the original line
and volume) and output entities. By default, ANSYS will delete the input entities,
keeping only the output entity. However, the input entities can be “kept” through the
menu path:

Main Menu > Preprocessor > Modeling > Operate > Booleans > Settings

This brings up a dialog box requesting the user to specify certain settings. The first
setting option controls whether the input entities will be kept or deleted. Answering
Yes instructs ANSY'S to keep the input entities; otherwise, they are deleted.



120 4 ANSYS Preprocessor

4.5.4 Listing Entities

In most cases, plotting is an effective way to quickly examine the model. However,
if there are unexpected errors or if the model is not what the user intended to create,
it may be difficult to identify what went wrong. In such cases, the user can examine
the model in a more accurate way by listing the entities. ANSYS provides options
for listing solid model entities with detailed information. All of the lists are given in
a new window (which can be saved to disk or printed) where the entities are sorted
by their reference numbers in ascending order. Lists for the solid model entities can
be obtained by following the menu paths:

Utility Menu > List > Keypoints > Coordinates only
Utility Menu > List > Lines > Attribute format
Utility Menu > List > Areas

Utility Menu > List > Volumes

4.5.5 Deleting Entities

During solid modeling, it is very common for the user to create unintended solid
modeling entities. These extra entities might make the modeling phase confusing
and may potentially cause errors.In order to eliminate this possibility, the user
should “clean up” the model by deleting these entities. The hierarchy of the solid
model entities is important in that the entity (or entities) must not be used for the
definition of any higher-order entities in order to be deleted.For example, the exis-
tence of an area automatically implies that lines and keypoints are attached to this
area.None of the lines can be deleted as long as the area exists. The area must first
be deleted, then the lower-order entities can be deleted. Similarly, a KP cannot be
deleted as long as the line(s) to which the KP is attached exist(s). Only after the
line(s) is(are) deleted, can the KP can be deleted. Solid model entities can be deleted
in two different methods:

1. Delete the entity without deleting the lower-order entities that are attached to it.

2. Delete the entity and all the lower-order entities that are attached to it. In this
case, if some of the lower-order entities are associated with other entities, they
will not be deleted.

The following menu paths are used for these two methods:
To Delete Entities Only

Main Menu > Preprocessor > Modeling > Delete > Keypoints
Main Menu > Preprocessor > Modeling > Delete > Lines Only

Main Menu > Preprocessor > Modeling > Delete > Areas Only
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Main Menu > Preprocessor > Modeling > Delete > Volumes Only
To Delete Entities and Below

Main Menu > Preprocessor > Modeling > Delete > Lines and Below

Main Menu > Preprocessor > Modeling > Delete > Areas and Below

Main Menu > Preprocessor > Modeling > Delete > Volumes and Below

4.6 Viewing a Model

ANSYS provides a very robust graphic utility to view solid model entities, nodes,
elements, material properties, boundary constraints, loads, and results. The graph-
ics-related utilities are accessible through the Plot and PlotCtrls (stands for Plot
Controls) submenus under the Utility Menu. All of the entities can be viewed
through the Plot submenu. However, the PlotCtrls submenu (as its name indicates)
provides many options that enhance the use of the plot utility for many different
purposes, such as plotting the numbers associated with entities, plotting the entities
in different colors,' and viewpoint and viewing angle adjustments.

For the sake of brevity, only the most frequently used items are explained in
detail here.However, many more features are discussed in the examples.

4.6.1 Plotting: Pan, Zoom, and Rotate Functions

The Pan-Zoom-Rotate tool is a very effective function of ANSY'S for manipulating
the view by panning, zooming, and rotating the model. The following menu path is
used to activate this function:

Utility Menu > PlotCtrls > Pan, Zoom, Rotate

The Pan-Zoom-Rotate window appears, as shown in Fig. 4.58. There are eight dif-
ferent fields in this window:

1. Active Window Field: The Graphics Window can be divided into “sub”-windows
(up to 5) in ANSYS; only one of them can be the “active” window at any one
time.This button identifies which window(s) are to be affected by the operations
performed within the Pan-Zoom-Rotate window.

2. Viewing Direction Field: This group of buttons changes the viewpoint. Click-
ing on the Top button will redraw the model (or entities) as seen from the top.
In ANSYS, “top” corresponds to the positive global Y-direction. Similarly,
“front” and “right” will redraw the model as seen from the positive global Z-and

! Colors have not been used in the printed version of the figures. See the accompanying CD-ROM
for color versions of the figures.
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Fig. 4.58 The eight fields
in the Pan-Zoom-Rotate
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X-directions, respectively. The Iso and Oblig buttons redraw the model as seen
from a point that lies on a line that passes through the origin and (1, 1, 1) and (1,
2, 3), respectively. Finally, the WP button redraws the model by taking the posi-
tive Working Plane z-direction as the front of the model.

3. Zoom Field: Provides different zooming methods:

Zoom: Clicking on this button, followed by a single left-click, chooses the center
of the region of interest. After the first click, moving the mouse toward and
away from the center will display a moving square outline of the potential
target region that the user would like to zoom in. Once decided, a second left-
click will zoom in to the region indicated by the outline.

Box Zoom: This function works in a similar way. The user picks two corners of
the zoom-in region. After picking the first corner by clicking the left mouse
button, moving the mouse over the Graphics Window will show a moving
outline of the potential zoom-in region. A second click will pick the second
corner and ANSY'S will redraw the zoom-in region.

Backup: Clicking on this button redraws the model in the previous viewing con-
figuration.
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Win Zoom: This button works like the Box Zoom button except that after picking
the first point, ANSYS locks the aspect ratio of the potential zoom-in region
at the same values as the aspect ratios of the active window (the redraw of the
zoom-in region will fit perfectly in the window).

4. Pan/Zoom Field: The arrow buttons pan the model in the indicated directions
and the dots zoom in and out. A small dot indicates zooming out and a large dot
indicates zooming in. The Sliding Rate Control Bar, explained below, dictates
the rate at which pan and zoom actions operate.

5. Rotate Field: These six buttons rotate the model about “Screen” x-, y-, and
z-directions. The “screen origin” is the center of the active window. The positive
“Screen” x-direction starts from the center of the window and extends to the
right.Likewise, the positive “Screen” y- and z-directions start at the center of the
window and extend to, respectively, the top and out (of the monitor).

6. Rate Control Field: The Sliding Bar controls the rate of pan, zoom, and rotate
that is performed in the active window. The range is from 1 to 100 (rate 1 pans/
zooms at a smaller rate than rate 100 would).

7. Dynamic Mode Field: By clicking on this radio button, the user toggles on/off
the option to pan and rotate dynamically. When the Dynamic Mode is active, the
mouse pointer changes shape when it is over the Graphics Window. Pressing
the left mouse button (without releasing) and moving around in the Graphics
Window pans the model. Similarly, the right mouse button is used for rotating the
model dynamically.

8. Action Field: Includes four action buttons:

Fit: Fits the whole model in the active window.

Reset: Restores the default orientation and size for viewing (front view).
Close: Closes the Pan-Zoom-Rotate window.

Help: Brings the help page for Pan-Zoom-Rotate window.

4.6.2 Plotting/Listing Entities

The following menu paths are used to plot and list the solid model (keypoints, lines,
areas, and volumes) and mesh (nodes and elements) entities:

Utility Menu > Plot > Keypoints > Keypoints
Utility Menu > Plot > Lines

Utility Menu > Plot > Areas

Utility Menu > Plot > Volumes

Utility Menu > List > Volumes

Utility Menu > Plot > Nodes

Utility Menu > List > Nodes
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Utility Menu > Plot > Elements
Utility Menu > List > Elements > Nodes + Attributes

The resulting plots are displayed in the Graphics Window and can be examined
using the Pan-Zoom-Rotate window discussed in the previous section.

4.6.3 Numbers in the Graphics Window

Whenever an entity is being created, ANSY'S either asks for a reference number or
assigns the lowest available number for that type of entity. Therefore, every entity
differs from the other entities of the same type by this reference number. When plot-
ting these entities in the Graphics Window, by default, ANSYS will not show the
entity numbers. Often times, it is important for the user to see the numbers printed
when plotting entities. This can be done using the following menu path:

Utility Menu > PlotCtrls > Numbering

which brings up the Plot Numbering Controls dialog box, as shown in Fig. 4.59.
The entity numbers for keypoints, lines, areas, volumes, and nodes can simply be
turned on by placing a checkmark in the corresponding boxes. Element numbers

m
[/PNUM] Plot Numbering Controls
KP Keypoint numbers

LINE Line numbers

AREA Area numbers
VOLU Volume numbers [ of
NODE Node numbers [~ of
Elem / Aftrib numbering [No numbering -
TABN Table Names [~ off
SVAL Numeric contour values - off
[/NUM] Numbering shown with [Colors & numbers |
[/REPLOT] Replot upon OK/Apply? [Replot |

ok | Apply Cancel | Help |

Fig. 4.59 Plot numbering controls dialog box
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can be turned on using the Elem/Attrib numbering pull-down menu. Instead of the
element numbers, the user can display element attribute numbers (element type, real
constant, and material) using the same option.Also, colors may be assigned to each
entity number for more convenient viewing.The [/NUM] Numbering shown with
pull-down menu in this dialog box allows the user to plot numbers with or without
color assignments, as well as to plot using colors only (without numbers).

4.7 Meshing

As mentioned previously (Sect. 4.3), the mesh of the geometry under consideration
may be generated directly, i.e., generation of nodes and elements, one at a time.
However, this may prove to be a challenging task. Almost always Solid Modeling
constitutes a part of the finite element analysis. Thus, the sole purpose of Solid
Modeling is to create the mesh of the geometry, as conveniently and efficiently as
possible. Once the Solid Model is completed, the user is ready to perform meshing.
Regardless of whether a Solid Model is generated or not, the meshing can be per-
formed only after the specification of element type(s). ANSY'S offers several conve-
nient options to assist in meshing. These include Automatic Meshing, Smart Sizing,
and Mapped Meshing. In the following subsections, topics related to meshing are
discussed in more detail.

4.7.1 Automatic Meshing

One of the most powerful features of ANSYS is automatic mesh generation. AN-
SYS meshes the solid model entities upon execution of an “appropriate” single
command. With automatic meshing, the user can still provide specific preferences
for mesh density and shape. If no preferences are specified by the user, ANSYS
uses the default preferences. The following menu paths are used for automatic mesh
generation after solid model generation:

Mesh Using Line Elements
This option is used for models utilizing one-dimensional elements, such as trusses
and beams. It requires existing lines. The following menu path is used to mesh lines:

Main Menu > Preprocessor > Meshing > Mesh > Lines

This brings up a Pick Menu asking the user to either enter the line number(s) through
the text field or pick line(s) from the Graphics Window. When all the lines are input
(picked), hitting OK in the Pick Menu generates the mesh.

Mesh Using Area Elements
This option is used for models utilizing 2-D elements, and it requires existing areas.
The following menu path is used to mesh areas:
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Main Menu > Preprocessor > Meshing > Mesh > Areas > Mapped > 3 or 4
Sided

Main Menu > Preprocessor > Meshing > Mesh > Areas > Free

Meshing can be accomplished through either the Mapped or Free Meshing meth-
ods.If free meshing is chosen, the second menu path is used, bringing up a Pick
Menu asking the user to either enter the area number(s) through the text field or pick
area(s) from the Graphics Window. When all the areas are input (picked), hitting
OK in the Pick Menu generates the mesh. The Mapped meshing option is discussed
in a later subsection.

Mesh Using Volume Elements
This option is used for models using 3-D elements, and it requires existing volumes.

Main Menu > Preprocessor > Meshing > Mesh > Volumes > Mapped > 4-6
Sided

Main Menu > Preprocessor > Meshing > Mesh > Volumes > Free

This brings up a Pick Menu asking the user to either enter the volume number(s)
through the text field or pick volumes(s) from the Graphics Window. When all the
volumes are input (picked), hitting OK in the Pick Menu will generate the mesh.

ANSYS allows the user to control the mesh density of the domains defined by
solid model entities. The desired mesh density can be achieved by:

* Defining a target element edge size on the domain boundaries.
* Defining a default number of element edges on all lines.

* Defining the number of element edges on specific lines.

» Using smart sizing.

» Using mapped meshing.

These methods are discussed in detail in the following subsections.

4.7.1.1 Specifying Mesh Density Globally

There are two approaches for enforcing the mesh density globally. The first one in-
volves specification of the element edge size; ANSYS attempts to generate a mesh
with all elements having edge sizes as close as possible to the specified value. The
second possibility is to specify a fixed number of elements along all the lines within the
solid model. The following menu path is used for specifying the mesh density globally:

Main Menu > Preprocessor > Meshing > Size Cntrls > ManualSize > Global
> Size

This brings up the Global Element Sizes dialog box with two input parameters:
SIZE and NDIV.SIZE denotes the target element edge length, and NDIV is the
target number of elements along the lines. If SIZE is specified, NDIV is ignored.
The following example explains these concepts. Consider a square area with sides
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Fig. 4.60 A square area (leff) meshed with global element size (SIZE) specified (middle)
and number of line divisions (NDIV) specified globally (right)

5 units long, as shown in Fig. 4.60 (left). If the global element size is specified as
1 (SIZE=1), the mesh shown in Fig. 4.60 (middle) is generated with each element
having an edge size of 1 unit. If the user chooses to the specify the number of ele-
ments along lines instead of element sizes, then SIZE is left untouched (zero), and
NDIV is set to a specific value, say 8. As a result of this operation, the mesh shown
in Fig. 4.60 (right) is generated, with 8 elements along each line.

Specification of mesh density globally works well when the geometry of the
problem is regular, with aspect ratio close to one. When domains of irregular shapes
are considered, applying the same meshing targets to lines of different sizes results
in meshes with high aspect ratios, leading to potentially erroneous results. Therefore,
the techniques explained in the following subsections are more desirable.

4.7.1.2 Specifying Number of Element Edges on Specific Lines

When the geometry of the problem is irregular, i.c., not basic shapes such as tri-
angles and rectangles, specifying the number of element edges along specific lines
may be a good way to avert possible meshing problems. This strategy also helps
to refine the mesh around regions where it may be crucial for accuracy. Similarly,
certain regions in the geometry may not be critical, and keeping the mesh around
these regions may help reduce the computational cost without losing accuracy. The
number of element edges on specific lines can be specified using the following
menu path:

Main Menu > Preprocessor > Meshing > Size Cntrls > ManualSize > Lines >
Picked Lines

which brings up the Pick Menu for line picking. After the user picks the lines and
clicks on OK, the Element Sizes on Picked Lines dialog box appears. The second pa-
rameter, NDIV, dictates how many elements will be placed along the picked lines.
The third parameter, SPACE, which stands for spacing ratio, is important when a
mesh graded (biased) toward a direction is desired. The default value for SPACE is
1 (no bias, uniform spacing). If it is positive, the spacing is biased from one end of
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Fig. 4.61 A square area (/eff) with number of line divisions specified at specific lines (middle)
and the resulting mesh (right)

Fig. 4.62 Biased line divisions (/ef?), resulting mesh (middle), and lines with keypoint numbers
plotted (right)

the line to the other end.If it is negative, then the bias is from the center toward the
ends.Its magnitude defines the ratio of the largest division size to the smallest. These
concepts are explained in the following examples. Consider the square area used for
the example in the previous subsection, shown in Fig. 4.61 (left) with line numbers.
Using the menu path above, NDIV is specified to be 5 for lines 2 and 4, and 10
for lines 1 and 3. After this operation, lines are plotted with the specified divisions
clearly visible [Fig. 4.61 (middle)].Meshing of the area produces the one shown in
Fig. 4.61 (right). The same example is considered, this time with the specification of
spacing ratios.The goal is to have a mesh graded from coarse at the center to fine at
the edges in the x-direction, and from coarse at the top to fine at the bottom (in the
y-direction). The same number of divisions is used for all the lines with a value of
8 (NDIV=38). Using the menu path given above, spacing ratios (SPACE) for lines
1, 2, 3, and 4 are specified as —4, 4, —4, and 0.25, respectively. The line plot after
this operation is shown in Fig. 4.62 (left), and the corresponding mesh is given in
Fig. 4.62 (middle). It is worth noting the reason why the parameter SPACE is differ-
ent for lines 2 and 4. Figure 4.62 (right) shows the line plot with the keypoint num-
bers. Line 2 is defined from keypoint 2 to keypoint 3 (from bottom to top) whereas
line 4 is defined from keypoint 4 to keypoint 1 (from top to bottom). When SPACE
is positive and greater than 1, its value defines the ratio of the division length at the
end of the line to the length of the division at the beginning of the line.
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4.7.1.3 Smart Sizing

Instead of specifying the number of line divisions or element edge sizes, one can
use the ANSYS “smart sizing” feature, where the mesh density is specified in a
cumulative sense. In this method, the user specifies a level of refinement that ranges
from 1 to 10; the smaller the number, the finer the mesh. To use smart sizing, follow
the menu path given below:

Main Menu > Preprocessor > Meshing > Size Cntrls > SmartSize > Basic

This brings up a dialog box with a pull-down menu asking the user to choose a
level of refinement. Selecting the level, followed by hitting OK, activates the smart
sizing. Now, the user is ready to mesh the solid model entities. As this option uses
meshing options involving advanced geometry, there is no easy way to explain how
it works.Therefore, it is suggested that the user experiment with it, and build a
knowledge base that will be helpful later on.

4.7.1.4 Mapped Meshing

Another very commonly used (by experienced ANSYS users) meshing method
is Mapped Meshing. The mapped meshing concept is valid only in two- and
three-dimensional problems (no line elements). The solid model entities (areas and
volumes) meshed with this option use quadrilateral area elements or hexahedral
(brick) volume elements.

The reason why mapped meshing is desirable is that it generates regular, thus
computationally well-behaving, meshes. Not every area or volume can be mapped
meshed. The areas or volumes to be mapped meshed must be “regular.” This
regularity is governed by two properties of the solid model entity: the number of
sides (lines for areas and areas for volumes) and number of divisions on opposite
sides (opposite sides must have an equal number of divisions). For areas, the accept-
able number of sides is 3 or 4. If the area has 3 sides (defined by 3 lines), then the
number of divisions in all 3 lines must be equal and even. If 4 lines define the area,
as stated before, the lines on opposite sides must have the same number of divisions.
These considerations are similar for mapped meshing of volumes. The number of
areas that define the volume must be either 4 (tetrahedron), 5 (prism), or 6 (hexahe-
dron). The number of divisions on opposite sides must be equal. If4 or 5 areas define
the volume, the number of divisions on the triangular areas must be equal and even.

To use mapped meshing, follow the menu path given below:

Main Menu > Preprocessor > Meshing > Mesh > Areas > Mapped > 3 or 4
Sided

Main Menu > Preprocessor > Meshing > Mesh > Volumes > Mapped > 4 to 6
Sided

which brings up a Pick Menu for area picking.After the areas are picked and the OK
button is pressed, the mesh is generated. Figure 4.63 (left) shows a triangular area
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Fig. 4.63 Triangular area (/eft) and corresponding free (middle) and mapped (right) meshes

with corresponding free and mapped meshes given in Fig. 4.63 (middle) and 4.63
(right), respectively. It is clear from these figures that the mapped mesh delivers
elements with controlled and desirable aspect ratios.

If the areas or volumes do not have the required number of sides that are given
above, there might still be a way to “mapped mesh” these entities. For this, the
user looks for sides that could be considered as a single side when combined. This
way the number of sides can be reduced to the required numbers. This operation
is performed through “concatenating” lines (for meshing of areas with more than
4 sides) and areas (for meshing of volumes with more than 6 sides). Line and area
concatenations are performed using the following menu paths:

Main Menu > Preprocessor > Meshing > Mesh > Areas > Mapped > Concat-
enate > Lines

Main Menu > Preprocessor > Meshing > Mesh > Volumes > Mapped > Con-
catenate > Areas

Main Menu > Preprocessor > Meshing > Mesh > Volumes > Mapped > Con-
catenate > Lines

which brings up a Pick Menu for lines to be concatenated. The concatenation is
explained through the following example. Consider the irregular area, shown in
Fig. 4.64 (top), with line numbers plotted. Free meshing of this area produces the
mesh given in Fig. 4.64 (middle), with elements having large aspect ratios. As ob-
served from Fig. 4.64 (top), the area to be meshed is enclosed by 7 lines (sides).
When mapped meshing areas, the maximum number of sides is 4. Therefore, if
the user wants to mapped mesh this area, line concatenations must be performed.
For this purpose, lines 1, 2, and 3 are concatenated to produce a new line (line 8).
Also, lines 4 and 5 are concatenated, producing line 9. With these concatenations,
the number of sides defining the area is reduced from 7 to 4 and mapped meshing
is possible. After specifying the number of divisions on lines 6 and 7 as 3, mapped
meshing is performed by using the menu path given above, producing the mesh
given in Fig. 4.64 (bottom), with elements having acceptable aspect ratios.
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Fig. 4.64 An irregular area (fop) meshed using free meshing (middle) and meshed with mapped
meshing after line concatenation (bottom)
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4.7.2 Manipulation of the Mesh

4.7.2.1 Changing Element Attributes

The user can change the attributes of the elements after the mesh is generated. This
is achieved by using the following menu path:

Main Menu > Preprocessor > Modeling > Move/Modify > Elements > Modify
Attrib

This will bring up a Pick Menu asking the user to pick element(s) from the Graphics
Window. Once the element(s) are selected, clicking on OK in the Pick Menu leads
to a dialog box with two fields: (1) a pull-down menu containing the attributes, and
(2) a new attribute reference number for the selected attribute. After selecting the
attribute to be changed, followed by entering the new attribute reference number,
clicking on OK finalizes the operation.

4.7.2.2 Clearing and Deleting Mesh

After a mesh is generated, there are ways to re-mesh if the user is not satisfied with
the result. If direct generation was used for meshing, the user can simply “delete”
elements first, and then nodes. Note that deleting elements does not automatically
delete the nodes. These tasks are performed as follows:

Main Menu > Preprocessor > Modeling > Delete > Elements
Main Menu > Preprocessor > Modeling > Delete > Nodes

If the solid model approach was used, the elements and nodes cannot be “deleted”
since they are “attached” to the solid model entitics. However, more conveniently,
the solid models that elements and nodes are attached to can be “cleared.” This
deletes all elements and nodes attached to the solid model entity at once. The user
can now re-mesh the solid model entities after certain changes are made in meshing
controls. The menu paths for this operation are as follows:

Main Menu > Preprocessor > Meshing > Clear > Keypoints
Main Menu > Preprocessor > Meshing > Clear > Lines
Main Menu > Preprocessor > Meshing > Clear > Areas
Main Menu > Preprocessor > Meshing > Clear > Volumes

There are cases where it may be advantageous to remove the association between
the solid model and the mesh. This is achieved by using the following menu path:

Main Menu > Preprocessor > Checking Ctrls > Model Checking

which brings up a dialog box with a pull-down menu.Selecting the item Detach in
the pull-down menu and clicking on OK removes the association between the solid
model and the mesh.
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4.7.2.3 Numbering Controls

When dealing with complicated geometries, the Boolean operations explained in
Sect. 4.4 are used regularly. These operations often generate new entities while
removing existing ones, which creates gaps in the entity numbering. For example,
when an area (say, area 1) is subtracted from another one (area 2), the resulting area
is given the smallest available area number (in this case, area 3). Immediately after
the creation of this area (area 3), ANSYS internally deletes the input areas (areas 1
and 2). Similarly, all the keypoints and lines associated with the new area are given
new numbers while the ones associated with the old areas are removed. Similar con-
siderations apply to nodes and elements. ANSY'S provides the user with the option
of “compressing” the entity numbers, which is performed as follows:

Main Menu > Preprocessor > Numbering Ctrls > Compress Numbers

which leads to a dialog box with a pull-down menu. After the entity label is selected
from this menu, clicking OK finalizes this operation.

Another important concept in solid modeling and meshing is the possible exis-
tence of duplicate entities. This usually occurs when the user creates new entities
by copying existing ones or by reflection about a plane. If the old and new entities
occupy the same space and if the material is supposed to be continuous along the
line (or plane) where duplicate items lie, then they must be merged. Although it
may not be apparent in the Graphics Window, the existence of duplicate entities
compromises the continuity of the mesh, and thus may lead to invalid solutions. The
following menu path is used to merge entities:

Main Menu > Preprocessor > Numbering Ctrls > Merge Items

This brings up a dialog box in which the first field is a pull-down menu for the label
of entities to be merged.

4.8 Selecting and Components

In the case of a three-dimensional finite element model, graphical picking may be-
come a tedious and, at times, frustrating experience. In such cases, the selection tool
provided by ANSYS is highly useful. This tool is efficient as it utilizes concepts
from logics. The selected entity can then be saved in the ANSYS database as a
“component.” Thus, the next time this group of entities needs to be selected, selec-
tion of the component is sufficient. Selecting operations are discussed first, and the
components next.

4.8.1 Selecting Operations

In ANSYS, entities are stored in separate sets (e.g., a set of areas, a set of volumes,
etc.). Initially all of the full sets are active, until a selection operation is performed.
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Fig. 4.65 Select entities dialog box (by number and picking)
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When individual entities in a full set are selected (subset), they become active. En-
tity sets are independent of each other, i.e., selecting a group of lines does not cause
any change in the selection status of the sets of keypoints or areas. Selections can be

made based on several criteria, as explained below.

Selections can be performed by using the following menu path:

Utility Menu > Select > Entities

which brings up the Select Entities dialog box, as shown in Fig. 4.65. This dialog

box has five distinct fields:

1. Entity Field: The entity to be selected is chosen using this pull-down menu.
2. Criterion Field: The entity chosen in the Entity Field is selected based on the
criterion chosen in this pull-down menu. The following criteria are possible:

By Num/Pick: Clicking OK after choosing this criterion starts the Pick Menu and

the entities are selected by picking.

Attached to: As discussed previously, the entities in ANSYS are associated with
each other. For example, a line is composed of at least two keypoints; an area
is made up of at least three lines; etc. Thus, keypoints and lines, and lines and
areas, are mutually attached (the list may be extended).When this criterion
is chosen, another field appears in the Select Entities dialog box, listing the
possibilities for attachment.If Areas in the Entity Field and Attached to in the
Criterion Field are chosen, the new field lists Lines and Volumes as possible
attachments; choosing Volumes and clicking on OK results in the selection of
volumes that are attached to the currently selected areas.
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Fig. 4.66 Select entities
dialog box (by location)
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By Location: Selects entities based on their location. Upon choosing this crite-
rion, a new field appears in the Select Entities dialog box with radio-buttons
for x-, y-, and z-coordinates and a text field for the minimum and maximum
values for the coordinate (shown in Fig. 4.66). For example, in order to select
the nodes located between y=2 and y=35, the radio-button for the y-coordinate
is activated and the expression “2, 5 (without the quotation marks) is entered
in the text field.

By Attributes: This criterion is used for selecting entities based on their attributes
(element type, material, real constant, etc.).

Exterior: Using this criterion, entities along the outer boundaries of the model
are selected.

By Results: If a solution is obtained, then entities (only nodes and elements) can
be selected based on result values.

3. Domain Field: This field determines the domain of the entity set with which the
criterion is applied, as explained below:

From Full: Selection is made from the full set of entities regardless of the selec-
tion status of the particular entity set.

Reselect: This option is used to refine the selection.It is used to select entities
from a previously selected subset. For example, if the goal is to select all
the nodes having coordinates x=2 and y=3 (both at the same time), then the
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nodes with the coordinate x=2 are first selected From Full set and, then,
using Reselect button, the nodes with coordinate y=3 are selected from the
previously selected subset of nodes with coordinate x=2.

Also Select: This option is used to expand the selection. It is used to add entities
to the currently selected subset, based on a different criterion.

Unselect: This option is used to deactivate (unselect) a group of entities from the
selected subset.

4. Domain Action Field:

Sele All: Selects the full set of a specific entity.

Invert: Inverts the selected set; active entities become inactive and vice versa.

Sele None: Unselects the full set of a specific entity; the active set becomes
empty.

Sele Belo: Following the hierarchy of entities (i.e., volume is highest and node
is lowest), this option selects the lower entities attached to the selected set of
entities chosen in the Entity field.

5. Action Field:

OK: Applies the selection operation and closes the Select Entities dialog box.

Apply: Applies the selection operation; the Select Entities dialog box remains
open for further selections.

Plot: Plots the currently selected set of a specific entity.

Replot. Updates the plot.

Cancel: Closes the Select Entities dialog box without applying the selection op-
eration.

Help: Displays the help pages related to selection operations.

In order to select “everything” (reset all entities to their full sets), the following
menu path is used:

Utility Menu > Select > Everything

4.8.2 Components

Groups of selected entities can be saved in an ANSYS database for easy retrieval.
These groups are called components, and they can only contain entities of the same
kind. The main advantage of defining components is to avoid multiple selection
operations every time the user needs to select the same group of entities. The
following menu path is used for defining components:

Utility Menu > Select > Comp/Assembly > Create Component

which is followed by a dialog box requesting the name to be given to the compo-
nent and the type of entity to include in the component. Upon clicking OK, the
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component is created using the currently selected subset of the entity type chosen.
The following menu path is used when a component has to be selected:

Utility Menu > Select > Comp/Assembly > Select Comp/Assembly

Listing and deletion of components is performed by using the following menu paths:
Utility Menu > Select > Comp/Assembly > List Comp/Assembly

Utility Menu > Select > Comp/Assembly > Delete Comp/Assembly



Chapter 5
ANSYS Solution and Postprocessing

5.1 Overview

A typical ANSY'S session, regardless of the discipline, involves the following steps:

1. Model Generation

Specify jobname (this step is optional but recommended).

Enter Preprocessor.

Define element types and options.

— Define real constant for the element types (if the element type(s) require real
constants).

— Define material properties.

— Create the model:

- Build solid model (using either top-down or bottom-up approach).
- Define meshing controls.
- Create the mesh.

— Exit the Preprocessor.
2. Boundary/Initial Conditions and Solution

— Enter Solution Processor.
— Define analysis type and analysis options.
— Specify boundary/initial conditions:

- Degree of freedom constraints.

- Nodal force loads.

- Surface loads.

- Body loads.

- Inertia loads.

- Initial conditions (if the analysis type is transient).

— Save database (this step is not required but is recommended).

The online version of this book (doi: 10.1007/978-1-4939-1007-6_5) contains supplementary
material, which is available to authorized users
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— Initiate solution.
— Exit the Solution Processor.

3. Review Results

— Enter the appropriate Postprocessor ( General Postprocessor or Time History
Postprocessor).

— Display results.

— List results.

The first step involves operations concerning the ANSYS Preprocessor and was
covered in detail in Chap. 4. The operations pertaining to the solution and post-
processing of the results are discussed in detail in this chapter. At the end, specific
steps are demonstrated by considering a one-dimensional transient heat transfer
problem.

5.2 Solution

After preprocessing, the model generation, including meshing, is complete. The
user is ready to begin the solution phase of the ANSY'S session. First, the analysis
type is specified from among the three main types:

+ Static.
» Transient (time-dependent).
* Submodeling and substructuring (discussed in Sects. 11.3 and 11.4).

If the problem under consideration falls into the Structural Analysis discipline,
then there are additional analysis types, such as modal, harmonic, spectrum, and
eigenvalue buckling. There are two main deciding factors in choosing the analysis

type:

Loading conditions: 1f the boundary conditions change as a function of time or
there are initial conditions, then the analysis type is Transient. However, if the
analysis discipline is structural and if the loading is a sinusoidal function of
time, then the analysis type is Harmonic. Similarly, if the loading is a seismic
spectrum, the analysis type is Spectrum.

Results of interest: If the analysis discipline is structural and if the results of inter-
est are the natural structural frequencies, then the analysis type is Modal. Simi-
larly, if the interest is in determining the load at which the structure looses stabil-
ity (buckles), then the analysis type is eigenvalue buckling.

The analysis type is specified by using the following menu path:
Main Menu > Solution > Analysis Type > New Analysis

This brings up the dialog box shown in Fig. 5.1. The user selects a particular analy-
sis type by clicking on the corresponding radio-button and clicks OK. The common
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Fig. 5.1 Dialog boxes for selecting the type of analysis for structural (zop) and thermal (bottom)
disciplines

solution operations used in almost every ANSYS session are discussed in the fol-
lowing subsections.

5.2.1 Analysis Options/Solution Controls

ANSYS allows the user to select certain options during the solution phase. They are
specified through either Analysis Options or Solution Controls. The Analysis Op-
tions, specific to the Analysis Type, permit the user to select the method of solution
and related details; this step requires familiarity with the Analysis Type. Analysis
Options can be specified by the following the menu path:

Main Menu > Solution > Analysis Type > Analysis Options

Because the Analysis Options are specific to the particular problems under consid-
eration, related discussions are covered in various example problems throughout
this book.
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Fig. 5.2 Solution controls dialog box

In addition to the Analysis Options, the user has the option of specifying pref-
erences through the Solution Controls. The main difference between the Analysis
Options and the Solution Controls is that the Solution Controls are not specific to
the Analysis Type. The same set of options in the Solution Controls can be used in a
structural or thermal analysis. The Solution Controls dialog box can be activated by
using the following menu path:

Main Menu > Solution > Analysis Type > Sol’n Controls
As shown in Fig. 5.2, the Solution Controls dialog box has five different tabs:

Basic: Involves selection of options specific to the analysis type, time-domain-re-
lated parameters, and results items to be written to the Results File.

Transient: This option provides control over the way the loading is applied (stepped
or ramped over time), the damping coefficients, and the time integration param-
eters.

Sol’n Options: The equation solver is chosen under this option. Also, if the current
analysis is a Restart from a previous analysis or is intended to be “restarted”
later, this option controls the number of restart files to write and the frequency at
which they are written.

Nonlinear: Involves nonlinear options, specification of the maximum number of
equilibrium iterations, and the limits on physical values used to perform bisec-
tion when performing nonlinear structural analyses, such as plasticity deforma-
tion, creep, etc.
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Advanced NL: This option is used to specify what the software should do when
convergence is not achieved during a nonlinear analysis.

Within the Solution Controls, all of the options have default values that the user is not
required to specify while performing the analysis. However, if the analysis fails to
produce convergence, manual specification of these options may improve the chances
of convergence. As part of the example problems solved throughout this book, the So-
lution Controls items are manually specified for several problems in Chaps. 8 and 9.

5.2.2 Boundary Conditions

In a well-posed mathematical problem, the conditions along the entire boundary
must be known. These conditions are referred to as the boundary conditions, and
they can be specified in three different ways:

Type I: Specification of the primary variable (degree of freedom).

Type II: Specification of variables related to the derivative of the primary variable.

Type III: Specification of a linear combination of the primary variable and its de-
rivative.

In a Structural problem, the primary variables are the displacement components
(see Sect. 2.2.1.3). When Type I boundary conditions are used, the displacement
constraints are specified along a segment of the boundary. If tractions are specified
along the boundary, the boundary conditions fall under 7ype II because the tractions
are related to the derivatives of the displacement components. A special case of the
traction boundary conditions is the point load (also called the Force/Moment load).
When the structure is subjected to tractions over a rather small area of the boundary,
it is reasonable to idealize this condition as a concentrated load applied at a point.
While conducting an analysis with BEAM or SHELL element types, moment loads
can also be applied. Displacements, pressures (normal tractions), forces, and mo-
ments can be specified using the following menu paths:

Main Menu > Solution > Define Loads > Apply > Structural > Displacement
Main Menu > Solution > Define Loads > Apply > Structural > Force/Moment
Main Menu > Solution > Define Loads > Apply > Structural > Pressure

In a Thermal problem, the temperature is the primary variable. Similar to Structural
problems, Type I boundary conditions correspond to the specification of the pri-
mary variable, i.e., temperature over a portion of the boundary. Specified heat flux
conditions fall under Type II boundary conditions. Finally, convective conditions
correspond to Type 11l boundary conditions. Temperature, heat flux, and convective
conditions along the boundaries can be specified using the following menu paths:

Main Menu > Solution > Define Loads > Apply > Thermal > Temperature
Main Menu > Solution > Define Loads > Apply > Thermal > Heat Flux
Main Menu > Solution > Define Loads > Apply > Thermal > Heat Flow
Main Menu > Solution > Define Loads > Apply > Thermal > Convection
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Each of the boundary conditions discussed in this section can be applied on Nodes
or on appropriate solid model entities such as Keypoints, Lines, or Areas. If they
are applied on the solid model entities, ANSYS transfers them to the nodes when
the solution is initiated. Although the paths for specification of boundary condi-
tions are shown under the Solution Processor, it is possible to apply them under the
Preprocessor.

5.2.3 Initial Conditions

A well-posed transient problem requires the specification of initial conditions. For
Structural problems, initial conditions may involve components of displacement,
rotation, velocity, or acceleration. In a Thermal problem, initial conditions are
typically the temperature distribution within the domain. Initial conditions can
be specified only when the Analysis Type is selected as Transient; if the Analysis
Type is selected as Static, the specification of initial conditions does not appear
as an option in the menus. Initial conditions can be specified using the following
menu paths:

Main Menu > Solution > Define Loads > Apply > Initial Condit’n

5.2.4 Body Loads

Body loads can be generated internally or externally as the result of a physical field
acting on the body. They act within the domain expressed volumetrically. Gravity,
inertia loads, and temperature change represent body loads in a Structural problem.
They can be specified using one of the following menu paths:

Main Menu > Solution > Define Loads > Apply > Structural > Temperature
Main Menu > Solution > Define Loads > Apply > Structural > Inertia > Angu-
lar Velocity

Main Menu > Solution > Define Loads > Apply > Structural > Inertia > Angu-
lar Accel

Main Menu > Solution > Define Loads > Apply > Structural > Inertia > Corio-
lis Effects

Main Menu > Solution > Define Loads > Apply > Structural > Inertia > Gravity

Heat generation within the domain is also represented as a body load for Thermal
problems and can be specified using the following menu path:

Main Menu > Solution > Define Loads > Apply > Thermal > Heat Generat
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5.2.5 Solution in Single and Multiple Load Steps

After completing the finite element mesh and specifying the loading conditions
(boundary, initial, and body loads), the solution can be initiated using the following
menu path:

Main Menu > Solution > Solve > Current LS

However, there are cases in which the loads are time-dependent, and the solution is
achieved in multiple steps. Different load steps must be used if the loading on the
structure changes abruptly. The use of load steps also becomes necessary if the re-
sponse of the structure at specific points in time is desired. ANSYS accommodates
the application of time-dependent loads through the use of multiple Load Steps.
Time-dependent loading is commonly encountered in analyses involving the deter-
mination of dynamic response and viscoplastic- and creep-type material behaviors.
Simulation of manufacturing processes also involves time-dependent thermal load-
ing. Figure 5.3 illustrates different profiles of impact loading as a function of time.
The solid lines designate the actual loading while the dashed lines denote the load-
ing profiles as specified in ANSYS. The solid circles indicate the times at which a
load step starts or ends. As observed in Fig. 5.3, ANSYS permits the user to specify
either step or ramped loading. In all of the cases, the last load step is necessary in
order to capture the response of the structure at times after the load is removed. The
multiple load steps are also necessary in modeling a viscoplastic material subjected
to thermal cycling, as shown in Fig. 5.4.

The following steps are used in order to use multiple load step solution method:

1. Apply the initial conditions as explained in Sect. 5.2.3.

2. Apply the boundary conditions appropriate for the first load step.

3. Specify time-related parameters: This is performed by using the following
menu path:

Main Menu > Solution > Load Step Opts > Time/Frequenc > Time—Time Step

This brings up the Time and Time Step Options dialog box (Fig. 5.5) Enter the time
at end of load step (TIME) and the time step size (DELTIM), which is option-
al. Choose between whether the loads are applied in a stepped or ramped manner
(KBC). If the Automatic Time Stepping is OFF, then the user must specify the time
step size. If the time step size is not specified and the Automatic Time Stepping is
set as Prog Chosen (stands for program chosen), then ANSY'S turns the Automatic
Time Stepping ON. If the time step size is specified and the Automatic Time Stepping
is ON, ANSYS starts the solution with the specified time step size and modifies it
based on the convergence.

4. Write Load Step file: Load steps are written to Load Step Files by using the
following menu path:

Main Menu >Solution > Load Step Opts > Write LS File
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Fig. 5.5 Time and time step options dialog box

This brings up the Write Load Step File dialog box (Fig. 5.6). Enter the load step
file number (LSNUM) and hit OK. This file is stored in the Working Directory and
contains all the solution options, the time, and time-related parameters, as well as
the boundary conditions.

5. Repeat steps 2—4 for the remainder of the load steps.
6. Initiate solution from Load Step files: Once all of the load step files are written,
the solution is initiated by using the following menu path:

Main Menu > Solution > Solve > From LS Files

which brings up the Solve Load Step Files dialog box. Enter the starting and ending
load step file numbers (LSMIN and LSMAX) and hit OK.
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5.2.6 Failure to Obtain Solution

There are two common reasons why ANSY Sfails to provide a solution:

Singular coefficient matrix: As shown in detail in Chap. 1, every finite element
solution involves the solution of a system of equations with a known coefficient
matrix (stiffness), an unknown degree of freedom vector, and a known right-
hand-side (force) vector. If the coefficient matrix is singular, the solution fails.
The most common reasons why the coefficient matrix becomes singular are as
follows:

1. Instability in the structure due to lack of constraints in static structural analyses.
This leads to rigid-body translations and rotations, which makes the stiffness
matrix singular. As an example of this phenomenon, Fig. 5.7 shows three distinct
constraint configurations applied on the same 2-D square structure subjected
to a distributed tensile load in the x-direction. The first configuration involves
two constraints, both suppressing displacements in the y-direction, along the
bottom surface of the structure. Because there are no constraints suppressing
displacements in the x-direction, the structure is free to move in the x-direction
under the applied load, thus leading to a singular stiffness matrix. In the second
configuration, displacements in both the x- and y-directions are suppressed at the
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same point (bottom left corner). Although this configuration prevents rigid-body
translations, it fails to prevent rigid-body rotation around the corner node where
displacement constraints are applied, causing the stiffness matrix to become
singular. Finally, in the third configuration, two corners are constrained in the
y-direction, with one of them also constrained in the x-direction. This is a stable
configuration, preventing all possible rigid-body movements, leading to a nons-
ingular stiffness matrix and thus a successful unique solution.

— Material properties that are physically impossible may make the coefficient
matrix singular. Examples include zero or negative Young’s modulus, thermal
conductivity, density, or specific heat.

— There are structural elements within the ANSYS element library that carry
loads only along their line of direction (SPAR elements simulating truss struc-
tures). Stability concerns of Statics apply to structures made up of these ele-
ments, and the user must make sure that the structure is stable.

2. Failed convergence: In finite element analyses, problems involving nonlinear-
ity are solved through iterations. As described in Chap. 2, these nonlinearities
arise through the material behavior (plasticity, creep, viscoelasticity, viscoplas-
ticity, etc.) or geometric configuration (large deformations) of the structure.
The “correct” solution is approached in small steps, referred to as convergence
iterations. If the problem is time-dependent, then the small steps are taken in
the time domain. If the problem is not dependent on time (e.g., plasticity), these
small steps are taken in the application of the loads. At the end of each iteration,
ANSYS checks whether the solution satisfies a convergence criterion “built-
in” for different analysis types. If the criterion is not satisfied, the last step is
repeated with a smaller step size. This is repeated until the convergence criterion
is satisfied. However, there are limits on the number of convergence iterations
and, if a converged solution is not achieved within those limits, ANSYS termi-
nates the solution process. Because each nonlinear analysis type is different,
there is no straightforward answer as to what to do to improve the chances of a
successful convergence. However, several nonlinear problems are considered in
Chap. 10 that may give the reader some ideas on convergence considerations.

5.3 Postprocessing

After a solution is obtained in an ANSYS session, the user can review the results in
either the General Postprocessor or the Time History Postprocessor. If the problem
is static (or steady state), then the General Postprocessor is the only postprocessor
where the results can be reviewed. However, if the problem is dependent on time
(transient), both processors are useful for distinctly different tasks. The postproces-
sors and common postprocessing operations are discussed briefly in the following
(5.3.1-5.3.6).
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Fig. 5.8 Time history variables dialog box

5.3.1 General Postprocessor

In the General Postprocessor, the results of a solution at a specific time (if the prob-
lem is time dependent) are reviewed. Available options for review include graphical
displays and a listing of results. It is also possible to perform sorting and mathemati-
cal operations on the results.

5.3.2 Time History Postprocessor

When the problem under consideration is time dependent, the time variation of the
results at specific locations (nodes) are reviewed under the Time History Postpro-
cessor. Upon entering this postprocessor, the Time History Variables dialog box
appears (Fig. 5.8). This dialog box has three distinct arcas: Toolbar, Variables, and
Calculator. The first four buttons (from the left) in the Toolbar are the most com-
monly used ones:

Add Data Button: This button is used to define new variables, such as displace-
ments, temperatures, etc., at specific nodes.

Delete Data Button: Used for deleting defined variables.

Graph Data: Using this button, the user can plot the time variation of variables.

List Data: Similar to plotting, this button is used for listing the results as functions
of time.
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As the new variables are defined, they appear in the Variables area. By default,
TIME is the first variable and cannot be removed. In addition to the name of the
variable, the Variables area includes useful information about the variable, such as
its element or node number, what result item it corresponds to, and the range of its
values.

The last item (located at the right-most side) is the X-Axis button, which enables
the user to select which variable to display on the x-axis in the graphical representa-
tions.

An example problem (time-dependent heat transfer) demonstrating the use of the
Time History Postprocessor is given in Sect. 5.4.

5.3.3 Read Results

The results, obtained through the Solution Processor, are saved in results files (job-
name.rst for structural, jobname.rth for thermal, and jobname.rfl for fluids prob-
lems), which are stored in the working directory. In order to review the results, the
user needs to guide ANSYS so that the correct results file is selected. This is done
by using the following menu path:

Main Menu > General Postproc > Data & File Opts

This brings up the Data and File Options dialog box (Fig. 5.9). The results file is
selected by clicking on the browse button (button with three dots). After selecting
the correct file, click on OK.
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If the solution does not involve multiple substeps and load steps, then there is
only one results “set” the user can review. However, when the solution involves
multiple substeps and load steps, there are many results sets and the user should
select the correct (intended) one. The results sets can be selected using the follow-
ing options:

First Set: Results related to the first available set are read into the database using
the following menu path:

Main Menu > General Postproc > Read Results > First Set

Next Set: Results related to the set available immediately after the current set are
read into the database using the following menu path:

Main Menu > General Postproc > Read Results > Next Set

Previous Set: Results related to the set available immediately before the current set
are read into the database using the following menu path:

Main Menu > General Postproc > Read Results > Previous Set

Last Set: Results related to the last available set are read into the database using the
following menu path:

Main Menu > General Postproc > Read Results > Last Set
Read By Picking: The following menu path is used for this option:
Main Menu > General Postproc > Read Results > By Pick

which brings up a dialog box (Fig. 5.10) listing the available results sets. The user
selects the desired results set and clicks on Read and Close for the results to be read
into the database.
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Read By Load Step Number: Results related to a specific load step and substep are
read into the database using the following menu path:

Main Menu > General Postproc > Read Results > By Load Step

which brings up the Read Results by Load Step Number dialog box (Fig. 5.11) in
which the user specifies the load step number (LSTEP) and substep (SBSTEP)
number within that load step and clicks on OK for the results to be read into the
database.

Read by Time: Results related to a specific time (or frequency) value are read into
the database using the following menu path:

Main Menu > General Postproc > Read Results > By Time/Freq

which brings up the Read Results by Time or Frequency dialog box (Fig. 5.12) in
which the user specifies the value of time (or frequency) (TIME) and clicks on OK
for the results to be read into the database.

5.3.4 Plot Results

After the desired results set is read into the database, the result quantities can be re-
viewed through graphics displays. The types of graphics displays include deformed
shapes (structural analysis), contour plots, vector displays (thermal), and path plots.

In structural analyses, the deformed shape resulting from the applied loads and
boundary conditions is displayed using the following menu path:

Main Menu > General Postproc > Plot Results > Deformed Shape
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which brings up the Plot Deformed Shape dialog box (Fig. 5.13). The user is offered
three distinct display modes:

» Display deformed shape only.

* Display deformed and undeformed shapes together.

* Display deformed shape with the outer boundary (edge) of the undeformed
shape.
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After the user makes a choice and clicks on OK, the deformed shape appears in the
Graphics Window.
Contour plots are obtained using one of the following menu paths:

Main Menu > General Postproc > Plot Results > Contour Plot > Nodal Solu
Main Menu > General Postproc > Plot Results > Contour Plot > Element Solu

which brings up the Contour Nodal ( Element) Solution Data dialog box (Fig. 5.14).
In this dialog box, both the degree of freedom (DOF) solution (displacements, tem-
peratures, etc.) and derived quantities (stresses, strains, fluxes, etc.) are available
for plotting. Once the user makes the selection, upon clicking OK, the contour plot
appears in the Graphics Window.

Vector plots are obtained using the following menu path:

Main Menu > General Postproc > Plot Results > Vector Plot >Predefined

which brings up the Vector Plot of Predefined Vectors dialog box. Similar to the
contour plots, this dialog box has two fields identifying the quantity to be plotted.
Once the user makes a selection, upon clicking OK, the vector plot appears in the
Graphics Window.

In the ANSYS General Postprocessor, it is possible to obtain line plots along a
path. Utilizing path plots involves:
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Defining Paths: This can be performed by different methods, one of which uses the
following menu path:

Main Menu > General Postproc > Path Operations > Define Path > By Nodes

which brings up a Pick Menu for the nodes defining the path to be picked. Upon
clicking on OK in the Pick Menu, a dialog box appears asking for path specifica-
tions such as the user-defined name of the path and number of divisions between
data points. Clicking OK in this dialog box finishes the path definition.

Mapping Quantities onto Paths: Once the paths are defined, quantities of interest
are mapped onto paths by using the following menu path:

Main Menu > General Postproc > Path Operations > Map onto Path

which brings up the Map Result Items onto Path dialog box. The user specifies a
unique label for the result item to be mapped and selects the result item; clicking OK
completes the mapping operation.

Plotting Quantities on Graphs or on Geometry: The quantities mapped onto de-
fined paths can be plotted using the following menu items:

Main Menu > General Postproc > Path Operations > Plot Path Item > On
Graph

Main Menu > General Postproc > Path Operations > Plot Path Item > On
Geometry

which brings up the Plot of Path Items on Graph (Geometry) dialog box. The user
selects the path item to be plotted from the list of defined path items and clicks on
OK; the plot appears in the Graphics Window.

The operations related to path plots are demonstrated through an example prob-
lem in Sect. 5.4.

5.3.5 Element Tables

In ANSYS, each element type possesses numerous output quantities available upon
completion of the solution. Although several of these quantities are offered by their
names under the postprocessors, some are not directly accessible, and the user
needs to take additional steps in order to access them. One important purpose of
using Element Tables is to access these result items. Another important role of Ele-
ment Tables is that they enable the user to perform arithmetic operations involving
several result items. Element tables are defined by using the following menu path:

Main Menu > General Postproc > Element Table > Define Table

which brings up the Element Table Data dialog box (Fig. 5.15). In order to add new
items to the element table, the user needs to click on the Add button, which brings
up the Define Additional Element Table Items dialog box (Fig. 5.16). After selecting
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the result quantity and specifying a user label for it, clicking on OK completes the

element table item definition.

In order to explain the usage of element tables, an example based on the
PLANES5S5 element type is considered. In Table 5.1, the output quantities provided
by the element type PLANESS5 are given. Table 5.2 lists the results quantities acces-
sible through the element tables. For example, the heat flow rate per unit area across
the element faces caused by input heat flux, denoted by HFLXAVG in Tables 5.1
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Table 5.1 Output quantities provided by the PLANES55 element type

Name Definition

EL Element number

NODES Nodes: I, J, K, L

MAT Material number

VOLU Volume

XC,YC Location where results are reported

HGEN Heat generations HG(I), HG(J), HG(K), HG(L)

TG:X,Y, SUM Thermal gradient components and vector sum at centroid

TF:X, Y, SUM Thermal flux (heat flow rate/cross-sectional area) components
and vector sum at centroid

FACE Face label

AREA Face area

NODES Face nodes

HFILM Film coefficient at each node of face

TBULK Bulk temperature at each node of face

TAVG Average face temperature

HEAT RATE Heat flow rate across face by convection

HFAVG Average film coefficient of the face

TBAVG Average face bulk temperature

HFLXAVG Heat flow rate per unit area across face caused by input heat
flux

HEAT RATE/AREA Heat flow rate per unit area across face by convection

HFLUX Heat flux at each node of face

Table 5.2 Quantities obtained via the element table

Output quantity name Element table input
Item FC1 FC2 FC3 FC4

AREA NMISC 1 13 19
HFAVG NMISC 2 14 20
TAVG NMISC 3 15 21
TBAVG NMISC 4 10 16 22
HEAT RATE NMISC 5 11 17 23
HFLXAVG NMISC 6 12 18 24

and 5.2, is available for definition in the element tables. In Table 5.2, the match-
ing item for this quantity is given as NMISC, along with numbers 6, 12, 18, and
24 corresponding to different faces of the element. To store HFLXAVG at the 4"
face of each element, in the Define Additional Element Table Items dialog box, By
sequence num from the left list and NMISC from the right list must be selected.
Entering 24 in the text field underneath the right list ensures that the HFLXAVG at
the 4th face of each element will be stored in the element table.
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Element tables are plotted and listed using the following menu paths:

Main Menu > General Postproc > Element Table > Plot Elem Table
Main Menu > General Postproc > Element Table > List Elem Table

It is also possible to perform arithmetic operations within each column or between
the columns of the element table. Examples of such operations include: finding
absolute values, finding the sum of each element table item, adding and multiplying
element table items, etc.

5.3.6 List Results

Results of an ANSYS solution can be reviewed through lists. Although there are
numerous different options for listing the results under postprocessors, only two
of them are discussed in this section: nodal and element solutions. In order to list
results computed at the nodes, the following menu path is used:

Main Menu > General Postproc > List Results > Nodal Solu

which brings up the List Nodal Solution dialog box. Once the user makes a selection
as to what result quantities are to be reviewed and clicks on OK, the list appearsw in
a separate window. Similar to nodal solution listings, the element results are listed
by using the following menu path:

Main Menu > General Postproc > List Results > Element Solu

The usage of this option is similar to the nodal solution lists.

5.4 Example: One-dimensional Transient Heat Transfer

Consider the one-dimensional transient heat transfer problem shown in Fig. 5.17.
The problem is time dependent; therefore, in addition to thermal conductivity, the
specific heat and the density of the material are taken into account. The governing
equation for this problem is written as

orT o' < (5.1)

with the boundary and initial conditions

T(x=0,1)=T, =100
T(x=1,)=T, =0
T(x,t=0)=f(x)=0

(5.2)
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Fig. 5.17 One-dimensional transient heat transfer problem

The analytical solution for this problem is given by (Carslaw and Jaeger 1959,
pp- 99-100):

2T, -T. . 2 20
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/ 7Tn=1 n /

! (5.3)
2~ . nmx _a,,2,r2,/12jf( ) nnx'd
+= ) sin——e x')sin X'
P
0

/

where a =k / (pc). Substituting 7, =100, 7, =0, f(x)=0,/=2, k=1, p=10,
and ¢ =3, Eq. (5.3) yields

T(x,1)=100 —100% + 32(—@)sm%e"2”2’“m (5-4)

T\ n

When computing the exact solution using this equation, the number of terms, n, is
truncated at 40 for satisfactory convergence.

Subjected to the boundary conditions indicated in Fig. 5.18 in the time range
0 <t <35, this problem is solved by using two-dimensional PLANES55 elements in
ANSYS.

The model is generated by using 4 element divisions along the vertical bound-
aries and 20 element divisions along the horizontal boundaries. The temperature
variations along the midline at times 1=0.1, 0.5, and 5 are obtained by ANSY'S and
the exact solution is plotted.

Model Generation
» Specify the jobname as 1d_difusing the following menu path:
Utility Menu > File > Change Jobname

— In the dialog box, type Id_dif in the [/FILNAM] Enter new jobname text
field; click on the check box for New log and error files to show Yes; click on
OK.
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» Define the element type (ET command) using the following menu path:
Main Menu > Preprocessor > Element Type > Add/Edit/Delete

— Click on Add.

— Select Solid immediately below Thermal Mass on the left list and Quad
4node 55 on the right list; click on OK.

— Click on Close.

» Specify material properties (MP command) using the following menu path:
Main Menu > Preprocessor > Material Props > Material Models

— In the Define Material Model Behavior dialog box, in the right window, suc-
cessively left-click on Thermal, Conductivity, and, finally, Isotropic, which
brings up another dialog box.

— Enter 1 for KXX; click on OK.

— In the Define Material Model Behavior dialog box, in the right window, left-
click on Specific Heat, which brings up another dialog box.

— Enter 3 for C; click on OK.

— In the Define Material Model Behavior dialog box, in the right window, left-
click on Density, which brings up another dialog box.

— Enter 10 for DENS; click on OK.

— Close the Define Material Model Behavior dialog box by using the following
menu path:

Material > Exit
* Create the solid model:
— Create a rectangular area using the following menu path:

Main Menu > Preprocessor > Modeling > Create > Areas > Rectangle > By
Dimensions
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Fig. 5.19 Mesh used in the
analysis

— In the Create Rectangle by Dimensions dialog box, type 0 for X1, 2 for X2, 0
for Y1, and 0.5 for Y2, click on OK.

¢ Create the mesh:

— Specify the number of elements along the vertical boundaries using the fol-
lowing menu path:

Main Menu > Preprocessor > Meshing > Size Cntrls > ManualSize > Lines >
Picked Lines

— Pick the two vertical lines; click on OK.

— Element Sizes on Lines dialog box appears; type 4 in the text field correspond-
ing to NDIV (the second text field), and uncheck the first check box; click on
OK.

— Specify the number of elements along the horizontal boundaries using the
following menu path:

Main Menu > Preprocessor > Meshing > Size Cntrls > ManualSize > Lines >
Picked Lines

— Pick the two horizontal lines; click on OK.

— Element Sizes on Lines dialog box reappears; type 20 in the text field cor-
responding to NDIV (the second text field), and uncheck the first check box;
click on OK.

— Create the mesh using the following menu path:

Main Menu > Preprocessor > Meshing > Mesh > Areas > Mapped > 3 or 4 sided

— In the Pick Menu, click on Pick All.
— Figure 5.19 shows the mesh.

» Save the model using the following menu path:

Utility Menu > File > Save as Jobname.db

The model is saved under the name 1d_dif.db in the working directory.
Solution

* Specify the analysis type as transient using the following menu path:
Main Menu > Solution > Analysis Type > New Analysis

— Click on Transient; click on OK.
— A new dialog box appears; click on OK.
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» Specify temperature boundary conditions along the vertical boundaries using the
following menu path:

Main Menu > Solution > Define Loads > Apply > Thermal > Temperature >
On Nodes

— Pick Menu appears; click on the Box radio-button and draw a rectangle
around the nodes along the left vertical boundary; click on OK.

— Apply TEMP on Nodes dialog box appears; highlight TEMP, enter 100 for
VALUE Load TEMP value; click on Apply.

— Pick Menu reappears; click on the Box radio-button and draw a rectangle
around the nodes along the right vertical boundary; click on OK.

— Apply TEMP on Nodes dialog box reappears; highlight TEMP, enter 0 for
VALUE Load TEMP value; click on OK.

» Specify initial conditions within the domain using the following menu path:
Main Menu > Solution > Define Loads > Apply > Initial Condit’n > Define

— Pick Menu appears; click on Pick All.
— Define Initial Conditions dialog box appears; select TEMP on the Lab pull-
down menu; enter 0 in the VALUE text field; click on OK.

» Specify time parameters using the following menu path:
Main Menu > Solution > Load Step Opts > Time/Frequenc > Time—Time Step

— Time and Time Step Options dialog box appears.

— As shown in Fig. 5.20, enter 5 in the [TIME] Time at end of load step text
field and 5/100 in the [DELTIM] Time step size text field, and click on the
Stepped radio-button for [KBC]; click on OK.

» Specify output controls using the following menu path:
Main Menu > Solution > Load Step Opts > Qutput Ctrls > DB/Results File

— Controls for Database and Results File Writing dialog box appears.
— As shown in Fig. 5.21, click on the Every substep radio-button for FREQ
File write frequency; click on OK.

» Obtain solution using the following menu path:
Main Menu > Solution > Solve > Current LS

— Confirmation Window appears along with Status Report Window.

— Review status; if OK, close the Status Report Window and click on OK in the
Confirmation Window.

— Wait until ANSYS responds with Solution is done!
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ok | Cancal | Help |
Fig. 5.20 Time and time step options dialog box used in the analysis

General Postprocessing
» Review results at the end of first substep using the following menu paths:

Main Menu > General Postproc > Read Results > First Set Main Menu > Gen-
eral Postproc > Plot Results > Contour Plot > Nodal Solu

— Contour Nodal Solution Data dialog box appears; click on DOF Solution and
Nodal Temperature; click on OK.

— Fig. 5.22 shows the contour plot of the temperature distribution at # = 0.05 as
it appears in the Graphics Window.

* Review results at the “next” substep using the following menu paths:

Main Menu > General Postproc > Read Results > Next SetMain Menu > Gen-
eral Postproc > Plot Results > Contour Plot > Nodal Solu

— Contour Nodal Solution Data dialog box appears; click on DOF Solution and
Nodal Temperature; click on OK.

— Figure 5.23 shows the contour plot of temperature distribution at = 0.1 as it
appears in the Graphics Window.
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Fig. 5.21 Output controls dialog box used in the analysis
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Fig. 5.22 Temperature distribution contour plot at z=0.05

» Review results at = 0.5 using the following menu path:
Main Menu > General Postproc > Read Results > By Time/Freq

— As shown in Fig. 5.24, Read Results by Time or Frequency dialog box ap-
pears; enter 0.5 for TIME Value of time or freq; click on OK.
— View the temperature contours, as shown in Fig. 5.25.

* Review results at the “last” substep using the following menu paths:
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Fig. 5.23 Temperature distribution contour plot at r=0.1

Read Results by Time or Frequency
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- for harmonic elements

OK | Cancel | Help

Fig. 5.24 Read results by time or frequency dialog box used in the analysis

Main Menu > General Postproc > Read Results > Last Set Main Menu > Gen-
eral Postproc > Plot Results > Contour Plot > Nodal Solu

— Contour Nodal Solution Data dialog box appears; click on DOF Solution and
Nodal Temperature; click on OK.

— Figure 5.26 shows the contour plot of the temperature distribution at # =5 as
it appears in the Graphics Window.

* Review thermal flux vector plot at = 5 using the following menu path:

Main Menu > General Postproc > Plot Results > Vector Plot > Predefined

— Vector Plot of Predefined Vectors dialog box appears; select Thermal flux TF
on the right list and click on OK.
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Fig. 5.25 Temperature distribution contour plot at #=0.5
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Fig. 5.26 Temperature distribution contour plot at r=5

— Figure 5.27 shows the vector plot of the thermal flux as it appears in the
Graphics Window.

* Review results by path plots:

— Plot elements using the following menu path:
Utility Menu > Plot > Elements

— Turn node numbering on using the following menu path:
Utility Menu > PlotCtrls > Numbering

— Plot Numbering Controls dialog box appears; click on the check box for
NODE Node numbers to show On; click on OK.
— Define the path using the following menu path:

Main Menu > General Postproc > Path Operations > Define Path > By Nodes

— Pick Menu appears; pick nodes 47 (x=0, y=0.25) and 24 (x=2, y=0.25);
click on OK.

— Define Path By Nodes dialog box appears, as shown in Fig. 5.28; enter a
unique name (e.g., y025) identifying the path; click on OK.
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Fig. 5.27 Vector plot of thermal flux at =5
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Fig. 5.28 Defining path specifications

— Close the Path Status Information Window.
— Turn node numbering off using the following menu path:

Utility Menu > PlotCtrls > Numbering

— In the Plot Numbering Controls dialog box, click on the check box for NODE
Node numbers to show Off; click on OK.
— Plot the path on geometry using the following menu path:

Main Menu > General Postproc > Path Operations > Plot Paths
— Figure 5.29 shows the result of this action.

* Map the temperature results onto the defined path using the following menu
path:

Main Menu > General Postproc > Path Operations > Map onto Path

— Map Result Items onto Path dialog box appears, as shown in Fig. 5.30; enter
a unique name for the result item (e.g., #0235, note that this is different than the
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Fig. 5.29 Geometry plot of path Y025

m o |
[PDEF] Mag Result lems onto Path
Lab  Userlabel for item
tem,Comp Hem to be mapped
Flux & gradient
Elem table item
Average results across element W Yes
/PBC] Show boundary condilion symbol
Show path on gisplay ™ No

Fig. 5.30 Map result items onto path dialog box used for line plot of temperature along the path
Y025

name given for the path); select DOF solution from the left list and Tempera-
ture TEMP from the right list for the item; click on OK.
— Path plot the temperature results using the following menu path:

Main Menu > General Postproc > Path Operations > Plot Path Item > On
Graph

— Plot of Path Items on Graph dialog box appears; select 7025 from the list;
click on OK.

— Observe the temperature variation along the path y025 as it appears in the
Graphics Window, as shown in Fig. 5.31.

— Map the flux results onto the defined path using the following menu path:

Main Menu > General Postproc > Path Operations > Map onto Path

— Map Result Items onto Path dialog box appears, as shown in Fig. 5.32; enter a
unique name for the result item (e.g., g025); select Flux & gradient from the
left list and Thermal flux TFX from the right list for the item; click on OK.

— Path plot the flux results using the following menu path:
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Fig. 5.31 Temperature variation line plot along the path Y025 at =5
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Fig. 5.32 Map result items onto path dialog box used for line plot of flux along the path Y025
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Fig. 5.33 Flux variation line plot along the path Y025 at r=5
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Fig. 5.34 Path plot on geometry for the variation of flux

Main Menu > General Postproc > Path Operations > Plot Path Item > On
Graph

— Plot of Path Items on Graph dialog box appears; unselect 7025 and select
Q025 from the list; click on OK.

— Observe the flux variation along the path y025 as it appears in the Graphics
Window, as shown in Fig. 5.33.

— Finally, plot the flux on actual geometry using the following menu path:

Main Menu > General Postproc > Path Operations > Plot Path Item > On
Geometry

— Plot of Path Items on Geometry dialog box appears; select Q025 from the list;
click on OK.

— Fig. 5.34 shows the path plot of thermal flux as it appears in the Graphics
Window.
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Fig. 5.35 Time history variables dialog box
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Fig. 5.36 Nodes to be picked to review the time-dependent behavior of temperature and flux

Time History Postprocessing

» Review time-dependent behavior of temperature at nodes located at (0.1,0.25)
and (1.0,0.25) using the following menu path:

Main Menu > TimeHist Postpro

Time History Variables dialog box appears (Fig. 5.35).

Click on the button with the green plus sign at the top-left to define a variable.
Add Time History Variable dialog box appears.

Successively click on the items Nodal Solution, DOF Solution, and Nodal
Temperature; click on OK.

Pick Menu appears; pick the node located at x = 0.1,y =0.25 (as indicated in
Fig. 5.36); click on OK.

Note the new variable TEMP_2 in the Time History Variables dialog box.
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Fig. 5.37 Temperature variation over time at two nodes

* Add a new variable for temperature at the center node by clicking on the button
with the green plus sign and successively clicking on the items Nodal Solution,
DOF Solution, and Nodal Temperature; click on OK.

» Pick the node located at x =1,y =0.25 (as indicated in Fig. 5.36); click on OK.

» Note the new variable TEMP_3 in the Time History Variables dialog box.

» Highlight the rows TEMP_2 and TEMP_3 from the list (by pressing Ctrl on the
keyboard and clicking on the rows with the left mouse button); click on the third
from the left button to plot the time variation of these temperatures.

» The plot appears in the Graphics Window, as shown in Fig. 5.37.

» Review time-dependent behavior of thermal flux at nodes located at (0.1,0.25)
and (1.0,0.25).

— In the Time History Variables dialog box, highlight the rows TEMP_2 and
TEMP_3 from the list and click on the second from the left button (button
with a red cross) to delete the temperature variables.

— In order to add thermal flux variables, click on the button with the green plus
sign at the top-left to define a variable.

— Add Time History Variable dialog box appears.

— Successively click on the items Nodal Solution, Thermal Flux, and X-Com-
ponent of thermal flux:; click on OK.

— The Pick Menu appears; pick the node located at (x = 0.1,y =0.25) (as indi-
cated in Fig. 5.36); and click on OK.

— Note the new variable TFX 2 in the Time History Variables dialog box.
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Fig. 5.38 Flux variation over time at two nodes

— Add a new variable for thermal flux at the center node by clicking on the
button with the green plus sign and successively clicking on the items Nodal
Solution, Thermal Flux, and X-Component of thermal flux; click on OK.

— Pick the node located at (x =1, y =0.25) (as indicated in Fig. 5.36); click on
OK.

— Note the new variable TFX 3 in the Time History Variables dialog box.

— Highlight the rows TFX 2 and TFX_3 from the list (by pressing Ctrl on the
keyboard and clicking on the rows with the left mouse button); click on the
third from the left button to plot the time variation of these thermal fluxes.

— The plot appears in the Graphics Window, as shown in Fig. 5.38.

— Close Time History Variables dialog box.

Table 5.3 lists the temperature values along the midline ( y = 0.25) obtained by AN-
SYS (columns 2—4) and the analytical solution given by Eq. (5.4) (columns 5-7) at
times =0.1, 0.5, and 5. The analytical solution is obtained by using n =40 in the
series. Three separate ANSYS solutions are obtained with the final times #=0.1, 0.5,
and 5, each utilizing 100 equal time steps. Figure 5.39 shows a graphical compari-
son of the analytical and ANSYS solutions.
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Table 5.3 Temperature values along the midline (y=0.25) obtained by ANSYS and Eq. (5.4)
(t=0.1, 0.5, 5.0)

X ANSYS EXACT (n=40)

t=0.1 t=0.5 t=5.0 t=0.1 t=0.5 t=5.0
0.00 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000
0.10 24.2230 56.7890 88.1810 22.0671 58.3882 86.2490
0.20 3.7816 26.6910 72.7800 1.4306 27.3322 72.9034
0.30 0.4497 10.7250 60.1760 0.0239 10.0348 60.3332
0.40 0.0443 3.7954 48.6770 9.84E-05 | 2.8460 48.8422
0.50 0.0038 1.2112 38.5010 2.09E-06 |0.6170 38.6475
0.60 0.0003 0.3550 29.7610 1.88E-06 | 0.1015 29.8698
0.70 2.07E-05 0.0969 22.4760 1.73E-06 | 0.0126 22.5346
0.80 1.36E-06 0.0249 16.5800 1.56E-06 | 0.0012 16.5857
0.90 8.47E-08 0.0061 11.9450 1.40E-05 8.24E-05 11.9033
1.00 5.00E-09 0.0014 8.4047 1.24E-06 | 432E-06 | 8.3264
1.10 2.83E-10 0.0003 5.7753 1.09E-06 1.69E-07 | 5.6746
1.20 1.54E-11 6.94E-05 | 3.8761 9.43E-07 | 4.94E-09 | 3.7666
1.30 8.14E-13 1.46E-05 | 2.5411 8.08E-07 1.08E-10 | 2.4340
1.40 4.17E-14 3.00E-06 1.6271 6.80E-07 1.74E-12 1.5307
1.50 2.08E-15 6.00E-07 1.0169 5.58E-07 | 0.00E+00 | 0.9360
1.60 1.03E-16 1.17E-07 | 0.6187 4.41E-07 | 0.00E+00 | 0.5551
1.70 4.85E-18 2.25E-08 | 0.3628 3.27E-07 | 0.00E+00 | 0.3167
1.80 2.27E-19 4.24E-09 | 0.1981 2.17E-07 | 0.00E+00 | 0.1684
1.90 1.04E-20 7.61E-10 | 0.0868 1.08E-07 | —1.69E-14 | 0.0723
2.00 0 0 0 —8.39E-15 | —4.03E-15 | —3.85E-15

100 ©

—— ANSYS -t=0.1
=~ ANSYS-t=0.5
—— ANSYS -t=5.0
—=X=Exact -t=0.1
=X=Exact -t=0.5
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Fig. 5.39 Graphical comparison of ANSYS and analytical solutions



Chapter 6
Finite Element Equations

Finite element equations capture the characteristics of the field equations. Their
derivation is based on either the governing differential equation or the global energy
balance of the physical problem. The approach involving the governing differential
equation is referred to as the method of weighted residuals or Galerkin's method.
The approach utilizing the global energy balance is referred to as the variational
method or Rayleigh-Ritz method.

6.1 Method of Weighted Residuals

The method of weighted residuals involves the approximation of the functional be-
havior of the dependent variable in the governing differential equation (Finlayson
1972). When substituted into the governing differential equation, the approximate
form of the dependent variable leads to an error called the “residual.” This residual
error is required to vanish in a weighted average sense over the domain. If the
weighting functions are chosen to be the same as the element shape (interpolation)
functions used in the element approximation functions, the method of weighted
residuals is referred to as Galerkin’s method.

The governing differential equation for the physical problem in domain D
described in Fig. 6.1 can be expressed in the form

L)~ /=0 6.1)

where ¢ is a dependent variable and f is a known forcing function. The ordinary
or partial differential operator, L whose order is specified by p, can be linear or
nonlinear. The boundary conditions are given by

B;(¢)=g; onC, (6.2)

The online version of this book (doi: 10.1007/978-1-4939-1007-6_6) contains supplementary
material, which is available to authorized users
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rFy ¢(x9 )’)

C,, natural ____

boundary
conditions

. : y
C,, essential
boundary conditions

finite element mesh
of the domain

Fig. 6.1 Variation of the dependent (field) variable over a two-dimensional domain under speci-
fied boundary conditions

and

E($)=h, onC, (6.3)

in which B; and £ ; are operators, with j=1,2,3,..., p. The known functions &;

and &, prescribe the boundary conditions on the dependent vari-able and its deriva-

tives, respectively. The conditions on the dependent variable over C, are referred

to as essential or forced boundary conditions, and the ones involving the derivatives

of the dependent variable over C, are referred to as natural boundary conditions.
The method of weighted residuals requires that

[[t@-r]mdp=0, with k=123,...n 6.4)
D

where W, are the weighting functions approximating the dependent variable as
o9 =20, (6.5)
k=1

while satisfying the essential boundary conditions on C;. The unknown coefficients,
oy, are determined by solving for the resulting system of algebraic equations.
Since the governing differential equation is valid for the entire domain, D, par-
titioning the domain into subdomains or elements, D', and applying Galerkin’s
method with weighting functions W, = N ,Eg) over the element domain results in
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E
> [ NO(L(p9)- f)ap =0 (6.6)

e=1 D(e)

in which E is the number of elements and the superscript “e” denotes a specific ele-
ment whose domain is D'® . The approximation to the dependent variable within
the element can be expressed as

5O = i NG 67)
i1

or

5O = NOT o (6.8)
where

NOT (N NO N . N (6.9)

and
09T = {¢(e) ¢(e) ¢(e) ¢r(le)} (6.10)

with n representing the number of nodes associated with element e. The nodal
unknowns and shape functions are denoted by ¢ and N'®, with i=1,2,..,n,
respectively. The shape functions need not satisfy the boundary conditions; how-
ever, they satisfy the inter-element continuity conditions necessary for assembly of
the element equations. The essential boundary conditions are imposed after assem-
bling the global matrix. The natural boundary conditions are not imposed directly.
However, their influence emerges in the derivation of the element equations.

The required order of the element continuity is equal to one less than the highest
derivative of the dependent variable appearing in the integrand. This requirement
is relaxed by applying integration by parts in the minimization procedure of the
residual error in Galerkin’s method.

6.1.1 Example: One-Dimensional Differential Equation
with Line Elements

The application of Galerkin’s method is introduced by considering the ordinary
differential equation given by

d’ ¢(x)+¢( )= £(x)=0 (6.11)
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Fig. 6.2 Domain of the one-dimensional differential equation, discretized into £ elements

in domain D defined by 0 < x <1. The known forcing function is given by
f(x)=—x (6.12)

The boundary conditions, identified as the essential type, are ¢(0) =0 and ¢(1) = 0.
As shown in Fig. 6.2, the domain can be discretized with £ linear line elements,
each having two nodes (n = 2). There are a total of N nodes, and global coordinates
of each node in domain D are specified by x;, with i =1,2,..., N. Nodal values of
the dependent variable associated with element e are specified at its first and second
nodes by ¢(e) and ¢("), respectively.

The linear approximation function for the dependent variable in element e can
be expressed in the form

O = NOO 4 N g (6.13)
or
(/5(6) _ N(@)T(p(E) (6.14)
where
NOT _ {Nl(e) Née)} and (P(E)T — {¢](6) ¢2(€)} (6.15)

in which the shape functions are given by

(6.16)

They are the same as the length coordinates given by Eq. (3.9). Applying Galerkin’s
method by Eq. (6.6) leads to
MO
E

Z {d LEI) L 50— 1 |as (6.17)

xl( e
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Integrating the first term in the integral by parts results in

(e)
Xge) Xy

(&) ;7
_ | AN A
dx dx
9 (6.18)
(e)

i N© dg' (x)
dx

e=1 xl(e)

NO)

+I N (x)etx - j N f(x)de | =0

xl(e) xl(e)

X

Substituting for the element approximation function (¢© = N7 @) yields

E E
3K = 37§ (6.19)
e=1 e=l

where

B o e
KO | INT AN L [ NONET & (6.20)
dx dx T
xl(E) X
and
(e) (e)
X5 ~ 2
flo) _ N(e)f(x)dx ENG M (6.21)
@ e Jgo
1

X

After substituting for the shape functions and their derivatives, as well as the forc-
ing function, the expressions for the element characteristic matrix, k', and the
right-hand-side vector, f), become

xg‘))

el
A

xge)

(6.22)

Wono ),
X
WONO NN

(e)
x¢
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N© N 46 o) E
&) = _ I 772 D S (N 27 (6.23)
Né.E) Née) dx (e)

Evaluation of these integrals leads to the final form of the element characteristic
matrix, k'©, and the right-hand-side vector, f ©

©_ (o
X, — X,
k(e):_;[l -%Mf 1} (6.24)
1

(xge) _xl(e)) -1 1 6 2

and
£O — _l(x(e> _x(e>) 2x{) +27
6\"2 : xl(e) +2x§e)
5 - 6.25
4§ (xge)) Nl(e) (xge)) 4§© (xl(e)) Nl(e) (xl(e)) (6.25)
dx Nge) (xge) ) dx Nge) (xl(e) )
or
dq;(e) ©
(e) , (e) —— X
£(e) =—l(x§e) —x1(6)) P - ( 1 ) (6.26)
6 xl(e) +2x§e) dqg(e) (x(e))
o 2

The local and global nodes for the domain discretized with three elements, £ = 3,
and four nodes, N = 4, are numbered as shown in Table 6.1.

With the appropriate value of the nodal coordinates from Eq. (6.24) and (6.26),
the element characteristic matrices and vectors are calculated as

Ko 132 =33 (6.27)
18] =55 52

-1 73 (6.28)
18| =55 52
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Table 6.1 Element connectivity and nodal coordinates

Element Number (e) | Node 1 Node 2 xl(e) xée)

1 2 0 1/3
2 2 3 1/3 2/3
3 3 4 2/3 1

K® _L[ >2 —55] (6.29)

T 18]-55 52

RO

11
f(1)=5—4{2}+ dﬁ(l;‘zﬁ) (6.30)
dx
[ 45@0)3)
f(2>:si4{:}+ dﬁ”%ﬂ) 6.31)
a9 192 |13
| &

[ 430 2/3)
dx

7
RO
54 {8} + 590 (6.32)

4
dx

As reflected by the element connectivity in Table 6.1, the boxed numbers indicate
the rows and columns of the global matrix, K, and global right-hand-side vector,
F, to which the individual coefficients are added. The global coefficient matrix, K,
and the global right-hand-side vector, F, are obtained from the “expanded” element
coefficient matrices, k'©, and the element right-hand-side vectors, f @, by summa-
tion in the form

E E
K=Yk and F=) (6.33)

e=l e=1

The “expanded” element matrices are the same size as the global matrix but have
rows and columns of zeros corresponding to the nodes not associated with ele-
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ment (e). Specifically, the expanded form of the element stiffness and load vector

becomes

52

18] 0

S O N =

RONES

oS O o O

0

S O o O

=55 0 O
52 0 0
0O 0 O
0O 00
[ dgV(0)]
 x

dg"(1/3)

=1

(=]
=] [=] [S]

_d9?(/3)
dx

dg (2/3)
dx
o 4

0 0

o o |[2]
3]
[4]

52 55
-55 52

(6.34)

(6.35)

(6.36)

(6.37)

(6.38)



6.1 Method of Weighted Residuals 185

o [
0 0
(@ LJOL ) dg®2/3) (6.39)
547 It
811 d®
=224
| dx _

In accordance with Eq. (6.33) and (6.19), the assembly of the element characteristic
matrices and vectors results in the global equilibrium equations

1
52 -85 0 0 b =4 1
1]-55 52452 =55 0 ||gy =" =¢{7 | 1 |2+4
18] 0 =55 52452 55|45 - g _ 40 540547
0 0 55 52 8
¢y =95
dé“)(O)
(6.40)
4§V 1/3) W
i dx
+
@GP0 _agaTy
_a dx
d¢® (1)
dx
or
_d¢™M0)
52 =55 0 0 (¢ 1 dx
1|-55 104 =55 0 ||¢,| 1|6 0
— =— +
18| 0 55 104 -55||¢y| 54|12 0 (6.41)
0 0 55 52 ||¢y 8 d([;(”(l)
dx

or

Kb =F (6.42)
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Fig. 6.3 Comparison of the exact and FEA (approximate) solutions to the 1D differential equation

After imposing the essential boundary conditions, ¢, =0 and ¢, = 0, the global sys-
tem of equations is reduced by deleting the row and column corresponding to ¢; and

¢, » leading to

11104
18| =55

-557(¢,] 1 [6
104 ||¢, [ 5412
¢,] [0.05493
¢, _{0.06751}

The exact solution to the differential equation given by

Its solution yields

sin(x)
sin(1)

¢, [0.0555
¢ _{0.0682}

¢(x) =

provides

(6.43)

(6.44)

(6.45)

(6.46)

The exact and FEM calculations of ¢ along the x -axis are shown in Fig. 6.3.
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Fig. 6.4 The equilateral Y,
triangular domain

y=3x y=2-3x
: “ --x
/ 1 2°

6.1.2 Example: Two-Dimensional Differential Equation
with Linear Triangular Elements

6.1.2.1 Galerkin’s Method

The application of Galerkin’s method in solving two-dimensional problems with
linear triangular elements is demonstrated by considering the partial differential
equation given by

2 2
0 q;();’y)+a 2(’;’y)+A:0 (6.47)
¢ ly

in domain D, defined by the intersection of y=0,y=2- J§x ,and y= \/gx (as
shown in Fig. 6.4), where 4 =1.
The boundary conditions are specified as

n, PV =0) 0y (B=D)for0<x<2/3 (6.48)

.y ay
d(x,y=3x)=0 for 0<x<1/3 (6.49)
d(x,y=2-3x)=0 for 1/\3<x<2/3 (6.50)

When independent of time, these equations provide the temperature field, ¢(x, y),
due to heat conduction in a domain having a heat generation of 4 with one of its
boundaries subjected to a convective heat transfer. The thermal conductivity and the
film (surface) heat transfer coefficient are equal to unity, and the temperature of the
surrounding medium is B.
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Fig. 6.5 Local node number- 3,0,
ing for the linear triangular
element

¥y

-

2, ¢,
1, ¢,
> X

Fig. 6.6 Finite element dis- 3 (xs, }’3)

cretization of the domain

@O
(I], yl) 5 (xb yz)
(x5, y5)

—n,(0¢/dy)=¢—1

The triangular domain can be discretized into four linear triangular elements,
each having three nodes identified as 1, 2, and 3 (local node numbering), as illus-
trated in Fig. 6.5.

As shown in Fig. 6.6, the global coordinates of each node in domain D are
specified by (x;,¥;), with =1, 2, 3, 4, and 5. These coordinates are presented in
Table 6.2.

The nodal values of the dependent variable associated with the global coordi-
nates are denoted by ¢, (i=1, 2, 3, 4, and 5). As shown in Fig. 6.5, the nodal values
of the dependent variable associated with element e are specified at its first, second,
and third nodes by ¢{“), ¢3°, and ¢, respectively.

The linear element approximation function for the dependent field variable in a

[IPRE]

triangular element “e” is written as

5O = NOGO 1 OGO 4 NOgO (6.51)
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Table 6.2 Nodal coordinates

Global node number Nodal coordinates Nodal unknowns
! (0,0) ¢
2 (2//3,0) b
3 /3,1 s
4 1/3,1/3) A
> (1//3,0) és
or
(5(2) _ N(@)T(p(E) (6.52)

As derived in Chap. 3, the element shape functions in Eq. (3.17) are taken as

(e)
N (X3 =X302) Va3 X3 || 1
Née) =0 (s —xy3)  ya X3 1% (6.53)
N{© (nyy=x31) Yz X |y

where x,,, =X, —X,, Yy =V — Vu, and A is the area of the element computed
by

I 1 1
209 =|x, x, x (6.54)
Yioy2 N

Applying Eq. (6.6), Galerkin’s method, leads to

7(e) 2 7(e)
z (e) a ¢ (x y) ¢ gx ,)) +A | dedy=0 (6.55)
ox? oy
D(e)

Since the element approximation function is C° continuous, the second-order de-
rivatives in the integrand must be reduced by one so that the inter-element continu-
ity is achieved during the assembly of the global matrix. This reduction is achieved
by observing that

. 82 7(e) P . aN(e) aN(e) a~(9)
N()—a¢2 (x,y)=a(N()¢—(x,y) Wy 656
X

ox ox Ox
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and

. %6 P . 06© ON© 54©
N()(;;z(x,y)za(Nm‘g_y(x’y) e gy (x,y)  (6.57)

Their substitution into the integrand in Eq. (6.55) and rearrangement of the terms
result in

E (e) 7(e)

$ g[N@ %}i[w m} ey

g ox ox oy oy (6.58)
D(B)

oN(© aq}'(e) oN(© 8(/;(8)
o & &y oy

+ N(E)A} dedyt=0
D(E)

Applying the divergence theorem to the first integral renders the domain integral to
the boundary integral, and it yields

E ~ ~
£ §[[xom2 o[ x028 )o
—~ Ox oy
- (6.59)

c®

(e) p7(e) (e) A7(e)
_ONT 09T ONT 0T N4 dedyt=0
ox  Ox oy 0Oy
plo

where n)(f) and n;e) are, respectively, the x- and y-components of the outward nor-
mal vector along the closed boundary defining the area of the element, c.
Substituting for the element approximation function yields

E ~ ~
>4 N@ %' nff)+a¢(e) n® |ds
Ox oy 7

e=1
c©

(e) (T (e) (e)T
[[mon A e e
X X )y

D(e)

+ J' N© ddxay ! =0
D(f)
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This equation can be recast in matrix form as

E
3 (k€@ +£) + Q) =0 (6.61)
e=1

where

(e) (e)T (e) (e
KO | ON ON©T N N (6.62)
pol O0x  Ox oy Oy
£(0) = j N© Adxdy (6.63)
D(é’)
aq;(e) 5(5(6)
0 - N(e){ > ) 4 > Al |ds (6.64)
c©

in which k'© is the element characteristic matrix, f(¢) is the element right-hand-side
vector, and Q'® is often referred to as the inter-element vector that includes the
derivative terms along the boundary of the element. The boundary integral around
each element is evaluated in a counterclockwise direction, i.e., this boundary inte-
gral is the sum of three integrals taken along each side of the element.

Depending on whether the element has an exterior boundary or not, the inter-
element vector is divided into two parts

Q(e) — ng) +Q§€) (6.65)

in which Q(:) represents the contribution of the derivative terms specified along the
external boundary of the element C'?), and Q') represents the contribution from the
internal boundaries of the element shared with other adjacent elements. Because
each of the boundary integrals is evaluated in a counterclockwise direction, the
contributions coming from the vector Ql(.e) vanish when the global system of equa-
tions are assembled, thus no further discussion is necessary. However, in the case of
specified derivative boundary conditions, the contribution coming from Qge) must
be included.

In view of the boundary conditions given by Eq. (6.48) and the discretization of
the domain, the 1-5 side of element 1 and the 5-2 side of element 2 are subjected to
derivative boundary conditions.

With nfj) = nfcz) =0and »V = »® = _1, the contribution of the derivative bound-
ary conditions appearing in Eq. (6.64) leads to the inter-element vectors as

Q=  NO[B-gc s and @2 = § NO[B-gc]ds  (6.66)
c c?,
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where ¢ is the unknown value of the field variable on the external boundary of the
element C,, along which the derivative boundary condition is specified.
Approximating the unknown field variable, ¢¢, by ¢ = N7 () in these equa-

tions leads to

QS) _ q‘) N |:B _ N(I)T(p(l):|ds (6.67a)
iy
and
Q¥ = § N [ B_N(2)T(p(2)]ds (6.67b)
c

which can be rewritten as

Q= § NVBds—1 ¢ NONTds oM or Q) =g —nVg (6.68)

U i
and
ng) _ (js N(Z)Bds— ¢ N(Z)N(2)TBdS (p(z) (6.692)
) )
or
Q2 =g _p? (6.69b)
where
h® = § NONOds and h® = § NON"ds (6.70)
c, 52
and
gV = Cj) N Bds and g? = @ N® Bds (6.71)
) )

With this representation of the inter-element vector, the element equilibrium equa-
tions given by Eq. (6.61) can be rewritten in their final form as

(K40 =10 g0)
(K2 +h®)g? =@ 1 g (6.72)
K®p® —£®

K@ p® g
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With the derivatives of the shape functions obtained as

AN
Cox
AN 1
Cox
AN

ox

2@

Va3
V31
Yi2

oN©
oy
(e)
oy
AN

oy

193
X32
X3 (6.73)
X1

the evaluation of the area integrals in Eq. (6.62) and (6.63) by using Eq. (3.19) leads
to the final form of the element coefficient matrix, k(e), and right-hand-side vector,

f(e)
. x322 + J’223 X3pX13 F Vo3V31 XapXo1 + Va3V
e 2 2
k= IA@ X32%13 + V2331 X3+ V3 Xi3X1 T V31002 (6.74)
X3pX1 F Vo3l12 X3Xo1 V3 x;l +J/122
and
AA(e) I
22 ) (6.75)
1
Their numerical evaluation results in
(1 =1 0] 1
kY = ? -1 4 -3| and 0= ﬁ 1 (6.76)
|0 -3 3] 1
[4 -1 -3 1
kK :g -1 1 0| and @ = 181 ; 1 (6.77)
-3 0 3] 1
4 2 -6 1
Kk® = g 2 4 —6| and @ = 9\l/§ 1 (6.78)
-6 -6 12 1
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R 1
k(4):1—23 2 4 6| and f(4):_93/§ 1 (6.79)
6 -6 12 1

in which the area of each element is computed as

11 1

A(l)zég 1/8/5 1{;?:% (6.80)
1 1 1 1 ]

A(2>:51/(\)B 2/(\)/5 lé/\f:ﬁ (6.81)
1 1 1 1 1

A(3)=32/(;/§ 1/;/§ 1/1/\£§=m (6.82)
1 11 1

A(4):51/I/§ g 1{/\?:m (6.83)

Associated with the inter-element vector, the boundary integrals in Eq. (6.70) and
(6.71) are rewritten as

Nl(l)Nl(l) Nl(l)Ngl) Nl(l)N§l)
h_ O NOND Oy 6.84a
hO = @ [ NOND NOND NOND s (6.34a)
NOND NN N0y

eV = ¢ | ND Las (6.84b)
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and
N1(2) N® Nl(z) Ngz) NOND
2 2 2 2 2 2 2
W= ¢ | NIND NEND NOND |as

(6.85a)
NOND NOND NOND
o
N®
@ = NP s (6.85b)
N

in which N3(l) and N3(2) are zero along side 1-5 (with length Z, ;) and along side 5-2
(with length Z, ), respectively. The remaining shape functions N, N{, N{*, and
Néz) reduce to a one-dimensional form as

Nl(l) _ Lis—s and Nél) -5 (6.86)
-5 =5

N = Lsa=s 4 ND =S (6.87)
52 52

in which s is the local coordinate in the range of (0 <s < L, ) along side 1-5 and
(0<s<Ls,) along side 5-2, L, =1/4/3, and Ly, —1/+/3. With these shape

functions, the evaluation of h®" , g , h(z), and 7 leads to

| 210 | 1
W=——/1 2 0| and gV =—211 (6.88)

6V3 0 0 o 23,

and 1 2 1 0] 1 1
hW=——1 2 0| and g®@=—211 (6.89)

6v3 - & 725 0

Considering the correspondence between the local and global node numbering pre-
sented in Table 6.3, the element characteristic matrices and vectors can be rewritten
as
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Table 6.3 Element connectivity

6 Finite Element Equations

Element number (¢) | Node 1 Node 2 Node 3
1 1 5 4
2 5 2 4
3 2 3 4
4 3 1 4
Element 1:
1 1 1 1 1 1 1 1 1
)41 K+ k] (60) [0l
1 1 1 1 1 1 1 1 1
k) +hsy) k) +h) kg h |3 3+ g5 (6.90)
(1 (1 (1 (1 (1 (1) 1 1 O]
Y+ A k) +hG kY + R | o 37 +g;
Element 2:
2 2 2 2 2 2 2 2 2
P+ KD+ D i [0 [+l
2 2 2 2 2 2 2 2 2
KD+ R kR +n) K53 +h§3) o 3P+ g8 2] (6.91)
(2) , 22 71(2) , (2 2(2) | 1(2) (2) (2) (2)
ki’ + sy k3 +hy ksy sy || @ 37 +gs
Element 3:
3 3 3 3 3
kl(l) kl(z) k1(3) ¢1( ) fl( )
3 3 3 3 _ 6.92
) [ - €92
3 3 3 3 3
TR L 1 B A
Element 4:

4
iy
4
Ky
4
Ky

(4
kl2)
(4
k2
(4
k3

4 4 (4)
k|4 /i

4
kg

4 4 (4)
A 1 I P

(6.93)
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In the assembly of the element characteristic matrices and vectors, the boxed num-
bers indicate the rows and columns of the global matrix, K, and global right-hand-
side vector, F, to which the individual coefficients are added, resulting in

K® =F (6.94)
where
WKy o o
0 kS +h + Kk
K=| K G R
KD D DAY kD K kD
Wi KR o (6.95)
i + I+ k) k' +
k' + ) + k) ey + by
kS +kY 0
b ) e I k) k) e A
) + o + ki3 + B ey + oy + ki + i |
9404 p
) () ()
o /. fti ff)f (6.95b)
2t
04 g0y f(z> 1 gD 4 04 g
£ 48!+ 1P+ g
¢
¢
®=1¢, (6.95¢)
¢4
¢

After imposing the essential boundary conditions, the global system of equations
are reduced by deleting the rows and columns corresponding to ¢, ¢,, and ¢;, lead-
ing to

K )+ k) D)+ k) k) R ) kD A {%}
K+ ) + k3 = Y K )+ kD ) | 95

f(l) +g£1) +f3(2) +ggz) +f3(3) +f3(4) (6.96)
1 A A
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With the explicit values of the coefficients, the nodal unknowns, ¢, and ¢s, are
determined as

4
=—=0.14815 (6.97a)
%=5
¢5 = % =0.33333 (6.97b)
The expressions for h” and h® in Eq. (6.70) are derived based on a formulation

consistent with the derivation of the element coefficient matrices, k‘®. An alterna-
tive to the 1consistent formulation is the use of lumped diagonal matrices and ex-
pressing h®™ and h® in the form

NY o0

[poo
1 1
h® = o NP o di=—l0 30 (6.98)
M 00 0
0 0 N
i
and
2
N® o 0 30 0
h@ = 0 N® 0 lks=——l0 3 0
643 0 0 0 (6.99)

Replacing the components of h" and h® in Eq. (6.96) with the values obtained in
Eqg. (6.98) and (6.99), the nodal unknowns ¢, and ¢ are determined as

64 =%=0.13889 (6.100a)
11
§s =5 = 030556 (6.100b)

Note that the discrepancy in the value of ¢, and ¢, obtained from the two methods
is due to the small number of elements in the discretization of the domain.
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6.1.2.2 ANSYS Solution

The governing equations for a steady-state heat transfer, described by Eq. (6.47)
through (6.50), also can be solved using ANSYS. The solution procedure is outlined
as follows:

Model Generation

* Specify the element type (ET command) using the following menu path:
Main Menu > Preprocessor > Element Type > Add/Edit/Delete

— Click on Add.

— Select Solid immediately below Thermal Mass from the left list and Quad
4node 55 from the right list; click on OK.

— Click on Close.

» Specify material properties (MP command) using the following menu path:
Main Menu > Preprocessor > Material Props > Material Models

— In the Define Material Model Behavior dialog box, in the right window, suc-
cessively left-click on Thermal, Conductivity, and, finally, Isotropic, which
brings up another dialog box.

— Enter 1 for KXX, and click on OK.

— Close the Define Material Model Behavior dialog box by using the following
menu path:

Material > Exit
* Create nodes (N command) using the following menu path:
Main Menu > Preprocessor > Modeling > Create > Nodes > In Active CS

— Atotal of 5 nodes are created (Table 6.2).

— Referring to Table 6.2, enter x- and y-coordinates of node 1, and click on Ap-
ply. This action keeps the Create Nodes in Active Coordinate System dialog
box open. If the Node number field is left blank, then ANSYS assigns the
lowest available node number to the node that is being created.

— Repeat the same procedure for the nodes 2 through 5.

— After entering the x- and y-coordinates of node 5, click on OK (instead of Apply).

— The nodes should appear in the Graphics Window, as shown in Fig. 6.7.

* Create elements (E command) using the following menu path:

Main Menu > Preprocessor > Modeling > Create > Elements > Auto Numbered
> Thru Nodes

— Pick Menu appears; refer to Fig. 6.8 to create elements by picking three nodes
at a time and clicking on Apply in between.
— Observe the elements created after clicking on Apply in the Pick Menu.
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Fig. 6.7 Generation of nodes 3

Fig. 6.8 Generation of
elements

— Repeat until the last element is created.

— Click on OK when the last element is created.
* Review elements:

— Turn on element numbering using the following menu path:
Utility Menu > PlotCtrls > Numbering

— Select Element numbers from the first pull-down menu; click on OK.
— Plot elements (EPLOT command) using the following menu path:

Utility Menu > Plot > Elements

— Figure 6.8 shows the outcome of this action as it appears in the Graphics
Window.

— Turn off element numbering and turn on node numbering using the following
menu path:
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A

[D] Apply TEMP on Nodes
Lab2 DOFs to b2 constrained

Apply as |Constantvalue -
if Constant value fhen:

VALUE Load TEMP value D

oK Apply Cancel | Heip |

Fig. 6.9 Application of temperature boundary conditions on nodes

Utility Menu > PlotCtrls > Numbering

— Place a checkmark by clicking on the empty box next to NODE Node num-
bers.

Select No numbering from the first pull-down menu.
— Click on OK.
Plot nodes (NPLOT command) using the following menu path:

Utility Menu > Plot > Nodes

— Figure 6.7 shows the outcome of this action as it appears in the Graphics
Window.

Solution

* Apply temperature boundary conditions (Dcommand) using the following menu
path:

Main Menu > Solution > Define Loads > Apply > Thermal > Temperature >
On Nodes

— Pick Menu appears; pick nodes 1, 2, and 3 (Fig. 6.7); click on OK on Pick
Menu.

— Highlight TEMP and enter 0 for VALUE; click on OK (Fig. 6.9).

— Apply convection boundary conditions (SF command) using the following
menu path:
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[SF] Apply Film Coef on nodes [Constant value =]
If Constant valte then: f
[SF] Apply Bulk Temp on nodes [Consiam\ralue E|
If Constant value then:

VAL2! Bulk temperature

D

OK | Canoall Help |

Fig. 6.10 Application of convection boundary conditions on nodes

Main Menu > Solution > Define Loads > Apply > Thermal > Convection > On
Nodes

— Pick Menu appears; pick nodes 1, 2 and 5 along the boundary (Fig. 6.7); click
on OK on Pick Menu.

— Enter 1 for both VALI Film coefficient and VAL2I Bulk temperature; click
on OK (Fig. 6.10).

* Apply body load on elements (BFE command) using the following menu path:

Main Menu > Solution > Define Loads > Apply > Thermal > Heat Generat >
On Elements

— Pick Menu appears; click on Pick All.
— Enter 1 for VALI leave other fields untouched, as shown in Fig. 6.11.
— Click on OK.

* Obtain solution (SOLVE command) using the following menu path:

Main Menu > Solution > Solve >Current LS

— Confirmation Window appears along with Status Report Window.

— Review status. If OK, close the Status Report Window and click on OK in
Confirmation Window.

— Wait until ANSYS responds with Selution is done!
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[BFE] Apply HGEN on elems as a

If Constant value then:
STLOC Starting location N

|Constant value
=
VAL1 Load HGEN atlocN |:]
VALZ Load HGEN atloc N+1 |:]
VAL3 Load HGEN atloc N+2 |:]
VAL4 Load HGEN atloc N+3 |:

OK | Cancel Help I

Fig. 6.11 Application of heat generation condition on elements
Postprocessing

* Review temperature values (PRNSOL command) using the following menu path:
Main Menu > General Postproc > List Results > Nodal Solution

— Click on DOF Solution and Nodal Temperature; click on OK.
— The list appears in a new window, as shown in Fig. 6.12.

6.1.3 Example: Two-Dimensional Differential Equation
with Linear Quadrilateral Elements

6.1.3.1 Galerkin’s Method

In solving two-dimensional problems with quadrilateral isoparametric elements,
Galerkin’s method is demonstrated by considering the partial differential equation
given by

P(x.y) ) (6.101)
axZ 2
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File
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LOAD STEP=

i
TIME= 1.0000

TEMP

b
VALUE  0.38556

Fig. 6.12 Nodal solution for temperature

Fig. 6.13 Description of
domain, and boundary

MAXIMUM ABSOLUTE VALUES
NODE

PRINT TEMP NODAL SOLUTION PER NODE
wwuux POST1 NODAL DEGREE OF FREEDOM LISTING ww==x=

SUBSTEP= 1
LOAD CASE=

A

conditions

jaT] g7
Hla.
I
=

N/

/
da¢ —0

£

in domain D defined by the intersection of y = =3, x =—4, y =3,and y =3x—15. The
constant, 4, is known. As shown in Fig. 6.13, the flux vanishes along the boundary
of the domain specified by y = -3 and x = —4, and along the remaining part of the
boundary specified by y =3, and y =3x-15, the dependent variable, ¢(x, y), has a
value of unity. These boundary conditions are expressed as

¢(X,y)=1 for
0

—¢(x,y=-3)=0 for —4<x<4
ox

Eqb(x:—4,y):O for —3<y<3
ox

4<x<6,y=3x-15

(6.102)

(6.103)

(6.104)
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y
7 6 5
o ‘I:
@ ©)
9 X
—0 O »>
8 4
@ @

c FaY
1 Tz 3

Fig. 6.14 FEM discretization of the domain into four quadrilaterals

¢(x,y=3)=1 for —4<x<6 (6.105)

The domain is discretized with four linear quadrilateral isoparametric elements,
each having four nodes identified as 1, 2, 3, and 4, shown in Fig. 6.14. The nod-
al values of the dependent variable associated with element e are specified at its
first, second, third, and fourth nodes by qﬁl(e), ¢2(e), ¢3(e), and ¢, respectively. The
discretization of the domain with global node numbering is shown in Fig. 6.14.
The global coordinates of the nodal values of the dependent variable denoted by
¢, (i=1,2,...,9) are presented in Table 6.4.

The linear element approximation function for the dependent field variable in a

[T L)

quadrilateral isoparametric element “e” is written as

§O = NOHO OO0 NGO NS (6106
Table 6.4 Nodal coordinates
Global node number Nodal coordinates Nodal variables
43 4
2 0,-3) é,
3 4,-3) é,
4 (5,0) "
5 (6,3) é
6 (0,3) s
7 (-43) s,
8 (-4,0) b
9 (0,0) b
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1
E=-Ln=1 %t E=Ln=0

mapping
—> ‘

E=-1Lp=-1) (=1,p=-1)

Fig. 6.15 Local node numbering for a linear isoparametric quadrilateral element

or

59 = NOT ) (6.107)
where

N; 9

N ()

N@=1 2 ¢ and ¢ =1"% (6.108)

N (e)

3 3

Nge 5

in which the shape functions Nl(e), Né"), N3(e), and N, ff) are expressed in terms of the
centroidal or natural coordinates, (&,17), shown in Fig. 6.15. For a linear (straight-
sided) quadrilateral illustrated in Fig. 6.15, they are of the form

N© =%(1+§e§,.)(1+nn,.) with i=1,2,3,4 (6.109)

where &, and 7, represent the coordinates of the corner nodes in the natural coordi-

nate system, (51 = _13 = _1)3 (62 = 1’ n, = _1)9 (53 = l: n; = 1), and (64 = _17 Ny = 1)
Applying Eq. (6.6), Galerkin’s method, leads to

E 7(e) 7(e)
Z (e){a ¢ (x y) o ¢ gx J’) A|dxdy=0 (6.110)
o’ Oy

D(")
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Since the element approximation function is C° continuous, the second-order de-
rivatives in the integrand must be reduced by one so that inter-element continuity
is achieved during the assembly of the global matrix. This reduction is achieved by
observing that

. 82 7(e) P . a~(€) aN(e) aN(e)
N );;Z(X,J/)=a N )(g—x(xd/) _Fg_x(x’y) (6.111)

and
2 7(e) 7(e) (e) ~1(e)
N(e)%(x,y)zi N(e)%(x,y) _8N_%(x,y) (6.112)
oy y y a oy

Their substitution into the integrand in Eq. (6.110) and rearrangement of the terms

result in
) P 6(1;(6) P 6(]5(6)
S| |2 w02, 0[N0 8 g,
Ox ox Oy oy

e=1
(e)
b (6.113)

|:_ oN(©) Ggg(e) - oN(© a(ﬁ(e)

+NOA | dedyt=0
ox  Ox oy

p©

Applying the divergence theorem to the first integral renders the domain integral to
the boundary integral, and it yields

E ~ ~
)y N 9 n + N 9 ni) ds
= Ox oy

c© (6.114)

(e) 54 @ a4
_ONT o9 ONTT 06 +N© 4 dxdy ;=0
ox Ox oy 0oy
D(ﬂ’)

where n)(f) and nfve) are, respectively, the x- and y-components of the outward nor-
mal vector along the closed boundary defining the area of the element C'©.
Substituting for the element approximation function yields
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E ~ ~
Z N© 5¢(€) n'® + a¢(é’) ') |ds
o oy 7

e=1
c©

_aN(e) oN@T - oN®© oN@©T e 6.115)

Ve
Ox Ox oy 0

D(G)

- j N© Adxdy 't =0
D(ff)

This equation can be recast in matrix form as

E
Z(k(e)q)(e) _f© +Q(e))=0 (6.116)
e=l
where
© aN@T  sN© aN©T
K@ o | [N ONT  ONTO i dy (6.117)
Ox Ox Oy Oy
D(ff)
(e) _ (e)
i = I AN dx dy (6.118)
D(ﬁ’)
1(e) 7(e)
QW= NO| X0, 0 @]y (6.119)
ox o 7
c®

in which k® is the element characteristic matrix, f' is the element right-hand-side

vector, and Q(e) is often referred to as the inter-element vector that includes the
derivative terms along the boundary of the element. The boundary integral around
each element is evaluated in a counterclockwise direction, i.e., this boundary inte-
gral is the sum of four integrals taken along each side of the element.

Because the specified derivatives have zero values along the element boundar-
ies, the inter-element vector, Q(e) vanishes, i.e., Q(e) =0, thus reducing the element
equilibrium equations to

E
Z(kw)q)(e) _f(e>) ~0 (6.120)

e=l
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The integrals contributing to the characteristic element matrix, k(e), and the right-
hand-side vector, ', are evaluated over a square region in the natural coordinate

system after an appropriate coordinate transformation given by

=S NOEME and y= Y NOEm
i=1 i=1

Application of the chain rule of differentiation yields

oN© | [ax oy ][an®
o5 | |05 o0& || ox o
ovo || o e |]one with i=1,2,3,4

on on onJ| oy

or
@ 0
85 Nl»(e) -7 Ox Ni(e)
0 o
on oy

where J is called the Jacobian matrix. It can be expressed as

_ |:‘]ll J12:|
J21 J22

in which
ax e e e e
I 4{ A=m? + (1=t + A+ 1+l
_ oy 1 © © © ©
1- +(1- +(1+ 1+
275 4{( My~ +A=myy +1+n)y7 = (T+n)yy }
a‘x 1 e e e e
T == 1= O — (14 X + 1+ X + (1-E)x |
on 4

Iy = gy

SO e v va- )

(6.121)

(6.122)

(6.123)

(6.124)

(6.125)

(6.126)

(6.127)

(6.128)
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Also, the Jacobian can be rewritten in the form

(e) (e)
oN© N aN© N ]| aT n°

() ()
aN©  aN$  ON  aN© || X i

on on on on xff) yff)

or

xl(e) yl(e)

S 1{—(1—71) (1=m  (+m) —(1+n)} SRIRCY
4-1-9) 148 1+ (-8 Jx po

xf‘e) yie)

(6.130)

Because the transformation between the natural and global coordinates has a one-
to-one correspondence, the inverse of the Jacobian exists, and it can be expressed as

yo L2 o (6.131)
|J| -Jy I '

When the element is degenerated into a triangle by increasing an internal angle to
180°, J is singular at that corner. The inverse of the Jacobian matrix permits the
expression for the derivatives in terms of global coordinates

ON{®) ON{®
a | _ga) % (6.132)
ON® oN©
oy on
Defining the element shape matrix B as
aN©  oN{®  aN{© N d
B(e) _ ox Ox Ox ox _ Ox N(e)T (6.133)
N oNY  oNY aNy© | |9
Oy Oy oy oy y
permits the element matrix k' be written in the form
11
k© = - J' BOTBOdydy =— J' j BB [1]dedn (6.134)

Do) —-1-1
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A similar operation is performed for evaluation of (¢

11
1€ =4 [ NOaxdy=a] [ NOJ|azdn (6.135)
D@ -1-1

Due to the difficulty of obtaining an analytical expression for the determinant and
inverse of the Jacobian matrix, these integrals are evaluated numerically by the
Gaussian integration technique described in detail in Sec. 3.6.

Prior to the calculation of the element characteristic matrices, their Jacobian ma-
trices are obtained for each element using Eq. (6.130) as

-4 -3
J(l):l{_(l_n) (I-n) (A+n) —(1+77)} 0 -3
4

-(1-¢) —(1+&) 1+8) 1-5 ] 0 0
4 0 (6.136)

Z%F 2} with ‘J(l)‘:3

0
0 -3
J(z)zl{—(l—n) (=) (1+m) —(1+n)} 4 -3
4-(1-¢) —(1+5) dA+5) (A=) |5 0
0 0| (6137
_1{9+n 0 _ @|_3
_Z|:1+§ 6} Wlth‘J ‘—8(9+17)
00
J(3):1{—(l—n) (1-m) (1+n) —(1+17)} 50
4 -(1-8) —-(1+8) (1+5) (1-8) J|6 3
0 3] (6139
_1_114-11 0 . ) _é
=7 1+e 6} with |3 ‘_S(IH”)
4 0
J@ _1[-0=m a=m d+m) ~A+my] 0 0
41-(1-8) —(1+S) A+&) (A-8 |0 3 (6.139)
4 3

%E 2} with ‘J(4)‘:3
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The inverse of the Jacobian matrices are obtained as

1
[ Jm]‘l _4|8 (6.140)
1
0 =
6
[J(Z)TI: 4 [6 0 } (6.141)
609+n) -(1+5) 9+n
[s0]" =2 {6 0 } (6.142)
6(11+n)|—(1+¢&) 11+n
1
ORI ' 6.143
[ = 1 (6.143)
0o =
6
The element shape matrices g(e) are obtained as
1 1
“Laem) ta-m taemy —tasm
BV —| 8 8 8 8 (6.144)
1 1 1 1
—3(1—5) —g(l+§) g(1+§) g(l—é)
| -(1-n) (I-n) (I+n)  —(+n)
B = (6.145)

9| -(-SEem) ~10+E) T4 S(5-45+n)

o | —(1-n) (I1-n) (I+n) —(+n)
BY = —

[en|-3(6-66+m) 20+8) 1a+8) (6-55+y)| 6140

1 1 1 1
—g(l—n) g(l—n) §(1+71) —§(1+77)
1 1 1 1
—8(1—5) —g(1+5) g(1+§) g(l—f)

B@ — (6.147)

Numerical evaluation of the element characteristic matrices results in
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0.688943  —0.0222762 —0.282179 —0.384488
K® _ —-0.0222762  0.85561  —0.384488 —0.448846
-0.282179  —-0.384488  0.60759  0.0590766
—0.384488  —0.448846  0.0590766 0.774257

0.753348 0.0799856 —0.316655 —0.516679
K® _ 0.0799856  0.920014 —-0.516679 —0.483321
-0.316655 —0.516679 0.680566  0.152768
-0.516679 —-0.483321 0.152768  0.847232

[ 25 1 25 23]
36 36 72 72
1 25 23 25
K@ = 36 36 72 T2
25 23 25 1
72 72 36 36
23 25 1 25
L 72 72 36 36

Similarly, the right-hand-side vectors are calculated as

213

(6.148)

(6.149)

(6.150)

(6.151)

3 3.25 4 3

ORI e SO Rl SO B S T B El S (R E5)
3 4.25 3
3 35 4.25 3

The element definitions (or connectivity of elements), as shown in Fig. 6.14, are

presented in Table 6.5.
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Table 6.5 Element connectivity

6 Finite Element Equations

Element number | Node 1 Node 2 Node 3 Node 4
(e)

1 1 2 9 8

2 2 3 4 9

3 9 4 5 6

4 8 9 6 7

Considering the correspondence between the local and global node numbering as
shown in Table 6.5, the element equations can be rewritten as

[P CI

a 1
ku) kl(z)

Element 1: kéll) kélz)

M 40
k31 k32
M 40
_k41 k42

(2 2
kY kD

Element 2: kg) kg)

Element 3:

Element 4:

i 2 i 2
3(1) ?SZ)

2 2
_k(“) k(12)

ol 4]

KD
G
6
K

[o]

KD KD
M H
MDA
KK

0
g
o
.

]
k1(1)

2
k§1)

2
k3(1)

o
g

(1
L74 ]

2
Crll

6

)

3
k§4)
3
k§4)

3
ki ]

A
o

4
)

4
a

4
kg |1

O]
2

(1
3

— | £®
2

—| £®
2

— | r®
2

Ffl(l) 5

)
2

f3(1)

(1)
/4

,fl(z) <

fS(Z)

[eo] [o] ] =]

(2)
/4 ]

,][1(3) 7

f3(3)
3
4]

—fl(“) 5

f3(4)

(4)
L/4

Rl ] & [ = [E e o] =] =] o]

(6.153)

(6.154)

(6.155)

(6.156)
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In the assembly of the element characteristic matrices and vectors, the boxed num-
bers indicate the rows and columns of the global matrix, K, and global right-hand-
side vector, F , to which the individual coefficients are added, resulting in

KD gD 0 0 0 0 0
kKK KD KD 0 0 0
0 S - R 7 0 0 0
0 kY KD KDY KD KD 0
0 0 0 K)o kD k) 0
o0 0 kY kY KR KD
0 0 0 0 0 KD kD
O S S R (L i1
KO Dk 1D AR HD D KD
(6.157)
0 W %
I A
! @ | s
0 CRE b4 52+ 1Y
0 Ky b5 (= £
Ky kY + k5 b6 72+ 1Y
9 g | 0
ek e || | e
N R I I VLRSIV

or
KO =F (6.158)

the global stiffness matrix and right-hand-side vector are numerically evaluated as



(6.159)

(6.160)
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[ 0.694444  —0.0277778 0 0
—-0.0277778 1.38339 —-0.0222762 —0.282179 0

0 —0.0222762 0.85561 —0.384488 0
0 -0.282179  —0.384488 1.5276 -0.516679
K= 0 0 -0.516679  0.680566
0 0 -0.483321 0.152768
0 0 0 0
-0.319444  —0.347222 0 0
_—0.347222 —0.703932  —-0.448846  0.139062 —0.316655
0 0 —0.319444  -0.347222 |
0 0 —-0.347222  -0.703932
0 0 0 —0.448846
—0.483321 0 0 0.139062
0.152768 0 0 —-0.316655
1.54168 -0.0277778 —-0.347222 -0.836123
—-0.0277778 0.694444 -0.319444  -0.347222
—0.347222 -0.319444 1.38889 —0.0555556
-0.836123  —0.347222  —-0.0555556 291649 |
and
6.25
3.25
7.5
F=:4.25
7.25
13.5

After imposing the essential boundary conditions, i.e., ¢; =¢, =¢s =@ = ¢; =1,
the global system of equations is reduced by deleting the rows and columns cor-
responding to ¢s, ¢, é5, ¢4, and ¢, leading to
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K kY Ky Ky #
RV I 1
Y N Rt R A
T T v M 1L
70
A A0 D -4
- R AR SN (6.161)

1 2 3 4 2 2 3
A 12 50 19K (k2 4

(3) 34 ® S
— ki3 _(k14 +hy3 )_k24

which is numerically evaluated as

0.694444  —0.0277778 —0.319444  —0.347222
| —0.0277778  1.38339 -0.347222  -0.703932

—0.319444  -0.347222 1.38889  —0.0555556 (6.162)
—0.347222  —-0.703932 —0.0555556  2.91649
and 3
P 6.55446
~ 16.66667 (6.163)
15.3098
Finally, the solution of the reduced global system yields
o 15.8119
13.5401
9| _ (6.164)
IS 12.2471
&y 10.6332

6.1.3.2 ANSYS Solution

The governing equations for a steady-state heat transfer, described by Eq. (6.101)
through (6.105), also can be solved using ANSYS. The solution procedure is out-
lined as follows:
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Fig. 6.16 Generation of 7 3 5
nodes ’ ’ '
8 g X 4

Model Generation
* Specify the element type (ET command) using the following menu path:
Main Menu > Preprocessor > Element Type > Add/Edit/Delete

— Click on Add.

— Select Solid immediately below Thermal Mass from the left list and Quad
4node 55 from the right list; click on OK.

— Click on Close.

» Specify material properties (MP command) using the following menu path:
Main Menu > Preprocessor > Material Props > Material Models

— In the Define Material Model Behavior dialog box, in the right window, suc-
cessively left-click on Thermal, Conductivity, and, finally, Isotropic, which
brings up another dialog box.

— Enter 1 for KXX, and click on OK.

— Close the Define Material Model Behavior dialog box by using the following
menu path:

Material > Exit
* Create nodes (N command) using the following menu path:
Main Menu > Preprocessor > Modeling > Create > Nodes > In Active CS

— A total of 9 nodes will be created (Table 6.4).

— Referring to Table 6.4, enter x- and y-coordinates of node 1, and Click on
Apply. This action will keep the Create Nodes in Active Coordinate System
dialog box open. If the Node number field is left blank, then ANSY'S will as-
sign the lowest available node number to the node that is being created.

— Repeat the same procedure for the nodes 2 through 9.

— After entering the x- and y-coordinates of node 9, click on OK (instead of
Apply).

— The nodes should appear in the Graphics Window, as shown in Fig. 6.16.
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Fig. 6.17 Generation of y | - L]
elements

e Create elements (E command) using the following menu path:

Main Menu > Preprocessor > Modeling > Create > Elements > Auto Numbered
> Thru Nodes

— Pick Menu appears; refer to Fig. 6.17 to create elements by picking four
nodes at a time and clicking on Apply in between.

— Observe the elements created after clicking on Apply in the Pick Menu.

— Repeat until the last element is created.

— Click on OK when the last element is created.

* Review clements:
— Turn on element numbering using the following menu path:
Utility Menu > PlotCtrls > Numbering

— Select Element numbers from the first pull-down menu; click on OK.
— Plot elements (EPLOT command) using the following menu path:

Utility Menu > Plot > lements

— Figure 6.17 shows the outcome of this action as it appears in the Graphics
Window.

— Turn off element numbering and turn on node numbering using the following
menu path:

Utility Menu > PlotCtrls > Numbering

— Place a checkmark by clicking on the empty box next to NODE Node num-
bers.

Select No numbering from the first pull-down menu.

— Click on OK.

Plot nodes (NPLOT command) using the following menu path:
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[D] Apply TEMP on Nodes
Lab2 DOFs to be constrained

Apply as
If Constant value then:
VALUE Load TEMP value

Fig. 6.18 Application of temperature boundary conditions on nodes

Utility Menu > Plot > Nodes

— Figure 6.16 shows the outcome of this action as it appears in the Graphics Window.

Solution

» Apply temperature boundary conditions (D command) using the following menu
path:

Main Menu > Solution > Define Loads > Apply > Thermal > Temperature >
On Nodes

— Pick Menu appears; pick nodes 3 through 7 along the boundary (Fig. 6.16)
and click on OK on Pick Menu.
— Highlight TEMP and enter I for VALUE; click on OK (Fig. 6.18).

* Apply body load on elements (BFE command) using the following menu path:

Main Menu > Solution > Define Loads > Apply > Thermal > Heat Generat >
On Elements

— Pick Menu appears; click on Pick All.
— Enter I for VALI (leave other fields untouched, as shown in Fig. 6.19).
— Click on OK.

* Obtain solution (SOLVE command) using the following menu path:
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[BFE] Apply HGEN on elems as a [Constant value =

If Constant value fhen:
STLOC Starting location N

VAL1 Load HGEN atlocN

VAL2 Load HGEN atloc N+1
VAL3 Load HGEN atloc N+2
VAL4 Load HGEN atloc N+3

il

Fig. 6.19 Application of heat generation condition on elements

Main Menu > Solution > Solve > Current LS

— Confirmation Window appears along with Status Report Window.

— Review status/ If OK, close the Status Report Window and click on OK in the
Confirmation Window.

— Wait until ANSYS responds with Solution is done!

Postprocessing

» Review temperature values (PRNSOL command) using the following menu path:
Main Menu > General Postproc > List Results > Nodal Solution

— Click on DOF Solution and Nodal Temperature; click on OK.
— The list will appear in a new window, as shown in Fig. 6.20.
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CAPRNSOL Command =

I
PRINT TEMP NODAL SOLUTION PER NODE
»wwwx POST1 NODAL DEGREE OF FREEDOM LISTING wwwmxx

LOAD STEP= 1 SUBSTEP= 4
TIME= 1.0000 LOAD CASE=

NODE TEMP
15.812
13.541
1.0000
1.0000
1.0000
1.0000
1.0000
12.247
10.634

MAXIMUM ABSOLUTE VALUES
NODE 1
VALUE 15.812

0

LCO~JNUNFH~ W=

Fig. 6.20 Nodal solution for temperature

6.2 Principle of Minimum Potential Energy

Galerkin’s method is not always suitable for all structural problems because of dif-
ficulties in mathematically describing the structural geometry and/or the boundary
conditions. An alternative to Galerkin’s method is the principle of minimum poten-
tial energy (Washizu 1982; Dym and Shames 1973).

The energy method involves determination of the stationary values of the global
energy. This requires the approximation of the functional behavior of the dependent
variable so that the global energy becomes stationary. The stationary value can be
a maximum, a minimum or a neutral point. With an understanding of variational
calculus, the minimum stationary value leading to stable equilibrium (Fig. 6.21) is
obtained by requiring the first variation of the global energy to vanish.

Avoiding the details of variational calculus, the concepts of differential calculus
can be used to perform the minimization of the global energy. In solid mechanics,
this is known as the principle of minimum potential energy, which states that among
all compatible displacement fields satisfying the boundary conditions (kinemati-
cally admissible), the correct displacement field satisfying the equilibrium equa-
tions is the one that renders the potential energy an absolute minimum. A solution
satisfying both equilibrium equations and boundary conditions is, of course, “ex-
act”; however, such solutions are difficult, if not impossible, to construct for com-
plex problems. Therefore, approximate solutions are obtained by assuming kine-
matically admissible displacement fields with unknown coefficients. The values of
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7 (x)

'y

maximum ~ unstable
equilibrium

neutral

minimum ~ stable equilibrium

> X

Fig. 6.21 Schematics of stable, neutral, and unstable equilibrium points of the global energy

Fig. 6.22 A 3D body with
displacement constraints,
body and concentrated forces,
and surface tractions

these coefficients are determined in such a way that the total potential energy of the
system is a minimum.

The principle of virtual work is applicable for any material behavior, whereas
the principle of minimum potential energy is applicable only for elastic materials.
However, both principles yield the same element equations for elastic materials.

The total potential energy of the structural system shown in Fig. 6.22 is defined
as

7, =W +0 (6.165)

in which I is the strain energy and € is the potential energy arising from the pres-
ence of body forces, surface tractions, and the initial residual stresses. Strain energy
is the capacity of the internal forces (or stresses) to do work through strains in the
structure.

For a linear elastic material, the strain energy of the deformed structure is given
by

W:%;[(s—s*)Tch (6.166)
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where A is the vector of stress components arising from the difference between the
total strains, g, and initial strains, ¢ . It can be expressed as

G:D(s—e*) (6.167)
in which
o = {O'XX O,, 0, Oy Oy sz} (6.168)
and
ST = {gxx gyy & yxy yyz Vzox } (6 ! 69)
and the material property matrix
l-v. v v 0 0 0 |
1-v 0 0 0
v l-v 0 0 0
p.—_E 10 0o o0 =2 0 (6.170)
A+v)(1-2v) -
0 0 0 a-2v) 0
2
0 0 0 0 0 @

where 0;; and &;; represent the stress and strain components, with i, j = x, y, z being
the Cartesian coordinates. The elastic modulus and Poisson’s ratio are denoted by
E and v, respectively. In the presence of temperature change, the initial strains can
be expressed as

¢ ={aAT oAT aAT 0 0 0 (6.171)

where o is the coefficient of thermal expansion and AT is the temperature change
with respect to a reference state.

The potential energy arising from the presence of body forces, b, surface trac-
tions, T, and the initial residual stresses, o, is given by

Q= —judeV - j u'Tds + jafc*dV (6.172)
v S, v

with
sz{bx b, bz} (6.173)
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7 ={1, 7, .| (6.174)
u :{ux u, uz} (6.175)

in which b, b,, and b_ are the components of body force (in units of force per
unit volume), and 7,, 7, and 7, represent the components of the applied traction
vector (in units of force per unit area) over the surface defined by S_. The entire
surface of the body having a volume of J is defined by S, with segments S, and S
subjected to displacement and traction conditions, respectively. The displacement
components are given by u,, u 3 and u, in the x-, y-, and z-directions, respectively.
Also, included in the expression for the total potential is the initial residual stresses
denoted by ". The initial stresses could be measured, but their prediction without
full knowledge of the material’s history is impossible.

After partitioning the entire domain occupied by volume J into £ number of ele-
ments with volume ¢, the total potential energy of the system can be rewritten as

E
7 () = D (g uy, ) (6.176)

e=1
in which

ngf):% I ' Dedv - I aTDa*dV+% I Y

(e) (e) (e)
4 g : (6.177)
- j u'bav - j u Tds + j Lot dy

V(é’) SL(;-’) V(e)

where the superscript e denotes a specific element.
Based on kinematical considerations, the components of the total strain vector, g,
in terms of the displacement components are expressed as

i 0 o0
ox
0
e 0O — 0
XX ay
Eyy 0 o 2\,
£, P L (6.178)
Yo = FR u,r or ¢=Lu
u
Vye| | P :
7o) o 22
oz Oy
9 4, 9
| Oz Oox |
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in which L is the differential operator matrix.

The finite element process seeks a minimum in the potential energy based on the
approximate form of the dependent variables (displacement components) within
each element. The greater the number of degrees of freedom associated with the
element (usually means increasing the number of nodes), the more closely the solu-
tion will approximate the true equilibrium position. Within each element, the ap-
proximation to the displacement components can be expressed as

n
) 7O =3 N

r=1

~ u(e) — ZN(E) (e) (6.179)

ul® ~il® = ZNﬁe)uS)

r=1

with n representing the number of nodes associated with element e. The nodal un-
knowns and shape functions are denoted by u(e) (“T) © and N, (), respectively. In
matrix form, the approximate displacement components can be expressed as

i® =NOTy®© (6.180)
in which
ﬁ(e)TZ{LNI,(f) ﬁ;e) ﬁge)} (6.181)
NN O 0 N 0O 0 ... N, 0 0
NOT—lo N O O N, O ... O N, 0 (6.182)
00 N 0 0 Ny ... 0 0 N,
U(e)rz{u@) 4O @ @ @ e e (@ u(e)} (6.183)
X N Z X2 Y2 2 Xn Yn Zn

With the approximate form of the displacement components, the strain components
within each element can be expressed as

c ~BOU® (6.184)

where

B© = LN©T (6.185)
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leading to the expression for the total potential in terms of element nodal displace-
ments, U©

7© _Lyergeye _ygerge 1 [ €7pe"ar (6.186)
2

V(E)

in which the element stiffness matrix, k¢, and the element force vector, p(e), are
defined as
k' = I B DBV (6.187)
V(C')

and

p© =p{© +pt +p<e> pie) (6.188)

with P s p(Te), Pg ,and P * representmg the element load vectors due to body forces,
surface tractions (forces) initial strains, and initial stresses, respectively, defined by

= [ NObar

@
py = [ NOTas

S (6.189)
pii) = J- BT De*ay

748

P = I BOT 54
4%

Evaluation of these integrals results in the statically equivalent nodal forces in the

elements affected by the body force, the surface tractions, and the initial strains and
initial stresses. In the presence of external concentrated forces acting on various
nodes, the potential energy is modified as

E E
17 () T ( (©) 4 ple) 1 p(© <e))
=—U k U-U +py’ +P . P,
) {Z pALS P Py (6.190)

e=1 e=1
1< r
+= e De'dv
2
e=1 o)

where P, is the vector of nodal forces and U represents the vector of nodal displace-
ments for the entire structure. Note that each component of the element nodal dis-
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placement vector, U'®), appears in the global (system) nodal displacement vector,
U. Therefore, the element nodal displacement vector U'® can be replaced by U
with the appropriate enlargement of the element matrices and vectors in the expres-
sion for the potential energy by adding the required number of zero elements and
rearranging. The summation in the expression for the potential energy implies the
expansion of the element matrices to the size of the global (system) matrix while
collecting the overlapping terms.
Minimization of the total potential energy requires that

{a&} -0 (6.191)
ou

leading to the system (global) equilibrium equations in the form

KU=P (6.192)

in which K and P are the assembled (global) stiffness matrix and the assembled
(global) nodal load vector, respectively, defined by

E
K=k (6.193)
e=1
and
E
P=3 "y +py +p'Y —p!) P, (6.194)

e=1

This global equilibrium equation cannot be solved unless boundary constraints are
imposed to suppress the rigid-body motion. Otherwise, the global stiffness matrix
becomes singular.

After obtaining the solution to the nodal displacements of the system equilibrium
equations, the stresses within the element can be determined from

c=DBYUY -D¢ +o" (6.195)

The global stiffness matrix and the load vector require the evaluation of the inte-
grals associated with the element stiffness matrix and the element nodal load vector.

6.2.1 Example: One-Dimensional Analysis with Line Elements

The application of this approach is demonstrated by computing the displacements
and strains in a rod constructed of three concentric sections of different materials.
As shown in Fig. 6.23, the rod has a uniform cross section and is subjected to a
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Fig. 6.23 Arod constrained —L, dle—— L, —ple— L, —»|

at both ends, subjected to a

concentrated force / o | ® P=—] 6] ’/_;
» L »

Fig. 6.24 Finite element 1 @ 2 ) 3 ©) 4

discretization of the rod with O O O O

three elements x,=0 X, X3 Xy

concentrated horizontal load, P, at the second joint, and the boundary conditions are
specified as u (x=0)=0 and u (x=L)=0.

The domain is discretized with 3 linear line elements having two nodes, as
shown in Fig. 6.24. The global coordinates of each node in domain D are specified
by x;, with i =1,2,3,4. The nodal values of the dependent varlable associated with
element e are specified at its first and second nodes by u “and u respectlvely

For the domain discretized with three elements and four nodes the local and
global nodes are numbered as shown in Table 6.6.

Within each element, the approximation to the displacement component can be
expressed as

2
u)(ce) ~ ﬁie) — er(e)u)((@) (6.196)

r=1

The nodal unknowns and shape functions are denoted by u ) and N, © , respectively.
In matrix form, the approximate displacement components can be expressed as

i® =NOTy®© (6.197)
with
4@
N@T _ {N(e) N(e)} and U® =) " (6.198)
1 2 4©
2
in which the shape functions are
(e) (e)
x5 —x X—x
NO=2 ~  and NO=— "1 (6.199)
1 xge) _ xl(e) 2 xge) _ x1(e)

With the approximate form of the displacement components and L =0/ 0x, the
shape matrix can be obtained from
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Table 6.6 Local and global node numbers

Element number (e) Node 1 Node 2
1 1 2
2 2 3
3 3 4
0
B© — = [ N Ngﬂ (6.200)

For a constant cross section, 4, and elastic modulus, £, in each element, the
element stiffness matrix is

k(e): '[ B(e)TDB(e) dv
V(e)
9 (6.201)
o | N P
4@ | £ E(e)—[Nl(e) Ngﬂdx
ox| N ox
(e) z

X

Substituting for the shape functions, the element stiffness matrix becomes

NO)

2
o AVED f {1 ‘1}& (6.202)

2 [
(xge>—xfe>) o

Integration along the element length results in

KO AQE®© {1 —1}__A(6)E(E){l —1}

(xge)_xl(e)) -1 1 0 -1 1
__ et
11

in which (¥ = (x{¥) — x{?)and &'¥ = 4V E(©) / [“). The element stiffness matrices
are computed as

(6.203)

KD = [ oV —a ] (6.204)

oV M
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Fig. 6.25 A typical linear T T
. . — O— O —» by

line element with two nodes X;

k® :[ o _“(2)] (6.205)

_q? @

k® :[ o - ] (6.206)
EPVE) RN

The element load vector, PT due to the unknown nodal forces, T ~and T “at nodes
jand j,respectively (Fig. 6.25), can be obtained from

(©) © M (x - xl(e))
Py = sgjo NOTS = eT— T,
Nl(e) (x xée))

(e) (e) T,
Ny° (x x5 )

(6.207)

Evaluating the shape functions results in a load vector of the form

-1 0
p’(re) :{ 0 }Tzq +{1}Tx2
(6.208)
1, (0] [Ty
= =+ =
0 sz sz
Associated with each element, the load vectors become

T T T,
®_) " @_) x 3 _ (6.209)
2 3 4

The global coefficient matrix, K, and the load vector, P, are obtained from the
“expanded” element coefficient matrices, k@, and the element load vectors, PT),
by summation in the form
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E E
K=Yk and Pp=> p{ (6.210)
e=l1 e=]

The “expanded” element matrices are the same size as the global matrix but have
rows and columns of zeros corresponding to the nodes not associated with ele-
ment (e). Specifically, the expanded form of the element stiffness and load vector

becomes

a® - 0 0 T,
Lo _|-a” @ 0 o ;p(l)= T, 6211)
0O 0 00 "o
0 0 0 0 0
0 0 0 0 0
o0 a? —a® o ;p(2)= T, (6.212)
0 -a? o? o T, +p
0 0 0 0 0
00 0 0 0
k(3):0 0 0 0 ;p(3): 0 6219
00 o o T -7
00 -o® o® T,

In accordance with Eq. (6.210) and (6.192), the global equilibrium equations can

be written as

Q)

0

0

_a®

e

0

0 (a(U +a(2))

0 0
e 0

(a(m +a<s)) Ve
a®  4®)

Enforcing the boundary conditions of u, =u, =0 leads to

(6.214)
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a® —a 0 0 | 0 T
X
—aW® (a(1)+a(2)) —a® 0
m_) 01 (6215
0 —a® (a(2)+a(3)) —a® || %, P
3 o |L0)
| 0 0 -a a™’ |
This system of equations can be partitioned in the form
0
—a® (a(1)+a(2)) —a® 0
uxa | _ )0 (6.216a)
0 —a® (a(2)+a(3)) 01l4x3 P
0
or
(a(l)+a(2)) —a®@ {u 2} {0} (6.216b)
X j—
—a® (a(2)+a(3)) Uys P
and
0 (6.217a)
Ot(l) —OC(I) 0 0 uxz _ _Txl
0 0 -a® o®||u| |7
0
or
T, =a%u,_ and T, =-au, (6.217b)
Solution to nodal displacements results in
_ a® (6218)

R N IR PRI INE)
(a o +o o +a (04 )

- a®+aq® (6.219)

u
% (a<”a(2)+a(”a‘3)+a(2)a(3>)
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With these nodal displacements, the reaction forces are computed as
0 Vg®

Ty = P 6.220
" (@%@ +aPa® +a®a®) (6.220)

a® (a +a®)
T =— P (6.221)

* (a(l)a<2)+a“>a(3)+a<2)a<3))

Finally, the strains are computed as

2
@ _ 1 a®

Eo = —qy Uy, —uy )= P (6.222)
07 (40 1 WO 1 gD [
1 (X(l)
2
e =— (@, ~u,)= P (6223)

12 (a(na(z) o De® £ @g® ) @

¢ _ 1 (a(l) +a(2)) (6.224)
= — — = — P .
Eee =0y (e ~ly) (006 +aVa® +aPa®) O

6.2.2 Two-Dimensional Structural Analysis

The three-dimensional analysis of either “thin” or “long” components subjected to
in-plane external loading conditions can be reduced to a two-dimensional analysis
under certain assumptions referred to as “plane stress” and “plane strain” conditions.

6.2.2.1 Plane Stress Conditions

A state of plane stress exists for thin components subjected only to in-plane external
loading, i.e., no lateral loads (Fig. 6.26). Due to a small thickness-to-characteristic
length ratio and in-plane external loading only, there is no out-of-plane displace-
ment component, #_, and the shear strain components associated with the thickness
direction, ¥y, and 7., are very small and assumed to be zero. Therefore, the stress
components, ¢__, ¢,., and 0., associated with the thickness direction vanish. Un-
der these assumptions, the displacement, u, stress, A, strain, g, and traction, T,
vectors, and material property matrix, D, reduce to

x Gy "'xy} (6.225)
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Fig. 6.26 Thin body with
in-plane loading; suitable for
plane stress idealization

and
I v 0
p-_E 1o (6.226)
1-v (1-v)
00 ——
with
€2 = -2 Oxx TOyy (6.227)
E

The initial strains arising from AT, the temperature change with respect to the refer-
ence state, can be expressed as

g7 =[aAT aAT 0] (6.228)

6.2.2.2 Plane Strain Conditions

A state of plane strain exists for a cylindrical component that is either “long” or fully
constrained in the length direction under the action of only uniform lateral external
loads (two examples are shown in Fig. 6.27). Because the ends of the cylindrical
component are prevented from deforming in the thickness direction, it is assumed
that the displacement component #, vanishes at every cross section of the body. The
uniform loading and cross-sectional geometry eliminates any variation in the length
direction, leading to d()/ 0z = 0. Also, planes perpendicular to the thickness direc-
tion before deformation remain perpendicular to the thickness direction after de-
formation. These assumptions result in zero transverse shear strains, Y. =7,. = 0.
Under these assumptions, the displacement, u, stress, A, strain, g, and traction, T,
vectors, and material property matrix, D, reduce to

o =loy o, oy (6.229)
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Fig. 6.27 Long bodies with in-plane loading; suitable for plane strain idealization

and
6.230
z I-v v 0 ( )
= m I-v 0
+v)(1-2v
0 0 (1 — 2V)
2
The initial strain vector due to this temperature change can be expressed as
el = [(1+V)aAT (1+v)aAT o] (6.231)

where AT is the temperature change with respect to a reference state.
The material property matrices for both plane stress and strain conditions have
the same form, and it is convenient to present it in the form
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D DD, 0
0 0 D,
where
D,(1-D,)
Dy, = 1 . 2 (6.233)

with D, = E /(1 —v)? and D, =V for plane stress, and D =E(1-v)/ (1+v)(1-2v)
and D, =v /(1-v) for plane strain.

6.2.2.3 Finite Element Equations with Linear Triangular Elements

The displacement components #, and #, within a triangular element can be ap-
proximated as

2O — 5@ _ (@, (0) L (0,0 , e,
S B T (6.234)
uf =il = N+ N+ N

in which Nl(e), Née), and N§€) are the linear shape functions and (“)(;),u;]e)),

( (e) (e)  (e) .
(ué),“}; ), and (ij auyj ) are the nodal unknowns (degrees of freedom) associated

with first, second, and third nodes, respectively. An example of a triangular element
with its nodal degrees of freedom and local nodal numbering is shown in Fig. 6.28.
In matrix form, the approximate displacement components become

i@ =NOTy©@ (6.235)
in which
a©r :{5,)(;) g;e)} (6.236)
and
Nor _[M 0 Ny 0Ny 0 (6.237)
0 N 0 N, 0 N
and

uor _ {u(e) 4O @ 0 O u(e)} (6.238)

X N X2 hy) 3 »3
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Fig. 6.28 Typical linear
triangular element with nodal
degrees of freedom

The element shape matrix, B(e), becomes

Ny 0 Ny 0 ON3 0
Ox Ox Ox
BO-| o M o N 4 Ny (6.239)
Oy oy oy

ON; 0Ny 0N, 0N, ON3 0ON3
| oy Ox oy Ox Oy Ox

Substituting for the derivatives of the shape functions, this matrix simplifies to

O U B .
BO9-_" | o xg;) 0 xl(? 0 xgel) (6.240)
R

Both the element shape and material property matrices are independent of the spa-
tial coordinates, x and y, thus leading to the evaluation of the element stiffness
matrix, k'@, as

k© = BOTpR@y© (6.241)
where V(@ =¢tA©), with element area A’ and constant thickness ¢. The evaluation

of the load vectors, Pbe and P(Te), arising from the body forces and surface tractions
(forces), respectively, involve integrals of the form

de dy, J.xdx dy, J.y dx dy (6.242)
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Fig. 6.29 Surface force
along side 1-2 of the triangu-
lar element

By choosing the centroid of the triangle as the origin of the (x, y) coordinate system,
the integrals involving either x or y in the integrand vanish. The load vector arising
from the body forces can be obtained from

([N, 0] [ [Mib,
0 N Nib,
N, 0 |[b N, b
@= |2 Ly = T
Pp A {by} N, by (6.243)
N3 0 N3 bx
0 N N3b
g ) o
V
reducing to
(e)T ZA(e)
p! =T[bx b, by by, b b,] (6.244)

in which b, and b are the components of the body force vector.

The evaluation of the element load vector due to the applied traction forces (dis-
tributed loads as shown in Fig. 6.29) requires their explicit variation along the edges
of the element. For an element of constant thickness subjected to uniform load of 7,
in the x-direction along its 1-2 edge, the vector Pt can be written as

.l ] ("
N0 N T,
0 N 0
pl@ = | M2 0 {%}dl:z N Tl g (6.245)
N, 0
o 0
Jlo o] J 0
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3

Fig. 6.30 Equivalent nodal forces for the surface force along side 1-2 of the triangular element

in which N, =0 along the 1-2 edge and Z,_, is the length of the 1-2 edge. Since
N, and N, vary linearly along the 1-2 edge, they can be expressed in terms of the
natural coordinates, & and &,, as derived in Chap. 3

(e) (e)
A S N 6.246
Nl 51 xge) _x1(e) and N2 52 xge) _xl(e) ( . )
The integrals in the expression for p(Te) are evaluated as
| (6.247)
T,
I Ny Tidl :J. & T L_pdé =— 12472
L, 0
1
T, L
I N, Tdi =J- &y T Ly pd&y === 2172
L, 0
Thus, the load vector, p(Te), takes the form
p7 = %[l 010 0 0] (6.248)

as illustrated in Fig. 6.30.

Note that this result corresponds to equivalent point forces acting at the first and
second nodes. The element load vectors arising from the initial strains and stresses
can be written as

p(i) — B(Z)TDS* V(e)

¢ (6.249)
p(e*) — B(e)TO-* V(e)

o
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Fig. 6.31 Geometry and ya .
loading of the problem 600 N/cm

X8 =

1 cm
1200 N/em] KB | 3cm
<B
» i 7
R @
2 cm

6.2.2.4 Example of a Plane Stress Analysis with Linear Triangular Elements
Derivation of a System of Equations and Its Solution

Using linear triangular elements, determine the nodal displacements and the ele-
ment stresses in a thin plate subjected to displacement constraints and surface trac-
tions as shown in Fig. 6.31. Also, the plate is exposed to a temperature change of
10 °C from the reference temperature. The plate thickness is 0.5 cm and the Young’s
modulus, E, and the Poisson’s ratio, v, are 15x10° N/cm? and 0.25, respectively.
The coefficient of thermal expansion is 6x107°/°C.

In order to illustrate the solution method, the plate is discretized into two trian-
gular elements, as shown in Fig. 6.32.

The global coordinates of each node are specified by (x,,¥,), with p =1,2,3,4,
and are presented in Table 6.7.

The global unknown nodal displacement vector is given by

T _ 2
U _{uxl Uy Uyg, Uy, Uy Uy Uy, u)’4} (6.250)

Considering the correspondence between the local and global node numbering
schemes, the elements are defined (connected) as shown in Table 6.8.
The areas of each element are calculated to be

AD =3em? and AP =3/2cm? (6.251)

Under plane stress assumptions, the material property matrix becomes

16 4 0
D=10° 4 16 0|N/cm? (6.252)
0 0 6
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Fig. 6.32 Global and local y4
numbering of nodes and
elements O 2
9.
1
The initial strains arising from the temperature change is written as
g7 =10°[60 60 0] (6.253)
The element load vectors arising from the applied tractions are
T.L
p’(Il‘)T —¢ X 21—4 [1 00 0 1 0] (6254)
T, Ls_
pPT =2 23 oo o010 1 (6.255)

With the specified values of the thickness and the distributed loads, these element
load vectors become

pPT =300410[1 0 0 0 1 O]N (6.256)
and
pP" =-150[0 0 0 1 0 1]N (6.257)

For the first element, e =1, the components of the element shape matrix B are
computed as

(6.258)

1 1 1 1
P =y =y =~y =3, )

1 1 1 1 1
Wy =remn=3, A -

1 1 1 1
W= =n-m=0, o)

= xgl) —xgl) =x4—Xxy=-1
xgl) =x—x4 =—1

=xy) —x) =xy - =2

leading to 30 3 0 0 0

B(l):% 0 -1 0 -1 0 2 (6.259)
1 3 -1 3
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Table 6.7 Global nodal coordinates

Global node number Nodal coordinates Nodal unknowns
1 (0,0) u,_ ,u
X270
2 2,0
( ) uxz ’uh
3 (2,3) U, ,u,
X377
4 (1,3) u u
X4 Vg

Table 6.8 Element connectivity

Element Number (e) Node 1 Node 2 Node 3
1 1 2 4
2 2 3 4

For the second element, ¢ = 2, the components of the element shape matrix B? are
computed as

2 2 2 2
V3 =P P =y =0, 1

2 2 2 2 2 2
ygl):yg)—yl():yé‘—yz::i, x1(3):x1()—x§):x2—x4:l (6260)
2 _ 2
M2 =n —

= xgz) _x§2) =x4—x3=-1

2 )@@
We=y-yy=-3, a8 =2 2 = —xy =0

leading to
0 0 30 -3 0
-0 Z1 01 0 o (6.261)
200 13 0 3

The evaluation of the stiffness matrices, k" and k', requires the products of
BYTD and B@TD. Also, these products appear in the evaluation of the element
load vectors arising from the temperature change. Therefore,

(48 -12 —6 |
-4 -16 -18
B(I)TD:E 48 12 -6 (6.262)
-4 -16 18
0 0 12
| 8 32 0 |
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B D=

10°

The element stiffness matrices become

[ 75 15
15 35
K 10|69 3
121 -3 -19
-6 —18
[-12 -16
and =2
(6 0
0 16
k(2>:£ 6 -2
12|-18 —16
0 12
[ 18 0

6 Finite Element Equations

0 0 -6

-4 -16 0

48 12 6

4 16 18

—-48 -12 0

0 0 -18]

-69 -3 -6 -12]
3 -19 -18 -16
75 -15 -6 12
-15 35 18 ~-16
-6 18 12 0
12 -16 0 32|
j=3 k=4
-6 -18 0 18]
-12 -16 12 0
150 30 -144 -18
30 70 -12 -54

—-144 -12 144 0
-18 -54 0 54

(6.263)

(6.264)

(6.265)

The boxed numbers above each column pair indicate the nodal order of degrees of
freedom in each element stiffness matrix.

The thermal load vectors associated with each element are obtained as

-900 0
-300 -300
900 ) 900
N and p/ = N
-300 £ 300
0 -900
600 0

(6.266)
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Rewriting the element stiffness matrices and the load vectors, in the expanded order
and rearranged form according to the increasing nodal degrees of freedom of the
global stiffness matrix, K yields

Associated with the first element:

(75 15 =69 -3 0 0 -6 —12]
15 35 3 =19 0 0 -18 -16
-69 3 75 -15 0 0 -6 12
6
k“):& -3 -19 -15 35 0 0 18 -16 (6.267)
121 0 0 0 00 0
0 0 0 0 0 0 0
-6 -18 -6 18 0 0 12 0
|-12 -16 12 -16 0 0 0 32|
1 -900
0 -300
0 900
0 -300
p$)=300\/m 0 N and pil*)z 0 N (6.268)
0 0
1 0
0 600
Associated with the second element:
[ 0 0 0 0 0 0 |
0 0 0 0 0 0
6 0 -6 -18 0 18
10° 0 16 -12 -16 12 0
Kk =—1 (6.269)
12 -12 150 30 -144 -18

-18 =16 30 70 -12 -54
0 12 -144 -12 144 O
18 0 -18 -54 0 54

S O O O O o o O
S O O O O o o O
|
@)
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N and p(z):

*
&

piP) =150

— o = O O O O O

Summation of the element stiffness matrices

E
K=Yk
e=l1

and load vectors
E=2

SR

e=l

6 Finite Element Equations

=300
900
300

-900

N (6.270)

(6.271)

(6.272)

results in the global stiffness matrix and the global load vector as

(75 15 —-69 -3 0 0
15 35 3 19 0 0
—69 3 (75+6) -15 -6 -—18

10 =3 -19  -15  (35+6) -12 -16

K=—
121 0 0 -6 -12 150 30
0 0 -18 -16 30 64
-6 -—18 -6 (18+12)-144 -12
|—-12 —16 (12+18) -16 -18 —48
and

(300+/10 —900)
-300
900
(=300 —300)
900
(=150 +300)
(300/10 —900)
~150+ 600

-6 -12 ]
-18 -16
-6 (12+18)
(18+12) -16
—144 -18
-12 -48
(12+144) 0
0 (32+48) |
(6.273)
(6.274)
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The final form of the global system of equations becomes

(75 15 —-69 -3 0 0 -6 -12
15 35 3 -19 0 0 -18 -16
-69 3 (75+6) -15 -6 -18 -6 (12+18)
10°] -3 -19  -15  (35+6) -12 -16 (18+12) -16
1700 o -6 -12 150 30  —144 -18
0 0 -18 -16 30 70 -12 —54
-6 18 -6 (18+12) —144 —12 (12+144) 0
|-12 -16 (12+18) -16  -18 -54 0 (32+54) |

u

1 (300410 —900) (6.275)
” 300
% 900
u, || (=300-300)
uy, 900

u (-150+300)
V3

0, (300+/10 —900)
) ~150+ 600

u

u

uy4

Applying the prescribed values of the displacement components leads to

(75 15 —-69 -3 0 0 -6 -12
15 35 3 -19 0 0 -18 -16
-69 3 (75+6) -15 -6 -18 -6 (12+18)
10°0 =3 —-19  -15  (35+6) -12 -16 (18+12) -16
1200 o0 -6 -12 150 30 -144 -18
0 0 -18 -16 30 70 -12 -54
-6 -18 -6  (18+12) —144 —12 (12+144) 0
|-12 -16 (12+18) -16  -18 -54 0 (32+54) |
Uy, (3004/10 —900) (6.276)
0 -300
0 900
0 (=300 -300)
1o~ 900
u, (~150+300)
u, | (300410 —900)
u, ~150+ 600
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Eliminating the rows and columns corresponding to zero displacement components
simplifies the global system of equations to

750 -6 12 |%x
100 0 70 -12 54 ||Uy,
12| -6 12 (12+144) 0 uy,
~12 -54 0 (32+54) ] |u, 6277
(3007/10 —900)
| (-150+300)
(300410 —900)
(~150+ 600)

The solution to this system of equations results in the values for the unknown dis-
placement components as

Ux 0.0000357839

u

vl 0.000157003 om (6.278)
Uy, 0.0000171983
u 0.000166367

V4

6.2.2.5 ANSYS Solution

The nodal displacements of the plate subjected to uniform temperature can also be
obtained using ANSYS. The solution procedure is outlined as follows:

Model Generation

Specify the element type (ET command) using the following menu path:
Main Menu > Preprocessor > Element Type > Add/Edit/Delete

— Click on Add.

— Select Solid immediately below Structural Mass from the left list and Quad
4node 182 from the right list; click on OK.

— Click on Options.

— In order to specify the 2-D idealization as plane stress with thickness, in the
newly appeared dialog box pull down the menu for Element behavior K3 and
select Plane strs w/thk; click on OK (Fig. 6.33).

— Click on Close.

» Specify real constants (R command) using the following menu path:
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Options for PLANE 182, Element Type Ref. No. 1

Element technology K1 [Futt integration -
Element behavior K3
Elementformulation K8 |Pure displacemnt ]

(NOTE: Mixed formulation is not valid with plane stress)

OKI Cancell Hsbl

Fig. 6.33 Specification of element options

Main Menu > Preprocessor > Real Constants > Add/Edit/Delete

Click on Add.

Click on OK.

Enter 5¢— 3 for Thickness THK; click on OK.
Click on Close.

* Specify material properties (MP command) using the following menu path:

Main Menu > Preprocessor > Material Props > Material Models

In the Define Material Model Behavior dialog box, in the right window, suc-
cessively left-click on Structural, Linear, Elastic, and, finally, Isotropic,
which will bring another dialog box.

Enter 150e9 for EX, and 0.25 for PRXY; click on OK.

In the Define Material Model Behavior dialog box, in the right window, un-
der Structural find Thermal Expansion, Secant Coefficient, and Isotropic,
which will bring another dialog box (Fig. 6.34).

Enter 6e— 6 for APLX; click on OK.

Close the Define Material Model Behavior dialog box by using the following
menu path:

Material > Exit

» Create nodes (N command) using the following menu path:

Main Menu > Preprocessor > Modeling > Create > Nodes > In Active CS

A total of 4 nodes will be created (Table 6.7).

Referring to Table 6.7, enter x- and y-coordinates of node 1 (be sure to convert
the coordinates to meters), and Click on Apply. This action will keep the Cre-
ate Nodes in Active Coordinate System dialog box open. If the Node number
field is left blank, then ANSY'S will assign the lowest available node number
to the node that is being created.
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=] =] =] =

Fig. 6.34 Specification of material behavior

Fig. 6.35 Generation of 4 3
nodes

bx

— Repeat the same procedure for the nodes 2 through 4.
— After entering the x- and y-coordinates of node 4, click on OK (instead of Apply).
— The nodes should appear in the Graphics Window, as shown in Fig. 6.35.

* Create elements (E command) using the following menu path:

Main Menu > Preprocessor > Modeling > Create > Elements > Auto Numbered
> Thru Nodes

— Pick Menu appears; refer to Fig. 6.36 to create elements by picking three
nodes at a time and clicking on Apply in between.

— Observe the elements created after clicking on Apply in the Pick Menu.

Repeat until the last element is created.

— Click on OK when the last element is created.

* Review elements:

— Turn on element numbering using the following menu path:

Utility Menu > PlotCtrls > Numbering
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Fig. 6.36 Generation of 4 3
elements

— Select Element numbers from the first pull-down menu; click on OK.
— Plot elements (EPLOT command) using the following menu path:

Utility Menu > Plot > Elements

— Figure 6.36 shows the outcome of this action as it appears in the Graphics
Window.

— Turn off element numbering and turn on node numbering using the following
menu path:

Utility Menu > PlotCtrls > Numbering

— Place a checkmark by clicking on the empty box next to NODE Node num-
bers.

— Select No numbering from the first pull-down menu.

Click on OK.

Plot nodes (NPLOT command) using the following menu path:

Utility Menu > Plot > Nodes

— Figure 6.35 shows the outcome of this action as it appears in the Graphics
Window.

Solution

* Apply displacement boundary conditions (D command) using the following
menu path:

Main Menu > Solution > Define Loads > Apply > Structural > Displacement
> On Nodes

— Pick Menu appears; pick nodes 1 and 2 along the bottom horizontal boundary
(Fig. 6.35) and click on OK on Pick Menu.

— Highlight UY and enter 0 for VALUE; click on Apply.

Pick Menu reappears; pick nodes 2 and 3 along the right vertical boundary

(Fig. 6.35) and click on OK on Pick Menu.

— Highlight UX and remove the highlight on UY; enter 0 for VALUE; click on OK.
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[F] Apply ForceMoment on Nodes
Lab Direction of force/mom FX -
Apply as |Constant value -
If Constant value then:
VALUE Force/moment value 3e3*sqri(0.1)
ok | Aopy | Cancel | Heip |

Fig. 6.37 Application of external loads

» Apply force boundary conditions on nodes (F command) using the following
menu path:

Main Menu > Solution > Define Loads > Apply > Structural > Force/Moment
> On Nodes

— Pick Menu appears; pick nodes 1 and 4 along the slanted boundary; click on
OK.

— Enter 3e3*sqrt(0.1) for VALUE (Fig. 6.37).

— Click on Apply.

— Pick Menu reappears; pick nodes 4 and 3 along the top horizontal boundary;
click on OK.

— Pull down the menu for Direction of force/mom and select FY; Enter — 150
for VALUE; click on OK.

» Apply thermal load (TUNIF command) using the following menu path:

Main Menu > Solution > Define Loads > Apply > Structural > Temperature >
Uniform Temp

— Uniform Temperature dialog box appears; Enter 10 for Uniform temperature.
— Click on OK.

* Obtain solution (SOLVE command) using the following menu path:

Main Menu > Solution > Solve > Current LS

— Confirmation Window appears along with Status Report Window.

— Review status. If OK, close the Status Report Window and click on OK in
Confirmation Window.

— Wait until ANSYS responds with Solution is done!

Postprocessing

* Review deformed shape (PLDISP command) using the following menu path:
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Fig. 6.38 Deformed
configuration

Main Menu > General Postproc > Plot Results > Deformed Shape

— In the Plot Deformed Shape dialog box, choose the radio-button for Def+un-
def edge; click on OK.

— The deformed shape will appear in the Graphics Window, as shown in
Fig. 6.38.

» Review displacement values (PRNSOL command) using the following menu
path:
Main Menu > General Postproc > List Results > Nodal Solution

— Under Nodal Solution, click on DOF Solution and Displacement vector
sum; click on OK.
— The list will appear in a new window, as shown in Fig. 6.39.

PRINT DOF NODAL SOLUTION PER NODE

sunnn POST1 NODAI DFGRFF OF FREFDOM | TSTTNG sessssn

LOAD STEP= 1 SUBSTEP= 3
TIME=  1.0000 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM
NODE UK uy
1 0.35784E-06 0.0000
2 0.0000 0.0000
3 0.0000 0.15700E-05
4 0.17198E-06 0.16637E-05
MAKIMUM ABSOLUTE VALUES
VALUE  0.35784E-06 0.16637E-05

Fig. 6.39 List of nodal displacements
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Fig. 6.40 Variation of the
natural coordinates in a typi-
cal quadrilateral element

Finite Element Equations with Linear Quadrilateral Isoparametric Elements

The displacement components #, and #, within a quadrilateral element can be ap-
proximated as

9 =0 = N+ NOUD - VOO OO
) =) = NOU + NO + OO 4 N

in which N, O8 N (e) , N3 © and N () are the linear shape functions and (“(6) U(C))

(u iz), ;2)) (u (e), ;?) and (¢ x4 ) y4 ) are the nodal unknowns (degrees of freedom)

associated w1th first, second, third, and fourth nodes, respectively. The shape func-
tions for the linear (straight-sided) quadrilateral shown in Fig. 6.40 are defined in
terms of the centroidal or natural coordinates, (£,7), as

1 .
Np =+ E5,)0+mm,) with p=1,23,4 (6.280)

where £, and 77, represent the coordinates of the corner nodes in the natural coordi-

nate system, (&, = —1,n, =-1),(§, =Ln, =-1), (& =Ln; =1),and (&, =-Ln, =1).
In matrix form, the approximate displacement components become

i© = NOTy© (6.281)
in which
a7 {L;)(Ce) ﬁ(ye)} (6.282)
and

Nor_[M0 N 0Ny 0 Ny 0 (6.283)
0O N 0 N, 0 Ny 0 N,
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and

U(e)rz{u(e) 4O 4@ L@ e @ @ u(e)} (6.284)

X N X2 h%) X3 73 X4 V4

The element shape matrix B can be expressed as

B© = LN®©T (6.285)

in which the differential operator matrix is

9
ox
L=lo 2 (6.286)
ay
o 9
| Ox Oy |

The element shape matrix can be rewritten as

Ny Ny N 0Ny
Oox ox ox ox
BO_| o M o M, W, Ny (6.287)
oy oy oy oy
oN, N, N, ON, oN; ON; oN, ON,
oy ox oy ox dy ox oy ox |

However, the shape functions are defined in terms of the centroidal or natural coor-
dinates, (&,n). Therefore, they cannot be differentiated directly with respect to the
x- and y-coordinates. In order to overcome this difficulty, the global coordinates are
expressed in terms of the shape functions in the form

4 4
x:ZNp(fan)xp and y:sz(g’n)yp (6.288)
p=l p=1

With this transformation utilizing the same shape functions as those used for the
displacement components, the concept of isoparametric element emerges, and the
element is referred to as an isoparametric element.

The derivatives of the shape functions can be obtained as

aszaNp%pra_n
0. o0& 0o on @ 6.289
X 00 O On O L 21234 (6:289)
6Np=6Np%+6Npa_n

oy o0& oy on oy
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Fig. 6.41 Internal angle
exceeding 180°

Application of the chain rule of differentiation yields

P

06 ox 9 dy OF

ON _aNp@Jr@Npa_y

with p=1,2,3,4 6.290
8Np_6Npﬁ+6NpQ ( )
on ox on Oy On

In matrix form, it can be expressed as
o) [ @0 EARE:
0 o0& 0 0
Sl_[0 e |avl Ol _ylox (6:291)
o) | w9 o |2
on on on|loy on oy

where J is called the Jacobian matrix, whose inverse does not exist if there is exces-
sive distortion of the element leading to the intersection of lines of constant & and 17
inside or on the element boundaries, as illustrated in Fig. 6.41. If the quadrilateral
element is degenerated into a triangle by increasing an internal angle to 180°, then
J is singular at that corner. It is possible to obtain the element stiffness because J
is still unique at the Gaussian integration points. However, the stresses at that cor-
ner are indeterminate. A similar situation occurs when two adjacent corner nodes
are made coincident to produce a triangular element. Therefore, any internal angle
of each corner node should be less than |g(°,and there is a loss of accuracy as the
internal angle approaches 180"

In the absence of excessive distortion, the transformation between the natural
and global coordinates has a one-to-one correspondence and J~! inverse exists. It
can be expressed as

» ¥
-1 1 87’] 65
J'= Woa (6.292)

o oE
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where the determinant of the Jacobian matrix is

=y x» (6.293)
o0& on oOn o0&
in which
o g N, =m0+ (s~
— —(1=m)x; + A =1)xy + (1 +1)x3 —(1+1)x,
Y pl 85 Xp = mx )X n)x3 )Xy
ag vy =—{=(=my +(A=n)ys +A+1m)y3 =(1+7)y4}
(6.294)

p=1
4 6N

- za—”pz —(1=&)x = (14 E)xy + (1+E)x3 + (1= E)xy }
p= n
Z {(F1=Em =1+ &)y + 1+ E)y3 + (1=E) s}
p=

Substituting for the derivatives and rearranging the terms permit the Jacobian to be
rewritten in the form

=

ON; 0N, ON3 0Ny b
g e & o ||n m (6.295)
ON; ON, 0ON3 ON4 || x3 3
on on  On 0N x4 ya

or

1N
_1{—(1—77) (A=) (1+mn) —(l+n)} X ¥
-(1=-8) -(1+&) d+5) (-9 3

Xq4 V4

(6.296)

Its determinant can be expressed in the form

0 I-n =S+n -1+&|In
—l+n 0 148 —C-n|y2| (6.297)
¢-n -1-¢ 0 l+n ||y
1-& &+n —-1-n. 0 ]y

1
|J| = g[xl Xy X3 X4:|
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In a concise form, the determinant can be also rewritten as

1
|J| = g[(xslhz =X p31) +E (X203 = Xa3012) + (g 3 —x3204)]  (6:298)

where

Xj =X =X and Vi =Yi—y; (6.299)

Determination of the inverse of the Jacobian matrix permits the expression for the
derivatives of the natural coordinates in terms of the global coordinates, x and y

&) [ _olfe
ox|_ 1) on  0c|]og (6.300a)
| P _ax ox ||og
oy | on  9& ||on
and ol [ i
ox|_1lpon  05|]6g (6.300b)
on| Pl _ax  ax ||on
oy L on o0& ||on

By substituting for the derivatives of the global coordinates in terms of the natural
coordinates, these expressions can be rewritten as

o 1 4 6Np o¢ = aNp (6.301)
ER D ) Y
x |4 on v < on

4 4
on_ LNy on_ 15N,
ox |J|Z; e M _|J|pz P

Finally, the derivatives in the shape matrix becomes

4 4
ON, 10N, aqu K pzazvqy
o || g g ont on Hogt

S ‘5 , with p=1,2,34 (6.302)
aNp 1] N, qu

0
P
—r=— +
Oy |J| o0& i on 1 on qzz;

oN,
qx
oc 1

These explicit expressions for the derivatives appearing in the element shape matrix
permit the determination of the element stiffness matrix, k'©, defined as
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K - j BTDB dr (6.303)
748
in which 1(© = tA©, with A and ¢ representing the element area and constant ele-
ment thickness. It can be rewritten in the form
k@ —¢ I B DB 44 (6.304)
A(G)
The material property matrix D is usually independent of the spatial coordinates,
x and y, while the element shape matrix B'® requires differentiation of the shape
functions with respect to x and y. In order to overcome this difficulty, the integrals

are evaluated over a square region in the natural coordinate system, with the trans-
formation of coordinates given by

4 4
x:ZNp(§>n)xp and y:ZNp(§9n)yp (6305)
p=l1 p=l1

With this transformation and utilizing the following relation

dedy: ,l[ j|J|d§dn (6.306)
A

-1 -1

the element stiffness matrix, k¢, can be rewritten as

11
k@ = [ [ B DB adcdn (6.307)
-1-1

Due to the difficulty of obtaining analytical expression for the determinant and
inverse of the Jacobian matrix, these integrals are evaluated numerically by the
Gaussian integration technique. The element stiffness matrix can be evaluated nu-
merically as

~

9
KO =1y Y w,w,BYE,.n,) DBYE,n)IE,n,) (6308
p=l g=1

in which W, and W, are the weights and £, and 71, are the integration points of the
Gaussian integration technique explained in Sec. 3.6. For this quadrilateral isopara-
metric element, P =2 and Q =2 are sufficient for accurate integration.

For an element of constant thickness subjected to a uniform load of 7, and 7, in
the x- and y-directions, respectively, along its 1-2 edge, the vector p$), arising from
tractions can be written as
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([n, 0] Ny T

0 N M T,

N2 0 N2 Tx
o= |0 {Tx}ﬂ:t T 6.309
N0 (I Ny T, (6.309)

0 N N3 T,

Ny 0 Ny T,

J L 0 N4_ J N4 Ty

b L,

Referring to Fig. 6.40, along the 1-2 edge whose length is ,_,, the coordinate 17 has
a constant value of — 1 and & varies between — 1 and 1, leading to

1

~

Ny T
Ny T,
Ny T
pl® = hi=2 Moyl e (6.310)

2 N3 T,
N3T,
Ny T,
N, T,

Along & =—1toland n=-1,

M =%(l—§)(1—n)=%(l—c§)

N, :%(Hg)(l—n):%(Hé) (6.311)
Ny = (+E)1+m) =0

Ny =5 1=6)1+m) =0
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The integrals in the expression for P(Te) are evaluated as

Ll 2 INI ng_rLl 2 Ia e;)ng_t[“ 27, (6.312)

and
le_[Nszg_rLl2](1+§)Td§_tL12 (6.313)
-1
Thus, the load vector, P(; ), takes the form
(6.314)

(r _ Lo
P —IT[Tx T, T, T, 0.0 0 0]

Note that this result implies that the applied load is distributed equally at the first
and second nodes of the 1-2 edge. This is a result of the linear variation of the shape
function along the edges.

As carried out in the derivation of the element stiffness matrix, the load vectors
due to body forces, initial strains, and initial stresses can be rewritten as

1 1
Pl =1 I j N©b|J|dedn (6.315)
-1 -1
1 1
pl9 =1 I jB@T De*|J|dédn (6.316)
&
-1 -1
1 1
(e)=tf j BT 6™ |J|dédn (6317)

-1 -1

Application of the Gaussian integration technique leads to the evaluation of these
load vectors in the form

P 0
py) =13 > w,w,NOE,.nbIE,.n,) (6.318)
p=l g=1
P [ i
pl =13 > w,wBE,n,) De I, n,)| (6319)

p=l g=l
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Fig. 6.42 Local numbering N
scheme of the FEM discreti- 4 3
zation with a quadrilateral
element
©
X
& o >
1 2
() SRS (e) T <"
e
P <= ’Z ZWquB (pony) O |J(§p’77q )| (6.320)

1

hi

q

in which w, and w, are the weights and &, and 1, are the integration points of the
Gaussian integration technique.

6.2.2.6 Example of a Plane Stress Analysis with Linear Quadrilateral
Isoparametric Elements

Derivation of a System of Equations and Its Solution

The previous example discussed in Sec. 6.2.2.4 is reconsidered to compute the
nodal displacements and the element stresses. In order to illustrate the finite ele-
ment solution method, the plate is discretized into one quadrilateral isoparametric
element, as shown in Fig. 6.42.

The global coordinates of each node are specified by (xp, Yy ), with p =1,2,3,4,
and are tabulated in Table 6.9.

The global unknown nodal displacement vector is given by

UT:{u u u u

X N X h%) uX3 uy3 ux4 Lly4} (6321)

Considering the correspondence between the local and global node numbering
schemes the elements are defined in Table 6.10.

For this element, e =1, the coefficients of the Jacobian matrix are determined from

& =0y =0+ (- m)e =2)+ () =2)
¢ (6.322a)

() =D} = %(3—11)

2_2 :%{_(1_71)@1 =0)+(1-n)(yy =0)+(1+n)(¥3 =3)

1)y =3)} =0

(6.322b)
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Table 6.9 Global nodal coordinates

Global node number Nodal coordinates Nodal unknowns
1 (5 =0,),=0) U Uy,
2 (5,=2,59,=0) Uy, U,
3 (% =2,y =3)
4 (4 =1,y4 =3) Uy, Uy,

Table 6.10 Element connectivity

Element number (e) Node 1 Node 2 Node 3 Node 4
1 1 2 3 4
ox 1
o = Z{—(l—ﬁ)(n =0)—(1+8)(xy =2)+(1+E)(x3 =2)
1 (6.322¢)
+H1=&)(xg =D} = Z(l -$)
1
L1001 = 0=+ =0+ (1+)(r5 =)
n (6.322d)
6
+(1=8)(yy4 =3)=—
4
leading to the Jacobian matrix given by
1
L6-m 0
J= X . (6.323)
(- 2
2 1-8) 2
with its determinant
3
|J| :_(3_77) (6324)
8
The inverse of the Jacobian matrix becomes
_4
3—
g o G (6.325)
21-8) 2

w

33-n)
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The determinant of the Jacobian matrix can be also determined from

1
|J| = g[(x31y42 — X4 V31) T (X103 = X3 V12) + 11 (X4 V35 — X35741)] (6.326)

in which

X3 =Xy =X =20 X3 =xg vy =1

¥31=13=-31=3  ya3=ys4-y3=0

X32 =)C3—X2 =0
Y2 =y3=y2 =3

(6.327)
Vg =V4—12=3 X =Xp-x =2 x4 =x4-X=
Xgp=Xg =X ==1 yy=y=- =0 ygy=ys-y=3
Substituting for the following derivatives
. oN ox 1
a_pxp :6_22(3_77)
pe iR
4 ON
Za_Pyp = (;Q -0
Sog e
4 0N, a1 (6.328)
o P =6—=Z(l—5)
Pl n
24:6pr oy 3
Ly, ===z
=t on n 2
permits the derivatives of the shape functions as
N, _ 8 {_EaNP}Z_ 4 ON,
ox 303+ 4 0 3+n) 0
aNp _ 201+ &) 8Np _gaNp
oy 3(3+n) o¢ 3 on

Thus, the components of the element shape matrix, BY are computed as
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ON, _ _(=m) N, _(-m)

& G-m’ & G-n’

ONs (1+1n) Ny (I+n)

ox  (3-nm)  ox (3-n)

(6.330)
AN, 1(1=&) N, _ (2+&-n)
v 3G-m o 3(3-1)
ONy _(1+26-m) 0Ny _2(1-§)
v 3G-m T 3G-m)
NG 0 _(-m)
G-m) B-m)
BV _| o _1a=9 0 _@+e-m
3(3-n) 33-n)
_1a-8  _d-n) _@+é-n)  _(d-n)
L 33-m (3-n) 33-m) (3-n) (6.331)
(1+m) o Mmoo ]
B-m) G-m
(d+25-n) 0 2(1-¢)
33-m) 33-m)
ad+28-n)  (+n) 2(1-¢) _d+n)
33-m) G-m  36-m  G-m]
Under plane stress assumptions, the material property matrix, D becomes
16 4 0
D=10° 4 16 0 |N/cm? (6.332)
0 0 6

The element stiffness matrix, k® , is computed as
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[ 4.8666 0.76713 43666  0.23287
0.76713 23545  0.73287  -1.0211
-4.3666  0.73287  5.3666 -1.7329
0.23287  -1.0211  -1.7329 3.6878
-2.7668  —0.96574  2.2668 —0.034264
-0.96574 -1.1244 -0.53426 —0.20891
22668  —0.53426 —-3.2668 1.5343
| —0.034264 —0.20891  1.5343 —2.4578 _ (6.333)

kM =106

-2.7668  —0.96574 22668  —0.034264
—0.96574 -1.1244 -0.53426 —-0.20891
22668  —0.53426 —3.2668 1.5343

—0.034264 —0.20891 1.5343 —2.4578
6.9663 0.56853  —6.4663  0.43147
0.56853 3.5845 093147  -2.2512
-6.4663  0.93147  7.4663 —-1.9315
0.43147  -2.2512 -1.9315 49178 |

The initial strains arising from the temperature change are included in the vector
¥
g as

g7 =10°[60 60 0] (6.334)

The element load vectors, p$)1_4 and p¥)3_4 , arising from the applied tractions

are

T.L

p(Tl)lT_4=thH[l 000001 0] (6.335)
T, Ly

p$’§_4=tyT34[0 0000101 (6.336)

With the specified values of the thickness and the distributed loads, these element
load vectors become

p7 4 =300¥10[1 0 0 0 0 0 1 0O]N (6.337)
pPl4=-150[0 0 0 0 0 1 0 1N (6.338)

The element load vector from all the applied tractions is
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300410
0
0

0
1 1
PP g +ps g = o (N (6.339)

—-150

300410

-150

The thermal load vector of the element, pil*) , 1s obtained as

~900
-300
900
pl) = 0N (6.340)
s ] 900 '

300
~900

600

Thus, the total element load vector, P is

(300+/10 —900)
-300
900
p_) (300-300) | (6341)
900
(~150+300)
(300+/10 —900)
~150+ 600

After applying the boundary conditions, the global stiffness matrix is reduced to

48666 —0.96574 22668 —0.034264
| ~096574 3.5845 093147 22512
22668 093147  7.4663  —1.9315 (6.342)
0034264 22512 19315 49178

K=10
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and the reduced load vector is

(3007/10 —900)
150

1300410 —900)
450

P N (6.343)

The solution is given by

Uy 0.0000307806

s 0.000150801
~10.0000222016( "

" 0.000169468

(6.344)

ANSYS Solution

The nodal displacements of the plate subjected to uniform temperature can also be
obtained using ANSY'S. The solution procedure is outlined as follows:

Model Generation

» Specify the element type (ET command) using the following menu path:

Main Menu > Preprocessor > Element Type > Add/Edit/Delete

Click on Add.

Select Solid immediately below Structural Mass from the left list and Quad
4node 182 from the right list; click on OK.

Click on Options.

In order to specify the 2-D idealization as plane stress with thickness, in the
newly appeared dialog box, pull down the menu for Element behavior K3 and
select Plane strs w/thk; click on OK (Fig. 6.43).

Click on Close.

» Specify real constants (R command) using the following menu path:

Main Menu > Preprocessor > Real Constants > Add/Edit/Delete

Click on Add.

Click on OK.

Enter 5e— 3 for Thickness THK; click on OK.
Click on Close.
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Optlions for PLANE 182, Element Type Rel No. 1

Elementtechnology K1 [Funtintegration =
Element behavior K3
Elementformulation K6 |Pure displacemnt =

(NOTE: Mixed formulation is not valid with plane stress)

OK | Cancel | Help |

Fig. 6.43 Specification of element options

* Specify material properties (MP command) using the following menu path:

Main Menu > Preprocessor > Material Props > Material Models

In the Define Material Model Behavior dialog box, in the right window, suc-
cessively left-click on Structural, Linear, Elastic, and, finally, Isotropic,
which will bring another dialog box.

Enter 150e9 for EX, and 0.25 for PRXY; click on OK.

In the Define Material Model Behavior dialog box, in the right window, un-
der Structural, find Thermal Expansion, Secant Coefficient, and Isotropic,
which will bring another dialog box (Fig. 6.44).

Enter 6e— 6 for APLX; click on OK.

Close the Define Material Model Behavior dialog box by using the following
menu path:

Material >Exit

* Create nodes (N command) using the following menu path:

Main Menu > Preprocessor > Modeling > Create > Nodes > In Active CS

A total of four nodes will be created (Table 6.7).

Referring to Table 6.7, enter x- and y-coordinates of node 1 (be sure to convert
the coordinates to meters), and Click on Apply. This action will keep the Cre-
ate Nodes in Active Coordinate System dialog box open. If the Node number
field is left blank, then ANSY'S will assign the lowest available node number
to the node that is being created.

Repeat the same procedure for the nodes 2 through 4.

After entering the x- and y-coordinates of node 4, click on OK (instead of
Apply).

The nodes should appear in the Graphics Window, as shown in Fig. 6.45.

* Create one element (E command) using the following menu path:
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&3 Instantaneous Coefficient
(&3 Thermal Strain

_'J (@@ Namninn .'J
4 o |« 2

Fig. 6.44 Specification of material behavior

Fig. 6.45 Generation of 4 3
nodes . ’

Main Menu > Preprocessor > Modeling > Create > Elements > Auto Numbered
> Thru Nodes

— Pick Menu appears; pick four nodes in a clockwise (or counterclockwise)
order.
— Click on OK.

Solution

* Apply displacement boundary conditions (D command) using the following
menu path:

Main Menu > Solution > Define Loads > Apply > Structural > Displacement
> On Nodes

— Pick Menu appears; pick nodes 1 and 2 along the bottom horizontal boundary
(Fig. 6.45) and click on OK on Pick Menu.

— Highlight UY and enter 0 for VALUE; click on Apply.

— Pick Menu reappears; pick nodes 2 and 3 along the right vertical boundary
(Fig. 6.45); click on OK on Pick Menu.
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[F] Apply ForceMoment on Nodes
Lab Direction of forcelmom FX -
Apply as | Constant value =
If Constant value then:
VALUE Force/momentvalue 3e3*sqri(0.1)
ok | Aoply | Cancel | Heip |

Fig. 6.46 Application of external loads

— Highlight UX and remove the highlight from UY; Enter 0 for VALUE; click
on OK.

* Apply force boundary conditions on nodes (F command) using the following
menu path:

Main Menu > Solution > Define Loads > Apply > Structural > Force/Moment
> On Nodes

— Pick Menu appears; pick nodes 1 and 4 along the slanted boundary; click on OK.

— Enter 3e3*sqrt(0.1) for VALUE (Fig. 6.46).

— Click on Apply.

— Pick Menu reappears; pick nodes 4 and 3 along the top horizontal boundary;
click on OK.

— Pull down the menu for Direction of force/mom and select FY; Enter — 150
for VALUE; click on OK.

* Apply thermal load (TUNIF command) using the following menu path:

Main Menu > Solution > Define Loads > Apply > Structural > Temperature >
Uniform Temp

— Uniform Temperature dialog box appears; Enter 10 for Uniform temperature.
— Click on OK.

* Obtain solution (SOLVE command) using the following menu path:

Main Menu > Solution > Solve > Current LS

— Confirmation Window appears along with Status Report Window.

— Review status. If OK, close the Status Report Window and click on OK in
Confirmation Window.

— Wait until ANSYS responds with Solution is done!
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Fig. 6.47 Deformed
configuration

Postprocessing

* Review deformed shape (PLDISP command) using the following menu path:
Main Menu > General Postproc > Plot Results > Deformed Shape

— In the Plot Deformed Shape dialog box, choose the radio-button for Def+un-
def edge; click on OK.

— The deformed shape will appear in the Graphics Window, as shown in
Fig. 6.47.

* Review displacement values (PRNSOL command) using the following menu
path:
Main Menu > General Postproc > List Results > Nodal Solution

— Click on DOF Solution and Displacement vector sum; click on OK.
— The list will appear in a new window, as shown in Fig. 6.48.

PRINT DOF NODAL SOLUTION PER NODE
wwwwnw POSTL NODAL DEGREE OF FREEDOM LISTING sewwss

LOAD STEP= 1 SUBSTEP= 1
TIME= 1.0000 LORD CASE= @

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM
UX Uy
1 0.30635E-06 0.0000
2 0.0000 0.0000
3 0.0000 0.15062E-05
4 0.22347E-06 0.16956E-05
WAKIMUM ABSOLUTE VALUES

VALUE  0.30635E-06 0.16956E-05

Fig. 6.48 List of nodal displacements
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6.3 Problems

6.1

6.2

6.3

6.4

6.5

Construct the finite element equations for the solution of the linear second-

order ordinary differential equation given in the form

d*u(x) , dp(x) du(x)
dx’ de  dx

p(x) +q(x)u(x) = f(x)

subject to the conditions given as
u(xy) =4, u(x,)=B
by using the Galerkin technique within the realm of finite element method with

linear interpolation functions.

By using a one-dimensional (line) C! continuous cubic element, derive the ele-
ment coefficient matrix for the solution of the differential equation given as

d*u(x)
dx?

=/ (x)

Assume equally spaced nodal points.

By using quadratic interpolation functions, derive the element coefficient ma-
trix for the solution of the differential equation given as
2
d“u _ o

dx?

subject to the conditions

u(0)=1and ﬂ(4) =0
dx

Also, explicitly assemble both the global coefficient matrix and the right-hand
vector for equally spaced nodal points located at x=0, 1, 2, 3, and 4.

Without giving any consideration to the boundary conditions, write down
the contribution from the four elements, shown in Fig. 6.49, in the finite ele-
ment formulation for the Poisson equation V2¢ = C. Denote all entries in the
element coefficient matrices symbolically and write your answer in the form

[K]{g +{F} = {0}.

In Problem 6.4, note that the interaction of the internal node 5 with all the adja-
cent elements is included in forming the equation arising from the field variable
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Fig. 6.49 Four linear tri- y
angular elements forming a
quadrilateral element

¢s associated with the 5th node. In the absence of external loads, the last row of
the vector-matrix expression in the previous problem may be set directly equal
to zero. Using the resulting equation, eliminate ¢ from the remaining four
rows of the vector-matrix expression to obtain the element coefficient matrix
and the contribution to the right-hand-side vector of a quadrilateral element
made up of four simpler triangular elements.

6.6 Suppose a collection of elements (part of some larger collection) has a total of
n interior nodes and m exterior (or boundary) nodes. The contribution from this
collection to the global finite element equations can be written as

[K]*{}® +{f}°

The contributions from the exterior nodes, ¢ (i =1,2,...,m), and the interior
nodes, ¢/ (i=m+1,...,n+m), may be partitioned as

K K'||of] [fF
+
K*T KI (P[ f1

where [K?] is an mxm submatrix, [K'Jis an nxn submatrix, etc. Consider-
ation of all of the contributions to the interior nodes results in

KT (0"} +[K'1{o ) + '} = {0}

Proceeding from this point, eliminate the quantities (pil from the remaining
equations to express the contribution from this collection of elements in the
form

[K* ) {o" )+ 15}
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Fig. 6.50 Heat generation n
within the body and flux

boundary condition along S 7

6.7

6.8

where [K®]is an mxm matrix. This technique is called substructuring.

For two-dimensional heat transfer in an isotropic body, the governing equation

is
E(Ka_T)_i_i Ka_T +q(x’y)=0
ox ox ) oy oy

where T is temperature, K is thermal conductivity, and ¢(x, ») is the heat gen-
eration rate over the domain. Suppose the heat flux out of some portion, S,
of the boundary is specified to have a constant value, Q, as shown in Fig. 6.50.
Then, the boundary condition over S, becomes

oT oT or
K(EJ+Q=K|:(6—XJI’ZX +(E]n},}+Q=O

where n =<n,,n, > is the unit normal vector to the boundary. Using the Galer-
kin technique, show in a general way how this boundary condition enters the
right-hand-side vector.

Suppose that the heat flux is specified to be O over the side 45 of the domain
as shown in Fig. 6.51. Find explicitly the contribution of the interpolating func-
tion associated with node 4 to the right-hand-side vector in the system of equa-
tions derived in Problem 6.7:

a. for the case where element 3 is a linear triangular element.
b. for the case where element 3 is a quadratic triangular element with a mid-
side node between nodes 4 and 5.

Hint: Use a local coordinate, s, directed along the side of the triangle from node
4 to node 5. Note that the interpolating function associated with node 4 is linear
in s for linear interpolation and quadratic for quadratic interpolation.
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Fig. 6.51 Domain discretized ¥y
with three triangular elements

v =

6.9 Explicitly evaluate the element coefficient matrix for the problem

2 2
6_v2/+6_v2/:(;
ox°~ Oy

using 2x2 Gaussian integration for a 4-noded quadrilateral element whose
nodal point locations are given by

Node No. x y

1 6.0 3.0
2 -4.0 3.0
3 -5.0 -3.0
4 4.0 -3.0

6.10 Using quadratic interpolation over a 6-noded triangle (shown in Fig. 6.52),
derive explicit expressions for the entries K, K,,, and K,y in the element
coefficient matrix for the Poisson equation

G T

ox~ Oy

6.11 Consider the 3-noded triangular element subjected to traction boundary condi-
tions along the 23 side as shown in Fig. 6.53. Assuming plane stress idealiza-
tion with thickness 1 = 0.01 m, £ = 200 GPa, andv = 0.25, construct:

a. the stiffness matrix.

b. the equivalent nodal force vector.

6.12 Assume that the nodal displacement components of the triangular element
considered in Problem 6.11 are as follows:
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Fig. 6.52 A six-noded trian- )

gular element

6.13

6.14

6.15

(1) (XgVs)

(%,0) (x5,v5) (%205)

u = 0 VI = 0
1y =3.30078x10*m vy =0
u; =1.85937x10™*m  v;=4.6875x10°m

Find the stress components (¢, 0 ,,and 0,,).

xx?

Assuming that the triangular element considered in Problem 6.11 is subject-
ed to gravitational acceleration in the negative y-direction with mass densi-
typ = 7850kg/m3 , find the equivalent nodal force vector.

Derive the equivalent nodal force vector for a 3-noded triangular element
when it is subjected to a uniform temperature change of A7. The coefficient
of thermal expansion of the material is a.

The equations governing the time-dependent motion of an elastic body are

2

0 u;
—[o,]-p—L=0
axj[ il P2

where p is the mass density of the body. The term p@zui / o may be inter-

preted as an “inertia” force, which is a special type of body force.

a. Identifying the inertia force as a body force with F, = — p@zui / 0¢%, derive
the contribution from a single element to the global finite element formu-
lation for the case of plane strain.

b. If no tractions are specified over the surface of the body, write down the
general form of the global finite element equations. Assuming

{u} = {@ye'®’

write down an equation for , , the natural frequencies of vibration.
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p =100 MPa

j——— 020m ——| 2

Fig. 6.53 Three-noded triangular element under uniform traction

6.16 A two-dimensional situation that is often of theoretical interest (although less

6.17

seldom of practical interest) is that of antiplane strain, in which u, =u, =0
and uy = u5(x;, x,). Hence, the only non-zero components of strain are &, , and
&,5 and those of stress are o5 and o,,, which are related by Hooke’s law:

E E
013 = 023 =
(1+v) (1+v)

Find the element coefficient matrix for this problem for the linear triangle
(3-noded) using the integration formulas for area coordinates given previ-
ously.

Newton’s method is a familiar recursive technique for finding the roots of
a transcendental equation. Suppose the roots of n transcendental equations,
{g;(a j)} =0, in n unknowns are to be found. Then, Newton’s method can be

generalized to
(m)

-1
{3 = gy - {ai} fg)”

Ox;
where - 1
o, oz o "
Oay Oa 0a,
oo 1™ | %82 S22 0%
{—’} =| Oay Oa, 0a,
axj' . . .
| Oa;  Oay oa,, |
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and {g,}'" and [0g;/0a;] are evaluated at {q,}".
The finite element equations resulting from the nonlinear two-point boundary
value problem

2
%+g(u,x) =0
X

have the form

[K;1ta;}+{fi(a;)} = 10} (i=12,....n)

where {g,} are the nodal values and {/;(@;)} is some nonlinear function of
the nodal values. Apply Newton’s method to this problem to obtain a recursive
formula for the nodal values. What is the major drawback of this approach?



Chapter 7
Use of Commands in ANSYS

The distinct differences between the two modes of ANSY'S usage, i.e., the Graphi-
cal User Interface (GUI) and Batch Mode, are covered briefly in Chap. 2, and the
most common operations within the Preprocessor, Solution, and Postprocessors,
mainly using the GUI, are covered in Chap. 4 and 5. This chapter is devoted to us-
ing the Batch Mode of ANSYS, which is the method preferred by advanced ANSYS
users.

As mentioned in Chap. 2, every action taken by the user within the ANSY'S GUI
platform has an equivalent ANSYS command. Using ANSYS through the Batch
Mode involves text (ASCII) files with specific ANSYS commands. These com-
mands, along with specific rules, form a special programming language, ANSYS
Parametric Design Language, or APDL, which utilizes concepts and structures very
similar to common scientific programming languages such as BASIC, FORTRAN,
etc. Using the APDL, the user can create (a) an Input File to solve a specific prob-
lem and (b) Macro File(s) that act as special functions, accepting several arguments
as input. In either case, each line consists of a single command, and the lines are
executed sequentially.

The basic ANSYS commands, operators, and functions are discussed in the
following sections. After solving a simple problem by using the Batch Mode,
more advanced APDL features are covered. The Bafch Mode command files
for each example problem included in this book are given on the accompanying
CD-ROM.

7.1 Basic ANSYS Commands

There are around 1500 ANSYS commands, each with a specific syntax and func-
tion. It is impractical (and perhaps impossible) for the user to learn the use of all of
the commands. This apparent obstacle is overcome by using the ANSYS Help Sys-
tem, accessible from within the program, which is covered in Sect. 2.7. However,
the solution of a typical problem often involves a limited number of commonly used
commands. A selection of these common commands is presented in tabular form in

The online version of this book (doi: 10.1007/978-1-4939-1007-6_7) contains supplementary
material, which is available to authorized users

© Springer International Publishing 2015 281
E. Madenci, 1. Guven, The Finite Element Method and Applications in Engineering
Using ANSYS®, DOI 10.1007/978-1-4899-7550-8 7
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Table 7.1 Session and database commands

Command
/CLEAR
/PREP7
/SOLU
/POST1
/POST26
FINISH
/EOF
/FILNAME
HELP
SAVE
RESUME

KSEL, LSEL,ASEL, VSEL,
NSEL, ESEL,CMSEL

ALLSEL
CLOCAL, LOCAL

CSYS
!

Table 7.2 APDL commands
Command
*AFUN
*GET
*VWRITE
*DO,*ENDDO

*IF,*ELSE,*ELSEIF, *ENDIF

*SET

Description

Clear the database (and memory)

Enter the Preprocessor

Enter the Solution

Enter the General Postprocessor

Enter the Time History Postprocessor

Exit the current processor; go to Begin level
Marks the end of file (stop reading)
Specity jobname

Display help pages related to the command
Save the database

Resume from an existing database

Select keypoints, lines, areas, volumes, nodes, elements, and
components

Select all entities
Define local coordinate systems
Switch between coordinate systems

Start comment—ANSY'S ignores the characters to the right
of the exclamation mark

Description

Switch between degrees and radians to be used for angles
Store model or result information into parameters

Write formatted output to external files

Beginning and ending of do loops

Commands related to IF-THEN-ELSE blocks

Define parameters

this section. Within the context of this book, they are grouped into the following six

categories:

» Session and Database Commands (Table 7.1).

* APDL Commands (Table 7.2).

* Preprocessor Solid Model Generation Commands (Table 7.3).
* Preprocessor Meshing Commands (Table 7.4).

* Solution Commands (Table 7.5).

» General Postprocessor Commands (Table 7.6).

In Tables 7.1-7.6, the first column gives the command and the corresponding de-
scription is given in the second column. With the exception of some APDL com-
mands, the commands can also be issued as a command line input in the Input



7.1 Basic ANSYS Commands

283

Table 7.3 Preprocessor solid model generation commands

Command

Command

BLC4

CYL4

K,L,A, AL,V, VA

LARC

SPLINE, BSPLIN
ADRAG

VRAG

VEXT

AAD, VADD

LGLUE, AGLUE, VGLUE
LOVLAP, AOVLAP, VOVLAP
CM

KDELE, LDELE, ADELE,
VDELE, CMDELE

KPLOT, LPLOT, APLOT, VPLOT

KLIST, LLIST, ALIST, VLIST,
CMLIST

Description

Description

Create rectangular area or prism volume
Create circular area or cylindrical volume
Create keypoints, lines, areas, and volumes
Create circular arc

Create line through spline fit to keypoints
Create an area by dragging a line along a path
Create a volume by dragging an area along a path
Create a volume by extruding an area

Add areas and volumes

Glue lines, areas, and volumes

Overlap lines, areas, and volumes

Create components

Delete keypoints, lines, areas, volumes, and components

Plot keypoints, lines, areas, and volumes in the Graphics
Window

List keypoints, lines, areas, volumes, and components

Table 7.4 Preprocessor meshing commands

Command Description

ET Specify element type

R Specify real constants

MP Specify material properties

N Create nodes

E Create elements

TYPE Specify default element type attribute number

REAL Specify default real constant set attribute number

MAT Specify default material property set attribute number

LMESH, AMESH,VMESH | Mesh the lines, areas, and volumes

LCLEAR, ACLEAR, Clear the mesh from lines, areas, and volumes (deletes the nodes
VCLEAR and elements attached to those entities)

LESIZE Specify number of elements or element sizes along selected lines
MSHKEY Specify whether to use mapped or free meshing

NDELE, EDELE Delete nodes and elements

NPLOT, EPLOT Plot nodes and elements in the Graphics Window

NLIST, ELIST List nodes and elements
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Table 7.5 Solution

Command Description

commands -
SOLVE Start solution for the current load step
LSSOLVE Start solution from multiple load step files
D Specify DOF constraints on nodes
F Specify concentrated load boundary con-

ditions on nodes
SF, SFE,SFL, Specify surface (distributed) loads on

SFA nodes, elements, lines, and areas

BF, BFE Specify body loads on nodes and elements
TUNIF Specify uniform thermal load on all nodes
IC Specify initial conditions

LSREAD, Read from and write to load step files
LSWRITE

Table 7.6 General postpro-

Command | Description
cessor commands

FILE Specify the results file for the results to be read
from

SET Specify the load step and substep numbers to be
loaded

PLDISP | Plot deformed shape

PLNSOL | Plot contours of nodal solution
PLESOL  Plot contours of element solution
PRNSOL | List nodal solution items
PRESOL | List element solution items

Field in the ANSYS GUL. It is worth noting that some ANSY'S commands are valid
only in a specific processor or BEGIN level while the remaining ones are valid at
all times. Most of the ANSYS commands require arguments separated by com-
mas. For example, the syntax for the K command (to create keypoints) given in
Table 7.3 is

K, NPT, X, Y, %

where NPT is the keypoint number and X, ¥, and Z are the x-, y-, and z-coordinates
of the node,

As explained in Sect. 2.7, the help page related to the use of this command can be
retrieved by issuing the following command line input in the /nput Field in ANSYS:

HELP, K

This command brings up detailed information about the arguments.
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Table 7.7 List of operators

L Operator
within ANSYS

+

*

/

sk

Table 7.8 Selected ANSYS
functions

Function
ABS(X)
EXP(X)
LOG(X)
LOG10(X)
SQRT(X)
NINT(X)
RAND(X, Y)
SIN(X),
COS(X),
TAN(X)
SINH(X),
COSH(X),
TANH(X)
ASIN(X),
ACOS(X),
ATAN(X)

285

Description

Addition

Subtraction
Multiplication

Division

Exponentiation
Less-than comparison
Greater-than comparison

Equal to (used in defining parameters)

Description

Absolute value of X'

Exponential of X

Natural logarithm of X

Base 10 logarithm of X

Square root of X

Nearest integer to X

Random number within the range X-Y

Sine, cosine, and tangent of X

Hyperbolic sine, hyperbolic cosine, and
hyperbolic tangent of X

Inverse sine, inverse cosine, and inverse
tangent of X

Tables 7.1-7.6 serve as an introduction to the ANSYS commands. However, it is
highly recommended that the user read the help pages before usage.

7.1.1 Operators and Functions

In the ANSYS Parametric Design Language (APDL), several fundamental math-
ematical operations can be utilized through the use of common operators and func-
tions. A complete list of operators is given in Table 7.7. Table 7.8 lists selected
mathematical functions available within APDL. Section 7.1.2 provides several ex-
amples demonstrating the definition and use of parameters in APDL. These exam-
ples are also useful in understanding the way mathematical operators and functions

are used in ANSYS.
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Fig. 7.1 A rectangular area yn
consisting of two dissimilar
materials ry
material 1
A:fg”f/f/” h
a material 2
Y »y
w

7.1.2  Defining Parameters

Parameters in APDL can be defined by using either the *SET command or the
“equal to” sign (=). For example the parameter “USRPRM” can be defined to have
the value 22 by either

*SET, USRPRM, 22

or

USRPRM=22

The rules for naming of parameters are:

* The first character of a parameter name must be a letter.

» Within the parameter name, only letters, numbers, and the underscore character
() are allowed.

* The maximum number of characters within a parameter name is 32.

The use of common mathematical operations and functions (Tables 7.7-7.8) in pa-
rameter definitions is illustrated in the example below. Similar input files for vari-
ous examples considered in this book are also provided on the CD-ROM.

A rectangular area consisting of two dissimilar materials, shown in Fig. 7.1, has
a width and height of w and 4, respectively. The material interface starts on the left
edge at point (0, @), with an inclination angle 6. Assuming the numerical values of
w=2, h=4, a=1, and 8=30°, the following APDL block creates the solid model
shown in Fig. 7.2:
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Fig. 7.2 ANSYS model cre-
ated using of two dissimilar
materials. using numerical
values of w=2, h=4,a=1,
and 0 =30°

/PREP7

*AFUN, DEG
W=2
H=4
A=1

THETA=30
B= W*TAN (THETA)
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! ENTER PREPROCESSOR

SWITCH TO DEGREES

WIDTH

HEIGHT

Y-COORDINATE OF MATERIAL
!INTERFACE AT LEFT EDGE

! INCLINATION ANGLE

!
!
!
!
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Fig. 7.3 ANSYS modelcre-  § L6 6
ated using numerical values
of w=5, h=5, a=2, and
0=15°

REATE LINES

G Uowwd N

!
L,
L,
L,
L,
L,
L,
L,

! CREATE AREAS
AL,1,2,3,4
AL,3,5,6,7

Note that the distance b is calculated using a mathematical operator (*) and the
function TAN to create keypoint 4. The input block can be saved as a text file,
“example.txt,” in the Working Directory and read from within ANSYS using the
following menu path:

Utility Menu> File>Read Input from

It is also possible to read input files by issuing the /INPUT command in the Input
Field in ANSYS GUI as follows:

/INPUT, EXAMPLE, TXT

Convenience in using the Batch Mode is demonstrated by modifying the length and
angle parameters defined in the previous example. Fig. 7.3 shows the solid model
generated using w=5, h=5, a=2, and §=15° and Fig. 7.4 shows the one using w=1,
h=5,a=2,and 6=60°.
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Fig. 7.4 ANSYS model cre-
ated using numerical values
of w=1, h=5, a=2, and
0=60°

It is worth noting that if a parameter is redefined in the input file, the new val-
ue is not reflected in the entities or parameters defined previously. For example,
keypoint 4 is created using parameters w, a, and b. If the parameter w is redefined
(from 2 to 5) after the creation of keypoint 4 as shown below,

the new value of w is not reflected in the definition of keypoint 4 and the
x-coordinate of keypoint 4 remains as 2.

W=2

A=1

THETA=30

B= W*TAN (THETA)

K,4,W,A+B ! CREATE KEYPOINT 4
W=>5
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Fig. 7.5 A thin, square struc- p=10psi
ture with a centric circular
hole subjected to tensile
loading in the y-direction
(left); due to symmetry, only
one-fourth of the structure is
modeled (right)

h=4in

quarter
symmetry

Ky

w=4in

7.2 A Typical Input File

Typical steps involved in solving an engineering problem are listed in Sect. 5.1. A
similar data structure is observed in the Input Files used in the Batch Mode. In order
to demonstrate the use of the Batch Mode for a complete analysis, a thin, square
structure with a centric circular hole subjected to tensile loading in the y-direction,
as shown in Fig. 7.5, is considered.

The length of the square and the radius of the circular hole are w=4 in. and
r=1 in., respectively, and the thickness of the structure is #=0.1 in. The geometry
and material possess quarter-symmetry, therefore only one-fourth of the domain is
modeled. Because the thickness is significantly smaller than the in-plane dimen-
sions, a plane stress assumption is used. The elastic modulus and Poisson’s ratio are
E =30x10° psi and v =0.30, respectively. The distributed tensile load is speci-
fied as ¢ =10 1bs/in, and it is applied in the form of pressure loading with g = —10.
The corresponding pressure is input as ¢ =—10. The analysis is demonstrated by
utilizing two separate solid modeling approaches: Bottom-up and Top-down.

The Input File below uses the Bottom-up approach, which starts building the
model with keypoints, then line from keypoints, and, finally, areas using lines
(explanations are given along with the commands; the commands between the
dashed lines correspond to the Bottom-up approach in solid modeling).
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/FILNAM, BOT-UP
/PREP7
ET,1,182

KEYOPT, 1, 3, 3
R,1,0.1

MP,EX, 1, 30E6
MP, NUXY,1,0.3
W=4
R=1
P=10

SPECIFY JOBNAME
ENTER PREPROCESSOR
SELECT ELEMENT TYPE AS

PLANE182

SPECIFY PLANE STRESS WITH
THICKNESS

SPECIFY REAL CONSTANT
(THICKNESS)

SPECIFY ELASTIC MODULUS
SPECIFY POISSON'S RATIO
SIDE LENGTH OF SQUARE
HOLE RADIUS

APPLIED SURFACE LOAD
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1,5,4
LARC,4,2,1,R
LESIZE,1,,,10
LESIZE,4,,,10
LESIZE,2,,,15
LESIZE,3,,,15
LESIZE,5,,,30
AL,1,2,3,4,5

CREATE KEYPOINTS

CREATE LINES

CREATE ARC
SPECIFY NUMBER OF
ELEMENTS ALONG LINES

CREATE AREA

LCCAT, 2,3 | CONCATENATE LINES FOR MAPPED
! MESHING

MSHKEY, 1 USE MAPPED MESHING

AMESH, ALL MESH AREA

/SOLU ENTER SOLUTION

NSEL, S, LOC, X, 0 SELECT NODES AT X = 0

D,ALL, UX SUPPRESS X-DISPLACEMENTS

NSEL, S,LOC, Y, 0
D,ALL, UY

NSEL, S, LOC,Y,W/2
SF,ALL, PRES, -P
ALLSEL

SOLVE

/POST1

PLDISP, 2
PLNSOL, S, Y

/EOF

AT SELECTED NODES
SELECT NODES AT Y = 0
SUPPRESS Y-DISPLACEMENTS
AT SELECTED NODES
SELECT NODES AT Y = W/2
APPLY SURFACE LOADS
SELECT EVERYTHING

SOLVE

ENTER POSTPROCESSOR
PLOT DEFORMED SHAPE
PLOT STRESS IN Y-DIR
MARK THE END OF FILE
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Solid modeling using the Top-down approach to accomplish the same task is given
below; the methods are interchangeable and the results are the same.

RECTNG, 0,W/2,0,W/2
PCIRC, 1
ASBA, 1,2

CREATE RECTANGLE

CREATE CIRCLE

SUBTRACT CIRCLE FROM
RECTANGLE

SELECT LINES AT X = 0

ADD LINES AT Y = 0 TO THE
SELECTED SET

SPECIFY NUMBER OF ELEMENTS
ALONG LINES

SELECT LINES AT X = W/2
ADD LINES AT Y = W/2 TO
THE SELECTED SET

SPECIFY NUMBER OF ELEMENTS
ALONG LINES

CONCATENATE SELECTED LINES
SWITCH TO GLOBAL CYLINDRICAL
COORDINATE SYSTEM

SELECT LINES AT r = R
SPECIFY NUMBER OF ELEMENTS
ALONG LINES

LSEL, S, LOC, X, 0
LSEL,A,LOC,Y,0

LESIZE,ALL,,,10

LSEL, S, LOC, X, W/2
LSEL,A,LOC,Y,W/2

LESIZE,ALL,,,15

LCCAT, ALL
csys, 1

LSEL, S, LOC, X, R
LESIZE,ALL,,, 30

CsYs, 0 SWITCH TO GLOBAL CARTESIAN
COORDINATE SYSTEM
ALLSEL SELECT EVERYTHING

The deformed shape of the structure and the contour variation of stresses in the
y-direction after the solution are shown in Fig. 7.6 and 7.7, respectively.

7.3 Selecting Operations

Selecting operations play a key role when programming with APDL. The
most commonly used ANSYS commands for selecting operations are given in
Table 7.9.

The basic group of selection commands involves the ones that allow the user to
select a subset of entities, i.e., KSEL, LSEL, ASEL, VSEL, NSEL, and ESEL. The
syntax for these commands is as follows:
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Fig. 7.6 Deformed shape of
the structure

Fig. 7.7 Contour plot of nor-
mal stress in the y-direction

KSEL, Type, Item, Comp, VMIN, VMAX, VINC, KABS
LSEL, Type, Item, Comp, VMIN, VMAX, VINC, KSWP
ASEL, Type, Item, Comp, VMIN, VMAX, VINC, KSWP
VSEL, Type, Item, Comp, VMIN, VMAX, VINC, KSWP
NSEL, Type, Item, Comp, VMIN, VMAX, VINC, KABS
ESEL, Type, Item, Comp, VMIN, VMAX, VINC, KABS
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Table 7.9 Commonly used
ANSY'S commands for
selecting operations

Command
ALLSEL

KSEL,
LSEL,ASEL,
VSEL,
NSEL, ESEL

NSLE
ESLN

NSL,
NSLA,NSLV

ESL,
ESLA,ESLV

KSLL

LSLK
LSLA
ASLL
ASLV
VSLA

7 Use of Commands in ANSY'S

Description
Select all the entities

Select subsets of keypoints, lines, areas, vol-
umes, nodes, and elements

Select nodes attached to the selected elements
Select elements containing the selected nodes

Select nodes associated with the selected
lines, areas, and volumes

Select elements associated with the selected
lines, areas, and volumes

Select keypoints contained in the selected
lines

Select lines containing the selected keypoints
Select lines contained in the selected areas
Select areas containing the selected lines
Select areas contained in the selected volumes

Select volumes containing the selected areas

The first argument, “Type,” determines the specific type of selection with the fol-

lowing possible values:

S Select a subset from the full set.

R Select a subset from the current selected set.

A Select a subset from the full set and add it to the current selected set.

U Unselect a subset from the current selected set.

ALL Restore the full set.

NONE Unselect the full set.

INVE Invert the current selected set, which unselects the current selected set and

selects the current unselected set.

Figure 7.8 graphically illustrates the concepts behind the argument Type. The fol-
lowing examples demonstrate the use of Type, along with the remaining arguments.

The argument Item, depending on the entity, may have several different mean-
ings. The third through sixth arguments (Comp, VMIN, VMAX, and VINC) refer to
the argument Item. The most commonly used Item arguments are:

* Entity name: KP for keypoints, LINE for lines, AREA for areas, VOLU for
volumes,NODE for nodes, and ELEM for elements. In this case, the Comp field
(stands for component) is left blank, and VMIN, VMAX, and VINC refer to the
minimum and maximum values of the item range and value increment in range
(if VINC is not specified, its default value is 1), respectively. For example, in
order to select keypoints 21 through 30, the following statement is used:
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select from ‘
full set
full set selected set
XA
R RRRRBBBEK
select all .:.0,0.0.0.:’0.0.:.0,0
G000 0000000,
current selected set full set selected
select none m m ’
current selected set empty set selected
reselect from
the current % ‘ [o%)
selection
current selected set reselected set
add to the ‘
current selection
current selected set selected set expanded
unselect from
selection
current selected set selected set reduced
o | EREE |
current selection { b @
current selected set inverted selection

Fig. 7.8 Graphical representation of the argument Type in selection logic

KSEL, S,KP,, 21,30

* MAT, REAL, Type: Selects the entities based on their association with material,
real constant, and element type attributes, with the exception of nodes. Similar to
the entity name, the Comp field is left blank. The use of this item is demonstrated
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in the following example in which the elements with material property attribute
number 2 are unselected:

ESEL, U, MAT, , 2

* LOC: This item allows the user to perform the selection operations based on the
location of the entities, with the exception of elements. The Comp field in this
case corresponds to the direction (x, y, z for a Cartesian coordinate system; r, 6, z
for a cylindrical coordinate system; etc.). For example, the nodes located within
the range 2.5<z <4 can be added to the currently selected set of nodes using
the following statement:

NSEL,A,LOC,Z,2.5,4

Several examples demonstrating the concepts used in selection operations are
given below.

» Seclect nodes along planes x =1 and x=1.5 (but not the ones in between):

NSEL, S,L0C, X, 1
NSEL,A,LOC,%X,1.5

or

NSEL, S,LOC,X,1,1.5,0.5

» Select nodes along planes x =1 and x=1.5 (but nof the ones in between) and
within the range 0< y <4

NSEL, S, LOC, X, 1
NSEL,A,LOC,X,1.5
NSEL,R,LOC,Y, 0,4

» Seclect keypoints within the range 10 < x <15 (note that x =10 and x=15 are
excluded):

TINY=1E-6 ! DEFINE SMALL NUMBER
KSEL, S,LOC, X, 10+TINY,15-TINY

» Select keypoints with x <10 and x>15:
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TINY=1E-6
KSEL, S, LOC, X,10+TINY, 15
KSEL, INVE ! INVERT SELECTION

» Select elements 1 through 101 with the increment 2:

ESEL, S,ELEM,,1,101,2

e Select elements with material attribute number 5 but without those whose real
constant attribute number is 3:

ESEL, S,MAT, , 5
ESEL, U, REAL, , 3

The remaining commands included in Table 7.9 perform more specific tasks, mostly
utilizing the association between the entities. For example NSLE, the command is
used for performing selection operations on nodes associated with the currently
selected set of elements. The command line input given in the following example
unselects the nodes that are attached to the selected set of elements:

NSLE,U

Command ESLN selects elements attached to the currently selected set of nodes.
Analogous to the other selection commands, the first argument is Type, which de-
termines the type of selection. The value of the second argument, EKEY, determines
which elements are to be selected:

If EKEY =0, elements are selected if any of their nodes are in the selected node
set.

If EKEY =1, elements are selected only if all of their nodes are in the selected
node set.

The following lines demonstrate the use of this command:

ESLN,S,0 ! CASE 1
ESLN,S,1 ! CASE 2

7.4 Extracting Information from ANSYS

Programming with the ANSY'S Parametric Design Language often requires the ex-
traction of data such as entity numbers and locations, geometric information, re-
sults, etc. Considering the fact that a typical FEA mesh consists of thousands of
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nodes and elements, the user does not usually have control over the entity number-
ing. Thus, the information that nodes exist at a specific location may be known
without knowledge of their numbers. So, if the user is interested in extracting the
variation of a certain solution item along a specific path, the aforementioned data
extraction tasks must be performed. These tasks are achieved using the *GET com-
mand. The syntax of the *GET command is as follows:

*GET, Par,Entity, ENTNUM, Tteml, ITINUM, Item2, IT2NUM

The *GET command retrieves and subsequently stores data into parameters. The
first argument, Par , is the parameter name given by the user. The help page for
*GET the command provides a complete list of possible argument combinations,
and it is highly recommended that the user refer to it. In order to explain the use of
the *GET command, we consider the examples given below.

+ Store the maximum and minimum node numbers in the currently selected node
set in parameters maxnod and minnod.:

*GET, maxnod, NODE, 0, NUM, MAX
*GET, minnod, NODE, 0, NUM, MIN

+ Store the maximum and minimum element numbers in the currently selected ele-
ment set in parameters maxel and minel:

*GET, maxel, ELEM, 0, NUM, MAX
*GET,minel, ELEM, 0, NUM, MIN

» Store the number of nodes and elements in the currently selected node and ele-
ment sets in parameters numnod and numel:

*GET, numnod, NODE, 0, COUNT
*GET, numel, ELEM, 0, COUNT

» Store the x-, y-, and z-coordinates of the node numbered maxnod in parameters
x1, yl, and z1:

*GET, x1,NODE, maxnod, LOC, X
*GET, yl,NODE, maxnod, LOC, Y
*GET, z1,NODE, maxnod, LOC, Z

» Store the x-, y-, and z-displacements of the node numbered minnod in parameters
u2, v2, and w2:

*GET,u2,NODE, minnod, U, X
*GET,v2,NODE, minnod, U, Y
*GET,w2,NODE, minnod, U, Z
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» Store the rotations of the node numbered minnod about the x-, y-, and z-axes in
parameters r_x,r_ y, andr_z:

*GET, r x,NODE,minnod, ROT, X
*GET, r y,NODE,minnod, ROT, Y
*GET, r z,NODE,minnod,ROT, Z

* Store the shear stresses 0,,, 0,.,and o,, and von Mises stress o, at the node

numbered maxnod in parameters s_xy, s vz, s _xz, and s_eqv:

*GET, s_xy,NODE, maxnod, S, XY
*GET, s yz,NODE, maxnod, S, YZ

*GET, s xz,NODE, maxnod, S, X2

*GET, s_eqv,NODE, maxnod, S, EQV
* Store the normal strains €, €,,, and &,, at the node numbered minnod in pa-
rameters eps_xx, eps_yy, and eps_zz:

*GET, eps_xx,NODE,minnod, EPEL, X
*GET, eps_yy,NODE,minnod, EPEL, Y
*GET,eps_zz,NODE,minnod, EPEL, Z

 Store the x-, y-, and z-coordinates of the centroid of the element numbered maxel
in parameters ce_x, ce_y, and ce_z:

*GET,ce x,ELEM,maxel, CENT, X
*GET, ce_y,ELEM, maxel,CENT,Y
*GET,ce z,ELEM,maxel, CENT, Z

 Store the area of the element numbered minel in parameters e_area:

*GET,e_area,ELEM,minel, AREA

As an alternative to the syntax given above, one can use readily available *GET
functions that are predefined in compact form. A few of these functions are listed in
Table 7.10. For example, the x-, y-, and z-displacements of the node numbered min-
nod can be stored in parameters u2, v2, and w2 by using the following:

u2=UX (minnod)
v2=UY (minnod)
w2=UZ (minnod)
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Table 7.10 Selected compact

. Command Description
*GET functions

NX(n), NY(n), | Retrieve x-, y-, and z-coordinates of node
NZ(n) numbered n

NDNEXT(n) | Retrieve node number of the next selected
node having a node number greater than
node n

ELNEXT(e) Retrieve element number of the next selected
element having an element number greater
than element e

UX(n), UY(n), Retrieve x-, y-, and z-displacements of node

UZ(n) numbered n

ROTX(n), Retrieve rotations about x-, y-, and z-axes of
ROTY(n), node numbered n

ROTZ(n)

TEMP(n) Retrieve temperature at node numbered n
PRES(n) Retrieve pressure at node numbered n

7.5 Programming with ANSYS

The ANSYS Parametric Design Language contains features that are common to
other scientific programming languages. These include looping ( DO loops) and
conditional branching (IF statements), as well as writing formatted output to text
files (/OUTPUT and *VWRITE commands). These concepts are discussed in the
following subsections.

7.5.1 DO Loops

Do loops are program blocks containing a series of commands executed repeatedly,
once for each value of the /oop index. The APDL commands *DO and *ENDDO
define the beginning and ending of a do loop, respectively. The syntax for the *DO
command is

*DO, Par, IVAL, FVAL, INC

in which Par is the loop index and IVAL and FVAL designate the initial and final
values of Par to be incremented by INC. For example, the following input block is
used to find the arithmetic average of x-displacements along the boundary defined
by x=-2.5:
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/POST1

NSEL,S,LOC,X,-2.5

*GET, numnod, NODE, 0, COUNT
*GET, minnod, NODE, 0, NUM, MIN
sum=0

ENTER POSTPROCESSOR
SELECT NODES ALONG X
RETRIEVE NUMBER OF NODES
RETRIEVE MINIMUM NODE NUMBER
INITIALIZE SUM OF

= -2.

301

DISPLACEMENTS
curnod=minnod INITIALIZE CURRENT NODE
NUMBER
*D0O,1ii, 1, numnod ! BEGIN DO LOOP
*GET, cux, NODE, curnod, U, X ! RETRIEVE X- DISPLACEMENT OF
! THE CURRENT NODE
sum=sum+cux ! UPDATE SUMMATION

*GET, nextnod, NODE, curnod, NXTH

curnod=nextnod ! UPDATE
*ENDDO ! END DO

STORE NEXT HIGHER NODE

NUMBER IN nextnod

CURRENT NODE
LOOP

avgdisp=sum/numnod

! CALCULATE ARITHMETIC AVERAGE

In the example above, ii is the loop index with the initial and final values of 1
and numnod, respectively. Before the do loop begins, the necessary information
is obtained by using the *GET command (numnod for number of nodes minnod
and for the minimum node number in the selected set of nodes). Also, two new
parameters are defined:

sum for the summation of displacements, which is updated within the do loop
and finally divided by the number of nodes (numnod) to find the arithmetic

average.

curnod designating the node number of the “current node” within the do loop.
Its initial value is set as the minimum node number in the selected set of nodes
(minnod), and it is updated within the loop.

Additional do loops may be used within do loops. For example, the following input
block creates 216 nodes, starting from the origin, with increments of 0.25, 0.1, and

0.5 in the x-, y-, and z-directions, respectively.

/PREP7 ! ENTER PREPROCESSOR

dx=0.25 ! DEFINE PARAMETER FOR INCREMENT IN X
dy=0.1 ! DEFINE PARAMETER FOR INCREMENT IN Y
dz=0.5 ! DEFINE PARAMETER FOR INCREMENT IN Z
*DO,1,1,6 ' BEGIN DO LOOP IN i
*DO,9,1,6 ! BEGIN DO LOOP IN 7
*DO, k, 1,6 ! BEGIN DO LOOP IN k
N,, (i-1)*dx, (j-1) *dy, (k-1) *dz | CREATE NODE

*ENDDO ! END DO LOOP IN k
*ENDDO ! END DO LOOP IN 7
*ENDDO ! END DO LOOP IN i
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7.5.2 IF Statements

Conditional branching, which is the execution of an input block based on a condi-
tion, is accomplished by using the * IF command. The syntax for the * IF command
is

*IF,VALl,Operl,VAL2,Basel,VAL3,0Oper2,VAL4,Base?2

in which VAL1, VAL2, VAL3, and VAL4 are numerical values or parameters that
are compared (VAL1 is compared to VAL2, and VAL3 is compared to VAL4). The
types of these comparisons are dictated by operator arguments Operl and Oper2.
Finally, the arguments Basel and Base2 specify the action to be taken based on
the comparisons. Operator arguments Operl and Oper2 may take the following
selected logical values:

EQ Equal to (VAL1=VAL2).

NE Not equal (VAL1#VAL2).

LT Less than (VAL1<VALZ2).

GT Greater than (VAL1>VALZ2).

LE Less than or equal to (VAL1<VALZ2).
GE Greater than or equal to (VAL1>VAL2).

Common logical values for action arguments Basel and Base2 are:

AND True if both comparisons dictated by Operl and Oper2 are true.

OR True if either one of the comparisons dictated by Operl and Oper2 is true.
XOR  True if either one but not both of the comparisons dictated by Oper2 and
is true.

THEN If the preceding logical comparison is true, continue to the next line, oth-
erwise skip to one of the following commands (whichever appears first): *ELSE,
*ELSEIF, or *ENDIF. This point is explained in further detail below.

In the event that the first action argument Base1 has the logical value THEN, which
is often the case, then the conditional branching has the form

*IF,VALl,Operl, VAL2, THEN

and implies that this is an IF-THEN-ELSE block and that it must be ended by a
*ENDIF command. Between the *IF (marking the beginning of the block) and
*ENDIF (marking the end of the block) commands, the user may use *ELSEIF
and *ELSE commands. A typical IF-THEN-ELSE block has the following form:
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COMPARISON-1

APDL-1 (ANY NUMBER OF APDL
COMMANDS)

COMPARISON-2 (OPTIONAL)
APDL-2 (ANY NUMBER OF APDL
COMMANDS)

*IF,VALl,Operl, VAL2, THEN

*ELSEIF, VALl, Operl, VAL2
E..
*ELSE

COMPARISON-3 (OPTIONAL)
APDL-3 ANY NUMBER OF APDL
COMMANDS

*ENDIF

There may be several *ELSEIF commands *ELSEIF. command usage is the
same as for the *IF command (as far as the arguments are concerned) whereas
the *ELSE command does not have any arguments. There can only be one *ELSE
command, and it is the last IF-THEN-ELSE block command before the *ENDIF
command. In the example above, note that:

If COMPARISON-1 is true, then the input block APDL-1 is executed and the
input blocks APDL-2 and APDL-3 are ignored. If COMPARISON-1 is false and
if COMPARISON-2 is true, then the input block APDL-2 is executed and the input
blocks APDL-1 and APDL-3 are ignored. Finally, if neither COMPARISON-1 nor
COMPARISON-2 is true, then the input block APDL-3 is executed and the input
blocks APDL-1 and APDL-2 are ignored.

The arithmetic average of x-displacements along the boundary defined by
x =-2.5 was evaluated in the example considered in Sect. 7.5.1. In order to dem-
onstrate the use of IF-THEN-ELSE blocks, the example is modified by comput-
ing the arithmetic averages of positive and negative x-displacements separately,
and the number of nodes with zero x-displacement along the boundary specified as
x =—2.5. This task can be performed by the following input block:
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/POST1
NSEL, S, LOC,X,-2.5

i
|
!
*GET, numnod, NODE, 0, COUNT !
*GET, minnod, NODE, 0, NUM, MIN !

|
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ENTER POSTPROCESSOR
SELECT NODES ALONG

X = -2.5

RETRIEVE NUMBER OF NODES
RETRIEVE MINIMUM NODE
NUMBER

sum_p=0 | INITIALIZE SUM OF POSITIVE DISPLACEMENTS
sum_n=0 | INITIALIZE SUM OF NEGATIVE DISPLACEMENTS
cnt_p=0 | INITIALIZE # OF NODES WITH POSITIVE
| DISPLACEMENTS
cnt n=0 | INITIALIZE # OF NODES WITH NEGATIVE
B | DISPLACEMENTS
ent_z=0 | INITIALIZE # OF NODES WITH ZERO DISPLACEMENTS

curnod=minnod

*D0O,1ii, 1, numnod

*GET, cux, NODE, curnod, U, X

*IF,cux,GT, 0, THEN
sum_p=sum_p+cux

cnt p=cnt p+1
*ELSEIF, cux, LT, 0
sum n=sum n+cux

cnt n=cnt n+l
*ELSE

cnt z=cnt z+1
*ENDIF

! INITIALIZE CURRENT NODE
! NUMBER

! BEGIN DO LOOP

! RETRIEVE X-DISPLACEMENT
! OF THE CURRENT NODE
BEGIN IF-THEN-ELSE BLOCK

UPDATE SUM FOR POSITIVE
DISPLACEMENTS

UPDATE NUMBER OF NODES

cux IS NEGATIVE

UPDATE SUM FOR NEGATIVE
DISPLACEMENTS

UPDATE NUMBER OF NODES

cux IS ZERO

UPDATE NUMBER OF NODES

END IF-THEN-ELSE BLOCK

*GET, nextnod, NODE, curnod, NXTH

curnod=nextnod
*ENDDO
ave d p=sum _p/cnt p

ave_d n=sum n/cnt n

! STORE NEXT HIGHER NODE
! NUMBER IN nextnod

! UPDATE CURRENT NODE

! END DO LOOP

! CALCULATE AVERAGE

! POSITIVE

! CALCULATE AVERAGE

! NEGATIVE

The arithmetic averages of positive and negative x-displacements are stored in pa-
rameters ave_d_p and ave_d_n, respectively. Also, the number of nodes with
zero x-displacement is stored in parameter cnt_z.

7.5.3

/OUTPUT and *VWRITE Commands

APDL offers the option of writing formatted output to text files through use of
/OUTPUT and *VWRITE commands. The /OUTPUT command redirects the text
output, normally written in the Quiput Window, to a text (ASCII) file whereas the



7.5 Programming with ANSY'S 305

*VWRITE command allows desired parameters to be written with FORTRAN
(or C) formatting.
The syntax for the /OUTPUT command is

/OUTPUT, Fname, Ext, ,Loc

in which Fname and Ext are the file name and extension, respectively, and Loc
decides whether to start writing from the top of this file or to append to it. If the
field for Loc is left blank, then the output is written from the top of the file. If the
value of Loc is specified as APPEND, then the output is appended. Once the desired
data are written to the text file, the output should be redirected back to the Output
Window using the same command with no arguments, i.e.,

/OUTPUT

The syntax for the *VWRITE command is

*VWRITE, Parl, Par2,...,Parl9

in which Parl through Par19 are the parameters to be written with formatting. As
observed, up to 19 parameters can be written at a time. A FORTRAN or C format
can be used and must be supplied in the next line. The FORTRAN format must be
enclosed in parentheses and only real or alphanumeric formatting is allowed.

When appended to the input block given in Sect. 7.5.2, the commands in the
following input block write the arithmetic averages of positive and negative x-dis-
placements, and the number of nodes with zero x-displacement along the boundary
of x=-2.5 to three parameters (ave_d _p, ave_d n, and cnt_Z) in a text file
named data.out:

/OUTPUT, data, out ! REDIRECT OUTPUT TO FILE
*VWRITE,ave d p,ave d n | WRITE PARAMETERS ON THE
| SAME LINE

FORMAT STATEMENT
REDIRECT OUTPUT BACK TO
OUTPUT WINDOW

(E15.8,2X,E15.8) !
i
1
/OUTPUT, data, out, , APPEND ! APPEND TO EXISTING FILE
|
1
|
|

/OUTPUT

*VWRITE, cnt z WRITE THE PARAMETER

(F8.0) FORMAT STATEMENT

/OUTPUT REDIRECT OUTPUT BACK TO
OUTPUT WINDOW

In this particular example, E15. 8 in the format statement allocates 15 spaces for
the parameter, 8 of which are used for the numbers after the decimal point. The 2X
enforces 2 blank spaces between the parameters. The parameters ave_d _p and
ave_d _n are written in the following format:
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+0.12345678E100 *£0.12345678EX 00

Similarly, the format statement F'8 . 0 allocates a total of 8 spaces for the parameter
with no space for the numbers after the decimal point, and the parametercnt_z must
be an integer.

7.6 Macro Files

A more advanced level of APDL use is the Macro Files, which are similar to sub-
routines in the FORTRAN programming language. Macro Files are saved in sepa-
rate text files with the file extension mac (e.g. macrol.mac) and written using the
APDL. If they are saved in the Working Directory, they are automatically recog-
nized by the ANSYS program. Otherwise, the user must declare their location using
the /PSEARCH command. They are particularly useful for tasks that are repeated
many times with different values of model variables such as geometry, material
properties, boundary conditions, etc. A simple example on how Macro Files are
used is given below.

The example under consideration involves the modeling of a spring that has a
helix shape. The user needs to generate several models with different geometric
properties as part of a design requirement. The coordinates of a point on the helix
are given by the following set of parametric equations:

x =acos(t)
v = asin(t) (7.1)
z=>bt

in which a is the radius of the helix as it is projected onto the x-y plane, 27b is the
distance in the z-direction of one full turn, and ¢ is the independent parameter. For
this purpose, two Macro Files are written, with names HELIX1.MAC and HE-
LIX2.MAC, as given below:
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! HELIX1.MAC

! MACRO FOR HELIX GENERATION

! ARGl : COEFFICIENT A IN EQ. 7.1

! ARG2 : COEFFICIENT B IN EQ. 7.1

! ARG3 : NUMBER OF SEGMENTS TO BE USED FOR QUARTER CIRCLE
! ARG4 : NUMBER OF HELIX STEPS

/PREP7 ! ENTER PREPROCESSOR

PI=4*ATAN (1) ! DEFINE PI
T=0 ! INITIAL VALUE OF T
DT=2*PI/ (4*ARG3-1) ! INCREMENT OF T

*DO,I,1,4*ARG3
K, ,ARG1*COS (T) ,ARG1*SIN(T) ,ARG2*T

T=T+DT
*ENDDO

HELIX2,ARG3 ! CALL MACRO HELIX2
LGEN, ARG4,ALL,,,,,2*PI*ARG2

/EOF | MARK END OF FILE
! HELIX2.MAC

! CALLED BY HELIX1.MAC
! ARGl : NUMBER OF SEGMENTS TO BE USED FOR QUARTER CIRCLE

KSEL, S,KP,,1,ARG1+1
BSPLIN,ALL

KSEL, S,KP, ,ARG1+1, 2*ARG1+1
BSPLIN,ALL

KSEL, S,KP,, 2*ARG1+1, 3*ARG1+1
BSPLIN,ALL

KSEL, S,KP, , 3*ARG1+1, 4*ARG1+1
BSPLIN,ALL

ALLSEL

LGLUE, ALL

/EOF

As long as these files are located in the Working Directory, issuing the following
command produces the helix shown in Fig. 7.9 (oblique view):

HELIX1,1,0.1,4,4

Note that the arguments are specified as a =1 and b =0.1, and four segments are
used in creating a quarter circle. Finally, the geometry possesses a total of 4 helix
steps. When the radius is modified to be a =0.5, and the number of helix steps is
increased to 10 using

HELIX1,0.5,0.1,4,10

the geometry shown in Fig. 7.10 is obtained.
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Fig. 7.9 Helix created upon
execution of user-defined
macro HELIX1 with argu-
ments 1, 0.1, 4, and 4

7.7 Useful Resources

There are three main resources for help in enhancing and accelerating knowledge of
and skill in programming with APDL:

ANSYS Help System

Log File

ANSY'S Verification Manual

The first topic is discussed in sufficient detail in Sect. 2.7. The following subsec-
tions briefly discuss the second and third topics.

7.7.1 Using the Log File for Programming

Every time ANSYS is used interactively (using GUI), a Log File is created in the
Working Directory with the name jobname.log. 1f Jobname is not specified, the
default for the Jobname is file and the Log File is named file.log. This file records
every single action the user takes when using ANSYS, including the ones that are
not directly related to the finite element method, such as graphics (zoom in/out,
turning on/off entity numbering in the Graphics Window, etc.). Although it may
appear to be a little “messy,” it is extremely useful in learning which commands are
used for certain actions when using GUI.
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Fig. 7.10 Helix created upon
execution of user-defined
macro HELIX1 with argu-
ments 0.5, 0.1, 4, and 10

The following example illustrates how the user can utilize the Log File for learn-
ing certain commands. Suppose the domain is the same as the one considered in
Sect. 7.2 and the user is required to write an input file to create the solid model. The
model generation includes:

Creation of a square with side length of 2.

Creation of a circle with radius 1.
Subtraction of the circle from the square.

The details on how to perform these simple operations in GUI are left out as they
should be clear based on the coverage in Chap. 4 and several examples throughout
this book. Once the user performs these operations using the GUI, the Log File can
be viewed from within ANSYS using

Utility Menu > List>Files > Log File

which should appear in a separate Output Window with contents as given below:
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/BATCH

/COM, ANSYS RELEASE 8.0 UP20030930 14:49:33 06/16/2004
/PREP7

RECTNG, ,2,,2,

PCIRC,1, ,0,360,

ASBA, 1, 2

Creation of the square and the circle is achieved by using the commands RECTNG
and PCIRC, respectively. Finally, area subtraction is performed using the ASBA
command. Once the command names are identified, Help Pages for these com-
mands must be read to learn the correct and most efficient usage. The Log File may
not always be as clear-cut as the one shown above, especially when the GUI action
involves graphical picking. However, as the user becomes more accustomed to the
use of ANSYS, both in Batch and Interactive Modes, the Log File becomes easier
to follow.

7.7.2  Using the Verification Problems for Programming

As mentioned in Sect. 2.7, the Verification Manual under the ANSYS Help System
provides an excellent platform for programming in APDL. In order to demonstrate
this point, Verification Problem 2 (one of the 238 problems) is selected. In this prob-
lem, a simply supported I-beam with known properties is subjected to a uniformly
distributed transverse loading, as shown in Fig. 7.11. The help page for this problem
can be viewed by using the following menu path within the ANSYS Help System,
which appears on the left side of the Help Window (heading shown in Fig. 7.12):

Mechanical APDL > Verification Test Case Descriptions > VM2

The problem description, a sketch of the problem and corresponding FEA represen-
tation, the reference from which the problem is taken, and analysis assumptions are
found at the top of the page. Included further down is a table (see Fig. 7.13) show-
ing the results obtained by both analytical methods and the ANSYS software. As
observed in Fig. 7.12, there is a hyperlink to the text file vin2 . dat, which includes
the input commands for the solution of this problem using the Batch Mode. Upon
clicking on this hyperlink, the file appears as partially shown in Fig. 7.14. The user
can go through this file line by line, referring frequently to the help pages of unfa-
miliar commands in order to learn the correct usage of commands.

Another important benefit from the Verification Manual is that one can learn
how to solve problems with certain properties. The Verification Test Case Descrip-
tions help page, accessed through the menu path

Mechanical APDL > Verification Test Case Descriptions

is a good place to start. For example, if the problem at hand involves materials with
viscoelastic behavior, it would be a good idea to scan the test case descriptions to
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Fig. 7.11 Graphical description of Verification Problem 2 as given in ANSYS Verification Manual
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Fig. 7.12 Heading of the help page for Verification Problem 2 as given in ANSYS Verification

Manual
Results Comparison
| Target ANSYS Ratio
|stress, pst -11400.000 -11440.746 1.004
|Cetiecton, n 0.182 0.182 1.003

Fig. 7.13 Comparison of results as given in ANSYS Verification Manual
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VM2 Input Listing

Fig. 7.14 VM2 input listing as given in ANSYS Verification Manual

find a solved problem with such materials. A quick glance at the list of test case
descriptions reveals that Verification Problem 200 involves a viscoelastic material
and that the user may benefit from examining this file in order to see how the prob-
lem is treated before moving on to the problem at hand, which is likely to be more
complicated.



Chapter 8
Linear Structural Analysis

A linear analysis is conducted if a structure is expected to exhibit linear behav-
ior. The deformation and load-carrying capability can be determined by employing
one of the analysis types available in ANSYS, static or dynamic, depending on the
nature of the applied loading. If the applied loading is determined as part of the
solution for structural stability, a buckling analysis is conducted. If the structure is
subjected to thermal loading, the analysis is referred to as thermomechanical.

8.1 Static Analysis

The behavior of structures under static loading can be analyzed by employing dif-
ferent types of elements within ANSY'S. The nature of the structure dictates the type
of elements utilized in the analysis. Discrete or framed structures are suitable for
modeling with rod- and beam-type elements. However, the modeling of continuous
structures usually requires a three-dimensional model with solid elements.

Under certain types of loading and geometric conditions, the three-dimensional
type of analysis can be idealized as a two-dimensional analysis. If the component is
subjected to in-plane loading only and its thickness is small with respect to the other
length dimensions, it is idealized as a plane stress condition. If the component with
a uniform cross section is long in the depth direction and is subjected to a uniform
loading along the depth direction, it is idealized as a plane strain condition. If the
component has a circular cross section and is subjected to uniform and concentric
loading, it possesses axisymmetry. If thin structural components are subjected to
lateral loading, the plate and shell elements are suitable for analysis.

8.1.1 Trusses

A truss is a structure that is made of straight structural members capable of carry-
ing loads only in their own direction, i.e., no shear forces, no moments. Thus, each

The online version of this book (doi: 10.1007/978-1-4939-1007-6_8) contains supplementary
material, which is available to authorized users
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Fig. 8.1 Schematic of a bar
deformed due to its own
weight

20 in

member is under either axial tension or axial compression. These members are con-
nected to each other by means of joints. It is assumed that loads can only be applied
at the joints. LINK180 is the element for modeling truss structures. The degrees of
freedom at each node for truss elements are the displacement components u,, u,
and u,. However, the vector sum of the deformations (elongation or contraction,
not the displacements) is aligned with the direction of the element. Two example
problems are given to demonstrate the usage of truss elements within ANSYS.

8.1.1.1 Elongation of a Bar Under its Own Weight Using Truss Elements

Consider a steel bar of uniform cross section whose upper end is supported such that
it is fixed from translational motion. The mass density, elastic modulus, and Pois-
son’s ratio of steel are p = 0.2841b/in’, E =30x10°psi, and v = 0.3, respectively.
The radius and length of the bar are assumed to be » = 2in and / = 20in, respective-
ly, and the gravitational acceleration is g = 386.2205in/sec?. The goal is to find the
elongation of the bar at the lower end due to its own weight. The positive y-direction
is the opposite direction of the gravitational acceleration, as shown in Fig. 8.1.

This problem can be solved using two-dimensional truss, two-dimensional axisym-
metric plane, or three-dimensional elements. Since, we are interested in the elongation
only, two-dimensional truss elements (LINK180) are used to obtain the solution.

Model Generation

* Specify the element type (ET command) using the following menu path:
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Main Menu > Preprocessor > Element Type > Add/Edit/Delete

Click on Add.

Select Link immediately below Structural Mass from the left list and 3D finit
stn 180 from the right list; click on OK.

Click on Close.

* Specify real constants (R command) using the following menu path:

Main Menu > Preprocessor > Real Constants > Add/Edit/Delete

Click on Add.

Highlight Type 1 Link 180, click on OK.

Enter 12.5664 (calculated based on radius, » =2 in) for AREA; click on OK.
Click on Close.

* Specify material properties for the bar (MP command) using the following menu
path:

Main Menu > Preprocessor > Material Props > Material Models

In the Define Material Model Behavior dialog box, in the right window, suc-
cessively left-click on Structural and Density, which will bring up another
dialog box.

Enter 0.284 for DENS; click on OK.

In order to specify the elastic modulus and Poisson’s ratio, in the Define
Material Model Behavior dialog box, in the right window, successively left-
click on Structural, Linear, Elastic, and, finally, Isotropic, which will bring
up another dialog box.

Enter 30e6 for EX and 0.3 for PRXY:; click on OK.

Close the Define Material Model Behavior dialog box by using the following
menu path:

Material > Exit

* Create keypoints (K command) using the following menu path:

Main Menu > Preprocessor > Modeling > Create > Keypoints > In Active CS

A total of 2 keypoints will be created.

Enter (x, y) coordinates of keypoint 1 as (0, 0); click on Apply.

This action will keep the Create Keypoints in Active Coordinate System dia-
log box open. If the NPT Keypoint number ficld is left blank, then ANSYS
assigns the lowest available keypoint number to the keypoint that is being
created.

Repeat the same procedure for keypoint 2 using (0,-20) for the (x, y)
coordinates.

Click on OK (instead of Apply).

e Create a line (. command) using the following menu path:
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Main Menu > Preprocessor > Modeling > Create > Lines > Lines > Straight Line
— Pick Menu appears; first pick keypoint 1, then keypoint 2; click on OK.

* Specify the number of divisions on the line (LESIZE command) using the
following menu path:

Main Menu > Preprocessor > Meshing > Size Cntrls > ManualSize > Lines >
Picked Lines

— Pick Menu appears; pick the line; click on OK.
— Element Sizes on Picked Lines dialog box appears; enter 20 for NDIV;, click
on OK.

* Create the mesh (LMESH command) using the following menu path:
Main Menu > Preprocessor > Meshing > Mesh > Lines

— Pick Menu appears; pick the line; click on OK.
* Review elements.

— Turn on element numbering using the following menu path:
Utility Menu > PlotCtrls > Numbering

— Select Element numbers from the first pull-down menu.
— Plot elements (EPLOT command) using the following menu path:

Utility Menu > Plot > Elements

— Turn off element numbering and turn on node numbering using the following
menu path:

Utility Menu > PlotCtrls > Numbering

— Place a checkmark by clicking on the empty box next to NODE Node
numbers.

— Select No numbering from the first pull-down menu.

— Click on OK.

— Plot nodes (NPLOT command) using the following menu path:

Utility Menu > Plot > Nodes

Solution

* Apply displacement constraints (D command) using the following menu path:

Main Menu > Solution > Define Loads > Apply > Structural > Displacement >
On Nodes

— Pick Menu appears; pick node 1 (upper end); click on OK in the Pick Menu.
— Highlight All DOF; click on OK.
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Fig. 8.2 Schematic of the
truss structure with symmetry

&3 | o @
i 20,000 Ib :
e 8 ft —pt—— 8 ft —»i

* Apply gravitational acceleration (ACEL command) using the following menu
path:

Main Menu > Solution > Define Loads > Apply > Structural > Inertia > Gravity
> Global

— Apply (Gravitational) Acceleration dialog box appears.
— Enter 386.2205 for ACELY; click on OK.

* Obtain the solution (SOLVE command) using the following menu path:
Main Menu > Solution > Solve > Current LS

— Confirmation Window appears along with Status Report Window.

— Review status; if OK, close the Status Report Window; click on OK in the
Confirmation Window.

— Wait until ANSYS responds with Solution is done!

Postprocessing

* Review displacement values (PRNSOL command) using the following menu
path:

Main Menu > General Postproc > List Results > Nodal Solution

— Click on Nodal Solution, DOF Solution, and Y-component of displacement,
click on OK.

— The list appears. Note that the value for the y-displacement at node 2 (lower
end) is listed as —0.73124E—03 (in inches).

8.1.1.2 Analysis of a Truss Structure with Symmetry

Consider the steel truss structure shown in Fig. 8.2, which possesses symmetry with
respect to the ordinate. Node and element numbers are also shown in this figure.
Element 3 has a cross-sectional area of 4 =20 in2, while the other elements have
A =10 in’. The elastic modulus for all of the elements is £ = 30x10° psi. The goal
is to find the displacements at the nodes and the stresses in the elements. Due to the
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symmetry condition, only half the geometry is modeled with appropriate boundary
conditions, i.e., the x-displacement at nodes 2 and 3 is zero and the applied force at
node 2 is halved. Also, for the element located along the symmetry line, one half of
the cross-sectional area is used.

The solution obtained using ANSYS is as follows:

Model Generation

* Specify the element type (ET command) using the following menu path:
Main Menu > Preprocessor > Element Type > Add/Edit/Delete

— Click on Add.

— Select Link immediately below Structural Mass from the left list and 3D finit
stn 180 from the right list; click on OK.

— Click on Close.

» Specify real constants (R command) using the following menu path:
Main Menu > Preprocessor > Real Constants > Add/Edit/Delete

— Click on Add.

Highlight Type 1 Link 180; click on OK.
Enter 10 for AREA; click on OK.

— Click on Close.

» Specify material properties for the bar (MP command) using the following menu
path:

Main Menu > Preprocessor > Material Props > Material Models

— In the Define Material Model Behavior dialog box, in the right window, suc-
cessively left-click on Structural, Linear, Elastic, and, finally, Isotropic,
which will bring up another dialog box.

— Enter 30e6 for EX and 0 for PRXY; click on OK. Click on OK in the subse-
quent warning message.

— Close the Define Material Model Behavior dialog box by using the following
menu path:

Material > Exit
* Create nodes (N command) using the following menu path:

Main Menu > Preprocessor > Modeling > Create > Nodes > In Active CS

A total of 3 nodes will be created.

Enter the (x, y) coordinates of node 1 as (0, 0); click on Apply.

— Repeat the same procedure for nodes 2 and 3 using (96, 0) and (96, 72),
respectively, for the (x, y) coordinates.

After entering the coordinates for node 3, click on OK (instead of Apply).
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» A total of 3 elements will be created. Element 1 is defined by nodes 1 and 3
[1-3]. Similarly, elements 2 and 3 are defined by nodes [1-2] and [2-3], respec-
tively. Create elements (E command) using the following menu path:

Main Menu > Preprocessor > Modeling > Create > Elements > Auto Numbered
> Thru Nodes

— Pick Menu appears; create elements by picking two nodes at a time and click-
ing on Apply in between.

— Observe the elements created after clicking on Apply in the Pick Menu.

— Repeat until element 3 is created; click on OK.

Solution

» Apply displacement constraints (D command) using the following menu path:

Main Menu > Solution > Define Loads > Apply > Structural > Displacement >
On Nodes

— Pick Menu appears; pick node 1; click on OK in the Pick Menu.
Highlight UY; click on Apply.

— Pick Menu reappears; pick nodes 2 and 3; click on OK in the Pick Menu.
— Click on UY to remove the highlight then click on UX to highlight.

— Click on OK.

» Apply force boundary conditions (F command) using the following menu path:

Main Menu > Solution > Define Loads > Apply > Structural > Force/Moment
> On Nodes

— Pick Menu appears; pick node 2; click on OK in the Pick Menu.
— Select FY from pull-down menu and enter — 10000 for Force/moment value,
click on OK.

* Obtain the solution (SOLVE command) using the following menu path:
Main Menu > Solution > Solve > Current LS

— Confirmation Window appears along with Status Report Window.

— Review status, if OK, close the Status Report Window; click on OK in the
Confirmation Window.

— Wait until ANSYS responds with Solution is done!

Postprocessing

* Review displacement values (PRNSOL command) using the following menu
path:
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Fig. 8.3 Dialog box for retrieving element results based on sequence numbers

Main Menu > General Postproc > List Results > Nodal Solution

— List Nodal Solution dialog box appears. Click on DOF Solution and Y-com-
ponent of displacement; click on OK.

— The list appears with the values for the y-displacement at nodes 2 and 3 as
—0.19200E—01 and —0.16800E—01, respectively.

* Review element stress values (ETABLE command) using the following menu
path:

Main Menu > General Postproc > Element Table > Define Table

— Element Table Data dialog box appears. Click on Add, which brings up the
Define Additional Element Table Items dialog box. Enter a label (Lab) for ele-
ment stresses, say ELSTRS. Scroll down in the left list; click on By Sequence
num; click on LS in the right list. Finally, enter LS, in the last text field, as
shown in Fig. 8.3; click on OK.

— Note that the element table ELSTRS is now listed in the Element Table Data
dialog box; click on Close.

— List the element table (PRETAB command) using the following menu path:

Main Menu > General Postproc > Element Table > List Elem Table

— In the List Element Table Data dialog box, highlight ELSTRS; click on OK.
— The list appears with stresses in elements 1, 2, and 3 as —1666.7, 1333.3, and
1000, respectively.

8.1.2 Beams

A beam is a structural member capable of carrying axial, shear, and moment loads.
Unlike truss members, loads can be applied anywhere along the beam geometry.
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Fig. 8.4 Schematic of a circular steel ring and the corresponding solid model (/eff) and Beam Tool
dialog box (right)

ANSYS provides several element types for modeling beams. The most commonly
used one is BEAM188 for two- and three-dimensional analyses, respectively. At
each node, both displacements and rotations are the degrees of freedoms for struc-
tural beam elements (u, u,, and O, for 2-D; u,, U, U,, 0., Oy, and 0, for 3-D).
Two example problems are considered in this section for the demonstration of the
usage of beam elements within ANSY'S.

8.1.2.1 Analysis of a Slit Ring

A circular steel ring with a slit, as shown in Fig. 8.4, is subjected to a 50-Ib vertical
force acting in the negative y-direction at the termination point while translations
and rotations are constrained in every direction. The ring has a solid circular cross
section with radius 1 in. The structure is modeled using beam elements with cross-
sectional area 4=, elastic modulus £ =30x 106, Poisson’s ratio v = 0.3, and mo-
ment of inertia /_, = /4. The goal is to find the displacements at the nodes and
the moment diagram. The solid model used in the ANSY'S solution is also shown in
Fig. 8.4 (left), with the keypoint and line numbers indicated.

Model Generation

» Specify the element type (ET command) using the following menu path:
Main Menu > Preprocessor > Element Type > Add/Edit/Delete

— Click on Add.

— Select Beam immediately below Structural Mass from the left list and 2node
188 from the right list; click on OK.

— Click on Close.
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» Specify geometry for the beam (SECTYPE command) using the following menu
path:

Main Menu > Preprocessor > Sections > Beam > Common Sections

— Beam Tool dialog box appears; select the solid circular section from the Sub-
Type pull-down menu.

— Enter 1 for R.

— Exit from the Beam Tool dialog box (Fig. 8.4 (right)) by clicking on OK.

» Specify material properties for the beam (MP command) using the following
menu path:

Main Menu > Preprocessor > Material Props > Material Models

— In the Define Material Model Behavior dialog box, in the right window, suc-
cessively left-click on Structural, Linear, Elastic, and, finally, Isotropic,
which will bring up another dialog box.

— Enter 30e6 for EX and 0.3 for PRXY; click on OK.

— Close the Define Material Model Behavior dialog box by using the following
menu path:

Material > Exit
* Create keypoints (K command) using the following menu path:
Main Menu > Preprocessor > Modeling > Create > Keypoints > In Active CS

— A total of 6 keypoints will be created.

— Enter the (x, y) coordinates of keypoint 1 as (100, 0); click on Apply.

This action will keep the Create Keypoints in Active Coordinate System dia-
log box open. If the NPT Keypoint number field is left blank, then ANSYS
assigns the lowest available keypoint number to the keypoint that is being
created.

— Referring to Fig. 8.4, repeat the same procedure for keypoints 2, 3,4, 5, and 6
using (0, —100), (—100, 0), (0, 100), (100, 0), and (0, 0), respectively, for the
(x, ) coordinates.

— After generating keypoint 6, click on OK (instead of Apply).

— Note that keypoints 1 and 5 are coincident. This is intentional, so the slit can
be modeled properly.

* Create arcs (LARC command) using the following menu path:

Main Menu > Preprocessor > Modeling > Create > Lines > Arcs > By End KPs
& Rad

— Atotal of 4 lines (arcs) will be created.

— Pick Menu appears; pick keypoints 1 and 2 (end points of the arc); click on
OK in the Pick Menu.

— Pick keypoint 6 (center of the arc); click on OK in the Pick Menu.
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— Arc by End KPs & Radius dialog box appears; enter 100 for RAD Radius of
the arc.

— Click on Apply; line 1 is created.

— Repeat this procedure for lines 2, 3, and 4 using keypoint pairs (2, 3), (3, 4),
and (4, 5), respectively. All lines use keypoint 6 as the center and 100 as the
radius.

» Specify the number of divisions on all lines (LESIZE command) using the fol-
lowing menu path:

Main Menu > Preprocessor > Meshing > Size Cntrls > ManualSize > Lines >
All Lines

— Element Sizes on All Selected Lines dialog box appears; enter 10 for NDIV
click on OK.

* Create the mesh (LMESH command) using the following menu path:
Main Menu > Preprocessor > Meshing > Mesh > Lines

— Pick Menu appears; click on Pick All.

Solution

» Apply displacement constraints (D command) using the following menu path:

Main Menu > Solution > Define Loads > Apply > Structural > Displacement >
On Nodes

— Pick Menu appears; pick one of the nodes at x=100 and y=0. There are two
nodes at this location: nodes 1 and 32. When picking, ANSY'S asks the user
which one of the nodes is to be picked. Click on the Next button in this Warn-
ing Window so that it shows Node 32; click on OK in the Pick Menu.

— Apply U, Rot on Nodes dialog box appears; highlight A/l DOF; click on OK.

» Apply force boundary conditions (F command) using the following menu path:

Main Menu > Solution > Define Loads > Apply > Structural > Force/Moment
> On Nodes

— Pick Menu appears; this time pick node 1 (instead of node 32); click on OK in
the Pick Menu.

— Select FY from the pull-down menu and enter — 50 for Force/moment value,
click on OK.

* Obtain the solution (SOLVE command) using the following menu path:
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Fig. 8.5 Deformed shape of ——e
the steel ring under applied
boundary conditions ¥ g

Main Menu > Solution > Solve > Current LS

— Confirmation Window appears along with Status Report Window.

— Review status; if OK, close the Status Report Window; click on OK in the
Confirmation Window.

— Wait until ANSYS responds with Solution is done!

Postprocessing

* Review the deformed shape (PLDISP command) using the following menu path:
Main Menu > General PostProc > Plot Results > Deformed Shape

— Select Def + undeformed; click on OK.
— The deformed shape is shown in Fig. 8.5 as it appears in the Graphics Window.

» Store bending moment values in the element table (ETABLE command) using
the following menu path:

Main Menu > General Postproc > Element Table > Define Table

— Element Table Data dialog box appears; click on Add.

— Define Additional Element Table Items dialog box appears. Enter a label
name, say MZI, in the User label for item text field. In the left list, scroll down
to select By sequence number and select SMISC in the right list. Finally, type
SMISC,3 in the last text field; click on Apply (Fig. 8.6).

— Repeat this procedure for MZJ using SMISC, 16. When done, click on OK
(instead of Apply).

— Note that SMIS3 now appears in the list in the Element Table Data dialog
box. Exit from the Element Table Data dialog box by clicking on Close.

— Plot the moment diagram (PLLS command) using the following menu path:
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Fig. 8.6 Define Additional Element Table Items dialog box for extracting nodal moment values
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Fig. 8.7 Moment diagram of the steel ring

Main Menu > General Postproc > Plot Results > Contour Plot > Line Elem Res

— Plot Line-Element Results dialog box appears; click on OK.
— Figure 8.7 shows the resulting moment diagram as displayed in the Graphics
Window.

8.1.3 Three-Dimensional Problems

Almost all engineering problems are three-dimensional (3-D) by nature. However,
depending on the specific geometry, loading conditions, and quantities of interest, it
is common to approach the problem with the idealization of a lower dimensionality.
If a representative idealization cannot be utilized, then a three-dimensional model
must be created. The most commonly used three-dimensional structural element
is, SOLID185 which is an 8-noded brick element. The degrees of freedom at each
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Fig. 8.8 Schematic of a bar
deformed due to its own
weight
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node for 3-D problems are u,, u,, and w_. Determining the deformation of a bar
under its own weight using three-dimensional elements in ANSY'S is demonstrated
in the following.

The elongation of a bar due to its own weight was modeled in Sect. 8.1.1.1 using
two-dimensional link elements. That solution provided the displacement of the bar
in the longitudinal direction, and the same cross-sectional area is assumed. Three-
dimensional elements provide the change in the cross-sectional area, as well as the
displacement components. The reference frame shown in Fig. 8.8 is used in the
3-D solution.

Model Generation
*  Specify the element type (ET command) using the following menu path:
Main Menu > Preprocessor > Element Type > Add/Edit/Delete

— Click on Add.

— Select Solid immediately below Structural Mass from the left list and Brick
8node 185 from the right list; click on OK.

— Click on Close.

» Specify material properties for the bar (MP command) using the following menu
path:

Main Menu > Preprocessor > Material Props > Material Models

— In the Define Material Model Behavior dialog box, in the right window, suc-
cessively left-click on Structural and Density, which will bring up another
dialog box.

— Enter 0.2839605 for DENS; click on OK.

— In order to specify the elastic modulus and Poisson’s ratio, in the Define
Material Model Behavior dialog box, in the right window, successively left-
click on Structural, Linear, Elastic, and, finally, Isotropic, which will bring
up another dialog box.
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— Enter 30e6 for EX and 0.3 for PRXY; click on OK.
— Close the Define Material Model Behavior dialog box by using the following
menu path:

Material > Exit
* Create a volume (CYLIND command) using the following menu path:

Main Menu > Preprocessor > Modeling > Create > Volumes > Cylinder > By
Dimensions

— Create Cylinder by Dimensions dialog box appears. Enter 2 for RAD2, 20 for
Z2, and 90 for THETA2; click on OK.

* Create additional volumes by reflection (VSYMM command) using the following
menu path:

Main Menu > Preprocessor > Modeling > Reflect > Volumes

— Pick Menu appears; click on Pick All button, which brings up the Reflect Vol-
umes dialog box.

— Click on the ¥-Z Plane X radio-button; click on Apply.

— Pick Menu reappears; click on Pick All button and in the Reflect Volumes
dialog box click on the X-Z Plane Y radio-button; click on OK.

*  Glue the volumes (VGLUE command) using the following menu path:
Main Menu > Preprocessor > Modeling > Operate > Booleans > Glue > Volumes
— Pick Menu appears; click on Pick All button.

* Specify the global element size (ESIZE command) using the following menu
path:

Main Menu > Preprocessor > Meshing > Size Cntrls > ManualSize > Global >
Size

— Global Element Sizes dialog box appears; enter I for SIZE; click on OK.
* Create the mesh (VMESH command) using the following menu path:

Main Menu > Preprocessor > Meshing > Mesh > Volumes > Mapped > 4 to 6
sided

— Pick Menu appears; click on Pick All.
Solution
* Apply displacement constraints (D command) using the following menu path:

Main Menu > Solution > Define Loads > Apply > Structural > Displacement >
On Nodes

— Pick Menu appears; pick all the nodes at z=0 (use different viewpoints if
necessary); click on OK in the Pick Menu.
— Highlight All DOF; click on OK.
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Fig. 8.9 Deformed shape x ]
(left) and contour plot of the
z-displacement (right) of the
bar due to its own weight

» Apply gravitational acceleration (ACEL command) using the following menu path:

Main Menu > Solution > Define Loads > Apply > Structural > Inertia > Gravity
> Global

— Apply (Gravitational) Acceleration dialog box appears.
— Enter —386.2205 for ACELZ; click on OK.

* Obtain the solution (SOLVE command) using the following menu path:
Main Menu > Solution > Solve > Current LS

— Confirmation Window appears along with Status Report Window.

— Review status, if OK, close the Status Report Window; click on OK in the
Confirmation Window.

— Wait until ANSYS responds with Solution is done!

Postprocessing
» Review the deformed shape (PLDISP command) using the following menu path:
Main Menu > General PostProc > Plot Results > Deformed Shape

— Select Def + undef edge; click on OK.
— The deformed shape is shown in Fig. 8.9 as it appears in the Graphics
Window.

» Review z-displacement contours (PLNSOL command) using the following menu
path:

Main Menu > General PostProc > Plot Results > Contour Plot > Nodal Solu

— Contour Nodal Solution Data dialog box appears. Click on Nodal Solution,
DOF Solution, and then Z-component of displacement; click on OK.

— The contour plot is shown in Fig. 8.9 as it appears in the Graphics
Window.
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» Review displacement values (PRNSOL command) using the following menu path:
Main Menu > General Postproc > List Results > Nodal Solution

— Click on Nodal Solution, DOF Solution, and then Z-component of displace-
ment; click on OK.

— The list appears in a separate window. It is a long list of z-displacements.

— At the bottom of the window maximum displacement value is printed as
0.72386E-03.

8.1.4 Two-Dimensional Idealizations

As mentioned in Sect. 6.2.2, the reduction of the dimensionality of a problem from
three to two through an idealization may reduce the computational cost signifi-
cantly. There are three distinct two-dimensional idealizations: plane stress, plane
strain, and axisymmetry.

Plane stress and strain idealizations are discussed in Sects. 6.2.2.1 and 6.2.2.2,
respectively. Therefore, the descriptions given in the following subsections are
brief.

8.1.4.1 Plane Stress

In a structural problem, if one of the dimensions is much smaller than the in-plane
dimensions, and if the structure is subjected to only in-plane loads along the bound-
ary, then the plane stress idealization is valid. It reduces the computational cost
significantly without a loss of accuracy in the quantities of interest. Plane stress
idealization is demonstrated by considering a plate with a circular hole and a com-
posite plate under axial tension.

Analysis of a Plate with a Circular Hole

A square plate (9 9 in?) with a circular hole (radius #=0.25 in) is subjected to uni-
formly distributed tensile loading (1000 psi) in the vertical direction along its top
surface while being fixed along the bottom surface (Fig. 8.10). The plate is stiffened
by means of increased thickness, from 0.063 to 0.12 in. Plane stress idealization is
used in the ANSYS solution, as the plate is thin and there are no lateral loads. The
material properties are given as elastic modulus E=10x0° psi and Poisson’s ratio
v=0.25. The goal is to obtain the displacement and stress fields resulting from the
applied boundary conditions.
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Model Generation

» Define the element type (ET command) using the following menu path:

Main Menu > Preprocessor > Element Type > Add/Edit/Delete

Click on Add.

Select Solid immediately below Structural Mass in the left list and Quad 4
Node 182 in the right list; click on OK.

Click on Options.

PLANE182 element type options dialog box appears; select the Plane strs w/
thk item from the pull-down menu corresponding to Element behavior K3.
Click on OK; click on Close.

» Specify the thickness information using real constants (R command) using the
following menu path:

Main Menu > Preprocessor > Real Constants > Add/Edit/Delete

Real Constants dialog box appears; click on Add. Click on OK; Real Con-
stants Set Number 1 for PLANE182 dialog box appears.

Type 0.063 in the Thickness THK text field; click on Apply.

Change the Real Constant Set No. from 1 to 2 and modify the Thickness
THK text field to be 0.12; click on OK.

Exit from the Real Constants dialog box by clicking on Close.

» Specify material properties (MP command) using the following menu path:
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Main Menu > Preprocessor > Material Props > Material Models

— Define Material Model Behavior dialog box appears. In the right window,
successively left-click on Structural, Linear, Elastic, and, finally, Isotropic,
which brings up another dialog box.

— Enter 10e6 for EX and 0.25 for PRXY; click on OK.

— Close the Define Material Model Behavior dialog box by using the following
menu path:

Material > Exit
* Create a square area (RECTNG command) using the following menu path:

Main Menu > Preprocessor > Modeling > Create > Areas > Rectangle > By
Dimensions

— Inthe Create Rectangle by Dimensions dialog box, enter 0 and 0.5 for X1 and
X2 and 0 and 0.5 for Y1 and Y2; click on OK.

* Create a circular area for the hole geometry (PCIRC command) using the fol-
lowing menu path:

Main Menu > Preprocessor > Modeling > Create > Areas > Circle > By
Dimensions

— In the Create Circle by Dimensions dialog box, type 0.25 for Outer radius;
click on OK.

» Subtract the circle from the rectangle (ASBA command) using the following
menu path:

Main Menu > Preprocessor > Modeling > Operate > Booleans > Subtract >
Areas

— Pick Menu appears; pick the rectangle; click on OK; pick the circle; click on
OK.

* Create additional rectangular areas (RECTNG command) using the following
menu path:

Main Menu > Preprocessor > Modeling > Create > Areas > Rectangle > By
Dimensions

— In the Create Rectangle by Dimensions dialog box, enter 0.5 and 4.5 for X1
and X2 and 0 and 0.5 for Y1 and Y2; click on Apply.

— Now, enter 0.5 and 4.5 for X1 and X2 and 0.5 and 4.5 for Y1 and Y2; click on
Apply.

— Finally, enter 0 and 0.5 for X1 and X2 and 0.5 and 4.5 for Y1 and ¥2; click on
OK.

* Glue the areas (AGLUE command) using the following menu path:
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Main Menu > Preprocessor > Modeling > Operate > Booleans > Glue > Areas

— Pick Menu appears; click on Pick All button.
— The areas appear in the Graphics Window, as shown in Fig. 8.11.

» Specify the global element size (ESIZE command) using the following menu path:

Main Menu > Preprocessor > Meshing > Size Cntrls > ManualSize > Global >
Size
— Global Element Sizes dialog box appears; enter 0.1 for SIZE; click on OK.

* Specify the number of divisions on selected lines (LESIZE command) using the
following menu path:

Main Menu > Preprocessor > Meshing > Size Cntrls > ManualSize > Lines >
Picked Lines

— Pick Menu appears; pick the two lines identified in Fig. 8.12; click on OK.

— Element Sizes on Picked Lines dialog box appears; enter 6 for NDIV and
remove the checkmark next to KYNDIV SIZE, NDIV can be changed so that
it shows No; click on OK.

* Concatenate lines (LCCAT command) using the following menu path:



8.1 Static Analysis 333
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Main Menu > Preprocessor > Meshing > Concatenate > Lines

N

— Pick Menu appears; pick the two lines identified in Fig. 8.12; click on OK.
* Create the mesh (AMESH command) using the following menu path:
Main Menu > Preprocessor > Meshing > Mesh > Areas > Mapped > 3 or 4 sided

— Pick Menu appears; click on Pick All.

— Modify the real constant set attribute of the elements corresponding to the
thicker portion of the plate (EMODIF command) using the following menu
path:

Main Menu > Preprocessor > Modeling > Move/Modify > Elements > Modify
Attrib

— Pick Menu appears; pick the elements corresponding to the areas indicated
in Fig. 8.13 (click on the Box radio-button in the Pick Menu and draw a rect-
angle in the Graphics Window to pick the elements). Clicking on OK brings
up the Modify Elem Attributes dialog box.

— Select Real const REAL from the pull-down menu and enter 2 in the /1 New
attribute number field; click on OK.

» Create two successive reflective symmetric meshes (ARSYM command) using
the following menu path:

Main Menu > Preprocessor > Modeling > Reflect > Areas

— Pick Menu appears; click on Pick All.

— Reflect Areas dialog box appears; click on the ¥-Z plane X radio-button; click
on Apply.

— A Warning Window appears; click on OK.

— Pick Menu reappears; click on Pick All.

— Reflect Areas dialog box reappears; click on the X-Z plane Y radio-button;
click on OK.

— Plot elements (EPLOT command) using the following menu path:
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Fig. 8.14 Elements of the
plate, as they appear in the
Graphics Window

Utility Menu > Plot > Elements

— Although it is not apparent through visual inspection, there are duplicate enti-
ties (keypoints, lines, and nodes) along the symmetry lines, thus there is no
continuity. Therefore, merge duplicate entities using the following menu path:

Main Menu > Preprocessor > Numbering Ctrls > Merge Items

— In the dialog box, select All from the first pull-down menu; click on OK.
— Plot elements with different colors based on their real constant numbers using
the following menu path:

Utility Menu > PlotCtrls > Numbering

— Plot Numbering Controls dialog box appears. Select Real const num from the
first pull-down menu (corresponding to Elem/Attrib numbering) and select
Colors only from the second pull-down menu (corresponding to [/NUM]
Numbering shown with); click on OK.

— Plot elements (EPLOT command) using the following menu path:

Utility Menu > Plot > Elements

— Figure 8.14 shows the corresponding element plot with different colors! based
on material numbers.

! Colors have not been used in the printed version of the figures. See the accompanying CD-ROM
for color versions of the figures.
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Solution

* Apply displacement constraints (D command) using the following menu path:

Main Menu > Solution > Define Loads > Apply > Structural > Displacement >
On Nodes

— Pick Menu appears; pick the nodes along the bottom surface of the plate (click
on the Box radio-button in the Pick Menu and draw a rectangle in the Graph-
ics Window to pick the nodes); click on OK in the Pick Menu.

— Highlight both UX and UY; click on OK.

» Apply surface force (pressure) boundary conditions (SF command) using the
following menu path:

Main Menu > Solution > Define Loads > Apply > Structural > Pressure > On
Nodes

— Pick Menu appears; pick the nodes along the top surface of the plate; click on
OK in the Pick Menu.

— Type —1000 (negative 1000) for VALUE Load PRES value; click on OK.

— Pressure, by definition, acts normal toward the body along the surface. The
direction of action in reference to the global coordinate system does not affect
whether it is positive or negative. The only factor that dictates the sign is
whether it acts toward or away from the body. Therefore, in order to apply the
tensile loading, it is necessary to apply negative pressure.

» Obtain the solution (SOLVE command) using the following menu path:
Main Menu > Solution > Solve > Current LS

— Confirmation Window appears along with Status Report Window.

— Review status; if OK, close the Status Report Window; click on OK in the
Confirmation Window.

— Wait until ANSYS responds with Solution is done!

Postprocessing

» Review the normal stress contour plots in the x- and y-directions (PLNSOL com-
mand) using the following menu path:

Main Menu > General Postproc > Plot Results > Contour Plot > Nodal Solu

— Click on Nodal Solution, Stress, and X-component of stress; click on OK.

— The contour plot of o, appears in the Graphics Window, as shown in
Fig. 8.15.

— The Contour plot of o, is obtained similarly by selecting the ¥-component
of stress from the list and clicking on OK (shown in Fig. 8.16).
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» Review the variation of stresses along a path by means of a line plot. This op-
eration requires the path to be defined first, followed by mapping the solution
items of interest onto the path and, finally, obtaining the plot. The path that is
defined in this case lies along the positive x-axis, starting from the left boundary
of the hole and ending at the left boundary of the plate. Define the path (PPATH
command) using the following menu path:

Main Menu > General Postproc > Path Operations > Define Path > By Nodes

— Pick Menu appears; pick the nodes with (x, y) coordinates (0.25, 0) and (4.5,
0); click on OK.

— By Nodes dialog box appears; enter a name describing the path, say Arz, in the
Define Path Name text field; click on OK.

— Close the PATH Command Status Window.

— Map results onto path (PDEF command) using the following menu path:

Main Menu > General Postproc > Path Operations > Map onto Path

— Map Result Items onto Path dialog box appears; select Stress from the left list
and Y-direction SY from the right list; click on OK.
— Obtain line plot of o, along the path (PLPATH command) using the follow-
ing menu path:
Main Menu > General Postproc > Path Operations > Plot Path Item > On
Graph

— Plot of Path Items on Graph dialog box appears; select SY; click on OK.
— Figure 8.17 shows the line plots of o, and o, along the defined path.

Composite Plate Under Axial Tension

A fiber-reinforced square plate, shown in Fig. 8.18, is subjected to a uniform stress
field of 20 ksi along the top and bottom boundaries. The sides of the plate are 10 in
long, and the fibers are oriented at a 45° angle to the global Cartesian coordinate
system. Material properties are specified as E; = 10x10°ksi , E, = 30%x10°ksi ,
Gy, =15x10°ksi , and v;, =0.1 . The goal is to find the displaced shape.

Model Generation

» Define the element type (ET command) using the following menu path:
Main Menu > Preprocessor > Element Type > Add/Edit/Delete

— Click on Add.

— Select Solid immediately below Structural Mass in the left list and Quad
4 Node 182 in the right list; click on OK.

— Click on Close.
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» Specify material properties by typing the following four commands in the nput
Field (at the end of each command, hit the Enter key to execute):

MP, EX,1,10E6
MP, EY,1,30E6
MP, PRXY,1,0.1
MP, GXY,1,15E6



8.1 Static Analysis 339

* Create keypoints (K command) using the following menu path:
Main Menu > Preprocessor > Modeling > Create > Keypoints > In Active CS

— Atotal of 4 keypoints will be created.

— Enter (x, y) coordinates of keypoint 1 as (=3, —3); click on Apply.
This action will keep the Create Keypoints in Active Coordinate System dia-
log box open. If the NPT Keypoint number field is left blank, then ANSYS
assigns the lowest available keypoint number to the keypoint that is being
created.

— Repeat the same procedure for the keypoints 2, 3, and 4 using (5, —5), (5, 3),
and (-3, 5), respectively, for the (x, y) coordinates.

— Once keypoint 4 is created, click on OK (instead of Apply).

* Create the area through keypoints (A command) using the following menu path:

Main Menu > Preprocessor > Modeling > Create > Areas > Arbitrary >
Through KPs

— Pick Menu appears; pick keypoints 1 through 4 (in sequence); click on OK.

* Material properties refer to the fiber directions. However, the global Cartesian
coordinates and the fiber directions are at an angle of 45° . Therefore, the ele-
ment coordinate system needs to be aligned with the fiber orientation. For this
purpose, create a local coordinate system (CLOCAL command) using the follow-
ing menu path:

Utility Menu > WorkPlane > Local Coordinate Systems > Create Local CS >
At Specified Loc

— Pick Menu appears; type 0, 0, 0 in the text field in the Pick Menu; click on OK,

— Adialog box appears; type 45 in the THXY Rotation about local Z text field;
click on OK; local coordinate system 11 is created.

— Align the element coordinate system with local coordinate system 11 (ESYS
command) using the following menu path:

Main Menu > Preprocessor > Meshing > Mesh Attributes > Default Attribs

— Meshing Attributes dialog box appears. Select 11 from the ESYS Element
coordinate sys pull-down menu; click on OK.

— Switch the active coordinate system to global Cartesian using the following
menu path:

Utility Menu > Work Plane > Change Active CS to > Global Cartesian

» Specify the number of divisions on all lines (LESIZE command) using the fol-
lowing menu path:

Main Menu > Preprocessor > Meshing > Size Cntrls > ManualSize > Lines >
All Lines

— Element Sizes on All Selected Lines dialog box appears; enter 20 for NDIV;
click on OK.
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* Mesh the square (AMESH command) using the following menu path:
Main Menu > Preprocessor > Meshing > Mesh > Areas > Mapped > 3 or 4 sided

— Pick Menu appears; click on Pick All.

Solution

» Apply displacement constraints (D command) using the following menu path:

Main Menu > Solution > Define Loads > Apply > Structural > Displacement >
On Nodes

— Pick Menu appears; pick the center node, i.e., x = 0 and y = 0; click on OK in
the Pick Menu.

— Highlight both UX and UY; click on Apply.

— Pick Menu reappears; pick the right-side center node, i.e., x=5 and y =0;
click on OK in the Pick Menu.

— Remove the highlight on UX, leaving UY highlighted; click on OK.

» Apply surface force (pressure) boundary conditions (SF command) using the
following menu path:

Main Menu > Solution > Define Loads > Apply > Structural > Pressure > On
Nodes

— Pick Menu appears; pick the nodes along the top and bottom surfaces of the
plate; click on OK in the Pick Menu.

— Type —20000 (negative 20000) for VALUE Load PRES value; click on OK.

— Pressure, by definition, acts normal toward the body along the surface. The
direction of action in reference to the global coordinate system does not affect
whether it is positive or negative. The only factor that dictates the sign is
whether it acts toward or away from the body. Therefore, in order to apply the
tensile loading, it is necessary to apply negative pressure.

* Obtain the solution (SOLVE command) using the following menu path:
Main Menu > Solution > Solve > Current LS

— Confirmation Window appears along with Status Report Window.

— Review status, if OK, close the Status Report Window; click on OK in the
Confirmation Window.

— Wait until ANSYS responds with Solution is done!

Postprocessing

» Review the deformed shape (PLDISP command) using the following menu path:
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Fig. 8.19 Deformed shape of
the composite plate

Main Menu > General PostProc > Plot Results > Deformed Shape

— Select Def + undef edge; click on OK.
— The deformed shape is shown in Fig. 8.19 as it appears in the Graphics
Window.

* Review the x-displacement at the top-right and the y-displacement at the top-left
nodes (PRNSOL command) using the following menu path:

Main Menu > General Postproc > List Results > Nodal Solution

— Click on Nodal Solution, DOF Solution, and then Displacement vector sum,;
click on OK.

— The list appears. The x-displacement at the top-right node (node 22) is given
as 0.45E-2, and the y-displacement at the top-left node (node 42) is given as
0.45E-2.

— In ANSYS, results can also be listed (or displayed) in different coordinate
systems. By default, the Results Coordinate System is aligned with the Global
Cartesian. Align the Results Coordinate System with local coordinate system
11 defined earlier using the following menu path:

Main Menu > General Postproc > Options for Outp

— Options for Output dialog box appears. Select Local system from the first
pull-down menu and enter 11 for Local system reference no; click on
OK.

— Now, review the nodal displacements one more time using the following
menu path:
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Fig. 8.20 Plane strain rep-
resentation of a bi-material
cylindrical pressure vessel
under internal pressure

material 2
E, v,

material 1
E 1 ¥

Main Menu > General Postproc > List Results > Nodal Solution

— When the results are transformed to the local coordinate system, the x-dis-
placement at the top-right node becomes 0.6364E-2, and the y-displace-
ment at the top-left node becomes 0.16499E-2. Corresponding analytical
solution values are 0.6364E—-2 and 0.16495E-2, producing negligible error
values.

8.1.4.2 Plane Strain

In a structural problem, if one of the dimensions is significantly longer than the
other dimensions defining a uniform cross-sectional area, and if the structure is sub-
jected to only uniform lateral loads, then plane strain idealization is valid. Similar
to plane stress idealization, because the number of nodes and elements in the model
is reduced drastically, utilization of plane strain idealization leads to significant
savings in computational cost without loss of accuracy in the quantities of interest.
Stresses in a bi-material cylindrical pressure vessel are used to demonstrate plane
strain idealization.

Abi-material cylinder is subjected to internal pressure, p,,as shown in Fig. 8.20.
The radius of the hollow portion is a, and the thicknesses of the inner and outer
cylinders are (h—a) and (c¢—a), respectively. Perfect contact with no slipping is
assumed along the interface, implying displacement continuity. Elastic properties
of the inner and outer cylinders are (£, v|) and (E,, v,), respectively. The goal is
to compute the stress field. The problem is solved with ANSYS using E,/E; =0.5,
v,=v, =033, p/a=2,and ¢/a =4, witha=1, p, =1,and E, =2.
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Model Generation

» Define the element type (ET command) using the following menu path:
Main Menu > Preprocessor > Element Type > Add/Edit/Delete

— Click on Add.

— Select Solid immediately below Structural Mass in the left list and Quad 4
Node 182 in the right list; click on OK.

— Click on Options.

— PLANEI82 element type options dialog box appears; select Plane strain item
from the pull-down menu corresponding to Element behavior K3.

— Click on OK; click on Close.

» Specify material properties (MP command) using the following menu path:
Main Menu > Preprocessor > Material Props > Material Models

— The inner and outer cylinder will have material reference number 1 and 2,
respectively. Define Material Model Behavior dialog box appears. In the right
window, successively left-click on Structural, Linear, Elastic, and, finally,
Isotropic, which brings up another dialog box.

— Enter 2 for EX and 0.33 for PRXY; click on OK.

— Add new material model using the following menu path:

Material > New Model

— Click on OK in the new dialog box.

— In the right window, successively left-click on Structural, Linear, Elastic,
and, finally, Isotropic; Enter 1 for EX and 0.33 for PRXY; click on OK.

— When finished, close the Define Material Model Behavior dialog box by
using the following menu path:

Material > Exit

* Create partial hollow circular areas (PCIRC command) using the following
menu path:

Main Menu > Preprocessor > Modeling > Create > Areas > Circle > By
Dimensions

— In the Create Circle by Dimensions dialog box, type 2 for Outer radius, 1 for
Inner radius, 0 for Thetal, and 90 for Theta2; click on Apply.

— Now, type 4 for Outer radius, 2 for Inner radius, 0 for Thetal, and 90 for
Theta2; click on OK.

* Glue the areas (AGLUE command) using the following menu path:
Main Menu > Preprocessor > Modeling > Operate > Booleans > Glue > Areas

— Pick Menu appears; click on Pick All button.
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— Create the mesh. Since the problem involves two dissimilar materials, the
inner circle (material 1) will be meshed first. Then the default material attri-
bute will be changed to material 2 for the outer circle. Specify global element
size (ESIZE command) using the following menu path:

Main Menu > Preprocessor > Meshing > Size Cntrls > ManualSize > Global > Size

— Global Element Sizes dialog box appears; enter 0.1 for SIZE; click on OK.
— Mesh the inner circle (AMESH command) using the following menu path:

Main Menu > Preprocessor > Meshing > Mesh > Areas > Mapped > 3 or 4 sided

— Pick Menu appears; pick the inner circle; click on OK.
— Change the default material attribute to 2 (MAT command) using the follow-
ing menu path:

Main Menu > Preprocessor > Meshing > Mesh Attributes > Default Attribs

— Meshing Attributes dialog box appears. Select 2 from the second pull-down
menu; click on OK.
— Mesh the outer circle (AMESH command) using the following menu path:

Main Menu > Preprocessor > Meshing > Mesh > Areas > Mapped > 3 or 4 sided

— Pick Menu appears; pick the outer circle; click on OK.

Solution

» Apply displacement constraints (D command) using the following menu path:

Main Menu > Solution > Define Loads > Apply > Structural > Displacement >
On Nodes

— Pick Menu appears; pick the nodes along x=0 (coincident with y-axis); click
on OK in the Pick Menu.

— Highlight UX; click on Apply.

— Pick Menu reappears; pick the nodes along y=0 (coincident with x-axis);
click on OK in the Pick Menu.

— Highlight UY and remove the highlight on UX; click on OK.

» Apply surface force (pressure) boundary conditions along the inner circular
boundary. Since the boundary is circular, it is convenient to first switch to Cylin-
drical Coordinates and then select the nodes.

— Switch to Cylindrical Coordinates (CSYS command) using the following
menu path:

Utility Menu > WorkPlane > Change Active CS to > Global Cylindrical

— Select nodes along the circular boundary (NSEL command) by using the fol-
lowing menu path:
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Utility Menu > Select > Entities

— Select Entities dialog box appears; choose By Location in the second pull-
down menu and type I in the Min, Max text field; click on OK. Because the
active coordinate system is cylindrical, any reference to the x-coordinate is
treated as a reference to the r-coordinate by ANSYS.

— Now, apply pressure boundary conditions (SF command) by using the fol-
lowing menu path:

Main Menu > Solution > Define Loads > Apply > Structural > Pressure > On
Nodes

— Pick Menu appears; click on Pick All.
— Type 1 for VALUE Load PRES value; click on OK.
— Select everything (ALLSEL command) using the following menu path:

Utility Menu > Select > Everything

— Switch back to Cartesian Coordinates (CSYS command) using the following
menu path:

Utility Menu > WorkPlane > Change Active CS to > Global Cartesian
* Obtain the solution (SOLVE command) using the following menu path:
Main Menu > Solution > Solve > Current LS

— Confirmation Window appears along with Status Report Window.

— Review status; if OK, close the Status Report Window; click on OK in the
Confirmation Window.

— Wait until ANSYS responds with Solution is done!

Postprocessing

* Obtain contour plots for o,, and o,, (PLNSOL command) using the following
menu path:

Main Menu > General Postproc > Plot Results > Contour Plot > Nodal Solu

— Click on Stress and X-component of stress; click on OK.

— The contour plot appears in the Graphics Window, as shown in Fig. 8.21
(left).

— Repeat the same procedure for o
Fig. 8.21 (right)

J»» Which produces the contour plot given in

» Since the problem possesses a circular geometry, it is often more useful to ex-
amine the stresses in cylindrical coordinates. For this purpose, change the results
coordinate system to the global cylindrical system (RSYS command) using the
following menu path:
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s 3

Main Menu > General Postproc > Options for Outp

Fig. 8.21 Normal stresses

in Cartesian coordinates: in
,.v-dlrefztlor%, O, (lefi), and
in y-direction, O Wy (right)

— Options for Output dialog box appears. Select Global cylindric from the first
pull-down; click on OK.

— Now, obtain contour plots for o, and oy (PLNSOL command) using the
following menu path:

Main Menu > General Postproc > Plot Results > Contour Plot > Nodal Solu

— Select X-component of stress from the list; click on OK.

— The contour plot appears in the Graphics Window, as shown in Fig. 8.22
(left).

— Repeat the same procedure for o, which produces the contour plot given in
Fig. 8.22 (right).

» Review the variation of stresses along a path by means of a line plot. Define the
path (PPATH command) using the following menu path:

> §

Fig. 8.22 Normal stresses in cylindrical coordinates: in 7-direction, G,,. (leff), and in ¢-direction,
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Fig. 8.23 Radial and hoop stresses along y=0

Main Menu > General Postproc > Path Operations > Define Path > By Nodes

— Pick Menu appears; pick the nodes with (x,y) coordinates (1, 0) and (4, 0);
click on OK. The path lies along the positive x-axis, starting from the bound-
ary of the hole and ending at the left boundary of the structure.

— By Nodes dialog box appears; enter a name describing the path, say hrz, in the
Define Path Name text field; click on OK.

— Close the PATH Command Status Window.

— Map results onto path (PDEF command) using the following menu path:

Main Menu > General Postproc > Path Operations > Map onto Path

— Map Result Items onto Path dialog box appears; select Stress from the left list
and Y-direction SY from the right list; click on OK.

— Obtain line plot of o, along the path (PLPATH command) using the follow-
ing menu path:

Main Menu > General Postproc > Path Operations > Plot Path Item > On
Graph

— Plot of Path Items on Graph dialog box appears; select SY; click on OK.
— Figure 8.23 shows the line plots of &,, and oy, along the defined path.
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8.1.4.3 Axisymmetric

In a solid of revolution, location of a point in the body can conveniently be identi-
fied by cylindrical coordinates, 7, € and z, with z being the axis of rotation. When
a solid of revolution is subjected to loading that can also be obtained by revolution
about the z-axis, then the results become independent of 6. This is called an Axisym-
metric Condition. Two problems are considered here.

Deformation of a Bar Due to its Own Weight Using 2-D Axisymmetric Elements

Deformation of a bar under its own weight was modeled in Sect. 8.1.1.1 using two-
dimensional link elements. The problem was solved using three-dimensional brick
elements in Sect. 8.1.3. The solution to this problem also can be obtained using axi-
symmetric elements as the geometry and the loading (gravity) exhibit conditions for
axisymmetry. The following axisymmetric solution utilizes the reference coordinate
frame shown in Fig. 8.1.

Model Generation

* Define the element type (ET command) using the following menu path:
Main Menu > Preprocessor > Element Type > Add/Edit/Delete

— Click on Add.

— Select Solid immediately below Structural Mass in the left list and Quad 4
Node 182 in the right list; click on OK.

— Click on Options.

— PLANEI82 element type options dialog box appears; select the Axisymmetric
item from the pull-down menu corresponding to Element behavior K3.

— Click on OK; click on Close.

* Specify material properties for the bar (MP command) using the following menu
path:

Main Menu > Preprocessor > Material Props > Material Models

— In the Define Material Model Behavior dialog box, in the right window, suc-
cessively left-click on Structural and Density, which will bring up another
dialog box.

— Enter 0.2839605 for DENS; click on OK.

— In order to specify the elastic modulus and Poisson’s ratio, in the Define
Material Model Behavior dialog box, in the right window, successively left-
click on Structural, Linear, Elastic, and, finally, Isotropic, which will bring
up another dialog box.

— Enter 30e6 for EX and 0.3 for PRXY; click on OK.
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— Close the Define Material Model Behavior dialog box by using the following
menu path:
Material > Exit

* Create the rectangle defining the axisymmetric cross section (RECTNG command)
using the following menu path:

Main Menu > Preprocessor > Modeling > Create > Areas > Rectangle > By
Dimensions

— In the Create Rectangle by Dimensions dialog box, enter 0 and 2 for X7 and
X2 and 0 and —20 for Y1 and Y2; click on OK.

» Specify the global element size (ESIZE command) using the following menu path:

Main Menu > Preprocessor > Meshing > Size Cntrls > ManualSize > Global >
Size
— Global Element Sizes dialog box appears; enter 0.2 for SIZE; click on OK.

* Create the mesh (AMESH command) using the following menu path:
Main Menu > Preprocessor > Meshing > Mesh > Areas > Free

— Pick Menu appears; click on Pick All.

Solution

* Apply displacement constraints (D command) using the following menu path:

Main Menu > Solution > Define Loads > Apply > Structural > Displacement >
On Nodes

— Pick Menu appears; pick the nodes at y=0; click on OK in the Pick Menu.
— Highlight All DOF; click on OK.

» Apply gravitational acceleration (ACEL command) using the following menu path:

Main Menu > Solution > Define Loads > Apply > Structural > Inertia > Gravity
> Global

— Apply (Gravitational) Acceleration dialog box appears.
— Enter 386.2205 for ACELY; click on OK.

* Obtain the solution (SOLVE command) using the following menu path:
Main Menu > Solution > Solve > Current LS

— Confirmation Window appears along with Status Report Window.

— Review status; if OK, close the Status Report Window; click on OK in the
Confirmation Window.

— Wait until ANSYS responds with Solution is done!
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Postprocessing

» Review y-displacement contours (PLNSOL command) using the following menu
path:

Main Menu > General PostProc > Plot Results > Contour Plot > Nodal Solu

— Click on DOF Solution and Y-component of displacement; click on OK.
— The contour plot is shown in Fig. 8.24 as it appears in the Graphics Window.

» Review displacement values (PRNSOL command) using the following menu path:
Main Menu > General Postproc > List Results > Nodal Solution

— Click on DOF Solution and Y-component of displacement; click on OK.

— The list appears in a separate window. It is a long list of z-displacements. At
the bottom of the window, the maximum displacement value is printed as
—0.72469E-03.

Analysis of a Circular Plate Pushed Down by a Piston Head

An aluminum circular plate with a diameter of 40 in is pushed down by a steel pis-
ton head, as shown in Fig. 8.25. The piston head has two sections with diameters
20 and 2 in. The elastic modulus and Poisson’s ratio for the aluminum plate are
given as E, = 10x10° psi and v, =0.35, respectively, whereas the correspond-
ing properties for steel are E, = 30x10° psi and v, =0.3. The aluminum plate
is clamped along the boundary (all degrees of freedom constrained). The goal is
to obtain the displacement and stress fields when the piston is pushed down (at the
top) by an amount of 0.1 in. This problem possesses the conditions necessary for
axisymmetry to be employed. Following is the solution utilizing axisymmetric ele-
ments in ANSYS.

Model Generation

» Define the element type (ET command) using the following menu path:
Main Menu > Preprocessor > Element Type > Add/Edit/Delete

— Click on Add.

— Select Solid immediately below Structural Mass in the left list and Quad 4
Node 182 in the right list; click on OK.

— Click on Options.

— PLANEI82 element type options dialog box appears; select Axisymmetric
item from the pull-down menu corresponding to Element behavior K3.
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Fig. 8.24 Contour plot of
z-displacement of a bar elon-
gated due to its own weight
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40 in

Fig. 8.25 Schematic of a circular plate pushed down by a piston head

— Click on OK; click on Close.
* Specify material properties (MP command) using the following menu path:
Main Menu > Preprocessor > Material Props > Material Models

— In the Define Material Model Behavior dialog box, in the right window, suc-
cessively left-click on Structural, Linear, Elastic, and, finally, Isotropic,
which will bring up another dialog box.

— Enter 10e6 for EX and 0.35 for PRXY; click on OK.

— Add new material model using the following menu path:

Material > New Model

— Click on OK in the new dialog box.

— In the right window, successively left-click on Structural, Linear, Elastic,
and, finally, Isotropic; Enter 30e6 for EX and 0.3 for PRXY; click on OK.

— Close the Define Material Model Behavior dialog box by using the following
menu path:

Material > Exit

» Three rectangles defining the geometry will be created and overlapped. Create
the rectangles defining the axisymmetric cross section (RECTNG command)
using the following menu path:

Main Menu > Preprocessor > Modeling > Create > Areas > Rectangle > By
Dimensions

— In the Create Rectangle by Dimensions dialog box, enter 0 and 20 for X1 and
X2 and 0 and 0.5 for Y1 and ¥2; click on Apply.



8.1 Static Analysis 353

— Now, enter 0 and 10 for X1 and X2 and 0 and 1.5 for Y1 and Y2; click on
Apply.
— Finally, enter 0 and I for X1 and X2 and 0 and 5.5 for Y1 and ¥2; click on OK.
* Opverlap the rectangles (AOVLAP command) using the following menu path:

Main Menu > Preprocessor > Modeling > Operate > Booleans > Overlap >
Areas

— Pick Menu appears, click on Pick All.
— The overlapping operation produces six areas (started with three), sharing
lines along the interfaces.

» Specify the global element size (ESIZE command) using the following menu path:

Main Menu > Preprocessor > Meshing > Size Cntrls > ManualSize > Global >
Size
— Global Element Sizes dialog box appears; enter 0.2 for SIZE; click on OK.

* Create the mesh for the aluminum plate (AMESH command) using the following
menu path:

Main Menu > Preprocessor > Meshing > Mesh > Areas > Mapped > 3 or 4 sided

— Pick Menu appears; pick the bottom row of rectangles (corresponding to the
aluminum plate); click on OK in the Pick Menu.
— Plot the areas (APLOT command) using the following menu path:

Utility Menu > Plot > Areas

— Change default element attribute for material number from 1 to 2 (MAT
command) using the following menu path:

Main Menu > Preprocessor > Meshing > Mesh Attributes > Default Attribs

— Meshing Attributes dialog box appears; select 2 from the /MAT] Material
number pull-down menu; click on OK.

— Create mesh for the steel piston (AMESH command) using the following menu
path:

Main Menu > Preprocessor > Meshing > Mesh > Areas > Mapped > 3 or 4 sided

— Pick Menu appears; pick the rectangles corresponding to the steel piston;
click on OK in the Pick Menu.

— Plot elements with different colors based on their material numbers using the
following menu path:

Utility Menu > PlotCtrls > Numbering

— Plot Numbering Controls dialog box appears. Select Material numbers
from the first pull-down menu (corresponding to Elem/Attrib numbering)
and select Colors only from the second pull-down menu (corresponding to
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Fig. 8.26 Element plot with different colors based on material numbers

[/NUM] Numbering shown with); click on OK. Figure 8.26 shows the cor-
responding element plot with different colors based on material numbers.

Solution

* Apply displacement constraints along the periphery of the aluminum plate
(D command) using the following menu path:

Main Menu > Solution > Define Loads > Apply > Structural > Displacement >
On Nodes

— Pick Menu appears; pick the nodes along the right boundary (x=20); click on
OK in the Pick Menu.
— Highlight All DOF; click on OK.

» Apply displacement constraints along the top surface of the steel piston (D
command) using the following menu path:

Main Menu > Solution > Define Loads > Apply > Structural > Displacement >
On Nodes

— Pick Menu appears; pick the nodes along the top boundary (y=35.5); click on
OK in the Pick Menu.

— Remove the highlight on Al DOF and highlight UY.

— Enter — 0.1 in the text box for VALUE Displacement value; click on OK.

» Obtain the solution (SOLVE command) using the following menu path:
Main Menu > Solution > Solve > Current LS

— Confirmation Window appears along with Status Report Window.

— Review status, if OK, close the Status Report Window; click on OK in the
Confirmation Window.

— Wait until ANSYS responds with Solution is done!

Postprocessing

* Review the deformed shape (PLDISP command) using the following menu path:
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Fig. 8.27 Deformed shape with undeformed edge
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Fig. 8.28 Equivalent stress contours

Main Menu > General PostProc > Plot Results > Deformed Shape

— Plot Deformed Shape dialog box appears; select the Def + undef edge radio
button; click on OK.
— Corresponding deformed shape is shown in Fig. 8.27.

* Review the equivalent stress (von Mises) contour plot (PLNSOL command)
using the following menu path:

Main Menu > General PostProc > Plot Results > Contour Plot > Nodal Solu

— Contour Nodal Solution Data dialog box appears. Click on Stress and scroll
down to select von Mises stress. Click on OK.
— Figure 8.28 shows the corresponding contour plot

8.1.5 Plates and Shells

Many engineering structures involve plates and shells where one dimension is much
smaller than the other two. When these thin members are flat and only in-plane
loads are applied, the problem can be solved using Plane Stress idealization. How-
ever, if they are curved and/or subjected to both in-plane and out-of-plane loads, it
is necessary to solve the problem in 3-D using shell elements. At each node of the
shell elements, both displacements and rotations are the degrees of freedom. Three
problems are solved utilizing shell elements.
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Fig. 8.29 Geometry, material
properties, and loading on the 1
bracket
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8.1.5.1 Static Analysis of a Bracket

The bracket shown in Fig. 8.29 is clamped at the two top holes and is subjected to
static vertical loading at the bottom two holes. Due to the symmetry in geometry,
only one quarter of the structure is modeled at first. Once the top-left quarter is
modeled and meshed, two symmetric reflection operations are utilized to create
the rest of the bracket. The goal is to create the finite element model and obtain the
static solution.

Model Generation

» Specify the jobname as bracket using the following menu path:
Utility Menu > File > Change Jobname

— In the dialog box, type bracket in the [/FILNAM] Enter new jobname text
field; click on the checkbox for New log and error files to show Yes; click on
OK.

* Define the element type (ET command) using the following menu path:
Main Menu > Preprocessor > Element Type > Add/Edit/Delete

— Click on Add.

— Select Shell immediately below Structural Mass in the left list and Elastic
4node 181 in the right list; click on OK.

— Click on Close.



8.1 Static Analysis 357

» Specify material properties (MP command) using the following menu path:
Main Menu > Preprocessor > Material Props > Material Models

— In the Define Material Model Behavior dialog box, in the right window, suc-
cessively left-click on Structural, Linear, Elastic, and, finally, Isotropic,
which will bring up another dialog box.

— Enter 30e6 for EX and 0.3 for PRXY; click on OK.

— In the Define Material Model Behavior dialog box, in the right window, left-
click on Density, which will bring up another dialog box.

— Enter 0.00073 for DENS; click on OK.

— Close the Define Material Model Behavior dialog box by using the following
menu path:

Material > Exit

» Specify the thickness for the shell (SECTYPE command) using the following
menu path:

Main Menu > Preprocessor > Sections > Shell > Lay-up > Add/Edit

— Create and Modify Shell Sections dialog box appears; enter 0.1 for Thickness.
— Exit from the Create and Modify Shell Sections dialog box by clicking on OK.

* Create the solid model.
— Move Working Plane origin using the following menu path:
Utility Menu > WorkPlane > Offset WP by Increments

— Offset WP dialog box appears; type 0, 3, —2 in the X, ¥, Z Offsets text field;
click on OK.
— Create a rectangular area using the following menu path:

Main Menu > Preprocessor > Modeling > Create > Areas > Rectangle > By
Dimensions

— In the Create Rectangle by Dimensions dialog box, type —2 for X1, 0 for X2,
0 for Y1, and 2 for Y2; click on OK.
— Create a circular area using the following menu path:

Main Menu > Preprocessor > Modeling > Create > Areas > Circle > By
Dimensions

— Inthe Create Circle by Dimensions dialog box, type 1 for Quter radius, 90 for
Thetal, and 180 for Theta2; click on OK.
— Subtract the circle from the rectangle using the following menu path:

Main Menu > Preprocessor > Modeling > Operate > Booleans > Subtract > Areas

— Pick Menu appears; pick the rectangle; click on OK; pick the circle; click on
OK.
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— Move the Working Plane origin to the top-left hole center using the following
menu path:

Utility Menu > WorkPlane > Offset WP by Increments

— Offset WP dialog box appears; type — 1.5, 1.5 in the X, ¥, Z Offsets text field
(because only x- and y-increments are entered, no move will be applied in
z-direction); click on OK.

— Create a circular area for the top-left hole using the following menu path:

Main Menu > Preprocessor > Modeling > Create > Areas > Circle > By
Dimensions

— In the Create Circle by Dimensions dialog box, type 0.25/2 for Outer radius,
0 for Thetal, and 360 for Theta2; click on OK.

— Subtract the circle from the rest of the area using the following menu
path:

Main Menu > Preprocessor > Modeling > Operate > Booleans > Subtract >
Areas

— Pick Menu appears; pick the large area and click OK; pick the circle; click on
OK.

— Move the Working Plane in order to create the additional rectangular area
using the following menu path:

Utility Menu > WorkPlane > Offset WP by Increments

— Offset WP dialog box appears; type — 0.5, 0.5 in the X, ¥, Z Offsets text field,
click on OK.
— Create additional rectangular area using the following menu path:

Main Menu > Preprocessor > Modeling > Create > Areas > Rectangle > By
Dimensions

— Inthe Create Rectangle by Dimensions dialog box, type 0 for X1, 1 for X2, -2
for Y1, and — 5 for ¥2; click on OK.

— In order to create a curved area, create keypoints that define the axis of rota-
tion using the following menu path:

Main Menu > Preprocessor > Modeling > Create > Keypoints > In Active CS

— Create Keypoints in Active Coordinate System dialog box appears; type 51 for
NPT Keypoint number and 0 in the X, Y, Z Location in active CS text fields;
click on Apply.

— In the same dialog box, type 52 for NPT Keypoint number and — 0.5 for x and
0 for y and z in the X, ¥, Z Location in active CS text fields; click on OK.

— Plot areas using the following menu path:
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Fig. 8.30 Solid model of a
quarter of the bracket

Utility Menu > Plot > Areas

— Create the curved area by sweeping the line at the bottom around an axis
defined by the last two keypoints created using the following menu
path:

Main Menu > Preprocessor > Modeling > Operate > Extrude > Lines > About
Axis

— Pick Menu appears; the user is first asked to pick the line to be swept, and then
to pick the keypoints defining the axis that the line to be swept about.

— Pick the horizontal line at the bottom; click on OK; type 51 in the text field
in the Pick Menu and hit Enter on the keyboard; type 52 followed by hitting
Enter on the keyboard; click on OK.

— Sweep Lines about Axis dialog box appears; type 45 for ARC Arc length in
degrees; click on OK.

— Click on the Isometric View button.

— Figure 8.30 shows the result of this action.

— Although the areas created appear to be connected, ANSYS treats them as
independent of each other (not connected). Therefore, the areas must be glued
to each other. This is achieved by using the following menu path:

Main Menu > Preprocessor > Modeling > Operate > Booleans > Glue > Areas

— Pick Menu appears; click on Pick All.
* Create the mesh.

— Specify the number of elements around the hole using the following menu
path:
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Main Menu > Preprocessor > Meshing > Size Cntrls > ManualSize > Lines >
Picked Lines

— Pick the four circular segments defining the hole; click on OK.

— Element Sizes on Lines dialog box appears; type 2 in the text field correspond-
ing to NDIV (the second text field); uncheck the first checkbox; click on OK.

— Specify mesh density in the vicinity of the top-left corner using the following
menu path:

Main Menu > Preprocessor > Meshing > Size Cntrls > ManualSize > Keypoints
> Picked KPs

— Pick Menu appears; pick the top-left keypoint; click on OK.

— Element Size at Picked Keypoints dialog box appears; type 0.3 for SIZE Ele-
ment edge length text field; click on OK.

— Specify global mesh density using the following menu path:

Main Menu > Preprocessor > Meshing > Size Cntrls > ManualSize > Global >
Size

— Global Element Sizes dialog box appears; type 0.5 for SIZE Element edge
length text field; click on OK.
— Create the mesh using the following menu path:

Main Menu > Preprocessor > Meshing > Mesh > Areas > Free
— In the Pick Menu, click on Pick All.
— A Warning Window appears; click on OK.
» Save the model using the following menu path:
Utility Menu > File > Save as Jobname.db
The model will be saved in the Working Directory under the name bracket.db.
* Create a reflective symmetric mesh using the following menu path:
Main Menu > Preprocessor > Modeling > Reflect > Areas

— Pick Menu appears; click on Pick All.

— Reflect Areas dialog box appears; click on the ¥-Z plane X radio-button; click
on OK.

— Although it is not apparent through visual inspection, there are duplicate enti-
ties (keypoints, lines and nodes) along the symmetry line, thus there is no
continuity. Therefore, merge duplicate entities using the following menu path:

Main Menu > Preprocessor > Numbering Ctrls > Merge Items
— In the dialog box, select All from the first pull-down menu; click on OK.
* Create a second reflective symmetric mesh.

— For this purpose, create a local coordinate system using the following menu
path:
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Fig. 8.31 Bracket after WY
meshing and two reflection
operations

Utility Menu > WorkPlane > Local Coordinate Systems > Create Local CS >
At Specified Loc

— Pick Menu appears; type 0, 0, 0 in the text field in the Pick Menu; click on OK.

— A dialog box appears; type —45 in the THYZ Rotation about local X text
field; click on OK.

— Create a reflective symmetric mesh using the following menu path:

Main Menu > Preprocessor > Modeling > Reflect > Areas

— Pick Menu appears; click on Pick All.

— Reflect Areas dialog box appears; click on the X-Z plane Y radio-button; click
on OK.

— Plot elements using the following menu path:

Utility Menu > Plot > Elements

— Figure 8.31 shows the isometric view of the mesh after the reflection.
— Merge duplicate entities using the following menu path:

Main Menu > Preprocessor > Numbering Ctrls > Merge Items
— In the dialog box, select A/l from the first pull-down menu; click on OK.

» Define components for future use.
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Fig. 8.32 Component Manager dialog box (left-most button is used for creating components)

— For this purpose, create a local coordinate system at the center of the top-left
hole using the following menu path:

Utility Menu > WorkPlane > Local Coordinate Systems > Create Local CS >
At Specified Loc

— Pick Menu appears; type — 1.5, 4.5, — 2 in the text field in the Pick Menu; click
on OK.

— A dialog box appears; select Cylindrical 1 in the KCS Type of coordinate
system pull-down menu.

— Delete —45 in the THYZ Rotation about local X text field; click on OK.

— Select nodes along the top-left hole by using the following menu path:

Utility Menu > Select > Entities

— Select Entities dialog box appears; choose By Location in the second pull-
down menu and type 0.25/2 in the Min, Max text field; click on OK. Because
the active coordinate system is cylindrical, any reference to the x-coordinate
will be treated as a reference to the r-coordinate by ANSYS.

— Create the component by using the following menu path:

Utility Menu > Select > Component Manager

— Component Manager dialog box appears (Fig. 8.32); click on the first button
on the left (Create Component button).

— Create Component dialog box appears; click on the Nodes radio-button and
name the component by typing TL BOLT (stands for top-left bolt) in the text
field (Fig. 8.33); click on OK.

— Close the Component Manager.

— Create components for top-right, bottom-left, and bottom-right bolts in the
same manner. The origin of the local cylindrical coordinates for each of these
are given as

TR _BOLT: 1.5, 4.5, —2
BL BOLT: —1.5, — 2, 4.5 and use —90 for the THYZ Rotation about local X
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BR _BOLT: 1.5, — 2, 4.5 and use —90 for the THYZ Rotation about local X

» Save the model using the following menu path:

Utility Menu > File > Save as Jobname.db

Solution

» Constrain displacement and rotation degrees of freedom along the top-left and
-right holes. For this purpose, first select the components created earlier for these
holes (TL_BOLT and TR_BOLT) using the following menu path:

Utility Menu > Select > Comp/Assembly > Select Comp/Assembly

— A dialog box appears; click on the by component name radio-button; click on
OK.

— A new dialog box with the components listed appears; highlight 7L BOLT,
click on OK. This action selects the nodes along the top-left hole.

— Specify the displacement boundary conditions using the following menu
path:

Main Menu > Solution > Define Loads > Apply > Structural > Displacement >
On Nodes

— Pick Menu appears; click on Pick All.
— In the new dialog box, highlight All DOF; click on OK.
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Repeat the same procedure for the top-right hole (TR_BOLT).

» Apply force boundary conditions.

For this purpose, create a local coordinate system at the center of the bottom-
left hole using the following menu path:

Utility Menu > WorkPlane > Local Coordinate Systems > Create Local CS >
At Specified Loc

Pick Menu appears; type — 1.5, — 2, 4.5 in the text field in the Pick Menu; click
on OK.

A dialog box appears; select Cylindrical 1 in the KCS Type of coordinate
system pull-down menu and type — 90 in the THYZ Rotation about local X
text field; click on OK.

Select the keypoints along the bottom-left hole using the following menu
path:

Utility Menu > Select > Entities

Select Entities dialog box appears; choose Keypoints in first pull-down menu
and By Location in the second pull-down menu; t